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1. ABBREVIATIONS 

 

3D  3-dimensional 

ADM  abductor digiti minimi muscle 

APB   abductor pollicis brevis muscle 

BCS  biceps muscle 

BMRC  British Medical Research Council 

CMCT  central motor conduction time 

CST  corticospinal tract 

DES  direct electrical stimulation 

DH  motor dominant hemisphere 

EEG  electroencephalography 

EMG  electromyography 

fMRI  functional magnetic resonance imaging 

FCR  flexor carpi radialis muscle 

GABA  gamma-aminobutyric acid 

GCN  gastrocnemius muscle 

LGG  low-grade gliomas 

M1  primary motor cortex 

MEG  magnetoencephalography 

MEP   motor evoked potential 

MFG   middle frontal gyrus 

MNI  Montreal Neurological Institute 

MRI  magnetic resonance imaging 

NDH  non-dominant hemisphere 

nTMS  navigated transcranial magnetic stimulation 

PET  positron emission tomography 

PoG   postcentral gyrus 

PrG  precentral gyrus 

PMd  dorsal premotor area 

PMv  ventral premotor area 

PMC  premotor cortex 

rMT  resting motor threshold 

SD   standard deviation 

SFG   superior frontal gyrus 

SMA  supplementary motor area 

TA  tibialis anterior muscle 
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TES  transcranial electrical stimulation 

TMS  transcranial magnetic stimulation 
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2. INTRODUCTION 

2.1. Development of motor cortex definition throughout history 

The organization of functional areas in human brain has been investigated extensively in the 

past. Brodmann was one of the first neuroscientists to describe areas of the human brain with 

similar cytoarchitecture indicating that these areas participate in execution of the same function 

(Fig. 1) (Brodmann, 1909).  

 

Fig. 1: Brodmann areas of the human cerebral cortex; upper row: lateral view, lower row: 

medial view; reprinted from the digital copy of Brodmann (1909) provided by ZB MED – 

Informationszentrum Lebenswissenschaften 
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Brodmann areas are still commonly used in scientific settings, although the full impact of this 

cytoarchitecture-based distinction is still unclear. Brodmann’s theories have undergone many 

adaptations until today to attribute these areas to those of specified cortical functions.  

In the early mid-twentieth century, Fulton used Brodmann areas to define the location of the 

human motor cortex. Studying the cytoarchitecture and performing stimulation studies in 

primates, he and his group hypothesized that Brodmann area 4, the posterior part of the 

precentral gyrus (PrG), is, in part, the origin of the pyramidal tract, referred to as the primary 

motor cortex (M1). He referred to Brodmann area 6, which consists of the anterior part of the 

PrG and the posterior part of the frontal lobe, as the “extrapyramidal” motor cortex and used 

the term “premotor area” (Fulton, 1935). Other researchers agreed to Fulton’s theories and 

made their own amendments. Foerster, for example, widened the definition of the 

extrapyramidal motor cortex accordingly to whether the electrical stimulation led to movement, 

adding areas in the anterior frontal lobe, in the parietal lobe, and in the temporal lobe (Fig. 2) 

(Foerster, 1936). The consent at that time was that area 4 was superior to area 6 considering 

motor control, with area 6 playing rather a modulatory role. 

 

Fig. 2: Description of the motor cortex as areas where stimulation leads to limb movement; 

according to Brodmann’s cytoarchitectural studies, the authors differentiate pyramidal and 

extrapyramidal areas; Foerster, O. (1936). The motor cortex in man in the light of Hughlings 

Jackson's doctrines. Brain, 59(2), 135-159. doi:10.1093/brain/59.2.135; reproduced with 

permission of Oxford University Press on behalf of the Guarantors of Brain 

  

Later, Penfield systematically investigated the location of the human motor cortex by 

intraoperative direct electrical stimulation (DES). He didn’t agree to the strict cytoarchitectural 
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boundaries differentiating 2 motor areas in the PrG (Penfield & Boldrey, 1937). He found motor 

responses to DES only when stimulating the PrG and the postcentral gyrus (PoG), hereby 

adding PoG to the definition of the motor cortex (Penfield & Boldrey, 1937). In his experience, 

stimulation of areas outside the sensorimotor cortex did not induce real motor responses, 

rather “convulsive” movements due to “epileptiform discharge”. Furthermore, he found a 

somatotopic organization of the M1, pointing out that upper limb representations are located 

in the middle, and lower limb representations are in the superior part of PrG, each body part 

represented by areas at different size. He captured his theories in the form of the human 

homunculus (Fig. 3) (Penfield & Boldrey, 1937). Later, in 1951, he was one of the first 

researchers to describe the medial area 6 as the supplementary motor area (SMA) and to point 

to its implications for execution of movement (Penfield, 1950; Penfield & Welch, 1951). 

 

Fig. 3: Sensory and motor homunculus; this graphic depicts differences in size and location of 

motor and sensory representations of different body parts as they appear from above down 

upon the PrG; Penfield, W., & Boldrey, E. (1937). Somatic Motor And Sensory Representation 

In The Cerebral Cortex Of Man As Studied By Electrical Stimulation. Brain, 60(4), 389-443. 

doi:10.1093/brain/60.4.389; reproduced with permission of Oxford University Press on behalf 

of the Guarantors of Brain 
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Starting in late 80’s, Dum and Strick published a large series of studies, introducing a more 

detailed depiction of the premotor cortex (PMC) in the frontal lobe of primates. Using retrograde 

tracer injection, they were able to distinguish 6 premotor areas with direct cortico-cortical 

projections to the PrG as well as corticospinal projections, namely the ventral premotor area 

(PMv), dorsal premotor are (PMd), the SMA, and 3 cingulate motor areas (Dum & Strick, 1991, 

2002) (Fig. 4). They showed that not only does low current stimulation of these areas evoke 

limb movement, moreover, the movement might be evoked through corticospinal projections, 

as these areas interact directly with motor neurons of the forelimb (Dum & Strick, 2002). In 

addition, their modulatory role on the PrG through cortico-cortical projections should be noticed 

(Dum & Strick, 2002) 

 

Fig. 4: Motor areas in the frontal lobe of primates; shaded regions show regions with 

corticospinal projections; reprinted from Dum, R. P., & Strick, P. L. (2002). Motor areas in the 

frontal lobe of the primate. Physiol Behav, 77(4-5), 677-682, with permission from Elsevier 

 

2.2. Brain plasticity - a mechanism behind functional reorganization 

Starting in late 20th century, researchers and clinicians moved from a mere view at the location 

of functional areas to the search for mechanisms influencing their location. Rather than a static 

composition of functional areas, whose impairment would lead to irreversible deficits, the brain 
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was more and more regarded as a dynamic structure capable of functional reorganization, also 

referred to as neuroplasticity (Duffau, 2006; Kong et al., 2016; Pascual-Leone et al., 2005). 

Reorganization of functional areas in response to brain lesion or injury was visualized by 

studies using different stimulation or neuroimaging modalities.   

The group of Hugues Duffau from France contributed numerous works concerning plasticity of 

the brain in patients with brain tumors, investigated with DES. They were able to detect short-

term plasticity by displaying changes in organization of the motor cortex during the same 

surgery, directly before and after tumor resection (Duffau, 2001). Later, they depicted 

reorganization of functional areas between 2 tumor resection surgeries several years apart 

(Duffau et al., 2002; Robles et al., 2008) and provided many manuscripts and reviews 

addressing the field of plasticity (among others, consider Desmurget et al., 2007; Duffau, 

2006). 

Based on this development, literature proposes several mechanisms for neuroplasticity (for 

reviews, see Duffau, 2006; Kong et al., 2016; Nudo, 2013; Rossini & Pauri, 2000; Sanes & 

Donoghue, 2000). Synaptic plasticity for example, the main mechanism behind memory and 

learning, is mediated through glutamate receptors and is based on long-term potentiation or 

depression of postsynaptic potentials (Bliss & Collingridge, 1993; Bliss & Lomo, 1973; 

Buonomano & Merzenich, 1998). Horizontal fibers, which interconnect adjacent and distant 

functional units in the brain, employ this principle (Hess & Donoghue, 1994). With their 

excitatory as well as inhibitory effects, mediated through for example gamma-aminobutyric 

acid (GABA)-ergic interneurons, they maintain the balance in activity of functional areas (Jones 

et al., 1978; Nudo, 2013). This balance is often disturbed in lesioned brains. It was shown that 

in brains with focal cortical malformations, there is a widespread imbalance of excitation and 

inhibition, probably mediated through downregulation of GABA receptors that results in 

hyperexcitability of brain areas (Nudo, 2013; Redecker et al., 2000). Moreover, changes in 

lesioned brains occur on gene expression level as well, for example in genes associated with 

branching of neurites and dendrites (Urban et al., 2012). It seems as neuroplasticity is not 

limited to preformed pathways, but allows for formation of new synapses and neurons as well 

(Duffau, 2006; Gross, 2000). 

There are multiple principles of how postlesional plasticity can enable a functional 

reorganization of motor pathways. Often, other neurons are recruited to compensate for 

impaired pathways. The recruited neurons can either derive from adjacent cortical areas, or 

from distant areas such as the contralateral cortex (Duffau, 2006; Kong et al., 2016; Nudo, 

2013; Seitz et al., 1995; Weiller et al., 1993). Moreover, the reorganized neurons can consist 

of unmasked, so far inhibited projections (Duffau, 2006; Jacobs & Donoghue, 1991; Kong et 

al., 2016; Nudo, 2013; Sanes & Donoghue, 2000; Ziemann et al., 1998). During normal state 

of the brain, these latent connections are inhibited and get unmasked when the inhibition is 
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omitted. This is often regarded as an acute process, which takes place directly after lesion of 

the pathways, while other compensatory mechanisms might need more time to develop 

(Duffau, 2006; Jacobs & Donoghue, 1991; Kong et al., 2016; Ziemann et al., 1998). 

In terms of functional reorganization of the motor pathways in patients with brain lesions, motor 

areas outside the PrG received increased attention. Here, studies mainly concentrated on 2 

groups of patients, patients recovering from stroke, i.e. acute lesions, and patients with 

gliomas, i.e. rather slow-growing lesions. They pointed to different areas that have the ability 

to overtake motor function, if the original pathways are impaired; these were as well areas 

close to the lesion and the original pathways, such as the ipsilesional motor cortex, as well as 

more distant areas in the ipsilesional and the contralesional hemisphere (Carpentier et al., 

2001; Duffau, 2006; Kong et al., 2016; Nudo, 2013; Rossini & Pauri, 2000; Sanes & Donoghue, 

2000; Seitz et al., 1995; Weiller et al., 1993). Many of these findings were derived from 

stimulation studies, yet techniques for functional imaging, described in the following 

paragraphs, became more and more important over the last decades. 

 

2.3. Intraoperative motor mapping 

When resecting tumorous tissue from human brain, it is crucial to identify eloquent areas, i.e. 

areas that are essential for specific brain functions, because their resection leads to impairment 

of the respective function. In terms of motor function, the PrG is generally considered motor 

eloquent, with specific body parts being represented in different location along the PrG 

(according to the homunculus, Fig. 2). However, a complete tumor resection significantly 

influences the outcomes of patients with gliomas (Capelle et al., 2013; De Witt Hamer et al., 

2012; Sanai & Berger, 2008; Stummer et al., 2008). Therefore it is necessary to distinguish 

between actually motor eloquent areas, and tumorous tissue which can be resected without 

motor function impairment. 

The “gold standard” in neurosurgery for motor mapping, i.e. locating the motor areas in the 

brain, is the intraoperative DES (Berger et al., 1990; Cedzich et al., 1996; De Witt Hamer et 

al., 2012; Duffau et al., 2005; Kombos et al., 2000; Szelenyi et al., 2010; Taniguchi et al., 1993). 

The principles of DES are based on excitability of neurons through electric currents. After 

craniotomy and opening of dura mater, the surgeon stimulates specific areas of the brain cortex 

with an electrode (Fig. 5). In terms of motor mapping, stimulation of the motor cortex causes 

activation of muscles in the contralateral half of the patient’s body (Penfield & Boldrey, 1937). 

This can be measured in the form of motor evoked potentials (MEPs) in a continuous 

monitoring via electromyography (EMG). If repeated stimulation of a single site in the brain 

doesn’t evoke MEPs, the site is not considered essential for motor function. 
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Monitoring of MEPs is often applied during the whole tumor resection in the sense of 

neuromonitoring. Hence, repetitive stimulation of a motor site is performed and MEPs are being 

monitored; severe amplitude or latency alternations are an early sign for possibly permanent 

impairment of motor function and indicate the need for a thorough evaluation of further 

resection (Cedzich et al., 1996; Taniguchi et al., 1993). The patients are usually under general 

anesthesia. Studies showed that intraoperative motor mapping and neuromonitoring are 

beneficial for patients’ outcomes (Berger et al., 1990; Duffau et al., 2005; Kombos et al., 2009; 

Krieg et al., 2012a). 

 

 

Fig. 5: Figure showing DES motor mapping; left upper image shows resection site during brain 

tumor surgery, other images show the location of the DES point stimulated by a strip electrode 

(red cross, IntraOP Point #01) as visualized in the intraoperative neuronavigation system; 

preoperative motor mapping results (shown in green) and corticospinal fibers (shown in yellow) 

were implemented in the neuronavigation data set as well  
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2.4. Preoperative motor mapping 

2.4.1. Functional magnetic resonance imaging 

Functional magnetic resonance imaging (fMRI) is commonly used for non-invasive location of 

cortical functions (for an example, see Fig. 6). It combines a structural image achieved from 

magnetic resonance imaging (MRI) with the possibility for functional testing. The technique of 

fMRI is based on alterations in blood oxygenation levels to measure changes of the cerebral 

blood flow between resting state and during visual, auditory, or sensorimotor motor tasks 

(Ogawa et al., 1992). It is assumed that cerebral blood flow correlates with neural activity; 

therefore, if an area shows higher blood flows during a task, this area is likely to be a part of 

pathways involved in the task (Logothetis et al., 2001; Ogawa et al., 1992). 

The technique of fMRI is widely used for locating the motor cortex in patients with brain 

pathologies, such as tumors (Carpentier et al., 2001; Cramer et al., 1997). It can be used for 

preoperative motor mapping with good results that are consistent with those of the DES (Bizzi 

et al., 2008; Lehericy et al., 2000; Mueller et al., 1996; Roessler et al., 2005). Yet, while DES-

based motor mapping measures the direct response to activation of a specific cortical area, 

fMRI measures merely surrogate parameters of neural activity, such as decreased blood 

oxygenation levels due to oxygen consumption. The actual relation between these signal 

alterations and neural activation and the spatial and temporal accuracy of the technique remain 

controversial, and noise signals and pathologies of the brain might lower the quality of fMRI 

results (Kong et al., 2016; Ugurbil et al., 2003). Hence reevaluation of the technique and 

comparison to newly developed methods for preoperative motor mapping is of importance. 
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Fig. 6: Figure showing an fMRI scan of a patient with left-sided brain tumor; left image shows 

activation during movement of the right hand, right image shows activation during movement 

of the left hand; colored areas indicate areas active during movement; for both hands, highest 

activation was located in the PrG of the contralateral hemisphere 

 

2.4.2. Positron emission tomography 

Another method for depicting functional areas in patient’s brain is the positron emission 

tomography (PET). This technique can measure neuronal activation using different radioactive 

tracer, such as water labeled with radioactive oxygen for detecting regional cerebral blood flow 

changes, or radioactively labeled fluorodeoxyglucose for detecting the glucose metabolism 

(Fox et al., 1987; Schreckenberger et al., 2001). Both techniques enable a precise location of 

the motor cortex, if investigated during a motor task, even in patients with lesions of the brain 

(Fox et al., 1987; Schreckenberger et al., 2001). Moreover, studies that aimed to compare 

PET, fMRI, and DES showed a good congruence of these 3 techniques (Krings et al., 2002; 

Reinges et al., 2004; Schreckenberger et al., 2001). In general, fMRI shows a higher spatial 

and temporal resolution than PET, with the benefit of being non-invasive, while it is more prone 

to artefacts from patient’s movements or heartbeat; PET, on the other hand, is less susceptible 

to artefacts, yet needs injections of a radioactive tracer (Kong et al., 2016; Krings et al., 2002; 

Reinges et al., 2004). Nowadays, fMRI is wider available and therefore, currently of larger 

clinical impact (Krings et al., 2002). Some of the older studies investigating the motor cortex in 

patients with brain lesions used PET, though (Seitz et al., 1995; Weiller et al., 1993; Wunderlich 

et al., 1998). 
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2.4.3. Magnetoencephalography 

Electroencephalography (EEG) and magnetoencephalography (MEG) are 2 further methods 

for non-invasive motor cortex location (for an example of an MEG scan, see Fig. 7) (Nagarajan 

et al., 2008; Pfurtscheller, 2001; Tarapore et al., 2012; Weiss & Mueller, 2003). Both methods 

have the same origin; they measure brainwaves along the patient’s scalp, which are 

oscillations of electric/magnetic fields. A comparison of the brainwaves during resting state and 

during specific tasks (visual, auditory, or sensorimotor tasks) allows detection of areas involved 

in execution of cortical functions. The key to locate the motor cortex in EEG/MEG recordings 

is the event-related desynchronization, a desynchronization of brainwaves a short time before 

the onset and during the onset of movement, which is present mainly in the beta band 

frequency (Pfurtscheller, 2001; Pfurtscheller & Lopes da Silva, 1999). Different analytical 

approaches are available to locate the source of this desynchronization, which is considered 

the area of neural activity (Nagarajan et al., 2008). Preoperative motor mapping can be 

performed using MEG with comparable results to those of DES-based motor mapping 

(Nagarajan et al., 2008; Tarapore et al., 2012). Some studies indicate superiority of MEG when 

compared to fMRI (Keil et al., 2009). Due to its high acquisition and maintenance costs, MEG 

is available to only a limited number of centers.  

