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Zusammenfassung

Modelle mit zusammengesetztem Higgs-Boson, sogenannte Composite-Higgs-Modelle (CHM),

bieten eine elegante Lösung für das Natürlichkeitsproblem des Standardmodells (SM). Ihre

direkten Effekte an Teilchenbeschleunigern wie dem Large Hadron Collider (LHC) sind da-

her von zentralem Interesse. Während bisher noch keine direkten Effekte beobachtet wur-

den, gibt es neuere indirekte Hinweise auf neue Physik (NP), die aus Messungen seltener

B-Meson-Zerfälle resultieren. Diese Arbeit untersucht sowohl direkte Einschränkungen von

CHM durch Experimente an Teilchenbeschleunigern als auch die Frage, ob diese Modelle die

Hinweise auf NP in seltenen B-Zerfällen erklären können. Der erste Teil dieser Arbeit gibt

eine in sich abgeschlossene Einführung in alle Hauptkonzepte von CHM, die in der weiteren

Arbeit verwendet werden. Diese Konzepte werden dann in mehreren phänomenologischen

Analysen angewendet. Im Rahmen globaler numerischer Analysen von zwei expliziten CHM

werden detailliert die direkten Einschränkungen untersucht, die aus experimentellen Suchen

nach Vektor-, Fermion- und Skalar-Resonanzen resultieren. Die Aussichten auf eine Beobach-

tung oder den Ausschluss momentan noch realisierbarer Parameterpunkte der betrachteten

Modelle werden für verschiedene Zerfallskanäle diskutiert. Modellunabhängige Analysen der

Hinweise auf NP in seltenen B-Zerfällen werden durchgeführt, die sowohl die B → K∗µ+µ−-

Anomalie untersuchen, als auch die Hinweise auf eine Verletzung der Lepton-Flavor-Univer-

salität (LFU), die in Messungen der Observablen RK(∗) gefunden wurden. Ein einfaches CHM

wird vorgestellt, das die Anomalien in seltenen B-Zerfällen durch teilweise zusammengesetzte

linkshändige Myonen erklären kann. Die Flavor-Physik eines viel ehrgeizigeren Modells,

das auf einer UV-Vervollständigung effektiver CHM basiert, die als Fundamental-Partial-

Compositness (FPC) bezeichnet wird, wird im Detail untersucht. Unter Berücksichtigung

aller relevanten Einschränkungen durch die Physik an der elektroschwachen Skala und die

Niedrigenergie-Flavorobservablen wird gezeigt, dass dieses Modell die Anomalien in seltenen

B-Zerfällen erklären kann.





Abstract

Composite Higgs models (CHMs) offer an elegant solution to the naturalness problem of

the Standard Model (SM). Their direct effects at particle colliders like the Large Hadron

Collider (LHC) are thus of central interest. While no direct effects have been observed

so far, there are recent indirect hints for new physics (NP) coming from measurements of

rare B meson decays. This thesis studies direct collider constraints on CHMs as well as

the question if these models can explain the hints for NP in rare B decays. The first part

of this thesis gives a self-contained introduction to all main concepts of CHMs used in the

remainder of the work. These concepts are then applied in several phenomenological analyses.

In the context of global numerical analyses of two explicit CHMs, the direct constraints on

vector, fermion and scalar resonances are studied in detail. The prospects of various decay

channels for observing or excluding still viable parameter points of the considered models are

discussed. Model independent analyses of the hints for NP in rare B decays are performed

in the context of the B → K∗µ+µ− anomaly as well as the hints for violation of lepton

flavor universality (LFU) found in measurements of the observables RK(∗) . A simple CHM

is presented that can explain the anomalies in rare B decays by partially composite left-

handed muons. The flavor physics of a much more ambitious model, which is based on a UV

completion of effective CHMs called fundamental partial compositeness (FPC), is investigated

in detail. Taking into account all relevant constraints from electroweak scale physics and low-

energy flavor observables, it is shown that this model can explain the anomalies found in rare

B decays.
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There is a sort of general distinction between the way to look for weakly interact-

ing theories of spontaneous symmetry-breaking and strongly interacting theories of

spontaneous symmetry-breaking. When things are strongly interacting it shows up

in deviations in the properties of the particles, in the set of particles that you have

already produced, from what you expect. If things are weakly interacting, new physics

first shows up in the form of new particles.

Howard Georgi, 1994
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1
Introduction

Learning about the physics of the most fundamental particles in nature has always been an

interplay between experimental and theoretical efforts. There has been progress that was

mainly driven by experimental data, showing completely new, often unexpected phenom-

ena, and necessitating theoretical explanations. A historic example is the large amount of

hadrons found in 1950s and 1960s accelerator experiments, which led to their classification in

terms of representations of an SU(3) flavor symmetry [7,8] that paved the way for the quark

model [9–11], and led to the theory of the strong interaction now known as quantum chro-

modynamics (QCD). On the other hand, theoretical considerations led to predictions that

served as guidance for experimental explorations. The probably most famous example from

recent history is the Higgs mechanism1 [12–16] that is responsible for electroweak symmetry

breaking (EWSB) in the Standard Model (SM) and has been a main motivation for building

the Large Hadron Collider (LHC) [17]. This in turn led to the experimental discovery of a

particle compatible with the SM Higgs boson [18, 19]. The Higgs mechanism in the SM was

more or less a guarantee for finding something new at the LHC, either the Higgs boson or

something else. Although there is no such strong case for further new discoveries at the LHC,

there is at least a theoretical consideration that indicates new physics (NP) beyond the SM

at a scale of the order of some TeV: the so called naturalness problem. And while there is no

such clear sign of new particles at accessible energies like in the 1950s and 1960s, there are

at least some recent experimental results in flavor physics that hint at NP below a scale of

roughly 100 TeV.

Among the prime candidates for solving the naturalness problem are models in which the

Higgs boson is a composite object. These composite Higgs models (CHMs) will be analysed

in detail in this thesis. While they are mainly motivated by the naturalness problem, it is

1This mechanism for giving mass to vector bosons was described independently by Anderson [12], Englert

and Brout [13], Higgs [14, 15], and Guralnik, Hagen and Kibble [16], but is for simplicity usually only called

the “Higgs mechanism”.
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CHAPTER 1. INTRODUCTION

interesting to investigate whether also the experimental hints for NP can be explained in the

CHM context. At least, if these hints should get established, any viable NP model has to

accommodate them.

1.1 The SM Higgs sector and the naturalness problem

The origin of the naturalness problem is closely related to the structure of the SM and its

Higgs sector. Among the first steps towards the SM was the unification of the electromagnetic

and the weak interaction. The mediators of the weak interaction, W+
µ , W−µ , and Zµ, and the

mediator of the electromagnetic interaction, the photon Aµ, were described in terms of the

four generators of the unified electroweak (EW) symmetry group SU(2)L×U(1)Y already in

the early 1960s [20]. However, an integral part in constructing the SM was to incorporate the

Higgs mechanism as a means to give mass to W±µ and Zµ in a renormalizable way [21,22]. In

doing this, the Higgs mechanism builds upon the notion of spontaneous symmetry breaking.

When the Lagrangian of a given theory possesses a global symmetry2 G, but the vacuum of

the theory is only invariant under a subgroup H ⊂ G, the global symmetry G is said to be

broken spontaneously to H. In this case, the theory contains a massless scalar for each broken

generator of G, called a Nambu-Goldstone boson (NGB) [23–25]. There are, however, ways

to prevent massless NGBs from appearing. One way is having terms in the Lagrangian that

explicitly break the G symmetry weakly. This can lead to an effective potential that yields

a small mass for a NGB, which is then called pseudo Nambu-Goldstone boson (pNGB) [26].

Another way is to gauge broken generators. In this case, a NGB corresponding to a gauged

broken generator can be removed from the theory by choosing an appropriate gauge, called

the unitary gauge, and such a NGB is called would-be Nambu-Goldstone boson or fictitious

Nambu-Goldstone boson. At the same time, the gauge boson associated with the broken

generator becomes massive. This mechanism that gives mass to a gauge boson and turns a

NGB into an unphysical would-be NGB is nothing but the Higgs mechanism [12–16].

For the three vector bosons W+, W−, and Z to become massive, three of the four gener-

ators of SU(2)L×U(1)Y have to be spontaneously broken, while the U(1)Q generator Q that

corresponds to the massless photon must be unbroken. The latter is found to be

Q = t3 + Y, (1.1)

where Y is the generator of U(1)Y, ta = σa/2, a ∈ {1, 2, 3} are the generators of SU(2)L,

and σa are the Pauli matrices. An economical way to achieve EWSB is to employ a complex

scalar field Φ(x), the so called Higgs field. The Higgs field transforms as a doublet under

2The symmetry groups considered here are always assumed to be connected and compact Lie groups.

2



1.1. THE SM HIGGS SECTOR AND THE NATURALNESS PROBLEM

SU(2)L and has a U(1)Y charge qY = 1/2. This implies that one component of the doublet

has vanishing electric charge and is therefore invariant under U(1)Q (cf. eq. (1.1)). If this

component has a finite value at the minimum of the Higgs potential, which corresponds to the

vacuum of the theory, then the EW symmetry is broken spontaneously to its electromagnetic

subgroup. This can be realized by the Higgs Lagrangian

LHiggs =
(
Dµ Φ(x)

)† (
Dµ Φ(x)

)
− λ

(
Φ†(x) Φ(x)− v2

2

)2

, (1.2)

with the covariant derivative3

Dµ Φ(x) =

(
∂µ − i g taW a

µ − i g′
1

2
Bµ

)
Φ(x), (1.3)

where g and g′ are the gauge couplings of the gauge fields W a
µ and Bµ, which are associated

with SU(2)L and U(1)Y, respectively. The minimum of the potential term in LHiggs is found

for |Φ(x)| = v√
2

and the choice of the generator basis in terms of the Pauli matrices implies

that the vacuum configuration of the Higgs field that breaks the EW symmetry to U(1)Q is4

Φ0 =
1√
2

(
0

v

)
. (1.4)

The quantity v is called the vacuum expectation value (VEV)5 of the Higgs field. The four

real degrees of freedom of the complex Higgs doublet are reduced to only one by employing

the unitary gauge, where the three would-be NGBs, which are associated with the three

gauged broken generators, are removed. The remaining real scalar field h(x) describes a

massive particle called the Higgs boson, which corresponds to fluctuations about the vacuum

in the U(1)Q invariant component of Φ(x), i.e. in unitary gauge, one finds

Φ(x) =
1√
2

(
0

v + h(x)

)
. (1.5)

Plugging this into the Higgs Lagrangian, eq. (1.2), yields mass terms for the EW gauge

bosons. The mass eigenstates in terms of the W a
µ and Bµ fields are

W±µ =
1√
2

(W 1
µ∓iW 2

µ), Zµ = cos θW W 3
µ−sin θW Bµ, Aµ = cos θW Bµ+sin θW W 3

µ , (1.6)

3Repeated indices only appearing on one side of an equation are assumed to be summed over.
4Any other choice of Φ0 that satisfies |Φ0| = v√

2
is physically equivalent but requires a different choice of

the generator basis of SU(2)L. The generator t3 is fixed via eq. (1.1) by the requirement that Φ0 is invariant

under U(1)Q, i.e. QΦ0 = 0.
5While Φ(x) is treated here merely as a classical field, the term “expectation value” is used for convenience

and corresponds to an actual quantum mechanical expectation value when Φ(x) is promoted to a field operator.
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CHAPTER 1. INTRODUCTION

where cos θW = g√
g2+g′2

and sin θW = g′√
g2+g′2

, and the masses are

mW =
1

2
g v, mZ =

mW

cos θW
, mA = 0. (1.7)

As expected, the gauge bosons associated with the broken generators become massive, while

the photon Aµ that corresponds to the unbroken U(1)Q stays massless.

However, not only the gauge bosons become massive, but also the Higgs boson receives a

mass proportional to the Higgs VEV:

mh =
√

2λ v. (1.8)

In the SM, also the fermions are coupled to the Higgs field via Yukawa interactions. Hence,

they also gain masses proportional to the Higgs VEV. Actually every single massive elemen-

tary particle in the SM has a mass proportional to the Higgs VEV. This has an important

consequence that can readily be inferred from eq. (1.5) and may be regarded as the origin of

the naturalness problem: all these particles couple to the elementary scalar Higgs boson h(x)

with coupling strengths proportional to their masses, and this also means that they all con-

tribute to the Higgs mass via quantum corrections. Because there must be some kind of NP

beyond the SM, at least around the Planck scale MPl ≈ 1019 GeV where gravity cannot be

neglected, the SM is usually considered to be an effective theory, only viable up to a cutoff

scale Λ. The contributions due to quantum corrections that the SM Higgs mass mh receives

to its bare mass m0 depend on this cutoff, such that6

m2
h = m2

0 + κΛ2, (1.9)

where κ is some dimensionless constant typically of order 10−2 [28]. The ratio of the bare

Higgs mass to the cutoff scale is a dimensionless parameter of the UV theory that replaces

the SM above the scale Λ. From eq. (1.9), this parameter is found to be

m2
0

Λ2
= −κ

(
1− m2

h

κΛ2

)
. (1.10)

The Higgs mass mh in the SM has to be around the EW scale, i.e. of the order of 100 GeV,

and a particle compatible with this requirement has been found at 125 GeV [29]. Plugging

this into eq. (1.10) and assuming that there is no NP up to the Planck scale, i.e. Λ = MPl,

one finds
m2

0

Λ2
= −κ

(
1− 10−32

)
. (1.11)

6The discussion of the naturalness problem presented here is based on [27,28].
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1.1. THE SM HIGGS SECTOR AND THE NATURALNESS PROBLEM

This means that
m2

0
Λ2 has to be tuned to the 32nd decimal place to yield the correct Higgs

mass. Such an extreme tuning is considered to be unnatural for a parameter in the UV

theory. A natural theory in this sense requires that a small change to a parameter like
m2

0
Λ2

does not have a dramatic consequence on an observable like the Higgs mass. The naturalness

problem of the SM therefore is the problem that it seemingly leads to an unnatural theory

in the UV.

An obvious solution to the naturalness problem of the SM is a cutoff much lower than

the Planck scale, say around some TeV. But then the UV theory above Λ has to contain

some mechanism that protects the Higgs mass from further quantum corrections stemming

from higher scales. An example for such a theory is one that is supersymmetric7. In a

supersymmetric theory, quantum corrections to the Higgs mass that are induced by fermions

are exactly canceled by those stemming from their bosonic superpartners, and vice versa,

at least if the superpartners are not much heavier than the EW scale. There are many

other possible solutions to the naturalness problem. Among them are e.g. ideas like that

the Planck scale is actually close to the EW scale and just seems much larger due to extra

dimensions [31,32], or that dynamics in the early universe are responsible for a Higgs boson

mass much smaller than the cutoff [33], or that the scalar Higgs sector itself dynamically

generates a new cutoff scale of the order of 100 TeV [34].

There is another class of models in which the naturalness problem is avoided by not in-

troducing the elementary scalar Higgs field as a means to break the EW symmetry. Notable

examples of this kind are so called Technicolor (TC) models [27, 35] that do not require

a Higgs boson at all and break the EW symmetry by a condensate that is due to a new

strong interaction. While their early versions were disfavored because of problems with ex-

perimentally excluded large flavor-changing neutral currents (FCNCs) [36,37], the discovery

of a scalar particle with properties similar to the SM Higgs boson completely rules out any

Higgsless TC model. The Higgs boson, however, might not be an elementary particle but

actually a bound state of some TC like strong interaction that is also responsible for EWSB.

The virtue of such a composite Higgs boson is that it does not suffer at all from the natural-

ness problem of an elementary scalar. Any possible corrections to its mass are cut off at the

scale where a more fundamental theory in terms of its constituents takes over. A strongly

interacting theory that yields a composite Higgs bound state generically predicts also other

bound states that have not been observed so far. However, an explanation for the lightness

of the Higgs boson compared to other bound states can be provided by assuming that the

Higgs is a composite pNGB [38–43]. In the following, when referring to composite Higgs

models (CHMs), this assumption will always be made. In addition to solving the naturalness

7For an introduction to supersymmetric theories, see e.g. [30].
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problem, these CHMs have also other interesting features: While the Higgs sector in the SM

is introduced more or less ad hoc for breaking the EW symmetry, its origin is explained in

CHMs in terms of a more fundamental, strongly coupled theory. This also means that SM

parameters like the Higgs mass are in principle calculable in CHMs. Because masses and

mixings of SM fermions are intimately interrelated with the Higgs sector, CHMs offer the

possibility to get some insights into the generation of fermion masses and mixings.

Since CHMs generically predict composite vector and fermion resonances that might be

accessible at the LHC, direct constraints from experimental analyses are an important test

of the viability of CHMs. Studying the impact of these constraints on realistic CHMs is one

of the main topics of this thesis. In light of the afore mentioned experimental hints for NP,

another main topic is to investigate whether these hints can be explained by CHMs.

1.2 Flavor anomalies and hints for new physics

Already in 2013, the LHCb collaboration reported a tension between their measurement

of the B → K∗µ+µ− angular observable P ′5 and the SM prediction [44]. Several groups

subsequently showed that this could be explained by a NP contribution to a single Wilson

coefficient (WC) of the weak effective Hamiltonian (WEH)8, modifying the quark-level tran-

sition b→ s `+`− [45–48]. Various branching ratio measurements of processes that involve

the same quark-level transition have since showed deviations from the SM [49, 50] and the

LHCb measurement of P ′5 with the full Run 1 dataset, presented in 2015, confirmed the

previously found tensions [51]. While updated global analyses showed the consistency of all

these tensions with a NP explanation, hadronic uncertainties in SM calculations cannot be

excluded as the origin of the tensions [52–54].

However, ratios of b → s `+`− branching ratios with different leptons in the final states

are practically free of hadronic uncertainties (cf. [55–57]). In addition, these observables are

sensitive to a violation of lepton flavor universality (LFU), and observation of LFU violation

(LFUV) would be a clear sign of NP. Interestingly, first measurements of two of such ratios,

the LFU observables RK and RK∗ , show a deviation from the SM, each with a significance

of around 2σ [58, 59]. This result is tantalizing because it is fully compatible with the NP

explanation of the other tensions found in angular observables and branching ratios and can

be further tested with new measurements at LHCb and the upcoming Belle II experiment.

Apart from the neutral current transition b → s `+`−, there are also hints for NP in

charged current b → c `− ν transitions, namely in the LFU observables RD and RD∗ . With

8The weak effective Hamiltonian describes an effective theory derived from the SM by integrating out all

degrees of freedom heavier than the bottom quark, i.e. the weak gauge bosons, the Higgs boson, and the top

quark.
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first evidence reported by the BaBar collaboration in 2012 and 2013 [60, 61], several mea-

surements by the Belle and LHCb collaborations have since confirmed a tension with the SM

prediction [62–66], and a recent average is found to deviate from the SM by about 4σ [67].

Although NP explanations of the tensions found in both b → c `− ν and b → s `+`−

transitions require contributions to different WCs of the WEH, it is intriguing that all the

tensions seem to indicate LFUV, and thus might be connected. However, while CHMs in

principle offer the possibility for LFUV, the b → c `− ν anomalies seem to be harder to

accommodate. This thesis therefore focuses on the b → s `+`− anomalies and their possible

explanation in terms of CHMs.

1.3 Outline and scope

Modern CHMs are based on a plethora of different concepts, ideas, and formalisms. Among

them are the description of NGBs, hidden local symmetries, partial compositeness of fermions

and vector bosons, flavor symmetries, vacuum alignment, collective breaking of symmetries,

extra dimensions, etc. One aim of this thesis is therefore to provide, in chapter 2, a self-

contained introduction to the main concepts9 that are needed to construct realistic CHMs.

The focus primarily lies on the concepts and not on specific models, which are discussed

later. The idea is to start with the arguably most central aspect of CHMs, namely NGBs,

and then to proceed step by step in building upon the description of NGBs. In particular,

some effort is made to relate new concepts to those previously introduced. To this end,

section 2.1 discusses the formalisms needed to construct Lagrangians that describe NGBs.

In section 2.2, it is shown how these formalisms can be extended in a very natural way to

include vector resonances, and how the inclusion of more and more resonances ultimately

leads to a theory with an extra dimension. After introducing the notion of fermion partial

compositeness, section 2.3 shows how it automatically arises from a theory with an extra

dimension. This is then used to include fermions into the models describing NGBs and

vector resonances. In addition, flavor symmetries that allow for building phenomenologically

viable fermion sectors are discussed. Having introduced all particle species, section 2.4 turns

to the mechanism of EWSB by vacuum misalignment and discusses collective breaking as a

means to arrive at a finite one-loop scalar potential. In section 2.5, finally, a possible UV

completion of the effective low-energy description is presented.

The concepts introduced in chapter 2 are applied in chapter 3. In the context of our global

analyses [2] and [3] of two specific CHMs, the direct collider constraints on these models are

discussed. After describing the numerical method and the constraints used in these analyses

9For lecture notes that also introduce many of these concepts, see e.g. [68, 69].
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in sections 3.1.1 and 3.1.2, the two concrete models are specified in section 3.1.3. Section 3.2

details in a model independent way how direct collider constraints are included into our

global analyses. In particular, the calculations of cross sections and branching ratios for

generic scalar, vector and fermion resonances are described in sections 3.2.2 and 3.2.3, while

their comparison with experimental data is discussed in section 3.2.4. Results of our global

analyses are finally presented in section 3.3. The production and decay of the particles

present in the two models are analyzed, the most promising decay channels are identified,

and the prospects for probing parameter points of the models are discussed. This is done in

section 3.3.1 for quark resonances and in section 3.3.2 for vector resonances. Section 3.3.3

describes the collider constraints for a particle only present in one of the two models: a scalar

singlet pNGB that can mix with the Higgs and generically is considerably lighter than the

vector and fermion resonances.

Apart from direct constraints, a central topic of this thesis are the anomalies in rare B

decays mentioned above. The recent experimental data on these decays is interpreted in

a model independent way in chapter 4. By performing global fits in [4] and [5], we have

analyzed possible explanations of the measurements in terms of NP contributions to WCs

of the WEH. The relevant part of the WEH and the numerical method employed in these

fits are described in section 4.1. These methods are then first applied to measurements of

processes only involving the b → s µ+µ+ transition in section 4.2. Subsequently, the hints

for violation of LFU are interpreted in section 4.3.

Motivated by the results from the global fits shown in chapter 4, a possible explanation of

the anomalies in rare B decays in the context of CHMs is presented in chapter 5. Based on our

proposal in [1], a simple model is described in section 5.1, and constraints from electroweak

precision tests and quark flavor physics are discussed in sections 5.2 and 5.3, respectively.

The ranges of the parameters of the model that can explain the b→ s `+`− anomalies while

satisfying the constraints are presented in section 5.4.

After presenting the simplified model in chapter 5, the flavor phenomenology of a much

more ambitious model is discussed in chapter 6. This model, which we have analyzed in [6],

is a UV completion of CHMs described already in section 2.5 and known as minimal funda-

mental partial compositeness. Working in an effective low-energy description, the model’s

contributions to observables at the electroweak scale and to low-energy flavor observables

are discussed in detail in section 6.1. The numerical method we have used in our analysis as

well as the relevant parameters are described in section 6.2. The results are presented in 6.3,

discussing meson-antimeson mixing, charged current semi-leptonic decays and neutral cur-

rent semi-leptonic decays. It is shown that while an explanation of the anomalies in charged

8
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current decays is in conflict with precise measurements of Z decays, the model is actually

capable of explaining the anomalies in rare B decays.
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2
Composite Higgs models

The central idea of CHMs and TC models is that the EW symmetry is not broken by the VEV

of an elementary scalar field, but by strong interactions. In both CHMs and TC models, there

is a strongly interacting sector that has a global symmetry G into which the EW symmetry is

embedded. The symmetry group G is then spontaneously broken to a subgroup H by strong

dynamics. In traditional TC models, the remaining unbroken group H can only accommodate

U(1)Q, and thus the EW symmetry is broken as G is broken to H. In CHMs on the other

hand, H can in principle accommodate the whole EW symmetry group, but it could also

be aligned inside G in such a way that only U(1)Q lies in H. The actual alignment of H

in G, or in other words the misalignment between H and the EW symmetry group, is not

determined by the strong dynamics that break G to H but by weak interactions external to

the strong sector [35,70,71]. These weak interactions generate an effective scalar potential for

the NGBs that arise in the G to H breaking, and minimizing this potential yields the actual

alignment of H in G. The amount of misalignment controls the scale of EWSB, such that

this mechanism of symmetry breaking by vacuum misalignment allows to raise the TC scale

while keeping the EWSB scale at its observed value. This was used in the early CHMs of

the mid 1980s [38–43] to ameliorate problems with large FCNCs that traditional TC models

had [36,37]. As a byproduct of EWSB by vacuum misalignment, the theory contains a pNGB

that resembles the properties of the SM Higgs boson. In CHMs, where the G to H breaking

is assumed to be due to strong dynamics, this pNGB is a composite object. Hence, these

models are called composite Higgs models.

In the first years after CHMs were proposed, not much attention was paid to them.

This was probably due to the “first superstring revolution” taking place also in the mid

1980s [72–75], the popularity that grand unified supersymmetric explanations of the natu-

ralness problem had gained [76–78], and the intrinsic difficulties of performing calculations

in strongly coupled theories (cf. [79], in particular [80]). This changed about 15 years later.

In the late 1990s and early 2000s, the AdS/CFT correspondence [81–83] was discovered and
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models with extra dimensions became increasingly popular (see e.g. [31, 32, 84, 85]). By dis-

cretizing the extra dimension of certain extra dimensional models, which is also known as

dimensional deconstruction [86], 4D models were obtained in which a pNGB plays the role of

the Higgs boson and the EW symmetry is broken by vacuum misalignment [87]. In contrast to

the early CHMs, these deconstructed models contain an additional mechanism for protecting

the NGBs’ scalar potential from UV dependent quantum corrections, which is known as col-

lective breaking. This led to a plethora of models with a pNGB Higgs, the so called little Higgs

models [88–100]. By applying holographic methods based on the AdS/CFT correspondence

to extra dimensional models, they can be interpreted as duals of strongly interacting theories

in four dimensions [101,102]. This was used to construct holographic composite Higgs models

that have a 4D description similar to conventional CHMs but were formulated in terms of

5D theories [103–106]. In the 5D formulation, the composite pNGB Higgs becomes the extra

dimensional component of a 5D gauge field, which is known as gauge-Higgs unification (cf.

section 2.2.3). While extra dimensional models of this kind were actually already discussed

in the late 1970s and 1980s [107–110], their equivalence to CHMs was only noticed about

20 years later. In the 4D deconstructed description of models with gauge-Higgs unification,

the 4D components of the extra dimensional gauge fields yield the SM gauge bosons as well

as massive spin one states that can be interpreted as composite resonances. When putting

fermions in the extra dimensional bulk, the deconstructed version contains massless chiral

fermions as well as massive Dirac fermions with the same quantum numbers [111, 112]. The

latter can again be interpreted as composite resonances and are allowed to mix with the

chiral fermions. Interestingly, this implements the so called partial compositeness mechanism

for giving mass to the chiral fermions [113]. This mechanism was actually already proposed

in the early 90s in the context of TC and CHMs as a means to solve the FCNC problem, but

it essentially got no attention until its rediscovery in models with extra dimensions.

For phenomenological applications, several kinds of 4D CHMs based on extra dimensional

models have been constructed. Notable examples1 are simplified models that mainly focus

on the pNGB nature of the Higgs [115, 116] or on heavy resonances and partial composite-

ness [117] and more complete multi-site models2 featuring a pNGB Higgs, vector and fermion

resonances, and partial compositeness [118–120]. The multi-site models are especially suited

for studying the dynamically generated scalar potential of the NGBs and direct collider con-

straints on the heavy resonances. They are also more general in the sense that the simplified

1For a comparison of various CHM constructions see [114].
2When an extra dimension is discretized, or latticized, each point in the resulting lattice is called a site and

the number of heavy resonances depends on the number of sites (cf. section 2.2). Multi-site models therefore

always contain heavy resonances.
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models can be derived from them by integrating out heavy resonances or taking specific

limits.

When constructing CHMs, a general source of model dependence is the choice of the global

symmetry groups G and H. The minimal requirements for EWSB by vacuum misalignment

are that the EW symmetry group can be embedded into H and that the G to H breaking

yields NGBs in a complex SU(2)L doublet with U(1)Y charge qY = 1/2. The latter is

necessary to provide the degrees of freedom for the massive weak gauge bosons and a pNGB

Higgs.

For phenomenological reasons, the former requirement is usually extended, i.e. one re-

quires that not only the EW group SU(2)L×U(1)Y can be embedded into H, but the larger

group SU(2)L× SU(2)R. This enforces the ratio of the tree-level masses of W±µ and Zµ to be

exactly the same like in the SM [27, 121]. This can be understood as follows. The vacuum

alignment that breaks the EW symmetry to U(1)Q breaks the global SU(2)L × SU(2)R to

its diagonal subgroup SU(2)L+R. A completely unbroken SU(2)L+R would imply identical

masses for W±µ and Zµ. While SU(2)L+R is explicitly broken by the gauging of the U(1)Y

subgroup of SU(2)R, the above requirement guarantees that the non-zero U(1)Y gauge cou-

pling g′ is the only source of SU(2)L+R breaking in the gauge sector3. In particular, the

strong sector is exactly invariant under SU(2)L+R and one finds

m2
Z = m2

W ·
(

1 +
g′2

g2

)
=

m2
W

cos2 θW
, (2.1)

i.e. the difference between the masses of W±µ and Zµ is only due to the non-zero g′ and

vanishes for g′ → 0. This reproduces the SM result from eq. (1.7). The SU(2)L+R symmetry

protects the ratio of the weak gauge boson masses from tree-level corrections and is therefore

also called a custodial symmetry [122]. In models containing strong couplings, a custodial

symmetry is also necessary to prohibit loop-level contributions that are enhanced by the

strong couplings and cannot be neglected. A composite sector that is invariant under a

custodial symmetry is thus essential for most CHMs. The breaking of custodial symmetry

is usually parameterized by the Peskin–Takeuchi parameters S and T [123–126], and their

experimentally measured values can put strong constraints on NP models. For an analysis of

the contributions to the S and T parameters in models discussed in this thesis, see [2, 127].

Including the custodial symmetry, the requirements on the G and H groups used in the

following are:

1. SU(2)L × SU(2)R
∼= SO(4) is a subgroup of H.

3The couplings in the fermion sector also break the SU(2)L+R. However, this does not affect the gauge

boson masses at tree level.
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2. The G to H breaking yields NGBs in a complex SU(2)L doublet with U(1)Y charge

qY = 1/2.

The minimal choice for satisfying requirement 1 isH = SO(4). In this case, the smallest group

G that satisfies requirement 2 is G = SO(5): the spontaneous symmetry breaking SO(5) →
SO(4) exactly yields the desired SU(2)L doublet of NGBs and no other additional NGBs.

In a possible UV completion, a dynamical mechanism for the G to H breaking has to be

present. The most common one is chiral symmetry breaking where a bilinear of TC fermions

forms a condensate due to strong dynamics. The breaking pattern SO(5) → SO(4) of the

minimal CHM unfortunately is not simply realized via chiral symmetry breaking and requires

a quite involved construction (cf. [128]). However, the next-to-minimal breaking pattern

SO(6) → SO(5) can be realized in a Sp(N) gauge theory with fermions in the fundamental

representation (cf. section 2.5). It only yields one scalar singlet pNGB in addition to the

required complex doublet and actually contains a limit where it resembles the minimal CHM

(cf. section 3.1.3).

In chapter 3 and 6, explicit models featuring both the minimal and the next-to-minimal

breaking pattern are analyzed. However, for the discussion of the structure of CHMs, it

is instructive to consider the general G to H breaking case without specifying the groups

explicitly. The construction of 4D CHMs, namely the multi-site models is discussed in detail

in the following sections.

2.1 Nambu-Goldstone Bosons

For introducing CHMs, it is instructive to start with their central aspect: NGBs. They arise

from a G invariant Lagrangian whose vacuum is only invariant under a subgroup H of G,

one NGB for each generator of G that is not a generator of H. The most general G-invariant

Lagrangian that describes the NGB degrees of freedom can be constructed by a formalism

due to Callan, Coleman, Wess and Zumino (CCWZ) [129, 130]. In the following, after an

introductory example, the CCWZ formalism is described and some important special cases

are discussed. In addition, the language of the hidden local symmetry (HLS) [131–133] is

introduced.

2.1.1 A first example: The linear sigma model

Before describing to the CCWZ formalism, it is instructive to first discuss the essential

properties of NGBs using a concrete example. To this end, following [134], the linear sigma
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model4 is considered. Its Lagrangian is given by

L =
1

2
∂µ~φ(x) · ∂µ~φ(x)− λ

(
~φ 2(x)− f2

)2
, ~φ(x) =


φ1(x)

...

φN (x)

 , (2.2)

with N ≥ 2. The scalar fields parametrized by the vector ~φ(x) transform under the fun-

damental representation of the group G = O(N), whose elements correspond to the length-

preserving transformations in an N -dimensional real vector space. Since ~φ(x) enters the

Lagrangian only inside scalar products, the theory is obviously invariant under G.

The vacuum of the theory is defined by the minimum of the potential V = λ
(
~φ 2(x)− f2

)2
.

This minimum is found to be |~φ(x)| = f , i.e. the vacuum corresponds to a fixed length of
~φ(x). So f plays the role of the VEV of ~φ(x). All the different field configurations that

satisfy the vacuum condition |~φ(x)| = f form a manifold called the vacuum manifold. In the

given case, one finds

|~φ(x)| = f ⇒ φ2
1(x) + · · ·+ φ2

N (x) = f2, (2.3)

which parametrizes the N-1 dimensional sphere SN−1. Since the points inside the vacuum

manifold all yield the same potential energy, the possible vacua are degenerate and physically

equivalent. Choosing any of them, one finds that a given element ~φ0 of the vacuum manifold,

i.e. a specific choice of vacuum, is not invariant under a general G transformation. There are,

however, elements of G that actually leave the vacuum ~φ0 invariant. They form a subgroup5

H ⊂ G that in the present case can be identified with H = O(N −1). Since the vacuum ~φ0 is

not invariant under G, but invariant under H, the symmetry G is said to be spontaneously

broken to H.

The spontaneously broken symmetry group G is however not really broken. While the

vacuum ~φ0 is only invariant under H, there is, however, still another invariance left. This is

the invariance of the vacuum potential energy under the choice of a specific vacuum inside

the vacuum manifold. These two different kinds of invariance divide the generators of G into

two sets:

• The generators T a of H can be defined for some specific reference vacuum ~φ0 by

T a ~φ0 = 0. Their associated group elements leave ~φ0 invariant and they correspond

to the former invariance.
4A model of this kind was introduced in [135] and contains a field named σ.
5If a group G is acting (transitively) on a manifold M , its subgroup H that leaves a specific point ~φ0 in

this manifold fixed is called the isotropy subgroup of G at ~φ0 [136], or simply the isotropy group of ~φ0 (other

synonyms are little group or stabilizer of ~φ0 [137]).
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x1

x2

x3

X1

X2

T1

~φ0

~φ0 =

0

0

f


X1

~φ0 6= ~0

X2
~φ0 6= ~0

}
⇒ 2 NGBs for X1, X2.

T1
~φ0 = ~0 ⇒ remaining H = O(2) symmetry.

Figure 2.1: O(3)→ O(2) spontaneous symmetry breaking. The two-sphere around the origin

is the vacuum manifold where |~φ(x)| = f . When the vacuum ~φ0 is chosen, the G = O(3)

symmetry is broken to H = O(2). Only the rotations induced by T1 (around the x3 axis)

leave ~φ0 (chosen in the direction of the x3 axis) invariant and thus T1 is the generator of the

unbroken O(2). X1 and X2 (inducing rotations around the x1 and x2 axes, respectively) are

the broken generators and yield two NGBs.

• The remaining generators Xa that satisfy Xa ~φ0 6= 0 and are thus also called broken

generators are associated with elements of G that transform ~φ0 to another, but physi-

cally equivalent vacuum ~φ′0. The action of these group elements has the same effect as

choosing a different reference vacuum and therefore the generators Xa correspond to

the latter invariance.

For illustration, the vacuum manifold, a specific vacuum ~φ0, and the generators of G are

visualized in figure 2.1 for the N = 3 case.

The G symmetry is thus actually preserved, but for a given vacuum ~φ0 only the H

subgroup is linearly realized6. It is interesting to note that the vacuum manifold happens to

be isomorphic to the coset space G/H (i.e. the manifold formed by the set of left cosets of

H in G) and that the tangent space of G/H at the point H (i.e. at the left coset eH where

e is the identity in G), or equivalently, the tangent space of the vacuum manifold at ~φ0, is

isomorphic to the vector space spanned by the broken generators Xa (see e.g. [138]). In this

sense, the group elements associated to the Xa generators correspond to the elements of the

coset space G/H (at least for group elements close to the identity in G). Moreover, the above

observations have the immediate consequence that the vacuum manifold as well as the G/H

coset space both have a dimensionality equal to the number of broken generators. That this

6As will be discussed in section 2.1.2, the whole G symmetry is in this case non-linearly realized.
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number also coincides with the number of NGBs gets obvious by considering fluctuations

around the minimum ~φ0. There are two distinct cases:

• Fluctuations inside the vacuum manifold do not change the length of ~φ(x) and therefore

also do not change the potential energy. They thus correspond to massless degrees of

freedom. The number of these degrees of freedom is given by the dimensionality of the

vacuum manifold and each of them can be associated with a rotation induced by one of

the broken generators Xa. The fluctuations inside the vacuum manifold can therefore

be identified with the massless NGBs πa(x).

• A radial excitation changes the length of ~φ(x) and hence the potential energy. Conse-

quently, it corresponds to a massive scalar σ(x).

It is convenient to parametrize ~φ(x) by “polar coordinates” using the πa(x) and σ(x) fluctu-

ations around the minimum ~φ0. This yields

~φ(x) = (1 + σ(x)/f) e
i
√

2
f
πa(x)Xa ~φ0. (2.4)

Plugging this parametrization into the initial Lagrangian from eq. (2.2), and using a specific

vacuum, e.g. ~φ0 = (0, . . . , 0, f)T , one finds

L =
1

2
∂µσ(x) ∂µσ(x)− λ (σ(x)2 + 2σ(x) f)2 +

1

2
(f + σ(x))2

[
∂µU

T (x) ∂µU(x)
]
NN

, (2.5)

where U(x) is the NGB matrix defined by

U(x) = e
i
√

2
f
πa(x)Xa

. (2.6)

Given the above discussed relation between the elements of the coset space G/H and the

generators Xa, with a slight abuse of terminology, the coset space G/H will be used in the

following to refer to the subset of G that consists of the group elements associated to the Xa

generators. In this sense, the NGB matrix U(x) is an element of the coset space G/H.

Because the fields σ(x) and πa(x) are perturbations around the vacuum, they have a

vanishing VEV. While this is obvious for σ(x) from its definition in eq. (2.4) and the vacuum

condition |~φ(x)| = f , this condition does not forbid a VEV for the πa(x) fields. Such a

VEV, however, just corresponds to a transformation of the vacuum ~φ0 to another equivalent

vacuum ~φ′0 and is therefore not physical. In the parameterization of the scalar fields in terms

of σ(x) and πa(x), the quantity f thus loses its interpretation as a VEV. In this context, it

is usually called the decay constant7 and enters several interaction terms as well as the mass

7The term “decay constant” stems from the description of pions as (pseudo) NGBs in a low-energy effective

theory of QCD, where the strength of leptonic pion decay depends on f .
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of the radial excitation σ(x). This mass is found to be

mσ =
√

8λ f. (2.7)

At energies well below mσ, the massive scalar σ(x) decouples and the low-energy degrees of

freedom can be described by the pure NGB Lagrangian

LNGB =
f2

2

[
∂µU

T (x) ∂µU(x)
]
NN

. (2.8)

Some important properties of the NGBs can be read off from this Lagrangian:

• It is non-linear in the NGBs πa(x) which enter via the NGB matrix U(x), eq. (2.6).

The model containing only NGB degrees of freedom is thus also called the non-linear

sigma model8.

• The NGBs are derivatively coupled. This implies that the Lagrangian is invariant

under constant shifts of πa(x). This invariance under constant shifts is nothing but

the invariance under the choice of a specific vacuum that is discussed above: constant

shifts correspond to choosing a different vacuum inside the vacuum manifold. The shift

symmetry can also be seen as a reason for the masslessness of the NGBs since it does

not allow a mass term.

• Via the Fourier transformation, the derivative coupling corresponds to a momentum

dependent coupling. The theory is thus weakly coupled for low momentum and so in

this regime an expansion in the momentum can be performed.

It is worth mentioning that the pure NGB Lagrangian is non-renormalizable and only valid

for a description of the theory at energies below Λ ≈ 4πf . At higher energies it has to be

UV-completed, e.g. by a linear sigma model as described above (by “integrating in” the σ(x)

field), or by a strongly coupled theory that yields NGBs as bound states of more fundamental

degrees of freedom. However, the great benefit of the NGB Lagrangian is that it does not

depend on the actual UV completion, but only on the symmetry breaking pattern.

2.1.2 The CCWZ formalism

The Lagrangian in eq. (2.8) describes the NGBs for a O(N) → O(N − 1) spontaneous

symmetry breaking. For a generic group G that is spontaneously broken to a subgroup H,

the question arises how the most general NGB Lagrangian that is invariant under G can be

8The NGBs not only enter the Lagrangian non-linearly, they also transform non-linearly under G, cf.

section 2.1.2.
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constructed. The answer to this question is the CCWZ formalism [129,130] presented in the

following9. To this end, it is useful to first fix the notation. The generators of G that are

elements of the Lie-algebra g will be denoted by T a and Xa, where T a ∈ h are the generators

of the remaining H symmetry and elements of the Lie-algebra h, while Xa ∈ g − h are the

broken generators10. The generators are normalized such that tr[T a T b] = tr[XaXb] = δab.

As a starting point, the NGBs are parametrized by fluctuations πa(x) around aG-breaking

minimum φ0 inside the vacuum manifold11,

φ(x) = U [π(x)]φ0, U [π(x)] = e
i
√

2
f
πa(x)Xa ∈ G/H, (2.9)

where π(x) = πa(x)Xa and U [π(x)] is the NGB matrix (cf. section 2.1.1). Performing a G

transformation on φ(x) yields

G : φ(x)→ φ′(x) = g φ(x) = g U [π(x)]φ0, (2.10)

where g is an element of G. In general, the object g U [π(x)] is not an element of the coset

space G/H and thus cannot be expressed simply in terms of a matrix U [π′(x)] that depends

on a transformed π′(x). Using the fact that any g ∈ G can be decomposed as g = gX gh
where gX ∈ G/H and gh ∈ H, one can decompose g U [π(x)] as follows:

g U [π(x)]︸ ︷︷ ︸
∈G

= U [π′(x)]︸ ︷︷ ︸
∈G/H

h[π(x), g ]︸ ︷︷ ︸
∈H

, (2.11)

where U [π′(x)] ∈ G/H depends on a transformed π′(x) and h[π(x), g ] ∈ H depends on both

π(x) and g . Plugging this decomposition into eq. (2.10) yields

G : φ(x)→ φ′(x) = g φ(x) = U [π′(x)] h[π(x), g ]φ0 = U [π′(x)]φ0, (2.12)

where in the last step the invariance of the vacuum φ0 under H is used, i.e. h[π(x), g ]φ0 = φ0

for any π(x) and g . So it is actually possible to express the transformed φ′(x) only in terms

of a NGB matrix U [π′(x)] and the vacuum φ0. The transformation G : φ(x) → φ′(x) thus

corresponds to transforming the NGB matrix U [π(x)] and the NGB fields π(x) in a non-linear

way. Using eq. (2.11), one finds

G : U [π(x)]→ U [π′(x)] = g U [π(x)] h−1[π(x), g ] (2.13)

and

G : π(x)→ π′(x) where π′(x) is defined by eq. (2.13). (2.14)

9This discussion of the CCWZ formalism is loosely based on [133,134].
10g− h is the orthogonal complement of the h subalgebra of g, i.e. g = h⊕ (g− h).
11 In contrast to the field ~φ(x) from the previous section, the field φ(x) is defined to be dimensionless for

convenience. Both are related by f φ(x) ∼ ~φ(x).
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Due to the non-linear transformation of U [π(x)] and π(x) under G, they are also called

non-linear realizations of G.

Having laid down the transformation properties of the NGB matrix U [π(x)], it can now be

used to construct a G-invariant Lagrangian. It is instructive to first try a naive approach and

see why this fails. The arguably simplest Lorentz invariant Lagrangian for U(x) = U [π(x)]

is

Ltry =
f2

4
tr
[
∂µU

−1(x) ∂µU(x)
]
, (2.15)

where the prefactor f2

4 is included to yield a canonically normalized kinetic term for the

πa(x) fields. Under a G transformation, according to eq. (2.13), Ltry transforms as

G : Ltry → L′try =
f2

4
tr
[
∂µ
(
h(x)U−1(x) g−1

)
∂µ
(
g U(x) h−1(x)

)]
, (2.16)

where h(x) = h[π(x), g ]. Due to the x-dependence of h(x), it does not commute with

the partial derivatives and thus L′try 6= Ltry, i.e. Ltry is not invariant under a general G-

transformation. To investigate this in more detail, it is convenient to rewrite Ltry in the

following way. First, one can introduce a 1 = U(x)U−1(x) inside the trace, such that

Ltry =
f2

4
tr
[(
∂µU

−1(x)
)
U(x)U−1(x) (∂µU(x))

]
. (2.17)

From the relation12 (
∂µ U

−1(x)
)
U(x) = −U−1(x) ∂µU(x), (2.18)

one gets

Ltry =
f2

4
tr
[
−
(
U−1(x) ∂µU(x)

) (
U−1(x) ∂µU(x)

)]
, (2.19)

where in comparison to eq. (2.15) the partial derivatives now both act on U(x). The objects

inside the parentheses are called Maurer-Cartan-forms and may be written as

aµ[U ] = i U−1(x) ∂µU(x). (2.20)

The Maurer-Cartan-form has the useful property that it is Lie-algebra valued, i.e. aµ[U ] ∈ g.

Using aµ[U ], the Lagrangian can be expressed as

Ltry =
f2

4
tr [aµ[U ] aµ[U ]] . (2.21)

It should therefore be possible to trace back the fact that Ltry is not invariant under G to the

transformation properties of aµ[U ] under a G transformation. Using the definition of aµ[U ],

12The relation
(
∂µ U

−1(x)
)
U(x) = −U−1(x) ∂µU(x) can readily be derived from ∂µ

(
U−1(x)U(x)

)
= 0.
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eq. (2.20), one finds

G : aµ[U ]→ i h(x)U−1(x) g−1 ∂µ
(
g U(x) h−1(x)

)
= i h(x)U−1(x) (∂µU(x)) h−1(x) + i h(x) ∂µh−1(x)

= h(x) aµ[U ] h−1(x) + aµ[h−1]

(2.22)

and obviously the appearance of aµ[h−1] spoils the invariance of Ltry. The reason for both,

the problem with the x-dependence of h(x) in eq. (2.16) as well as the appearance of aµ[h−1]

in eq. (2.22), is that the partial derivative ∂µU(x) does not transform in the same way as

U(x) and therefore in general aµ[U ] /∈ g− h. Being an element of g, it is however possible to

expand aµ[U ] in terms of the generators T a and Xa such that

aµ[U ] = dµ[U ]aXa + eµ[U ]a T a, (2.23)

and one can define
dµ[U ] = dµ[U ]aXa ∈ g− h,

eµ[U ] = eµ[U ]a T a ∈ h.
(2.24)

For the transformation properties of dµ[U ] and eµ[U ] under a G transformation one then

finds

G : dµ[U ]→ h(x) dµ[U ] h−1(x),

G : eµ[U ]→ h(x) eµ[U ] h−1(x) + aµ[h−1] = h(x) (eµ[U ] + i∂µ) h−1(x),
(2.25)

i.e. aµ[h] only appears in the transformation of eµ[U ] while dµ[U ] transforms homogeneously.

Constructing a Lagrangian using dµ[U ] instead of aµ[U ] yields

L2 =
f2

4
tr [dµ[U ] dµ[U ]] , (2.26)

and using the transformation property of dµ[U ] under G, eq. (2.25), one immediately sees that

L2 is invariant under G-transformations. That this Lagrangian is indeed the most general

one that is G-invariant and leading order in an expansion in the number of derivatives was

shown in [129, 130]. The subscript “2” on L2 indicates that this Lagrangian only contains

the leading order terms with two derivatives. For the remainder of this thesis, higher order

terms will not be necessary. However, it should be noted that not only dµ[U ], but also eµ[U ]

enters the higher order terms. The transformation property of eµ[U ] under G, eq. (2.25),

suggests that it transforms like a gauge connection. Consequently, it enters the G-invariant

Lagrangian in terms of a covariant derivative replacing the partial derivative according to

i∂µ → i∂µ + eµ[U ].

In the above discussion, G is assumed to be a global symmetry. It is however straightfor-

ward to include gauge fields for a subgroup E ⊆ G (where E could also be the whole group
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G). Denoting the generators of E by P a, one just has to add the kinetic terms for the gauge

fields Aµ = Aaµ P
a to the Lagrangian and promote the partial derivatives to gauge-covariant

derivatives, i.e. i∂µ → i∂µ + gE Aµ. The Maurer-Cartan-form then also gets covariantized as

aµ[U ]→ ãµ[U ] = U−1(x) (i ∂µ + gE Aµ)U(x)

= aµ[U ] + gE U
−1(x)Aµ U(x),

(2.27)

which can also be thought of as adding a term corresponding to the gauge field Aµ dressed

by the NGB matrix U(x) to yield the correct transformation properties. The covariantized

Maurer-Cartan-form ãµ[U ] can again be decomposed in terms of unbroken and broken gen-

erators as

ãµ[U ] = d̃µ[U ]aXa + ẽµ[U ]a T a, (2.28)

such that the leading order Lagrangian including gauge fields is given by

L2 =
f2

4
tr
[
d̃µ[U ] d̃µ[U ]

]
− 1

4
tr[Fµν Fµν ], (2.29)

where Fµν = ∂µAν − ∂ν Aµ − i gE [Aµ, Aν ]. If E ⊆ H, all the gauge bosons are massless. On

the other hand, for each of the gauged generators P a that is also an element of the coset

generators, i.e. P a ∈ g−h, the associated gauge boson acquires mass via the Higgs mechanism.

The NGBs corresponding to these gauged broken generators are unphysical would-be NGBs.

Since the gauging of a subgroup E ⊆ G explicitly breaks the global G symmetry, some of the

physical NGBs may pick up mass terms and become pNGBs (cf. section 2.4).

In addition to employing the transformation properties of the NGB matrix U [π(x)] for

dressing gauge fields, this can also be done with other fields that do not transform linearly

under the full G group. In particular, any field ψ(x) transforming linearly under a repre-

sentation D(h) of the H-transformation h can be included in the Lagrangian with the help

of U [π(x)]. Assuming for simplicity that D(h) is the fundamental representation, i.e. ψ(x)

transforms as

H : ψ(x)→ ψ′(x) = h ψ(x), (2.30)

one can consider the dressed field U [π(x)]ψ(x). Performing a G transformation g , one finds

G : U(x)ψ(x)→ g U [π(x)] h−1[π(x), g ]ψ′(x), (2.31)

such that the requirement that U [π(x)]ψ(x) transforms linearly leads to ψ(x) transforming

non-linearly as

G : ψ(x)→ ψ′(x) = h[π(x), g ]ψ(x). (2.32)

This can be generalized to arbitrary representations of H, such that a ψ(x) transforming

under D(h) transforms under G non-linearly as

G : ψ(x)→ ψ′(x) = D(h[π(x), g ])ψ(x), (2.33)
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and by dressing it with the NGB matrix U [π(x)], one can include it in a G-invariant La-

grangian.

2.1.3 Symmetric spaces

The object dµ[U ] defined in eqs. (2.23) and (2.24) that enters the result for the leading

order NGB Lagrangian L2 can in general not easily be expressed in terms of the NGB matrix

U(x). In the special case where G/H is a symmetric space, dµ[U ] and thus L2 however have a

simple form in terms of U(x). This is shown in the following discussion that is loosely based

on [134, 139]. G/H is called a symmetric space if in addition to the commutator relation

[T a, T b] ∝ T c, which is just a consequence of h being a Lie subalgebra of g, the generators

T a and Xa also satisfy [T a, Xb] ∝ Xc and [Xa, Xb] ∝ T c. In this case, the transformation

τ : T a → T a, Xa → −Xa (2.34)

leaves the above commutator relations invariant and thus constitutes an automorphism. Ap-

plying this automorphism to the NGB matrix, one finds

τ : U(x)→ Ů(x) = U−1(x) , (2.35)

where Ů(x) is the image of U(x) under τ . From the expansion of aµ[U ] in terms of unbroken

and broken generators, eq. (2.23), it then follows

τ : aµ[U ]→ aµ[U−1] = −dµ[U ]aXa + eµ[U ]a T a, (2.36)

and hence

dµ[U ] =
1

2

(
aµ[U ]− aµ[U−1]

)
=
i

2

(
U−1(x) ∂µU(x)− U(x) ∂µU

−1(x)
)
. (2.37)

Plugging this into the Lagrangian L2 then yields

L2 =
f2

4
tr [dµ[U ] dµ[U ]] =

f2

16
tr
[
∂µ(U−1(x)U−1(x)) ∂µ(U(x)U(x))

]
. (2.38)

Using the definition

Σ(x) = U(x)U(x) = e
i 2
√

2
f
πa(x)Xa

, (2.39)

the Lagrangian can be further simplified to

L2 =
f2

16
tr
[
∂µΣ−1(x) ∂µΣ(x)

]
. (2.40)

So one finds that for G/H being a symmetric space, the NGB Lagrangian has a simple form

in terms of the squared NGB matrix Σ(x). The transformation properties of Σ(x) can be
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derived in the following way. Applying the automorphism τ to the G-transformation of U(x),

eq. (2.13), one gets

G : Ů(x)→ g̊ Ů(x) h̊−1(x), (2.41)

where g̊ and h̊−1(x) are the images of g and h−1(x) under τ . Since the generators of H

transform trivially under τ , one gets h̊−1(x) = h−1(x). Using in addition that Ů(x) = U−1(x),

one arrives at

G : U−1(x)→ g̊ U−1(x) h−1(x). (2.42)

and thus

G : U(x)→ h(x)U(x) g̊−1. (2.43)

From this, it follows that the squared NGB matrix Σ(x) transforms linearly, i.e.

