
Lehrstuhl für Steuerungs- und Regelungstechnik
Technische Universität München

Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss

Intention Recognition in Dynamic Field Theory

Laith M. H. Alkurdi

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Bernhard Seeber

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Angelika Peer

2. Prof. Dr.-Ing. Sami Haddadin

Die Dissertation wurde am 06.03.2018 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 29.03.2019
angenommen.





Foreword

This work would not be possible without the help of the many great people at the Chair
of Automatic Control Engineering (LSR) at the Technische Universität München (TUM).
Firstly, my gratitude is directed to my supervisor Prof. Angelika Peer for the never ending
support and for all the fruitful discussions and guidance that made this work possible. I
am also grateful to Prof. Martin Buss and Prof. Dirk Wollherr for their great support and
for giving me the opportunity to pursue my research career at the LSR. My thanks extend
to Frau Schmid for all her patience and help.
My time at LSR was an exciting scientific experience that was enriched with professional

colleagues who were eager to discuss ideas and help in any possible way. Special thanks
to my colleagues in the BEAMING and MOBOT projects, Milad Geravand and Stefan
Klare, with whom I had the joy of working, sharing knowledge and sharing the road
on our many trips. I would like to thank my colleagues who made the time at LSR
enjoyable and enriching. I would like particularly to thank Mohammad Abu-Alqumsan,
Philine Donner, Daniel Althoff, Andreas Lawitzky, Ken Friedl, Markus Kühne, Roderick de
Nijs, Annemarie Turnwald, Sotiris Apostolopoulos, Muhammad Sheraz Khan, Alexander
Pekarovskiy, Christian Landsiedel and Markus Schill. In terms of technical help, Wolfgang
Jaschik, Thomas Lowitz, Tobias Stoeber, Domenik Weilbach and Kilian Weber for all their
efforts. I thank you all greatly.
I would like to sincerely thank my students who were a great part of this work. They have

consistently showed passion and scientific vigor in discussing and studying many questions
this work has addressed. Thank you Christian Busch, Andre Christ, Tommy Schau, Lucas
Falch...
This work is dedicated to the love of my life, my wife Sadia, who has supported me

continuously. I dedicate this work to my family who have always pushed me to aspire to
my dreams, thank you dad, thank you mom, thank you Ahmad, Luai and Haitham.

Munich, January 2018 Laith Alkurdi



Abstract
To achieve seamless human-robot interaction, each agent should adapt to the anticipated
state of the other. Inferred intentions should be a decisive factor on how a robot makes high-
level decisions. The large state space of possible solutions to what action the human intends
to perform in the environment, as well as the timing constraints to achieving a solution,
renders the task of intention recognition nontrivial. However, a robot with abilities of
estimating the intended actions of humans in its environment can anticipate their needs
and plan accordingly. In this thesis, we present a control approach to intention recognition
based on Dynamic Field Theory (DFT). We present this cognitive control architecture
as a dynamical model that enforces concepts of embodied embedded cognition (EEC)
where (generation and understanding) intelligent behavior is a product of the interaction
between the agent’s body, cognitive abilities, and the environment that it is situated in.
The proposed work that is based on DFT estimates the driving force behind an agent’s
action by introducing an integration between top-down and bottom-up processes. In order
to achieve intention recognition, we construct the control problem as a dynamic decision-
making system. The first level of the top-down process tries to understand the context
behind the observed kinematic movements of a human. The second level of the top-down
process compares the observed the trajectory against a range of learned movements for
recognition. The overall intention is recognized by understanding the performed actions
in a top-down direction by mixing signals from the inference blocks as mentioned above.
Explicitly, these two processes make sense of the observed action by parsing the trajectory
of the movement on the one hand and the contextual meaning behind the movement on the
other. This involves controlling traveling peaks in the integro-differential field equations
and stabilizing the solutions of those traveling peaks. Finally, internal simulation allows
the system to be predictive in the task of intention recognition. This internal simulation
of movement generation represents the bottom-up process. The framework is tested in an
environment within which perform high-level actions. Using the solutions as mentioned
above, the system can come to a decision on what action the human is performing and
what the underlying context is. Furthermore, the internal simulation bottom-up process
is validated on a two-dimensional musculoskeletal arm model.
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1 Introduction

One of the goals of developing robotic systems is to produce machines that are capable
of sharing an environment with people and ultimately assisting them with their everyday
life tasks. This, however, requires that these robots be endowed with abilities of action
understanding and intention recognition. Having such abilities in their arsenal would
allow intelligent systems to understand what the observed actor is currently doing, why
this action is being done and to what end. Moreover, it would allow these systems to
assess in which way assistance could be given, and at which point this assistance could be
introduced. The challenge then is building computational models that can aid intelligent
systems in understanding manipulation or locomotion actions of an observed actor. In this
work we present a biologically inspired dynamic approach towards intentional action and
plan understanding.

Within the embodied situated cognition stance, intelligent human behavior can be un-
derstood as the adaptive response an agent produces due to the tight coupling between
the agent’s body, the environment and the agent’s decision making processes [1, 2]. As the
agent’s decision making processes develop an intention, a series of intentional actions are
sequentially produced to fulfill that intention within the current environment. Intention
recognition can then be understood as the task of extracting the meaning behind the series
of these actions [3, 4], and is tightly related to action and (action) plan understanding [5–8].
Human action understanding can then be understood as the task of relating a stream of
human-related multimodal data (motion, audio, contextual, etc.) to the environment and
classifying this data into semantic terms. Philosophically, the problem of mental state
(intentions, desires, beliefs, etc.) attribution has been addressed by the theory of mind
(ToM) [9, 10], within which actions are understood based on one’s own understanding of
the decision making processes.

The above ideas are also observed on a neuronal level within the mirror neuron system
(MNS), where specific regions in the brain are active both when an agent produces and
observes an action. The tasks of action and plan recognition are hypothesized to be one
of the functions of the MNS [11, 12] in which the observed behavior (the trajectory of a
reaching action) is mapped to one’s own as explained by the direct matching hypothesis (or
the motor resonance hypothesis) [13]. It is unknown at which level the observed behavior
is mapped to one’s own as explained by the direct matching hypothesis (or the motor
resonance hypothesis). Possible non-exclusive options include a high-level intention level,
an emulation level in which the motor code of the final goal of the behavior is matched or
an imitation level in which the motor code of the trajectory of the behavior is matched [13].
The link between environment and behavior has also been observed in a different neuron
system called the canonical neuron system (CNS) that seems to encode action possibilities
directed towards different objects.
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1 Introduction

1.1 Intention recognition
Intention and intention recognition (IR) as terms are often used synonymously with con-
cepts such as intentionality, desires, and beliefs. In the following, we define intention and
intentionality from a philosophical point of view, and how they are related to desires and
beliefs. Furthermore, we present studies that focus on human intention and the process
of intention recognition. We present next how the concepts within human intention recog-
nition motivate intention recognition systems within robotics and present classifications,
characteristic, possible applications, challenges and limitations to such systems.

Intentionality is a technical term that could be attributed to mental states that are
goal-directed [14]. Furthermore, it is a property attributed to actions such they could be
called purposeful [15]. Intentions and intentionality are complex terms that are applied
only when specific conditions are met. In order to attribute intentionality to an action,
the agent is required to have awareness of performing such an action and has the skills
required to perform such an action [16]. An intention, on the other hand, is a mental state
that represents such an action [15]. An agent develops an intention once it develops a
certain desire and a certain belief [16]. Explicitly stated, given an action A, one could give
that action an intention I if one grants an agent a desire for some outcome O and a belief
that A will likely lead to O [3].

In that sense, a desire is a prerequisite for an intention [3]. To eliminate confusion
in understanding a desire and how it relates to an intention we describe three features
discussed in philosophy on the distinction between the two concepts. First, intentions are
directed at the intender’s own action whereas desires can be directed at an abstract concept
or object. Secondly, intentions are based on some amount of reasoning whereas desires
are typically the input to such reasoning. Finally, intentions come with a characteristic
commitment to perform the intended action whereas desires do not. In the following
section, we expand on the concepts of human intention and present studies aimed at
understanding the mechanisms that humans employ to achieve intention recognition.

Studies in human detection of intentions and intentionality

Through a set of psychological experiments, it had been shown that humans recognize
other people’s intentions and plan accordingly [17, 18]. Early work by Schmidt et al. in
the late 1970’s aimed at developing a system called BELIVER that was used to test the
psychological theory behind recognizing intentions, goals, and plans of an agent through
observing its actions [18]. Through these experiments it was seen that people were able
to predict the next action or even the ultimate goal after been given a list of behaviors;
moreover, they were able to attribute these actions as a part of a plan. Bartman later
developed a framework for understanding intentions [19]. He concluded that intentions are
the characterizing feature of a humans’ actions and that they could be used to explain the
reason behind them.

In general, it is thought that three stances exist to identify, explain and predict the
behavior of systems [20]. The first stance is the physical stance, in which the actual
physical construction of the system, that governs its operation, is used to understand and
predict the behavior of the system. The second stance is called the design stance. It is

2



1.1 Intention recognition

used to bypass the complexity that could be encountered in the physical stance. The basic
premise here is that systems are designed to perform certain tasks and it should conform
to the actions to ultimately achieve these tasks. Thus, by understanding the design of the
system we can predict and understand behavior. The final stance and the most relevant to
our discussion here is the intentional stance. The intentional stance is employed when it is
unpractical to consider the physical and design stance for action prediction and behavioral
understanding. Within this stance, the beliefs and desires of the agent, who is assumed
to be rational, are analyzed based on the environment in which the agent is situated in
and how the agent interacts with it. Once this information is available, the future actions
that the agent might take to achieve his goals can be predicted. Within this work, we
focus on modeling the intentional stance of human behavior understanding in a dynamic
architecture that takes inspiration from the human ToM.

People read the intentions underlying the behavior of others readily and with little con-
scious effort. How do people so effortlessly detect intentions within the dynamic behavior
stream and so readily apprehend its content? In psychology, it was determined that peo-
ple directly perceive others’ intentions on witnessing their actions [6, 21]. In other words,
intentionality and the specific intentions at play are thought to be within the behavioral
stream waiting to be detected. Concretely put, people directly employ ToM to perceive
intentions of others by recognizing their actions and movement.

Theory of mind is defined as the ability to attribute mental states such as beliefs,
desires, and intentions to oneself and others, as well as understanding why others may
have different mental states than one’s own [22, 23]. There exist two main mentalistic (and
opposing) approaches to explain ToM in the philosophy literature. Namely, theory-theory
and simulation theory [24, 25]. A third approach known as the “teleological stance” also
exists, however, this is a non-mentalistic view of representing, explaining and predicting
goal-directed actions [26, 27].

The basic idea in theory-theory is that the observer attributes mental states to the
actor based on theoretical observations about the actor’s behavior and the states of the
environment that has an effect on the actor’s behavior and mental state. Mental states
can also be attributed to some previous knowledge of the target’s mental states, and they
can be used to attribute mental states such as intentions. The primary ingredient in
theory-theory is the use of theoretical reasoning to attribute mental states. Theory-theory
is thus a combination of two theses. First, common-sense psychological concepts can be
considered theoretical concepts, and these concepts are employed similarly to how laws of
physical science are considered. Second, people detect psychological states in themselves
and others by making theoretical inferences accordingly.

On the other hand, in simulation theory, the observer puts himself in the actor’s shoes
and pretends to be in certain states that the actor might be in. He feeds inferred starting
states into appropriate cognitive decision-making mechanisms to develop an internal un-
derstanding of the observed agent. In other words, the observer tries to make his own mind
emulate the mental sequence the observed agent will go through. The observer, in this
case, tries to reproduce what transpires in the agent, this is in contrast to theory-theory
where this is not taken into account. The process of mental reproduction or simulation
substitutes the theoretical reasoning by psychological laws which are unnecessary under

3



1 Introduction

the simulation heuristic. This is not to say that simulation does not include any reasoning;
the opposite is more accurate. Practical reasoning is involved, but perhaps not exactly
theoretical reasoning. There might be cases where theoretical reasoning might be involved,
such as when a simulation is trying to understand a theoretical thinker such as a scientist.

A third contrasting view to both the aforementioned mentalistic theories is the devel-
opmental psychological view of teleological stance [26, 27]. This stance is considered a
non-mentalistic, reality-based view that aims at understanding intention by exploiting the
relationship between the observed actions, possible goal states and the situational con-
straints (current state of the environment). It is contrasting to the mentalistic views as it
can reason about the observed goal-directed actions by “making a reference to the relevant
aspects of reality” without attributing mental states to the observed agent’s mind [28].

The specific evidence for the evolutionary origins of mental simulation can be found in
the discovery of particular neurons that fire both when performing a specific goal-oriented
action and the observation of this action being perceived [29]. These neurons are called
the mirror neurons (MNs), and they were first observed in the brain of the Macaque
monkey. All mirror neurons discharge during specific goal-related motor actions such as
grasping, manipulation or holding an object. Once an intention is developed, a specific
set of neurons will fire to achieve that action. The observation of an intention and a
goal-oriented action will fire those neurons as well, however at a reduced rate. Specifically,
when a person observes an action, he will generate a plan to perform that exact action or
imagine himself doing it. However, this plan is never allowed to be put online and is thus
inhibited. Specifically put, the developed plan never yields motor output.

The human mirror neuron system (MNS) is a brain region that is active during the
execution of a set of actions and is also activated during the observation of these actions.
In terms of functions, MNS serve the purpose of imitation [30, 31], language evolution [32],
and importantly in our case it is suggested that they endow the functionality of intention
recognition [12] and action understanding [11]. Direct matching or motor resonance has
been identified as the mechanisms behind the functions of intention and action under-
standing [33, 34]. Three interpretations are prominent as to what exactly is encoded and
matched by MNS (for the function of direct matching) [13]: The first level is a detailed
motor parameter that describes the action; this could be a trajectory of the hand itself.
This level supports the role of imitation for MNS [35, 36]. The second level is also a motor
encoding that describes the schema level motor plan. This level supports the role of MNS
in emulation (goal imitation) [37]. The third level is a decoding of the intention driving
the set of actions. This level supports MNS for intention recognition [38, 39].

The problem of mental state attribution is fundamentally uncertain as there exists no
one-to-one mapping between different intentions and the actions they produce and vice
versa. Furthermore, mental states are not directly observable. Modeling human cognitive
ability of intention recognition is not a straightforward task. We have followed in this thesis
the philosophical view that promotes both an action as well as a plan based understanding
of intention. Explicitly stated, the account in this work is based on the view that inten-
tion recognition follows first the recognition of primitive actions (or what is refereed to as
intention-in-action [40], immediate action [41], present-directed intentions [19] or proximal
intention [42]). The second is the recognition of intention of the plan behind these actions

4



1.1 Intention recognition

(or prior intentions [40], prospective intention [41], future-directed intention [19] or distal
intention [42]). Both views are modeled in dynamics system theory and serve as a robotic
cognitive decision making architecture. In the following, we introduce intention recog-
nition within robotics, and highlight classifications, characteristics, possible applications,
challenges and limitations of such systems.

Intention recognition systems in robotics

Robots endowed with the ability of intention recognition would be able to facilitate human-
robot interaction, overcome shortcomings with the communication channel as well as adjust
its parameters to comply with human actions. For these reasons, intention recognition
becomes an integral part of any human-machine interaction interface.

Intention recognition can be seen as the intersection of human-machine interaction, ma-
chine learning, and cognitive science. Intention recognition aims to infer the aims and goals
of an agent through the understanding of its actions and the impact of these action plan
on the environment. It also uses the observations of the environment state to make those
inferences. An agent in this context is an autonomous entity situated in an environment
in which it can act upon [43]. Intention recognition has many applications ranging from
assisted technologies to interactive storytelling and computer games. They have been suc-
cessfully introduced in system intrusion detections as well as observing military movements
and riot control in urban environments.