 

 

Fig. 7: Figure showing an MEG scan during right index finger motor task of a patient with a 

brain tumor; blue areas indicate higher activation during movement, red areas indicate no 

activation; green spot indicates the local maximum located in the left PrG; this picture was 

provided with the kind permission of Dr. Phiroz Tarapore, Department of Neurological Surgery, 

Biomagnetic Imaging Laboratory, University of California San Francisco 
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2.4.4. Principles of transcranial magnetic stimulation 

The first report about transcranial magnetic stimulation (TMS) is from Barker et al. from the 

year 1985 (Barker et al., 1985). Before this date, non-invasive stimulation of cortical structures 

was performed using short, high-voltage electrical currents applied directly through electrodes 

on scalp as transcranial electrical stimulation (TES) (Merton et al., 1982). For their newly 

developed technique, Barker et al. utilized the principle of magnetic fields inducing an electrical 

field. Since then, TMS has undergone much development, yet the principles remain the same. 

A magnetic coil, placed over the scalp, is used to induce a short-lasting magnetic field. This 

field generates an electric field, which, with the adequate intensity and orientation, can excite 

cortical neurons and activate (or inhibit) corresponding cortical areas (Barker et al., 1985; 

Hallett, 2000; Ilmoniemi et al., 1999; Ravazzani et al., 1996; Rossini et al., 1994; Rossini et al., 

2015; Ruohonen & Karhu, 2010). In terms of motor mapping, stimulation over the motor cortex 

evokes response movements in contralateral body parts which can be visualized as MEPs in 

the continuous EMG. They can be used to distinguish between motor positive (stimulation 

elicits MEPs) and motor negative (no MEPs) areas and to create a map of the motor cortex 

(for an example of a navigated TMS [nTMS]-based motor map, see Fig. 8). Other than the 

electrical current induced during TES, the magnetic field induced during TMS is not influenced 

by the tissue it passes, such as the skull or cerebral fluid. As the electric field is induced at 

deeper levels, lower intensities are sufficient (Barker et al., 1985; Ruohonen & Karhu, 2010). 
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Fig. 8: Results of nTMS-based motor mapping of the upper and lower extremity in a patient 

with a left hemispheric tumor; grey dots indicate motor negative, colored dots indicate motor 

positive stimulation sites; the color scheme represents the MEP amplitude: red (50µV – 

500µV), yellow (500µV – 1,000µV), white (> 1,000µV); upper extremity MEPs were located in 

the middle PrG around the handknob area (orange target at the center of the yellow crosshair), 

lower extremity MEPs were located in the superior part of the PrG 

 

Motor mapping via TMS is generally well tolerated, as the induced electric field is of low 

intensity and therefore, the stimulation of structures on the scalp such as muscles and 

peripheral nerves is limited (Tarapore et al., 2016a; Tarapore et al., 2016b). Other than in 

earlier reports (Fauth et al., 1992), the risk of inducing seizures is minimal when using modern 

technology and adequate mapping protocols, resulting in TMS being considered a safe 

technique (Rossi et al., 2009; Tarapore et al., 2016a; Tarapore et al., 2016b). 

To maximize the effects of TMS, it is important to consider the patient’s skull morphology, as 

it influences the distribution of the electric field and hence the effect on the targeted structure 

(Ruohonen & Karhu, 2010). Moreover, the direction of the electric field in relation to the 

targeted structures is of importance (Rossini et al., 2015; Ruohonen & Karhu, 2010). To 

increase the precision of TMS, nTMS, which integrates the patient’s structural MRI for 

navigating the coil, was developed. When stimulating the scalp, the coil’s position is being 

visualized in the MRI scan allowing to target specific structures, such as the PrG, and to 

monitor the orientation of the induced electric field (Fig. 9) (Ruohonen & Karhu, 2010).  
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Fig. 9: Stimulation of the posterior border of the PrG in the same patient with a left hemispheric 

tumor; the electric field is strongest in the red dot at the cortex level; the arrow shows the 

direction of the induced electric field; the colored area (yellow to blue) shows the decreasing 

strength of the electric field 

 

2.4.5. Clinical use of nTMS 

In the neurosurgical setting, nTMS is an FDA approved technique for locating the motor and 

language cortex during preoperative planning. nTMS-based motor mapping is considered a 

highly reliable method, which is used as a matter of routine in many neurosurgical centers 

around the world (Krieg et al., 2012b; Picht et al., 2009; Tarapore et al., 2012). It gives results 

with a good spatial resolution and very good correspondence to DES (Krieg et al., 2012b; Picht 

et al., 2011; Tarapore et al., 2012; Weiss et al., 2013). There is evidence that it has the potential 

to improve outcomes in patients who undergo resection of motor-eloquent gliomas (Frey et al., 

2014; Krieg et al., 2014; Krieg et al., 2015). 

 

2.5. Objectives of the present study 

For this study, we aimed to depict the tumor-induced functional reorganization of the motor 

cortex. Hence, we investigated the ipsilesional, nTMS-based motor maps in a cohort of 100 

patients with brain tumors located in or adjacent to motor eloquent areas. We questioned 
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whether different tumor locations based on anatomical structures (tumor in the temporal lobe, 

the frontal lobe, in the PrG, in the PoG, or in the parietal lobe) cause different patterns of 

reorganization of the motor cortex. 

In the following, we show that nTMS is able to not only locate the motor cortex spatially; it is 

able to detect mono- and polysynaptic projections within the motor cortex as well. Furthermore, 

we investigate patterns of reorganization of the motor cortex based on clinical factors, such as 

the above mentioned lesion location, yet also other factors, such as hemisphere dominance, 

or patient’s motor deficit. Finally, we integrate our findings with evidence for cortical plasticity 

reported by other groups and validate the clinical impact of our data. 
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3. MATERIALS AND METHODS 

3.1. Ethics approval 

This study was designed and performed in accordance with ethical standards of Klinikum 

rechts der Isar of Technische Universität München and the Declaration of Helsinki from the 

year 1964. Our protocols were approved by our university’s ethics committee, registration 

number: 2793/10. All our patients were informed about the risks and benefits of all procedures; 

of MRI scan by an experienced radiologist and of the nTMS investigation by the study 

investigator and the neurosurgeon in charge. The patients had the opportunity to discuss all 

their concerns before giving written consent to the exams. All patients agreed to the 

anonymized use of their personal data and information for purposes of this study. 

 

3.2. Study design 

This is an explorative, non-randomized, non-blinded study for prospective investigation of the 

motor cortex location in a cohort of 100 patients with brain tumors by use of nTMS. 

 

3.3. Patient characteristics 

A cohort of 100 patients with intra-axial brain tumors was enrolled in the study. All patients 

were scheduled for operative resection of their brain tumor at the Department for 

Neurosurgery, Klinikum rechts der Isar, between 2011 and 2013. Inclusion criteria consisted 

of age above 18 years, written informed consent, and brain tumor in or adjacent to motor 

eloquent areas. Motor eloquence was determined according to the preoperative MRI scan and 

consisted of tumors within or adjacent to the PrG, tumors within or adjacent to the corticospinal 

tract (CST), and patients with motor deficit and therefore impairment of motor pathways by 

tumor. Exclusion criteria were age under 18 years, general nTMS exclusion criteria, such as 

cochlear implant, pacemaker, deep brain stimulation electrodes, inability to elicit MEPs by 

nTMS, and decline of consent. 

We performed our analysis among all 100 patients and among subgroups of patients, 

according to their anatomical tumor location. We distinguished between tumors in the frontal 

lobe, which includes the PMC, tumors in the PrG as the origin of the CST, tumors in the PoG, 

tumors in the remaining parietal lobe, and in the temporal lobe. We differentiated the PoG from 

the remaining parietal lobe because of its many projections to the PrG for sensory control of 

movement (Borich et al., 2015; Darian-Smith et al., 1993; Donoghue & Parham, 1983). Due to 
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the distance of temporal tumors from the PrG and the CST, we considered the subgroup of 

patients with temporal tumors as control group in this analysis. 

To ensure comparability of our subgroups, further 7 factors were inspected in addition to tumor 

location: patient’s age, gender, tumor entity, tumor site, hemisphere dominance, motor deficit, 

and previous surgeries (Tab. 1). Patient’s age, gender (male vs. female), tumor entity (WHO° 

II, WHO° III, WHO° IV tumor, metastases, or other tumor entities), and previous brain tumor 

surgeries were extracted from our department’s electronic medical record system. Patient’s 

handedness (right-handed vs. left-handed) was determined according to a standardized 

questionnaire, but failed in 5 patients due to language difficulties. Tumor site (right vs. left) and 

tumor location (temporal, frontal, PrG, PoG, and parietal) were determined by the study 

investigator from the preoperative MRI scan. Patient’s handedness and the tumor site allowed 

the assessment of the tumor hemisphere dominance (motor dominant hemisphere [DH] vs. 

non-dominant hemisphere [NDH]). Motor function was evaluated by the study investigator at 

the beginning of the actual nTMS-based motor mapping according to a standardized protocol; 

the strength of specific muscle groups in the upper and lower extremity was tested and a score 

was assessed according to the British Medical Research Council (BMRC) scale. BMRC score 

of 5/5 reflected no motor deficit; BMRC score < 5/5 in at least one muscle group reflected motor 

deficit. 
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 Temporal Frontal PrG PoG Parietal Overall 

Group size 5 24 35 17 19 100 

Mean Age ± SD 
(years) 

44.60 
± 13.47 

51.54 
± 13.07 

59.89 
± 14.79 

45.24 
± 14.14 

57.05 
± 13.01 

54.09 
± 14.78 

Gender 
M 20% 63% 54% 65% 58% 57% 

F 80% 38% 46% 35% 42% 43% 

Tumor 
Entity 

II 20% 29% 11% 12% - 14% 

III - 13% 6% 12% 16% 10% 

IV 60% 29% 29% 35% 63% 38% 

MET - 13% 37% 35% 16% 25% 

OTH 20% 17% 17% 6% 5% 13% 

Tumor Site 
R 60% 58% 46% 76% 74% 60% 

L 40% 42% 54% 24% 26% 40% 

Hemisphere 
Dominance 

DH 40% 50% 49% 35% 26% 42% 

NDH 60% 50% 49% 53% 63% 53% 

Motor 
Deficit 

yes 20% 17% 37% 35% 21% 28% 

no 80% 83% 63% 65% 79% 72% 

Previous 
Brain 

Tumor 
Surgeries 

0 60% 71% 83% 76% 84% 78% 

≥ 1 40% 29% 17% 24% 16% 22% 

 

Tab. 1: Patient characteristics in subgroups of patients according to tumor location (tumor in 

the temporal lobe, frontal lobe, in the PrG, PoG, and the parietal lobe), and overall; data on 

hemisphere dominance were not available for 5 patients, therefore results don’t sum up to 

100%; abbreviations: SD = standard deviation, M = male, F = female, II = WHO II° tumor, III = 

WHO III° tumor, IV = WHO IV° tumor, MET = metastasis, OTH = other tumor entity, R = right, 

L = left, DH = motor dominant hemisphere, NDH = non-dominant hemisphere, 0 = no previous 

brain surgeries, ≥ 1 = at least 1 previous brain surgery 

 

3.4. MRI 

All patients obtained a preoperative MRI scan, which contained multiple sequences for clinical 

purposes and a T1-weighted 3-dimensional (3D) gradient echo sequence (TR 9 ms, TE 4 ms, 

1 mm² isovoxel covering the whole head, 6 min 58 sec acquisition time) with and without 

intravenous administration of gadopentetate dimeglumine (Magnograf, Jenapharm GmH & Co. 

KG, Jena, Germany) for the uses with intraoperative and preoperative nTMS navigation. The 

MRI scanner was a 3 Tesla scanner in combination with an 8-channel phased array head coil 

(Achieva 3T, Philips Medical Systems, The Netherlands).  
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3.5. nTMS-based motor mapping 

3.5.1. Neuronavigation of the nTMS system 

Each patient underwent an nTMS-based motor mapping several days before a scheduled 

tumor resection surgery (Fig. 10). The 3D gradient echo sequence from the patient’s 

preoperative MRI scan was transferred to the nTMS system (eXimia 3.2 and eXimia 4.3, 

Nexstim Plc, Helsinki, Finland) as DICOM export file to allow for navigated motor mapping.  

 

 

Fig. 10: Experimental setup of the nTMS-based motor mapping from the investigator’s 

perspective; the camera in the front records the patient’s real time head position (represented 

by the head model); during mapping, the patient is sitting in a comfortable chair in order to 

allow for muscle relaxation; muscle activity is monitored via EMG (right screen); the 

investigator uses the magnetic coil to stimulate areas of the patient’s brain (left screen) 

 

The nTMS neuronavigation system consists of a stereotactic infrared camera (Polaris Spectra, 

Waterloo, Ontario, Canada), glasses with tracking units which mark the patient’s head position, 

and a pointer with tracking units which allows detailed targeting (Figs. 11 & 12). The stimulation 

coil also contains tracking units (Fig. 11). The camera registers the position of the tracking 

units and in doing so, the system correlates the positions of patient’s head and the pointer or 

stimulation coil to the structural MRI sequence in any moment during the examination. This is 

continuously visualized in the user interface, so that the investigator is able to target specific 

structures of the brain for stimulation (Fig. 11) 
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Fig. 11: Neuronavigation of the nTMS system; the head model represents the patient’s head 

position; the patient is wearing glasses with tracking units, coil tracking units are also visible 

(left image); a camera (not in the picture) registers the position of the patient’s head and the 

coil and superimposes the relative position of the coil on the 3D MRI sequence (right image) 

 

To correlate positions of these structures, the 3D MRI sequence is co-registered with the 

patient’s head position, marked by the glasses. To do so, the investigator locates specified 

anatomical landmarks, the nasion, left auricular and right auricular point, and 9 points along 

the patient’s scalp, in the patient’s MRI sequence and registers these points with equivalent 

points along the patient’s head (Fig. 12). 
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Fig. 12: Co-registration procedure of the nTMS system; the patient is wearing glasses with 

tracking units and the investigator is holding a pointer with tracking units (left image); a camera 

(not in the picture) monitors the positions of the patient’s head and the pointer; the investigator 

registers the location of 12 anatomical landmarks from the structural MRI scan (right image) to 

equivalent points along the patient’s head (left image); landmarks consist of the nasion, left 

and right auricular points (3 red crosshairs in the upper section, right image) and 9 preset 

points along the scalp (brown circles, lower section, right image). 

