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Zusammenfassung

Modelle mit zusammengesetztem Higgs-Boson, sogenannte Composite-Higgs-Modelle (CHM),
bieten eine elegante Losung fiir das Natiirlichkeitsproblem des Standardmodells (SM). Ihre
direkten Effekte an Teilchenbeschleunigern wie dem Large Hadron Collider (LHC) sind da-
her von zentralem Interesse. Wahrend bisher noch keine direkten Effekte beobachtet wur-
den, gibt es neuere indirekte Hinweise auf neue Physik (NP), die aus Messungen seltener
B-Meson-Zerfalle resultieren. Diese Arbeit untersucht sowohl direkte Einschrankungen von
CHM durch Experimente an Teilchenbeschleunigern als auch die Frage, ob diese Modelle die
Hinweise auf NP in seltenen B-Zerféllen erkldren konnen. Der erste Teil dieser Arbeit gibt
eine in sich abgeschlossene Einfiihrung in alle Hauptkonzepte von CHM, die in der weiteren
Arbeit verwendet werden. Diese Konzepte werden dann in mehreren phédnomenologischen
Analysen angewendet. Im Rahmen globaler numerischer Analysen von zwei expliziten CHM
werden detailliert die direkten Einschrénkungen untersucht, die aus experimentellen Suchen
nach Vektor-, Fermion- und Skalar-Resonanzen resultieren. Die Aussichten auf eine Beobach-
tung oder den Ausschluss momentan noch realisierbarer Parameterpunkte der betrachteten
Modelle werden fiir verschiedene Zerfallskanéle diskutiert. Modellunabhéngige Analysen der
Hinweise auf NP in seltenen B-Zerfillen werden durchgefiihrt, die sowohl die B — K*u*p—-
Anomalie untersuchen, als auch die Hinweise auf eine Verletzung der Lepton-Flavor-Univer-
salitdt (LFU), die in Messungen der Observablen R ,(») gefunden wurden. Ein einfaches CHM
wird vorgestellt, das die Anomalien in seltenen B-Zerfallen durch teilweise zusammengesetzte
linkshéndige Myonen erkldren kann. Die Flavor-Physik eines viel ehrgeizigeren Modells,
das auf einer UV-Vervollstandigung effektiver CHM basiert, die als Fundamental-Partial-
Compositness (FPC) bezeichnet wird, wird im Detail untersucht. Unter Beriicksichtigung
aller relevanten Einschrankungen durch die Physik an der elektroschwachen Skala und die
Niedrigenergie-Flavorobservablen wird gezeigt, dass dieses Modell die Anomalien in seltenen

B-Zerfallen erklaren kann.






Abstract

Composite Higgs models (CHMs) offer an elegant solution to the naturalness problem of
the Standard Model (SM). Their direct effects at particle colliders like the Large Hadron
Collider (LHC) are thus of central interest. While no direct effects have been observed
so far, there are recent indirect hints for new physics (NP) coming from measurements of
rare B meson decays. This thesis studies direct collider constraints on CHMs as well as
the question if these models can explain the hints for NP in rare B decays. The first part
of this thesis gives a self-contained introduction to all main concepts of CHMs used in the
remainder of the work. These concepts are then applied in several phenomenological analyses.
In the context of global numerical analyses of two explicit CHMs, the direct constraints on
vector, fermion and scalar resonances are studied in detail. The prospects of various decay
channels for observing or excluding still viable parameter points of the considered models are
discussed. Model independent analyses of the hints for NP in rare B decays are performed
in the context of the B — K*utpu~ anomaly as well as the hints for violation of lepton
flavor universality (LFU) found in measurements of the observables Ry(.. A simple CHM
is presented that can explain the anomalies in rare B decays by partially composite left-
handed muons. The flavor physics of a much more ambitious model, which is based on a UV
completion of effective CHMSs called fundamental partial compositeness (FPC), is investigated
in detail. Taking into account all relevant constraints from electroweak scale physics and low-
energy flavor observables, it is shown that this model can explain the anomalies found in rare

B decays.
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There is a sort of general distinction between the way to look for weakly interact-
ing theories of spontaneous symmetry-breaking and strongly interacting theories of
spontaneous symmetry-breaking. When things are strongly interacting it shows up
in deviations in the properties of the particles, in the set of particles that you have
already produced, from what you expect. If things are weakly interacting, new physics
first shows up in the form of new particles.

Howard Georgi, 1994
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Introduction

Learning about the physics of the most fundamental particles in nature has always been an
interplay between experimental and theoretical efforts. There has been progress that was
mainly driven by experimental data, showing completely new, often unexpected phenom-
ena, and necessitating theoretical explanations. A historic example is the large amount of
hadrons found in 1950s and 1960s accelerator experiments, which led to their classification in
terms of representations of an SU(3) flavor symmetry [7,8] that paved the way for the quark
model [9-11], and led to the theory of the strong interaction now known as quantum chro-
modynamics (QCD). On the other hand, theoretical considerations led to predictions that
served as guidance for experimental explorations. The probably most famous example from
recent history is the Higgs mechanismﬂ [12-16] that is responsible for electroweak symmetry
breaking (EWSB) in the Standard Model (SM) and has been a main motivation for building
the Large Hadron Collider (LHC) [17]. This in turn led to the experimental discovery of a
particle compatible with the SM Higgs boson [18,19]. The Higgs mechanism in the SM was
more or less a guarantee for finding something new at the LHC, either the Higgs boson or
something else. Although there is no such strong case for further new discoveries at the LHC,
there is at least a theoretical consideration that indicates new physics (NP) beyond the SM
at a scale of the order of some TeV: the so called naturalness problem. And while there is no
such clear sign of new particles at accessible energies like in the 1950s and 1960s, there are
at least some recent experimental results in flavor physics that hint at NP below a scale of
roughly 100 TeV.

Among the prime candidates for solving the naturalness problem are models in which the
Higgs boson is a composite object. These composite Higgs models (CHMs) will be analysed

in detail in this thesis. While they are mainly motivated by the naturalness problem, it is

1This mechanism for giving mass to vector bosons was described independently by Anderson [12], Englert
and Brout [13], Higgs |14L/15], and Guralnik, Hagen and Kibble [16], but is for simplicity usually only called
the “Higgs mechanism”.




CHAPTER 1. INTRODUCTION

interesting to investigate whether also the experimental hints for NP can be explained in the
CHM context. At least, if these hints should get established, any viable NP model has to

accommodate them.

1.1 The SM Higgs sector and the naturalness problem

The origin of the naturalness problem is closely related to the structure of the SM and its
Higgs sector. Among the first steps towards the SM was the unification of the electromagnetic
and the weak interaction. The mediators of the weak interaction, WJ , W, and Z,,, and the
mediator of the electromagnetic interaction, the photon A, were described in terms of the
four generators of the unified electroweak (EW) symmetry group SU(2);, x U(1)y already in
the early 1960s [20]. However, an integral part in constructing the SM was to incorporate the
Higgs mechanism as a means to give mass to Wﬁt and Z,, in a renormalizable way [21}22]. In
doing this, the Higgs mechanism builds upon the notion of spontaneous symmetry breaking.
When the Lagrangian of a given theory possesses a global symmetryE] G, but the vacuum of
the theory is only invariant under a subgroup H C G, the global symmetry G is said to be
broken spontaneously to H. In this case, the theory contains a massless scalar for each broken
generator of G, called a Nambu-Goldstone boson (NGB) [23-25]. There are, however, ways
to prevent massless NGBs from appearing. One way is having terms in the Lagrangian that
explicitly break the G symmetry weakly. This can lead to an effective potential that yields
a small mass for a NGB, which is then called pseudo Nambu-Goldstone boson (pNGB) [26].
Another way is to gauge broken generators. In this case, a NGB corresponding to a gauged
broken generator can be removed from the theory by choosing an appropriate gauge, called
the unitary gauge, and such a NGB is called would-be Nambu-Goldstone boson or fictitious
Nambu-Goldstone boson. At the same time, the gauge boson associated with the broken
generator becomes massive. This mechanism that gives mass to a gauge boson and turns a
NGB into an unphysical would-be NGB is nothing but the Higgs mechanism [12/{16].

For the three vector bosons W, W™, and Z to become massive, three of the four gener-
ators of SU(2)1, x U(1)y have to be spontaneously broken, while the U(1)q generator @) that

corresponds to the massless photon must be unbroken. The latter is found to be
Q=1t3+Y, (1.1)

where Y is the generator of U(1)y, t, = 04/2, a € {1,2,3} are the generators of SU(2)y,
and o, are the Pauli matrices. An economical way to achieve EWSB is to employ a complex
scalar field ®(z), the so called Higgs field. The Higgs field transforms as a doublet under

2The symmetry groups considered here are always assumed to be connected and compact Lie groups.
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1.1. THE SM HIGGS SECTOR AND THE NATURALNESS PROBLEM

SU(2)1, and has a U(1)y charge gy = 1/2. This implies that one component of the doublet
has vanishing electric charge and is therefore invariant under U(1)q (cf. eq. ) If this
component has a finite value at the minimum of the Higgs potential, which corresponds to the
vacuum of the theory, then the EW symmetry is broken spontaneously to its electromagnetic

subgroup. This can be realized by the Higgs Lagrangian

2\ 2
Liggs = (DM(I’(fE))T (D“(I’(l‘)) —A <(I’T(x) P(x) — ) ’ (1.2)
with the covariant derivativd]
D, (z) = <au —igtaWe—ig % B#) (), (1.3)

where g and ¢’ are the gauge couplings of the gauge fields W and By, which are associated
with SU(2)r, and U(1)y, respectively. The minimum of the potential term in Liggs is found

for |®(x)| = <% and the choice of the generator basis in terms of the Pauli matrices implies

V2
that the vacuum configuration of the Higgs field that breaks the EW symmetry to U(1)q i&ﬂ

By = \}i (2) . (1.4)

The quantity v is called the vacuum ezxpectation value (VEV)E] of the Higgs field. The four
real degrees of freedom of the complex Higgs doublet are reduced to only one by employing
the unitary gauge, where the three would-be NGBs, which are associated with the three
gauged broken generators, are removed. The remaining real scalar field h(x) describes a
massive particle called the Higgs boson, which corresponds to fluctuations about the vacuum

in the U(1)q invariant component of ®(x), i.e. in unitary gauge, one finds

1 0
o) = o <U . h@)) . (1.5)

Plugging this into the Higgs Lagrangian, eq. (1.2, yields mass terms for the EW gauge

bosons. The mass eigenstates in terms of the Wj and B, fields are

1
Wt ="
V2

3Repeated indices only appearing on one side of an equation are assumed to be summed over.

(Wl}:Fz' Wi), Z,, = cos by Wﬁ—sin@w B,, A, = cosby B,+sin by Wg’, (1.6)

“Any other choice of ®g that satisfies |®o| = % is physically equivalent but requires a different choice of
the generator basis of SU(2)r,. The generator ¢3 is fixed via eq. by the requirement that ®( is invariant
under U(1)q, i.e. Q@ ®o = 0.

®While ®(z) is treated here merely as a classical field, the term “expectation value” is used for convenience

and corresponds to an actual quantum mechanical expectation value when ®(z) is promoted to a field operator.
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CHAPTER 1. INTRODUCTION

g g’

where cos Oy = T and sin Oy = T and the masses are

1 myy
p—— pr— = . 1;
mw 2 gv, mgz cos GW’ ma 0 ( 7)

As expected, the gauge bosons associated with the broken generators become massive, while
the photon A, that corresponds to the unbroken U(1)q stays massless.
However, not only the gauge bosons become massive, but also the Higgs boson receives a

mass proportional to the Higgs VEV:
mp = V2Av. (1.8)

In the SM, also the fermions are coupled to the Higgs field via Yukawa interactions. Hence,
they also gain masses proportional to the Higgs VEV. Actually every single massive elemen-
tary particle in the SM has a mass proportional to the Higgs VEV. This has an important
consequence that can readily be inferred from eq. and may be regarded as the origin of
the naturalness problem: all these particles couple to the elementary scalar Higgs boson h(z)
with coupling strengths proportional to their masses, and this also means that they all con-
tribute to the Higgs mass via quantum corrections. Because there must be some kind of NP
beyond the SM, at least around the Planck scale Mp; ~ 10'? GeV where gravity cannot be
neglected, the SM is usually considered to be an effective theory, only viable up to a cutoff
scale A. The contributions due to quantum corrections that the SM Higgs mass my, receives

to its bare mass mg depend on this cutoff, such thatE]
mi = mé + r A2, (1.9)

where x is some dimensionless constant typically of order 1072 [28]. The ratio of the bare
Higgs mass to the cutoff scale is a dimensionless parameter of the UV theory that replaces
the SM above the scale A. From eq. (1.9), this parameter is found to be

2 2
Mo _ _ _ b
A =k (1 m\2>' (1.10)

The Higgs mass my, in the SM has to be around the EW scale, i.e. of the order of 100 GeV,
and a particle compatible with this requirement has been found at 125 GeV [29]. Plugging
this into eq. (1.10) and assuming that there is no NP up to the Planck scale, i.e. A = Mpy,

one finds
mg _ 1-1032 1.11
"k (1-1079). (1.11)

5The discussion of the naturalness problem presented here is based on [271[28].
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1.1. THE SM HIGGS SECTOR AND THE NATURALNESS PROBLEM

This means that %2) has to be tuned to the 32nd decimal place to yield the correct Higgs
mass. Such an extreme tuning is considered to be unnatural for a parameter in the UV
theory. A natural theory in this sense requires that a small change to a parameter like %%
does not have a dramatic consequence on an observable like the Higgs mass. The naturalness
problem of the SM therefore is the problem that it seemingly leads to an unnatural theory
in the UV.

An obvious solution to the naturalness problem of the SM is a cutoff much lower than
the Planck scale, say around some TeV. But then the UV theory above A has to contain
some mechanism that protects the Higgs mass from further quantum corrections stemming
from higher scales. An example for such a theory is one that is supersymmetriﬂ In a
supersymmetric theory, quantum corrections to the Higgs mass that are induced by fermions
are exactly canceled by those stemming from their bosonic superpartners, and vice versa,
at least if the superpartners are not much heavier than the EW scale. There are many
other possible solutions to the naturalness problem. Among them are e.g. ideas like that
the Planck scale is actually close to the EW scale and just seems much larger due to extra
dimensions [31,32], or that dynamics in the early universe are responsible for a Higgs boson
mass much smaller than the cutoff [33], or that the scalar Higgs sector itself dynamically
generates a new cutoff scale of the order of 100 TeV [34].

There is another class of models in which the naturalness problem is avoided by not in-
troducing the elementary scalar Higgs field as a means to break the EW symmetry. Notable
examples of this kind are so called Technicolor (TC) models [27,35] that do not require
a Higgs boson at all and break the EW symmetry by a condensate that is due to a new
strong interaction. While their early versions were disfavored because of problems with ex-
perimentally excluded large flavor-changing neutral currents (FCNCs) [36,37], the discovery
of a scalar particle with properties similar to the SM Higgs boson completely rules out any
Higgsless TC model. The Higgs boson, however, might not be an elementary particle but
actually a bound state of some TC like strong interaction that is also responsible for EWSB.
The virtue of such a composite Higgs boson is that it does not suffer at all from the natural-
ness problem of an elementary scalar. Any possible corrections to its mass are cut off at the
scale where a more fundamental theory in terms of its constituents takes over. A strongly
interacting theory that yields a composite Higgs bound state generically predicts also other
bound states that have not been observed so far. However, an explanation for the lightness
of the Higgs boson compared to other bound states can be provided by assuming that the
Higgs is a composite pNGB [38-43|. In the following, when referring to composite Higgs

models (CHMs), this assumption will always be made. In addition to solving the naturalness

"For an introduction to supersymmetric theories, see e.g. [30].
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problem, these CHMs have also other interesting features: While the Higgs sector in the SM
is introduced more or less ad hoc for breaking the EW symmetry, its origin is explained in
CHMs in terms of a more fundamental, strongly coupled theory. This also means that SM
parameters like the Higgs mass are in principle calculable in CHMs. Because masses and
mixings of SM fermions are intimately interrelated with the Higgs sector, CHMs offer the
possibility to get some insights into the generation of fermion masses and mixings.

Since CHMs generically predict composite vector and fermion resonances that might be
accessible at the LHC, direct constraints from experimental analyses are an important test
of the viability of CHMs. Studying the impact of these constraints on realistic CHMs is one
of the main topics of this thesis. In light of the afore mentioned experimental hints for NP,

another main topic is to investigate whether these hints can be explained by CHMSs.

1.2 Flavor anomalies and hints for new physics

Already in 2013, the LHCb collaboration reported a tension between their measurement
of the B — K*u*p~ angular observable P, and the SM prediction [44]. Several groups
subsequently showed that this could be explained by a NP contribution to a single Wilson
coefficient (WC) of the weak effective Hamiltonian (WEH)E], modifying the quark-level tran-
sition b — s¢1¢~ [45H48]. Various branching ratio measurements of processes that involve
the same quark-level transition have since showed deviations from the SM [49,50] and the
LHCDb measurement of P/ with the full Run 1 dataset, presented in 2015, confirmed the
previously found tensions [51]. While updated global analyses showed the consistency of all
these tensions with a NP explanation, hadronic uncertainties in SM calculations cannot be
excluded as the origin of the tensions [52-54].

However, ratios of b — s/¢*¢~ branching ratios with different leptons in the final states
are practically free of hadronic uncertainties (cf. [55-57]). In addition, these observables are
sensitive to a violation of lepton flavor universality (LFU), and observation of LFU violation
(LFUV) would be a clear sign of NP. Interestingly, first measurements of two of such ratios,
the LFU observables Rx and Rg~, show a deviation from the SM, each with a significance
of around 20 [58,59]. This result is tantalizing because it is fully compatible with the NP
explanation of the other tensions found in angular observables and branching ratios and can
be further tested with new measurements at LHCb and the upcoming Belle II experiment.

Apart from the neutral current transition b — s¢7¢~, there are also hints for NP in

charged current b — ¢ ¢~ v transitions, namely in the LFU observables Rp and Rp~. With

8The weak effective Hamiltonian describes an effective theory derived from the SM by integrating out all
degrees of freedom heavier than the bottom quark, i.e. the weak gauge bosons, the Higgs boson, and the top

quark.
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1.3. OUTLINE AND SCOPE

first evidence reported by the BaBar collaboration in 2012 and 2013 [60,/61], several mea-~
surements by the Belle and LHCb collaborations have since confirmed a tension with the SM
prediction [62(66], and a recent average is found to deviate from the SM by about 4o [67].
Although NP explanations of the tensions found in both b — c¢~ v and b — sT¢~
transitions require contributions to different WCs of the WEH, it is intriguing that all the
tensions seem to indicate LFUV, and thus might be connected. However, while CHMs in
principle offer the possibility for LFUV, the b — c¢f~ v anomalies seem to be harder to
accommodate. This thesis therefore focuses on the b — s ¢/~ anomalies and their possible

explanation in terms of CHMs.

1.3 Outline and scope

Modern CHMs are based on a plethora of different concepts, ideas, and formalisms. Among
them are the description of NGBs, hidden local symmetries, partial compositeness of fermions
and vector bosons, flavor symmetries, vacuum alignment, collective breaking of symmetries,
extra dimensions, etc. One aim of this thesis is therefore to provide, in chapter [2 a self-
contained introduction to the main conceptsﬂ that are needed to construct realistic CHMs.
The focus primarily lies on the concepts and not on specific models, which are discussed
later. The idea is to start with the arguably most central aspect of CHMs, namely NGBs,
and then to proceed step by step in building upon the description of NGBs. In particular,
some effort is made to relate new concepts to those previously introduced. To this end,
section discusses the formalisms needed to construct Lagrangians that describe NGBs.
In section it is shown how these formalisms can be extended in a very natural way to
include vector resonances, and how the inclusion of more and more resonances ultimately
leads to a theory with an extra dimension. After introducing the notion of fermion partial
compositeness, section shows how it automatically arises from a theory with an extra
dimension. This is then used to include fermions into the models describing NGBs and
vector resonances. In addition, flavor symmetries that allow for building phenomenologically
viable fermion sectors are discussed. Having introduced all particle species, section turns
to the mechanism of EWSB by vacuum misalignment and discusses collective breaking as a
means to arrive at a finite one-loop scalar potential. In section finally, a possible UV
completion of the effective low-energy description is presented.

The concepts introduced in chapter |2 are applied in chapter (3| In the context of our global
analyses 2] and [3] of two specific CHMs, the direct collider constraints on these models are

discussed. After describing the numerical method and the constraints used in these analyses

“For lecture notes that also introduce many of these concepts, see e.g. [681/69)].
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in sections and the two concrete models are specified in section Section
details in a model independent way how direct collider constraints are included into our
global analyses. In particular, the calculations of cross sections and branching ratios for
generic scalar, vector and fermion resonances are described in sections and while
their comparison with experimental data is discussed in section Results of our global
analyses are finally presented in section The production and decay of the particles
present in the two models are analyzed, the most promising decay channels are identified,
and the prospects for probing parameter points of the models are discussed. This is done in
section for quark resonances and in section for vector resonances. Section
describes the collider constraints for a particle only present in one of the two models: a scalar
singlet pNGB that can mix with the Higgs and generically is considerably lighter than the

vector and fermion resonances.

Apart from direct constraints, a central topic of this thesis are the anomalies in rare B
decays mentioned above. The recent experimental data on these decays is interpreted in
a model independent way in chapter By performing global fits in [4] and [5], we have
analyzed possible explanations of the measurements in terms of NP contributions to WCs
of the WEH. The relevant part of the WEH and the numerical method employed in these
fits are described in section [£.I] These methods are then first applied to measurements of
processes only involving the b — spu* ™ transition in section Subsequently, the hints
for violation of LFU are interpreted in section

Motivated by the results from the global fits shown in chapter 4] a possible explanation of
the anomalies in rare B decays in the context of CHMs is presented in chapter (5l Based on our
proposal in [1], a simple model is described in section and constraints from electroweak
precision tests and quark flavor physics are discussed in sections [5.2] and respectively.
The ranges of the parameters of the model that can explain the b — s £/~ anomalies while

satisfying the constraints are presented in section

After presenting the simplified model in chapter |5 the flavor phenomenology of a much
more ambitious model is discussed in chapter @ This model, which we have analyzed in [6],
is a UV completion of CHMs described already in section [2.5 and known as minimal funda-
mental partial compositeness. Working in an effective low-energy description, the model’s
contributions to observables at the electroweak scale and to low-energy flavor observables
are discussed in detail in section [6.1] The numerical method we have used in our analysis as
well as the relevant parameters are described in section 6.2 The results are presented in [6.3]
discussing meson-antimeson mixing, charged current semi-leptonic decays and neutral cur-

rent semi-leptonic decays. It is shown that while an explanation of the anomalies in charged

8
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current decays is in conflict with precise measurements of Z decays, the model is actually

capable of explaining the anomalies in rare B decays.







Composite Higgs models

The central idea of CHMs and TC models is that the EW symmetry is not broken by the VEV
of an elementary scalar field, but by strong interactions. In both CHMs and TC models, there
is a strongly interacting sector that has a global symmetry G into which the EW symmetry is
embedded. The symmetry group G is then spontaneously broken to a subgroup H by strong
dynamics. In traditional TC models, the remaining unbroken group H can only accommodate
U(1)q, and thus the EW symmetry is broken as G is broken to H. In CHMs on the other
hand, H can in principle accommodate the whole EW symmetry group, but it could also
be aligned inside G in such a way that only U(1)q lies in H. The actual alignment of H
in G, or in other words the misalignment between H and the EW symmetry group, is not
determined by the strong dynamics that break G to H but by weak interactions external to
the strong sector [35,70,71]. These weak interactions generate an effective scalar potential for
the NGBs that arise in the G to H breaking, and minimizing this potential yields the actual
alignment of H in G. The amount of misalignment controls the scale of EWSB, such that
this mechanism of symmetry breaking by vacuum misalignment allows to raise the TC scale
while keeping the EWSB scale at its observed value. This was used in the early CHMs of
the mid 1980s [38-43| to ameliorate problems with large FCNCs that traditional TC models
had [36,37]. As a byproduct of EWSB by vacuum misalignment, the theory contains a pNGB
that resembles the properties of the SM Higgs boson. In CHMs, where the G to H breaking
is assumed to be due to strong dynamics, this pNGB is a composite object. Hence, these
models are called composite Higgs models.

In the first years after CHMs were proposed, not much attention was paid to them.
This was probably due to the “first superstring revolution” taking place also in the mid
1980s [72-75], the popularity that grand unified supersymmetric explanations of the natu-
ralness problem had gained [76-78], and the intrinsic difficulties of performing calculations
in strongly coupled theories (cf. [79], in particular [80]). This changed about 15 years later.
In the late 1990s and early 2000s, the AdS/CFT correspondence [81-83] was discovered and

11




CHAPTER 2. COMPOSITE HIGGS MODELS

models with extra dimensions became increasingly popular (see e.g. [31,132,[84,85]). By dis-
cretizing the extra dimension of certain extra dimensional models, which is also known as
dimensional deconstruction [86], 4D models were obtained in which a pNGB plays the role of
the Higgs boson and the EW symmetry is broken by vacuum misalignment [87]. In contrast to
the early CHMs, these deconstructed models contain an additional mechanism for protecting
the NGBs’ scalar potential from UV dependent quantum corrections, which is known as col-
lective breaking. This led to a plethora of models with a pNGB Higgs, the so called little Higgs
models [88-100]. By applying holographic methods based on the AdS/CFT correspondence
to extra dimensional models, they can be interpreted as duals of strongly interacting theories
in four dimensions [101[102]. This was used to construct holographic composite Higgs models
that have a 4D description similar to conventional CHMs but were formulated in terms of
5D theories [103H106]. In the 5D formulation, the composite pNGB Higgs becomes the extra
dimensional component of a 5D gauge field, which is known as gauge-Higgs unification (cf.
section . While extra dimensional models of this kind were actually already discussed
in the late 1970s and 1980s [107-110], their equivalence to CHMs was only noticed about
20 years later. In the 4D deconstructed description of models with gauge-Higgs unification,
the 4D components of the extra dimensional gauge fields yield the SM gauge bosons as well
as massive spin one states that can be interpreted as composite resonances. When putting
fermions in the extra dimensional bulk, the deconstructed version contains massless chiral
fermions as well as massive Dirac fermions with the same quantum numbers [111,/112]. The
latter can again be interpreted as composite resonances and are allowed to mix with the
chiral fermions. Interestingly, this implements the so called partial compositeness mechanism
for giving mass to the chiral fermions [113]. This mechanism was actually already proposed
in the early 90s in the context of TC and CHMs as a means to solve the FCNC problem, but

it essentially got no attention until its rediscovery in models with extra dimensions.

For phenomenological applications, several kinds of 4D CHMs based on extra dimensional
models have been constructed. Notable examples{ﬂ are simplified models that mainly focus
on the pNGB nature of the Higgs [115/116] or on heavy resonances and partial composite-
ness [117] and more complete multi-site modelﬂ featuring a pNGB Higgs, vector and fermion
resonances, and partial compositeness [118-120]. The multi-site models are especially suited
for studying the dynamically generated scalar potential of the NGBs and direct collider con-

straints on the heavy resonances. They are also more general in the sense that the simplified

'For a comparison of various CHM constructions see [114].
2When an extra dimension is discretized, or latticized, each point in the resulting lattice is called a site and
the number of heavy resonances depends on the number of sites (cf. section [2.2)). Multi-site models therefore

always contain heavy resonances.
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models can be derived from them by integrating out heavy resonances or taking specific
limits.

When constructing CHMs, a general source of model dependence is the choice of the global
symmetry groups G and H. The minimal requirements for EWSB by vacuum misalignment
are that the EW symmetry group can be embedded into H and that the G to H breaking
yields NGBs in a complex SU(2);, doublet with U(1)y charge ¢y = 1/2. The latter is
necessary to provide the degrees of freedom for the massive weak gauge bosons and a pNGB
Higgs.

For phenomenological reasons, the former requirement is usually extended, i.e. one re-
quires that not only the EW group SU(2), x U(1)y can be embedded into H, but the larger
group SU(2)r, x SU(2)g. This enforces the ratio of the tree-level masses of Wlf and Z, to be
exactly the same like in the SM [27,|121]. This can be understood as follows. The vacuum
alignment that breaks the EW symmetry to U(1)q breaks the global SU(2);, x SU(2)gr to
its diagonal subgroup SU(2)1,4+r. A completely unbroken SU(2),+r would imply identical
masses for Wj[ and Z,. While SU(2)14r is explicitly broken by the gauging of the U(1)y
subgroup of SU(2)g, the above requirement guarantees that the non-zero U(1)y gauge cou-
pling ¢’ is the only source of SU(2)r,4r breaking in the gauge sectorﬂ In particular, the

strong sector is exactly invariant under SU(2)1,4r and one finds

2 2
md = m2, - <1 + 992) - 2.1)
i.e. the difference between the masses of Wj and Z,, is only due to the non-zero ¢’ and
vanishes for ¢’ — 0. This reproduces the SM result from eq. . The SU(2)p+r symmetry
protects the ratio of the weak gauge boson masses from tree-level corrections and is therefore
also called a custodial symmetry [122]. In models containing strong couplings, a custodial
symmetry is also necessary to prohibit loop-level contributions that are enhanced by the
strong couplings and cannot be neglected. A composite sector that is invariant under a
custodial symmetry is thus essential for most CHMs. The breaking of custodial symmetry
is usually parameterized by the Peskin—Takeuchi parameters S and T [123-126], and their
experimentally measured values can put strong constraints on NP models. For an analysis of
the contributions to the S and 7" parameters in models discussed in this thesis, see [2,127].
Including the custodial symmetry, the requirements on the G and H groups used in the

following are:

1. SU(2), x SU(2)r = SO(4) is a subgroup of H.

3The couplings in the fermion sector also break the SU(2)r+r. However, this does not affect the gauge

boson masses at tree level.
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2. The G to H breaking yields NGBs in a complex SU(2);, doublet with U(1)y charge
qy = 1/2

The minimal choice for satisfying requirement is H = S0(4). In this case, the smallest group
G that satisfies requirement 2| is G = SO(5): the spontaneous symmetry breaking SO(5) —
SO(4) exactly yields the desired SU(2);, doublet of NGBs and no other additional NGBs.
In a possible UV completion, a dynamical mechanism for the G to H breaking has to be
present. The most common one is chiral symmetry breaking where a bilinear of TC fermions
forms a condensate due to strong dynamics. The breaking pattern SO(5) — SO(4) of the
minimal CHM unfortunately is not simply realized via chiral symmetry breaking and requires
a quite involved construction (cf. [128]). However, the next-to-minimal breaking pattern
SO(6) — SO(5) can be realized in a Sp(N) gauge theory with fermions in the fundamental
representation (cf. section . It only yields one scalar singlet pNGB in addition to the
required complex doublet and actually contains a limit where it resembles the minimal CHM
(cf. section [3.1.3).

In chapter [3| and [6] explicit models featuring both the minimal and the next-to-minimal
breaking pattern are analyzed. However, for the discussion of the structure of CHMs, it
is instructive to consider the general G to H breaking case without specifying the groups
explicitly. The construction of 4D CHMs, namely the multi-site models is discussed in detail

in the following sections.

2.1 Nambu-Goldstone Bosons

For introducing CHMs, it is instructive to start with their central aspect: NGBs. They arise
from a G invariant Lagrangian whose vacuum is only invariant under a subgroup H of G,
one NGB for each generator of G that is not a generator of H. The most general G-invariant
Lagrangian that describes the NGB degrees of freedom can be constructed by a formalism
due to Callan, Coleman, Wess and Zumino (CCWZ) [129,/130]. In the following, after an
introductory example, the CCWZ formalism is described and some important special cases
are discussed. In addition, the language of the hidden local symmetry (HLS) [131-133] is

introduced.

2.1.1 A first example: The linear sigma model

Before describing to the CCWZ formalism, it is instructive to first discuss the essential

properties of NGBs using a concrete example. To this end, following [134], the linear sigma
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modeﬁ is considered. Its Lagrangian is given by

L=10d) 08w A (P -p) L dm=| | @2
PN ()

with N > 2. The scalar fields parametrized by the vector qZ_;(:U) transform under the fun-
damental representation of the group G = O(N), whose elements correspond to the length-
preserving transformations in an N-dimensional real vector space. Since gg(a:) enters the
Lagrangian only inside scalar products, the theory is obviously invariant under G.

. 2
The vacuum of the theory is defined by the minimum of the potential V' = A (¢2 ()= f 2> :

This minimum is found to be |$(x)| = f, i.e. the vacuum corresponds to a fixed length of
qg(a:) So f plays the role of the VEV of qg(x) All the different field configurations that

satisfy the vacuum condition |¢(z)| = f form a manifold called the vacuum manifold. In the

given case, one finds

G@) =f = ¢i@)+--+ k() = 7 (2.3)

which parametrizes the N-1 dimensional sphere SV~!. Since the points inside the vacuum
manifold all yield the same potential energy, the possible vacua are degenerate and physically
equivalent. Choosing any of them, one finds that a given element 50 of the vacuum manifold,
i.e. a specific choice of vacuum, is not invariant under a general G transformation. There are,
however, elements of G that actually leave the vacuum qgo invariant. They form a subgrou
H C G that in the present case can be identified with H = O(/N —1). Since the vacuum o is
not invariant under G, but invariant under H, the symmetry G is said to be spontaneously
broken to H.

The spontaneously broken symmetry group G is however not really broken. While the
vacuum 50 is only invariant under H, there is, however, still another invariance left. This is
the invariance of the vacuum potential energy under the choice of a specific vacuum inside
the vacuum manifold. These two different kinds of invariance divide the generators of G into

two sets:

e The generators T% of H can be defined for some specific reference vacuum (50 by
T 50 = 0. Their associated group elements leave q?o invariant and they correspond

to the former invariance.

“A model of this kind was introduced in [135] and contains a field named o.

°If a group G is acting (transitively) on a manifold M, its subgroup H that leaves a specific point gz?o in
this manifold fixed is called the isotropy subgroup of G at (50 [136], or simply the isotropy group of 50 (other
synonyms are little group or stabilizer of ¢o [137)).
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0
do=|0
/
X1 ¢ #0

o _,} = 2 NGBs for X1, Xs.
Xopo # 0

Ti¢o=0 = remaining H = O(2) symmetry.

Figure 2.1: O(3) — O(2) spontaneous symmetry breaking. The two-sphere around the origin
is the vacuum manifold where |¢(z)| = f. When the vacuum ¢ is chosen, the G = O(3)
symmetry is broken to H = O(2). Only the rotations induced by 77 (around the z3 axis)
leave 50 (chosen in the direction of the z3 axis) invariant and thus 77 is the generator of the
unbroken O(2). X; and X5 (inducing rotations around the x; and xo axes, respectively) are

the broken generators and yield two NGBs.

e The remaining generators X¢ that satisfy X¢ (50 = 0 and are thus also called broken
generators are associated with elements of G that transform d_;o to another, but physi-
cally equivalent vacuum q% The action of these group elements has the same effect as
choosing a different reference vacuum and therefore the generators X* correspond to

the latter invariance.

For illustration, the vacuum manifold, a specific vacuum (Eo, and the generators of G are
visualized in figure 2.1] for the N = 3 case.

The G symmetry is thus actually preserved, but for a given vacuum q% only the H
subgroup is linearly realizedlﬂ. It is interesting to note that the vacuum manifold happens to
be isomorphic to the coset space G/H (i.e. the manifold formed by the set of left cosets of
H in G) and that the tangent space of G/H at the point H (i.e. at the left coset e where
e is the identity in G), or equivalently, the tangent space of the vacuum manifold at q%, is
isomorphic to the vector space spanned by the broken generators X (see e.g. [138]). In this
sense, the group elements associated to the X generators correspond to the elements of the
coset space G/H (at least for group elements close to the identity in G). Moreover, the above
observations have the immediate consequence that the vacuum manifold as well as the G/H

coset space both have a dimensionality equal to the number of broken generators. That this

5As will be discussed in section the whole G symmetry is in this case non-linearly realized.
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number also coincides with the number of NGBs gets obvious by considering fluctuations

around the minimum ¢g. There are two distinct cases:

—

e Fluctuations inside the vacuum manifold do not change the length of ¢(x) and therefore
also do not change the potential energy. They thus correspond to massless degrees of
freedom. The number of these degrees of freedom is given by the dimensionality of the
vacuum manifold and each of them can be associated with a rotation induced by one of
the broken generators X“. The fluctuations inside the vacuum manifold can therefore
be identified with the massless NGBs 7%(x).

e A radial excitation changes the length of 5(3;) and hence the potential energy. Conse-

quently, it corresponds to a massive scalar o(z).

It is convenient to parametrize ¢(z) by “polar coordinates” using the 7%(z) and o (z) fluctu-

ations around the minimum qgo. This yields

- V2 _a a —

B) = (L4 a(@)/f) €7 7N G, (2.4)
Plugging this parametrization into the initial Lagrangian from eq. (2.2)), and using a specific
vacuum, e.g. b0 = (0,...,0, /)T, one finds

L= % w0 (@) 8 (x) — A(o(2)? +20(z) £)* + % (f +0(@)? [0,U7 (2) 0"U(2)] vy > (25)

where U(x) is the NGB matrix defined by

z% () X

U(x)=e (2.6)

Given the above discussed relation between the elements of the coset space G/H and the
generators X, with a slight abuse of terminology, the coset space G/H will be used in the
following to refer to the subset of G that consists of the group elements associated to the X
generators. In this sense, the NGB matrix U(x) is an element of the coset space G/H.
Because the fields o(x) and 7%(z) are perturbations around the vacuum, they have a
vanishing VEV. While this is obvious for o(x) from its definition in eq. and the vacuum
condition |¢(z)| = f, this condition does not forbid a VEV for the 7%(x) fields. Such a
VEV, however, just corresponds to a transformation of the vacuum ¢?0 to another equivalent
vacuum q% and is therefore not physical. In the parameterization of the scalar fields in terms
of o(z) and 7%(z), the quantity f thus loses its interpretation as a VEV. In this context, it

is usually called the decay constanﬂ and enters several interaction terms as well as the mass

"The term “decay constant” stems from the description of pions as (pseudo) NGBs in a low-energy effective

theory of QCD, where the strength of leptonic pion decay depends on f.
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of the radial excitation o(z). This mass is found to be
my = V8AF. (2.7)

At energies well below m,, the massive scalar o(x) decouples and the low-energy degrees of

freedom can be described by the pure NGB Lagrangian

2

LGB = f? [QLUT(.CE) 3MU(.Z‘)} (2.8)

NN -
Some important properties of the NGBs can be read off from this Lagrangian:

e It is non-linear in the NGBs 7%(z) which enter via the NGB matrix U(z), eq. (2.6).
The model containing only NGB degrees of freedom is thus also called the non-linear

sigma modelf]

e The NGBs are derivatively coupled. This implies that the Lagrangian is invariant
under constant shifts of 7%(x). This invariance under constant shifts is nothing but
the invariance under the choice of a specific vacuum that is discussed above: constant
shifts correspond to choosing a different vacuum inside the vacuum manifold. The shift
symmetry can also be seen as a reason for the masslessness of the NGBs since it does

not allow a mass term.

e Via the Fourier transformation, the derivative coupling corresponds to a momentum
dependent coupling. The theory is thus weakly coupled for low momentum and so in

this regime an expansion in the momentum can be performed.

It is worth mentioning that the pure NGB Lagrangian is non-renormalizable and only valid
for a description of the theory at energies below A ~ 47 f. At higher energies it has to be
UV-completed, e.g. by a linear sigma model as described above (by “integrating in” the o(z)
field), or by a strongly coupled theory that yields NGBs as bound states of more fundamental
degrees of freedom. However, the great benefit of the NGB Lagrangian is that it does not
depend on the actual UV completion, but only on the symmetry breaking pattern.

2.1.2 The CCWZ formalism

The Lagrangian in eq. (2.8)) describes the NGBs for a O(N) — O(N — 1) spontaneous
symmetry breaking. For a generic group G that is spontaneously broken to a subgroup H,

the question arises how the most general NGB Lagrangian that is invariant under G can be

8The NGBs not only enter the Lagrangian non-linearly, they also transform non-linearly under G, cf.

section @
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constructed. The answer to this question is the CCWZ formalism [129,130] presented in the
followingﬂ To this end, it is useful to first fix the notation. The generators of G that are
elements of the Lie-algebra g will be denoted by T* and X¢, where T € h are the generators
of the remaining H symmetry and elements of the Lie-algebra b, while X% € g — h are the
broken generator The generators are normalized such that tr[T¢ T = tr[X® X?] = §%°.
As a starting point, the NGBs are parametrized by fluctuations 7%(z) around a G-breaking

minimum ¢q inside the vacuum manifoldlﬂ7
‘\/7 a a
o) = Ulr@)] g0, Ulr(@)] =7 % e a/m, (2:9)

where 7(z) = 7%(x) X® and U[r(x)] is the NGB matrix (cf. section [2.1.1]). Performing a G

transformation on ¢(x) yields

G: ¢(z) = ¢(z) = g d(x) = g Uln(2)] do, (2.10)

where g is an element of G. In general, the object g U[r(z)] is not an element of the coset
space G/H and thus cannot be expressed simply in terms of a matrix U[n’(z)] that depends
on a transformed 7’(x). Using the fact that any g € G can be decomposed as g = gx gn
where gy € G/H and g, € H, one can decompose g U[r(x)] as follows:

gUlr(z)] = Ulr'(z)] Al (), g], (2.11)
N—— —— ——
€G €G/H €H

where Ul[n’(z)] € G/H depends on a transformed 7/(z) and h[r(z), g] € H depends on both
m(z) and g. Plugging this decomposition into eq. (2.10) yields

G: ¢(x) = ¢f(x) = g ¢(z) = Ulr'(x)] hlw(x), 9] do = Uln'(x)] bo, (2.12)

where in the last step the invariance of the vacuum ¢y under H is used, i.e. h[w(z), g] do = do
for any 7(z) and g. So it is actually possible to express the transformed ¢’(x) only in terms
of a NGB matrix U[r'(x)] and the vacuum ¢g. The transformation G : ¢(x) — ¢'(z) thus
corresponds to transforming the NGB matrix U[n(z)] and the NGB fields 7(z) in a non-linear

way. Using eq. , one finds
G : Uln(z)] = Ulr'(2)] = g Uln(2)] A~ [x (), 9] (2.13)
and
G : m(x) — 7'(x) where 7'(x) is defined by eq. . (2.14)

9This discussion of the CCWZ formalism is loosely based on [133}[134].
104 _ p is the orthogonal complement of the h subalgebra of g, i.e. g = h @ (g — b).

"' In contrast to the field q;(x) from the previous section, the field ¢(z) is defined to be dimensionless for
convenience. Both are related by f ¢(z) ~ ¢(z).
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Due to the non-linear transformation of U[r(z)] and 7(z) under G, they are also called
non-linear realizations of G.

Having laid down the transformation properties of the NGB matrix U[r(z)], it can now be
used to construct a G-invariant Lagrangian. It is instructive to first try a naive approach and
see why this fails. The arguably simplest Lorentz invariant Lagrangian for U(z) = U[r(z)]
is )

Liry = fz tr [0,U () 0"U ()] , (2.15)

where the prefactor ];—2 is included to yield a canonically normalized kinetic term for the

n%(x) fields. Under a G transformation, according to eq. (2.13)), L4y, transforms as

f2
G: Ly — c;ry =7

tr [0, (h(z) U~ (x) g_l) " (gU(w) h_l(SC))] , (2.16)

where h(z) = h[n(x),g]. Due to the z-dependence of h(x), it does not commute with
the partial derivatives and thus L{,, # Liry, i.e. Lyry is not invariant under a general G-
transformation. To investigate this in more detail, it is convenient to rewrite Ly in the

following way. First, one can introduce a 1 = U(x) U~!(x) inside the trace, such that

2
Liry = fz tr [(@U—l(ac)) U(x) U_l(iL‘) (aMU(l'))] . (2.17)
From the relation2]
(Ou U (2)U(z) = -U (=) 9,U(x), (2.18)
one gets ,
Loy = Lo [ (U7 @) 0 (@) (U7 (@)U @) (2.19)

where in comparison to eq. (2.15) the partial derivatives now both act on U(x). The objects

inside the parentheses are called Maurer-Cartan-forms and may be written as
au[U) = iU (2) 9,U (). (2.20)

The Maurer-Cartan-form has the useful property that it is Lie-algebra valued, i.e. a,[U] € g.
Using a,[U], the Lagrangian can be expressed as
f2

Liry = T tr [a,[U] a”[U]]. (2.21)

It should therefore be possible to trace back the fact that Ly, is not invariant under G to the

transformation properties of a,[U] under a G transformation. Using the definition of a,[U],

" The relation (8, U~ '(z)) U(z) = U~ () 9,U(x) can readily be derived from 8, (U~ "(z) U(z)) = 0.
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eq. (2.20]), one finds

G: ay[U] = ih(z) U (2) 971 0, (9U(z) hil(l‘))
= ih(z) U Nz) (8,U(z)) h ' (z) +ih(x) 0,h(x) (2.22)
= h(z) au[U)h™}(2) + au[h™']

and obviously the appearance of a, [h~Y] spoils the invariance of Lyiry. The reason for both,
the problem with the z-dependence of h(z) in eq. as well as the appearance of a,[h™1]
in eq. , is that the partial derivative 0,U(z) does not transform in the same way as
U(x) and therefore in general a,[U] ¢ g —b. Being an element of g, it is however possible to

expand a,[U] in terms of the generators 7% and X such that
a,[U] =d, Ul X + e, U T, (2.23)

and one can define
d,[U] = d,[U]* X € g — b,
U] = d,[U] g-b (2.24)
eulU] = e, [U]*T* € b.
For the transformation properties of d,[U] and e,[U] under a G transformation one then

finds
G : d,[U] = h(z)d,[U] A (2),

(2.25)
G euU] = h(z) eu[Ul R~} (@) + au[h™] = h(z) (eu[U] +1i0,) R~ (x),

i.e. a,lh] only appears in the transformation of e, [U] while d,[U] transforms homogeneously.
Constructing a Lagrangian using d,,[U] instead of a,[U] yields
f2

L2 = -t [d[U)d"[U]), (2.26)

and using the transformation property of d,[U] under G, eq. , one immediately sees that
Lo is invariant under G-transformations. That this Lagrangian is indeed the most general
one that is G-invariant and leading order in an expansion in the number of derivatives was
shown in [129,/130]. The subscript “2” on Ly indicates that this Lagrangian only contains
the leading order terms with two derivatives. For the remainder of this thesis, higher order
terms will not be necessary. However, it should be noted that not only d,[U], but also e, [U]
enters the higher order terms. The transformation property of e,[U] under G, eq. ,
suggests that it transforms like a gauge connection. Consequently, it enters the G-invariant
Lagrangian in terms of a covariant derivative replacing the partial derivative according to
10y, — 10y + ey U],

In the above discussion, G is assumed to be a global symmetry. It is however straightfor-

ward to include gauge fields for a subgroup E C G (where E could also be the whole group
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). Denoting the generators of E' by P%, one just has to add the kinetic terms for the gauge
fields A, = A}, P* to the Lagrangian and promote the partial derivatives to gauge-covariant

derivatives, i.e. 10, — 10, + gr A,. The Maurer-Cartan-form then also gets covariantized as
a,[U] — a,|U] = Uﬁl(a:) (10 + g AU (x)

(2.27)
= au[U] +9E U_l(x) Ay Ul(x),

which can also be thought of as adding a term corresponding to the gauge field A, dressed
by the NGB matrix U(z) to yield the correct transformation properties. The covariantized
Maurer-Cartan-form a,[U] can again be decomposed in terms of unbroken and broken gen-
erators as

a,U] = d,JU* X + e, [U)" T, (2.28)

such that the leading order Lagrangian including gauge fields is given by
2

£ =L [d o do)] - itr[F‘“’ F). (2.29)
where F,, =0, Ay, — 0, Ay, —igr [Au, A)). If E C H, all the gauge bosons are massless. On
the other hand, for each of the gauged generators P® that is also an element of the coset
generators, i.e. P® € g—h, the associated gauge boson acquires mass via the Higgs mechanism.
The NGBs corresponding to these gauged broken generators are unphysical would-be NGBs.
Since the gauging of a subgroup F C G explicitly breaks the global G symmetry, some of the
physical NGBs may pick up mass terms and become pNGBs (cf. section .