Having an intention means that the system transcends from the realm of acting re-
actively, and starts to plan a sequence of actions towards a final goal and state. The
recognition path becomes essential for deducting an agent’s ultimate goal from his ob-
served states and being able to predict what his next possible state would be. Intention
recognition is important since:

• it enables pro-active cooperation and promotes cooperation; furthermore it preempts
danger [44].

• it makes the interaction between human and machine almost as normal as that of
human/human interaction [44].

• it counteracts possible communication problems in instances where [43]:

– communication is not available in the agents due to it not being implemented
or because of hardware restrictions.

– communication is not reliable: such as problems with a temporary drop in
communication or delays in the communication channel.

– communication is uneconomic.

– communication is in-agent: While communication is a very important part of
the design of agents, having maximum reliability on communication messages
takes away from the autonomy of agents in such that they are unable to acquire
the information themselves but rather require this information to be sent to
them; making any loss of data fatal to their operation.

5



1 Introduction

– communication is undesirable: for example in adversarial scenarios where it is
a matter of security to reveal information, and communication channels could
be undesirable.

– communication is unrealistic: when trying to implement human scenarios, there
exist certain constraints that can limit the quality and the quantity of informa-
tion shared over a communication channel. This has to be taken into account
and thus renders some of the methods of information sharing unrealistic.

– communication is not understandable: unless there is a clear and common stan-
dard communication protocol, agents might not be able to understand each
other’s messages.

Intention recognition systems can be classified into four main classes [17]. The different
classes and their definitions are as follows:

• Intended: the observed agent gives clear signals for his actions to covey his intentions.

• Keyhole: the observed agent does not intend for his actions to be observed or does not
care. This case could lead to partial observability. This is the case with help systems
that provide unsolicited guidance. e.g. ambient intelligence systems at home [45].

• Adversarial: the agent is hostile to his action being observed.

• Diversionary: the observed agent is trying to conceal his intentions by performing
misleading actions.

Regarding characteristics, a successful IR system should be able to:

• Deal with uncertainty [46].

• Dive conclusions before a single plan/ action is fully recognized and defined [46].

• Not jump to conclusions if complete information is not available [46].

• Take temporal ordering as a strict constraint for plan and intention recognition [46].

• Handle actions occurring at the same time [46].

• Consider a single action for two different plans [46].

• Be customized to the agent whose intentions and plans are being recognized. Each
agent’s previous actions and preferences should be taken into consideration individ-
ually and used for intention recognition [47].

• Filter actions that do not have a direct impact on the current intention, from those
actions that are an important part of the current intention [48].

6



1.1 Intention recognition

• Handle the dynamic nature of the environment, while intentions are assumed to
have the property of future-directness (which refers to the fact that if an intention
is chosen by an agent then a set of actions within a plan are also chosen to be
executed to achieve this intention in the future), the world is changing between the
time the intention is conceived to the moment it is achieved. It is within that time
the intention recognition system should be robust to dynamic changes [19].

Building a sophisticated IR system with the characteristics listed above is not without
challenges. We list the most serious problems in intention and plan recognition as discussed
in [49–52]:

• Expressiveness of plans: the system should be able to represent plans clearly for
system interpretability and scalability.

• Sensitivity to Noise: Noise can be exemplified in adversarial settings, e.g., in which
the observed agent is either trying to conceal his actions or deliberately trying to show
other intentions. Noise can also be in the form of external actions that have nothing
to do with the current intentions [53], previously defined as background actions.
Noise can be in the form of external actions that are not part of the intention but
elementary to other actions that are important within the plan and intention [54].

• Interrupted & interleaved plans: accounting for the case where the agent has many
intentions, and it interleaves the executions of his actions to achieve his plans.

• Plan libraries & scalability: building algorithms that scale up to larger domains and
different environments.

• Prior probabilities & performance: effective discrimination in the face of different
possible hypothesis.

• Novel plans: the system should be able to both handle original plans and save them
in the used plan library.

• Exploration: accounting for the case where the same agent is trying out different
actions to achieve the same plan.

• Multi-agent: the explosion in complexity when an IR system encounters multiple
(co-operating) agents.

Many limitations could hinder intention recognition as discussed in [43]:

• There might not be an intention at all. The agent under consideration might lack
the ability or the control schemes to formulate an intention and a long-term plan.
The agent might be reactive in nature. Agents under study might also not have a
possible way of exhibiting intentions.

• Intentions are too complex to be conveyed through a communication channel and
require a large number of parameters to be sent over.
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• Intentions are dependent on the context that it is performed in, environmental vari-
ables should be taken into consideration to be able to infer the correct intentions.

• Agents performing intention recognition should fully define the amount and depth of
information needed from the observed agent. This will expand the intention recog-
nition problem from simple communication to a complex conversation between the
agents to fully define each other’s states.

1.2 State-of-the-art of intention recognition in robotics
Intention recognition systems aim to infer the intention of an agent given two primary
inputs. The first input is the set of observed actions. The second input is a plan library that
encodes a set of plans and the possible set of actions and their interdependencies within each
plan. According to the intention inference approach, IR systems can be categorized broadly
into consistency, probabilistic and dynamic approaches. In the following section, we give
an overview of the state-of-the-art in consistency, probabilistic and dynamic approaches
towards IR.

Consistency approaches

Consistency approaches have been powerful tools in intention recognition research. They
aim at sequentially removing possible intentions (and plans) that are inconsistent with the
set of observed actions. The primary reasoning mechanisms that are usually used within
consistency approaches are abduction and causal theories.

Causal decision theory describes the set of rational actions that are available in a specific
scenario based on their expected causal consequences. The set of actions constitute a plan
that best achieves a specific intention or goal. The same logic could be applied in an
inverse-planning setting such as to recognize intentions and final goals.

Abduction, on the other hand, is a form of defeasible reasoning, often used to provide
explanations for observations [55]. For example, if the room is hot and the heating is on
then through abduction we can say that heating is on from observing the heat of the room.
As abduction can provide more than one hypotheses to explain the intentions, Charniak and
McDormott in [56] suggest some criteria for choosing between the competing hypotheses.
Firstly, a hypothesis is most preferred when it uses the most specific characteristics of the
observed action. For example, an interaction with a newspaper would indicate reading it
rather than swatting a fly with it. Secondly, a hypothesis that requires fewer additional
assumptions is most preferred. For the same example above an indication of reading the
newspaper is preferred as it needs no further assumptions, when the indication of swatting
a fly would require the observation of a fly. To rank hypothesis, generally two approaches
can be used: i) global and ii) local. Global criteria prefer explanations that are minimal
in some sense; i.e., the number of facts required to conclude the intention. Local criteria
associate some form of evaluation metric with each rule in the background theory and
provide a hypothesis metric which can be measured and compared against by combining
the evaluation metrics of the rules that were used within the hypothesis.
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1.2 State-of-the-art of intention recognition in robotics

Examples of consistency approaches can be found in Kautz’s work in [46] where a
formal theory of plan recognition was introduced. Lesh and Etzioni in [57] presented
consistency graphs in which actions and schemas are described. Pruning rules are applied
to this graph to reason about the possible intentions and plans. Additionally, consistency
approaches have been used in human-computer interaction applications such as that in the
COLLAGEN system as presented in [58].

Generally, in terms of advantages, consistency-based approaches tend to be highly ex-
pressive since the plan libraries are usually constructed manually [52]. Additionally, and
since the plan libraries are constructed manually, arbitrary constraints between the ac-
tions composing the plans can be imposed [59]. Furthermore, temporal order and logical
relations between actions can equally be represented.

Regarding disadvantages consistency approaches generally fail to consider inten-
tions/action priors [52]. This forces the system to search the entire plan library initially,
which can be computationally expensive. The reliance on plan libraries in itself is a primary
challenge as these plans should be constructed manually and it would be hard to guaran-
tee their completeness and their correctness [50]. Reliance on manually generated plan
libraries within consistency-based approaches would render the system incapable to make
a valid decision when presented with novel plans. Additionally, consistency approaches
are rather sensitive to the observation of noisy actions that are not necessarily part of
the agents intention [52]. In the same manner, consistency-based approaches are sensitive
to the partial observability of actions and are heavily reliant on continually classifying
actions accurately [50, 51]. Furthermore, they are inherently unable to handle interrupted
and interleaved plans without further processing [44, 59, 60].

Concerning challenges, consistency-based approaches suffer from handling cases of aban-
doned intentions and cases where individuals are irrational and incompetent [60]. Further-
more, consistency-based approaches fail to handle cases where users are performing reactive
actions or the case where multiple agents are cooperating towards a common intention [50–
52].

Within intention recognition, we would always look for the intention that is most con-
sistent with the observed actions. The challenge, however, is to consolidate the case in
which actions are consistent with more than one intention [60]. Consistency approaches
cannot directly choose between those intentions without information loss. As such it is
helpful to have some probabilistic framework to work around this problem, which motivates
probabilistic approaches to intention recognition presented in the next section.

Probabilistic approaches

Probabilistic approaches applied to intention recognition mainly cluster around the use of
Bayesian Networks (BN) and restricted versions of Hidden Markov Models (HMMs). They
have proven successful as they do not have the problems that the consistency approaches
suffer from. Probabilistic approaches are capable of finding the most probable intentions
given a set of current observations from accumulated statistical evidence or simply subjec-
tive beliefs encoded in a Bayesian network or a Markov model. Probabilistic approaches
aim at quantifying the uncertainty of each of the users’ possible intentions and ranking
them in a probabilistic manner.

9



1 Introduction

First models were built by Charniak and Goldman [61]. In their work, a library of
plans was given, and BNs are built from the library using a knowledge-based model. The
posterior probability is inferred to obtain explanations. There have been new advancements
to this method notably to include the cases where the agent has many intentions or follows
interleaved plans simultaneously or when the system fails to observe actions or addresses
partially ordered plans [62].

A context-dependent Bayesian approach was used in [63], although this model is not
incremental. This was applied to traffic monitoring, and it was shown that the contextual
information is necessary to recognize the driver’s intentions.

Bayesian Networks, in general, have been attractive for IR modeling as they are em-
ployed to summarize the general statistical evidence. They allow heuristic information
to be linked with situation-specific information to reason about which logical action can
occur and decide on possible actions to be performed [64]. As BNs are directed acyclic
graph structures, the structure shows the conditional in/dependencies between the ran-
dom variables represented by the graph nodes. A conditional probability distribution table
gives information at every node. Regarding advantages, BNs are flexible in representing
probabilistic dependencies as well as being efficient inference methods [65]. Concerning
disadvantages, the probability updates within BNs are not sensitive to the ordering of the
observed actions. Additionally, BNs’ complexity increase exponentially as the number of
observations increase.

Next to BNs, Hidden Markov Models (HMMs) are commonly employed to recognize
intentions. They provide stochastic models for collecting information sequences over time
to make estimates on hidden states. Fernandez et al. in [66] presents an HMM intention
recognition model to enhance the active cooperation between a robot and a human in
transporting rigid objects. Han et al. in [67] utilize HMMs to recognize the intention of
observed robots so that an observer robot can act accordingly in a robotic-soccer playing
application. Additionally, Yu et al. in [68] present an approach using HMMs to assist hu-
man motion in a remote environment by combining human movement intention recognition
with real-time environment information. Kelly et al. in [69] discuss an approach for human
intention recognition performed by a robot in which concepts in Theory of Mind inspire
HMM intention recognition. Regarding advantages, HMMs can handle partially observ-
able states as well as states that can not be identified with high certainty [59]. Concerning
disadvantages, HMMs require a large training set as well as sufficient understanding of the
problem domain [70].

Dynamic Bayesian Networks (DBN) are also used to model intentions and intention
recognition as it is a probabilistic model that provides the ability to reason under uncer-
tainty. Furthermore, it is a causal forward model that allows for subsuming temporal
information of successive measurements. Therefore it can encode temporal ordering as
opposed to regular BNs that are insensitive to ordering. DBNs are directed acyclic graphs
with nodes representing actions and edges representing causal dependencies among these
variables. The causal dependencies are modeled using conditional densities. As DBNs cap-
ture the development of the network over time; edges are used to connect nodes (models)
from one time step to another. These edges are used to represent dependencies from t

to t + 1. Within this network there is one intention state at each time step, this state
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1.2 State-of-the-art of intention recognition in robotics

is hidden and discrete as there are classes of intentions we aim to differentiate between.
As intentions are affected by the environment, this is captured by a node containing do-
main knowledge. Duchaine and Gosselin in [71] model intention recognition using DBNs
to achieve natural interaction between humans and robots. Tahboub in [72] also models
the problem of intention recognition using DBNs. The work aims at introducing an IR
module to aid a human as he/she controls a mobile robot through a joystick. Regarding
advantages, DBNs allow the modeling, representation, and learning of complex intentions
while taking the temporal nature of actions into account. Regarding disadvantages, DBNs
suffer from increased computational complexity [59].

Intention recognition is a dynamic process that would benefit from modeling the adap-
tive interaction between the observed agent and its environment. As such it is helpful
to utilize a dynamic framework to address the challenges of intention recognition, which
motivates dynamic approaches to intention recognition presented in the next section.

Dynamical models approaches

Dynamical models have successfully been used in literature to model IR systems (and more
generally computational models of Mirror-neuron systems) as they address the temporal
aspects of behavior generation. For example, the MOdular Selection And Identification
for Control (MOSAIC) model [73–75] is a decentralized, learning-based, adaptive, dynamic
controller that relies on switching between different learned internal models that model
the dynamics of motion generation (forward/inverse models, predictor/controller pairs ) to
best achieve a given movement task. A similar model that functions at a higher behavior
level and is used primarily for imitation is the Hierarchical Attentive Multiple Models of
Execution and Recognition (HAMMER) [76–78]. A dynamic system model for imitation,
learning and action generation has been proposed using a Jordan recurrent neural network
with parametric bias (RNNPB) [79–81]. A Jordan network is a recurrent neural network
with the context unit fed-back from the output layer to the context units in the input
layer. Recurrent neural networks of the Jordan type are also used in another model called
the Mirror Neuron System 2 (MNS2) [82]. MNS2 is an extension of MNS1 which was
implemented using simple feedforward neural networks. Generally, neural networks learn
the mapping between the observed e.g. actions, trajectories, etc. and its respective inten-
tion, actions, etc. accordingly. Neural networks require a large training set and as well
as extensive tuning of the hyper-parameters of the network itself. Furthermore, neural
networks are treated as black boxes and their results are usually hard to interpret [83].

Dynamic systems theory was explicitly employed in the cognitive framework of dynamic
field theory (DFT) as a decision-making system to understand intentions (and actions) in
the work of Bicho et al. in [84] and recently in the work of [85]. DFT allows the use of dif-
ferent dynamic neural fields to model the different neural populations that are responsible
for the various functions within the task of intention recognition. DNFs seems to model
behavior very well due to the dynamic, continuous interaction between the different neural
populations involved in the decision making.
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Summary

In the following, we present a summary of the different state-of-the-art methods. The
comparison between the different approaches is summarized in Table 1.1 where each cri-
terium (expressiveness of plans, sensitivity to noise, interrupted plans, plan libraries and
prior probabilities) is given a score [++, +, 0, −, −−] ranging from a strong advantage
(++) to a strong disadvantage (−−) given each approach.

Compared to probabilistic approaches, consistency approaches cannot handle the case
when a specific action relates to many intentions. In those specific cases, they are unable to
select between possible intentions and in some cases, they might not be able to logically in-
fer an intention at all [59]. Consistency approaches are rather expressive as they are usually
constructed manually [52]. Furthermore, they are unable to deal with ambiguity or cases
in which the agent attempts original plans or when noisy actions are observed [52]. Addi-
tionally, consistency approaches are unable to handle partial observability of actions [51].
Consistency approaches are not capable of neither detecting interleaved plans, that are
being performed in parallel, nor interrupted plans [60]. Plan libraries are considered as an
input to consistency approaches and required to be available beforehand[49]. Consistency
approaches do not consider prior probabilities and thus require a complete initial search of
the solution space once an initial action is observed [52]. Consistency approaches require
a few actions to be observed to give an initial indication of the possible observed intention;
rendering the approach slower compared to other probabilistic approaches [44].