 

3.5.2. Determination of resting motor threshold 

The first part of the actual motor mapping is the determination of the resting motor threshold 

(rMT), which is defined as the lowest stimulation intensity that elicits MEPs over 50 mV in 

amplitude in a relaxed abductor pollicis brevis muscle (APB) in at least 5 out of 10 stimulation 

trials (Rossini et al., 1994; Rossini et al., 2015). The nTMS system uses a biphasic figure-of-8 

magnetic coil with a diameter of 50 mm for stimulation. It was shown that a figure-of-8 magnetic 

coil, the combination of 2 coils, induces a much more focal electric field than a single coil 

(Hallett, 2000). The muscle activity is being continuously monitored by EMG using pregelled 

surface electrodes (Neuroline 720, Ambu, Ballerup, Denmark). To determine the rMT, the 

investigator first needs to locate the motor hotspot, the site where stimulation elicits MEPs with 

highest amplitudes (Fig. 13). The motor hotspot of the hand is located in the handknob; an 

area in the middle of the PrG (Fig. 8, Fig. 13) (Campero et al., 2011). 
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Fig. 13: Stimulation of the hotspot; left image: white dot represents the stimulation site with 

highest MEP amplitudes in a relaxed APB, the “hotspot”, the orange dot next to the white dot 

represents the approximate location of the handknob; right image: a detail of the EMG 

recording, the green line shows the activity of the APB, the values show the MEP amplitude 

and latency 

 

Lowest thresholds and strongest MEP responses can be achieved by orienting the electric field 

parallel to the corticospinal neurons (Day et al., 1989; Rossini et al., 1994; Rossini et al., 2015). 

In regards of anatomical landmarks, this means that the electric field should be oriented 

tangential to the scalp, in the posterior-anterior direction, perpendicular to the orientation to the 

central sulcus (Hallett, 2000; Rossini et al., 2015; Ruohonen & Karhu, 2010). With regards to 

individual factors, we determined the adequate orientation by stimulating the motor hotspot 

with the original, perpendicular, orientation as well as with orientations up to +45° and -45° to 

the original orientation (Fig. 14). The angle at which stimulation elicited MEPs with highest 

amplitudes was used for determining the rMT in the next step. Correspondingly to literature, 

the perpendicular orientation elicited the strongest responses in all cases. Motor mapping was 

then performed with an orientation of the electric field perpendicular to the gyrus (Rossini et 

al., 2015; Ruohonen & Karhu, 2010). 
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Fig. 14: Determination of the best electric field orientation; the investigator orients the coil 

perpendicular to the mapped gyrus, the PrG (left image), and -45° to the perpendicular 

orientation (right image), visible in the targeting tool in the right lower part of both images; the 

orientation of the coil and the electric field is visible by the orange arrow on front of the magnetic 

coil 

 

The final rMT determination was performed over the hotspot with the determined coil 

orientation using the built in automated algorithm. The nTMS system automatically increases 

the stimulation intensity, if stimulation doesn’t elicit MEPs over 50µV in amplitude, and 

decreases the intensity, if the MEP amplitude is higher, until the lowest stimulation intensity 

which still elicits MEPs over 50µV in a relaxed APB muscle is found, giving the patient’s 

individual rMT. This is performed over maximum of 30 stimulation trials. For this step, it is 

crucial that the investigator visually checks the relaxation of the APB in the EMG; otherwise 

the automated determination might give a falsely low rMT (Fig. 15).  
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Fig. 15: Determination of the rMT; left image: the investigator stimulates the hotspot, the built 

in algorithm adapts the stimulation intensity until rMT is determined; middle and right image: 

EMG recordings, the green line depicts the APB activity; middle section shows muscle activity 

before and after stimulation, the flat green line indicates a good relaxation of the APB; right 

section gives a detailed view of the respective MEP (APB highlighted red) 

 

3.5.3. Localizing the motor cortex 

The actual mapping of the ipsilesional motor cortex was performed using stimulation intensities 

of 110% rMT for upper and a minimum of 130% rMT for lower extremity. Pregelled electrodes 

were placed over APB, abductor digiti minimi muscle (ADM), flexor carpi radialis muscle (FCR), 

biceps muscle (BCS), tibialis anterior muscle (TA), and gastrocnemius muscle (GCN) 

contralateral to the mapped hemisphere. The investigator started stimulating upper extremity 

motor areas around the hotspot and expanded the stimulation in all directions, until no motor 

positive stimulation sites were found. A motor positive stimulation site was defined as the site 

at which stimulation elicited MEPs over 50 µA in amplitude in at least 1 relaxed muscle. The 

electric field was oriented perpendicularly to the closest sulcus. The aim was to obtain a map 

of the motor cortex with a maximum distance of 1 cm between single stimulation sites, and a 

border consisting of 2 rows of motor negative stimulation sites (Fig. 8). Mapping of the lower 

extremity was started in the superior part of the PrG and expanded to adjacent gyri. If no 

response was found, the stimulation intensity was increased, as lower extremity motor cortex 

is located in deeper structures and higher stimulation intensities are needed for activation 

(Rossini et al., 2015). After each mapping session, the automated amplitude and latency 

determination of the nTMS systems was manually checked and MEPs were adjusted or 

removed, if falsified, visible for example by not sufficient relaxation of the muscle before 
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stimulation, or by MEP latency values that did not correspond to reference values from 

literature (Rossini et al., 1994; Rossini et al., 2015). 

 

3.6. Statistical analysis 

Our statistical analysis was conducted in 2 parts. First, we visualized the spatial location of the 

nTMS-based motor maps in subgroups of patients according to their tumor location. Second, 

we used MEP latencies to distinguish between short, monosynaptic and long, polysynaptic 

projections. We investigated whether clinical factors, such as tumor location, hemisphere 

dominance, and motor deficit, cause different patterns of distribution of polysynaptic latencies 

among the mapped gyri (PrG, superior frontal gyrus [SFG], middle frontal gyrus [MFG], PoG). 

 

3.6.1. Spatial location 

We visualized the spatial location of motor cortex using the SPM8 software (Functional Imaging 

Laboratory, Wellcome Trust Center for Neuroimaging, Institute of Neurology, UCL, London, 

UK) which runs under MATLAB (The MathWorks, Inc., Natick, MA, USA). To enable an 

interindividual comparison of motor maps, all maps were spatially normalized to fit Montreal 

Neurological Institute (MNI) standard space. To do so, we exported each patient’s 3D gradient 

echo sequence and motor map, separately for upper and lower extremity mapping, into 

Analyze or NifTi file format using MRIcro software (Brett et al., 2001) (McCausland Center for 

Brain Imaging, Columbia SC, USA). To allow for exclusion of tumorous tissue from the 

normalization process, a mask of the tumor was created in the same step by masking the 

tumorous volume in each axial slice and exporting the tumor mask in the same file formats. 

In the next step, we performed the normalization. Here, SPM8 was used to automatically 

determine a spatial transformation matrix which would convert a patient’s individual MRI 

sequence into MNI standard space, disregarding voxels from the tumor mask. The same 

spatial transformation matrix was used for normalizing the patient’s motor maps. The 

normalized MRI sequences were visually checked for congruence with the MNI standard space 

template included with the SPM8 software, considering anatomical landmarks such as the 

cranium and ventricles. To enhance the congruence, if necessary, the normalization process 

was repeated after adjusting the position of the 3D MRI sequence or, if the previous procedures 

were unsuccessful, without masking the tumor. 

We present our results as heat maps of upper and lower extremity motor maps among our 

subgroups (tumor in the temporal lobe, frontal lobe, the PrG, PoG, and the parietal lobe). The 

white areas indicate highest overlap of motor function in the specific subgroup, the black areas 
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indicate lowest overlap. This allows us to depict varying locations of motor cortex according to 

different tumor locations. The heat maps were superimposed on the MNI standard space 

template and are displayed in 3D view created by MRIcron (McCausland Center for Brain 

Imaging, Columbia SC, USA). 

 

3.6.2. MEP latency analysis 

The nTMS-derived MEP latencies were analyzed considering their location in a specific gyrus 

(PrG, SFG, MFG, and PoG). The Shapiro-Wilk test showed a non-normal distribution of MEP 

latencies, which was confirmed by visualization of the distribution of MEP latency frequency 

histograms. First, we performed an overall analysis considering MEP latencies of all 100 

patients. Kruskal-Wallis test for nonparametric distributions and Dunn’s test for multiple 

comparisons of ranks as post-hoc test were conducted to test differences in mean MEP 

latencies between the mapped gyri (PrG, SFG, MFG, PoG) for each of the stimulated muscles 

(APB, ADM, FCR, BCS, TA, GCN). Second, we hypothesize that long latencies, i.e. MEP 

latencies longer than 1 standard deviation (SD) above mean MEP latency, are transmitted vie 

more than 1 synapse and therefore represent polysynaptic projections. We conducted a chi-

square test to test for different distributions of polysynaptic projections among the mapped gyri 

(PrG, SFG, MFG, PoG) in subgroups of patients according to tumor location (tumor in the 

temporal lobe, frontal lobe, the PrG, PoG, and the parietal lobe), hemisphere dominance (DH 

vs. NDH), and a patient’s motor deficit (no motor deficit vs. motor deficit). The distributions 

were tested separately for each muscle as well as combined for all muscles. All results are 

presented as mean ± SD. The level of significance was set at p < 0.05 for each statistical test. 

Statistical testing and visualization of results as graphs was performed using GraphPad Prism 

software (GraphPad Prism 6.05, La Jolla, CA, USA) and SPSS (IBM SPSS Statistics for 

Windows, Armonk, NY, USA).  
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4. RESULTS 

 

Parts of this work were published previously and are presented here with kind permission of 

the Journal of Neurosurgery (Bulubas et al., 2016). 

4.1. General considerations 

nTMS mapping was performed successfully in all patients without any adverse events. The 

average rMT intensity was 33.83 ± 9.26% of maximum stimulator output. 4,712 motor positive 

stimulation sites were determined all together, with 47.12 ± 27.72 stimulation sites per 

mapping. The stimulation elicited 8,794 MEPs in 6 muscles (APB, ADM, FCR, BCS, TA, GCN) 

by stimulating 6 gyri (PrG, SFG, MFG, PoG, superior parietal lobule, inferior parietal lobule). 

87.94 ± 64.45 MEPs were elicited per mapping on average. Stimulation of 1 stimulation site 

elicited MEPs in 1.87 muscles on average.  

Our main objective was to perform an analysis in subgroups considering the patient’s anatomic 

tumor location (tumor in the temporal lobe, frontal lobe, the PrG, PoG, and the parietal lobe). 

There were no statistically significant differences between these subgroups considering their 

gender, tumor entity, tumor site, hemisphere dominance, motor deficit, or previous surgeries. 

However the groups differed considering the patients’ mean age (p = 0.003; Fig. 16). The post-

hoc test showed statistical significance only for the comparison of patients with tumors in the 

PrG and the PoG (p = 0.005). 

 

Fig. 16:  Box plot displaying the age distribution in subgroups of patients according to their 

tumor location; the line represents mean age; patients with tumors in the PrG were older than 

patients with tumors in the PoG 
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4.2. Spatial location of nTMS-based motor maps 

Heat map of upper extremity motor maps showed that the highest overlap of motor areas, 

represented by white/ yellow areas, was located in the handknob in the PrG, as expected 

(Fig.17 & 18). Yet individual motor areas spread widely around the handknob and adjacent 

areas, represented by red/black areas. Especially the dorsal parts of the MFG and the SFG 

seemed to contain motor representations in many patients, visible by white/yellow areas 

(Fig.17 & 18). 

 

 

 

Fig. 17:  Figure showing the heat map of upper extremity maps of all 100 patients in plane 

view; maps are superimposed on a standard brain template; white areas show highest overlap, 

black areas show lowest overlap of motor maps; left: coronal plane, middle: sagittal plane, 

right: axial plane 

 

 

Fig. 18: Figure showing the heat map of upper extremity maps of all 100 patients in 3D view; 

maps are superimposed on a standard brain template; white areas show highest overlap, black 

areas show lowest overlap of motor maps 
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Considering each patient’s tumor location, we observed that motor maps in patients with 

temporal tumors and tumors in the PrG were located rather closely together, resulting in 

compact heat maps. Patients with frontal and parietal tumors showed a rather wide spread of 

motor maps, with a spread along the anterior-posterior direction in the frontal subgroup and a 

spread into anterior and lateral areas in the parietal subgroup (Fig. 19). 

 

 

 

Fig. 19: Figure showing heat maps of upper extremity maps in subgroups of patients according 

to their tumor location in 3D view; maps are superimposed on a standard brain template; white 

areas show highest overlap, black areas show lowest overlap of motor maps 

 

Lower extremity motor maps were available in 33 patients. Heat map of lower extremity motor 

maps showed highest overlap of motor function in the superior part of the PrG, as expected, 

with motor maps spreading mainly in the anterior-posterior direction, into the SFG and PoG 

(Fig. 20). 

 

 

Fig. 20: Figure showing the heat map of lower extremity maps of 33 patients in 3D view; maps 

are superimposed on a standard brain template; white/yellow areas show highest overlap, 

black areas show lowest overlap of motor maps. 
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Considering distribution of lower extremity maps among tumor location subgroups, more than 

2 maps were available only for patients with tumors in the frontal lobe (n = 11), in the PrG (n = 

12), and in the PoG (n = 6). According to upper extremity motor maps, patients with tumors in 

the PrG and the PoG showed maps located closely to each other, while patients with frontal 

tumors showed a wide spread of lower extremity motor maps (Fig. 21). 

 

 

 

Fig. 21: Figure showing heat maps of lower extremity maps in subgroups of patients according 

to their tumor location in 3D view; maps are superimposed on a standard brain template; white 

areas show highest overlap, black areas show lowest overlap of motor maps. 

 

4.3. MEP latency analysis 

4.3.1. Distributions of MEPs and MEP latencies 

As only 20 MEPs of the total 8,794 MEPs were elicited by stimulating the parietal lobes, they 

were excluded from the MEP latency analysis. This limits the analysis to 8,774 MEPs, elicited 

by stimulating 4 gyri (PrG, SFG, MFG, PoG). The majority of MEPs was found when stimulating 

the PrG (Fig. 22) and most of them were elicited in one of the hand muscles (APB, ADM; Fig. 

23) 
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Fig. 22: Bar chart displaying MEP fractions in percent of overall MEPs elicited by stimulating 

one of the 4 mapped gyri (PrG, SFG, MFG, PoG). 

 

 

Fig. 23: Bar chart displaying MEP fractions in percent of overall MEPs elicited in one of the 6 

mapped muscles (APB, ADM, FCR, BCS, TA, GCN). 

 

The mean MEP latencies were longest for lower extremity muscles (TA, GCN), followed by 

hand muscles (APB, ADM) and more proximal upper extremity muscles (FCR, BCS; Fig. 24, 

Tab. 2). 

 



39 
 

 

Fig. 24: Box-and-whiskers plot displaying median MEP latencies, 25 & 75 percentiles, and the 

range of MEP latencies (ms) elicited in one of the 6 mapped muscles (APB, ADM, FCR, BCS, 

TA, GCN.) 

 

 APB ADM FCR BCS TA GCN 

Mean MEP 

latency ± SD 
(ms) 

23.54 
± 2.54 

23.72 
± 2.89 

18.21 
± 2.54 

16.17 
± 3.19 

32.67 
± 3.01 

34.15 
± 4.17 

Median MEP 
latency (ms) 

23.30 23.30 18.00 15.50 33.00 32.50 

 

Tab. 2: Mean MEP latencies ± SD and median MEP latencies of single muscles. 

 

Considering the distribution of mean MEP latencies among the stimulated gyri, most of the 

upper extremity muscles showed lowest mean MEP latencies in the PrG (ADM, FCR, BCS) 

and longest mean MEP latencies in frontal gyri (SFG & MFG: ADM, FCR, BCS, TA; Fig. 25, 

Tab. 3). APB mean MEP latencies were longer in the MFG or PoG, and shorter in the SFG, 

compared to the PrG (Fig. 25, Tab. 3). These distributions were statistically significant only for 

ADM and FCR (Tab. 3). 
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Fig. 25: Plot displaying mean MEP latencies ± SD (ms) separately for every gyrus and every 

muscle (* p<0.05). 