In addition to employing the transformation properties of the NGB matrix Ulr(x)] for
dressing gauge fields, this can also be done with other fields that do not transform linearly
under the full G group. In particular, any field ¢(z) transforming linearly under a repre-
sentation D(h) of the H-transformation h can be included in the Lagrangian with the help
of Ulr(x)]. Assuming for simplicity that D(h) is the fundamental representation, i.e. ¥ (x)
transforms as

H :9(z) = ' (z) = hy(a), (2.30)

one can consider the dressed field U[n(z)] ¢ (x). Performing a G transformation g, one finds

G U(2) () = gUlr(@) A\ [r(a), g ¥/ (), (2.31)

such that the requirement that U[n(x)] ¢ (x) transforms linearly leads to ¢(x) transforming

non-linearly as
G ¥(x) = ¥ (2) = h[r(z), 9] (). (2.32)
This can be generalized to arbitrary representations of H, such that a ¢(z) transforming

under D(h) transforms under G non-linearly as

G ¢(z) = '(x) = D(h[n(z), 9]) (), (2.33)
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and by dressing it with the NGB matrix U[rn(z)], one can include it in a G-invariant La-

grangian.

2.1.3 Symmetric spaces

The object d,[U] defined in egs. and that enters the result for the leading
order NGB Lagrangian Lo can in general not easily be expressed in terms of the NGB matrix
U(x). In the special case where G/ H is a symmetric space, d,,[U] and thus Lo however have a
simple form in terms of U(z). This is shown in the following discussion that is loosely based
on [134,/139]. G/H is called a symmetric space if in addition to the commutator relation
[T%, TP o T¢, which is just a consequence of h being a Lie subalgebra of g, the generators
T¢ and X also satisfy [T% X®] oc X¢ and [X?, X®] oc T°. In this case, the transformation

T: T*—T% X%— -X° (2.34)

leaves the above commutator relations invariant and thus constitutes an automorphism. Ap-

plying this automorphism to the NGB matrix, one finds
7 U)—=U)=U(z), (2.35)

where U (z) is the image of U(z) under 7. From the expansion of a,[U] in terms of unbroken
and broken generators, eq. (2.23), it then follows

71 au[U] = au U = —d, U X + e, [U* T, (2.36)
and hence
du[U] =

(auU] = auUTY) = 2 (U H(2) 9,U(2) — U(z) 9, U} (2)) . (2.37)

N |
N | .

Plugging this into the Lagrangian L9 then yields

2 2
Ly = fztr [d,[U] d"[U]] = {—Gtr [0, (U (@)U (z)) 0" (U (2)U (2))] - (2.38)
Using the definition
iMW“(m) Xxa

Y(x)=Ux)U(x)=¢ 7 , (2.39)

the Lagrangian can be further simplified to

_ f2 -1 17

Ly = 6 tr [0,57 " (z) "5 (x)] . (2.40)

So one finds that for G/H being a symmetric space, the NGB Lagrangian has a simple form

in terms of the squared NGB matrix ¥(x). The transformation properties of ¥(z) can be
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derived in the following way. Applying the automorphism 7 to the G-transformation of U(x),

eq. , one gets
G: Uz) = §U(z) h Y (z), (2.41)

where g and ioz_l(x) are the images of g and h~!(x) under 7. Since the generators of H
transform trivially under 7, one gets A~ () = h~*(x). Using in addition that U(z) = U~!(z),
one arrives at

G:UNz) = gU  (z)h (). (2.42)

and thus
G:U(x) = h(z)U(x) g . (2.43)

From this, it follows that the squared NGB matrix ¥(z) transforms linearly, i.e.
G:Y()=U)U(z) = gU@) h Y (@) h(z)U(z) g =gX(x) ! (2.44)

and hence, using ¥(z), not only the Lagrangian but also the G-transformation is tremen-
dously simplified.

A common example where one encounters a symmetric space is the case where a global
symmetry that is a direct product of two groups isomorphic to each other is broken to its
diagonal subgroup. To be specific, the global symmetr G = G, xGpis broken to H = Gp,
where G, = Gg = Gp are all isomorphic to each other. Then G/H = (G x Gg)/Gp is a
symmetric space. It is useful for the later discussion in sections and to investigate
this case in more detail. Denoting the generators of the G, and G parts of G by S’j—j and 5’}12
respectively, the generators of H are given by T = %(S’% + 5'?3) and the broken generators
are X = %(S”}f - S’j‘{) Since @ is a direct product and G, and G are isomorphic to each

other, one can employ a matrix notation such that

. Sse 0 . 0 0 ) 1 (s o X 1 (s 0
L (0 0> R (o S“) V2 <0 S“) V2 <0 —S“)
(2.45)

where 5% are the generators of the group Gy = Gr. Using this notation, the NGB matrix
U(z) is given by

L (x) S*

. iY2 ra(p) R 7 0 u(x) 0
)X e
Ulx)=e | ( — . e‘%”a(x) G | = ( ) 7 (2.46)

1311 the following, objects that correspond to a direct product of two isomorphic groups are written with a

hat. This distinguishes them from objects that correspond to one of the two isomorphic groups themselves.
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(z) S

where u(z) = 7" . To infer the transformation properties of u(z), one can start with

the G-transformation of the NGB matrix,
G:Ux)— gU(z) h (), (2.47)

and use the facts that any g € G, x Gr can be decomposed as g = gy, gr with

L 0 L 0 1 0
g = T . Gr= , 2.48
o <0 R) ar <0 1) o/ (0 R) (2.48)

where L € G1 and R € G and that h(z) can be written as

~oo [k(x) 0
h(zx) = ( 0 Ic(:c)) : (2.49)

This then yields
G u(x) = Lu(z) k() = k(z) u(z) R (2.50)

Since G / H is a symmetric space, there is an automorphism 7 of G as discussed above. In the
case where G = G, x Gp, this automorphism just corresponds to exchanging Gy, and Gpg.
Using the above matrix notation, the automorphism 7 can be represented by a multiplication

from the right by the matrix s given by

0 1
K= . 2.51
() 251
For an element of G one then finds
. s . R 0
T:g—>0=0K= , (2.52)
while for the NGB matrix one gets
. 2 . -1 0 R
7 U(z) = Ulz) = U(z) k = (“ () = U (), (2.53)
which reproduces the general result from eq. (2.35). As the next step, the squared NGB

matrix f)(:c) that transforms linearly via eq. 1) can be constructed. In the matrix notation

one finds
S(x) = U(z) U(z) = (“(x)“(x) 0 ) - (9(@ 0 > : (2.54)
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where () is defined as

~Zﬂ.a T a
=75 (2.55)

The transformation properties of Q(z) are readily derived by either using those of f](x),
eq. , together with the explicit matrix form of g, eq. , and f}, eq. , or
alternatively by employing the transformation properties of u(x), eq. . In any case, one
gets

Gr x Gp:Qz) — LQ(z) R, (2.56)

i.e. under a G x Gp transformation g, the matrix (x) transforms linearly with L € G,
and R € G that both constitute g via eq. .

Given these transformation properties, it is useful to introduce the so called moose dia-
grams [140] to describe the theory. They are a diagrammatic tool to visualize the symmetry
structure and particle content of a theory. This thesis adopts the notation of [139] and depicts
global symmetry groups (that may contain gauged subgroups) as circles and fields transform-
ing under these groups as lines connected to the circles. An arrow on the lines is used to
indicate whether the corresponding field transforms under the fundamental (arrow pointing
away from the circle) or anti-fundamental (arrow pointing towards the circle) representation
of the group associated to the circle. A circle describing a symmetry group is also called a
sz’tﬂ The theory of the (G x Gg)/Gp NGBs parametrized by (x) can thus be described

by the following moose diagram with two sites,

Global : G, Q Gr
ool =
Gauged : 0 0

i.e. Q(z) transforms as in eq. (2.56) and no subgroups of G, and G are gauged.
Using Q(z), the Lagrangian Lo that is written in terms of f](:c) in eq. 1' can be
expressed as
£2
Lo = % tr [0, (z) 0"Q(z)] . (2.58)
There are important cases (as will become clearer in section [2.1.4)), where one encounters
two NGB matrices, one from a G1, x Ggr — Gp breaking conveniently described by Q(x)
and one from a G — H breaking described by U(x), where the groups G, 2 Gr = Gp = G
are all isomorphic to each other. The broken generators X appearing in the G/H NGB

4 The term site is derived from lattice site, a point in a lattice. A latticized extra dimension can actually

be described by a moose diagram such that the lattice sites correspond to the moose diagram’s sites (cf.

section [2.2.3))
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matrix U(x) as well as the generators T of H are then each a subset of the generators S
that appear in the (G x Gr)/Gp NGB matrix Q(z). It is then useful to define the decay
constant entering €(x) such that the normalization in the exponent of £2(x) matches the one
of U(z), eq. (2.9). This is achieved by employing

f=v2f, (2.59)
which then yields

Lo = j:tr (0,07 (2) 9"Q(z)], Qx) = P @S (2.60)
where Q(z) of course still transforms as in eq. (2.56).
While the above discussion leads to a simplified Lagrangian in the case where G/H is
a symmetric space, in CHMs one often encounters cases where G/H is not a symmetric
space. For practical purposes, it is then often convenient to work with an explicit vacuum
state instead of using the d,[U] objects appearing in the CCWZ formalism. This approach
is further discussed in appendix

2.1.4 Hidden local symmetry

It is instructive and also useful for the later discussion of vector resonances to introduce
the language of the hidden local symmetry (HLS). The following discussion is loosely based
on [131}/133,|139] and shows how the G/H non-linear sigma model is equivalent to a linear
model with a global G and a local H symmetry. First, consider the G/H NGB matrix U(z),
given by

f a a
Ulx) =7 E@X", (2.61)
transforming under G as
G:U(z) = gU(z)h Yz, 9), (2.62)

where g € G and h(z,g) € H depends on g. The generators of G and H are the elements of
the Lie algebras g and b and are denoted by S¢ € g and T € b, respectively. X* € g— b are
the generators broken by the G — H spontaneous symmetry breaking.

In addition to the above NGBs, consider a model describing NGBs from a Gy, xGr — Gp
spontaneous symmetry breaking where Gy = Gr = Gp = G are all isomorphic to each other.
This model is parametrized as in eq. by the NGB matrix

() = &7 ™R S (2.63)
transforming linearly under G x G as

G x Gr:Q(z) = LQ(z) R 1, (2.64)
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where L € G and R € Gg. It is interesting to observe what happens if one gauges a
subgroup Hr C Gp that is isomorphic to H. This model is then conveniently described by

the following moose diagram:

Global : Gy, 0 Gr
©_>_Q . (2.65)
Gauged : 0 Hpr

Since no subgroup of G, is gauged, the G, x Gr — Gp breaking also spontaneously breaks
the Hg gauge symmetry and thus all its gauge bosons acquire mass via the Higgs mechanism.
In addition, the gauging explicitly breaks the G x G symmetry to Gy x Hr [I_5] under which
the NGB matrix (x) transforms as

Gp x Hp : Qz) — LQ(z) hp'(2), (2.66)

where L € G as before and hr(r) € Hp is a gauge transformation. This resembles the
transformation properties of U(x). But while G;, = G and Hr = H, of course U(z) trans-
forms non-linearly under the group G and Q(z) still transforms linearly under the group
G x Hg. Another obvious difference between Q(x) and U(x) is that the former contains all
the generators 5% € g while the latter only contains the subset X¢ € g — . This difference

can be made more explicit by decomposing (x) as

!

~ ~ V3 a o~ V3
Qx) =U(x)E(x) where U(z)= 7 T X , ZE(z) = T

[me

@71 (2.67)

Now if the element of the G /HR coset U (x) is identified with the element of the G/H coset
U(z), the difference between Q(z) and U(z) is due to the presence of Z(z). Since Z(z) is
an element of Hp, it is however possible to remove it by performing a gauge transformation.
Using a specific gauge transformation %R(x) = E(x) to fix the gauge, one finds

Q(z) = Qz) hy'(x) = U(z), (2.68)
which is nothing but the unitary gauge where the unphysical would-be NGBs 7&(x) are
removed from the spectrum. This gauge fixing is however not respected by the global G,
transformations. Applying a G, transformation to U(z) = Q(z) hp!(z) yields

Gp:U(z) = Qx) hy'(x) = LO(x) hi'(2) = Q' (2) k' (2), (2.69)

where ©'(x) can again be decomposed as

~ ~ ~ N2 _ra a ~ ; la a
V(z) = U'(2)Z(x) where U'(z)=e T 5@X Z(@)=TE@DT . (2.70)

151t is assumed here that there is no other subgroup Er C G that commutes with Hg.
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Using this decomposition, the transformation of U () under G, is found to be

GL:U(z) = U'(2) Z'(z) hg' (). (2.71)
Since 71;31(:1:) has been chosen such that it removes (z), it can not be used to also remove
a generic Z'(z) and thus U'(z)Z(x) 71]?{1(:1:) is in general not an element of the Gp/Hp
coset and would-be NGBs are reintroduced. To fix this, one can apply just another gauge
transformation that removes the Hg element =/ (x) %gl(x) Different G, transformations L
yield different = (z). Depending on L, different gauge transformations are thus needed for
removing Z'(z:) Z]gl(x) These L-dependent gauge transformations hr(x, L) are then defined
by
='(2) hy'(z) hy' (2, L) = 1. (2.72)

So to stay in the unitary gauge, after each global G transformation of U (z), the gauge
transformation hg(x, L) has to be applied. The G transformation of U () that keeps the

unitary gauge fixed can thus be defined as

Gr:U(z) — LU(x) hg'(z, L) = U'(2). (2.73)

Under this G, transformation that includes the prescription for the gauge fixing, U(x) evi-
dently transforms non-linearly. The Hg gauge symmetry is then only used for keeping the
unitary gauge fixed when performing a GG transformation and is otherwise explicitly broken
by the gauge fixing. This is the reason why Hp is said to be a hidden local symmetry. The
equivalence of the transformation properties of U(z) under G and those of U(z) under Gy, is

now manifest and can be made a one-to-one correspondence by identifying
G+ Gr, g« L, H< Hp  h(z,g) < hg(z, L), U(z) < Uz). (2.74)

An obvious difference between the two models discussed above is of course that in contrast
to the non-linear sigma model, the HLS model contains massive gauge bosons. By taking
the Hr gauge coupling gp, — oo, the gauge bosons can however be made infinitely heavy
and thus decouple. In this limit, both models are completely equivalent, i.e. the HLS model
becomes a non-linear sigma model describing NGBs in the G, /Hp coset with no additional

gauge bosons present. Using the language of moose diagrams, this can be expressed as

Global : Gy, Gr G, -
Q gHp — OO U
OO0 "= Ofm e
Gauged : 0 Hp 0

The moose diagram on the right-hand side describes a non-linear sigma model where a global

symmetry G, is spontaneously broken to Hp, no subgroup of G, is gauged and the NGBs in
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the Gr/Hp coset are parametrized by the NGB matrix U(z), transforming as in eq. .
U(z) is nothing but Q(z) in the unitary gauge, cf. eq. (2.68). The two-site diagram on the
left-hand side is thus reduced to a one-site diagram by taking gp, — oo.

If in addition to Hg, also a subgroup Er C G is gauged, in the limit gz, — oo
this exactly corresponds to the gauging of E C G in the G/H non-linear sigma model
discussed in section All generators of £y, that are also generators of Hg yield linear
combinations of the F;, and Hpr generators that are unbroken by the spontaneous symmetry
breaking G x Gr — Gp and correspond to massless gauge bosons. The orthogonal linear
combinations of these generators are however spontaneously broken and yield massive gauge
bosons that become infinitely heavy as gy, — 00. The generators of Fj that are not
generators of Hr are associated to gauge bosons that acquire mass via the Higgs mechanism
and the corresponding NGBs in the G, /Hp coset become unphysical would-be NGBs that
can be gauged away. This is thus completely analogous to the discussion in section [2.1.2]

2.2 Vector resonances

In models where the spontaneous symmetry breaking that yields NGBs is due to a confining
strong interaction, like it is the case for QCD and CHMs, in addition to the NGBs one also
expects heavy spin one resonances. These resonances have to respect the same global symme-
tries as the NGBs. An example of a model where this is realized is the above discussed HLS
model if the gauge coupling gz is not taken to infinity but kept finite. In this case, it contains
both NGBs in a G/H coset as well as heavy resonances in the adjoint representation of H.
In the present section, this construction is first investigated in more detail and subsequently
generalized to include several multiplets of resonances. Finally, a connection to models with

extra dimensions is made.

2.2.1 Hidden local symmetry and a first level of heavy resonances

In section [2.1.4] it is shown that the HLS model with a global G and a local H symmetry can
be reduced to the non-linear sigma model describing NGBs in a G/H coset. This is done by
taking the gauge coupling gy — oo and thus effectively removing the heavy H gauge bosons.
This procedure can be reversed to add spin one resonances in an adjoint representation of
H to a non-linear sigma model describing NGBs in a G/H coset. Starting from the G/H
non-linear sigma model, one just has to promote it to a HLS model with a global G and a

local H symmetry and keep the gauge coupling gy finite. In terms of moose diagrams, this
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corresponds to

. !

Global : G U extend to HLS G QO G
(y——n — (O——) @M

Gauged : E E H

where for generality also a subgroup E C G is gauged. The global symmetry G’ on the right
site of the HLS moose diagram could also be chosen to be just H. It is however convenient
to describe it as a global G’ & G symmetry that is explicitly broken to its subgroup H by
the gaugingiﬂ The field Q(z) transforms under the global G and the local H symmetry as

Gx H:Qx) = gQz) h 1 (z), (2.77)

where g € G and h(z) € H is a gauge transformation. It can be decomposed as

i V2 ra a iY2 g (z) To
Qz) = U(@)E(z), Ule) =T ™@X 5(g) = =z @™ (2.78)

where U(x) is the NGB matrix in the non-linear sigma model on the left-hand side of eq.
and Z(z) € H contains the would-be NGBs that can be gauged away by a H gauge trans-
formation (cf. section . The decay constant fz of the would-be NGBs and the decay
constant f of the non-linear sigma model are in general differenﬂ

The HLS model in eq. is now investigated in more detail. To this end, it is
useful to fix the notation. Like in the previous sections, the generators of H are called T,
while the generators of the G/H coset are called X®. In addition, it is convenient for the
following discussion to denote the generators of the intersection £ N H, i.e. those that are
both generators of H and of E by K“, the generators of E that are not generators of H by
P% and the generators of H that are not generators of E by T%. In terms of the Lie algebras
h and ¢ of H and F, this reads

P K*ce, T*K®ch. (2.79)

Using G’ = G, one can think about Q(z) also as the NGB matrix in a theory with a global G x G’

symmetry broken to its diagonal subgroup (cf. sections|2.1.3| and [2.1.4]).
7"The constant f= is relevant because even if the would-be NGBs are gauged away, f= enters the mass terms

of the heavy gauge bosons (cf. eq. (2.81))). In section|2.1.4] it is assumed that Q(z) parametrizes the NGBs of

a spontaneous symmetry breaking where the coset is a symmetric space. This construction forces fz = f. In

the limit gz — oo considered in section there is however no difference between the general construction
and the one stemming from the symmetric space: if =(z) is gauged away and the heavy gauge bosons are
decoupled, no dependence on f= is left.
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Using the above defined generators, the covariant derivative of the matrix Q(z) is given by
i D Q) = 18, ) + g ((Ap)i P+ (Ag) K ) Q(a) s

2.80

— g Q) (A T+ (A K*)

where gg and gy are the coupling constants of the ¥ and H gauge groups. The leading order
Lagrangian then contains the following mass terms for the gauge bosons (cf. [141]):

12 9% <f2

o B (L i + (pgan)

29 (A A+ (Amya(An)) 25)

f2gm g
- = (Ap)(Ap)™*.

The last line corresponds to a mixing term for the gauge bosons (A )y, and (Ag)j, which are

therefore not mass eigenstates. It is however straightforward to rewrite the mass terms as

2 2

MEb , ~ a2 g M3, ~ a2 aa
L3> TE(AE)Z(AE)a“ﬂL TH (A (Am)*"
m2 (2.82)
+ TK (COS Qmix (AH)Z — sin Gmix (AE)Z) (COS Qmix (AH)(“L — sin emix (AE)G’“) s
where the masses are given by
2 2 2 2 2.2 2
2 2 2
and the mixing angle 6.,;x is defined by
€08 Opmix = 9H Sin Opix = 98 (2.84)

\/ 9% + 9% \/ 9H + 9%

From the Lagrangian in eq. (2.82), one can read off that the linear combinations of gauge
fields
(Ak )} = 08 Omix (Apr)y, — sin Owix (AE);, (2.85)

have masses my, while there are no mass terms for the orthogonal linear combinations
(AO)Z = sin Omix (AH)Z ~+ 08 Opix (AE)Z, (2.86)

which are consequently massless. To summarize, for each generator P? there is a massive
gauge boson (AE)Z with mass mg, for each T there is a massive gauge boson (AH)Z with
mass my and for each K there is one massive gauge boson (AK)Z with mass mg and one
massless gauge boson (Ao)j. (Ak)jK® and (Ag)j K® are in the adjoint representation of

ENH. It is instructive to investigate several different limits and special cases of this model.
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1. Taking gg — o0, one finds
mp — 00, mg =00, (Ak); = (An)y, (Ao), — (Ag)j, (2.87)

i.e. in this case the gauge bosons (AH)a and (Af)j; become infinitely heavy and de-
couple. There is no mixing between (Ay)f, and (Ag)y. The former become exactly
the infinitely heavy (AK) gauge bosons while the latter become exactly the massless
(Ap)¢ u- There are NGBs in the G JH coset, of which those corresponding to the P?
generators associated with the massive (A E)Z gauge bosons are unphysical and can be
gauged away. This is of course just again the non-linear sigma model for a G/H coset

with E C G gauged, i.e. the model discussed in sections 2.1.2] and 2.1.4]

2. Assuming gp < gg, the mixing angle 6,,ix is small and one arrives at a model where the
massless (Ap)j, are approximately the (Ag)j, gauge bosons, while the massive (Ak)j
are approximately the (Apg)fj. (Ak)j K and (Apg);, T together thus approximately
constitute a full adjoint representation of H. While their squared masses differ by

mi. —my = ;5 m?, (cf. eq. (2.83)), assuming gg < gp, this difference is however small

compared to the values of m%( and mlzq and thus using my/mpg ~ 1 is a good approxi-
mation. Although (Ao)f and (A E) would also constitute a full adjoint representation
of F if their masses were equal, this is not a good approximation since the former is
massless and the latter has a finite mass mg and hence the relative difference of their

masses is large.

3. Taking g5 — 0, (Ak)j, K is exactly (Ag)j, K* and together with (AH) T% it con-
stitutes an adjoint representation of H. The approximation from the previous case is
now exact since the mass difference m% — m% — 0. (A E)z and (Ag)}, (which is now
exactly (Ao)j;) do not couple if gz — 0 and hence this limit is equivalent to removing
them altogether. While taking g — 0 has exactly the same consequences as E — (),
the interpretation in the latter case is however slightly different: there are no P% gen-
erators, all the K become T% generators and the spin one spectrum consists of only
the massive (AH)ZT“ in the adjoint representation of H. But in any case one is left
with a spectrum consisting of massive gauge bosons in the adjoint representation of H

with mass my and NGBs in the G/H coset that are all physical.

4. In the case where E is isomorphic to a subgroup of H, there is no P% generator because
EN H = FE and thus all generators of E are also generators of H. Consequently, there
are no (A E) gauge bosons and the spectrum consists of the massive (A H) and (Ag)j
as well as the massless (Ao)j; gauge bosons. The (Ak)j;, K and (Ag)j; K are in the
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adjoint representation of ¥ while the (121 H)Z T% are elements of h —e. All NGBs in the
G/H coset are physical.

5. In the case where H = G, all NGBs correspond to either a K® or a T% generator, are
unphysical and can be gauged away. Apart from the fact that there are no NGBs left,
this case is similar to the previous one since in this case one always has EN H = F.
So again, the spin one spectrum consists of the (Ax)j; K% and (Ap)j, K in the adjoint

representation of £ and the (A H)Z T% which are now elements of g — e.

Given all the different limits and cases discussed above, the HLS model in eq. can serve
as a starting point for a wide variety of models, from one containing only NGBs where E = ()
and g — oo to a model featuring NGBs, massive spin one states and also massless gauge
bosons. It is thus the prototype model for describing the lightest resonances in a low-energy
effective description of a strongly coupled confining theory.

In the context of QCD, it has been applied to describe pions as NGBs and the p mesons as
the lightest spin one states [131]. In this case one has G = SU(2), x SU(2)g and H = SU(2)p.
The photon can be included in this construction by gauging an appropriate £ = U(1)q

subgroup of GG. The corresponding moose diagram is thus written as

Global : SU(2)L X SU(Q)R O SU(2>D
Q Q . (2.88)
Gauged : U(1)q SU(2)p

While the massless (Ag), linear combination of (Ag), and (Ag), can be identified with the
physical photon, the pg corresponds to the orthogonal linear combination (Ax ), and its mass
is enhanced compared to the charged pff that correspond to (AH)Z (cf. eq. ) Modern
versions of this construction use G = U(3)y, X U(3)g and G’ = H = U(3)y to model 7, K, n
and 1’ as NGBs as well as p, w, K* and ¢ as spin one resonances and also include terms that
model the breaking of the U(3) flavor symmetries due to the different quark masses [141}142].

In the context of CHMs, the HLS model in eq. is known from the two-site Discrete
Composite Higgs Model (DCHM) [118] where in the minimal construction G = SO(5)y,
G' = SO(5)r and H = SO(4), yielding a Higgs doublet in the SO(5)r,/SO(4) coset and
spin one resonances approximately[r_g] in an adjoint representation of SO(4). In addition, an

E =8U(2)? x U(1)% subgroup of G is gauged to include the electroweak gauge bosons. The

'8 The massive spin one resonances are only approximately in an adjoint representation of SO(4) due to the
mixing with SU(2)) x U(1)% gauge bosons, cf. of the above limits and special cases.
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corresponding moose diagram thus reads

Global : SO(5)L, 0 SO(5)r
Q Q . (2.89)
Gauged : SU((2)Y x U(1)Y SO(4)

Here, the massless electroweak gauge bosons (before electroweak symmetry breaking) are
the (Ap)j;, linear combinations of of (Ag); and (Apy)j while the (Ax)f, and (AH)Z are the
massive spin one resonances.

In both examples above, an H subgroup of G’ as well as an E subgroup of G are gauged.
The gauging of H is a central ingredient of the HLS construction. It allows to make the
connection to the G/H non-linear sigma model by removing the would-be NGBs (cf. sec-
tion . Due to this construction, its gauge bosons are always massive. Assuming a
strongly coupled confining theory as UV completion of the HLS model, these massive gauge
bosons as well as the NGBs in the G/H coset are then naturally interpreted as composite
objects. The gauging of F on the other hand is different. In the limit where the heavy H
gauge bosons are decoupled and the HLS model becomes the non-linear sigma model, the
gauging of E corresponds to a gauging of some of the global symmetries of the non-linear
sigma model. Assuming again a strongly coupled confining UV completion, these global
symmetries are those of the UV theory before the spontaneous symmetry breaking. If some
of these symmetries are gauged, the corresponding gauge bosons are thus also present in the
UV theory and can therefore not be interpreted as composite objects but have to be consid-
ered as being elementary. As expected for gauge bosons present in the UV theory, they are
found to be massless in the effective non-linear sigma model description if they correspond
to symmetries that are not spontaneously broken by the strong interactions. If the heavy
H gauge bosons in the HLS model are not decoupled, these composite resonances mix with
the elementary E gauge bosons. If in addition the model corresponds to case of the
above discussed special cases, i.e. gg < gg, then all massless gauge bosons in this model
mainly consist of elementary gauge bosons with a small admixture of composite resonances.
They are thus said to be partially composite. This partial compositeness is encountered in
both examples above. It applies to the physical photon in the QCD case as well as to the

electroweak gauge bosons in the two-site DCHM.

2.2.2 Adding higher levels of heavy resonances

Starting from NGBs in a G/H coset, the previous section shows how to include heavy res-

onances in an adjoint representation of H by using the HLS construction. In the present
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section, this construction is extended to both higher levels of resonances as well as reso-
nances in an adjoint representation of the full G group. Both can actually be done at once.

As a starting point, consider the moose diagram

Global : G x Ggr o
(r——¢cn - (2.90)
Gauged : 0

describing NGBs in a (G x Gg)/Gp coset. This is just the model already discussed in
section where the coset is a symmetric space and U(x) transforms under a G, X G
transformation g non-linearly as in eq. (2.47)), which is repeated here for convenience:

G xGr: Ux) = gU(z)h~ Y (z). (2.91)

After the discussion in section [2.2.1] it is now easy to add heavy resonances in the adjoint
representation of Gp to this model. One just has to extend it to an HLS model. The

corresponding moose diagram is given by

Global : Gr x G . G x Gy
Q
O——0 o
Gauged : 0 Gp

where Q(z) = U(z) Z(z). Q(x) transforms under the full global symmetry G, x G x G’ x Gy
linearly as
G x Grx G} x Gy : Qz) = g0y, (2.93)

where g € G, x G and ¢’ € G, x G,. The Gp gauge symmetry allows going to unitary
gauge by gauging away Z=(z) such that Q(x) — U(x). In the unitary gauge, U(z) transforms

non-linearly under a GG, x G transformation g as
GLx Gr: Uz) = §U(2) g, (=, 9), (2.94)

where gg, (x, g) is the element of the Gp gauge symmetry that removes the would-be NGBs
from U (z) to stay in unitary gauge (cf. section. For the further discussion, it is however
useful to keep Z(x) such that the linear transformation properties of Q(z) can be used.

In section [2.1.3] a matrix notation is presented that makes it possible to treat the direct
factors of the direct product group in a way separately. Doing this is the crucial step in the

present discussion. Employing the matrix notation, the objects U (z) and é(w) are given by

oo fu(x) 0 2(p) = &x) 0
U(w)—( : ul(x)), el >—< : gm), (2.95)
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where u(z) = e ™ @S

and {(z) = ef TE@S (cf. egs. (2.45) and (2.46])). Defining

wi(z) = u(x)&(r) and wo(z) = & (2) u(x), (2.96)

the matrix notation can also be applied to Q(z). This yields

Q(z) = (wléx) ?( )> . (2.97)
wy (z

Using the matrix notation for (Q(z) together with the matrix notation for § and g’ (cf.
eq. (2.48)), the transformations properties of wi(z) and ws(z) under the full global symmetry
are readily derived from those of Q(z), eq. (2.93). One finds

G x Gr % G,L X GIR : wl(x) — Lwl(:n) L/_l,

) ) ) . (2.98)
GL X Gr X G, X G :wa(x) = R wi(x) R,

i.e. wi(x) and wo(x) only transform non-trivially under G, x G, and G x G, respectively.
Like Q(m), they also transform linearly. Comparing this to the discussion in section m
wi () and wy(z) can thus be thought of as describing the NGBs of global G, x G’ and GrxG',
symmetries, that are each spontaneously broken to their diagonal subgroups. Would it not
be for the gauging of Gp C (G, x G), this model would therefore just correspond to two
copies of the model described in eq. The transformation properties of wj(x) and

wa(x) can be expressed by the moose diagram

Global : Gr. G Gy Ggr
[ R w2
OO OO e
L= _ = _
Gauged : 0 Gp 0

where the gauging of the Gp diagonal subgroup of G, x G’; is also shown. This gauging
explicitly breaks the global G, x G'; to the local Gp symmetry such that the transformations
g’ € G, x G' are restricted to the gg,(z) € Gp. In the matrix notation, the effect of the

gauging can be expressed as

) I/ 0 gauging of Gp A " 0
9= / — gap(x) = 965() : (2.100)
0 R 0 9Gp (:L')

19 Starting with two copies of the model described in eq. , ie. a (Gr x G1)/GLp model with NGB
matrix wi(z) and a (Gr X GR)/Grp model with NGB matrix w2 (z) and connecting both copies to each other
by gauging the diagonal subgroup of G, x G', one obviously arrives at essentially the same model as the
one discussed in this section. This can be used for building models containing heavy spin one resonances (see
e.g. [T18T19]).
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i.e. in the diagonal subgroup L' = R’ and the gauging replaces them by the xz-dependent
9cp, (x). After gauging G p, the remaining symmetry is Gz, x Gg x Gp. Under this symmetry,

w1(x) and ws(z) transform as

G, xGrxGp: wl(x)%Lwl(x)ggé(x), (2.101)
Gr x Grx Gp: wa(x) = ggp (x)wa(x) R,
which can again be written in terms of a moose diagram:
Global : G, Gp Gr
w1 wWo
N O . 2.102
O——CO (2:102)

Gauged : 0 Gp 0

The transformation properties of wi(z) and wy(z), eq. (2.101)), reveal that the product of

both only transforms non-trivially under Gy, x GRp, i.e.
G x Gr x Gp : w(x)wy(z) = Lwy(x)wy(z) R7L. (2.103)

It is no coincidence that this resembles the transformation properties of the NGB matrix
Q(z), eq. (2.56), that may be used as an alternative to U(z) for describing the (Gz, x Gr)/Gp
non-linear sigma mode]@ Employing the definition of wy(z) and wo(x), eq. (2.96)), one finds

wi(z) wa(z) = u(z) £(z) € (2) u(z) = u(e) u(z) = Q(x), (2.104)

i.e. the product of wy(z) and wy(x) is actually nothing but Q(z).

The description of the (G, x Gg)/Gp non-linear sigma model in terms of U, eq. ,
makes it possible to readily extend it to a HLS model parametrized by O=U é, eq. ,
by applying the prescription from section namely eq. (2.76)). This model then contains
heavy spin one resonances in the adjoint representation of Gp in addition to the NGBs in
the (G x Gr)/Gp coset. Employing the matrix notation to separate the direct factors of
the direct product groups, the non-linear sigma model can be expressed in terms of Q(x) and

the HLS model in terms of wi(x) and wa(x). With this parametrization one thus finds

Global : GL 0 GR extend to HLS GL oL fi e GR
H 5
O—CO O—O—0O
Gauged : 0 0 0 Gp 0
(2.105)

200)(z) and U(x) are related by U(z) U(z) = (Qgc) Q?(@) (cf. eq. (2.54))).
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where wi (z) wa(x) = Q(x). This can be interpreted in the following way: By introducing the
Gp gauge symmetry, the NGB matrix () is split into two NGB matrices w;(x) and wa(x)
which are both connected to each other by Gp. The Gp gauge bosons acquire mass via the
Higgs mechanism and half of the NGBs in w(z) and wa(x) are would-be NGBs that can be
gauged away. How the actual NGBs and the would-be NGBs are distributed among wy (z)
and we(x) depends on the gauge. It is e.g. possible to apply a specific gauge transformation
dc,, (2) = wy () such that

wi(z) = wi(z) gg ) (1) = wi(z) wa(x) = Q(),
w2() = Gap (2) wa (@) = wy ! (z) wa(z) =1,
i.e. the NGBs in wj(x) all become actual NGBs and wj(z) becomes equal to (z), whereas

(2.106)

the NGBs in ws(z) all become would-be NGBs and are gauged away. But independent of
the chosen gauge, the number of actual NGBs of course always stays the same and they can
always be parametrized by the gauge-independent product Q(z) = wi(x) wa(z).

The two models in eq. describe NGBs in a (G x Gr)/Gp coset. It is however
known from the discussion in section that by gauging an Hpr subgroup of G, the
non-linear sigma model on the left-hand side can be turned into a HLLS model that describes
NGBs in a G, /Hp coset as well as heavy spin one resonances in an adjoint representation of
Hp. On the right hand-side of eq. , the gauging of Hg thus corresponds to a model
describing NGBs in a G,/ Hg coset and heavy spin one resonances in adjoint representations
of both Gp and Hg. It is therefore a model that contains two levels of resonances where one
of them comes in an adjoint representation of the full Gp = G group. While wy(z) and
wo(x) are related to each other due to the construction stemming from the symmetric space
and they share the same decay constant, the model can be generalized as described in the
following.

Starting from a G/H non-linear sigma model parametrized by U(z), where for generality
a subgroup F C G is gauged, one can extend this to a HLS model containing spin one
resonances in an adjoint representation of H as described in section [2.2.1] The NGBs in
the HLS model are parametrized by Q(z) = U(z)Z(z), where in unitary gauge =(z) can
be removed. This model can then further be extended by the construction discussed above
to include heavy spin one resonances in the adjoint representation of G; = G. In terms of

moose diagrams, this procedure is described by

Global : GU ddH addG1
O w Q@ Q@@
resonances resonances
Gauged: FE

(2.107)
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When adding the G resonances, £2(x) is split into two NGB matrices that for clarity are now
called Q4 (z) and Q2(x). In contrast to wi(x) and wa(z) used above, they are not related by a
construction stemming from a symmetric space and in general do not share the same decay
constant. But as long as the product of Q(z) and Qa(z) gives the NGB matrix Q(x), the
model still contains the NGBs in the G/H coset. It is possible to add further resonances in
the adjoint representation of G3 = G by simply splitting Q1 (z) or Qs(x) exactly like it was
done for Q(z). This can then be repeated successively to add more and more resonances.
Which one of the Q(z) is split for adding a new level of resonances does actually not matter
at all and all different possibilities are equivalent. Q(z) is always given by the product of all
the introduced NGB matrices Q(x). So one can equivalently also just build a model with
N — 1 levels of resonances in adjoint representations of G = G by splitting Q(z) into a

product of N matrices Qi (z) such that

N
Q) = [ [ (). (2.108)
k=1

The Qi (z) then transform under the global G, the N — 1 gauge groups Gy, and the gauged
H subgroup of G’ as
G x G1 : Ql(.%') — ng(ZC) gl_l(;v),
Gr_1 X Gy, : Qk(a:) — gk,l(x) Qk(.%') gk_l(x) for2<k<N-1, (2.109)
Gyn_1 x H: QN(x) — gN_l(a:) QN(a;) hil(.CE),
while Q(z) transforms as ever only non-trivially under G and H, i.e.

Gx H: Q)= gQz)h (z). (2.110)

This model with NGBs in a G/H coset, one level of resonances in the adjoint representation
of H and N — 1 levels of resonances in the adjoint representations of G = G corresponds to

the moose diagram

Global : G G1 GQ GN—l G/
0 Qo Qn
Y N . 2.111
O———0O——O @, O em
Gauged : E Gy Go Gny_1 H

In the following, it is assumed that in the decomposition Q(z) = U(z) Z(z) both U(x) and
E(z) depend on the same decay constant, i.e. f = fz. The same is also assumed for Uy(x) and
Zk(z) in the decompositiong”l| Q () = Uy (z) Ex(x), i.e fr = fzj. The decay constants f, for

2! As before, U(z) and Uy (x) are elements of the G/H coset, while Z(z) and Zx(z) are elements of H.

40




2.2. VECTOR RESONANCES

different indices k are however in general independent of each other. This has the effect that
the couplings and mass terms of the heavy gauge bosons are allowed to be different at each
site. The relation f; = fz;, on the other hand implies that among the resonances of a given
site, those transforming in the adjoint representation of H do not have different mass terms
and couplings to those corresponding to the coset G/H. Since the actual mass eigenstates in
general do not correspond to the gauge bosons at separate sites but are a mixture of them,
especially the gauging of H can of course lead to different masses of spin one resonances in
adjoint representations of H and those corresponding to the G/H coset. Given the above

assumptions, Q(z) can be expressed in the canonical form

\/5 a(z) Sa

Qz) =¢'7 ™ (2.112)
and the Lagrangian read@
N f2 N 1
=Y Zk tr [D, Q" (z) DFQy(z Z v [Fyop () FY (2)] (2.113)
k:O
where the gauge covariant derivatives are defined as
i Dy Q) = 10, (@) + gr1 AL (2) Q@) — gi Q) Al (). (2.114)
In the above expression, the short-hand notation
90 = 9k, A (x) = (Ap)i(x) P*,
9k = 9Gy,» AZ(J?) = (Ak’)Z(x) Sa) for k € [LN - 1]7 (2115)

gN = 9H, A,]X(HU) = (AH)Z(UC) ™

is used. As before, S® denotes the generators of G = G’ = G}, P® the generators of E and
T the generators of H. Employing the short-hand notation, the field strength tensors are
given by

Fioy (x) = 0, Al () — 0, Al (2) — i gi [Af (2), Af ()] (2.116)
While the expression for Q(z) can in general be given by eq. (2.112)), the explicit form of the

Qk(z) depends on the gauge. One possibility is a gauge where the G/H NGBs in Q(z) do
not mix with the gauge fields (see e.g. [143]):

7 Lﬂ'“x a
Qp(x) =e \/iflz 6o :

22The assumptions above allow to interpret Q(z) and the Qi (2) as describing NGBs of global G x G’ and

Gr—1 X Gk symmetries (where Go = G and Gy = G’) that are each spontaneously broken to their diagonal

(2.117)

subgroups. The NGB Lagrangian can thus be written in the simplified form discussed in section [2.1.3] This
is the construction employed e.g. in [118][119/|143]. A more general construction can be found in |144].
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This gauge will be denoted in the following as the non-mizing gaugﬂ The requirement of

a canonically normalized kinetic term for the 7¢(x) fields then yields the relation

1 1

==Y = (2.119)
~o=

In the non-mixing gauge, Q(x) as well as the Qi (z) transform linearly under global G trans-
formations. In the case of a non-trivial gauge group H, one can however go to a kind of
unitary gauge where each Q(x) only contains NGBs in the G/H coset (see e.g. [119]), i.e.

7»\/5}%2 % (x) X
k .

Qi (z) =Ug(z) =e¢ (2.120)

For distinguishing this gauge from the previous one, it will be denoted as the unitary non-
mizing gauge in the following. To reach it from the non-mixing gauge, one has to apply the
gauge transformations

k
ge(z) = (H Ui(:r)> [[9@), h@)=E@), withke[l,N-1]. (2.121)
=1 =1

In the unitary non-mixing gauge, one automatically gets Q(z) = U(x). Since this gauge
is not respected by the global G transformations, U(x) as well as all the Uy(x) transform
non-linearly under a G transformation g, i.e. g-dependent gauge transformations have to be
applied to stay in the unitary non-mixing gauge. Another gauge frequently employed in the
literature is the so-called holographic gauge (see e.g [1064118,120]) where only € (z) contains
the actual NGBs and all would-be NGBs are gauged away, i.e.

f a a
Oi(z) = Uz) =7 " @X"

Qp(z) =1 for2<k<N.

(2.122)

The holographic gauge is reached from the unitary non-mixing gauge by employing the gauge

transformations
k
ge(@) =U @) [[Ui(z),  h(z)=1, withke[l,N-1]. (2.123)
=1
%1t is actually possible to reach the non-mixing gauge from one where Q(z) = []1_, Qi (z) and the Q. ()

are in the canonical form also used for Q(z). In this case, each Qi (z) depends on a separate mof(z) and is

. =~ Y2 ot (x) S . .
given by Qp(z) =e 7 "7k . Using the gauge transformations
k Lk
gr(z) = <H Qi(:p)> [[Q@), h@)=1, withke[l,N-1], (2.118)
i=1 i=1

and employing eq. (2.119)), the non-mixing gauge is reached from the canonical form via eq. (2.109)).
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An equivalent prescription for defining the holographic gauge is to employ

4@7{“11} a
O (2) = Up(z) = e h "T@X

Qp(z) =1 for2<k <N,

(2.124)

i.e. Q1 (x) is simply set to its unitary gauge canonical form and all the remaining Q(x) are set
to the identity matrix. To coincide with eq. and to get a canonically normalized kinetic
term, a field redefinition 7§ (x) = %W“(x) has to be performed in this case (cf. [2,[3,/120]).
Independent of how the holographic gauge is defined (i.e. either by eq or ), this
gauge leads to a mixing between the NGBs and the heavy gauge bosons corresponding to the
G/H coset. This mixing can however be removed by field shifts of the G/H gauge bosonﬁ

The model from eq. contains in addition to spin one resonances in adjoint repre-
sentations of G = G also resonances in the adjoint representation of H. For constructing a
model that only contains resonances in adjoint representations of the full G group, one can
take the limit gy — oo and decouple the heavy H gauge bosons. The corresponding moose

diagram then reads

Global : G 0 Gl Q0 G2 GN_1 0
1 2 N
4 (Y | . (2125
O—0O——0O @, H o (212
Gauged : E Gy Go Gn_1

While the H gauge symmetry is hidden in this case, it still is used in the non-linear transfor-
mations of the Ug(z) and of U(x) in the unitary non-mixing gauge or the holographic gauge.
So all the results given above for the model in eq. still apply.

In the context of CHMs, the construction in eq. is employed in the DCHM |[11§]
where G = G' =2 G, = SO(5), and H = SO(4). While the moose diagram of the two-site
DCHM is already shown in eq. , the three-site DCHM is given by

Global : SO(5){, N SO(5)p o SO(5)%
1 2
O OO em
Gauged : SU(2)Y x U(1)Y SO(5)p SO(4)

24 An example of such a field shift can be found in eq. 1]
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A similar construction but based on the model in eq. (2.125)) is the so called 4D composite
Higgs model (4ADCHM) [119], where the minimal two-site ADCHM is described by

Global : SO(5) 9 SO(5)1 N
1 2
Q O } SO(4) - (2.127)
Gauged : SU2)L, x U(1)y SO(5)1

While both the three-site DCHM as well as the two-site 4ADCHM contain NGBs in an
SO(5)/SO(4) coset and heavy spin one resonances in an adjoint representation of SO(5),
the three-site DCHM in addition contains also spin one resonances in an adjoint representa-
tion of the unbroken SO(4) and therefore has a slightly larger particle content while being

otherwise similar.

2.2.3 The continuum limit and the fifth dimension

The model described in the last section that contains N levels of heavy resonances connected
by sigma model fields intriguingly resembles a model of a discretized extra dimension. That
an extra dimension actually arises from a moose diagram similar to the one in eq. when
taking the continuum limit N — oo was shown in [86]. A latticized extra dimension inspired
by HLS and its continuum limit was also discussed independently and contemporaneously
in [145]. Similar constructions have subsequently been presented in e.g. [143.|146-150].

To see how an extra dimension can be constructed from the model described by the moose
diagram in eq. , the continuum limit N — oo is performed in detail in the following.
To this end, the discrete indices k£ have to be replaced by a continuous variable that will be
called v in the following. The indices k = 0 and k£ = N then can be chosen to correspond
to the coordinates u = ug and v = uy, respectively. The distance between the coordinates
ug and uy may then be defined as L = uy — ug and each index k£ can be associated with a

value u = ug. To summarize, the continuous variable w is related to the discrete indices &k by

L
L =un—up Ay = N up = ug + Auk. (2.128)

Keeping the distance L fixed when performing the limit NV — oo, the distance Au between

adjacent coordinates goes to zero, i.e.
N =00 & Au—0. (2.129)

Before performing the continuum limit, it is convenient to redefine the gauge boson fields as

9k (Ak)p = (Ak)y (2.130)
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such that the action for the Lagrangian from eq. (2.113)) reads

N
Sy :/daz4 {Z'}ftr (D, (z) DM (x Z 1 [Fy (@ )F,g”(x)]}, (2.131)
k=1

k=

where the gauge covariant derivatives are now given by
i Dy Q) = 10, Q) + A (@) Qi) — Qp() Al (). (2.132)

In addition, it is useful to define the fields A%(z) to parametrize the NGBs inside the ()

(in the non-mixing gauge) as

V2 f

A(o) = =%

78 (x) S°. (2.133)

In terms of the A¥(x), the NGB matrices € (z) are then given by
Qp(z) = e 12045 = 1 — j Au AF(z) + O(AW?). (2.134)

Plugging this new parametrization of the {x(x) into the definition of their covariant deriva-
tives, eq. (2.132)), one finds

i D, Qp(2) = AuFy,5(z) + O(Au?), (2.135)
where FJ,5() is defined a@

Af(x) — Ap (@)
Au

Expressing the covariant derivatives of the 2 (z) in terms of Fj,5(x) and factoring out Au,

Fioys (@) = 9, A5 () — — i A (2), AF (). (2.136)

the action reads

N N

U 2
/ {Z A f tr [ Fi5(2) F5 ()| —ZAuélAlugztr [ka(x)pg”(x)}}

k k=0
+ O(Au?).