G : Σ(x) = U(x)U(x)→ g U(x) h−1(x) h(x)U(x) g̊−1 = g Σ(x) g̊−1 (2.44)

and hence, using Σ(x), not only the Lagrangian but also the G-transformation is tremen-

dously simplified.

A common example where one encounters a symmetric space is the case where a global

symmetry that is a direct product of two groups isomorphic to each other is broken to its

diagonal subgroup. To be specific, the global symmetry13 Ĝ = GL×GR is broken to Ĥ = GD,

where GL ∼= GR ∼= GD are all isomorphic to each other. Then Ĝ/Ĥ = (GL × GR)/GD is a

symmetric space. It is useful for the later discussion in sections 2.1.4 and 2.2 to investigate

this case in more detail. Denoting the generators of the GL and GR parts of Ĝ by ŜaL and ŜaR
respectively, the generators of Ĥ are given by T̂ a = 1√

2
(ŜaL + ŜaR) and the broken generators

are X̂a = 1√
2
(ŜaL − ŜaR). Since Ĝ is a direct product and GL and GR are isomorphic to each

other, one can employ a matrix notation such that

ŜaL =

(
Sa 0

0 0

)
, ŜaR =

(
0 0

0 Sa

)
, T̂ a =

1√
2

(
Sa 0

0 Sa

)
, X̂a =

1√
2

(
Sa 0

0 −Sa

)
,

(2.45)

where Sa are the generators of the group GL ∼= GR. Using this notation, the NGB matrix

Û(x) is given by

Û(x) = e
i
√

2

f̂
πa(x) X̂a

=

e if̂ πa(x)Sa
0

0 e
− i

f̂
πa(x)Sa

 =

(
u(x) 0

0 u−1(x)

)
, (2.46)

13In the following, objects that correspond to a direct product of two isomorphic groups are written with a

hat. This distinguishes them from objects that correspond to one of the two isomorphic groups themselves.
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where u(x) = e
i

f̂
πa(x)Sa

. To infer the transformation properties of u(x), one can start with

the Ĝ-transformation of the NGB matrix,

Ĝ : Û(x)→ ĝ Û(x) ĥ−1(x), (2.47)

and use the facts that any ĝ ∈ GL ×GR can be decomposed as ĝ = ĝL ĝR with

ĝ =

(
L 0

0 R

)
, ĝL =

(
L 0

0 1

)
, ĝR =

(
1 0

0 R

)
, (2.48)

where L ∈ GL and R ∈ GR and that ĥ(x) can be written as

ĥ(x) =

(
k(x) 0

0 k(x)

)
. (2.49)

This then yields

Ĝ : u(x)→ Lu(x) k−1(x) = k(x)u(x)R−1. (2.50)

Since Ĝ/Ĥ is a symmetric space, there is an automorphism τ of Ĝ as discussed above. In the

case where Ĝ = GL × GR, this automorphism just corresponds to exchanging GL and GR.

Using the above matrix notation, the automorphism τ can be represented by a multiplication

from the right by the matrix κ given by

κ =

(
0 1

1 0

)
. (2.51)

For an element of Ĝ one then finds

τ : ĝ → ˚̂g = ĝ κ =

(
R 0

0 L

)
, (2.52)

while for the NGB matrix one gets

τ : Û(x)→ ˚̂
U(x) = Û(x)κ =

(
u−1(x) 0

0 u(x)

)
= Û−1(x), (2.53)

which reproduces the general result from eq. (2.35). As the next step, the squared NGB

matrix Σ̂(x) that transforms linearly via eq. (2.44) can be constructed. In the matrix notation

one finds

Σ̂(x) = Û(x) Û(x) =

(
u(x)u(x) 0

0 u−1(x)u−1(x)

)
=

(
Ω(x) 0

0 Ω−1(x)

)
, (2.54)
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where Ω(x) is defined as

Ω(x) = u(x)u(x) = e
i 2

f̂
πa(x)Sa

. (2.55)

The transformation properties of Ω(x) are readily derived by either using those of Σ̂(x),

eq. (2.44), together with the explicit matrix form of ĝ , eq. (2.48), and ˚̂g , eq. (2.52), or

alternatively by employing the transformation properties of u(x), eq. (2.50). In any case, one

gets

GL ×GR : Ω(x)→ LΩ(x)R−1, (2.56)

i.e. under a GL × GR transformation ĝ , the matrix Ω(x) transforms linearly with L ∈ GL
and R ∈ GR that both constitute ĝ via eq. (2.48).

Given these transformation properties, it is useful to introduce the so called moose dia-

grams [140] to describe the theory. They are a diagrammatic tool to visualize the symmetry

structure and particle content of a theory. This thesis adopts the notation of [139] and depicts

global symmetry groups (that may contain gauged subgroups) as circles and fields transform-

ing under these groups as lines connected to the circles. An arrow on the lines is used to

indicate whether the corresponding field transforms under the fundamental (arrow pointing

away from the circle) or anti-fundamental (arrow pointing towards the circle) representation

of the group associated to the circle. A circle describing a symmetry group is also called a

site14. The theory of the (GL×GR)/GD NGBs parametrized by Ω(x) can thus be described

by the following moose diagram with two sites,

Global : GL GR

//

Ω

Gauged : ∅ ∅

, (2.57)

i.e. Ω(x) transforms as in eq. (2.56) and no subgroups of GL and GR are gauged.

Using Ω(x), the Lagrangian L2 that is written in terms of Σ̂(x) in eq. (2.40) can be

expressed as

L2 =
f̂2

8
tr
[
∂µΩ−1(x) ∂µΩ(x)

]
. (2.58)

There are important cases (as will become clearer in section 2.1.4), where one encounters

two NGB matrices, one from a GL × GR → GD breaking conveniently described by Ω(x)

and one from a G→ H breaking described by U(x), where the groups GL ∼= GR ∼= GD ∼= G

are all isomorphic to each other. The broken generators Xa appearing in the G/H NGB

14The term site is derived from lattice site, a point in a lattice. A latticized extra dimension can actually

be described by a moose diagram such that the lattice sites correspond to the moose diagram’s sites (cf.

section 2.2.3)
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matrix U(x) as well as the generators T a of H are then each a subset of the generators Sa

that appear in the (GL × GR)/GD NGB matrix Ω(x). It is then useful to define the decay

constant entering Ω(x) such that the normalization in the exponent of Ω(x) matches the one

of U(x), eq. (2.9). This is achieved by employing

f̂ =
√

2 f, (2.59)

which then yields

L2 =
f2

4
tr
[
∂µΩ−1(x) ∂µΩ(x)

]
, Ω(x) = e

i
√

2
f
πa(x)Sa

, (2.60)

where Ω(x) of course still transforms as in eq. (2.56).

While the above discussion leads to a simplified Lagrangian in the case where G/H is

a symmetric space, in CHMs one often encounters cases where G/H is not a symmetric

space. For practical purposes, it is then often convenient to work with an explicit vacuum

state instead of using the dµ[U ] objects appearing in the CCWZ formalism. This approach

is further discussed in appendix A.1.

2.1.4 Hidden local symmetry

It is instructive and also useful for the later discussion of vector resonances to introduce

the language of the hidden local symmetry (HLS). The following discussion is loosely based

on [131, 133, 139] and shows how the G/H non-linear sigma model is equivalent to a linear

model with a global G and a local H symmetry. First, consider the G/H NGB matrix U(x),

given by

U(x) = e
i
√

2
f
πaU (x)Xa

, (2.61)

transforming under G as

G : U(x)→ g U(x) h−1(x, g), (2.62)

where g ∈ G and h(x, g) ∈ H depends on g . The generators of G and H are the elements of

the Lie algebras g and h and are denoted by Sa ∈ g and T a ∈ h, respectively. Xa ∈ g− h are

the generators broken by the G→ H spontaneous symmetry breaking.

In addition to the above NGBs, consider a model describing NGBs from a GL×GR → GD

spontaneous symmetry breaking where GL ∼= GR ∼= GD ∼= G are all isomorphic to each other.

This model is parametrized as in eq. (2.60) by the NGB matrix

Ω(x) = e
i
√

2
f
πaΩ(x)Sa

, (2.63)

transforming linearly under GL ×GR as

GL ×GR : Ω(x)→ LΩ(x)R−1, (2.64)
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where L ∈ GL and R ∈ GR. It is interesting to observe what happens if one gauges a

subgroup HR ⊂ GR that is isomorphic to H. This model is then conveniently described by

the following moose diagram:

Global : GL GR

//

Ω

Gauged : ∅ HR

. (2.65)

Since no subgroup of GL is gauged, the GL ×GR → GD breaking also spontaneously breaks

the HR gauge symmetry and thus all its gauge bosons acquire mass via the Higgs mechanism.

In addition, the gauging explicitly breaks the GL×GR symmetry to GL×HR
15 under which

the NGB matrix Ω(x) transforms as

GL ×HR : Ω(x)→ LΩ(x) h−1
R (x), (2.66)

where L ∈ GL as before and hR(x) ∈ HR is a gauge transformation. This resembles the

transformation properties of U(x). But while GL ∼= G and HR
∼= H, of course U(x) trans-

forms non-linearly under the group G and Ω(x) still transforms linearly under the group

GL×HR. Another obvious difference between Ω(x) and U(x) is that the former contains all

the generators Sa ∈ g while the latter only contains the subset Xa ∈ g − h. This difference

can be made more explicit by decomposing Ω(x) as

Ω(x) = Ũ(x) Ξ̃(x) where Ũ(x) = e
i
√

2
f
πa
Ũ

(x)Xa

, Ξ̃(x) = e
i
√

2
f
πa

Ξ̃
(x)Ta

. (2.67)

Now if the element of the GL/HR coset Ũ(x) is identified with the element of the G/H coset

U(x), the difference between Ω(x) and U(x) is due to the presence of Ξ̃(x). Since Ξ̃(x) is

an element of HR, it is however possible to remove it by performing a gauge transformation.

Using a specific gauge transformation h̃R(x) = Ξ̃(x) to fix the gauge, one finds

Ω(x)→ Ω(x) h̃−1
R (x) = Ũ(x), (2.68)

which is nothing but the unitary gauge where the unphysical would-be NGBs πa
Ξ̃

(x) are

removed from the spectrum. This gauge fixing is however not respected by the global GL

transformations. Applying a GL transformation to Ũ(x) = Ω(x) h̃−1
R (x) yields

GL : Ũ(x) = Ω(x) h̃−1
R (x)→ LΩ(x) h̃−1

R (x) = Ω′(x) h̃−1
R (x), (2.69)

where Ω′(x) can again be decomposed as

Ω′(x) = Ũ ′(x) Ξ̃′(x) where Ũ ′(x) = e
i
√

2
f
π′a
Ũ

(x)Xa

, Ξ̃′(x) = e
i
√

2
f
π′a

Ξ̃
(x)Ta

. (2.70)

15It is assumed here that there is no other subgroup ER ⊂ GR that commutes with HR.
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Using this decomposition, the transformation of Ũ(x) under GL is found to be

GL : Ũ(x)→ Ũ ′(x) Ξ̃′(x) h̃−1
R (x). (2.71)

Since h̃−1
R (x) has been chosen such that it removes Ξ̃(x), it can not be used to also remove

a generic Ξ̃′(x) and thus Ũ ′(x) Ξ̃′(x) h̃−1
R (x) is in general not an element of the GL/HR

coset and would-be NGBs are reintroduced. To fix this, one can apply just another gauge

transformation that removes the HR element Ξ̃′(x) h̃−1
R (x). Different GL transformations L

yield different Ξ̃′(x). Depending on L, different gauge transformations are thus needed for

removing Ξ̃′(x) h̃−1
R (x). These L-dependent gauge transformations hR(x, L) are then defined

by

Ξ̃′(x) h̃−1
R (x) h−1

R (x, L) = 1. (2.72)

So to stay in the unitary gauge, after each global GL transformation of Ũ(x), the gauge

transformation hR(x, L) has to be applied. The GL transformation of Ũ(x) that keeps the

unitary gauge fixed can thus be defined as

GL : Ũ(x)→ L Ũ(x) h−1
R (x, L) = Ũ ′(x). (2.73)

Under this GL transformation that includes the prescription for the gauge fixing, Ũ(x) evi-

dently transforms non-linearly. The HR gauge symmetry is then only used for keeping the

unitary gauge fixed when performing a GL transformation and is otherwise explicitly broken

by the gauge fixing. This is the reason why HR is said to be a hidden local symmetry. The

equivalence of the transformation properties of U(x) under G and those of Ũ(x) under GL is

now manifest and can be made a one-to-one correspondence by identifying

G↔ GL, g ↔ L, H ↔ HR, h(x, g)↔ hR(x, L), U(x)↔ Ũ(x). (2.74)

An obvious difference between the two models discussed above is of course that in contrast

to the non-linear sigma model, the HLS model contains massive gauge bosons. By taking

the HR gauge coupling gHR → ∞, the gauge bosons can however be made infinitely heavy

and thus decouple. In this limit, both models are completely equivalent, i.e. the HLS model

becomes a non-linear sigma model describing NGBs in the GL/HR coset with no additional

gauge bosons present. Using the language of moose diagrams, this can be expressed as

Global : GL GR

//

Ω

Gauged : ∅ HR

gHR →∞
=⇒

GL

//

Ũ
HR

∅

. (2.75)

The moose diagram on the right-hand side describes a non-linear sigma model where a global

symmetry GL is spontaneously broken to HR, no subgroup of GL is gauged and the NGBs in
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the GL/HR coset are parametrized by the NGB matrix Ũ(x), transforming as in eq. (2.73).

Ũ(x) is nothing but Ω(x) in the unitary gauge, cf. eq. (2.68). The two-site diagram on the

left-hand side is thus reduced to a one-site diagram by taking gHR →∞.
If in addition to HR, also a subgroup EL ⊆ GL is gauged, in the limit gHR → ∞

this exactly corresponds to the gauging of E ⊆ G in the G/H non-linear sigma model

discussed in section 2.1.2. All generators of EL that are also generators of HR yield linear

combinations of the EL and HR generators that are unbroken by the spontaneous symmetry

breaking GL × GR → GD and correspond to massless gauge bosons. The orthogonal linear

combinations of these generators are however spontaneously broken and yield massive gauge

bosons that become infinitely heavy as gHR → ∞. The generators of EL that are not

generators of HR are associated to gauge bosons that acquire mass via the Higgs mechanism

and the corresponding NGBs in the GL/HR coset become unphysical would-be NGBs that

can be gauged away. This is thus completely analogous to the discussion in section 2.1.2.

2.2 Vector resonances

In models where the spontaneous symmetry breaking that yields NGBs is due to a confining

strong interaction, like it is the case for QCD and CHMs, in addition to the NGBs one also

expects heavy spin one resonances. These resonances have to respect the same global symme-

tries as the NGBs. An example of a model where this is realized is the above discussed HLS

model if the gauge coupling gH is not taken to infinity but kept finite. In this case, it contains

both NGBs in a G/H coset as well as heavy resonances in the adjoint representation of H.

In the present section, this construction is first investigated in more detail and subsequently

generalized to include several multiplets of resonances. Finally, a connection to models with

extra dimensions is made.

2.2.1 Hidden local symmetry and a first level of heavy resonances

In section 2.1.4, it is shown that the HLS model with a global G and a local H symmetry can

be reduced to the non-linear sigma model describing NGBs in a G/H coset. This is done by

taking the gauge coupling gH →∞ and thus effectively removing the heavy H gauge bosons.

This procedure can be reversed to add spin one resonances in an adjoint representation of

H to a non-linear sigma model describing NGBs in a G/H coset. Starting from the G/H

non-linear sigma model, one just has to promote it to a HLS model with a global G and a

local H symmetry and keep the gauge coupling gH finite. In terms of moose diagrams, this
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corresponds to

Global : G

//

U

H

Gauged : E

extend to HLS
−→

G G′

//

Ω

E H

, (2.76)

where for generality also a subgroup E ⊆ G is gauged. The global symmetry G′ on the right

site of the HLS moose diagram could also be chosen to be just H. It is however convenient

to describe it as a global G′ ∼= G symmetry that is explicitly broken to its subgroup H by

the gauging16. The field Ω(x) transforms under the global G and the local H symmetry as

G×H : Ω(x)→ g Ω(x) h−1(x), (2.77)

where g ∈ G and h(x) ∈ H is a gauge transformation. It can be decomposed as

Ω(x) = U(x) Ξ(x), U(x) = e
i
√

2
f
πa(x)Xa

, Ξ(x) = e
i
√

2
fΞ

πaΞ(x)Ta
, (2.78)

where U(x) is the NGB matrix in the non-linear sigma model on the left-hand side of eq. (2.76)

and Ξ(x) ∈ H contains the would-be NGBs that can be gauged away by a H gauge trans-

formation (cf. section 2.1.4). The decay constant fΞ of the would-be NGBs and the decay

constant f of the non-linear sigma model are in general different17.

The HLS model in eq. (2.76) is now investigated in more detail. To this end, it is

useful to fix the notation. Like in the previous sections, the generators of H are called T a,

while the generators of the G/H coset are called Xa. In addition, it is convenient for the

following discussion to denote the generators of the intersection E ∩ H, i.e. those that are

both generators of H and of E by Ka, the generators of E that are not generators of H by

P â and the generators of H that are not generators of E by T â. In terms of the Lie algebras

h and e of H and E, this reads

P â,Ka ∈ e, T â,Ka ∈ h. (2.79)

16Using G′ ∼= G, one can think about Ω(x) also as the NGB matrix in a theory with a global G × G′

symmetry broken to its diagonal subgroup (cf. sections 2.1.3 and 2.1.4).
17The constant fΞ is relevant because even if the would-be NGBs are gauged away, fΞ enters the mass terms

of the heavy gauge bosons (cf. eq. (2.81)). In section 2.1.4, it is assumed that Ω(x) parametrizes the NGBs of

a spontaneous symmetry breaking where the coset is a symmetric space. This construction forces fΞ = f . In

the limit gH →∞ considered in section 2.1.4, there is however no difference between the general construction

and the one stemming from the symmetric space: if Ξ(x) is gauged away and the heavy gauge bosons are

decoupled, no dependence on fΞ is left.
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Using the above defined generators, the covariant derivative of the matrix Ω(x) is given by

iDµ Ω(x) = i ∂µ Ω(x) + gE

(
(ÂE)âµ P

â + (AE)aµK
a
)

Ω(x)

− gH Ω(x)
(

(ÂH)âµ T
â + (AH)aµK

a
)
,

(2.80)

where gE and gH are the coupling constants of the E and H gauge groups. The leading order

Lagrangian then contains the following mass terms for the gauge bosons (cf. [141]):

L2 ⊃
f2

Ξ g
2
E

4

(
f2

f2
Ξ

(ÂE)âµ(ÂE)â µ + (AE)aµ(AE)aµ
)

+
f2

Ξ g
2
H

4

(
(ÂH)âµ(ÂH)â µ + (AH)aµ(AH)aµ

)
− f2

Ξ gH gE
2

(AH)aµ(AE)aµ.

(2.81)

The last line corresponds to a mixing term for the gauge bosons (AH)aµ and (AE)aµ which are

therefore not mass eigenstates. It is however straightforward to rewrite the mass terms as

L2 ⊃
m2
E

2
(ÂE)âµ(ÂE)â µ +

m2
H

2
(ÂH)âµ(ÂH)â µ

+
m2
K

2

(
cos θmix (AH)aµ − sin θmix (AE)aµ

)
(cos θmix (AH)aµ − sin θmix (AE)aµ) ,

(2.82)

where the masses are given by

m2
E =

f2 g2
E

2
, m2

H =
f2

Ξ g
2
H

2
, m2

K =
f2

Ξ (g2
H + g2

E)

2
, (2.83)

and the mixing angle θmix is defined by

cos θmix =
gH√

g2
H + g2

E

, sin θmix =
gE√

g2
H + g2

E

. (2.84)

From the Lagrangian in eq. (2.82), one can read off that the linear combinations of gauge

fields

(AK)aµ = cos θmix (AH)aµ − sin θmix (AE)aµ (2.85)

have masses mK , while there are no mass terms for the orthogonal linear combinations

(A0)aµ = sin θmix (AH)aµ + cos θmix (AE)aµ, (2.86)

which are consequently massless. To summarize, for each generator P â there is a massive

gauge boson (ÂE)âµ with mass mE , for each T â there is a massive gauge boson (ÂH)âµ with

mass mH and for each Ka there is one massive gauge boson (AK)aµ with mass mK and one

massless gauge boson (A0)aµ. (AK)aµK
a and (A0)aµK

a are in the adjoint representation of

E ∩H. It is instructive to investigate several different limits and special cases of this model.
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1. Taking gH →∞, one finds

mH →∞, mK →∞, (AK)aµ → (AH)aµ, (A0)aµ → (AE)aµ, (2.87)

i.e. in this case the gauge bosons (ÂH)âµ and (AK)aµ become infinitely heavy and de-

couple. There is no mixing between (AH)aµ and (AE)aµ. The former become exactly

the infinitely heavy (AK)aµ gauge bosons while the latter become exactly the massless

(A0)aµ. There are NGBs in the G/H coset, of which those corresponding to the P â

generators associated with the massive (ÂE)âµ gauge bosons are unphysical and can be

gauged away. This is of course just again the non-linear sigma model for a G/H coset

with E ⊆ G gauged, i.e. the model discussed in sections 2.1.2 and 2.1.4.

2. Assuming gE � gH , the mixing angle θmix is small and one arrives at a model where the

massless (A0)aµ are approximately the (AE)aµ gauge bosons, while the massive (AK)aµ
are approximately the (AH)aµ. (AK)aµK

a and (ÂH)âµ T
â together thus approximately

constitute a full adjoint representation of H. While their squared masses differ by

m2
K −m2

H =
f2
Ξ
f2m

2
E (cf. eq. (2.83)), assuming gE � gH , this difference is however small

compared to the values of m2
K and m2

H and thus using mK/mH ≈ 1 is a good approxi-

mation. Although (A0)aµ and (ÂE)âµ would also constitute a full adjoint representation

of E if their masses were equal, this is not a good approximation since the former is

massless and the latter has a finite mass mE and hence the relative difference of their

masses is large.

3. Taking gE → 0, (AK)aµK
a is exactly (AH)aµK

a and together with (ÂH)âµ T
â it con-

stitutes an adjoint representation of H. The approximation from the previous case is

now exact since the mass difference m2
K −m2

H → 0. (ÂE)âµ and (AE)aµ (which is now

exactly (A0)aµ) do not couple if gE → 0 and hence this limit is equivalent to removing

them altogether. While taking gE → 0 has exactly the same consequences as E → ∅,
the interpretation in the latter case is however slightly different: there are no P â gen-

erators, all the Ka become T â generators and the spin one spectrum consists of only

the massive (ÂH)âµ T
â in the adjoint representation of H. But in any case one is left

with a spectrum consisting of massive gauge bosons in the adjoint representation of H

with mass mH and NGBs in the G/H coset that are all physical.

4. In the case where E is isomorphic to a subgroup of H, there is no P â generator because

E ∩H = E and thus all generators of E are also generators of H. Consequently, there

are no (ÂE)âµ gauge bosons and the spectrum consists of the massive (ÂH)âµ and (AK)aµ
as well as the massless (A0)aµ gauge bosons. The (AK)aµK

a and (A0)aµK
a are in the
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adjoint representation of E while the (ÂH)âµ T
â are elements of h− e. All NGBs in the

G/H coset are physical.

5. In the case where H ∼= G, all NGBs correspond to either a Ka or a T â generator, are

unphysical and can be gauged away. Apart from the fact that there are no NGBs left,

this case is similar to the previous one since in this case one always has E ∩ H = E.

So again, the spin one spectrum consists of the (AK)aµK
a and (A0)aµK

a in the adjoint

representation of E and the (ÂH)âµ T
â which are now elements of g− e.

Given all the different limits and cases discussed above, the HLS model in eq. (2.76) can serve

as a starting point for a wide variety of models, from one containing only NGBs where E = ∅
and gH → ∞ to a model featuring NGBs, massive spin one states and also massless gauge

bosons. It is thus the prototype model for describing the lightest resonances in a low-energy

effective description of a strongly coupled confining theory.

In the context of QCD, it has been applied to describe pions as NGBs and the ρ mesons as

the lightest spin one states [131]. In this case one has G = SU(2)L×SU(2)R and H = SU(2)D.

The photon can be included in this construction by gauging an appropriate E = U(1)Q

subgroup of G. The corresponding moose diagram is thus written as

Global : SU(2)L × SU(2)R SU(2)D

//

Ω

Gauged : U(1)Q SU(2)D

. (2.88)

While the massless (A0)µ linear combination of (AE)µ and (AH)µ can be identified with the

physical photon, the ρ0
µ corresponds to the orthogonal linear combination (AK)µ and its mass

is enhanced compared to the charged ρ±µ that correspond to (AH)âµ (cf. eq. (2.83)). Modern

versions of this construction use G = U(3)L ×U(3)R and G′ = H = U(3)V to model π, K, η

and η′ as NGBs as well as ρ, ω, K∗ and φ as spin one resonances and also include terms that

model the breaking of the U(3) flavor symmetries due to the different quark masses [141,142].

In the context of CHMs, the HLS model in eq. (2.76) is known from the two-site Discrete

Composite Higgs Model (DCHM) [118] where in the minimal construction G = SO(5)L,

G′ = SO(5)R and H = SO(4), yielding a Higgs doublet in the SO(5)L/SO(4) coset and

spin one resonances approximately18 in an adjoint representation of SO(4). In addition, an

E = SU(2)0
L ×U(1)0

Y subgroup of G is gauged to include the electroweak gauge bosons. The

18The massive spin one resonances are only approximately in an adjoint representation of SO(4) due to the

mixing with SU(2)0
L ×U(1)0

Y gauge bosons, cf. #2 of the above limits and special cases.
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corresponding moose diagram thus reads

Global : SO(5)L SO(5)R

//

Ω

Gauged : SU(2)0
L ×U(1)0

Y SO(4)

. (2.89)

Here, the massless electroweak gauge bosons (before electroweak symmetry breaking) are

the (A0)aµ linear combinations of of (AE)aµ and (AH)aµ while the (AK)aµ and (AH)âµ are the

massive spin one resonances.

In both examples above, an H subgroup of G′ as well as an E subgroup of G are gauged.

The gauging of H is a central ingredient of the HLS construction. It allows to make the

connection to the G/H non-linear sigma model by removing the would-be NGBs (cf. sec-

tion 2.1.4). Due to this construction, its gauge bosons are always massive. Assuming a

strongly coupled confining theory as UV completion of the HLS model, these massive gauge

bosons as well as the NGBs in the G/H coset are then naturally interpreted as composite

objects. The gauging of E on the other hand is different. In the limit where the heavy H

gauge bosons are decoupled and the HLS model becomes the non-linear sigma model, the

gauging of E corresponds to a gauging of some of the global symmetries of the non-linear

sigma model. Assuming again a strongly coupled confining UV completion, these global

symmetries are those of the UV theory before the spontaneous symmetry breaking. If some

of these symmetries are gauged, the corresponding gauge bosons are thus also present in the

UV theory and can therefore not be interpreted as composite objects but have to be consid-

ered as being elementary. As expected for gauge bosons present in the UV theory, they are

found to be massless in the effective non-linear sigma model description if they correspond

to symmetries that are not spontaneously broken by the strong interactions. If the heavy

H gauge bosons in the HLS model are not decoupled, these composite resonances mix with

the elementary E gauge bosons. If in addition the model corresponds to case #2 of the

above discussed special cases, i.e. gE � gH , then all massless gauge bosons in this model

mainly consist of elementary gauge bosons with a small admixture of composite resonances.

They are thus said to be partially composite. This partial compositeness is encountered in

both examples above. It applies to the physical photon in the QCD case as well as to the

electroweak gauge bosons in the two-site DCHM.

2.2.2 Adding higher levels of heavy resonances

Starting from NGBs in a G/H coset, the previous section shows how to include heavy res-

onances in an adjoint representation of H by using the HLS construction. In the present
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section, this construction is extended to both higher levels of resonances as well as reso-

nances in an adjoint representation of the full G group. Both can actually be done at once.

As a starting point, consider the moose diagram

Global : GL ×GR
//

Û
GD

Gauged : ∅

, (2.90)

describing NGBs in a (GL × GR)/GD coset. This is just the model already discussed in

section 2.1.3 where the coset is a symmetric space and Û(x) transforms under a GL × GR
transformation ĝ non-linearly as in eq. (2.47), which is repeated here for convenience:

GL ×GR : Û(x)→ ĝ Û(x) ĥ−1(x). (2.91)

After the discussion in section 2.2.1, it is now easy to add heavy resonances in the adjoint

representation of GD to this model. One just has to extend it to an HLS model. The

corresponding moose diagram is given by

Global : GL ×GR G′L ×G′R
//

Ω̂

Gauged : ∅ GD

, (2.92)

where Ω̂(x) = Û(x) Ξ̂(x). Ω̂(x) transforms under the full global symmetry GL×GR×G′L×G′R
linearly as

GL ×GR ×G′L ×G′R : Ω̂(x)→ ĝ Ω̂ ĝ ′−1, (2.93)

where ĝ ∈ GL × GR and ĝ ′ ∈ G′L × G′R. The GD gauge symmetry allows going to unitary

gauge by gauging away Ξ̂(x) such that Ω̂(x)→ Û(x). In the unitary gauge, Û(x) transforms

non-linearly under a GL ×GR transformation ĝ as

GL ×GR : Û(x)→ ĝ Û(x) ĝ−1
GD

(x, ĝ), (2.94)

where ĝGD(x, ĝ) is the element of the GD gauge symmetry that removes the would-be NGBs

from Û(x) to stay in unitary gauge (cf. section 2.1.4). For the further discussion, it is however

useful to keep Ξ̂(x) such that the linear transformation properties of Ω̂(x) can be used.

In section 2.1.3, a matrix notation is presented that makes it possible to treat the direct

factors of the direct product group in a way separately. Doing this is the crucial step in the

present discussion. Employing the matrix notation, the objects Û(x) and Ξ̂(x) are given by

Û(x) =

(
u(x) 0

0 u−1(x)

)
, Ξ̂(x) =

(
ξ(x) 0

0 ξ(x)

)
, (2.95)
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where u(x) = e
i

f̂
πa(x)Sa

and ξ(x) = e
i

f̂
πaΞ(x)Sa

(cf. eqs. (2.45) and (2.46)). Defining

ω1(x) = u(x) ξ(x) and ω2(x) = ξ−1(x)u(x), (2.96)

the matrix notation can also be applied to Ω̂(x). This yields

Ω̂(x) =

(
ω1(x) 0

0 ω−1
2 (x)

)
. (2.97)

Using the matrix notation for Ω̂(x) together with the matrix notation for ĝ and ĝ ′ (cf.

eq. (2.48)), the transformations properties of ω1(x) and ω2(x) under the full global symmetry

are readily derived from those of Ω̂(x), eq. (2.93). One finds

GL ×GR ×G′L ×G′R : ω1(x)→ Lω1(x)L′−1,

GL ×GR ×G′L ×G′R : ω2(x)→ R′ ω1(x)R−1,
(2.98)

i.e. ω1(x) and ω2(x) only transform non-trivially under GL×G′L and GR×G′R, respectively.

Like Ω̂(x), they also transform linearly. Comparing this to the discussion in section 2.1.3,

ω1(x) and ω2(x) can thus be thought of as describing the NGBs of globalGL×G′L andGR×G′R
symmetries, that are each spontaneously broken to their diagonal subgroups. Would it not

be for the gauging of GD ⊂ (G′L × G′R), this model would therefore just correspond to two

copies of the model described in eq. (2.57)19. The transformation properties of ω1(x) and

ω2(x) can be expressed by the moose diagram

Global : GL G′L G′R GR

//

ω1
//

ω2

Gauged : ∅ GD ∅

, (2.99)

where the gauging of the GD diagonal subgroup of G′L × G′R is also shown. This gauging

explicitly breaks the global G′L×G′R to the local GD symmetry such that the transformations

ĝ ′ ∈ G′L × G′R are restricted to the ĝGD(x) ∈ GD. In the matrix notation, the effect of the

gauging can be expressed as

ĝ ′ =

(
L′ 0

0 R′

) gauging of GD
−→ ĝGD(x) =

(
gGD(x) 0

0 gGD(x)

)
, (2.100)

19 Starting with two copies of the model described in eq. (2.57), i.e. a (GL × G′L)/GLD model with NGB

matrix ω1(x) and a (GR×G′R)/GRD model with NGB matrix ω2(x) and connecting both copies to each other

by gauging the diagonal subgroup of G′L × G′R, one obviously arrives at essentially the same model as the

one discussed in this section. This can be used for building models containing heavy spin one resonances (see

e.g. [118,119]).
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i.e. in the diagonal subgroup L′ = R′ and the gauging replaces them by the x-dependent

gGD(x). After gauging GD, the remaining symmetry is GL×GR×GD. Under this symmetry,

ω1(x) and ω2(x) transform as

GL ×GR ×GD : ω1(x)→ Lω1(x) g−1
GD

(x),

GL ×GR ×GD : ω2(x)→ gGD(x)ω2(x)R−1,
(2.101)

which can again be written in terms of a moose diagram:

Global : GL GD GR

//

ω1
//

ω2

Gauged : ∅ GD ∅

. (2.102)

The transformation properties of ω1(x) and ω2(x), eq. (2.101), reveal that the product of

both only transforms non-trivially under GL ×GR, i.e.

GL ×GR ×GD : ω1(x)ω2(x)→ Lω1(x)ω2(x)R−1. (2.103)

It is no coincidence that this resembles the transformation properties of the NGB matrix

Ω(x), eq. (2.56), that may be used as an alternative to Û(x) for describing the (GL×GR)/GD

non-linear sigma model20. Employing the definition of ω1(x) and ω2(x), eq. (2.96), one finds

ω1(x)ω2(x) = u(x) ξ(x) ξ−1(x)u(x) = u(x)u(x) = Ω(x), (2.104)

i.e. the product of ω1(x) and ω2(x) is actually nothing but Ω(x).

The description of the (GL ×GR)/GD non-linear sigma model in terms of Û , eq. (2.90),

makes it possible to readily extend it to a HLS model parametrized by Ω̂ = Û Ξ̂, eq. (2.92),

by applying the prescription from section 2.2.1, namely eq. (2.76). This model then contains

heavy spin one resonances in the adjoint representation of GD in addition to the NGBs in

the (GL × GR)/GD coset. Employing the matrix notation to separate the direct factors of

the direct product groups, the non-linear sigma model can be expressed in terms of Ω(x) and

the HLS model in terms of ω1(x) and ω2(x). With this parametrization one thus finds

Global : GL GR

//

Ω

Gauged : ∅ ∅

extend to HLS
−→

GL GD GR

//

ω1
//

ω2

∅ GD ∅

,

(2.105)

20Ω(x) and Û(x) are related by Û(x) Û(x) =

(
Ω(x) 0

0 Ω−1(x)

)
(cf. eq. (2.54)).
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where ω1(x)ω2(x) = Ω(x). This can be interpreted in the following way: By introducing the

GD gauge symmetry, the NGB matrix Ω(x) is split into two NGB matrices ω1(x) and ω2(x)

which are both connected to each other by GD. The GD gauge bosons acquire mass via the

Higgs mechanism and half of the NGBs in ω1(x) and ω2(x) are would-be NGBs that can be

gauged away. How the actual NGBs and the would-be NGBs are distributed among ω1(x)

and ω2(x) depends on the gauge. It is e.g. possible to apply a specific gauge transformation

g̃GD(x) = ω−1
2 (x) such that

ω1(x)→ ω1(x) g̃−1
GD

(x) = ω1(x)ω2(x) = Ω(x),

ω2(x)→ g̃GD(x)ω2(x) = ω−1
2 (x)ω2(x) = 1,

(2.106)

i.e. the NGBs in ω1(x) all become actual NGBs and ω1(x) becomes equal to Ω(x), whereas

the NGBs in ω2(x) all become would-be NGBs and are gauged away. But independent of

the chosen gauge, the number of actual NGBs of course always stays the same and they can

always be parametrized by the gauge-independent product Ω(x) = ω1(x)ω2(x).

The two models in eq. (2.105) describe NGBs in a (GL × GR)/GD coset. It is however

known from the discussion in section 2.1.4, that by gauging an HR subgroup of GR, the

non-linear sigma model on the left-hand side can be turned into a HLS model that describes

NGBs in a GL/HR coset as well as heavy spin one resonances in an adjoint representation of

HR. On the right hand-side of eq. (2.105), the gauging of HR thus corresponds to a model

describing NGBs in a GL/HR coset and heavy spin one resonances in adjoint representations

of both GD and HR. It is therefore a model that contains two levels of resonances where one

of them comes in an adjoint representation of the full GD ∼= GL group. While ω1(x) and

ω2(x) are related to each other due to the construction stemming from the symmetric space

and they share the same decay constant, the model can be generalized as described in the

following.

Starting from a G/H non-linear sigma model parametrized by U(x), where for generality

a subgroup E ⊂ G is gauged, one can extend this to a HLS model containing spin one

resonances in an adjoint representation of H as described in section 2.2.1. The NGBs in

the HLS model are parametrized by Ω(x) = U(x) Ξ(x), where in unitary gauge Ξ(x) can

be removed. This model can then further be extended by the construction discussed above

to include heavy spin one resonances in the adjoint representation of G1
∼= G. In terms of

moose diagrams, this procedure is described by

Global : G

//

U

H

Gauged : E

add H
−→

resonances

G G′

//

Ω

E H

add G1

−→
resonances

G G1 G′

//

Ω1
//

Ω2

E G1 H

.

(2.107)
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When adding the G1 resonances, Ω(x) is split into two NGB matrices that for clarity are now

called Ω1(x) and Ω2(x). In contrast to ω1(x) and ω2(x) used above, they are not related by a

construction stemming from a symmetric space and in general do not share the same decay

constant. But as long as the product of Ω1(x) and Ω2(x) gives the NGB matrix Ω(x), the

model still contains the NGBs in the G/H coset. It is possible to add further resonances in

the adjoint representation of G3
∼= G by simply splitting Ω1(x) or Ω2(x) exactly like it was

done for Ω(x). This can then be repeated successively to add more and more resonances.

Which one of the Ωk(x) is split for adding a new level of resonances does actually not matter

at all and all different possibilities are equivalent. Ω(x) is always given by the product of all

the introduced NGB matrices Ωk(x). So one can equivalently also just build a model with

N − 1 levels of resonances in adjoint representations of Gk ∼= G by splitting Ω(x) into a

product of N matrices Ωk(x) such that

Ω(x) =

N∏
k=1

Ωk(x). (2.108)

The Ωk(x) then transform under the global G, the N − 1 gauge groups Gk, and the gauged

H subgroup of G′ as

G×G1 : Ω1(x)→ g Ω1(x) g−1
1 (x),

Gk−1 ×Gk : Ωk(x)→ gk−1(x) Ωk(x) g−1
k (x) for 2 ≤ k ≤ N − 1,

GN−1 ×H : ΩN (x)→ gN−1(x) ΩN (x) h−1(x),

(2.109)

while Ω(x) transforms as ever only non-trivially under G and H, i.e.

G×H : Ω(x)→ g Ω(x) h−1(x). (2.110)

This model with NGBs in a G/H coset, one level of resonances in the adjoint representation

of H and N − 1 levels of resonances in the adjoint representations of Gk ∼= G corresponds to

the moose diagram

Global : G G1 G2 GN−1 G′

//

Ω1
//

Ω2
// · · · // //

ΩN

Gauged : E G1 G2 GN−1 H

. (2.111)

In the following, it is assumed that in the decomposition Ω(x) = U(x) Ξ(x) both U(x) and

Ξ(x) depend on the same decay constant, i.e. f = fΞ. The same is also assumed for Uk(x) and

Ξk(x) in the decompositions21 Ωk(x) = Uk(x) Ξk(x), i.e fk = fΞk. The decay constants fk for

21As before, U(x) and Uk(x) are elements of the G/H coset, while Ξ(x) and Ξk(x) are elements of H.
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different indices k are however in general independent of each other. This has the effect that

the couplings and mass terms of the heavy gauge bosons are allowed to be different at each

site. The relation fk = fΞk on the other hand implies that among the resonances of a given

site, those transforming in the adjoint representation of H do not have different mass terms

and couplings to those corresponding to the coset G/H. Since the actual mass eigenstates in

general do not correspond to the gauge bosons at separate sites but are a mixture of them,

especially the gauging of H can of course lead to different masses of spin one resonances in

adjoint representations of H and those corresponding to the G/H coset. Given the above

assumptions, Ω(x) can be expressed in the canonical form

Ω(x) = e
i
√

2
f
πaΩ(x)Sa

(2.112)

and the Lagrangian reads22

L2 =
N∑
k=1

f2
k

4
tr
[
DµΩ−1

k (x)DµΩk(x)
]
−

N∑
k=0

1

4
tr
[
Fkµν(x)Fµνk (x)

]
, (2.113)

where the gauge covariant derivatives are defined as

iDµ Ωk(x) = i ∂µ Ωk(x) + gk−1A
k−1
µ (x) Ωk(x)− gk Ωk(x)Akµ(x). (2.114)

In the above expression, the short-hand notation

g0 = gE , A0
µ(x) = (AE)aµ(x)P a,

gk = gGk , Akµ(x) = (Ak)
a
µ(x)Sa, for k ∈ [1, N − 1],

gN = gH , ANµ (x) = (AH)aµ(x)T a

(2.115)

is used. As before, Sa denotes the generators of G ∼= G′ ∼= Gk, P
a the generators of E and

T a the generators of H. Employing the short-hand notation, the field strength tensors are

given by

Fkµν(x) = ∂µA
k
ν(x)− ∂ν Akµ(x)− i gk [Akµ(x), Akν(x)]. (2.116)

While the expression for Ω(x) can in general be given by eq. (2.112), the explicit form of the

Ωk(x) depends on the gauge. One possibility is a gauge where the G/H NGBs in Ω(x) do

not mix with the gauge fields (see e.g. [143]):

Ωk(x) = e
i
√

2 f

f2
k

πaΩ(x)Sa

. (2.117)

22The assumptions above allow to interpret Ω(x) and the Ωk(x) as describing NGBs of global G×G′ and

Gk−1 × Gk symmetries (where G0 = G and GN = G′) that are each spontaneously broken to their diagonal

subgroups. The NGB Lagrangian can thus be written in the simplified form discussed in section 2.1.3. This

is the construction employed e.g. in [118,119,143]. A more general construction can be found in [144].
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This gauge will be denoted in the following as the non-mixing gauge23. The requirement of

a canonically normalized kinetic term for the πa(x) fields then yields the relation

1

f2
=

N∑
k=1

1

f2
k

. (2.119)

In the non-mixing gauge, Ω(x) as well as the Ωk(x) transform linearly under global G trans-

formations. In the case of a non-trivial gauge group H, one can however go to a kind of

unitary gauge where each Ωk(x) only contains NGBs in the G/H coset (see e.g. [119]), i.e.

Ωk(x) = Uk(x) = e
i
√

2 f

f2
k

πa(x)Xa

. (2.120)

For distinguishing this gauge from the previous one, it will be denoted as the unitary non-

mixing gauge in the following. To reach it from the non-mixing gauge, one has to apply the

gauge transformations

gk(x) =

(
k∏
i=1

Ui(x)

)−1 k∏
i=1

Ωi(x), h(x) = Ξ(x), with k ∈ [1, N − 1]. (2.121)

In the unitary non-mixing gauge, one automatically gets Ω(x) = U(x). Since this gauge

is not respected by the global G transformations, U(x) as well as all the Uk(x) transform

non-linearly under a G transformation g , i.e. g-dependent gauge transformations have to be

applied to stay in the unitary non-mixing gauge. Another gauge frequently employed in the

literature is the so-called holographic gauge (see e.g [106,118,120]) where only Ω1(x) contains

the actual NGBs and all would-be NGBs are gauged away, i.e.

Ω1(x) = U(x) = e
i
√

2
f
πa(x)Xa

,

Ωk(x) = 1 for 2 ≤ k ≤ N.
(2.122)

The holographic gauge is reached from the unitary non-mixing gauge by employing the gauge

transformations

gk(x) = U−1(x)
k∏
i=1

Ui(x), h(x) = 1, with k ∈ [1, N − 1]. (2.123)

23It is actually possible to reach the non-mixing gauge from one where Ω(x) =
∏N
k=1 Ω̃k(x) and the Ω̃k(x)

are in the canonical form also used for Ω(x). In this case, each Ω̃k(x) depends on a separate πΩ
a
k(x) and is

given by Ω̃k(x) = e
i
√

2
fk

πΩ
a
k(x)Sa

. Using the gauge transformations

gk(x) =

(
k∏
i=1

Ωi(x)

)−1 k∏
i=1

Ω̃i(x), h(x) = 1, with k ∈ [1, N − 1], (2.118)

and employing eq. (2.119), the non-mixing gauge is reached from the canonical form via eq. (2.109).
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An equivalent prescription for defining the holographic gauge is to employ

Ω1(x) = U1(x) = e
i
√

2
f1

πa1 (x)Xa

,

Ωk(x) = 1 for 2 ≤ k ≤ N,
(2.124)

i.e. Ω1(x) is simply set to its unitary gauge canonical form and all the remaining Ωk(x) are set

to the identity matrix. To coincide with eq. (2.122) and to get a canonically normalized kinetic

term, a field redefinition πa1(x) = f1

f π
a(x) has to be performed in this case (cf. [2, 3, 120]).

Independent of how the holographic gauge is defined (i.e. either by eq (2.122 or (2.124)), this

gauge leads to a mixing between the NGBs and the heavy gauge bosons corresponding to the

G/H coset. This mixing can however be removed by field shifts of the G/H gauge bosons24.

The model from eq. (2.111) contains in addition to spin one resonances in adjoint repre-

sentations of Gk ∼= G also resonances in the adjoint representation of H. For constructing a

model that only contains resonances in adjoint representations of the full G group, one can

take the limit gH →∞ and decouple the heavy H gauge bosons. The corresponding moose

diagram then reads

Global : G G1 G2 GN−1

//

Ω1
//

Ω2
// · · · // //

ΩN

H

Gauged : E G1 G2 GN−1

. (2.125)

While the H gauge symmetry is hidden in this case, it still is used in the non-linear transfor-

mations of the Uk(x) and of U(x) in the unitary non-mixing gauge or the holographic gauge.

So all the results given above for the model in eq. (2.111) still apply.

In the context of CHMs, the construction in eq. (2.111) is employed in the DCHM [118]

where G ∼= G′ ∼= Gk ∼= SO(5), and H ∼= SO(4). While the moose diagram of the two-site

DCHM is already shown in eq. (2.89), the three-site DCHM is given by

Global : SO(5)1
L SO(5)D SO(5)2

R

//

Ω1
//

Ω2

Gauged : SU(2)0
L ×U(1)0

Y SO(5)D SO(4)

. (2.126)

24An example of such a field shift can be found in eq. (3.15).
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A similar construction but based on the model in eq. (2.125) is the so called 4D composite

Higgs model (4DCHM) [119], where the minimal two-site 4DCHM is described by

Global : SO(5) SO(5)1

//

Ω1
//

Ω2

SO(4)

Gauged : SU(2)L ×U(1)Y SO(5)1

. (2.127)

While both the three-site DCHM as well as the two-site 4DCHM contain NGBs in an

SO(5)/SO(4) coset and heavy spin one resonances in an adjoint representation of SO(5),

the three-site DCHM in addition contains also spin one resonances in an adjoint representa-

tion of the unbroken SO(4) and therefore has a slightly larger particle content while being

otherwise similar.

2.2.3 The continuum limit and the fifth dimension

The model described in the last section that contains N levels of heavy resonances connected

by sigma model fields intriguingly resembles a model of a discretized extra dimension. That

an extra dimension actually arises from a moose diagram similar to the one in eq. (2.111) when

taking the continuum limit N →∞ was shown in [86]. A latticized extra dimension inspired

by HLS and its continuum limit was also discussed independently and contemporaneously

in [145]. Similar constructions have subsequently been presented in e.g. [143,146–150].

To see how an extra dimension can be constructed from the model described by the moose

diagram in eq. (2.111), the continuum limit N →∞ is performed in detail in the following.

To this end, the discrete indices k have to be replaced by a continuous variable that will be

called u in the following. The indices k = 0 and k = N then can be chosen to correspond

to the coordinates u = u0 and u = uN , respectively. The distance between the coordinates

u0 and uN may then be defined as L = uN − u0 and each index k can be associated with a

value u = uk. To summarize, the continuous variable u is related to the discrete indices k by

L = uN − u0 ∆u =
L

N
, uk = u0 + ∆u k. (2.128)

Keeping the distance L fixed when performing the limit N → ∞, the distance ∆u between

adjacent coordinates goes to zero, i.e.

N →∞ ⇔ ∆u→ 0. (2.129)

Before performing the continuum limit, it is convenient to redefine the gauge boson fields as

gk (Ak)µ → (Ak)µ (2.130)
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such that the action for the Lagrangian from eq. (2.113) reads

S2 =

∫
dx4

{
N∑
k=1

f2
k

4
tr
[
DµΩ−1

k (x)DµΩk(x)
]
−

N∑
k=0

1

4 g2
k

tr
[
Fkµν(x)Fµνk (x)

]}
, (2.131)

where the gauge covariant derivatives are now given by

iDµ Ωk(x) = i ∂µ Ωk(x) +Ak−1
µ (x) Ωk(x)− Ωk(x)Akµ(x). (2.132)

In addition, it is useful to define the fields Ak5(x) to parametrize the NGBs inside the Ωk(x)

(in the non-mixing gauge) as

Ak5(x) = −
√

2

∆u

f

f2
k

πaΩ(x)Sa. (2.133)

In terms of the Ak5(x), the NGB matrices Ωk(x) are then given by

Ωk(x) = e−i∆uA
k
5(x) = 1− i∆uAk5(x) +O(∆u2). (2.134)

Plugging this new parametrization of the Ωk(x) into the definition of their covariant deriva-

tives, eq. (2.132), one finds

iDµ Ωk(x) = ∆uFkµ5(x) +O(∆u2), (2.135)

where Fkµ5(x) is defined as25

Fkµ5(x) = ∂µA
k
5(x)−

Akµ(x)−Ak−1
µ (x)

∆u
− i[Akµ(x), Ak5(x)]. (2.136)

Expressing the covariant derivatives of the Ωk(x) in terms of Fkµ5(x) and factoring out ∆u,

the action reads

S2 =

∫
dx4

{
N∑
k=1

∆u
∆u f2

k

4
tr
[
Fkµ5(x)Fµ5

k (x)
]
−

N∑
k=0

∆u
1

4 ∆u g2
k

tr
[
Fkµν(x)Fµνk (x)

]}
+O(∆u2).

(2.137)

To finally perform the continuum limit, all objects that depend on an index k have to be

replaced by objects that depend on the continuous variable u instead. For the 4D fields Ak5(x)

and Akµ(x), it is straightforward to define the 5D fields A5(x, u) and Aµ(x, u) by

A5(x, uk) = Ak5(x), Aµ(x, uk) = Akµ(x), (2.138)

25Note that Ak−1
µ (x) = Akµ(x)−∆u

Akµ(x)−Ak−1
µ (x)

∆u
= Akµ(x)+O(∆u), where the difference quotient is treated

as O(1) since lim∆u→0
Akµ(x)−Ak−1

µ (x)

∆u
= lim∆u→0

Aµ(x,uk)−Aµ(x,uk−∆u)

∆u
= ∂5Aµ(x, u).
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such that one finds Fµν(x, uk) = Fkµν(x) and

Fµ5(x, u) = lim
∆u→0

Fkµ5(x) = ∂µA5(x, u)− ∂5Aµ(x, u)− i[Aµ(x, u), A5(x, u)]. (2.139)

In addition, continuous versions of the decay constants fk and the gauge couplings gk are

conveniently defined as

f(uk) =

√
∆u

2
fk, g(uk) =

√
∆u gk. (2.140)

Plugging all these definitions into the action and taking the limit ∆u→ 0, one arrives at

lim
∆u→0

S2 =

∫
dx4

∫ uN

u0

du

{
f2(u)

2
tr
[
Fµ5(x, u)Fµ5(x, u)

]
− 1

4 g2(u)
tr [Fµν(x, u)Fµν(x, u)]

}
,

(2.141)

This action obviously describes the 5D fields A5(x, u) and Aµ(x, u) in a space-time that is

4D Minkowski space times a fifth dimension interval of length L with boundaries at u0 and

uN . It is instructive to compare this action to one of a 5D gauge field in a generic space-time

with the fifth dimension being an interval of length L. This actions reads

S5D = − 1

4 g2
5

∫
dx4

∫ uN

u0

du
√
|G|GMRGNP tr [FMN (x, u)FRP (x, u)] , (2.142)

where M,N,R, P ∈ {0, 1, 2, 3, 5} are the 5D space-time indices, GMN is the inverse metric

tensor,
√
|G| is the square root of the determinant of the metric, g5 is a 5D gauge coupling

of mass dimension −1
2 and the 5D field strength tensor is given by

FMN (x, u) = ∂MAN (x, u)− ∂NAM (x, u)− i[AM (x, u), AN (x, u)]. (2.143)

The line element of a 5D space-time with one time and four space dimensions that has 4D

Poincaré invariance can be expressed as

ds2 = a2(u) ηµν dx
µdxν − b2(u) du2, (2.144)

where the infinitesimal displacements in 4D Minkowski space are denoted by dxµ and the

one in the fifth dimension by du. The functions a(u) and b(u) determine how distances in 4D

Minkowski space and the extra dimension, respectively, change with the position in the extra

dimension. While b(u) can in principle be absorbed into the extra dimensional coordinate

by a coordinate transformation, the u-dependence of a(u) implies a warped extra dimension.

a(u) is thus also called the warp factor. The metric in eq. (2.144) with a constant a(u) on

the other hand describes a flat extra dimension. With the above definition of ds2, the inverse

metric GMN and
√
|G| read

GMN =
1

a2(u)
ηµνδMµ δ

N
ν −

1

b2(u)
δM5 δN5 ,

√
|G| = a4(u) b(u) (2.145)
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and thus the action of the 5D gauge field can be expressed as

S5D =

∫
dx4

∫ uN

u0

du

{
a2(u)

2 g2
5 b(u)

tr
[
Fµ5(x, u)Fµ5(x, u)

]
− b(u)

4 g2
5

tr [Fµν(x, u)Fµν(x, u)]

}
.

