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Abstract—This work represents an innovative approach
for the control of a Limited Slip Differential (LSD). The
limited slip differential transmits the power of the motor to
the ground allowing the wheels to spin at different speed. Its
task is dividing the transmitted torque between the driven
wheels in different driving situations and scenarios. We start
with covering the current trends and an introduction to the
functionality and impact of a limited slip differential in
driving dynamics. Since the current control system for such a
differential is very complex and has no ability to adapt itself
over time to the changes, this work proposes a new control
approach, based on machine learning techniques. Due to the
features of the data sets, gathered from real driving situations
and are used for the training of the model, the supervised
regression-based machine learning methods are selected for
evaluation. To be able to choose the right regression method,
the data for training the model is closely analyzed and an
appropriate model that has the ability of improving the
accuracy of a limited slip differential control while ensuring
a safe, pleasant and high performance drive is chosen.

I. INTRODUCTION

A. Driving with a Limited Slip Differential (LSD)

An open differential enables the wheels to spin at
different speed but transmits the same torque amount
to both driven wheels. This implies a major drawback
in case of driving on a ground where the wheels have
different friction coefficients. In similar situations like
the one at fig. 1, one of the wheels is being driven on a
dry ground while the other one is on a different surface
like ice, transmitting the same amount of torque to both
wheels will cause the wheel on a low friction surface to
slip and lower the speed and performance of the other
wheel too and with it of the entire vehicle.

To overcome this problem limited slip differentials
are introduced. A limited slip differential is a type of
differential that grants the relative rotation of the output
shafts while providing an asymmetrical distribution of the
torque. Such limited slip differentials are used instead of
standard ones, if a higher vehicle dynamic standards need
to be achieved. The functionality of a clutch, based on
limited slip differential can be defined in two situations:

e Open clutch: the wheels are not limited, they spin
at different speeds and the same amount of torque
is transmitted through both wheels to the ground.
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Figure 1: Wheels being driven on different friction surfaces [2]

e Closed clutch: the wheels are limited, they spin at
the same speed but more torque is transmitted to
the ground through the wheel with more grip.

The performance of a vehicle is defined by its ability to
be driven at high speeds under safe conditions. The ideal
torque transmitted to the ground is the maximal torque,
that is not causing the wheels to slip. As soon as the
wheels are slipping the driver has less control over the
vehicle. To avoid a complete control loss over the vehicle
the wheels are not allowed to slip, they have to always
be able to transmit a minimal amount of torque to the
ground. When driving a vehicle without a limited speed
differential, in case of one wheel slipping, the stability
control lets the brake system [6] intervene, thus causing
a loss in speed. In the same situation a vehicle with a
limited slip differential and an accurate control system,
will be at their optimum and the cornering will happen at
the maximal possible speed, without giving the driver the
impression of losing control over the vehicle. As a result
the driver will feel safe and in control but also will be able
to enjoy a dynamic sporty drive. Limited slip differential
plays a significant role in improving performance, driving
pleasure and driving safety. In the situations like the one
described at 1, using an open differential, the wheel on
ice will not be able to transmit any torque to the ground
and will continue slipping. By limiting the independence
of the wheels and allowing different amounts of torque,
the other wheel will transmit a higher amount of torque
to the ground enabling the vehicle to still move at higher
speed and provide a better performance. Current high



Figure 2: A Typical Limited Slip Differential

performance cars adopt electronically controlled limited
slip differentials. A typical limited slip differential is
depicted at figure 2. The first part presents the motor
controlling the clutch mechanical functionality. The main
objective of the control approach proposed in this work is
to define an angular position for this motor. The second
part of the figure depicts the shafts that by rotating press
together the lamellas (shown in part three of figure 2). To
control the slip speed in such a differential, real time data
from wheel speed sensors, drivers torque request and the
actual friction conditions of a lamella clutch (fig. 2) must
be acquired beforehand. Orchestration of these factors
which shape the structure of a limited slip differential
brings a high mechanical and control complexity besides
the high cost of the production materials and software
components. To be able to provide an accurate control
of such differential, a complex physical definition of the
functionality has to be defined.