(2.137)
To finally perform the continuum limit, all objects that depend on an index k£ have to be
replaced by objects that depend on the continuous variable u instead. For the 4D fields A’g(:c)
and Aﬁ(x), it is straightforward to define the 5D fields As(x,u) and A, (x,u) by

As(x,ug) = A’g(m), Az ug) = Aﬁ(aj), (2.138)

koo ak—1

*Note that AL~ (x) zkAﬁ(x)k— Ag2e® Ai“ @© Ak (2)+O(Au), where the difference quotient is treated
AR (z)—AR—1(g 0y ) — 0y —

as (’)(1) since limay—s0 % = limau_o Ay (z,ug) 2i(x,1 k=Au) 8514”(%’“).
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such that one finds F,, (v, uy) = Fj,, (x) and
Fus(z,u) = Alim0 Fipus(v) = 0, As(x,u) — 05 A (2, u) — i[Au(z,u), As(z, u)]. (2.139)
u—>

In addition, continuous versions of the decay constants fi and the gauge couplings g; are

conveniently defined as

flur) =4 % fro  g(ur) = VAugy. (2.140)

Plugging all these definitions into the action and taking the limit Au — 0, one arrives at

1
4.9%(u)

. 4 [ f?(u) 5 v
lim Sy = [ do du tr [Fus(z, u) F*(z,u)] — tr [Fl(x,w) F* (z,u)] ¢,
Au—0 w0 2
(2.141)
This action obviously describes the 5D fields As(x,u) and A, (z,u) in a space-time that is
4D Minkowski space times a fifth dimension interval of length L with boundaries at ug and
up. It is instructive to compare this action to one of a 5D gauge field in a generic space-time

with the fifth dimension being an interval of length L. This actions reads
1 N
Ssp =75 / dzt / du /|G| GMEGNE ¢y [Farn (2, u) Frp(x,u)], (2.142)
95 (%)

where M, N, R, P € {0,1,2,3,5} are the 5D space-time indices, GMN ig the inverse metric
tensor, /|G| is the square root of the determinant of the metric, g5 is a 5D gauge coupling

1

of mass dimension —3 and the 5D field strength tensor is given by

FMN<377 u) = BMAN(ac,u) — 8NAM<1',’U,) — i[AM(x,u), AN(ac,u)}. (2.143)

The line element of a 5D space-time with one time and four space dimensions that has 4D

Poincaré invariance can be expressed as
ds® = a*(u) ny, datde” — b (u) du?, (2.144)

where the infinitesimal displacements in 4D Minkowski space are denoted by dx* and the
one in the fifth dimension by du. The functions a(u) and b(u) determine how distances in 4D
Minkowski space and the extra dimension, respectively, change with the position in the extra
dimension. While b(u) can in principle be absorbed into the extra dimensional coordinate
by a coordinate transformation, the u-dependence of a(u) implies a warped extra dimension.
a(u) is thus also called the warp factor. The metric in eq. with a constant a(u) on
the other hand describes a flat extra dimension. With the above definition of ds?, the inverse
metric GMYN and /|G| read

1 y 1
G = a?(u) s 5/])/[61]’\[ T b2(u) 0533, VIG] = a*(u) b(w) (2.145)
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and thus the action of the 5D gauge field can be expressed as

_ “ a’(u) b(u) v
Ssp = /dx4 /uo du {2g§b(u) tr [Fs(z,u) F* (z,u)] — i tr [F(x,u) F* (x,u()Q]}146)

Comparing this 5D gauge field action to the continuum limit action in eq. (2.141)), one finds

that both are actually identical if one identifies

FPlu)= ==, ¢*u) =7 (2.147)

a(u) = g8 ==, b(u) = . (2.148)

So by taking the continuum limit N — oo for the model described by the moose diagram
in eq. (2.113)), one actually constructs an extra dimension and arrives at a model of a 5D
gauge field in a warped background. The dependence on the index k of the decay constants
fr and the gauge couplings g; in the 4D model is then reflected by the warp factor of the
extra dimensionP_q The Lagrangian and the metric however do not determine the 5D model
completely. Because it is defined on an interval with boundaries, it is also necessary to specify
boundary conditions (BCs) for the 5D fields. For the 4D components of the 5D gauge fields
A, (x,u), the values at the boundaries are given by A, (x,up) = A?L(a:) = (Ag)}(z) P* and
Au(z,uy) = Al (z) = (Ap)%(z) T (cf. eqgs. ,), i.e. they are determined by the
gauge fields of the 4D moose model on the k = 0 and & = N sites. For k = 0, there are only
gauge fields in the adjoint representation of £ C G and those in the G/FE coset are absent.
For k = N only gauge fields in the adjoint representation of H C G’ are present. From the
5D perspective, the 4D components of the 5D gauge fields in the G/E coset vanish on the
boundary at u = ug and those associated to the broken generators X¢ are set to zero on the
boundary at v = un. The bulk gauge symmetry G is thus reduced to F and H at the v = ug

and © = un boundaries, respectively. Considering for simplicity the case with no elementary

26 Actually only the ratio 5—2 determines the warp factor. Two models based on the moose diagram from

eq. (2.113) that have different dependences of f and g on k thus lead to the same 5D theory if the ratio g—z
has the same dependence on k in both models.
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gauge fields, i.e. E = (), the BCs for the 4D components of the 5D gauge fields thus readlﬂ

A% (x,ug) T =0, O5AY (x,u) T =0 = A%x,u)T (—+),
(%, u0) AL (2, 0) T, 0T D
AZ(x,uo) X*=0, AZ(J,‘,UN) X*=0 = AZ($,u) X (——).

The fifth components of the 5D gauge fields must have opposite boundary conditions com-
pared to the 4D components (see e.g. [69,[151]). This then yields
05 A5 (z,u) T“‘u_u =0, Ag(z,un) T =0 = Ag(x,u) T (+-),
=0 (2.150)
05 AL (x,u) X“‘ .= 0, 05 A% (x,u) X“‘ =0 = Ad(x,u) X (+4).

U=u U=un

When performing a Kaluza-Klein (KK) decomposition of the 5D fields, one finds that only
the fields having (4+4) boundary conditions contain massless zero modes. As expected from
the discussion in section [2.2.1} in the case E = () there are thus no massless zero modes
for the 4D components of the 5D gauge bosons. The fifth components associated with the
broken generators on the other hand contain massless zero modes which can be identified
with the G/H NGBs. In this respect, it is worth noting how the NGB matrix 2(x) arises in
the 5D theory. In the 4D theory, Q(z) is given by the product of all N NGB matrices Q(x).
Using eq. to express the Qi () by A¥(z) and taking the continuum limit, Q(z) can
be written in terms of the fifth component of the 5D gauge field As(x,u):

N
lim Q(z) = lim e As(@uR) AU — P ey (—i /

u

N—oo N—o0

" du A5(g;,u)) , (2.151)

0

i.e. it can be identified with the Wilson line between the two boundaries of the extra dimen-
sion. The path ordered exponential in the expression for the Wilson line can be evaluated by
e.g. decomposing As(z, u) into KK modes or by using an explicit parametrization in a specific
gauge. Doing the latter in the non-mixing gauge where As(x,u) is given by (cf. eq. )

As(mu) = ——F ra (g0 (2.152)

V2 f2(u)

2" In a theory on an interval with coordinate u that describes a massless field ¢ and contains no explicit
boundary terms, for the variation of the action to vanish on the boundary, possible BCs for ¢ are (see
e.g. [1511[152) ):

e Neumann BC 0y@|boundary = 0, denoted by (+).

e Dirichlet BC ¢|boundary = 0, denoted by (—).
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the path ordering is trivial and one find{™|

P exp <—i /UNdu As(z u)> = exp <z S o (z) S* /UNdu 1> — o F (@) 5 (2.154)
uo ’ V2 ! w W) L
which is of course again nothing but Q(z) as defined in eq. .

To summarize this section, one observes that a non-linear sigma model describing NGBs
in a G/H coset that is supplemented by an infinite tower of heavy gauge bosons in the adjoint
representation of GG is actually equivalent to a 5D gauge field in the adjoint representation
of G with boundary conditions that encode the G — H spontaneous symmetry breaking.
From the 5D point of view, both the NGBs as well as the heavy spin one resonances are part
of a single 5D gauge field. This is the notion of gauge-Higgs unification mentioned in the
beginning of chapter

The most important phenomenological effects of theories with an extra dimension or an
infinite tower of resonances are at low energies already captured by the lightest resonances. In
an HLS inspired extra-dimensional model for QCD, it was actually shown that the dependence
on the specific geometry of the extra dimension only plays a minor role and that using a 4D
model with only O(3) levels of resonances leads to an equivalently good fit to low-energy
QCD data as a full 5D model [150]. For a generic effective description of a strongly coupled
confining theory, it is not even guaranteed that the naive 5D model discussed above is a good
approximation. Like the non-linear sigma model, also the 5D theories are not renormalizable
and only valid below some cutoff. If the spectrum of heavy resonances only includes a
few levels below the cutoff, taking the limit N — oo might not be reasonable (cf. related
discussions in [119}|146}/148,150]). It is thus well motivated for a phenomenological analysis
of the effects at low energies to consider a 4D moose-like model with only the lightest levels
of resonances included. Nevertheless, especially in the context of CHMs, the possibility to
relate the 4D and the 5D models has proved to be a fruitful tool for model building (cf.
e.g. |103}/118,119]).

2.3 Fermions

Including massless gauge bosons as well as heavy spin one resonances into a non-linear sigma

model describing NGBs is in a way straightforward. To add the former, one just has to gauge

28 In the last step of this derivation, the continuum version of eq. (2.119), namely

2 _ /UNdu L (2.153)
f2 g f2 (U) .
is used. The factor of 2 in this relation is due to the normalization of f(u) that was chosen to simplify

expressions containing the warp factor.
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a subgroup of the global G symmetry and the latter are introduced via the HLS prescription.
Apart from the number of resonance levels and the coupling and decays constants, there is
not much model dependence in the HLS construction. How well the NGBs and the vector
resonances fit together in this framework is seen from their unification into a single 5D gauge
field in the continuum limit discussed in the previous section.

The story for fermions is quite different. It is of course possible to employ the CCWZ for-
malism to include fermions into a model with a global G symmetry spontaneously broken to
an H subgroup. There is however a peculiarity in CHMs where the coupling of SM fermions
to the composite sector is responsible for generating their masses as well as their interaction
with the physical Higgs boson. The original mechanism for fermion mass generation from a
composite sector was described in the context of (extended) technicoloﬂ [27.35,,36,/153]. It is
due to four-fermion operators connecting two chiral SM fermions with two fermions charged
under technicolor, the technifermions. The condensation of the latter then yields a mass term
for the SM fermions. The same mechanism is employed in early CHMs [38-43]. The four-
fermion operators themselves have to be due to some form of extended technicolor (ETC)
model that produces them at a scale Agrc quite above the confinement scale of the techni-
fermions Apc. These constructions have however a critical drawback: extended technicolor
interactions that are responsible for four-fermion operators of this kind also yield experimen-
tally unacceptable large contributions to flavor-changing neutral currents (FCNCs) [36,37].
One could think about circumventing this problem by raising the Agrc scale. But this of
course also affects the mass terms of the SM fermions. Following [68], such a mass term in

general reads
AMAgTC)

LD
d—1
Agro

fLOs fr, (2.155)

where fr, and fr are left-handed and right-handed versions of a SM fermion, A(Agrc) is its
Yukawa coupling at the scale Agrc, Og is a scalar operator composed of technicolor charged
fields and d = dim[Og] is the scaling dimension of the operator Og. If Og is given by a

technifermion W bilinear, i.e. Og = W, the mass term corresponds just to the four-fermion

29There are various names for a strongly coupled gauge group external to the SM and the particles charged
under it. In the preprint of [27], the name technicolor was used for the group and techniquarks for the particles,
while in the published version the names were changed to heavy-color and heavy-color quarks. In [153|, again
technicolor and techniquarks was used. [36] uses hypercolor and hyperfermions and |39 uses ultracolor and
ultrafermions. A larger gauge group in which the strongly coupled gauge group is embedded and under which
also the SM fermions are charged is called eztended technicolor in [153], sideways interaction in [36] and
extended ultracolor in |39]. While historically technicolor was used for models where a condensate directly
breaks EW symmetry and ultracolor was used in the context of composite Higgs models, in this thesis a strong
interaction external to the SM is in general called technicolor and the particles charged under it technifermions
(and techniscalars, cf. section .
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operator discussed above and its canonical dimension is d = 3. If the T'C theory above A is
asymptotically free and the running of the coupling between Arc and Agpc can be neglected,

the mass term at Apc is given by

MMA _
Lo (AdT?)fL Os fr, (2.156)

TC

such that the Yukawa coupling at the ETC scale can be related to the one at the scale where

the SM fermion mass is generated by

Aprc !
AMAgTc) = A(Arc) ( Arc > : (2.157)

From this, it follows that raising the scale Agrc by some factor, say 10, to be save from FCNCs
leads to an increase of the Yukawa coupling at Aprc by a factor 10971, Using d = 3, this
factor 100 would be problematic especially for the large top quark Yukawa coupling. It could
easily make A(Agrc) non-perturbative and the whole construction would be inconsistent.
One might think about giving the operator Og a large anomalous dimension v such that
d = 3 — v is close to 1. A scaling dimension of Og close to 1 would however imply a
scaling dimension of O% close to 2 [154] and values below 4 for the latter reintroduce the
naturalness problem. While there might still be a way so solve these problems (cf. e.g. [155]
and references therein), there is also another issue: the whole flavor structure of the SM and
the mass hierarchies of SM fermions have to be generated in the ETC theory by producing
different coefficients A for each of the SM fermions. Again, there might be some way to solve
this, e.g. by introducing several Higgs doublets that couple differently to different quarks or
leptons [39]. However, it seems that a solution to only some of the problems already requires

an arbitrarily complicated construction.

2.3.1 Fermion partial compositeness

In light of all the difficulties arising from the above discussed mechanism for SM fermion
mass generation, a different mechanism was proposed in [113]. Instead of coupling a bilinear
of left- and right-handed versions of a SM fermion to a single scalar composite operator Og,
the idea is to couple each chirality independently to fermionic composite operators O, and

Opy,. Again following [68], such a coupling reads

AL(A - Ar(A _
L5 L(gLiiT/g)fL Or, + PiﬁR—iT/;’)fR OFp, (2.158)
Agre Agre

where now f1, and fgr each have separate coupling constants A, (Agrc) and Ar(Agrc) at the

scale Agrc. Using the same arguments as before, the couplings at the ETC scale can be
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related to those at Apc by

ALr(AgTC) ~ AL rR(ATC) < (2.159)

If now the scaling dimensions d, = dim[OF, ] and dr = dim[Of,| are close to 5/2, Agrc
could be raised without suppressing the couplings and one could be save from the dangerous
FCNCs. It is especially encouraging that contrary to a scaling dimension of 1 for a scalar
operator, a scaling dimension of 5/2 for a fermionic operator does not pose any general
problem@

Assuming that the fermionic operators correspond to heavy composite fermions F'(z) and
F(z), one can use Op, = F(x) AdTLC_3/2 and Op, = F(z) AdTRC_3/2. Defining the abbreviations

Ar = Ap(Arc) - Arc, Ar = Ag(ATc) - Arc, (2.160)

the linear operators from eq. and the mass terms of the composite fermions can be
written as ~ - _
LD —mp Fr(z) Fr(z) — mg Fr(z) Fr(z)
+ Ay f1(2) Fr(x) + Ag fr(z) FL(2) (2.161)
+ h.c.,
where the mass my, of the F(z) that couples to fz(z) and the mass mp of the F(x) that

couples to fr(x) are in general different from each other. F'(z) and F (x) are massive Dirac
fermions, i.e. they each contain both left-handed and right-handed fields. Since this implies
that their left- and right-handed fields couple to gauge bosons in the same way, they always
couple via a vector-current and are therefore also called vector-like fermions. However, only
Fr(z) and Fy(z) couple to the elementary chiral fields fr(z) and fz(z), respectively. The
linear couplings are clearly mass mixing terms between the composite and elementary fields.
Due to these mixing terms, the fields above are not the mass eigenstates. Rotating them to
the mass basis by performing a biunitary@ transformation yields the mass eigenstate fields

fr(@), fr(x), F'(x) and F'(z) that are given in terms of the elementary and composite fields

as
fr.(z) = cos O, fr(z) +sinfpFp(x), fr(z) = cosOr fr(z) + sin GRﬁR(x),
F}(z) = cos Oy, Fi(z) — sin 6, f1.(2), Fh(z) = cosOr Fr(z) —sinfgfr(z), (2.162)
Frp(z) = Fr(z), Fi(z) = Fp(),

30The simplest version of fermionic composite operator might be due to a bound state of three techni-
fermions, similar to a baryon in QCD. The corresponding operator has a canonical dimension of 9/2 and thus
a large anomalous dimension would be needed to get a scaling dimension of 5/2. Such a large anomalous

dimension seems to be unlikely in the cases explored so far [156{157]. An alternative is presented in section
31Tn the one flavor case considered here, Ar, and Agr can always be chosen to be real. The transformation

to the mass basis can thus be done using orthogonal matrices.
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where the mixing angles 0y, and 0 are defined by

ML R . AL R /
cos QL,R = —, sin GL,R = s m/L’R = m%’R + A%,R’ (2.163)

/
mrr Mmr R

and m/; and m/, are the masses of F'(x) and F'(z), respectively. The fields f1(z) and fp(x),
which should now be identified with the actual SM fields, are massless. If the mixing param-
eters Ar r are small compared to the masses mz, g, these fields are mainly composed of the
elementary fields and get a small admixture of the composite fields. They are thus partially
composite (cf. section where the same concept is discussed for spin one particle@.
Since sinfy, g controls the amount of compositeness of f’L7 g(x), it is also called the degree of
compositeness of the SM field and will be abbreviated in the following by sy r = sinfr, g.
While it is not a common name, cosf g is a measure of the degree of elementarity of the
SM field and will be abbreviated by cj, r = cos 0, gr.

But how do the partially composite fermions f}(z) and fg(x) get their mass and their
coupling to a composite Higgs? Since they now contain parts of the composite fermions, it

is actually enough to couple F(z) and F(z) to the composite Higgs. This corresponds to
adding to the Lagrangian in eq. (2.161) a term

LD —Yy Fr(z) H(z) Fp(z), (2.164)

where Y3, is a Yukawa coupling in the composite sector and H(x) is the composite Higgﬁ
After going to the mass basi&{fl, one finds a term coupling the Higgs to f; (x) and fp(z):

£5 ~Yiusp sp Fo(e) Hiw) fa(e) =~V Fr(a) H(z) fale), (2.165)
where the SM Yukawa coupling YfSM of f/(x) is identified as
VM =Yy s sk (2.166)

When the Higgs assumes its VEV, this then yields a mass term for the SM fermion. Some
important features of the partial compositeness construction can be read off directly from

this term:

32 Historically, the term “partially composite” is attributed to [113], where it appears in the context of
fermion masses in technicolor theories. It is, however, the same concept that is already observed in the SM,
where the photon is in principle also partially composite due to its mixing with the p meson.

33For simplicity, the Higgs is treated here as a singlet. The generalization to a NGB Higgs is presented in
section

34In this section, if not stated otherwise, “mass basis” refers to the mass basis before EWSB. When the

Higgs assumes its VEV, the actual mass basis has to be determined by taking the Yukawa coupling into
account. However, the structure of the mass matrix including the Yukawa coupling suggests to perform the
necessary biunitary transformation only numerically. Analytical formulas are therefore usually restricted to
the mass basis before EWSB.
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e The Yukawa couplings of different SM fermions depend on their degrees of composite-
ness and therefore also on the masses of the composite fermions they mix with as well

as the strength of the mixing.

e Since chiral SM fermions transforming under different representations of the SM gauge
group have to mix with different composite fermions, partial compositeness might quite

naturally account for mass hierarchies and a non-trivial flavor structure of SM fermions.

e While for most of the SM fermions the degrees of compositeness can be relatively small,

the large top quark Yukawa coupling requires a sizable degree of compositeness.

Given the advantages of partial compositeness compared to the traditional mechanism for
fermion mass generation in technicolor theories and especially its interesting properties con-
cerning the possibility to yield a non-trivial flavor structure, it has become a key ingredient
of modern CHMs.

2.3.2 The fermion moose diagram

It is clear that for employing fermion partial compositeness in a CHM, composite fermions
are unavoidable. But how do they fit into the picture of the N-site moose diagram that is
used in section to describe both NGBs as well as massless and heavy vector bosons?
Interestingly, the connection can be easily made by considering the continuum limit, i.e. the
5D model. Fermions in 5D are however necessarily Dirac fermions [158], so one might ask
how it is possible to get the chiral SM fermions from a fermionic 5D bulk field. Considering
a 5D theory on an interval, this can actually be done by choosing appropriate boundary
conditions such that the 4D spectrum from the KK decomposition of a 5D fermion bulk
field contains only a left-handed or a right-handed massless zero mode (see [111}/112,|159]).
In addition, such a KK decomposition yields a tower of heavy vector-like fermions. This is
already very similar to the case discussed above: for each chirality of SM fermions, there
are heavy composite fermions with the same quantum numbers. Actually, the 5D model
even automatically contains the partial compositeness mechanism for fermions. This is easily
seen by deriving a 4D model from a 5D action using dimensional deconstruction, i.e. by
discretizing the extra dimension. This just corresponds to inverting the continuum limit
discussed in section but now with additional fermion fields in the extra-dimensional
bulk. Since a 5D fermion field only yields a single chiral zero mode, each SM field requires
two 5D fermions W(z,u) and W(x,u), one for each chirality. The boundary conditions for
U(z,u) and W(z,u) are then chosen such that W(z,u) contains a left-handed and W(x,w)
contains a right-handed zero mode. To satisfy the bulk gauge symmetry, both ¥(z,u) and
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U(z,u) transform under a representation of the full G group. Unless stated otherwise, the

fundamental representation is assumed in the following.

The actual discretization of the 5D action is similar to the spin one case. In this thesis,
the prescription from [119] is usedEl, which corresponds to the spin one moose diagram in
eq. . The fields ¥ (z,u) and ¥(z,u) are split into 4D fields at N sites, parametrized
by an index k. The different sites are connected by the NGB matrices Q(z) that act as
link-fields and connect the fermions at the site k — 1 with those at the site k. The boundary
conditions are chosen such that ¥(z,up) = 99 (z) = f(z) and U(z,ug) = {ff%(l‘) = fr(x).
So the fields at site £ = 0 are identified with the chiral elementary fields. This corresponds
to the spin one case where the elementary gauge bosons are introduced by gauging the E
subgroup of the global G symmetry on site k& = 0, which also corresponds to a boundary
condition in the 5D case (cf. eq. (2.149)). The fields f7(z) and fr(z) only transform under
a representation of E. So again, like in the spin one case, the elementary fields transform
under a smaller group than the composite ones. Nevertheless, one can keep the Lagrangian
formally G invariant by embedding fr(z) and fg(z) into incomplete multiplets ¥9 () and
\T/%(:n) that formally transform under the full G group. On the second boundary, at site
k = N, a Yukawa coupling term is added that connects ¥(z,u) with ¥(z,u). In terms of a

moose diagram, this can be written as

Global : G 0 G1 0 G2 GNfl 0
1 2 N
O—0) o N e |
N _/ N |
Gauged : E G Go GnNn_1
N—-1 N-1
| woowl v u u v
Fermions : Yeomp
o~ I I I I TFN-1 FN-1
[ 2 S S vt gy

(2.167)
where it is indicated that each of the composite fermions is given in terms of a Dirac fermion
containing left- and right-handed fields, while on site £k = 0 only one chirality for each of the
U0(z) and UO(z) is present. The Yukawa coupling that connects U (x) and \Tlg_l(x) is

35 Other constructions for including fermions in a model with NGBs and spin one resonances are described
e.g. in [118|[T20,[160].
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shown on the last site. The corresponding fermion Lagrangian can then be written as

Lo = 09 (2) i WY (2) + W) i) Wh(a)
N-1 B N
+3° {\I/k(x) (up - m‘g) Uk () + Tk () (up - m%) Tk ()

k=1 (2.168)

+ AF T () 00 0) (o) + AR T () ) T 0 +h.c.}

~ Yeomp UF 71 (2) Qn () do ¢ U (2) TN (z) — my TN 1 (z) U (z) + hec.

where the first line contains the kinetic terms of the massless chiral fields at site k = 0, the
second line contains the kinetic terms and masses of the N — 1 composite fermions, the fourth
line contains mixing terms with mixing constants A’z and A% and the last line contains
the composite sector Yukawa coupling and a possible mass mixing between \I/g _1(1:) and
\f/g ~!(x). The Yukawa coupling is written in terms of an explicit vacuum state ¢q (see [119)
and cf. appendix . The link-fields show up in the mixing terms as well as in the Yukawa

coupling. The covariant derivatives contained in the kinetic terms are given by
iD, W(z) = (z B, + gn A’,j(x)) Uk (), (2.169)

i.e. each fermion is only coupled to the gauge bosons at the same site.

That the above Lagrangian, eq. , is indeed a generalization of the mass, mixing and
Yukawa terms in egs. and that are used in the previous section to introduce
the concept of fermion partial compositeness is best shown by considering the case with one

level of composite fermions, i.e. N = 2. The moose diagram is then given by

Global : G 0 Gy 0
1 2
O a e
\_/ |
Gauged : E G1 (2.170)
, §L Vp ¥
Fermions : Yeomp
93 Uy, Ug

where for clarity \IJOL and \Tl% are replaced by &7, and £i to emphasize that these are incomplete
multiplets into which the fields f; and fr are embedded. Furthermore, in the N = 2 case
the indices on the composite fermions (and in the following also those on their masses and
on the mixing coefficients) are dropped. For a comparison with the previous section, it is

useful to employ a version of the holographic gauge where Q;(x) = 1 and Qq(x) = Q(x),
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i.e. the complete dependence on the G/H NGBs is contained in Qa(x) (cf. section [2.2.2).
Omitting the kinetic terms and setting the mass mixing on the last site to zero, i.e. my — 0,

the corresponding Lagrangian then reads

LS —myUp(z) Up(z) — mp Up(z) Ua(z)
+ ALEL(x) UR(z) + Arér(z) V()
— Yeomp U L(2) Q) ¢o &), QF () U ()
+ h.c.

(2.171)

Due to the incomplete multiplets &7 and &g, the mixing terms actually only couple the
embedded fr, and fr to the corresponding components Fr and F T, of U and v 1. The mixing
terms and the masses of the components F' and F are therefore equivalent to the terms in
the Lagrangian in eq. . The last line on the other hand is a Yukawa coupling term
containing the NGBs and can be regarded as a generalization of eq. . Employing the
definition of the mass eigenstates f; and f, eq. (2.162)), and embedding them in incomplete
multiplets £ and ¢}, one finds a Yukawa term that couples them to the NGBs:

LD ~Yeomp s, 577 (x) Q) do 6 O () Ep(x), (2.172)

where the degrees of compositeness sy r = sinflr r are defined in eq. . The partial
composite mechanism is thus found to arise directly from a 5D fermion field with appropriate
boundary conditions. Using the moose description derived from discretizing the extra dimen-
sion, fermions can readily be included in the models discussed in section [2.2] Therefore, the
effective theory of elementary (i.e. massless gauge fields and massless chiral fermions) and
composite states (i.e. G/H NGBs, heavy spin one resonances and vector-like fermions) can
be described by a framework that features partial compositeness for both, the spin one and

the fermionic fields.

2.3.3 Flavor

One of the most interesting features of fermion partial compositeness is the possibility to
endow the SM fermions with a non-trivial flavor structure. To make use of this property, the
single flavor case used for simplicity in the previous sections has to be generalized. In the
SM, the whole flavor structure is encoded in the 3 x 3 Yukawa matrices (Y oM)¥, (Y M)¥
and (YSM)4. Since the SM does not contain flavor mixing in the lepton sector and (Y;>M)%

can be made diagonalﬂ the following discussion will only consider the quark sector, i.e. a

36Tt is of course known that there is huge flavor mixing in the neutrino sector that is however not described
by the SM (with only left-handed neutrinos).
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non-trivial structure of (YoM)% and (YM)%. To generalize the construction in the previous
section from the one flavor case to six quark flavors, one has to introduce two sets of fields
with different quantum numbers: the up-type and the down-type quarks. Furthermore, each
of them consists of three generations, which is accounted for by promoting the fields to 3-
vectors and the masses, mixings and Yukawa couplings to 3 x 3 matrices in generation, or
flavor space. Considering for simplicity again the case with one level of composite fermions,

the moose diagram from the previous section is extended to

Global : G 0 G1 O
1 2
2 \
O _/ |
Gauged : E G
&ur [UR)] U,r, (U] Uur |[Ur] > . (2.173)
. guL [QL] \I/uR [Qif%] \IjuL [Q%]
Fermions :
€ar [qL] Vap Q%] Par Q] >
€ar [dR] War [Dr] War [Dr]

where brackets behind the ¢ fields show the elementary fields that are embedded into them,
while brackets behind the ¥ and ¥ fields show their components that mix with the elementary
fields. Following [105/119], the elementary left-handed quark doublet g7, is embedded into
both &,7, and &y, such that it can couple to the two composite fermions ¥,, and ¥, of which
the former has a Yukawa coupling to the composite partner of the elementary right-handed
up-type quarks and the latter to the composite partner of the elementary right-handed down-
type quarks. While it is possible to reduce the fermion field content by employing only one
composite partner for the quark doublet (cf. e.g. [L61])F"] this would not allow to implement

all different kinds of flavor symmetries discussed in the following (see [162]).

3"The field content in the composite sector can also be reduced by coupling elementary left-handed and

right-handed quarks to different components of a single composite quark representation [118].
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To investigate the quark flavor structure, it is convenient to make all flavor indices explicit.

The fermion Lagrangian corresponding to the moose diagram above then reads

L5 —mily, Wy () W () — miy Wi () W ()
+ AV 8 () Ul p(2) + AT & p(x) W ()
— YW (2) Qz) do ¢ QF (2) T () (2.174)
+ (u — d)
+ h.c.

where 7, j are the flavor indices. The composite-elementary mixings, the composite fermion
masses, and the composite Yukawa couplings are in general complex matrices, but for the
following discussion, at least the composite fermion masses are assumed to be flavor universal,
ie.md = madi, o€ {uL,uR,dL,dR}. Nevertheless, there are still six complex matrices
AgL, Agé, V& , AZ]'L, Aij and Ydij in the model. Any complex matrix M can be decomposed
by a singular value decomposition (SVD) into two unitary matrices U, V and a diagonal

matrix D:

M=UDVT. (2.175)

Field redefinitions may be used to absorb some of the unitary matrices in the decomposition
of the six complex mixing and Yukawa matrices, such that their full complex structure is not
physical. To investigate this further, it is useful to consider the flavor symmetries of the above
Lagrangian in the absence of the mixings and Yukawa couplings. In this case, each of the
elementary and composite fields transforms under its own U(3) flavor symmetry. Note that
the two U(3) symmetries of the chiral components of each composite field are broken to their
diagonal subgroup by the flavor universal mass terms, and that the two U(3) symmetries
of &1 and &4 are broken to their diagonal subgroup by embedding ¢; in both &,; and
£4r.. The whole Lagrangian then has a global U(3)” flavor symmetryiﬁ The Lagrangian
can be kept formally invariant under this global symmetry in the presence of the composite-
elementary mixings and Yukawa couplings if they are treated as spurions, i.e. objects that
formally transform under the global symmetries and break them only when assuming their
background values. To discuss the transformation properties of the six spurions under the
seven U(3) factors of the global flavor symmetry group, it is convenient to once more employ

the language of moose diagramﬂ The flavor symmetry structure in the presence of the

BUB) =UB)ug x UB)u x UB)qu x U(3)g, X UB)ga x UB)p x U(3)ay.
39 Recall that each group is represented by a circle, objects that transform under the fundamental rep-
resentation of this group by an arrow pointing away from the circle and objects transforming under the

anti-fundamental representation by an arrow pointing into the direction of the circle.
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spurions can then be written ag™)]

Ay Y., A, A Y, A
@ TR I N U Q
W, W, W, W, \_/ . (2.176)

so e.g. Y, transforms as a (1,3,3,1,1,1,1) under the U(3)". While the flavor symmetries
are broken by the spurion background values, the symmetries can still be used to transform
the fields in such a way that they absorb some of the unitary matrices that arise from the
SVD of the spurion background values. Each of the U(3) symmetries can be used to rotate
away one of the unitary matrices, or equivalently, each of the fields associated to the U(3)
symmetries can absorb one of these unitary matrices. The six spurion background values
are decomposed into six diagonal matrices and 12 unitary matrices of which seven can be
rotated away. This leaves six diagonal and five unitary physical matrices. This is much more
than what is present in the SM model, where the full quark flavor structure is due to the two
Yukawa matrices YUSM and YdSM . When the SM Yukawa matrices are treated as spurions,
the flavor symmetry in the quark sector is U(3)? and the SM quark flavor moose diagram is

therefore much simpler than the one of the above partial compositeness model. It is given by

ysM ySM
O——0O—0 . @17

U(S)UR U(3)QL U(g)dR

Analogous to the discussion above, the SM Yukawa matrices can be decomposed into in total
two diagonal and four unitary matrices of which three can be rotated away by the flavor
symmetries. This leaves two diagonal matrices that yield the hierarchical quark masses and
one unitary matrix that is nothing but the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
Experimental data puts stringent constraints on flavor violation that goes beyond what is
predicted by the SM. On the other hand, by assuming that the SM Yukawas are the only
source of flavor violation, it can be shown that AF = 1 and AF = 2 flavor observables are
sufficiently protected even in the presence of NP [163}[164]. This assumption is also known as
Minimal Flavor Violation (MFV) [164]. Applied to a generic NP model, MFV requires the
flavor structure to be similar to the one in the SM in the sense that two spurions transforming
under a U(3)? flavor symmetry like in eq. are the only source of flavor violation.

The above partial composite model is therefore far from being MFV and experimentally

40 The flavor groups are defined such that the fields uwr, U, Q%, qr, Q%, D, dr transform under the
fundamental representation of their associated U(3) factor. The transformation properties of the spurions can
then be read off from the Lagrangian in eq. (2.174]).
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unacceptable large flavor violation is expected. Several paradigms that reduce the amount

of flavor violating sources are discussed in the following.

Anarchy

It is well known from models with a warped extra dimension that the correct quark masses
and CKM elements can arise from a 5D Yukawa coupling without any structure or hierarchy
(see e.g. [112,]165]), which is therefore called anarchic. The hierarchies in the SM Yukawa
matrices are then due to the overlap of the profile functions of left- and right-handed fermion
zero modes and the Higgs. Translated to the 4D picture with one level of composite fermions,
the overlap of the profile functions corresponds to the product of the degrees of compositeness
of left- and right-handed SM fermions, and the 5D Yukawa coupling can be identified with a
composite Yukawa coupling. The central assumptions in 4D anarchic models are thus that
all composite-elementary mixings A,z yr.dr,ar are diagonal, hierarchical matrices, while all
entries of the composite Yukawa couplings Y, 4 are of O(1). It has however been shown
that this structure leads to a “flavor problem”, mainly due to tensions with experimental
bounds from CP violation in kaon mixing that generically require implausibly high masses
of composite resonances, or an undesired amount of tuning [166-168]. The reason for this
may be traced back to the fact that while containing fewer sources of flavor violation than
the most general model, the anarchic model still contains more than what would be required
to fulfill the MFV assumption. In contrast to two spurions that yield one unitary and two
diagonal matrices, it contains six spurions that yield at least four diagonal and two unitary

matrices.

MFYV implementations

To ameliorate the flavor problem found in anarchic models, implementations of MFV that
endow the composite sector with appropriate flavor symmetries have been proposed in [162,
169,170]. Investigating the moose diagram of the most general model, eq. (2.176), one readily

finds what is sufficient to construct an MFV model:

e At least one of the spurions A, Ayg, or Y, has to be non-trivial to yield the up-type

quark masses.

e At least one of the spurions Ay, Aggr, or Yy has to be non-trivial to yield the down-type

quark masses.

e All but two spurions in total have to be flavor-universal to fulfill the MFV assumption.
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The above criteria allow for in general nine different cases. An additional requirement that
is not necessary for MF'V but seems reasonable is that the complete composite sector should
be flavor universal. This then forces Y, and Y, to be proportional to the unit matrix and
reduces the possible cases to four. With this assumption, the complete flavor structure has to
stem from the composite-elementary mixings and is in this sense external to the composite
sector. Assuming flavor universal Y, and Y; and not treating them as spurions anymore
breaks the U(3)y x U(3)qgu and the U(3)ga x U(3)p to their diagonal subgroups U(3)y 4+«
and U(3)ga, p. The global flavor symmetry is thus reduced to U(3)°. Among the four
MFYV cases that fulfill this assumption, there are two that are symmetric in the treatment of

up-type and down-type quarks:

e Left-compositeness (LC): In this case, also the left-handed composite-elementary
mixings are assumed to be flavor universal. This breaks the U(3)yygw x U(3) x
U(3)gap to its diagonal subgroup U(3) ;4 guq, +0d+p and the elementary left-handed
quark doublet transforms under the same U(3) symmetry as the whole composite sector.
Employing the moose diagram notation, the reduction of the generic model to the LC
model by requiring the composite sector and the left-handed composite-elementary

mixings to be flavor universal can be depicted as

A, w A, A A
O o~ T LmdLmYddeO
(——O———— 00—
UBe UG UBo  UBw  UBge  UBp  UBy

U(3)up U(3)U+Q“+qL+Qd+D U(3)dp

(2.178)
It is of course no coincidence that the flavor moose diagram of the LC model resembles
the one of the SM, eq. . Actually, comparing both, AL r can be identified with
the SM up-type Yukawa and AL r With the SM down-type Yukawa, up to flavor universal
factors stemming from the composite Yukawas and left-handed composite-elementary
mixings. While being MFV, the LC model requires the first two generations of left-
handed up-type and down-type quarks to have the same degree of compositeness as
the left-handed top quark. It therefore suffers from very strong constraints due to

electroweak precision tests and CKM unitarity [162,/171].
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e Right-compositeness (RC): In this case, in addition to the composite sector, the
right-handed composite-elementary mixings are assumed to be flavor universal. This
breaks the U(3)yu, X U(3)y+qu and the U(3)garp x U(3)4, to their diagonal sub-
groups U(3)yp+v+qQu and U(3)gdtpiqa,- The elementary right-handed up-type quarks
transform under the same U(3) symmetry as the composite up-type quarks, while the
elementary right-handed down-type quarks transform under the same U(3) symmetry

as the composite down-type quarks. In a diagrammatic way, this case is represented by

OO
N
UBlur  UBy  UB)qe

Y, Agr, Y, Ayr

B M M Q
\_/ \_/ \_/ \_/
UB)y,  UB)ge  UB)Dp UG,

AuROC]I Y, x1 Y;x1 AdROC]l

|
O—= 0O

UB)uptu+qu U(3)q, U(3)gasDtdy

(2.179)
Comparing the flavor moose diagram of the RC model to the SM, one can identify
Ay, with the SM up-type Yukawa and Aj4, with the SM down-type Yukawa, again
up to flavor-universal factors. RC is thus obviously only possible if the elementary
quark doublet mixes with the two different composite fields Q% and Q%. An important
difference to the LC model is that not all composite fields transform under the same
U(3) symmetry. In RC models, the composite up-type and down-type quarks transform
under two separate U(3) symmetries. The bounds are weaker than in the LC model,
but RC is still considerably constrained, e.g. by dijet angular distributions [162}/171],

because again the compositeness of light quarks is linked to the one of the top quark.

Some of the other possibilities to realize MF'V apart from LC and RC are discussed in [162,
172]. The conclusion there is, however, that among the MFV models, RC is the one with the

weakest experimental bounds.

U(2)3 flavor symmetry

Implementing the MFV assumption into models of partial compositeness mainly solves the

flavor problems of the anarchic models. There are however two interrelated caveats:

e The flavor universal composite-elementary mixings connect the degrees of composite-

ness of light quarks with those of the third generation, especially the one of the top
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quark. The latter is required to be large to reproduce the top mass, while large values
for the former lead to tensions with CKM unitarity and measurements of dijet angular

distributions.

e Due to the third generation and especially the large top quark Yukawa coupling, the
breaking of the global U(3)? symmetry by the non-trivial composite-elementary mixings

is not weak, i.e. U(3)? is not a good approximate symmetry.

This suggests to treat the first two generations differently than the third one. It has therefore
been proposed in [173/174] to depart from the MFV assumption and to consider instead of
a U(3)? symmetry a U(2)? = U(2)y, x U(2)y, x U(2)4, under which the first two gener-
ation quark fields transform as doublets, whereas the third generation quark fields trans-
form as singlets. While the full decomposition of the U(3)? spurions Y, = (3,3,1) and
YoM = (1,3,3) in terms of U(2)? representations would yield many different spurion that
can break U(2)3, a minimal set that is sufficient to reproduce the quark masses and CKM

elements, and at the same time allows for a weak breaking of U(2)? consists of [173}[174]
yEM = (27271)7 y&SM = (17272)7 VSM = (17271) (2]‘80)

By embedding the U(2)? spurions into the U(3)? spurions Y,”™ and V7™ the above discussed
MFV LC and RC models can readily be turned into U(2)? LC and RC models. Writing Y7
and Y?M as matrices, the embedding reads [171]

S i pu VS S i S
yIM au It byt VI R e aa V't bac'® VI : (2.181)
0 Cu 0 cd

where ay g, byd, cuq and ¢, 4 are real parameters. So VSM i embedded into the (1,2,1)
component of both V2™ and Y7, and their (2,1,1) and (1, 1, 2) components are set to zero
(cf. footnote . The U(2)? models are phenomenologically very interesting in the context
of fermion partial compositeness. On the one hand they suppress large flavor violating effects
and can ameliorate the flavor problem of anarchic models, and on the other hand they allow
for independent third generation composite-elementary mixings and thus reduce the tensions
found in MFV models.

2.4 Electroweak symmetry breaking

The main reason for considering CHMs is of course to replace the SM Higgs sector as the
source of EWSB. So after the discussion of the particle content of CHMs in the previous sec-

tions, this section is dedicated to the mechanism for breaking the electroweak symmetry. A

*(3,8,1) » (2,2,1) + (1,2,1) + (2,1,1) + (1,1,1), (1,3,3) — (1,2,2) + (1,2,1) + (1,1,2) + (1,1,1)
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virtue of models featuring a strong interaction is that this breaking can be triggered dynam-
ically. This actually happens in QCD, where the quark condensate breaks the electroweak
symmetry and gives mass to the electroweak gauge bosons. Since this contribution is tiny
compared to their actual masses, there has to be another source of EWSB, and in the SM it
is provided by the Higgs VEV. The example from QCD has however inspired the TC models,
which are essentially up-scaled versions of QCD and also break the electroweak symmetry
via a fermion condensate. While CHMs are also based on a new strong interaction, the
mechanism by which this strong interaction ultimately leads to EWSB is slightly different
from that of QCD and traditional TC models. As already sketched in the beginning of this
chapter, CHMs employ the mechanism of symmetry breaking by vacuum misalignment. If a
a global symmetry G is spontaneously broken to a subgroup H C G and another subgroup
E C @ is gauged, the gauge group E can be spontaneously broken, depending on the vacuum
alignment of H. The multi-site moose models described so far actually already contain this
symmetry structure. The vacuum alignment is determined by a dynamically generated effec-
tive potential due to quantum corrections from all particles that couple to the scalar sector.
In particular, this involves gauge bosons and fermions, both elementary as well as composite.
This section first explains the mechanism of symmetry breaking by vacuum misalignment.
It then turns to the problem of calculating the effective one-loop potential and discusses the

collective breaking mechanism that can render it finite.

2.4.1 Vacuum (mis)alignment

A central property of NGBs, as discussed in section is their masslessness and the related
shift symmetry. Both stem from the degeneracy of the vacua in the vacuum manifold. This
degeneracy in turn is a consequence of the G-invariance of the Lagrangian, which implies that
all the points in the vacuum manifold correspond to the same vacuum energy. Consequently,
there is no preference for choosing a specific vacuum. Since the generators T of the unbroken
group H are defined such that they leave the specific vacuum invariant, there is also an
ambiguity in choosing the generators T% among all the generators S of GG. A different but
physically equivalent specific vacuum corresponds to a different set of unbroken and broken
generators T"* and X'®. The shift symmetry reflects this ambiguity: by a constant shift of
the NGB fields 7%(x), the NGBs parametrized by the broken generators X can be turned
into NGBs parametrized by different broken generators X'®.

The situation changes dramatically if there is a term in the Lagrangian that does not treat
all of the S generators equivalently, which of course in turn implies an explicit breaking of
the global G invariance. This is e.g. the case if a subset of the generators S is gauged.

Recalling from section that each gauged unbroken generator T yields a massless vector
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boson, while each gauged broken generator X¢ yields a massive vector boson, it is obvious
that in the presence of gauging, constant shifts of the NGB fields 7 could turn a massless
vector boson into a massive one and therefore relate physically inequivalent vacua. But
among physically inequivalent vacua, only those with the minimal potential energy are true
vacua. The vacua of the ungauged case are thus divided into true vacua with a minimal
potential energy and false vacua with a higher potential energy. In general, not only gauging
of some generators, but any term in the Lagrangian that explicitly breaks the G invariance
could divide the vacua of the G-invariant case into true and false vacua. To do this, the
explicitly G-breaking terms do not have to enter the tree-level potential. It is in general up
to loop corrections to the potential to determine which of the vacua are true and which are

false. The explicit G-breaking then has several important consequences:

e The shift symmetry into directions that relate true vacua and false vacua is broken.
Fluctuations around a true vacuum into any of these directions change the potential
energy and hence correspond to massive degrees of freedom. They are called pseudo
NGBs (pNGBs) [26].

e There might still be an infinite number of true vacua. The shift symmetry into direc-
tions that relate true vacua among themselves is unbroken. Fluctuations around a true

vacuum into these directions still correspond to (true) NGBs.

e Each pNGB reduces the dimensionality of the vacuum manifold by one. Consequently,
if there are only pNGBs left, but no true NGBs, the dimensionality of the vacuum
manifold is zero, the degeneracy of the different vacua is completely lifted, and there is

only a single true vacuum.

e The orientation of the true vacua in the directions associated to the pNGBs is fixed.
This orientation is called orientation of the vacuum or alignment of the vacuum [71].

If there are no true NGBs left, the orientation of the true vacuum is completely fixed.

e The vacuum alignment is not only determined by the tree-level potential, but also by
loop-corrections to the potential. The tree-level potential might actually be G-invariant,

such that the vacuum alignment is determined solely by loop contributions.

The alignment of the vacuum has interesting effects on the properties of vector bosons
that correspond to gauged generators of G. It is instructive to investigate these effects using
a concrete example that can be easily visualized: a global symmetry G = O(3) that is spon-
taneously broken to its subgroup H = O(2). This example is discussed in section but

without considering G-breaking terms and gauging. In this case, one finds a two-dimensional
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X5 Xo=R
5 - e

X 1 X 1 X 1
€1 €1 L1
Figure 2.2: Different vacuum alignments in O(3) — O(2) spontaneous symmetry breaking
with one generator R gauged. (a) Gauging of unbroken generator: R = T;. (b) Gauging
of broken generator: R = Xa. (c¢) Gauging of linear combination of unbroken and broken
generators: R = cos(6) T + sin(f) Xs.

vacuum manifold parameterizing the degenerate vacua. For a specific vacuum g;o, the unbro-
ken generator 177 of O(2) is defined by T} 50 = 0 and the remaining two broken generators
X122 correspond to two NGBs. As discussed above, the presence of G-breaking terms in
the Lagrangian divides the degenerate vacua into true and false vacua. The details of the
G-breaking terms and the loop induced corrections to the potential are not important for
the following discussion, and it will just be assumed that qgo is a true vacuum. In addition, it
will be assumed that one of the generators of G, denoted by R, is gauged. In this case, there
are several possibilities concerning the relative alignment of the vacuum qg'o with the gauged
generator R. It is important to note that this relative alignment is always fixed, because
different relative alignments correspond to physically different cases. For the O(3) — O(2)
spontaneous symmetry breaking with one generator R gauged, the following different cases

can be distinguished:

(a) One possibility is that the gauged generator R is equal to the unbroken generator T;.
This case is visualized in figure 2.2h, where the direction of the gauged generator is
depicted as a black dashed arrow. The fact that the gauged generator is aligned with
the true vacuum implies that the gauged subgroup of G is not spontaneously broken.
The associated gauge boson A, T} is therefore massless (cf. section :

m?% = 0. (2.182)

This underpins that the relative alignment of the vacuum ggo with the gauged generator

R is indeed fixed, because any misalignment would not yield a massless gauge boson
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and hence correspond to a physically different case. Consequently, there is only a single
true vacuum and both NGBs associated with the generators X o pick up a mass and
become pNGBs. The particle spectrum thus consists of a massless gauge boson and

two massive pNGBs.

Another possibility is that one of the broken generators is gauged, e.g. R = X5. This
case is shown in in figure 2.2b. Because the gauge symmetry must not be explicitly
broken, it seems like there is actually an infinite amount of true vacua, depicted in[2.2p
by a black solid circle perpendicular to the direction of the gauged generator. While
any point in this one-dimensional vacuum manifold corresponds to a true vacuum,
there is, however, not an actual degeneracy of different vacua that would yield a NGB.
The reason for this is that the symmetry transformation connecting the different true
vacua is a gauge symmetry. The degeneracy is therefore lifted by any gauge fixing,
which then yields only a single true vacuum. This is equivalent to the statement that
the NGB associated with the Xy generator can be gauged away and is actually an
unphysical would-be NGB. This is of course nothing but the Higgs mechanism and the

corresponding gauge boson A, X5 receives a mass

f?q?
2 )

m% = (2.183)
where f = ](EO| and ¢ is the gauge coupling constant (cf. section . Transformations
induced by the X7 generator on the other hand always relate true and false vacua, and
consequently its associated NGB becomes a pNGB. The particle spectrum in this case

consists of a massive gauge boson and one massive pNGB.