 

 PrG SFG MFG PoG p 

APB 
23.53 
± 2.60 

23.43 
± 2.43 

23.69 
± 2.20 

23.54 
± 2.59 

0.34 

ADM 
23.54 
± 2.79 

23.93 
± 3.07 

24.00 
± 2.39 

24.00 
± 3.33 

0.0013 

FCR 
18.05 
± 2.43 

18.22 
± 2.29 

18.56 
± 2.56 

18.53 
± 2.88 

0.025 

BCS 
15.95 
± 3.12 

16.46 
± 3.26 

16.38 
± 3.35 

16.67 
± 3.20 

0.17 

TA 
32.64 
± 2.80 

32.75 
± 4.06 

35.00 
± 3.30 

32.37 
± 1.64 

0.23 

GCN 
34.99 
± 4.41 

33.24 
± 3.79 

33.07 
± 3.49 

33.52 
± 3.65 

0.12 

 

Tab. 3: Mean MEP latencies ± SD (ms), shown separately for every muscle and every gyrus; 

we report significance levels for differences in mean MEP latencies between the mapped gyri 

for each muscle separately. 

 

4.3.2. Distributions of polysynaptic projections, determined by long MEP latencies 

In many patients, the frequency distributions of the individual MEP latencies showed a non-

normal distribution, with many long latency MEPs. This effect was visible also when 

considering MEP latencies of all patients together (Fig. 26). 
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Fig. 26: Histograms showing frequency distributions of all MEP latencies of APB, ADM, and 

FCR, the muscles with highest MEP counts; many long latency MEPs were found, best visible 

in frequency distributions of ADM. 

 

We hypothesized that these long latency MEPs, which we later defined as latencies longer 

than 1 SD above mean MEP latency, reflect polysynaptic projections, i.e. pathways that go 

through more than 1 synapse. We used the percentage of MEPs longer than 1 SD above mean 

MEP latency to calculate the percentage of polysynaptic projections. We originally calculated 

these polysynaptic projections separately for every muscle and every gyrus. For example, 

considering APB MEPs in the PrG, we found a mean MEP latency of 23.53 ± 2.60 ms. We 

determined a total of 1,694 APB MEPs in the PrG and a total of 251 polysynaptic MEPs, i.e. 

MEPs with latencies longer than 26.13 ms. This means that 15% of APB MEPs in the PrG 

represented polysynaptic projections (Tab. 4). This is the basic principle for our further 

analysis. We used it to investigate the influence of clinical factors such as tumor location, 

hemisphere dominance, and motor deficit. We determined the numbers of polysynaptic MEPs 

separately for every muscle and every gyrus. To increase the sample size, we present the 

results primarily combined for all muscles, distinguishing only the gyri (and the specific clinical 

factor; Figs. 27 - 29). We believe this facilitates the understanding of overall effects. In a second 

step, we report the original distributions of polysynaptic projections separately for every muscle 

and every gyrus, with limitation to APB, ADM, and FCR MEP latencies due to small MEP 

counts in the other groups (Tabs. 5, 7, 9). Considering different counts of polysynaptic 

projections, it is of interest to know whether these projections have an effect on mean MEP 

latencies, too. Therefore we additionally report the mean MEP latencies of single muscles 

between subgroups according to specific conditions (Tabs. 6, 8, 10). 
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 PrG SFG MFG PoG 

APB 15% 14% 15% 15% 

ADM 15% 14% 12% 15% 

FCR 14% 19% 17% 14% 

BCS 18% 12% 23% 18% 

TA 13% 12% 25% 19% 

GCN 20% 15% 17% 23% 

 

Tab. 4: Distribution of polysynaptic projections, shown separately for every muscle and every 

gyrus. 

 

4.3.3. Polysynaptic projections subject to tumor location 

We compared the distribution of polysynaptic projections among the gyri (PrG, SFG, MFG, 

PoG) between the temporal tumor subgroup, which we considered our control group, as the 

tumors were located within the largest distance of the motor cortex itself, and the other tumor 

location subgroups (in the frontal lobe, the PrG, PoG, and the parietal lobe). In the temporal 

subgroup, most polysynaptic projections were found in the frontal gyri (SFG & MFG; Fig. 27). 

Patients with frontal tumors showed a rather equal distribution of polysynaptic projections, with 

rather little polysynaptic projections in the frontal gyri compared to the temporal and other 

groups (p [frontal] = 0.013). Distribution of polysynaptic projections in patients with tumors in 

the PrG didn’t differ from those of the temporal subgroup (p [PrG] = 0.23). It seemed as if, of 

all gyri, there were less polysynaptic projections in the SFG (Fig. 27). In patients with tumors 

in the PoG, most polysynaptic projections were found in the PrG, and least in the PoG itself (p 

[PoG] = 0.013). Patients with parietal tumors showed little polysynaptic projection in the PrG 

and MFG, and relatively many in the PoG (p [parietal] = 0.0002; Fig. 27). 

 



43 
 

 

Fig. 27: Bar chart showing the distributions of polysynaptic projections among the mapped gyri 

between the temporal and the other tumor location subgroups (* p<0.05; ** p<0.001); 

polysynaptic projections of all muscles were combined here 

 

In the single muscle analysis, most of the distributions reflected the distributions mentioned 

above. Statistically significant levels were achieved only for APB (Tab. 5). Here, the distribution 

of the temporal subgroup differed from the distribution with all muscles combined, showing 

clearly less polysynaptic projections in frontal gyri (SFG & MFG; Fig. 27, Tab. 5). The 

distributions of other subgroups reflected the above described distributions, with frontal group 

showing a rather homogenous distribution with most polysynaptic projections in frontal gyri; 

the PrG group showing little projections in the SFG (except FCR), the PoG group showing 

most projections in the PrG (except FCR), and the parietal group showing little projections in 

the PrG (except FCR; Tab. 5). Still these results should be considered with caution. 
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  PrG SFG MFG PoG p 

APB 

Temporal 22% 10% 13% 13% - 

Frontal 13% 17% 14% 12% 0.0056 

PrG 14% 11% 18% 15% 0.014 

PoG 18% 15% 14% 14% 0.015 

Parietal 13% 16% 16% 17% 0.0001 

ADM 

Temporal 13% 27% 20% 9% - 

Frontal 12% 12% 11% 14% 0.26 

PrG 17% 14% 15% 16% 0.50 

PoG 18% 7% 14% 12% 0.75 

Parietal 13% 24% 10% 15% 0.10 

FCR 

Temporal 10% 13% 40% 22% - 

Frontal 13% 15% 15% 9% 0.45 

PrG 17% 24% 18% 15% 0.96 

PoG 13% 23% 20% 14% 0.35 

Parietal 12% 6% 13% 14% 0.85 

 

Tab. 5: Distributions of polysynaptic projections among the mapped gyri between tumor 

location subgroups, separately for every muscle; we report significance levels for differences 

in distributions between the temporal and the other subgroups 

 

Just like in the previous paragraph, even if we observed more polysynaptic projections for a 

specific muscle gyrus combination, we didn’t necessarily observe increased mean MEP 

latencies here (Tab. 6). 
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  PrG SFG MFG PoG 

APB 

Temporal 
22.57 
± 2.05 

24.20 
± 2.02 

23.79 
± 1.95 

21.35 
± 1.00 

Frontal 
23.45 
± 2.50 

24.11 
± 2.22 

24.60 
± 1.95 

23.52 
± 3.33 

PrG 
23.74 
± 3.04 

22.94 
± 2.51 

22.97 
± 2.30 

24.26 
± 2.53 

PoG 
23.34 
± 2.14 

22.80 
± 1.92 

22.81 
± 1.85 

23.23 
± 2.10 

Parietal 
23.93 
± 2.41 

24.91 
± 2.65 

24.08 
± 2.08 

23.43 
± 2.21 

ADM 

Temporal 
22.51 
± 1.70 

22.75 
± 1.74 

21.81 
± 3.06 

24.82 
± 2.51 

Frontal 
23.76 
± 2.92 

25.14 
± 3.45 

24.69 
± 2.68 

24.73 
± 3.95 

PrG 
23.66 
± 3.02 

23.23 
± 2.80 

23.20 
± 1.81 

24.46 
± 3.00 

PoG 
22.88 
± 1.79 

22.62 
± 1.43 

23.30 
± 1.37 

21.74 
± 2.03 

Parietal 
23.89 
± 2.89 

25.58 
± 3.58 

24.15 
± 2.07 

23.86 
± 3.12 

FCR 

Temporal 
18.47 
± 1.25 

19.81 
± 1.52 

18.74 
± 0.95 

19.54 
± 2.45 

Frontal 
18.33 
± 2.71 

18.72 
± 2.60 

18.94 
± 2.49 

18.66 
± 2.46 

PrG 
17.99 
± 2.76 

19.06 
± 2.41 

18.36 
± 2.77 

19.12 
± 3.46 

PoG 
17.29 
± 1.85 

17.38 
± 1.62 

18.47 
± 2.30 

17.07 
± 2.11 

Parietal 
18.11 
± 2.08 

17.60 
± 2.38 

18.28 
± 2.59 

18.41 
± 2.36 

 

Tab. 6: Mean MEP latencies ± SD (ms) of tumor location subgroups separately for every 

muscle and every gyrus 

 

4.3.4. Polysynaptic projections subject to hemisphere dominance 

We found in general more polysynaptic projections in the DH, compared to the NDH (Fig. 28). 

Moreover, most of the polysynaptic projections in the DH were located in the frontal gyri (p < 

0.0001; Fig. 28). 
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Fig. 28: Bar chart showing the distribution of polysynaptic projections among the mapped gyri 

between the DH and NDH (*** p<0.0001), polysynaptic projections of all muscles were 

combined here 

 

Same patterns were observed considering polysynaptic projections of every muscle and every 

gyrus separately, with most polysynaptic projections in frontal gyri of the DH, either in the MFG 

(APB), in the SFG (ADM), or both the SFG and MFG (FCR); they were statistically significant 

only for ADM (Tab. 7).  

 

  PrG SFG MFG PoG p 

APB 
DH 15% 15% 18% 12% 

0.10 
NDH 13% 11% 15% 13% 

ADM 
DH 13% 18% 13% 17% 

0.011 
NDH 16% 11% 12% 15% 

FCR 
DH 14% 20% 19% 13% 

0.077 
NDH 13% 20% 12% 15% 

 

Tab. 7: Distribution of polysynaptic projections among the mapped gyri between the DH and 

NDH, separately for every muscle; significance levels reflect differences in distributions 

between the DH and NDH 

 

Although more polysynaptic projections were observed for specific muscle gyrus combinations, 

we didn’t observe an increase of mean MEP latency here (Tab. 8). 
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  PrG SFG MFG PoG 

APB 

DH 
23.73 
± 2.52 

23.36 
± 2.37 

23.62 
± 2.37 

23.89 
± 2.77 

NDH 
23.33 
± 2.69 

23.54 
± 2.54 

23.79 
± 1.96 

23.31 
± 2.44 

ADM 

DH 
23.93 
± 3.11 

24.51 
± 3.44 

24.22 
± 2.73 

25.13 
± 3.69 

NDH 
23.23 
± 2.43 

22.82 
± 1.86 

23.81 
± 2.03 

23.17 
± 2.75 

FCR 

DH 
18.23 
± 2.52 

18.81 
± 2.36 

18.90 
± 2.92 

19.51 
± 3.36 

NDH 
17.87 
± 2.36 

17.30 
± 1.84 

18.36 
± 2.31 

17.98 
± 2.52 

 
Tab. 8: Mean MEP latencies ± SD (ms) in the DH and NDH separately for every muscle and 

every gyrus 

 

4.3.5. Polysynaptic projections subject to motor deficit 

Patients with motor deficits showed similar patterns of distribution of polysynaptic projections 

compared to patients without motor deficit, with most polysynaptic projections in the frontal 

gyri. Patients with motor deficits showed slightly less polysynaptic projections in the PrG (p = 

0.028; Fig. 29). 

 

 

Fig. 29: Bar chart showing the distribution of polysynaptic projections among the mapped gyri 

between patients with and without motor deficit (* p<0.05), polysynaptic projections of all 

muscles was combined here. 
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Considering single muscles, other than in the combined analysis above, we observed varying 

patterns among patients with and without motor deficits (Tab. 9). APB, ADM, and FCR do not 

show statistically significant differences, these derive from BCS (p = 0.017) and TA (p = 0.028) 

MEP latencies (Tab. 9). Due to the small numbers of BCS and TA MEPs (Fig. 23), yet a wide 

range of distributions (Fig. 24), we do not consider these muscles reliable enough to conclude 

on real effects of patient’s motor deficit on the distribution of polysynaptic projections. 

 

 Motor 
Deficit 

PrG SFG MFG PoG p 

APB 
yes 10% 5% 12% 8% 

0.19 
no 14% 16% 18% 13% 

ADM 
yes 13% 13% 19% 18% 

0.53 
no 14% 17% 15% 14% 

FCR 
yes 13% 23% 23% 14% 

0.90 
no 14% 16% 14% 14% 

 

Tab. 9: Distribution of polysynaptic projections among the mapped gyri between patients with 

and without motor deficits, separately for every muscle; significance levels reflect differences 

in distributions between patients with and without motor deficits. 

 

Accordingly to the above mentioned results, we didn’t observe any effect of increased numbers 

of polysynaptic projection on mean MEP latency (Tab. 10). 

 

 Motor 
Deficit 

PrG SFG MFG PoG 

APB 

yes 
23.76 
± 2.74 

23.86 
± 2.90 

23.27 
± 2.19 

24.33 
± 2.99 

no 
23.45 
± 2.56 

23.37 
± 2.35 

23.77 
± 2.20 

23.31 
± 2.41 

ADM 

yes 
23.47 
± 3.26 

24.11 
± 3.91 

25.69 
± 3.58 

24.73 
± 4.29 

no 
23.57 
± 2.62 

23.89 
± 2.80 

23.69 
± 1.95 

23.78 
± 2.95 

FCR 

yes 
17.78 
± 2.56 

17.13 
± 1.76 

18.29 
± 2.03 

18.66 
± 3.04 

no 
18.13 
± 2.37 

18.50 
± 2.33 

18.60 
± 2.63 

18.49 
± 2.82 

 

Tab. 10: Mean MEP latency ± SD (ms) in patients with and without motor deficit separately for 

every muscle and every gyrus. 
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5. DISCUSSION 

 

We were able to perform an nTMS-based motor mapping successfully and without any adverse 

event in all our patients. This allowed us to show again that nTMS is a feasible and tolerable 

method for locating the motor cortex, even in patients with brain tumors (Krieg et al., 2012b; 

Picht et al., 2011; Tarapore et al., 2016a). 

 

5.1. General considerations and terminology 

In literature, many terms for addressing areas of the motor cortex are in use - Brodmann areas, 

M1, PMC, extrapyramidal cortex, non-primary motor area, or supplementary motor cortex. 

Furthermore, it is possible to distinguish areas that evoke movement directly through 

corticospinal pathways, such as the CST, or areas that evoke movement through 

interconnections, or cortico-cortical projections, to other motor cortex areas (Dum & Strick, 

2002). In terms of DES and nTMS, researchers often speak of excitable areas. It is important 

not to confuse the term “primary” and “non-primary” with terms describing the excitability of the 

motor cortex. DES as well as TMS elicit motor responses when stimulating areas in the PrG, 

as well as areas outside the PrG, in the SFG, MFG, and PoG (Foerster, 1936; Kombos et al., 

1999; Penfield & Boldrey, 1937; Pitkanen et al., 2015; Teitti et al., 2008). 

Usually the term M1 is used to describe the origin of CST, the posterior part of the PrG, or 

Brodmann area 4, whereas non-primary is understood as an area without direct projections to 

the spinal cord. Extrapyramidal motor cortex, PMC, supplementary motor cortex, or Brodmann 

area 6 are often used synonymously in literature to describe the non-M1; with special confusion 

considering the term supplementary motor cortex, due to the differentiation of the SMA, which 

is just one part of the PMC. Studies on primates showed that as well the areas in the PrG, as 

areas in the PMC contain cortico-cortical and corticospinal projections (Dum & Strick, 2002). 

Due to this confusing nomenclature, we preferably use the gyral anatomy to refer to the 

location of stimulation sites in this manuscript.  

We were able to elicit MEPs not only by stimulating the PrG, but also in the SFG, MFG, and 

PoG. It seems as the locations of our stimulation sites in the SFG and MFG correspond to the 

location of the PMC, as originally defined by Dum and Strick (Dum & Strick, 2002). Although 

they investigated motor areas in brains of primates, many studies tried to locate these areas 

in human brains, too. The consensus on the location of the PMC in human brains is not as 

strong as in primates, yet generally, PMd and PMv are believed to be located on the lateral 

surface of the brain, in the posterior part of the frontal lobe, just anteriorly to the PrG, while the 

SMA lays rather on the medial surface of the hemisphere, in the most superior part just 
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anteriorly to the PrG (Fig. 30) (Fink et al., 1997; Fridman et al., 2004; Mayka et al., 2006; Tanji, 

1994).  