(2.146)

Comparing this 5D gauge field action to the continuum limit action in eq. (2.141), one finds

that both are actually identical if one identifies

f2(u) =
a2(u)

g2
5 b(u)

, g2(u) =
g2

5

b(u)
. (2.147)

The metric in terms of the u-coordinate is thus fixed by

a(u) = g2
5

f(u)

g(u)
, b(u) =

g2
5

g2(u)
. (2.148)

So by taking the continuum limit N → ∞ for the model described by the moose diagram

in eq. (2.113), one actually constructs an extra dimension and arrives at a model of a 5D

gauge field in a warped background. The dependence on the index k of the decay constants

fk and the gauge couplings gk in the 4D model is then reflected by the warp factor of the

extra dimension26. The Lagrangian and the metric however do not determine the 5D model

completely. Because it is defined on an interval with boundaries, it is also necessary to specify

boundary conditions (BCs) for the 5D fields. For the 4D components of the 5D gauge fields

Aµ(x, u), the values at the boundaries are given by Aµ(x, u0) = A0
µ(x) = (AE)aµ(x)P a and

Aµ(x, uN ) = ANµ (x) = (AH)aµ(x)T a (cf. eqs. (2.138),(2.115)), i.e. they are determined by the

gauge fields of the 4D moose model on the k = 0 and k = N sites. For k = 0, there are only

gauge fields in the adjoint representation of E ⊆ G and those in the G/E coset are absent.

For k = N only gauge fields in the adjoint representation of H ⊆ G′ are present. From the

5D perspective, the 4D components of the 5D gauge fields in the G/E coset vanish on the

boundary at u = u0 and those associated to the broken generators Xa are set to zero on the

boundary at u = uN . The bulk gauge symmetry G is thus reduced to E and H at the u = u0

and u = uN boundaries, respectively. Considering for simplicity the case with no elementary

26Actually only the ratio fk
gk

determines the warp factor. Two models based on the moose diagram from

eq. (2.113) that have different dependences of fk and gk on k thus lead to the same 5D theory if the ratio fk
gk

has the same dependence on k in both models.
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gauge fields, i.e. E = ∅, the BCs for the 4D components of the 5D gauge fields thus read27

Aaµ(x, u0)T a = 0, ∂5A
a
µ(x, u)T a

∣∣
u=uN

= 0 ⇒ Aaµ(x, u)T a (−+),

Aaµ(x, u0)Xa = 0, Aaµ(x, uN )Xa = 0 ⇒ Aaµ(x, u)Xa (−−).
(2.149)

The fifth components of the 5D gauge fields must have opposite boundary conditions com-

pared to the 4D components (see e.g. [69, 151]). This then yields

∂5A
a
5(x, u)T a

∣∣
u=u0

= 0, Aa5(x, uN )T a = 0 ⇒ Aa5(x, u)T a (+−),

∂5A
a
5(x, u)Xa

∣∣
u=u0

= 0, ∂5A
a
5(x, u)Xa

∣∣
u=uN

= 0 ⇒ Aa5(x, u)Xa (++).
(2.150)

When performing a Kaluza-Klein (KK) decomposition of the 5D fields, one finds that only

the fields having (++) boundary conditions contain massless zero modes. As expected from

the discussion in section 2.2.1, in the case E = ∅ there are thus no massless zero modes

for the 4D components of the 5D gauge bosons. The fifth components associated with the

broken generators on the other hand contain massless zero modes which can be identified

with the G/H NGBs. In this respect, it is worth noting how the NGB matrix Ω(x) arises in

the 5D theory. In the 4D theory, Ω(x) is given by the product of all N NGB matrices Ωk(x).

Using eq. (2.134) to express the Ωk(x) by Ak5(x) and taking the continuum limit, Ω(x) can

be written in terms of the fifth component of the 5D gauge field A5(x, u):

lim
N→∞

Ω(x) = lim
N→∞

N∏
k=1

e−i A5(x,uk) ∆u = P exp

(
−i
∫ uN

u0

duA5(x, u)

)
, (2.151)

i.e. it can be identified with the Wilson line between the two boundaries of the extra dimen-

sion. The path ordered exponential in the expression for the Wilson line can be evaluated by

e.g. decomposing A5(x, u) into KK modes or by using an explicit parametrization in a specific

gauge. Doing the latter in the non-mixing gauge where A5(x, u) is given by (cf. eq. (2.133))

A5(x, u) = − f√
2 f2(u)

πaΩ(x)Sa, (2.152)

27 In a theory on an interval with coordinate u that describes a massless field φ and contains no explicit

boundary terms, for the variation of the action to vanish on the boundary, possible BCs for φ are (see

e.g. [151,152] ):

• Neumann BC ∂uφ|boundary = 0, denoted by (+).

• Dirichlet BC φ|boundary = 0, denoted by (−).
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the path ordering is trivial and one finds28

P exp

(
−i
∫ uN

u0

duA5(x, u)

)
= exp

(
i
f√
2
πaΩ(x)Sa

∫ uN

u0

du
1

f2(u)

)
= e

i
√

2
f
πaΩ(x)Sa

, (2.154)

which is of course again nothing but Ω(x) as defined in eq. (2.112).

To summarize this section, one observes that a non-linear sigma model describing NGBs

in a G/H coset that is supplemented by an infinite tower of heavy gauge bosons in the adjoint

representation of G is actually equivalent to a 5D gauge field in the adjoint representation

of G with boundary conditions that encode the G → H spontaneous symmetry breaking.

From the 5D point of view, both the NGBs as well as the heavy spin one resonances are part

of a single 5D gauge field. This is the notion of gauge-Higgs unification mentioned in the

beginning of chapter 2.

The most important phenomenological effects of theories with an extra dimension or an

infinite tower of resonances are at low energies already captured by the lightest resonances. In

an HLS inspired extra-dimensional model for QCD, it was actually shown that the dependence

on the specific geometry of the extra dimension only plays a minor role and that using a 4D

model with only O(3) levels of resonances leads to an equivalently good fit to low-energy

QCD data as a full 5D model [150]. For a generic effective description of a strongly coupled

confining theory, it is not even guaranteed that the naive 5D model discussed above is a good

approximation. Like the non-linear sigma model, also the 5D theories are not renormalizable

and only valid below some cutoff. If the spectrum of heavy resonances only includes a

few levels below the cutoff, taking the limit N → ∞ might not be reasonable (cf. related

discussions in [119, 146, 148, 150]). It is thus well motivated for a phenomenological analysis

of the effects at low energies to consider a 4D moose-like model with only the lightest levels

of resonances included. Nevertheless, especially in the context of CHMs, the possibility to

relate the 4D and the 5D models has proved to be a fruitful tool for model building (cf.

e.g. [103,118,119]).

2.3 Fermions

Including massless gauge bosons as well as heavy spin one resonances into a non-linear sigma

model describing NGBs is in a way straightforward. To add the former, one just has to gauge

28 In the last step of this derivation, the continuum version of eq. (2.119), namely

2

f2
=

∫ uN

u0

du
1

f2(u)
(2.153)

is used. The factor of 2 in this relation is due to the normalization of f(u) that was chosen to simplify

expressions containing the warp factor.
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a subgroup of the global G symmetry and the latter are introduced via the HLS prescription.

Apart from the number of resonance levels and the coupling and decays constants, there is

not much model dependence in the HLS construction. How well the NGBs and the vector

resonances fit together in this framework is seen from their unification into a single 5D gauge

field in the continuum limit discussed in the previous section.

The story for fermions is quite different. It is of course possible to employ the CCWZ for-

malism to include fermions into a model with a global G symmetry spontaneously broken to

an H subgroup. There is however a peculiarity in CHMs where the coupling of SM fermions

to the composite sector is responsible for generating their masses as well as their interaction

with the physical Higgs boson. The original mechanism for fermion mass generation from a

composite sector was described in the context of (extended) technicolor29 [27,35,36,153]. It is

due to four-fermion operators connecting two chiral SM fermions with two fermions charged

under technicolor, the technifermions. The condensation of the latter then yields a mass term

for the SM fermions. The same mechanism is employed in early CHMs [38–43]. The four-

fermion operators themselves have to be due to some form of extended technicolor (ETC)

model that produces them at a scale ΛETC quite above the confinement scale of the techni-

fermions ΛTC. These constructions have however a critical drawback: extended technicolor

interactions that are responsible for four-fermion operators of this kind also yield experimen-

tally unacceptable large contributions to flavor-changing neutral currents (FCNCs) [36, 37].

One could think about circumventing this problem by raising the ΛETC scale. But this of

course also affects the mass terms of the SM fermions. Following [68], such a mass term in

general reads

L ⊃ λ(ΛETC)

Λd−1
ETC

f̄LOS fR, (2.155)

where fL and fR are left-handed and right-handed versions of a SM fermion, λ(ΛETC) is its

Yukawa coupling at the scale ΛETC, OS is a scalar operator composed of technicolor charged

fields and d = dim[OS ] is the scaling dimension of the operator OS . If OS is given by a

technifermion Ψ bilinear, i.e. OS = Ψ̄Ψ, the mass term corresponds just to the four-fermion

29There are various names for a strongly coupled gauge group external to the SM and the particles charged

under it. In the preprint of [27], the name technicolor was used for the group and techniquarks for the particles,

while in the published version the names were changed to heavy-color and heavy-color quarks. In [153], again

technicolor and techniquarks was used. [36] uses hypercolor and hyperfermions and [39] uses ultracolor and

ultrafermions. A larger gauge group in which the strongly coupled gauge group is embedded and under which

also the SM fermions are charged is called extended technicolor in [153], sideways interaction in [36] and

extended ultracolor in [39]. While historically technicolor was used for models where a condensate directly

breaks EW symmetry and ultracolor was used in the context of composite Higgs models, in this thesis a strong

interaction external to the SM is in general called technicolor and the particles charged under it technifermions

(and techniscalars, cf. section 2.5).
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operator discussed above and its canonical dimension is d = 3. If the TC theory above ΛTC is

asymptotically free and the running of the coupling between ΛTC and ΛETC can be neglected,

the mass term at ΛTC is given by

L ⊃ λ(ΛTC)

Λd−1
TC

f̄LOS fR, (2.156)

such that the Yukawa coupling at the ETC scale can be related to the one at the scale where

the SM fermion mass is generated by

λ(ΛETC) ≈ λ(ΛTC)

(
ΛETC

ΛTC

)d−1

. (2.157)

From this, it follows that raising the scale ΛETC by some factor, say 10, to be save from FCNCs

leads to an increase of the Yukawa coupling at ΛETC by a factor 10d−1. Using d = 3, this

factor 100 would be problematic especially for the large top quark Yukawa coupling. It could

easily make λ(ΛETC) non-perturbative and the whole construction would be inconsistent.

One might think about giving the operator OS a large anomalous dimension γ such that

d = 3 − γ is close to 1. A scaling dimension of OS close to 1 would however imply a

scaling dimension of O2
S close to 2 [154] and values below 4 for the latter reintroduce the

naturalness problem. While there might still be a way so solve these problems (cf. e.g. [155]

and references therein), there is also another issue: the whole flavor structure of the SM and

the mass hierarchies of SM fermions have to be generated in the ETC theory by producing

different coefficients λ for each of the SM fermions. Again, there might be some way to solve

this, e.g. by introducing several Higgs doublets that couple differently to different quarks or

leptons [39]. However, it seems that a solution to only some of the problems already requires

an arbitrarily complicated construction.

2.3.1 Fermion partial compositeness

In light of all the difficulties arising from the above discussed mechanism for SM fermion

mass generation, a different mechanism was proposed in [113]. Instead of coupling a bilinear

of left- and right-handed versions of a SM fermion to a single scalar composite operator OS ,

the idea is to couple each chirality independently to fermionic composite operators OFL and

OFR . Again following [68], such a coupling reads

L ⊃ λL(ΛETC)

Λ
dL−5/2
ETC

f̄LOFL +
λR(ΛETC)

Λ
dR−5/2
ETC

f̄ROFR , (2.158)

where now fL and fR each have separate coupling constants λL(ΛETC) and λR(ΛETC) at the

scale ΛETC. Using the same arguments as before, the couplings at the ETC scale can be
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related to those at ΛTC by

λL,R(ΛETC) ≈ λL,R(ΛTC)

(
ΛETC

ΛTC

)dL,R−5/2

. (2.159)

If now the scaling dimensions dL = dim[OFL ] and dR = dim[OFR ] are close to 5/2, ΛETC

could be raised without suppressing the couplings and one could be save from the dangerous

FCNCs. It is especially encouraging that contrary to a scaling dimension of 1 for a scalar

operator, a scaling dimension of 5/2 for a fermionic operator does not pose any general

problems30.

Assuming that the fermionic operators correspond to heavy composite fermions F (x) and

F̃ (x), one can use OFL = F (x) Λ
dL−3/2
TC and OFR = F̃ (x) Λ

dR−3/2
TC . Defining the abbreviations

∆L = λL(ΛTC) · ΛTC, ∆R = λR(ΛTC) · ΛTC, (2.160)

the linear operators from eq. (2.158) and the mass terms of the composite fermions can be

written as
L ⊃−mL F̄L(x)FR(x)−mR

¯̃
FL(x) F̃R(x)

+ ∆L f̄L(x)FR(x) + ∆R f̄R(x) F̃L(x)

+ h.c.,

(2.161)

where the mass mL of the F (x) that couples to fL(x) and the mass mR of the F̃ (x) that

couples to fR(x) are in general different from each other. F (x) and F̃ (x) are massive Dirac

fermions, i.e. they each contain both left-handed and right-handed fields. Since this implies

that their left- and right-handed fields couple to gauge bosons in the same way, they always

couple via a vector-current and are therefore also called vector-like fermions. However, only

FR(x) and F̃L(x) couple to the elementary chiral fields fL(x) and fR(x), respectively. The

linear couplings are clearly mass mixing terms between the composite and elementary fields.

Due to these mixing terms, the fields above are not the mass eigenstates. Rotating them to

the mass basis by performing a biunitary31 transformation yields the mass eigenstate fields

f ′L(x), f ′R(x), F ′(x) and F̃ ′(x) that are given in terms of the elementary and composite fields

as

f ′L(x) = cos θL fL(x) + sin θLFL(x), f ′R(x) = cos θR fR(x) + sin θRF̃R(x),

F ′L(x) = cos θL FL(x)− sin θLfL(x), F̃ ′R(x) = cos θR F̃R(x)− sin θRfR(x),

F ′R(x) = FR(x), F̃ ′L(x) = F̃L(x),

(2.162)

30The simplest version of fermionic composite operator might be due to a bound state of three techni-

fermions, similar to a baryon in QCD. The corresponding operator has a canonical dimension of 9/2 and thus

a large anomalous dimension would be needed to get a scaling dimension of 5/2. Such a large anomalous

dimension seems to be unlikely in the cases explored so far [156,157]. An alternative is presented in section 2.5.
31In the one flavor case considered here, ∆L and ∆R can always be chosen to be real. The transformation

to the mass basis can thus be done using orthogonal matrices.
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where the mixing angles θL and θR are defined by

cos θL,R =
mL,R

m′L,R
, sin θL,R =

∆L,R

m′L,R
, m′L,R =

√
m2
L,R + ∆2

L,R, (2.163)

and m′L and m′R are the masses of F ′(x) and F̃ ′(x), respectively. The fields f ′L(x) and f ′R(x),

which should now be identified with the actual SM fields, are massless. If the mixing param-

eters ∆L,R are small compared to the masses mL,R, these fields are mainly composed of the

elementary fields and get a small admixture of the composite fields. They are thus partially

composite (cf. section 2.2.1 where the same concept is discussed for spin one particles32).

Since sin θL,R controls the amount of compositeness of f ′L,R(x), it is also called the degree of

compositeness of the SM field and will be abbreviated in the following by sL,R = sin θL,R.

While it is not a common name, cos θL,R is a measure of the degree of elementarity of the

SM field and will be abbreviated by cL,R = cos θL,R.

But how do the partially composite fermions f ′L(x) and f ′R(x) get their mass and their

coupling to a composite Higgs? Since they now contain parts of the composite fermions, it

is actually enough to couple F (x) and F̃ (x) to the composite Higgs. This corresponds to

adding to the Lagrangian in eq. (2.161) a term

L ⊃ −YH F̄L(x)H(x) F̃R(x), (2.164)

where YH is a Yukawa coupling in the composite sector and H(x) is the composite Higgs33.

After going to the mass basis34, one finds a term coupling the Higgs to f ′L(x) and f ′R(x):

L ⊃ −YH sL sR f̄ ′L(x)H(x) f ′R(x) = −Y SM
f f̄ ′L(x)H(x) f ′R(x), (2.165)

where the SM Yukawa coupling Y SM
f of f ′(x) is identified as

Y SM
f = YH sL sR. (2.166)

When the Higgs assumes its VEV, this then yields a mass term for the SM fermion. Some

important features of the partial compositeness construction can be read off directly from

this term:
32 Historically, the term “partially composite” is attributed to [113], where it appears in the context of

fermion masses in technicolor theories. It is, however, the same concept that is already observed in the SM,

where the photon is in principle also partially composite due to its mixing with the ρ meson.
33For simplicity, the Higgs is treated here as a singlet. The generalization to a NGB Higgs is presented in

section 2.3.2.
34In this section, if not stated otherwise, “mass basis” refers to the mass basis before EWSB. When the

Higgs assumes its VEV, the actual mass basis has to be determined by taking the Yukawa coupling into

account. However, the structure of the mass matrix including the Yukawa coupling suggests to perform the

necessary biunitary transformation only numerically. Analytical formulas are therefore usually restricted to

the mass basis before EWSB.
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• The Yukawa couplings of different SM fermions depend on their degrees of composite-

ness and therefore also on the masses of the composite fermions they mix with as well

as the strength of the mixing.

• Since chiral SM fermions transforming under different representations of the SM gauge

group have to mix with different composite fermions, partial compositeness might quite

naturally account for mass hierarchies and a non-trivial flavor structure of SM fermions.

• While for most of the SM fermions the degrees of compositeness can be relatively small,

the large top quark Yukawa coupling requires a sizable degree of compositeness.

Given the advantages of partial compositeness compared to the traditional mechanism for

fermion mass generation in technicolor theories and especially its interesting properties con-

cerning the possibility to yield a non-trivial flavor structure, it has become a key ingredient

of modern CHMs.

2.3.2 The fermion moose diagram

It is clear that for employing fermion partial compositeness in a CHM, composite fermions

are unavoidable. But how do they fit into the picture of the N-site moose diagram that is

used in section 2.2.2 to describe both NGBs as well as massless and heavy vector bosons?

Interestingly, the connection can be easily made by considering the continuum limit, i.e. the

5D model. Fermions in 5D are however necessarily Dirac fermions [158], so one might ask

how it is possible to get the chiral SM fermions from a fermionic 5D bulk field. Considering

a 5D theory on an interval, this can actually be done by choosing appropriate boundary

conditions such that the 4D spectrum from the KK decomposition of a 5D fermion bulk

field contains only a left-handed or a right-handed massless zero mode (see [111, 112, 159]).

In addition, such a KK decomposition yields a tower of heavy vector-like fermions. This is

already very similar to the case discussed above: for each chirality of SM fermions, there

are heavy composite fermions with the same quantum numbers. Actually, the 5D model

even automatically contains the partial compositeness mechanism for fermions. This is easily

seen by deriving a 4D model from a 5D action using dimensional deconstruction, i.e. by

discretizing the extra dimension. This just corresponds to inverting the continuum limit

discussed in section 2.2.3, but now with additional fermion fields in the extra-dimensional

bulk. Since a 5D fermion field only yields a single chiral zero mode, each SM field requires

two 5D fermions Ψ(x, u) and Ψ̃(x, u), one for each chirality. The boundary conditions for

Ψ(x, u) and Ψ̃(x, u) are then chosen such that Ψ(x, u) contains a left-handed and Ψ̃(x, u)

contains a right-handed zero mode. To satisfy the bulk gauge symmetry, both Ψ(x, u) and

54



2.3. FERMIONS

Ψ̃(x, u) transform under a representation of the full G group. Unless stated otherwise, the

fundamental representation is assumed in the following.

The actual discretization of the 5D action is similar to the spin one case. In this thesis,

the prescription from [119] is used35, which corresponds to the spin one moose diagram in

eq. (2.125). The fields Ψ(x, u) and Ψ̃(x, u) are split into 4D fields at N sites, parametrized

by an index k. The different sites are connected by the NGB matrices Ωk(x) that act as

link-fields and connect the fermions at the site k− 1 with those at the site k. The boundary

conditions are chosen such that Ψ(x, u0) = Ψ0
L(x) = fL(x) and Ψ̃(x, u0) = Ψ̃0

R(x) = fR(x).

So the fields at site k = 0 are identified with the chiral elementary fields. This corresponds

to the spin one case where the elementary gauge bosons are introduced by gauging the E

subgroup of the global G symmetry on site k = 0, which also corresponds to a boundary

condition in the 5D case (cf. eq. (2.149)). The fields fL(x) and fR(x) only transform under

a representation of E. So again, like in the spin one case, the elementary fields transform

under a smaller group than the composite ones. Nevertheless, one can keep the Lagrangian

formally G invariant by embedding fL(x) and fR(x) into incomplete multiplets Ψ0
L(x) and

Ψ̃0
R(x) that formally transform under the full G group. On the second boundary, at site

k = N , a Yukawa coupling term is added that connects Ψ(x, u) with Ψ̃(x, u). In terms of a

moose diagram, this can be written as

Global : G G1 G2 GN−1

//

Ω1
//

Ω2
// · · · // //

ΩN

H

Gauged : E G1 G2 GN−1

Fermions :
Ψ0
L

Ψ̃0
R

Ψ1
R Ψ1

L

Ψ̃1
L Ψ̃1

R

Ψ2
R Ψ2

L

Ψ̃2
L Ψ̃2

R

ΨN−1
R ΨN−1

L

Ψ̃N−1
L Ψ̃N−1

R

〉
Ycomp

,

(2.167)

where it is indicated that each of the composite fermions is given in terms of a Dirac fermion

containing left- and right-handed fields, while on site k = 0 only one chirality for each of the

Ψ0(x) and Ψ̃0(x) is present. The Yukawa coupling that connects ΨN−1
L (x) and Ψ̃N−1

R (x) is

35 Other constructions for including fermions in a model with NGBs and spin one resonances are described

e.g. in [118,120,160].
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shown on the last site. The corresponding fermion Lagrangian can then be written as

LΨ = Ψ̄0
L(x) i /DΨ0

L(x) +
¯̃
Ψ0
R(x) i /D Ψ̃0

R(x)

+
N−1∑
k=1

{
Ψ̄k(x)

(
i /D −mk

L

)
Ψk(x) +

¯̃
Ψk(x)

(
i /D −mk

R

)
Ψ̃k(x)

+ ∆k
L Ψ̄k−1

L (x) Ωk(x) Ψk
R(x) + ∆k

R
¯̃
Ψk−1
R (x) Ωk(x) Ψ̃k

L(x) + h.c.

}
− Ycomp Ψ̄N−1

L (x) ΩN (x)φ0 φ
†
0 Ω†N (x) Ψ̃N−1

R (x)−mY Ψ̄N−1
L (x) Ψ̃N−1

R (x) + h.c. ,

(2.168)

where the first line contains the kinetic terms of the massless chiral fields at site k = 0, the

second line contains the kinetic terms and masses of the N−1 composite fermions, the fourth

line contains mixing terms with mixing constants ∆k
L and ∆k

R and the last line contains

the composite sector Yukawa coupling and a possible mass mixing between ΨN−1
L (x) and

Ψ̃N−1
R (x). The Yukawa coupling is written in terms of an explicit vacuum state φ0 (see [119]

and cf. appendix A.1). The link-fields show up in the mixing terms as well as in the Yukawa

coupling. The covariant derivatives contained in the kinetic terms are given by

iDµ Ψk(x) =
(
i ∂µ + gk A

k
µ(x)

)
Ψk(x), (2.169)

i.e. each fermion is only coupled to the gauge bosons at the same site.

That the above Lagrangian, eq. (2.168), is indeed a generalization of the mass, mixing and

Yukawa terms in eqs. (2.161) and (2.164) that are used in the previous section to introduce

the concept of fermion partial compositeness is best shown by considering the case with one

level of composite fermions, i.e. N = 2. The moose diagram is then given by

Global : G G1

//

Ω1
//

Ω2

H

Gauged : E G1

Fermions :
ξL

ξR

ΨR ΨL

Ψ̃L Ψ̃R

〉
Ycomp

, (2.170)

where for clarity Ψ0
L and Ψ̃0

R are replaced by ξL and ξR to emphasize that these are incomplete

multiplets into which the fields fL and fR are embedded. Furthermore, in the N = 2 case

the indices on the composite fermions (and in the following also those on their masses and

on the mixing coefficients) are dropped. For a comparison with the previous section, it is

useful to employ a version of the holographic gauge where Ω1(x) = 1 and Ω2(x) = Ω(x),
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i.e. the complete dependence on the G/H NGBs is contained in Ω2(x) (cf. section 2.2.2).

Omitting the kinetic terms and setting the mass mixing on the last site to zero, i.e. mY → 0,

the corresponding Lagrangian then reads

L ⊃−mL Ψ̄L(x) ΨR(x)−mR
¯̃
ΨL(x) Ψ̃R(x)

+ ∆L ξ̄L(x) ΨR(x) + ∆R ξ̄R(x) Ψ̃L(x)

− Ycomp Ψ̄L(x) Ω(x)φ0 φ
†
0 Ω†(x) Ψ̃R(x)

+ h.c.

(2.171)

Due to the incomplete multiplets ξL and ξR, the mixing terms actually only couple the

embedded fL and fR to the corresponding components FR and F̃L of ΨR and Ψ̃L. The mixing

terms and the masses of the components F and F̃ are therefore equivalent to the terms in

the Lagrangian in eq. (2.161). The last line on the other hand is a Yukawa coupling term

containing the NGBs and can be regarded as a generalization of eq. (2.164). Employing the

definition of the mass eigenstates f ′L and f ′R, eq. (2.162), and embedding them in incomplete

multiplets ξ′L and ξ′R, one finds a Yukawa term that couples them to the NGBs:

L ⊃ −Ycomp sL sR ξ̄′L(x) Ω(x)φ0 φ
†
0 Ω†(x) ξ′R(x), (2.172)

where the degrees of compositeness sL,R = sin θL,R are defined in eq. (2.163). The partial

composite mechanism is thus found to arise directly from a 5D fermion field with appropriate

boundary conditions. Using the moose description derived from discretizing the extra dimen-

sion, fermions can readily be included in the models discussed in section 2.2. Therefore, the

effective theory of elementary (i.e. massless gauge fields and massless chiral fermions) and

composite states (i.e. G/H NGBs, heavy spin one resonances and vector-like fermions) can

be described by a framework that features partial compositeness for both, the spin one and

the fermionic fields.

2.3.3 Flavor

One of the most interesting features of fermion partial compositeness is the possibility to

endow the SM fermions with a non-trivial flavor structure. To make use of this property, the

single flavor case used for simplicity in the previous sections has to be generalized. In the

SM, the whole flavor structure is encoded in the 3 × 3 Yukawa matrices (Y SM
u )ij , (Y SM

d )ij

and (Y SM
e )ij . Since the SM does not contain flavor mixing in the lepton sector and (Y SM

e )ij

can be made diagonal36, the following discussion will only consider the quark sector, i.e. a

36It is of course known that there is huge flavor mixing in the neutrino sector that is however not described

by the SM (with only left-handed neutrinos).
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non-trivial structure of (Y SM
u )ij and (Y SM

d )ij . To generalize the construction in the previous

section from the one flavor case to six quark flavors, one has to introduce two sets of fields

with different quantum numbers: the up-type and the down-type quarks. Furthermore, each

of them consists of three generations, which is accounted for by promoting the fields to 3-

vectors and the masses, mixings and Yukawa couplings to 3 × 3 matrices in generation, or

flavor space. Considering for simplicity again the case with one level of composite fermions,

the moose diagram from the previous section is extended to

Global : G G1

//

Ω1
//

Ω2

H

Gauged : E G1

Fermions :

ξuR [uR]

ξuL [qL]

ξdL [qL]

ξdR [dR]

Ψ̃uL [UL] Ψ̃uR [UR]

ΨuR [QuR] ΨuL [QuL]

〉
Yu

ΨdR [QdR] ΨdL [QdL]

Ψ̃dL [DL] Ψ̃dR [DR]

〉
Yd

, (2.173)

where brackets behind the ξ fields show the elementary fields that are embedded into them,

while brackets behind the Ψ and Ψ̃ fields show their components that mix with the elementary

fields. Following [105, 119], the elementary left-handed quark doublet qL is embedded into

both ξuL and ξdL such that it can couple to the two composite fermions Ψu and Ψd of which

the former has a Yukawa coupling to the composite partner of the elementary right-handed

up-type quarks and the latter to the composite partner of the elementary right-handed down-

type quarks. While it is possible to reduce the fermion field content by employing only one

composite partner for the quark doublet (cf. e.g. [161])37, this would not allow to implement

all different kinds of flavor symmetries discussed in the following (see [162]).

37The field content in the composite sector can also be reduced by coupling elementary left-handed and

right-handed quarks to different components of a single composite quark representation [118].
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To investigate the quark flavor structure, it is convenient to make all flavor indices explicit.

The fermion Lagrangian corresponding to the moose diagram above then reads

L ⊃−mij
uL Ψ̄i

uL(x) Ψj
uR(x)−mij

uR
¯̃
Ψi
uL(x) Ψ̃j

uR(x)

+ ∆ij
uL ξ̄

i
uL(x) Ψj

uR(x) + ∆ij
uR ξ̄

i
uR(x) Ψ̃j

uL(x)

− Y ij
u Ψ̄i

uL(x) Ω(x)φ0 φ
†
0 Ω†(x) Ψ̃j

uR(x)

+ (u→ d)

+ h.c. ,

(2.174)

where i, j are the flavor indices. The composite-elementary mixings, the composite fermion

masses, and the composite Yukawa couplings are in general complex matrices, but for the

following discussion, at least the composite fermion masses are assumed to be flavor universal,

i.e. mij
α = mα δ

ij , α ∈ {uL, uR, dL, dR}. Nevertheless, there are still six complex matrices

∆ij
uL, ∆ij

uR, Y ij
u , ∆ij

dL, ∆ij
dR and Y ij

d in the model. Any complex matrix M can be decomposed

by a singular value decomposition (SVD) into two unitary matrices U , V and a diagonal

matrix D:

M = U DV †. (2.175)

Field redefinitions may be used to absorb some of the unitary matrices in the decomposition

of the six complex mixing and Yukawa matrices, such that their full complex structure is not

physical. To investigate this further, it is useful to consider the flavor symmetries of the above

Lagrangian in the absence of the mixings and Yukawa couplings. In this case, each of the

elementary and composite fields transforms under its own U(3) flavor symmetry. Note that

the two U(3) symmetries of the chiral components of each composite field are broken to their

diagonal subgroup by the flavor universal mass terms, and that the two U(3) symmetries

of ξuL and ξdL are broken to their diagonal subgroup by embedding qL in both ξuL and

ξdL. The whole Lagrangian then has a global U(3)7 flavor symmetry38. The Lagrangian

can be kept formally invariant under this global symmetry in the presence of the composite-

elementary mixings and Yukawa couplings if they are treated as spurions, i.e. objects that

formally transform under the global symmetries and break them only when assuming their

background values. To discuss the transformation properties of the six spurions under the

seven U(3) factors of the global flavor symmetry group, it is convenient to once more employ

the language of moose diagrams39. The flavor symmetry structure in the presence of the

38U(3)7 = U(3)uR ×U(3)U ×U(3)Qu ×U(3)qL ×U(3)Qd ×U(3)D ×U(3)dR .
39 Recall that each group is represented by a circle, objects that transform under the fundamental rep-

resentation of this group by an arrow pointing away from the circle and objects transforming under the

anti-fundamental representation by an arrow pointing into the direction of the circle.
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spurions can then be written as40

//

∆uR
oo

Yu
oo

∆uL
//

∆dL
//

Yd
oo

∆dR

U(3)uR U(3)U U(3)Qu U(3)qL U(3)Qd U(3)D U(3)dR

, (2.176)

so e.g. Yu transforms as a (1, 3̄,3,1,1,1,1) under the U(3)7. While the flavor symmetries

are broken by the spurion background values, the symmetries can still be used to transform

the fields in such a way that they absorb some of the unitary matrices that arise from the

SVD of the spurion background values. Each of the U(3) symmetries can be used to rotate

away one of the unitary matrices, or equivalently, each of the fields associated to the U(3)

symmetries can absorb one of these unitary matrices. The six spurion background values

are decomposed into six diagonal matrices and 12 unitary matrices of which seven can be

rotated away. This leaves six diagonal and five unitary physical matrices. This is much more

than what is present in the SM model, where the full quark flavor structure is due to the two

Yukawa matrices Y SM
u and Y SM

d . When the SM Yukawa matrices are treated as spurions,

the flavor symmetry in the quark sector is U(3)3 and the SM quark flavor moose diagram is

therefore much simpler than the one of the above partial compositeness model. It is given by

oo

Y SM
u

//

Y SM
d

U(3)uR U(3)qL U(3)dR

. (2.177)

Analogous to the discussion above, the SM Yukawa matrices can be decomposed into in total

two diagonal and four unitary matrices of which three can be rotated away by the flavor

symmetries. This leaves two diagonal matrices that yield the hierarchical quark masses and

one unitary matrix that is nothing but the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

Experimental data puts stringent constraints on flavor violation that goes beyond what is

predicted by the SM. On the other hand, by assuming that the SM Yukawas are the only

source of flavor violation, it can be shown that ∆F = 1 and ∆F = 2 flavor observables are

sufficiently protected even in the presence of NP [163,164]. This assumption is also known as

Minimal Flavor Violation (MFV) [164]. Applied to a generic NP model, MFV requires the

flavor structure to be similar to the one in the SM in the sense that two spurions transforming

under a U(3)3 flavor symmetry like in eq. (2.177) are the only source of flavor violation.

The above partial composite model is therefore far from being MFV and experimentally

40 The flavor groups are defined such that the fields uR, U , Qu, qL, Qd, D, dR transform under the

fundamental representation of their associated U(3) factor. The transformation properties of the spurions can

then be read off from the Lagrangian in eq. (2.174).

60



2.3. FERMIONS

unacceptable large flavor violation is expected. Several paradigms that reduce the amount

of flavor violating sources are discussed in the following.

Anarchy

It is well known from models with a warped extra dimension that the correct quark masses

and CKM elements can arise from a 5D Yukawa coupling without any structure or hierarchy

(see e.g. [112, 165]), which is therefore called anarchic. The hierarchies in the SM Yukawa

matrices are then due to the overlap of the profile functions of left- and right-handed fermion

zero modes and the Higgs. Translated to the 4D picture with one level of composite fermions,

the overlap of the profile functions corresponds to the product of the degrees of compositeness

of left- and right-handed SM fermions, and the 5D Yukawa coupling can be identified with a

composite Yukawa coupling. The central assumptions in 4D anarchic models are thus that

all composite-elementary mixings ∆uL,uR,dL,dR are diagonal, hierarchical matrices, while all

entries of the composite Yukawa couplings Yu,d are of O(1). It has however been shown

that this structure leads to a “flavor problem”, mainly due to tensions with experimental

bounds from CP violation in kaon mixing that generically require implausibly high masses

of composite resonances, or an undesired amount of tuning [166–168]. The reason for this

may be traced back to the fact that while containing fewer sources of flavor violation than

the most general model, the anarchic model still contains more than what would be required

to fulfill the MFV assumption. In contrast to two spurions that yield one unitary and two

diagonal matrices, it contains six spurions that yield at least four diagonal and two unitary

matrices.

MFV implementations

To ameliorate the flavor problem found in anarchic models, implementations of MFV that

endow the composite sector with appropriate flavor symmetries have been proposed in [162,

169,170]. Investigating the moose diagram of the most general model, eq. (2.176), one readily

finds what is sufficient to construct an MFV model:

• At least one of the spurions ∆uL, ∆uR, or Yu has to be non-trivial to yield the up-type

quark masses.

• At least one of the spurions ∆dL, ∆dR, or Yd has to be non-trivial to yield the down-type

quark masses.

• All but two spurions in total have to be flavor-universal to fulfill the MFV assumption.
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The above criteria allow for in general nine different cases. An additional requirement that

is not necessary for MFV but seems reasonable is that the complete composite sector should

be flavor universal. This then forces Yu and Yd to be proportional to the unit matrix and

reduces the possible cases to four. With this assumption, the complete flavor structure has to

stem from the composite-elementary mixings and is in this sense external to the composite

sector. Assuming flavor universal Yu and Yd and not treating them as spurions anymore

breaks the U(3)U × U(3)Qu and the U(3)Qd × U(3)D to their diagonal subgroups U(3)U+Qu

and U(3)Qd+D. The global flavor symmetry is thus reduced to U(3)5. Among the four

MFV cases that fulfill this assumption, there are two that are symmetric in the treatment of

up-type and down-type quarks:

• Left-compositeness (LC): In this case, also the left-handed composite-elementary

mixings are assumed to be flavor universal. This breaks the U(3)U+Qu × U(3)q ×
U(3)Qd+D to its diagonal subgroup U(3)U+Qu+qL+Qd+D and the elementary left-handed

quark doublet transforms under the same U(3) symmetry as the whole composite sector.

Employing the moose diagram notation, the reduction of the generic model to the LC

model by requiring the composite sector and the left-handed composite-elementary

mixings to be flavor universal can be depicted as

//

∆uR
oo

Yu
oo

∆uL
//

∆dL
//

Yd
oo

∆dR

U(3)uR U(3)U U(3)Qu U(3)qL U(3)Qd U(3)D U(3)dR

Yu ∝ 1 ∆uL ∝ 1

wwww� ∆dL ∝ 1 Yd ∝ 1

//

∆uR
oo

∆dR

U(3)uR U(3)U+Qu+qL+Qd+D U(3)dR

.

(2.178)

It is of course no coincidence that the flavor moose diagram of the LC model resembles

the one of the SM, eq. (2.177). Actually, comparing both, ∆†uR can be identified with

the SM up-type Yukawa and ∆†dR with the SM down-type Yukawa, up to flavor universal

factors stemming from the composite Yukawas and left-handed composite-elementary

mixings. While being MFV, the LC model requires the first two generations of left-

handed up-type and down-type quarks to have the same degree of compositeness as

the left-handed top quark. It therefore suffers from very strong constraints due to

electroweak precision tests and CKM unitarity [162,171].

62



2.3. FERMIONS

• Right-compositeness (RC): In this case, in addition to the composite sector, the

right-handed composite-elementary mixings are assumed to be flavor universal. This

breaks the U(3)uR × U(3)U+Qu and the U(3)Qd+D × U(3)dR to their diagonal sub-

groups U(3)uR+U+Qu and U(3)Qd+D+dR
. The elementary right-handed up-type quarks

transform under the same U(3) symmetry as the composite up-type quarks, while the

elementary right-handed down-type quarks transform under the same U(3) symmetry

as the composite down-type quarks. In a diagrammatic way, this case is represented by

//

∆uR
oo

Yu
oo

∆uL
//

∆dL
//

Yd
oo

∆dR

U(3)uR U(3)U U(3)Qu U(3)qL U(3)Qd U(3)D U(3)dR

∆uR ∝ 1 Yu ∝ 1

wwww� Yd ∝ 1 ∆dR ∝ 1

oo

∆uL
//

∆dL

U(3)uR+U+Qu U(3)qL U(3)Qd+D+dR

.

(2.179)

Comparing the flavor moose diagram of the RC model to the SM, one can identify

∆uL with the SM up-type Yukawa and ∆dL with the SM down-type Yukawa, again

up to flavor-universal factors. RC is thus obviously only possible if the elementary

quark doublet mixes with the two different composite fields Qu and Qd. An important

difference to the LC model is that not all composite fields transform under the same

U(3) symmetry. In RC models, the composite up-type and down-type quarks transform

under two separate U(3) symmetries. The bounds are weaker than in the LC model,

but RC is still considerably constrained, e.g. by dijet angular distributions [162, 171],

because again the compositeness of light quarks is linked to the one of the top quark.

Some of the other possibilities to realize MFV apart from LC and RC are discussed in [162,

172]. The conclusion there is, however, that among the MFV models, RC is the one with the

weakest experimental bounds.

U(2)3 flavor symmetry

Implementing the MFV assumption into models of partial compositeness mainly solves the

flavor problems of the anarchic models. There are however two interrelated caveats:

• The flavor universal composite-elementary mixings connect the degrees of composite-

ness of light quarks with those of the third generation, especially the one of the top
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quark. The latter is required to be large to reproduce the top mass, while large values

for the former lead to tensions with CKM unitarity and measurements of dijet angular

distributions.

• Due to the third generation and especially the large top quark Yukawa coupling, the

breaking of the global U(3)3 symmetry by the non-trivial composite-elementary mixings

is not weak, i.e. U(3)3 is not a good approximate symmetry.

This suggests to treat the first two generations differently than the third one. It has therefore

been proposed in [173, 174] to depart from the MFV assumption and to consider instead of

a U(3)3 symmetry a U(2)3 = U(2)uR × U(2)qL × U(2)dR under which the first two gener-

ation quark fields transform as doublets, whereas the third generation quark fields trans-

form as singlets. While the full decomposition of the U(3)3 spurions Y SM
u = (3̄,3,1) and

Y SM
d = (1,3, 3̄) in terms of U(2)3 representations would yield many different spurions41 that

can break U(2)3, a minimal set that is sufficient to reproduce the quark masses and CKM

elements, and at the same time allows for a weak breaking of U(2)3 consists of [173,174]

YSMu = (2̄,2,1), YSMd = (1,2, 2̄), VSM = (1,2,1). (2.180)

By embedding the U(2)3 spurions into the U(3)3 spurions Y SM
u and Y SM

d , the above discussed

MFV LC and RC models can readily be turned into U(2)3 LC and RC models. Writing Y SM
u

and Y SM
d as matrices, the embedding reads [171]

Y SM
u →

(
au YSMu bu e

i φu VSM
0 cu

)
, Y SM

d →
(
ad YSMd bd e

i φd VSM
0 cd

)
, (2.181)

where au,d, bu,d, cu,d and φu,d are real parameters. So VSM is embedded into the (1,2,1)

component of both Y SM
u and Y SM

d , and their (2̄,1,1) and (1,1, 2̄) components are set to zero

(cf. footnote 41). The U(2)3 models are phenomenologically very interesting in the context

of fermion partial compositeness. On the one hand they suppress large flavor violating effects

and can ameliorate the flavor problem of anarchic models, and on the other hand they allow

for independent third generation composite-elementary mixings and thus reduce the tensions

found in MFV models.

2.4 Electroweak symmetry breaking

The main reason for considering CHMs is of course to replace the SM Higgs sector as the

source of EWSB. So after the discussion of the particle content of CHMs in the previous sec-

tions, this section is dedicated to the mechanism for breaking the electroweak symmetry. A

41(3̄,3,1)→ (2̄,2,1) + (1,2,1) + (2̄,1,1) + (1,1,1), (1,3, 3̄)→ (1,2, 2̄) + (1,2,1) + (1,1, 2̄) + (1,1,1)
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virtue of models featuring a strong interaction is that this breaking can be triggered dynam-

ically. This actually happens in QCD, where the quark condensate breaks the electroweak

symmetry and gives mass to the electroweak gauge bosons. Since this contribution is tiny

compared to their actual masses, there has to be another source of EWSB, and in the SM it

is provided by the Higgs VEV. The example from QCD has however inspired the TC models,

which are essentially up-scaled versions of QCD and also break the electroweak symmetry

via a fermion condensate. While CHMs are also based on a new strong interaction, the

mechanism by which this strong interaction ultimately leads to EWSB is slightly different

from that of QCD and traditional TC models. As already sketched in the beginning of this

chapter, CHMs employ the mechanism of symmetry breaking by vacuum misalignment. If a

a global symmetry G is spontaneously broken to a subgroup H ⊂ G and another subgroup

E ⊂ G is gauged, the gauge group E can be spontaneously broken, depending on the vacuum

alignment of H. The multi-site moose models described so far actually already contain this

symmetry structure. The vacuum alignment is determined by a dynamically generated effec-

tive potential due to quantum corrections from all particles that couple to the scalar sector.

In particular, this involves gauge bosons and fermions, both elementary as well as composite.

This section first explains the mechanism of symmetry breaking by vacuum misalignment.

It then turns to the problem of calculating the effective one-loop potential and discusses the

collective breaking mechanism that can render it finite.

2.4.1 Vacuum (mis)alignment

A central property of NGBs, as discussed in section 2.1, is their masslessness and the related

shift symmetry. Both stem from the degeneracy of the vacua in the vacuum manifold. This

degeneracy in turn is a consequence of the G-invariance of the Lagrangian, which implies that

all the points in the vacuum manifold correspond to the same vacuum energy. Consequently,

there is no preference for choosing a specific vacuum. Since the generators T a of the unbroken

group H are defined such that they leave the specific vacuum invariant, there is also an

ambiguity in choosing the generators T a among all the generators Sa of G. A different but

physically equivalent specific vacuum corresponds to a different set of unbroken and broken

generators T ′a and X ′a. The shift symmetry reflects this ambiguity: by a constant shift of

the NGB fields πa(x), the NGBs parametrized by the broken generators Xa can be turned

into NGBs parametrized by different broken generators X ′a.

The situation changes dramatically if there is a term in the Lagrangian that does not treat

all of the Sa generators equivalently, which of course in turn implies an explicit breaking of

the global G invariance. This is e.g. the case if a subset of the generators Sa is gauged.

Recalling from section 2.2.1 that each gauged unbroken generator T a yields a massless vector
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boson, while each gauged broken generator Xa yields a massive vector boson, it is obvious

that in the presence of gauging, constant shifts of the NGB fields πa could turn a massless

vector boson into a massive one and therefore relate physically inequivalent vacua. But

among physically inequivalent vacua, only those with the minimal potential energy are true

vacua. The vacua of the ungauged case are thus divided into true vacua with a minimal

potential energy and false vacua with a higher potential energy. In general, not only gauging

of some generators, but any term in the Lagrangian that explicitly breaks the G invariance

could divide the vacua of the G-invariant case into true and false vacua. To do this, the

explicitly G-breaking terms do not have to enter the tree-level potential. It is in general up

to loop corrections to the potential to determine which of the vacua are true and which are

false. The explicit G-breaking then has several important consequences:

• The shift symmetry into directions that relate true vacua and false vacua is broken.

Fluctuations around a true vacuum into any of these directions change the potential

energy and hence correspond to massive degrees of freedom. They are called pseudo

NGBs (pNGBs) [26].

• There might still be an infinite number of true vacua. The shift symmetry into direc-

tions that relate true vacua among themselves is unbroken. Fluctuations around a true

vacuum into these directions still correspond to (true) NGBs.

• Each pNGB reduces the dimensionality of the vacuum manifold by one. Consequently,

if there are only pNGBs left, but no true NGBs, the dimensionality of the vacuum

manifold is zero, the degeneracy of the different vacua is completely lifted, and there is

only a single true vacuum.

• The orientation of the true vacua in the directions associated to the pNGBs is fixed.

This orientation is called orientation of the vacuum or alignment of the vacuum [71].

If there are no true NGBs left, the orientation of the true vacuum is completely fixed.

• The vacuum alignment is not only determined by the tree-level potential, but also by

loop-corrections to the potential. The tree-level potential might actually beG-invariant,

such that the vacuum alignment is determined solely by loop contributions.

The alignment of the vacuum has interesting effects on the properties of vector bosons

that correspond to gauged generators of G. It is instructive to investigate these effects using

a concrete example that can be easily visualized: a global symmetry G = O(3) that is spon-

taneously broken to its subgroup H = O(2). This example is discussed in section 2.1.1, but

without considering G-breaking terms and gauging. In this case, one finds a two-dimensional
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Figure 2.2: Different vacuum alignments in O(3) → O(2) spontaneous symmetry breaking

with one generator R gauged. (a) Gauging of unbroken generator: R = T1. (b) Gauging

of broken generator: R = X2. (c) Gauging of linear combination of unbroken and broken

generators: R = cos(θ)T1 + sin(θ)X2.

vacuum manifold parameterizing the degenerate vacua. For a specific vacuum ~φ0, the unbro-

ken generator T1 of O(2) is defined by T1
~φ0 = 0 and the remaining two broken generators

X1,2 correspond to two NGBs. As discussed above, the presence of G-breaking terms in

the Lagrangian divides the degenerate vacua into true and false vacua. The details of the

G-breaking terms and the loop induced corrections to the potential are not important for

the following discussion, and it will just be assumed that ~φ0 is a true vacuum. In addition, it

will be assumed that one of the generators of G, denoted by R, is gauged. In this case, there

are several possibilities concerning the relative alignment of the vacuum ~φ0 with the gauged

generator R. It is important to note that this relative alignment is always fixed, because

different relative alignments correspond to physically different cases. For the O(3) → O(2)

spontaneous symmetry breaking with one generator R gauged, the following different cases

can be distinguished:

(a) One possibility is that the gauged generator R is equal to the unbroken generator T1.

This case is visualized in figure 2.2a, where the direction of the gauged generator is

depicted as a black dashed arrow. The fact that the gauged generator is aligned with

the true vacuum implies that the gauged subgroup of G is not spontaneously broken.

The associated gauge boson Aµ T1 is therefore massless (cf. section 2.2.1):

m2
A = 0. (2.182)

This underpins that the relative alignment of the vacuum ~φ0 with the gauged generator

R is indeed fixed, because any misalignment would not yield a massless gauge boson
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and hence correspond to a physically different case. Consequently, there is only a single

true vacuum and both NGBs associated with the generators X1,2 pick up a mass and

become pNGBs. The particle spectrum thus consists of a massless gauge boson and

two massive pNGBs.

(b) Another possibility is that one of the broken generators is gauged, e.g. R = X2. This

case is shown in in figure 2.2b. Because the gauge symmetry must not be explicitly

broken, it seems like there is actually an infinite amount of true vacua, depicted in 2.2b

by a black solid circle perpendicular to the direction of the gauged generator. While

any point in this one-dimensional vacuum manifold corresponds to a true vacuum,

there is, however, not an actual degeneracy of different vacua that would yield a NGB.

The reason for this is that the symmetry transformation connecting the different true

vacua is a gauge symmetry. The degeneracy is therefore lifted by any gauge fixing,

which then yields only a single true vacuum. This is equivalent to the statement that

the NGB associated with the X2 generator can be gauged away and is actually an

unphysical would-be NGB. This is of course nothing but the Higgs mechanism and the

corresponding gauge boson AµX2 receives a mass

m2
A =

f2 g2

2
, (2.183)

where f = |~φ0| and g is the gauge coupling constant (cf. section 2.2.1). Transformations

induced by the X1 generator on the other hand always relate true and false vacua, and

consequently its associated NGB becomes a pNGB. The particle spectrum in this case

consists of a massive gauge boson and one massive pNGB.

(c) A last possibility is that not either an unbroken or a broken generator is gauged, but a

linear combination of both. This case is visualized in figure 2.2c and can be described

with a gauged generator R given by

R = cos(θ)T1 + sin(θ)X2, (2.184)

where θ is a free parameter specifying the angle between the directions of the genera-

tors T1 and R. Like in case (b), the gauge symmetry implies a one-dimensional vacuum

manifold prior to gauge fixing, which is again shown as a black solid circle perpen-

dicular to the direction of the gauged generator R. Also like in case (b), fluctuations

around the vacuum ~φ0 that lie inside this vacuum manifold can be parametrized by

the generator X2. Its associated NGB can be gauged away and becomes a would-be

NGB. Again like in the other cases, the NGB associated with X1 becomes a pNGB.
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(a)

x1

x′2

x′3
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~φ0 ~φRθ

(b) x′3
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~ϕ0

~φ0
~φR

θ

Figure 2.3: (a) Vacuum alignment in O(3)→ O(2) spontaneous symmetry breaking with one

generator R gauged. The generator basis contains the gauged generator but not the unbroken

generator. (b) O(2)→ ∅ spontaneous symmetry breaking with a gauged generator.

