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Abstract— This paper presents an algorithm, called the
Backwards Incremental System Optimum Search (BISOS) for
achieving system near-optimum traffic assignment by incre-
mentally limiting accessibility of roads for a chosen set of
agents. The described algorithm redistributes traffic volumes
homogeneously around the city and converges significantly
faster than existing methods for system optimum computation
in current literature. Furthermore, as previous methods have
mainly been developed for theoretical purposes, the solutions
provided by them do not contain all the necessary information
for a practical implementation such as explicit paths for
the commuting population. In contrast, the BISOS algorithm
preserves the information about the exact paths of all com-
muters, throughout the whole process of computing the system
optimum assignment. Furthermore, a realistic traffic scenario is
simulated using Singapore as a case study by utilizing survey
and GPS traffic data. The BISOS routing method needs 15
times less routing computations to get within 1% of the optimal
solution for a simulated scenario compared to conventional
methods for system optimum computation.

I. INTRODUCTION

According to [1], in 2014, traffic congestion in U.S. has
increased to 6.9 billion hours of delay for a year with 3.1
billion gallons of extra fuel spent; this amounts to 160
billion dollars lost due to congestion. Although congestion’s
main driver is the large number of commuters and the non-
homogeneous distribution in time of traffic (rush-hours), its
effects can be mitigated by drivers choosing their routes in
a more organized way.

With the advancement in technology, such as GPS de-
vices, increased computational capabilities, and the rise of
autonomous vehicles it is natural that researchers should be
looking in the direction of employing a centralized routing
computation system, which redistributes traffic on the road
network and reduces overall congestion levels and travel
times. In this work we present a fast and efficient algorithm,
which can be used as the backbone of such a system.

Depending on whether the commuting population aims
at minimizing the total travel time or each individual finds
his/her own fastest path, there are two possible traffic as-
signments. As described first in [2], user equilibrium (UE)
occurs when all commuters have perfect information about
the traffic situation in the system and route on it so that
no commuter would be willing to change his/her path. This
is analogous to the Nash equilibrium also known as the
Wardrop’s equilibrium, which is used in order to calculate the
expected traffic assignment in transportation networks. In [3]
various modelling techniques for computing user equilibrium
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are reviewed including individual choice theory, interacting
choice theory, effects on travel information affecting individ-
ual choice and interacting behaviour.

On the other hand, system optimum (SO) as defined in [4],
aims at minimizing the total travel time of the transportation
system. Although subtle, there is a difference between the
two formulations. In the case of UE all alternative paths with
flows on them have the same length in order to ensure that
no one has an incentive to switch their route. This constraint
does not exist in the SO formulation, which is concerned
with everyone arriving at the destination and minimizing the
total travel time of the population. The ideal case would
be that the UE and SO solutions coincide. In this case, the
commuters are “steered” into taking the most optimal routes
by different types of incentives.

The difference between the performance of UE and SO has
been thoroughly studied and evaluated in [5], where it has
been shown that the total travel time at UE is bounded from
above at twice the traffic routed in an optimal way. In [6] an
upper bound is given to the inefficiency of the stochastic user
equilibrium (SUE). The term “price of anarchy” was coined
to characterize this inefficiency in [7]. In literature usually
the user equilibrium is targeted since it is easier to compute
and more realistic [8], however, the need for a system-wide
view of performance has long been recognised [9].

It has been shown in [10] that the coefficient of variation
of total travel time is extremely small with respect to the
choice of a subgroup of vehicles that are rerouted from a
given road segment. This result allows the circumvention of
the NP hard problem of choosing which vehicles to reroute
from congested roads for more homogeneous traffic flow
distribution. In other words, if the finding in [10] holds,
there is no significant difference between randomly choosing
vehicles to be rerouted from a congested road segment and
solving the NP hard problem of finding the optimal set of
vehicles to be re-directed. In this way using the suggested
algorithm based on random sampling of drivers, which
need to find alternative paths, the computation of system
optimum becomes more feasible than the UE algorithm from
a computational point of view and brings it closer to being
utilized in real life and real time applications.

Even if an efficient method is developed for the computing
optimal paths in a commuting network, the drivers are
required to follow the recommended routes for the approach
to work. There are three main techniques in order to achieve
this. The first way to “steer” drivers into socially optimal
routes is by using reactive [11] (providing traffic information)
or anticipatory [12] guidance systems, which predict future
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demands and accordingly give recommendations. The second
way is by using monetary incentives in the form of taxation
such as in [13], [14], [15], [16], [17].