Compared to consistency approaches, probabilistic approaches address the issue as men-
tioned earlier of resolving multiple intentions relating to one actions [44]. Regarding expres-
siveness, Markov models are considered less expressive and are capable of predicting next
possible action steps [52]. Markov models are less expressive when compared to Bayesian
networks where the dependencies between a set of actions within a plan/intention are ex-
plicitly defined [44]. Probabilistic approaches are better equipped at handling observations
of noisy actions, as each observation counts as evidence of a specific intention [52]. How-
ever, as Markov models operate using transition probabilities, a noisy action could lead
to inaccurate predictions which require further processing. Furthermore, Bayesian prob-
abilistic approaches address the case where an agent might have multiple or interleaved
intentions, or the case when actions are not observed, as well as partially ordered plans.
This is in contrast to consistency approaches that are unable to handle these cases [44].
Regarding the generation of plan libraries, probabilistic approaches are well equipped to
generate and learn the structure of the, e.g., network or the parameters of the plan library
incrementally from examples [59].

Compared to purely consistency/probabilistic approaches, dynamical models are highly
expressive and are less sensitive to noisy observations due to the constant update of sen-
sory information. Plan libraries are learned through a manageable dataset of examples
using simplified assumptions, e.g., normality and robust statistics, e.g., median and mode.
Furthermore, priors can be defined as the initial conditions of the different states within a
dynamical systems approaches. Additionally interrupted plans can be inherently handled
due to the dynamic adaption to new observations. Due to the favorable comparison com-
pared to consistency and probabilistic-based approaches, we opted to use the dynamical
systems approach for modeling IR. Explicitly we have chosen to utilize Dynamic Field
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Theory (DFT) to model human action/plan/intention understanding.

Table 1.Comparison between consistency, probabilistic and dynamic approaches

Comparison criteria
Expressiveness Sensitivity Interrupted Plan Prior

Approach of plans to noise plans libraries probabilities

Consistency ++ −− − 0 −−
Probabilistic −/+ + + + ++

Dynamic ++ ++ + + ++

1.3 Problem statements and challenges
In this work, we present a dynamic intention recognition architecture that follows the
motivation given so far. Intention recognition is decomposed in this work into two specific
steps; proximal intention understanding and distal intention understanding. Proximal
intention understanding refers to the understanding an agent’s action and its immediate
effect on the environment. Distal intention, on the other hand, aims at understanding the
intention behind the sequences of actions performed by an agent and reasoning about the
agent’s plan. Furthermore, proximal intention is decomposed into two steps as motivated
by findings in MNS and as described in ToM. The first step is a top-down understanding of
the observed kinematics and the agent’s interaction with the environment. The second step
is a bottom-up internal simulation of the predicted movement. In the following subsections,
the challenges are broken down for the specific topics.

Top-down proximal intention understanding

The first challenge within top-down proximal intention understanding is to identify the
methods that humans employ when observing other humans which are acting in their
immediate environment. Explicitly, the challenge is to identify the signals that humans rely
on to understand intentions, plans, and actions of others around them. Furthermore, these
signals are to be represented and modeled in a coherent dynamic framework that promotes
top-down action understanding in a manner that is both biologically and philosophically
plausible. Additionally, this top-down approach should model the immediate environment
in the same dynamic framework. The top-down approach should also be able to resolve the
spatiotemporal variability that is observed across different examples of the same actions.

Bottom-up proximal intention understanding

With the top-down proximal intention recognition as the first step, the second challenge is
to model the bottom-up approach. The bottom-up approach provides a reinforcement step
to the understanding of the observed action in a similar manner to that which is observed
in the Mirror neuron systems. The challenge here again is identifying the biological signals
that are responsible for producing specific movements and modeling them in a dynamic
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manner. Furthermore, other challenges include validating the resulting kinematics using
a musculoskeletal system and comparing it against human-generated movements. Finally,
the bottom-up approach has to be biologically and philosophically plausible and is capable
of explaining the interaction between the movement and the environment in a coherent
framework.

Distal intention understanding

Once the observed kinematics are linked to the immediate environment, and the proximal
intention is understood, a different challenge arises. The challenge here is to understand the
distal intention behind the series of observed atomic actions that the agent is performing
in the immediate environment. Distal intention understanding presents its own set of
challenges. The primary challenge is to make sense of a string of actions in a framework that
is consistent with the proximal intention recognition approach, however at a different level
of abstraction. Explicitly, the same methods used within proximal intention recognition
should be used again in the distal intention understanding step as motivated by findings
in MNS. Additionally, the overall system should be able to predict the next action and
reason about the possible set of actions that could occur in the future. Finally, the system
should dynamically adapt to new actions observed and react accordingly.

1.4 Main contributions and outline of this dissertation
With regards to the challenges stated in the previous section, the following contributions
are part of this dissertation:

Action understanding from observed movements and context

In chapter 2, the Action Understanding Architecture (AUA) is formalized within dynamic
system theory [1, 2]. The main components of this architecture are introduced in chapter
3, where we present the concepts of contextualization and trajectory comparison as the
basis of action understanding. The contextual action recognition system (CARS) and the
trajectory action recognition system (TARS) are modeled using Dynamic Field Theory [2].
The AUA is based on three hypotheses: firstly, to understand human action, one performs
a predictive step to understand the context of the movement. In this predictive step, an
observer (trying to understand the actions of an actor) would shift his attention towards an
object the acting agent might direct his actions towards. Here we assume that the observ-
ing agent directs his gaze towards an object given the direction, and speed of acting agent’s
end-effector. This contextual prediction step is supported by studies of directly observed
behavior in which the relationship between an actor’s end-effector and the observer’s gaze
is described to be predictive [86]. Secondly, once the context of movement is understood,
and the object is defined, the affordances of this object are read out. Affordances are used
to define the action possibilities that are available by a specific object [87, 88]. Finally,
once the possible actions towards the objects are known, the potential trajectories towards
the objects could be loaded in preparation for the comparison. This is in accordance with
biological studies indicating that the kinematic features are central to the understanding
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of human action [89–91]. The comparison is performed by comparing the current move-
ment trajectory against a set of learned trajectories of different movements maintained in
long-term memory structures. This is shown in Fig. 1.1, within the proximal intention
understanding block.

Internal simulation of reaching motion

In chapter 4, we introduce the concept of internal simulation of a movement as an al-
ternative to comparing observed motion against saved memories. Assuming that the un-
derstanding of reaching movement is explained by the direct matching hypothesis within
MNS, we answer the question of how the internal simulation of a reaching movement is per-
formed given the initial movement information and the context of the motion. Explicitly,
we model the dynamically generated internal simulation signal models with the recipro-
cal R command of the end-effector as explained by the Threshold Control Theory (TCT)
[92]. This R command is modeled using a dynamic attractors system and is also validated
within our work on a musculoskeletal arm model as explained by the threshold control
theory. This complies with descriptions within MNS in which the internally simulated
motion should be identical to the one generated when performing the action as opposed to
just understanding it. Therefore we additionally make use of the dynamically generated R
command as well as the C command to calculate the equilibrium points to generate motion
in a musculoskeletal arm model towards the goal object as validation. A comparison can
also be dynamically performed against an internally simulated movement of the possible
action. This is shown in Fig. 1.1, within the proximal intention understanding block.

Plan understanding

In chapter 5, the description of the plan understanding systems is given. We transfer
the different components discussed in chapter 3 that were used in the task of action un-
derstanding to the higher abstraction of plan understanding. Explicitly, we discuss how
affordances are integral in understanding plans and model it within dynamic field theory
and discuss how plans can be dynamically generated given new observations of actions.
Additionally, we discuss how the comparison between learned plans and the dynamically
generated plans, that are based on observations, can be accomplished. We explain how
the comparison within the plan understanding part utilizes the same methods as that in
action understanding part albeit at a different abstraction layer. This is shown in Fig. 1.1,
within the distal intention understanding block.
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Chapter 3:
Action

understanding

Chapter 4:
Internal

simulation

Chapter 5:
Plan un-

derstanding

Proximal intention understanding Distal intention understanding

Intention understanding

Figure 1.1: Visualization of the various components in the thesis and the structure of the
thesis.
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Proximal intention understanding refers to the understanding of an agent’s action and its
immediate effect on the environment. Within this thesis, we decompose the problem of
proximal intention understanding into two steps as motivated by findings in MNS and as
described in ToM. The first step is a top-down understanding of the observed kinematics
and the agent’s interaction with the environment. The second step is a bottom-up internal
simulation of the predicted movement. The two explicit steps, action understanding and
internal simulation, are shown in Fig. 2.1 where the different blocks and their motivation
is discussed next.

In this work we motivate our approach by descriptions of cognition in which cognition is
said to be enacted in the sense that cognition arises for the purpose of adaptive actions [1],
and the objects in the environment are represented to reflect their action possibilities and
affordances [87, 93, 94]. When observing acting agents in the environment, an observing
agent uses its body to understand the observed agent’s behavior [95]. Additionally, the
observing agent perceives information directly from the environment and uses the context
for understanding and making decisions accordingly. Explicitly, an agent perceives object
affordances and biological motion. Indeed a major theme in socially-situated cognition is
reserved to the idea that the movement and the environmental state of the agents around
us are mapped onto the perceiver’s body [96].

In this chapter we present a novel architecture that models the environment through
the concept of affordance to understand (or simulate) the kinematics of an acting agent in
a manner that is consistent with definitions within situated embodied embedded cognition.
The AU architecture (AUA) presented in this work is a deterministic model that reacts to
the input and produces decisions dynamically, as a computational mirror neuron systems
model, in the consistent framework of dynamic field theory within dynamic systems theory.

The common theme among computational models based on mirror and canonical neu-
rons is to incorporate a forward model and inverse model to understand an action. The
forward model predicts the expected sensory outcome given a motor command. The in-
verse model on the other hand maps the sensory input to the motor command. This is
observed in the HAMMER family of architectures [77, 78, 97–100] and the MOSAIC model
for motor control [73–75] that are mainly designed for imitation and motor control. The
theme is also observed in the family of architectures composed of the Mirror Neuron Sys-
tem (MNS) model, the Mental State Inference (MSI) [101] and the MNS2 model [82]. This
family of architectures focuses on the modeling of the development of the monkey mirror
neuron system for grasping. None of the above families of architectures use the concept of
affordances (nor model canonical neurons) for the task of imitation/action understanding.
A bio-robotic model for the mirror neuron system was proposed in [102, 103]. In contrast
to the models discussed before, the bio-robotic model incorporates a canonical neuron com-
ponent that aids in the selection of the motor plan that should be active when observing
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Figure 2.1: The AUA can be decomposed into a top-down and bottom-up direction. The
top-down direction is represented by the action understanding group of blocks and
is discussed in chapter 3. The bottom-up direction is represented by the internal
simulation group of blocks and is discussed in chapter 4.
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an action. The bio-robotic model also utilizes a forward model to predict the motor com-
mand given the visual input of the observed agent. In contrast to the bio-robotic model
for the MNS the AUA presented here utilizes the affordance logic to read out the action
possibilities given the contextual understanding of the observed motion. Furthermore, the
affordance logic block mainly reduces the number of candidate trajectories used for the
comparison against the observed motion rather than determining which motor plan should
be active when an agent’s action is being observed.

The modeling of action understanding systems using DFT has been addressed recently
in literature. A neural dynamic approach for parsing a sequence of actions was presented
in [85] by Lobato et al. The authors present a neural-dynamic architecture that is capable
of detecting and representing a sequence of actions, namely reaching/grasping/dropping
objects on a table-top scenario. Trajectory recognition was not considered but rather
three-dimensional positions of hands and objects were used to calculate whether the hand
was approaching the object or not. The overall architecture is capable of memorizing a
string of actions for overall action understanding. Similar work was also presented within
neural fields in the work of Bicho et al., in which the focus was on integrating verbal
and nonverbal communication in a joint-assembly task in which the sequence of actions
were given [84]. In contrast to the work presented by Lobato et al. and Bicho et al. we
extend the application area of DNFs towards representation and recognition of temporally
extended actions using context and movement information. Furthermore, while the work
presented in Lobato et al. and Bicho et al. deals with only table-top scenarios, we present
systems that are general enough for understanding locomotion, manipulation and actions
in free-space.

Overall, the AU architecture in this work presents, for the first time, a novel predictive
system within DFT that models attention-shifts and pairs up with a trajectory parsing
system in a second step. Furthermore, the system models the internal simulation of move-
ments. The trajectory parsing system takes account of spatial as well as temporal variations
that are usually problematic when understanding actions. Special attention is given on
how objects and the environment are integrated in the overall architecture and on how
they can drive action understanding.

Compared to the state-of-the-art, the AU architecture in this work combines both con-
text recognition and trajectory recognition rather than opting for either contextual recogni-
tion alone or trajectory parsing by itself for the task of action understanding. Additionally
it uses concepts of internal simulation of movements as inspired by the MNS. Furthermore
compared to the related work within DFT we explicitly model objects and their affordances
in a manner that is consistent with definitions in the situated, embodied view of cognition
that DFT is built upon. The application domain of this model ranges from scenario under-
standing to human-robotic interaction scenarios where intelligent systems are expected to
assist humans in a meaningful manner. [104, 105]. The model’s strength stems from the
interaction between the contextual systems (CARS), the trajectory parsing system (TARS)
and the affordance system, such that a wide range of actions (manipulation, locomotion
and free-space actions) could be understood. The model suffers from a few limitations in
the current status. Firstly, the model makes use of a few algorithmic shortcuts that are
not biologically plausible. Secondly, the current technical implementation is restrictive
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(e.g. due to slow offline template generation).
Explicitly stated, the AUA presented in this chapter combines, for the first time, predic-

tive contextual understanding, trajectory parsing and object affordances using the cognitive
dynamic framework of DFT and in a manner that is consistent within the situated em-
bodied embedded cognition stance. Furthermore, the AUA models the internal simulation
of movement using dynamic systems theory using attractor dynamics and threshold con-
trol theory. Specifically, we can classify our AUA approach as a dynamic, single-layered
exemplar-based sequential method, that depends on contextual information when choos-
ing/simulating the example (template).

We expand on the concepts that motivate our approach next. Explicitly we introduce
the concepts of the situated embodied embedded cognition first. Next we explain what is
meant by affordances. Then, we introduce the concept of biological motion perception that
motivate biologically-inspired features used within this work and link it to concepts within
threshold control theory that explains how motion is generated. Finally, we explain how
these different concepts are related to findings in neuroscience to emphasize our biologically-
inspired approach.

Situated embodied embedded cognition

The basic hypothesis behind situated cognition is that behavior is a product of the dynamic
interaction between the agent and its environment, and is inseparable from the context that
it emerges from [1, 96, 106]. Information is thought to be a product of the coupling between
the agent and its environment rather than an a priori representation in the agents brain as
proposed by traditional views of cognition. Situated cognition shares ideas with ecological
psychology [88] and intentional dynamics [107]. Moreover, cognition as defined here is
understood as a continuous state in which motor-sensory systems interact dynamically and
thus can be described naturally using ideas from dynamic system theory [2]. As cognition
in this view is a continuous state that affects motor and sensory systems, dynamic system
theory is the framework that situated embodied cognition can be described.

Situated cognition as a scientific stance is built on several theses which we present in the
following. Firstly, cognition is said to be embodied and situated in the sense that it arises
and is a function of the tight coupling between the agent’s body and the environment that
it is in. Secondly, cognition is situated in its social context in the sense that it arises from
the coupling between the agent and its social environment. Thirdly, cognition is enacted
in the sense it arises for action due to the agent’s adaption of intentionality. Taking these
three points into consideration, cognition can be thought as distributed across the objects
in the environment and the context that the social agents are situated in. It is therefore,
the way that the environment is perceived that influences behavior rather than an internal
representation an agent might house in its decision making systems.