The important novelty, however, is that the gauge boson Aµ(cos(θ)T1 + sin(θ)X2) is a

linear combination of a massive and a massless one. Its mass is found to be

m2
A =

sin(θ)2 f2 g2

2
=
v2 g2

2
, (2.185)

such that the mass scale for this vector boson is not given by f , but by the effective

scale v = sin(θ) f . This effective scale is just the length of the component of ~φ0

that is orthogonal to R and coincides with the radius of the true vacuum manifold.

The parameter θ actually interpolates between the cases (a) and (b), which can be

recovered for θ = 0 and θ = π
2 , respectively. In case (a), the radius of the true

vacuum manifold goes to zero and the gauge boson becomes massless. In case (b), ~φ0 is

actually orthogonal to R and the vector boson mass scale is simply given by the length

of ~φ0. The parameter θ thus measures the misalignment between the true vacuum

and the direction of the gauged generator, and the vector boson mass depends on this

misalignment. Apart from the θ = 0 case, the particle spectrum is the same as in

case (b), namely a massive gauge boson and a massive pNGB.

While in the cases (a) and (b), it is natural to choose a basis for the generators of G that

consists of the unbroken T1 and the broken X1,2, there is another natural choice in case (c):

it might be convenient to replace T1 and X2 by the gauged generator R and an additional

generator O = cos(θ)X2 − sin(θ)T1 that is orthogonal to R and X1 (cf. figure 2.3a). This

choice of basis has the advantage that it is independent of the actual orientation of the

vacuum, because it is already determined by defining which of the generators is gauged.
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However, the field ~φ(x) still parameterizes fluctuations around the true vacuum ~φ0, and

therefore it is obviously not independent of the vacuum alignment. In a gauge where the X2

would-be NGB is set to zero, ~φ(x) is given by42

~φ(x) = e
i
√

2
f
π1(x)X1 ~φ0. (2.186)

It can be made at least formally independent of ~φ0 by introducing a vector ~φR that is invariant

under the gauge transformation and corresponds to the true vacuum in the θ = 0 case. The

vectors ~φ0 and ~φR are related by a rotation around the x1 axis by an angle θ (cf. figure 2.3a),

i.e.

~φ0 = ei
√

2 θ X1 ~φR. (2.187)

Plugging this into eq. (2.186) and defining the field

ϕ(x) = θ f + π1(x), (2.188)

one finds

~φ(x) = e
i
√

2
f
ϕ(x)X1 ~φR. (2.189)

Intriguingly, the actual dependence on the vacuum alignment is now completely parame-

terized by a VEV of the field ϕ(x). The physical pNGB π1(x) corresponds to fluctuations

about that VEV. If the potential of ~φ(x) is expressed in terms of the parametrization in

eq. (2.189), the minimization that determines the alignment of the true vacuum can be per-

formed with respect to the VEV of ϕ(x). This resembles the situation in the linear sigma

model discussed in section 2.1.1, where the VEV of ~φ(x) determines the vacuum manifold of

the O(N)→ O(N − 1) spontaneous symmetry breaking.

The analogy with the linear sigma model can be made even more obvious by considering

the case of a small misalignment angle, i.e. θ � 1. This allows for approximating

~φ(x) ≈ ~φR + (θ f + π1(x)) i

√
2

f
X1

~φR. (2.190)

Noting that for small θ, the effective scale v is linear in θ, i.e.

v = sin(θ) f ≈ θ f, (2.191)

and defining the vector

~ϕ0 = i
√

2 θX1
~φR with |~ϕ0| = θ f ≈ v, (2.192)

42It is assumed here that the σ(x) field that corresponds to radial excitations is heavy and decouples, cf.

section 2.1.1.
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one can express ~φ(x) as ~φ(x) ≈ ~φR + ~ϕ(x) with (cf. figure 2.3b)

~ϕ(x) = (1 + π1(x)/v) ~ϕ0. (2.193)

This is now completely analogous to the linear sigma model, eq. (2.4). The effective scale

v plays the role of the VEV of ~ϕ(x), and interestingly, the pNGB π1(x) corresponds to the

radial excitation, which is called σ(x) in section 2.1.1. Because of the chosen gauge, there

is no NGB present, but there is a massive vector boson with mass mA = g√
2
v. This is

just what one would expect in a linear sigma model with a gauged O(2) symmetry that is

spontaneously broken by a VEV v. So by using the parametrization in terms of ϕ(x), the

original O(3)/O(2) non-linear sigma model with O(3)-breaking terms and gauging has turned

into a model that looks quite different. It now resembles a linear sigma model describing an

O(2)→ ∅ spontaneous symmetry breaking that gives mass to the O(2) gauge boson via the

Higgs mechanism. This linear sigma model is of course only an approximation and its viability

depends on the smallness of the misalignment angle θ. However, the parametrization of ~φ(x)

in terms of the field ϕ(x), whose VEV θf fixes the vacuum alignment, is also applicable in

the case of a large angle θ.

The toy model described above is actually already quite close to the minimal CHM.

To arrive at the latter, one just has to extend the global symmetries to G = SO(5) and

H = SO(4) and to gauge an SU(2)L × U(1)Y subgroup of SO(4). In the case where all

generators of SU(2)L×U(1)Y are aligned with those of the SO(4) group that leaves the true

vacuum ~φ0 invariant, the EW group is unbroken and its four gauge bosons are massless, while

the four NGBs of the SO(5)/SO(4) coset become pNGBs. This corresponds to the case shown

in figure 2.2a. If, on the other hand, the true vacuum is only aligned with the generator of

the U(1)Q subgroup of SU(2)L × U(1)Y, three of the four gauge bosons (corresponding to

W±µ and Zµ) become massive, three of the four NGBs are unphysical and can be removed

by going to unitary gauge, and one NGB becomes a pNGB. The broken generator associated

with this pNGB induces exactly those rotations that relate the true vacuum ~φ0 with the

SU(2)L×U(1)Y invariant direction ~φR, analogous to the case shown in figure 2.3a. Denoting

this broken generator by X1, the field ~φ(x) can be parameterized exactly as in eq. (2.189).

The misalignment angle θ between ~φ0 and ~φR sets the scale v = sin(θ) f for the masses of

the weak gauge bosons and the VEV θf of the scalar field ϕ(x) (cf. eq. (2.188)). For θ � 1

this resembles a linear sigma model in which the SU(2)L × U(1)Y symmetry is broken to

U(1)Q by the VEV θf ≈ v and in which the weak gauge bosons acquire masses proportional

to this VEV. By keeping v fixed and taking θ → 0, one arrives at a linear sigma model that

is nothing but the Higgs sector of the SM, with the pNGB π1(x) becoming the Higgs boson.

Interestingly, this means that the CHMs with EWSB due to vacuum misalignment contain

a limiting case, in which for arbitrary small θ the SM is an arbitrary good approximation.
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However, such a small θ with fixed θf also implies an arbitrary large tuning among the

different contributions to the potential. In a CHM that should serve as a solution to the

naturalness problem, this tuning should not be too large. Otherwise, a new naturalness

problem arises from θ being an unnatural small number, at least in the absence of some

explicit mechanism for making a small angle θ natural. So in realistic CHMs, deviations

from the linear sigma model due to a finite angle θ are expected.

In the O(3)/O(2) toy model as well as the minimal CHM with SO(5)/SO(4) coset, only

a single pNGB is left after the gauge group is spontaneously broken by the vacuum mis-

alignment. The true vacuum is thus completely determined by the VEV of the field ϕ(x)

corresponding to this pNGB, or equivalently by a single misalignment angle θ. In general,

there could be additional pNGBs such that the true vacuum is determined by the VEVs of

several fields ϕa(x), each corresponding to a misalignment angle θa. This is e.g. the case in

the next-to-minimal CHM with SO(6)/SO(5) coset (cf. section 3.1.3). For clarity, it is useful

to distinguish the scalar fields ϕa(x) that develop a VEV from the physical pNGBs πa(x),

both being related by

ϕa(x) = θa f + πa(x). (2.194)

This is especially the case in the above discussion. However, for simplicity, the field that

develops a VEV will also be called just πa(x) in the following. It is understood that in the

case of a non-zero VEV, this πa(x) is shifted by

πa(x)→ 〈πa〉+ πa(x), (2.195)

where 〈πa〉 = θaf is the VEV of πa(x).

2.4.2 The effective potential and collective breaking

For finding the actual alignment of the vacuum in the presence ofG-breaking terms, one has to

determine the effect of these terms on the scalar potential. In CHMs, there are contributions

from several sources. The gauging of the electroweak SU(2)L×U(1)Y subgroup of G explicitly

breaks the G invariance of the Lagrangian, and thus the EW gauge bosons contribute to

the scalar potential via quantum corrections. Via their mixing with the elementary gauge

bosons, also the composite spin one resonances contribute. Another source are the elementary

fermions, which do not transform under the full G group. While they can be formally

embedded into multiplets of G, this embedding is incomplete and explicitly breaks the G

invariance. Consequently, they contribute to the scalar potential at the loop-level. Like in

the spin one case, the composite fermions also contribute via their mixing with the elementary

fields. Computing all one-loop contributions to the scalar potential is a problem that has

been solved in general in [175]. The result takes a simple form in terms of the generalized
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mass matrices of the contributing fields Mi(π
a) that includes all the couplings to the scalar

fields πa(x) and is given by

V 1−loop
eff =

∑
i

ci
64π2

{
tr
[
M4
i (πa) log

(
M2
i (πa)

)]
− tr

[
M4
i (πa)

]
log(Λ2) + 2 tr

[
M2
i (πa)

]
Λ2
}
,

(2.196)

where the index i runs over all particle species that share a common mass matrix Mi(π
a) and

ci is a numerical prefactor accounting for spin and charge multiplicities. In multi-site moose

models, the scalar fields πa(x) correspond to the pNGBs. The true vacuum is then found

by minimizing the above potential with respect to their VEVs. Plugging the VEVs back

into the mass matrices yields, after a diagonalization, all the mass eigenstates and masses

of vector bosons and fermions. In addition, the mass terms for the pNGBs are given by the

second derivatives at the minimum of the potential. In the case of more than one pNGB,

they are given in terms of the Hessian matrix at the minimum. This matrix is in general not

diagonal, such that the scalar mass eigenstates can be a mixture of the πa(x) and have to be

determined by a diagonalization.

In general, the one-loop potential has a quadratical divergence proportional to tr
[
M2
i (πa)

]
and a logarithmic divergence proportional to tr

[
M4
i (πa)

]
. These divergences introduce a

dependence on the cut-off Λ that spoils the predictivity of the model. However, the actual

degrees of divergence of the one-loop contributions crucially depend on the structure of

the Lagrangian. One can use naive dimensional analysis (NDA) to determine the degree

of divergence from the loop contributions to a generic operator O. Following [118], in the

multi-site moose models one finds for the leading order Lagrangian43

O ∼ Λ2 f2

(
Λ

4π f

)2L(πa
f

)Eπ (g Aµ
Λ

)EA ( ψ√
Λ f

)Eψ (g f
Λ

)η (µ
Λ

)χ
, (2.197)

where L is the number of loops, Eπ the number of external NGB states, EA the number of

external gauge fields, d the number of derivatives, η the number of gauge coupling insertions,

and χ the number of fermion mass term insertions, where mass term stands for both masses

and mass mixings. The fields πa, Aµ, and ψ denote arbitrary NGBs, vector bosons, and

fermions, respectively. Accordingly, g and µ denote arbitrary gauge couplings and mass

terms, respectively. Considering the contributions to the scalar potential, only terms with

no external gauge bosons and fermions are of interest. Consequently, by setting L = 1 and

EA = Eψ = 0, one finds

O ∼ Λ4

16π2

(
πa

f

)Eπ (g f
Λ

)η (µ
Λ

)χ
∝ Λ4−η−χ, (2.198)

43The notation used here is slightly different to the one used in [118]. In particular, what is called “η” here

is called “2η” there.
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such that, obviously, the degree of divergence crucially depends on the number of gauge

coupling and mass term insertions η and χ.

These mass terms and gauge couplings are the only source of G-breaking. The whole point

of the one-loop potential is to communicate this breaking to the scalar NGB sector. Without

G-breaking, the NGBs would keep their shift symmetry and a potential would be forbidden

at arbitrary loop order. Therefore, any contribution to the one-loop potential must of course

contain mass terms or gauge couplings, the former in the case of fermion loops, the latter in

the case of gauge boson loops. To characterize the actual breaking of the G symmetry by

the mass terms and gauge couplings, it is useful to promote them to spurions that formally

preserve all global symmetries [87, 118]. It is instructive to start with the simplest moose

model, which is just the linear sigma model. In addition, it is convenient to first only consider

the gauge bosons and turn to the fermions later. The spurion corresponding to the gauge

coupling gE is denoted by GagE . It is an element of the Lie algebra of G and transforms under

the adjoint representation, i.e. a global G transformation g yields

G : GagE → g GagE g−1. (2.199)

When GagE assumes its background value, i.e.

GagE → gE P
a, (2.200)

it only transforms under the adjoint representation of E and thus breaks G to E. The

symmetry structure of the model containing the spurion GagE can be conveniently visualized

by the moose diagram

Global : G

//

U

H

gauge coupling
spurion : GgE

. (2.201)

Recalling that U(x) transforms under a global G transformation non-linearly as

G : U(x)→ g U(x) h−1(g , x), (2.202)

the only type of operator generated at one loop that contains two NGB external states, is

invariant under a global G transformation, and depends on the spurion GgE is

OG ∝ tr
[
U † GgE GgE U φ0 φ

†
0

]
, (2.203)

where φ0 is an explicit vacuum state invariant under H. From this, one finds η = 2 such that

the contribution is quadratically divergent

74



2.4. ELECTROWEAK SYMMETRY BREAKING

It is interesting to observe what happens if one adds a first level of resonances. The

resulting two-site moose model can be depicted as

Global : G G′

//

Ω

gauge coupling
spurions : GgE GgH

. (2.204)

The symmetry of this model is enhanced compared to the non-linear sigma model. The NGB

matrix Ω(x) transforms under the global symmetry G×G′ as

G×G′ : Ω(x)→ g Ω(x) g ′−1, (2.205)

while the spurion GagE transforms as in eq. (2.199), and GagH transform as

G′ : GagH → g ′ GagH g ′−1. (2.206)

Consequently, a one-loop contribution to the scalar potential that is compatible with the

global symmetries is given by

OG ∝ tr
[
Ω† GgE GgE ΩGgH GgH

]
. (2.207)

The larger global symmetry obviously has the effect that also the number of necessary gauge

coupling insertions is larger, and one finds η = 4. While this still corresponds to a logarithmic

divergence, the quadratical divergence is gone.

The reason for the reduction of the degree of divergence is that the NGB potential is

now doubly protected by both the G and the G′ symmetry. Setting any of the two gauge

couplings to zero would restore the complete shift symmetry of the NGBs, independently of

the other gauge coupling. Specifically, if gE → 0 and gH is finite, the NGBs corresponding to

the H generators are unphysical, while the H gauge bosons are massive. But the NGBs in

the G/H coset are true massless NGBs. If, on the other hand, gE is finite and gH → 0, the

NGBs corresponding to the E generators are unphysical and the E gauge bosons are massive,

while the NGBs in the G/E coset remain true massless NGBs. Consequently, a potential for

the NGBs that yields massive pNGBs can only arise if both gE and gH are finite. Thus, the

shift symmetry can only be broken collectively by both gauge couplings. This mechanism,

which was first described in [87], is therefore called collective breaking.

Motivated from the result that the quadratical divergence can be avoided by adding one

level of resonances, one might be tempted to add another one. As detailed in section 2.2.2,

this is done by splitting the NGB matrix Ω(x) into two matrices Ω1(x) and Ω2(x) that satisfy
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Ω1(x) Ω2(x) = Ω(x). In addition, a new symmetry G1
∼= G is added under which both Ω1(x)

and Ω2(x) transform non-trivially. The corresponding moose diagram is given by

Global : G G1 G′

//

Ω1
//

Ω2

gauge coupling
spurions : GgE Gg1 GgH

. (2.208)

There is, however, a peculiarity that arises from splitting Ω(x) into two NGB matrices.

Setting g1 → 0 actually makes Ω1(x) and Ω2(x) transform independently of each other. The

global symmetry G1 therefore becomes a larger accidental G1L × G1R symmetry, which is

broken to its diagonal subgroup G1 by the gauging. To take this into account, it is useful

to make the larger symmetry manifest by actually introducing two different spurions Gg1L

and Gg1R
that both assume the same background value (cf. [118]). The moose diagram thus

reads44

Global : G G1L G1R G′

//

Ω1
//

Ω2

gauge coupling
spurions : GgE Gg1L

Gg1R
GgH

, (2.209)

where the accidental symmetry is explicitly shown. The transformation properties can readily

be read off from this diagram; it is now obvious that Ω1(x) and Ω2(x) transform indepen-

dently. Because it depends on the chosen gauge which of the two NGB matrices contains the

actual NGBs, the one-loop contribution to the scalar potential has to depend on both Ω1(x)

and Ω2(x). Thus, one finds operators like

OG ∝ tr
[
Ω†1 GgE GgE Ω1 Gg1L

Gg1L

]
· tr
[
Ω†2 Gg1R

Gg1R
Ω2 GgH GgH

]
. (2.210)

The number of gauge coupling insertions is η = 8. Consequently, the gauge boson contribu-

tions to the potential are not only finite at one loop, but even finite at two loops. Apparently,

the splitting of Ω(x) leads to an additional increase of η, even larger compared to the in-

troduction of the first level of resonances. This can be understood by the emergence of the

accidental symmetry that serves as an additional protection of the scalar potential.

Since η = 6 would be sufficient for a model to feature finite gauge boson contributions to

the one-loop potential, it is possible to employ a two-site model in which the H gauge bosons

44This is analogous to the moose diagram in eq. (2.99).
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are removed by formally taking gH →∞. The corresponding moose diagram is given by

Global : G G1L G1R

//

Ω1
//

U2

H

gauge coupling
spurions : GgE Gg1L

Gg1R

, (2.211)

where the NGB matrix Ω2(x) = U2(x) Ξ2(x) has been turned into U2(x) by employing a

hidden local symmetry transformation. Similar to the first example featuring the non-linear

sigma model, U2(x) transforms non-linearly under the G1R symmetry. By using an explicit

vacuum state invariant under H, one finds one-loop contributions to the potential like

OG ∝ tr
[
Ω†1 GgE GgE Ω1 Gg1L

Gg1L

]
· tr
[
U †2 Gg1R

Gg1R
U2 φ0 φ

†
0

]
. (2.212)

As expected, this corresponds to η = 6, and thus the one-loop gauge boson contributions

to the scalar potential are finite. The virtue of this model is that the finiteness is already

achieved with only two sites, i.e. a single level of resonances. Furthermore, this is the kind

of model for which the inclusion of fermions is discussed in section 2.3.

To employ the spurion method used above also for analyzing the fermion contributions

to the scalar potential, the fermion masses and mixings have to be promoted to spurions

too. Considering the two-site moose from section 2.3.2, eq. (2.170), one has to deal with

two composite-elementary mixings ∆L and ∆R, two composite fermion masses mL and mR,

the composite sector Yukawa coupling Ycomp, as well as the mass term mY that couples the

same composite fermions as the Yukawa coupling but without involving the NGBs. Thus,

one introduces the spurions M∆L
, M∆R

, MmL , MmR , and MY . Their transformation

properties are chosen such that the Lagrangian has the same symmetries it would have when

setting the fermion masses and mixings to zero. In this case, the accidental symmetries also

contain the SM group GSM. This can be depicted by the moose diagram

Global : GSM G G1L G1R

//

Ω1
//

U2

H

mass term
spurions :

M∆L

M∆R

MmL

MmR

〉
MY

. (2.213)

While the elementary fields ξL and ξR correspond to incomplete G-multiplets, they transform

properly under the SM group GSM. Consequently, the spurions M∆L
and M∆R

, which
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correspond to the composite-elementary mixings, have to transform under the accidental

symmetry GSM ×G as

GSM ×G :M∆L,R
→ gSML,R

M∆L,R
g−1, (2.214)

where gSML
and gSMR

are the transformations under which ξL and ξR transform, respec-

tively45. This allows for making the composite-elementary mixing terms in the Lagrangian

formally invariant under GSM ×G. They read

L ⊃ ξ̄L(x)M∆L
Ω1(x) ΨR(x) + ξ̄R(x)M∆R

Ω1(x) Ψ̃L(x), (2.215)

and they take their usual form when the spurions assume their background values

M∆L,R
→ ∆L,R. (2.216)

This then breaks GSM × G to its diagonal subgroup, which is isomorphic to GSM, and thus

explicitly breaks G. Similarly, the spurionsMmL,R transform under the accidental symmetry

G1L ×G1R and break it to G1 when they assume their background values

MmL,R → mL,R. (2.217)

The last spurion MY is special in the sense that it actually transforms non-linearly under

G, or equivalently, it transforms under the hidden local symmetry, i.e.

G :MY → h(g , x)MY h−1(g , x). (2.218)

It enters the fermion Lagrangian as

L ⊃ −Ψ̄L(x)U2(x)MY U
†
2(x) Ψ̃R(x), (2.219)

which is manifestly invariant under the global symmetries even though U2(x) transforms

non-linearly. The spurion MY has the background value

MY → Ycomp φ0 φ
†
0 +mY . (2.220)

It is actually invariant under a hidden local symmetry transformation. Therefore, no global

symmetry is broken when MY assumes its background value. However, it is still convenient

to treat all mass and mixing terms on an equal footing by introducing spurions for all of

them.

45ξL contains SU(2)L doublets, while ξR contains singlets; so they transform differently.
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Having detailed the spurions for the fermionic Lagrangian and their transformation prop-

erties, one can now determine the degree of divergence of the fermion contributions to the

scalar potential. The operators that are generated at one loop take the form

OML
∝ tr

[
M∆L

Ω1MmL U2MY M†Y U
†
2M†mL Ω†1M†∆L

]
,

OMR
∝ tr

[
M∆R

Ω1MmR U2MY M†Y U
†
2M†mR Ω†1M†∆R

]
.

(2.221)

Counting the number of mass term insertions, one finds χ = 6. The one-loop fermion

contributions to the scalar potential are therefore finite (cf. eq. (2.198)). With finite gauge

boson and fermion contributions, the one-loop potential of the above two-site model takes

the simple form

V 1−loop
eff =

∑
i

ci
64π2

tr
[
M4
i (πa) log

(
M2
i (πa)

)]
. (2.222)

For the finiteness of the fermion contributions, it is crucial that the mass terms and mixings

have exactly the form as described in section 2.3.2, i.e. that only nearest-neighbor interactions

are present. While the symmetries would in general also allow other terms, this would

spoil the finiteness of the one-loop potential of the two-site model. However, by employing

dimensional deconstruction, the nearest-neighbor interactions automatically arise; they are

guaranteed by locality in the extra dimension. This property of a Lagrangian, having only

nearest-neighbor interactions, is thus also called locality in theory space (cf. e.g. [176]). It can

be seen as the origin of collective breaking in the above discussed models.

2.5 A UV completion: fundamental partial compositeness

The central ingredients of the phenomenological multi-site CHMs are a pNGB Higgs and

partial compositeness. These models allow to solve some of the problems of traditional

TC models and are found to be in good accordance with experimental data (cf. chapter 3).

While their structure is mainly inspired by models with extra dimensions, the idea of a pNGB

Higgs as well as partial compositeness are deeply rooted in TC-like 4D strongly coupled gauge

theories. In view of this, it is an interesting question if it is actually possible to construct

a UV completion in terms of a strongly coupled 4D quantum field theory that incorporates

both a pNGB Higgs and partial compositeness.

A first hurdle is the symmetry structure. Any UV completion is required to break a

global symmetry G spontaneously to a subgroup H. While this can be realized by dynamical

chiral symmetry breaking, there are some non-trivial requirements on G and H as explained

in the beginning of this chapter. For convenience, these requirements are listed here again:

1. SU(2)L × SU(2)R
∼= SO(4) is a subgroup of H.
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2. The G to H breaking yields NGBs in a complex SU(2)L doublet with U(1)Y charge

qY = 1/2.

To find a possible candidate, it is useful to consider general breaking patterns that can be

realized by chiral symmetry breaking from a strongly coupled TC like theory. One finds [70,

71,177] (see also [178] and references therein):

1. SU(M)L×SU(M)R → SU(M)L+R, which requires TC fermions in a complex represen-

tation of the TC gauge group, e.g. the fundamental of an SU(N) gauge group. This is

analogous to chiral symmetry breaking in QCD.

2. SU(M) → Sp(M), which requires TC fermions in a pseudoreal representation of the

TC gauge group, e.g. the fundamental of an Sp(N) gauge group.

3. SU(M)→ SO(M), which requires TC fermions in a real representation of the TC gauge

group, e.g. the fundamental of an SO(N) gauge group.

The next-to-minimal CHM is actually found to be among these cases. Noting that SU(4) ∼=
SO(6) and Sp(4) ∼= SO(5), the SO(6) → SO(5) breaking pattern is equivalent to SU(4) →
Sp(4) and can be realized with an Sp(N) gauge group. This breaking pattern was actually

used in one of the very first CHMs described in the 1980s [39], but has also been discussed

more recently in [178–185]. While any other symmetry breaking pattern necessarily yields

more pNGBs, this is not a problem per se. At least, as long as the pNGBs only couple to

SM particles very weakly or are considerably heavier than the Higgs this does not impose

strong experimental constraints on a given model (cf. also section 3.3.3).

Apparently, it is possible to overcome the first hurdle, so the next step would be to find

a way for including partial compositeness. In purely fermionic constructions, this necessarily

requires bound states with the same quantum numbers as the SM fields that are composed

of only fundamental fermions. Models which could yield these bound states from fermion tri-

linears are discussed in [181,182,186]. As motivated in section 2.3.1, the fermionic operators

OF that mix with the SM fermions are required to have a scaling dimension dim[OF ] ≈ 5/2.

Fermion trilinears have a canonical dimension of 9/2 and therefore must have a large anoma-

lous dimension. This seems to be not possible in the cases explored so far [156,157].

However, the desired scaling dimension of 5/2 is exactly the canonical dimension of a

bound state formed by a TC fermion and a TC scalar. A framework of fundamental partial

compositeness (FPC) in which the composite fermionic operators OF consist of these so

called techniscalars and technifermions has been proposed in [183]46. It is argued that any

46The idea of fermionic bound states composed of strongly coupled scalars and fermions is much older, but

it has been mainly considered in models of composite SM fermions, cf. e.g. [187–192].
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model that contains fermionic operators of scaling dimension 5/2 should behave as if these

operators are made of a fermion and a scalar. At higher scales, the scalars might themselves

be composite bound states (see also [193]). This would also be a solution to the apparent

new naturalness problem that arises from fundamental techniscalars. Another one would be

to supersymmetrize the TC theory (cf. [194]).

2.5.1 Minimal fundamental partial compositeness

There are many possibilities to construct models out of technifermions and techniscalars

that, confined by a new strong TC force, yield a composite pNGB Higgs and fermionic

bound states that mix with SM fermions. This is even the case if one considers techniscalars

and technifermions only transforming under the fundamental representation of the TC gauge

group (see [183] for a classification of economical models). However, among these models

is a minimal one that actually implements the symmetry structure of the next-to-minimal

CHM: it contains a pNGB Higgs that arises from a global SU(4) symmetry being sponta-

neously broken to Sp(4) by a technifermion condensate. This minimal fundamental partial

compositeness (MFPC) model was proposed in [183]. It was further analyzed in [193] from

an effective field theory (EFT) perspective. Its full flavor structure and its consequences for

flavor physics have been worked out in [6] and are discussed in detail in chapter 6.

In addition to the SM fields, the model contains technifermions and techniscalars, both

transforming under the fundamental, pseudoreal representation of the new GTC = Sp(NTC)

gauge group. For the techniscalars and technifermions to form bound states that have the

quantum numbers of the SM fermions, they themselves have to be charged under the SM

gauge group. To get a pNGB Higgs as a bound state of technifermions, they have to transform

under a global SU(4) symmetry into which the EW gauge group is embedded. This can be

realized by considering four technifermions47 that form the four-plet

F =
(
F↑ F↓ F̄↑ F̄↓

)T
, (2.223)

where the first two components transform under SU(2)L as a doublet (cf. table 2.1):

Fl =

(
F↑
F↓

)
. (2.224)

To get composite partners for all three generations of SM fermions, one also needs three

generations of either technifermions or techniscalars. To restrict the global symmetry under

which the technifermions transform to SU(4), there can only be one generation of techni-

fermions, such that the techniscalars have to come in three generations. In addition, also the

47All fermion fields used in this section are left-handed two-component Weyl spinors.
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Q ū d̄ L ν̄ ē Fl F̄↑ F̄↓ Sq Sl
Sp(N)TC 1 1 1 1 1 1 N N N N N

SU(3)C 3 3̄ 3̄ 1 1 1 1 1 1 3̄ 1

SU(2)L 2 1 1 2 1 1 2 1 1 1 1

U(1)Y
1
6 −2

3
1
3 −1

2 0 1 0 −1
2

1
2 −1

6
1
2

Ng 3 3 3 3 3 3 1 1 1 3 3

Table 2.1: Quantum numbers of SM fields, TC fermions, and TC scalars in MFPC. The last

line gives the number of generations Ng. All fermion fields are left-handed Weyl spinors.

QCD charge has to be carried by the techniscalars. The most economical choice is to intro-

duce, for each generation, two techniscalars Sq and Sl, where the former is a QCD anti-triplet

and the latter is a QCD singlet (cf. table 2.1). They can be embedded into the 12-plet

S =

(
Sq
Sl

)
, (2.225)

where the generation indices are implicit. In terms of the fields F and S, the kinetic terms

of the TC sector can be written as

LTC
kin = −1

4 tr [GµνGµν ] + iF†σ̄µDµF −
(

1
2FTmF εTCF + h.c.

)
+ (DµS)† (DµS)− S†m2

S S,
(2.226)

where Gµν denotes the TC gauge bosons’ field strength tensor, mF and mS are the techni-

fermion and techniscalar mass matrices, and εTC is the antisymmetric invariant tensor of

GTC.

In the absence of the mass term mF , the TC sector has a global SU(4) symmetry, under

which F transforms in the fundamental representation. Because only the technifermions

transform non-trivially under this symmetry group, it will also be denoted by SU(4)F in

the following. In the case of a trivial mass matrix mS , one would naively expect that the

12 complex scalars have a global SU(12)S symmetry. However, because the techniscalars

transform under a pseudoreal representation of the TC gauge group, the TC sector actually

has an accidental Sp(24)S symmetry (cf. [183]). This symmetry can be made manifest by

arranging the techniscalars in terms of the field

Φ =

(
S

−εTC S∗

)
, (2.227)

which transforms under the fundamental representation of Sp(24)S .
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The pNGB Higgs

The full global symmetry of the TC sector is SU(4)F × Sp(24)S . However, the strong TC

interactions break the SU(4)F symmetry to Sp(4)F by forming the fermion bilinear conden-

sate48 〈
FaεTCFb

〉
= ΛTC f

2
TC Σab

θ , (2.228)

where a, b are SU(4)F indices, ΛTC is the composite scale of the TC interaction, fTC ≈ 4πΛTC

is the NGB decay constant associated with the spontaneous symmetry breaking, and Σab
θ is

an antisymmetric matrix that specifies the vacuum alignment of the unbroken Sp(4)F group.

This vacuum alignment can be parameterized by the angle θ and is chosen such that θ = 0

leaves the EW symmetry unbroken49. The NGBs arising from the SU(4)F → Sp(4)F breaking

are parametrized by the NGB matrix

Σ(x) = exp

[
i
2
√

2

fTC
πa(x)Xa

θ

]
Σθ. (2.229)

The NGB fields πa(x), a ∈ {1, 2, 3, 4, 5} correspond to the fluctuations around the true vac-

uum Σθ. Hence, the misalignment is not parameterized by a pNGB VEV and the generators

Xa
θ depend on the misalignment angle θ (cf. [178] and the discussion on different generator

bases in section 2.4.1). Since SU(4)/Sp(4) is a symmetric space, the leading order EFT

Lagrangian for the NGBs is given by the simple form (cf. section 2.1.3)50

LEFT ⊃
f2

TC

8
tr
[
DµΣ†DµΣ

]
. (2.230)

While the NGBs π1, π2 and π3 eventually become would-be NGBs when θ 6= 0 and the

EW symmetry is broken, π4 = h can be identified with the composite Higgs boson. π5 = η

is a scalar singlet that generically has a mass of order mη ≈ mh/ sin(θ) and couples only

weakly to the SM fields, at least in the case of a vacuum alignment that preserves CP (cf.

footnote 49 and chapter 3). Its phenomenologically implications are therefore negligible.

Like in the discussion in section 2.4.1, the mass scale for the EW gauge bosons is set by the

48In the absence of the techniscalars, this has been shown by lattice simulations for NTC = 2 [195].
49Since the SU(4)/Sp(4) coset contains two NGBs that cannot be gauged away by an EW gauge transfor-

mations, there are in principle two angles that determine the vacuum alignment. However, any non-zero value

for the second angle would break CP spontaneously. In this section, this second angle is assumed to be zero.

For an analysis of a model where it is explicitly allowed to be non-zero, see chapter 3.
50While the NGB matrix used here is analogous to the matrix Σ(x) introduced in section 2.1.3, the nor-

malization of the generators is different. While the Xa in section 2.1.3 are normalized by tr
[
XaXb

]
= δab,

the Xa
θ used here satisfy tr

[
Xa
θ X

b
θ

]
= 1

2
δab. This is the reason for the prefactor

f3
TC
8

in eq. (2.230) being

different from the prefactor f2

16
in eq. (2.40).
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misalignment angle θ, such that the SM Higgs VEV vSM can be identified with

vSM = fTC sθ, (2.231)

where the short-hand notation sθ = sin(θ) is introduced.

Fermion partial compositeness

While the possibility to get a pNGB Higgs from the technifermions present in the MFPC

model has been considered many times in the literature (cf. [39, 178–185]), the central new

ingredient in the MFPC model that allows for an implementation of partial compositeness are

the techniscalars. For partial compositeness to be realized, it is of course crucial that the TC

sector is coupled to SM fermions. This is actually the case as the chosen quantum numbers

of technifermions and techniscalars allow for fundamental Yukawa couplings involving the

SM field. They are given by

Lyuk = yQQα SqεTCFαl − yū ūS∗q F̄↓ + yd̄ d̄S∗q F̄↑
+ yL Lα SlεTCFαl − yν̄ ν̄ S∗l F̄↓ + yē ēS∗l F̄↑ − y′ν̄ ν̄ SlF̄↑ + h.c.

(2.232)

where α is an SU(2)L index and the fundamental Yukawa couplings yf are 3 × 3 matrices

in generation space. When techniscalars and technifermions form fermionic bound states

OF ∼ (FS), these bound states are coupled to the SM fields via the fundamental Yukawa

couplings. Using the notation employed in the effective models discussed above, this means

that the composite-elementary mixings ∆f are related to the fundamental Yukawa couplings

yf by

∆f ∝ yf , (2.233)

i.e. the mixing terms of the composite operators OF and the SM fields are nothing but the

fundamental Yukawa couplings yf . This relation can be used to construct an effective theory

containing the fermionic bound states (FS) analogous to the discussion in section 2.3.1.

Interestingly, exactly like in the purely effective models of partial compositeness, one finds

that the SM fermions can couple to the (FF) composite Higgs bound state only via the

fundamental Yukawa terms, i.e. via the mixing with the composite fermions.

2.5.2 The MFPC effective field theory

To derive the phenomenological consequences of the MFPC model, one needs a description

at low energies accessible by experimental measurements. It would certainly be interesting

to construct an effective theory along the lines of the multi-site moose models, i.e. a theory

containing an effective description of the composite bound states. In particular, such an
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effective theory could be backed up by lattice calculations that fix some of the effective

parameters51. However, since there are no direct observations yet and masses of composite

resonances could be out of reach for the LHC, a different approach might be useful for first

explorations. To this end, an effective field theory for MFPC (MFPC-EFT) containing only

the SM fermions and vector bosons as well as the pNGBs as dynamical degrees of freedom has

been constructed in [193]. All effects stemming from bound states heavier than the pNGBs

are parameterized in terms of effective operators. This approach is especially justified by

indirect bounds on sin(θ) [202] indicating a quite large separation of the EW and the TC

scale vSM
ΛTC

< 1
25 � 1.

The Lagrangian of the effective theory can be written as

LEFT = LSM−Higgs+NGBs +
∑
A

CAOA +

(∑
B

CB OB + h.c.

)
, (2.234)

where LSM−Higgs+NGBs contains the SM Lagrangian without the Higgs sector, plus the leading

order NGB Lagrangian shown in eq. (2.230). The only parameters it depends on are the SM

gauge couplings and the decay constant fTC. All other effects are parameterized by the WCs

of the hermitian operators OA and the complex operators OB.

For constructing the MFPC-EFT, it is useful to employ the global symmetries of the

strong sector. They are only broken by the interactions with SM field, which can be treated

as spurions formally transforming under SU(4)F × Sp(24)S . To this end, it is convenient to

promote all SM fermions including the fundamental Yukawa couplings to the spurion

ψia ∈ 4F ⊗ 24S , (2.235)

where a is an SU(4)F index and i is an Sp(24)S index. It assumes the background value

ψia →


0 0 yd̄ d̄ −yū ū
0 0 yē ē −yν̄ ν̄

yQ d −yQ u 0 0

yL e −yL ν y′ν̄ ν̄ 0

 , (2.236)

where the components of SU(2)L doublets are written explicitly and the color and gener-

ation indices are implicit. Using that the technifermion multiplet F and the techniscalar

multiplet Φ transform as (cf. eqs. (2.223),(2.225), and (2.227))

Fa ∈ 4F ⊗NTC, Φi ∈ 24S ⊗NTC, (2.237)

51For lattice simulations of a model similar to MFPC but without techniscalars, see [195–200]. For pre-

liminary results on lattice simulations of a GTC = SU(2) ∼= Sp(2) gauge theory featuring technifermions and

techniscalars, see [201].
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the fundamental Yukawa coupling terms in eq. (2.232) can be written compactly as

Lyuk = −ψia εij Φj εTCFa + h.c. , (2.238)

where εij is the antisymmetric invariant tensor of Sp(24)S . In the low-energy MFPC-EFT,

these Yukawa coupling terms lead to operators containing the SM fermions in the form of

the spurion ψia. The leading-order operator contains only two SM fermions and is given by

OYuk = −fTC

8π
(ψi1a1ψ

i2
a2) Σa1a2εi1i2 , (2.239)

where Σa1a2 is the NGB matrix (cf. eqs. (2.228) and (2.229)). This operator actually contains

terms that correspond to the SM Yukawa couplings. As such, it yields the fermion-pNGB

couplings as well as the mass terms of SM fermions. Assuming unitary gauge and expanding

the product of pNGB matrices in powers of external Higgs states up to the linear term, one

finds52

CYukOYuk = −
∑

f∈{u,d,e}

CYuk sθ fTC

4π
(yT
f yf̄ )ij

(
fif̄j

)(
1 +

cθh

vSM
+ . . .

)
, (2.240)

where cθ = cos(θ) and a compact notation is used to simplify the sum: the fundamental

Yukawa couplings of the SU(2)L doublets are labeled by the names of their doublet com-

ponents, i.e. one can identify yQ = yu = yd and yL = ye = yν . The leading term in the

expansion yields the masses of the SM fermions; their mass matrices are given by

mf,ij =
CYuk sθ fTC

4π

(
yT
f yf̄

)
ij
, (2.241)

where f ∈ {u, d, e}.
Among the operators of the MFPC-EFT, those with external fermions are especially

interesting for the analysis of effects on flavor physics presented in chapter 6. There are eight

operators in the MFPC-EFT that contain four SM fermions. These are the five hermitian

operators

O1
4f =

1

64π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψ†

i3a3
ψ†

i4a4
)Σa1a2Σ†a3a4

εi1i2εi3i4 ,

O2
4f =

1

64π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψ†

i3a3
ψ†

i4a4
)
(
δa1
a3
δa2
a4
− δa1

a4
δa2
a3

)
εi1i2εi3i4 ,

O3
4f =

1

64π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψ†

i3a3
ψ†

i4a4
)Σa1a2Σ†a3a4

(εi1i4εi2i3 − εi1i3εi2i4) ,

O4
4f =

1

64π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψ†

i3a3
ψ†

i4a4
)
(
δa1
a3
δa2
a4
εi1i3εi2i4 + δa1

a4
δa2
a3
εi1i4εi2i3

)
,

O5
4f =

1

64π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψ†

i3a3
ψ†

i4a4
)
(
δa1
a3
δa2
a4
εi1i4εi2i3 + δa1

a4
δa2
a3
εi1i3εi2i4

)
,

(2.242)

52The neutrinos are treated as massless in the following, i.e. their fundamental Yukawa couplings are set to

zero, yν̄ = y′ν̄ = 0.
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and the three complex operators

O6
4f =

1

128π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψi3a3ψ

i4
a4)Σa1a2Σa3a4εi1i2εi3i4 ,

O7
4f =

1

128π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψi3a3ψ

i4
a4) (Σa1a4Σa2a3 − Σa1a3Σa2a4) εi1i2εi3i4 ,

O8
4f =

1

128π2Λ2
TC

(ψi1a1ψ
i2
a2)(ψi3a3ψ

i4
a4)Σa1a2Σa3a4 (εi1i4εi2i3 − εi1i3εi2i4) .

(2.243)

At the EW scale, they can be matched to four-fermion operators of the WEH (cf. sec-

tion 6.1.2). Another operator relevant for this matching is

OΠf =
i

32π2
(ψ†

i1a1
σ̄µψ

i2
a2) Σ†a1a3

←→
D µΣa3a2 εi1i2 . (2.244)

It modifies the couplings of SM fermions to the weak gauge bosons, which are contained in the

covariant derivative. When W±µ and Zµ are integrated out at the EW scale, this operator in-

duces contributions to four-fermion operators of the WEH. In addition, the modified couplings

to gauge bosons yield important constraints on the model. In particular, they contribute to

Z boson observables measured with high precision at the Large Electron–Positron (LEP)

collider.

While other operators compatible with the global symmetries of the TC sector can be

constructed, they are not of particular interest in the context of this thesis. A complete list

of the MFPC-EFT operators can be found in [193].
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3
Direct collider constraints

in composite Higgs models

A generic feature of CHMs is the presence of composite bound states in the low-energy

effective theory. In particular, one expects vector and fermion resonances as discussed in

sections 2.2 and 2.3. If the G/H coset of the spontaneous symmetry breaking in the strong

sector contains NGBs in addition to the Higgs doublet, they are turned into pNGBs by the

effective scalar potential and also join the list of heavy NP states. The mass scale of these

states is set by NGB decay constant f . As discussed in section 2.4.1, symmetry breaking by

vacuum misalignment allows f to be considerably larger than the EW scale v. Consequently,

also the masses of these heavy states could be much heavier than the SM particles. However,

to avoid tuning in the scalar potential and to generate the correct Higgs mass, many CHMs

actually require relatively light resonances (cf. e.g. [105, 203–205]). In this case, they could

potentially be produced and observed at the LHC. On the other hand, a non-observation

might put stringent bounds on the parameters of these models, or would at least require a

larger amount of tuning.

In view of this, interesting questions for analyses of CHMs are: What are the prospects

for observing any of the heavy resonances at the LHC and what are the current experimental

constraints? And in particular, what are their masses, cross sections and branching ratios

and how do they compare to the experimental bounds available so far?

Apart from direct collider searches, also indirect searches put important constraints on

the properties of the composite resonances. In addition, the masses and couplings of the res-

onances determine the structure of the effective scalar potential and thus play an important

role in EWSB. The above questions are therefore best answered in the context of a global

analysis that takes into account both direct and indirect searches and considers radiative

EWSB. To this end, we have performed comprehensive numerical studies of CHMs featuring

the minimal SO(5)/SO(4) and the next-to-minimal SO(6)/SO(5) coset in [2] and [3], respec-
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tively. The treatment of direct collider searches in these analyses and the results we have

obtained are discussed in detail in this chapter. For a detailed discussion of the indirect

constraints, see [2, 3] and in particular also [127].

3.1 Global analyses of composite Higgs models

The aim of our analyses in [2, 3] was to perform a parameter scan of a CHM that features

• a pNGB Higgs,

• a full quark flavor structure with partial compositeness, i.e. composite fermion partners

for all three generations,

• a calculable scalar potential that makes it possible to relate the mass and the VEV of

the pNGB Higgs to the model parameters.

While a parameter scan of such a model is already complicated due to the large number

of parameters (between 30 and 52 for the models considered here), the specific structure of

CHMs makes it even more challenging. In contrast to many other NP models, the parameter

space does not “factorize” into a SM part and a NP part. In particular, due to fermion

partial compositeness, all quark masses and the elements of the CKM matrix are complicated

functions of many of the model parameters. In addition, the radiatively generated scalar

potential, which is responsible for EWSB, depends on the masses and couplings of all fermions

and vector bosons in the theory. In view of this, a naive brute-force scan of the parameter

space is not applicable. Instead, we have applied a new numerical method pioneered in [206]

and described in the following1.

3.1.1 Numerical strategy

In order to avoid sampling the whole parameter space, only those regions are sampled that

satisfy the experimental constraints applied in the analysis. To this end, a χ2 function is

constructed that depends on the experimental measurements of all considered observables, on

their theory predictions at a given parameter point ~Θ, and on the theoretical and experimental

uncertainties. Combining the measurements into a vector ~Oexp, the ~Θ-dependent theory

predictions into a vector ~Oth(~Θ), and all uncertainties2 into a covariance matrix Ĉ, the χ2

1Since the focus of this chapter lies on direct constraints, only the most important properties of the

scanning procedure are discussed in the following. For an in-depth description of the specific implementation

used in [2, 3], see [127].
2Correlations of uncertainties are also taken into account for theory predictions, as well as for those

measurements for which they are publicly available.
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function can be written as

χ2(~Θ) =
[
~Oexp − ~Oth(~Θ)

]T
[Ĉ]−1

[
~Oexp − ~Oth(~Θ)

]
. (3.1)

The value of this χ2 function is a measure for the agreement between theoretical predictions

and experimental data; the smaller its value, the better the agreement. Using the χ2 function,

viable parameter points that satisfy all constraints are determined in a procedure consisting

of four steps:

• A point in the parameter space is randomly chosen that is only required to fulfill most

basic consistency conditions like a non-zero misalignment angle.

• Using this point as a starting point, a numerical optimization algorithm (from the

NLopt package [207]) is used to find a region in the parameter space with a relatively

low χ2 value.

• This region is then sampled by a Markov chain, for which the Markov-Chain-Monte-

Carlo implementation from the pypmc package [208] is used.

• Because a low total χ2 value does not automatically guarantee all constraints to be

satisfied, points are discarded if they violate any individual constraint by more than 3σ.

To generate a large number of viable parameter points, the above steps are repeated many

times (between O(103) and O(104) depending on the model). This makes it possible to find

points from very different local minima of the χ2 function. However, it is of course not

possible to sample all regions with low χ2. The above described method is not intended

to provide a sufficient coverage of the parameter space to make any statistical statements.

Rather, it is used to yield viable parameter points in a high-dimensional parameter space,

where such points are tremendously difficult to find by simply choosing parameter values

randomly.

3.1.2 Constraints

The following observables are used in our global analyses in [2, 3] and enter the χ2 function

in eq. (3.1).

• SM masses and Higgs VEV: The VEV and the mass of the Higgs are provided by

the minimum of the scalar potential and the curvature at the minimum, respectively.

The mass matrices of vector bosons and fermions are evaluated at the minimum of

the scalar potential and then numerically diagonalized. The eigenvalues of the mass

matrices that correspond to the SM fields are interpreted as tree-level MS running
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masses at the scale mt. All masses are run to the scale where they can be compared to

their PDG averages [209]. The Higgs VEV is compared to the tree-level value of the

Fermi constant in muon decay.

• CKM elements: Since the 3× 3 quark mixing matrix is not unitary in the presence

of composite fermions that mix with the elementary ones, effective CKM elements are

defined from the ratio of W couplings of quarks and leptons. They are compared to

experimental values obtained from measurements of tree-level semi-leptonic charged-

current decays (for |Vud| [210], |Vus| [211], |Vub| [212,213], and |Vcb| [214,215]), t-channel

single top production (for |Vtb| [216]), and B → DK decays (for the CKM angle γ [217]).

• Electroweak S and T parameters: The one-loop fermion contributions to the

T parameter and the tree-level contributions to the S parameter are compared to

values from a global fit to EW precision data [218].

• Z decays: Ratios of partial widths in Z-boson decay are calculated with tree-level

NP contributions at zero momentum and higher-order SM contributions. They are

compared to measurements at LEP [219].

• Higgs production and decays: The partial widths of the Higgs boson are calculated

at tree level for the decays to WW , ZZ, bb̄, and τ+τ−, and at the one-loop level for

decays to gg and γγ. They are compared to measurements by the ATLAS and CMS

collaborations [202,220,221].

• Meson-antimeson mixing: Several observables in meson-antimeson mixing in the

K0, B0, and Bs systems are calculated and compared to their corresponding experi-

mental values. In particular, these are the mass differences ∆MK [209], ∆Md [222],

and ∆Ms [222], the observables SψKS [222] and φs [223] measuring mixing induced

CP asymmetry in the B0 and Bs system, respectively, and the observable εK [209]

measuring indirect CP violation in kaon mixing.

• Rare B decays: In light of tensions between experimental measurements and SM pre-

dictions in semi-leptonic rare B decays (cf. chapter 4), they are not used as constraints.

However, experimental measurements of BR(B → Xsγ) [222] and BR(Bs → µ+µ−) [224]

are included as constraints.

• Contact interactions: Significant degrees of compositeness of first-generation quarks

can be constrained by four-quark contact interactions that contribute to the dijet an-

gular distributions. Calculations of corresponding WCs are compared to LHC mea-

surements [225,226].
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• Neutron electric dipole moment: The next-to-minimal CHM allows for sponta-

neous CP violation in the scalar sector. To constrain this effect, the neutron electric

dipole moment (EDM) in terms of the quarks’ EDM and chromo-EDM is calculated

and compared to the experimental limit [227].

• Direct constraints: All cross sections and branching ratios of heavy resonances are

calculated and compared to experimental limits (see tables in appendix A.6). These

constraints are discussed in detail in section 3.2.

3.1.3 The models

To select the models to be investigated by our global analyses, we have first considered the

requirements at the beginning of section 3.1. In particular, the requirements of a pNGB Higgs

and a calculable potential can be satisfied in multi-site moose models. The contributions to

the scalar potential stemming from vector bosons are finite in a model with three or more

sites if it contains one level of spin-1 resonances in the adjoint representation of the unbroken

group H, or in a model with two or more sites if it contains only spin-1 resonances in the

adjoint representation of the full group G (cf. section 2.4.2). Requiring a particle content as

minimal as possible singles out the two-site model of the latter type. This is the construction

of the two-site 4DCHM [119], for which the fermion sector also yields a finite contribution to

the scalar potential (cf. section 2.4.2).

In specifying a CHM, a central aspect is the choice of the NGB coset. As discussed at the

beginning of chapter 2, the minimal choice that yields NGBs in a complex SU(2)L doublet and

a custodial SU(2)L+R symmetry is the NGB coset SO(5)/SO(4). We have chosen to analyze

such a minimal CHM (MCHM) in [2]. As detailed in section 2.5, the MCHM breaking pattern

SO(5) → SO(4) cannot be realized by chiral symmetry breaking in a UV completion of an

effective CHM. However, this is actually possible for the only slightly less minimal breaking

pattern SO(6) → SO(5) , which yields a scalar singlet NGB in addition to the complex

SU(2)L doublet. We have chosen to analyze such a next-to-minimal CHM (NMCHM) in [3].

In a CHM that contains an unbroken global symmetry SO(4) ∼= SU(2)L×SU(2)R, the T3
R

generator3 of SU(2)R plays the role of the hypercharge generator as long as only the Higgs

sector and the lepton sector are considered. However, it is well known that this assignment

of hypercharge does not work for quarks that are embedded into a multiplet transforming

under SO(4) (cf. e.g. [104]). This problem can be solved if the quark SO(4) multiplets are

charged under an additional U(1)X symmetry and if the hypercharge generator Y is defined

3For the definition of the generators of SO(6), SO(5), SU(2)L, and SU(2)R used in this chapter, see

appendix A.2.
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in terms of the T3
R generator and the U(1)X generator X as

Y = T3
R +X. (3.2)

Consequently, the groups G and H have to contain the U(1)X group as a subgroup. The

minimal choice is to simply consider a direct product group such that the breaking patterns

in the MCHM and in the NMCHM become

SO(5)×U(1)X → SO(4)×U(1)X and SO(6)×U(1)X → SO(5)×U(1)X, (3.3)

respectively. While this does not change the number of NGBs, it introduces an additional

spin-1 resonance associated with the U(1)X symmetry.

For a complete CHM, not only the EW gauge group should be embeddable into the global

symmetry H, but also the QCD gauge group SU(3)C. Again, the simplest way to achieve

this is by considering a direct product group. Consequently, the breaking patterns in the

MCHM and in the NMCHM become

SO(5)×U(1)X × SU(3)C → SO(4)×U(1)X × SU(3)C

and

SO(6)×U(1)X × SU(3)C → SO(5)×U(1)X × SU(3)C,

(3.4)

respectively. Similar to the introduction of the U(1)X group, this does not modify the NGB

content of the models but introduces additional spin-1 resonances in the adjoint representa-

tion of SU(3)C.