Furthermore, non-measurable real time data, like
lamella temperature (Tgp) or transmitted torque
(Mpock) in the clutch, are estimated by software mod-
els. Thus, simple controller algorithms, based on semi-
physical models can control the clutch slip speed. Semi-
physical models are a combination between a knowledge-
based model and a black box model. The accuracy of these
algorithms is strongly dependent on the calibration data
defining the controller coefficients. A controller coefficient
is a factor indicating the change ratio of a controlled
variable [1]. We believe that modern control strategies like
machine learning could provide a more qualitative control
of such a limited slip differential. Therefore, we need
to consider the benefits that a machine learning-based
approach could bring to control accuracy and improve
the vehicle performance.
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Figure 3: Control workflow of the angular position

B. Control of a Limited Slip Differential

One possible way of controlling the workflow of such a
limited slip differential is by using a motor, as an actuator.
A motor is defined by any class of rotatory electrical
machines that converts direct current electrical energy
into mechanical energy.

The ECU (Electronic Control Unit) controlling the
limited slip differential receives a set of signals:

e Required torque

« Oil temperature

e The speed of the wheels

e Clutch characteristics (ex.: age, lamella count)

With the help of these signals, the responsible ECU
computes a required position to control the motor (fig.
3). The required position is sent through an PI-control
(fig. 3, block 2), that transforms the received data into
a Pulse Wide Modulation (PWM) Signal and transmits
it to the motor. The motor reaches the defined position
and sends the actual position measured by the position
sensors (fig. 3, block 3). The actual position is transformed
by an encoder (fig. 3, block 4) and subtracted from the
required position (fig. 3, block 1) resulting in a position
difference APOS defining the control loop.

Through this rotation of the motor, a force will be
transmitted to the lamella clutch and forcing the lamellas
to be pressed together or to be opened. The motor reaches
a defined position generating a friction between pairs
of traction surfaces and generating an axial force. The
angular position of the motor is physically correlated
to the force measured in a ball ramp system (fig. 4). A
ball ramp system is composed of a frictional surfaces set,
which are rolling and forcing the elements of the system
in a frictional engagement [4].

The result of this action is a locking torque between
the wheels. The actual value of the torque is computed
from the angular position of the motor and compared to
the torque request. As soon as the lamellas of the clutch
are pressed together and spin at different speed, they
generate high energy input due to the high friction rising
the temperature in the clutch. The existing thermic flow
is equivalent to the friction power. A part of the heat will
be absorbed and transferred to the oil in the clutch. For
a safe operation of the clutch the temperature must stay
under a threshold of 250°C.
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Figure 4: Ball Ramp System for Torque Transmission [4].

C. Standard Automatic Control

The current controlling algorithm is defined as follows:
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Figure 5: Control System Workflow.

In the current controlling algorithms, the DSC requires
a torque, and from this torque the drag torque influenced
by the oil temperature is subtracted. The drag torque
defines the remaining torque from the environment
unrelated to the clutch states, even if the clutch is open
there still exists a small amount of drag torque (part 1).
Because of the absence of a temperature sensor in the
clutch, the temperature will be estimated by a thermal
model. All the Look-up tables and factors are computed
offline, as part of the calibration (part 2). The final position

is defining the rotation of the motor, which will close or
open the clutch (part 3). This position is measured by
the hall sensors [3] in the motor and reversed computed
to an actual torque (part 4).

This system is currently tested in vehicles and test
bench. Because of the offline computation of the cali-
bration and absence of adaptive behavior of the system,
the outputs provided by this control approach are not
fulfilling the expectations of the test driving experts.