 

 

Fig. 30: Human motor area template based upon data generated from probability distributions 

of the PMC along with previously established anatomical criteria (data derived from 126 

articles), reprinted from Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. 

(2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined 

by functional brain imaging: a meta-analysis. Neuroimage, 31(4), 1453-1474, with permission 

from Elsevier 

Considering the location of our nTMS-based stimulation sites, it is imaginable that our nTMS 

investigation of SFG elicited motor responses by activating the SMA and hence, the location 

of the medial SMA might project on the lateral surface during nTMS mapping in our case 

(Bulubas et al., 2016). While we did not restrict our measurements to the posterior parts of 

frontal gyri, which represent the PMd and PMv (Fig. 30) (Mayka et al., 2006), most of the 

stimulation sites were indeed elicited from here. Taken together, we believe that we were able 

to elicit motor responses stimulating the PMC, namely the SMA in the most superior part of the 

SFG, and PMd (and eventually PMv) in the remaining posterior SFG and the posterior MFG 

(Bulubas et al., 2016).  

To distinguish between areas with direct projections to the spinal cord, and areas indirectly 

exciting motor neurons in the spinal cord through other connections, we use the terms 

monosynaptic and polysynaptic projections. As polysynaptic projections have longer 

pathways, we assumed that we could detect them as those MEPs having longer latencies, as 

described in the methods section (Bulubas et al., 2016). As explained in the previous 

paragraph, it might be confusing to use the terms primary, non-primary, or premotor to express 

whether an area has corticospinal projection or excites motor neurons indirectly, especially 
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because of the increasing evidence that all motor cortex areas consist of a combination of 

both, corticospinal and cortico-cortical projections (Dum & Strick, 2002; Teitti et al., 2008). 

Therefore we investigate the polysynaptic projections separately for every location where we 

were able to elicit MEPs, in the PrG, SFG, MFG, and PoG. 

 

5.2. Locating motor areas outside the PrG 

Already in the middle 20th century, neurosurgeons investigating brains with pathologies were 

able to elicit motor responses when stimulating areas outside the PrG (Fig. 2) (Foerster, 1936; 

Fulton, 1935; Penfield & Boldrey, 1937). These findings were confirmed in later intraoperative 

studies, for example in a study comparing monopolar and bipolar cortical stimulation for 

intraoperative location of the motor cortex; bipolar stimulation detected 37.85% of motor 

positive stimulation sites anterior and 7.85% posterior of the PrG (Fig. 31) (Kombos et al., 

1999). 

 

Fig. 31: Distribution of motor areas identified by bipolar cortex stimulation via DES; reprinted 

from Kombos, T., Suess, O., Kern, B. C., Funk, T., Hoell, T., Kopetsch, O., & Brock, M. (1999). 

Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta 

Neurochir (Wien), 141(12), 1295-1301, with permission of Springer 

 

Detection of premotor areas in primates inspired many studies to locate these areas in human 

brains. In healthy subject, imaging studies using PET and fMRI were able to locate 

corresponding areas in the frontal lobe that were active during execution of movement (Fig. 

30) (Boecker et al., 1994; Fink et al., 1997; Rao et al., 1993). Some stimulation studies were 
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also able to show that it is possible to evoke movement when stimulating areas of the frontal 

cortex in healthy subjects. In a series of studies from Finland, the authors were able to elicit 

MEPs in distal hand muscles when stimulating a part of the SFG, corresponding to the PMd, 

pointing to their short MEP latencies and, hence, their monosynaptic character (Teitti et al., 

2008; Vaalto et al., 2011). Another study used TMS to induce movement when stimulating area 

44 (corresponds to PMv), also pointing to their monosynaptic character (Uozumi et al., 2004).  

Stimulation studies are more common in patients with brain pathologies. A study using 

subdural electrodes in patients with epilepsy gives numbers comparable to the intraoperative 

stimulation study mentioned above – 65.9% of motor positive stimulation sites were located 

within 10 mm anteriorly of the Rolandic fissure (corresponding roughly to the location of the 

PrG), 24.4% were located more anteriorly, and 7.3% were located posterior to the Rolandic 

fissure (Uematsu et al., 1992). In patients with epilepsy due to a brain lesion, only 28.1% of 

motor positive stimulation sites were located less than 10 mm anterior of the Rolandic line, 

while 62.5% were found more anteriorly, indicating a shift of motor function into more anterior 

areas in these patients (Uematsu et al., 1992). Yet it should be considered that distributions of 

motor responses in the group of patients with brain lesions were reported only in relation to the 

Rolandic line, which is less precise as its determined using landmarks of the skull, compared 

to the Rolandic fissure, which is determined in the MRI scan; therefore the actual extent of the 

shift might be smaller (Uematsu et al., 1992). 

These 2 studies underline our findings. We found 60.71% of MEPs stimulating the PrG, 20.77% 

stimulating the frontal gyri, and 18.52% stimulating the PoG (Fig. 22). These numbers 

correspond to numbers reported in the previous paragraphs, with more MEPs in the PoG (Fig. 

31) (Kombos et al., 1999; Uematsu et al., 1992). Several theories might explain the higher 

counts of MEPs in the PoG in our study – direct corticospinal projections in the PoG might be 

more prone to TMS stimulation rather than intraoperative stimulation, TMS might be more likely 

to activate cortico-cortical projections to the PrG, or our cohort of patients might simply have 

more motor representations in the PoG than cohorts from other studies, for example because 

we included more patients with tumors in the parietal lobe (Kombos et al., 1999). However, it 

should be considered that we report MEP counts, not counts of motor positive stimulation sites. 

We found more MEPs than actual stimulation sites due to the overlapping muscle 

representations in motor areas (Farrell et al., 2007; Sanes et al., 1995). We didn’t analyze the 

counts of motor positive stimulation sites according to their location in a gyrus, although their 

location and distribution is visualized in the form of heat maps (Figs. 17 – 21). Accordingly, 

these maps show that upper extremity motor areas were located mainly in the PrG, and to a 

lesser extent also in areas of the frontal lobe anterior to the PrG, as well as in the PoG (Fig. 

18 & 19). These findings indicate that, alongside the PrG, the PMC in the posterior parts of the 
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SFG and MFG, and the PoG, play a role for reorganization of motor function in patients with 

motor eloquent brain tumors. 

 

5.3. The role of the motor cortex in the frontal lobe 

A large part of motor representations in our cohort of patients was located in the frontal gyri 

(Fig. 18 & 19). In terms of motor cortex, the frontal lobe includes the PMC: the SMA, PMd, and 

PMv, which – at least in primates – contain direct corticospinal projections to contralateral 

muscles and non-direct projections to other cortical areas, such as the PrG (Fig. 4, 30) (Dum 

& Strick, 1991, 2002). The importance of these motor areas in lesioned brains has been 

discussed extensively in literature. 

Studies on primates showed the major importance of PMv and PMd for maintaining motor 

function, when the PrG is impaired. They used a GABA agonist to inactivate motor 

representations in the PrG and in the PMC in primates, whose PrG hand muscle 

representations has been previously lesioned, to simulate a lesion of the PrG. They observed 

that, 3-4 months after initial lesioning of the PrG, the primates’ motor functions recovered. In 

their reorganized brain, inactivation of the ipsilesional PrG didn’t have any effect on motor 

function, yet inhibition of the PMC worsened the recovered motor function, indicating that motor 

function moved from the lesioned PrG to the ipsilateral PMC (Liu & Rouiller, 1999). 

Interestingly, a corresponding study performed in infant monkeys showed that, if the PrG is 

lesioned at an early age, motor function is more likely to reorganize recruiting regions adjacent 

(medially) to the lesion, instead of the more distant PMC, as observed in older primates 

(Rouiller et al., 1998). 

In human studies, corresponding hypotheses were raised. It is believed that reorganization of 

motor pathways due to impairment of the regular motor cortex or motor tracts is enabled 

through different patterns (for reviews, consider Duffau, 2006; Kong et al., 2016; Nudo, 2013; 

Rossini & Pauri, 2000; Sanes & Donoghue, 2000). In general, 3 different mechanisms for 

functional reorganization of the motor cortex were described, as explained in the following. 

First, areas adjacent to the lesion, or tumor, can be recruited, often corresponding to an 

enlargement of the respective motor area (Cicinelli et al., 1997; Traversa et al., 1997; Weiller 

et al., 1993). This theory is supported by the idea that there is not just one single cortical area 

representing a muscle or muscle group, instead there are several, overlapping representations 

targeting the same muscles in the PrG (Farrell et al., 2007; Sanes et al., 1995). These areas 

are interconnected through horizontal fibers, which might be the mechanism explaining how 

other areas can be recruited, if one of them is impaired by a lesion (Jacobs & Donoghue, 1991). 

An fMRI study proposed that in patients with brain tumors, in comparison to, for example, 

patients with congenital cortical malformations, the functional reorganization takes place 
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mainly through recruitment of adjacent areas, while in the other group, alternative mechanisms 

are of major importance (Carpentier et al., 2001). 

Second, more distant areas in the ipsilateral hemisphere can be recruited, such as the PMC. 

The role of the SMA for motor function is well known since mid-20th century. Resection of the 

SMA leads to transient motor (and speech) deficits, which is commonly known as the SMA 

syndrome (Krainik et al., 2001; Laplane et al., 1977; Zentner et al., 1996). In terms of recovery 

from stroke, studies point to the importance of the ipsilesional PMC. A TMS study in patients 

recovering from stroke with motor impairment was able to show that TMS inhibition of the 

ipsilesional PMd leads to a disruption of motor function, while inhibition of the contralesional 

PMd doesn’t show any effect, pointing to the role of the ipsilesional PMd for motor recovery 

(Fridman et al., 2004). Imaging studies in patients recovering from stroke with motor 

impairment as well as in patients with brain tumors showed increased activation of both, the 

ipsi- and the contralesional PMC during movement of the affected hand (Cramer et al., 1997; 

Meyer et al., 2003; Seitz et al., 1998; Weiller et al., 1993). 

This leads to the third mechanism - motor areas of the contralesional motor pathways can be 

recruited. Studies using TMS showed that stimulation of the contralesional PMd disrupts 

movement of affected hand in patients with recovered motor function after stroke with motor 

impairment but, in patients with higher motor impairment, it rather facilitates the activation of 

the ipsilesional motor cortex (Bestmann et al., 2010; Johansen-Berg et al., 2002; Werhahn et 

al., 2003). This indicates that areas of the contralesional motor cortex modulate the activity of 

the ipsilesional motor cortex through inhibiting transcallosal projection, by increasing or 

decreasing the inhibitory effects. More than that, studies were able to find correlation of the 

degree of reorganization, be it the enlargement of motor areas or the activation of 

contralesional motor areas, with less recovery and, hence, higher motor function impairment 

(Bestmann et al., 2010; Cicinelli et al., 1997; Johansen-Berg et al., 2002; Meyer et al., 2003; 

Traversa et al., 1997; Turton et al., 1996). Some pointed out that, with progressing motor 

function recovery, motor function might shift from the contralesional motor cortex back to the 

ipsilesional motor cortex (Werhahn et al., 2003). 

Which compensatory mechanisms will be ultimately recruited is highly individual. All these 

patterns were found in similar cohorts of patients recovering from stroke (Weiller et al., 1993). 

A study investigating 6 patients with brain tumors in the hand motor cortex showed the 

individual reorganization patterns between these patients, consisting of areas within the PrG, 

ipsilateral areas anterior and posterior to the PrG, as well as, in 1 patient, contralateral motor 

cortex areas, which was in particular nicely visible by comparison to the motor cortex of the 

non-affected hemisphere (Fig. 32 c) (Seitz et al., 1995). 
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Fig. 32: Patterns of reorganization of the motor cortex in 6 patients with brain tumors within the 

hand motor cortex; motor cortex was located by PET; a) motor cortex location (black dots) in 

relation to the tumor (shaded area); b) displacement of central sulcus (small arrows) was 

different than displacement motor cortex (large arrows); c) in the healthy hemisphere (left), the 

motor cortex was located in a small area in the middle central sulcus; in the affected 

hemisphere (right), its location varied in and around the PrG; d) displacement of the motor 

cortex in the affected compared to the healthy hemisphere (a=anterior, p=posterior, d=dorsal, 

v=ventral, r=right, l=left); reprinted from Seitz, R. J., Huang, Y., Knorr, U., Tellmann, L., Herzog, 

H., & Freund, H. J. (1995). Large-scale plasticity of the human motor cortex. Neuroreport, 6(5), 

742-744, http://journals.lww.com/neuroreport/Pages/default.aspx, with permission from 

Wolters Kluwer 
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In summary, several reorganization mechanisms including areas in the ipsi- and contralateral 

hemisphere take place when the original motor pathways are impaired. Many of these findings 

were derived from patients suffering from stroke. Although our cohort has some similarities 

with cohorts from the previous stroke studies, such as a lesion in some part of the motor tract, 

resulting in impaired motor function, there are some differences, too. The essential difference 

is that most of our patients developed a lesion during a significantly longer period of time and 

– probably due to this temporal factor - only a minority of our patients actually developed motor 

deficits, indicating that the functional reorganization in our cohort was more present or of higher 

quality (Desmurget et al., 2007; Duffau, 2006). Yet it is commonly accepted to transfer 

reorganization patterns observed in patients with strokes, or in human and animal models, to 

those of patients with brain tumors (Duffau, 2006). 

Our study is in accordance with the previously mentioned studies that report different 

reorganization patterns in lesioned brains. We found different distributions of motor areas 

among our patients, indicating shifts along the anterior-posterior and the medial-lateral 

direction in some individuals, as well as different sizes of motor areas between individuals, 

giving evidence for the existence of reorganization mechanisms in the lesioned hemisphere 

(Fig. 17 - 21). We observed that, in the vast majority of our patients, the motor areas were 

indeed located in the PrG; in and adjacent to the handknob area for upper extremity muscles, 

and around the superior part of the SFG for lower extremity muscles (Fig. 17 – 21). As most 

of the motor cortex was actually located in or adjacent to its original location, this might be 

seen as evidence that recruitment of adjacent areas was a reorganization mechanism 

displayed in our cohort. Due to the small sample size of lower extremity muscles (Figs. 20 & 

21), we limit the discussion to the upper extremity motor maps. 

Many patients showed a high overlap of upper extremity muscles in the posterior parts of the 

SFG and MFG, indicating that these areas contain detectable projections to upper extremity 

muscles in a large number of our patients with brain tumors (Figs. 18 & 19). As explained 

earlier, the nTMS-based stimulation sites we found in the SFG and MFG might correspond to 

the PMC, namely SMA and PMd (Fig. 30) (Fink et al., 1997; Mayka et al., 2006). This shows 

that we also observed the second reorganization mechanism described earlier, the recruitment 

of more distant areas the ipsilateral hemisphere. Our finding underlines the importance of these 

2 mechanisms for functional reorganization of motor function in patients with motor eloquent 

brain lesions.  

As we didn’t investigate the healthy hemisphere in our cohort, we can’t discuss the role of the 

contralesional hemisphere here. 
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5.4. The role of the motor cortex in the parietal lobe 

Studies investigating the location of motor function in healthy and lesioned brains often 

concentrate on motor areas in the frontal lobe, the PMC, as described in the previous chapter. 

This is understandable, as the discovery of premotor areas in the frontal lobe of primates was 

conducted just recently and it revolutionized the understanding of the motor cortex (Dum & 

Strick, 1991, 2002). It is surprising how many studies found motor areas in the parietal lobe 

and didn’t consider this finding considerably important as that of frontal motor areas. 

