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Abstract— Formation control is an important subtask for
autonomous robots. From flying drones to swarm robotics,
many applications need their agents to control their group
behavior. Especially when moving autonomously in human-
robot teams, motion and formation control of a group of agents
is a critical and challenging task.

In this work, we propose a method of applying the GQ())
reinforcement learning algorithm to a leader-follower formation
control scenario on the e-puck robot platform.

In order to allow control via classical reinforcement learning,
we present how we modeled a formation control problem as a
Markov decision making process. This allows us to use the
Greedy-GQ()\) algorithm for learning a leader-follower control
law. The applicability and performance of this control approach
is investigated in simulation as well as on real robots.

In both experiments, the followers are able to move behind
the leader. Additionally, the algorithm improves the smoothness
of the follower’s path online, which is beneficial in the context
of human-robot interaction.

I. INTRODUCTION

A special class of multi-robot formation control is the
motion control of a group of robots led by a human leader.
For example, the formation control of robotic wheelchairs
which are accompanied by human caregivers [1], or the
multi-robot formation control in shared rescue missions [2].

A basic problem when considering multi-robot scenarios is
how to maintain a specific shape while moving around. This
problem has been addressed in the literature by model based
(e.g. [3], [4], [5]), potential-field based [6], graph based [7],
or combined approaches [8]. A lot of these approaches yield
non-linear control laws which are difficult to implement on
low-cost hardware.

Reinforcement learning, on the other hand, is based on
the idea of an agent trying out different actions and learn
from the outcome which behavior is optimal for a specific
situation. The designer of a control task therefore has to
provide feedback in the form of a scalar reward function
which provides information about the performance of the
last step the agent decided to take [9]. Most reinforce-
ment learning algorithms can be implemented on embedded
hardware platforms as they rely heavily on linear functions
which are of lower computational complexity compared to
the aforementioned non-linear control laws.

Reinforcement learning could be a useful approach for
formation control. Either on the low level side—like keeping
distance and angle based on direct sensor data—or on
the high level side—like the shape of the formation or
leader selection. The foundation for our idea of applying
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reinforcement learning to formation control is laid out in
this work by the investigation of the applicability on the low
level side: a simple leader-follower formation which uses
proximity sensors as input and motor speeds as actions. We
employ the GQ(A) algorithm [10] which is a state of the art
reinforcement learning algorithm.

For our experiments, we use e-puck robots, small educa-
tional, open-source tabletop robots. They provide a standard
Linux environment and are therefore particularly well suited
for first experiments with formation control algorithms. A
simplified model of them is also included in the V-REP sim-
ulator by Coppelia Robotics [11], which we used for initial
simulations without the uncertainties of a real environment.
Additionally, for a better reproducibility, we also replaced the
human leader with an e-puck robot. In order to transfer our
experiments to the real world, the human leader should be
equipped, for example with an active infra-red beacon, so that
the distance sensors of the e-pucks can detect and identify
the leader at a feasible range. Even though e-puck robots are
quite tiny and somewhat fragile, the available sensor data
and possible actions are applicable to most other robotic
platforms, or they could be outfitted accordingly for little
cost. Our requirements for the leader are that it moves at a
speed the followers are able to keep pace with and that it
is detectable by our agents. Depending on the needs of the
actual scenario this can either be ensured by the human leader
watching out for its robotic followers or by using adequate
sensors and motors on the robots, so that loosing their leader
is unlikely.

The rest of this paper continues with an brief introduction
to reinforcement learning, the robots used and simulation
software and the actual formation task in our investigation.
We describe the design considerations necessary to apply re-
inforcement learning to the formation task and requirements
for a usable implementation. We conclude with our results
within the simulation and on the real robots.

A. Reinforcement Learning

Reinforcement learning is a machine learning technique
that, in its simplest form, is based on the assumption that an
agent (in our case the e-puck robot) acts within a Markovian
environment. This means that it is in some state s out of a
set of states S and can proceed to another state by choosing
an action a from a set of actions A. It chooses its action
according to some behavior policy 7, (a|s). For each of these
state-action-state-transitions, the agent observes a reward r.
The agent uses this reward to update the value function
estimation V(s) or Q(s,a) (depending on whether we are
interested only in states or state-actions) to better represent
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the real value of the state or state-action pair. The value
function is then used to find a better policy 7, which allows
the agent to maximize the accumulative reward.