The aforementioned line of thought is at the bases of the AUA described in this work.
We explicitly design systems (e.g. contextual action recognition system and affordance
logic system) and integrate concepts (e.g. internal simulation via threshold control theory)
within a cognitive framework (implemented via dynamic field theory) that respect the
theses that situated cognition is based up on for the purpose of action understanding.

As mentioned before, situated cognition shares ideas with the field of ecological psy-

20



chology, specifically with the concept of affordances which defines the action potentials of
objects in the environment. We have alluded to this term in our introduction and gave a
brief definition. In the following section, we give a more formal definition of this term.

Affordances

The term affordances was introduced by Gibson as a general and powerful concept to
explain what the environment can afford for an agent, and what existing action possibilities
are [87, 88, 108]. It is a product of Gibson’s ecological approach to cognition which stresses
the strong connection between perception and action. In this ecological cognitive approach,
affordances are the central perception element. Using affordances, goal-directed action
possibilities are then perceived directly from the environment.

The exact definition of affordances has been a point of dispute since it was introduced
by Gibson himself, leading to a range of attempts to formalize the concept [109–113]. In
this work we take inspiration from the previous references and define affordances as agent-
relative, perception-independent, action-invariant activity-potentials an agent directly per-
ceives from the environment it acts in. They are agent-relative in the sense that affordances
are attributed to environmental objects with respect to agent parameters (e.g height, width,
etc), as an example, an infant’s chair might not afford sitting on for an adult and so on
[114]. They are also agent-relative in the sense of ability. An affordance disappears if an
agent finds himself unable to make use of it. Affordances are also perception-independent
as they exist regardless of whether they are perceived or not. They are also action-invariant
meaning that affordances do not change in relation to the agents action goals [115]. His-
torically, the term was influenced by the work of gestalt psychologist such as Koffka who
stated that objects have “demand character” that demands the agent to interact with it
in a specific way [116]. Using this mind set, one can think of a cup as what it says to the
person, namely “drink from me”. Concepts of valence and invitation also influenced the
idea of affordances.

Affordances can be understood by their properties. Gibson describes affordances to be
objective, real and physical. He also describes it as being a “fact of environment and fact
of behavior” [88]. The ecological approach to cognition is built on the ideas of affordances
and direct perception. Affordances in that sense are perceived directly from the optic array
by picking up sensed invariants.

Affordances in this work are hypothesized to be the driving force behind action planning
and action production. Furthermore, we hypothesize that it is an essential part of human
action and plan understanding/recognition. Namely, the contextual information of the
available affordances of an object towards which an arm movement is directed give hints
to what the action in itself means. This statement is the motivation behind the contextual
action recognition system presented in section 3.4. Its role in the overall architecture is
illustrated in Fig. 2.1.

Context can not function alone, and for the task of action recognition, goal-directed
movement should be also recognized. In the following we discuss what biological motion
perception is and how biological systems are thought to understand movements. Biological
motion perception inspires our goal-directed motion recognition system that is presented
in section 3.5.
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2 Action understanding architecture

Biological motion perception

There exists features of body gestures, facial expressions, and eye movement that nor-
mally accompany social interaction. The recognition of these changing features and body
movements is called “biological motion” and it plays an important role in action/intention
recognition and movement anticipation.

The kinematics of human movements are the most visible and important form of visual
information available for an observer. Recognition of actions can be as straight forward as
observing the kinematics of an actor. In visual sciences action perception from kinematics
is studied using the point-light animations (PLA). Studies on PLAs have exploded since
Johanson’s seminal paper in which he showed that people can identify actions by observing
moving PLAs and that static PLAs have no significance in such a task [89]. Specifically,
PLA are an important tool to study action recognition because they allow action kinematics
to be dissociated from static information about the human form.

Ever since Johansson’s [89] contribution in biological motion, where he studied the sig-
nificance of form information in action recognition without regard to shape information,
there has been an influx of studies that showed that there exists a large amount of infor-
mation that could be inferred by perceiving simple stimulus encoding biological movement.
In his original experiments, Johansson attached light point sources to the joints of actors
and used cameras to record their movement against a dark background and without am-
bient light to make these PLAs. Later when test subjects were shown the PLAs, they
were able to tell the movement pattern (walking) without trouble even though they were
given no prior information about the shown recordings. Moreover, experiments showed
that humans observers are skilled at identifying gender, identity, age, emotional state and
even personality characteristics from the movement patterns of their acting counterparts
[117, 118]. It is also interesting to report that humans also similarly attribute internal
states to objects that show animate movement such as 2D triangles [119]. The perception
of PLAs is robust and has been shown to function well even if the displays were out of
focus or their contrast polarity was made to be different over time. Moreover, it has been
shown that correct detection was even possible even when the PLAs were embedded in
dynamic noise [120, 121].

There is no doubt that the movement of biological agents houses a considerable amount
of information an observer might use to infer actions and intentions. Indeed, the focus on
intentional action recognition research has been focused on bottom-up factors [122]. This
has been shown in machine learning as well as biological action recognition research groups
where extracting features from the observed motion stream is central to perform action
classification. In this school of thought, extraction of structure from biological motion [89]
has been the main driving force behind experimental setup and research dedicated to inten-
tional action parsing, human behavior understanding as well as mental state attribution
[123]. We direct the reader to the following reviews that address biological motion per-
ception more thoroughly and the neural mechanisms behind the recognition of biological
movements [90, 124, 125].

Humans are also able to process static images of dynamic movements very similarly.
Experiments where subjects were shown single images of actors performing a dynamic
movement elicited a response comparable of that when the complete motion was perceived,
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while on the other hand images of actors not performing a dynamic movement did not
[126, 127]. Moreover, it was shown that presenting a sequence of two static images was
enough for subjects to perceive human action [128]. These experiments had also shown
in PLA walkers where the accuracy of detection increased with the number of frames in
the sequence [129]. The conclusion of the previous work showed that indeed biological
motion was “perceived from a sequence spatiotemporally sampled samples”. Thus, the
recognition of human movement can be achieved by a temporal concatenation of static
body postures in what is known as the template-matching model [130]. The above ideas
inspire our decisions within our novel trajectory-based action recognition system that is
presented in section 3.5. Its role in the overall architecture is illustrated in Fig. 2.1.

Threshold control theory: referent control

The Equilibrium Point Hypothesis (EPH), also referred to as threshold control theory
(TCT) [92], describes the cognitive and neuro-physiological nature of motion control and
provides solutions to the multi-muscles system. TCT has been used in several biomechan-
ical models [131–134].

Within our embedded cognitive action understanding architecture, where the tight cou-
pling between the agent and the environment is respected, TCT provides a natural expla-
nation to how motor actions are obtained. The role of the nervous system, as explained
within TCT, is to shift the threshold positions R, given information from the environment.
This is in contrast to what is usually discussed in robotics where the nervous systems
is thought to directly specify the motor commands and mechanical variables. Instead,
within TCT, the movement trajectory, muscle activations, forces, torques and equilibrium
positions are emergent variables due to the neural specification of the threshold positions
R.

There exists many forms of threshold position control within TCT depending on the
level of neuromuscular system that is of interest. Within our cognitive framework the
link between environment (objects, their locations and their affordances) and agent is of
major importance. Furthermore, actions in our work are described as goal-directed towards
(the positions of) objects and given their affordances. Therefore, we define the threshold
position to be the referent configuration of the hand Rh. This would aid in the association
of the current hand position Qh with the objects in the environment.

To produce an intentional action, the current hand position Qh is shifted dynamically
to the threshold position Rh such as to interact with an object based on its affordances.
An equilibrium trajectory is formed due to the shifts occurring in the equilibrium position
of the hand. The equilibrium reference trajectories that are observed for fast reaching
motions are characterized to be spatially similar to the actual trajectory of the hand and
ending around where the physical arm usually achieves its peak velocity[135, 136].

Threshold control theory and referent control influences our decisions in chapter 4 where
we implement dynamic referent control shifts that can also take into account obstacles
avoidance. The internal simulation step as well as the referent control block is shown in
Fig. 2.1.
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Relation to Neuroscience

Action and generally context understanding is also observed on a neuronal level in biological
agents e.g. as functions of the mirror neuron system (MN) and the Canonical neuron system
(CN), respectively.

MNs are specific neurons in the agent’s brain that fire not only when the agent is
performing an action, but also when the same goal-directed action is observed. Their
proposed function is to represent an embodied process that allows action and intention
recognition [11, 12] as well as Theory of Mind [137]. The mechanisms the MN system
uses to achieve these functions are usually explained by the direct matching hypothesis or
motor resonance in which the encoded neural code of what is observed is matched with a
generated neural code of how that movement could be executed [33, 34]. What is being
matched could be, high-level abstraction of the intentions, a motor code encoding the plan
to emulate a goal-oriented action, or a detailed motor code of the action itself encoding
the trajectory of the movement and how to imitate it [13]. Additionally, it has been shown
that there exist specific neurons in the MN system that have large specificity towards the
way the action is performed and the final goal accomplished, while other neurons lack this
level of specificity and the relationship is restricted to the action goal. Other properties of
MNs are that they do not activate when observing objects alone, nor when the movement
alone is shown [138].

Canonical neurons on the other hand seem to encode action possibilities directed towards
objects and motivates our incorporation of affordances in a biological model for AU [138–
142]. Indeed, action can be understood given both the motion and the goal towards which
the action is directed [143].

2.1 Action understanding system architecture
Specifically put, our hypothesis for modeling the understanding of human action is as
follows: the robotic (intelligent) system projects its perspective to that of the acting agent
- whose action is to be understood. The robot perceives the affordances directly, relative to
the acting agent’s body and the environment (objects and their properties). The agent’s
brain controls the body to localize itself towards objects and to perform manipulation
actions. The brain can also observe the own performed actions or of other acting agents.
The same models and principles (brain) are shared among the cognitive agents (both the
robot and the human) that share the same environment. Therefore, the same processes
are assumed to be shared and what a robot simulates is similar to what a human plans.
We show an illustration of this work flow in Fig. 2.2(a).

The abstract blocks and connections, motivated from cognitive studies and neuroscience,
illustrated in Fig. 2.2(a) are translated into the proposed AUA. Furthermore these blocks
are illustrated in Fig. 2.2(b) where the connections between the perception blocks (body
and (virtual) objects), the contextual action recognition system (CARS), the affordance
logic, the trajectory action recognition system (TARS) and the (internal) simulation block
are shown.

As discussed in the introduction, the ability to understand actions of others (moti-
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2.1 Action understanding system architecture

Figure 2.2: (a) Illustration of the interactions between brain, body and world or environment
based on the contextual affordance input as well as the trajectory input information.
(b) Connection of contextual- and trajectory based action recognition system.
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2 Action understanding architecture

vated within situated embodied embedded cognition) is the combination of understanding
the action possibilities of the goal-directed objects to which manipulations are aimed at
(motivated by concepts of affordances), and the spatiotemporal comparison of observed
movements to memorized experiences of movement classes (motivated by concepts within
biological motion perception). The memorized experiences of movements that are shown
in the preshape block in Fig. 2.2(b) can be dynamically expanded into internally simu-
lated movement generation (motivated by threshold control theory). Information from the
environment and observed agents are projected onto the observers body, this processing
happens in the body block. This block has functional equivalence in the superior temporal
sulcus (STS) region in the brain that is responsible for motion detection. The perception of
the environment occurs in the objects block and has functional equivalence in the superior
temporal sulcus (STS) region in the brain. Our basic hypothesis within this block is that
the movements of the actor are seen as the observer’s own and the objects around the actor
are also projected around the observer [106].

When the actor’s movement is directed towards an object, the contextual action recog-
nition system (CARS) uses information of optical flow (speed and direction of e.g. the
wrists/pelvis) and predicts the object that is to be manipulated. The CARS block re-
sembles the function of the 7a area that is thought to be responsible for the analysis of
hand-object spatial relationships, additionally the information of optical flow models the
fynamica interaction between the optic flow sensitive regions V3A, V6, and hMT+ and
the hippocampus, retrosplenial cortex, posterior parietal cortex, and medial prefrontal
cortex [144].

The available affordances of objects (reasoned by an affordance logic block) gives an
idea of what the meaning of that movement is, this is presented in section 3.6. This block
resembles the function of the 7b and anterior intraparietal (AIP) areas that are responsible
for determining the association between object and end effector and extracting object
affordances respectively [145, 146]. The trajectory action recognition modules (TARMs)
load a memory of a similar movement experienced/learned previously with the help of
the preshape block, and compare the observed movement to that memory. Each TARM
represents a specific action, and thus several of these modules are combined to make the
TARS.

Internal simulation could also be attained using a dynamic motor control block (shown
in the hashed block in Fig. 2.2(b)), rather than long-term memories currently stored in
the preshape block. The internal simulation of reaching movement generation is discussed
thoroughly in Section 4. If the action memory is finally validated, then this action is
actually being observed and the system is reset to wait for the next movement.

There exists many options to implement the architecture proposed in Fig. 2.2(b), we
chose dynamic neural fields to model the different subsystems as compared to purely con-
sistency/probabilistic approaches DFT is highly expressive, less sensitive to noisy observa-
tions and allows modeling priors as discussed in section 1.2. The AUA and its connections
will be illustrated in the different upcoming chapters in this thesis.
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2.2 Conclusions

2.2 Conclusions
In this chapter we presented a novel action understanding architecture (AUA) that, in
comparison to the state-of-the-art methods discussed in section 1.2, combines for the first
time findings in situated embodied embedded cognition, affordances and biological motion
perception as well as threshold control theory into a coherent, dynamic cognitive archi-
tecture. The action understanding architecture computationally models the MNS using
dynamic systems theory and dynamic field theory. Explicitly the AUA is decomposed into
two directions to achieve proximal intention understanding. The top-down direction is dis-
cussed next in chapter 3. While the bottom-up direction is presented in chapter 4. Finally
we describe how the ideas in chapter 3 and 4 are linked to distal intention understanding
in chapter 5.
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3 Action understanding from observed
movements and context

Action understanding (AU) can be defined as the task of classifying a stream of human-
related multimodal data (motion, speech, etc.) into semantic terms suitable for influencing
the future intelligent behavior to support the human agent in a meaningful manner. Intel-
ligent systems face several challenges in AU, these include the spatio-temporal variation
within a class of actions, as well as interclass and intraclass variation in how persons per-
form actions. Spatio–temporal variation here refers to the fact that similar actions might
vary in duration and path followed across agents and trials. Another major challenge is
the large search space of actions available to an agent in any environment [147, 148]. To be
able to understand an action, intelligent systems are required to solve the spatio–temporal
variation problem by a robust trajectory recognition system, and the large search space
problem by incorporating the context of the action.

In our quest towards an end-to-end biologically-inspired architecture for human action
understanding, we present two systems that address the aforementioned challenges and that
we hypothesize to be central for the task of AU. This is presented in Fig. 3.1, where we
extract the action understanding systems from the overall AUA architecture as illustrated
previously in Fig. 2.1. The two systems are inspired by processes observed within human
behavioral studies, as discussed previously. The main challenges addressed in this work
are the context understanding of an observed movement and the trajectory parsing of
the movement. Additional secondary challenges addressed in this work include how the
context understanding interacts with trajectory parsing, and how visual information of
motion can be used as an input in a manner consistent with the complete system. The
work presented is inspired by definitions within the embodied situated cognition stance.
The context understanding is based on definitions of affordances, and the trajectory parsing
follows ideas of biological motion perception. The embodied situated cognition stance, the
concept of affordances as well as the ideas within biological motion perception have been
presented in Chapter 2. The different novel systems are modeled using the cognitive
framework developed within dynamic field theory (DFT).