II. PROBLEM STATEMENT

To provide high performance, driving dynamics, safety
and driving pleasure, an adaptive and accurate control-
ling of a limited slip differential is required. According
to the current state of the development, the limited slip
differential is controlled by a semi-physical model, which
is highly dependent on the calibration data defining
the controller coefficients. As mentioned before the
controller coefficients are scalars for observed values
in the clutch. To be able to define this coefficients a
mapping process has to be executed for each clutch.
Also during the lifetime of a clutch the surfaces of the
mechanical components are affected by friction resulting
in a deviation from the initial controller coefficients. The
process of generating the maps of coefficients is complex,
time consuming and expensive. This high dependence
on the controller coefficients results in a control of the
differential that is not adaptive which implies a low
performance of the vehicle. Such a complex semi-physical
model implies complex implementations with thousand
lines of code, a high computation power and memory
space for the calibration parameters of the control system.
Moreover, all these factors lead to a possible increase in
erroneous torque transmission.

As it can be observed in the figure 6 the torque transmit-
ted by the current system varies from the torque request,
conveys a not perfect accuracy of the control system. In
the figure it can be observed how the transmitted torque
(orange) deviates from the torque request (blue) mostly
at low values and has an unstable behavior, this declares
a major problem of the system since average drivers are
usually driving in this value ranges. Figure 6 compares
the torque request to the transmitted torque of all the
measurements used for this research. Each signal from the
measurements was filtered and the deviation, influenced
by noise and mechanics characteristics of the system are
not considered in this visualization. The approximately
70% of erroneous torque deviation in the current system
is shown at figure 6.

III. PROPOSED APPROACH

After carefully analyzing the data, existing features
and the environment where the training of the model
will take place, a machine learning-based algorithm must
be selected which fits properly into the functionality of
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Figure 6: Comparison between the actual transmitted and
requested torque

a LSD. A set of important notes, listed in following, will
help in narrowing down the selection process:

o What is the quality, size and nature of features of
the data?

¢ How much computational power and time is avail-
able?

o What is the final use of the model and how high
should its accuracy level be?

A brief explanation of three main domains of machine

learning is given in the following:

Supervised Learning -based algorithms make predic-
tions based on labeled data. This algorithm uses well
described inputs scenarios consisting of training data
and labeled output variables. The goal is to find a math-
ematical model that approximates the input scenarios
accurately and is able, under new inputs, to provide a
desired prediction of the output. Supervised learning
problems are divided into two groups:

« Classification which comes into use when the data
used for the training of the model is discrete and
divided into categories. For example a typical clas-
sification would be assigning colors to images, one
imagine is red the other one is green and,

o Regression which is used when the data for the
training contains continuous values. For example
predicting house prices considering their properties:
space, location, construction year.

Unsupervised Learning -based algorithms are only
provided with input data and do not have any correct
output values. These algorithms try to autonomously
recognize structures in the data and predict outputs. One
well-known unsupervised learning problem is clustering.
Clustering algorithms try to divide data in different
groups with similar characteristics. Each group contains
in the end similar data defining a pattern. A clustering
example is grouping customers by their purchasing
behavior.

Reinforcement Learning -based algorithms define an
agent who must decide by itself what is the next best
action based on its current state. The main goal of
reinforcement algorithms is to find automatically the ideal

set of actions describing the behavior of an agent and to
maximize its performance. During the training process
there are no defined correct outcomes. The action policy
is described by learning steps, which will be updated
according to the result of a performed action.

Taking into consideration the problem addressed by in
this work and the characteristics of the data defining the
training of the machine learning model a supervised
learning algorithm is required. The continues nature
of the data values also suggests the regression-based
algorithms as a suitable candidate. The physical model
described in the previous section, defining the current
control of such a differential, will be partly replaced by
a regression-based component, computing the angular
position of a motor. As in the current control system,
the computation of the clutch temperature will remain
unchanged. Furthermore, the temperature in the clutch
will be used as an input for the desired algorithm.

A regression-based approach is trying to find the
best mathematical model approximating best the desired
outcome. Algorithms of such approaches map a set of
independent inputs to a dependent output.

The independent features defining the computation of
the angular position (y) for the motor are listed at table
L

X1 Requested torque

X2 |Speed difference in the clutch (also known as slip speed)
X3 Clutch temperature

X4 Oil temperature

y Predicted position for the motor

Table I: Required features for the computation of angular
position

The desired algorithm must generate a reasonable
prediction of the angular position (y) for the motor
controlling the clutch. Executing this action will build
the desired locking torque between the wheels. The
transmitted torque to the wheels must not vary more
than +£10% +£15Nm from the requested torque.