The value function estimation asymptotically converges
to its true values and therefore, also, the policy becomes
optimal.

Many of the properties of classical reinforcement learning
are rather impractical for the use on real world problems.
Commonly, real world problems are non-episodic so that the
theoretically infinite number of iterations have to be handled
properly, and additionally the state as well as the action
space can have a large number of elements. Fortunately,
a good enough solution is feasible for almost all practical
problems by discretizing the state and action space, and
by determining suitable terminal states. One can therefore
divide the state and action space using techniques like tile
coding and approximate the value function to greatly reduce
the computational complexity of the algorithms [12]. For
this work on leader-follower formation control, we combined
linear function approximation with single binary feature tile
coding.

To be more concrete, we used the GQ()\) algorithm from
Maei and Sutton [10] and combined it with an e-greedy
behavior policy to balance between exploration and exploita-
tion. This approach is described by Maei et al. in their paper
about off-policy learning with function approximation [13]
and also in the recent technical report by White and Sutton
about the implementation of GQ(\) [14].

B. The e-puck Robot

The e-puck robot is a small table-top, open-source robot
(approx. 10cm diameter) which was developed at the Ecole
polytechnique fédérale de Lausanne (EPFL) [15]. Its design
goal was to provide a comparatively cheap research and
education robot. As a consequence, its proximity sensors are
based on infrared diodes and phototransistors. This limits
their maximum range to approximately 15cm, depending
on the infrared reflectance of the surface they are trying
to detect. This is important for this work, because a-priori
knowledge about the leader’s position is required for setting
up the tile coder. Three sensors, which are similar to these
proximity sensors, are integrated into the base of the robot
and allow it to distinguish bright and dark floor. They can
be used to detect edges when driving forward or to follow a
line.

For moving around, the e-puck uses two stepper motors
which drive its two wheels. The mechanical setup of them
is symmetric and therefore allow the robot to turn itself on
the spot by setting the motor speeds to opposing values.

Due to the open-source nature of the e-puck, a number of
hardware extensions are available. One of it is the Gumstix
Overo Computer On Module (COM) extension, which allows
one to use a ARM-based embedded computer for controlling
the robot. The COM module runs an embedded Linux and
is able to connect to a wireless LAN. We are using this
embedded Linux together with an existing Python API to
implement our learning algorithms directly on the e-puck. In

this way, we have a rapid prototyping platform that allows us
to quickly test different learning approaches without having
to care about the low-level hardware control. On the other
hand this also introduces some processing delays due to the
serial communication of the Overo COM with the e-puck
base, which are taken into account by our algorithm.

C. The V-REP Simulator

V-REP is a versatile open-source robot simulation frame-
work. What makes it extremely useful for our work is its
remote API which allows access to almost all simulation
parameters via an outside program. Our particular use case
is the control of the simulated robots via external scripts.
We implemented a Python wrapper interface that emulates
the Overo COM API for interfacing with V-REP. In that way,
only very small changes are necessary to port software from
simulation to real hardware.

D. Robot Task Description

To investigate the feasibility of Greedy-GQ(\) for forma-
tion control on e-puck robots, we specified a leader-follower
scenario: the first robot is configured statically to follow a
line on the ground. This function is readily available in V-
REP and also on the real robot. In our experiments, this line
is jittered and shall represent data which is comparable to the
output of a SLAM based path planner that was used to plan
a path in a dynamic environment while tracking a human
leader.

The following robot(s) observe their respective leader via
the two front facing infrared distance sensors. The sensors
on the side of the robot are too sparsely distributed to allow
a sufficient precise tracking of other robots. This problem
might be solvable by using the optional range and bearing
extension, but this investigation was outside of the scope of
this work. Therefore, more advanced formations like side-
by-side following have been postponed for future work.