A last possibility is that not either an unbroken or a broken generator is gauged, but a
linear combination of both. This case is visualized in figure and can be described
with a gauged generator R given by

R = cos(0) Ty + sin(0) X, (2.184)

where 0 is a free parameter specifying the angle between the directions of the genera-
tors T7 and R. Like in case (b), the gauge symmetry implies a one-dimensional vacuum
manifold prior to gauge fixing, which is again shown as a black solid circle perpen-
dicular to the direction of the gauged generator R. Also like in case (b), fluctuations
around the vacuum (50 that lie inside this vacuum manifold can be parametrized by
the generator Xs5. Its associated NGB can be gauged away and becomes a would-be
NGB. Again like in the other cases, the NGB associated with X; becomes a pNGB.
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Figure 2.3: (a) Vacuum alignment in O(3) — O(2) spontaneous symmetry breaking with one
generator R gauged. The generator basis contains the gauged generator but not the unbroken

generator. (b) O(2) — () spontaneous symmetry breaking with a gauged generator.

The important novelty, however, is that the gauge boson A, (cos(f) T +sin(f) X») is a

linear combination of a massive and a massless one. Its mass is found to be

sin(9)2 f2 g2 _ U2 92
2 2

m% = (2.185)
such that the mass scale for this vector boson is not given by f, but by the effective
scale v = sin(f) f. This effective scale is just the length of the component of gi_;o
that is orthogonal to R and coincides with the radius of the true vacuum manifold.
The parameter 6 actually interpolates between the cases (a) and (b), which can be

recovered for § = 0 and 0 = respectively. In case (a), the radius of the true

T
2
vacuum manifold goes to zero and the gauge boson becomes massless. In case (b), 50 is
actually orthogonal to R and the vector boson mass scale is simply given by the length
of 50. The parameter # thus measures the misalignment between the true vacuum
and the direction of the gauged generator, and the vector boson mass depends on this
misalignment. Apart from the § = 0 case, the particle spectrum is the same as in

case (b), namely a massive gauge boson and a massive pNGB.

While in the cases (a) and (b), it is natural to choose a basis for the generators of G that
consists of the unbroken T and the broken X o, there is another natural choice in case (c):
it might be convenient to replace 17 and Xo by the gauged generator R and an additional
generator O = cos(f) Xy — sin(9) T} that is orthogonal to R and X (cf. figure [2.3p). This
choice of basis has the advantage that it is independent of the actual orientation of the

vacuum, because it is already determined by defining which of the generators is gauged.
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However, the field 5@) still parameterizes fluctuations around the true vacuum 50, and
therefore it is obviously not independent of the vacuum alignment. In a gauge where the X»
would-be NGB is set to zero, qz;(x) is given b

- V3 -

lz) =T DN G (2.186)
It can be made at least formally independent of ggo by introducing a vector 5 g that is invariant
under the gauge transformation and corresponds to the true vacuum in the § = 0 case. The
vectors ggo and d_;R are related by a rotation around the z; axis by an angle 0 (cf. figure ),
i.e.

do = e V2OX1 5o (2.187)

Plugging this into eq. (2.186f) and defining the field

o(x) =0 f+m(zx), (2.188)
one finds
B(z) = T P@X 3 (2.189)

Intriguingly, the actual dependence on the vacuum alignment is now completely parame-
terized by a VEV of the field ¢(x). The physical pNGB 71 (x) corresponds to fluctuations
about that VEV. If the potential of gi_;(:c) is expressed in terms of the parametrization in
eq. , the minimization that determines the alignment of the true vacuum can be per-
formed with respect to the VEV of ¢(z). This resembles the situation in the linear sigma
model discussed in section where the VEV of q?(;v) determines the vacuum manifold of
the O(N) — O(N — 1) spontaneous symmetry breaking.

The analogy with the linear sigma model can be made even more obvious by considering

the case of a small misalignment angle, i.e. § < 1. This allows for approximating

$(x) ~ dr+ (0 f +mi()) ile Or. (2.190)
Noting that for small 8, the effective scale v is linear in 6, i.e.
v=sin(d) f~0f, (2.191)
and defining the vector
Go=iV20 X1 dr with |G| =0Ff~w, (2.192)

421t is assumed here that the o(z) field that corresponds to radial excitations is heavy and decouples, cf.

section Iﬂ_T}
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one can express ¢(z) as ¢(x) ~ ¢ + @(x) with (cf. figure )
G(x) = (L+ mi(z)/v) o (2.193)

This is now completely analogous to the linear sigma model, eq. (2.4). The effective scale
v plays the role of the VEV of J(x), and interestingly, the pNGB 71 (x) corresponds to the
radial excitation, which is called o(x) in section m Because of the chosen gauge, there

is no NGB present, but there is a massive vector boson with mass m4 = .- v. This is

just what one would expect in a linear sigma model with a gauged O(2) sym}fetry that is
spontaneously broken by a VEV v. So by using the parametrization in terms of ¢(x), the
original O(3)/0(2) non-linear sigma model with O(3)-breaking terms and gauging has turned
into a model that looks quite different. It now resembles a linear sigma model describing an
O(2) — () spontaneous symmetry breaking that gives mass to the O(2) gauge boson via the
Higgs mechanism. This linear sigma model is of course only an approximation and its viability
depends on the smallness of the misalignment angle #. However, the parametrization of 5(:6)
in terms of the field p(x), whose VEV 60 f fixes the vacuum alignment, is also applicable in
the case of a large angle 6.

The toy model described above is actually already quite close to the minimal CHM.
To arrive at the latter, one just has to extend the global symmetries to G = SO(5) and
H = SO(4) and to gauge an SU(2);, x U(1)y subgroup of SO(4). In the case where all
generators of SU(2)r, x U(1)y are aligned with those of the SO(4) group that leaves the true
vacuum 50 invariant, the EW group is unbroken and its four gauge bosons are massless, while
the four NGBs of the SO(5)/SO(4) coset become pNGBs. This corresponds to the case shown
in figure 2.2h. If, on the other hand, the true vacuum is only aligned with the generator of
the U(1)q subgroup of SU(2);, x U(1)y, three of the four gauge bosons (corresponding to
Wj and Z,) become massive, three of the four NGBs are unphysical and can be removed
by going to unitary gauge, and one NGB becomes a pNGB. The broken generator associated
with this pNGB induces exactly those rotations that relate the true vacuum 50 with the
SU(2)r, x U(1)y invariant direction ¢z, analogous to the case shown in figure . Denoting
this broken generator by Xi, the field qg(x) can be parameterized exactly as in eq. .
The misalignment angle 6 between 50 and <ER sets the scale v = sin(@) f for the masses of
the weak gauge bosons and the VEV 0 f of the scalar field p(x) (cf. eq. (2.188)). For 6 <« 1
this resembles a linear sigma model in which the SU(2);, x U(1)y symmetry is broken to
U(1)q by the VEV 6f ~ v and in which the weak gauge bosons acquire masses proportional
to this VEV. By keeping v fixed and taking § — 0, one arrives at a linear sigma model that
is nothing but the Higgs sector of the SM, with the pNGB 7 (z) becoming the Higgs boson.

Interestingly, this means that the CHMs with EWSB due to vacuum misalignment contain

a limiting case, in which for arbitrary small 8 the SM is an arbitrary good approximation.
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However, such a small 6 with fixed 6f also implies an arbitrary large tuning among the
different contributions to the potential. In a CHM that should serve as a solution to the
naturalness problem, this tuning should not be too large. Otherwise, a new naturalness
problem arises from 6 being an unnatural small number, at least in the absence of some
explicit mechanism for making a small angle ¢ natural. So in realistic CHMs, deviations
from the linear sigma model due to a finite angle 6 are expected.
In the O(3)/0(2) toy model as well as the minimal CHM with SO(5)/SO(4) coset, only
a single pNGB is left after the gauge group is spontaneously broken by the vacuum mis-
alignment. The true vacuum is thus completely determined by the VEV of the field ¢(z)
corresponding to this pNGB, or equivalently by a single misalignment angle 6. In general,
there could be additional pNGBs such that the true vacuum is determined by the VEVs of
several fields ¢%(x), each corresponding to a misalignment angle #%. This is e.g. the case in
the next-to-minimal CHM with SO(6)/SO(5) coset (cf. section[3.1.3)). For clarity, it is useful
to distinguish the scalar fields ¢*(x) that develop a VEV from the physical pNGBs 7%(z),
both being related by
e4(x) = 0% f + m%(x). (2.194)

This is especially the case in the above discussion. However, for simplicity, the field that
develops a VEV will also be called just 7(z) in the following. It is understood that in the
case of a non-zero VEV, this 7%(z) is shifted by

7(x) = (1) + 7%(x), (2.195)

where (7%) = 0°f is the VEV of 7%(z).

2.4.2 The effective potential and collective breaking

For finding the actual alignment of the vacuum in the presence of G-breaking terms, one has to
determine the effect of these terms on the scalar potential. In CHMs, there are contributions
from several sources. The gauging of the electroweak SU(2)r, x U(1)y subgroup of G explicitly
breaks the G invariance of the Lagrangian, and thus the EW gauge bosons contribute to
the scalar potential via quantum corrections. Via their mixing with the elementary gauge
bosons, also the composite spin one resonances contribute. Another source are the elementary
fermions, which do not transform under the full G group. While they can be formally
embedded into multiplets of G, this embedding is incomplete and explicitly breaks the G
invariance. Consequently, they contribute to the scalar potential at the loop-level. Like in
the spin one case, the composite fermions also contribute via their mixing with the elementary
fields. Computing all one-loop contributions to the scalar potential is a problem that has

been solved in general in [175]. The result takes a simple form in terms of the generalized
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mass matrices of the contributing fields M;(7®) that includes all the couplings to the scalar

fields 7*(z) and is given by

Vg °P=>" 6:;2 {tr [M}(x?) log (M2 ()] — tr [M}(r®)] log(A?) + 2tr [MP(n%)] A},

z (2.196)
where the index 7 runs over all particle species that share a common mass matrix M;(7%) and
¢; is a numerical prefactor accounting for spin and charge multiplicities. In multi-site moose
models, the scalar fields 7%(z) correspond to the pNGBs. The true vacuum is then found
by minimizing the above potential with respect to their VEVs. Plugging the VEVs back
into the mass matrices yields, after a diagonalization, all the mass eigenstates and masses
of vector bosons and fermions. In addition, the mass terms for the pNGBs are given by the
second derivatives at the minimum of the potential. In the case of more than one pNGB,
they are given in terms of the Hessian matrix at the minimum. This matrix is in general not
diagonal, such that the scalar mass eigenstates can be a mixture of the 7%(x) and have to be
determined by a diagonalization.

In general, the one-loop potential has a quadratical divergence proportional to tr [MZ-2 (W“)]
and a logarithmic divergence proportional to tr [M;l(ﬂ'a)]. These divergences introduce a
dependence on the cut-off A that spoils the predictivity of the model. However, the actual
degrees of divergence of the one-loop contributions crucially depend on the structure of
the Lagrangian. One can use naive dimensional analysis (NDA) to determine the degree
of divergence from the loop contributions to a generic operator O. Following [11§], in the

multi-site moose models one finds for the leading order Lagrangiarff]

O ~ A? f? <47TAf>2L (?)E (gilt)EA <\/%f) ) <gAf>n (%)X (2.197)

where L is the number of loops, F; the number of external NGB states, F4 the number of
external gauge fields, d the number of derivatives, n the number of gauge coupling insertions,
and x the number of fermion mass term insertions, where mass term stands for both masses
and mass mixings. The fields 7%, A,, and ¢ denote arbitrary NGBs, vector bosons, and
fermions, respectively. Accordingly, ¢ and u denote arbitrary gauge couplings and mass
terms, respectively. Considering the contributions to the scalar potential, only terms with
no external gauge bosons and fermions are of interest. Consequently, by setting L = 1 and
Ej = Ey; =0, one finds

A mo\E K X
0~ — (= 9/ (ﬁ) oc A4T17X, (2.198)
167 f A A
“3The notation used here is slightly different to the one used in [118]. In particular, what is called “n” here
is called “2n” there.

73




CHAPTER 2. COMPOSITE HIGGS MODELS

such that, obviously, the degree of divergence crucially depends on the number of gauge
coupling and mass term insertions 1 and x.

These mass terms and gauge couplings are the only source of G-breaking. The whole point
of the one-loop potential is to communicate this breaking to the scalar NGB sector. Without
G-breaking, the NGBs would keep their shift symmetry and a potential would be forbidden
at arbitrary loop order. Therefore, any contribution to the one-loop potential must of course
contain mass terms or gauge couplings, the former in the case of fermion loops, the latter in
the case of gauge boson loops. To characterize the actual breaking of the G symmetry by
the mass terms and gauge couplings, it is useful to promote them to spurions that formally
preserve all global symmetries [87,/118]. It is instructive to start with the simplest moose
model, which is just the linear sigma model. In addition, it is convenient to first only consider
the gauge bosons and turn to the fermions later. The spurion corresponding to the gauge
coupling gp is denoted by Gg, . It is an element of the Lie algebra of G and transforms under

the adjoint representation, i.e. a global G transformation g yields
G:Gr —gG) g (2.199)
When G¢, assumes its background value, i.e.
Gg, — 9u P, (2.200)

it only transforms under the adjoint representation of E and thus breaks G to E. The
symmetry structure of the model containing the spurion Gg_ can be conveniently visualized

by the moose diagram

Global : G
U
( >—’—¢ q (2.201)
gauge coupling | G
spurion ) 9E

Recalling that U(z) transforms under a global G transformation non-linearly as
G:U(z) = gU(x) h (g, ), (2.202)

the only type of operator generated at one loop that contains two NGB external states, is

invariant under a global G transformation, and depends on the spurion G, is
Og o< tr |UT Gyp Gy U 0 6} (2.203)

where ¢q is an explicit vacuum state invariant under H. From this, one finds n = 2 such that

the contribution is quadratically divergent
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It is interesting to observe what happens if one adds a first level of resonances. The

resulting two-site moose model can be depicted as

Global : G G’
Q
( ) } ( > . (2.204)
gauge coupling .
spurions : Yo Yo

The symmetry of this model is enhanced compared to the non-linear sigma model. The NGB

matrix Q(z) transforms under the global symmetry G x G’ as
Gx G :Qx) = gQx) g, (2.205)
while the spurion Gg_ transforms as in eq. , and Gy transform as
GG, —dG5, 9" (2.206)

Consequently, a one-loop contribution to the scalar potential that is compatible with the

global symmetries is given by
Og o tr [QT Gop Gon 2 Gan ggH} . (2.207)

The larger global symmetry obviously has the effect that also the number of necessary gauge
coupling insertions is larger, and one finds 7 = 4. While this still corresponds to a logarithmic
divergence, the quadratical divergence is gone.

The reason for the reduction of the degree of divergence is that the NGB potential is
now doubly protected by both the G and the G’ symmetry. Setting any of the two gauge
couplings to zero would restore the complete shift symmetry of the NGBs, independently of
the other gauge coupling. Specifically, if g5 — 0 and g7 is finite, the NGBs corresponding to
the H generators are unphysical, while the H gauge bosons are massive. But the NGBs in
the G/H coset are true massless NGBs. If, on the other hand, gg is finite and gy — 0, the
NGBs corresponding to the E generators are unphysical and the E gauge bosons are massive,
while the NGBs in the G/F coset remain true massless NGBs. Consequently, a potential for
the NGBs that yields massive pNGBs can only arise if both gg and gp are finite. Thus, the
shift symmetry can only be broken collectively by both gauge couplings. This mechanism,
which was first described in [87], is therefore called collective breaking.

Motivated from the result that the quadratical divergence can be avoided by adding one
level of resonances, one might be tempted to add another one. As detailed in section [2.2.2]
this is done by splitting the NGB matrix (x) into two matrices 4 (z) and Qy(z) that satisfy
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Q1 (z) Q2(z) = Q(z). In addition, a new symmetry G; = G is added under which both € (x)

and Qo (x) transform non-trivially. The corresponding moose diagram is given by

Global : G 0 Gy N e4
1 2
R
/ . (2.208)
gauge coupling
spurions ' Yo Yo Gy

There is, however, a peculiarity that arises from splitting Q(z) into two NGB matrices.
Setting g1 — 0 actually makes ©;(z) and Q2(z) transform independently of each other. The
global symmetry Gp therefore becomes a larger accidental Gy X G1p symmetry, which is
broken to its diagonal subgroup G by the gauging. To take this into account, it is useful
to make the larger symmetry manifest by actually introducing two different spurions G, ,

and G, . that both assume the same background value (cf. [118]). The moose diagram thus

readd™]

Global : G GlL GlR G’
MW -~ —-= a9 Qo
, 2.209
() L( 7 > 7777 < 7 > g ( > ( )
auge couplin
& ;gpurioé)s & : ggE gglL gglR ggH

where the accidental symmetry is explicitly shown. The transformation properties can readily
be read off from this diagram; it is now obvious that Q;(x) and Qq(z) transform indepen-
dently. Because it depends on the chosen gauge which of the two NGB matrices contains the
actual NGBs, the one-loop contribution to the scalar potential has to depend on both Q;(x)
and Qy(z). Thus, one finds operators like

Og o tr [ Gy o 1 G, v, | -0 [0 Gory G 2 Gy G| - (2.210)

The number of gauge coupling insertions is 7 = 8. Consequently, the gauge boson contribu-
tions to the potential are not only finite at one loop, but even finite at two loops. Apparently,
the splitting of Q(x) leads to an additional increase of 7, even larger compared to the in-
troduction of the first level of resonances. This can be understood by the emergence of the
accidental symmetry that serves as an additional protection of the scalar potential.

Since n = 6 would be sufficient for a model to feature finite gauge boson contributions to

the one-loop potential, it is possible to employ a two-site model in which the H gauge bosons

4 This is analogous to the moose diagram in eq. 1)
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are removed by formally taking gg — co. The corresponding moose diagram is given by

Global : G Gy, Gip
Q1 [ 7 U,
C——H ) P—>—¢ H 2.211
[ B ) ( )
auge coupling |
& sgpurions & Yo Goir, Go1n

where the NGB matrix Qq(z) = Us(z) Z2(z) has been turned into Us(z) by employing a
hidden local symmetry transformation. Similar to the first example featuring the non-linear
sigma model, Us(z) transforms non-linearly under the G symmetry. By using an explicit

vacuum state invariant under H, one finds one-loop contributions to the potential like
Og o tr |} Gop Gap U1 Gy, ggu} tr [Ug Gor . Gon e Uz o ¢g} . (2.212)

As expected, this corresponds to n = 6, and thus the one-loop gauge boson contributions
to the scalar potential are finite. The virtue of this model is that the finiteness is already
achieved with only two sites, i.e. a single level of resonances. Furthermore, this is the kind
of model for which the inclusion of fermions is discussed in section

To employ the spurion method used above also for analyzing the fermion contributions

to the scalar potential, the fermion masses and mixings have to be promoted to spurions

too. Considering the two-site moose from section [2.3.2] eq. (2.170)), one has to deal with

two composite-elementary mixings Ay, and Ag, two composite fermion masses my and mpg,
the composite sector Yukawa coupling Yeomp, as well as the mass term my that couples the
same composite fermions as the Yukawa coupling but without involving the NGBs. Thus,
one introduces the spurions Ma,, Ma,, Mu,, My, and My. Their transformation
properties are chosen such that the Lagrangian has the same symmetries it would have when
setting the fermion masses and mixings to zero. In this case, the accidental symmetries also

contain the SM group Ggy. This can be depicted by the moose diagram

Global : GSM G GIL GlR
r-- "= 1 r=_7-- o= 1 Uz
| Q ( il ) | H—>—4 H
i - Lo - (2.213)
mass term Ma, Min, M
spurions ° Y
MAR MmR

While the elementary fields {7, and &g correspond to incomplete G-multiplets, they transform
properly under the SM group Ggm. Consequently, the spurions Ma, and Ma,, which
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correspond to the composite-elementary mixings, have to transform under the accidental

symmetry Ggy X G as
Gsm X G Ma, = gsMp s Map , 9 (2.214)

where gsv, and gsmy, are the transformations under which &7, and {g transform, respec-
tively@ This allows for making the composite-elementary mixing terms in the Lagrangian

formally invariant under Ggy X G. They read
L &p(z) Ma, (@) Ur(e) + Er(r) May D(x) Uy (@), (2.215)
and they take their usual form when the spurions assume their background values
May p — Apg. (2.216)

This then breaks Ggm X G to its diagonal subgroup, which is isomorphic to Ggy, and thus
explicitly breaks G. Similarly, the spurions M, ,, transform under the accidental symmetry

G115, X G1r and break it to G; when they assume their background values
MmL’R — mLR- (2.217)

The last spurion My is special in the sense that it actually transforms non-linearly under

G, or equivalently, it transforms under the hidden local symmetry, i.e.
G: My — h(g,z) My h™Y(g,z). (2.218)
It enters the fermion Lagrangian as
LD =V (z)Us(x) My Ul (z) Up(z), (2.219)

which is manifestly invariant under the global symmetries even though Us(x) transforms

non-linearly. The spurion My has the background value
My = Yeomp G0 &8+ my-. (2.220)

It is actually invariant under a hidden local symmetry transformation. Therefore, no global
symmetry is broken when My assumes its background value. However, it is still convenient
to treat all mass and mixing terms on an equal footing by introducing spurions for all of
them.

45¢1, contains SU(2)1, doublets, while £ contains singlets; so they transform differently.
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Having detailed the spurions for the fermionic Lagrangian and their transformation prop-
erties, one can now determine the degree of divergence of the fermion contributions to the

scalar potential. The operators that are generated at one loop take the form

Op, o tr [MAL 0 My, Us My ML US MG, 0 MTAL] : -
2.221
Oy o tr [Mag &1 Moy, Uy My MY US M, @] MY ]

Counting the number of mass term insertions, one finds y = 6. The one-loop fermion
contributions to the scalar potential are therefore finite (cf. eq. (2.198))). With finite gauge
boson and fermion contributions, the one-loop potential of the above two-site model takes

the simple form

—loo Ci a a
Vg 0P =>" ot [ME(7) log (M2(7%))] . (2.222)

7

For the finiteness of the fermion contributions, it is crucial that the mass terms and mixings
have exactly the form as described in section [2.3.2] i.e. that only nearest-neighbor interactions
are present. While the symmetries would in general also allow other terms, this would
spoil the finiteness of the one-loop potential of the two-site model. However, by employing
dimensional deconstruction, the nearest-neighbor interactions automatically arise; they are
guaranteed by locality in the extra dimension. This property of a Lagrangian, having only
nearest-neighbor interactions, is thus also called locality in theory space (cf. e.g. [176]). It can

be seen as the origin of collective breaking in the above discussed models.

2.5 A UV completion: fundamental partial compositeness

The central ingredients of the phenomenological multi-site CHMs are a pNGB Higgs and
partial compositeness. These models allow to solve some of the problems of traditional
TC models and are found to be in good accordance with experimental data (cf. chapter [3)).
While their structure is mainly inspired by models with extra dimensions, the idea of a pNGB
Higgs as well as partial compositeness are deeply rooted in TC-like 4D strongly coupled gauge
theories. In view of this, it is an interesting question if it is actually possible to construct
a UV completion in terms of a strongly coupled 4D quantum field theory that incorporates
both a pNGB Higgs and partial compositeness.

A first hurdle is the symmetry structure. Any UV completion is required to break a
global symmetry G spontaneously to a subgroup H. While this can be realized by dynamical
chiral symmetry breaking, there are some non-trivial requirements on G and H as explained

in the beginning of this chapter. For convenience, these requirements are listed here again:

1. SU(2)1, x SU(2)r = SO(4) is a subgroup of H.
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2. The G to H breaking yields NGBs in a complex SU(2);, doublet with U(1)y charge
qy = 1/2

To find a possible candidate, it is useful to consider general breaking patterns that can be
realized by chiral symmetry breaking from a strongly coupled TC like theory. One finds |70,
71,177) (see also |178] and references therein):

1. SUMM)1, x SU(M)r — SU(M)1,+r, which requires TC fermions in a complex represen-
tation of the TC gauge group, e.g. the fundamental of an SU(NN) gauge group. This is

analogous to chiral symmetry breaking in QCD.

2. SU(M) — Sp(M), which requires TC fermions in a pseudoreal representation of the
TC gauge group, e.g. the fundamental of an Sp(N) gauge group.

3. SU(M) — SO(M), which requires TC fermions in a real representation of the TC gauge
group, e.g. the fundamental of an SO(N) gauge group.

~

The next-to-minimal CHM is actually found to be among these cases. Noting that SU(4)
SO(6) and Sp(4) = SO(5), the SO(6) — SO(5) breaking pattern is equivalent to SU(4) —
Sp(4) and can be realized with an Sp(/N) gauge group. This breaking pattern was actually
used in one of the very first CHMs described in the 1980s [39], but has also been discussed
more recently in [178-185]. While any other symmetry breaking pattern necessarily yields
more pNGBs, this is not a problem per se. At least, as long as the pNGBs only couple to
SM particles very weakly or are considerably heavier than the Higgs this does not impose
strong experimental constraints on a given model (cf. also section .

Apparently, it is possible to overcome the first hurdle, so the next step would be to find
a way for including partial compositeness. In purely fermionic constructions, this necessarily
requires bound states with the same quantum numbers as the SM fields that are composed
of only fundamental fermions. Models which could yield these bound states from fermion tri-
linears are discussed in [181}]182,/186]. As motivated in section the fermionic operators
Op that mix with the SM fermions are required to have a scaling dimension dim[OF| ~ 5/2.
Fermion trilinears have a canonical dimension of 9/2 and therefore must have a large anoma-
lous dimension. This seems to be not possible in the cases explored so far [156}/157].

However, the desired scaling dimension of 5/2 is exactly the canonical dimension of a
bound state formed by a TC fermion and a TC scalar. A framework of fundamental partial
compositeness (FPC) in which the composite fermionic operators O consist of these so

called techniscalars and technifermions has been proposed in [183]@ It is argued that any

46The idea of fermionic bound states composed of strongly coupled scalars and fermions is much older, but

it has been mainly considered in models of composite SM fermions, cf. e.g. [187H192].
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model that contains fermionic operators of scaling dimension 5/2 should behave as if these
operators are made of a fermion and a scalar. At higher scales, the scalars might themselves
be composite bound states (see also [193]). This would also be a solution to the apparent
new naturalness problem that arises from fundamental techniscalars. Another one would be

to supersymmetrize the TC theory (cf. [194]).

2.5.1 Minimal fundamental partial compositeness

There are many possibilities to construct models out of technifermions and techniscalars
that, confined by a new strong TC force, yield a composite pNGB Higgs and fermionic
bound states that mix with SM fermions. This is even the case if one considers techniscalars
and technifermions only transforming under the fundamental representation of the TC gauge
group (see [183] for a classification of economical models). However, among these models
is a minimal one that actually implements the symmetry structure of the next-to-minimal
CHM: it contains a pNGB Higgs that arises from a global SU(4) symmetry being sponta-
neously broken to Sp(4) by a technifermion condensate. This minimal fundamental partial
compositeness (MFPC) model was proposed in [183]. It was further analyzed in [193] from
an effective field theory (EFT) perspective. Its full flavor structure and its consequences for
flavor physics have been worked out in [6] and are discussed in detail in chapter [6]

In addition to the SM fields, the model contains technifermions and techniscalars, both
transforming under the fundamental, pseudoreal representation of the new Grc = Sp(Nt¢)
gauge group. For the techniscalars and technifermions to form bound states that have the
quantum numbers of the SM fermions, they themselves have to be charged under the SM
gauge group. To get a pPNGB Higgs as a bound state of technifermions, they have to transform
under a global SU(4) symmetry into which the EW gauge group is embedded. This can be

realized by considering four technifermion@ that form the four-plet
_ _\T
F= (;fT F B ﬂ) , (2.:223)

where the first two components transform under SU(2)y, as a doublet (cf. table [2.1):

Fr= (2) . (2.224)

To get composite partners for all three generations of SM fermions, one also needs three
generations of either technifermions or techniscalars. To restrict the global symmetry under
which the technifermions transform to SU(4), there can only be one generation of techni-

fermions, such that the techniscalars have to come in three generations. In addition, also the

47 All fermion fields used in this section are left-handed two-component Weyl spinors.
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\ Q @ d L v 3 F R R S, S
Sp(N)rc 1 1 1 1 1 1 N N N N N
SU(3)¢ 3 3 3 1 1 1 1 1 1 3 1
SU(2)L, 2 1 1 2 1 1 2 1 1 1 1
O I T T S SIS S BRI S T I
N, 3 3 3 3 3 3 1 1 1 3 3

Table 2.1: Quantum numbers of SM fields, TC fermions, and TC scalars in MFPC. The last

line gives the number of generations Ng. All fermion fields are left-handed Weyl spinors.

QCD charge has to be carried by the techniscalars. The most economical choice is to intro-
duce, for each generation, two techniscalars S, and S;, where the former is a QCD anti-triplet
and the latter is a QCD singlet (cf. table . They can be embedded into the 12-plet

Sq
S= (&) : (2.225)

where the generation indices are implicit. In terms of the fields F and S, the kinetic terms

of the TC sector can be written as

£ = —140(G,,6") +iFte" D, F — (AF mperc F + he.) 4+ (D,S)" (DHS) — Stm? S,

(2.226)
where G, denotes the TC gauge bosons’ field strength tensor, mz and ms are the techni-
fermion and techniscalar mass matrices, and epc is the antisymmetric invariant tensor of
Grc.

In the absence of the mass term mg, the TC sector has a global SU(4) symmetry, under
which F transforms in the fundamental representation. Because only the technifermions
transform non-trivially under this symmetry group, it will also be denoted by SU(4)r in
the following. In the case of a trivial mass matrix mg, one would naively expect that the
12 complex scalars have a global SU(12)s symmetry. However, because the techniscalars
transform under a pseudoreal representation of the TC gauge group, the TC sector actually
has an accidental Sp(24)s symmetry (cf. [183]). This symmetry can be made manifest by

arranging the techniscalars in terms of the field

P = ( S ) , (2.227)
—erc S*

which transforms under the fundamental representation of Sp(24)s.
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The pNGB Higgs

The full global symmetry of the TC sector is SU(4)r x Sp(24)s. However, the strong TC
interactions break the SU(4) r symmetry to Sp(4) by forming the fermion bilinear conden-

satﬂ
<]:a5TC F b> = Arc fio S8, (2.228)

where a, b are SU(4) r indices, Apc is the composite scale of the TC interaction, frc ~ 47 Arc
is the NGB decay constant associated with the spontaneous symmetry breaking, and Egb is
an antisymmetric matrix that specifies the vacuum alignment of the unbroken Sp(4)r group.
This vacuum alignment can be parameterized by the angle 6 and is chosen such that 8 = 0
leaves the EW symmetry unbroken@ The NGBs arising from the SU(4)  — Sp(4) r breaking
are parametrized by the NGB matrix

Y(x) =exp [zm 7 (z) Xg] Y. (2.229)

frc

The NGB fields 7%(x), a € {1,2,3,4,5} correspond to the fluctuations around the true vac-
uum Yy. Hence, the misalignment is not parameterized by a pNGB VEV and the generators
X§ depend on the misalignment angle 6 (cf. [178] and the discussion on different generator
bases in section [2.4.1). Since SU(4)/Sp(4) is a symmetric space, the leading order EFT
Lagrangian for the NGBs is given by the simple form (cf. section ﬂ

2
Lepr O f%ctr {DMET D“E] . (2.230)

While the NGBs 7!, 72 and 73 eventually become would-be NGBs when 6 # 0 and the
EW symmetry is broken, 7% = h can be identified with the composite Higgs boson. 7° = n
is a scalar singlet that generically has a mass of order m, =~ my/sin() and couples only
weakly to the SM fields, at least in the case of a vacuum alignment that preserves CP (cf.
footnote and chapter [3). Its phenomenologically implications are therefore negligible.
Like in the discussion in section the mass scale for the EW gauge bosons is set by the

“®In the absence of the techniscalars, this has been shown by lattice simulations for Nrc = 2 [195].

“9Since the SU(4)/Sp(4) coset contains two NGBs that cannot be gauged away by an EW gauge transfor-
mations, there are in principle two angles that determine the vacuum alignment. However, any non-zero value
for the second angle would break CP spontaneously. In this section, this second angle is assumed to be zero.

For an analysis of a model where it is explicitly allowed to be non-zero, see chapter |3
59While the NGB matrix used here is analogous to the matrix ¥(x) introduced in section [2.1.3} the nor-

malization of the generators is different. While the X in section are normalized by tr [X @ xb = b,
3

the X§ used here satisfy tr [Xg Xg] = 1459 This is the reason for the prefactor fTTc in eq. (2.230) being

different from the prefactor % in eq. 1)
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misalignment angle 6, such that the SM Higgs VEV wgy can be identified with

vsM = fTC 8¢, (2.231)

where the short-hand notation sy = sin(f) is introduced.

Fermion partial compositeness

While the possibility to get a pNGB Higgs from the technifermions present in the MFPC
model has been considered many times in the literature (cf. [39,178-185]), the central new
ingredient in the MFPC model that allows for an implementation of partial compositeness are
the techniscalars. For partial compositeness to be realized, it is of course crucial that the TC
sector is coupled to SM fermions. This is actually the case as the chosen quantum numbers

of technifermions and techniscalars allow for fundamental Yukawa couplings involving the
SM field. They are given by

Eyuk =YQ Qa‘squC]:g - yaﬂS;‘f1 +ngS;f'T

_ _ _ (2.232)
+yrL Lo SIETC]:f — Y VS F +yee S/ Fy —y, v S F4+ + he.

where a is an SU(2)y, index and the fundamental Yukawa couplings ys are 3 x 3 matrices
in generation space. When techniscalars and technifermions form fermionic bound states
Op ~ (FS), these bound states are coupled to the SM fields via the fundamental Yukawa
couplings. Using the notation employed in the effective models discussed above, this means
that the composite-elementary mixings Ay are related to the fundamental Yukawa couplings
yr by

Ay oy, (2.233)

i.e. the mixing terms of the composite operators O and the SM fields are nothing but the
fundamental Yukawa couplings y¢. This relation can be used to construct an effective theory
containing the fermionic bound states (FS) analogous to the discussion in section m
Interestingly, exactly like in the purely effective models of partial compositeness, one finds
that the SM fermions can couple to the (FF) composite Higgs bound state only via the

fundamental Yukawa terms, i.e. via the mixing with the composite fermions.

2.5.2 The MFPC effective field theory

To derive the phenomenological consequences of the MFPC model, one needs a description
at low energies accessible by experimental measurements. It would certainly be interesting
to construct an effective theory along the lines of the multi-site moose models, i.e. a theory

containing an effective description of the composite bound states. In particular, such an
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effective theory could be backed up by lattice calculations that fix some of the effective
parameterﬂ However, since there are no direct observations yet and masses of composite
resonances could be out of reach for the LHC, a different approach might be useful for first
explorations. To this end, an effective field theory for MFPC (MFPC-EFT) containing only
the SM fermions and vector bosons as well as the pNGBs as dynamical degrees of freedom has
been constructed in [193]. All effects stemming from bound states heavier than the pNGBs
are parameterized in terms of effective operators. This approach is especially justified by
indirect bounds on sin(f) [202] indicating a quite large separation of the EW and the TC
scale XST“é < % < 1.

The Lagrangian of the effective theory can be written as

LErT = LSM—Higgs+NGBs + Z Ca0y + (Z CpOp + h.c. > , (2.234)
A B

where Lsn—Higgs+NGBs contains the SM Lagrangian without the Higgs sector, plus the leading
order NGB Lagrangian shown in eq. . The only parameters it depends on are the SM
gauge couplings and the decay constant frc. All other effects are parameterized by the WCs
of the hermitian operators O 4 and the complex operators Op.

For constructing the MFPC-EFT, it is useful to employ the global symmetries of the
strong sector. They are only broken by the interactions with SM field, which can be treated
as spurions formally transforming under SU(4)r x Sp(24)s. To this end, it is convenient to

promote all SM fermions including the fundamental Yukawa couplings to the spurion
Vi, € dr ® 24g, (2.235)
where a is an SU(4) 7 index and ¢ is an Sp(24)s index. It assumes the background value

0 0  yzd —yati

0 0 Ye €
yod —yqou 0
yLe —yLv y,u 0

Py — , (2.236)

where the components of SU(2);, doublets are written explicitly and the color and gener-

ation indices are implicit. Using that the technifermion multiplet F and the techniscalar

multiplet ® transform as (cf. egs. (2.223)),(2.225)), and (2.227))

F*e4r @ Npe, @' €245 ® Nyc, (2.237)

51For lattice simulations of a model similar to MFPC but without techniscalars, see [195-200]. For pre-
liminary results on lattice simulations of a Grc = SU(2) = Sp(2) gauge theory featuring technifermions and

techniscalars, see [201].
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the fundamental Yukawa coupling terms in eq. (2.232]) can be written compactly as

Lyuk = —'q €5 &7 erc F* + hec., (2.238)
where €;; is the antisymmetric invariant tensor of Sp(24)s. In the low-energy MFPC-EFT,
these Yukawa coupling terms lead to operators containing the SM fermions in the form of
the spurion 9%,. The leading-order operator contains only two SM fermions and is given by

Ovuk = —J;F—f (P 0y 92 0y) B €44y, (2.239)

where £%1%2 is the NGB matrix (cf. egs. (2.228) and (2.229))). This operator actually contains
terms that correspond to the SM Yukawa couplings. As such, it yields the fermion-pNGB

couplings as well as the mass terms of SM fermions. Assuming unitary gauge and expanding

the product of pPNGB matrices in powers of external Higgs states up to the linear term, one

find2

CyukOvuk = — Z W (y}f yf)ij (fzf]) (1 + 5361\}2 + .. ) , (2.240)
fe{u,d,e}

where ¢y = cos(f) and a compact notation is used to simplify the sum: the fundamental

Yukawa couplings of the SU(2);, doublets are labeled by the names of their doublet com-

ponents, i.e. one can identify ygo = y, = yq4 and yr, = ye = y,. The leading term in the

expansion yields the masses of the SM fermions; their mass matrices are given by

(2.241)

C
My = Yuk S0 fTC (" _)U

. YrUr)i:o
where f € {u,d, e}.

Among the operators of the MFPC-EFT, those with external fermions are especially
interesting for the analysis of effects on flavor physics presented in chapter [6 There are eight
operators in the MFPC-EFT that contain four SM fermions. These are the five hermitian

operators
Oly = Gir 21A2 (67 0, 6720,) (0 p T DS, iy
O = oo A2 (a0 ) (1) (074,072, = 6°0,0%2,) €niaisis
Oif 641 2A2 (Wlaﬂwaz)WT@SGSWMM)ZGWZZLSM (€i1i46i2i3 _5i1i3€i2i4) ) (2.242)
Otf = o= i A2 (7 g t72ay) (01T (69,692 €511 €iziy + 0,0 CirigCinia)
Ol = 64 2A2 (67 000 ) (1) (878,07, Cinia i + 00, 0%, Cinia i)

52The neutrinos are treated as massless in the following, i.e. their fundamental Yukawa couplings are set to

zero, ys = yy = 0.
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and the three complex operators

1 L o ,
ng - m(lp“aﬂbm@)(wl3a3wl4a4)Za1a22a5a46i1i26i3i4 >
TC
1 o o , ,
Ozf = m(wllal¢l2a2>(wl3agwl4a4) <Ea1a4za2a5 - Zaladza2a4) €iyig€igig » (2243)
TC
3 1

O4f - M(wila1¢i2a2)(wi3a3¢i4a4)zala22a3a4 (€ivig€izia — €irig€igia) -

At the EW scale, they can be matched to four-fermion operators of the WEH (cf. sec-
tion [6.1.2). Another operator relevant for this matching is

)
3272

. A N
Ony = (wﬂun&#wzg@) E(T“ag DHYs02 ¢ (2.244)

It modifies the couplings of SM fermions to the weak gauge bosons, which are contained in the
covariant derivative. When WMjE and Z,, are integrated out at the EW scale, this operator in-
duces contributions to four-fermion operators of the WEH. In addition, the modified couplings
to gauge bosons yield important constraints on the model. In particular, they contribute to
Z boson observables measured with high precision at the Large Electron—Positron (LEP)
collider.

While other operators compatible with the global symmetries of the TC sector can be
constructed, they are not of particular interest in the context of this thesis. A complete list
of the MFPC-EFT operators can be found in [193].
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Direct collider constraints

in composite Higgs models

A generic feature of CHMs is the presence of composite bound states in the low-energy
effective theory. In particular, one expects vector and fermion resonances as discussed in
sections and If the G/H coset of the spontaneous symmetry breaking in the strong
sector contains NGBs in addition to the Higgs doublet, they are turned into pNGBs by the
effective scalar potential and also join the list of heavy NP states. The mass scale of these
states is set by NGB decay constant f. As discussed in section [2.4.T], symmetry breaking by
vacuum misalignment allows f to be considerably larger than the EW scale v. Consequently,
also the masses of these heavy states could be much heavier than the SM particles. However,
to avoid tuning in the scalar potential and to generate the correct Higgs mass, many CHMs
actually require relatively light resonances (cf. e.g. [105,203-205]). In this case, they could
potentially be produced and observed at the LHC. On the other hand, a non-observation
might put stringent bounds on the parameters of these models, or would at least require a
larger amount of tuning.

In view of this, interesting questions for analyses of CHMs are: What are the prospects
for observing any of the heavy resonances at the LHC and what are the current experimental
constraints? And in particular, what are their masses, cross sections and branching ratios
and how do they compare to the experimental bounds available so far?

Apart from direct collider searches, also indirect searches put important constraints on
the properties of the composite resonances. In addition, the masses and couplings of the res-
onances determine the structure of the effective scalar potential and thus play an important
role in EWSB. The above questions are therefore best answered in the context of a global
analysis that takes into account both direct and indirect searches and considers radiative
EWSB. To this end, we have performed comprehensive numerical studies of CHMs featuring
the minimal SO(5)/SO(4) and the next-to-minimal SO(6)/SO(5) coset in |2] and [3], respec-
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tively. The treatment of direct collider searches in these analyses and the results we have
obtained are discussed in detail in this chapter. For a detailed discussion of the indirect

constraints, see [2,3] and in particular also [127].

3.1 Global analyses of composite Higgs models

The aim of our analyses in [2,3] was to perform a parameter scan of a CHM that features
e a pNGB Higgs,

e a full quark flavor structure with partial compositeness, i.e. composite fermion partners

for all three generations,

e a calculable scalar potential that makes it possible to relate the mass and the VEV of

the pNGB Higgs to the model parameters.

While a parameter scan of such a model is already complicated due to the large number
of parameters (between 30 and 52 for the models considered here), the specific structure of
CHMs makes it even more challenging. In contrast to many other NP models, the parameter
space does not “factorize” into a SM part and a NP part. In particular, due to fermion
partial compositeness, all quark masses and the elements of the CKM matrix are complicated
functions of many of the model parameters. In addition, the radiatively generated scalar
potential, which is responsible for EWSB, depends on the masses and couplings of all fermions
and vector bosons in the theory. In view of this, a naive brute-force scan of the parameter
space is not applicable. Instead, we have applied a new numerical method pioneered in [206]
and described in the followingl]

3.1.1 Numerical strategy

In order to avoid sampling the whole parameter space, only those regions are sampled that
satisfy the experimental constraints applied in the analysis. To this end, a x? function is
constructed that depends on the experimental measurements of all considered observables, on
their theory predictions at a given parameter point é, and on the theoretical and experimental
uncertainties. Combining the measurements into a vector 6exp, the é—dependent theory

predictions into a vector 6th((§), and all uncertaintie into a covariance matrix C, the x?

!Since the focus of this chapter lies on direct constraints, only the most important properties of the
scanning procedure are discussed in the following. For an in-depth description of the specific implementation
used in [2}3], see [127].

ZCorrelations of uncertainties are also taken into account for theory predictions, as well as for those

measurements for which they are publicly available.
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function can be written as
— _ — 1T . _ — -
V*(8) = [Ooxp — Bun(©)] " [€17" [Oep — Cun(©)] - (3.1)
The value of this x? function is a measure for the agreement between theoretical predictions
and experimental data; the smaller its value, the better the agreement. Using the y? function,
viable parameter points that satisfy all constraints are determined in a procedure consisting

of four steps:

e A point in the parameter space is randomly chosen that is only required to fulfill most

basic consistency conditions like a non-zero misalignment angle.

e Using this point as a starting point, a numerical optimization algorithm (from the
NLopt package [207]) is used to find a region in the parameter space with a relatively

low x? value.

e This region is then sampled by a Markov chain, for which the Markov-Chain-Monte-

Carlo implementation from the pypmc package [208] is used.

e Because a low total x? value does not automatically guarantee all constraints to be

satisfied, points are discarded if they violate any individual constraint by more than 3o.

To generate a large number of viable parameter points, the above steps are repeated many
times (between O(10%) and O(10*) depending on the model). This makes it possible to find
points from very different local minima of the x? function. However, it is of course not
possible to sample all regions with low 2. The above described method is not intended
to provide a sufficient coverage of the parameter space to make any statistical statements.
Rather, it is used to yield viable parameter points in a high-dimensional parameter space,
where such points are tremendously difficult to find by simply choosing parameter values

randomly.

3.1.2 Constraints

The following observables are used in our global analyses in [2,|3] and enter the x? function
in eq. (31).

e SM masses and Higgs VEV: The VEV and the mass of the Higgs are provided by
the minimum of the scalar potential and the curvature at the minimum, respectively.
The mass matrices of vector bosons and fermions are evaluated at the minimum of
the scalar potential and then numerically diagonalized. The eigenvalues of the mass

matrices that correspond to the SM fields are interpreted as tree-level MS running
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masses at the scale m;. All masses are run to the scale where they can be compared to
their PDG averages [209]. The Higgs VEV is compared to the tree-level value of the

Fermi constant in muon decay.

CKM elements: Since the 3 x 3 quark mixing matrix is not unitary in the presence
of composite fermions that mix with the elementary ones, effective CKM elements are
defined from the ratio of W couplings of quarks and leptons. They are compared to
experimental values obtained from measurements of tree-level semi-leptonic charged-
current decays (for |Vyq| [210], |Vus| [211], |Vis| [212,213], and |V [214,215]), t-channel
single top production (for |V [216]), and B — DK decays (for the CKM angle v [217]).

Electroweak S and T parameters: The one-loop fermion contributions to the
T parameter and the tree-level contributions to the S parameter are compared to

values from a global fit to EW precision data [218].

Z decays: Ratios of partial widths in Z-boson decay are calculated with tree-level
NP contributions at zero momentum and higher-order SM contributions. They are

compared to measurements at LEP [219].

Higgs production and decays: The partial widths of the Higgs boson are calculated
at tree level for the decays to WW, ZZ, bb, and 777, and at the one-loop level for
decays to gg and . They are compared to measurements by the ATLAS and CMS
collaborations [202,220,221].

Meson-antimeson mixing: Several observables in meson-antimeson mixing in the
K9 B and B, systems are calculated and compared to their corresponding experi-
mental values. In particular, these are the mass differences AMg [209], AM, [222],
and AM, [222], the observables Syr, [222] and ¢, [223] measuring mixing induced
CP asymmetry in the BY and B; system, respectively, and the observable ex [209)

measuring indirect CP violation in kaon mixing.

Rare B decays: In light of tensions between experimental measurements and SM pre-
dictions in semi-leptonic rare B decays (cf. chapter, they are not used as constraints.
However, experimental measurements of BR(B — X,7) [222] and BR(Bs — p ™) [224]

are included as constraints.

Contact interactions: Significant degrees of compositeness of first-generation quarks
can be constrained by four-quark contact interactions that contribute to the dijet an-
gular distributions. Calculations of corresponding WCs are compared to LHC mea-
surements [225}226].
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e Neutron electric dipole moment: The next-to-minimal CHM allows for sponta-
neous CP violation in the scalar sector. To constrain this effect, the neutron electric
dipole moment (EDM) in terms of the quarks’ EDM and chromo-EDM is calculated

and compared to the experimental limit [227].

e Direct constraints: All cross sections and branching ratios of heavy resonances are
calculated and compared to experimental limits (see tables in appendix |A.6)). These

constraints are discussed in detail in section

3.1.3 The models

To select the models to be investigated by our global analyses, we have first considered the
requirements at the beginning of section 3.1} In particular, the requirements of a pNGB Higgs
and a calculable potential can be satisfied in multi-site moose models. The contributions to
the scalar potential stemming from vector bosons are finite in a model with three or more
sites if it contains one level of spin-1 resonances in the adjoint representation of the unbroken
group H, or in a model with two or more sites if it contains only spin-1 resonances in the
adjoint representation of the full group G (cf. section . Requiring a particle content as
minimal as possible singles out the two-site model of the latter type. This is the construction
of the two-site 4DCHM [119], for which the fermion sector also yields a finite contribution to
the scalar potential (cf. section [2.4.2)).