IV. EvaLuATION

The transmitted torque defined by the angular position,
predicted by the proposed approach, should not vary
more than +10%+15Nm from the torque request. For
the evaluation of each regression method, root mean
squared error (RMSE) is considered as one of the factors.
As high as the RMSE is as inaccurate is the prediction,
implying a high deviation from the observed samples.

The angular position predicted by the implemented
algorithms is sent to the motor which has its own control
unit. This control unit sets the position that will then be
measured and reversed computed to an actual torque. As
described in the previous chapters the angular position
is dependent on the torque request, clutch temperature,



RMSE for train data [%]|RMSE for test data [%]
Polynomial Regression (GD) 29.680 36.0433
Polynomial Regression (OLS) 11.869 20.477
Lasso Regression 45.941 47.847
Ridge Regression 45.941 47.849
Stochastic Gradient Descent Regression 47.542 49.975
Decision Trees Regression 4.653 12.946
K-Nearest Neighbors Regression 2.733 11.783

Table II: RMSE value for each one of the implemented methods

Time for training [s]

Time for prediction on test data [ms]

Polynomial Regression (GD)

49.169

0.00002

Polynomial Regression (OLS)

4.977

0.00234

Lasso Regression

0.0291

~ 0

Ridge Regression

0.0218

~ 0

Stochastic Gradient Descent Regression

3.2426

~ 0

Decision Trees Regression

0.0522

0.00002

K-Nearest Neighbors Regression

2.2524

0.00988
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Table III: Computation time for training the model and for
predicting an angular position for each new input value

oil temperature and slip speed. This variables define the
input values of the regression, predicting the angular
position for the motor. The results of various different
regression methods is presented in the following subsec-
tions. Of high importance is the accuracy of the prediction
defined by the the root mean squared error and the time
for prediction. The time needed for training the prediction
model is only interesting for comparing the implemented
methods.

A. Polynomial Regression with Gradient Descent Evaluation

This approach generates a third degree polynomial
and fits its coefficients by applying the Gradient Descent
method. The features of the polynomial will describe the
input variables torque request, oil temperature, clutch
temperature, slip speed and will predict an angular posi-
tion for the motor controlling the clutch. The polynomial
defined by the proposed model manages to approximate
the ideal behavior by an RMSE of 29.68 on the training
data and 36.0433 on the test data. The time needed for
this approach to train the model is 49.169s and for the
prediction of each sample in the test data 2 - 10 °ms.
The figures [FIG] (I don’t know what comes here :( )
visualize the deviation of the prediction (red) from the
observed samples (blue) on train data (fig. 7) and on test
data (fig. 8). This method implies an easy understandable
and traceable algorithm but shows a weak prediction of
an ideal behavior. Mostly the deviation is higher when
trying to predict high values. Comparing the results in
table II and III it can be noticed that it improves the
deviation from the ideal behavior by 37% compared to the
Stohastic Gradient Descent method. In the same time this
method has almost 91% worse results than the K-Nearest
Neighbor Regression when predicting an accurate angular
position. Taking into account the results of the following
methods, Polynomial Regression with GD is not the ideal
choice for an approach defining the control of a limited
slip differential.

Time[s]

Figure 7: Polynomial Regression with GD: prediction on
training data
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Figure 8: Polynomial Regression with GD: prediction on
test data