Having specified the groups G and H for the MCHM and the NMCHM, the only thing

that still remains to be fixed are the representations of G under which the fermions transform.

While the representations of the U(1)X×SU(3)C group are fixed by the SM quantum numbers

and eq. (3.2), one is in principle free to choose any representations of SO(5) for the MCHM

and of SO(6) for the NMCHM that allow for an embedding of the SM fermions. However,

the choice of representations has important phenomenological consequences. In particular, if

they are chosen such that they satisfy a discrete PLR symmetry, tree-level contributions to the

ZbLbL coupling can be avoided [228]. Without this so called custodial protection, the sizable

composite-elementary mixing of the third generation’s quark doublet, which is required by

the large top quark mass, generically yields a significant tree-level contribution to the ZbLbL

coupling. This in turn can lead to severe tensions with LEP measurements of the Z boson’s

partial widths (cf. [229]). In the MCHM, the simplest possibilities to achieve the custodial

protection is to embed the SM fermions into incomplete multiplets transforming either under

the fundamental 5 or the anti-symmetric 10 representation of SO(5), which are known as

MCHM5 and MCHM10, respectively [105,228]. Requiring minimal particle content, we have
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chosen the fundamental 5 representation of SO(5) for our MCHM analysis. Similarly, for the

NMCHM analysis, we have chosen the fundamental 6 representation of SO(6), which also

implements the custodial protection mechanism with minimal particle content. A notable

consequence of quark partners in 5 or 6 multiplets is that the models feature heavy quark

resonances with exotic electric charges -4/3 and +5/3. Due to their different charge compared

to the up-type or down-type quark partners, they decay into distinct channels and dedicated

experimental searches for these exotically charged resonances are available (cf. section 3.3.1).

An important goal of the analyses is to study the quark flavor structure. Consequently,

three generations of composite quarks are considered. On the contrary, the lepton sector is not

studied in detail and only elementary leptons are included. While it is beyond the scope of our

analyses to consider partially composite leptons, they can have interesting phenomenological

effects on the scalar potential [230] or in the context of the b→ s `+`− anomalies (cf. [1] and

chapter 5).

Both models considered in our analyses can be expressed in terms of the following moose

diagram (cf. eq. (2.173))

Global : G G1

//

Ω1
//

Ω2

H

Gauged : E G1

Quarks :

ξuR [u
(0)
R ]

ξuL [q
(0)
L ]

ξdL [q
(0)
L ]

ξdR [d
(0)
R ]

Ψ̃uL Ψ̃uR

ΨuR ΨuL

〉
Yu

ΨdR ΨdL

Ψ̃dL Ψ̃dR

〉
Yd

. (3.5)

The symmetry groups can be written as

G = G ×U(1)
(0)
X × SU(3)

(0)
C , H = H×U(1)

(2)
X × SU(3)

(2)
C ,

G1 = G1 ×U(1)
(1)
X × SU(3)

(1)
C , E = SU(2)

(0)
L ×U(1)

(0)
Y × SU(3)

(0)
C ,

(3.6)

where superscripts are used to distinguish fields and symmetry groups at different sites. The

groups G, G1, and H depend on the considered model. In the MCHM, they are defined by

G = SO(5)(0), G1 = SO(5)(1), H = SO(4)(2), (3.7)

while in the NMCHM they are given by

G = SO(6)(0), G1 = SO(6)(1), H = SO(5)(2). (3.8)
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The hidden local symmetry H can be used to remove unphysical would-be NGBs in Ω2 such

that only NGBs in the G1/H coset remain. Ω1 contains NGBs in the coset (G × G1)/GD,

where GD is the diagonal subgroup of G×G1. It is possible to choose a gauge where the direct

factors U(1)
(1)
X and SU(3)

(1)
C of the G1 gauge group are used to remove the would-be NGBs

in the
(

U(1)
(0)
X ×U(1)

(1)
X

)/
U(1)

(0+1)
X and the

(
SU(3)

(0)
C × SU(3)

(1)
C

)/
SU(3)

(0+1)
C parts of

(G×G1)/GD, respectively4. Consequently, in this gauge, Ω1 only contains the NGBs in the

(G ×G1)/GD coset, while mass and mixing terms for the SU(3)
(0)
C and SU(3)

(1)
C gauge bosons

G
(0)
µ and G

(1)
µ as well as the U(1)

(0)
Y and U(1)

(1)
X gauge bosons B0

µ and Xµ are introduced.

Denoting the G1 gauge bosons by ρµ and those of SU(2)
(0)
L by W

(0)
µ , the corresponding

leading-order Lagrangian for the NGBs and vector bosons then reads (cf. eq. (2.113))

Lboson =
f2

1

4
tr
[
DµΩ−1

1 (x)DµΩ1(x)
]

+
f2

2

4
tr
[
DµΩ−1

2 (x)DµΩ2(x)
]

− 1

4
tr
[
W (0)
µν (x)W (0)µν(x)

]
− 1

4
B(0)
µν (x)B(0)µν(x)− 1

4
tr
[
G(0)
µν (x)G(0)µν(x)

]
− 1

4
tr [ρµν(x) ρµν(x)]− 1

4
Xµν(x)Xµν(x)− 1

4
tr
[
ρGµν(x) ρG

µν(x)
]

+
f2
G

4

(
g3(0)G

(0)
µ (x)− g3(1)G

(1)
µ (x)

)2
+
f2
X

4

(
g′(0)B

(0)
µ (x)− gX Xµ(x)

)2
,

(3.9)

where the decay constants fG and fX of the NGBs associated with the heavy ρGµ and Xµ

bosons have been allowed to be independent of each other and of f1 and f2. The gauge

covariant derivatives are defined by

iDµ Ω1(x) = i ∂µ Ω1(x) +
(
g(0)W

(0)a
µ (x) TaL + g′(0)B

(0)
µ (x) T3

R

)
Ω1(x)− gρ Ω1(x) ρµ(x),

iDµ Ω2(x) = i ∂µ Ω2(x) + gρ ρµ(x) Ω2(x).

(3.10)

In the above expressions, g(0), g
′
(0), g3(0), g3(1), gX , and gρ denote the gauge couplings of

SU(2)
(0)
L , U(1)

(0)
Y , SU(3)

(0)
C , SU(3)

(1)
C , U(1)

(1)
X , and G1, respectively.

The Lagrangian of elementary and composite quarks is given by (cf. eq. (2.168))

Lquark = q̄
(0)
L (x) i /D q

(0)
L (x) + ū

(0)
R (x) i /D u

(0)
R (x)

+ Ψ̄u(x)
(
i /D −mU

)
Ψu(x) +

¯̃
Ψu(x)

(
i /D −m

Ũ

)
Ψ̃u(x)

+
{

∆uL ξ̄uL(x) Ω1(x) ΨuR(x) + ∆uR ξ̄uR(x) Ω1(x) Ψ̃uL(x) + h.c.
}

−
{
Yu Ψ̄uL(x) Ω2(x)φ0 φ

†
0 Ω†2(x) Ψ̃uR(x) +mYu Ψ̄uL(x) Ψ̃uR(x) + h.c.

}
+ ({u, U} → {d,D}) ,

(3.11)

4Here, the (0 + 1) superscript denotes a diagonal subgroup of a direct product of groups with superscripts

(0) and (1).
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where the covariant derivatives are defined by

iDµ q
(0)
L (x) =

(
i ∂µ +

1

6
g′(0)B

(0)
µ (x) + g3(0)G

(0)a
µ (x) TaC + g(0)W

(0)a
µ (x) TaL

)
q

(0)
L (x),

iDµ u
(0)
R (x) =

(
i ∂µ +

2

3
g′(0)B

(0)
µ (x) + g3(0)G

(0)a
µ (x) TaC

)
u

(0)
R (x),

iDµ d
(0)
R (x) =

(
i ∂µ −

1

3
g′(0)B

(0)
µ (x) + g3(0)G

(0)a
µ (x) TaC

)
d

(0)
R (x),

iDµ Ψu(x) =

(
i ∂µ +

2

3
gX Xµ(x) + g3(1)G

(1)a
µ (x) TaC + gρ ρ

a
µ(x) TaG

)
Ψu(x),

iDµ Ψd(x) =

(
i ∂µ −

1

3
gX Xµ(x) + g3(1)G

(1)a
µ (x) TaC + gρ ρ

a
µ(x) TaG

)
Ψd(x),

(3.12)

and those for Ψ̃u(x) and Ψ̃d(x) are the same as for Ψu(x) and Ψd(x), respectively. Here,

TaC = λa/2 are the generators of SU(3)C and λa are the Gell-Mann matrices, while TaG are

the generators of G ∼= G1.

As one of the aims of our numerical analysis was to study a model with full quark flavor

structure, it is understood that the above quark fields have an implicit generation index and

the composite-elementary mixings are 3 × 3 matrices. In our numerical analysis, we have

considered different implementations of the flavor symmetries discussed in section 2.3.3 to

suppress large contributions to meson-antimeson mixing.

The minimal composite Higgs model

In the MCHM, where G ∼= G1
∼= SO(5), the composite vector bosons ρµ = ρaµ TaG can be

decomposed as

ρµ = ρLµ + ρRµ + aµ, (3.13)

where ρLµ = ρL
a
µ TaL, ρRµ = ρR

a
µ TaR, and aµ = aaµ Ta

1̂
. They transform under SU(2)L×SU(2)R

as (3,1), (1,3), and (2,2), respectively (cf. appendix A.2). Thus, the vector bosons ρLµ and

ρRµ can be identified with the gauge bosons of the SU(2)
(1)
L and SU(2)

(1)
R subgroups of

SO(5)(1), while aµ is associated with the generators of the SO(5)/SO(4) coset.

When discussing a concrete model, it is convenient to choose a gauge that reduces the

number of NGBs by removing all would-be NGBs. To this end, one can use the holographic

gauge (cf. eq. (2.124))

Ω1(x) = U1(x) = exp

[
i

√
2

f1
πa(x) Ta

1̂

]
, Ω2(x) = 1. (3.14)

Employing in addition the SM unitary gauge, only π4(x) = h(x) is non-zero. As noted in

section 2.2.2, the holographic gauge leads to a mixing between the NGBs and the aµ vector
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bosons. This mixing can be removed by the field shift5

aµ4 (x)→ aµ4 (x)−
√

2

gρ

f

f2
2

∂µh(x) . (3.15)

In addition, the holographic gauge as defined in eq. (3.14) requires the field redefinition

h(x)→ f1

f
h(x) (3.16)

to get a canonically normalized kinetic term for h(x). The NGB matrix Ω(x) = Ω1(x) Ω2(x)

then takes the explicit form

Ω(x) =


1

1

1

ch(x) sh(x)

−sh(x) ch(x)

 , (3.17)

where the short-hand notation

sh(x) = sin

(
h(x)

f

)
, ch(x) = cos

(
h(x)

f

)
(3.18)

is used.

Similarly to the vector bosons, also the fermions can be decomposed into SU(2)L×SU(2)R

multiplets. In particular, a field Ψ(x) that transforms under the fundamental 5 representation

of SO(5) decomposes into a bidoublet Q(x) and a singlet S(x). Specifically, this can be

expressed as

Ψ(x) =
1√
2


Q++(x) +Q−−(x)

iQ++(x)− iQ−−(x)

Q+−(x)−Q−+(x)

iQ+−(x) + iQ−+(x)√
2S(x)

 , (3.19)

where the superscripts on the four components of Q(x) indicate their T3
L and T3

R charges.

While this decomposition can be used for each of the fields Ψu(x), Ψd(x), Ψ̃u(x), and Ψ̃d(x),

it also determines the embedding of the elementary fields into incomplete SO(5) multiplets.

5f−2 = f−2
1 + f−2

2 (cf. eq. (2.119)).
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This embedding is given by

ξuL(x) =
1√
2


d

(0)
L (x)

−id(0)
L (x)

u
(0)
L (x)

iu
(0)
L (x)

0

 , ξuR(x) =


0

0

0

0

u
(0)
R (x)

 ,

ξdL(x) =
1√
2


u

(0)
L (x)

iu
(0)
L (x)

−d(0)
L (x)

id
(0)
L (x)

0

 , ξdR(x) =


0

0

0

0

d
(0)
R (x)

 .

(3.20)

For our analysis of the MCHM, we have considered four scenarios with different flavor

symmetries in the quark sector: U(3)3 left-compositeness, U(3)3 right-compositeness, U(2)3

left-compositeness, and U(2)3 right-compositeness, which in the following are denoted by

U(3)3
LC, U(3)3

RC, U(2)3
LC, and U(2)3

RC, respectively (cf. section 2.3.3). The explicit expressions

of the mixing matrices ∆uL , ∆uR , ∆dL , and ∆dR are given in appendix A.5.2 for all four cases.

Plugging the decompositions of the vector bosons ρµ, eq. (3.13), and fermions, eqs. (3.19)

and (3.20), as well as the NGB matrices Ω2(x) = 1 and Ω2(x) = Ω(x), eq. (3.17), into the

Lagrangians in eqs. (3.9) and (3.11), one gets h(x)-dependent mass matrices for the fermions

and vector bosons. They are explicitly given in appendix A.4.1. These matrices are the basis

for the phenomenological study. For a given parameter point, they can be used to calculate

the scalar one-loop potential via eq. (2.222). The minimum of the potential then determines

the vacuum alignment in terms of the VEV of h(x). This VEV also enters the fermion and

vector boson mass matrices via their h(x)-dependence. Diagonalizing the mass matrices with

h(x) set to its VEV then yields all physical mass eigenstates after EWSB. The masses and

couplings of these mass eigenstates can finally be used for studying the phenomenology of

the given parameter point.

The next-to-minimal composite Higgs model

As in the MCHM, it is convenient to decompose the vector and fermion fields in the NMCHM

into SU(2)L×SU(2)R multiplets. For G ∼= G1
∼= SO(6), one finds the following decomposition

of the ρµ vector bosons:

ρµ = ρµL + ρµR + aµ1 + aµ2 + ρµS . (3.21)

While ρµL and ρµR are exactly the same SU(2)L and SU(2)R triplets as in the MCHM, there

are now two bidoublets aµ1 = aaµ1 Ta
1̂

and aµ2 = aaµ2 Ta
2̂
. While aµ1 is actually associated with
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the same SO(5) generators as aµ in the MCHM, these generators are the coset generators in

the MCHM but are unbroken generators in the NMCHM. Therefore, aµ1µ and aµ are quite

different from each other. On the other hand, since aµ2 is a bidoublet associated with coset

generators in the NMCHM, its mass, couplings, and mixing terms resemble those of aµ in

the MCHM. In this sense, the presence of aµ1 rather than aµ2 should be considered as a

main difference to the MCHM. Another main difference is the presence of ρµS , which is an

SU(2)L × SU(2)R singlet and associated with the TS generator of SO(6) (cf. appendix A.2).

For considering the NGBs, it is again convenient to use the holographic gauge, which

yields

Ω1(x) = U1(x) = exp

[
i

√
2

f1

(
πa(x) Ta

2̂
+ π5(x) TS

)]
, Ω2(x) = 1. (3.22)

Employing the SM unitary gauge removes the would-be NGBs π1(x), π2(x), and π3(x) and

leaves the two physical NGBs π4(x) and π5(x). It is convenient to parametrize them as

(cf. [231])

π4(x) = ĥ(x) cos

(
η̂(x)

f1

)
, π5(x) = ĥ(x) sin

(
η̂(x)

f1

)
. (3.23)

It is interesting to note that η̂(x) and π5(x) are pseudoscalars and odd under CP , while ĥ(x)

and π4(x) are even under CP . However, in the presence of CP violating contributions to the

scalar potential, ĥ(x) and η̂(x) can mix with each other. Consequently, the mass eigenstates,

which will be denoted by h(x) and η(x), are not necessarily CP eigenstates. In any case, the

mass eigenstate h(x) will be identified with the Higgs boson. In the absence of CP violation,

h(x) = ĥ(x) and η(x) = η̂(x).

Like in the MCHM, the holographic gauge introduces mixing terms between NGBs and

gauge fields. These mixing terms are removed by field shifts6 of a4µ
1 , a4µ

2 , and ρµS . To get

canonically normalized kinetic terms for ĥ(x) and η̂(x), the field shifts are succeeded by the

field redefinitions

ĥ(x)→ f1

f
ĥ(x), η̂(x)→ f1

f sin
(
vĥ
f

) η̂(x), (3.24)

where vĥ denotes the VEV of ĥ. Using the short-hand notation

sh(x) = sin

(
ĥ(x)

f

)
, s̃η(x) = sin

 η̂(x)

f sin
(
vĥ
f

)
 ,

ch(x) =
√

1− s2
h(x), c̃η(x) =

√
1− s̃2

η(x),

(3.25)

6For a detailed discussion of the mixing terms and field shifts, see [127].
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the NGB matrix Ω(x) = Ω1(x) Ω2(x) can then be expressed as

Ω(x) =



1

1

1

ch(x) c̃2
η(x) + s̃2

η(x) −(1− ch(x)) s̃η(x) c̃η(x) sh(x) c̃η(x)

−(1− ch(x)) s̃η(x) c̃η(x) ch(x) s̃2
η(x) + c̃2

η(x) sh(x) s̃η(x)

−sh(x) c̃η(x) −sh(x) s̃η(x) ch(x)


.

(3.26)

Turning to the fermion sector, a decomposition into SU(2)L × SU(2)R multiplets similar

to the one in the MCHM can be performed. In particular, a field Ψ(x) transforming under

the fundamental 6 representation of SO(6) can be expressed in terms of SU(2)L × SU(2)R

multiplets as

Ψ(x) =
1√
2



Q++(x) +Q−−(x)

iQ++(x)− iQ−−(x)

Q+−(x)−Q−+(x)

iQ+−(x) + iQ−+(x)√
2S1(x)√
2S2(x)


, (3.27)

where Q(x) is the same bidoublet as in the MCHM, while in contrast to the MCHM there

are two SU(2)L × SU(2)R singlets S1(x) and S2(x) present in the NMCHM. This has the

consequence that there is more freedom than in the MCHM for embedding the elementary

fields into incomplete multiplets of the global symmetries. The right-handed elementary fields

can actually be embedded both in the fifth and in the sixth component of the 6 multiplet,

which means they can have a mixing term with both S1(x) and S2(x). To account for this,

the right-handed composite-elementary mixings in the quark Lagrangian are replaced as

∆uR ξ̄uR(x)→
(
∆5
uR
ξ̄5
uR(x) + ∆6

uR
ξ̄6
uR(x)

)
,

∆dR ξ̄dR(x)→
(
∆5
dR
ξ̄5
dR(x) + ∆6

dR
ξ̄6
dR(x)

)
,

(3.28)

where the matrices ∆5
uR

and ∆5
dR

are in general different from ∆6
uR

and ∆6
dR

. The embeddings

of elementary fields into incomplete multiplets are then defined by

ξuL(x) =
1√
2



d
(0)
L (x)

−id(0)
L (x)

u
(0)
L (x)

iu
(0)
L (x)

0

0


, ξ5

uR(x) =



0

0

0

0

u
(0)
R (x)

0


, ξ6

uR(x) =



0

0

0

0

0

u
(0)
R (x)


, (3.29)
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ξdL(x) =
1√
2



u
(0)
L (x)

iu
(0)
L (x)

−d(0)
L (x)

id
(0)
L (x)

0

0


, ξ5

dR(x) =



0

0

0

0

d
(0)
R (x)

0


, ξ6

dR(x) =



0

0

0

0

0

d
(0)
R (x)


. (3.30)

While the presence of two different mixing terms for right-handed quarks would introduce

an additional source of flavor violation in models with a left-compositeness flavor symmetry,

we have avoided this by assuming a U(2)3
RC flavor symmetry in our analysis of the NMCHM.

Such a scenario has proved to be viable in our analysis of the MCHM, where different flavor

symmetries have been compared. The explicit mixing matrices used in the analysis of the

NMCHM are given in appendix A.5.2.

Analogous to the MCHM, one can construct mass matrices for fermions and vector bosons

using the above relations. These matrices are given in appendix A.4.2. An important differ-

ence to the MCHM is that they depend on both ĥ and η̂. Consequently, also the effective

potential is a function of ĥ and η̂. This can lead to mass mixing between these two scalars.

In particular, the scalar mass matrix is given by the second derivatives at the minimum of

the effective potential,

M2
scalar =

(
∂2
ĥ

∂ĥ∂η̂

∂ĥ∂η̂ ∂2
η̂

)
Veff(ĥ, η̂)

∣∣∣∣∣
ĥ=vĥ,η̂=vη̂

, (3.31)

where vη̂ denotes the VEV of η̂. In the presence of non-zero off-diagonal terms, the mass

eigenstates h and η have to be obtained by diagonalizing this matrix and are given by linear

combinations of ĥ and η̂.

It is interesting to note that due to the structure of the potential, the off-diagonal terms

vanish for vη̂ = 0. Note that this does not imply a vanishing mass of η. Interestingly, vη̂

strongly depends on the composite-elementary mixing matrices ∆5
uR

, ∆5
dR

, ∆6
uR

and ∆6
dR

. In

particular, for vanishing ∆5
uR

and ∆5
dR

, also vη̂ vanishes and there is no mixing between η̂

and ĥ. Furthermore, in the case vη̂ = 0, the mass matrices shown in appendix A.4.2 resemble

those of the MCHM and all particles in the NMCHM that are not present in the MCHM

decouple. In this sense, the MCHM is contained in the NMCHM as a limiting case in the

limit vη̂ → 0. The structure of the scalar potential in the NMCHM and this limiting case

are discussed in further detail in [127]. In general, it is assumed that η̂ and ĥ mix with each

other. In particular, the discussion of the collider constraints on η presented in section 3.3.3

is actually only meaningful if vη̂ 6= 0 such that η does not decouple and can be produced at

particle colliders.
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It should be noted that even in the absence of mixing, Wess-Zumino-Witten terms [232,

233] could induce couplings of η to gauge bosons. In particular, they can contribute to

the couplings ηZZ, ηW+W−, and ηGG [234–236]. However, these contributions strongly

depend on the UV structure of the model, which is not specified in the effective approach

used here. Treating the contributions as free parameters in the numerical scan is pointless as

far as they are not correlated with other parameters. The minimization used in the scanning

procedure (cf. section 3.1.1) could simply tune them to zero to avoid experimental bounds.

Consequently, these contributions are neglected in our numerical analysis and our bounds

should be considered as conservative.

3.2 Direct collider constraints

For being able to use direct constraints in the context of the numerical method described in

section 3.1.1, a central requirement on the numerical implementation of the direct constraints

is that it is reasonably fast. In particular, the time it takes to calculate the χ2 function

for all direct constraints should be O(100 ms). This can actually be achieved by relying on

experimental searches for narrow resonances that give bounds on the production cross section

times the branching ratio as a function of the resonance mass for specific decay channels.

Constraining a given parameter point then requires the calculation of cross sections and

branching ratios of all particles for which experimental searches should be considered. In

the above described models, this amounts to O(100) particles7 (cf. the mass matrices in

appendix A.4) and requires some simplifying assumptions.

3.2.1 Simplifying assumptions

To make it possible to calculate all cross sections and branching ratios for O(100) particles

in less than a second, the following simplifications are made:

• For the production cross section of quark partners, only the model-independent NNLO

QCD pair-production is considered. To this end, the cross section is computed over

a wide range of quark partner masses with the HATHOR code [237]. The results are

used to construct an interpolating function that allows for a very fast calculation of the

pair-production cross section for arbitrary quark partner masses. However, this means

that single production and pair production via heavy gluon resonances are neglected.

Single production is relevant for heavy partners of SM quarks with a large degree of

compositeness, i.e. usually for the partners of top and bottom, and can yield consider-

7This large number is mainly due to the full flavor structure in the quark sector that implies several

composite partners for each SM quark.
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ably larger cross sections than pair production (cf. [238–247]). In addition, since only

one heavy resonance is produced, this requires less energy than pair production. Con-

sequently, the experimental searches for singly produced quark partners are sensitive to

higher resonance masses. While neglecting single production does not affect the results

obtained from considering experimental searches for pair produced quark partners, it

reduces the number of experimental analyses than can be used as constraints.

While pair-production via heavy gluon resonances does in principle affect the results

obtained from the considered experimental searches, these effects are assumed to be

very small [248]. Taking them into account would yield a slightly larger cross section

and thus stronger bounds. In addition it would also allow to set additional indirect

bounds on the heavy gluon partners (cf. [248–250]). However, this is beyond the scope

of the analyses presented here.

• In the calculations of branching ratios and boson cross sections, the narrow-width

approximation (NWA) is used. While a narrow resonance is usually also assumed in

the considered experimental analyses, heavy resonances that are kinematically allowed

to decay to other heavy resonances can be very broad. Applying the same bounds to

broad resonances as to narrow ones is problematic because the experimental searches

are considerably less sensitive to broad resonances. Consequently, for such a broad

resonance, the experimental bound obtained with the NWA would be too strong. This

is taken into account by multiplying the χ2 value that corresponds to the bound on a

given resonance with mass mR and width ΓR with a smooth function8 that is close to

one for ΓR/mR < 5% and vanishes for ΓR/mR � 5%.

• All processes are only calculated to leading order. In particular, tree-level expressions

are used for the branching ratios of vector bosons and fermions and for the vector boson

production cross sections. For scalar branching ratios and production cross sections,

the loop induced couplings to gluons, photons and Z bosons are considered in addition

to the tree-level couplings to other particles. Especially the loop induced coupling to

gluons is essential for calculating the production cross section of neutral scalars that can

couple to quarks. In particular, the scalar η in the NMCHM is dominantly produced

via gluon fusion. In this case, also higher order QCD corrections are approximately

included by multiplying the gg → η production cross section by a K-Factor of 2.

8In the analysis in [2], actually a hard cut at ΓR/mR = 5% was used. This was changed in the analysis

in [3] because we found that it has the effect that for resonances with a width close but below 5%, the scan

tries to increase it above 5% to avoid the experimental constraints.
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• Only two-body decays are considered. While a coupling of a fermion to more than

two particles correspond to an operator of dimension larger than four and is therefore

suppressed, unsuppressed quartic couplings are in principle possible for vector bosons

and scalars. However, the only scalar resonance considered is η in the NMCHM, which

would have to decay to three Higgses. Because the mass of η is usually below 800 GeV

(cf. section 3.3.3), such a decay would be phase-space suppressed. Decays of heavy

vector bosons to three SM vector bosons on the other hand would require insertions of

three composite-elementary mixings and are thus also suppressed. Taking these effects

into account is beyond the scope of the analyses presented here.

• Only decays directly to SM particles are considered when setting bounds. In particu-

lar, decay chains involving several intermediate decays between heavy resonances are

not considered. However, this is not a strong restriction because the lightest heavy

resonances can only decay to SM particles for kinematical reasons. Since the exper-

imental bounds are stronger for smaller masses and the production cross section is

usually larger, these lightest heavy resonances usually yield the strongest bounds any-

way. It should be noted that decays of heavy resonances to other heavy resonances are

taken into account in the calculation of the total widths. This is important to derive

reasonable branching ratios.

3.2.2 Calculation of decay widths and branching ratios

A central aspect of deriving direct bounds on a given parameter point is to calculate decay

widths and branching ratios. The partial decay rate, or partial width, of a particle R decaying

to two particles i and j is given by [209,251]

ΓR→ij =

√
λ(m2

R,m
2
i ,m

2
j )

16πm3
R

|MR→ij |
2
, (3.32)

where mR, mi, and mj are the masses of R, i, and j, respectively, and the kinematic function

λ is defined as [251]

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc). (3.33)

In the above expression, |MR→ij |
2

denotes the squared amplitude of the process that has

been averaged over the initial states and summed over the final states. In the following, this

will be just called the amplitude squared for convenience, but it should be understood that

the averaging over the initial states and the summation over the final states is implied. The

total decay rate, or total width, of the particle R is given by the sum over all of its partial

105



CHAPTER 3. DIRECT COLLIDER CONSTRAINTS IN CHMs

widths, i.e.

ΓR =
∑
ij

ΓR→ij . (3.34)

This expression relies on the assumption that the total width can be sufficiently good ap-

proximated by summing only over all partial widths of two-body decays (cf. section 3.2.1).

The branching ratio for the decay of R into the particles i and j is then simply the ratio of

the corresponding partial width and the total width

BR(R→ ij) = ΓR→ij/ΓR. (3.35)

Consequently, even for calculating only the branching ratio of a single decay channel, it is

necessary to calculate all partial widths to get the total width. To this end, the following

decay channels are considered:

• A fermion resonance RF decaying to

– a fermion iF and a vector boson jV ,

– a fermion iF and a scalar jS .

• A vector resonance RV decaying to

– two fermions iF and jF ,

– two vector bosons iV and jV ,

– a vector bosons iV and a scalar jS .

• A scalar resonance RS decaying to

– two fermions iF and jF ,

– two scalars iS and jS ,

– two vector bosons iV and jV .

To calculate the decay widths for all these processes, the corresponding amplitudes are cal-

culated at tree level, except for the decay RS → iV jV with at least one massless vector boson

in the final state, which is calculated at one loop.

Amplitudes for decays of fermion resonances

The generic tree-level matrix element for the decay RF → iF jV , can be written as

MRF→iF jV = εµ(qj) iF (qi) γ
µ
(
gRF iF jVL PL + gRF iF jVR PR

)
RF (qR), (3.36)
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where gRF iF jVL and gRF iF jVR are in general complex coupling constants and qR, qi, and qj

are the momenta of RF , iF , and jV , respectively. Squaring, averaging over initial spins and

summing final spins and polarizations yields

|MRF→iF jV |
2

=
1

2

{(∣∣∣gRF iF jVL

∣∣∣2 +
∣∣∣gRF iF jVR

∣∣∣2)((m2
i −m2

R

)2
m2
j

+m2
i +m2

R − 2m2
j

)

− 12mimR

(
Re gRF iF jVL Re gRF iF jVR + Im gRF iF jVL Im gRF iF jVR

)}
.

(3.37)

The matrix element for the RF → iF jS transition, where now the final state boson is not a

vector but a scalar jS , is given by

MRF→iF jS = iF (qi)
(
gRF iF jSL PL + gRF iF jSR PR

)
RF (qR). (3.38)

After squaring, averaging over initial and summing over final spins, one finds

|MRF→iF jS |
2

=
1

2

{(∣∣∣gRF iF jSL

∣∣∣2 +
∣∣∣gRF iF jSR

∣∣∣2)(m2
i +m2

R −m2
j

)
+ 4mimR

(
Re gRF iF jSL Re gRF iF jSR + Im gRF iF jSL Im gRF iF jSR

)}
.

(3.39)

Amplitudes for decays of vector resonances

The matrix element for a heavy vector boson RV decaying to a fermion iF and an anti-fermion

jF is given by

MRV→iF jF = ε∗µ(qR) iF (q1) γµ
(
giF jF RVL PL + giF jF RVR PR

)
jF (q2). (3.40)

Squaring the matrix element, averaging over the initial polarizations and summing over the

final spins yields

|MRV→iF jF |
2

=
1

3

{(∣∣∣giF jF RVL

∣∣∣2 +
∣∣∣giF jF RVR

∣∣∣2)
2m2

R −

(
m2
i −m2

j

)2

m2
R

−m2
i −m2

j


+ 12mimj

(
Re giF jF RVL Re giF jF RVR + Im giF jF RVL Im giF jF RVR

)}
.

(3.41)

For the decay of a heavy vector boson RV to two light (but also massive) vector bosons iV

and jV , the matrix element is given by

MRV→iV jV = gRV iV jV ε∗µ(qR) εν(qi) ερ(qj)
{
ηνρ
(
qµi − q

µ
j

)
+ηµρ

(
qνR + qνj

)
+ηµν

(
−qρR − q

ρ
i

)}
,

(3.42)
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where g is the coupling constant. When squaring the matrix element, summing over the final

polarizations and averaging over the initial ones, one finds

|MRV→iV jV |
2

=

(
gRV iV jV

)2
λ(m2

R,m
2
i ,m

2
j )

12m2
Rm

2
i m

2
j

{
m4
R +m4

i +m4
j

+ 10
(
m2
Rm

2
i +m2

Rm
2
j +m2

i m
2
j

)}
,

(3.43)

where λ(a, b, c) is defined in eq. (3.33). The matrix element for a heavy vector boson RV

decaying into a light vector boson iV and a scalar jS can be written as

MRV→iV jS = gRV iV jS ε∗µ(qR) εν(ki) η
µν , (3.44)

where in contrast to the dimensionless coupling constants used above, gRV iV jS has mass

dimension one. Squaring this matrix element, summing over the final polarizations and

averaging over the initial ones yields

|MRV→iV jS |
2

=

(
gRV iV jS

)2
12m2

Rm
2
i

{
m4
R +m4

i +m4
j + 10m2

Rm
2
i − 2m2

j

(
m2
R +m2

i

)}
. (3.45)

Tree-level amplitudes for decays of scalar resonances

The matrix element for a heavy scalar RS decaying to a fermion iF and an anti-fermion jF

is given by

MRS→iF jF = iF (q1)
(
giF jF RSL PL + giF jF RSR PR

)
jF (q2). (3.46)

Squaring the matrix element, summing over final and averaging over initial states yields

|MRV→iF jF |
2

=

(∣∣∣giF jF RSL

∣∣∣2 +
∣∣∣giF jF RSR

∣∣∣2)(m2
R −m2

i −m2
j

)
− 4mimR

(
Re giF jF RSL Re giF jF RSR + Im giF jF RSL Im giF jF RSR

)
.

(3.47)

For the matrix element of a heavy scalar RS decaying to two scalars iS and jS , summing over

final states and averaging over initial states is trivial. The matrix element and the matrix

element squared are simply given by

MRS→iS jS = gRS iS jS , |MRS→iS jS |2 =
(
gRS iS jS

)2
, (3.48)

where gRS iS jS has mass dimension one. The matrix element for a heavy scalar RS decaying

to two massive vector bosons iV and jV is given by

MRS→iV jV = giV jV RS εµ(qi) εν(qj) η
µν , (3.49)
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where giV jV RS has mass dimension one. After squaring the matrix element, summing over

final states and averaging over the initial ones, one finds

|MRS→iV jV |
2

=

(
giV jV RS

)2
4m2

i m
2
j

{
m4
R +m4

i +m4
j + 10m2

i m
2
j − 2m2

R

(
m2
i +m2

j

)}
. (3.50)

One-loop amplitudes for decays of scalar resonances

The dimension five operator that couples a scalar RS to vector bosons,

RS

(
giV jV RSeff V µν Vµν + g̃iV jV RSeff Ṽ µν Vµν

)
, (3.51)

yields the following matrix element for a decay of the scalar RS to vector bosons iV and jV :

MRS→iV jV = 4 εµ(qi) εν(qj) η
µν
(
giV jV RSeff

(
qνi q

µ
j − ηµν qi · qj

)
− g̃iV jV RSeff εαβµν qi β qj α

)
.

(3.52)

Squaring this matrix element, averaging over the initial states and summing over the final

ones yields

|MRS→iV jV |
2

= 8m4
R

((
giV jV RSeff

)2
+
(
g̃iV jV RSeff

)2
)
. (3.53)

The effective couplings giV jV RSeff and g̃iV jV RSeff have mass dimension −1 and are generated at

one loop. The scalar coupling giV jV RSeff can receive contributions from both fermion and vector

boson loops, while the pseudoscalar coupling g̃iV jV RSeff only receives fermion contributions.

The different contributions will be indicated by an additional subscript such that

giV jV RSeff = giV jV RSeff,F + giV jV RSeff,V , g̃iV jV RSeff = g̃iV jV RSeff,F . (3.54)

The explicit expressions of the effective couplings depend on whether both final state vector

bosons iV and jV are massless or one of them is massive. To simplify the fermion contribu-

tions, it is convenient to define vector and axial vector couplings of the fermion k in the loop

by

gkF kF XV =
1

2

(
gkF kF XR + gkF kF XL

)
, gkF kF XA =

1

2

(
gkF kF XR − gkF kF XL

)
, (3.55)

where X ∈ {RS , iV , jV }. In addition, it is useful to define the color factor Nk
C of the fermion k,

where Nk
C = 3 for k a quark and Nk

C = 1 for k a lepton. The individual loop contributions

depend on the kinematic variable

xk = 4
m2
k

m2
R

. (3.56)
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For the case where both iV and jV are massless, the contributions from fermion loops are

given by

giV jV RSeff,F

∣∣mi=0

mj=0
=

−1

16π2mR

∑
k

Nk
C gkF kF RSV gkF kF iVV gkF kF jVV

AF (xk)√
xk

,

g̃iV jV RSeff,F

∣∣mi=0

mj=0
=

−1

16π2mR

∑
k

Nk
C gkF kF RSA gkF kF iVV gkF kF jVV

ÃF (xk)√
xk

,

(3.57)

while those from vector boson loops are

giV jV RSeff,V

∣∣mi=0

mj=0
=

1

16π2m2
R

∑
k

gkV kV RS gkV kV iV gkV kV jV
AV (xk)

xk
. (3.58)

The loop functions AF (xk), ÃF (xk), and AV (xk) are given in appendix A.3.

For the case where one of the vector bosons in the final state is massive, which is without

loss of generality chosen to be jV , the additional scale mj enters via the kinematic variable

yk = 4
m2
k

m2
j

. (3.59)

In this case, the fermion loop contributions are given by

giV jV RSeff,F

∣∣mi=0

mj 6=0
=

−1

16π2mR

(
1−

m2
j

m2
R

)∑
k

Nk
C gkF kF RSV gkF kF iVV gkF kF jVV

BF (xk, yk)√
xk

,

g̃iV jV RSeff,F

∣∣mi=0

mj 6=0
=

−1

16π2mR

(
1−

m2
j

m2
R

)∑
k

Nk
C gkF kF RSA gkF kF iVV gkF kF jVV

B̃F (xk, yk)√
xk

,

(3.60)

while those from vector boson loops are

giV jV RSeff,V

∣∣mi=0

mj 6=0
=

1

16π2m2
R

(
1−

m2
j

m2
R

)∑
k

gkV kV RS gkV kV iV gkV kV jV
BV (xk, yk)

xk
. (3.61)

The loop functions BF (xk), B̃F (xk) and BV (xk) are given in appendix A.3.

3.2.3 Calculation of boson production cross sections

In contrast to the production cross section of quark partners, for which the model-independent

QCD result is used, the cross section of vector and scalar bosons has to be calculated for each

of them individually at each parameter point. However, to simplify this task, it is possible

to make use of the Breit-Wigner formula for the cross section of the 2 → 2 process ij → kl
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mediated by a resonance R with partial widths ΓR→ij and ΓR→kl and a total width ΓR

(cf. [209,252,253]),

σij→R→kl(ŝ) = 16π
SR cR (1 + δij)

Si Sj ci cj

ΓR→ij ΓR→kl
(ŝ−m2

R)2 +m2
R Γ2

R

, (3.62)

where
√
ŝ is the center of mass energy of i and j. The factors SR, Si, and Sj denote the

number of polarizations or spins of the particles R, i and j, respectively, while cR, ci, and

cj denote their color multiplicity factors. In the calculation of ΓR→ij , the polarizations and

colors of R are averaged over while those of i and j are summed over. In addition, a symmetry

factor of 2 is introduced if i and j are identical final states. On the other hand, in the above

cross section, i and j denote the initial states over which one wants to average and R denotes

intermediate states one wants to sum over. This is taken into account by introducing the

factors SR, Si, Sj , cR, ci, cj , and (1 + δij) in the above expression. In the NWA employed

here (cf. section 3.2.1), one can use Γ2
R � m2

R to approximate (cf. e.g. [252,253])

1

(ŝ−m2
R)2 +m2

R Γ2
R

≈ π

ΓRmR
δ(ŝ−m2

R). (3.63)

With this approximation, the above cross section simplifies to

σij→R→kl(ŝ) =
16π

mR

SR cR (1 + δij)

Si Sj ci cj
ΓR→ij δ(ŝ−m2

R)BR(R→ kl), (3.64)

where the branching ratio BR(R→ kl) = ΓR→kl/ΓR is introduced (cf. (3.35)). This suggests

to define the production cross section for the 2→ 1 process ij → R by

σij→R(ŝ) =
16π2

mR

SR cR (1 + δij)

Si Sj ci cj
ΓR→ij δ(ŝ−m2

R). (3.65)

This expression is very convenient since all partial widths of the resonance R are calculated

anyway in the derivation of the branching ratios (cf. section 3.2.2). Consequently, the addi-

tional computing time for evaluating the cross section σij→R(ŝ) is negligible. However, this

is not the final result for the production of resonances at a hadron collider. In this case, the

elementary initial state particles i and j have to be partons of the colliding hadrons. Using

the parton luminosity Lp1 p2
ij (s, ŝ) of partons i and j in a collision of the two hadrons p1 and

p2 with center of mass energy s, one can express the hadronic cross section as

σp1 p2→R(s) =
∑
i,j

∫
dŝ

s
σij→R(ŝ)Lp1 p2

ij (s, ŝ). (3.66)

The hadrons p1 and p2 are two protons for collisions at the LHC, i.e. p1

∣∣
LHC

= p2

∣∣
LHC

= p,

while they are a proton and an anti-proton for collisions at the Tevatron, i.e. p1

∣∣
Tevatron

= p
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and p2

∣∣
Tevatron

= p̄. In terms of the parton distribution function fi(x, µ
2) of a parton i with

momentum fraction x at the renormalization scale µ, the parton luminosity can be expressed

as

Lp1 p2
ij (s, ŝ) =

∫ 1

ŝ/s

dx

x
fi(x, ŝ)fj

(
ŝ

x s
, ŝ

)
(1 + δp1 p2) , (3.67)

where, importantly, a factor 2 is introduced for the LHC, where δp p = 1, while this factor is

not present for the Tevatron, where δp p̄ = 0. The parton luminosity has to be calculated for

each parton, each collider and each collider’s center of mass energy
√
s for the whole range

of possible parton center of mass energies
√
ŝ. This is done by employing the LHAPDF soft-

ware [254]. From the resulting parton luminosities9, an interpolating function is constructed

that can be used in the parameter scan to efficiently calculate the hadronic vector and scalar

boson production cross sections. Combining eqs. (3.65) and (3.66), the final result for the

hadronic boson cross section used in our numerical code can be expressed as

σp1 p2→R(s) =
16π2 SR cR

mR

∑
i,j

1 + δij
Si Sj ci cj

ΓR→ij
Lp1 p2
ij (s,mR)

s
. (3.68)

3.2.4 Applying the experimental bounds

As soon as the production cross sections and branching ratios of the particles in the considered

model are calculated for a given parameter point, one can use them to compare the predictions

to the experimental data. The experimental searches usually give bounds in terms of 95%

CL upper limits on the cross section σp1 p2→R(s) times the branching ratio BR(R→ ij) for a

given decay R→ ij as a function of the resonance mass mR. This mass dependent observed

95% CL upper limit will be denoted by

{σp1 p2→R ×BR(R→ ij)}95% CL
observed (mR). (3.69)

To use this bound in the numerical method described in section 3.1.1, it has to be converted

into a χ2 value. To this end, it is assumed that the χ2 value scales linearly with the ratio

of the calculated σ × BR and the observed 95% CL upper limit. In the case where both

are equal, i.e. where the calculated value is excluded at the 95% CL, this is interpreted as

χ2 = 4. With these assumptions, the χ2 contribution of a single experimental search can be

expressed as

χ2 = 4
σp1 p2→R(s)BR(R→ ij)

{σp1 p2→R ×BR(R→ ij)}95% CL
observed (mR)

, (3.70)

9To be able to calculate the vector boson fusion (VBF) production cross section with the simplified approach

presented here, additional effective parton luminosities for the electroweak gauge bosons obtained by means

of the effective W approximation (EWA) [255–258] are included into our numerical code.
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where σp1 p2→R(s) and BR(R → ij) are the calculated cross section and branching ratio for

a given parameter point according to sections 3.2.2 and 3.2.3. It should be noted that in

our numerical analyses, parameter points are only discarded if they violate any individual

constraint by more than 3σ, which corresponds to χ2 = 9 (cf. section 3.1.1). Consequently,

they are actually allowed to violate the experimentally observed 95% CL upper limit by a

small amount. This can be seen in the plots shown in section 3.3.

There is a peculiarity in the case of searches for pair produced quark partners. Depending

on the analysis, it is either assumed that exactly one, both, or at least one of the two quark

partners decays in the analyzed decay channel. In the first case, the expression in eq. (3.70)

can readily be applied. In the other two cases, this expression is corrected by the following

replacements:

• BR(R→ ij)→ BR(R→ ij)2

in the case of both quark partners assumed to decay to ij,

• BR(R→ ij)→ 1− (1−BR(R→ ij))2

in the case where one or both of the quark partners are assumed to decay to ij.

To be able to apply direct constraints in as many decay channels as possible, a large

number of experimental searches is included into our numerical code. These searches are listed

in appendix A.6.1 for the analysis of the MCHM and in appendix A.6.2 for the one performed

in the NMCHM. The experimental data for all these searches is, up to few exceptions, only

available in the form of so called “Brazil band” plots. Digitizing the large number of plots

by hand is tremendously tedious. Hence, the open source code svg2data [259] has been

developed to automatize this task.

3.3 Results

3.3.1 Quark resonances

Experimental searches for quark partners provide important bounds on CHMs. This is in

particular the case in models that require light quark partners in order to obtain the correct

Higgs and top masses (cf. e.g. [105, 203–205]). The fact that we have only considered the

model independent QCD pair production in our numerical analyses is very convenient for

discussing the experimental bounds. It allows for readily recasting the experimental limits

on cross section times branching ratio into limits on the branching ratio alone. In figures 3.1,

3.2, and 3.3, predictions for the branching ratios and masses of quark resonances lighter than

2 TeV are shown. Only resonances corresponding to viable parameter points are included
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Figure 3.1: Predictions for masses and branching ratios of up-type quark resonances. Ex-

perimental bounds from the LHC running at different center of mass energies are shown as

colored areas. Predictions and experimental bounds from the MCHM analysis are shown in

(a), while those from the NMCHM analysis are shown in (b). The experimental searches

included in (a) are listed in table A.2, while those included in (b) are shown in table A.3.
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in these plots. Various decay channels for up-type (figure 3.1), down-type (figure 3.2), and

exotically charged (figure 3.3) quark resonances are shown. The experimentally observed

95% CL upper limits are included as colored regions in the plots. Note that due to the fact

that we have only excluded parameter points that violate an individual constraint by more

than 3σ, some of the predicted points actually already lie above the observed 95% CL upper

limits. Figures 3.1a, 3.2a, and 3.3a show the predictions and included experimental searches

for our scan of the MCHM, where three10 different flavor symmetry scenarios are displayed

in each of the plots, while figures 3.1b, 3.2b, and 3.3b show the results for our analysis of the

NMCHM.

A main difference between the MCHM and the NMCHM is the presence of the scalar

resonance η in the latter. In the NMCHM, this implies additional decay channels involving

SM quarks. In particular, up-type quark resonances can decay to SM up-type quarks and an

η, and analogously for down-type quarks. With a new channel available, the branching ratios

of all other channels are slightly reduced. However, since there are many decay channels in

total, the overall picture is not considerably changed compared to the MCHM analysis.

While there can be up to 30 different resonances of a given quark type in the models

considered (cf. the mass matrices in appendix A.4), the lightest resonances are the most

interesting ones from the phenomenological point of view. They are required to decay to SM

quarks for kinematical reasons and therefore have large branching ratios in the experimentally

analyzed channels. In addition, many of them are light enough to be already in reach of

LHC run 2. In particular, in the NMCHM analysis, we have observed that for 97% of the

viable parameter points, at least one quark resonance has a mass below 1.2 TeV. For masses

considerably above 1 TeV, most quark partners are therefore kinematically allowed to decay

to the lightest quark resonances. Due to these new decay channels opening up with higher

resonance masses, the branching ratios to SM particles decrease. This is a general feature

that can be observed in all of the plots in figures 3.1, 3.2, and 3.3.

The strongest experimental bounds we have found are on up-type quark partners U that

decay to third generation quarks and a SM boson. In particular, the relevant decay channels

are U → bW , U → tZ and U → th. These three decay channels are the ones best covered by

experimental searches. It is interesting to compare the bounds used in the MCHM analysis to

those used in the NMCHM analysis. While only searches from LHC run 1 have been included

in the former, the latter also considered searches from LHC run 2. This is seen by comparing

the plots in figure 3.1a with those in figure 3.1b, where the dark red regions correspond to

10As already suggested by the discussion in section 2.3.3 and analytical analyses of similar models (cf. [162,

171]), the U(3)3
LC scenario suffers from very strong constraints imposed by electroweak precision tests and

CKM unitarity. No viable parameter point that is actually able to satisfy these constraints has been found

for this scenario in our numerical scan.
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Figure 3.2: Predictions for masses and branching ratios of down-type quark resonances.

Experimental bounds from the LHC running at different center of mass energies are shown

as colored areas. Predictions and experimental bounds from the MCHM analysis are shown

in (a), while those from the NMCHM analysis are shown in (b). The experimental searches

included in (a) are listed in table A.2, while those included in (b) are shown in table A.3.
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run 2 searches. While the overall picture does not change considerably between the MCHM

and the NMCHM analyses, the early run 2 searches included in the latter actually already

probe the viable parameter points. One finds many points to be adjacent or even above the

95% CL upper limits. This is in contrast to the analysis of the MCHM, where LHC run 2 data

was not yet available, and the parameter space is barely probed by the direct quark partner

searches. While also more experimental searches for down-type quark partners D have been

included into the NMCHM analysis compared to the one of the MCHM, corresponding data

from LHC run 2 was not yet available. However, one observes that the decay channels to

third generation quarks, i.e. D → tW , D → bZ and D → bh, also offer good prospects to

probe large parts of the viable parameter space with LHC run 2 searches (cf. figure 3.2).

While many experimental searches are available for decay channels involving third gen-

eration SM quarks, only few consider decays to the light first and second generation quarks.

Actually, for the parameter scans of the MCHM and the NMCHM, only searches with a light

quark and W boson in the final state were available (cf. figures 3.1, 3.2, and 3.3). However,

any model with a full flavor structure, which features quark partners for all three generations,

generically predicts also heavy quark resonances decaying to light SM quarks. In particular,

we find very light resonances with masses below 750 GeV that dominantly decay to quarks of

the first two generations and are virtually unconstrained by direct experimentally searches.

This is interesting because they can presumably be probed by analyzing already available

experimental data. Interestingly, in our NMCHM analysis, essentially all quark resonances

with very light masses below 750 GeV are found to be mainly composed of the singlets S2 and

S̃2 and to decay dominantly to a light SM quark and the Higgs11 (cf. the XY = qh-channels

in figures 3.1b and 3.2b). The qh decay channels are thus by far the most promising ones to

search for the very light unconstrained quark resonances that could have masses as low as

500 GeV.

In figure 3.3, predictions and experimental bounds are shown for the exotically charged

quark resonances. Due to their charges, their decays to SM particles always has to involve

a W boson. This considerably reduces the number of possible decay channels compared to

the up-type and down-type quark resonances. One might assume that this leads to very high

branching ratios for decays to SM quarks, at last for the lightest exotically charged quark

resonances. However, since their mass cannot be lowered by mixing with SM quarks, the

exotically charged quark resonances are generically heavier than the up-type and down-type

quark partners. Consequently, already the lightest exotically charged quark resonances are

usually kinematically allowed to decay to up-type and down-type quark resonances. Still, as

11 The fact that the singlet resonances coupled to light quarks can themselves be very light and dominantly

decay in virtually unconstrained channels involving the Higgs boson was already noted in [243].
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Figure 3.3: Predictions for masses and branching ratios of charge 5/3 (first row) and charge

−4/3 (second row) quark resonances. Experimental bounds from the LHC running at differ-

ent center of mass energies are shown as colored areas. Predictions and experimental bounds

from the MCHM analysis are shown in (a), while those from the NMCHM analysis are shown

in (b). The experimental searches included in (a) are listed in table A.2, while those included

in (b) are shown in table A.3.

can be seen in figure 3.3, many of them have a considerably large branching ratio and a mass

around 1 TeV, which allows them to be probed by LHC run 2 searches.

It is a very interesting general result of our analyses that most of the viable parameter

points we have found can presumably be probed by direct searches for quark partners with

LHC run 2 data. Among all constraints considered in our analyses, these searches therefore

have the arguably highest potential to observe or exclude our viable parameter points in the

near future.

3.3.2 Vector resonances

The models considered in our analyses contain neutral and charged electroweak resonances

as well as a gluon resonance. The mass of the latter depends on the NGB decay constant
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fG and is therefore independent of all other resonance masses (cf. section 3.1.3). Hence, the

numerical scan can choose it to be relatively heavy. In addition, it couples strongly to quark

resonances, which usually makes it very broad and substantially decreases the branching

ratios of decays to SM quarks. Consequently, to search for pairs of quark partners produces

via a gluon resonance [248,250] is arguably the best way to search for it. However, as already

mentioned in section 3.2.1, this is beyond the scope of the analyses presented here. The

following discussion therefore focuses on the neutral and charged electroweak resonances.

In contrast to the quark sector, where one usually encounters strong mixing, the vector

bosons only moderately mix with each other. Hence, it is reasonable to associate each mass

eigenstate with a corresponding gauge eigenstate it is mainly composed of. In the following,

the mass eigenstates will therefore simply be denoted12 by the name of their corresponding

gauge eigenstate.