Finally, a third approach is the method of soft closing
suggested in [10], where information about very congested
areas can be supplied to portions of the commuters with the
goal that they avoid those routes. In this way, the targeted
system optimum traffic assignment state can be achieved.
The partial provision of information to the society instead
of full knowledge of the system’s state (assumed in the case
of UE) makes the difference between minimum commuting
time and the more congested UE traffic assignment. This
approach can be considered as “fooling” the commuting
population, or at least, part of it, however, an analysis of
such implications is beyond the scope of this work. The
algorithm described in this paper, determines the drivers
that are informed of a soft closing of a road and need to
find an alternative solution and computes the optimal new
paths for them thus achieving near system optimum traffic
assignment. The examined case study considers the city of
Singapore, using a road network consisting of 240, 000 edges
and 180, 000 nodes, on which 309, 000 vehicles are assigned
with origins and destinations generated from survey data.

II. EXISTING SYSTEM OPTIMUM COMPUTATION
ALGORITHMS

The classic formulation of the system optimum problem
is:

min
F
T (Fi) =

∑
i

ti(Fi)Fi (1)

subject to

∑
k

podk = qod ∀o, d (2)

podk ≥ 0 ∀k, o, d (3)

where ti(Fi) is a latency function representing the relation-
ship between the volume of cars Fi that want to utilize a
road segment (link) i and the corresponding time it would
take for its traversal. Constraint 2 makes sure that the flow
is conserved. podk is the flow on path k between origin o and
destination d and qod is the number of vehicles that belong
to this OD pair. Constraint 3 ensures that the flows on all
possible paths are non-negative.

It can be observed that the objective function is convex,
provided the latency function is convex, which is the ex-
pected case, as road traverse time grows exponentially as
the number of vehicles on the road increases. Furthermore,
the feasibility space is also convex since all the constraints
are linear. Therefore, convex optimisation methods can be
utilized. SO problems are usually solved using the convex
combination algorithm proposed in [18] or an improved
version called Partan, which was suggested in [19] and
discussed in [20], [21]. The approach of the convex combi-
nation algorithm can be intuitively explained as linearisation
of the objective function at the current point followed by

computation of optimal step size that needs to be performed
and moving along a gradient minimizing direction.

It must be noted that there is no constraint in the for-
mulation, which states that the computed flows on the
links must have integer values. In reality, however, drivers
cannot be split between alternative paths. The additional
integer constraint is taken into consideration in the suggested
algorithm. This might not seem as a significant alteration
of the problem formulation, provided a significantly large
population is considered, however the performance of the
convex combination method is severely reduced if it can only
work with integer valued flows as will be shown in the results
section.

The convex combination method will be implemented and
used as a benchmark for the algorithm suggested in this
work. According to [4] it converges to a satisfactory solution
within 5 iterations. The Partan extension of the convex
combination algorithm implementation is demonstrated in
[22]. The biggest simulated network there has 50, 000 drivers
to be assigned. The Partan method needs more than 320, 000
paths to be computed in order to converge to an optimum
solution. This amounts to more than 6 paths computations
per vehicle. It must be noted that for very large real networks
storing so many paths can lead to memory problems [22].

Algorithms usually work with path flows instead of link
flows and thus employ a method called column generation,
which reduces the size of the problem by reducing the size
of the flow vector F. This was first used for user equilibria
in [23]. Detailed description of UE and SO algorithms can
be found in [4], [24]. Furthermore, computation of UE is
discussed rigorously in [25] and algorithmic implementations
are suggested in [26]. Flows are shifted between alternative
paths until all path costs equalize in [27], [28], [29]. What
makes the suggested algorithm different from the pre-existing
ones is that it works with link flows and not with paths. In
fact, new paths are computed only for certain vehicles and
the old ones do not need to be stored, which reduces the
memory footprint.

Theoretical work for formulation of SO problems has been
done in [30] where a single destination system optimum
dynamic traffic assignment is formulated using the cell
transmission model as a linear programming problem. It
also shows that a sufficient condition for SO is that every
unit of flow follows the time-dependent least marginal cost
path to the destination. The marginal cost of a road segment
is computed as the sum of the traverse time along it and
the total added time for all drivers on the road segment by
the addition of one more vehicle. The marginal cost can be
viewed of the system-aware cost of traversing a link (used in
SO computation), as opposed to the travel time cost, which
represents the driver-centric routing approach (used in UE
computation).