B. Polynomial Regression with Ordinary Least Squared Error
Evaluation

This approach is similar to the previous one. A poly-
nomial is defined with a degree lower than three and its
coefficients are computed by applying the ordinary least
squared error method. When implementing this method
the model approximates the ideal angular position with
a RMSE of 11.869 for the train data and 20.477 when
predicting on the test data. For the training of the
prediction model 4.977s are needed while for predicting
a new angular position only 2.34 - 10~ 3ms are needed. In
the next two figures the deviation of the predicted angular
position (red) from the observed angular position (blue)
is visualized. Although this method show substantial
improvement of 60% compared to the previous version
of Polynomial Regression with GD it still delivers a
worst approximation of the ideal behavior than K-Nearest
Neighbors Regression by 77%. Compared to the K-
Nearest Neighbors Regression this method provides an
improvement in the training and prediction time, but
since this are not crucial factors in the problem proposed
by this work the best choice remains K-Nearest Neighbors
Regression.
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Figure 10: Polynomial Regression with OLS: prediction on
test data

C. Lasso Regression Evaluation

This method is choosing parameters by shrinking their
coefficients until reaching zero. The parameters which
are not important for the prediction will be removed by
optimizing their coefficients until reaching zero. Despite
a fast training of 0.0291s and prediction of approximate
0.0ms this method has even worse results than Polynomial
Regression when predicting an angular position for the
motor. The root mean squared error is 35% higher on the
train data and 25% on test data than the RMSE achieved
by predicting the angular position with Polynomial
Regression with GD. As depicted in the following figures
(11 and 12) the method delivers a prediction with a high
deviation over the entire range of values. Because of the
reasons described above Lasso Regression is not the most
suitable approach.

D. Ridge Regression Evaluation

Ridge Regression finds a model that predicts the
desired outcome by using the ordinary least squared error
and a regularization to avoid over-fitting the model. This

approach has very similar outputs to the Lasso Regression.

Compared to the Stohastic Gradient Descent Regression
it shows an improvement in the deviation from the
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Figure 11: Lasso Regression: prediction on training data
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Figure 12: Lasso Regression: prediction on test data

observed values of the angular position but still has a
far more worse outcome than the K-Nearest Neighbors
Regression. As visualized in the figures below (13 and
14) the prediction deviates from the observed values in
both low and high torque range of the measurements.
Therefore this is either not the most appropriate approach
for the control of a limited slip differential.

E. Stochastic Gradient Descent Regression Evaluation

The Stochstic Gradient Descent Regression is a very
similar approach to the Gradient Descent method used
to compute the coefficients of the polynomial regression,
the major difference is that the coefficients here are not
computed by summation but only dependent on the
actual train sample. This results in a less time consuming
training, achieving a performance improvement of 95%.
Despite this major improvement, the prediction accuracy
is even lower than the previous ones. Comparing this
method to the Ridge Regression and Lasso Regression,
which have the lowest prediction accuracy, the present
method has a 3.4% higher RMSE. Furthermore in the
figures 15 and 16 a even higher deviation than in
the previous predictions can be noticed. In conclusion
the Stochastic Gradient Descent Regression is the least
appropriate approach.
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Figure 13: Ridge Regression: prediction on training data
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Figure 14: Ridge Regression: prediction on test data

F. Decision Trees Regression Evaluation

Decision Trees Regression divides the training data
set recursively into smaller subsets until reaching a
leaf defining a continuous desired output. The major
disadvantage is the complex structure of the tree. The
complexity of this method implies a high computational
power that would not be available in each running
environment. Also, the complexity of the algorithm makes

the implementation less understandable and traceable.

Not taking into account the complexity, this method
delivers a prediction with a RMSE of 4.653 on train data
and 12.946 on the test data, placing the present method
as second best approach after K-Nearest Neighbors
Regression. Furthermore, the figures 17 and 18 show
a good coverage of the observed samples.

G. K-Nearest Neighbors Regression Evaluation

K-Nearest Neighbors Regression predicts the desired
output by dividing the training data in subsets of values
with similar characteristics. When a new output has to
be predicted the inputs are mapped to a set with specific
characteristics by computing the distance to the nearest

subset. Each subset has then a representative output.

This method has the most accurate prediction with a
RMSE of 2.733 on the train data and 11.783 on the test
data. The training time and prediction time are longer
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Figure 15: Stohastic Gradient Descent: prediction on
training data
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Figure 16: Stohastic Gradient Descent: prediction on test
data

compared to Decision Trees Regression, but comply the
time requirements. As the following two figures (19 and
20) show this method approximates very well the desired
angular position, it has a good coverage of the high and
low values and no significant deviation can be observed.
According to the results observed, K-Nearest Neighbors
Regression is the most appropriate method for the control
of a limited slip differential and the best approach to
address the problem.