As there exists many ways to understand actions an agent might perform, this renders
a large search space for an AU system. We address this problem of context understand-
ing by modeling three processes into a contextual action understanding system. Firstly,
we model the detection of goal-directed movements. Secondly, we model the shifting of
attention from joints (end-effector) to objects in the line of action of the joint movements.
Finally, we model the context understanding of the movement given the affordances of
the objects towards which the attention was shifted. The term affordances relates to the
action possibilities that an object might allow [88]. The context of the movement based
on affordances is understood using a novel contextual action recognition system (CARS),
as illustrated in Fig. 3.1. The function of the CARS is to pick the most relevant subset

28



3.1 Related work
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Figure 3.1: The action understanding system presented in this chapter and their connections

of templates, in a pre-learned database of templates that represent movement features. A
separate affordance logic block aids in this selection, and is further discussed in section 3.6.

The second AU challenge addressed in this work is trajectory parsing. This online com-
parison is performed within the trajectory action recognition system (TARS), as illustrated
in Fig. 3.1. This system allows for spatiotemporal variation between the template and the
observed motion, and outputs a positive result if they are matched. The transformation
from visual input of joint movements into biologically-inspired features for comparison pur-
poses is considered and further discussed in section 3.3. The contribution in this chapter
lies in presenting TARS and CARS and their integration within the AUA for the task of
top-down action understanding (proximal intention understanding) and formalizing them
within dynamic systems theory. We depend on the mathematical formalization of dynamic
field theory to model the cognitive building blocks in the AUA.

3.1 Related work
Biologically-inspired AU architectures are usually presented as computational models for
Mirror neuron systems. Examples of such computational models are the MOdular Selection
And Identification for Control (MOSAIC) model [73–75], and the Hierarchical Attentive
Multiple Models of Execution and Recognition (HAMMER) [76, 100] that were primarily
developed for imitation and later extended for action recognition [77, 78]. The Mental State
Inference (MSI) model [101] as well as the Recurrent Neural Networks with Parametric
Bias (RNNPB) [79–81] and the Mirror Neuron System 2 model (MNS2) [82], all model the
MNS for the purpose of AU.

Other cognitive action understanding systems in literature that do not explicitly model
neuronal processes include the work of Yang et. al in [149], in which context-free grammar
and parsing algorithms were proposed for the understanding of goal-directed manipulation
actions. The architecture uses a depth image to obtain an articulated model of the user’s
end-effector as input. The depth image is also used to obtain information about the labels
of the objects and their position on a table-top. The hand model is transformed into a set
of bio-inspired features which then are used to classify the grasp type using a Naive-Bayes

29



3 Action understanding from observed movements and context

classifier. Additionally, hand tracking produces trajectory profiles for trajectory-based ac-
tion recognition. The classes were obtained by using a combination of principal component
analysis and k-means clustering. An attention model, comparable to our proposed CARS,
makes use of bottom-up processes to identify potential fixation points in an image frame
as well as top-down attention mechanisms based on the hand location. The spatial inter-
section of fixation points and the hand location shifts the attention towards an object for
monitoring. A new observation consists of a triplet: subject, action, objects. A context-
free manipulation action grammar is proposed and using parsing algorithms, a tree group
is updated when a new observation is given, and dissolved automatically. The tree output
can be then passed to an intelligent agent for decision making and further operations. Yang
et. al do not utilize the concept of affordances in their work. Furthermore, in comparison
to the work presented in this thesis, the model presented by Yang et. al is not grounded
by concepts in cognition, nor uses a common cognitive framework for the modeling of the
different subsystems.

Other work presented by Aksoy et al. in [150], describes a complex action by combin-
ing descriptors that analyze the relation between the series of manipulated objects with
action-related information such as trajectory segments, pose and object information. The
combination of these descriptors allows for a better comparison of observed actions, and
therefore enriches the meaning behind each action. The work describes how observed
actions are either understood as new actions or known ones. The new actions are accom-
modated for by creating a new novel schemata, while the known ones, if slightly different
are assimilated with the representative schemata. Compared to the work proposed in this
thesis, Aksoy et al. do not explicitly utilize action trajectories nor contextual information
when preforming the task of action understanding.

A neural dynamic approach for parsing a sequence of actions was recently presented
in [85] by Lobato et al. The authors present a neural-dynamic architecture that is capa-
ble of detecting and representing an even of actions, namely reaching/grasping/dropping
objects on a table-top scenario. Trajectory recognition was not considered but rather three-
dimensional positions of hands and objects were used to calculate whether the hand was
approaching the object or not. The overall architecture is capable of memorizing a string
of actions for overall action understanding. Similar work was also presented within neu-
ral fields in the work of Bicho et al., in which the focus was on integrating verbal and
nonverbal communication in a joint-assembly task in which the sequence of actions were
given [84]. In contrast to the work presented by Lobato et al. and Bicho et al. we ex-
tend the application area of DNFs towards representation and recognition of temporally
extended actions using context and movement information. Furthermore, while the work
presented in Lobato et al. and Bicho et al. deals with only table-top scenarios, we present
systems that are general enough for understanding locomotion, manipulation and actions
in free-space. To the best knowledge of the authors, the systems developed to address the
aforementioned challenges of AU are novel within DFT.

Overall, the AU architecture in this work presents, for the first time, a novel predictive
system within DFT that models attention-shifts and pairs up with a trajectory parsing
system in a second step. The trajectory parsing system takes account of spatial as well
as temporal variations that are usually problematic when understanding actions. Special
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3.2 Dynamic field theory

attention is given on how objects and the environment are integrated in the overall archi-
tecture and on how they can drive action understanding. Compared to the state-of-the-art
presented in this section, the AU architecture in this work combines both context recogni-
tion and trajectory recognition rather than opting for either contextual recognition alone
or trajectory parsing by itself for the task of action understanding. Furthermore compared
to the state-of-the-art we explicitly model objects and their affordances.

3.2 Dynamic field theory
At the core of the modules that make up TARS, CARS, the affordance logic system, and
the internal simulation of movement generation blocks are decision making processes that
dynamically evolve with the tightly coupled input. These systems all require cognitive
abilities to achieve their functions. The CARS as well as the internal simulation block
requires the cognitive abilities of object detection, motion prediction and goal selection.
The TARS, on the other hand requires feature detection and comparison. Finally, the
affordance logic system requires the abilities of dynamic selection and long-term memory.
In the following we present the dynamic cognitive framework of DFT, and elaborate on
the building blocks that are used within the different systems in this work.

3.2.1 Dynamics and instabilities
Dynamic field theory (DFT) provides the mathematical and theoretical framework, that
builds on dynamic neural fields (DNFs), to model the embodied, situated view of cognition
[2]. DNF is a cognitive mathematical model of the dynamic neuronal activation on a
population level. It describes decision making inspired by the pattern formation within
the cortical neural populations. It is the stable states (localized-bumps) that dynamically
evolve (and devolve) in time, given dynamic perceptual input into the neural fields, that
provide a unit of representation. These units of representations are a function of the
complex interaction between the neurons in the population, and are the basic units to
describe cognitive properties within the neural fields. The strong recurrent connections
between these neurons produce patterns that model detection, selectivity and working
memory. The dynamics are mathematically described in the following integro-differential
equation that was initially proposed in [151]

τ u̇(x, t) = −u(x, t) + h+

∫
f
(
u(x′, t)

)
ω(x− x′)dx′ + S(x, t) (3.1)

ω(x− x′) = cexc exp
(
(x− x′)2

2σ2
exc

)
− cinh exp

(
(x− x′)2

2σ2
inh

)
(3.2)

f
(
u(x, t)

)
=

1

1 + exp
(
− βu(x, t)

) (3.3)

in which the activation of the field u(x, t), as given in (3.1), describes the activity over
the metric dimension x at time t. Here, x, represents a behavioral dimension that the
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underlying neuronal populations respond to. This behavioral dimension corresponds to a
space of features and properties that the neurons encode. The amount of activation of
the field u can then be understood as the presence or lack of information about a space
of features along the behavioral dimension x. The time scale τ describes the relaxation of
the field and the negative constant h defines the resting level of the field. The term S(x, t)

describes an external input to the neural field. The integral term conveys the interaction
between different field locations. Sufficiently activated field locations contribute to the
neural interaction by way of the interaction kernel ω given in (3.2). That is, the output of
the sigmoid function f , given in (3.3), modulates the activation contribution, given by ω, to
other field locations. The sigmoid function with slope β is shown in Fig. 1(a). An example
of an interaction kernel ω could be a symmetrical homogeneous interaction kernel with
short-range excitation (determined by the amplitude factor cexc, with an area of influence
determined by σexc) and a long-range inhibition (determined by the amplitude factor cinh,
with an area of influence determined by σinh) [152]. Four interaction kernels are shown in
Fig. 1(b). The choice of the kernel is usually dependent on the kind of cognitive behaviour
to be shown.

Analysis of (3.1) leads to the characterization of different states. In the following we
describe these states and their significance [2, 151, 153].

In the case where no external input is present, the field has constant level of activation,
equal to the negative resting level h, along the field dimension. This non-peak attractor
state, referred to as a sub-threshold solution, maintains its stability under weak external
input S(x, t). In the case that the activation level exceeds a threshold level where the
lateral interaction ω(x − x′) and the non-linearity f(u(x′, t)) become active, the neural
field is driven in a different dynamic domain. In this case, a localized peak develops in the
field due to the increase of activation in the field locations where the external input is the
largest [153].

Starting from a sub-threshold solution a detection instability can occur in which peaks
evolve at positions of sufficient activation. These positions were successful at accumulating
enough activation to overcome the activation threshold of the field. In other words, the
probability, or stimulus strength of that feature-space at that position was significant. It
is possible to have enough activation at several locations within the field and develop
localized activity peaks that provide a representation of the existence of the underlying
feature-space values. The interaction kernel labelled with number 2 in Fig. 3.2(b) is an
example of a kernel that is used for the detection instability. Furthermore, an example is
given in Fig. 3.2(c) and Fig. 3.2(d). Figure 3.2(c) shows an input at a feature position with
stimulus strength (solid grey line) that is not sufficient enough to activate the complete
field (dashed black line), therefore no information is represented in that field. In Fig. 3.2(d)
the stimulus is strong enough to produce a bump in the field, giving a representation of
the existence of information which can be read out for further processing. The interaction
kernel used in this example is the second kernel in Fig. 3.2(b), and that is shown by the fact
that the output takes shape of the kernel around the input’s location. Another example of
the detection instability is illustrated in Fig. 3.3(a). These two positions received enough
input such as to show stable peaks in the activation field and appear as an output.

The second case that can be observed is known as the selection instability, in which
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Figure 3.2: Dynamic neural field components and distribution of population activation. (a)
The sigmoid function. (b) Examples of the interaction kernels: 1) An interaction
kernel used to model a working memory instability. 2) An interaction kernel used
to model the detection instability. 3) An interaction kernel used to model the
selection instability. 4) An interaction kernel used to produce a traveling wave
transient state. (c) Subactivation solution within the DNF. (d) An activated field
with a stable solution around the input. (e) A group of tuning curves spanning
over the features space with no response to a stimulus. (f) The distribution of
population activation solution (dashed grey line) to a feature input (indicated at
position of the black arrow).
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Figure 3.3: (a) An example of the detection instability in which the field is activated with
a stable solution around the input. (b) An example of the selection instability
in which the field is only activated with a stable solution around the strongest
peak in the input. (c) An example of the memory instability in which the field
is activated with a stable solution around the peak in the input at time t0, and
remains activated even when it dies out at a later time tf . (d) An example of
the traveling wave instability in which the field is swept with an activation peak
starting with the initial position defined by the input location.

only one stable peak can evolve in the field and any subsequent activation at different
locations in the field are inhibited. Only large enough activation (one that can accumulate
enough activation to overcome the global inhibition induced by the first peak as well as
the field’s threshold) can appear and inhibit the original stable peak. When two positions
of a quiescent field, that shows the selection instability, show activation at the same time,
the one with higher activation develops the peak, and inhibits the other positions. Thus,
showing a selection of two options. In the case when two or more positions have similar
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3.2 Dynamic field theory

activation values in a field showing the selection instability, noise in the field plays a role
in selecting one of the locations to develop a peak. Positions where peaks of activations
are developed are meaningful as units of representation, and they indicate the existence
of an important underlying value given the selected feature-space. The interaction kernel
labelled with number 3 in Fig. 3.2(b) is an example of a kernel that is used for the
selection instability. An example of the instability itself is shown in Fig.3.3(b), where only
the strongest of the input peaks is allowed to transpire at the output, while the second
peak is inhibited. It is interesting to note that in the case where the peaks at the input are
exactly the same amplitude, noise in the field usually helps in making a decision between
the two feature values.

An important case that can also be observed in the analysis of (3.1) is one that models
working memory. This instability can be observed when sufficient interactions are existent
in the field to sustain an input even when these inputs cease to exist. This instability
aids in modeling decision/features that were made/observed in the past. The interaction
kernel labelled with number 1 in Fig. 3.2(b) is an example of a kernel that is used for
modeling working memory instability. The working memory instability ultimately leads to
a self-sustained activation that represents working memory. An example of this process is
shown in Fig.3.3(c) where the input at the initial time step t0 showed a peak (solid black
line) that later disappeared at time tf (dotted black line). This however translates to a
slightly lowering of the activation field from t0 (solid gray line) to tf (dotted gray line).

In the same way that peaks can be stabilized, they can be unstabilized by introducing
a negative input to the peak position or by reducing the excitation there. This is referred
to as the reverse detection instability or forgetting instability.

3.2.2 Dynamic neural fields and distribution of population activity
These elementary forms of cognition (detection, selection and working memory) discussed
so far operate on patterns of neural activity representing sensory stimuli or motor control
information. To establish this link between neural activity and external stimuli and internal
motor actions, the concept of neural tuning is commonly used. The way a DNF can
be related to an activity of neural population is through the concept of Distribution of
Population Activity (DPA) [154]. The basic idea is that every neuron in a stimulus-sensitive
population is characteristically sensitive to a specific value of that stimulus. The neuron
then contributes to the population with a functional form that is usually centered around
the stimulus value it is characteristically tuned for. This function of how each neuron
responds to a stimulus, and which represents the average firing rate is called a tuning curve.
An example is given in Fig. 3.2(e), where 7 (Gaussian approximated) tuning curves span
the feature space. The sum of tuning curves, over all neurons in a population, weighted by
each of their mean firing rates (understood as the activation level in DNFs) explains the
activation of the population of neurons given a stimulus. The DPA is calculated using the
following equation

DPA(x, t) =
(∑

tuningx × firing rate(i, t)
)
/N, (3.4)

where N is the number of neurons whose tuning curves at positions x are multiplied by
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3 Action understanding from observed movements and context

their activation (firing rate), at time t. The final result of a DPA is shown in Fig. 3.2(f)
where given a feature value, several neurons respond with their own firing rate (solid
black lines). The final result is visualized with the DPA (dashed grey line). The lateral
interaction between those neurons by their activations give way to dynamics within the
field as discussed in section 3.2.1.

3.2.3 Learning within dynamic field theory
The input that might be used in a field could be processed into a decision, or it could
be used to maintain a memory trace over the feature space as a simple form of learning.
Learning in DNFs can be understood using what is known as a preshape or a memory
trace [2, 153]. It is a formalization that allows retention of stimuli information in long-
term memory form. The memory trace, which equation is

τlṖ (x, t) =λbuild

(
− P (x, t) + f

(
u(x, t)

))
f
(
u(x, t)

)
−λdecayP (x, t)

(
1− f

(
u(x, t)

))
, (3.5)

takes input from a DNF with u(x, t), and builds up activation P (x, t) towards the attractor
solution (activation-bump) from the input with a time constant τl/λbuild that is slower
than the underlaying DNF. This built up information is lost at a rate that is even slower,
τl/λdecay, when there is no activation present and models long-term memory. Here, λdecay
and λbuild are the rates at which the preshape decays or builds up. The constant τl is the
time constant of learning in the preshape field.