In specifying a CHM, a central aspect is the choice of the NGB coset. As discussed at the
beginning of chapter[2] the minimal choice that yields NGBs in a complex SU(2)y, doublet and
a custodial SU(2)1,4+r symmetry is the NGB coset SO(5)/SO(4). We have chosen to analyze
such a minimal CHM (MCHM) in [2]. As detailed in section [2.5] the MCHM breaking pattern
SO(5) — SO(4) cannot be realized by chiral symmetry breaking in a UV completion of an
effective CHM. However, this is actually possible for the only slightly less minimal breaking
pattern SO(6) — SO(5) , which yields a scalar singlet NGB in addition to the complex
SU(2)1, doublet. We have chosen to analyze such a next-to-minimal CHM (NMCHM) in [3].

In a CHM that contains an unbroken global symmetry SO(4) 2 SU(2)r, x SU(2)g, the T%
generatorE] of SU(2)r plays the role of the hypercharge generator as long as only the Higgs
sector and the lepton sector are considered. However, it is well known that this assignment
of hypercharge does not work for quarks that are embedded into a multiplet transforming
under SO(4) (cf. e.g. [104]). This problem can be solved if the quark SO(4) multiplets are
charged under an additional U(1)x symmetry and if the hypercharge generator Y is defined

3For the definition of the generators of SO(6), SO(5), SU(2)r, and SU(2)r used in this chapter, see

appendix
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in terms of the T% generator and the U(1)x generator X as
Y =T34+ X. (3.2)

Consequently, the groups G and H have to contain the U(1)x group as a subgroup. The
minimal choice is to simply consider a direct product group such that the breaking patterns
in the MCHM and in the NMCHM become

SO(5) x U(1)x — SO(4) x U(1)x and SO(6) x U(1)x — SO(5) x UL)x, (3.3

respectively. While this does not change the number of NGBs, it introduces an additional
spin-1 resonance associated with the U(1)x symmetry.

For a complete CHM, not only the EW gauge group should be embeddable into the global
symmetry H, but also the QCD gauge group SU(3)c. Again, the simplest way to achieve
this is by considering a direct product group. Consequently, the breaking patterns in the
MCHM and in the NMCHM become

SO(5) x U(1)x x SU(3)c — SO(4) x U(1)x x SU(3)¢
and (3.4)
SO(6) x U(1)x x SU(3)c — SO(5) x U(1)x x SU(3)c,

respectively. Similar to the introduction of the U(1)x group, this does not modify the NGB
content of the models but introduces additional spin-1 resonances in the adjoint representa-
tion of SU(3)c.

Having specified the groups G and H for the MCHM and the NMCHM, the only thing
that still remains to be fixed are the representations of G under which the fermions transform.
While the representations of the U(1)x x SU(3)¢ group are fixed by the SM quantum numbers
and eq. , one is in principle free to choose any representations of SO(5) for the MCHM
and of SO(6) for the NMCHM that allow for an embedding of the SM fermions. However,
the choice of representations has important phenomenological consequences. In particular, if
they are chosen such that they satisfy a discrete Prr symmetry, tree-level contributions to the
Zbrby, coupling can be avoided [228]. Without this so called custodial protection, the sizable
composite-elementary mixing of the third generation’s quark doublet, which is required by
the large top quark mass, generically yields a significant tree-level contribution to the Zbz by,
coupling. This in turn can lead to severe tensions with LEP measurements of the Z boson’s
partial widths (cf. [229]). In the MCHM, the simplest possibilities to achieve the custodial
protection is to embed the SM fermions into incomplete multiplets transforming either under
the fundamental 5 or the anti-symmetric 10 representation of SO(5), which are known as

MCHM;5 and MCHM;, respectively [105,[228]. Requiring minimal particle content, we have
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chosen the fundamental 5 representation of SO(5) for our MCHM analysis. Similarly, for the
NMCHM analysis, we have chosen the fundamental 6 representation of SO(6), which also
implements the custodial protection mechanism with minimal particle content. A notable
consequence of quark partners in 5 or 6 multiplets is that the models feature heavy quark
resonances with exotic electric charges -4/3 and +5/3. Due to their different charge compared
to the up-type or down-type quark partners, they decay into distinct channels and dedicated
experimental searches for these exotically charged resonances are available (cf. section .

An important goal of the analyses is to study the quark flavor structure. Consequently,
three generations of composite quarks are considered. On the contrary, the lepton sector is not
studied in detail and only elementary leptons are included. While it is beyond the scope of our
analyses to consider partially composite leptons, they can have interesting phenomenological
effects on the scalar potential [230] or in the context of the b — s ¢T¢~ anomalies (cf. [1] and
chapter [5)).

Both models considered in our analyses can be expressed in terms of the following moose

diagram (cf. eq. (2.173))

Global : G Q Gy 0
O S N G
N |

Gauged : E G1

Eur [ul))] T Tur > . (3.5)

guL [q(O)] \I}uR \IjuL
Quarks :

Ear [a)] Vir Var >

Y
Ear [d)] Vir VYar

The symmetry groups can be written as

G:ng( DY) x SUE)E, H=1xU1)Y xsu@)&, 56
=61 x U x SUEB)Y, E=sU@)” xum{ xsu@)y, '

where superscripts are used to distinguish fields and symmetry groups at different sites. The
groups G, G1, and H depend on the considered model. In the MCHM, they are defined by

G =50(5), G1 = S0(5)W, H =S0(4)?), (3.7)
while in the NMCHM they are given by

G =S0(6), G, =S0(6)M, H =S0(5)@, (3.8)
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The hidden local symmetry H can be used to remove unphysical would-be NGBs in 25 such
that only NGBs in the G;/H coset remain. €; contains NGBs in the coset (G x G1)/Gp,
where G p is the diagonal subgroup of G x G1. It is possible to choose a gauge where the direct
factors U(1 )g() and SU(3 )é) of the G; gauge group are used to remove the would-be NGBs
in the (U( )g() x U(1 )g())ygU(l)ggH) and the (SU(3)(CO) X SU(3)(Cl)> /SU(3)(C?+1) parts of
(G x G1)/Gp, respectivel

(G x G1)/Gp coset, while mass and mixing terms for the SU(3 )é) and SU(3 )( ) gauge bosons
G( ) and G’( ) as well as the U(1 )g() and U(1 )&) gauge bosons BB and X, are introduced.
Denoting the G; gauge bosons by p, and those of SU(2)£O) by W,SO), the corresponding
leading-order Lagrangian for the NGBs and vector bosons then reads (cf. eq. (2.113))

Consequently, in this gauge, €21 only contains the NGBs in the

2
Lboson = ]% tr [DMQfl(:U) D“Ql(x)] + f—Q tr [Duﬂgl(x) D“Qz(x)]
- %u (W0 (@) WO ()] - iBfS) () BOW () — %tr C0) GO ()] 5o
= ) P (@) = 7 Xi) XP(@) = 5 18 [ (0) 6™ ()]
ff (93( ) GO () - g3y G,@(@) + %( <920) B (x) - gx X;A(HT))Q,

where the decay constants f¢ and fx of the NGBs associated with the heavy pg, and X,
bosons have been allowed to be independent of each other and of f; and fo. The gauge

covariant derivatives are defined by

Dy () = 10, () + (900 W) T4+ gy BO) Th) 01(2) = g5 1 (2) pu(a),

i D, Qo(x) =10, Qa2(x) + gp pu(x) Qa(x).
(3.10)
In the above expressions, g(q), gEO), 93(0)s 93(1)» 9x, and g, denote the gauge couplings of

su@)?, v, suE)Y suE)Y, t){Y, and Gy, respectively.
The Lagrangian of elementary and composite quarks is given by (cf. eq. (2.168)))
Loark = 0. (2) i ¢ (2) + @) (z) iD uly) (x)
+ Wu(@) (i — m) W) + T () (i) — mg) Tu()
+ {AuL Eur(2) Q1 () Cur(z) + Ay Eur(2) Q1 (2) Tur(2) + h-c.} (3.11)
Yo W (2) Qa(2) 60 0 O (@) Dur(@) + my, Ty (@) Tun(e) + hee. |
+({u,U} = {d, D}) ,

|
—

“Here, the (0 + 1) superscript denotes a diagonal subgroup of a direct product of groups with superscripts

(0) and (1).
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where the covariant derivatives are defined by

: ] o o
iDyqy (z) = <l8u+gfo) B () + g3(0) Gy (2) TE + g(o) WO (@) T > (@),

Dl @) = (10,4 3 oy B @) + 950, G(0) T ) ol o),

iD, dY :( ; BO () + gs(0) GV (x) T“C> 40 (), (3.12)
iD, Uy (x) = (18 +§ng (@) + g31) GV (@) T + g, pl () >‘1’u

iD, Va(z) = (la ;QXX (z )+93(1)G;(}) () TE + gp pp() TG )‘I’d

and those for W, () and W,(z) are the same as for W, (z) and Wy(z), respectively. Here,
T¢ = \%/2 are the generators of SU(3)c and A\* are the Gell-Mann matrices, while T¢ are
the generators of G = G;.

As one of the aims of our numerical analysis was to study a model with full quark flavor
structure, it is understood that the above quark fields have an implicit generation index and
the composite-elementary mixings are 3 X 3 matrices. In our numerical analysis, we have
considered different implementations of the flavor symmetries discussed in section to

suppress large contributions to meson-antimeson mixing.

The minimal composite Higgs model

In the MCHM, where G = G; = SO(5), the composite vector bosons p, = pj; T¢ can be

decomposed as
pﬂ = pLu + pRu + aM? (313)

where pr,, = pry T7, pr, = PR, Th and @, = af, T%. They transform under SU(2)1, x SU(2)gr
as (3,1), (1,3), and (2, 2), respectively (cf. appendix [A.2)). Thus, the vector bosons pr,, and
PR, can be identified with the gauge bosons of the SU(2 )1(4) and SU(2 )( ) subgroups of
SO(5)(M), while a,, is associated with the generators of the SO(5)/SO(4) coset.
When discussing a concrete model, it is convenient to choose a gauge that reduces the

number of NGBs by removing all would-be NGBs. To this end, one can use the holographic

gauge (cf. eq. (2.124))

Qi (x) = Ur(z) = exp [2

ff 7a(2) T‘{] . D(r) =1 (3.14)

Employing in addition the SM unitary gauge, only m4(z) = h(z) is non-zero. As noted in
section the holographic gauge leads to a mixing between the NGBs and the a, vector
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bosons. This mixing can be removed by the field shiftE]

al(x) = al(z) — Q%@“h(l‘). (3.15)
9p I3

In addition, the holographic gauge as defined in eq. (3.14) requires the field redefinition

h(z) — ];L,lh(x) (3.16)

to get a canonically normalized kinetic term for h(x). The NGB matrix Q(z) = Q;(x) Qa2(x)

then takes the explicit form

1
1
Qx) = 1 , (3.17)
cn(®)  sn()
—sp(z) cp(z
where the short-hand notation
sn(z) = sin <h(f‘””)> . cn(z) = cos <hff‘”>> (3.18)

is used.

Similarly to the vector bosons, also the fermions can be decomposed into SU(2)1, x SU(2)g
multiplets. In particular, a field ¥(x) that transforms under the fundamental 5 representation
of SO(5) decomposes into a bidoublet Q(x) and a singlet S(z). Specifically, this can be

expressed as

QT () + Q™ (2)
L 19T @) —iQT (x)
v = | Q)@@ |, (3.19)
Vligrw+io e
V2 S(z)

where the superscripts on the four components of Q(x) indicate their T% and T?I’% charges.
While this decomposition can be used for each of the fields W, (), Ug(z), U, (z), and ¥y(z),

it also determines the embedding of the elementary fields into incomplete SO(5) multiplets.

ST = 2+ 52 (cf. eq. (2.119)).
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This embedding is given by

>
s

0
0
cu(@)=—=| uP@ |, @)= 0 ,
) 0
)

(3.20)

§ar(z) =

Sl

For our analysis of the MCHM, we have considered four scenarios with different flavor
symmetries in the quark sector: U(3)? left-compositeness, U(3)? right-compositeness, U(2)3
left-compositeness, and U(2)? right-compositeness, which in the following are denoted by
U(3)3 4, U3, U(2)3 o, and U(2)3, respectively (cf. section. The explicit expressions
of the mixing matrices A, , Ayp, Ag, , and Agy, are given in appendix [A.5.2]for all four cases.

Plugging the decompositions of the vector bosons p,, eq. , and fermions, eqs.
and (3.20)), as well as the NGB matrices Qa(z) = 1 and Qs(z) = Q(z), eq. (3.17), into the
Lagrangians in egs. and , one gets h(x)-dependent mass matrices for the fermions
and vector bosons. They are explicitly given in appendix[A.4.1] These matrices are the basis
for the phenomenological study. For a given parameter point, they can be used to calculate
the scalar one-loop potential via eq. . The minimum of the potential then determines
the vacuum alignment in terms of the VEV of h(z). This VEV also enters the fermion and
vector boson mass matrices via their h(x)-dependence. Diagonalizing the mass matrices with
h(zx) set to its VEV then yields all physical mass eigenstates after EWSB. The masses and
couplings of these mass eigenstates can finally be used for studying the phenomenology of

the given parameter point.

The next-to-minimal composite Higgs model

As in the MCHM, it is convenient to decompose the vector and fermion fields in the NMCHM
into SU(2)1, x SU(2)r multiplets. For G = G; = SO(6), one finds the following decomposition
of the p, vector bosons:

pu = pp + P +ai +ah + . (3.21)
While p and pf, are exactly the same SU(2);, and SU(2)g triplets as in the MCHM, there

are now two bidoublets af = ai" T¢ and ah = ag" T5. While ay is actually associated with
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the same SO(5) generators as a* in the MCHM, these generators are the coset generators in
the MCHM but are unbroken generators in the NMCHM. Therefore, af u and a* are quite
different from each other. On the other hand, since a4 is a bidoublet associated with coset
generators in the NMCHM, its mass, couplings, and mixing terms resemble those of a* in
the MCHM. In this sense, the presence of af rather than af should be considered as a
main difference to the MCHM. Another main difference is the presence of pl, which is an
SU(2)1, x SU(2)g singlet and associated with the Tg generator of SO(6) (cf. appendix [A.2)).

For considering the NGBs, it is again convenient to use the holographic gauge, which

yields

Qy(z) = Ui(x) = exp [zf (ma(2) T§ +75(2) Ts) |, Qofz) =1. (3.22)

Employing the SM unitary gauge removes the would-be NGBs 7 (z), m2(x), and 73(z) and

leaves the two physical NGBs m4(z) and 7s(z). It is convenient to parametrize them as

(cf. [231])

m4(x) = h(z) cos (ﬁ(:v)) , 75(x) = h(z)sin (ﬁ(w)) . (3.23)

fi fi

It is interesting to note that 7j(x) and 75(z) are pseudoscalars and odd under CP, while h(x)
and m4(x) are even under CP. However, in the presence of CP violating contributions to the
scalar potential, ﬁ(x) and 7j(x) can mix with each other. Consequently, the mass eigenstates,
which will be denoted by h(z) and 7(x), are not necessarily CP eigenstates. In any case, the
mass eigenstate h(z) will be identified with the Higgs boson. In the absence of CP violation,
h(z) = h(z) and n(z) = ().

Like in the MCHM, the holographic gauge introduces mixing terms between NGBs and
gauge fields. These mixing terms are removed by field shiftsﬁ of aélw , a;l” , and pg. To get
canonically normalized kinetic terms for A(x) and 7j(x), the field shifts are succeeded by the
field redefinitions

We), i) — >ﬁ<w>, (3.24)

in (Y
fsm<f

where v; denotes the VEV of h. Using the short-hand notation

. ( h(z) - : fi(x)
sp(z) = sin () , Sp(x) = sin - )
" f ! fsin (%) (3.25)

() =\1-5@),  F) = \/1-5@),

SFor a detailed discussion of the mixing terms and field shifts, see [127].

100




3.1. GLOBAL ANALYSES OF COMPOSITE HIGGS MODELS

the NGB matrix Q(z) = Q(x) Q2(x) can then be expressed as

1
1
Qz) = ! ~ i~ ~
cn(2) () +55(x)  —(1— (@) 5y(2) Ey(@)  sn() Ey(2)
- @) H@EHE)  a@B@)+RE@ @) @)
—op(2) ) (2) —on(x) 5(2) ol

(3.26)

Turning to the fermion sector, a decomposition into SU(2)r, x SU(2)g multiplets similar

to the one in the MCHM can be performed. In particular, a field ¥(x) transforming under
the fundamental 6 representation of SO(6) can be expressed in terms of SU(2)r, x SU(2)g

multiplets as

QT (2) +Q (2)
QT (z) —iQ™ " (v)
1] Q@ (2)-Q " (2)
V= 5 o a0 | (3.27)
V251 (2)
V2 Sy (x)

where Q(z) is the same bidoublet as in the MCHM, while in contrast to the MCHM there
are two SU(2)r, x SU(2)R singlets Si1(z) and S2(z) present in the NMCHM. This has the
consequence that there is more freedom than in the MCHM for embedding the elementary
fields into incomplete multiplets of the global symmetries. The right-handed elementary fields
can actually be embedded both in the fifth and in the sixth component of the 6 multiplet,
which means they can have a mixing term with both Si(z) and S2(x). To account for this,

the right-handed composite-elementary mixings in the quark Lagrangian are replaced as

Aup Cur(@) = (A, Eor(x) + A, Ep())
Agy, Ear(z) — (AZR &r(x) + ASR Er(@)) .

where the matrices A2 , and AZR are in general different from AS , and ASR. The embeddings

(3.28)

of elementary fields into incomplete multiplets are then defined by

dy) ()
—id (x)

1 u(o) T

) . (3.29)
ZUL

) 523(1') =

0 Up (v)
0 0 up’(z)
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ul) ()

. &arlz) = . &ar(r) = (3.30)

0 Y (x)
0 0 d'y

§ar () =

Sl
[\]

-~

S

=5

S

8

SN—
o o O O

o O o o O

=

()
While the presence of two different mixing terms for right-handed quarks would introduce
an additional source of flavor violation in models with a left-compositeness flavor symmetry,
we have avoided this by assuming a U(Q)%C flavor symmetry in our analysis of the NMCHM.
Such a scenario has proved to be viable in our analysis of the MCHM, where different flavor
symmetries have been compared. The explicit mixing matrices used in the analysis of the
NMCHM are given in appendix

Analogous to the MCHM, one can construct mass matrices for fermions and vector bosons
using the above relations. These matrices are given in appendix An important differ-
ence to the MCHM is that they depend on both h and 7. Consequently, also the effective
potential is a function of h and 7. This can lead to mass mixing between these two scalars.
In particular, the scalar mass matrix is given by the second derivatives at the minimum of

the effective potential,

02  0:0; N
MSQ(:alar = ( h ho ) ‘/Yeff(haﬁ)

, (3.31)
0,0, 02

h=v;, ,i=vy

where v; denotes the VEV of 7). In the presence of non-zero off-diagonal terms, the mass
eigenstates h and 7 have to be obtained by diagonalizing this matrix and are given by linear
combinations of h and #.

It is interesting to note that due to the structure of the potential, the off-diagonal terms
vanish for vy = 0. Note that this does not imply a vanishing mass of 7. Interestingly, vy
strongly depends on the composite-elementary mixing matrices A2 o A5R, AS , and AgR. In
particular, for vanishing AZR and A237 also v vanishes and there is no mixing between 7)
and h. Furthermore, in the case vy = 0, the mass matrices shown in appendix resemble
those of the MCHM and all particles in the NMCHM that are not present in the MCHM
decouple. In this sense, the MCHM is contained in the NMCHM as a limiting case in the
limit v; — 0. The structure of the scalar potential in the NMCHM and this limiting case
are discussed in further detail in [127]. In general, it is assumed that 7 and h mix with each
other. In particular, the discussion of the collider constraints on 7 presented in section [3.3.3]
is actually only meaningful if v; # 0 such that 1 does not decouple and can be produced at

particle colliders.
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It should be noted that even in the absence of mixing, Wess-Zumino-Witten terms [232}
233] could induce couplings of 7 to gauge bosons. In particular, they can contribute to
the couplings nZZ, nW*W~, and nGG [234-236]. However, these contributions strongly
depend on the UV structure of the model, which is not specified in the effective approach
used here. Treating the contributions as free parameters in the numerical scan is pointless as
far as they are not correlated with other parameters. The minimization used in the scanning
procedure (cf. section could simply tune them to zero to avoid experimental bounds.
Consequently, these contributions are neglected in our numerical analysis and our bounds

should be considered as conservative.

3.2 Direct collider constraints

For being able to use direct constraints in the context of the numerical method described in
section [3.1.1] a central requirement on the numerical implementation of the direct constraints
is that it is reasonably fast. In particular, the time it takes to calculate the x? function
for all direct constraints should be @O(100ms). This can actually be achieved by relying on
experimental searches for narrow resonances that give bounds on the production cross section
times the branching ratio as a function of the resonance mass for specific decay channels.
Constraining a given parameter point then requires the calculation of cross sections and
branching ratios of all particles for which experimental searches should be considered. In
the above described models, this amounts to O(100) particle.{] (cf. the mass matrices in

appendix |[A.4) and requires some simplifying assumptions.

3.2.1 Simplifying assumptions

To make it possible to calculate all cross sections and branching ratios for O(100) particles

in less than a second, the following simplifications are made:

e For the production cross section of quark partners, only the model-independent NNLO
QCD pair-production is considered. To this end, the cross section is computed over
a wide range of quark partner masses with the HATHOR code [237]. The results are
used to construct an interpolating function that allows for a very fast calculation of the
pair-production cross section for arbitrary quark partner masses. However, this means

that single production and pair production via heavy gluon resonances are neglected.

Single production is relevant for heavy partners of SM quarks with a large degree of

compositeness, i.e. usually for the partners of top and bottom, and can yield consider-

"This large number is mainly due to the full flavor structure in the quark sector that implies several

composite partners for each SM quark.
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ably larger cross sections than pair production (cf. [238-247]). In addition, since only
one heavy resonance is produced, this requires less energy than pair production. Con-
sequently, the experimental searches for singly produced quark partners are sensitive to
higher resonance masses. While neglecting single production does not affect the results
obtained from considering experimental searches for pair produced quark partners, it

reduces the number of experimental analyses than can be used as constraints.

While pair-production via heavy gluon resonances does in principle affect the results
obtained from the considered experimental searches, these effects are assumed to be
very small [248]. Taking them into account would yield a slightly larger cross section
and thus stronger bounds. In addition it would also allow to set additional indirect
bounds on the heavy gluon partners (cf. [248-250]). However, this is beyond the scope

of the analyses presented here.

In the calculations of branching ratios and boson cross sections, the narrow-width
approximation (NWA) is used. While a narrow resonance is usually also assumed in
the considered experimental analyses, heavy resonances that are kinematically allowed
to decay to other heavy resonances can be very broad. Applying the same bounds to
broad resonances as to narrow ones is problematic because the experimental searches
are considerably less sensitive to broad resonances. Consequently, for such a broad
resonance, the experimental bound obtained with the NWA would be too strong. This
is taken into account by multiplying the x? value that corresponds to the bound on a
given resonance with mass mp and width I'r with a smooth functiorﬁ that is close to
one for I'p/mp < 5% and vanishes for I'r/mp > 5%.

All processes are only calculated to leading order. In particular, tree-level expressions
are used for the branching ratios of vector bosons and fermions and for the vector boson
production cross sections. For scalar branching ratios and production cross sections,
the loop induced couplings to gluons, photons and Z bosons are considered in addition
to the tree-level couplings to other particles. Especially the loop induced coupling to
gluons is essential for calculating the production cross section of neutral scalars that can
couple to quarks. In particular, the scalar n in the NMCHM is dominantly produced
via gluon fusion. In this case, also higher order QCD corrections are approximately

included by multiplying the gg — 1 production cross section by a K-Factor of 2.

8In the analysis in [2], actually a hard cut at I'r/mpr = 5% was used. This was changed in the analysis

in [3] because we found that it has the effect that for resonances with a width close but below 5%, the scan

tries to increase it above 5% to avoid the experimental constraints.
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e Only two-body decays are considered. While a coupling of a fermion to more than
two particles correspond to an operator of dimension larger than four and is therefore
suppressed, unsuppressed quartic couplings are in principle possible for vector bosons
and scalars. However, the only scalar resonance considered is 1 in the NMCHM, which
would have to decay to three Higgses. Because the mass of n is usually below 800 GeV
(cf. section , such a decay would be phase-space suppressed. Decays of heavy
vector bosons to three SM vector bosons on the other hand would require insertions of
three composite-elementary mixings and are thus also suppressed. Taking these effects

into account is beyond the scope of the analyses presented here.

e Only decays directly to SM particles are considered when setting bounds. In particu-
lar, decay chains involving several intermediate decays between heavy resonances are
not considered. However, this is not a strong restriction because the lightest heavy
resonances can only decay to SM particles for kinematical reasons. Since the exper-
imental bounds are stronger for smaller masses and the production cross section is
usually larger, these lightest heavy resonances usually yield the strongest bounds any-
way. It should be noted that decays of heavy resonances to other heavy resonances are
taken into account in the calculation of the total widths. This is important to derive

reasonable branching ratios.

3.2.2 Calculation of decay widths and branching ratios

A central aspect of deriving direct bounds on a given parameter point is to calculate decay
widths and branching ratios. The partial decay rate, or partial width, of a particle R decaying
to two particles ¢ and j is given by [209}251]

Mm%, m?,m?)
9y 9 7 _9
3 (Mris| (3.32)

16 mmy,

Iroij =

where mpg, m;, and m; are the masses of R, 4, and j, respectively, and the kinematic function
A is defined as |251]

Ma,b,¢) = a* + b* + ¢ — 2(ab + ac + be). (3.33)

In the above expression, m2 denotes the squared amplitude of the process that has
been averaged over the initial states and summed over the final states. In the following, this
will be just called the amplitude squared for convenience, but it should be understood that
the averaging over the initial states and the summation over the final states is implied. The

total decay rate, or total width, of the particle R is given by the sum over all of its partial
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widths, i.e.
Tr=> Trij. (3.34)
ij

This expression relies on the assumption that the total width can be sufficiently good ap-
proximated by summing only over all partial widths of two-body decays (cf. section .
The branching ratio for the decay of R into the particles ¢ and j is then simply the ratio of
the corresponding partial width and the total width

BR(R — Z]) = FR—n’j/FR- (3.35)

Consequently, even for calculating only the branching ratio of a single decay channel, it is
necessary to calculate all partial widths to get the total width. To this end, the following

decay channels are considered:
e A fermion resonance Ry decaying to

— a fermion ir and a vector boson jy,

— a fermion ir and a scalar jg.
e A vector resonance Ry decaying to

— two fermions ir and jp,
— two vector bosons iy and jy,

— a vector bosons ¢y and a scalar jg.
e A scalar resonance Rg decaying to

— two fermions ip and jp,
— two scalars ig and jg,

— two vector bosons iy and jy .

To calculate the decay widths for all these processes, the corresponding amplitudes are cal-
culated at tree level, except for the decay Rg — iy jy with at least one massless vector boson
in the final state, which is calculated at one loop.

Amplitudes for decays of fermion resonances

The generic tree-level matrix element for the decay Ry — if ji/, can be written as

Meppsip iy = €u(q;) ir(q) Y <9§F FIV P4 gﬁF eIV PR) Rr(qr), (3.36)
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where ng ‘FIV and ggp FIV are in general complex coupling constants and gg, ¢;, and g;
are the momenta of Rp, ip, and jy, respectively. Squaring, averaging over initial spins and

summing final spins and polarizations yields

2
2 1 Rrip jv 2 Rpipjv 2 (m? - m%%) 2 2 2
MRp—irjvl =59 { |9z + |9r ‘ R mi+mp —2m)

m;

—12m; mp (Reng iR Jjv Re ggF ipjv + Imng ipjv Im ggF iFjv)

(3.37)
The matrix element for the Rp — ip jg transition, where now the final state boson is not a

vector but a scalar jg, is given by
_ Roini Roin i
Mpp—ipis =17 (i) <9L“”S Pr, + gpt'ts PR) RF(qr)- (3.38)
After squaring, averaging over initial and summing over final spins, one finds

— 1 Rmimi 2 Reinmi 2 9 9 9

+4m; mp (Re ng iFjs Re ggF iFJjs +1Im ggF iFjs Im ggF i js)

(3.39)

Amplitudes for decays of vector resonances

The matrix element for a heavy vector boson Ry decaying to a fermion iz and an anti-fermion

jF is given by
My —ipjr = €.(qr) ir(q1) V" (gif IV P+ g RVPR> Jr(g2)- (3.40)

Squaring the matrix element, averaging over the initial polarizations and summing over the

final spins yields

iF jr Ry

. 2
1F]FRV‘ +
9R

_ 9 1
|MRV%2‘FJ'F| = 3{ <9L

+ 12m; m; (RegiLFjFRV RegngRV +ImgiLFjFRV ImgngR‘/)

2
2) 2 (mf—m?) P P
2mp — ——— .

(3.41)
For the decay of a heavy vector boson Ry to two light (but also massive) vector bosons iy
and jy, the matrix element is given by
My siy v = 97 enlar) enlas) eplas) {n” (af = @) +0 (a + @)+ (~afy — of) }.
(3.42)
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where ¢ is the coupling constant. When squaring the matrix element, summing over the final

polarizations and averaging over the initial ones, one finds

Ry iy jv )2 2 2,2
5 (g )" A(m%, mZ, m?)
MRy =iy | = T 2 L {m‘}% +m} +mj
Mg My My (3.43)

+10 (mEm? + mym? + m2m?) |,

where A(a,b,c) is defined in eq. (3.33]). The matrix element for a heavy vector boson Ry

decaying into a light vector boson ¢y and a scalar jg can be written as
My iy js = 9™ V75 € (ar) e (ki) ™, (3.44)

where in contrast to the dimensionless coupling constants used above, ¢®v " Js has mass
dimension one. Squaring this matrix element, summing over the final polarizations and

averaging over the initial ones yields

(ng ivjs)2

————2
MRy =iy js| = {m}%—km?—km}*—i— 10m% m? —Qm? (m% +m3) } (3.45)

2 2
12mRmi

Tree-level amplitudes for decays of scalar resonances

The matrix element for a heavy scalar Rg decaying to a fermion ¢p and an anti-fermion jg
is given by
_ R iR .
MRy sipjp = ir(q1) <gZL”F SPL+gg " PR) ir(g2)- (3.46)

Squaring the matrix element, summing over final and averaging over initial states yields

-, 2
|MRV*>iFjF| = < > (m%? - mlz - m?)

—4m; mg <Reg2FJFRS Regg]FRs +IngLFJFRS Img}{”RS) )

iFpjr Rs 2+ gngRS

9gr,

(3.47)

For the matrix element of a heavy scalar Rg decaying to two scalars ¢g and jg, summing over
final states and averaging over initial states is trivial. The matrix element and the matrix

element squared are simply given by
MRs—>i5j5 = gRS ZSJS» ‘MRS—M'SjS‘Q = (QRS ZS]S) ) (348)

where ¢f*s%sJs has mass dimension one. The matrix element for a heavy scalar Rg decaying

to two massive vector bosons iy and jy is given by

MEpgoiy iy = 9V IV €u(q;) €(g5) 0, (3.49)
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where ¢'v v fIs has mass dimension one. After squaring the matrix element, summing over
final states and averaging over the initial ones, one finds
2 _ (g RS)2 4 4 4 2.2 2 (2 2

2
4m; m;

One-loop amplitudes for decays of scalar resonances

The dimension five operator that couples a scalar Rg to vector bosons,
R (G5 Vi ) s
yields the following matrix element for a decay of the scalar Rg to vector bosons iy and jy:

R iR
MRs—iy v = 4euli) ev(q;) " (géfvf” s (qi” a —n"q- %‘) — o7V € gy g Qja) :

(3.52)

Squaring this matrix element, averaging over the initial states and summing over the final

ones yields
JE— . 2 i 2
(Mpgiy jy| =8mp ((géﬁjVRS) + (gégms) ) (3.53)

The effective couplings gi’" Rs and S Rs have mass dimension —1 and are generated at

one loop. The scalar coupling g'}”" Rs can receive contributions from both fermion and vector

boson loops, while the pseudoscalar coupling ggfjv Rs only receives fermion contributions.
The different contributions will be indicated by an additional subscript such that
R R R iR v R

i R S+ L+ L LT
The explicit expressions of the effective couplings depend on whether both final state vector
bosons iy and ji are massless or one of them is massive. To simplify the fermion contribu-
tions, it is convenient to define vector and axial vector couplings of the fermion k in the loop
by

1 1

kpkp X kpkp X kpkp X kpkp X kpkp X kpkp X
gVFF :§<gRFF +gLFF )7 gAFF :i(RFF _gLFF )7 (3_55)

where X € {Rg, iy, jv}. In addition, it is useful to define the color factor Ng of the fermion k,
where N](E = 3 for k a quark and Ng =1 for k a lepton. The individual loop contributions

depend on the kinematic variable

Ty =4k (3.56)
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For the case where both 7y, and jy are massless, the contributions from fermion loops are

given by
iv jv Rs m;=0 _ -1 k krpkpRs kpkpiyv krkrjv AF(xk)
off, F’ m;=0 " 16 12 mRi zk: N¢ gy v Gy Nen )
. i (22) (3.57)
~iy jv Rs|m:=0 __ - k krkrRs krkpiy kpkrjv 2AF\Tk
geff,F m;=0 16 72 mpg Z NC’ 9aA v v \/x—k ;
while those from vector boson loops are
R 1 kv ky Rs kv k ky k Av(mk)
gevjv S‘m]_o = 2 Z ghv kv Bs ghv Vlvg v kv jv o (3.58)

The loop functions Arp(zy), Ap(zy), and Ay (z1) are given in appendix
For the case where one of the vector bosons in the final state is massive, which is without

loss of generality chosen to be jy, the additional scale m; enters via the kinematic variable

2
yp = 4 k. (3.59)

2
iy jy Rg|mi=0 __ -1 . & k kF krp Rs kpkpiyv krpkpjv BF(;Ek?yk)
geffF m;#0 16 72 mp ( m%) Zk: N 9y 9y \/:C—k )
2 ~
giVjVRS m;=0 _ -1 m_] ZN]{; krkp Rg k‘kalv ngkF]V BF(xkayk)
eff, ’ m;#0 16 72 mpg m%% \% o )
(3.60)
while those from vector boson loops are
2
iv jv Rs 1 1_ m; ky kv Rs oy kv iv kv ky jv BV (Tks Yk)
ge ‘mJ;ﬁo 16 12 m ( m%{ g g g g iji- (361)

The loop functions Br(z), Br(zy) and By (x}) are given in appendix

3.2.3 Calculation of boson production cross sections

In contrast to the production cross section of quark partners, for which the model-independent
QCD result is used, the cross section of vector and scalar bosons has to be calculated for each
of them individually at each parameter point. However, to simplify this task, it is possible

to make use of the Breit-Wigner formula for the cross section of the 2 — 2 process ij — ki
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mediated by a resonance R with partial widths I'r;; and I'r_,;; and a total width I'r
(cf. [209,252L253]),

Srcr (1 + 51‘]‘) FR—n‘j LRk
S; Sj C; Cj (é—m%ﬁ —i—m%f‘%’

OijsRrR—k(8) = 167 (3.62)
where V/§ is the center of mass energy of i and j. The factors Sg, S;, and S; denote the
number of polarizations or spins of the particles R, ¢ and j, respectively, while cg, ¢;, and
c; denote their color multiplicity factors. In the calculation of I'g_,;;, the polarizations and
colors of R are averaged over while those of ¢ and j are summed over. In addition, a symmetry
factor of 2 is introduced if ¢ and j are identical final states. On the other hand, in the above
cross section, ¢ and j denote the initial states over which one wants to average and R denotes
intermediate states one wants to sum over. This is taken into account by introducing the
factors Sg, Si, Sj, cr, ¢i, ¢;, and (1 + J;5) in the above expression. In the NWA employed
here (cf. section , one can use ', < m% to approximate (cf. e.g. [252253])

1 N T

5(3 —m%). (3.63)

(§ — m%%)2 + m%l% - I'rmp
With this approximation, the above cross section simplifies to

167 SR CR (1 + (5”)
mp Sl Sj CiCj

Oijsnoki(8) = TR 0(3 —m%) BR(R — kl), (3.64)

where the branching ratio BR(R — kl) = I'g—41/T'r is introduced (cf. (3.35)). This suggests
to define the production cross section for the 2 — 1 process ij — R by
. 167‘(2 SRCR (1 + 52])

e = T 505 —m2). _
O—Z]_>R(S) mg S'L S] ci ¢ R—ij 6(8 mR) (3 65)

This expression is very convenient since all partial widths of the resonance R are calculated
anyway in the derivation of the branching ratios (cf. section . Consequently, the addi-
tional computing time for evaluating the cross section ;. r(5) is negligible. However, this
is not the final result for the production of resonances at a hadron collider. In this case, the

elementary initial state particles ¢ and j have to be partons of the colliding hadrons. Using
P1p2
ij

po with center of mass energy s, one can express the hadronic cross section as

the parton luminosity £;! (s, §) of partons i and j in a collision of the two hadrons p; and

ds . .
Op1 pa—R(S) = Z /S oij—R(8) ﬁlz?]?pz(s,s)_ (3.66)
i,J

The hadrons p; and po are two protons for collisions at the LHC, i.e. py ‘LHC = pg‘LHC =p,

while they are a proton and an anti-proton for collisions at the Tevatron, i.e. pl‘Tevatmn =p
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and po = p. In terms of the parton distribution function f;(x, u?) of a parton i with

{Tevatron
momentum fraction x at the renormalization scale u, the parton luminosity can be expressed

as

. Ldx . 5
L71P2(s,8) :[ — filz, 8)f; (m73> (14 0pips) (3.67)

/s T
where, importantly, a factor 2 is introduced for the LHC, where 6,, = 1, while this factor is
not present for the Tevatron, where d,; = 0. The parton luminosity has to be calculated for
each parton, each collider and each collider’s center of mass energy /s for the whole range
of possible parton center of mass energies v/§. This is done by employing the LHAPDF soft-
ware [254]. From the resulting parton luminositiesﬂ an interpolating function is constructed
that can be used in the parameter scan to efficiently calculate the hadronic vector and scalar
boson production cross sections. Combining eqgs. and , the final result for the

hadronic boson cross section used in our numerical code can be expressed as

Opr p2—R(S) = (3.68)

mp iSj Ci Cj S

].67TQSRCR Z 1"‘5”
7:7‘7‘ S

3.2.4 Applying the experimental bounds

As soon as the production cross sections and branching ratios of the particles in the considered
model are calculated for a given parameter point, one can use them to compare the predictions
to the experimental data. The experimental searches usually give bounds in terms of 95%
CL upper limits on the cross section oy, p,—r(s) times the branching ratio BR(R — ij) for a
given decay R — ij as a function of the resonance mass mp. This mass dependent observed
95% CL upper limit will be denoted by

{01 posi X BR(R — i7)}20% L (). (3.69)

observed

To use this bound in the numerical method described in section it has to be converted
into a x? value. To this end, it is assumed that the y? value scales linearly with the ratio
of the calculated o x BR and the observed 95% CL upper limit. In the case where both
are equal, i.e. where the calculated value is excluded at the 95% CL, this is interpreted as
x% = 4. With these assumptions, the x? contribution of a single experimental search can be
expressed as

9 Op po—R(8) BR(R — ij)

X-=4 > : (3.70)
{01 pasi X BR(R — i5)}20% CL ()

observed

9To be able to calculate the vector boson fusion (VBF) production cross section with the simplified approach
presented here, additional effective parton luminosities for the electroweak gauge bosons obtained by means

of the effective W approximation (EWA) [255H258]| are included into our numerical code.
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where o, p,»r(s) and BR(R — ij) are the calculated cross section and branching ratio for
a given parameter point according to sections [3.2.2] and [3.2.3] It should be noted that in
our numerical analyses, parameter points are only discarded if they violate any individual
constraint by more than 3¢, which corresponds to x2 = 9 (cf. section . Consequently,
they are actually allowed to violate the experimentally observed 95% CL upper limit by a

small amount. This can be seen in the plots shown in section

There is a peculiarity in the case of searches for pair produced quark partners. Depending
on the analysis, it is either assumed that exactly one, both, or at least one of the two quark
partners decays in the analyzed decay channel. In the first case, the expression in eq.
can readily be applied. In the other two cases, this expression is corrected by the following

replacements:

e BR(R — ij) — BR(R — ij)?

in the case of both quark partners assumed to decay to ij,

e BR(R —ij) = 1— (1 — BR(R — ij))*

in the case where one or both of the quark partners are assumed to decay to ij.

To be able to apply direct constraints in as many decay channels as possible, a large
number of experimental searches is included into our numerical code. These searches are listed
in appendix [A76.] for the analysis of the MCHM and in appendix[A.6.2]for the one performed
in the NMCHM. The experimental data for all these searches is, up to few exceptions, only
available in the form of so called “Brazil band” plots. Digitizing the large number of plots
by hand is tremendously tedious. Hence, the open source code svg2data [259] has been

developed to automatize this task.

3.3 Results

3.3.1 Quark resonances

Experimental searches for quark partners provide important bounds on CHMs. This is in
particular the case in models that require light quark partners in order to obtain the correct
Higgs and top masses (cf. e.g. [105,203H205]). The fact that we have only considered the
model independent QCD pair production in our numerical analyses is very convenient for
discussing the experimental bounds. It allows for readily recasting the experimental limits
on cross section times branching ratio into limits on the branching ratio alone. In figures 3.1}
and predictions for the branching ratios and masses of quark resonances lighter than

2 TeV are shown. Only resonances corresponding to viable parameter points are included

113




CHAPTER 3. DIRECT COLLIDER CONSTRAINTS IN CHMs

0.2

0.4

0.6
—~ 08
= 02 LHC 7 TeV
T 04 LHC 8 TeV

0.6
= 0.8

=

m 0.2

LHC 13 TeV
Predictions

RALL L S it
600 800 1000 1200 1400 1600 1800 2000

my [GeV]
5°
T o
9/ R
o
/M g,
. S~
UB)kc 2 < 3 . - <
600 800 1200 1400 1600 1800 2000
my [GeV] T
=
o~
m
="
T o
E .
=
[aa}
600 8(I)0 1000 71200 14IOO‘ IGI()O 18I00 2000
my [GeV]
= (). "5 '
0.6
?ﬁ/ 0.8|U(2)fm|
M o2l ' SRR 600 800 1000 1200 1400 1600 1800
0.4 4 Sl
0.6 T R my [GeV]
0.8 fUB)Rke : Sy g 5 o
600 800 1000 1200 1400 1600 1800 2000
my [GeV]
(a) (b)

Figure 3.1: Predictions for masses and branching ratios of up-type quark resonances. Ex-
perimental bounds from the LHC running at different center of mass energies are shown as
colored areas. Predictions and experimental bounds from the MCHM analysis are shown in
(a), while those from the NMCHM analysis are shown in (b). The experimental searches
included in (a) are listed in table while those included in (b) are shown in table
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in these plots. Various decay channels for up-type (figure , down-type (figure , and
exotically charged (figure quark resonances are shown. The experimentally observed
95% CL upper limits are included as colored regions in the plots. Note that due to the fact
that we have only excluded parameter points that violate an individual constraint by more

than 30, some of the predicted points actually already lie above the observed 95% CL upper

limits. Figures|3.1al [3.2a) and [3.3a] show the predictions and included experimental searches

for our scan of the MCHM, where threﬂ different flavor symmetry scenarios are displayed
in each of the plots, while figures [3.1D], [3.2b] and [3.3b] show the results for our analysis of the
NMCHM.

A main difference between the MCHM and the NMCHM is the presence of the scalar
resonance 7 in the latter. In the NMCHM, this implies additional decay channels involving

SM quarks. In particular, up-type quark resonances can decay to SM up-type quarks and an
71, and analogously for down-type quarks. With a new channel available, the branching ratios
of all other channels are slightly reduced. However, since there are many decay channels in
total, the overall picture is not considerably changed compared to the MCHM analysis.

While there can be up to 30 different resonances of a given quark type in the models
considered (cf. the mass matrices in appendix , the lightest resonances are the most
interesting ones from the phenomenological point of view. They are required to decay to SM
quarks for kinematical reasons and therefore have large branching ratios in the experimentally
analyzed channels. In addition, many of them are light enough to be already in reach of
LHC run 2. In particular, in the NMCHM analysis, we have observed that for 97% of the
viable parameter points, at least one quark resonance has a mass below 1.2 TeV. For masses
considerably above 1 TeV, most quark partners are therefore kinematically allowed to decay
to the lightest quark resonances. Due to these new decay channels opening up with higher
resonance masses, the branching ratios to SM particles decrease. This is a general feature
that can be observed in all of the plots in figures and

The strongest experimental bounds we have found are on up-type quark partners U that
decay to third generation quarks and a SM boson. In particular, the relevant decay channels
are U — bW, U — tZ and U — th. These three decay channels are the ones best covered by
experimental searches. It is interesting to compare the bounds used in the MCHM analysis to
those used in the NMCHM analysis. While only searches from LHC run 1 have been included
in the former, the latter also considered searches from LHC run 2. This is seen by comparing
the plots in figure with those in figure where the dark red regions correspond to

19 As already suggested by the discussion in section and analytical analyses of similar models (cf. [162,
171]), the U(S)ic scenario suffers from very strong constraints imposed by electroweak precision tests and
CKM unitarity. No viable parameter point that is actually able to satisfy these constraints has been found

for this scenario in our numerical scan.
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Figure 3.2: Predictions for masses and branching ratios of down-type quark resonances.

Experimental bounds from the LHC running at different center of mass energies are shown

as colored areas. Predictions and experimental bounds from the MCHM analysis are shown

in (a), while those from the NMCHM analysis are shown in (b). The experimental searches
included in (a) are listed in table while those included in (b) are shown in table
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run 2 searches. While the overall picture does not change considerably between the MCHM
and the NMCHM analyses, the early run 2 searches included in the latter actually already
probe the viable parameter points. One finds many points to be adjacent or even above the
95% CL upper limits. This is in contrast to the analysis of the MCHM, where LHC run 2 data
was not yet available, and the parameter space is barely probed by the direct quark partner
searches. While also more experimental searches for down-type quark partners D have been
included into the NMCHM analysis compared to the one of the MCHM, corresponding data
from LHC run 2 was not yet available. However, one observes that the decay channels to
third generation quarks, i.e. D — tW, D — bZ and D — bh, also offer good prospects to
probe large parts of the viable parameter space with LHC run 2 searches (cf. figure .

While many experimental searches are available for decay channels involving third gen-
eration SM quarks, only few consider decays to the light first and second generation quarks.
Actually, for the parameter scans of the MCHM and the NMCHM, only searches with a light
quark and W boson in the final state were available (cf. figures and . However,
any model with a full flavor structure, which features quark partners for all three generations,
generically predicts also heavy quark resonances decaying to light SM quarks. In particular,
we find very light resonances with masses below 750 GeV that dominantly decay to quarks of
the first two generations and are virtually unconstrained by direct experimentally searches.
This is interesting because they can presumably be probed by analyzing already available
experimental data. Interestingly, in our NMCHM analysis, essentially all quark resonances
with very light masses below 750 GeV are found to be mainly composed of the singlets So and
S, and to decay dominantly to a light SM quark and the Higg (cf. the XY = gh-channels
in figures and . The gh decay channels are thus by far the most promising ones to
search for the very light unconstrained quark resonances that could have masses as low as
500 GeV.

In figure predictions and experimental bounds are shown for the exotically charged
quark resonances. Due to their charges, their decays to SM particles always has to involve
a W boson. This considerably reduces the number of possible decay channels compared to
the up-type and down-type quark resonances. One might assume that this leads to very high
branching ratios for decays to SM quarks, at last for the lightest exotically charged quark
resonances. However, since their mass cannot be lowered by mixing with SM quarks, the
exotically charged quark resonances are generically heavier than the up-type and down-type
quark partners. Consequently, already the lightest exotically charged quark resonances are

usually kinematically allowed to decay to up-type and down-type quark resonances. Still, as

11 The fact that the singlet resonances coupled to light quarks can themselves be very light and dominantly

decay in virtually unconstrained channels involving the Higgs boson was already noted in [243].
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Figure 3.3: Predictions for masses and branching ratios of charge 5/3 (first row) and charge
—4/3 (second row) quark resonances. Experimental bounds from the LHC running at differ-
ent center of mass energies are shown as colored areas. Predictions and experimental bounds
from the MCHM analysis are shown in (a), while those from the NMCHM analysis are shown
in (b). The experimental searches included in (a) are listed in table[A.2] while those included

in (b) are shown in table

can be seen in figure many of them have a considerably large branching ratio and a mass
around 1 TeV, which allows them to be probed by LHC run 2 searches.