Charged electroweak resonances

The MCHM contains the three charged resonances ρ±Lµ, ρ±Rµ, and a±µ . While the first two

have very similar masses, the latter is always heavier. This can be understood by taking a

look at the mass matrix in eq. (A.21), where one finds that the mass term of a±µ is enhanced

by a factor f2
2 /f

2 compared to the other resonances13. In the NMCHM, one finds the same

resonances ρ±Lµ and ρ±Rµ as in the MCHM but two resonances associated with a bidoublet

(cf. section 3.1.3): a±1µ and a±2µ. The resonance a±2µ is very similar to a±µ in the MCHM and

its mass term is also enhanced by a factor f2
2 /f

2. The resonance a±1µ on the other hand has

a mass similar to those of ρ±Lµ and ρ±Rµ (cf. eq. (A.29)).

When it comes to the collider phenomenology, the only relevant resonance in both models

is ρ±Lµ as it is the only one that has a considerable Drell-Yan production cross section. The

cross sections of the other resonances are significantly smaller. In a large part of the parameter

space, the ρ±Lµ is heavy enough to be kinematically allowed to decay to quark resonances; this

then reduces its branching ratio to SM particles. The largest branching ratios to the latter are

found for ρ±Lµ → WZ and ρ±Lµ → Wh. Predicted values14 of cross section times branching

ratio for these channels are shown in the two upper plots in figure 3.4. One observers that

12It might be useful to stress that while the same names are used for mass eigenstates and for the gauge

eigenstates these mass eigenstates are mainly composed of, the mass eigenstates also contain other gauge

eigenstates to a smaller degree. In our numerical code, of course the full mixing matrix is diagonalized to

yield the mass eigenstates.
13Note that f−2 = f−2

1 + f−2
2 and thus f2 > f .

14Only plots containing predictions in the NMCHM are shown as they feature bounds from the LHC

running at 13 TeV that were not available for the analysis of the MCHM. However, it should be noted that

the phenomenology of ρLµ is very similar in both models and the same conclusions can be drawn.
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Figure 3.4: Experimental bounds from ATLAS and CMS and predictions from viable parame-

ter points of the ρ±Lµ production cross section times the branching ratio into WZ (upper-left),

Wh (upper-right), e±νe (lower-left) and tb (lower-right). The experimental analyses shown

in the plots are listed in table A.5.
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while approximately equal, the branching ratios in the Wh channel are slightly larger than

those for WZ. However, the experimental searches are slightly more sensitive in the WZ

channel, such that the bounds are very similar. For both channels, the prospects are good

to probe viable parameter points by future LHC searches. While the branching ratios in the

ρ±Lµ → e±νe channel are at least one order of magnitude smaller than those for decays to

WZ and Wh, the experimental searches are more sensitive by a similar factor (cf. lower-

left plot in figure 3.4). The situation in the ρ±Lµ → µ±νµ channel is essentially the same.

Consequently, in addition to the decays to WZ and Wh, also decays to e±νe and µ±νµ are

promising for probing viable parameter points. While the branching ratios for the decay to

tb are similar to those of the leptonic decays, the experiments are far less sensitive, such that

this decay channel is not very promising for probing the parameter space (cf. lower-right plot

in figure 3.4).

Neutral electroweak resonances

The MCHM contains the five neutral uncolored resonances ρ3
Lµ, ρ3

Rµ, a3
µ, a4

µ, and Xµ. The

resonances ρ3
Lµ and ρ3

Rµ have masses very similar to each other. Like the charged resonance

a±µ , also the neutral resonances a3
µ, and a4

µ have a mass enhanced roughly by a factor of

f2
2 /f

2 compared to ρ3
Lµ and ρ3

Rµ (cf. eq. (A.19)). The fifth resonance Xµ is special in the

sense that its mass depends on the NGB decay constant fX and on the coupling gX , which

are both independent of the decay constants and couplings entering the masses of the other

resonances. Therefore, it can be considerably lighter than the already relatively light ρ3
Lµ

and ρ3
Rµ, it can have a mass between those of the light ρ3

Lµ and ρ3
Rµ and the heavy a3

µ and

a4
µ, and it can also be the heaviest resonance. In the NMCHM, the list of light resonances is

extended by the resonances a3
1µ and a4

1µ, while the heavy resonances a3
2µ and a4

2µ correspond

to a3
µ and a4

µ in the MCHM. The additional resonance ρS µ has a mass similar to the heavy

resonances a3
2µ and a4

2µ.

Not all of the above states are relevant for the collider phenomenology. The resonance

a4
µ in the MCHM and a4

1µ, a4
2µ, and ρS µ in the NMCHM do not mix with any of the other

states and are usually heavy (cf. eqs. (A.19) and (A.27)). This makes them irrelevant for the

collider phenomenology. While the resonances a3
µ in the MCHM as well as a3

1µ and a3
2µ in

the NMCHM do mix with W
(0)
µ and B

(0)
µ , the mixings are suppressed by at least one factor

of sh and their production cross section is very small. Consequently, the only resonances

relevant for the collider phenomenology are in both models ρ3
Lµ, ρ3

Rµ, and Xµ.

The case where Xµ is the lightest resonance is kind of special. While the mass of heavy

electroweak resonances is bounded from below due to their contributions to the electroweak

S parameter, this bound does not apply to a linear combination of resonances that couples to
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Figure 3.5: Experimental bounds from ATLAS and CMS and predictions for the neutral

vector resonance production cross section times the branching ratio into tt̄ (top-left), e+e−

(top-right), WW (bottom-left) and ZH (bottom-right). We show values for the resonances

Xµ, ρ3
Lµ and ρ3

Rµ for the viable parameter points. The experimental analyses included in

the plots are listed in table A.5.
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the same quantum numbers as the photon. Interestingly, in the case gX � gρ, such a linear

combination is mainly composed of Xµ and at the same time Xµ is light. This explains

why Xµ can appear as a very light resonance even though the S parameter is included as

constraint in our global analyses (cf. section 3.1.2). In the case where Xµ is the lightest

resonance, its production cross section is much larger than those of the other resonances.

The blue dots in the plots in figure 3.5 show predictions for the production cross section of

Xµ times its branching ratio for the most important decay channel. Since Xµ only mixes with

B
(0)
µ and not with W

(0)
µ , the branching ratio of its WW decay channel is strongly suppressed.

A similar suppression is found for the Zh channel since Xµ can couple to h only via its mixing

with B
(0)
µ . These suppressions can be seen in the two lower plots in figure 3.5. Because Xµ

couples to composite quarks, and top quarks usually have a sizable degree of compositeness,

the by far largest branching ratio is found for Xµ → tt̄. The upper-left plot in figure 3.5

shows that the predictions for many viable parameter points are close or even above the 95%

CL upper limits. Thus, the tt̄ channel is very promising for probing the region of parameter

space where Xµ is the lightest resonance. Even though Xµ can couple to leptons only via its

mixing with B
(0)
µ , the resulting suppression of the branching ratio can be compensated by

the high sensitivity of experimental searches in the dilepton channel. As a consequence, the

bounds in this channel are even stronger than those in the tt̄ case. As shown in the upper-

right plot in figure 3.5, the experimental searches are already probing the viable parameter

space with searches in the e±e∓ channel. The situation is very similar in the µ±µ∓ channel,

for which no plot is shown here.

While the tt̄ and dilepton channels are the most promising ones in the case of Xµ being

the lightest resonance, this changes if Xµ is heavier than ρ3
Lµ and ρ3

Rµ. In this case, the latter

two resonances can play the most important role in probing the parameter space. Both mix

with W (0) and can directly couple to the Higgs. Consequently, the branching ratios in their

WW and Zh channels are not strongly suppressed like they are for Xµ. The two lower plots

in figure 3.5 show that for the WW and Zh channels, the predictions of cross section times

branching ratio are not far away from the experimental bounds, especially for ρ3
Lµ. While

the predictions are approximately similar for both channels, the experimental analysis in the

WW channel has a higher sensitivity compared to those in the Zh channel, such that the

former channel might be more promising. In general, one observes that cross section times

branching ratio is slightly larger for ρ3
Lµ than for ρ3

Rµ. While this effect can be seen in the

diboson channels, it es even more pronounced in the dilepton case. As can be seen in the

upper-right plot in figure 3.5, the predictions for the ρ3
Lµ → e±e∓ channel are already close

to the experimental bounds.
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To summarize the results found for the above two cases, the prospects for observing or

excluding our viable parameter points are always high in the dilepton channel, while they

are also high in the tt̄ channel if Xµ is the lightest resonance and in the diboson channels if

ρ3
Lµ is very light.

3.3.3 The scalar resonance η in the NMCHM

While the phenomenology of the vector and quark resonances is very similar in the MCHM

and the NMCHM, there is a clear distinction between both models. This is the presence

of the scalar resonance η in the latter. Since η is a pNGB, it is usually much lighter than

the other resonances. Only in some small regions of the parameter space, very light quark

partners can be slightly lighter than η. Its mass mη is predicted to be below 790 GeV for

75% of the viable parameter points, while no point with mη above 1300 GeV has been found

by our numerical scan. The couplings of η to SM particles stem from the mixing with the

Higgs. As noted in section 3.1.3, these couplings completely vanish in the absence of mixing

in the scalar sector. In the presence of mixing, however, they are always similar to those of

the Higgs. Hence, it is reasonable to expect that the dominant production mechanism of η

at a hadron collider is the same as for the Higgs, which is gluon fusion. The box plot15 in

figure 3.6a shows that this assumption is correct. This plot shows ranges of values of the η

hadronic cross section in different production channels normalized to the total hadronic cross

section of η. In particular, rσ(gg) = σ(pp → gg → η)/σ(pp → η) > 0.93 is found for 75% of

the viable parameter points, while for 50% of the viable points, one even finds rσ(gg) > 0.99.

This clear dominance of the gluon fusion production mechanism is not due to a coupling

of the η to gluons that is orders of magnitude larger than those to other particles. The

reason is rather that gluons are abundantly available in a hadronic collision. As detailed in

section 3.2.3, the hadronic cross section is calculated from the partonic cross sections and the

parton luminosities (cf. eq. (3.66)). The latter strongly depend on the considered parton. To

visualize this, figure 3.6b shows the parton luminosities for a partonic center of mass energy√
ŝ = mR for different combinations of partons as a function of the mass of the produced

resonance mR. One observes that the parton luminosity for two gluons is two to three orders

of magnitudes above those of the bb̄ and cc̄ pairs, which usually give the second and third

largest contribution to the hadronic cross section. The effective parton luminosities for WW

15In the box plot, the dashed orange lines show the total range of values that are predicted by the viable

parameter points, the blue boxes show the range of values omitting the 25% smallest and the 25% largest

values, which is also called the interquartile range. 50% of the parameter points predict a smaller value than

the one shown by the red line, which is called the median. While statistics vocabulary is used here to describe

the viable parameter points, it should be stressed that no statements are made about the probability of finding

specific values.
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XY

10−5

10−4

10−3

10−2

10−1

100

σ
p
p
→
X
Y
→
η
/σ

p
p
→
η

(a)

500 1000 1500

mR [GeV]

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

L i
j
(s
,m

R
)/
s

[p
b

]

√
s = 13 TeV

ij = gg

ij = cc̄

ij = bb̄

ij = WW

ij = ZZ

(b)

Figure 3.6: (a): Box plot of the η production cross section in different channels relative

to the total production cross section. For each channel, the plot shows the total range (as

dashed orange line), the interquartile range (as blue box), and the median (as red line inside

the box) of values from viable parameter points. For an explanation of interquartile range

and median, see footnote 15. (b): Parton luminosities for ij = gg, cc̄, bb̄ and effective parton

luminosities for ij = WW,ZZ for the LHC with
√
s = 13 TeV.

and ZZ are again around three orders of magnitudes below those of bb̄ and cc̄, such that their

contributions to the production cross section are even more suppressed. The contributions

from light quarks on the other hand are negligible due to their tiny Yukawa couplings. (cf.

figure 3.6a).

Another important property of the parton luminosities is that they substantially decrease

for larger resonance masses mR. This dependence of the parton luminosities on the resonance

mass is one of the main reasons for the difference between the phenomenology of η and the

Higgs. While η has couplings very similar to those of the Higgs, it is usually substantially

heavier. Consequently, its production cross section is suppressed due to comparatively small

parton luminosities. This can be further illustrated by directly comparing cross sections and

parton luminosities in η production to those in Higgs production. To this end, the blue dots

in figure 3.7a show the ratio of the hadronic gluon fusion cross section of η to the one of the

Higgs as a function of mη for viable parameter points. In addition, the yellow line shows the

ratio of the gg parton luminosity at mη to the one at the Higgs mass. While the ratio of the

hadronic cross sections can clearly be above or below the yellow line, which just means that
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Figure 3.7: (a): Ratio of the hadronic production cross section via gluon fusion of η to the

one of the Higgs (blue dots) and ratio of gluon-gluon parton luminosities with
√
ŝ = mη

to the one with
√
ŝ = 125 GeV. (b): Box plot of the η branching ratios of different decay

channels. The usually very small up and down quark branching ratios are not included. For

an explanation of the features of a box plot, see footnote 15.

the partonic gluon fusion cross section of η is larger or smaller than the one of the Higgs, its

maximal value at a given mass mη decreases with a similar slope as the parton luminosity

ratio. For the bulk of the viable parameter points, one finds the gluon fusion cross section of

η to be suppressed by at least one to two orders of magnitude compared to the gluon fusion

cross section of the Higgs.

Since the couplings of η are similar to those of the Higgs, also the decay channels are

similar. However, the fact that mη is generically larger than the Higgs mass has important

implications. In particular, an η with a mass mη & 200 GeV can decay to on-shell WW and

ZZ pairs. With a mass mη & 250 GeV, it can decay to a pair of Higgses. And for a mass

mη & 350 GeV, the decay channel to a tt̄ pair opens up. For most viable parameter points,

actually all of these decay channels are kinematically available. Predictions of branching

ratios in all relevant decay channels are shown as a box plot in figure 3.7b. The by far largest

branching ratio is usually the one of the η → hh channel. The ηhh coupling is obtained from

a third derivative of the effective potential and is usually large if there is considerable η̂ − ĥ
mixing. The large branching ratio of the η → hh channel significantly reduces the branching
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Figure 3.8: Experimental bounds from ATLAS and CMS and predictions from viable param-

eters points of the η production cross section via gluon fusion times the branching ratio into

hh (top-left), γγ (top-right), ZZ (bottom-left) and WW (bottom-right). The experimental

analyses shown in the plots are listed in table A.4.
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ratios of the other channels. The h → tt̄ channel has usually the second largest branching

ratio, which for most viable parameter points is smaller than the one of the η → hh channel

by one to two orders of magnitude. The branching ratios of decays to weak gauge bosons16,

bb̄, and gluons are usually roughly one order of magnitude smaller than the one of the tt̄

channel. The decays to first and second generation quarks and the loop-induced decays to

uncolored neutral vector bosons are even more strongly suppressed.

The large branching ratio found for η → hh suggest that this channel should be promising

for probing the viable parameter points. As shown in the upper-left plot in figure 3.8, this is

indeed the case. The blue dots in this plot show the predicted gluon fusion cross section of

η times the branching ratio in the η → hh channel as a function of mη. The green and red

lines show the 95% CL upper limits observed by ATLAS and CMS, respectively. Many viable

parameter points are actually found predict values close to the experimental bounds. This

decay channel is thus by far the most promising one to probe the parameter space already

at LHC run 2. However, even though the branching ratios for the other decay channels are

significantly smaller, this can be compensated to some degree by a higher sensitivity of the

experimental searches. In particular, the channels η → ZZ and η → WW shown in the two

lower plots in figure 3.8 are especially promising for probing parameter points predicting a

very light η that is kinematically not allowed to decay to two Higgses. Other decay channels

are less promising. In the upper-right plot in figure 3.8, predictions and experimental bounds

for the η → γγ channel are shown. Even though the experimental searches are sensitive

to much smaller values of cross section times branching ratio than in the afore mentioned

promising channels, the predicted values for most viable parameter points are at least two

orders of magnitude below the bounds. However, given the tiny branching ratio of the η → γγ

channel, this is not surprising. The situation is very similar in the η → Zγ channel for which

no plot is shown. While the decays to third generation quarks actually do have a much larger

branching ratio, the experiments are less sensitive in these channels, such that the bounds

are actually even further away from the predictions than in the γγ channel.

To summarize, the prospects for excluding or observing viable parameter points are by

far the best in the η → hh channel, while the diboson channels are also interesting especially

for a very light η that cannot decay to two Higgses.

16Contrary to what one might expect from the Goldstone boson equivalence theorem, the ηWW and ηZZ

couplings are substantially smaller than the ηhh coupling. This is due to the facts that the latter stems from

the η̂ − ĥ mixing and the longitudinal polarizations of W and Z do not mix with η̂.

128



4
Anomalies in rare B decays

In the absence of direct evidence for new particles at the LHC, the arguably best way to

search for NP is to look for indirect effects. Among the most promising indirect probes of

NP are rare meson decays involving FCNCs. With their SM contribution being suppressed

both by a loop factor and small CKM elements, these processes are very sensitive to NP

contributions. The rare B-meson decay B → K∗µ+µ− is an important example, whose key

role in the search for NP at the LHC has been emphasized by several authors over the last

two decades (cf. [260–264]). The angular distribution of its decay products yields several

angular observables, among which the one called S5 seems to be especially promising [264,

265]. To reduce its form factor uncertainties, a differently normalized version of S5 has

been suggested in [266] and called P ′5. Its first measurement by the LHCb collaboration

in 2013 already showed a tension with the SM prediction at the level of about 3σ, only to

be confirmed by an analysis of the full LHCb Run 1 data in 2015 [51]. In addition to P ′5,

tensions with the SM predictions have also been found in branching ratio measurements of

the decays B → K(∗)µ+µ− and Bs → φµ+µ− [49, 50]. Analyses of these tensions by several

groups [45–48, 52–54] have since shown that they are all compatible with a NP explanation

in terms of a contribution to a single WC in the WEH. Recently, also ATLAS [267] and

CMS [268] presented preliminary results for their measurements of B → K∗µ+µ− angular

observables, including the full Run 1 data set. In [4], we have performed a numerical analysis

of rare B meson decays that are based on the b→ sµµ transition, where we have taken into

account also the new results by ATLAS and CMS. This analysis is presented in section 4.2.

Unfortunately, the NP explanation of the B → K∗µ+µ− anomaly has some trouble.

Despite progress on improving the B → K∗ form factors [269–271], hadronic effects still

cannot be ruled out as the origin of this anomaly. In addition, the significance of the devia-

tions depends on the uncertainties in both form factors and non-factorizable hadronic effects
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(cf. [272–278]). However, in ratios of branching ratios [55–57] like

RK =
B(B → Kµ+µ−)

B(B → Ke+e−)
, RK∗ =

B(B → K∗µ+µ−)

B(B → K∗e+e−)
, (4.1)

and differences of angular observables [279–281] like

DP ′4
= P ′4(B → K∗µ+µ−)− P ′4(B → K∗e+e−) , (4.2)

DP ′5
= P ′5(B → K∗µ+µ−)− P ′5(B → K∗e+e−) , (4.3)

the dependence on hadronic effects and uncertainties cancel to a large degree, such that these

observables are theoretically much cleaner. A NP effect that affects all lepton generations

equally, i.e. one that is lepton flavor universal, cannot be found by measurements of these

observables. However, the SM itself satisfies LFU to an excellent degree over a large range

of1 q2, where one finds RK = RK∗ = 1 and DP ′4
= DP ′5

= 0 with only very small uncertainties

(cf. [4,282] and section 4.3.2). An observed deviation from these values would thus be a clear

sign of NP.

While there is no 5σ observation yet, several measurements actually show tensions with

the SM prediction. The LHCb collaboration has measured both RK and RK∗ . Their RK

measurement found [58],

R
[1,6]
K = 0.745+0.090

−0.074 ± 0.036 , (4.4)

where the superscript specifies the range of the q2 region, or bin, in which the measure-

ment was performed. This corresponds to a 2.6σ deviation from the SM prediction. Their

measurement of RK∗ in two different q2 bins found [59],

R
[0.045,1.1]
K∗ = 0.66+0.11

−0.07 ± 0.03 , (4.5)

R
[1.1,6]
K∗ = 0.69+0.11

−0.07 ± 0.05 , (4.6)

which corresponds to deviations from the SM prediction by 2.4 and 2.5σ, respectively. The

observables DP ′4
and DP ′5

have been measured by the Belle collaboration, finding [283]

D
[1,6]
P ′4

= 0.498± 0.553 , (4.7)

D
[1,6]
P ′5

= 0.656± 0.496 , (4.8)

which has still large uncertainties. However, given that the three LHCb measurements all

show tensions with the SM prediction, an interesting question is if they are compatible with

one other and what implications a confirmation of these results would have. To this end, we

have performed a model-independent analysis2 in [5] to interpret these tantalizing hints for

NP. This analysis is presented in section 4.3.

1q2 is the dilepton invariant mass squared.
2Several other groups have also performed similar analyses [284–287].
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4.1. WEAK EFFECTIVE HAMILTONIAN AND NUMERICAL METHOD

4.1 Weak effective Hamiltonian and numerical method

On the quark level, all of the above processes are due to b→ s`` (with ` ∈ {e, µ}) transitions.

Assuming that any NP that could contribute to these transitions is sufficiently heavy, it can

be described model-independently by the WEH Hweak = Hweak,SM + Hweak,NP. The part

of the WEH that contains NP contributions to WCs of semi-leptonic operators relevant for

b→ s`` processes is

Hb→s``weak,NP = −4GF√
2
VtbV

∗
ts

e2

16π2

∑
k

(C`kO
`
k + C ′`k O

′`
k ) + h.c. . (4.9)

Here C`k and C ′`k are defined such that they vanish in the SM. The operators considered in

the following analyses are

O`9 = (s̄γµPLb)(¯̀γµ`) , O′`9 = (s̄γµPRb)(¯̀γµ`) ,

O`10 = (s̄γµPLb)(¯̀γµγ5`) , O′`10 = (s̄γµPRb)(¯̀γµγ5`) .
(4.10)

While four-quark operators containing b and s can also contribute to b→ s``, and especially

certain b→ cc̄s operators might be interesting in light of the P ′5 tensions [288], they are not

considered here. Also not considered are scalar semi-leptonic operators and dipole operators.

The former are strongly constrained by measurements of the Bs → µµ and Bs → ee branch-

ing ratios [289, 290] (cf. also e.g. [291]), and the latter by inclusive radiative B decays (cf.

e.g. [292]). When considering LFU observables, the latter are irrelevant because they cannot

lead to LFU violation (LFUV).

To find possible explanations of the b → s µ+µ− anomaly and the hints for LFUV in

terms of NP contributions to the WCs C
(′)`
9 and C

(′)`
10 , one can employ the open source

code flavio [293]3. This code is able to perform a χ2-fit that uses certain simplifying

assumptions, implemented by the FastFit class and first proposed in [52]. This fit method

can be described as follows. First, a χ2 function is constructed that quantifies the difference

between measured observables combined into a vector ~Oexp and theoretical predictions of

these observables combined into a vector ~Oth. The latter in general depends on the NP

contributions to the WCs one wants to include in the fit, which can be combined into the

vector ~CNP. The χ2 function thus also depends on ~CNP and reads

χ2(~CNP) =
[
~Oexp − ~Oth(~CNP)

]T
[Ĉexp + Ĉth]−1

[
~Oexp − ~Oth(~CNP)

]
, (4.11)

where ~Oth(~CNP) and ~Oexp contain only the central values of the theory predictions and ex-

perimental measurements. The experimental and theoretical uncertainties are taken into

3For another open source code for flavor physics, see EOS [294].
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account in terms of the covariance matrices Ĉexp and Ĉth. These matrices contain all uncer-

tainties and publicly known correlations of experimental measurements as well as all theory

uncertainties and correlations. The minimum of the χ2 function yields the best-fit point, i.e.

the value of ~CNP for which the theory predictions have the best agreement with the exper-

imental measurements. In constructing the above χ2 function, the FastFit class in flavio

makes simplifying assumptions concerning the covariance matrices:

1. All uncertainties are assumed to be Gaussian when combining them in terms of the

sum of Ĉexp and Ĉth.

2. The non-zero NP contributions ~CNP are assumed to have a negligible impact on the

theory uncertainties and correlations in Ĉth.

The latter assumption is the main reason for FastFit being fast. It only requires to perform

the time consuming numerical calculation of the covariance matrix Ĉth once for vanishing
~CNP, i.e. at the SM point of the parameter space. After this is done, Ĉth can be used

for evaluating the χ2 function at arbitrary values of ~CNP. Without assumption #2, the

covariance matrix would have to be calculated again for each value of ~CNP, and thus the

computing time would increase substantially. While it is in general not guaranteed that the

NP contributions to the covariance matrix Ĉth are negligible, this has been found to be a

very good approximation in most cases (cf. [52]). However, especially for a best-fit point

significantly differing from the SM point, one should check the viability of the method by at

least recalculating Ĉth at the best-fit point.

With the minimum of the χ2 function denoted by χ2
best-fit, it is convenient to define

∆χ2(~CNP) = χ2(~CNP)− χ2
best-fit, (4.12)

i.e. the difference between the value of the χ2 function at a given point ~CNP and its minimum

at the best-fit point. This difference ∆χ2 can be converted into a pull in σ, which for the case

of a one-dimensional ~CNP is simply given by
√

∆χ2. For the n-dimensional case, the pull can

be evaluated using the inverse cumulative distribution function of the χ2 distribution with n

degrees of freedom. Taking e.g. n = 2, a pull of 1σ, 2σ, and 3σ corresponds to ∆χ2 ≈ 2.3,

6.2, and 11.8. Usually, one is mainly interested in the pull of the SM point, i.e. the pull of

∆χ2
SM = ∆χ2(~0).

4.2 The b→ s µ+µ− anomaly

In [4], we have performed a numerical analysis of b → s µ+µ− processes using the method

described above, where we have considered NP contributions to the WCs C
(′)µ
9 and C

(′)µ
10 .

The observables that we have included are
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• Angular observables in B0 → K∗0µ+µ− measured by LHCb [51], ATLAS* [267],

CMS* [268,295,296], and CDF [297],

• B0,± → K∗0,±µ+µ− branching ratios by LHCb* [49,298], CMS [295,296], and CDF [297],

• B0,± → K0,±µ+µ− branching ratios by LHCb [49] and CDF [297],

• Bs → φµ+µ− branching ratio by LHCb* [50] and CDF [297],

• Bs → φµ+µ− angular observables by LHCb* [50],

• the branching ratio of the inclusive decay B → Xsµ
+µ− measured by BaBar [299],

where the collaborations marked by an asterisk have released new results since the global

fit performed in [52]. A comment is in order concerning the angular observables in B0 →
K∗0µ+µ− measured by LHCb and ATLAS. They both have measured the Si observables and

the P ′i observables. We have used the measurements of the P ′i observables for our fit but

have explicitly checked that the results are not significantly affected by this choice.

There are observables of b→ s µ+µ− processes that we have explicitly not included into

our fit. These are

• lepton-averaged observables, as we want to focus on NP in only b→ s µ+µ−,

• B → K µ+µ− angular observables, which are only relevant in the presence of scalar

and tensor operators (cf. [300]),

• the Belle measurement of B → K∗µ+µ− angular observables [283], as it contains an

unknown mixture of B0 and B± decays,

• the LHCb measurement of Λb → Λµ+µ− [301], as its central values are not compatible

with a viable short-distance hypothesis, and its uncertainties are also still large [302],

• measurements of Bs → µ+µ−, as it can be affected by scalar operators not taken into

account in this analysis.

All the observables we have included are measured in bins of q2. We have only taken into

account measurements in bins of q2 where the theoretical predictions are reliable and where

only the operators O
(′)µ
9 and O

(′)µ
10 dominate the effects. In particular, we have excluded the

following bins:

• Bins below the J/ψ resonance that extend above 6 GeV2, as calculations based on QCD

factorization are not reliable in this region [303].
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• Bins above the ψ(2S) resonance that are less than 4 GeV2 wide. In this region, theo-

retical predictions are only valid for observables integrated over a sufficiently large q2

interval [304].

• Bins with upper boundary at or below 1 GeV2, as this region is dominated by dipole

operators.

The calculations that are used for the theoretical predictions are implemented in the

flavio code. They are discussed in detail in [52, 271]. Compared to the earlier analysis

in [52], improved predictions for B → K∗ and Bs → φ form factors [271] and B → K form

factors [305] have been included into the code. This significantly reduces the uncertainties

in the B → K form factors.

4.2.1 New physics in individual Wilson coefficients

We have first performed one-dimensional fits in specific directions of the four-dimensional

parameter space of NP contributions to C
(′)µ
9 and C

(′)µ
10 . These directions correspond to the

four WCs C
(′)µ
9 and C

(′)µ
10 and four linear combinations of them. All these scenarios with

their best-fit points, 1 and 2σ ranges and the pull at the SM point are shown in table 4.1.

The following observations can be made:

• The scenario with a NP contribution only to Cµ9 has clearly the strongest pull, slightly

above 5σ. The value of the best-fit point for this scenario is consistent with earlier fits

that did not include the ATLAS and CMS measurements. While the significance has

increased with respect to earlier analyses (in [52], a pull of 3.9σ has been found for

the same scenario), this is not mainly due to new experimental data included in the

present analysis, but can be traced back to the updated form factors and their smaller

uncertainties4.

• The scenario with NP only in Cµ10 gives an improved fit compared to the SM. However,

its significance is considerably smaller than in the Cµ9 scenario. It is interesting to

note that the Bs → µ+µ− branching ratio that was not included in the fit due to its

dependence on scalar operators is also affected by Cµ10. In particular, the best-fit value

in the Cµ10 scenario would imply a suppression of the Bs → µ+µ− branching ratio by

about 35%.

• The scenario with NP in Cµ9 = −Cµ10 has a significance slightly smaller, but similar to

the Cµ9 case. This scenario corresponds to NP that only couples to left-handed muons,

which can be realized in CHMs (cf. chapters 5 and 6).

4The fact that the updated form factors increase the tension was also pointed out in [306].
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Coeff. best fit 1σ 2σ pull

Cµ9 −1.21 [−1.41, −1.00] [−1.61, −0.77] 5.2σ

C ′µ9 +0.19 [−0.01, +0.40] [−0.22, +0.60] 0.9σ

Cµ10 +0.79 [+0.55, +1.05] [+0.32, +1.31] 3.4σ

C ′µ10 −0.10 [−0.26, +0.07] [−0.42, +0.24] 0.6σ

Cµ9 = Cµ10 −0.30 [−0.50, −0.08] [−0.69, +0.18] 1.3σ

Cµ9 = −Cµ10 −0.67 [−0.83, −0.52] [−0.99, −0.38] 4.8σ

C ′µ9 = C ′µ10 +0.06 [−0.18, +0.30] [−0.42, +0.55] 0.3σ

C ′µ9 = −C ′µ10 +0.08 [−0.02, +0.18] [−0.12, +0.28] 0.8σ

Table 4.1: Best-fit values with their 1σ and 2σ ranges and pulls in sigma between the best-fit

point and the SM point for scenarios with NP in one Wilson coefficient.

• The orthogonal direction Cµ9 = Cµ10 provides only a marginally improved fit compared

to the SM.

• All scenarios with NP in only one of the primed WC, i.e. right-handed quark currents,

do not lead to a significantly better fit than the SM.

In light of the large tensions, it is interesting to investigate the contributions from different

measurements. To this end, we have repeated the fit for the scenario with NP only in Cµ9 for

several subsets of the data:

• Including only the measurements of the Bs → φµ+µ− branching ratios, one finds a pull

of 3.5σ.

• Considering only the B0 → K∗0µ+µ− angular analysis by LHCb leads to a pull of 3.0σ.

• All branching ratio measurements together yield a pull of 4.6σ

• The new measurement of the B0 → K∗0µ+µ− angular observables by CMS reduces the

pull, while the ATLAS measurement increases it.

Obviously, the branching ratio measurements play an important role in the large significance

of the global fit. They are, however, strongly dependent on the form factors. Considerably

underestimated uncertainties of these form factors might be a source of the discrepancies.

To estimate the impact of a possible underestimation, we have repeated the fit for the Cµ9
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Coeff. best fit pull

Cµ9 , C
µ
10 (−1.15, +0.26) 5.0σ

Cµ9 , C
′µ
9 (−1.25, +0.59) 5.3σ

Cµ9 , C
′µ
10 (−1.34, −0.39) 5.4σ

C ′µ9 , C
µ
10 (+0.25, +0.83) 3.2σ

C ′µ9 , C
′µ
10 (+0.23, +0.04) 0.5σ

Cµ10, C
′µ
10 (+0.79, −0.05) 3.0σ

Table 4.2: Best-fit values and pulls in sigma between the best-fit point and the SM point for

scenarios with NP in two Wilson coefficients. For the first two cases, the best-fit regions are

shown in figure 4.1.

scenario with doubled uncertainties either of the form factors or of the non-factorizable

hadronic corrections (see [52] for details on these different uncertainties). In the former case,

we found a reduction of the significance from 5.2σ to 4.0σ, and in the latter case from 5.2σ

to 4.4σ. This indicates that underestimated uncertainties are probably not the only source

of the discrepancies.

4.2.2 New physics in a pair of Wilson coefficients

Next, we have performed two-dimensional fits in planes of pairs of WCs. The different

scenarios together with their best-fit points and the pulls at the SM point are shown in

table 4.2. One observes that all scenarios that allow for a non-zero NP contribution to Cµ9
yield a pull of around 5σ, similar to the case with NP only in Cµ9 . So allowing for directions

in addition to Cµ9 does not improve the fit considerably. The scenarios allowing for NP in

Cµ10 and one of the primed WCs improve the fit slightly compared to the SM, similar to the

case with NP only in Cµ10. A NP contribution only to the primed WCs cannot improve the

fit significantly.

For the first two scenarios in table 4.2, i.e. NP in either Cµ9 and Cµ10 or in Cµ9 and C ′µ9 ,

contours of constant ∆χ2 are shown in figure 4.1. The best-fit point and the 1σ, 2σ, and 3σ

contours are shown for the global fit. In addition, the best-fit points and the 1σ contours are

shown for four fits with only a subset of the data. These four fits only include respectively

• the new measurement of B0 → K∗0µ+µ− angular observables by ATLAS,

• the new measurement of B0 → K∗0µ+µ− angular observables by CMS,
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Figure 4.1: Two-dimensional constraints in the plane of NP contributions to the real parts

of the Wilson coefficients Cµ9 and Cµ10 (a) or Cµ9 and C ′µ9 (b), assuming all other Wilson

coefficients to be SM-like. For the constraints from the B → K∗µ+µ− and Bs → φµ+µ−

angular observables from individual experiments as well as for the constraints from branching

ratio measurements of all experiments (“BR only”), the 1σ (∆χ2 ≈ 2.3) contours are shown,

while for the global fit (“all”), the 1, 2, and 3σ contours are shown.

• the angular analysis of B0 → K∗0µ+µ− and Bs → φµ+µ− by LHCb,

• the branching ratio measurements by all experiments.

One observes that the cases including only a subset of the data are all compatible with the

global fit at the 1σ or 2σ level. While the angular analysis by CMS is compatible with the SM,

all other measurements show deviations. Due to their precision, the LHCb measurements of

the angular observables and branching ratios dominate the global fit. This leads to allowed

regions similar to those in previous analyses irrespectively of the new measurements by

ATLAS and CMS (cf. e.g. [52]). One finds no significant preference of the global fits for

non-zero NP contributions to either Cµ10 or C ′µ9 in the two scenarios shown in figure 4.1. This

conclusion is similar to the one drawn above from comparing the pull of the two-dimensional

cases including NP contributions to Cµ9 to the one-dimensional case with NP contributions

only to Cµ9 .
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Figure 4.2: Allowed regions in the Re(Cµ9 )-Re(Cµ10) plane (a) and the Re(Cµ9 )-Re(C ′µ9 )

plane (b). In red the 1σ, 2σ, and 3σ best fit regions with nominal hadronic uncertainties.

The green dashed and blue short-dashed contours correspond to the 3σ regions in scenar-

ios with doubled uncertainties from non-factorizable corrections and doubled form factor

uncertainties, respectively.

To again estimate the impact of underestimated hadronic uncertainties, we have per-

formed two-dimensional fits for the scenarios shown in figure 4.1 but with doubled uncer-

tainties either of the form factors or of the non-factorizable hadronic corrections. In the

scenario with NP allowed in Cµ9 and Cµ10, the pull is reduced from 5.0σ to 3.7σ and 4.1σ,

respectively. In the scenario with NP allowed in Cµ9 and C ′µ9 , the pull is reduced from 5.3σ

to 4.1σ and 4.4σ, respectively. The best-fit points and 3σ contours of the cases with doubled

uncertainties are shown together with the best-fit points and the 1σ, 2σ, and 3σ contours

of the global fit in figure 4.2. One observes that doubling the uncertainties is not sufficient

for the SM point to lie inside the 3σ contours. Thus, like the one-dimensional fits, also the

two-dimensional fits suggest that underestimated uncertainties are not the only source of the

discrepancies.

4.2.3 New physics or hadronic effects?

Any hadronic contribution to the B0 → K∗0µ+µ− helicity amplitudes that is photon me-

diated can in general be expressed by a q2 and helicity dependent contribution to Cµ9 : the
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Figure 4.3: (a): Preferred 1σ ranges for a new physics contribution to Cµ9 from fits in different

q2 bins. (b): Preferred 1σ ranges for helicity dependent contributions to Cµ9 from fits in

different q2 bins. The dashed diagonal line corresponds to a helicity universal contribution,

as predicted by new physics.

photon couples to leptons via a vector current and the flavor-changing quark transition

requires a left-handed current in the SM. Underestimated hadronic effects could therefore

mimic a NP contribution to Cµ9 . While a NP contribution is per definition q2 and helicity

independent, there is, however, no reason to expect that this is also the case for a hadronic

contribution. In fact, it is likely that hadronic effects in the λ = + helicity amplitudes are

suppressed [307] and there is no reason why they should be of similar size in the λ = 0 and

λ = − amplitudes. So one would in general assume that an effect in Cµ9 due to hadronic effects

is helicity dependent. Furthermore, underestimated hadronic effects e.g. from charm loops

are in general expected to show a non-trivial q2 dependence. Another interesting possibility

that could mimic a NP effect in Cµ9 is NP contributions to b→ cc̄s operators (cf. [275,288]).

While the shift in Cµ9 would in this case be helicity independent up to correction of order αs

and ΛQCD/mb, it would have a non-trivial q2 dependence.

To test whether the B0 → K∗0µ+µ− measurements actually show a preference for a q2

or helicity dependent shift in Cµ9 , we have performed fits in individual q2 bins including only

these measurements. The bins of q2 considered are5 [0.04, 2.5], [2.0, 4.3], [4.0, 6.0], [6.0, 8.7] in

5The overlaps in the bins are due to different experiments using different binning.
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GeV2, respectively. While the latter bin is not included in the NP fits due to the unreliability

of the estimation of hadronic effects in this region, it is used here to explicitly look for hadronic

effects that mimic a shift in Cµ9 . In a first fit, equal contributions to the different helicity

amplitudes have been assumed, while in a second fit also helicity dependent shifts have been

allowed.

The results of the first fit are shown in figure 4.3a. While the significance of the tension is

more pronounced in the bins above 4 GeV2, this is expected due to the higher sensitivity of the

observables to Cµ9 in this region. One observes that every individual bin shows a preference

for a negative shift in Cµ9 that is compatible with a q2 independent shift Cµ9 ≈ −1.2 at the

1σ level.

In figure 4.3b, the 1σ contours from the second fit are shown in the ∆Cµ−9 -∆Cµ 0
9 plane

for each individual bin, where ∆Cµ−9 and ∆Cµ 0
9 denote the contributions to the λ = −

and λ = 0 helicity amplitudes, respectively. The contours show perfect agreement with the

assumption of a helicity universal shift, i.e. ∆Cµ−9 = ∆Cµ 0
9 . Furthermore, the results for the

individual contours corresponding to different q2 bins are all consistent with each other.

Consequently, neither a preference for a dependence on q2 nor on helicity is shown by the

experimental data. While this is an intriguing result, no robust prediction can be made at

present about the precise properties of possible hadronic effects. Therefore, they cannot be

excluded as the actual source of the discrepancies in b→ s µ+µ− transitions.

4.3 Hints for violation of lepton flavor universality

While hadronic effects could in principle be responsible for the b → s µ+µ− anomaly, devi-

ations in LFU observables are clear evidence of NP. Accordingly, in [5] we have performed

an analysis similar to the one presented in the previous section but taking into account all

measurements of LFU observables available so far. In particular, we have first performed

“LFU-only” fits that only include the LFU observables

• RK measured by LHCb [58],

• RK∗ measured by LHCb [59],

• DP ′4
and DP ′5

measured by Belle [283].

Subsequently, we have performed global fits, where we have considered all b → s µ+µ−

observables included in the fits in section 4.2, the LFU observables listed above, and in

addition

• the Bs → µ+µ− branching ratio measured by CMS [308] and LHCb [289] (assuming no

NP contribution to scalar operators),
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Coeff. best fit 1σ 2σ pull

Cµ9 −1.56 [−2.12, −1.10] [−2.87, −0.71] 4.1σ

Cµ10 +1.20 [+0.88, +1.57] [+0.58, +2.00] 4.2σ

Ce9 +1.54 [+1.13, +1.98] [+0.76, +2.48] 4.3σ

Ce10 −1.27 [−1.65, −0.92] [−2.08, −0.61] 4.3σ

Cµ9 = −Cµ10 −0.63 [−0.80, −0.47] [−0.98, −0.32] 4.2σ

Ce9 = −Ce10 +0.76 [+0.55, +1.00] [+0.36, +1.27] 4.3σ

Ce9 = Ce10 −1.91 [−2.30, −1.51] [−2.71, −1.10] 3.9σ

Table 4.3: Best-fit values with their 1σ and 2σ ranges and pulls in sigma between the best-fit

point and the SM point for scenarios with NP in one Wilson coefficient when considering

only LFU observables. Scenarios with NP in only primed WCs are not shown; they cannot

improve the fit compared to the SM (cf. discussion in main text and figure 4.4b).

• the B → Xse
+e− branching ratio measured by BaBar [299].

4.3.1 New physics in one or two Wilson coefficients

In our fits, we have allowed for NP contributions to the eight WCs C
(′)`
9 and C

(′)`
10 , with

` ∈ {e, µ}. The results of one-dimensional “LFU-only” scenarios that can describe the data

significantly better than the SM are collected in table 4.3. Contours of constant ∆χ2 ≈
2.3, 6.2, 11.8 in the plane of two WCs are shown in figures 4.4a, 4.4b, 4.5a, and 4.5b for

the scenarios with NP in Ce9 and Ce10, Cµ9 and C ′µ9 , Cµ9 and Cµ10, as well as Cµ9 and Ce9 ,

respectively. One observes that all scenarios in table 4.3 have a pull of around 4σ and

involve NP contributions to WCs corresponding to left-handed quark currents. In particular,

a negative NP contribution to Cµ9 and/or a positive NP contribution to Cµ10 improves the

agreement with the data significantly; this corresponds to a decrease in both B(B → Kµ+µ−)

and B(B → K∗µ+µ−). A positive NP contribution to Ce9 and/or a negative NP contribution

to Ce10 yields a similar result; this corresponds to an increase in both B(B → Ke+e−) and

B(B → K∗e+e−). The above cases can be combined in terms of approximate flat directions

that give an excellent description of the data,

Cµ9 − Ce9 − Cµ10 + Ce10 ≈ −1.4 , (4.13)

at least if the absolute value of a single WC is not much larger than 1. These flat directions

are also visible in the plot in figure 4.4a and both plots in figure 4.5. While right-handed
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Figure 4.4: (a): Re(Ce9)-Re(Ce10) plane showing 1, 2, and 3σ contours from the “LFU-only”

fit. (b): Re(Cµ9 )-Re(C ′µ10) plane showing the 1σ contours of fits including only RK or RK∗ in

green and yellow, respectively, and the 1, 2, and 3σ contours for the “LFU-only” fit in blue.

In addition, the contours of the b→ sµµ fit described in section 4.2 are shown in dotted gray.

muon currents (Cµ9 = Cµ10) cannot describe the data (cf. figure 4.5a), a sizable contribution

to right-handed electron currents (Ce9 = Ce10 ≈ −2 or +3) yields a good fit (cf. table 4.3

and figure 4.4a). NP contributions to only primed WCs, which correspond to right-handed

quark currents, cannot improve the agreement with the data. It is well known [57] that they

shift RK and RK∗ away from 1 into opposite directions. However, the data prefers RK and

RK∗ both being smaller than 1. For a NP contribution only to C ′µ9 , the impossibility of

accommodating the measurements of both RK and RK∗ can be observed in figure 4.4b: a

negative NP contribution to C ′µ9 is required for an agreement with the RK measurement,

while a positive contribution is required to accommodate the RK∗ measurement. So while

each individual measurement of either RK or RK∗ could be explained by NP in right-handed

quark currents, both measurements together exclude this possibility. However, the plot in

figure 4.4b shows that in the presence of a sizable negative Cµ9 , a non-zero C ′µ9 can improve

the fit; similar improvements can be found for other combinations of primed and unprimed

WCs.

In addition to the blue contours showing the results of “LFU-only” fits, the plots in

figures 4.4 and 4.5 also show dotted gray contours of the b→ sµµ fits described in section 4.2
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Figure 4.5: Allowed regions in the Re(Cµ9 )-Re(Cµ10) plane (a) and the Re(Cµ9 )-Re(Ce9)

plane (b). The 1σ, 2σ, and 3σ contours are shown for the “LFU-only” (blue), the b → sµµ

(dotted gray), and the combined global fit (red). The plot on the left also shows the 3σ

contour of a global fit with quintupled non-factorizable hadronic uncertainties (dashed red).

(except for the plot in figure 4.4a that does not involve muons). Intriguingly, the “LFU-

only” fits are fully compatible with the b → sµµ fits. Consequently, the combined global

fits shown as red contours prefer a non-zero NP contribution with very high significance. As

detailed in section 4.2, the global fit is, however, subject to possibly underestimated hadronic

uncertainties. To estimate their impact, the plot in figure 4.5a shows a red dashed line for

the 3σ contour of the global fit with non-factorizable hadronic uncertainties inflated by a

factor 5 compared to the nominal uncertainties. In this case, the global fit gets dominated

by the LFU observables. However, even with these huge uncertainties, there are still relevant

constraints coming from to the b → sµµ observables. For example, the best-fit point of the

“LFU-only” fit with NP only in Cµ10 implies a 50% suppression of the Bs → µµ branching

ratio, which is already in tension with current measurements [289] (assuming no NP in scalar

WCs interfering). Furthermore, the inclusion of the b→ sµµ observables strongly favors NP

in the muon WCs over NP in the electron WCs. While a non-zero contribution to an electron

WC can still improve the global fit in the presence of a sizable muon WC (cf. figure 4.5b), the

b→ sµµ data of course cannot be explained by NP only in electron WCs. In this sense, the

ambiguity due to the flat directions, eq. (4.13), is lifted by taking into account the b→ sµµ
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Figure 4.6: The LFU ratios RK(∗) in the SM and various NP benchmark models as function

of q2. The error bands contain all theory uncertainties including form factors and non-

factorisable hadronic effects. In the region of narrow charmonium resonances, only the short-

distance contribution without uncertainties is shown.

data, and a NP contribution to Cµ9 seems unavoidable for explaining the hints for LFUV and

the b→ sµµ anomaly at once.

4.3.2 Predictions for LFU observables

While including b→ sµµ observables into the fit can single out certain scenarios, it is inter-

esting to investigate if this can be done by LFU observables alone. To this end, predictions

of several NP scenarios for RK and RK∗ as well as DP ′4
and DP ′5

are shown in figure 4.6 and

figure 4.7, respectively.

The plots in figure 4.6 show that in the SM, a q2 independent RK = RK∗ = 1 is a very

good approximation over a large range of q2. For very low q2, both RK and RK∗ drop to zero

due to phase space effects. While NP contributions to any of the considered WCs yield a

virtually constant, q2 independent shift of RK , the observable RK∗ on the other hand shows a

non-trivial q2 dependence in the presence of NP. The main reason for this difference between

RK and RK∗ is that in contrast to B → K`+`−, the decays B → K∗`+`− are dominated

by lepton flavor universal dipole operators at low q2. Hence, in this region, all NP scenarios

yield a prediction for RK∗ close to its SM value. Comparing RK and RK∗ , it is possible to

distinguish some of the different NP scenarios in the case of sufficiently precise experimental

data. For instance, while a NP contribution to C10 predicts larger deviations from the SM in

RK∗ than in RK , a NP contribution to C9 has the opposite effect. This has the consequence

that the current measurements have a slight preference for the Cµ10 over the Cµ9 scenario: a
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Figure 4.7: The B → K∗`+`− LFU differences DP ′4
and DP ′5

in the SM and various NP

benchmark models as functions of q2. Concerning the error bands, the same comments as

for Fig. 4.6 apply.

positive Cµ10 predicts 1 > RK > RK∗ , which is in accordance with the measurements, while a

negative Cµ9 predicts 1 > RK∗ > RK . However, the differences between the Cµ9 and the Cµ10

scenarios are tiny and distinguishing them would require high experimental precision.

This is quite different for the observables DP ′4
and DP ′5

, for which predictions are shown

in figure 4.7. While they are close to zero for a large range of q2 in the SM, they both show a

non-trivial q2 dependence in the presence of NP. Compared to the LFU ratios RK and RK∗ ,

the LFU differences DP ′4
and DP ′5

allow a much clearer distinction between different scenarios.

In particular, a positive Cµ10 predicts positive values for DP ′4
at low q2 < 2.5 GeV2, while a

negative Cµ9 predicts negative values in the same region; a similar behavior can be seen for

electron WCs of opposite sign. Considering DP ′5
, one observes that a positive Cµ10 yields small

negative values, while a negative Cµ9 corresponds to sizable positive values. Interestingly, DP ′5
even allows for distinguishing between Cµ9 and Ce9 : for q2 > 5, a negative Cµ9 can lead to a

sizable increase in P ′µ5 , while a positive Ce9 can only slightly decrease P ′e5 . This is due to the

SM value lying already close to the model-independent lower bound of P ′5 = −1, such that a

NP contribution cannot decrease it much further.

Although the SM predictions for the LFU observables have only tiny uncertainties, form

factor and other hadronic uncertainties actually do play a role in the presence of NP. However,

they are still small enough such that sufficiently precise measurements could allow for a clean

distinction between different NP scenarios.
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5
Violation of lepton flavor universality

in composite Higgs models

In light of the significant tension between the SM and experimental measurements of LFU

observables (cf. section 4.3), it is interesting to ask which NP model is actually capable

of explaining the discrepancies. Many more or less ad hoc models are able to do this by

generating the WCs C`9 and C`10 at tree level from the exchange of a heavy neutral gauge

boson [52,309–314] or of spin-0 or spin-1 leptoquarks [57, 310,315–317]. However, it is more

difficult to accommodate the experimental central values in more complete models that also

solve the naturalness problem of the SM. In particular, it has been shown that this is not

possible in the Minimal Supersymmetric Standard Model (MSSM) [52]. While it has been

known that CHMs featuring composite leptoquarks can explain the data [318], we presented

an arguably more simple mechanism in [1] that is only based on partial compositeness of

SM particles and allows for an explanation of both a violation of LFU and the b → s µ+µ−

anomaly. This mechanism was later found to be at work also in extra-dimensional construc-

tions [319,320] and models with fundamental partial compositeness (cf. [6,287] and chapter 6).

This mechanism is described in the present chapter.

As is shown in chapter 4, very good fits to the experimental data on b → s µ+µ− and

LFU observables can be achieved by (cf. tables 4.1 and 4.3)

• negative Cµ9 and all other WCs SM-like, corresponding to a vector-like muon current:

Cµ9 < 0, (5.1)

• negative Cµ9 and positive Cµ10 of the same absolute size, corresponding to a left-handed

muon current:

Cµ9 = −Cµ10 < 0, (5.2)
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Figure 5.1: (a): Z exchange. (b): ρ exchange with ρ-muon coupling due to Z-ρ mixing.

(c): ρ exchange with ρ-muon coupling due to muons mixing with their heavy partners.

where the same convention as in chapter 4 is used, i.e. Cµ9 and Cµ10 are defined such that

they vanish in the SM. The WCs of the WEH in eq. (4.9) that are due to FCNCs can arise

only at one loop in the SM. In models with partial compositeness, on the other hand, mixing

of elementary and composite fields allows them to be generated already at tree level. For a

b → s `+`− transition, there are the three possibilities shown in the diagrams in figure 5.1,

where ρ denotes a composite spin-one state that can mix with the Z boson. In the first case,

figure 5.1a, a flavor-changing Z coupling for the left-handed quarks is induced by the mixing

with composite states. The lepton-Z coupling is SM-like in this case and yields Cµ10 � Cµ9 .

This is obviously not the contribution that is able to explain the b → s µ+µ− anomaly.

Moreover, the coupling to leptons is flavor universal. The second possibility, figure 5.1b,

is the exchange of a heavy ρ resonance with a coupling to quarks due to the same mixing

terms as in the first case and a coupling to muons due to its mixing with the Z boson.

Since this ρ-muon coupling has the same structure as the Z-muon coupling, one again gets a

lepton-flavor universal contribution with Cµ10 � Cµ9 . However, there is a third case, which is

shown in figure 5.1c. While this again corresponds to the exchange of a heavy ρ resonance

like in the second case, the ρ-muon coupling in this case is not due to the ρ-Z mixing but

due to the muons mixing with composite lepton partners. Interestingly, this coupling can

actually violate lepton-flavor universality if the degrees of compositeness vary among the

lepton generations. In addition, different degrees of compositeness of left- and right-handed

leptons allow for different chirality structures of the generated operators. In particular, the

case Cµ9 < 0 could be realized if the degrees of compositeness of left-handed muons sµL and of

right-handed muons sµR are both sizable. However, as detailed in section 2.3.1, the SM-like

effective Yukawa coupling of partially composite fermions is proportional to their left- and

right-handed degrees of compositeness, i.e.