The memory trace is used as a non-activating input to other decision DNFs. It thus acts
as a sub-threshold solution to the field, preshaping (biasing) the locations in the DNF and
allowing for easier activation if an input at those specific positions are later introduced into
the preshaped DNF. Alternatively, a positive homogeneous input to the field (also known
as a boost input) would activate those sub-threshold activations in the field.

3.2.4 Comparisons within dynamic field theory
It is essential to compare different DNFs (e.g. memory trace field and perceptual fields
that hold the current input from the environment) to model the recognition of specific,
meaningful features in the environment. In addition to the recognition of features in
the environment, comparison is essential to obtain a level of satisfaction regarding the
completion of an action command that was sent to an intelligent system. To that end, the
concept of condition of satisfaction (CoS) was introduced to check if a field had reached
a predefined level of activation on one or more feature values [155–157]. A CoS consists
of three components: an action/preshape field, a perception field and CoS field. This is
further illustrated in Fig. 3.4(a,b), where Fig. 3.4(a) shows the case when the CoS does
not detect a match between the input from the perception field and the pre-activation
from the action field. In the general case where an intelligent system is a part of the
action/perception loop, the action field represents a desired action to be fulfilled. This
action field effects the intelligent system by providing set points for the satisfaction of
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3.2 Dynamic field theory

the action. The level of satisfaction is dynamically calculated in the CoS field where the
action/preshape field is constantly compared against the perception field. In contrast, in
Fig. 3.4(b), the stimulus in the prescription CoS field matches the learned preshape in
the action field and a decision bump appears in the CoS field, prompting an activation to
be detected. The action and perception fields are an input to a CoS field that gives an
indication if there is a match or not. The CoS field is augmented with a node that gives a
logical value of detection or not as shown in Fig. 3.4(a,b).

In our work we expanded the concept of CoS to accommodate the fact that human
motion can not be represented by a single lower limit configuration but rather a range
around a configuration that all could indicate an informative part of a moment (e.g. arm
configuration for a handshake). The more general idea here is to expand CoS to using
a range R which we refer to as range of satisfaction (RoS). In this RoS formulation, the
action field is used as a pre-activation for both the upper and lower CoS fields. The upper
CoS field is also pre-activated with a global negative input with a value that equals the
desired range −R/2. In the same manner the lower CoS field is pre-activated with a global
positive input with a value that equals the desired range R/2. This allows the detection
of a feature in the metric space earlier in the lower CoS. Furthermore, it would allow for
detecting if the observed features was within a specific range of activation levels. For
example, if the as the upper CoS field would activate (detecting that the feature is above
this value) the RoS neuron would deactiveate. This deactivation aids in checking for the
next feature which is an important function when comparing a time-continuous movement
such as a reaching motion. An illustration of the function of the RoS is shown in Fig.
3.4(c).

3.2.5 Prediction within dynamic field theory
So far, we have discussed several cognitive properties of DFT that can be used as building
blocks in any cognitive architecture. We have expanded on the function of CoS to better
suite the application of action recognition. However, the prediction capabilities within
DFT are rather limited. Yet, they are vital in an online dynamic application of action
understanding. That is why in the following we argue for the need of a mechanism that is
able to look ahead in a feature space and provide predictive capabilities. A transient state
that could provide these capabilities can be found in traveling waves.

Dynamic behavior of traveling activation pulses in the cortical sheets of the brain had
been observed [158, 159] and modeled in DNFs [151]. Such dynamics in the neural field
has been exploited for intelligent behavior generation [160] and for influencing robotic
arm control [161]. Further research on traveling bumps in neural fields have since been
conducted and solutions for their collision has been modeled [162].

In the following, we provide a mathematical derivation of the wave transient, for a
complete derivation we direct the reader to the work presented in [160]. The initial equation
is the dynamic field (3.1). Now, it is assumed that the field, which is used to generate
the moving peak, has a local excitation (peak solution) (see a-solution [151]) and that the
input signal S(x, t) ≡ 0. In order to generate movement, an asymmetric interaction kernel
wa = we + w0, consisting of a symmetric kernel part we overlapped with an asymmetric
function w0, is developed. The shape of the function w0, which is necessary to generate
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Figure 3.4: Illustration of the Condition of Satisfaction (CoS) approach. (a) Preshaped CoS
field without corresponding input from the Perception of CoS. (b) Matching input
resulting in an activation in the CoS field, which can be used to activate a neuron.
(c) Illustration of the Range of Satisfaction (RoS) concept. The preshape and
stimulus are used as input for both, the lower field and upper field. Further, the
range boundaries are illustrated within the fields.
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the movement, is determined in the following. By taking the previous assumptions as well
as the asymmetric kernel wa into account, the dynamic field equation (3.1) results into

τ u̇(x, t) = −u(x, t) + h+

∫
f(u(x′, t))wa(x− x′)dx′. (3.6)

Assuming that there is an initial stable peak solution within the field at time t = 0, meaning
U(x) = u(x, 0). Thus, the excitation distribution, for any time instance t > 0, is given by

U(x, t) = U(x+

t∫
0

v(η)dη), (3.7)

whereby v(t) represents the velocity of the moving peak. Equation (3.7) can be used to
calculate an equation providing information about the relation of w0 and v(t). Plugging
(3.7) into the right side of (3.6) we obtain

τ u̇(x, t) = τU ′ d

dt
(x+

t∫
0

v(η)dη) = τU ′v(t). (3.8)

Plugging (3.7) into the left side of (3.6) results in

−U +

∞∫
−∞

wa(x, y)f(U(y))dy + h =

∞∫
−∞

wo(x, y)f(U(y))dy, (3.9)

given the knowledge about the equilibrium solution under we is
∞∫

−∞

we(x, y)f(U(y))dy = U − h. (3.10)

Finally, combining the left and right side we obtain

τU ′v(t) =

∞∫
−∞

wo(x, y)f(U(y))dy. (3.11)

It can be seen that the relation between w0 and v(t) is not as simple as may be expected.
However, by setting w0 = p(t)w’e, and given the knowledge of (3.10) the complex relation
simplifies to

v(t) =
p(t)

τ
. (3.12)

Here, p(t) is a time-depending factor and w’e the spatial derivation of the symmetric
kernel part. Now, (3.12) allows to control the speed of the moving peak, whereas the
shape of the kernel influences the direction. An example of this kernel is shown in Fig.
3.2(b) (black dashed line labelled with number 4). The traveling wave of activation itself is
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3 Action understanding from observed movements and context

illustrated in Fig. 3.3(d). We utilize this instability extensively for two main tasks. Firstly,
prediction purposes where we would project current values forward in the feature space
given perceptual information. Secondly, scanning the field in one direction for comparison
purposes as a time keeping method.

3.3 From moving bodies to biologically motivated features
An observer perceives an acting agent as well as the environmental state (in terms of the
object in the actors vicinity and how he interacts with them) to infer about this actor’s
mental states of actions, (action) plans and intentions. In the following we present our
decisions for modeling the perception of the moving body in a manner consistent with what
is presented in neurally-focused studies. Specifically, we discuss our choices for how the
body is perceived, what are the required transformations, what are the features extracted
for the classification task and finally, how these features can be used in a neural population
approach that is compatible with the DFT.

3.3.1 Embeddedness and egocentric coordinates
Complying with the embeddedness concept, the observing agent projects the skeleton of
the perceived acting agent on his own. Studies have shown that biological motion might
be perceived by projection on egocentric coordinates and this might aid guiding behavior
and understanding [106, 163–165]. Similarly studies in neuroscience and mirror neurons
have shown evidence of egocentric action understanding [13, 166]. Therefore, the first step
in our action understanding architecture is the projection of the actors frame of reference
onto the observer’s frame of reference. An illustration of the desired transformation is
shown in Fig. 3.5(a).

3.3.2 The body joint extension and projected relative angle features
Moreover, when observing an acting agent, the observer’s visual system focuses on the
joints of the acting agent [167]. Out of all the joints, studies have shown that there was a
focus on the upper body joints, namely the head, left and right wrists [167]. In our work,
we have also integrated the pelvis joint as well as the left and right ankle joints, which are
also essential to the understanding of locomotion actions.

The positional information extracted from these joints are then projected onto the trans-
verse and sagittal planes of the observer (after the whole skeleton of the actor had been
transformed onto the observers body frame) [168]. We implemented these transforma-
tions mathematically with no regard to possible neural mechanisms behind it, however
transformation-capable DFT systems were discussed also in literature [169] that could also
be extended to egocentric coordinate frame transformations for the purposes of motion
perception.

Following from the previous paragraphs, we decided for two feature types to be extracted
from the projected view for the purpose of action recognition. The first feature type is
the Body Joint Extension. It is a non-circular feature (linear feature space, 0-100%) which
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Figure 3.5: (a) Transformation into egocentric coordinate frame. (b) Illustration of the pro-
jected relation angle between wrist and pelvis with respect to the xy-plane. The
ratio a/b represents the extension percentage of the arm and is the second used
feature.

measures the percentage extension between two joints that are not shared by the same
bone. For example the wrist-shoulder body joint extension equals 100% when the arm is
fully extended, and 50% when the elbow joint makes a 90-degree angle. We used average
human dimensions as given in [170], and calculated the full extension values for a 1.8 meter
male for simplification. The second feature type is the Projected Relative Angle. It is a
feature with a circular feature space (0–360-degrees) which measures the projected relative
angle between two joints. Both feature types are described to be view-centered as they are
dependent on the position of the viewer relative to the perceived objects (different joints).
View-centered representation is one of two major types of descriptions (the other being
object-oriented representation) suggested to model the ability of extracting information
from the projection of 3D object on retinal images [171–173]. Overall, and given different
joints that could be used logically, we propose 39 different features that are calculated
for any motion within this work, this accounts for different joints and different plane
projections. The full list of features is given in Appendix A. Several combinations of
these features can be made depending on the class of the action and the level of joint
involvement in that specific movement. Within our work, the temporal evolution of these
features are learned from multiple examples in order to compose a memory or an experience
that preshapes a comparison dynamic neural field. A memory is learned for each class of
action and can be thought as a memorized trace to which the features extracted from the
observed action is compared against within the TARM.

3.3.3 Formulating features as distribution of population activation
The previous features should be provided as an input to the DFT system in a manner
that is neuronally consistent, using formulations within DPA, this process is illustrated in
Fig. 3.6. Specifically a pool of receptor cells (neural population) is modeled for each feature
type. Each population responds to a specific feature. Each neuron within the population
has a specific tuning curve that is centered around a value that it is most sensitive to.

41



3 Action understanding from observed movements and context

linear feature space

1D

+ kernel

field

population

n = neuron with defined tuning curve  

projected

view

featureDPA

cyclic feature space

field

Figure 3.6: This figure illustrates how features are represented as input stimuli for the overall
system (for a linear feature space (left) and cyclic feature space (right)). The
tuning curves and optimal response values of the neurons (circles) within the
population are defined. Distribution of population activation (DPA) is used to
determine the population activation, which is further processed by a DNF to
produce the final output.

This value is called the optimal response value. The neurons participate in the population
with tuning curves modulated by their level of activation - which is maximum around their
optimal response values. The combined activation of a population of neurons provides the
required features to the DFT system. The features are generated using the distribution of
population activation.

The specific choice of the aforementioned two features is motivated by studies of the
neural mechanisms behind intentional reaching movements [174–176]. These studies in-
dicate that a reaching motion is decoded from neural populations of directionally tuned
cells. Each ensemble of directionally tuned cells is tuned towards a preferred direction
of movement. Each ensemble within the population contributes to the population by a
vector directed towards the preferred direction of movement specific to ensemble of cells
and is weighted by the cells’ change in activity. The final sum of the population is called
the neural population vector and points to a direction close to the observed direction of
movement. The intensity of the neural population vector was also shown to be related
to the speed or amplitude of the movement. The mirror neuron system suggests that the
same mechanisms involved in action generation are the same as those in action percep-
tion, therefore it follows that features for action understanding should be mapped onto the
direction and intensity of movement [13, 166]. The projected relative angle is a general
representation of the direction of movement, while the body joint extension represents the
calculation of the intensity of the movement.

3.3.4 Parameter choice for the DPA feature formulation
Tuning curves, centered around the optimal response value, can be modeled using dif-
ferent shapes. For example, they can be Gaussian tuning curves, cosine tuning curves
and sigmoidal tuning curves [177]. The shapes and the parameters of each tuning curve
is usually dependent on the specific neuron and stimulus. This can be further specified
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given neuronal studies performed on lower primate species such as the rhesus macaque
monkeys. However, the results can still be used for (human) biologically-motivated cogni-
tive systems similar to ours [178]. We highlight the work performed by Perret et al. in
[179] and the work of Newsome and Salzman in [178] that investigated the firing patterns
in reaching motions, and which we base our work upon. We extracted their results and
used the functions they proposed in designing our Gaussian functions that represent the
tuning curves for motion sensitive neurons. The work of Newsome and Salzman focused
on the direction discrimination in monkeys. They measured the visual response from the
direction column in the middle temporal visual area (MT). We investigated their recorded
data that presented the intensity of response given the direction of motion of the shown
stimuli. After initially testing with cubic spline fitting, and parameter minimization using
different family of curves, we settled on a representation using a Mexican hat function
ψ(x, σ, c), with width (standard deviation) of σ offset c. The parameters of which were
decided by solving an argument minimization problem (equation (3.13)) that minimized
the Euclidean distance between the fitted spline s(x) and the Mexican hat ψ(x, σ, c) given
in equation (3.14)

argmin
σ,c∈R

∑
x∈[−180,180]

|s(x)− ψ(x, σ, c)| (3.13)

ψ(x, σ, c) =
2

√
3σπ

1
4

(
1− x2

σ2

)
exp

(
−x2

2σ2

)
+ c. (3.14)

The work in Perrett et. al. also provides measured tuning curves and analysed them.
We investigated results in their work in which they record neuronal responses to different
head orientations and used their data in our modeling. The results showed that body parts
are represented using view-centered descriptions. Furthermore, cells can be described as
broadly, bimodally or narrowly tuned. We used the cell response information to model the
tuning curves using a modified version of the fitting function (equation (3.15)) used in their
original work. Perrett et al. argue for their choice of this equation stating that ”it makes few
assumptions about the nature of view tuning” [179]. Our modified version (equation (3.19))
guarantees symmetrical tuning curves and was used to solve the optimization problem in
equation 3.16. Firstly however, the parameters β1−5 that compose equation (3.15) have
to be approximated given the extracted data d(x) using the minimisation equation (3.16).
Therefore modifying equation (3.15) to fulfil the condition R(x) = R(−x) we get equation
(3.19) in the following steps:

R(θ) = β1 + β2 cos(θ) + β3 sin(θ) + β4 cos(2θ) + β5 sin(2θ) (3.15)

argmin
β1−5∈R

∑
x∈[−180,180]

|d(x)−R(x, β1, β2, β3, β4, β5)| (3.16)

β1 + β2 cos(θ) + β3 sin(θ) + β4 cos(2θ) + β5 sin(2θ)...
= β1 + β2 cos(−θ) + β3 sin(−θ) + β4 cos(−2θ) + β5 sin(−2θ)

= β1 + β2 cos(θ)− β3 sin(θ) + β4 cos(2θ)− β5 sin(2θ)
(3.17)

43



3 Action understanding from observed movements and context

(a) (b)

0 45 90 135 180 225 270 315 360150
circular feature space, angle in degrees

n
o
rm

al
iz

ed
 r

es
p
o
n
ce

0

1.8

time (samples)

circular feature space, angle in (degrees)

ac
ti

v
at

io
n

Figure 3.7: (a) The DPA response for a specific time step given an observed projected relative
angle of 150 degrees. (b) The 2D memory trace of the projected relative angle
between pelvis and right foot in the x− y-plane for forward walk action.