It is a very interesting general result of our analyses that most of the viable parameter
points we have found can presumably be probed by direct searches for quark partners with
LHC run 2 data. Among all constraints considered in our analyses, these searches therefore
have the arguably highest potential to observe or exclude our viable parameter points in the

near future.

3.3.2 Vector resonances

The models considered in our analyses contain neutral and charged electroweak resonances

as well as a gluon resonance. The mass of the latter depends on the NGB decay constant
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fa and is therefore independent of all other resonance masses (cf. section . Hence, the
numerical scan can choose it to be relatively heavy. In addition, it couples strongly to quark
resonances, which usually makes it very broad and substantially decreases the branching
ratios of decays to SM quarks. Consequently, to search for pairs of quark partners produces
via a gluon resonance [248/250] is arguably the best way to search for it. However, as already
mentioned in section this is beyond the scope of the analyses presented here. The
following discussion therefore focuses on the neutral and charged electroweak resonances.

In contrast to the quark sector, where one usually encounters strong mixing, the vector
bosons only moderately mix with each other. Hence, it is reasonable to associate each mass
eigenstate with a corresponding gauge eigenstate it is mainly composed of. In the following,
the mass eigenstates will therefore simply be denoted@ by the name of their corresponding

gauge eigenstate.

Charged electroweak resonances

The MCHM contains the three charged resonances pf w pﬁ W and aff. While the first two
have very similar masses, the latter is always heavier. This can be understood by taking a
look at the mass matrix in eq. ({A.21)), where one finds that the mass term of af is enhanced
by a factor f2/f* compared to the other resonanceﬁ In the NMCHM, one finds the same
resonances pf u and pﬁ , 88 in the MCHM but two resonances associated with a bidoublet
(cf. section : aliﬂ and azi#. The resonance aét# is very similar to a* in the MCHM and

“w
its mass term is also enhanced by a factor f2/f2. The resonance aliu on the other hand has

a mass similar to those of pfu and pjlsu (cf. eq. (A.29)).

When it comes to the collider phenomenology, the only relevant resonance in both models
is ij[ = it is the only one that has a considerable Drell-Yan production cross section. The
cross sections of the other resonances are significantly smaller. In a large part of the parameter
space, the pf u is heavy enough to be kinematically allowed to decay to quark resonances; this
then reduces its branching ratio to SM particles. The largest branching ratios to the latter are
found for ij[ p W2z and pf u Wh. Predicted valuesiﬂ of cross section times branching
ratio for these channels are shown in the two upper plots in figure [3.4. One observers that

12Tt might be useful to stress that while the same names are used for mass eigenstates and for the gauge
eigenstates these mass eigenstates are mainly composed of, the mass eigenstates also contain other gauge
eigenstates to a smaller degree. In our numerical code, of course the full mixing matrix is diagonalized to
yield the mass eigenstates.

3 Note that f=2 = f;72 + f5 2 and thus fo > f.

140nly plots containing predictions in the NMCHM are shown as they feature bounds from the LHC
running at 13 TeV that were not available for the analysis of the MCHM. However, it should be noted that

the phenomenology of pr . is very similar in both models and the same conclusions can be drawn.
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Figure 3.4: Experimental bounds from ATLAS and CMS and predictions from viable parame-

ter points of the pf u production cross section times the branching ratio into W Z (upper-left),

Wh (upper-right), e*v, (lower-left) and tb (lower-right). The experimental analyses shown
in the plots are listed in table

120




3.3. RESULTS

while approximately equal, the branching ratios in the Wh channel are slightly larger than
those for WZ. However, the experimental searches are slightly more sensitive in the WZ
channel, such that the bounds are very similar. For both channels, the prospects are good
to probe viable parameter points by future LHC searches. While the branching ratios in the
pf s e*v, channel are at least one order of magnitude smaller than those for decays to
WZ and Wh, the experimental searches are more sensitive by a similar factor (cf. lower-
left plot in figure . The situation in the piﬁ s ,uiuu channel is essentially the same.
Consequently, in addition to the decays to W Z and Wh, also decays to e*v, and uiyu are
promising for probing viable parameter points. While the branching ratios for the decay to
tb are similar to those of the leptonic decays, the experiments are far less sensitive, such that

this decay channel is not very promising for probing the parameter space (cf. lower-right plot

in figure .

Neutral electroweak resonances

The MCHM contains the five neutral uncolored resonances p?}J o p% W a/?;, aﬁ, and X,,. The
resonances pi . and p?]’% ., have masses very similar to each other. Like the charged resonance
aff, also the neutral resonances ai, and aﬁ have a mass enhanced roughly by a factor of
f3/f* compared to p? ., and % . (cf. eq. (A.19)). The fifth resonance X,, is special in the
sense that its mass depends on the NGB decay constant fx and on the coupling gx, which
are both independent of the decay constants and couplings entering the masses of the other
resonances. Therefore, it can be considerably lighter than the already relatively light p% u

and p?j% o it can have a mass between those of the light p% " and p% u and the heavy az and
o
extended by the resonances a3 , and ai ,» While the heavy resonances a3 . and a3 , correspond

3
o

resonances a

a,, and it can also be the heaviest resonance. In the NMCHM, the list of light resonances is

to a? and aﬁ in the MCHM. The additional resonance pg, has a mass similar to the heavy

3
2p

Not all of the above states are relevant for the collider phenomenology. The resonance
ai in the MCHM and a‘llw a%w and pg, in the NMCHM do not mix with any of the other

states and are usually heavy (cf. egs. (A.19) and (A.27))). This makes them irrelevant for the

3
1p

the NMCHM do mix with Wlso) and B&O), the mixings are suppressed by at least one factor

and aéu.

collider phenomenology. While the resonances ai in the MCHM as well as a$ , and a3 p i
of sp and their production cross section is very small. Consequently, the only resonances
relevant for the collider phenomenology are in both models p‘z s p?j% s and X,.

The case where X, is the lightest resonance is kind of special. While the mass of heavy
electroweak resonances is bounded from below due to their contributions to the electroweak

S parameter, this bound does not apply to a linear combination of resonances that couples to
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Figure 3.5: Experimental bounds from ATLAS and CMS and predictions for the neutral
vector resonance production cross section times the branching ratio into ¢t (top-left), eTe™
(top-right), WW (bottom-left) and ZH (bottom-right). We show values for the resonances
Xy, ,0% u and p‘;’% u for the viable parameter points. The experimental analyses included in
the plots are listed in table
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the same quantum numbers as the photon. Interestingly, in the case gx < g,, such a linear
combination is mainly composed of X, and at the same time X, is light. This explains
why X, can appear as a very light resonance even though the S parameter is included as
constraint in our global analyses (cf. section . In the case where X, is the lightest
resonance, its production cross section is much larger than those of the other resonances.
The blue dots in the plots in figure show predictions for the production cross section of
X, times its branching ratio for the most important decay channel. Since X, only mixes with
B,(P) and not with Wlso), the branching ratio of its WW decay channel is strongly suppressed.
A similar suppression is found for the Zh channel since X, can couple to h only via its mixing
with B,SO). These suppressions can be seen in the two lower plots in figure ﬁ Because X,
couples to composite quarks, and top quarks usually have a sizable degree of compositeness,
the by far largest branching ratio is found for X, — ¢t. The upper-left plot in figure
shows that the predictions for many viable parameter points are close or even above the 95%
CL upper limits. Thus, the ¢t channel is very promising for probing the region of parameter
space where X, is the lightest resonance. Even though X, can couple to leptons only via its

&0)’ the resulting suppression of the branching ratio can be compensated by

mixing with B
the high sensitivity of experimental searches in the dilepton channel. As a consequence, the
bounds in this channel are even stronger than those in the ¢t case. As shown in the upper-
right plot in figure the experimental searches are already probing the viable parameter
space with searches in the eTe channel. The situation is very similar in the T channel,

for which no plot is shown here.

While the ¢t and dilepton channels are the most promising ones in the case of X, being
the lightest resonance, this changes if X, is heavier than p% u and ,03R - In this case, the latter
two resonances can play the most important role in probing the parameter space. Both mix
with W(©) and can directly couple to the Higgs. Consequently, the branching ratios in their
WW and Zh channels are not strongly suppressed like they are for X,,. The two lower plots
in figure 3.5 show that for the WW and Zh channels, the predictions of cross section times
branching ratio are not far away from the experimental bounds, especially for p?i - While
the predictions are approximately similar for both channels, the experimental analysis in the
WW channel has a higher sensitivity compared to those in the Zh channel, such that the
former channel might be more promising. In general, one observes that cross section times
branching ratio is slightly larger for p% u than for p:;’% - While this effect can be seen in the
diboson channels, it es even more pronounced in the dilepton case. As can be seen in the
upper-right plot in figure the predictions for the p% u eteT channel are already close

to the experimental bounds.
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To summarize the results found for the above two cases, the prospects for observing or
excluding our viable parameter points are always high in the dilepton channel, while they
are also high in the ¢¢ channel if X, is the lightest resonance and in the diboson channels if

p% , 1s very light.

3.3.3 The scalar resonance 7 in the NMCHM

While the phenomenology of the vector and quark resonances is very similar in the MCHM
and the NMCHM, there is a clear distinction between both models. This is the presence
of the scalar resonance n in the latter. Since 7 is a pNGB, it is usually much lighter than
the other resonances. Only in some small regions of the parameter space, very light quark
partners can be slightly lighter than 7. Its mass m,, is predicted to be below 790 GeV for
75% of the viable parameter points, while no point with m, above 1300 GeV has been found
by our numerical scan. The couplings of 1 to SM particles stem from the mixing with the
Higgs. As noted in section these couplings completely vanish in the absence of mixing
in the scalar sector. In the presence of mixing, however, they are always similar to those of
the Higgs. Hence, it is reasonable to expect that the dominant production mechanism of 7
at a hadron collider is the same as for the Higgs, which is gluon fusion. The box plot[T_5] in
figure shows that this assumption is correct. This plot shows ranges of values of the 7
hadronic cross section in different production channels normalized to the total hadronic cross
section of 1. In particular, r,(g9g9) = o(pp — g9 — n)/o(pp — n) > 0.93 is found for 75% of
the viable parameter points, while for 50% of the viable points, one even finds 7,(gg) > 0.99.
This clear dominance of the gluon fusion production mechanism is not due to a coupling
of the 1 to gluons that is orders of magnitude larger than those to other particles. The
reason is rather that gluons are abundantly available in a hadronic collision. As detailed in
section the hadronic cross section is calculated from the partonic cross sections and the
parton luminosities (cf. eq. ) The latter strongly depend on the considered parton. To
visualize this, figure shows the parton luminosities for a partonic center of mass energy
V§ = mp for different combinations of partons as a function of the mass of the produced
resonance mpg. One observes that the parton luminosity for two gluons is two to three orders
of magnitudes above those of the bb and c¢ pairs, which usually give the second and third

largest contribution to the hadronic cross section. The effective parton luminosities for WW

15Tn the box plot, the dashed orange lines show the total range of values that are predicted by the viable
parameter points, the blue boxes show the range of values omitting the 25% smallest and the 25% largest
values, which is also called the interquartile range. 50% of the parameter points predict a smaller value than
the one shown by the red line, which is called the median. While statistics vocabulary is used here to describe
the viable parameter points, it should be stressed that no statements are made about the probability of finding

specific values.
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Figure 3.6: (a): Box plot of the 1 production cross section in different channels relative
to the total production cross section. For each channel, the plot shows the total range (as
dashed orange line), the interquartile range (as blue box), and the median (as red line inside
the box) of values from viable parameter points. For an explanation of interquartile range
and median, see footnote (b): Parton luminosities for ij = gg, c¢, bb and effective parton
luminosities for ij = WW, ZZ for the LHC with /s = 13 TeV.

and ZZ are again around three orders of magnitudes below those of bb and c¢, such that their
contributions to the production cross section are even more suppressed. The contributions
from light quarks on the other hand are negligible due to their tiny Yukawa couplings. (cf.
figure .

Another important property of the parton luminosities is that they substantially decrease
for larger resonance masses mg. This dependence of the parton luminosities on the resonance
mass is one of the main reasons for the difference between the phenomenology of n and the
Higgs. While n has couplings very similar to those of the Higgs, it is usually substantially
heavier. Consequently, its production cross section is suppressed due to comparatively small
parton luminosities. This can be further illustrated by directly comparing cross sections and
parton luminosities in 1 production to those in Higgs production. To this end, the blue dots
in figure [3.7a] show the ratio of the hadronic gluon fusion cross section of 7 to the one of the
Higgs as a function of m,, for viable parameter points. In addition, the yellow line shows the
ratio of the gg parton luminosity at m,, to the one at the Higgs mass. While the ratio of the

hadronic cross sections can clearly be above or below the yellow line, which just means that

125




CHAPTER 3. DIRECT COLLIDER CONSTRAINTS IN CHMs

1005 T T T I _E 100_& T T T T T I I I I_E

3 B 0pp—g9—n/Tpp—gg—h 3
T Lgg(s,mn)/Lag(s,125GeV) |3 1071

1071 ]
2 | cwep :

. _
-2 | E
1 :\ 1 = 107f H E
[ 4 \ - ] ]
10—3 _Q / t’i% . . T 1074 [ E
i & g - 1 & ]
1041 ) j % we | & 1077 H E
e i m ]
E - - 5 105 | H :
1075 3 3 1077 ]
— 13TeV 1 5
10~6 | ! | -8 [ i ] i | ] ] ] ] L]
200 400 600 800 1000 1200 hh tt WWZZ bb gg cc Ny Z~y S5

my, [GeV] XY

(a) (b)

Figure 3.7: (a): Ratio of the hadronic production cross section via gluon fusion of 7 to the
one of the Higgs (blue dots) and ratio of gluon-gluon parton luminosities with v/5 = my
to the one with v/ = 125 GeV. (b): Box plot of the n branching ratios of different decay
channels. The usually very small up and down quark branching ratios are not included. For

an explanation of the features of a box plot, see footnote

the partonic gluon fusion cross section of 7 is larger or smaller than the one of the Higgs, its
maximal value at a given mass m,, decreases with a similar slope as the parton luminosity
ratio. For the bulk of the viable parameter points, one finds the gluon fusion cross section of
7 to be suppressed by at least one to two orders of magnitude compared to the gluon fusion

cross section of the Higgs.

Since the couplings of 1 are similar to those of the Higgs, also the decay channels are
similar. However, the fact that m,, is generically larger than the Higgs mass has important
implications. In particular, an 7 with a mass m,, 2 200 GeV can decay to on-shell WIW and
ZZ pairs. With a mass m,, 2 250 GeV, it can decay to a pair of Higgses. And for a mass
my 2 350 GeV, the decay channel to a ¢ pair opens up. For most viable parameter points,
actually all of these decay channels are kinematically available. Predictions of branching
ratios in all relevant decay channels are shown as a box plot in figure The by far largest
branching ratio is usually the one of the  — hh channel. The nhh coupling is obtained from
a third derivative of the effective potential and is usually large if there is considerable 7 — h

mixing. The large branching ratio of the n — hh channel significantly reduces the branching
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Figure 3.8: Experimental bounds from ATLAS and CMS and predictions from viable param-
eters points of the n production cross section via gluon fusion times the branching ratio into
hh (top-left), vy (top-right), ZZ (bottom-left) and WW (bottom-right). The experimental
analyses shown in the plots are listed in table @
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ratios of the other channels. The h — tt channel has usually the second largest branching
ratio, which for most viable parameter points is smaller than the one of the n — hh channel
by one to two orders of magnitude. The branching ratios of decays to weak gauge bosone{ﬂ
bb, and gluons are usually roughly one order of magnitude smaller than the one of the tf
channel. The decays to first and second generation quarks and the loop-induced decays to
uncolored neutral vector bosons are even more strongly suppressed.

The large branching ratio found for  — hh suggest that this channel should be promising
for probing the viable parameter points. As shown in the upper-left plot in figure this is
indeed the case. The blue dots in this plot show the predicted gluon fusion cross section of
7 times the branching ratio in the » — hh channel as a function of m,,. The green and red
lines show the 95% CL upper limits observed by ATLAS and CMS, respectively. Many viable
parameter points are actually found predict values close to the experimental bounds. This
decay channel is thus by far the most promising one to probe the parameter space already
at LHC run 2. However, even though the branching ratios for the other decay channels are
significantly smaller, this can be compensated to some degree by a higher sensitivity of the
experimental searches. In particular, the channels n - ZZ and n — WW shown in the two
lower plots in figure [3.8] are especially promising for probing parameter points predicting a
very light ) that is kinematically not allowed to decay to two Higgses. Other decay channels
are less promising. In the upper-right plot in figure predictions and experimental bounds
for the » — 77y channel are shown. Even though the experimental searches are sensitive
to much smaller values of cross section times branching ratio than in the afore mentioned
promising channels, the predicted values for most viable parameter points are at least two
orders of magnitude below the bounds. However, given the tiny branching ratio of the n — ~~
channel, this is not surprising. The situation is very similar in the 7 — Z~ channel for which
no plot is shown. While the decays to third generation quarks actually do have a much larger
branching ratio, the experiments are less sensitive in these channels, such that the bounds
are actually even further away from the predictions than in the v+ channel.

To summarize, the prospects for excluding or observing viable parameter points are by
far the best in the 7 — hh channel, while the diboson channels are also interesting especially

for a very light n that cannot decay to two Higgses.

16Contrary to what one might expect from the Goldstone boson equivalence theorem, the nWW and nZZ
couplings are substantially smaller than the nhh coupling. This is due to the facts that the latter stems from
the n — h mixing and the longitudinal polarizations of W and Z do not mix with 7.
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Anomalies in rare B decays

In the absence of direct evidence for new particles at the LHC, the arguably best way to
search for NP is to look for indirect effects. Among the most promising indirect probes of
NP are rare meson decays involving FCNCs. With their SM contribution being suppressed
both by a loop factor and small CKM elements, these processes are very sensitive to NP
contributions. The rare B-meson decay B — K*u™p~ is an important example, whose key
role in the search for NP at the LHC has been emphasized by several authors over the last
two decades (cf. [260-264]). The angular distribution of its decay products yields several
angular observables, among which the one called S5 seems to be especially promising [264,
265). To reduce its form factor uncertainties, a differently normalized version of S5 has
been suggested in [266] and called P.. Its first measurement by the LHCb collaboration
in 2013 already showed a tension with the SM prediction at the level of about 3o, only to
be confirmed by an analysis of the full LHCb Run 1 data in 2015 [51]. In addition to P,
tensions with the SM predictions have also been found in branching ratio measurements of
the decays B — K®putp~ and By — outp~ [49,/50]. Analyses of these tensions by several
groups [45-48,52H54] have since shown that they are all compatible with a NP explanation
in terms of a contribution to a single WC in the WEH. Recently, also ATLAS [267] and
CMS [268] presented preliminary results for their measurements of B — K*u*u~ angular
observables, including the full Run 1 data set. In [4], we have performed a numerical analysis
of rare B meson decays that are based on the b — suu transition, where we have taken into
account also the new results by ATLAS and CMS. This analysis is presented in section

Unfortunately, the NP explanation of the B — K*u™p~ anomaly has some trouble.
Despite progress on improving the B — K* form factors [269-271|, hadronic effects still
cannot be ruled out as the origin of this anomaly. In addition, the significance of the devia-

tions depends on the uncertainties in both form factors and non-factorizable hadronic effects
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(cf. [272H278]). However, in ratios of branching ratios [55-57] like

B(B — Kpu*p”) B(B — K*pu~)
B B(B — Kete™)’ R B(B — K*ete™)’ (41)

and differences of angular observables [279-281] like
Dpr = Pi(B = K*'u*tp™) — Pj(B — K*ee™), (4.2)
Dp; = Pi(B— K*u"u~)— PiB — K*ete™), (4.3)

the dependence on hadronic effects and uncertainties cancel to a large degree, such that these
observables are theoretically much cleaner. A NP effect that affects all lepton generations
equally, i.e. one that is lepton flavor universal, cannot be found by measurements of these
observables. However, the SM itself satisfies LF'U to an excellent degree over a large range
oﬂ q?, where one finds R = Rg+ = 1 and D p,=D p =0 with only very small uncertainties
(cf. [41[282] and section[4.3.2). An observed deviation from these values would thus be a clear
sign of NP.

While there is no 50 observation yet, several measurements actually show tensions with
the SM prediction. The LHCb collaboration has measured both Rx and Rg+. Their Rx
measurement found [58],

RIS = 0.74510:9% 1 0,036, (4.4)

where the superscript specifies the range of the ¢? region, or bin, in which the measure-
ment was performed. This corresponds to a 2.60 deviation from the SM prediction. Their

measurement of R+ in two different ¢® bins found [59],
RO _ 0 664011 4 0,03, (4.5)
1.1,6 .
RN = 069791 +0.05, (4.6)

which corresponds to deviations from the SM prediction by 2.4 and 2.50, respectively. The
observables Dp; and Dp; have been measured by the Belle collaboration, finding [283]

Dgﬂ = 0.498 + 0.553, (4.7)
1,6
DEDs, } = 0.656 £ 0.496,, (4.8)

which has still large uncertainties. However, given that the three LHCb measurements all
show tensions with the SM prediction, an interesting question is if they are compatible with
one other and what implications a confirmation of these results would have. To this end, we
have performed a model-independent analysisﬂ in [5] to interpret these tantalizing hints for
NP. This analysis is presented in section

142 is the dilepton invariant mass squared.
?Several other groups have also performed similar analyses [284}287].
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4.1 Weak effective Hamiltonian and numerical method

On the quark level, all of the above processes are due to b — s (with ¢ € {e, u}) transitions.
Assuming that any NP that could contribute to these transitions is sufficiently heavy, it can
be described model-independently by the WEH Hyeak = Hweak,sM + Hweak,Np- The part
of the WEH that contains NP contributions to WCs of semi-leptonic operators relevant for

b — slf processes is

4G
Huenionp = \[FthV}slG 5 Z CrOp + CLOY) + hec.. (4.9)

Here Cﬁ and C,/f are defined such that they vanish in the SM. The operators considered in

the following analyses are

0§ = (S, PLb)(Iy*0),  Off = (v, Prb)(1y"0) ,
Ofo = (57, PLb)((4"y50) . Ofy = (57, Prb) (1" 5L) .

While four-quark operators containing b and s can also contribute to b — sf¢, and especially

(4.10)

certain b — c¢s operators might be interesting in light of the P! tensions [28§], they are not
considered here. Also not considered are scalar semi-leptonic operators and dipole operators.
The former are strongly constrained by measurements of the B; — uu and By — ee branch-
ing ratios [289,290] (cf. also e.g. [291]), and the latter by inclusive radiative B decays (cf.
e.g. [292]). When considering LFU observables, the latter are irrelevant because they cannot
lead to LFU violation (LFUV).

To find possible explanations of the b — su™p~ anomaly and the hints for LFUV in
terms of NP contributions to the WCs Cé/)é and Cﬂ))e, one can employ the open source
code flavio [293]ﬂ This code is able to perform a x2-fit that uses certain simplifying
assumptions, implemented by the FastFit class and first proposed in [52]. This fit method
can be described as follows. First, a x? function is constructed that quantifies the difference
between measured observables combined into a vector éexp and theoretical predictions of
these observables combined into a vector Gth- The latter in general depends on the NP
contributions to the WCs one wants to include in the fit, which can be combined into the

vector CNP. The x? function thus also depends on CNP and reads
= - - = T . A - - =
XQ(CNP) = [Oexp - Oth(CNP) [Cexp + Cth]_1 [Oexp - Oth(CNP) ) (411)

where Gth(éNp ) and Gexp contain only the central values of the theory predictions and ex-

perimental measurements. The experimental and theoretical uncertainties are taken into

3For another open source code for flavor physics, see E0S [294].
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account in terms of the covariance matrices Cexp and Cth. These matrices contain all uncer-
tainties and publicly known correlations of experimental measurements as well as all theory
uncertainties and correlations. The minimum of the x? function yields the best-fit point, i.e.
the value of CNP for which the theory predictions have the best agreement with the exper-
imental measurements. In constructing the above x? function, the FastFit class in flavio

makes simplifying assumptions concerning the covariance matrices:

1. All uncertainties are assumed to be Gaussian when combining them in terms of the

sum of Ceyp and Cyy,.

2. The non-zero NP contributions CNF are assumed to have a negligible impact on the

theory uncertainties and correlations in Cyy,.

The latter assumption is the main reason for FastFit being fast. It only requires to perform
the time consuming numerical calculation of the covariance matrix Cyn once for vanishing
C_"NP, i.e. at the SM point of the parameter space. After this is done, Cin can be used
for evaluating the x? function at arbitrary values of CNP . Without assumption the
covariance matrix would have to be calculated again for each value of éNP, and thus the
computing time would increase substantially. While it is in general not guaranteed that the
NP contributions to the covariance matrix Cyy are negligible, this has been found to be a
very good approximation in most cases (cf. [52]). However, especially for a best-fit point
significantly differing from the SM point, one should check the viability of the method by at
least recalculating Cin at the best-fit point.

With the minimum of the x? function denoted by X%est_ﬁt, it is convenient to define
AXQ(CNP) = X2(CNP) - X%est—ﬁt? (412)

i.e. the difference between the value of the x? function at a given point CNP and its minimum
at the best-fit point. This difference Ax? can be converted into a pull in o, which for the case
of a one-dimensional CNF is simply given by \/TXQ . For the n-dimensional case, the pull can
be evaluated using the inverse cumulative distribution function of the x? distribution with n
degrees of freedom. Taking e.g. n = 2, a pull of 1o, 20, and 30 corresponds to Ay? ~ 2.3,
6.2, and 11.8. Usually, one is mainly interested in the pull of the SM point, i.e. the pull of
AX%M = AX2(6)-

4.2 The b — su™p~ anomaly

In [4], we have performed a numerical analysis of b — su™u~ processes using the method
described above, where we have considered NP contributions to the WCs Cé/)“ and C%g” .

The observables that we have included are
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e Angular observables in BY — K*u*u~ measured by LHCb [51], ATLAS* [267],
CMS* [268,205,296], and CDF [207],

o BY%* — K*0%+,~ branching ratios by LHCb* [49/298], CMS [295/296], and CDF [297],
e BY%* — KO% %~ branching ratios by LHCb [49] and CDF [297],

e Bs — ¢utp~ branching ratio by LHCb* [50] and CDF [297],

e By — ¢utu~ angular observables by LHCb* [50],

e the branching ratio of the inclusive decay B — X u™p~ measured by BaBar [299],

where the collaborations marked by an asterisk have released new results since the global
fit performed in [52]. A comment is in order concerning the angular observables in B® —
K*9ut = measured by LHCb and ATLAS. They both have measured the S; observables and
the P! observables. We have used the measurements of the P; observables for our fit but
have explicitly checked that the results are not significantly affected by this choice.

There are observables of b — s u™ ™ processes that we have explicitly not included into

our fit. These are
e lepton-averaged observables, as we want to focus on NP in only b — su™u™,

e B — K ptpu~ angular observables, which are only relevant in the presence of scalar

and tensor operators (cf. [300]),

e the Belle measurement of B — K*utu~ angular observables [283], as it contains an

unknown mixture of B? and B* decays,

e the LHCb measurement of A, — Ap™p~ [301], as its central values are not compatible

with a viable short-distance hypothesis, and its uncertainties are also still large [302],

e measurements of By — uTu~, as it can be affected by scalar operators not taken into

account in this analysis.

All the observables we have included are measured in bins of ¢?. We have only taken into
account measurements in bins of ¢ where the theoretical predictions are reliable and where
only the operators Og)“ and Ogg“ dominate the effects. In particular, we have excluded the

following bins:

e Bins below the .J/1 resonance that extend above 6 GeV?2, as calculations based on QCD

factorization are not reliable in this region [303].
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e Bins above the 1)(29) resonance that are less than 4 GeV? wide. In this region, theo-
retical predictions are only valid for observables integrated over a sufficiently large ¢>
interval [304].

e Bins with upper boundary at or below 1 GeV?, as this region is dominated by dipole

operators.

The calculations that are used for the theoretical predictions are implemented in the
flavio code. They are discussed in detail in [52,271]. Compared to the earlier analysis
in [52], improved predictions for B — K* and By — ¢ form factors [271] and B — K form
factors [305] have been included into the code. This significantly reduces the uncertainties

in the B — K form factors.

4.2.1 New physics in individual Wilson coefficients

We have first performed one-dimensional fits in specific directions of the four-dimensional
parameter space of NP contributions to Cé/)“ and Cfg” . These directions correspond to the
four WCs C’él)“ and C}Q” and four linear combinations of them. All these scenarios with
their best-fit points, 1 and 20 ranges and the pull at the SM point are shown in table

The following observations can be made:

e The scenario with a NP contribution only to C} has clearly the strongest pull, slightly
above 5o. The value of the best-fit point for this scenario is consistent with earlier fits
that did not include the ATLAS and CMS measurements. While the significance has
increased with respect to earlier analyses (in [52], a pull of 3.90 has been found for
the same scenario), this is not mainly due to new experimental data included in the
present analysis, but can be traced back to the updated form factors and their smaller

uncertaintied?

e The scenario with NP only in C}|, gives an improved fit compared to the SM. However,
its significance is considerably smaller than in the CJ scenario. It is interesting to
note that the By — p™p~ branching ratio that was not included in the fit due to its
dependence on scalar operators is also affected by C1,. In particular, the best-fit value
in the CY;, scenario would imply a suppression of the By — pu*p~ branching ratio by
about 35%.

e The scenario with NP in C§ = —C{, has a significance slightly smaller, but similar to
the Cl case. This scenario corresponds to NP that only couples to left-handed muons,
which can be realized in CHMs (cf. chapters [5] and [6)).

“The fact that the updated form factors increase the tension was also pointed out in [306].
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Coeff. best fit lo 20 pull
OF —-1.21 [—1.41, —1.00] [-1.61, —0.77]  5.20
lofs +0.19 [—0.01, +0.40] [~0.22, +0.60]  0.90
cih +0.79 [+0.55, +1.05] [+0.32, +1.31]  3.40
o —0.10 [—0.26, +0.07] [—0.42, +0.24]  0.60

O = Cfy —0.30 [—0.50, —0.08] [~0.69, +0.18] 1.30
Cl = -Cl —0.67 [~0.83, —0.52] [—0.99, —0.38]  4.80
G =0l +0.06 [~0.18, +0.30] [-0.42, +0.55]  0.30
Oyt = —-Cf +0.08 [~0.02, +0.18] [—0.12, +0.28] 0.80

Table 4.1: Best-fit values with their 1o and 20 ranges and pulls in sigma between the best-fit

point and the SM point for scenarios with NP in one Wilson coefficient.

e The orthogonal direction C§ = CY|y provides only a marginally improved fit compared
to the SM.

e All scenarios with NP in only one of the primed WC, i.e. right-handed quark currents,
do not lead to a significantly better fit than the SM.

In light of the large tensions, it is interesting to investigate the contributions from different
measurements. To this end, we have repeated the fit for the scenario with NP only in C§ for

several subsets of the data:

e Including only the measurements of the By — ¢u' ™~ branching ratios, one finds a pull
of 3.50.

e Considering only the B® — K*9;% ;= angular analysis by LHCb leads to a pull of 3.0c.
e All branching ratio measurements together yield a pull of 4.60

e The new measurement of the B — K*°u*u~ angular observables by CMS reduces the

pull, while the ATLAS measurement increases it.

Obviously, the branching ratio measurements play an important role in the large significance
of the global fit. They are, however, strongly dependent on the form factors. Considerably
underestimated uncertainties of these form factors might be a source of the discrepancies.

To estimate the impact of a possible underestimation, we have repeated the fit for the C¥
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Coeft. best fit pull
©F, ©h (~1.15, +0.26)  5.00
cl, Cd' (—1.25, 4+0.59)  5.30
conek (—1.34, —0.39)  5.4o
g, Oty (+0.25, +0.83)  3.20
ey, CF (+0.23, +0.04)  0.50
ch, c (+0.79, —0.05)  3.00

Table 4.2: Best-fit values and pulls in sigma between the best-fit point and the SM point for

scenarios with NP in two Wilson coefficients. For the first two cases, the best-fit regions are

shown in figure

scenario with doubled uncertainties either of the form factors or of the non-factorizable
hadronic corrections (see [52] for details on these different uncertainties). In the former case,
we found a reduction of the significance from 5.20 to 4.00, and in the latter case from 5.2¢0
to 4.40. This indicates that underestimated uncertainties are probably not the only source

of the discrepancies.

4.2.2 New physics in a pair of Wilson coefficients

Next, we have performed two-dimensional fits in planes of pairs of WCs. The different
scenarios together with their best-fit points and the pulls at the SM point are shown in
table One observes that all scenarios that allow for a non-zero NP contribution to C¥
yield a pull of around 50, similar to the case with NP only in CJ. So allowing for directions
in addition to C} does not improve the fit considerably. The scenarios allowing for NP in
C4,, and one of the primed WCs improve the fit slightly compared to the SM, similar to the
case with NP only in Cf,. A NP contribution only to the primed WCs cannot improve the
fit significantly.

For the first two scenarios in table i.e. NP in either C’g and C’fo or in C{f and C,
contours of constant Ay? are shown in figure . The best-fit point and the 1o, 20, and 30
contours are shown for the global fit. In addition, the best-fit points and the 1o contours are

shown for four fits with only a subset of the data. These four fits only include respectively
e the new measurement of BY — K*9u* = angular observables by ATLAS,

e the new measurement of B® — K*Ou* ;= angular observables by CMS,
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Figure 4.1: Two-dimensional constraints in the plane of NP contributions to the real parts
of the Wilson coefficients C} and C%, (a) or C and Cg* (b), assuming all other Wilson
coefficients to be SM-like. For the constraints from the B — K*u™p~ and By — ¢utpu~
angular observables from individual experiments as well as for the constraints from branching
ratio measurements of all experiments (“BR only”), the 1o (Ax? ~ 2.3) contours are shown,

while for the global fit (“all”), the 1, 2, and 30 contours are shown.

e the angular analysis of B — K*0u* = and B, — ¢utp~ by LHCD,
e the branching ratio measurements by all experiments.

One observes that the cases including only a subset of the data are all compatible with the
global fit at the 1o or 20 level. While the angular analysis by CMS is compatible with the SM,
all other measurements show deviations. Due to their precision, the LHCb measurements of
the angular observables and branching ratios dominate the global fit. This leads to allowed
regions similar to those in previous analyses irrespectively of the new measurements by
ATLAS and CMS (cf. e.g. [52]). One finds no significant preference of the global fits for
non-zero NP contributions to either Cf, or C’é“ in the two scenarios shown in figure This
conclusion is similar to the one drawn above from comparing the pull of the two-dimensional
cases including NP contributions to C¥ to the one-dimensional case with NP contributions

only to C¥'.
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Figure 4.2: Allowed regions in the Re(C¥)-Re(Cl,) plane (a) and the Re(CH)-Re(Cy')
plane (b). In red the 1o, 20, and 30 best fit regions with nominal hadronic uncertainties.
The green dashed and blue short-dashed contours correspond to the 3¢ regions in scenar-
ios with doubled uncertainties from non-factorizable corrections and doubled form factor

uncertainties, respectively.

To again estimate the impact of underestimated hadronic uncertainties, we have per-
formed two-dimensional fits for the scenarios shown in figure but with doubled uncer-
tainties either of the form factors or of the non-factorizable hadronic corrections. In the
scenario with NP allowed in C§ and CYj, the pull is reduced from 5.0¢ to 3.70 and 4.1c,
respectively. In the scenario with NP allowed in C} and CH. the pull is reduced from 5.3¢
to 4.10 and 4.40, respectively. The best-fit points and 30 contours of the cases with doubled
uncertainties are shown together with the best-fit points and the 1o, 20, and 30 contours
of the global fit in figure One observes that doubling the uncertainties is not sufficient
for the SM point to lie inside the 30 contours. Thus, like the one-dimensional fits, also the
two-dimensional fits suggest that underestimated uncertainties are not the only source of the

discrepancies.

4.2.3 New physics or hadronic effects?

Any hadronic contribution to the B — K*Ou*u~ helicity amplitudes that is photon me-
diated can in general be expressed by a ¢? and helicity dependent contribution to C’g‘ : the
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Figure 4.3: (a): Preferred 1o ranges for a new physics contribution to Cj from fits in different
¢* bins. (b): Preferred 1o ranges for helicity dependent contributions to C¥ from fits in
different ¢? bins. The dashed diagonal line corresponds to a helicity universal contribution,

as predicted by new physics.

photon couples to leptons via a vector current and the flavor-changing quark transition
requires a left-handed current in the SM. Underestimated hadronic effects could therefore
mimic a NP contribution to C§. While a NP contribution is per definition ¢* and helicity
independent, there is, however, no reason to expect that this is also the case for a hadronic
contribution. In fact, it is likely that hadronic effects in the A\ = + helicity amplitudes are
suppressed [307] and there is no reason why they should be of similar size in the A = 0 and
A = — amplitudes. So one would in general assume that an effect in C§ due to hadronic effects
is helicity dependent. Furthermore, underestimated hadronic effects e.g. from charm loops
are in general expected to show a non-trivial ¢ dependence. Another interesting possibility
that could mimic a NP effect in C} is NP contributions to b — c¢s operators (cf. [275]288]).
While the shift in C§' would in this case be helicity independent up to correction of order s
and Agcp/mp, it would have a non-trivial ¢> dependence.

To test whether the B® — K*9u% i~ measurements actually show a preference for a ¢?
or helicity dependent shift in C}, we have performed fits in individual ¢? bins including only
these measurements. The bins of ¢* considered areE| [0.04,2.5], [2.0,4.3], [4.0,6.0], [6.0,8.7] in

®The overlaps in the bins are due to different experiments using different binning.
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GeV?2, respectively. While the latter bin is not included in the NP fits due to the unreliability
of the estimation of hadronic effects in this region, it is used here to explicitly look for hadronic
effects that mimic a shift in Cj. In a first fit, equal contributions to the different helicity
amplitudes have been assumed, while in a second fit also helicity dependent shifts have been
allowed.

The results of the first fit are shown in figure While the significance of the tension is
more pronounced in the bins above 4 GeV?, this is expected due to the higher sensitivity of the
observables to C} in this region. One observes that every individual bin shows a preference
for a negative shift in C} that is compatible with a ¢? independent shift Cl ~ —1.2 at the
1o level.

In figure the 1o contours from the second fit are shown in the ACY ~-ACY 0 plane
for each individual bin, where ACH ™ and ACY % denote the contributions to the A = —
and A = 0 helicity amplitudes, respectively. The contours show perfect agreement with the
assumption of a helicity universal shift, i.e. ACY ™~ = ACY 0, Furthermore, the results for the
individual contours corresponding to different ¢ bins are all consistent with each other.

Consequently, neither a preference for a dependence on g2 nor on helicity is shown by the
experimental data. While this is an intriguing result, no robust prediction can be made at
present about the precise properties of possible hadronic effects. Therefore, they cannot be

excluded as the actual source of the discrepancies in b — s ™y~ transitions.

4.3 Hints for violation of lepton flavor universality

While hadronic effects could in principle be responsible for the b — s u™u~ anomaly, devi-
ations in LFU observables are clear evidence of NP. Accordingly, in [5] we have performed
an analysis similar to the one presented in the previous section but taking into account all
measurements of LFU observables available so far. In particular, we have first performed
“LFU-only” fits that only include the LFU observables

e Ry measured by LHCD [5§],
e Ry measured by LHCD [59],

e Dp; and Dp; measured by Belle [283].

Subsequently, we have performed global fits, where we have considered all b — sputpu~
observables included in the fits in section the LFU observables listed above, and in
addition

e the By — ™ p~ branching ratio measured by CMS [308] and LHCb [289] (assuming no

NP contribution to scalar operators),
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Coeft. best fit lo 20 pull
cl ~1.56 [—2.12, —1.10] [-2.87, —0.71]  4.lo
clh +1.20 [+0.88, +1.57] [+0.58, +2.00] 4.20
Cs +1.54 [+1.13, +1.98] [+0.76, +2.48] 4.30
C% —1.27 [—1.65, —0.92] [—2.08, —0.61] 4.30

Ch =-C1 —0.63 [—0.80, —0.47] [—0.98, —0.32] 4.20
s =—-CY +0.76 [+0.55, +1.00] [+0.36, +1.27] 4.30
Ce = C5, ~1.91 [~2.30, —1.51] [~2.71, =1.10]  3.90

Table 4.3: Best-fit values with their 1o and 20 ranges and pulls in sigma between the best-fit
point and the SM point for scenarios with NP in one Wilson coefficient when considering
only LFU observables. Scenarios with NP in only primed WCs are not shown; they cannot
improve the fit compared to the SM (cf. discussion in main text and figure .

e the B — X eTe™ branching ratio measured by BaBar [299).

4.3.1 New physics in one or two Wilson coefficients

In our fits, we have allowed for NP contributions to the eight WCs Cé/)e and Cﬂ))e, with
¢ € {e, nu}. The results of one-dimensional “LFU-only” scenarios that can describe the data
significantly better than the SM are collected in table . Contours of constant Ay? ~
2.3,6.2,11.8 in the plane of two WCs are shown in figures [4.4a] [4.4b] 4.5a), and [4.5b| for
the scenarios with NP in C§ and Cf,, C and Cf', C4 and C}, as well as C} and C§,

respectively. One observes that all scenarios in table have a pull of around 40 and

involve NP contributions to WCs corresponding to left-handed quark currents. In particular,
a negative NP contribution to C§ and/or a positive NP contribution to C}, improves the
agreement with the data significantly; this corresponds to a decrease in both B(B — Kyt ™)
and B(B — K*utp™). A positive NP contribution to C§ and/or a negative NP contribution
to Cf, yields a similar result; this corresponds to an increase in both B(B — Kete™) and
B(B — K*ete™). The above cases can be combined in terms of approximate flat directions

that give an excellent description of the data,
Chy—C§—Cly+Ciy~—14, (4.13)

at least if the absolute value of a single WC is not much larger than 1. These flat directions
are also visible in the plot in figure and both plots in figure While right-handed
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Figure 4.4: (a): Re(C§)-Re(CY,) plane showing 1, 2, and 3o contours from the “LFU-only”
fit. (b): Re(C¥)-Re(Cy) plane showing the 1o contours of fits including only Ry or Rg+ in
green and yellow, respectively, and the 1, 2, and 30 contours for the “LFU-only” fit in blue.
In addition, the contours of the b — suu fit described in section are shown in dotted gray.

muon currents (C§ = C})) cannot describe the data (cf. figure , a sizable contribution
to right-handed electron currents (C§ = Cf, =~ —2 or +3) yields a good fit (cf. table
and figure . NP contributions to only primed WCs, which correspond to right-handed
quark currents, cannot improve the agreement with the data. It is well known [57] that they
shift Rx and Ri+ away from 1 into opposite directions. However, the data prefers Rx and
Ri+ both being smaller than 1. For a NP contribution only to Ci, the impossibility of
accommodating the measurements of both Rx and Rk~ can be observed in figure [4.4bf a
negative NP contribution to Cé“ is required for an agreement with the Rx measurement,
while a positive contribution is required to accommodate the Rx+ measurement. So while
each individual measurement of either Ry or Ri~ could be explained by NP in right-handed
quark currents, both measurements together exclude this possibility. However, the plot in
figure shows that in the presence of a sizable negative CY, a non-zero C’é“ can improve
the fit; similar improvements can be found for other combinations of primed and unprimed
WCs.

In addition to the blue contours showing the results of “LFU-only” fits, the plots in
figures 4.4 and [4.5] also show dotted gray contours of the b — suu fits described in section
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Figure 4.5: Allowed regions in the Re(C§)-Re(C%,) plane (a) and the Re(C¥)-Re(C)
plane (b). The 1o, 20, and 30 contours are shown for the “LFU-only” (blue), the b — sup
(dotted gray), and the combined global fit (red). The plot on the left also shows the 3o

contour of a global fit with quintupled non-factorizable hadronic uncertainties (dashed red).

(except for the plot in figure that does not involve muons). Intriguingly, the “LFU-
only” fits are fully compatible with the b — spup fits. Consequently, the combined global
fits shown as red contours prefer a non-zero NP contribution with very high significance. As
detailed in section the global fit is, however, subject to possibly underestimated hadronic
uncertainties. To estimate their impact, the plot in figure shows a red dashed line for
the 30 contour of the global fit with non-factorizable hadronic uncertainties inflated by a
factor 5 compared to the nominal uncertainties. In this case, the global fit gets dominated
by the LFU observables. However, even with these huge uncertainties, there are still relevant
constraints coming from to the b — sup observables. For example, the best-fit point of the
“LFU-only” fit with NP only in Cf;, implies a 50% suppression of the By — uu branching
ratio, which is already in tension with current measurements [289] (assuming no NP in scalar
WCs interfering). Furthermore, the inclusion of the b — suu observables strongly favors NP
in the muon WCs over NP in the electron WCs. While a non-zero contribution to an electron
WC can still improve the global fit in the presence of a sizable muon WC (cf. figure , the
b — sup data of course cannot be explained by NP only in electron WCs. In this sense, the
ambiguity due to the flat directions, eq. , is lifted by taking into account the b — suu

143




CHAPTER 4. ANOMALIES IN RARE B DECAYS

1.0 A r* _# 1.0
0.9 0.9 1
0.81 — SM 0.8 1 — M
- Cl=-16 3 Cl=-16
< I <
&= e C§=+16 &3 C5=+16
071 — Oy =+13 0-71 —— Clje=hiss
—m C=-13 e Cfy=-13
06 1 — Ch=—Cly =0T 06 1 — Ch=-Cly =01
e O =—C5y = 0.7 e O =—C5y = 0.7
0.5 1 ) 4 LHCb 0.5 1 flavic <4 LHCb
0 5 10 15 20 00 25 50 75 100 125 150 175
¢* [GeV?] ¢ [GeV?]
(a) (b)

Figure 4.6: The LFU ratios Ry (. in the SM and various NP benchmark models as function
of ¢?>. The error bands contain all theory uncertainties including form factors and non-
factorisable hadronic effects. In the region of narrow charmonium resonances, only the short-

distance contribution without uncertainties is shown.

data, and a NP contribution to C§ seems unavoidable for explaining the hints for LFUV and

the b — sup anomaly at once.

4.3.2 Predictions for LFU observables

While including b — suu observables into the fit can single out certain scenarios, it is inter-
esting to investigate if this can be done by LFU observables alone. To this end, predictions
of several NP scenarios for Rix and R+ as well as Dp; and D p; are shown in figure and
figure respectively.

The plots in figure show that in the SM, a ¢® independent Rx = Rg+ = 1 is a very
good approximation over a large range of ¢>. For very low ¢?, both Rx and R+ drop to zero
due to phase space effects. While NP contributions to any of the considered WCs yield a
virtually constant, ¢> independent shift of Ry, the observable Rg+ on the other hand shows a
non-trivial ¢? dependence in the presence of NP. The main reason for this difference between
Ry and Ry~ is that in contrast to B — K{T/~, the decays B — K*{*{~ are dominated
by lepton flavor universal dipole operators at low ¢2. Hence, in this region, all NP scenarios
yield a prediction for Rg~+ close to its SM value. Comparing Ry and R+, it is possible to
distinguish some of the different NP scenarios in the case of sufficiently precise experimental
data. For instance, while a NP contribution to C1g predicts larger deviations from the SM in
Rg+ than in Ry, a NP contribution to Cy has the opposite effect. This has the consequence

that the current measurements have a slight preference for the C}, over the C} scenario: a
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Figure 4.7: The B — K*¢/*¢~ LFU differences Dp; and Dp; in the SM and various NP

benchmark models as functions of ¢2. Concerning the error bands, the same comments as

for Fig. apply.

positive C, predicts 1 > Rg > R~, which is in accordance with the measurements, while a
negative CY predicts 1 > Rg+ > R. However, the differences between the C¥ and the CY,
scenarios are tiny and distinguishing them would require high experimental precision.

This is quite different for the observables D P and D Pl for which predictions are shown
in figure While they are close to zero for a large range of ¢2 in the SM, they both show a
non-trivial ¢*> dependence in the presence of NP. Compared to the LFU ratios Rx and R+,
the LFU differences Dp; and Dp; allow a much clearer distinction between different scenarios.
In particular, a positive CYj, predicts positive values for Dp; at low ¢ < 2.5 GeV?, while a
negative CY predicts negative values in the same region; a similar behavior can be seen for
electron WCs of opposite sign. Considering D p;, one observes that a positive CY, yields small
negative values, while a negative C} corresponds to sizable positive values. Interestingly, D P
even allows for distinguishing between C} and C§: for ¢®> > 5, a negative Cl can lead to a
sizable increase in Pé” , while a positive C§ can only slightly decrease P¢. This is due to the
SM value lying already close to the model-independent lower bound of P! = —1, such that a
NP contribution cannot decrease it much further.