III. SUGGESTED ALGORITHM: BACKWARDS
INCREMENTAL SYSTEM OPTIMUM SEARCH (BISOS)

The algorithm presented in this section aims at resolving
the inefficiencies of pre-existing algorithms underlined in
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the previous section and to provide, feasible and practical
solution to the SO traffic assignment problem.

In order to understand the BISOS algorithm it might be
helpful to first recollect the incremental assignment algorithm
described in [4]. It deals with vehicles one by one, or in
chunks, but not with all at once. The incremental assignment
method starts off with all weights of the graph equal to the
free flow travel times on the links. Each group of vehicles
that is assigned on the network computes its paths according
to the shortest path algorithm. After each chunk is assigned
routes, the weights are recalculated so that each weight
represents the current travel time on the respective link. This
algorithm is aimed at achieving user equilibrium; however,
it is shown in [4] that such a state is not reached by it.

The BISOS algorithm can be viewed to do a similar pro-
cess but in a reversed fashion. First, all routes are computed
based on shortest path algorithm with weights given by the
free flow traverse time of the links. After that the most
congested road is identified, by looking at the marginal cost
of the road segments. A predefined number of vehicles is
removed from the road by changing the weight of that road
to its current marginal cost. The new routes are computed for
those vehicles using the new routing graph with the updated
weight. In a way increasing the weight to the marginal cost
of the link can be perceived as closing the road segment for
the rerouted vehicles since the marginal cost is significantly
larger than the free flow cost. Once the link is determined
to be unable to give away more vehicles (re-routing vehicles
from it leads to an increase in overall population travel time),
the next most congested link is explored. When all the links
that have a flow higher than their predefined capacity are
explored, the iteration is finished. Please note, that the most
congested link is chosen by examining the congestion factor
of the link, which is proportional to the marginal cost.

In this work, the Bureau of Public Roads (BPR) function
is used in order to evaluate the congestion at morning rush
hour in a static environment. Rush hour has been chosen
since in [4] it has been pointed out that during rush hours,
traffic exhibits steady - state behaviour.

Let us introduce the notation that will be used in the
formal description of the algorithm: G - routing graph, RA

- routes of the agent population A, Am - set of agents that
pass through link m, E - list of explored links, α and β -
coefficients used in the BPR function, wi - number of lanes
on link i, ci - congestion factor of link i, U - list of congested
links, σ - step size of the algorithm representing the number
of agents to be rerouted.

The general version of the BISOS algorithm can be
formalized in the following way:

Step 0: Initialize flows.
Compute shortest path routes. Get the flows F and the
routes RA

T ← CalculateTravelT imes(G,RA)
E ← ∅ // Initialize explored links
Step 1: Identify most congested link.

The congestion is defined as ci = α

(
Fi

2000wi

)β
U ← ∀i : Fi

2000wi
> 1 // identify congested

links
U ← U \ E// Remove explored links.
m← max c(U)// Identify next link.
Step 2: Change weight and re-route.
K ← RandomSample(Am, σ)
SetWeight(G,m,MarginalCost(m))
foreach v ∈ K do

Rv ← ComputeRoute(G)// new route

R̃A ← Rv ∪RA\v// store route

end
Step 3: Recalculate travel times.
T̃ = CalculateTravelT imes(G, R̃A)
if T̃ < T then

T ← T̃// Update minimum travel time.

RA ← R̃A// Update routes.
else

E ← E ∪m// Add link to explored
list

if U = ∅ then
Go to Step 4

end
end
Go to Step 1
Step 4: Test for convergence.
E ← ∅
ResetWeights(G)
if HasConverged() then

Stop
else

Go to Step 1
end

Algorithm 1: Backwards incremental system optimum
search algorithm

The BISOS algorithm presents efficient solutions to both
the high computation cost and memory storage issues in
current methods. It does not have to store in memory any
of the possible paths for an OD pair. For every user there
is exactly one path from origin to destination that needs to
be stored at all times. If a large city needs to be analysed
in the sense of an SO solution, the path storage can become
challenging, when dealing with millions of vehicles that each
has several possible paths.