II. THEORETICAL CONSIDERATIONS

In this section, the theoretical ideas, limitations and deci-
sions that are necessary for our proposed formation control
setting are stated.

A. Design of State and Action Space

The dimensions of the state and action space are rather
straight-forward. Our robots have two motors and the speed
of each one can be set independently. Therefore the action
space is two-dimensional.

The state space is pretty similar as we are considering a
two-dimensional path by the leader which the robot should
follow. Due to the mechanical size of a robot and the
maximum sensor range, we can quickly decide on an optimal
leader-follower distance. It is in the middle between the
maximum and minimum allowed distance. The deviation
from this optimal distance, the distance error, is the first
dimension of our state space. The optimal region for the
follower to detect the leader is therefore a circle. To build
an actual formation, we need to specify the position on
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Fig. 1. Illustration of the error measures |J | and oer for our leader-
follower scenario.

this circle. By considering this, it is reasonable to use the
angular error as the second dimension. The geometrical
considerations of these error measures are shown in Figure 1.

All four dimensions (states and actions) can be considered
to be continuous (actually, they are based on discrete sensor
and actor values, but from an implementation point of view,
there is no difference). Therefore featurization is required,
for which we chose static binary single feature tile coding.
For the action space, uniform linear tile coding was applied.
For the state space, linear tile coding proved to be feasible
during simulations in V-REP. As the (raw) values of the
proximity sensors on the real e-puck show an exponential
scaling, logarithmic tiling is of much better use here. It also
yielded better results when used for the angular orientation
error.

The number of tiles is a tradeoff between precision and
computational complexity. As the (first) leader moves at
a constant speed, the followers only have a limited time
for computing before the leader moves out of range. The
simulations in V-REP were done on a standard PC, and
the tiling of the state space was chosen to be 9 x 9. This
tiling is illustrated in Figure 2. The action space had a 7 x 7
tiling. For learning on the actual robot, these sizes had to
be reduced to 5 x5 and 3 x 3, respectively. This reduction
is necessary due to the much lesser processing power of the
Overo Computer On Module used on the e-puck.

B. Absolute and Relative Position Calculation

To calculate the distance and angular error, two general
approaches are possible: calculation via absolute coordinates

Orientation error

Optimal region

e-puck

Fig. 2. The 9 x 9 tile coding used for the representation of the state space
when error calculations are based on absolute coordinates.

and direct derivation from the follower’s sensors. The former
one is also available on the real robots by using a global
camera tracking system which is implemented with ArUco
markers [16] attached to the robots. This method of error
calculation is very useful for tuning and developing the
learning algorithms as the symmetry, range, and noise of
the proximity sensors can be neglected. On the other hand,
assuming a global observer to be available in any real
scenario is not realistic and justifies investigation of the
relative calculation of the error measures.

C. Resetting the Agent

As we are considering our task to be episodic, we need
some kind of reset algorithm in case our robot loses its
leader and therefore gets into a terminal state. One early
approach was to reset the whole simulation into its starting
state. This approach has the major drawback of requiring
human interaction in the real environment. It also leads to
some overtraining as the agents iterate over the same section
of the path over and over again.

Therefore, our proposed reset function works by reaching
a terminal state while still being within the robots sensor
range (this requirement is not needed within V-REP and
when using the camera observer as absolute coordinates are
available at any time). The follower then turns towards the
leader and moves forward at maximum speed until it reaches
its optimal working range again and can restart learning in
a new episode.

D. Performance Improvements

In general, the used process of reinforcement learning is
a cycle that starts with the observation of a certain state
S¢, selects an action ay, waits until the action is completed,
observes the resulting state s;1, updates its value function
estimation accordingly and starts the next cycle. As the
update of the value function estimation is the most com-
putationally intensive step, we introduced the idea of an
update buffer. It caches the observations of s;y; and the



reward and delays the value function estimation to the next
time the robot waits for the execution of its chosen action.
This has of course some consequences, as it introduces
an aspect similar to offline learning to an online learning
process, and also requires an additional calculation cycle
after reaching a terminal state to correctly update the value
function estimation. It must be noted that these changes do
not change the applicability of the algorithm, but just have to
be taken into account. The processing speed-up also greatly
improves learning efficiency as there is no blind time in
which the leader continues to move away from the follower.