β3 sin(θ) + β5 sin(2θ) = −β3 sin(θ)− β5 sin(2θ) (3.18)

Rs(θ) = βs1 + βs2 cos(θ) + βs3 cos(2θ) (3.19)

As previously discussed, a neuron contributes to the population at a specific time to a
stimulus with its tuning curve that is centered around an optimal response value [154, 180].
For our cyclic features of orientation, we chose 8 equidistant neurons representing the
feature space. Specifically, the optimal response of neuron is ni = fi, i = 1, 2, ..., 8 where
f = {0 ◦, 45 ◦, 90 ◦, 135 ◦, 180 ◦, 225 ◦, 270 ◦, 315 ◦}. The cyclic features’ shape (tuning curves)
are modeled after the viewer-centered narrow tuned cell response [179]. For the linear
feature space of distance, we used 6 neurons. The optimal response of each of the neurons
was equidistant covering the complete feature space 0 − 100%. The tuning curve of each
of the neurons was modeled using a Gaussian function with a wide standard deviation.
The Gaussian functions were adjusted using the standard deviation to resemble the results
of the fitted tuning curves discussed in the Appendix B, and were finally used as they
are the common standards in the DNF framework [153]. The transition from discrete
neurons to continuous feature space can be described by the DPA and is used as an input
in our work to our DFT architecture. An example is shown in Fig. 3.7. A stimulus of
arm configuration where the projected relative angle was 150 ◦ was presented. The dashed
grey line in Fig. 3.7 (a) shows the response of the population, while the individual black
lines show the individual responses of the individual neurons in the population. While
Fig. 3.7 (a) shows the response for a specific time step, Fig. 3.7 (b) shows the evolution
over time in a neural field. It was observed in our results that the output of the DPA
usually gives broadly tuned responses to different stimuli. Therefore, we used a DFT block
that adjusts the input using a Neural field with a tighter kernel with a small time constant
that does not cause delay in information propagation. This DFT block represents the
interaction between the neurons within the population.
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3.3.5 Summary
We have presented our biologically motivated model for motion perception that serves
as a pre-processing block for the TARS. The CARS, on the other hand, takes the end
effector’s/pelvis’ direction and speed as an input.

Our choice of features used to encode the 2D traces, shown in Fig. 3.7(b), was motivated
by neuronal optimal response studies [168]. These studies showed that the orientation and
distance travelled of observed objects (in our case hand and ankle joints) are encoded
neuronally for the purpose of motion perception [181]. Optical flow, which also encodes a
vector of direction and distance of moving interest points, has been shown to be significant
of biological movement perception. This is also compliant to what is believed to encode
motor commands (preferred population vector for a movement direction), enforcing the no-
tion that the same code that encodes action generation is used also for action recognition
[176]. These 2D traces are either saved as long-term memories, or provided online for inter-
nal comparison with saved memories. The saved long-term memories (preshapes) represent
experiences of observing a specific action class [168]. The comparisons are performed in the
TARS, however, as the number of actions can be large (the number of memories loaded at
one time for comparison can be computationally expensive), we provide the CARS which
we discuss in detail in the next section.

3.4 The contextual action recognition system
The search space to apply a meaning to an arm extension is rather large. It could be
reaching to grasp an object, it could be to press a button, it could be to throw a punch. In
order to restrain the search space, and to obtain the context of the movement, we propose
a contextual system that aids in action understanding. Our hypothesis in this section is
that an intelligent system can extract context from goal-directed motion performed by a
human actor by observing the relationship between end-effector (hand) movement and the
objects in the near vicinity and their action potentials. In this subsection we propose an
attention-shift model and explain how it was implemented using DNFs.

3.4.1 Motivation and overview
Eye movement has been shown to react to goal-directed movements. Moreover, the rela-
tionship between the eye gaze of an observer and the hand of an actor is predictive [182].
Specifically, in CARS we model the attention shift by the (robotic) observer eyes, from the
hands/hip of the actor to the object towards which the movement is directed. The CARS
has additional significance since the robotic observer has no option to sense gaze shifts
without expensive, invasive gaze detection sensors. This CARS is composed of several con-
textual action recognition modules (CARMs). Several CARMs are used as one CARM is
needed for every item of interest (e.g. end-effector) we might want to track. Following from
the work in [182], and as the gaze of the observing agent follows the actors end-effector,
the chosen feature for the CARM is the optical flow information of actor’s end-effector.
Optical flow here specifically refers to the direction of motion tracking information. The
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Figure 3.8: Architecture of the contextual action recognition module

optical flow information consisting of the actor’s end effector (and hip) direction and speed
[183] is used as an input for the CARM.

This information is fed to a moving shape (peak), shown in Fig. 3.8, which in turn feeds
into a neural field that represents the environment that the actor is performing his actions
in. This moving shape is initially located at the end effector’s starting position and has
a specific limit (set by the limit input block) that it is allowed to travel to before it fades
away. The environment neural field is preshaped by the locations (given from the objects
block) of manipulable objects in the environment, and is activated if the peaks shot from
the actors hand (position given by the position input block using the direction/speed of the
hand calculated using the optical flow input block) hits constantly a preshaped location.
The peaks that are shot, are calculated in the shape neural field block, the speed of which
is controlled by manipulating the parameters in the asymmetric kernel block. The term
preshaped here refers to the fact that the provided activation of the objects is not sufficient
to drive the neural field into activation, the field is then said to be subactivated at those
locations or preshaped. In this sense, the environment block does not directly encode the
environment per-se but the interaction between actor and environment. In the next two
paragraphs we explain the different objects that preshape the environment field and the
function of the moving shape field.

3.4.2 Physical and virtual objects
The object information that is fed into the environment field can encode physical objects
that preshape the field at the same x, y location they are observed. The same ideas are
extended for locomotion actions (e.g., walking, turning, stepping left, stepping right, etc.)
and free-space motions that are not necessarily goal-directed (e.g. waving, dancing, etc.).
Virtual objects are imagined around the actor, and motion directed by the feet or the
hands towards those virtual objects would read out their virtual affordances to give a hint
of what the possible action is. Waving for example is an action in which an arm is extended
towards the top and to the right of the head, followed by an arm extension to the left of
that initial position and then to the right again and so on. The initial top right position
can be thought as a virtual object that has the affordance of waveability. Just like a virtual

46



3.4 The contextual action recognition system

object towards the front of a person’s centre can encode the ability of hand-shakability.
We extend this to locomotion actions in which we can understand the direction of ankle
movements towards a virtual object to the front of the feet can mean stepping forward and
so on. While the use of virtual object is a simplification of how locomotion and free-space
movement could be understood, it allows these two classes of movement to be assigned
virtual affordances and be integrated into the overall architecture.

3.4.3 The shape field

Central to the moving shape module is the shape field. The output of the shape field is
forwarded to a memory field that generates the path from the moving peak, and using
this memorized trajectory an object is activated. The shape field has two inputs: a 2D
Gaussian peak which is called the source input and a limit input. The source input is
controlled by the position of a joint (e.g. wrist) p(t)- relative to the shape field dimensions
(that is, egocentric coordinates are respected here too) and is always kept at an amplitude
sufficient to cause a permanent activation in the shape field. The source field is centered at
the actor’s pelvis. The source however could be fixed to the wrist or pelvis depending on the
action type that is observed. We consider the left and right wrist joints for manipulation
movements (alongside the information of the physical objects) and pelvis for locomotion
movements (alongside their respective virtual objects). The combination of the source
and the asymmetric kernel define the movement and activation within the shape field.
Specifically, as the Gaussian peak position is defined by the joint position and not influenced
by the shape field, an activation peak separates from the source (position of the joint) in
the direction of the optical flow (joint movement) until it vanishes. The optical flow is
calculated as follows

o(p(t)) =
[
1 0 0

0 1 0

]
· (p(t)− p(t− 1)). (3.20)

Within this work, a 2D Gaussian function g(x, y, µx(t), µy(t)) with maximum amplitude at
the current position input ppos(t) and a concentrated Gaussian is used (3.21). Accordingly,
the expected value µ equals the position input p(t). Depending on the resting level of
the moving shape field, the Gaussian has to be shifted by c in order to prevent activation
within the field:

g(x, y, µx(t), µy(t)) =

A · exp
(
−
(
(x− µx(t))

2

2σ2
x

+
(y − µy(t))

2

2σ2
y

))
+ c.

(3.21)

The calculation of the asymmetric interaction kernel wasym(x, y,o) is presented in (3.22).
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(a) (b) (c)

Figure 3.9: Example of a moving shape output. This figure shows three snapshots (order from
left to right) of the output produced by a moving shape module in the case of
non-zero optical flow.

The basis shape is defined by a 2D Gaussian as described in (3.21) but without shift:

wasym(x, y,o) =g(x, y, µx(t), µy(t))

+ ox(t)
∂g(x, y, µx(t), µy(t))

∂x

+ oy(t)
∂g(x, y, µx(t), µy(t))

∂y
.

(3.22)

The limit input is introduced to add control over the vanishing time and the distance
that the separated activation peaks travel. This input preshapes the shape field and
restricts the traveling of the peaks to certain areas given information passed from the
current position (white arrow in Fig. 3.8).

A moving shape is shown in Fig. 3.9. This figure illustrates an arm moving towards
the left. What this would translate to within the moving shape module are the waves
seen in the figure. A moving peak centered at the wrist position would propagate given
the information of the optical flow. Accumulating waves would build up activation while
noise generated from the movement would die out as shown in Fig. 3.9. To summarize,
the inputs to the moving shape module are the optical flow input, the position input and
the limit input. The output of the moving shape module is the memory trace activation
in the shape memory field. The moving shape module contains two fields. The first field
is the shape field that takes an algorithmic inputs of the asymmetric kernel, and gaussian
peak calculation. The second field is the shape memory memory trace that accumulates
the output of the shape field. Both fields are defined of the metric space field spanning the
immediate environment in meters.
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1 meter

Figure 3.10: Virtual objects for direction and movement detection (a)-(h) show the eight
directions, each covering 45◦ (i)-(l) show different sized circles for movement
detection. Each square has a length of 1 meter and is enough to cover the
workspace of an arm.

3.4.4 The environment field
Finally, the environment field is a decision field that performs a selection given the (vir-
tual/physical) objects that preshape it and the moving shape module’s output that also
provides a preshaping input. The field is defined over the feature space representing the
environment (in meters). The output is the location of the objects that the observed agent
is predicted to manipulate. It is important to note that physical objects in our implemen-
tation encode both furniture and manipulable objects. Virtual objects encode positions
around the body used for both direction and magnitude (the intensity of the motion)
detection. The assumed virtual objects surrounding the body are shown in Fig. 3.10.

A stable peak in the environment field is an indication of which object the actor is
intending to interact with and where this interaction is being (will be) performed. For
the virtual objects, it gives an indication of what kind of locomotion movement is being
performed and intensity/direction of the movement.

3.4.5 An example of a CARM
An example of the processes within a CARM is shown in Fig. 3.11. The bottom layer,
Fig. 3.11(a) represents the body input in which the gray arrow represents the instan-
taneous value of the optical flow at the wrist joint. There exists three objects in the
environment illustrated using gray circles. A source peak is built over the wrist and peaks
are shot from that source given the optical flow information of the wrist joint as shown in
Fig. 3.11(b). The activation of the waves are maintained in the memory field illustrated in
Fig. 3.11(c). The activation serves to add activation to the environment field on one of the
preshaped locations that represents the underlaying objects, as illustrated in Fig. 3.11(d).
The accumulated activation at one of the object locations allows for selection as shown in
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Fig. 3.11(e) The movement is directed towards one of these objects.
The affordances of that specific object can be read out and preshape the TARS which

in turn validates the type of affordance on a movement level. We discuss the modules that
make up the TARS in the following section.

3.5 The trajectory recognition system
When an acting agent performs an action, his/her movement kinematics provide an abun-
dance of information a human observer could use to recognize the action. In terms of
movements, human action varies constantly. That is, for the same action, a person per-
forms movements differently across multiple runs. The time it takes to complete the same
action varies also from one trial to another and from one person to another, depending
on the task and the kinematics of the actor. In this section, we provide a DNF model
of motion trajectory comparison for the purpose of action recognition that acts indepen-
dently of environmental information. These different blocks that compose the trajectory
recognition module are visualized in Fig. 3.12. We explain how we achieve spatial and
temporal invariance and provide insights on how the intrinsic properties of the DNF could
be used to dynamically adapt the fitting between stored memories and the observed data
and give it a better chance to get a positive fit. We also discuss our implementation for
producing and processing these stored memories (templates). It is worth emphasizing that
the TARS is composed of several trajectory action recognition modules (TARMs) specific
for each action to be recognized.

In compliance with the template-matching model, biological systems depend on a stream
of features (stimulus) produced by static views of the body to perceive and classify move-
ment patterns [130]. These features can be thought as form cues of a specific body config-
uration, similar to the concept of snapshots presented in [125]. They are called snapshots
of interest within our work. The existence of a specific sequence of snapshots encodes a
specific action/movement. We refer to this sequence as sequence of interest. However for
classification, we need a reference sequence of interest to be matched against. We rely on
a set of stored memories (templates) for the observation of different actions as well as a
comparison model. Templates are learned in our DNF model by applying an activation
of motion features over time in a DNF that represents a template. The classification of
actions here would be similar to other single layered exemplar-based sequential approaches
that depend on a sequence of feature vectors to perform the classification [147]. We discuss
template generation in section 3.5.1. This template has to be adaptive to account for the
challenges of AU, for that we present our dynamic template solution in section 3.5.3. From
the previous overview, the TARM can be composed into an input side and a preshape side,
and they are compared against each other with a comparison block, this is discussed in
section 3.5.2.

Due to the challenges of AU discussed, the differential speed between the input and
the template should be controlled for purposes of correct recognition, and this is done by
a controller block which is discussed in detail in section 3.5.4. Specifically the controller
block controls the speed (and the time intervals) at which the traveling wave propagates
through the preshape field, as the stimulus is fed online as the movement is observed. In
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xy

(a)

(b)

(c)

(d)

(e)

Figure 3.11: Example of the operation of a CARM (a) The kinematics of an actor is observed
as he tries to reach towards an object and away from obstacles (b) Gaussian
peaks are shot from the source that is centered around the right wrist. (c) The
activation from the shot Gaussian peaks are maintained in a memory field. (d)
The accumulated activation allows for the selection of a peak out of many possible
preshaping peaks. The preshapes represents objects existing in the environment.
(e) A decision is made in the final selection layer. This decision represents the
object that the observer predicts the actors’s movements are directed towards.
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Figure 3.12: Overview of the trajectory action recognition module. Dark grey blocks represent
blocks that are explained in detail in separate sections. Feedback signals are given
to the controller from projection fields and the comparison field.

the following, we discuss the template generation process which is illustrated in figure 3.13.

3.5.1 Template generation
The core mechanism here is the accumulation of a memory trace from multiple samples.
The samples, which are represented in feature format, are accumulated within a field with
a memory trace. The features, as discussed in section 3.3, encode ego-centric distances and
angles between the pose of the head or hip (reference) and the wrists and ankles (end effec-
tor) in the sagittal, cornal and transverse planes [163, 167, 168, 184]. The choice of wrists
and ankles are because they indeed move the most [185]. The observed agent is projected
onto the body frame of the observer such as to achieve view (spatial) invariance and model
the internal simulation behind action recognition [165]. The DPA model discussed in sec-
tion 3.2.2, was used to model a set of angle and length sensitive neurons at discrete values
similar to what is observed in the neural system of the human [175, 183, 186]. At any given
time, the produced features (stimulus) are called a snapshot of interest. The activation
of these angle/length sensitive neuronal populations over time activate a DNF either for
learning a preshape (template) or to be directly fed as an input for the comparison. The
process of generating the trajectory templates is shown in Figure 3.13.