H. Torque Estimation

For evaluating the results, the reverse computation
from the angular position to a torque will be needed.
This reverse computation can be also estimated by a
regression approach. The same approach as described
before for the prediction of the angular position is used
to estimate the actual torque transmitted to the wheels,
since the same physical influences have to be modeled.
The same features as before are used, additionally to
this features, the actual measured torque at the wheels
defines the observed output 21.

For the reverse computation of the transmitted torque
the independent input variables are: Torque Request,
Clutch Temperature, Oil Temperature, Slip Speed and the
previous predicted Position. The current predicted output



— prediction
400 e Traning Data

N W
g 8
8 8

Angular Position[incr]

o 20000 40000 60000 80000

Time[s]

Figure 17: Decision Tree Regression: prediction on training
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Figure 18: Decision Tree Regression: prediction on test
data

is the measured torque at the wheels. This approach was
chosen because both modules, position prediction and
torque estimation, have to remain separate to comply with
the simplicity requirements of the MISTRA test [5]. The
position is needed for the control of the clutch, while an
estimation of the transmitted torque is needed to enable
the estimation of the temperature in the clutch. Further-
more, this estimated torque can be used to evaluate the
position prediction, since the real transmitted torque can
be only measured in a vehicle under special configuration
and hardware. The simulation of the algorithm prediction
will be defined as follows:

DSC Torque request
Wheels speed difference
Clutch temperature
Oil temperature

lg ML Prediction

DC-Motor

Predicted position—#

Adjusted Position

Torgue Request Reverse computation:

Position-> Torque
>

(based on Clutch
characteristics)

Figure 22: Position prediction evaluation

In order to evaluate the angular position prediction, the
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Figure 19: K-Nearest Neighbor Regression: prediction on
training data
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Figure 20: K-Nearest Neighbor Regression: prediction on
test data

Torque Request

Slip Speed

Clutch Temperature Locking Torque
>

Torque Estimation
Oil Temperature

Position Prediction

Figure 21: Actual transmitted torque estimation

actual torque and the required torque are compared. The
result of the comparison assess the torque accuracy and
dynamics. Torque accuracy is provided when the actual
torque is not varying more than £10%=+15Nm from
the requested torque. Furthermore, the torque dynamics
describes the reaction time of the clutch meaning: how
long does it takes for the actual torque to reach at least
90% of the value corresponding to the requested torque.
As it can be observed in the figure below (fig. 23) for
the torque accuracy, the actual torque (green) and the
requested torque (blue) are compared to the allowed
maximal variation values (red) fitting the requirements.

Figure 24 illustrates the torque dynamics. The blue
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Figure 24: Evaluation of the torque dynamic

line defines the torque request and the yellow one the
measured torque. Between the two cursors (turquoise
and yellow), the time needed for the achievement of 90%
of the torque request, is measured. The torque dynamics
is influenced by the mechanics of the differential. This
influences can only be seen in real vehicle measurements
or test bench simulations where the real hardware is
available. For the evaluation of this work only a computer
simulation has been done, which will not take into
consideration the time loss caused by the mechanics of
the differential. Therefore the measurements used for the
evaluation are filtered and the values influenced by the
mechanics response time are removed.