Already the intraoperative stimulation studies mentioned earlier showed that a significant 

portion of motor areas was located posterior of the PrG (Foerster, 1936; Kombos et al., 1999; 

Nii et al., 1996; Penfield & Boldrey, 1937; Uematsu et al., 1992). PET and fMRI studies in 

patients recovering from stroke with motor impairment and in patients with brain tumors were 

also able to show increased activation in the PoG and the parietal cortex, indicating that these 

areas might be of importance for compensation of motor function (Cramer et al., 1997; Meyer 

et al., 2003; Weiller et al., 1993). Single reports repeatedly provided evidence that, if the PrG 

is impaired by a tumor, motor areas can shift posteriorly from the PrG into the PoG and the 

parietal cortex (Fig. 32) (Almairac et al., 2014; Hayashi et al., 2014; Seitz et al., 1995; 

Takahashi et al., 2012). A shift of motor areas from the PrG – at least partially – to the PoG 

was also observed in the majority of 50 young patients with epilepsy (Haseeb et al., 2007).  

The role of the PoG for motor function isn’t surprising. PoG contains cortico-cortical projections 

to the PrG, underlining its role for motor function (Borich et al., 2015; Darian-Smith et al., 1993; 

Donoghue & Parham, 1983; Jones et al., 1978; Matyas et al., 2010). For a long time, it was 

believed that the PoG provides sensory feedback and modulates the execution of motor 

function in the PrG. However, recent studies pointed to a more complex cooperation between 

these 2 structures and suggested that the PoG might harbor potential for recovery of motor 

function after stroke or for motor skill learning (Brodie et al., 2014; Gandolla et al., 2014; 

Meehan et al., 2011). It is still unclear if this part of motor function takes place solely through 

cortico-cortical projections into the PrG, through projections into the PMC, or through direct 

corticospinal projections, as the parietal lobe contains the structural potential for using all these 

pathways (Galea & Darian-Smith, 1994; Jones et al., 1978). 

We found a significant number of excitable motor areas in the PoG in our cohort (Figs. 18 – 

21). Taken together with the results from intraoperative stimulation studies mentioned earlier, 

it seems as the PoG might play a more important role for functional reorganization of the M1 

than assumed. The mechanisms behind eliciting motor responses by stimulating the PoG still 

remain unclear – an explanation might be that we elicited MEPs by stimulating the regular, 

cortico-cortical projection to the PrG and, hence, induce movement by indirectly activating the 

PrG. Another explanation is that we actually detected reorganized projections in the PoG. 

Here, it would be of interest to differentiate whether this reorganization corresponds to the 
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unmasking of so far inhibited corticospinal projections, or rather takes place through 

recruitment of other cortical areas. Altogether, our findings should be considered with caution. 

There are also converse findings, for example a large study that investigates 165 patients with 

brain tumors who received DES motor mapping during surgery and who found motor 

responses in the PoG only rarely, indicating that the extent of motor representations in the PoG 

might be influenced by methodological differences (Desmurget & Sirigu, 2015; Tate et al., 

2014). 

As only 20 out of the 8794 MEPs were located posterior to the PoG in the remaining parietal 

lobe, we cannot provide evidence for the existence of motor areas in the parietal lobe other 

than in the PoG. Moreover, we didn’t investigate the whole parietal cortex; we started the motor 

mapping in the PrG and extended the mapping parietally until we weren’t able to elicit any 

more MEPs in two rows. If there was motor negative cortex between the PrG and PoG and 

other parts of the parietal cortex, we weren’t been able to detect it. Other studies pointed to 

the importance of parietal-frontal motor networks (Fogassi & Luppino, 2005; Matelli & Luppino, 

2001; Schucht et al., 2013). 

 

5.5. nTMS-based motor maps and their correlation to tumor location 

A study from 1998 suggested that, if a tumor is located in the superior part of the brain, it 

induces an inferior shift of the motor cortex, while, if it is located in the inferior part of the brain, 

it induces a superior shift of the motor cortex (Fig. 33) (Wunderlich et al., 1998). Although this 

finding was not confirmed in other studies, predicting what areas will overtake the motor 

function when specific regions of the brain are impaired would be a huge help for the 

neurosurgeon and the patient; it would enable predicting motor deficits as a result of tumor 

location and would facilitate decisions for or against resection of tumors in motor eloquent 

areas. Hence, we asked – how does a tumor location influence the motor cortex location; does 

a frontal tumor induce a parietal shift, and does a parietal tumor induce a frontal shift? 
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Fig. 33: A: Tumor volume and distribution in relation to the motor hand area (black line), each 

bar represents 100% of the tumor volume; B: 3D-vector displacements of the PET-based hand 

motor cortex in the affected hemisphere, origin corresponds to the healthy hand motor cortex; 

d=dorsal, f=frontal, l=left, o= occipital, r=right, v=ventral; reprinted from Wunderlich, G., Knorr, 

U., Herzog, H., Kiwit, J. C., Freund, H. J., & Seitz, R. J. (1998). Precentral glioma location 

determines the displacement of cortical hand representation. Neurosurgery, 42(1), 18-26; 

discussion 26-17, by permission of Oxford University Press 

 

Several studies tried to find a pattern of reorganization of the motor cortex. A PET study 

investigating motor activation in patients with brain tumors found that the motor cortex shifted 

along the anterior-posterior or medial-lateral direction, causing shifts of 9 – 43 mm within the 

PrG or from the PrG into the premotor or parietal cortex (Fig. 32) (Seitz et al., 1995). They 

included patients with tumors affecting the PrG, yet didn’t investigate the effects of the exact 

anatomical location of the tumor. Correspondingly, a stimulation study in patients recovering 

from stroke with motor impairment found mainly shifts along the medial-lateral direction, and 

stated that shifts along the anterior-posterior direction were observed mainly in cases with a 

longer period of time between examination and the stroke episode (Byrnes et al., 1999). Other 

stimulation studies in patients recovering from stroke with motor impairment indicated that 

motor maps decrease in size shortly after stroke, and increase in size as motor function 

improves (Liepert et al., 1998; Traversa et al., 1997). Moreover, they showed that the center 

of the motor cortex area shifted medially or laterally, as motor function improved (Liepert et al., 

1998). An fMRI study observed similar patterns, with increased activation of motor areas and 

increasing posterior shift in patients with larger motor impairment (Bestmann et al., 2010). 

However, these results are varying through studies and usually based on small cohorts. We 

are the first to systematically investigate whether we can predict the extent or direction of 

functional reorganization of the motor cortex from the tumor’s anatomical location in a large 

cohort (Fig. 18 – 21). We observed that the spread of motor areas seemed smaller in patients 

with tumors in the PrG (n = 35) and in the temporal lobe (n = 5). While the spread of the 

temporal tumor subgroup might be explained simply by the small patient count, the small 
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spread of motor maps in the PrG tumor subgroup is surprising. Most of the literature addressing 

brain tumors provides data on spatial reorganization of the motor cortex that was based on 

lesions within the PrG (Seitz et al., 1995; Wunderlich et al., 1998). However, we observed the 

smallest spread in this subgroup. 

There might be several explanations for this finding. First, it might indicate that, if the PrG is 

directly impaired by a tumor, functional reorganization takes place rather by recruitment of 

adjacent areas, than more distant areas, leading to a smaller spread. Second, the difference 

might be based on different plasticity potentials of different brain areas. While the cortex is 

capable to extensive functional compensation, functional reorganization of lesions in the white 

matter tracts is observed only rarely (Herbet et al., 2016; Ius et al., 2011). Moreover, different 

cortical areas show different plasticity potential, too. Areas in the frontal lobe, especially the 

prefrontal cortex and the SMA, are easily compensated for, in opposite to areas in the PrG and 

PoG (Herbet et al., 2016; Ius et al., 2011). Further investigation showed a distinction within the 

PrG, whereas the ventral part of the PrG could be compensated for, and the dorsal part couldn’t 

(Herbet et al., 2016). These findings might explain the smaller motor cortices in the PrG tumor 

subgroup.  

The aspect of different plastic potential of cortical and subcortical structures would be 

interesting to include in further investigations. As we included tumors affecting the motor cortex 

and the CST, there might be more subcortical tumors in the non-PrG groups, which would 

contradict the findings from above (Herbet et al., 2016; Ius et al., 2011). Interestingly, other 

studies reported converse findings, too, such as a study investigating patients with lesions in 

the PoG which found more functional reorganization in patients with subcortical lesions, 

compared to those with cortical lesions (Rossini et al., 1998). 

Allover, we observed different reorganization patterns of the motor cortex between our 

subgroups. While our findings support theories about different mechanisms for functional 

reorganization within the ipsilesional hemisphere, we were not able to predict the location of 

the motor cortex from tumor location alone. This indicates that functional reorganization is a 

highly complex, multifactorial process that needs to be assessed by further studies, as it might 

have clinical impacts on patient outcomes. 

 

5.6. MEP latencies – general consideration 

The exact activation mechanisms behind TMS stimulation are based on several principles. 

Studies showed that TMS excites predominantly axons and activates functional circuits via 

cortico-cortical and corticospinal projections; the latter mechanism being currently considered 

the predominant mechanism for stimulating the motor cortex (Rossini et al., 2015). What 

structures are prone to stimulation depends largely on the orientation of the electric field in 
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relation to the targeted structure, with an orientation perpendicular to the central sulcus being 

the optimal orientation for activating the motor cortex (Hallett, 2000; Rossini et al., 2015). It 

also depends on the stimulation intensity, with 110% rMT being the widely used stimulation 

intensity for mapping of the motor cortex (Rossini et al., 2015). Deviation from the optimal 

stimulation parameters might affect MEP latencies by recruiting neurons through different 

pathways. Studies have observed that suprathreshold stimulation results in shorter MEP 

latencies and the higher the stimulation intensity, the shorter the MEP latency (Rossini et al., 

2015; van der Kamp et al., 1996). 

Moreover, MEP latencies were shown to correlate with height and, as men are often taller than 

women, with gender (Saisanen et al., 2008; van der Kamp et al., 1996). This shows that the 

time between stimulus and response depends on the distance from stimulated area and 

response area (Livingston et al., 2010). Logically MEP latency differs among stimulated 

muscles. Several studies reported normative values for different nTMS and TMS stimulation 

parameters, such as MEP latencies. For example, Rossini et al. (1994) reported normative 

values determined by TMS in 50 healthy subjects, namely for APB of 20.1 ± 1.8 ms, for BCS 

of 11.6 ± 1.2 ms, and for TA of 26.7 ± 2.3 ms. Another study using the same nTMS system as 

we did provided normative values from investigations in 65 healthy subjects; in particular for 

APB of 23.6 ± 1.4 ms for men, 22.1 ± 1.3 ms for women, and for TA of 33.3 ± 2.5 ms for men, 

and 30.2 ± 1.8 ms for women (Saisanen et al., 2008). Accordingly to the literature, we observed 

shortest MEP latencies in proximal extremity muscles (FCR, BCS), followed by distal upper 

extremity muscles (hand muscles; APB, ADM), and by lower extremity muscles (TA, GCN; Fig. 

24, Tab. 2). On the other hand, our mean MEP latency values were longer than some of those 

reported in literature (Rossini et al., 1994; Rossini et al., 2015; Saisanen et al., 2008). This 

might be caused by the fact that 60% of our patients were men, or it might indicate that MEP 

latencies tend to be higher in the ipsilesional motor cortex of patients with brain tumors than in 

healthy brains. This might be explained by affection of the CST by tumor or the peritumorous 

edema, which might impair the signal conduction and cause slower conduction times. 

Corresponding observations with by trend higher MEP latencies in the ipsilesional hemisphere 

were made for patients recovering from stroke (Cakar et al., 2016; Cicinelli et al., 1997; 

Traversa et al., 1997; Turton et al., 1996).  

A study comparing specifically nTMS mapping parameters in the ipsi- and contralesional 

hemisphere of patients with brain tumors reported MEP latency medians of 24 ms in the 

contralesional, and 23 ms in the ipsilesional hemisphere (Picht et al., 2012). We observed 

corresponding values, with a median of 23.30 ms for APB and ADM in our cohort (Tab. 2). As 

we observed a non-normal distribution of MEP latencies, it is beneficial to provide the median 

values, yet, to allow comparison with normative values reported in other literature,  we provide 
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the mean and SD values of MEP latencies as well (Fig. 24, Tab. 2). An analysis with regards 

to the non-normal distribution of MEP latencies is provided in the following. 

 

5.7. Use of MEP latencies for distinction of mono- and polysynaptic projections 

We hypothesized that MEP latencies can be used to distinguish between monosynaptic and 

polysynaptic projections. In particular, we hypothesized that MEP latencies longer than 1 SD 

above mean MEP latency represent muscle activation through longer, polysynaptic pathways, 

possibly through the reorganized pathways (Bulubas et al., 2016). The idea that longer MEP 

latencies represent either slower conducting or polysynaptic, hence non-direct motor 

pathways, can be found throughout literature (for example Kallioniemi et al., 2015).  

A series of studies using nTMS in healthy subjects was able to induce short-latency motor 

responses stimulating the posterior SFG, i.e. the PMC, and they hypothesized that these motor 

pathways were monosynaptic, direct corticospinal projections (Teitti et al., 2008; Vaalto et al., 

2011). Hence they were able to find support for theories established in primates, stating that 

the PMC in the frontal lobe contains direct corticospinal projections (alongside to the cortico-

cortical projections to the PrG) (Dum & Strick, 1991, 2002). Our findings also support the 

existence of direct, corticospinal projections in the PMC and the PoG. We were able to elicit 

motor responses by stimulating the frontal gyri and the PoG as well, and as the mean MEP 

latencies in all gyri were roughly in the same range, this indicates that large numbers of our 

motor responses were elicited via monosynaptic, direct corticospinal pathways (Fig. 25, Tab. 

3). 

Yet the monosynaptic pathways reflect only one part of the organization of the motor cortex. 

We observed that a high number of our patients showed rather prolonged MEP latencies in 

the frontal gyri, i.e. the PMC, and the PoG (Figs. 25, Tab. 3). A study using nTMS in healthy 

subjects provided support for our finding; they observed that MEP latencies tend to be shorter 

in the center of motor cortex, usually around the handknob area of the PrG, and longer at the 

border of the motor cortex (Kallioniemi et al., 2015). This would explain our findings, as in our 

cohort the centers of motor cortices were located usually in the PrG, around the handknob 

area, yet the borders spread into the SFG, MFG, and the PoG (Fig. 18 – 19, 25, Tab. 3). 

Additional support was provided by studies in patients recovering from stroke with motor 

impairment that showed corresponding results, with shortest MEP latencies in the center of 

the motor area, and longer MEP latencies in surrounding areas (Cicinelli et al., 1997).  

Moreover, this study showed that this pattern was inversed shortly after stroke, and recovered 

weeks later, potentially linked to motor function recovery (Cicinelli et al., 1997). A study 

comparing patients who recovered from stroke with motor impairment to healthy subjects found 

longer MEP latencies in the PMd, compared to the PrG, in both hemispheres of healthy 
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patients, and in the contralesional hemisphere in stroke patients, yet shorter MEP latencies in 

the PMd in the ipsilesional hemisphere of patients (Fridman et al., 2004). This is interesting, 

as the finding in the ipsilesional hemisphere reflects the idea of inversed organization of short 

and long MEP latencies mentioned in the previous paragraph and shows that this 

reorganization can also persist for a longer period of time than just for the acute phase after 

stroke. On the other hand, the findings in healthy subjects and the contralesional hemisphere 

provide evidence controversial to those of Teitti et al. (2008). However, a study using DES to 

investigate MEP latencies in the PMv of patients with brain tumors found longer MEP latencies 

here than in the PrG (Fornia et al., 2018). In summary, there is more evidence that shows that 

MEP latencies tend to be longer in the PMC, especially in patients with brain lesions, which is 

in accordance with our findings (Figs. 25, Tab. 3).  

Furthermore, we found that the MEP latencies among our patients were non-normally 

distributed with a high number of longer MEP latencies, i.e. presumably polysynaptic 

projections (Fig. 26). We wondered whether these polysynaptic projections correspond to the 

observed increased mean MEP latencies and whether, as we investigated only patients with 

motor eloquent brain tumors, whether the polysynaptic projections might be a hint to the 

reorganized motor pathways (Bulubas et al., 2016). We hypothesized that tumor location would 

be the strongest influencing factor that causes reorganization of the motor cortex and changes 

in MEP latencies; hence we investigated the distributions of polysynaptic projections among 

the mapped gyri (PrG, SFG, MFG, PoG) in subgroups of patients with different tumor locations 

(Fig. 27, Tabs. 5 & 6). Yet, other factors are likely to influence MEP latencies, too. For example, 

as the dominant hand is used more frequently than the non-dominant hand, these training-

related effects of the human motor cortex are well described in literature (Karni et al., 1995; 

Sanes & Donoghue, 2000). Therefore we hypothesized that the location of stimulation sites in 

the DH (usually left) and NDH (usually right) might be an influencing factor as well (Fig. 28, 

Tabs. 7 & 8). Finally, the MEP latency partially reflects the central motor conduction time 

(CMCT), which can be used to display the integrity of the CST (Groppa et al., 2012; Rossini et 

al., 2015). Therefore, we hypothesized that the integrity of the CST, visible as motor deficits, 

might be another factor influencing the distribution of polysynaptic projections among the gyri 

(Fig. 29, Tabs. 9 & 10). 