No unnecessary paths need to be computed. Instead of
recomputing paths for all users at every iteration step, the
proposed algorithm re-routes only a portion of the vehicles
that are on the most congested road in the current iteration.
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This amounts to a significant reduction of the number of
paths to be calculated, which is the most time consuming
part of any SO algorithm. In this way the column generating
methods, which are usually used, can be viewed as a natural
con sequence of the algorithm since only roads that are con-
gested beyond a certain threshold are inspected. Furthermore,
the logic behind the algorithm is fairly intuitive and finally,
many of the computations can be performed in parallel in
order to gain an additional performance boost.

There are some concerns with this type of greedy op-
timization such as that converging to the optimal solution
is not guaranteed. The random selection of vehicles to be
re-routed at every sub-iteration, excludes the possibility of
optimal solution. It has been shown in [10] that the variation
of resulting traffic conditions with respect to choosing dif-
ferent set of agents to move from a specific road segment is
less than 10−4. Therefore, it can be argued that the optimal
set of agents to be moved need not be computed explicitly
for practical purposes. In the results section the final result
of the suggested algorithm will be compared to the actual
SO solution achieved by the convex combination algorithm
in order to verify this assumption. The step size of the
algorithm σ, which defines the size of the agent set that have
to be rerouted, can be varied to mitigate the effects from not
explicitly computing the set of agents to be removed from
the road segment.

Furthermore, as the set of agents to be re-routed is chosen
at random, it is possible (although with small likelihood)
that, the randomly sampled agents, which have to be removed
from a certain road have no viable alternatives. In this case,
the total travel time will be increased and as a result of
that, the road segment will not be explored again within
the current main iteration. In order to avoid this, one might
set a threshold of how many times, the road segment can
“fail” in the sense of not producing an improvement to
traffic conditions when a set of agents is removed from it.
The performance of the algorithm for different values of the
threshold, referred to as “failed attempts limit” (FAL) will
be examined in the results section.

The choice of which link to examine is one of the
challenging aspects of the suggested algorithm. It is likely
that the most congested link will not be able to give away
all its commuters and that at some point, moving a vehicle
from it to an alternative path will start to increase the overall
population time rather than decrease it. The link, however,
might still have the highest congestion value. In order to
solve this problem, once such a situation occurs, the link in
question is excluded from the list of explorable links and
its weight is not reset from the marginal cost value assigned
to it. Another parameter of the algorithm is the threshold
congestion value (TH), which sets the minimum congestion
value of examinable links. In the formal description of the
algorithm TH is set to 1 since this is the value where the
road reaches its maximum throughput.

After traffic redistribution occurs at the lower congestion
levels, the initially excluded significantly congested links
might become viable redistribution options once again. For

this reason, at every iteration of the algorithm, the set of
unexplorable links is reset, or in other words, starts as the
empty set and all weights are set back to their free flow
initial values. Then, for example, at the second iteration of
the algorithm, the most congested link that was removed
from the explorable set of links can be attempted again after
all redistributions on the lower levels of congestion have been
done.

IV. RESULTS

This section will examine the performance of the algo-
rithm compared to other pre-existing methods. The perfor-
mance will be evaluated with respect to the speed of the
algorithm and the accuracy of the final solution. Furthermore,
the performance of the algorithm is examined while varying
the three main parameters, namely; the threshold TH, the
step size σ, the failed attempts limit FAL. The city of
Singapore will be used as a case study for all experiments.
The methodology of generating traffic described in [10] is
used, utilizing survey data describing the OD patterns of
the population during rush hour and GPS traces used for
validation of the simulation results in order to achieve a more
realistic scenario.

A. Quality of Solution Compared to SO Solution and Speed
of Convergence

The SO solution for the traffic assignment was computed
using the convex combination method and compared to
the solution of the proposed algorithm. The basis of the
comparison will be the number of paths to be computed
since this is the most time-consuming part of SO computation
algorithms and is independent of the machine used unlike the
runtime. The speed of convergence comparison of the BISOS
algorithm and the convex combination algorithm with and
without the integer constraint are shown on Fig. 1.

Fig. 1: The convergence speed with respect to needed route
computations for convergence for the BISOS algorithm and
the convex combination algorithm with and without integer
constraints.