Comparing the transmitted torque computed by the
actual system to the achieved prediction of the torque
the following results can be observed:

¢ While predicting the angular position an deviation
from the actual angular position of 78.8276[RMSE]|

is achieved
« Using this predicted angular position results in an
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Figure 25: Position prediction with K-Nearest Neighbors
method on one measurement

estimated transmitted torque varying from the ideal
behavior by a RMSE of 44.76

o Comparing the torque request to the actual torque
transmitted by the current system results in a RMSE
of 282.5354. This demonstrates that the trained model
brings an improvement of approximately 80%

e On average the prediction of the transmitted torque
lies outside the requirement interval by 20.0778 Nm
while the transmitted torque by the current system
lies in average 165.0629Nm outside the requirement
interval. Taking into consideration this erroneous
samples an improvement of 49.5% can be observed.
The average of the samples passing the accuracy re-
quirements interval margins is computed as follows:

avgOutsidelnterval = () _(Torqueyansmitted—
TorqueypperMargin)
+ ) (Torquejowermargin—
Torqueirapsmittea)) / Count

)

The following figures visualize the results of the
prediction on a random measurement for a more detailed
analysis. As it can be observed in the figure 25 the pre-
diction of the angular position has a high accuracy. Small
deviations from the observed values can be observed
generating a RMSE of 4.47.

To be able to evaluate the torque corresponding to
this position the reverse computation from position to
torque is performed. The estimated torque based on the
newly predicted position approximates the torque request
with an higher accuracy than the current control system
estimation. As visualized in figure 26 can be observed
how the approximation does not passes the requirements
interval margins defined by the green lines. The torque
transmitted by the current system only manages to keep
inside the correct interval while transmitting high values
(fig. 27). In average the transmitted torque by the current
system passes the interval margins by 106.8805Nm gener-
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Figure 26: K-Nearest Neighbor Regression: prediction on
training data
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Figure 27: Torque estimation with K-Nearest Neighbors
method on one measurement

ating 69% erroneous torque samples, while the predicted
torque values of the proposed method are never outside
the desired interval.

When comparing the predicted transmitted torque to
the ideal behavior a deviation of 18.7716[RMSE] can be

noticed in figure 28, but never more then +10% +15Nm.

The actual control system deviates from the ideal behavior
by 76.1897[RMSE]. As it can be observed in the figure

29 this is a substantial deviation from the ideal behavior.

Controlling the differential with the proposed approach
by this research on the current measurement improves
the torque transmittance by 75.3%

The K-Nearest Neighbors Regression machine learning
method brings a major improvement for the control of a
limited slip differential. It defines a accurate prediction of
both an angular position and transmitted torque. Despite
a slower prediction time it defines the most appropriate
method for the problem addressed at the beginning of this
work. The model predicting the control can be improved
even more by training it recursively on more accurate
measurements, aiming for an ideal control behavior. This
high control accuracy provides a more faster and more
adaptive differential, improving the driving pleasure of
future vehicles.
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Figure 28: Approximation of an ideal behavior. Every
sample of the prediction is between the two requirement
interval margins in green
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Figure 29: Approximation of an ideal behavior. The
transmitted torque by the current system lies often outside
the interval margins in green

V. SuMMARY AND CONCLUSION

In this work, we have defined a new innovative control
approach for a limited slip differential. This differential
controls the locking torque between the wheels of a
vehicle. It thus ensures that an optimum torque is
transferred to the ground, without causing the wheels to
slip. An accurate differential control implies the driver
is able to corner at high speed without the impression
of losing control over the vehicle. Starting with an
inaccurate, non-adaptable control system, the need of
a better control algorithm was proved. The actual system
is defined by a complex semi-physical model with a
high dependence on control coefficients. This control
coefficients are generated by a difficult, time consuming
and expansive process. To overcome the problems of the
current system this research proposed the replacement
of the semi-physical model by a machine learning-based
control approach. For the purpose of this work we
did use real vehicle measurements, representing the
behavior of a limited slip differential in all possible
driving scenarios. The data defining the behavior of a
clutch was carefully analyzed and filtered. Following that,



six different regression methods were implemented and
the results were compared according to their accuracy.

Afterwards, K-Nearest Neighbor Regression has shown
better results and therefor, is selected as the promising
candidate among the other methods. With the angular
position predicted by the regression model, the actual
locking torque has been estimated. Furthermore the
new locking torque has been compared to the torque
computed by the current system showing an accuracy
improvement of more than 70%. This achievement defines
a more performant vehicle, where the driver is always in
full control of the car and can enjoy a sporty and also a
comfortable drive.
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