Although the SM predictions for the LFU observables have only tiny uncertainties, form
factor and other hadronic uncertainties actually do play a role in the presence of NP. However,
they are still small enough such that sufficiently precise measurements could allow for a clean

distinction between different NP scenarios.
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in composite Higgs models

In light of the significant tension between the SM and experimental measurements of LFU
observables (cf. section , it is interesting to ask which NP model is actually capable
of explaining the discrepancies. Many more or less ad hoc models are able to do this by
generating the WCs Cé and C’fo at tree level from the exchange of a heavy neutral gauge
boson [52,309-314] or of spin-0 or spin-1 leptoquarks [57,[310}315-317]. However, it is more
difficult to accommodate the experimental central values in more complete models that also
solve the naturalness problem of the SM. In particular, it has been shown that this is not
possible in the Minimal Supersymmetric Standard Model (MSSM) [52]. While it has been
known that CHMs featuring composite leptoquarks can explain the data [318], we presented
an arguably more simple mechanism in [1] that is only based on partial compositeness of
SM particles and allows for an explanation of both a violation of LFU and the b — sutpu™
anomaly. This mechanism was later found to be at work also in extra-dimensional construc-
tions [319//320] and models with fundamental partial compositeness (cf. [6/287] and chapter|[6]).
This mechanism is described in the present chapter.

As is shown in chapter |4, very good fits to the experimental data on b — sutu~ and
LFU observables can be achieved by (cf. tables and

e negative C and all other WCs SM-like, corresponding to a vector-like muon current:

ch <o, (5.1)

e negative Cl and positive CY, of the same absolute size, corresponding to a left-handed

muon current:

Cl =—-Cf, <0, (5.2)
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Figure 5.1: (a): Z exchange. (b): p exchange with p-muon coupling due to Z-p mixing.

(c): p exchange with p-muon coupling due to muons mixing with their heavy partners.

where the same convention as in chapter [4| is used, i.e. C{; and Cﬁ) are defined such that
they vanish in the SM. The WCs of the WEH in eq. that are due to FCNCs can arise
only at one loop in the SM. In models with partial compositeness, on the other hand, mixing
of elementary and composite fields allows them to be generated already at tree level. For a
b — s{T{~ transition, there are the three possibilities shown in the diagrams in figure
where p denotes a composite spin-one state that can mix with the Z boson. In the first case,
figure a flavor-changing Z coupling for the left-handed quarks is induced by the mixing
with composite states. The lepton-Z coupling is SM-like in this case and yields Cf, > C¥'.
This is obviously not the contribution that is able to explain the b — sp*u~ anomaly.
Moreover, the coupling to leptons is flavor universal. The second possibility, figure
is the exchange of a heavy p resonance with a coupling to quarks due to the same mixing
terms as in the first case and a coupling to muons due to its mixing with the Z boson.
Since this p-muon coupling has the same structure as the Z-muon coupling, one again gets a
lepton-flavor universal contribution with Cf, > C¥. However, there is a third case, which is
shown in figure While this again corresponds to the exchange of a heavy p resonance
like in the second case, the p-muon coupling in this case is not due to the p-Z mixing but
due to the muons mixing with composite lepton partners. Interestingly, this coupling can
actually violate lepton-flavor universality if the degrees of compositeness vary among the
lepton generations. In addition, different degrees of compositeness of left- and right-handed
leptons allow for different chirality structures of the generated operators. In particular, the
case Cl < 0 could be realized if the degrees of compositeness of left-handed muons s, and of
right-handed muons s,,, are both sizable. However, as detailed in section the SM-like
effective Yukawa coupling of partially composite fermions is proportional to their left- and

right-handed degrees of compositeness, i.e.

YMSM ~ Yécomp Sur Sur> (5.3)
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where YHSM is the Yukawa coupling of muons in the SM and Y;°™" is a composite sector
lepton Yukawa coupling generically of O(1). So to actually get a Y;’M of the correct size to
reproduce the muon mass, s,, and s,, cannot both be sizable. While this excludes the case
with only C¥' < 0 and all other WCs SM-like, the second case C§ = —Cf, < 0 actually only
requires a sizable degree of compositeness s,, of the left-handed muons. This seems to be

possible and is further investigated in the following.

5.1 A simple model of partially composite muons

To explore the consequences of an explanation of the b — sf¢ flavor anomalies in terms
of left-handed muons with a sizable degree of compositeness, it is useful to consider an
explicit model. However, it is not necessary to construct a complete multi-site CHM. The
following discussion merely requires partial compositeness of fermions and vector bosons and
is independent of the actual structure of the Higgs sector. Still, there are some basic properties
that should be fulfilled by the model. First, as discussed in the beginning of chapter [2] any
viable CHM should have a custodial symmetry that protects the ratio of the W and Z boson
masses from large corrections. It is therefore reasonable to assume a global SU(2)1, xSU(2)g =
SO(4) symmetry only broken by hypercharge and fermion composite-elementary mixings.
As is well known, using the SU(2)r generator T%, for generating U(1)y does not allow an
embedding of the composite partners of quarks into SO(4) multiplets (cf. e.g. [104] and
section. A commonly employed solution is to add an additional U(1)x symmetry with a
generator X and then to define the hypercharge generator Y as in eq. , ie. Y = T% +X.
The global symmetry of the model is thus chosen to be SU(2), x SU(2)gr x U(1)x. Like
partial compositeness of quarks induces the flavor-changing Z coupling in figure a
sizable degree of compositeness of muons generically modifies the Zuu coupling. But the
Z-lepton couplings are strongly constrained by the Z boson’s partial widths measured at
LEP [219]. This can result in a severe tension between experimental data and any model
containing leptons with a sizable degree of compositeness. A similar problem is encountered
in section in the quark sector: For the top quark to have a large Yukawa coupling, the
composite-elementary mixing of the third generation’s left-handed quark doublet has to be
sizable. This also affects the left-handed b quark and generically leads to a tension between
the predicted Zbrby, coupling and LEP data. As discussed in section the tree-level
contributions to the Zbyb;, coupling can be avoided by a discrete Prr symmetry, also known
as custodial protection of the Z coupling [228|. Interestingly, the same kind of protection
can be applied to the lepton sector [321] and allows for protecting the Zuruy, coupling. The
custodial protection restricts the possible representations of SU(2)1, x SU(2)g under which the

149




CHAPTER 5. VIOLATION OF LEPTON FLAVOR UNIVERSALITY IN CHMs

composite leptons transform. Following [228|, the left-handed elementary muons are required
to mix with composite leptons L transforming as a (2,2)¢ under SU(2);, x SU(2)r x U(1)x,
and the right-handed elementary muons mix with (1, 3)y composite leptons E. The custodial
Prr symmetry then requires the introduction of a second triplet (3, 1)g, which is denoted by

E’. With this choice of representations, the Lagrangian of second generation leptons reads
Li=1GD) + pr(iD)ur
+ E(ZD — mL)L + E(ZD — mE)E + E/(ZD — mE)E/,

where the covariant derivatives D,, contain the couplings of elementary leptons to the elemen-

(5.4)

tary SM-like gauge fields and of composite leptons to the composite resonances associated
with the SU(2), x SU(2)g x U(1)x symmetry{l] The corresponding mixing terms in the
lepton sector are given by
Lmix = Aptr[xr L] + Agtr[xr Er]
+ Yy tr[LLHER] + Y] tr[H L EY)
+ Yrtr[LrRHEL] + Y} tr[HLRE})]
+ h.c.,

(5.5)

where 1, and y g are incomplete (2,2) and (1, 3)¢ multiplets into which the elementary left-
and right-handed muons are embedded. For simplicity, the Higgs doublet is embedded into a
(2,2)p bidoublet H and not treated as a pNGB. While the generalization to an actual pPNGB
CHM is straightforward, it is not necessary for the discussion of muon partial compositeness.
The composite-elementary mixings Ay and Ap yield, analogous to section the degrees
of compositeness s, and s,,, (cf. eq. (2.163)), and Y7, Y/, Yr, and Y}, are Yukawa couplings
of the composite sector. In the mass basis, the above Lagrangian induces a mass term for
the muon,

Yr

My 2\/5 <h> Sur Sur s (5'6)

where (h) is the Higgs VEV. Analogous mass terms for neutrinos as well as flavor mixing in

the lepton sector are omitted here for simplicity.

5.2 Constraints from electroweak precision tests

While the Zurpy coupling can be protected from tree-level correctionsE] by employing the

discrete Prr symmetry, other couplings of muons and electroweak gauge bosons are also

!The simplest realization of this model in terms of a multi-site CHM is a two-site model with one level of

spin one resonances in an adjoint of H = SU(2)r x SU(2)r x U(1)x, cf. section
2The custodial protection does not forbid loop-level corrections to the Zpurpz coupling. While they might

be relevant in a complete analysis [322], this is beyond the scope of the proof of concept presented here.
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Figure 5.2: (a): Constraints at 1o, 20, and 30 on the modification of the Fermi constant in
muon decay relative to the SM versus a NP contribution to the electroweak T' parameter.
(b): Tree-level correction to the Fermi constant due to a shift in the tree-level Wurv,r,

coupling.

modified by partial compositeness and not protected by the Ppr symmetry. In particular,
the custodial protection is not active for the Wpurv,; coupling. This affects the muon
lifetime and leads to a shift in the Fermi constant G, which is extracted from muon decay.
The experimentally allowed shift in the Fermi constant depends on other possible deviations
of electroweak precision observables [323]. In particular, the constraint on G is strongly
correlated with the constraint on the electroweak 7' parameter. Following [323], one finds
the constraints on a shift in the Fermi constant and the 1" parameter shown in figure
In CHMs, the T parameter receives loop-contributions that depend on details of the quark
sector, which are not specified in the simple model presented here. Anyway, a shift in the
Fermi constant that is induced by a sizable s,, can be translated into a required shift in
the T parameter. For instance, allowing the Fermi constant to deviate by 3o, the maximally
allowed negative shift 6Gr/Gr ~ —1.6 - 1073 suggests T ~ —0.1. At tree level, the shift in

the Fermi constant due to the modified W v, 1, coupling can be calculated from the diagram
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in figure To leading order in ¢ = v?/f? and Sy, one ﬁndsﬂ

0Gr 59[L/|/,W 1 9 m%
— - - 14+ —£ . 5.7
Gr gILT’W 4 5Ly m2, (5.7)

This shift is actually always negative, and for fixed s,, and £ it has its smallest absolute
value in the case mp > mjy. Assuming this favorable case, a maximally allowed negative
shift §Gr/GFr ~ —1.6-1073 translates into an upper bound on the left-handed muon’s degree
of compositeness

Sup S 0.086742, (5.8)

There is yet another coupling of weak gauge bosons to leptons that is not custodially

protected: the Zv, v, coupling also receives corrections already at tree level. At leading
order in s, and &, they are equal to those of the Wy v, coupling,

39%,,  O9%
gZVV — gWFW ’ (59)

L L
9Zvw gW,uu

which is a generic property of models with custodial protection of the Zurp coupling
(cf. [228]). The modification of the Zv,rv,; coupling leads to a shift in the invisible Z
width that can be expressed in terms of the effective number of light neutrino species N, and
is given by
095
Ny, =3+2—F%. (5.10)
9Zuvv

Interestingly, its measurement at LEP shows a 20 deviation [219],
N, = 2.9840 + 0.0082. (5.11)

Since the contribution from the modified Zv, v, coupling is always negative in the model
considered here (cf. eq. (5.7))), it actually improves the agreement with the data.

5.3 Constraints from quark flavor physics

Any model that tries to explains the b — s¢¢ anomalies in terms of a tree-level exchange of
a heavy spin one resonance necessarily implies a flavor changing tree-level coupling of this
resonance to left-handed quarks. Such a coupling inevitably leads to the contribution to

B,-B, mixing shown in the diagram in figure This contribution can be parameterized

3In this simplified model, f plays the same role as in a full CHM; it sets the mass scale of the composite
2 2
resonances. In particular, the masses of the vector resonances p are assumed to fulfill mi . 2gp , where g, is

their gauge coupling (cf. eq. (2.83)).
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Figure 5.3: Tree-level contribution to (a) By mixing and (b) b — sp™p~ transitions. g, is
the coupling between composite fermions and vector resonances, s, the left-handed muon’s
degree of compositeness, Xif is the charge under the global symmetry associated with vector
resonance p; of the composite fermion mixing with f, and Ay is a parameter depending on

the flavor structure and the degrees of compositeness of b and s quark.

in terms of the dimension-6 AB = 2 operator O{l/LL = (5.9"br)?. Tts WC C’fﬁLL can be
inferred from the diagram in figure and one finds

CUL — gp A2 L (5.12)
my

where Ay encodes the flavor structure and the degrees of compositeness of b and s quark.
c4LL is a numerical factor of O(1) that arises from the sum over the couplings of the quark
partners to the heavy spin one resonances p;. Since the p; are gauge bosons associated with
the unbroken symmetry H, the couplings can be given in terms of the H charges X! of
the heavy quark partners (cf. figure [.3a)). Assuming a custodial protection of the Zbpby,

coupling, one finds ¢t = —23/36 [171].
Writing the B,-B, mixing amplitude M, in terms of the sum of a SM contribution MISQM

and a NP contribution M7}, the mass difference AM; in Bg mixing is given by

MNP
AM, =2 [MR" + MYy | = AMSM ’1+ M12 (5.13)
The ratio MY /M182M can be expressed in terms of the WC C’%LL and is given by [52]
MNP -1
Misz\/l - ‘d/LL U2 (16 2 (‘/tb‘/ts) SO) ) (514)

where Sy is a loop function that evaluates to Sy =~ 2.3. By plugging in the expression for
CAL from eq. and using gp/m =2/f% =2¢/v?, one finds
MNP
MR

2 -1
= —2¢ A2 cHE (éﬁ(mbv;yso) . (5.15)
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Assuming Ay to be real, the negative value of cZt implie MNP /MM > 0. This in turn
leads to (cf. eq. (5.13))

MNP AM, - AM; — AMSM  |AM, — AMSM|
MM OAMSM T AMSM AMSM

(5.16)

i.e. the model predicts a positive NP contribution to the B meson mass difference AM,,
where the magnitude of the relative deviation from the SM is equal to MY /MM,

Since the only free parameters on the right-hand side of eq. are & = v?/f? and
Ags, a bound on AM; can be translated, for any given value of f, into a bound on |Apgl.
Since Ay, sets the strength of the b-s-p coupling, the p exchange contribution to b — syt~
also depends on it (cf. figure , and the bound has an immediate consequence on a
possible explanation of the anomalies. The p exchange contribution to b — syt~ can be
parameterized by the WC Cy; of the AB = 1 operator Og = (5.7"br)(urywper). From the
diagram in figure [5.3b| one gets

2

g
Ca = m—gAbss%u cdl s (5.17)
p
where ¢g; = —1/2 for the choice of representations used here. Using the notation of the

WEH, eq. (4.9), Og can be written as Oy = (O} — OY)/2 and Cy is related to C§ and CY,

by
4 GF 62
* . 1

Allowing for a 10% deviation from the SM in AMj, the resulting bound on |As| then implies

Cy = NP75 (Cl — Cly), where ~ NP7% =

a lower bound on s,,, which depends on the size of the desired effect in C§f — CY;,. For

instance, a small but visible effect C§ — C1, = 0.4 requires

Sup > 015674, (5.19)

5.4 Explaining the b — s/"/~ anomalies

Given the lower bound on the muon’s degree of compositeness due to the shift in the Fermi
constant and the upper bound from B,-B, mixing, one might ask whether these bounds still
allow for an explanation of the b — s¢T¢~ anomalies. To answer this question, it is useful to
express the NP contribution to C§ — CYj, in terms of the deviation in AM;. From eqs. ,
, , and , one finds

1/2

(5.20)

1.7 T 2 [|AM, — AMSM
Cg—CfoziO.QQ[ ! ev} 2] [’ -

f 0.6 0.1 AMSM ’

0.6
4V, is real and the imaginary part of Vi, is negligible.
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Figure 5.4: Predictions for C§f — CYj, (green) and the relative shift in the Fermi constant (red)
for a benchmark point with mr/mg = 0.3. The flavor-changing coupling A,s has been fixed
to its maximum value allowing a 10% shift in AM,. The green shaded regions correspond
to the 1o (dark green) and 20 (light green) regions allowed by the C§ = —C1 fit values in
table No contours are shown for |0Gr/Gp| > 0.002, which is disfavored (cf. fig. .

where the negative sign holds for positive Aps. Consequently, assuming a 10% deviation from
the SM in AM;, a violation of LFU compatible with the measurements of Rx and Ry can
be achieved with a sizable degree of compositeness of left-handed muons s, ~ 0.6 and a
NP scale f ~ 1.7 TeV (cf. table . At the same time, this scenario can also explain the
experimental data on b — su* ™ observables that is in tension with the SM prediction (cf.
table . These values for s, and f lead to a relative shift in the Fermi constant that can
still be inside the 30 contour shown in figure depending on the mass ratio mp/mpg and
the value of the T parameter. The possible values of C¥ — C, under the assumption of a 10%
shift in AM, are shown in the s,, -f plane in figure In addition, this figure also shows
lines of constant G /G according to eq. , where my/mg = 0.3 has been assumed.
An explanation of the anomalies in b — s£T/~ processes in terms of a sizable degree of
compositeness of left-handed muons leads to several predictions that can be used to test the

models presented here:
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It predicts C§ ~ —CJ, < 0. While this is in perfect agreement with global fits
to measurements of LFU and b — sutu~ observables (cf. tables and , it
can be tested by new measurements, e.g. of the LFU observables Dp; and Dp (cf.
section . Moreover, the positive contribution to C}, implies a suppression of
B — utp~ (cf. [291,311]).

It predicts a positiveﬂ NP contribution to the B; meson mass difference A M.

It requires a negative shift in the Fermi constant accompanied by a negative shift in

the electroweak T parameter.

It implies a slightly smaller value of the effective number of light neutrino species N,

compared to the SM. Interestingly, such a deficit is actually preferred by LEP data.

It predicts spin one resonances with a sizable branching ratio into muons. However,

they might be too heavy to be observable by direct searches at the LHC.

The above described model is incomplete in some ways: the precise structure of the quark

sector is not specified and the lepton sector does not contain a mechanism for generating

neutrino masses or to explain the absence of charged lepton flavor violation. However, the

presented mechanism for violation of LFU, which is primarily based on a sizable degree of

compositeness of the muon, has proved to be compatible with current experimental bounds

and may be implemented also in more complete models.

>This might be problematic; a recent analysis indicates that AMSM is already 20 above the experimental

value,

i.e. experimental data seems to prefer a negative NP contribution [324].
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Flavor physics and flavor anomalies

in minimal fundamental partial compositeness

Models containing the partial compositeness mechanism for generating the masses of SM
fermions have a rich flavor phenomenology. They generically contain sources of flavor viola-
tion beyond those present in the SM, which can lead to strong constraints and may require
flavor symmetries to make them phenomenologically viable (cf. section . On the other
hand, the tree-level FCNCs present in these models not only lead to “flavor problems” but
can also be used to explain experimental deviations from the SM that may be difficult to ac-
commodate in other models. A good example is the explanation of the b — s ¢/~ anomalies
discussed in chapter There, another important property of models with partial compos-
iteness is used: different degrees of compositeness for different lepton generations allow for
couplings to heavy resonances that violate LFU.

Having at hand the UV complete model of partial compositeness described in section [2.5
interesting questions are how such an FPC model performs in a comprehensive analysis of
low-energy flavor effects, if it is able to explain the b — s/~ anomalies, and if it can even
shed some light on other measured deviations from the SM that show up in processes involving
the b — c7v transition. To answer these questions, we have performed a comprehensive study
of flavor constraints on the MFPC model in [6] and investigated its potential for explaining

the flavor anomalies. This study is presented in the following.

6.1 Flavor and electroweak signals of the MFPC-EFT

For studying the effects of the MFPC model at and below the EW scale, it is convenient to
employ the MFPC-EFT described in section While observables at the EW scale can
be studied directly in the MFPC-EFT, it is useful to consider the WEH for low-energy flavor
observables. This in turn requires matching the MFPC-EFT to the WEH. In the following,
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the EW scale observables, the matching procedure for deriving the WEH, and the low-energy
flavor observables are discussed in detail.

While the MFPC-EFT is defined with SM fermions in the gauge basis, the observables
considered in the following are defined in the mass basis, where the fermion mass matrices
have been diagonalized by biunitary transformations. It is therefore useful to first fix the
notation of the model parameters in the mass basis. Recalling from section that the
SM fermion mass matrices in the MFPC-EFT are given by

Cyuk S0 frc [ 1
mpg=———— (U 97); (6.1)
where f € {u,d, e}, the diagonalized matrices can be written asE]
di T
mflag =U; my Uy, fe{u,d e} (6.2)

This relation between the gauge basis mass matrices my and the diagonalized matrices m;lciag

defines the unitary matrices Uy and Uy. Like in the SM, the unitary matrices associated with
the doublet components of up- and down-type quarks yield the CKM matrix, which is given
by

vV =UlU,. (6.3)

Inspecting eqgs. and , one observes that the object that is actually transformed to
the mass basis is the product of the matrix valued fundamental Yukawa couplings (y? yf) i
while all other terms in eq. are flavor universal. It might be useful to note that while
the fundamental doublet Yukawa couplings are identical for the doublet components, i.e.
YQ = Yu = Y4 and yr = Ye = ¥y, the fundamental quark doublet Yukawa couplings v, and
14 are rotated to the mass basis by different unitary matrices. For later convenience, it is
useful to introduce a notation for all possible products of fundamental Yukawa matrices in

the mass basis. There are two cases:

e A product of two fundamental Yukawa matrices where one of them is complex conju-
gated and the other is not. This will be denoted by

Lot ot i T
X = Ar Ufl YnYr Uts Xf1f2 = szfl‘ (6.4)

e A product of two fundamental Yukawa matrices where both of them are either uncon-

jugated or conjugated, which will be written as

I o . R,
Yf1f2 = E Uf1 yfl Yta Uan Yf1f2 = E Ufl yfl ny Uf2 (65)

!The neutrinos are treated as massless. Hence, the charged lepton mass matrix can be chosen to be diagonal

already in the gauge-basis, i.e. Ue = U, = Uz = 13.
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Here, fi and fo denote a SM fermion, i.e. fi,fo € {u,d,e,v,u,d,&}. The second case is

actually the one appearing in the fermion mass matrices, and using Y7, ,, one can write the

mass basis mass matrices as (cf. egs. (6.1]), (6.2), and (6.5]))

m(}iag = Cyuk S fTC Yff' (6.6)

Recalling from eq. (2.231)) that the SM Higgs VEV wgym can be identified with vgy = fre sg,

YfSM7d1ag

the SM Yukawa coupling in the mass basis is given by

SM,dia,
YRR = /2 Oy Y (6.7)

6.1.1 Constraints from observables at the electroweak scale

In the MFPC-EFT, the couplings of the Higgs and the electroweak gauge bosons are mod-
ified at tree level. Therefore, experimental bounds on these couplings provide important
constraints.

The modification of the Higgs couplings is due to its pNGB nature and the finiteness
of the misalignment angle 8. The pNGB kinetic term, eq. , leads to the modified

couplings to weak gauge bosons

9271 = CoG%5n s GWWh = COgN0 W » (6.8)

while the fermion-Higgs couplings, which stem from the operator Ovyyy, eq. (2.240)), are

9ffn = Cogith - (6.9)

Higgs coupling modifications of this kind are present in any model with a pNGB Higgs
and have been discussed extensively in the literature (for a recent analysis, see e.g. [325]).
Experimental bounds on these couplings put a constraint on the size of the misalignment
angle 6. A combination of ATLAS and CMS Run 1 data on the hZZ coupling yields [202]

s < 0.44 @68% CL, (6.10)

while bounds from other couplings are weaker. In the analysis presented here, it is assumed
that frc > 1. Consequently, sy < 0.25 and the bounds from modified Higgs couplings can
always be satisfied.

The operator Oy modifies the couplings of fermions to the weak gauge bosons. In

particular, the Z boson couplings receive a NP contribution

p G
CugOns > ) ol (5gij fLAt fi, + 093, fr" fzjz)a (6.11)
fe{u,d,e,v}

159




CHAPTER 6. FLAVOR PHYSICS AND FLAVOR ANOMALIES IN MFPC

where 6g}jL and 6g§%2 are the deviations from the SM Z couplings; they are given by

89d, = +C;;H7Tf 55 (Xu)iys 09, = _C;r;rf o (Xia)y

5q4 = —C;rf st (Xad) ;o 09, = “Lca;nyrf s (Xia)y (6.12)
09, = _% 0 (Xee)yys g, = +% 5 (X&), |
50, =+ (X,), a0,

The terms diagonal in the flavor indices modify the partial widths of the Z boson, which
have been measured at LEP with high precision. This can put strong constraints on the
possible size of the fundamental Yukawa couplings that enter the Xy, terms. Very similar
to the discussion in section the fundamental Yukawa couplings of the top quark need to
be large to reproduce its mass. Since the left-handed top and bottom quarks share the same
fundamental Yukawa coupling, the Zby by, coupling can potentially receive large contributions.
In the model described in section[5.1] they are avoided at tree level due to a discrete symmetry
that serves as a custodial protection. In MFPC, the Zb; by, coupling is not protectedﬂ Hence,
the LEP measurements of the Z boson’s partial widths are important constraints. In our

numerical analysis, we have therefore calculated the following observables for each parameter

point, -
I'(Z — bb) INZ — ce)
R - S S Rc - oS 613
"7 T(Z = qq) I'(Z = qq) (6.13)
- IN(Z — qq) ~ T(Z = qq)  I(Z = qq)
e = [(Z — ee)’ R = I(Z — pp)’ Ry = I(Z —717) (6.14)

where I'(Z — ¢q) implies a sum over all quarks except the top. The calculations take into ac-
count higher order electroweak corrections [326] and the leading order QCD correction [327],
such that the correct SM predictions are reproduced in the limit Crjy = 0, where all terms
in eq. vanish.

The fundamental Yukawa couplings provide a source of breaking of the custodial SU(2)r,+r
symmetry and thus contribute to the electroweak S and T" parameters. While SU(2)1,4+r sym-
metry is also broken in the SM by the SM Yukawa couplings, the MFPC model modifies these
SM contributions due to the modified fermion-Higgs couplings. In addition, there are also
contributions to S and T parameter stemming from the strong dynamics, which are encoded
by WCs of effective operators in the MFPC-EFT. The total contribution then strongly de-
pends on these WCs, which are, however, independent of the WCs appearing in the flavor

observables considered here. Consequently, there is no strong correlation between the flavor

2There are actually FPC models that feature a custodial protection of the Zbzb;, coupling, cf. (183].
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observables and the S and T parameters. Hence, the S and T parameters have not been

considered in our numerical analysis.

6.1.2 Low-energy probes of flavor and CP violation

Since models with partial compositeness can generate FCNCs already at tree level, precision
measurements of processes like meson-antimeson mixing or rare decays of K and B mesons
are important constraint that have to be taken into account. Because flavor-changing charged
currents are already generated at tree level in the SM, generic NP contributions to them are
expected to be less pronounced than in FCNCs. However, partial compositeness can also
lead to violation of LFU or the unitarity of the CKM matrix. It is therefore important to

also consider charged-current observables as constraints.

Matching the MFPC-EFT to the WEH

Predictions for the flavor observables considered in this section are usually calculated in terms
of WCs of operators in the WEH, which are evaluated at a hadronic scale of the order of a
few GeV. To derive these WCs, the MFPC-EFT is first matched to the WEH at the EW
scale. This scale is also called the matching scale and for our numerical analysis it has been
chosen to be 160 GeV. The flavor observables are calculated by the flavio code, which is also
employed in the analyses in chapter[4 This code implements the renormalization group (RG)
running necessary to evaluate the WEH WCs at the hadronic scale. The matching of the
MFPC-EFT to the WEH at the matching scale is done as follows.

The four-fermion operators in egs. and are matched to four-fermion oper-
ators in the WEH in four steps:

1. The background value of the spurion 1’,, eq. (2.236)), is used to write the v, valued

four-fermion operators in terms of SM fields in the two-component Weyl spinor notation

(cf. table [2.1)).

2. By applying an assortment of Fierz transformations, these operators are then trans-
formed to a chiral basis compatible with the WEH. This means that the non-chiral
four-fermion operators in the WEH are simply given by a sum of operators in the
chiral basis. In particular, no additional Fierz transformations are needed to get the

operators in the WEH from those in the chiral basis.

3. The Weyl spinor four-fermion operators in the chiral basis are translated to four-
component Dirac spinors. If necessary, they are combined to constitute non-chiral

four-fermion operators in the WEH.
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4. All four-fermion operators and fundamental Yukawa couplings are rotated to the mass
basis by applying the unitary matrices defined in eq. (6.2]). All products of fundamental

Yukawa matrices can then be written in terms of the X and Y matrices defined in
cas. (§) and (G5).

In addition to the four fermion operators of the MEPC-EFT, the operator Oy defined
in eq. (2.244) plays an important role. Since it modifies the couplings between SM fermions
and electroweak gauge bosons (cf. section , it yields non-standard contributions to the
operators in the WEH when the weak gauge bosons are integrated out. To derive these
contributions, it is convenient to integrate out the W and the Z already in the MFPC-
EFT. This yields new four-fermion operators in terms of the spurion 9%,. They can then be
matched to the WEH by applying the four steps described above.

Since the operator Ovyy slightly modifies the Higgs couplings to fermions, the operators
that are generated by integrating out the Higgs also slightly differ from those one gets by
integrating out the Higgs in the SM. However, the difference is always flavor diagonal and
subleading in an expansion in sp. Modifications of four-fermion operators in the WEH due

to Ovui are therefore neglected here.

Meson-antimeson mixing

The part of the WEH containing the NP contributions to meson-antimeson mixing in the
K° B and B, systems is

Weak NP Z CU OZ] ’ (615)
k,ij

where the sum runs over the following operators,

OgLL = (CFL’Y“diL)(CZJLWdiL% OgRR = (JQVNd%)(CZ%’YudZR)a O%ZLR = (CZJL’Y“diL)(CZ%’Yudlé%
Odyr = (dpdy)(dRdy), Odpp = (dpdi)(dydR) . Odpr = (dpdp) (d1dy)
O;ZLL = (ngawdiL)(JizqudiL)a OTRR = (Jigwdéz)(@%vd%)v

(6.16)
and ij = 21, 31,32 for K°, B?, and B, respectively. All of the above operators are generated
from the MFPC-EFT, with contributions to their WCs coming from two sources. The first
source are simply the four-fermion operators in the MFPC-EFT, egs. and .
The second source are tree-level Z exchange diagrams that involve two flavor-changing Z-
couplings stemming from the operator Opy. These diagrams contribute to the WCs of
the above operators when the Z boson is integrated out. However, since they require two

insertions of Oy, they are subleading in an expansion in sg. At leading ordelﬂ in sg, only

3In the numerical analysis discussed in section also subleading contributions are included.
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four of the above operators are generated; their WCs read

1) * * C4 + 05
CVpp = (de>ij ( dd)ij UTCM’
. Ci+C3
C\;RR = (XJJ)Z']‘ ( Jd)ij UTCM’
6.17
o (6.17)

gLR = (X:ikd)ij (XJJ)ij ATTC’
iy ff
CgLR = (Ydi)ij (de)ij ATTC

The left-right operators OfgjL R and 03 1R are notorious for their role in the “flavor problem” of
partial compositeness models with an anarchic flavor structure. These operators are strongly
suppressed in the SM but can be generated from heavy gluon resonance exchange in models
with partial compositeness. In the absence of flavor symmetries, the chiral enhancement
of the hadronic matrix elements of the left-right operators in the kaon sector leads to a
substantial contribution to €x, which measures indirect CP violation in kaon mixing and puts
very strong constraints on these models (cf. [166[168]). Interestingly, in the MFPC model,
the NP contribution to the WC CgL r always vanishes for i # j, i.e. it is flavor-diagonal
and cannot contribute to meson-antimeson mixing. This is also true for subleading terms in
the sy expansion. The reason for this is that the flavor structure of CfgjL r depends only on
(Yd(i) i which is proportional to the down-type quark mass matrix and by definition diagonal
in the mass basis (cf. eq. ) This is in contrast to effective partial compositeness models
and models with extra dimensions, where the heavy gluon resonance exchange generates also
off-diagonal terms for C’?L g (cf. [166[{168]). The MFPC model is special in the sense that any
heavy resonance in an adjoint of SU(3)c necessarily has to be an (5,S;) techniscalar bound
state (cf. table . The structure of the fundamental Yukawa couplings then guarantees that
an exchange of such a bound state can only contribute to C’gjL r With a term proportional to a
product of quark mass matrices. Consequently, these contributions are always flavor diagonal
in the mass basis. However, even for vanishing C’gL r at the matching scale, the QCD RG
running leads to a sizable contribution to Cfg]L p, proportional to C‘Z‘/j 1r at the hadronic scale.
Therefore, the strongest bound from meson-antimeson mixing observables is still assumed to
come from €x. In any case, in our numerical analysis, we have considered all of the following

observables:
e The parameter ex measuring indirect CP violation in K° mixing.

e The mixing-induced CP asymmetry Syx, in Bg — J/9 Kg.
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e The mixing-induced CP asymmetry Syg4 in Bs — J /1 ¢.

e The mass differences AMy; and AM; in the By and B, systems.

Neutral current semi-leptonic decays

The rare neutral current b — s/ decays are of great interest in the light of the flavor
anomalies discussed in chapter In particular, a central aspect of the analysis presented
here is to answer the question whether the MFPC model can account for violation of LFU
in B - K*% and B — K/{¢ decays. The part of the WEH containing the operators that
contribute dominantly to b — s/ processes is given in eq. and repeated here for
convenience,

Moot = =N (CLOL + CRO}) + hc., (6.18)
k

where the normalization factor N'*7* is given by

AGp
NG VioVis 16 2

NP8 = (6.19)

As in section only NP contributions in form of the following operators are considered:

Of = (57, PLb)(Iv"0),  Of = (57, Prb)(17"1),

(6.20)
Ot = (57, PLb)((r"y58) . Ofy = (57, Prb) (Iv"5L) .

In contrast to the AF = 2 meson-antimeson mixing observables, the semi-leptonic decays
are AF = 1 processes, i.e. they only involve one flavor-changing coupling. Consequently,
contributions from Z exchange diagrams to the above operators only require one insertion
of Omy. Therefore, they enter at the same order of sy as the direct contributions stemming

from four-fermion operators in the MFPC-EFT. To leading order in sy, the latter read

L o1, Ciy+C3
CSNIHS > 4 (de)bs (X )ee A2f +7 A (de)bs (Xee)ze J;\ch’
1 C 1 04 +C5
AN = (K (K i+ (K () St O,
6.21
4 b—s 1 * lelf 1 * C‘ilf + C‘i)f ( )
Cro N 2 = (Nia)yo (Xee) g 37~ = 7 (K)o (Kee) iy — 15—
1 C4 ]_ C + 05
i% NP7 5 +1 (Xcid‘)bs (Xee)u A274f 4 (XJJ)bs (Xee)ee A2 . )
TC TC
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and the contributions from integrating out the Z boson are given by

s * Cn
Og./\/’b_) D) 27 (de)bs (48121) — 1) ATf N
TC
C
G NP 5 =2 (Xag),, (4% — 1) 5
o o Te (6.22)
CION s D) 27'(' (X;;d)bs 7]\2 s
TC
C
CION"™ 2 =2 (Xgg),, 5o
TC

While the contributions from Z boson exchange are LFU conserving at leading order in sy,
those stemming from four-fermion operators in the MFPC-EFT are actually expected to
violate LFU. To assess if this can explain the experimental hints for violation of LFU in

neutral current decays, the following observables are predicted in our numerical analysis:
e Ry for ¢° € [1,6] GeV?,

e Ry for ¢* € [0.045,1.1] GeV? and for ¢* € [1.1,6] GeV>.

Charged-current semi-leptonic decays

In contrast to the rare FCNC decays, flavor-changing charged current decays are tree-level
processes in the SM, mediated by the W boson. As such, they are far less sensitive to NP
contributions from loop processes than FCNC decays. Observables based on the ¢ — ¢'fv
transition are therefore used for determining the elements of the CKM matrix with the
fewest possible pollution from NP effects. In models with partial compositeness, however,
NP contributions to the ¢ — ¢/fv transition without loop-suppression are possible. In the
MFPC model, one source of contributions are again the four-fermion operators in the MFPC-
EFT. In addition, also diagrams with modified W couplings due to the operator Oy can
contribute at leading order in sg. In this case, the couplings of either quarks or leptons are
modified, while a simultaneous modification of both couplings is subleading in sg. In our
numerical analysis, we have focused on d; — u;fv processes. The part of the WEH that

describes NP contributions to these processes is
HE ey =37 W 3T o oI Ly e, (6.23)
ij k
where the normalization factor is
4Gp

N WVujdi , (6.24)
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the sum runs over the following operators,

Ot = (uL’y“dL)(?me), O™ = (@hy"di) (CLyuver)

0L = mu (@) di)(Lruer), O = my(whdy)(Crrer) (6.25)
)

o%wt — (@hody)(LRouvir)

and ¢j = 11,21,32 for d — wlv, s — uwlv, and b — clv, respectively. The only operator
that receives a contribution in the SM is Oi";“w , and with the above normalization, its WC
is simply C{f gf\f = 1. In MFPC, all of the above operators are generated. To leading order

in sy, the direct contributions from four-fermion operators in the MFPC-EFT yield

C - Cf
Cd bud f Nd Ui o (Xdu) (Xeu)ﬂ % ’
TC
oy At 0,
CdiujgNdi—)uj 5 (Yi") (Y— ) %
- | | ) 08* ) 07*
Og‘i uJZNdz_)uJ D) §(Ydu)w ()/é’/)ﬂf A2 ’
TC
iy = U 1 Cff
et > L, ),
TC

while the contributions from integrating out the W boson read

iy C
d'"ull £ rd;—u; * Inf
CV N U D —8m (()(du)%‘7 + Vujdi (Xel’)éé) ATTC )
6.27
diujél Ndlﬁu] _ CHf ( )
TC

Like in neutral current semi-leptonic decays, the former are actually expected to violate LFU.
As noted above, the contributions from W exchange at leading order in sy involve either a
modified lepton or quark coupling. If only the quark coupling is modified, the resulting
operators are lepton flavor universal. On the other hand, if the lepton coupling is modified,
they are expected to violate LFU.

A sizable fundamental Yukawa coupling of left-handed muons that might, similarly to
chapter [, explain the hints for violation of LFU in neutral current decays also enters the
charged current WCs. Thus, one has to ascertain that explaining violation of LFU in neutral
current decays is not in conflict with experimental measurements of charged current decays.
Therefore, charged current decays with an electron or muon in the final state are taken
into account in our numerical analysis as important constraints on the leptons’ fundamental

Yukawa couplings and the size of a possible violation of LFU.
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But they are essential also for another reason: they allow for consistently comparing the
CKM measurements with the predictions for CKM elements obtained from diagonalizing
the quark mass matrices. In particular, in the presence of NP contributions to the charged
current WCs, the experimental data might favor slightly different values of CKM elements
than in the SM. In our numerical analysis, the following processes are therefore considered

as constraints:

e The branching ratio of 7™ — er, which is based on the d — ufv transition.

e The branching ratio of K™ — uv and the ratio of K — (v branching ratios with
¢ € {e, u}, which are based on the s — ulv transition.

e The branching ratios of B — D/v with ¢ € {e,u}, which are based on the b — clv

transition.

There are tensions between experimental data and the SM prediction of observables involving
the b — crv transition. In particular, measurements of the LE'U ratios Rp(.), i.e. the ratios
of the B — D®7y and the B — D®)/{y (¢ = e, i) branching ratios, show a deviation from
the SM prediction at a combined level of around 40 [67]. To assess whether these hints
for violation of LFU in charged current decays can be explained by the MFPC model, the

following observables are not considered as constraints but rather as predictions:

e The ratios Rp and Rp+, which are based on the b — c7v transition.

6.2 Numerical analysis

The effects of the MFPC model on the flavor and electroweak observables discussed in the
previous section are investigated by calculating them from the parameters of the MFPC-EFT.
By varying these parameters, it is possible to find regions in the parameter space where all the
applied constraints are satisfied. The parameter points in those regions then yield predictions
for the LF'U observables Ry () and Ry, which are not considered as constraints.

In our numerical analysis, we have made some assumptions concerning the lepton sector

that simplify the analysis or avoid additional constraints:

e Strong constraints from charged lepton flavor violation (see e.g. [328]) are avoided by
assuming that the fundamental Yukawa matrices y; and yz can be both diagonalized

in the same basis at the matching scald]

e We have assumed right-handed neutrinos to be irrelevant for our analysis. Their effects

are neglected by setting their fundamental Yukawa couplings y; and y} to zero.

“This assumption is not RG invariant if LFU is violated [329].
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6.2.1 Parameters

Among all the parameters of the MEPC-EFT, only those entering the observables discussed

above have to be considered. In our numerical analysis, we have varied each of them over a

specific range. These parameters are

The NGB decay constant frc, which is related to the strong coupling scale by Atc =
47 frc. frc is varied between 1 TeV and 3 TeV.

The six real WCs Cif, C’Zf, C’Z’f, Cfff, Cif and Criy. Their absolute values are var-
ied logarithmically between 0.1 and 10 and each of them is allowed to be positive or

negative.

The four complex WCs Cfff, CZf, Cfff and Cyyk. Their absolute values are varied
logarithmically between 0.1 and 10 and their complex phases linearly between 0 and
2.

The fOUIE] fundamental Yukawa matrices yqg, yr, Ya, and yz. To parameterize them, it

is convenient to define the effective Yukawa matrices

gjf = \/Cyukyf. (6.28)

They have the advantage that they allow for expressing the fermion mass matrices
independently of the WC Clyy (cf. eq. ) Each of the complex matrices gy can be
decomposed by an SVD into one diagonal and two unitary matrices (cf. section .
This yields eight unitary and four diagonal matrices. The SM field Q, L, @, and d
and the techniscalar fields S; and S; can each absorb one unitary matrix. This leaves
two physical unitary and four diagonal matrices. It is possible to choose the effective

doublet Yukawa matrices yg and g, to be diagonal,

gQ = dla‘g(leu YQ2, yQ3)7 gL - dia‘g(yLl) YyrL2, yL3)) (629)

while the effective singlet Yukawa matrices gz and g7 then depend on one diagonal and
one unitary matrix each. The two unitary matrices can be parameterized by in total
six angles ¢12 13, 23 tcll2 ,t}f, tfi‘g and four phasesﬂ 6d, Ou, ag, bg. The effective Yukawa

u 0 Yu 0

matrices gz and y; can then be expressed as

?Ju = unitary(t}f, t'1u37 tisa 5“) : diag(yula Yu2, yU3)’ (630)

gJ = unitary(t¢112a tcllga téga 6d7 Qaq, bd) : diag(ydh Yaz, yd3)'

5The assumption that ye and y;, are diagonal in the same basis at the matching scale allows for fixing the

entries of yz by requiring that the product of yr, and ye yields the correct masses of the charged leptons.
5 While a general 3 x 3 unitary matrix has five independent phases, six of the ten phases of 4z and 4z can

be absorbed by field redefinitions.
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The entries of the diagonal matrices are varied logarithmically betweenl] 0.002 and 47

and the phases and angles linearly between 0 and 27.

6.2.2 Strategy

The large amount of parameters is a challenge for a parameter scan. A naive random vari-
ation is problematic because only a very tiny fraction of the points in the high-dimensional
parameter space is actually compatible with experimental measurements of quark masses
and CKM elements. However, the effective Yukawa matrices are defined such that the quark
masses and CKM elements only depend on the 19 parameters of the matrices g, ya, and 7.
This makes it possible to divide the parameter scan into two steps. In the first step, only 7q,
Yu, and y; are varied to find regions in parameter space that yield predictions for the quark
masses and CKM elements close to the experimental observations. In the second step, 7q,
Uu, and y; are kept fixed while all other parameters are chosen randomly.

For the first step, the quark masses are predicted by constructing the quark mass matrices
in eq. from gq, s and yz. These mass matrices are then numerically diagonalized via
eq. . The entries of the resulting diagonal matrices are interpreted as MS running masses
at 160 GeV and are run down to the scale where they can be compared to their PDG average.
The numerical diagonalization also yields the unitary matrices U, and Uy, which define the
CKM matrix via eq. . In contrast to the masses, the CKM elements cannot be directly
compared to experimental measurements. As described in section the CKM elements
are measured in neutral current semi-leptonic decays. These decays are subject to corrections
from the WEH WCs in egs. and , which depend on parameters that are not yet
specified in the first step of the scanning procedure. Consequently, the CKM elements can
only be compared to experimental measurements in the second step. However, in the first
step, they are required to be close to certain input values that are chosen such that a high
fraction of parameter points passes the constraints from CKM measurements applied in the
second step. To compare the predicted CKM elements to these input values and the predicted
quark masses to their PDG values, the x? function Xﬁms& ckmMm 18 constructed. The scan is

then carried out as follows:

e After choosing a random starting point in the 19-dimensional parameter-subspace
spanned by the parameters of g, ¥z, and gz, the anas& ckym function is numerically
minimized. This yields a viable point that predicts correct quark masses and CKM

elements close to the input values.

"To ascertain that the diagonal entries of ye stay below 47 when they are fixed by requiring the correct

charged lepton masses, the lower boundaries of the diagonal entries of ¢ are adjusted accordingly.
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e This viable point is then used as starting point for a Markov chain that samples the re-
gion around this point and generates 10k viable points with a low value of anas& CKM-
To this end, the Markov-Chain-Monte-Carlo implementation from the pypmc pack-
age [208] is used.

e To reduce the auto-correlation of the 10k points generated in the previous step, only

1k points are selected.

In our scan, we have repeated the above steps 100k times to get 100 M points from 100k
local minima of the X1211ass, ckum function. These points all predict correct quark masses and
CKM elements close to the input values.

For these 100 M viable points, the remaining 18 parameters are chosen randomly. For
each of the resulting points in the 37-dimensional parameter space, all observables discussed
in section [6.1| are calculated. For the flavor observables in section all calculations are
performed by the flavio code, while a dedicated code is used for the Z decay observables
in section

To compare the calculated predictions to the experimental values shown in table the
x? functions X2Z, XQA o, and X%}C are constructed from the observables in Z decays, meson-
antimeson mixing, and semi-leptonic charged-current decays, respectively. The constraints
are applied to the parameter points by requiring that the corresponding x? function stays
below its 30 value. This corresponds to XQZ < 18.2, XQAFZQ < 18.2, and X%C < 16.3 (cf.
table [6.1)).

6.3 Results

6.3.1 Meson-antimeson mixing

As already discussed in section the meson-antimeson mixing observables, and in par-
ticular ex, can put very strong constraints on models with partial compositeness and an
anarchic flavor structure. Because no flavor symmetries like those discussed in section [2.3.3
are considered here, these strong constraints are assumed to be present in the MFPC model.
In fact, our numerical analysis has found many of the points that predict correct quark
masses and CKM elements to deviate from the measured value of ex by orders of magni-
tude. However, the constraints strongly depend on the values of the fundamental Yukawa
matrices. We have actually found a significant number of points that lie inside the 3¢ region
around the experimental measured value of ex. To get an impression of possible values ex
can assume in MFPC, the histogram in figure [6.1] shows the NP contributions due to the
dimension six operators listed in section for a representative subset of all points that
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x> Observable measurement SM prediction
R. 20.804 £ 0.050 [219]  20.768 + 0.006
R, 20.785 4 0.033 [219]  20.768 + 0.006
X R, 20.764 4 0.045 [219]  20.813 + 0.006
Ry 0.21629 + 0.00066 [219]  0.21591 4 0.00004
R, 0.1721 4 0.0030 [219]  0.17112 4 0.00002
AM, (17.76 4+ 0.02) ps [222] (19.94 1.7) ps
AM, (0.505 + 0.002) ps [222]  (0.64 4 0.09) ps
XAr—2 | Sye (3.3£3.3) x 1072 [222] (3.7540.22) x 1072
SyKs 0.679 + 0.020 [222]  0.690 4 0.025
39 (2.228 £0.011) x 1073 [209] (1.76 4 0.22) x 1073
BR(BT — D%%y,)  (2.330 £0.098) x 1072 [222] (2.92+0.21) x 1072
) BR(7+ — efv) (1.234 £0.002) x 10~ [330] (1.2341 4+ 0.0002) x 10~*
ree BR(Kt — utv) 0.6356 4 0.0011 [209]  0.6296 + 0.0066
Rey(KT — (1) (2.488 +-0.009) x 107> [209] (2.475 4+ 0.001) x 107>
Rp 0.397 + 0.049 [67]  0.277 +0.012
Rp- 0.316 + 0.019 [67]  0.2512 +0.0043
RLS 0.75+9%8 [58)  1.000 = 0.001
R0 0.6510:97 [59]  0.926 + 0.004
RILLEO 0.6810:98 [59]  0.9965 + 0.0005

Table 6.1: Measurements and SM predictions. The first three blocks contain the Z decay,
meson-antimeson mixing, and charged current observables used as constraints. The last block
contains the LFU observables considered as predictions. The SM predictions for the flavor
observables (last three blocks) are computed with flavio v0.23. The SM predictions for the

Z decay observables are computed with a dedicated code.
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Figure 6.1: Histogram showing the NP contribution to e¢x for a representative subset of
all points that feature the right masses and CKM elements, compared to the points among
those that pass the experimental constraint. A positive NP contribution corresponds to

constructive interference with the SM.

predict correct quark masses and CKM elements. It might be useful to recall that due to
NP contributions to charged current semi-leptonic decays, the CKM elements for each point
are in general different from those in the SM. This has the effect that in addition to the NP
contribution shown in figure also the SM contribution E%M varies due to varying CKM
elements. This is the main reason why there is actually a significant number of points with
a NP contribution as small as [ef¥'| = O(107%) that yields values for ex = M + e}¥ that
are not compatible with the experimental measurement at the 3o level. Another interesting
effect that can be observed in figure is that the experimental data prefers positive values
for GIN(P over negative ones. This can be traced back to the high sensitivity of G%M to the
value of the CKM element V. The experimental measurement of ex actually favors a value
for Vg slightly larger than what is suggested by the exclusive charged current semi-leptonic
decays B — D/{v that are included as constraints. This slight tension can be reduced by a
positive NP contribution, i.e. e[N<P > 0, which leads to the asymmetry visible in figure
The histogram also shows that the NP contributions to €x can vary over several orders of
magnitude. This is mainly caused by the fundamental Yukawa matrices entering the WEH
WCs in eq. , while the MFPC-EFT WCs, which are allowed to assume absolute values

between 0.1 and 10, only have a minor effect.