 

5.8. Effects of tumor location on distribution of motor areas 

Considering distributions of polysynaptic projections among gyri of different tumor location 

subgroups, we used the temporal tumor group as control due to the largest distance of tumor 

to motor pathways. We found many polysynaptic projections in the frontal gyri of the temporal 

tumor subgroup, which was different than in the other subgroups (Fig. 27, Tab. 5). This might 
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reflect the normal state of the brain – mainly monosynaptic projections in the PrG, and many 

polysynaptic projections in the PMC, projecting either directly to the PrG or through other 

cortical areas to the spinal cord (Cicinelli et al., 1997; Fornia et al., 2018; Fridman et al., 2004; 

Kallioniemi et al., 2015). 

The frontal tumor subgroup showed less polysynaptic projections in general, and a rather equal 

distribution of polysynaptic projections among the gyri, with little polysynaptic projections in the 

frontal gyri, indicating that these projections do not represent the newly formed, compensatory 

motor pathways, yet rather that the polysynaptic projections are more vulnerable than the 

monosynaptic pathways (Fig. 27, Tab. 5) (Bulubas et al., 2016). This is partially seen in the 

PrG subgroup, too, which shows that especially projections in the SFG were prone to 

impairment by a tumor in the PrG, and in the PoG subgroup, which shows least polysynaptic 

projections in the PoG (Fig. 27, Tab. 5). If the tumor impairs polysynaptic projections first, one 

might wonder why there are not less polysynaptic projections in the PrG of the PrG subgroup. 

Yet this finding actually makes sense, as the PrG still is the location of the main motor function 

and hence is most robust and least capable of functional reorganization (Herbet et al., 2016; 

Ius et al., 2011). 

In the parietal subgroup, surprisingly little polysynaptic projections were found in the PrG and 

MFG and many in the PoG. This pattern is difficult to explain, as one would not expect an 

impairment of frontal motor areas by parietal tumors. Yet there are motor areas in the parietal 

cortex which are part of a parietal-frontal motor network and which have cortico-cortical 

projection to the frontal PMC (Fogassi & Luppino, 2005; Matelli & Luppino, 2001; Schucht et 

al., 2013). Eventually the impairment of these areas leads to a reduced input from these areas 

to the PMC and causes a reduced output of the PMC itself, which we observed as decreased 

numbers of polysynaptic projections in the MFG (Fig. 27, Tab. 5). 

When considering the mean MEP latencies in subgroups of patients according to their tumor 

location, instead of the numbers of polysynaptic projections, we didn’t observe any relation of 

increased numbers of polysynaptic projections with the mean MEP latencies (Tab. 6). 

 

5.9. Effects of hemisphere dominance on distribution of motor areas 

TMS studies in healthy subjects as well as in patients recovering from stroke or with brain 

tumors usually don’t report differences between the right and left, or the DH and NDH (Cakar 

et al., 2016; Livingston et al., 2010; Picht et al., 2012; Saisanen et al., 2008; van der Kamp et 

al., 1996). Yet single studies found converse findings. Although they do not report general 

differences between the DH and NDH, Saisanen et al. (2008) found longer MEP latencies in 

the APB of the DH, when using monophasic magnetic stimulation. Previously, we showed that 

the mean of the normally distributed MEP latencies is longer in patients with left-sided tumors, 
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corresponding to the DH (Sollmann et al., 2017). Further studies reported differences between 

the DH and NDH, concerning larger motor representations as well as lower rMT in the DH 

(Kallioniemi et al., 2015; Pitkanen et al., 2015; Triggs et al., 1994). To sum up, although the 

current consensus in literature is that there are no significant differences between the DH and 

the NDH that can be visualized using TMS, in specific patients groups and under specific 

conditions, differences might be present. 

This idea seems even more reasonable, as differences in organization of the motor cortex 

were shown to depend on hemisphere dominance. On the one hand, the dominant hand is 

usually better trained than the non-dominant, and motor training influences the motor cortex 

representations (Karni et al., 1995; Sanes & Donoghue, 2000). Furthermore, studies showed 

that the SMA is prominently important in the - usually left - DH (Rogers et al., 2004). In the DH, 

the PrG and SMA have stronger interconnections than in the NDH, as shown by fMRI-based 

connectivity analysis during hand movement (Pool et al., 2014). These theories might help 

explain our findings. We observed more polysynaptic projections in patients with tumors 

located in the DH, with especially many polysynaptic projections in the frontal gyri compared 

to the NDH (Fig. 28, Tab. 7). These higher counts of polysynaptic projections might represent 

more cortico-cortical projections from the PMC to the PrG and, hence, might indicate the 

stronger interconnection of the SMA and the PrG in the DH, compared to NDH (Bulubas et al., 

2016).  

When considering the mean MEP latencies in the DH and NDH, instead of the numbers of 

polysynaptic projections, we didn’t observe any relation of increased numbers of polysynaptic 

projections with the mean MEP latencies, corresponding to the results discussed in the 

previous paragraph (Tab. 8). Hence an increased number of polysynaptic latencies doesn’t 

necessarily prolong the mean MEP latency, which might by caused by the non-normal 

distribution of our data. 

 

5.10. Effects of motor deficit on distribution of motor areas 

As we investigated the motor cortex in a cohort of patients with brain tumors, it is important to 

consider to which extent functional reorganization took place here. We were able to elicit motor 

responses in all of our patients, meaning that they had at least some remaining motor function 

in the affected extremity at the time of the motor mapping. On the other hand, a part of our 

patients suffered from motor deficits, which is important because paresis might prolong the 

MEP latency. MEP latency, although not limited to this factor, reflects the CMCT. The CMCT 

is increased in generalized neurological disorders such as multiple sclerosis and amyotrophic 

lateral sclerosis, yet also in patients with compressive cervical myelopathy or other 

compression of the CST, such as stroke (Cakar et al., 2016; Caramia et al., 1991; Chen et al., 
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2008; Groppa et al., 2012; Rossini et al., 2015). Although spinal tumors cause cervical 

myelopathy and in many cases, also prolong the CMCT, to what extent this is true also for 

intracerebral lesion is less clear. In terms of stroke, the ipsilesional hemisphere often shows 

increased MEP latencies, or the CMCT, compared to the contralesional hemisphere (Cakar et 

al., 2016; Cicinelli et al., 1997; Traversa et al., 1997; Turton et al., 1996). Moreover, shorter 

MEP latencies and shorter CMCT were observed with improved motor function recovery 

(Cakar et al., 2016; Cicinelli et al., 1997; Turton et al., 1996). As mentioned earlier, although 

many findings from patients after stroke can be transferred to patients with brain tumors, 

especially the different temporal extent of the disease and smaller counts of motor deficits in 

our cohort might hinder a simple transfer of basic theories. 

Conversely to the studies in patients recovering from stroke, a study investigating nTMS 

parameters in a cohort of over 50 patients with brain tumors did not find any effects of clinical 

factors, such as the patient’s motor function, on MEP latency (Picht et al., 2012). Actually 50 

patients (out of 55 patients for who MEP latency was obtained) showed almost the same MEP 

latencies in the ipsi- as in the contralesional hemisphere, hence the presence of a tumor didn’t 

seem to prolong the MEP latency (Picht et al., 2012). This is basically in accordance with our 

findings. The distribution of overall polysynaptic latencies showed slightly more latencies in 

patients with motor deficits than in patients without motor deficits, yet this finding couldn’t be 

confirmed in the single muscle analysis (Fig. 29, Tab. 9). The mean MEP latencies seemed to 

be increased more often in patients with motor deficits than without motor deficits, when 

considering these values for every muscle and every gyrus separately, yet, again, this does 

not seem to be a representative result, as the variety between the single muscles and gyri was 

very large (Tab. 10). Hence, although we observed a slight trend towards increased numbers 

of polysynaptic projections in patients with motor deficit in general, we do not consider this 

finding reliable enough to conclude what effects a patient’s motor deficit has on the distribution 

of polysynaptic projections (Bulubas et al., 2016). 

 

5.11. Clinical implications 

Before and during operative tumor resection, it is of importance to locate areas of the brain 

that contribute to motor function. This was shown by 3 independent studies, which showed 

improved outcomes in patients, when nTMS-based motor mapping was performed before 

surgery (Frey et al., 2014; Krieg et al., 2014; Krieg et al., 2015). The observed effects consisted 

of expanded surgical indications and extents of resections, higher rates of gross total 

resections with lower rates of residual tumors, better survival outcomes, improved motor 

outcomes, less newly developed motor deficits, smaller craniotomies, and shorter inpatient 

stays (Frey et al., 2014; Krieg et al., 2014; Krieg et al., 2015). 
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Intraoperative motor mapping using DES and intraoperative neuromonitoring are considered 

the “gold standard” for distinction of motor eloquent and non-eloquent areas (Cedzich et al., 

1996; De Witt Hamer et al., 2012; Duffau et al., 2005; Kombos et al., 2000; Szelenyi et al., 

2010). The validity of this approach was shown when resecting tumors in the SMA, for 

example. Here, resection might induce motor deficits, yet only of transient character; the 

patients will recover within months (Krainik et al., 2001; Zentner et al., 1996). This phenomenon 

is well described in literature and referred to as the SMA syndrome (Bannur & Rajshekhar, 

2000; Kim et al., 2013; Krainik et al., 2001; Laplane et al., 1977; Russell & Kelly, 2007; Zentner 

et al., 1996). This indicates that not all of the motor areas we found in the SFG might be motor 

eloquent. 

However, conclusions should be made carefully; being able to resect tumor of the SMA without 

permanent deficits does not necessarily mean that resecting the SMA when the PrG itself is 

impaired by a tumor will not cause permanent deficits. When the SMA is impaired by a tumor, 

functional reorganization involving other areas of the PMC and the PrG takes place (Krainik et 

al., 2004). Eventually resection of the SMA without deficits was made possible by functional 

reorganization that has already taken place preoperatively. On the other hand, when the PrG 

is impaired by stroke or a tumor, areas of the PMC play a more important role (Cramer et al., 

1997; Fridman et al., 2004; Meyer et al., 2003; Seitz et al., 1998; Weiller et al., 1993). A recent 

study investigated patients with nTMS-based motor areas in the PMC that were resected 

during tumor resection, and showed that 62% of these patients suffered from permanent 

postoperative motor deficits (Moser et al., 2017). It is conceivable that the PMC might overtake 

motor function and might become a motor eloquent structure. This underlies necessity of 

performing DES-based motor mapping, even in areas outside the PrG. 

However, there are contradictory reports in the literature, too. A study showed that resecting 

areas of the PMd that previously evoked MEPs using chronic subdural electrodes induces only 

transient motor deficit, similar to those of the SMA syndrome (Mikuni et al., 2007). Another 

study reported a single case of a patient scheduled for operative resection of an epileptogenic 

focus, where nTMS, fMRI, and MEG localized the motor cortex in the PMC, rather the PrG 

(Makela et al., 2013). DES did not confirm this finding, and therefore the area in the PMC was 

resected without causing transient deficits (Makela et al., 2013). Altogether, an individual 

approach that includes multimodal motor mapping should be followed to ensure the best 

possible surgery outcomes for patients with motor eloquent brain tumors. Intraoperative motor 

mapping via DES should be considered even in patients with far frontal tumors, if nTMS locates 

motor function in these areas. 
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5.12. Limitations of the study 

This study is an explorative study performed to investigate the location and the characteristics 

of the motor cortex in a cohort of 100 patients with motor eloquent brain tumors. The emphasis 

was to determine the influence of individual tumor location on the functional reorganization of 

the motor cortex. 

Our cohort consisted of individuals; differences among our patients were observed considering 

patient characteristics, such as their age, gender, and height, and disease characteristics, such 

as individual tumor location, tumor size, and tumor pathology. Considering tumor pathology, 

we included patients with slow-growing low-grade gliomas (LGG) as well as aggressive high-

grade gliomas and metastases. There are hints in literature that a slower developing lesion 

might give more room for functional reorganization leading to less functional deficits 

(Desmurget et al., 2007). The effect of time was shown during subsequent tumor resection 

surgeries, when (motor) function moved from areas adjacent to the tumor, to more distant 

areas, from first to second surgery, a couple of years apart (and enabled the main finding of 

this study, that a two-staged surgical approach might allow for complete tumor resection in 

patients with LGG) (Duffau et al., 2003; Duffau et al., 2002; Robles et al., 2008). Sometimes 

the tumor resection itself is regarded as an inducer of plasticity (Duffau et al., 2002). Moreover, 

different infiltrative characters of the tumor might lead to differences in the affection of the CST, 

visible for example by peritumorous edema, and the therapy that is appropriate. 22% of our 

patients presented with recurrent tumors, hence most of them previously underwent 

radiotherapy and chemotherapy. The vast majority of patients with brain tumors scheduled for 

operative resection at our department receive antiepileptic drugs, usually levetiracetam. While 

all these factors might influence the plasticity of the motor cortex, we do not expect these 

factors to influence our results, as they should be distributed equally among our subgroups. 

We were able to show an equal distribution of clinical factors that were available to us among 

our tumor location subgroups, with the exception of age (Tab. 1). Yet the readers should be 

aware of this limitation. 

Considering the age, patients in the PrG subgroups were older than patients in the PoG 

subgroup (Fig. 16). This might play a role as it was shown that the plastic potential of the brain 

decreases in older patients (Muller-Dahlhaus et al., 2008; Pascual-Leone et al., 2011; 

Polimanti et al., 2016). Some studies were able to show age-dependency of some nTMS 

parameters, for example linearly increasing rMT with age from 20 years up to 60 years, 

showing a decreasing on older patients, while others didn’t observe any effects (Picht et al., 

2012; Saisanen et al., 2008). Yet the mean age in our subgroups ranged from mid-40’s to late 

50’s, which is still rather close. Yet this should be kept in mind when considering our results. 

Other factors that showed high variability were nTMS-mapping parameters such as the 

numbers of stimulation sites among patients (47.12 ± 27.72), numbers of MEPs among 
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patients (87.94 ± 64.45), and numbers of MEPs among gyri and muscles (Fig. 22 & 23). APB, 

ADM, and FCR were the muscles where eliciting MEPs was easiest, hence these were the 

muscles we considered most reliable for MEP latency analysis. It is important to consider that 

our analysis of distributions of polysynaptic latencies relies on defining polysynaptic projections 

as those MEPs with latencies longer than 1 SD above mean MEP latency. This is not a fact 

stated in literature, more of an approximation to find an approach that enables the distinction 

of polysynaptic and monosynaptic projections. Yet, as no evidence for exact duration of 

monosynaptic and polysynaptic latencies, other studies use the mean MEP latency and the 

SD as approximation, too  (Kallioniemi et al., 2015).  

Additionally, technical limitations of our study consist of the precision of the nTMS system we 

used. The developers report that the figure-of-8 biphasic magnetic coil stimulates an area of 

0.68 cm², which is the area stimulated by 98% of the electric field intensity. Targeting this area 

is possible with an accuracy of 0.57 cm, that consists of errors caused by the optical tracking 

system, movement of the head, computation of the electric field using coil characteristics and 

individual head models, and the registration of the individual head position to the MRI scan 

(Ruohonen & Karhu, 2010). This lines up well with the variability of nTMS-based motor positive 

sites and those determined by DES, which was reported to be 0.57 ± 0.46 cm (in newly 

diagnosed tumors) (Krieg et al., 2013). Considering the size of the hand motor cortex in the 

PrG (apprx. 11.2 mm), this might seem rather large (Campero et al., 2011). However, the 

spatial resolution of DES is approximately 1 cm, too, and both methods allows a reliable 

location of the M1 within the PrG, so nTMS seems to be comparable to the “gold standard” 

DES (Kong et al., 2016). Moreover, the nTMS system used in this study is comparable to other 

systems currently in use (Ruohonen & Karhu, 2010). One of its advantages is the calculation 

of the electric field strength individually for each patient approximately at the cortical level, 

ensuring that the maximum electric field activates cortical areas (Ruohonen & Karhu, 2010; 

Sollmann et al., 2016).  