It can be observed that the BISOS algorithm converges
much faster than the convex combination method. In fact,
the BISOS algorithm needs only 87, 000 route computations,
which is about a quarter of the computations needed for
just one iteration of the convex combination algorithm.
Altogether, the BISOS algorithm converges 15 times faster,
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which is a significant result. Since the optimal solution
is not guaranteed by BISOS, Fig. 2 examines the differ-
ence between the quality of the solutions presented by the
BISOS algorithm with different congestion thresholds and
the convex combination method with and without the integer
constraint.

Fig. 2: Trade-off between computing time and quality of sys-
tem optimum solution for final solution of BISOS algorithm
and the convex combination method with and without integer
constraints.

It can be observed that the BISOS algorithm is not only
faster than the convex combination method but also provides
a better solution than the integer constrained version of the
convex combination method. For the examined simulated
scenario the final solution is only within 1% difference from
the theoretical, although infeasible, system optimum solu-
tion. The trade-off between computation time and optimality
can be observed as well. Decreasing the threshold congestion
value, makes the algorithm examine more road segments,
thus increasing the number of route computations, however
distributing more traffic and further reducing congestion
levels. The default value of the congestion threshold is kept
at 1 for the rest of the experiments since the throughput of
a road is maximized for this value.

B. Performance for Various Step Sizes and Failed Attempts
Limits

Technically speaking, the bigger the step size, the higher
the opportunity to parallelize the algorithm. For example, if
the step size is set to 20 vehicles to be re-routed at one step
and there are 20 available cores, the time for one iteration
will be virtually the same as re-routing 1 vehicle at a time.
The increase in step size, however, might note further speed
up the computation after the step size gets bigger than the
number of physical cores that are available. Fig. 3 depicts
the step size influence on the quality of the final solution and
the number of route computations for convergence.

A rather unexpected result, which can be observed in Fig.
3 is that the SO solution gets better with increasing of the
step size. Intuitively, the opposite is expected as a smaller
step size allows for more precise calculation of the critical
point where a road cannot give away any more vehicles.
The results, however, can be explained by considering the
stochastic nature of the BISOS algorithm. Provided that a
road is congested, re-routing a single agent from it has a

Fig. 3: BISOS algorithm evolution for varying step sizes
and convergence speeds as a function of required route
computations for convergence.

higher probability of increasing the overall travel time (or
failed re-routing attempt) than removing a larger group of
agents. The effect of the variation of the parameter that deals
with failed attempts of re-routing, FAL, is depicted on Fig.
4

Fig. 4: Trade-off between number of computations and
quality of SO solution for different values of the failed
attempt limit value.

It can be observed that, as predicted, increasing the FAL
improves the quality of the BISOS solution. Furthermore,
the very exceedingly small difference between number of
route computations for FAL= 5 and FAL= 10 indicates that
a saturation is reached and no further increase in the FAL
value is required.

V. CONCLUSION

The main contribution of this work is the BISOS algo-
rithm, which aims at computing a system optimum rout-
ing solution for all agents in a transportation system. The
suggested algorithm converges 15 times faster than current
algorithms and furthermore, provides explicit paths for every
single driver, which is something that to the best of our
knowledge none of existing methods do.

The significant reduction of route computations needed
for the algorithm to converge and the practicality of its
functionality present a great step in the direction of a
centralized routing control system. The key practical aspect
of the algorithm besides its speed, is that it can be halted at
virtually any point of time, if time constraints require this,
and would still be able to produce explicit paths for all agents
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in the system. This is a highly desired trait for systems, which
should be used in real time. Such an algorithm may turn
system optimum routing strategies from theoretical measures
for estimating the utilization of a road system into practically
used strategies for severe reduction of congestion levels.

This algorithm can also be used as a first step of a hybrid
system optimum computation since it reaches a good solution
an order of magnitude faster than the existing one. In cases
where the theoretical minimum should be computed, the first
few iterations of the standard algorithms can be speeded up
by using the BISOS algorithm final solution as a starting
point for the conventional methods.

Finally, in contrast to current methods of reducing con-
gestion, which encompass expensive additional road con-
struction or alteration, the system optimum routing approach
presents a strategy that can both ease traffic conditions and is
cost free in the sense that no construction of infrastructure is
necessary. In a way the functioning of the BISOS algorithm
can be viewed as empowering the previously static road
infrastructure to present itself in a different way to each of
the traffic participants, thus making it dynamical and able to
adapt to all possible traffic demand changes.
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