In contrast to the kaon sector, a chiral enhancement of the hadronic matrix elements of the

left-right operators OgL r and Og R is not active in B%-BY and B,-B, mixing. The constraints
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Figure 6.2: Predictions for AM; and AM,. Gray points are excluded by constraints other
than AF = 2. Blue points are allowed by all constraints.

from meson-antimeson mixing observables involving b quarks are therefore much weaker than
those stemming from ex. However, visible NP effects are still generated. The predictions of
the mass differences AMy and AM, in B°-B° and B,-B, mixing are shown in ﬁgure All
points lie in an ellipse corresponding to the 30 range around the experimentally measured
values. In addition to experimental uncertainties, the 30 range also takes into account
theoretical uncertainties of the hadronic matrix elements from lattice QCD [331]. Only
few points are excluded only by AM,; or AMj, which can be seen by the fact that the points
allowed by all constraints (blue) do not fill out the whole ellipse. Most points close to the
edge of the ellipse are also excluded by other constraints (gray), i.e. Z decays or charged
current semi-leptonic decays. In particular, points with relatively large values of AM; favor
high values of V,, which is however disfavored by the B — D/{v branching ratios. In general,
one observes that both AM; and AM; can be suppressed or enhanced.

Deviations from the SM value in figure cannot be attributed solely to AF = 2
operators because the CKM elements are not fixed but depend on the WCs of the charged-
current operators. To disentangle the different effects, figure shows the predictions of
AMy and AM; relative to the SM values calculated from the predicted CKM elements at
each parameter point. Consequently, figure shows effects dominantly due to the AF = 2

operators. In contrast to what one might naively expect from figure [6.2al one finds relative
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Figure 6.3: Predictions for the mixing induced CP asymmetries in B® — J/¥Kg and Bs —
J/1y¢, sensitive to the B and B, mixing phases. Gray points are excluded by constraints
other than AF = 2. Blue points are allowed by all constraints.

deviations up to 40%. This is possible because large effects from AF = 2 operators can be
partially compensated by shifts in the CKM elements. Figure [6.2]] also reveals that sizable
effects due to AF = 2 operators cluster in three regions, where either mostly AMj is affected,

mostly AM; is affected, or both are affected similarly.

Because the WCs of AF = 2 operators are in general complex valued, they introduce
new CP-violating phases into the mixing amplitudes. While these phases do not affect the
mass differences AMy and AM,, they can be probed by the observables Syx, and Sy,
which correspond to the mixing induced CP asymmetries in the decays B® — J/¥Kg and
Bs — J/1¢, respectively. Their predictions are shown in figure Again, one can observe
an ellipse corresponding to the 3o range around the experimentally measured values. The
effects in figure [6.3a] are again due to both AF = 2 operators and varying CKM elements.
Figure shows the differences between the predicted values of the observables Syx
and Sy, and their SM values calculated from the predicted CKM elements at each point.
Thus, the effects in figure are dominantly due to AF = 2 operators. One observes that
deviations of around 0.1 in either direction are possible for both observables. Like in the plots
of the mass differences, clusters of points where mostly one of the observables is affected are

visible.
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Figure 6.4: Histogram showing the distribution of the predictions for two observables probing
e-p universality violation in Z couplings for all points passing the meson-antimeson mixing
constraints. Points labeled “excluded by LEP” are excluded by the partial Z width mea-
surements at LEP, while points labeled “excluded by flavor” are excluded by one of the

charged-current decays imposed as constraints.

6.3.2 Charged current decays and lepton flavor universality

As already discussed in section [6.1.2] an explanation of the hints for violation of LFU in
neutral currents could also lead to LFU violation in semi-leptonic charged current decays.
Thus, the measurements of BR(m — ev) and R.,(B — K{v) = BR(K — ev)/BR(K — uv)
have to be taken into account as important constraints on violation of e-y universality. Since
most WCs of the charged current operators in eqs. (6.26]) and (6.27) are actually expected to
violate LFU, it is not surprising that our numerical scan finds points that predict values of the

two above observables that deviate by far more than 3¢ from the experimentally measured
values. These deviations are mainly due to the modified W-lepton coupling induced by the
operator Oy, which enters the WEH WC C‘C}i u’t (cf. eq. ) This can be understood as
follows. Since the above observables are based on the u — dfv and s — uwfv transitions, they
involve light quarks. The contributions to the WEH stemming from the MFPC-EFT four-
fermion operators depend on the small fundamental Yukawa couplings of these light quarks

and are thus strongly suppressed. On the other hand, the contribution due to the modified
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Figure 6.5: Predictions for lepton flavor universality tests in B — D7tv and B — D*7v
compared to the experimental world averages. Points allowed by all constraints are shown

in blue, while points excluded by LEP Z pole constraints are shown in gray.

W-lepton coupling involves the SM W-quark coupling and is not suppressed. For parameter
points that feature LFU violation from modified W couplings, the SU(2);, symmetry of
the MFPC-EFT implies also LFU violation in Z couplings, which is constrained by the
LEP measurements of the Z partial widths (cf. section [6.1.1]). In figure the different
constraints on e-u universality are compared. The histograms show all points that pass the
meson-antimeson mixing constraints and divide them into four categories: points that are
excluded by the charged current flavor observables used as constraints, points excluded by
LEP, points excluded by LEP and flavor observables, and points that are allowed by all
constraints. While many points are excluded by both LEP and flavor observables, neither
the LEP nor the flavor constraints are superior to the other. Rather, there are points that
are only excluded by either LEP or flavor constraints, such that they actually complement
one another. The resulting combined constraint is found to be at the per cent level.

While the B — D®7v decays based on the b — crv transition are experimentally more
challenging than charged current decays with electrons or muons in the final state, they
allow for testing LFU in decays involving tau leptons. Measurements by BaBar, Belle, and
LHCb [61-66] of the ratios
I'(B — D®rv)
I'(B — D®)(v)

have actually shown deviations from the SM prediction at a combined level of 40 [67]. Given

the smallness of the theoretical uncertainties of the SM prediction as well as a possible
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connection to the hints for LF'U violation in neutral currents, this is an intriguing result. To
assess if it is possible to explain the deviations in the MFPC model, the ratios R, are
considered as predictions in our numerical analysis. Figure[6.5|shows these predictions in the
Rp-Rp+ plane. Although the MFPC model actually predicts a positive correlation between
the deviations in Rp and Rp~ and such a pattern is also suggested by the experimental data,
effects that would be large enough to be in agreement with the averaged measurements at the
1o level are excluded by LEP constraints. This can be traced back to the fact that sizable
contributions to Rp and Rp~ require a large fundamental Yukawa coupling of left-handed
tau leptons. This in turn modifies the Z7; 77, coupling (cf. eq. ), which is constrained
by LEP. The parameter points that are excluded by LEP data are shown in gray in figure
While some of the blue points, which pass all constraints, can slightly reduce the tension with
experiment compared to the SM, the corresponding effects are much too small to actually
explain the measured values. It is an open question if the MFPC model can be modified such

that the Z71; 71 coupling is protected while the Rp and Rp+ measurements can be explained.

6.3.3 Lepton flavor universality in neutral current decays

Since a possible explanation of LFU violation in Rp and Rp- is spoiled by LEP constraints,
one might expect something similar to happen to an explanation of LFU violation in the
neutral current observables Ry and Rjy+. While it is demonstrated in chapter |5, that models
with partial compositeness provide a mechanism that allows for explaining the R, (., anomaly,
the simple model presented there features a custodial protection of the Zurur coupling.
This allows for a sizable degree of compositeness of left-handed muons while satisfying LEP
constraints, which in turn can explain the anomaly. Translated to the MFPC model, an
analogous mechanism would require a sizable fundamental Yukawa coupling of the left-handed
muon. In this case, however, the operator Ory induces a modification of the Zup, 1, coupling,
which is not custodially protected (cf. eq. (6.12))). While at first sight, this is very similar to
the problem with the Z77, 7, coupling in the explanation of the Rp and R ., measurements,
it turns out that the LFU violating effects in neutral currents can actually be large enough
to explain Rx and Ry~ and simultaneously pass the constraints from LEP measurements.
This is demonstrated in figures and [6.7], where the predictions of Rx and Rk~ in the bins
measured by LHCb are shown for points that pass all constraints imposed in our numerical
analysis. One observes that sizable effects are possible. These effects actually predict the
measured positive correlation between Ry and Ry, while effects in the orthogonal direction
in the Rx-Rgi+ plane are considerably smaller.

This can be understood as follows. To yield the large top quark mass, the fundamental

quark doublet Yukawa coupling has to be sizable for the third generation. The hierarchy
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Figure 6.6: Predictions of Ry for ¢ € [1.0,6.0] and Ry~ for ¢*> € [1.1,6.0] compared to
the SM prediction and the LHCb measurements. (a): The points found in our numerical
analysis that are allowed by all of the applied constraints. (b): Generic predictions for
different scenarios of NP contributions to the WCs C‘(SI)E and Cfgg. The unprimed WCs
C§ and Cf, corresponding to left-handed quark currents are varied between —1.5 and 1.5,
while the primed WCs C’{f and C’i% corresponding to right-handed quark currents are varied
between —0.15 and 0.15. In the MFPC model, the latter are suppressed by relatively small

fundamental Yukawa couplings (see text for details).

between the masses of top and bottom quark is then mainly generated by the fundamental
quark singlet Yukawa couplings. This implies that the fundamental doublet Yukawa coupling
of the bottom quark is usually much larger than the one for the singlet. A similar conclusion
can be drawn for the second generation, where also the hierarchy between the charm and
the strange quark is generated mainly by the fundamental quark singlet Yukawa couplings.
Since WCs of operators with a left-handed quark current depend on the fundamental dou-
blet Yukawa couplings and WCs of operators with a right-handed quark current depend on
the fundamental singlet Yukawa couplings, the unprimed WCs C’g and C’fo usually receive
considerably larger contributions than the primed WCs C¥f and O (cf. eq. This
then yields the pattern in figure

8The suppression of right-handed currents involving only bottom and strange quarks is a general feature
in partial compositeness models with an anarchic flavor structure. This is analytically shown for AF = 2

operators in [171].
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Figure 6.7: Predictions of R+ for ¢* € [0.045,1.1] and Rk« for ¢* € [1.1,6.0] compared to
the SM prediction and the LHCb measurements. (a): The points found in our numerical
analysis that are allowed by all of the applied constraints. (b): Generic predictions for
different scenarios of NP contributions to the WCs C’é/)g and Cfgg. Concerning the size of
the WCs ng/)f and C’ﬁ))é, the same comments as in figure apply.

Next to the results from the numerical analysis in figures and predictions for
several scenarios of NP contribution to the WCs C’é/)z and Cﬂ))e are shown. In particular,
figure [6.6D] demonstrates that sizable contributions with a positive correlation of Rx and
R~ can be achieved with NP in WCs of operators involving left-handed quark currents with
|C§| = |Cfy] < 1.5. Assuming |C¥| = |C19| < 0.15 to take into account the suppression
of right-handed quark currents, one finds only very small effects. The points found in our
numerical analysis that predict either sizable negative C¥ = —C|, or sizable positive C§ =
—CY, are compatible with the LHCb measurements at the 1-2¢0 level. While some of the
points with negative C§ = CY,, are also in the region preferred by experimental data, sizable
effects from right-handed electron currents require considerably larger WCs compared to
left-handed lepton currents (cf. section . Points with a sizable negative C§ = —C1,
i.e. effects in left-handed muon currents, are also in good agreement with the global fits of
b — sup observables (cf. section . Consequently, our numerical analysis actually finds
parameter points that are able to explain the hints for LF'U violation in Rx and Rg+ as well

as the b — sup anomaly, while at the same time satisfying all imposed constraints.
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Summary and Outlook

The Higgs sector in the SM has a naturalness problem. The observed Higgs mass requires an
enormous fine-tuning without NP not too far above the EW scale that protects it from large
quantum corrections. An elegant solution to this problem is offered by CHMs: if the Higgs
is a composite bound state of a new strongly interacting sector, it only forms at energies
below the new strong scale and cannot be plagued by quantum corrections at higher scales.
Models in which the Higgs is a pNGB even provide an explanation for a Higgs that is much
lighter than other composite bound states that have to be present in such a model. This
is an important property since so far only the Higgs has been discovered at the LHC and
nothing else. However, there are some hints for NP from measurements of flavor observables
that show a deviation from the SM predictions. If these hints should turn into a discovery,
then the NP that explains them has to be at a scale also not too far above the EW scale.
This suggests that this NP might be actually connected to the solution of the naturalness
problem. Or, stated differently, the solution of the naturalness problem might explain the
hints for NP. In view of this, it is an interesting question if composite Higgs models can
actually do both, i.e. solve the naturalness problem of the SM and at the same time explain
the hints for NP. In this case, however, also other signs of the new strongly interacting sector
are expected. In particular, bound states in addition to the composite Higgs might be in
reach of direct searches at the LHC. So another interesting question is how are the prospects
for observing or excluding composite Higgs models through direct searches. The work done
in this thesis provides some answers to both of these interesting questions.

The first part introduces composite Higgs models that feature a pNGB Higgs and the
partial compositeness mechanism to generate masses for the SM fermions. This introduction

is presented in chapter [2| and considers the following concepts:

e NGBs are discussed in detail. After starting with a concrete example, the formalism to
describe them is introduced and important special cases are considered. These NGBs

can describe light spin zero composite bound states formed after spontaneous symmetry
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breaking in a strongly interacting theory. They are eventually used to describe the

composite Higgs.

Hidden local symmetries are discussed as an alternative view of the formalism that
describes NGBs.

It is shown how these hidden local symmetries can be used to add vector resonances to a
model that initially only contained NGBs. These vector resonances can be interpreted

as spin one bound states of the strongly coupled theory.

It is described how the hidden local symmetry construction can be further extended to
add an arbitrary number of levels of vector resonances. This yields a so called multi-site

moose model.

It is shown how taking a continuum limit that corresponds to adding an infinite number
of resonances leads to an extra dimensional theory that can be interpreted as a dual of

the strongly coupled one.

Fermion partial compositeness is introduced as a means to provide masses to the SM

fermions in an effective description of a strongly coupled theory.

It is shown how adding fermions in the extra dimensional theory leads to fermion
resonances when the continuum limit is reversed by discretizing the extra dimension
and that these fermion resonances automatically implement the partial compositeness

mechanism in a multi-site moose model.

The quark flavor structure in a model with partial compositeness is discussed and flavor

symmetries are introduced to avoid stringent bounds from flavor observables.

The Mechanism of electroweak symmetry breaking by vacuum misalignment is de-

scribed in detail by way of concrete example.

The effective radiatively generated potential responsible for the misalignment mech-
anism is described. It is shown that this potential can be finite in multi-site moose

models due to a mechanism called collective breaking.

The MFPC model is introduced as a UV completion of the effective models discussed

so far. This model features both a pNGB Higgs and fermion partial compositeness.

It is described how an effective low-energy description of the MFPC model, the MFPC-
EFT, can be constructed.
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The remainder of the thesis applies the concepts listed above in several phenomenological
studies.

Chapter [3] discusses direct collider constraints in CHMs in the context of comprehensive
numerical global analyses. After describing the numerical method and the considered con-
straints, the concrete models that have been analyzed are specified. These are two multi-site
moose models containing a pNGB Higgs as well as vector and fermion resonances. They
implement fermion partial compositeness, flavor symmetries in the quark sector, and radia-
tive EWSB by vacuum misalignment due to an effective potential that is finite by collective
breaking. One of the models, the MCHM, features NGBs in the minimal SO(5)/SO(4) coset,
while the other, the NMCHM, contains NGBs in the next-to-minimal SO(6)/SO(5) coset.
The implementation of direct collider constraints in the numerical code used in the analy-
ses is detailed. In particular, all expressions used for the calculations of cross sections and
branching ratios are given. The results of the analyses are discussed. In particular, the cross
sections and branching ratios predicted by viable parameter points that satisfy all constraints

are compared to experimental data. Important conclusions are:

e Experimental searches for quark resonances at LHC run 2 can probe nearly all of the

viable parameter points we have found.

e Decays with light SM quarks in the final state are virtually unconstrained at the moment
but can presumably be probed by analyzing existing data. The most promising decay

channels to do this have a light SM quark and a Higgs boson in the final state.

e While vector resonances can be too heavy to be probed by LHC run 2, many of the
viable parameter points we have found can be probed by near future analyses. There

are two distinct cases:

— If the resonance X, is the lightest vector resonance, it can be lighter than the
naive bound from the electroweak S parameter suggests. It dominantly decays to
tt but can also be probed in the dilepton channel. In this case, both of these decay

channels have high prospects for observing or excluding viable parameter points.

— If p3 ., is lighter than X, the diboson as well as the dilepton channel have the

highest prospects to probe the viable parameter points.

e If mixing is allowed in the scalar sector of the NMCHM, the scalar resonance 7 has
couplings very similar to the Higgs and a mass usually below 1 TeV. The main features

of its collider phenomenology are:
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— n is dominantly produced via gluon fusion; its hadronic cross section is suppressed
compared to the Higgs cross section due to the larger mass and the consequently

smaller gluon parton luminosity.

— If n is heavier than roughly 250 GeV, it dominantly decays to two Higgses. Direct
searches for a neutral scalar decaying in this channel have by far the highest

prospects for observing or excluding viable parameter points.
— The diboson channels are also promising, especially if ) is very light and kinemat-

ically forbidden to decay to two Higgses.

The hints for NP found in measurements of rare B decays are discussed in detail in
chapter 4] In particular, two model independent studies of the tensions between experimental
measurements and SM predictions are presented. The first one analyzes the status of the

B — K*ut i~ anomaly including new and updated measurements. It is found that

e A good fit is obtained with a negative NP contribution to the WC Cy, possibly accom-

panied by a positive contribution to Chp.
e NP in WCs of right-handed quark currents cannot explain the tensions.

e [t is shown that increasing possibly underestimated hadronic uncertainties cannot fully

account for the tensions.

e The measured data is compatible with a helicity and ¢? independent shift in Cy, sug-

gesting a NP explanation.

The second study considers hints for violation of LFU from measurements of the theoretically

very clean observables Ry (+). It is found that
e A NP contribution with C§ — C§ — Cf; + Cf, = —1.4 provides a good fit to the data.
e NP in WCs of right-handed quark currents cannot explain the tensions.

e A NP explanation of the tensions found in LFU observables is fully compatible with
an explanation of the B — K*u™p~ anomaly if NP yields a negative contribution to

C¥, possibly accompanied by a positive contribution to Cfj,.

e Measurements of the LFU observables Dp; and D P could further distinguish between

different NP scenarios.

A possible explanation of the tantalizing hints for NP in rare B decays is presented in

chapter It is shown that partially composite left-handed muons can potentially explain
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both the B — K*p+u~ anomaly and the hints for LFU by generating negative contributions
to C§ = —C1j,. A very simple model constructed to provide partially composite left-handed

muons predicts:
e A positive NP contribution to the By meson mass difference AM,.

e A negative shift in the Fermi constant accompanied by a negative shift in the elec-

troweak 1" parameter.

o A slight reduction of the effective number of light neutrino species NV,,, which is actually
suggested by LEP data.

e Spin one resonances with sizable branching ratio into muons, but possibly too heavy
to be directly observed at the LHC.

A much more ambitious model is analyzed in chapter [f] A UV completion of CHMs
in the form of the MFPC model is considered. A numerical comprehensive study of the
effects of this model on observables at the electroweak scale and on flavor observables at low
energies is presented. Using the MFPC-EFT, the possible contributions to observables at the
electroweak scale is described. For the low-energy flavor phenomenology, the MFPC-EFT
is matched to the WEH and the possible contributions to observables in meson-antimeson
mixing, semi-leptonic neutral current decays and semi-leptonic charged current decays are
detailed. The constraints applied in the numerical analysis are specified and the numerical

strategy is described in detail. The results found in this study are:

e Indirect CP violation in Kaon mixing provides a very strong constraint and the ex-
perimental measurement is in conflict with predictions in large parts of the parameter
space. However, also a large number of viable parameter points is found that is in

accordance with experimental data.

e The viable parameter points allow for sizable effects in B and B mixing observables

close to the level probed by current experiments.

e Even though the absence of charged current flavor violation is imposed, violation of
LFU is a generic prediction due to partial compositeness. Consequently, tests of e-p

universality violation in charged current decays are important constraints.

e Large LFU violation in B — D® 7, which is indicated by several experiments at the
combined level of 40, cannot by explained by the model while satisfying LEP constraints
on the Z77 coupling. However, the tensions can be slightly ameliorated compared to
the SM.

185




CHAPTER 7. SUMMARY AND OUTLOOK

e Interestingly, the MFPC model can explain both anomalies in rare B decays, i.e. the
B — K*u*p~ anomaly and the hints for LFU in Ry . The explanation of both
anomalies at once requires a sizable partial compositeness of left-handed muons, very

similar to the mechanism discussed in chapter

In view of the tensions in rare B decays, but also in charged current LFU observables
containing the 7, it is a very exciting time for doing flavor physics. The question if these
hints for NP actually turn out to be first signs of a sector beyond the SM will be answered
during the following years by measurements both performed by LHCb and at the upcoming
Belle 2 experiment. If they should actually confirm the long sought NP effects, it might also
be possible to probe the currently still hypothetical NP sector by direct searches at the LHC.
While no direct effects have been observed so far, this might change with a substantially
larger integrated luminosity over the forthcoming years. If only indirect effects are seen and
no direct detection is made, this might hint to relatively heavy NP particles that are strongly
coupled, such that they still can produce sizable effects in non-renormalizable operators in
the low-energy effective theory. Composite Higgs models are among the prime candidates for

describing these strongly coupled particles.
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Appendix

A.1 Explicit vacuum states

While according to the CCWZ formalism, the NGB Lagrangian depends only on the G/H
coset parametrized by the NGB matrix U(z) and not on the vacuum ¢, one may use the
field

¢(z) = U(x) go (A.1)

to write down a Lagrangian that is equivalent to the CCWZ prescription. It is assumed here
that the vacuum that breaks G — H is parametrized by a fundamentaﬂ representation of G
(cf. e.g. ,). For an N x N NGB matrix, the vacuum ¢ is thus considered to
be an N-component vector. Following , two possible terms are found at leading order

in derivatives,
£ =1 (0,01 @)) (0"6(2)) + 261 (2) (0u0(e) ) (9761 (2)) (), (A.2)

where ¢; and ¢ are constants that depend on the G/H coset and on the specific vacuum ¢y.

Rewriting the above Lagrangian in terms of the NGB matrix U(z) and ¢q yields

Lo =c1 6} (aﬂU—l(x)) (6“U(a:)> o+ c2 6 U™ () (@LU(x)) o &} (8"U—1(m)> U(x) do.
(A.3)
To see how this Lagrangian is equivalent to the CCWZ Lagrangian, eq. , one can employ
the relation from eq. to rearrange the U(x) matrices such that the Lagrangian can be
written in terms of the Maurer-Cartan-form a,[U] defined in eq. . It then reads

Lo = c1 6 au[U) a'[U] ¢o + c2 6 a[U] do ¢} a[U] . (A.4)

!Constructions where the G — H breaking is parametrized by larger representations have been discussed
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Using the expansion of a,[U] in terms of the unbroken and broken generators, eq. (2.23)), and
noting that by definition the vacuum transforms trivially under the group elements associated

with the unbroken generators, i.e. T% ¢g = 0, one finds
£2 = du[U]" @ IU]" (o1 6 X* X" gy + c2 6 X 60 0 X" o ) (A.5)
Equating this with the NGB Lagrangian from the CCWZ prescription, eq. (2.26)), yields

2
o1 6 X X" o+ e2 6 X% 00 6} X" 60 = L5, (A6)
where for the derivation of the right-hand side, the normalization tr[X*X?] = §9 is used.

As an explicit example, the spontaneous symmetry breaking SO(N) — SO(N — 1) is
now considered. With an appropriate choice of generators, the vacuum ¢g can be written as
#o = (0,...,0,1)T. The above relation for ¢; and cg, eq. (A.6), thus simplifies to
f2

a [XEX N + o [XYnn [XO]vw = T 5. (A7)

Since the generators of SO(N) are antisymmetric, their diagonal elements vanish and one
finds [X%|yny = 0. The second term in the Lagrangian, which is proportional to cg, is thus

absent in this case. Considering an explicit basis for the generators X¢, e.g.

(X9 = —\}é (6965 —6709), a€fl,...,N—1}, I,Je{l,...,N}, (A.8)
one finds
X X, = % (5785 +65)8Y) . abe{l... .N-1}, LJe{l...N}, (A9)
and thus

1
(X X" vn = 55@, (A.10)
such that ¢; = f2—2 Using the above choice of generators, the leading order NGB Lagrangian
for a spontaneous breaking SO(N) — SO(N — 1) is then given by

Ly = f; 0,U () aMU(x)} (A.11)

NN
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A.2 Generators of SO(5) and SO(6)

The 10 generators of SO(5) can be grouped according to their transformation properties
under the SU(2)1, x SU(2)r = SO(4) subgroup of SO(5):

e The T¢ transform as (3,1) and generate the SU(2);, subgroup.
e The T} transform as (1,3) and generate the SU(2)g subgroup.

e The T transform as (2,2) and correspond to the broken generators of the SO(5) —
SO(4) symmetry breaking. These generators are associated with the SO(5)/SO(4)
Higgs doublet NGBs.

The generators can be defined as

7 1
(M%) = —3 [Gabc (0p10¢g — Opsber) + (0arday — 5aJ54I):| , ae€{l,23},

2
1|1
[Tkl =5 [26“‘3 (0b10c — Obg0cr) — (0arday — 5@541)} , a€{1,2,3}, (A.12)
1
[Ti],, = s (0ar057 — 0asdsr), a€{1,2,3,4},

where I,J € {1,2,3,4,5}.

The 15 generators of SO(6) consist of the 10 generators of SO(5) and the five generators
that are broken by the SO(6) — SO(5) symmetry breaking. To define the former, the
definition above can be simply extended by using I, J € {1,2,3,4,5,6}. The latter transform
under SU(2)1, x SU(2)g as follows:

e The Tg transform as (2,2). These generators are associated with the Higgs doublet
NGBs in the SO(6)/SO(5) coset.

e The Tg transforms as (1,1). This generator is associated with the scalar singlet NGB
in the SO(6)/SO(5) coset.

They can be defined as

/)
(T3], = VG (6ard6s — asder), a€{1,2,3,4},

i (A.13)
(Tsly = 7 (051967 — 057061 5

where I,J € {1,2,3,4,5,6}.
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A.3 Loop functions

This appendix lists the loop functions introduced in section [3.2.2] The functions relevant for

a decay of a heavy scalar to two massless vector bosons are (cf. e.g. [334-336])
Ap(z) =2z (1+ (1 —2) f(2)),
Ap(z) =22 f(a), (A14)
Ay(z) =—-2-3z—-3x(2— ) f(x),

2
2

where ) arcsin? ( % ) ife>1 A15
f(z) = -1 <log(ig>—m)2 ifr<1 e

In the case where one of the vector bosons in the final state is massive, the following functions
apply (cf. e.g. [334-337)):

Br(z,y) =4 (Ii(z,y) — I2(z,y)),

BF(«T,Q) = 4]2(£U,y), (A16)
By (z,y) = (;l + xgy —6— i) Li(z,y) + 16 (1 — ;) Iy(z,vy).

The functions [;(z,y) and Iy(z,y) are defined by

Ty x2y2

= x) — Ty x) —
W) = 50 T3 g (f(z) = f(y)) + L (9(z) — g(y)), A
L(z,y) = % (F(2) = f()).
where f(x) is given in eq. (A.15) and g(x) is
V& — 1 arcsin (i> ifx>1
(z) = Ve . (A.18)
I V?(log(}f 1:5) —i7r> ifex <1
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A.4 Mass matrices

A41

Vector bosons

Minimal composite Higgs model

The mass matrix of the neutral vector bosons in the MCHM is

0)3 0
W;S ) Bl(l) p%u p%u az Xﬂ aﬁ
03 || 29t
W — -
5O (008 2
K 2
o
Mz (h) = oy 0
p3 i9p
Rpu . 2
a 7
8 2(78-17)
X, f§<29§<
4 2
4 19p
as, 0 72(f12*f2)
where the h-dependent composite-elementary mixings are
Wi B
p%u —5f7 90)9p (cn +1) 113 gzo)gp (1—cp)
Yz = p?l)%u —iffg(o)gp (1 _Ch) _%f%g&))gp (Ch+1)
o3 1 900)90 50 12 9(0)90 5n
H 2\/5 27\/5
1 £2
Xy 0 - §f X QEO)QX

The mass matrix of the charged vector bosons Vf = % (Vul F ZVMQ) in the MCHM is

O+ | + +
Wi PLu PRy a:[
Wi | e o
. _ f2 2
(h) — pL” 129/3 ,
- fig3
pR,u v 12 -
o w fias
z 2=

(A.19)

(A.20)

(A.21)
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where the h-dependent composite-elementary mixings are given by

W,EO)JF
- 142
Pru || =117 9095 (1 = cn)
a- _ f19(0)9p sn
" 2v/2
The mass matrix of the colored vector bosons in the MCHM and in the NMCHM is
0 1
Gy e
2(h) = (0) 1&950) f&930)9301)
Mé(h) Gy, L@ — e |. (A.23)
G(l) _ fé930)93(1) fégg(l)
J 2 2
Quarks
The mass matrix of up-type quarks in the MCHM is
M, (h) =
0 3 B ~ ~ o~ ~
wp) | Qi Qi S| Qi Qi |Qr Qi S
Eéo) 0 éuL —Agr 0 0
Jrf
QuL my my,
—+
Qu1 0 myr 0 my,
Sl my my, + Yy (A.24)
++ ’
m m
Qg 0 v 0
dL mp
=T—
QuL mﬁ
=—+ t
ulLL éuR 0 0 mg
S mg
where the h-dependent composite-elementary mixings are
T T
éuR - éuL -
Y e
—+— i ——
Qur, _ﬁALRSh Qur _%ALL (cn +1) (A.25)
=—+ . ) — :
QuL —ﬁALRSh Qur %ALL (1 —cn)
guL —ALRC}L Sur _\%ALLSh

192




A.4. MASS MATRICES

An analogous matrix is found for down-type quarks.

The mass matrices of exotically charged quarks in the MCHM and in the NMCHM are

MQ+5/3 (h) = MQ74/3(h) =
++ Ot -— O
QuR QuR QdR QdR (A 26)
=+ 5 '
QuL my My, ) QdL mp My,
=++ =
QuL 0 m[j' QdL 0 mﬁ
A.4.2 Next-to-minimal composite Higgs model
Vector bosons
The mass matrix of the neutral vector bosons in the NMCHM is
M (h,h) =
0)3 0
(03 1193
© -3 T
B (f12+1;§)923> Z
- f2 2
p%,u 129p
fig2
Py 2 0
2 2
a?u vz f12gp )
4 2
3 g
a2 Q(flzl,’}z)
X, f§<2g§<
2 2
ailu f129p
fig2
o ’ 3(7-17)
fig2
P (7-77)
(A.27)
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where the h- and n-dependent composite-elementary mixings are

(A.28)

, (A.29)

(0)3 (0)
Wy By,
p%u —1ft 9(0)9p (Chgvgv + 5727 +1) ~1 12920)9;» (1- Ch)Eg,
1 1
vy = pgl)%y _Zf12 90)9p (1 - Ch) Eyzy -1 fgéo)gp (Chrc\;z7 —|—~:9227 + 1)
o3 12 9(0)90 (1=cp)3nTy 1T 9(0)90 (1=cn)3nCn
1y 2v2 L, 2V2
a3 _ 9090 1% 909 5150
21 272 NG}
Xy 0 *%f?{ QEU)QX
The mass matrix of the charged vector bosons Vf = \}5 (V#1 F lef) in the NMCHM is
0)+
W’S ) pzu pltlu afu a;u
o) [[ g T
W e vy
M (hi) = | L T
_ 22
'OR,LL 2
- ow 134
1p T2
4 2
_ ig2

where the h- and 7-dependent

vw

composite-elementary mixings are given by

WO+
Pru || =377 9090 (cncs + 355 +1)
Pru || 17909 (1— )
ar f12 9(0)9p (1—cn)3ney

1p 2V2
o _ 29090 51

2 2V2

(A.30)
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Quarks

The mass matrix of up-type quarks in the NMCHM is

Mq(h, i) =
0 o ~ -~ o~ -
v | Qi Qui Sin Sin| Qi Qit | Qi Qi Sk Sin
ﬂio) éuL _AdL 0 0
7_}'__
QuL my mYu
~—+
Qu |l " 0 e
S my my,
=2
SuL my my, + Y.
Qu mp My, ’
Qi | 0 ‘ 0
dL mp
=F=
QuL mf]
=+
L t mg
AR 0 0
SuL mg
=2
SuL mﬁ
(A.31)
where the h- and n-dependent composite-elementary mixings are
T
0
9 o
—+— .
Qur. || —=5 (AU (= en)s@y) + Alfsney ) | —ial @2+
5 i (ASH 1 1At 2
|| =25 (A= ase) +ala) [ | Qu | daLZa -
=1 —1 ; ~ ~
S SAML (@ + ) + A%y, Sur || Z5ALL (1= )58
=2 =2 ; ~
SuL AuRShSW Agﬂch Sur _ﬁALLcnsh
(A.32)

An analogous matrix is found for down-type quarks.
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A.5 Composite-elementary mixings

A.5.1 Minimal composite Higgs model

The explicit expressions of the 3 x 3 composite elementary mixings for the different flavor

symimetries are

e In U(3)},

ARu
Ay, =An 1, AL, =VT
ARq
Ag, =Apy 1, Al =

Here, V is the CKM matrix with 3 angles and 1 phase.

e In U3)3c

ALu
AuL = VT Are )
Ary
Arg
AdL = Ars )
Arp
ALu CuARu
AUL = Ay ) ALR = SuARue_‘
Art
Arq caARa
Ag, = Ard ; AZR = | saArae”
Arp

g

Ape. , (A.33)
ARy
(A.34)
ARy
Al =Ap 1, (A.35)
Al =Ap 1. (A.36)
_SuARceia“
CUARC euARt€i¢t )
Apy
(A.37)
—84ARgse’d
caARs €aA ppe’®
ARy
(A.38)

196




A.5. COMPOSITE-ELEMENTARY MIXINGS

CuALu
AUL = SuALue_iau

caArLad
Ag, = | sgApge™

—Su ALceiau ARu
WAY S €u ALt€i¢t ) ALR = ARu )
Ary ARy
(A.39)
—84A et ARg
cdALs calrpe™® |, ALR = ARg
Arp ARy
(A.40)

A.5.2 Next-to-minimal composite Higgs model

The explicit expressions of the 3 x 3 composite elementary mixings for the U(Q)%C flavor

Symmetry are

Cy AulL —Su AugL et
Ay, = | sy Ay, e Cu Ay,L, €u Ayl eitu | | (A.41)
Au3L
ca Ag1, —5q Agy1, €4
Agr = [ sgAgne™™ gl eqAgre | (A.42)
Ag,1,
5 AG ei(bglgR
u12R ui12
51 5 61 _ 6 igy,
AuR = AU12R s AuR = Au12Re 12R ,
5 6 i‘bﬁt R
AugR Au R€ “3
(A.43)
AB A6 ei¢g12R
di2R di2R
5¢ 5 61 _ 6 i
AdR - AduR y AdR = Adu e Tdi2R
5 6 idS.
Ad3R Agre st
(A.44)
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A.6 Experimental searches included as direct constraints

A.6.1 Analysis of the minimal composite Higgs model

Decay Experiment +/s [TeV] Lum. [fb~!] Analysis
pt — v ATLAS 7 4.7 EXOT-2012-02  [33§]
. L ATLAS 8 20.3 EXOT-2013-23  [339]
p= — W=h
CMS 8 19.7 EXO0-14-010 340
ATLAS 8 20.3 EXOT-2013-01 [341]
N n ATLAS 8 20.3 EXOT-2013-07 [342]
pt > W=+Z
ATLAS 8 20.3 EXOT-2013-08  [343]
CMS 8 19.7 EXO-12-024 [344]
pt — th CMS 8 19.5 B2G-12-010 1345
ATLAS 8 20.3 EXOT-2013-01 [341]
pd = WTW-
CMS 8 19.7 EXO-13-009 [346]
. ATLAS 8 20.3 EXOT-2013-23  [339)
p° — Zh
CMS 8 19.7 EXO-13-007 [347]
ATLAS 8 20.3 EXOT-2012-23 [348]
oV — e~
CMS 8 20.6 EX012061 [349]
0 _ ATLAS 8 20.3 CONF-2015-009  [350]
P’ /pc — tt
CMS 8 19.5 B2G-12-008 1351]

Table A.1: Experimental analyses included in our numerics for heavy vector resonance decay.
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Decay Experiment +/s [TeV] Luminosity [fb~!] Analysis
Q—tW CMS 7 5 B2G-12-004 1352]
ATLAS 7 1.04 EXOT-2011-28  [353]
Q— W
CDF 1.96 4.6 [354]
Q — g CMS 8 19.7 B2G-12-017 1355]
Q— jZ CDF 1.96 1.055 1356]
CMS 7 5 B2G-12-004 [352]
U—tz
CMS 7 1.1 EXO-11-005 1357]
ATLAS 8 20.3 CONF-2015-012  [358]
CMS 8 19.8 B2G-12-019 1359]
D — bH
CMS 8 19.5 B2G-13-003 1360]
CMS 8 19.7 B2G-14-001 [361]
CMS 7 5 EXO-11-066 [362]
CMS 8 19.8 B2G-12-019 [359]
D —bZ
CMS 8 19.5 B2G-13-003 [360]
CMS 8 19.6 B2G-12-021 363]
ATLAS 8 20.3 EXOT-2013-16  [364]
CMS 8 19.8 B2G-12-019 [359]
D — tW
CMS 8 19.5 B2G-13-003 1360]
CDF 1.96 2.7 1365]
CMS 7 5 EXO0-11-050 [366]
CMS 7 5 EX0-11-099 367]
QbW  ATLAS 7 47 EXOT-2012-07  [368]
ATLAS 8 20.3 CONF-2015-012  [358]
CMS 8 19.7 B2G-12-017 [355]
ATLAS 8 20.3 EXOT-2013-16  [364]
Q53 — W ATLAS 8 20.3 EXOT-2014-17 1369]
CMS 8 19.6 B2G-12-012 [370]
U—tH  CMS 8 19.7 B2G-12-004 371]

Table A.2: Experimental analyses included in our numerics for heavy quark partner decay.
Q stands for any quark partner where the decay in question is allowed by electric charges, j

stands for a light quark or b jet, and ¢ for a light quark jet.
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A.6.2 Analysis of the next-to-minimal composite Higgs model

Decay Experiment /s [TeV] Lum. [fb~!] Analysis
Q—jz CDF 1.96 1.055 [372]
ATLAS 7 1.04 EXOT-2011-28 [353]
Q— W 1
CDF 1.96 46 [354
CMS 8 19.7 B2G-12-017 [355]
Q=W ﬁ
ATLAS 8 20.3 EXOT-2014-10 (373!
CMS 7 5 EXO-11-050 [366]
CMS 7 5 EX0-11-099 367
Q— bW ATLAS 7 4.7 EXOT-2012-07 [368]
ATLAS 8 20.3 CONF-2015-012 [358]
CMS 8 19.7 B2G-12-017 [355]
Q—tW  CMS 7 5 B2G-12-004 [352
CMS 8 19.7 B2G-13-005 [374]
U—tH ATLAS 13 3.2 CONF-2016-013  [375]
CMS 13 2.6 PAS-B2G-16-011 376
CMS 7 5 B2G-12-004 [352]
CMS 7 1.1 EXO-11-005 1357
U—tZ ]
CMS 8 19.7 B2G-13-005 374
ATLAS 13 14.7 CONF-2016-101 [377]
CMS 8 19.7 B2G-13-005 [374]
U — bW ]
ATLAS 13 14.7 CONF-2016-102  [378]
ATLAS 8 20.3 CONF-2015-012 [358]
CMS 8 19.8 B2G-12-019 [359]
D — bH ]
CMS 8 19.5 B2G-13-003 [360]
CMS 8 19.7 B2G-14-001 379
CMS 7 5 EXO-11-066 [362]
D —bZ CMS 8 19.5 B2G-13-003 [360]
CMS 8 19.7 B2G-13-006 [380]
ATLAS 8 20.3 EXOT-2013-16 [364]
CMS 8 19.5 B2G-13-003 [360]
D —tW ]
CMS 8 19.7 B2G-13-006 13801
CDF 1.96 2.7 365!
ATLAS 8 20.3 EXOT-2014-17 [369]
Qs/3 = tW  CMS 8 19.6 B2G-12-012 [370]
CMS 13

2.2 PAS-B2G-15-006  [381]

Table A.3: Experimental analyses included in our numerics for heavy quark partner decay.
Q stands for any quark partner where the decay in question is allowed by electric charges, j

stands for a light quark or b jet, and ¢ for a light quark jet.
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Decay Experiment /s [TeV] Lum. [fb~!] Analysis
CMS 8 19.7 PAS-EX0-15-008 |382]
ATLAS 13 3.2 EXOT-2015-11 383]
0 hh CMS 13 2.3 PAS-HIG-16-002 \384;
CMS 13 2.7 PAS-B2G-16-008 13851
CMS 13 12.9 PAS-HIG-16-029 1386
CMS 13 2.7 PAS-HIG-16-032 1387
ATLAS 13 13.3 CONF-2016-056  [388]
ATLAS 13 14.8 CONF-2016-079 1389
n— 27 ATLAS 13 13.2 CONF-2016-082 1390]
CMS 13 12.9 PAS-HIG-16-033 [391]
CMS 13 2.7 PAS-B2G-16-010 1392
ATLAS 8 20.3 EXOT-2013-01* ‘341:7
CMS 8 19.7 EXO-13-009* |346]
0 W ATLAS 13 13.2 CONF-2016-062* ‘393;
ATLAS 13 13.2 CONF-2016-074 1394]
CMS 13 2.3 PAS-HIG-16-023 1395]
ATLAS 13 154 CONF-2016-059 ‘3967
T CMS 13 16.2 PAS-EXO0-16-027 1397]
ATLAS 13 13.3 CONF-2016-044 \398:7
ATLAS 13 3.2 EXOT-2016-02 1399
n—Zy CMS 13 19.7 PAS-EX0-16-025 |400]
CMS 13 12.9 PAS-EXO0-16-034 |401]
CMS 13 12.9 PAS-EX0-16-035 |402]
ATLAS 8 20.3 EXOT-2012-23* \348:7
ws ere e OV 8 20.6 EXO-12-061* 349
ATLAS 13 13.3 CONF-2016-045* |403]
CMS 13 12.4 PAS-EXO0-16-031*  |404]
ATLAS 8 19.5 EXOT-2014-05* \405:7
n—71tr CMS 8 19.7 EXO-12-046* |406]
CMS 13 2.2 PAS-EXO-16-008*  [407]
ATLAS 13 13.3 CONF-2016-085 |408]
CMS 13 2.3 PAS-HIG-16-006 |409]
ATLAS 8 20.3 CONF-2015-009* ‘350:7
0t CMS 8 19.7 B2G-13-008* \4105
CMS 13 2.6 PAS-B2G-15-002* |411]
CMS 13 2.6 PAS-B2G-15-003* |412]
17— bb CMS 13 2.60 PAS-HIG-16-025 413
n—qq CMS 13 12.9 PAS-EXO-16-032* ‘414:7
n— g9 CMS 13 12.9 PAS-EXO-16-032  |414]
- ATLAS 13 3.6 EXOT-2015-02*  [226]
n—73]

CMS 13 2.4 EXO-15-001* |415]

Table A.4: Experimental analyses included in our numerics for 1 decay. The analyses marked
with * are actually searches for neutral vector resonances. Since for many channels there are
no dedicated analyses searching for a neutral scalar resonance and the bounds should be

similar, we include the spin-1 analyses in our numerics for 7 decay.
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Decay Experiment /s [TeV] Lum. [fb~!] Analysis
ATLAS 8 20.3 EXOT-2013-23 339
CMS 8 19.7 EX0-14-010 340,
pt = WEh ATLAS 13 3.2 EXOT-2015-18 1161
ATLAS 13 13.3 CONF-2016-083 (417
CMS 13 2.17 PAS-B2G-16-003  [418|
ATLAS 8 20.3 EXOT-2013-01 341
ATLAS 8 20.3 EXOT-2013-07 342]
ATLAS 8 20.3 EXOT-2013-08 343
CMS 8 19.7 EXO-12-024 344
Pt WEZ ATLAS 13 15.5 CONF-2016-055 41|
ATLAS 13 13.2 CONF-2016-:062 3931
ATLAS 13 13.2 CONF-2016-082 (390!
CMS 13 2.2 PAS-EXO-15-002  [420]
CMS 13 12.9 PAS-B2G-16-020  421]
CMS 8 19.5 B2G-12-010 345
oty CMS 8 19.7 B2G-12-009 E
CMS 13 2.55 PAS-B2G-16-009  [423
CMS 13 12.9 PAS-B2G-16-017  424]
sty CMS 8 19.7 EX0-12-011 425)
CMS 13 2.3 PAS-EXO0-16-006  [426
ATLAS 7 4.7 EXOT-2012-02 338
pt —etv/pty ATLAS 13 133 CONF-2016-061 427
CMS 13 2.2 PAS-EX0-15-006 428!
pE =g ATLAS 13 3.6 EXOT-2015-02 226
ATLAS 8 20.3 EXOT-2013-01 341
P = WHWw— CMS 8 19.7 EXO0-13-009 %
ATLAS 13 13.2 CONF-2016-062 (393
ATLAS 8 20.3 EXOT-2013-23 339
CMS 8 19.7 EX0-13-007 347)
s zh ATLAS 13 3.2 EXOT-2015-18 E
ATLAS 13 3.2 CONF-2015-074  [429
ATLAS 13 13.3 CONF-2016-083 |17
CMS 13 2.17 PAS-B2G-16-003  [A18|
= Wtw=/Zh CMS 13 2.2 PAS-B2G-16-007  [430
ATLAS 8 20.3 EXOT-2012-23 348
P e CMS 8 20.6 EX0-12-061 E
ATLAS 13 133 CONF-2016-045 403
CMS 13 12.4 PAS-EXO0-16-031  [404]
ATLAS 8 19.5 EXOT-2014-05 405
PO =t CMS 8 19.7 EXO0-12-046 E
CMS 13 2.2 PAS-EX0-16-008 407
ATLAS 8 20.3 CONF-2015-009 (350
Ry CMS 8 19.7 B2G-13-008 E
CMS 13 2.6 PAS-B2G-15-002 {411
CMS 13 2.6 PAS-B2G-15-003  [412|
N B ATLAS 13 3.6 EXOT-2015-02 226
Plpc = jj —
CMS 13 2.4 EXO-15-001 415
°/pc = qq CMS 13 12.9 PAS-EX0-16-032  [414

Table A.5: Experimental analyses included in our numerics for heavy vector resonance decay.
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