III. EXPERIMENT AND RESULTS

This section describes the results of the aforementioned
experiments in the simulation scenario as well as on the real
robot. The main goal of using a learning algorithm for leader
follower control was achieved.

Additionally we have observed that the path of the fol-
lowers is a smoothed variant of the leader’s path initial line-
following leader. The artificial juddering behavior resulting
from disturbances and inaccuracies of the SLAM process
is therefore reduced. In this way, the followers behave
to what human observers would expect, and consider as
“natural”. This should improve the acceptance in non-expert
interactions with humans who might perceive juddering robot
actions as malfunctions.

A. Simulation

As mentioned in Section I-D, our scenario for rein-
forcement learning based leader-follower formation control
implements the leader as a simple static line follower with
no learning at all. In that way we make the leader move
arbitrarily without requiring advanced path planning and map
recognition, but do not lose generality of the results.

We allow up to four followers which try to learn how to
follow the robot directly in front of them. This leads to a
worm-like line formation, a screenshot of such a formation
in the V-REP simulator is shown in Figure 3.

The most interesting observation is that the robots start to
stabilize their behavior from the first follower towards the
end of the line formation. This allows the conclusion that
a constant, stable movement is beneficial for our learning
approach, as the followers show a very juddering movement
during the learning phase which only smooths to a certain
degree after convergence.

Depending on the desired formation, it is also possible to
transfer the learned parameters to agents which shall show
the same behavior, i.e. if all robots should follow the robot
directly in front of them, it is sufficient to learn the control
parameters on the first follower and run a greedy policy on
all other robots which exploit the learned state-action values
from the first one.

Most of the time during our simulations with a total
number of about 1.3 million steps, the followers stayed very
close to the optimal region (98.7% are within a 3x3 area on
the right side). The detailed statistic of where the followers
detected the leader is shown in Figure 4. We suppose that
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Fig. 3. Simple four agent line formation in V-REP: the first leader can be
found in the lower left corner. The red cones are showing active proximity
Sensors.

the shift to the right side is caused by the concrete scenario,
as the overall path is a closed circular loop.

B. Real World Scenario

Evaluating Greedy-GQ(\) on real e-pucks is not an easy
task. As mentioned before, the processing power of the
Overo COM is much lower than that of a normal PC, so
the number of calculations has to be heavily reduced. To
achieve that, we lowered the number of tiles as described
in the theory section. This reduces the smoothness, and also
the learning efficiency, by a certain amount but is absolutely
necessary to ensure that the follower can keep up with the

Fig. 4. Distribution of visited states at around 1.3 million steps. In 74% of
all cases, the leader was detected in the dark red area right to our optimal
region. It stayed within the orange/red 3 X 3 area on the right side of the
optimal region in 98.7% of the time. To make the rarely visited states
discernible, a logarithmic scale is used: red and orange values are in the
range of 30%—1%, green values are at around 0.1%, and blue values are
another magnitude below that. The non-colored states were never visited in
this experiment.



leader.

The proximity sensors of the e-puck are a much bigger
problem. The mentioned maximum range of 15cm can be
considered as an optimal result under perfect conditions.
All of the sensors are susceptible to environmental lighting
and none of the sensors are matched. A basic query of
them returns their raw A/D conversion values, which are
practically a measure of how much infrared light is coming
into the phototransistor. As each of the sensors is a little
bit different, even with no objects around the robot and
homogeneous lighting conditions, practically none of the
values are the same. This is compensated for by offset
calibration which makes the range functions return ‘zero’
under the described conditions. Therefore, it is also important
to avoid strong (infrared) light coming from one direction
as this would render the robots unable to detect meaningful
range information as soon as they change their angle towards
the light source. As the returned values depend on the
incoming infrared light, they also depend on how good or
bad the illuminated surface is reflecting back the light. The
standard robot housing has a particularly bad reflectance and
is only detected when almost touching the other robot. We
solved this problem by using cut out coffee paper cups to
increase the sensor range to usable values. This modification
is shown in Figure 5 with the leader and its coffee cup on
the right side and the follower on the left side. A different
approach would be to attach retro-reflective tape to the e-
pucks. If more spread out formations are desired, this might
as well become necessary. The resulting absolute sensor
readout values are not important as the learning will adapt to
them, these modifications are required to get any difference
in the readouts when approaching another robot at all.