Y SM
µ ∼ Y comp

` sµL sµR , (5.3)
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where Y SM
µ is the Yukawa coupling of muons in the SM and Y comp

` is a composite sector

lepton Yukawa coupling generically of O(1). So to actually get a Y SM
µ of the correct size to

reproduce the muon mass, sµL and sµR cannot both be sizable. While this excludes the case

with only Cµ9 < 0 and all other WCs SM-like, the second case Cµ9 = −Cµ10 < 0 actually only

requires a sizable degree of compositeness sµL of the left-handed muons. This seems to be

possible and is further investigated in the following.

5.1 A simple model of partially composite muons

To explore the consequences of an explanation of the b → s`` flavor anomalies in terms

of left-handed muons with a sizable degree of compositeness, it is useful to consider an

explicit model. However, it is not necessary to construct a complete multi-site CHM. The

following discussion merely requires partial compositeness of fermions and vector bosons and

is independent of the actual structure of the Higgs sector. Still, there are some basic properties

that should be fulfilled by the model. First, as discussed in the beginning of chapter 2, any

viable CHM should have a custodial symmetry that protects the ratio of the W and Z boson

masses from large corrections. It is therefore reasonable to assume a global SU(2)L×SU(2)R
∼=

SO(4) symmetry only broken by hypercharge and fermion composite-elementary mixings.

As is well known, using the SU(2)R generator T3
R for generating U(1)Y does not allow an

embedding of the composite partners of quarks into SO(4) multiplets (cf. e.g. [104] and

section 3.1.3). A commonly employed solution is to add an additional U(1)X symmetry with a

generator X and then to define the hypercharge generator Y as in eq. (3.2), i.e. Y = T3
R+X.

The global symmetry of the model is thus chosen to be SU(2)L × SU(2)R × U(1)X. Like

partial compositeness of quarks induces the flavor-changing Z coupling in figure 5.1a, a

sizable degree of compositeness of muons generically modifies the Zµµ coupling. But the

Z-lepton couplings are strongly constrained by the Z boson’s partial widths measured at

LEP [219]. This can result in a severe tension between experimental data and any model

containing leptons with a sizable degree of compositeness. A similar problem is encountered

in section 3.1.3 in the quark sector: For the top quark to have a large Yukawa coupling, the

composite-elementary mixing of the third generation’s left-handed quark doublet has to be

sizable. This also affects the left-handed b quark and generically leads to a tension between

the predicted ZbLbL coupling and LEP data. As discussed in section 3.1.3, the tree-level

contributions to the ZbLbL coupling can be avoided by a discrete PLR symmetry, also known

as custodial protection of the Z coupling [228]. Interestingly, the same kind of protection

can be applied to the lepton sector [321] and allows for protecting the ZµLµL coupling. The

custodial protection restricts the possible representations of SU(2)L×SU(2)R under which the
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composite leptons transform. Following [228], the left-handed elementary muons are required

to mix with composite leptons L transforming as a (2,2)0 under SU(2)L×SU(2)R×U(1)X ,

and the right-handed elementary muons mix with (1,3)0 composite leptons E. The custodial

PLR symmetry then requires the introduction of a second triplet (3,1)0, which is denoted by

E′. With this choice of representations, the Lagrangian of second generation leptons reads

Lf = l̄L(i /D)lL + µ̄R(i /D)µR

+ L̄(i /D −mL)L+ Ē(i /D −mE)E + Ē′(i /D −mE)E′,
(5.4)

where the covariant derivatives Dµ contain the couplings of elementary leptons to the elemen-

tary SM-like gauge fields and of composite leptons to the composite resonances associated

with the SU(2)L × SU(2)R × U(1)X symmetry1. The corresponding mixing terms in the

lepton sector are given by

Lmix = ∆L tr[χ̄L LR] + ∆R tr[χ̄REL]

+ YL tr[L̄LHER] + Y ′L tr[HL̄LE′R]

+ YR tr[L̄RHEL] + Y ′R tr[HL̄RE′L]

+ h.c. ,

(5.5)

where χL and χR are incomplete (2,2)0 and (1,3)0 multiplets into which the elementary left-

and right-handed muons are embedded. For simplicity, the Higgs doublet is embedded into a

(2,2)0 bidoublet H and not treated as a pNGB. While the generalization to an actual pNGB

CHM is straightforward, it is not necessary for the discussion of muon partial compositeness.

The composite-elementary mixings ∆L and ∆R yield, analogous to section 2.3.1, the degrees

of compositeness sµL and sµR (cf. eq. (2.163)), and YL, Y ′L, YR, and Y ′R are Yukawa couplings

of the composite sector. In the mass basis, the above Lagrangian induces a mass term for

the muon,

mµ =
YL

2
√

2
〈h〉 sµL sµR , (5.6)

where 〈h〉 is the Higgs VEV. Analogous mass terms for neutrinos as well as flavor mixing in

the lepton sector are omitted here for simplicity.

5.2 Constraints from electroweak precision tests

While the ZµLµL coupling can be protected from tree-level corrections2 by employing the

discrete PLR symmetry, other couplings of muons and electroweak gauge bosons are also

1The simplest realization of this model in terms of a multi-site CHM is a two-site model with one level of

spin one resonances in an adjoint of H = SU(2)L × SU(2)R × U(1)X , cf. section 2.2.1.
2The custodial protection does not forbid loop-level corrections to the ZµLµL coupling. While they might

be relevant in a complete analysis [322], this is beyond the scope of the proof of concept presented here.
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Figure 5.2: (a): Constraints at 1σ, 2σ, and 3σ on the modification of the Fermi constant in

muon decay relative to the SM versus a NP contribution to the electroweak T parameter.

(b): Tree-level correction to the Fermi constant due to a shift in the tree-level WµLνµL

coupling.

modified by partial compositeness and not protected by the PLR symmetry. In particular,

the custodial protection is not active for the WµLνµL coupling. This affects the muon

lifetime and leads to a shift in the Fermi constant GF , which is extracted from muon decay.

The experimentally allowed shift in the Fermi constant depends on other possible deviations

of electroweak precision observables [323]. In particular, the constraint on GF is strongly

correlated with the constraint on the electroweak T parameter. Following [323], one finds

the constraints on a shift in the Fermi constant and the T parameter shown in figure 5.2a.

In CHMs, the T parameter receives loop-contributions that depend on details of the quark

sector, which are not specified in the simple model presented here. Anyway, a shift in the

Fermi constant that is induced by a sizable sµL can be translated into a required shift in

the T parameter. For instance, allowing the Fermi constant to deviate by 3σ, the maximally

allowed negative shift δGF /GF ≈ −1.6 · 10−3 suggests T ≈ −0.1. At tree level, the shift in

the Fermi constant due to the modified WµLνµL coupling can be calculated from the diagram
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in figure 5.2b. To leading order in ξ = v2/f2 and sµL , one finds3

δGF
GF

=
δgLWµν

gLWµν

= −1

4
ξs2
Lµ

(
1 +

m2
L

m2
E

)
. (5.7)

This shift is actually always negative, and for fixed sµL and ξ it has its smallest absolute

value in the case mE � mL. Assuming this favorable case, a maximally allowed negative

shift δGF /GF ≈ −1.6 ·10−3 translates into an upper bound on the left-handed muon’s degree

of compositeness

sµL . 0.08 ξ−1/2. (5.8)

There is yet another coupling of weak gauge bosons to leptons that is not custodially

protected: the ZνµLνµL coupling also receives corrections already at tree level. At leading

order in sµL and ξ, they are equal to those of the WµLνµL coupling,

δgLZνν
gLZνν

=
δgLWµν

gLWµν

, (5.9)

which is a generic property of models with custodial protection of the ZµLµL coupling

(cf. [228]). The modification of the ZνµLνµL coupling leads to a shift in the invisible Z

width that can be expressed in terms of the effective number of light neutrino species Nν and

is given by

Nν = 3 + 2
δgLZνν
gLZνν

. (5.10)

Interestingly, its measurement at LEP shows a 2σ deviation [219],

Nν = 2.9840± 0.0082 . (5.11)

Since the contribution from the modified ZνµLνµL coupling is always negative in the model

considered here (cf. eq. (5.7)), it actually improves the agreement with the data.

5.3 Constraints from quark flavor physics

Any model that tries to explains the b → s`` anomalies in terms of a tree-level exchange of

a heavy spin one resonance necessarily implies a flavor changing tree-level coupling of this

resonance to left-handed quarks. Such a coupling inevitably leads to the contribution to

Bs-B̄s mixing shown in the diagram in figure 5.3a. This contribution can be parameterized

3In this simplified model, f plays the same role as in a full CHM; it sets the mass scale of the composite

resonances. In particular, the masses of the vector resonances ρ are assumed to fulfill m2
ρ =

f2 g2
ρ

2
, where gρ is

their gauge coupling (cf. eq. (2.83)).
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Figure 5.3: Tree-level contribution to (a) Bs mixing and (b) b → s µ+µ− transitions. gρ is

the coupling between composite fermions and vector resonances, sµL the left-handed muon’s

degree of compositeness, Xf
i is the charge under the global symmetry associated with vector

resonance ρi of the composite fermion mixing with f , and ∆bs is a parameter depending on

the flavor structure and the degrees of compositeness of b and s quark.

in terms of the dimension-6 ∆B = 2 operator OdLLV = (s̄Lγ
µbL)2. Its WC CdLLV can be

inferred from the diagram in figure 5.3a, and one finds

CdLLV =
g2
ρ

m2
ρ

∆2
bs c

dLL
V , (5.12)

where ∆bs encodes the flavor structure and the degrees of compositeness of b and s quark.

cdLLV is a numerical factor of O(1) that arises from the sum over the couplings of the quark

partners to the heavy spin one resonances ρi. Since the ρi are gauge bosons associated with

the unbroken symmetry H, the couplings can be given in terms of the H charges Xq
i of

the heavy quark partners (cf. figure 5.3a). Assuming a custodial protection of the ZbLbL

coupling, one finds cdLLV = −23/36 [171].

Writing the Bs-B̄s mixing amplitude M12 in terms of the sum of a SM contribution MSM
12

and a NP contribution MNP
12 , the mass difference ∆Ms in Bs mixing is given by

∆Ms = 2
∣∣MSM

12 +MNP
12

∣∣ = ∆MSM
s

∣∣∣∣1 +
MNP

12

MSM
12

∣∣∣∣ . (5.13)

The ratio MNP
12 /MSM

12 can be expressed in terms of the WC CdLLV and is given by [52]

MNP
12

MSM
12

= −CdLLV v2

(
g2

16π2
(VtbV

∗
ts)

2 S0

)−1

, (5.14)

where S0 is a loop function that evaluates to S0 ≈ 2.3. By plugging in the expression for

CdLLV from eq. (5.12) and using g2
ρ/m

2
ρ = 2/f2 = 2 ξ/v2, one finds

MNP
12

MSM
12

= −2 ξ∆2
bs c

dLL
V

(
g2

16π2
(VtbV

∗
ts)

2 S0

)−1

. (5.15)
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Assuming ∆bs to be real, the negative value of cdLLV implies4 MNP
12 /MSM

12 > 0. This in turn

leads to (cf. eq. (5.13))

MNP
12

MSM
12

=
∆Ms

∆MSM
s

− 1 =
∆Ms −∆MSM

s

∆MSM
s

=
|∆Ms −∆MSM

s |
∆MSM

s

, (5.16)

i.e. the model predicts a positive NP contribution to the Bs meson mass difference ∆Ms,

where the magnitude of the relative deviation from the SM is equal to MNP
12 /MSM

12 .

Since the only free parameters on the right-hand side of eq. (5.15) are ξ = v2/f2 and

∆2
bs, a bound on ∆Ms can be translated, for any given value of f , into a bound on |∆bs|.

Since ∆bs sets the strength of the b-s-ρ coupling, the ρ exchange contribution to b→ s µ+µ−

also depends on it (cf. figure 5.3b), and the bound has an immediate consequence on a

possible explanation of the anomalies. The ρ exchange contribution to b → s µ+µ− can be

parameterized by the WC Cdl of the ∆B = 1 operator Odl = (s̄Lγ
νbL)(µLγνµL). From the

diagram in figure 5.3b, one gets

Cdl =
g2
ρ

m2
ρ

∆bss
2
Lµ cdl , (5.17)

where cdl = −1/2 for the choice of representations used here. Using the notation of the

WEH, eq. (4.9), Odl can be written as Odl = (Oµ9 −Oµ10)/2 and Cdl is related to Cµ9 and Cµ10

by

Cdl = N b→s (Cµ9 − Cµ10), where N b→s =
4GF√

2
VtbV

∗
ts

e2

16π2
. (5.18)

Allowing for a 10% deviation from the SM in ∆Ms, the resulting bound on |∆bs| then implies

a lower bound on sµL , which depends on the size of the desired effect in Cµ9 − Cµ10. For

instance, a small but visible effect Cµ9 − Cµ10 ≈ 0.4 requires

sµL & 0.15 ξ−1/4. (5.19)

5.4 Explaining the b→ s `+`− anomalies

Given the lower bound on the muon’s degree of compositeness due to the shift in the Fermi

constant and the upper bound from Bs-B̄s mixing, one might ask whether these bounds still

allow for an explanation of the b→ s `+`− anomalies. To answer this question, it is useful to

express the NP contribution to Cµ9 −Cµ10 in terms of the deviation in ∆Ms. From eqs. (5.15),

(5.16), (5.17), and (5.18), one finds

Cµ9 − Cµ10 ≈ ±0.92

[
1.7 TeV

f

] [sµL
0.6

]2
[ |∆Ms −∆MSM

s |
0.1 ∆MSM

s

]1/2

, (5.20)

4Vtb is real and the imaginary part of Vts is negligible.
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Figure 5.4: Predictions for Cµ9 −Cµ10 (green) and the relative shift in the Fermi constant (red)

for a benchmark point with mL/mE = 0.3. The flavor-changing coupling ∆bs has been fixed

to its maximum value allowing a 10% shift in ∆Ms. The green shaded regions correspond

to the 1σ (dark green) and 2σ (light green) regions allowed by the Cµ9 = −Cµ10 fit values in

table 4.3. No contours are shown for |δGF /GF | > 0.002, which is disfavored (cf. fig. 5.2a).

where the negative sign holds for positive ∆bs. Consequently, assuming a 10% deviation from

the SM in ∆Ms, a violation of LFU compatible with the measurements of RK and RK∗ can

be achieved with a sizable degree of compositeness of left-handed muons sµL ≈ 0.6 and a

NP scale f ≈ 1.7 TeV (cf. table 4.3). At the same time, this scenario can also explain the

experimental data on b→ s µ+µ− observables that is in tension with the SM prediction (cf.

table 4.1). These values for sµL and f lead to a relative shift in the Fermi constant that can

still be inside the 3σ contour shown in figure 5.2a, depending on the mass ratio mL/mE and

the value of the T parameter. The possible values of Cµ9 −Cµ10 under the assumption of a 10%

shift in ∆Ms are shown in the sµL-f plane in figure 5.4. In addition, this figure also shows

lines of constant δGF /GF according to eq. (5.7), where mL/mE = 0.3 has been assumed.

An explanation of the anomalies in b → s `+`− processes in terms of a sizable degree of

compositeness of left-handed muons leads to several predictions that can be used to test the

models presented here:
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• It predicts Cµ9 ≈ −Cµ10 < 0. While this is in perfect agreement with global fits

to measurements of LFU and b → s µ+µ− observables (cf. tables 4.1 and 4.3), it

can be tested by new measurements, e.g. of the LFU observables DP ′4
and DP ′5

(cf.

section 4.3.2). Moreover, the positive contribution to Cµ10 implies a suppression of

Bs → µ+µ− (cf. [291,311]).

• It predicts a positive5 NP contribution to the Bs meson mass difference ∆Ms.

• It requires a negative shift in the Fermi constant accompanied by a negative shift in

the electroweak T parameter.

• It implies a slightly smaller value of the effective number of light neutrino species Nν

compared to the SM. Interestingly, such a deficit is actually preferred by LEP data.

• It predicts spin one resonances with a sizable branching ratio into muons. However,

they might be too heavy to be observable by direct searches at the LHC.

The above described model is incomplete in some ways: the precise structure of the quark

sector is not specified and the lepton sector does not contain a mechanism for generating

neutrino masses or to explain the absence of charged lepton flavor violation. However, the

presented mechanism for violation of LFU, which is primarily based on a sizable degree of

compositeness of the muon, has proved to be compatible with current experimental bounds

and may be implemented also in more complete models.

5This might be problematic; a recent analysis indicates that ∆MSM
s is already 2σ above the experimental

value, i.e. experimental data seems to prefer a negative NP contribution [324].
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6
Flavor physics and flavor anomalies

in minimal fundamental partial compositeness

Models containing the partial compositeness mechanism for generating the masses of SM

fermions have a rich flavor phenomenology. They generically contain sources of flavor viola-

tion beyond those present in the SM, which can lead to strong constraints and may require

flavor symmetries to make them phenomenologically viable (cf. section 2.3.3). On the other

hand, the tree-level FCNCs present in these models not only lead to “flavor problems” but

can also be used to explain experimental deviations from the SM that may be difficult to ac-

commodate in other models. A good example is the explanation of the b→ s `+`− anomalies

discussed in chapter 5. There, another important property of models with partial compos-

iteness is used: different degrees of compositeness for different lepton generations allow for

couplings to heavy resonances that violate LFU.

Having at hand the UV complete model of partial compositeness described in section 2.5,

interesting questions are how such an FPC model performs in a comprehensive analysis of

low-energy flavor effects, if it is able to explain the b→ s `+`− anomalies, and if it can even

shed some light on other measured deviations from the SM that show up in processes involving

the b→ cτν transition. To answer these questions, we have performed a comprehensive study

of flavor constraints on the MFPC model in [6] and investigated its potential for explaining

the flavor anomalies. This study is presented in the following.

6.1 Flavor and electroweak signals of the MFPC-EFT

For studying the effects of the MFPC model at and below the EW scale, it is convenient to

employ the MFPC-EFT described in section 2.5.2. While observables at the EW scale can

be studied directly in the MFPC-EFT, it is useful to consider the WEH for low-energy flavor

observables. This in turn requires matching the MFPC-EFT to the WEH. In the following,
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the EW scale observables, the matching procedure for deriving the WEH, and the low-energy

flavor observables are discussed in detail.

While the MFPC-EFT is defined with SM fermions in the gauge basis, the observables

considered in the following are defined in the mass basis, where the fermion mass matrices

have been diagonalized by biunitary transformations. It is therefore useful to first fix the

notation of the model parameters in the mass basis. Recalling from section 2.5.2 that the

SM fermion mass matrices in the MFPC-EFT are given by

mf,ij =
CYuk sθ fTC

4π

(
yT
f yf̄

)
ij
, (6.1)

where f ∈ {u, d, e}, the diagonalized matrices can be written as1

mdiag
f = U

T

f mf Uf̄ , f ∈ {u, d, e}. (6.2)

This relation between the gauge basis mass matrices mf and the diagonalized matrices mdiag
f

defines the unitary matrices Uf and Uf̄ . Like in the SM, the unitary matrices associated with

the doublet components of up- and down-type quarks yield the CKM matrix, which is given

by

V = U †u Ud. (6.3)

Inspecting eqs. (6.1) and (6.2), one observes that the object that is actually transformed to

the mass basis is the product of the matrix valued fundamental Yukawa couplings
(
yT
f yf̄

)
ij

,

while all other terms in eq. (6.1) are flavor universal. It might be useful to note that while

the fundamental doublet Yukawa couplings are identical for the doublet components, i.e.

yQ = yu = yd and yL = ye = yν , the fundamental quark doublet Yukawa couplings yu and

yd are rotated to the mass basis by different unitary matrices. For later convenience, it is

useful to introduce a notation for all possible products of fundamental Yukawa matrices in

the mass basis. There are two cases:

• A product of two fundamental Yukawa matrices where one of them is complex conju-

gated and the other is not. This will be denoted by

Xf1f2 =
1

4π
U †f1

y†f1
yf2 Uf2 , X∗f1f2

= XT
f2f1

. (6.4)

• A product of two fundamental Yukawa matrices where both of them are either uncon-

jugated or conjugated, which will be written as

Yf1f2 =
1

4π
UT
f1
yT
f1
yf2 Uf2 , Y ∗f1f2

=
1

4π
U †f1

y†f1
y∗f2

U∗f2
. (6.5)

1The neutrinos are treated as massless. Hence, the charged lepton mass matrix can be chosen to be diagonal

already in the gauge-basis, i.e. Ue = Uν = Uē = 13.
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Here, f1 and f2 denote a SM fermion, i.e. f1, f2 ∈ {u, d, e, ν, ū, d̄, ē}. The second case is

actually the one appearing in the fermion mass matrices, and using Yf1f2 , one can write the

mass basis mass matrices as (cf. eqs. (6.1), (6.2), and (6.5))

mdiag
f = CYuk sθ fTC Yff̄ . (6.6)

Recalling from eq. (2.231) that the SM Higgs VEV vSM can be identified with vSM = fTC sθ,

the SM Yukawa coupling in the mass basis Y SM,diag
f is given by

Y SM,diag
f =

√
2CYuk Yff̄ . (6.7)

6.1.1 Constraints from observables at the electroweak scale

In the MFPC-EFT, the couplings of the Higgs and the electroweak gauge bosons are mod-

ified at tree level. Therefore, experimental bounds on these couplings provide important

constraints.

The modification of the Higgs couplings is due to its pNGB nature and the finiteness

of the misalignment angle θ. The pNGB kinetic term, eq. (2.230), leads to the modified

couplings to weak gauge bosons

gZZh = cθg
SM
ZZh , gWWh = cθg

SM
WWh , (6.8)

while the fermion-Higgs couplings, which stem from the operator OYuk, eq. (2.240), are

gffh = cθg
SM
ffh . (6.9)

Higgs coupling modifications of this kind are present in any model with a pNGB Higgs

and have been discussed extensively in the literature (for a recent analysis, see e.g. [325]).

Experimental bounds on these couplings put a constraint on the size of the misalignment

angle θ. A combination of ATLAS and CMS Run 1 data on the hZZ coupling yields [202]

sθ < 0.44 @ 68% CL, (6.10)

while bounds from other couplings are weaker. In the analysis presented here, it is assumed

that fTC ≥ 1. Consequently, sθ < 0.25 and the bounds from modified Higgs couplings can

always be satisfied.

The operator OΠf modifies the couplings of fermions to the weak gauge bosons. In

particular, the Z boson couplings receive a NP contribution

CΠf OΠf ⊃
∑

f∈{u,d,e,ν}

g

cW
Zµ

(
δgijfL f̄

i
L γ

µ f jL + δgijfR f̄
i
R γ

µ f jR

)
, (6.11)
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where δgijfL and δgijfR are the deviations from the SM Z couplings; they are given by

δgijuL = +
CΠf

8π
s2
θ

(
Xuu

)
ij
, δgijuR = −CΠf

8π
s2
θ

(
X∗ūū

)
ij
,

δgijdL = −CΠf

8π
s2
θ

(
Xdd

)
ij
, δgijdR = +

CΠf

8π
s2
θ

(
X∗d̄d̄

)
ij
,

δgijeL = −CΠf

8π
s2
θ

(
Xee

)
ij
, δgijeR = +

CΠf

8π
s2
θ

(
X∗ēē

)
ij
,

δgijνL = +
CΠf

8π
s2
θ

(
Xνν

)
ij
, δgijνR = 0 .

(6.12)

The terms diagonal in the flavor indices modify the partial widths of the Z boson, which

have been measured at LEP with high precision. This can put strong constraints on the

possible size of the fundamental Yukawa couplings that enter the Xff terms. Very similar

to the discussion in section 5.1, the fundamental Yukawa couplings of the top quark need to

be large to reproduce its mass. Since the left-handed top and bottom quarks share the same

fundamental Yukawa coupling, the ZbLbL coupling can potentially receive large contributions.

In the model described in section 5.1, they are avoided at tree level due to a discrete symmetry

that serves as a custodial protection. In MFPC, the ZbLbL coupling is not protected2. Hence,

the LEP measurements of the Z boson’s partial widths are important constraints. In our

numerical analysis, we have therefore calculated the following observables for each parameter

point,

Rb =
Γ(Z → bb̄)

Γ(Z → qq̄)
, Rc =

Γ(Z → cc̄)

Γ(Z → qq̄)
, (6.13)

Re =
Γ(Z → qq̄)

Γ(Z → eē)
, Rµ =

Γ(Z → qq̄)

Γ(Z → µµ̄)
, Rτ =

Γ(Z → qq̄)

Γ(Z → τ τ̄)
, (6.14)

where Γ(Z → qq̄) implies a sum over all quarks except the top. The calculations take into ac-

count higher order electroweak corrections [326] and the leading order QCD correction [327],

such that the correct SM predictions are reproduced in the limit CΠf = 0, where all terms

in eq. (6.12) vanish.

The fundamental Yukawa couplings provide a source of breaking of the custodial SU(2)L+R

symmetry and thus contribute to the electroweak S and T parameters. While SU(2)L+R sym-

metry is also broken in the SM by the SM Yukawa couplings, the MFPC model modifies these

SM contributions due to the modified fermion-Higgs couplings. In addition, there are also

contributions to S and T parameter stemming from the strong dynamics, which are encoded

by WCs of effective operators in the MFPC-EFT. The total contribution then strongly de-

pends on these WCs, which are, however, independent of the WCs appearing in the flavor

observables considered here. Consequently, there is no strong correlation between the flavor

2There are actually FPC models that feature a custodial protection of the ZbLbL coupling, cf. [183].
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observables and the S and T parameters. Hence, the S and T parameters have not been

considered in our numerical analysis.

6.1.2 Low-energy probes of flavor and CP violation

Since models with partial compositeness can generate FCNCs already at tree level, precision

measurements of processes like meson-antimeson mixing or rare decays of K and B mesons

are important constraint that have to be taken into account. Because flavor-changing charged

currents are already generated at tree level in the SM, generic NP contributions to them are

expected to be less pronounced than in FCNCs. However, partial compositeness can also

lead to violation of LFU or the unitarity of the CKM matrix. It is therefore important to

also consider charged-current observables as constraints.

Matching the MFPC-EFT to the WEH

Predictions for the flavor observables considered in this section are usually calculated in terms

of WCs of operators in the WEH, which are evaluated at a hadronic scale of the order of a

few GeV. To derive these WCs, the MFPC-EFT is first matched to the WEH at the EW

scale. This scale is also called the matching scale and for our numerical analysis it has been

chosen to be 160 GeV. The flavor observables are calculated by the flavio code, which is also

employed in the analyses in chapter 4. This code implements the renormalization group (RG)

running necessary to evaluate the WEH WCs at the hadronic scale. The matching of the

MFPC-EFT to the WEH at the matching scale is done as follows.

The four-fermion operators in eqs. (2.242) and (2.243) are matched to four-fermion oper-

ators in the WEH in four steps:

1. The background value of the spurion ψia, eq. (2.236), is used to write the ψia valued

four-fermion operators in terms of SM fields in the two-component Weyl spinor notation

(cf. table 2.1).

2. By applying an assortment of Fierz transformations, these operators are then trans-

formed to a chiral basis compatible with the WEH. This means that the non-chiral

four-fermion operators in the WEH are simply given by a sum of operators in the

chiral basis. In particular, no additional Fierz transformations are needed to get the

operators in the WEH from those in the chiral basis.

3. The Weyl spinor four-fermion operators in the chiral basis are translated to four-

component Dirac spinors. If necessary, they are combined to constitute non-chiral

four-fermion operators in the WEH.
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4. All four-fermion operators and fundamental Yukawa couplings are rotated to the mass

basis by applying the unitary matrices defined in eq. (6.2). All products of fundamental

Yukawa matrices can then be written in terms of the X and Y matrices defined in

eqs. (6.4) and (6.5).

In addition to the four fermion operators of the MFPC-EFT, the operator OΠf defined

in eq. (2.244) plays an important role. Since it modifies the couplings between SM fermions

and electroweak gauge bosons (cf. section 6.1.1), it yields non-standard contributions to the

operators in the WEH when the weak gauge bosons are integrated out. To derive these

contributions, it is convenient to integrate out the W and the Z already in the MFPC-

EFT. This yields new four-fermion operators in terms of the spurion ψia. They can then be

matched to the WEH by applying the four steps described above.

Since the operator OYuk slightly modifies the Higgs couplings to fermions, the operators

that are generated by integrating out the Higgs also slightly differ from those one gets by

integrating out the Higgs in the SM. However, the difference is always flavor diagonal and

subleading in an expansion in sθ. Modifications of four-fermion operators in the WEH due

to OYuk are therefore neglected here.

Meson-antimeson mixing

The part of the WEH containing the NP contributions to meson-antimeson mixing in the

K0, B0, and Bs systems is

H∆F=2
weak,NP = −

∑
k,ij

Cijk O
ij
k , (6.15)

where the sum runs over the following operators,

OijV LL = (d̄jLγ
µdiL)(d̄jLγµd

i
L) , OijV RR = (d̄jRγ

µdiR)(d̄jRγµd
i
R) , OijV LR = (d̄jLγ

µdiL)(d̄jRγµd
i
R) ,

OijSLL = (d̄jRd
i
L)(d̄jRd

i
L) , OijSRR = (d̄jLd

i
R)(d̄jLd

i
R) , OijSLR = (d̄jRd

i
L)(d̄jLd

i
R) ,

OijTLL = (d̄jRσ
µνdiL)(d̄jRσµνd

i
L) , OijTRR = (d̄jLσ

µνdiR)(d̄jLσµνd
i
R) ,

(6.16)

and ij = 21, 31, 32 for K0, B0, and Bs, respectively. All of the above operators are generated

from the MFPC-EFT, with contributions to their WCs coming from two sources. The first

source are simply the four-fermion operators in the MFPC-EFT, eqs. (2.242) and (2.243).

The second source are tree-level Z exchange diagrams that involve two flavor-changing Z-

couplings stemming from the operator OΠf . These diagrams contribute to the WCs of

the above operators when the Z boson is integrated out. However, since they require two

insertions of OΠf , they are subleading in an expansion in sθ. At leading order3 in sθ, only

3In the numerical analysis discussed in section 6.2, also subleading contributions are included.
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four of the above operators are generated; their WCs read

CijV LL =
(
X∗dd

)
ij

(
X∗dd

)
ij

C4
4f + C5

4f

Λ2
TC

,

CijV RR =
(
Xd̄d̄

)
ij

(
Xd̄d̄

)
ij

C4
4f + C5

4f

Λ2
TC

,

CijV LR =
(
X∗dd

)
ij

(
Xd̄d̄

)
ij

C4
4f

Λ2
TC

,

CijSLR =
(
Ydd̄
)
ij

(
Y ∗d̄d
)
ij

C2
4f

Λ2
TC

.

(6.17)

The left-right operators OijSLR and OijV LR are notorious for their role in the “flavor problem” of

partial compositeness models with an anarchic flavor structure. These operators are strongly

suppressed in the SM but can be generated from heavy gluon resonance exchange in models

with partial compositeness. In the absence of flavor symmetries, the chiral enhancement

of the hadronic matrix elements of the left-right operators in the kaon sector leads to a

substantial contribution to εK , which measures indirect CP violation in kaon mixing and puts

very strong constraints on these models (cf. [166–168]). Interestingly, in the MFPC model,

the NP contribution to the WC CijSLR always vanishes for i 6= j, i.e. it is flavor-diagonal

and cannot contribute to meson-antimeson mixing. This is also true for subleading terms in

the sθ expansion. The reason for this is that the flavor structure of CijSLR depends only on(
Ydd̄
)
ij

, which is proportional to the down-type quark mass matrix and by definition diagonal

in the mass basis (cf. eq. (6.6)). This is in contrast to effective partial compositeness models

and models with extra dimensions, where the heavy gluon resonance exchange generates also

off-diagonal terms for CijSLR (cf. [166–168]). The MFPC model is special in the sense that any

heavy resonance in an adjoint of SU(3)C necessarily has to be an (SqS∗q ) techniscalar bound

state (cf. table 2.1). The structure of the fundamental Yukawa couplings then guarantees that

an exchange of such a bound state can only contribute to CijSLR with a term proportional to a

product of quark mass matrices. Consequently, these contributions are always flavor diagonal

in the mass basis. However, even for vanishing CijSLR at the matching scale, the QCD RG

running leads to a sizable contribution to CijSLR proportional to CijV LR at the hadronic scale.

Therefore, the strongest bound from meson-antimeson mixing observables is still assumed to

come from εK . In any case, in our numerical analysis, we have considered all of the following

observables:

• The parameter εK measuring indirect CP violation in K0 mixing.

• The mixing-induced CP asymmetry SψKS in Bd → J/ψKS .
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• The mixing-induced CP asymmetry Sψφ in Bs → J/ψ φ.

• The mass differences ∆Md and ∆Ms in the Bd and Bs systems.

Neutral current semi-leptonic decays

The rare neutral current b → s `` decays are of great interest in the light of the flavor

anomalies discussed in chapter 4. In particular, a central aspect of the analysis presented

here is to answer the question whether the MFPC model can account for violation of LFU

in B → K∗`` and B → K`` decays. The part of the WEH containing the operators that

contribute dominantly to b → s `` processes is given in eq. (4.9) and repeated here for

convenience,

Hb→s``weak,NP = −N b→s∑
k

(C`kO
`
k + C ′`k O

′`
k ) + h.c. , (6.18)

where the normalization factor N b→s is given by

N b→s =
4GF√

2
VtbV

∗
ts

e2

16π2
. (6.19)

As in section 4.1, only NP contributions in form of the following operators are considered:

O`9 = (s̄γµPLb)(¯̀γµ`) , O′`9 = (s̄γµPRb)(¯̀γµ`) ,

O`10 = (s̄γµPLb)(¯̀γµγ5`) , O′`10 = (s̄γµPRb)(¯̀γµγ5`) .
(6.20)

In contrast to the ∆F = 2 meson-antimeson mixing observables, the semi-leptonic decays

are ∆F = 1 processes, i.e. they only involve one flavor-changing coupling. Consequently,

contributions from Z exchange diagrams to the above operators only require one insertion

of OΠf . Therefore, they enter at the same order of sθ as the direct contributions stemming

from four-fermion operators in the MFPC-EFT. To leading order in sθ, the latter read

C`9N b→s ⊃ −1

4

(
X∗dd

)
bs

(
Xēē

)
``

C4
4f

Λ2
TC

+
1

4

(
X∗dd

)
bs

(
Xee

)
``

C4
4f + C5

4f

Λ2
TC

,

C ′`9 N b→s ⊃ −1

4

(
Xd̄d̄

)
bs

(
Xee

)
``

C4
4f

Λ2
TC

+
1

4

(
Xd̄d̄

)
bs

(
Xēē

)
``

C4
4f + C5

4f

Λ2
TC

,

C`10N b→s ⊃ −1

4

(
X∗dd

)
bs

(
Xēē

)
``

C4
4f

Λ2
TC

− 1

4

(
X∗dd

)
bs

(
Xee

)
``

C4
4f + C5

4f

Λ2
TC

,

C ′`10N b→s ⊃ +
1

4

(
Xd̄d̄

)
bs

(
Xee

)
``

C4
4f

Λ2
TC

+
1

4

(
Xd̄d̄

)
bs

(
Xēē

)
``

C4
4f + C5

4f

Λ2
TC

,

(6.21)
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and the contributions from integrating out the Z boson are given by

C`9N b→s ⊃ 2π
(
X∗dd

)
bs

(4 s2
w − 1)

CΠf

Λ2
TC

,

C ′`9 N b→s ⊃ −2π
(
Xd̄d̄

)
bs

(4 s2
w − 1)

CΠf

Λ2
TC

,

C`10N b→s ⊃ 2π
(
X∗dd

)
bs

CΠf

Λ2
TC

,

C ′`10N b→s ⊃ −2π
(
Xd̄d̄

)
bs

CΠf

Λ2
TC

.

(6.22)

While the contributions from Z boson exchange are LFU conserving at leading order in sθ,

those stemming from four-fermion operators in the MFPC-EFT are actually expected to

violate LFU. To assess if this can explain the experimental hints for violation of LFU in

neutral current decays, the following observables are predicted in our numerical analysis:

• RK for q2 ∈ [1, 6] GeV2,

• RK∗ for q2 ∈ [0.045, 1.1] GeV2 and for q2 ∈ [1.1, 6] GeV2.

Charged-current semi-leptonic decays

In contrast to the rare FCNC decays, flavor-changing charged current decays are tree-level

processes in the SM, mediated by the W boson. As such, they are far less sensitive to NP

contributions from loop processes than FCNC decays. Observables based on the q → q′`ν

transition are therefore used for determining the elements of the CKM matrix with the

fewest possible pollution from NP effects. In models with partial compositeness, however,

NP contributions to the q → q′`ν transition without loop-suppression are possible. In the

MFPC model, one source of contributions are again the four-fermion operators in the MFPC-

EFT. In addition, also diagrams with modified W couplings due to the operator OΠf can

contribute at leading order in sθ. In this case, the couplings of either quarks or leptons are

modified, while a simultaneous modification of both couplings is subleading in sθ. In our

numerical analysis, we have focused on di → uj`ν processes. The part of the WEH that

describes NP contributions to these processes is

Hd→u`νweak,NP =
∑
ij

N di→uj
∑
k

C
(′)diuj`
k O

(′)diuj`
k + h.c., (6.23)

where the normalization factor is

N di→uj =
4GF√

2
Vujdi , (6.24)
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the sum runs over the following operators,

Od
iuj`
V = (ūjLγ

µdiL)(¯̀
Lγµν`L) , O′d

iuj`
V = (ūjRγ

µdiR)(¯̀
Lγµν`L) ,

Od
iuj`
S = mdi(ū

j
Ld

i
R)(¯̀

Rν`L) , O′d
iuj`

S = mdi(ū
j
Rd

i
L)(¯̀

Rν`L) ,

Od
iuj`
T = (ūjRσ

µνdiL)(¯̀
Rσµνν`L)

(6.25)

and ij = 11, 21, 32 for d → u`ν, s → u`ν, and b → c`ν, respectively. The only operator

that receives a contribution in the SM is Od
iuj`
V , and with the above normalization, its WC

is simply Cd
iuj`
V SM = 1. In MFPC, all of the above operators are generated. To leading order

in sθ, the direct contributions from four-fermion operators in the MFPC-EFT yield

Cd
iuj`
V N di→uj ⊃ 1

2

(
X∗du

)
ij

(
Xeν

)
``

C5
4f − C3

4f

Λ2
TC

,

C ′d
iuj`

V N di→uj ⊃ 0 ,

Cd
iuj`
S N di→uj ⊃

(
Y ∗d̄u
)
ij

(
Yēν
)
``

C2
4f

Λ2
TC

,

C ′d
iuj`

S N di→uj ⊃ 1

2

(
Ydū
)
ij

(
Yēν
)
``

C8∗
4f − 2C7∗

4f

Λ2
TC

,

Cd
iuj`
T N di→uj ⊃ 1

8

(
Ydū
)
ij

(
Yēν
)
``

C8∗
4f

Λ2
TC

,

(6.26)

while the contributions from integrating out the W boson read

Cd
iuj`
V N di→uj ⊃ −8π

((
X∗du

)
ij

+ Vujdi
(
Xeν

)
``

) CΠf

Λ2
TC

,

Cd
iuj`′
V N di→uj ⊃ 8π

(
Xd̄ū

)
ij

CΠf

Λ2
TC

.

(6.27)

Like in neutral current semi-leptonic decays, the former are actually expected to violate LFU.

As noted above, the contributions from W exchange at leading order in sθ involve either a

modified lepton or quark coupling. If only the quark coupling is modified, the resulting

operators are lepton flavor universal. On the other hand, if the lepton coupling is modified,

they are expected to violate LFU.

A sizable fundamental Yukawa coupling of left-handed muons that might, similarly to

chapter 5, explain the hints for violation of LFU in neutral current decays also enters the

charged current WCs. Thus, one has to ascertain that explaining violation of LFU in neutral

current decays is not in conflict with experimental measurements of charged current decays.

Therefore, charged current decays with an electron or muon in the final state are taken

into account in our numerical analysis as important constraints on the leptons’ fundamental

Yukawa couplings and the size of a possible violation of LFU.
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But they are essential also for another reason: they allow for consistently comparing the

CKM measurements with the predictions for CKM elements obtained from diagonalizing

the quark mass matrices. In particular, in the presence of NP contributions to the charged

current WCs, the experimental data might favor slightly different values of CKM elements

than in the SM. In our numerical analysis, the following processes are therefore considered

as constraints:

• The branching ratio of π+ → eν, which is based on the d→ u`ν transition.

• The branching ratio of K+ → µν and the ratio of K+ → `ν branching ratios with

` ∈ {e, µ}, which are based on the s→ u`ν transition.

• The branching ratios of B → D`ν with ` ∈ {e, µ}, which are based on the b → c`ν

transition.

There are tensions between experimental data and the SM prediction of observables involving

the b→ cτν transition. In particular, measurements of the LFU ratios RD(∗) , i.e. the ratios

of the B → D(∗)τν and the B → D(∗)`ν (` = e, µ) branching ratios, show a deviation from

the SM prediction at a combined level of around 4σ [67]. To assess whether these hints

for violation of LFU in charged current decays can be explained by the MFPC model, the

following observables are not considered as constraints but rather as predictions:

• The ratios RD and RD∗ , which are based on the b→ cτν transition.

6.2 Numerical analysis

The effects of the MFPC model on the flavor and electroweak observables discussed in the

previous section are investigated by calculating them from the parameters of the MFPC-EFT.

By varying these parameters, it is possible to find regions in the parameter space where all the

applied constraints are satisfied. The parameter points in those regions then yield predictions

for the LFU observables RK(∗) and RD(∗) , which are not considered as constraints.

In our numerical analysis, we have made some assumptions concerning the lepton sector

that simplify the analysis or avoid additional constraints:

• Strong constraints from charged lepton flavor violation (see e.g. [328]) are avoided by

assuming that the fundamental Yukawa matrices yL and yē can be both diagonalized

in the same basis at the matching scale4.

• We have assumed right-handed neutrinos to be irrelevant for our analysis. Their effects

are neglected by setting their fundamental Yukawa couplings yν̄ and y′ν̄ to zero.

4This assumption is not RG invariant if LFU is violated [329].
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6.2.1 Parameters

Among all the parameters of the MFPC-EFT, only those entering the observables discussed

above have to be considered. In our numerical analysis, we have varied each of them over a

specific range. These parameters are

• The NGB decay constant fTC, which is related to the strong coupling scale by ΛTC =

4π fTC. fTC is varied between 1 TeV and 3 TeV.

• The six real WCs C1
4f , C2

4f , C3
4f , C4

4f , C5
4f and CΠf . Their absolute values are var-

ied logarithmically between 0.1 and 10 and each of them is allowed to be positive or

negative.

• The four complex WCs C6
4f , C7

4f , C8
4f and CYuk. Their absolute values are varied

logarithmically between 0.1 and 10 and their complex phases linearly between 0 and

2π.

• The four5 fundamental Yukawa matrices yQ, yL, yū, and yd̄. To parameterize them, it

is convenient to define the effective Yukawa matrices

ỹf =
√
CYuk yf . (6.28)

They have the advantage that they allow for expressing the fermion mass matrices

independently of the WC CYuk (cf. eq. (6.1)). Each of the complex matrices ỹf can be

decomposed by an SVD into one diagonal and two unitary matrices (cf. section 2.3.3).

This yields eight unitary and four diagonal matrices. The SM field Q, L, ū, and d̄

and the techniscalar fields Sq and Sl can each absorb one unitary matrix. This leaves

two physical unitary and four diagonal matrices. It is possible to choose the effective

doublet Yukawa matrices ỹQ and ỹL to be diagonal,

ỹQ = diag(yQ1, yQ2, yQ3), ỹL = diag(yL1, yL2, yL3), (6.29)

while the effective singlet Yukawa matrices ỹū and ỹd̄ then depend on one diagonal and

one unitary matrix each. The two unitary matrices can be parameterized by in total

six angles t12
u ,t13

u , t23
u , t12

d ,t13
d , t23

d and four phases6 δd, δu, ad, bd. The effective Yukawa

matrices ỹū and ỹd̄ can then be expressed as

ỹū = unitary(t12
u , t

13
u , t

23
u , δu) · diag(yu1, yu2, yu3),

ỹd̄ = unitary(t12
d , t

13
d , t

23
d , δd, ad, bd) · diag(yd1, yd2, yd3).

(6.30)

5The assumption that yē and yL are diagonal in the same basis at the matching scale allows for fixing the

entries of yē by requiring that the product of yL and yē yields the correct masses of the charged leptons.
6 While a general 3× 3 unitary matrix has five independent phases, six of the ten phases of ỹū and ỹd̄ can

be absorbed by field redefinitions.
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The entries of the diagonal matrices are varied logarithmically between7 0.002 and 4π

and the phases and angles linearly between 0 and 2π.

6.2.2 Strategy

The large amount of parameters is a challenge for a parameter scan. A naive random vari-

ation is problematic because only a very tiny fraction of the points in the high-dimensional

parameter space is actually compatible with experimental measurements of quark masses

and CKM elements. However, the effective Yukawa matrices are defined such that the quark

masses and CKM elements only depend on the 19 parameters of the matrices ỹQ, ỹū, and ỹd̄.

This makes it possible to divide the parameter scan into two steps. In the first step, only ỹQ,

ỹū, and ỹd̄ are varied to find regions in parameter space that yield predictions for the quark

masses and CKM elements close to the experimental observations. In the second step, ỹQ,

ỹū, and ỹd̄ are kept fixed while all other parameters are chosen randomly.

For the first step, the quark masses are predicted by constructing the quark mass matrices

in eq. (6.1) from ỹQ, ỹū and ỹd̄. These mass matrices are then numerically diagonalized via

eq. (6.2). The entries of the resulting diagonal matrices are interpreted as MS running masses

at 160 GeV and are run down to the scale where they can be compared to their PDG average.

The numerical diagonalization also yields the unitary matrices Uu and Ud, which define the

CKM matrix via eq. (6.3). In contrast to the masses, the CKM elements cannot be directly

compared to experimental measurements. As described in section 6.1.2, the CKM elements

are measured in neutral current semi-leptonic decays. These decays are subject to corrections

from the WEH WCs in eqs. (6.26) and (6.27), which depend on parameters that are not yet

specified in the first step of the scanning procedure. Consequently, the CKM elements can

only be compared to experimental measurements in the second step. However, in the first

step, they are required to be close to certain input values that are chosen such that a high

fraction of parameter points passes the constraints from CKM measurements applied in the

second step. To compare the predicted CKM elements to these input values and the predicted

quark masses to their PDG values, the χ2 function χ2
mass, CKM is constructed. The scan is

then carried out as follows:

• After choosing a random starting point in the 19-dimensional parameter-subspace

spanned by the parameters of ỹQ, ỹū, and ỹd̄, the χ2
mass, CKM function is numerically

minimized. This yields a viable point that predicts correct quark masses and CKM

elements close to the input values.

7To ascertain that the diagonal entries of yē stay below 4π when they are fixed by requiring the correct

charged lepton masses, the lower boundaries of the diagonal entries of ỹL are adjusted accordingly.

169



CHAPTER 6. FLAVOR PHYSICS AND FLAVOR ANOMALIES IN MFPC

• This viable point is then used as starting point for a Markov chain that samples the re-

gion around this point and generates 10 k viable points with a low value of χ2
mass, CKM.

To this end, the Markov-Chain-Monte-Carlo implementation from the pypmc pack-

age [208] is used.

• To reduce the auto-correlation of the 10 k points generated in the previous step, only

1 k points are selected.

In our scan, we have repeated the above steps 100 k times to get 100 M points from 100 k

local minima of the χ2
mass, CKM function. These points all predict correct quark masses and

CKM elements close to the input values.

For these 100 M viable points, the remaining 18 parameters are chosen randomly. For

each of the resulting points in the 37-dimensional parameter space, all observables discussed

in section 6.1 are calculated. For the flavor observables in section 6.1.2, all calculations are

performed by the flavio code, while a dedicated code is used for the Z decay observables

in section 6.1.1.

To compare the calculated predictions to the experimental values shown in table 6.1, the

χ2 functions χ2
Z , χ2

∆F=2, and χ2
CC are constructed from the observables in Z decays, meson-

antimeson mixing, and semi-leptonic charged-current decays, respectively. The constraints

are applied to the parameter points by requiring that the corresponding χ2 function stays

below its 3σ value. This corresponds to χ2
Z ≤ 18.2, χ2

∆F=2 ≤ 18.2, and χ2
CC ≤ 16.3 (cf.

table 6.1).

6.3 Results

6.3.1 Meson-antimeson mixing

As already discussed in section 6.1.2, the meson-antimeson mixing observables, and in par-

ticular εK , can put very strong constraints on models with partial compositeness and an

anarchic flavor structure. Because no flavor symmetries like those discussed in section 2.3.3

are considered here, these strong constraints are assumed to be present in the MFPC model.

In fact, our numerical analysis has found many of the points that predict correct quark

masses and CKM elements to deviate from the measured value of εK by orders of magni-

tude. However, the constraints strongly depend on the values of the fundamental Yukawa

matrices. We have actually found a significant number of points that lie inside the 3σ region

around the experimental measured value of εK . To get an impression of possible values εK

can assume in MFPC, the histogram in figure 6.1 shows the NP contributions due to the

dimension six operators listed in section 6.1.2 for a representative subset of all points that
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χ2 Observable measurement SM prediction

χ2
Z

Re 20.804± 0.050 [219] 20.768± 0.006

Rµ 20.785± 0.033 [219] 20.768± 0.006

Rτ 20.764± 0.045 [219] 20.813± 0.006

Rb 0.21629± 0.00066 [219] 0.21591± 0.00004

Rc 0.1721± 0.0030 [219] 0.17112± 0.00002

χ2
∆F=2

∆Ms (17.76± 0.02) ps [222] (19.9± 1.7) ps

∆Md (0.505± 0.002) ps [222] (0.64± 0.09) ps

Sψφ (3.3± 3.3)× 10−2 [222] (3.75± 0.22)× 10−2

SψKS 0.679± 0.020 [222] 0.690± 0.025

|εK | (2.228± 0.011)× 10−3 [209] (1.76± 0.22)× 10−3

χ2
CC

BR(B+ → D0`+ν`) (2.330± 0.098)× 10−2 [222] (2.92± 0.21)× 10−2

BR(π+ → e+ν) (1.234± 0.002)× 10−4 [330] (1.2341± 0.0002)× 10−4

BR(K+ → µ+ν) 0.6356± 0.0011 [209] 0.6296± 0.0066

Reµ(K+ → `+ν) (2.488± 0.009)× 10−5 [209] (2.475± 0.001)× 10−5

RD 0.397± 0.049 [67] 0.277± 0.012

RD∗ 0.316± 0.019 [67] 0.2512± 0.0043

R
[1,6]
K 0.75+0.08

−0.10 [58] 1.000± 0.001

R
[0.045,1.1]
K∗ 0.65+0.07

−0.12 [59] 0.926± 0.004

R
[1.1,6.0]
K∗ 0.68+0.08

−0.12 [59] 0.9965± 0.0005

Table 6.1: Measurements and SM predictions. The first three blocks contain the Z decay,

meson-antimeson mixing, and charged current observables used as constraints. The last block

contains the LFU observables considered as predictions. The SM predictions for the flavor

observables (last three blocks) are computed with flavio v0.23. The SM predictions for the

Z decay observables are computed with a dedicated code.
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Figure 6.1: Histogram showing the NP contribution to εK for a representative subset of

all points that feature the right masses and CKM elements, compared to the points among

those that pass the experimental constraint. A positive NP contribution corresponds to

constructive interference with the SM.

predict correct quark masses and CKM elements. It might be useful to recall that due to

NP contributions to charged current semi-leptonic decays, the CKM elements for each point

are in general different from those in the SM. This has the effect that in addition to the NP

contribution shown in figure 6.1, also the SM contribution εSM
K varies due to varying CKM

elements. This is the main reason why there is actually a significant number of points with

a NP contribution as small as |εNP
K | = O(10−6) that yields values for εK = εSM

K + εNP
K that

are not compatible with the experimental measurement at the 3σ level. Another interesting

effect that can be observed in figure 6.1 is that the experimental data prefers positive values

for εNP
K over negative ones. This can be traced back to the high sensitivity of εSM

K to the

value of the CKM element Vcb. The experimental measurement of εK actually favors a value

for Vcb slightly larger than what is suggested by the exclusive charged current semi-leptonic

decays B → D`ν that are included as constraints. This slight tension can be reduced by a

positive NP contribution, i.e. εNP
K > 0, which leads to the asymmetry visible in figure 6.1.

The histogram also shows that the NP contributions to εK can vary over several orders of

magnitude. This is mainly caused by the fundamental Yukawa matrices entering the WEH

WCs in eq. (6.17), while the MFPC-EFT WCs, which are allowed to assume absolute values

between 0.1 and 10, only have a minor effect.