Further technical limitations concern the steps performed to enable a spatial visualization of 

the motor cortices. To avoid mass effects of tumors causing displacement of anatomical 

structures, we performed a normalization of each patient’s MRI scan and motor map. The 

normalization procedure might be negatively affected by tumors, yet this can be minimized by 

masking the tumor and excluding the pathological tissue from determining the normalization 

parameters, as was done in this study (Brett et al., 2001). Yet, as the lesion size increases, 

there is less ‘healthy’ brain tissue to use for determining the normalization parameters, which 

results in poorer normalization results. Hence, if normalization with masking the lesion didn’t 

give satisfactory results, the normalization was repeated without masking the lesion.  

Further mathematical limitations of our study consist of the fact that we did not perform 

correction for multiple testing, nor did we correct for possible confounding factors, such as the 
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age, as mentioned previously. Yet, this approach is acceptable for explorative studies. It is 

important to keep in mind that this was an explorative study aiming to investigate various 

effects, and the significance of our results has yet to be proven in further studies. Studies with 

larger, yet more uniform cohorts, including additional information, such as from the 

contralesional hemispheres, should be performed to validate our results.  
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6. CONCLUSION 

 

This explorative study provides further information about functional reorganization of the 

ipsilesional motor cortex in patients with motor eloquent brain lesions. In this cohort, cortical 

areas other than the PrG, such as the PMC (SFG+MFG) and PoG, contain motor function, 

presumably due to functional reorganization of the motor cortex. Tumor location alone did not 

account for the large variability in spatial location of the motor cortex. Nor did it sufficiently 

explain different distribution of mono- and polysynaptic projections throughout these cortical 

areas. Taken together our findings indicate that functional reorganization is a complex process 

that depends on many clinical and individual factors and tumor location alone does not fully 

predict the functional reorganization of the motor cortex. 
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7. SUMMARY 

 

Introduction: In patients with brain tumors, the motor cortex can be found in varying locations 

in and around the precentral gyrus [PrG] of the brain. In neurosurgery, this fact is important to 

consider as the aim of tumor resection is to resect the tumorous tissue without harming the 

motor pathways. Brain plasticity is believed to be the mechanism behind the functional 

reorganization of the motor cortex allowing for its relocation to different brain areas. In this 

explorative study, we investigated whether a varying tumor location (tumor in the temporal 

lobe, the frontal lobe, in the PrG, in the postcentral gyrus [PoG], or in the parietal lobe) causes 

different patterns of reorganization of the ipsilesional motor cortex in a cohort of 100 patients 

with motor eloquent brain tumors using navigated transcranial magnetic stimulation (nTMS). 

Methods: During preoperative nTMS-based motor mapping, a coil is used to create a magnetic 

field that induces a short-lasting electric field which activates the underlying motor cortex. The 

muscle responses to this activation can be measured via electromyography as motor evoked 

potentials (MEPs). Hence, motor areas can be detected and located using the patient’s 

magnetic resonance imaging scan, creating an individual motor map for each patient. We used 

2 approaches to analyze these motor maps with regard to the tumor location: For a spatial 

approach, we visualized the normalized motor maps in subgroups of patients according to their 

tumor location. The second approach investigated the polysynaptic projections, i.e. motor 

pathways connected through more than 1 synapse. These were defined as originating from 

those stimulation sites where stimulation elicited MEPs with latency longer than 1 standard 

deviation above mean MEP latency. The differences in their distribution among the 4 mapped 

gyri (PrG, superior frontal gyrus [SFG], middle frontal gyrus [MFG], PoG) were analyzed 

between subgroups of patients according to tumor location, as well as hemispheric dominance 

and motor deficit. 

Results: Motor cortex was located mainly in the PrG, yet showed a wide spread into adjacent 

gyri – the posterior SFG and MFG and the PoG. Motor areas in patients with tumors in the 

temporal lobe and in the PrG were located rather closely together compared to the other 

subgroups. Monosynaptic and polysynaptic projections were found in all gyri. The distribution 

of polysynaptic projections showed a dependency on tumor location, with many polysynaptic 

projections in the frontal lobe of patients with temporal tumors (p<0.001). Investigating other 

factors than tumor location showed a dependency on hemisphere dominance with more 

polysynaptic projections in the frontal gyri of the dominant hemisphere (p<0.0001). 

Conclusion: Alongside the PrG, the premotor cortex (SFG+MFG) and the PoG contain motor 

function in patients with motor eloquent brain tumors. Tumor location alone does not predict 

the different patterns of reorganization of the ipsilesional motor cortex sufficiently, indicating 

that functional reorganization is a complex process. 
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9. FIGURES 

Fig. 1: Brodmann areas of the human cerebral cortex; upper row: lateral view, lower row: 
medial view; reprinted from the digital copy of Brodmann (1909) provided by ZB MED – 
Informationszentrum Lebenswissenschaften ............................................................................ 9 

Fig. 2: Description of the motor cortex as areas where stimulation leads to limb movement; 
according to Brodmann’s cytoarchitectural studies, the authors differentiate pyramidal and 
extrapyramidal areas; Foerster, O. (1936). The motor cortex in man in the light of Hughlings 
Jackson's doctrines. Brain, 59(2), 135-159. doi:10.1093/brain/59.2.135; reproduced with 
permission of Oxford University Press on behalf of the Guarantors of Brain ......................... 10 

Fig. 3: Sensory and motor homunculus; this graphic depicts differences in size and location 
of motor and sensory representations of different body parts as they appear from above 
down upon the PrG; Penfield, W., & Boldrey, E. (1937). Somatic Motor And Sensory 
Representation In The Cerebral Cortex Of Man As Studied By Electrical Stimulation. Brain, 
60(4), 389-443. doi:10.1093/brain/60.4.389; reproduced with permission of Oxford University 
Press on behalf of the Guarantors of Brain ............................................................................. 11 

Fig. 4: Motor areas in the frontal lobe of primates; shaded regions show regions with 
corticospinal projections; reprinted from Dum, R. P., & Strick, P. L. (2002). Motor areas in the 
frontal lobe of the primate. Physiol Behav, 77(4-5), 677-682, with permission from Elsevier 12 

Fig. 5: Figure showing DES motor mapping; left upper image shows resection site during 
brain tumor surgery, other images show the location of the DES point stimulated by a strip 
electrode (red cross, IntraOP Point #01) as visualized in the intraoperative neuronavigation 
system; preoperative motor mapping results (shown in green) and corticospinal fibers (shown 
in yellow) were implemented in the neuronavigation data set as well .................................... 15 

Fig. 6: Figure showing an fMRI scan of a patient with left-sided brain tumor; left image shows 
activation during movement of the right hand, right image shows activation during movement 
of the left hand; colored areas indicate areas active during movement; for both hands, 
highest activation was located in the PrG of the contralateral hemisphere ............................ 17 

Fig. 7: Figure showing an MEG scan during right index finger motor task of a patient with a 
brain tumor; blue areas indicate higher activation during movement, red areas indicate no 
activation; green spot indicates the local maximum located in the left PrG; this picture was 
provided with the kind permission of Dr. Phiroz Tarapore, Department of Neurological 
Surgery, Biomagnetic Imaging Laboratory, University of California San Francisco ............... 18 

Fig. 8: Results of nTMS-based motor mapping of the upper and lower extremity in a patient 
with a left hemispheric tumor; grey dots indicate motor negative, colored dots indicate motor 
positive stimulation sites; the color scheme represents the MEP amplitude: red (50µV – 
500µV), yellow (500µV – 1,000µV), white (> 1,000µV); upper extremity MEPs were located in 
the middle PrG around the handknob area (orange target at the center of the yellow 
crosshair), lower extremity MEPs were located in the superior part of the PrG ..................... 20 

Fig. 9: Stimulation of the posterior border of the PrG in the same patient with a left 
hemispheric tumor; the electric field is strongest in the red dot at the cortex level; the arrow 
shows the direction of the induced electric field; the colored area (yellow to blue) shows the 
decreasing strength of the electric field ................................................................................... 21 

Fig. 10: Experimental setup of the nTMS-based motor mapping from the investigator’s 
perspective; the camera in the front records the patient’s real time head position 
(represented by the head model); during mapping, the patient is sitting in a comfortable chair 
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in order to allow for muscle relaxation; muscle activity is monitored via EMG (right screen); 
the investigator uses the magnetic coil to stimulate areas of the patient’s brain (left screen) 26 

Fig. 11: Neuronavigation of the nTMS system; the head model represents the patient’s head 
position; the patient is wearing glasses with tracking units, coil tracking units are also visible 
(left image); a camera (not in the picture) registers the position of the patient’s head and the 
coil and superimposes the relative position of the coil on the 3D MRI sequence (right image)
 .................................................................................................................................................. 27 

Fig. 12: Co-registration procedure of the nTMS system; the patient is wearing glasses with 
tracking units and the investigator is holding a pointer with tracking units (left image); a 
camera (not in the picture) monitors the positions of the patient’s head and the pointer; the 
investigator registers the location of 12 anatomical landmarks from the structural MRI scan 
(right image) to equivalent points along the patient’s head (left image); landmarks consist of 
the nasion, left and right auricular points (3 red crosshairs in the upper section, right image) 
and 9 preset points along the scalp (brown circles, lower section, right image). .................... 28 

Fig. 13: Stimulation of the hotspot; left image: white dot represents the stimulation site with 
highest MEP amplitudes in a relaxed APB, the “hotspot”, the orange dot next to the white dot 
represents the approximate location of the handknob; right image: a detail of the EMG 
recording, the green line shows the activity of the APB, the values show the MEP amplitude 
and latency ............................................................................................................................... 29 

Fig. 14: Determination of the best electric field orientation; the investigator orients the coil 
perpendicular to the mapped gyrus, the PrG (left image), and -45° to the perpendicular 
orientation (right image), visible in the targeting tool in the right lower part of both images; the 
orientation of the coil and the electric field is visible by the orange arrow on front of the 
magnetic coil............................................................................................................................. 30 

Fig. 15: Determination of the rMT; left image: the investigator stimulates the hotspot, the built 
in algorithm adapts the stimulation intensity until rMT is determined; middle and right image: 
EMG recordings, the green line depicts the APB activity; middle section shows muscle 
activity before and after stimulation, the flat green line indicates a good relaxation of the APB; 
right section gives a detailed view of the respective MEP (APB highlighted red)................... 31 

Fig. 16:  Box plot displaying the age distribution in subgroups of patients according to their 
tumor location; the line represents mean age; patients with tumors in the PrG were older than 
patients with tumors in the PoG ............................................................................................... 34 

Fig. 17:  Figure showing the heat map of upper extremity maps of all 100 patients in plane 
view; maps are superimposed on a standard brain template; white areas show highest 
overlap, black areas show lowest overlap of motor maps; left: coronal plane, middle: sagittal 
plane, right: axial plane ............................................................................................................ 35 

Fig. 18: Figure showing the heat map of upper extremity maps of all 100 patients in 3D view; 
maps are superimposed on a standard brain template; white areas show highest overlap, 
black areas show lowest overlap of motor maps ..................................................................... 35 

Fig. 19: Figure showing heat maps of upper extremity maps in subgroups of patients 
according to their tumor location in 3D view; maps are superimposed on a standard brain 
template; white areas show highest overlap, black areas show lowest overlap of motor maps
 .................................................................................................................................................. 36 

Fig. 20: Figure showing the heat map of lower extremity maps of 33 patients in 3D view; 
maps are superimposed on a standard brain template; white/yellow areas show highest 
overlap, black areas show lowest overlap of motor maps. ...................................................... 36 
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Fig. 21: Figure showing heat maps of lower extremity maps in subgroups of patients 
according to their tumor location in 3D view; maps are superimposed on a standard brain 
template; white areas show highest overlap, black areas show lowest overlap of motor maps.
 .................................................................................................................................................. 37 

Fig. 22: Bar chart displaying MEP fractions in percent of overall MEPs elicited by stimulating 
one of the 4 mapped gyri (PrG, SFG, MFG, PoG). ................................................................. 38 

Fig. 23: Bar chart displaying MEP fractions in percent of overall MEPs elicited in one of the 6 
mapped muscles (APB, ADM, FCR, BCS, TA, GCN). ............................................................ 38 

Fig. 24: Box-and-whiskers plot displaying median MEP latencies, 25 & 75 percentiles, and 
the range of MEP latencies (ms) elicited in one of the 6 mapped muscles (APB, ADM, FCR, 
BCS, TA, GCN.) ....................................................................................................................... 39 

Fig. 25: Plot displaying mean MEP latencies ± SD (ms) separately for every gyrus and every 
muscle (* p<0.05). .................................................................................................................... 40 

Fig. 26: Histograms showing frequency distributions of all MEP latencies of APB, ADM, and 
FCR, the muscles with highest MEP counts; many long latency MEPs were found, best 
visible in frequency distributions of ADM. ................................................................................ 41 

Fig. 27: Bar chart showing the distributions of polysynaptic projections among the mapped 
gyri between the temporal and the other tumor location subgroups (* p<0.05; ** p<0.001); 
polysynaptic projections of all muscles were combined here.................................................. 43 

Fig. 28: Bar chart showing the distribution of polysynaptic projections among the mapped gyri 
between the DH and NDH (*** p<0.0001), polysynaptic projections of all muscles were 
combined here .......................................................................................................................... 46 

Fig. 29: Bar chart showing the distribution of polysynaptic projections among the mapped gyri 
between patients with and without motor deficit (* p<0.05), polysynaptic projections of all 
muscles was combined here. ................................................................................................... 47 

Fig. 30: Human motor area template based upon data generated from probability 
distributions of the PMC along with previously established anatomical criteria (data derived 
from 126 articles), reprinted from Mayka, M. A., Corcos, D. M., Leurgans, S. E., & 
Vaillancourt, D. E. (2006). Three-dimensional locations and boundaries of motor and 
premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage, 
31(4), 1453-1474, with permission from Elsevier .................................................................... 50 

Fig. 31: Distribution of motor areas identified by bipolar cortex stimulation via DES; reprinted 
from Kombos, T., Suess, O., Kern, B. C., Funk, T., Hoell, T., Kopetsch, O., & Brock, M. 
(1999). Comparison between monopolar and bipolar electrical stimulation of the motor 
cortex. Acta Neurochir (Wien), 141(12), 1295-1301, with permission of Springer ................. 51 

Fig. 32: Patterns of reorganization of the motor cortex in 6 patients with brain tumors within 
the hand motor cortex; motor cortex was located by PET; a) motor cortex location (black 
dots) in relation to the tumor (shaded area); b) displacement of central sulcus (small arrows) 
was different than displacement motor cortex (large arrows); c) in the healthy hemisphere 
(left), the motor cortex was located in a small area in the middle central sulcus; in the 
affected hemisphere (right), its location varied in and around the PrG; d) displacement of the 
motor cortex in the affected compared to the healthy hemisphere (a=anterior, p=posterior, 
d=dorsal, v=ventral, r=right, l=left); reprinted from Seitz, R. J., Huang, Y., Knorr, U., 
Tellmann, L., Herzog, H., & Freund, H. J. (1995). Large-scale plasticity of the human motor 
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cortex. Neuroreport, 6(5), 742-744, http://journals.lww.com/neuroreport/Pages/default.aspx, 
with permission from Wolters Kluwer ....................................................................................... 55 

Fig. 33: A: Tumor volume and distribution in relation to the motor hand area (black line), each 
bar represents 100% of the tumor volume; B: 3D-vector displacements of the PET-based 
hand motor cortex in the affected hemisphere, origin corresponds to the healthy hand motor 
cortex; d=dorsal, f=frontal, l=left, o= occipital, r=right, v=ventral; reprinted from Wunderlich, 
G., Knorr, U., Herzog, H., Kiwit, J. C., Freund, H. J., & Seitz, R. J. (1998). Precentral glioma 
location determines the displacement of cortical hand representation. Neurosurgery, 42(1), 
18-26; discussion 26-17, by permission of Oxford University Press ....................................... 59 
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