The raw A/D conversion of the incoming light also leads
to an exponential dependency between the distance of the
leader-follower pair and the resulting values. The logarithmic
tile coding of the distance error in the real-robot scenario
takes this non-linearity into account.

Despite of all these sensor and computational issues, the
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Fig. 5. Leader-follower formation on actual hardware. The leader is placed
into a white cardboard coffee cup to improve infrared reflectance and thus
proximity sensor range.

learning algorithm itself showed its capability to learn the
right parameters for staying within the desired line formation
also on imperfect hardware. Nevertheless, it takes much more
time until it reaches a stable state and the robots move a lot
less smoothly than in the simulation with its more precise
sensors and larger state and action spaces. However, due to
the transferability of learned parameters between different
robots, this issue can be moderated as follows.

In settings with a global tracker, absolute coordinates are
available. They are both handled by a similar linear tile
coding in the simulation and on the real hardware, which
allows the transfer of the value function estimation. We
looked into this approach only briefly, as this requires the
same state-action space configuration as in the simulator. As
noted before, learning with these large spaces is not possible,
so the real robots could only exploit the learned behavior
from the simulation. Nevertheless, this lead to promising
results considering the smoothness of movements and the
stability of the whole formation. We did not expect such
good results due to the variances of the detected positions in
the camera images.

These results show that improving the proximity sensor
representation might help to create a scenario in which
formation driving could be trained in a simulated scenario in
order to skip the time consuming initial training in reality.
Two approaches seem reasonable: making the simulated
sensors to behave like the real ones or preprocessing the
sensor data to return the actual detected distance. The former
approach could be desirable as it might also allow simulating
the use of the proximity sensors as a mean of infrared
communication. On the other hand, this might also be out
of the scope of most simulations and the return of an actual
detected distance would also be helpful for further debugging
directly on the robot.

IV. CONCLUSION

Our findings show that Greedy-GQ(A) can be used to
let robots learn how to keep a line-like formation. It also
shows that the required learning parameters can be adapted
from a simulation, even though the simulation still differs
significantly from the actual scenario in reality. Compared to
classical control approaches, our results are quite similar and
comparable, with the drawback that our initial training phase
takes some time, which is not necessary in the classical case.
Despite of that, the emerging “natural” behavior encourages
us to look deeper into this direction. Therefore we are
adapting our algorithms to larger robots which are able to
follow humans and interact with them in a leader follower
scenario. We are also preparing a study to precisely evaluate
the increased acceptance of the robot’s behavior by non-
experts to get a deeper insight into our intuitive assumptions.

Generally, by exploiting reinforcement learning to solve a
classical control problem, we have introduced an additional
solution to the leader-follower task. In order to support
future developments in the domain of multi-robot and human
interaction scenarios, we tried to emphasize the practical
difficulties in implementing and transferring Greedy-GQ(\)



learning to real hardware. We believe that reinforcement
learning based algorithms are useful in non-deterministic and
dynamic environments — such as real world scenarios.

Reinforcement learning can also be extended to higher
level tasks and other existing ideas in formation control
(e.g. rigid graphs) by changing the reward function to in-
clude these requirements, or by layering multiple learning
algorithms on top of each other. This flexibility and the
observed behavior characteristics encourage us to further
pursue reinforcement learning in the area of human-robot
formation cooperation.

Our long term goal would be a framework that allows us
to provide basic instructions like a desired shape, and have
a self organizing group of robots that can adapt to these
instructions and the requirements of the environment. Such
a framework would have to include features like formation
splitting to get around obstacles or dynamic leader assign-
ment if an abrupt change of direction becomes necessary.
These functions would be essential for the dynamic control
of support robots in rescue missions.
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