In contrast to the kaon sector, a chiral enhancement of the hadronic matrix elements of the

left-right operatorsOijSLR andOijV LR is not active inB0-B̄0 andBs-B̄s mixing. The constraints
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Figure 6.2: Predictions for ∆Md and ∆Ms. Gray points are excluded by constraints other

than ∆F = 2. Blue points are allowed by all constraints.

from meson-antimeson mixing observables involving b quarks are therefore much weaker than

those stemming from εK . However, visible NP effects are still generated. The predictions of

the mass differences ∆Md and ∆Ms in B0-B̄0 and Bs-B̄s mixing are shown in figure 6.2a. All

points lie in an ellipse corresponding to the 3σ range around the experimentally measured

values. In addition to experimental uncertainties, the 3σ range also takes into account

theoretical uncertainties of the hadronic matrix elements from lattice QCD [331]. Only

few points are excluded only by ∆Md or ∆Ms, which can be seen by the fact that the points

allowed by all constraints (blue) do not fill out the whole ellipse. Most points close to the

edge of the ellipse are also excluded by other constraints (gray), i.e. Z decays or charged

current semi-leptonic decays. In particular, points with relatively large values of ∆Ms favor

high values of Vcb, which is however disfavored by the B → D`ν branching ratios. In general,

one observes that both ∆Md and ∆Ms can be suppressed or enhanced.

Deviations from the SM value in figure 6.2a cannot be attributed solely to ∆F = 2

operators because the CKM elements are not fixed but depend on the WCs of the charged-

current operators. To disentangle the different effects, figure 6.2b shows the predictions of

∆Md and ∆Ms relative to the SM values calculated from the predicted CKM elements at

each parameter point. Consequently, figure 6.2b shows effects dominantly due to the ∆F = 2

operators. In contrast to what one might naively expect from figure 6.2a, one finds relative
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Figure 6.3: Predictions for the mixing induced CP asymmetries in B0 → J/ψKS and Bs →
J/ψφ, sensitive to the B0 and Bs mixing phases. Gray points are excluded by constraints

other than ∆F = 2. Blue points are allowed by all constraints.

deviations up to 40%. This is possible because large effects from ∆F = 2 operators can be

partially compensated by shifts in the CKM elements. Figure 6.2b also reveals that sizable

effects due to ∆F = 2 operators cluster in three regions, where either mostly ∆Md is affected,

mostly ∆Ms is affected, or both are affected similarly.

Because the WCs of ∆F = 2 operators are in general complex valued, they introduce

new CP -violating phases into the mixing amplitudes. While these phases do not affect the

mass differences ∆Md and ∆Ms, they can be probed by the observables SψKS and Sψφ,

which correspond to the mixing induced CP asymmetries in the decays B0 → J/ψKS and

Bs → J/ψφ, respectively. Their predictions are shown in figure 6.3a. Again, one can observe

an ellipse corresponding to the 3σ range around the experimentally measured values. The

effects in figure 6.3a are again due to both ∆F = 2 operators and varying CKM elements.

Figure 6.3b shows the differences between the predicted values of the observables SψKS
and Sψφ and their SM values calculated from the predicted CKM elements at each point.

Thus, the effects in figure 6.3b are dominantly due to ∆F = 2 operators. One observes that

deviations of around 0.1 in either direction are possible for both observables. Like in the plots

of the mass differences, clusters of points where mostly one of the observables is affected are

visible.
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Figure 6.4: Histogram showing the distribution of the predictions for two observables probing

e-µ universality violation in Z couplings for all points passing the meson-antimeson mixing

constraints. Points labeled “excluded by LEP” are excluded by the partial Z width mea-

surements at LEP, while points labeled “excluded by flavor” are excluded by one of the

charged-current decays imposed as constraints.

6.3.2 Charged current decays and lepton flavor universality

As already discussed in section 6.1.2, an explanation of the hints for violation of LFU in

neutral currents could also lead to LFU violation in semi-leptonic charged current decays.

Thus, the measurements of BR(π → eν) and Reµ(B → K`ν) = BR(K → eν)/BR(K → µν)

have to be taken into account as important constraints on violation of e-µ universality. Since

most WCs of the charged current operators in eqs. (6.26) and (6.27) are actually expected to

violate LFU, it is not surprising that our numerical scan finds points that predict values of the

two above observables that deviate by far more than 3σ from the experimentally measured

values. These deviations are mainly due to the modified W -lepton coupling induced by the

operator OΠf , which enters the WEH WC Cd
iuj`
V (cf. eq. (6.27)). This can be understood as

follows. Since the above observables are based on the u→ d`ν and s→ u`ν transitions, they

involve light quarks. The contributions to the WEH stemming from the MFPC-EFT four-

fermion operators depend on the small fundamental Yukawa couplings of these light quarks

and are thus strongly suppressed. On the other hand, the contribution due to the modified
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Figure 6.5: Predictions for lepton flavor universality tests in B → Dτν and B → D∗τν

compared to the experimental world averages. Points allowed by all constraints are shown

in blue, while points excluded by LEP Z pole constraints are shown in gray.

W -lepton coupling involves the SM W -quark coupling and is not suppressed. For parameter

points that feature LFU violation from modified W couplings, the SU(2)L symmetry of

the MFPC-EFT implies also LFU violation in Z couplings, which is constrained by the

LEP measurements of the Z partial widths (cf. section 6.1.1). In figure 6.4, the different

constraints on e-µ universality are compared. The histograms show all points that pass the

meson-antimeson mixing constraints and divide them into four categories: points that are

excluded by the charged current flavor observables used as constraints, points excluded by

LEP, points excluded by LEP and flavor observables, and points that are allowed by all

constraints. While many points are excluded by both LEP and flavor observables, neither

the LEP nor the flavor constraints are superior to the other. Rather, there are points that

are only excluded by either LEP or flavor constraints, such that they actually complement

one another. The resulting combined constraint is found to be at the per cent level.

While the B → D(∗)τν decays based on the b→ cτν transition are experimentally more

challenging than charged current decays with electrons or muons in the final state, they

allow for testing LFU in decays involving tau leptons. Measurements by BaBar, Belle, and

LHCb [61–66] of the ratios

RD(∗) =
Γ(B → D(∗)τν)

Γ(B → D(∗)`ν)
(6.31)

have actually shown deviations from the SM prediction at a combined level of 4σ [67]. Given

the smallness of the theoretical uncertainties of the SM prediction as well as a possible
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connection to the hints for LFU violation in neutral currents, this is an intriguing result. To

assess if it is possible to explain the deviations in the MFPC model, the ratios RD(∗) are

considered as predictions in our numerical analysis. Figure 6.5 shows these predictions in the

RD-RD∗ plane. Although the MFPC model actually predicts a positive correlation between

the deviations in RD and RD∗ and such a pattern is also suggested by the experimental data,

effects that would be large enough to be in agreement with the averaged measurements at the

1σ level are excluded by LEP constraints. This can be traced back to the fact that sizable

contributions to RD and RD∗ require a large fundamental Yukawa coupling of left-handed

tau leptons. This in turn modifies the ZτLτL coupling (cf. eq. (6.12)), which is constrained

by LEP. The parameter points that are excluded by LEP data are shown in gray in figure 6.5.

While some of the blue points, which pass all constraints, can slightly reduce the tension with

experiment compared to the SM, the corresponding effects are much too small to actually

explain the measured values. It is an open question if the MFPC model can be modified such

that the ZτLτL coupling is protected while the RD and RD∗ measurements can be explained.

6.3.3 Lepton flavor universality in neutral current decays

Since a possible explanation of LFU violation in RD and RD∗ is spoiled by LEP constraints,

one might expect something similar to happen to an explanation of LFU violation in the

neutral current observables RK and Rk∗ . While it is demonstrated in chapter 5, that models

with partial compositeness provide a mechanism that allows for explaining the Rk(∗) anomaly,

the simple model presented there features a custodial protection of the ZµLµL coupling.

This allows for a sizable degree of compositeness of left-handed muons while satisfying LEP

constraints, which in turn can explain the anomaly. Translated to the MFPC model, an

analogous mechanism would require a sizable fundamental Yukawa coupling of the left-handed

muon. In this case, however, the operator OΠf induces a modification of the ZµLµL coupling,

which is not custodially protected (cf. eq. (6.12)). While at first sight, this is very similar to

the problem with the ZτLτL coupling in the explanation of the RD and RD(∗) measurements,

it turns out that the LFU violating effects in neutral currents can actually be large enough

to explain RK and Rk∗ and simultaneously pass the constraints from LEP measurements.

This is demonstrated in figures 6.6 and 6.7, where the predictions of RK and RK∗ in the bins

measured by LHCb are shown for points that pass all constraints imposed in our numerical

analysis. One observes that sizable effects are possible. These effects actually predict the

measured positive correlation between RK and RK∗ , while effects in the orthogonal direction

in the RK-RK∗ plane are considerably smaller.

This can be understood as follows. To yield the large top quark mass, the fundamental

quark doublet Yukawa coupling has to be sizable for the third generation. The hierarchy
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Figure 6.6: Predictions of RK for q2 ∈ [1.0, 6.0] and RK∗ for q2 ∈ [1.1, 6.0] compared to

the SM prediction and the LHCb measurements. (a): The points found in our numerical

analysis that are allowed by all of the applied constraints. (b): Generic predictions for

different scenarios of NP contributions to the WCs C
(′)`
9 and C

(′)`
10 . The unprimed WCs

C`9 and C`10 corresponding to left-handed quark currents are varied between −1.5 and 1.5,

while the primed WCs C ′`9 and C ′`10 corresponding to right-handed quark currents are varied

between −0.15 and 0.15. In the MFPC model, the latter are suppressed by relatively small

fundamental Yukawa couplings (see text for details).

between the masses of top and bottom quark is then mainly generated by the fundamental

quark singlet Yukawa couplings. This implies that the fundamental doublet Yukawa coupling

of the bottom quark is usually much larger than the one for the singlet. A similar conclusion

can be drawn for the second generation, where also the hierarchy between the charm and

the strange quark is generated mainly by the fundamental quark singlet Yukawa couplings.

Since WCs of operators with a left-handed quark current depend on the fundamental dou-

blet Yukawa couplings and WCs of operators with a right-handed quark current depend on

the fundamental singlet Yukawa couplings, the unprimed WCs C`9 and C`10 usually receive

considerably larger contributions than the primed WCs C ′`9 and C ′`10 (cf. eq. (6.21))8. This

then yields the pattern in figure 6.6.

8The suppression of right-handed currents involving only bottom and strange quarks is a general feature

in partial compositeness models with an anarchic flavor structure. This is analytically shown for ∆F = 2

operators in [171].
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Figure 6.7: Predictions of RK∗ for q2 ∈ [0.045, 1.1] and RK∗ for q2 ∈ [1.1, 6.0] compared to

the SM prediction and the LHCb measurements. (a): The points found in our numerical

analysis that are allowed by all of the applied constraints. (b): Generic predictions for

different scenarios of NP contributions to the WCs C
(′)`
9 and C

(′)`
10 . Concerning the size of

the WCs C
(′)`
9 and C

(′)`
10 , the same comments as in figure 6.6 apply.

Next to the results from the numerical analysis in figures 6.6a and 6.7a, predictions for

several scenarios of NP contribution to the WCs C
(′)`
9 and C

(′)`
10 are shown. In particular,

figure 6.6b demonstrates that sizable contributions with a positive correlation of RK and

RK∗ can be achieved with NP in WCs of operators involving left-handed quark currents with

|C`9| = |C`10| . 1.5. Assuming |C ′`9 | = |C ′`10| . 0.15 to take into account the suppression

of right-handed quark currents, one finds only very small effects. The points found in our

numerical analysis that predict either sizable negative Cµ9 = −Cµ10 or sizable positive Ce9 =

−Ce10 are compatible with the LHCb measurements at the 1-2σ level. While some of the

points with negative Ce9 = Ce10 are also in the region preferred by experimental data, sizable

effects from right-handed electron currents require considerably larger WCs compared to

left-handed lepton currents (cf. section 4.3.1). Points with a sizable negative Cµ9 = −Cµ10,

i.e. effects in left-handed muon currents, are also in good agreement with the global fits of

b → sµµ observables (cf. section 4.2). Consequently, our numerical analysis actually finds

parameter points that are able to explain the hints for LFU violation in RK and Rk∗ as well

as the b→ sµµ anomaly, while at the same time satisfying all imposed constraints.
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7
Summary and Outlook

The Higgs sector in the SM has a naturalness problem. The observed Higgs mass requires an

enormous fine-tuning without NP not too far above the EW scale that protects it from large

quantum corrections. An elegant solution to this problem is offered by CHMs: if the Higgs

is a composite bound state of a new strongly interacting sector, it only forms at energies

below the new strong scale and cannot be plagued by quantum corrections at higher scales.

Models in which the Higgs is a pNGB even provide an explanation for a Higgs that is much

lighter than other composite bound states that have to be present in such a model. This

is an important property since so far only the Higgs has been discovered at the LHC and

nothing else. However, there are some hints for NP from measurements of flavor observables

that show a deviation from the SM predictions. If these hints should turn into a discovery,

then the NP that explains them has to be at a scale also not too far above the EW scale.

This suggests that this NP might be actually connected to the solution of the naturalness

problem. Or, stated differently, the solution of the naturalness problem might explain the

hints for NP. In view of this, it is an interesting question if composite Higgs models can

actually do both, i.e. solve the naturalness problem of the SM and at the same time explain

the hints for NP. In this case, however, also other signs of the new strongly interacting sector

are expected. In particular, bound states in addition to the composite Higgs might be in

reach of direct searches at the LHC. So another interesting question is how are the prospects

for observing or excluding composite Higgs models through direct searches. The work done

in this thesis provides some answers to both of these interesting questions.

The first part introduces composite Higgs models that feature a pNGB Higgs and the

partial compositeness mechanism to generate masses for the SM fermions. This introduction

is presented in chapter 2 and considers the following concepts:

• NGBs are discussed in detail. After starting with a concrete example, the formalism to

describe them is introduced and important special cases are considered. These NGBs

can describe light spin zero composite bound states formed after spontaneous symmetry
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breaking in a strongly interacting theory. They are eventually used to describe the

composite Higgs.

• Hidden local symmetries are discussed as an alternative view of the formalism that

describes NGBs.

• It is shown how these hidden local symmetries can be used to add vector resonances to a

model that initially only contained NGBs. These vector resonances can be interpreted

as spin one bound states of the strongly coupled theory.

• It is described how the hidden local symmetry construction can be further extended to

add an arbitrary number of levels of vector resonances. This yields a so called multi-site

moose model.

• It is shown how taking a continuum limit that corresponds to adding an infinite number

of resonances leads to an extra dimensional theory that can be interpreted as a dual of

the strongly coupled one.

• Fermion partial compositeness is introduced as a means to provide masses to the SM

fermions in an effective description of a strongly coupled theory.

• It is shown how adding fermions in the extra dimensional theory leads to fermion

resonances when the continuum limit is reversed by discretizing the extra dimension

and that these fermion resonances automatically implement the partial compositeness

mechanism in a multi-site moose model.

• The quark flavor structure in a model with partial compositeness is discussed and flavor

symmetries are introduced to avoid stringent bounds from flavor observables.

• The Mechanism of electroweak symmetry breaking by vacuum misalignment is de-

scribed in detail by way of concrete example.

• The effective radiatively generated potential responsible for the misalignment mech-

anism is described. It is shown that this potential can be finite in multi-site moose

models due to a mechanism called collective breaking.

• The MFPC model is introduced as a UV completion of the effective models discussed

so far. This model features both a pNGB Higgs and fermion partial compositeness.

• It is described how an effective low-energy description of the MFPC model, the MFPC-

EFT, can be constructed.
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The remainder of the thesis applies the concepts listed above in several phenomenological

studies.

Chapter 3 discusses direct collider constraints in CHMs in the context of comprehensive

numerical global analyses. After describing the numerical method and the considered con-

straints, the concrete models that have been analyzed are specified. These are two multi-site

moose models containing a pNGB Higgs as well as vector and fermion resonances. They

implement fermion partial compositeness, flavor symmetries in the quark sector, and radia-

tive EWSB by vacuum misalignment due to an effective potential that is finite by collective

breaking. One of the models, the MCHM, features NGBs in the minimal SO(5)/SO(4) coset,

while the other, the NMCHM, contains NGBs in the next-to-minimal SO(6)/SO(5) coset.

The implementation of direct collider constraints in the numerical code used in the analy-

ses is detailed. In particular, all expressions used for the calculations of cross sections and

branching ratios are given. The results of the analyses are discussed. In particular, the cross

sections and branching ratios predicted by viable parameter points that satisfy all constraints

are compared to experimental data. Important conclusions are:

• Experimental searches for quark resonances at LHC run 2 can probe nearly all of the

viable parameter points we have found.

• Decays with light SM quarks in the final state are virtually unconstrained at the moment

but can presumably be probed by analyzing existing data. The most promising decay

channels to do this have a light SM quark and a Higgs boson in the final state.

• While vector resonances can be too heavy to be probed by LHC run 2, many of the

viable parameter points we have found can be probed by near future analyses. There

are two distinct cases:

– If the resonance Xµ is the lightest vector resonance, it can be lighter than the

naive bound from the electroweak S parameter suggests. It dominantly decays to

tt̄ but can also be probed in the dilepton channel. In this case, both of these decay

channels have high prospects for observing or excluding viable parameter points.

– If ρ3
Lµ is lighter than Xµ, the diboson as well as the dilepton channel have the

highest prospects to probe the viable parameter points.

• If mixing is allowed in the scalar sector of the NMCHM, the scalar resonance η has

couplings very similar to the Higgs and a mass usually below 1 TeV. The main features

of its collider phenomenology are:
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– η is dominantly produced via gluon fusion; its hadronic cross section is suppressed

compared to the Higgs cross section due to the larger mass and the consequently

smaller gluon parton luminosity.

– If η is heavier than roughly 250 GeV, it dominantly decays to two Higgses. Direct

searches for a neutral scalar decaying in this channel have by far the highest

prospects for observing or excluding viable parameter points.

– The diboson channels are also promising, especially if η is very light and kinemat-

ically forbidden to decay to two Higgses.

The hints for NP found in measurements of rare B decays are discussed in detail in

chapter 4. In particular, two model independent studies of the tensions between experimental

measurements and SM predictions are presented. The first one analyzes the status of the

B → K∗µ+µ− anomaly including new and updated measurements. It is found that

• A good fit is obtained with a negative NP contribution to the WC C9, possibly accom-

panied by a positive contribution to C10.

• NP in WCs of right-handed quark currents cannot explain the tensions.

• It is shown that increasing possibly underestimated hadronic uncertainties cannot fully

account for the tensions.

• The measured data is compatible with a helicity and q2 independent shift in C9, sug-

gesting a NP explanation.

The second study considers hints for violation of LFU from measurements of the theoretically

very clean observables RK(∗) . It is found that

• A NP contribution with Cµ9 −Ce9 −Cµ10 +Ce10 ≈ −1.4 provides a good fit to the data.

• NP in WCs of right-handed quark currents cannot explain the tensions.

• A NP explanation of the tensions found in LFU observables is fully compatible with

an explanation of the B → K∗µ+µ− anomaly if NP yields a negative contribution to

Cµ9 , possibly accompanied by a positive contribution to Cµ10.

• Measurements of the LFU observables DP ′4
and DP ′5

could further distinguish between

different NP scenarios.

A possible explanation of the tantalizing hints for NP in rare B decays is presented in

chapter 5. It is shown that partially composite left-handed muons can potentially explain
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both the B → K∗µ+µ− anomaly and the hints for LFU by generating negative contributions

to Cµ9 = −Cµ10. A very simple model constructed to provide partially composite left-handed

muons predicts:

• A positive NP contribution to the Bs meson mass difference ∆Ms.

• A negative shift in the Fermi constant accompanied by a negative shift in the elec-

troweak T parameter.

• A slight reduction of the effective number of light neutrino species Nν , which is actually

suggested by LEP data.

• Spin one resonances with sizable branching ratio into muons, but possibly too heavy

to be directly observed at the LHC.

A much more ambitious model is analyzed in chapter 6. A UV completion of CHMs

in the form of the MFPC model is considered. A numerical comprehensive study of the

effects of this model on observables at the electroweak scale and on flavor observables at low

energies is presented. Using the MFPC-EFT, the possible contributions to observables at the

electroweak scale is described. For the low-energy flavor phenomenology, the MFPC-EFT

is matched to the WEH and the possible contributions to observables in meson-antimeson

mixing, semi-leptonic neutral current decays and semi-leptonic charged current decays are

detailed. The constraints applied in the numerical analysis are specified and the numerical

strategy is described in detail. The results found in this study are:

• Indirect CP violation in Kaon mixing provides a very strong constraint and the ex-

perimental measurement is in conflict with predictions in large parts of the parameter

space. However, also a large number of viable parameter points is found that is in

accordance with experimental data.

• The viable parameter points allow for sizable effects in B0 and Bs mixing observables

close to the level probed by current experiments.

• Even though the absence of charged current flavor violation is imposed, violation of

LFU is a generic prediction due to partial compositeness. Consequently, tests of e-µ

universality violation in charged current decays are important constraints.

• Large LFU violation in B → D(∗)τν, which is indicated by several experiments at the

combined level of 4σ, cannot by explained by the model while satisfying LEP constraints

on the Zττ coupling. However, the tensions can be slightly ameliorated compared to

the SM.
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• Interestingly, the MFPC model can explain both anomalies in rare B decays, i.e. the

B → K∗µ+µ− anomaly and the hints for LFU in RK(∗) . The explanation of both

anomalies at once requires a sizable partial compositeness of left-handed muons, very

similar to the mechanism discussed in chapter 5.

In view of the tensions in rare B decays, but also in charged current LFU observables

containing the τ , it is a very exciting time for doing flavor physics. The question if these

hints for NP actually turn out to be first signs of a sector beyond the SM will be answered

during the following years by measurements both performed by LHCb and at the upcoming

Belle 2 experiment. If they should actually confirm the long sought NP effects, it might also

be possible to probe the currently still hypothetical NP sector by direct searches at the LHC.

While no direct effects have been observed so far, this might change with a substantially

larger integrated luminosity over the forthcoming years. If only indirect effects are seen and

no direct detection is made, this might hint to relatively heavy NP particles that are strongly

coupled, such that they still can produce sizable effects in non-renormalizable operators in

the low-energy effective theory. Composite Higgs models are among the prime candidates for

describing these strongly coupled particles.
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A
Appendix

A.1 Explicit vacuum states

While according to the CCWZ formalism, the NGB Lagrangian depends only on the G/H

coset parametrized by the NGB matrix U(x) and not on the vacuum φ0, one may use the

field

φ(x) = U(x)φ0 (A.1)

to write down a Lagrangian that is equivalent to the CCWZ prescription. It is assumed here

that the vacuum that breaks G→ H is parametrized by a fundamental1 representation of G

(cf. e.g. [99,104,332,333]). For an N ×N NGB matrix, the vacuum φ0 is thus considered to

be an N -component vector. Following [332], two possible terms are found at leading order

in derivatives,

L2 = c1

(
∂µφ

†(x)
)(
∂µφ(x)

)
+ c2 φ

†(x)
(
∂µφ(x)

)(
∂µφ†(x)

)
φ(x), (A.2)

where c1 and c2 are constants that depend on the G/H coset and on the specific vacuum φ0.

Rewriting the above Lagrangian in terms of the NGB matrix U(x) and φ0 yields

L2 = c1 φ
†
0

(
∂µU

−1(x)
)(
∂µU(x)

)
φ0 + c2 φ

†
0 U
−1(x)

(
∂µU(x)

)
φ0 φ

†
0

(
∂µU−1(x)

)
U(x)φ0.

(A.3)

To see how this Lagrangian is equivalent to the CCWZ Lagrangian, eq. (2.26), one can employ

the relation from eq. (2.18) to rearrange the U(x) matrices such that the Lagrangian can be

written in terms of the Maurer-Cartan-form aµ[U ] defined in eq. (2.20). It then reads

L2 = c1 φ
†
0 aµ[U ] aµ[U ]φ0 + c2 φ

†
0 aµ[U ]φ0 φ

†
0 a

µ[U ]φ0. (A.4)

1Constructions where the G→ H breaking is parametrized by larger representations have been discussed

e.g. in [90,92,96,179,234,332].
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Using the expansion of aµ[U ] in terms of the unbroken and broken generators, eq. (2.23), and

noting that by definition the vacuum transforms trivially under the group elements associated

with the unbroken generators, i.e. T a φ0 = 0, one finds

L2 = dµ[U ]a dµ[U ]b
(
c1 φ

†
0X

aXb φ0 + c2 φ
†
0X

a φ0 φ
†
0X

b φ0

)
. (A.5)

Equating this with the NGB Lagrangian from the CCWZ prescription, eq. (2.26), yields

c1 φ
†
0X

aXb φ0 + c2 φ
†
0X

a φ0 φ
†
0X

b φ0 =
f2

4
δab, (A.6)

where for the derivation of the right-hand side, the normalization tr[XaXb] = δab is used.

As an explicit example, the spontaneous symmetry breaking SO(N) → SO(N − 1) is

now considered. With an appropriate choice of generators, the vacuum φ0 can be written as

φ0 = (0, . . . , 0, 1)T . The above relation for c1 and c2, eq. (A.6), thus simplifies to

c1 [XaXb]NN + c2 [Xa]NN [Xb]NN =
f2

4
δab. (A.7)

Since the generators of SO(N) are antisymmetric, their diagonal elements vanish and one

finds [Xa]NN = 0. The second term in the Lagrangian, which is proportional to c2, is thus

absent in this case. Considering an explicit basis for the generators Xa, e.g.

[Xa]IJ = − i√
2

(
δaI δ

N
J − δNI δaJ

)
, a ∈ {1, . . . , N − 1}, I, J ∈ {1, . . . , N}, (A.8)

one finds

[XaXb]IJ =
1

2

(
δaI δ

b
J + δabδNI δ

N
J

)
, a, b ∈ {1, . . . , N − 1}, I, J ∈ {1, . . . , N}, (A.9)

and thus

[XaXb]NN =
1

2
δab, (A.10)

such that c1 = f2

2 . Using the above choice of generators, the leading order NGB Lagrangian

for a spontaneous breaking SO(N)→ SO(N − 1) is then given by

L2 =
f2

2

[
∂µU

−1(x) ∂µU(x)
]
NN

. (A.11)
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A.2 Generators of SO(5) and SO(6)

The 10 generators of SO(5) can be grouped according to their transformation properties

under the SU(2)L × SU(2)R
∼= SO(4) subgroup of SO(5):

• The TaL transform as (3,1) and generate the SU(2)L subgroup.

• The TaR transform as (1,3) and generate the SU(2)R subgroup.

• The Ta
1̂

transform as (2,2) and correspond to the broken generators of the SO(5) →
SO(4) symmetry breaking. These generators are associated with the SO(5)/SO(4)

Higgs doublet NGBs.

The generators can be defined as

[TaL]IJ = − i
2

[
1

2
εabc (δbIδcJ − δbJδcI) + (δaIδ4J − δaJδ4I)

]
, a ∈ {1, 2, 3},

[TaR]IJ = − i
2

[
1

2
εabc (δbIδcJ − δbJδcI)− (δaIδ4J − δaJδ4I)

]
, a ∈ {1, 2, 3},[

Ta
1̂

]
IJ

= − i√
2

(δaIδ5J − δaJδ5I) , a ∈ {1, 2, 3, 4},

(A.12)

where I, J ∈ {1, 2, 3, 4, 5}.
The 15 generators of SO(6) consist of the 10 generators of SO(5) and the five generators

that are broken by the SO(6) → SO(5) symmetry breaking. To define the former, the

definition above can be simply extended by using I, J ∈ {1, 2, 3, 4, 5, 6}. The latter transform

under SU(2)L × SU(2)R as follows:

• The Ta
2̂

transform as (2,2). These generators are associated with the Higgs doublet

NGBs in the SO(6)/SO(5) coset.

• The TS transforms as (1,1). This generator is associated with the scalar singlet NGB

in the SO(6)/SO(5) coset.

They can be defined as[
Ta

2̂

]
IJ

= − i√
2

(δaIδ6J − δaJδ6I) , a ∈ {1, 2, 3, 4},

[TS ]IJ = − i√
2

(δ5Iδ6J − δ5Jδ6I) ,

(A.13)

where I, J ∈ {1, 2, 3, 4, 5, 6}.
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A.3 Loop functions

This appendix lists the loop functions introduced in section 3.2.2. The functions relevant for

a decay of a heavy scalar to two massless vector bosons are (cf. e.g. [334–336])

AF (x) = 2x (1 + (1− x) f(x)),

ÃF (x) = 2x f(x),

AV (x) = −2− 3x− 3x (2− x) f(x),

(A.14)

where

f(x) =

arcsin2
(

1√
x

)
if x ≥ 1

−1
4

(
log
(

1+
√

1−x
1−√1−x

)
− i π

)2
if x < 1

. (A.15)

In the case where one of the vector bosons in the final state is massive, the following functions

apply (cf. e.g. [334–337]):

BF (x, y) = 4 (I1(x, y)− I2(x, y)) ,

B̃F (x, y) = 4 I2(x, y),

BV (x, y) =

(
4

y
+

8

x y
− 6− 4

x

)
I1(x, y) + 16

(
1− 1

y

)
I2(x, y).

(A.16)

The functions I1(x, y) and I2(x, y) are defined by

I1(x, y) =
x y

2 (x− y)
+

x2 y2

2 (x− y)2

(
f(x)− f(y)

)
+

x2 y

(x− y)2

(
g(x)− g(y)

)
,

I2(x, y) =
−x y

2 (x− y)

(
f(x)− f(y)

)
,

(A.17)

where f(x) is given in eq. (A.15) and g(x) is

g(x) =


√
x− 1 arcsin

(
1√
x

)
if x ≥ 1

√
1−x
2

(
log
(

1+
√

1−x
1−√1−x

)
− i π

)
if x < 1

. (A.18)
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A.4 Mass matrices

A.4.1 Minimal composite Higgs model

Vector bosons

The mass matrix of the neutral vector bosons in the MCHM is

M2
Z(h) =



W
(0)3
µ B

(0)
µ ρ3

Lµ ρ3
Rµ a3

µ Xµ a4
µ

W
(0)3
µ

f2
1 g

2
(0)

2
vT
Z

0

B
(0)
µ

(f2
1 +f2

X)g′ 2(0)

2

ρ3
Lµ

vZ

f2
1 g

2
ρ

2

ρ3
Rµ

f2
1 g

2
ρ

2

a3
µ

f4
1 g

2
ρ

2(f2
1−f2)

Xµ
f2
Xg

2
X

2

a4
2µ 0

f4
1 g

2
ρ

2(f2
1−f2)



,

(A.19)

where the h-dependent composite-elementary mixings are

vZ =



W
(0)3
µ B

(0)
µ

ρ3
Lµ −1

4f
2
1 g(0)gρ (ch + 1) −1

4f
2
1 g
′
(0)gρ (1− ch)

ρ3
Rµ −1

4f
2
1 g(0)gρ (1− ch) −1

4f
2
1 g
′
(0)gρ (ch + 1)

a3
µ −f2

1 g(0)gρ sh

2
√

2

f2
1 g
′
(0)
gρ sh

2
√

2

Xµ 0 −1
2f

2
X g
′
(0)gX


. (A.20)

The mass matrix of the charged vector bosons V ±µ = 1√
2

(
V 1
µ ∓ iV 2

µ

)
in the MCHM is

M2
W (h) =



W
(0)+
µ ρ+

Lµ ρ+
Rµ a+

µ

W
(0)−
µ

f2
1 g

2
(0)

2 vT
W

ρ−Lµ

vW

f2
1 g

2
ρ

2

ρ−Rµ
f2
1 g

2
ρ

2

a−µ
f4
1 g

2
ρ

2(f2
1−f2)


, (A.21)
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where the h-dependent composite-elementary mixings are given by

vW =


W

(0)+
µ

ρ−Lµ −1
4f

2
1 g(0)gρ (ch + 1)

ρ−Rµ −1
4f

2
1 g(0)gρ (1− ch)

a−µ −f2
1 g(0)gρ sh

2
√

2

 . (A.22)

The mass matrix of the colored vector bosons in the MCHM and in the NMCHM is

M2
G(h) =


G

(0)
µ G

(1)
µ

G
(0)
µ

f2
Gg

2
3(0)

2 −f2
Gg3(0)g3(1)

2

G
(1)
µ −f2

Gg3(0)g3(1)

2

f2
Gg

2
3(1)

2

 . (A.23)

Quarks

The mass matrix of up-type quarks in the MCHM is

Mu(h) =

u
(0)
R Q+−

uR Q−+
uR SuR Q++

dR Q̃++
dR Q̃+−

uR Q̃−+
uR S̃uR

u
(0)
L 0 ∆uL −∆dL 0 0

Q
+−
uL

0

mU

0

mYu

Q
−+
uL mU mYu

SuL mU mYu + Yu

Q
++
dL

0 0
mD mYd

0
Q̃

++

dL m
D̃

Q̃
+−
uL

∆†uR 0 0

m
Ũ

Q̃
−+

uL m
Ũ

S̃uL m
Ũ



,
(A.24)

where the h-dependent composite-elementary mixings are

∆†uR = ∆†uL =
u

(0)
R

Q̃
+−
uL − i√

2
∆†uRsh

Q̃
−+

uL − i√
2
∆†uRsh

S̃uL −∆†uRch

 ,


u

(0)
L

Q
+−
uR −1

2∆†uL (ch + 1)

Q
−+
uR

1
2∆†uL (1− ch)

SuR − i√
2
∆†uLsh

 .
(A.25)
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An analogous matrix is found for down-type quarks.

The mass matrices of exotically charged quarks in the MCHM and in the NMCHM are

MQ+5/3
(h) = MQ−4/3

(h) =
Q++
uR Q̃++

uR

Q
++
uL mU mYu

Q̃
++

uL 0 m
Ũ

 ,


Q−−dR Q̃−−dR

Q
−−
dL mD mYd

Q̃
−−
dL 0 m

D̃

 .
(A.26)

A.4.2 Next-to-minimal composite Higgs model

Vector bosons

The mass matrix of the neutral vector bosons in the NMCHM is

M2
Z(ĥ, η̂) =

W
(0)3
µ B

(0)
µ ρ3

Lµ ρ3
Rµ a3

1µ a3
2µ Xµ a4

1µ a4
2µ ρS µ

W
(0)3
µ

f2
1 g

2
(0)

2
vT
Z

0

B
(0)
µ

(f2
1 +f2

X)g′ 2(0)

2

ρ3
Lµ

vZ

f2
1 g

2
ρ

2

ρ3
Rµ

f2
1 g

2
ρ

2

a3
1µ

f2
1 g

2
ρ

2

a3
2µ

f4
1 g

2
ρ

2(f2
1−f2)

Xµ
f2
Xg

2
X

2

a4
1µ

0

f2
1 g

2
ρ

2

a4
2µ

f4
1 g

2
ρ

2(f2
1−f2)

ρS µ
f4
1 g

2
ρ

2(f2
1−f2)



,

(A.27)
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where the ĥ- and η̂-dependent composite-elementary mixings are

vZ =



W
(0)3
µ B

(0)
µ

ρ3
Lµ −1

4f
2
1 g(0)gρ

(
chc̃

2
η + s̃2

η + 1
)

−1
4f

2
1 g
′
(0)gρ (1− ch)c̃2

η

ρ3
Rµ −1

4f
2
1 g(0)gρ (1− ch) c̃2

η −1
4f

2
1 g
′
(0)gρ

(
chc̃

2
η + s̃2

η + 1
)

a3
1µ

f2
1 g(0)gρ (1−ch)s̃η c̃η

2
√

2
−f2

1 g
′
(0)
gρ (1−ch)s̃η c̃η

2
√

2

a3
2µ −f2

1 g(0)gρ shc̃η

2
√

2

f2
1 g
′
(0)
gρ shc̃η

2
√

2

Xµ 0 −1
2f

2
X g
′
(0)gX


. (A.28)

The mass matrix of the charged vector bosons V ±µ = 1√
2

(
V 1
µ ∓ iV 2

µ

)
in the NMCHM is

M2
W (ĥ, η̂) =



W
(0)+
µ ρ+

Lµ ρ+
Rµ a+

1µ a+
2µ

W
(0)−
µ

f2
1 g

2
(0)

2 vT
W

ρ−Lµ

vW

f2
1 g

2
ρ

2

ρ−Rµ
f2
1 g

2
ρ

2

a−1µ
f2
1 g

2
ρ

2

a−2µ
f4
1 g

2
ρ

2(f2
1−f2)


, (A.29)

where the ĥ- and η̂-dependent composite-elementary mixings are given by

vW =



W
(0)+
µ

ρ−Lµ −1
4f

2
1 g(0)gρ

(
chc̃

2
η + s̃2

η + 1
)

ρ−Rµ −1
4f

2
1 g(0)gρ (1− ch)c̃2

η

a−1µ
f2
1 g(0)gρ (1−ch)s̃η c̃η

2
√

2

a−2µ −f2
1 g(0)gρ shc̃η

2
√

2


. (A.30)
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Quarks

The mass matrix of up-type quarks in the NMCHM is

Mu(ĥ, η̂) =

u
(0)
R Q+−

uR Q−+
uR S1

uR S2
uR Q++

dR Q̃++
dR Q̃+−

uR Q̃−+
uR S̃1

uR S̃2
uR

u
(0)
L 0 ∆uL −∆dL 0 0

Q
+−
uL

0

mU

0

mYu

Q
−+
uL mU mYu

S
1
uL mU mYu

S
2
uL mU mYu + Yu

Q
++
dL

0 0
mD mYd

0
Q̃

++

dL m
D̃

Q̃
+−
uL

∆†uR 0 0

m
Ũ

Q̃
−+

uL m
Ũ

S̃
1

uL m
Ũ

S̃
2

uL m
Ũ



,

(A.31)

where the ĥ- and η̂-dependent composite-elementary mixings are

∆†uR = ∆†uL =

u
(0)
R

Q̃
+−
uL − i√

2

(
∆5 †
uR ((1− ch)s̃η c̃η) + ∆6 †

uRshc̃η

)
Q̃
−+

uL − i√
2

(
∆5 †
uR ((1− ch)s̃η c̃η) + ∆6 †

uRshc̃η

)
S̃

1

uL −∆5 †
uR

(
c̃2
η + chs̃

2
η

)
+ ∆6 †

uRshs̃η

S̃
2

uL −∆5 †
uRshs̃η −∆6 †

uRch


,



u
(0)
L

Q
+−
uR −1

2∆†uL

(
chc̃

2
η + 1

)
Q
−+
uR

1
2∆†uLc̃

2
η (1− ch)

S
1
uR

i√
2
∆†uL (1− ch) s̃η c̃η

S
2
uR − i√

2
∆†uLc̃ηsh


.

(A.32)

An analogous matrix is found for down-type quarks.
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A.5 Composite-elementary mixings

A.5.1 Minimal composite Higgs model

The explicit expressions of the 3 × 3 composite elementary mixings for the different flavor

symmetries are

• In U(3)3
LC,

∆uL = ∆Lt 1 , ∆†uR = V †


∆Ru

∆Rc

∆Rt

 , (A.33)

∆dL = ∆Lb 1 , ∆†dR =


∆Rd

∆Rs

∆Rb

 . (A.34)

Here, V is the CKM matrix with 3 angles and 1 phase.

• In U(3)3
RC,

∆uL = V †


∆Lu

∆Lc

∆Lt

 , ∆†uR = ∆Rt 1 , (A.35)

∆dL =


∆Ld

∆Ls

∆Lb

 , ∆†dR = ∆Rb 1 . (A.36)

• In U(2)3
LC,

∆uL =


∆Lu

∆Lu

∆Lt

 , ∆†uR =


cu∆Ru −su∆Rce

iαu

su∆Rue
−iαu cu∆Rc εu∆Rte

iφt

∆Rt

 ,

(A.37)

∆dL =


∆Ld

∆Ld

∆Lb

 , ∆†dR =


cd∆Rd −sd∆Rse

iαd

sd∆Rde
−iαd cd∆Rs εd∆Rbe

iφb

∆Rb

 .

(A.38)
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• In U(2)3
RC,

∆uL =


cu∆Lu −su∆Lce

iαu

su∆Lue
−iαu cu∆Lc εu∆Lte

iφt

∆Lt

 , ∆†uR =


∆Ru

∆Ru

∆Rt

 ,

(A.39)

∆dL =


cd∆Ld −sd∆Lse

iαd

sd∆Lde
−iαd cd∆Ls εd∆Lbe

iφb

∆Lb

 , ∆†dR =


∆Rd

∆Rd

∆Rb

 .

(A.40)

A.5.2 Next-to-minimal composite Higgs model

The explicit expressions of the 3 × 3 composite elementary mixings for the U(2)3
RC flavor

symmetry are

∆uL =


cu ∆u1L −su ∆u2L e

iαu

su ∆u1L e
−iαu cu ∆u2L εu ∆u3L e

iφu

∆u3L

 , (A.41)

∆dL =


cd ∆d1L −sd ∆d2L e

iαd

sd ∆d1L e
−iαd cd ∆d2L εd ∆d3L e

iφd

∆d3L

 , (A.42)

∆5 †
uR =


∆5
u12R

∆5
u12R

∆5
u3R

 , ∆6 †
uR =


∆6
u12R e

iφ6
u12R

∆6
u12R e

iφ6
u12R

∆6
u3R e

iφ6
u3R

 ,

(A.43)

∆5 †
dR =


∆5
d12R

∆5
d12R

∆5
d3R

 , ∆6 †
dR =


∆6
d12R e

iφ6
d12R

∆6
d12R e

iφ6
d12R

∆6
d3R e

iφ6
d3R

 .

(A.44)
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A.6 Experimental searches included as direct constraints

A.6.1 Analysis of the minimal composite Higgs model

Decay Experiment
√
s [TeV] Lum. [fb−1] Analysis

ρ± → `±ν ATLAS 7 4.7 EXOT-2012-02 [338]

ρ± →W±h
ATLAS 8 20.3 EXOT-2013-23 [339]

CMS 8 19.7 EXO-14-010 [340]

ρ± →W±Z

ATLAS 8 20.3 EXOT-2013-01 [341]

ATLAS 8 20.3 EXOT-2013-07 [342]

ATLAS 8 20.3 EXOT-2013-08 [343]

CMS 8 19.7 EXO-12-024 [344]

ρ± → tb CMS 8 19.5 B2G-12-010 [345]

ρ0 →W+W−
ATLAS 8 20.3 EXOT-2013-01 [341]

CMS 8 19.7 EXO-13-009 [346]

ρ0 → Zh
ATLAS 8 20.3 EXOT-2013-23 [339]

CMS 8 19.7 EXO-13-007 [347]

ρ0 → `+`−
ATLAS 8 20.3 EXOT-2012-23 [348]

CMS 8 20.6 EXO12061 [349]

ρ0/ρG → tt̄
ATLAS 8 20.3 CONF-2015-009 [350]

CMS 8 19.5 B2G-12-008 [351]

Table A.1: Experimental analyses included in our numerics for heavy vector resonance decay.
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Decay Experiment
√
s [TeV] Luminosity [fb−1] Analysis

Q→ tW CMS 7 5 B2G-12-004 [352]

Q→ jW
ATLAS 7 1.04 EXOT-2011-28 [353]

CDF 1.96 4.6 [354]

Q→ qW CMS 8 19.7 B2G-12-017 [355]

Q→ jZ CDF 1.96 1.055 [356]

U → tZ
CMS 7 5 B2G-12-004 [352]

CMS 7 1.1 EXO-11-005 [357]

D → bH

ATLAS 8 20.3 CONF-2015-012 [358]

CMS 8 19.8 B2G-12-019 [359]

CMS 8 19.5 B2G-13-003 [360]

CMS 8 19.7 B2G-14-001 [361]

D → bZ

CMS 7 5 EXO-11-066 [362]

CMS 8 19.8 B2G-12-019 [359]

CMS 8 19.5 B2G-13-003 [360]

CMS 8 19.6 B2G-12-021 [363]

D → tW

ATLAS 8 20.3 EXOT-2013-16 [364]

CMS 8 19.8 B2G-12-019 [359]

CMS 8 19.5 B2G-13-003 [360]

CDF 1.96 2.7 [365]

Q→ bW

CMS 7 5 EXO-11-050 [366]

CMS 7 5 EXO-11-099 [367]

ATLAS 7 4.7 EXOT-2012-07 [368]

ATLAS 8 20.3 CONF-2015-012 [358]

CMS 8 19.7 B2G-12-017 [355]

Q5/3 → tW

ATLAS 8 20.3 EXOT-2013-16 [364]

ATLAS 8 20.3 EXOT-2014-17 [369]

CMS 8 19.6 B2G-12-012 [370]

U → tH CMS 8 19.7 B2G-12-004 [371]

Table A.2: Experimental analyses included in our numerics for heavy quark partner decay.

Q stands for any quark partner where the decay in question is allowed by electric charges, j

stands for a light quark or b jet, and q for a light quark jet.
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A.6.2 Analysis of the next-to-minimal composite Higgs model

Decay Experiment
√
s [TeV] Lum. [fb−1] Analysis

Q→ jZ CDF 1.96 1.055 [372]

Q→ jW
ATLAS 7 1.04 EXOT-2011-28 [353]

CDF 1.96 4.6 [354]

Q→ qW
CMS 8 19.7 B2G-12-017 [355]

ATLAS 8 20.3 EXOT-2014-10 [373]

Q→ bW

CMS 7 5 EXO-11-050 [366]

CMS 7 5 EXO-11-099 [367]

ATLAS 7 4.7 EXOT-2012-07 [368]

ATLAS 8 20.3 CONF-2015-012 [358]

CMS 8 19.7 B2G-12-017 [355]

Q→ tW CMS 7 5 B2G-12-004 [352]

U → tH

CMS 8 19.7 B2G-13-005 [374]

ATLAS 13 3.2 CONF-2016-013 [375]

CMS 13 2.6 PAS-B2G-16-011 [376]

U → tZ

CMS 7 5 B2G-12-004 [352]

CMS 7 1.1 EXO-11-005 [357]

CMS 8 19.7 B2G-13-005 [374]

ATLAS 13 14.7 CONF-2016-101 [377]

U → bW
CMS 8 19.7 B2G-13-005 [374]

ATLAS 13 14.7 CONF-2016-102 [378]

D → bH

ATLAS 8 20.3 CONF-2015-012 [358]

CMS 8 19.8 B2G-12-019 [359]

CMS 8 19.5 B2G-13-003 [360]

CMS 8 19.7 B2G-14-001 [379]

D → bZ

CMS 7 5 EXO-11-066 [362]

CMS 8 19.5 B2G-13-003 [360]

CMS 8 19.7 B2G-13-006 [380]

D → tW

ATLAS 8 20.3 EXOT-2013-16 [364]

CMS 8 19.5 B2G-13-003 [360]

CMS 8 19.7 B2G-13-006 [380]

CDF 1.96 2.7 [365]

Q5/3 → tW

ATLAS 8 20.3 EXOT-2014-17 [369]

CMS 8 19.6 B2G-12-012 [370]

CMS 13 2.2 PAS-B2G-15-006 [381]

Table A.3: Experimental analyses included in our numerics for heavy quark partner decay.

Q stands for any quark partner where the decay in question is allowed by electric charges, j

stands for a light quark or b jet, and q for a light quark jet.
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Decay Experiment
√
s [TeV] Lum. [fb−1] Analysis

η → hh

CMS 8 19.7 PAS-EXO-15-008 [382]

ATLAS 13 3.2 EXOT-2015-11 [383]

CMS 13 2.3 PAS-HIG-16-002 [384]

CMS 13 2.7 PAS-B2G-16-008 [385]

CMS 13 12.9 PAS-HIG-16-029 [386]

CMS 13 2.7 PAS-HIG-16-032 [387]

η → ZZ

ATLAS 13 13.3 CONF-2016-056 [388]

ATLAS 13 14.8 CONF-2016-079 [389]

ATLAS 13 13.2 CONF-2016-082 [390]

CMS 13 12.9 PAS-HIG-16-033 [391]

CMS 13 2.7 PAS-B2G-16-010 [392]

η →W+W−

ATLAS 8 20.3 EXOT-2013-01∗ [341]

CMS 8 19.7 EXO-13-009∗ [346]

ATLAS 13 13.2 CONF-2016-062∗ [393]

ATLAS 13 13.2 CONF-2016-074 [394]

CMS 13 2.3 PAS-HIG-16-023 [395]

η → γγ
ATLAS 13 15.4 CONF-2016-059 [396]

CMS 13 16.2 PAS-EXO-16-027 [397]

η → Zγ

ATLAS 13 13.3 CONF-2016-044 [398]

ATLAS 13 3.2 EXOT-2016-02 [399]

CMS 13 19.7 PAS-EXO-16-025 [400]

CMS 13 12.9 PAS-EXO-16-034 [401]

CMS 13 12.9 PAS-EXO-16-035 [402]

η → e+e−/µ+µ−

ATLAS 8 20.3 EXOT-2012-23∗ [348]

CMS 8 20.6 EXO-12-061∗ [349]

ATLAS 13 13.3 CONF-2016-045∗ [403]

CMS 13 12.4 PAS-EXO-16-031∗ [404]

η → τ+τ−
ATLAS 8 19.5 EXOT-2014-05∗ [405]

CMS 8 19.7 EXO-12-046∗ [406]

CMS 13 2.2 PAS-EXO-16-008∗ [407]

ATLAS 13 13.3 CONF-2016-085 [408]

CMS 13 2.3 PAS-HIG-16-006 [409]

η → tt̄

ATLAS 8 20.3 CONF-2015-009∗ [350]

CMS 8 19.7 B2G-13-008∗ [410]

CMS 13 2.6 PAS-B2G-15-002∗ [411]

CMS 13 2.6 PAS-B2G-15-003∗ [412]

η → bb̄ CMS 13 2.69 PAS-HIG-16-025 [413]

η → qq CMS 13 12.9 PAS-EXO-16-032∗ [414]

η → gg CMS 13 12.9 PAS-EXO-16-032 [414]

η → jj
ATLAS 13 3.6 EXOT-2015-02∗ [226]

CMS 13 2.4 EXO-15-001∗ [415]

Table A.4: Experimental analyses included in our numerics for η decay. The analyses marked

with ∗ are actually searches for neutral vector resonances. Since for many channels there are

no dedicated analyses searching for a neutral scalar resonance and the bounds should be

similar, we include the spin-1 analyses in our numerics for η decay.
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Decay Experiment
√
s [TeV] Lum. [fb−1] Analysis

ρ± →W±h

ATLAS 8 20.3 EXOT-2013-23 [339]

CMS 8 19.7 EXO-14-010 [340]

ATLAS 13 3.2 EXOT-2015-18 [416]

ATLAS 13 13.3 CONF-2016-083 [417]

CMS 13 2.17 PAS-B2G-16-003 [418]

ρ± →W±Z

ATLAS 8 20.3 EXOT-2013-01 [341]

ATLAS 8 20.3 EXOT-2013-07 [342]

ATLAS 8 20.3 EXOT-2013-08 [343]

CMS 8 19.7 EXO-12-024 [344]

ATLAS 13 15.5 CONF-2016-055 [419]

ATLAS 13 13.2 CONF-2016-062 [393]

ATLAS 13 13.2 CONF-2016-082 [390]

CMS 13 2.2 PAS-EXO-15-002 [420]

CMS 13 12.9 PAS-B2G-16-020 [421]

ρ± → tb

CMS 8 19.5 B2G-12-010 [345]

CMS 8 19.7 B2G-12-009 [422]

CMS 13 2.55 PAS-B2G-16-009 [423]

CMS 13 12.9 PAS-B2G-16-017 [424]

ρ± → τ±ν
CMS 8 19.7 EXO-12-011 [425]

CMS 13 2.3 PAS-EXO-16-006 [426]

ρ± → e±ν/µ±ν

ATLAS 7 4.7 EXOT-2012-02 [338]

ATLAS 13 13.3 CONF-2016-061 [427]

CMS 13 2.2 PAS-EXO-15-006 [428]

ρ± → jj ATLAS 13 3.6 EXOT-2015-02 [226]

ρ0 →W+W−
ATLAS 8 20.3 EXOT-2013-01 [341]

CMS 8 19.7 EXO-13-009 [346]

ATLAS 13 13.2 CONF-2016-062 [393]

ρ0 → Zh

ATLAS 8 20.3 EXOT-2013-23 [339]

CMS 8 19.7 EXO-13-007 [347]

ATLAS 13 3.2 EXOT-2015-18 [416]

ATLAS 13 3.2 CONF-2015-074 [429]

ATLAS 13 13.3 CONF-2016-083 [417]

CMS 13 2.17 PAS-B2G-16-003 [418]

ρ0 →W+W−/Zh CMS 13 2.2 PAS-B2G-16-007 [430]

ρ0 → e+e−/µ+µ−

ATLAS 8 20.3 EXOT-2012-23 [348]

CMS 8 20.6 EXO-12-061 [349]

ATLAS 13 13.3 CONF-2016-045 [403]

CMS 13 12.4 PAS-EXO-16-031 [404]

ρ0 → τ+τ−
ATLAS 8 19.5 EXOT-2014-05 [405]

CMS 8 19.7 EXO-12-046 [406]

CMS 13 2.2 PAS-EXO-16-008 [407]

ρ0/ρG → tt̄

ATLAS 8 20.3 CONF-2015-009 [350]

CMS 8 19.7 B2G-13-008 [410]

CMS 13 2.6 PAS-B2G-15-002 [411]

CMS 13 2.6 PAS-B2G-15-003 [412]

ρ0/ρG → jj
ATLAS 13 3.6 EXOT-2015-02 [226]

CMS 13 2.4 EXO-15-001 [415]

ρ0/ρG → qq CMS 13 12.9 PAS-EXO-16-032 [414]

Table A.5: Experimental analyses included in our numerics for heavy vector resonance decay.
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