Templates were generated by a mean-like approach within a DNF given several exam-
ples from a class of actions. The template generation process illustrated in Fig. 3.13 is
modeled such that a single observation (in stimulus trajectory form) is appended to the
already accumulated motion observations. Our motivation stems from the intuition that
an action is observed completely and continuously and is added to overall past experiences
dynamically. From multiple examples of an observed action recorded in our dataset, we
pick one random sample, and present it in stimulus form. This is done in the select sample
block. The length (time) of the sample is normalized, in the preprocessing block to a length
that was pre-calculated. This pre-calculated length represents the average length of this
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Figure 3.13: System architecture to generate trajectory-based templates.

specific action class. This input is then fed into two pathways that again merge into a DNF.
The upper pathway multiplies the sample with a gain, while the lower pathway accumu-
lates the observations within a memory and multiplies the output with a gain afterwards.
These gains are essential to the learning process. They define how the learned information
is changed and when to select a new sample to learn from. The two pathways are merged
into a DNF that is projected against time and finally summed up across its activation. A
feedback law is then defined such that this activation summation is compared against a
threshold value that determines the transition to learn a new example.

3.5.2 Comparison block
As the learned preshapes could be substantially shorter or longer in time compared to the
observed motion, we propose to use moving peaks to solve the problem of time variability.
A peak would propagate in the DNF of both the preshapes templates and the perceived
action. The peak in the preshape would jump to special locations characterized by fast
changes in the feature space. These jumps would be fast in nature. A jump would occur
to the next location in the preshape field only if the same feature was observed in the
input field that represents the perceived action. This check is performed in the comparison
field as shown in Fig. 3.12. As the wave in the preshape field propagates more and more
towards the end, the more we are sure that the preshape correctly represents the action
we think it is.

This jump that occurs from one snapshot of interest to the other is determined by
allowing the wave to propagate forward at a high speed and detect areas of interest within
the preshape. These areas of interest are either zero crossing areas or extrema/saddle
points. The snapshots of interest are calculated online by merging both a Gaussian wave
that is extended in time and the original preshape in a neural field called the zero crossing
field. The online calculation is of vital importance as the area of interest should be allowed
to be shifted and adapted during comparison to allow for the best fit between observed
and saved values in the features. The two inputs activate the neural field on intersection
within the field, this activation is designed to occur around zero crossing points. The
projection of this zero crossing field against feature value gives the times at which the
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sample has zero crossing points. This can be further expanded against time and fed into
as an input alongside the original preshape in a field that presents the sequence of interest.
The saddle-extrema points can be calculated similar to the zero crossing points, but after
an initial derivation of the preshape has been done. The derivation is done offline. The
jump between snapshots of interest could be understood as interstimulus intervals (ISIs)
which represent blank intervals between point light display frames which in turn allow
low-level influences on human motion perception [185].

Comparison between the snapshots in the preshape and the continuously evolving stim-
ulus input occurs in the comparison block as shown in Fig. 3.12. The comparison block
discussed in section 3.2.4 is utilized here. The results of the comparison (match/no match
or continuous comparison) are used as feedback signals to the controller block.

3.5.3 Dynamic templates

The core mechanism here is dynamically changing the values of the different available
parameters (e.g. resting level of the preshape field or the value of the short range excitation
of the interaction kernel) within the preshape field given the success of the comparison
within the TARM. The basic motivation behind the set of tools used in dynamic templates
approach is twofold. Firstly it is considered a way to to allow for a faster successful
comparison result. Secondly, it is a way to allow the generalization of templates.

As the confidence of observing a specific action increases, the more the dynamic pre-
shape is allowed to influence the action recognition process such as to compensate the
spatial variation between the preshape and the stimulus. The portion of the preshape that
had not been compared against yet, is made to fit the previously observed motion. The
compensation is calculated given the past information of the perceived motion. It also
allows for the imperfections observed when learning a preshape template and allows some
spatial variation between stimulus and preshapes. It aids towards the generalization of the
templates. While false positives might be a hindrance due to the use of dynamic templates
the use of CARS would limit the number of loaded preshapes such as this drawback is
mitigated. This drawback is further shown in the results section.

The dynamic preshape solution we propose is divided into two steps. The changing
preshape step aims at manipulating parameters within the preshape generation method.
Such changes could be limiting the samples used or manipulating the field to exhibit
behavior other than producing a mean-like stimulus trajectory. The changing preshape
step alters the shape of the preshape completely and dynamically.

The second adapting preshape step does not change the preshape. It adapts the current
preshape given the information seen so far from the stimulus by either shifting it in feature
space or influencing its shape slightly. The shape is changed by performing the convolution
normally done within the DNF using an adapted 2D Gaussian kernel. The width of the
2D Gaussian kernel is changed depending on the confidence value of the overall trajectory
comparison module. This dynamic adaption of the preshape gives a better chance for the
fit to occur as we are more confident of our action classification.
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3.5.4 Controller block
The controller block shown in Fig. 3.12 takes three inputs. These inputs are the temporal
positions of the moving waves within the stimulus field and the preshape field as well as
the results of the comparison block. The output of this block controls the velocity of the
moving preshape wave. This controller block is purely an algorithmic implementation, and
is not implemented using neural fields. Furthermore, we assume for the purposes of this
control block that the length of the input stimulus, and therefore the temporal position
of the stimulus within the currently observed action, is not known. This is a logical
assumption since we do not know when the actor will end his action nor at which stage he
is currently in. We do however assume that we know the length of the preshape and the
position of the traveling wave within the preshape. This is again a logical assumption as
we have these preshapes stored as memories within our action understanding system.

The controller, which provides a stop and go signal for the wave, takes a logic input
from the comparison module. The controller, which is implemented as an if/else statement,
stops the traveling wave (on a snapshot of interest) or allows it to propagate forward with
a velocity that is at least as fast as the stimulus’ velocity towards the next snapshot of
interest. The overall result of the TARM comparison here can be presented as percentage of
the current position of the wave within the preshape to the overall length of the preshape.
We define this value as the confidence value within this document, which serves as an
indication of the correct matching preshape. Within our implementation we have also
experimented with a continuous controller that slows down or speeds up the traveling
wave given the differences between input and preshape. However, we opted for the stop
and go controller in our final implementation as the comparison module follows the work
on Condition of Satisfaction, which provides a logical value of match or not match.

3.5.5 An example of a TARM
The TARM takes two trajectories, one from the input side and one from the preshape side
(or from an internally generated movement). In order to resolve the temporal variation
that could occur, a moving peak travels through both input field (stimulus) and preshape
fields. While the speed of the moving peak is continuous in the input side, it is discrete in
nature in the preshape side, and is determined by way of a controller. An initial preshape
slice is shown in Fig. 3.14(a), while the initial input from the input side is shown in
Fig. 3.14(b). The controller checks if the current time slice of the preshape field matches
to what is observed in the input side in a comparison field that performs a RoS calculation
as discussed earlier. The comparison is shown in Fig. 3.14(c) and indicates a correct
comparison. This would allow the preshape moving peak to propagate forward at a fast
speed to the next time slice of interest, shown in Fig. 3.14(d). The preshape slice is stuck at
that position, until the stimulus from the input side catches up and a correct comparison
occurs. However, in this example the input illustrated in Fig. 3.14(e) never allows for a
correct comparison, as shown in Fig. 3.14(f), therefore the peak is stuck at its previous
position. This indicates that this specific TARM is not consistent with the observed motion.
When another TARM is successful at understanding the movement, the TARS is reset and
the moving peaks start from the initial position.
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Figure 3.14: Example of the operation of TARM (a) An initial preshape slice of the internally
simulated neural trajectory (highlighted by the black crosses). (b) An initial input
time slice. (c) A RoS comparison between the input and the preshape which
shows a correct comparison. (d) A preshape slice of the internally simulated
neural trajectory (highlighted by the black crosses) at a position of interest, at a
later time step. (e) An input time slice at a later time step. (f) A RoS comparison
between the input and the preshape which shows a false comparison at the later
time step, leading to the preshape peak to be stuck at that location.

It is important to note that the moving peak in the preshape side jumps from one position
of interest to the next position based on the characteristics of the preshape trajectory.
Specifically, it jumps to a point where fast changes in the feature space is observed. Finally,
a dynamic preshape allows for local and global shifting in the preshape given correct
comparison. In other words, as more comparisons are correct between the input side and
the preshape side, the more the dynamic preshape adjusts the original preshape to allow
for a better fit.

3.6 Affordance logic and connectivity fields
The observing agent identifies and predicts the acting agent’s action through understand-
ing its dynamic interaction with the (real or virtual) objects in the agent’s immediate
environment. The CARS shifts the attention of the observer from the end effector towards
real or virtual objects whose affordances can be read for further processing. These affor-
dances constrain the set of all possible actions to a limited subset. This subset is used to
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Figure 3.15: Connectivity field. a) General structure of the connectivity field for k actions
a. b) Connectivity field for objects. Gray points represent connections between
the current action at t and possible future actions at t + 1. Different shades
have been chosen in order to represent that different connection strengths are
possible.

bias the TARS through a choice of a limited number of preshapes and dismissing the rest.
We introduce in the following the concept of connectivity fields which aids in achieving the
previous ideas.

The connectivity field is a lookup-table-like DNF that encodes future possible object
affordances given the object’s current affordance state. It houses both ideas of sequential
and nested affordances [187]. Each object is represented using its own connectivity fields,
which is a 2D DNF with a 2D feature space. The first dimension encodes the current
action states of the object and the second dimension contains the action states available
in the next time step. As an example, if a glass is being grasped now, it can be released,
placed ... etc. as shown in Fig. 3.15. A general structure of connectivity fields is shown in
Fig. 3.15 (a) for a connectivity field of k action possibilities a1−k an object might have. A
populated connectivity field is shown in Fig. 3.15 (b), in which connections were learned
in a 2D memory field. The different shades of peaks in Fig. 3.15 (b) refers to the fact
that there exists different probabilities of action transitions encoded in the strength of the
connection. Figure 3.15 (c) shows a learned connectivity field.

Within our implementation, we did not integrate abilities of object recognition nor
affordance attribution or learning. Object recognition within DNFs has been discussed
in [188]. We assumed knowledge of positions, labels and affordances of the objects in
the environment to be known. Furthermore, the list of affordances were defined in a
complimentary manner to fit the list of action primitives that were recorded in our dataset.
This is in accordance with the notion that affordances provide action potentials and provide
a logical link between action and environment. These affordances make up the connectivity
field.

The connectivity field was realized using a memory trace that saves peaks of activation
at connection points between previous and current action state. As the actions are discrete
in nature, the input to the memory trace 2D field is an activation of action (neural) pop-
ulation whose tuning curves have zero overlap and have an optimal response value spread
equidistantly over the feature space. The learning of how current and future affordances
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are connected occurs as follows: when we observe action changes, both feature spaces acti-
vate at the locations of these discrete actions, activation at the intersection of both actions
emerge within the connectivity matrix field and is finally this peak of activation is saved
in the memory trace.

The output of the connectivity matrix can inhibit or excite the saved preshapes of
the TARS. When an action is observed it influences the connectivity field. That is, an
activation is spread horizontally at the location of that action. This activation is sufficient
to activate preshaped peaks (learned in the previous step). These activations are read out
by projecting the 2D field onto the next action state axis. These activations go on to excite
preshapes in the TARS and the rest remain inhibited.

3.7 The action understanding task
For the human action understanding task, we had set up an apartment environment within
our laboratory and invited ten participants to perform high-level scenarios as well as short
precise movements we refer to as primitives. The goal of the primitives is to provide our
system with learning examples of how simple movements were performed. The concatena-
tion of several simple movement primitives (e.g. walk forward, turn, step forward, reach,
grab, pull, ...etc) add up to a higher level intention. The primitive actions could be sep-
arated into two main categories: manipulation and locomotion actions. The locomotion
actions that were recorded were: step (forward, left, right and back), walk (forward and
backward), turn (right/left, 90/180 degrees), standing up and sitting down. The manipu-
lation actions that were recorded were: approach (reaching action without a grasp, such
as turn on the light switch), grasp (a reaching action with a grasp), push, pull, place, open
and close door.

We designed the high-level scenarios that portray a specific intention such that a series
of aforementioned primitives were used to execute them. The scenarios we set up were:
pick up the remote to watch TV, pick up a snack to eat, go to work, get up on a vacation
day and tidy up. The ten participants were instructed to perform the high-level scenarios
as naturally as possible, and were not told to follow a specific order in their execution. We
assume that recorded primitives would give us a wide range of movements and allow us
to recognize them within the execution of a high-level scenario (intention). By performing
the recording session of primitives first, we would prime the participants to using those
specific primitives in the high-level scenarios, however this priming effect was not measured
nor analyzed. It was observed however, that some participants employed creativity and
added a lot of character into the high-level scenarios, as one of the instructions they were
given was to act as if they were in their own apartment. As an example, some chose to do
stretching movements in the get up scenario.

For the motion recording we used an Xsens MVN full-body inertial motion capture
(MoCap) suit. The sensor fusion scheme of the Xsens MVN suit gives the kinematic
information (position, velocity, acceleration, orientation, angular velocity and angular ac-
celeration) of each body segment as an output [189]. We opted for a motion capture suit
as extracting a skeleton of video frames is not the focus in our work. Furthermore, having
MoCap data of movement allows us to model the observing robot anywhere within the
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apartment environment without being restricted to a certain view point or having to deal
with occlusion.

The grab a snack task will be evaluated to discuss the results of the CARS in section 3.8.1.
Then, the pick up remote scenario will be used to give initial results for the integration
of the TARS and CARS in section 3.8.3. In the following, we will discuss the CARS
and TARS individually and then introduce how they can be integrated into an action
understanding system.

3.8 Results
The previous section focused on presenting the individual modules of the overall architec-
ture. Many TARMs could be recruited depending on the number of actions to be recognized
and build the combination of which composes the TARS. Likewise, many CARMs could be
used depending on the end effectors that are of interest and the combination composes the
CARS. In the following we present our results of the dynamic systems, CARS and TARS,
see section 3.8.1 and section 3.8.2. Additionally, we present initial results of the integrated
system in section 3.8.3. The high-level scenario that we used to produce the results in the
CARS section is the Pick up a Snack scenario. Finally, we evaluate the integrated system
with the Pick remote scenario. Figure 3.16 shows the 2D reconstruction of our apartment
environment. The Pick up a Snack scenario consists of getting up from the couch, walking
towards the kitchenette, picking up the apple and walking back to the couch to sit there.
The Pick remote consists of getting up from the couch, walking towards the TV table,
picking up the remote and walking back to the couch to sit there and place the remote
on the coffee table. The ground truth of the Pick up a Snack scenario is given in Table
3.1. The ground truth of the Pick remote scenario is given in Table 3.3. The complete
architecture was built using MATLAB/Simulink environment using a modified version of
the open source toolbox COSIVINA [190].

3.8.1 Contextual action recognition system
Three CARMs are running at all times. One for the right wrist, one for the left wrist and
one for the pelvis (results for the pelvis are not shown). The virtual objects necessary
to be loaded for the function of the pelvis CARM are only loaded when the optical flow
information of the pelvis is above a certain magnitude (0.8-millimetres). This threshold was
calculated with a decision tree classifier using the magnitude of the optical flow information
of the pelvis as the distinctive feature. The moving shape field for the right wrist and the
left wrist was shown earlier in this article in Fig. 3.9, in which a right wrist is simply
moving right. The field would be preshaped with objects that would allow prediction of
interaction. The results are tabulated in Table 3.2.

For our example, the environment houses both furniture items as well as objects. Con-
textual information of what object and at which location it was manipulated can be inferred
using the CARS given the movement of both wrists. We show the results of the CARMs for
the right/left wrist interacting with furniture in Fig. 3.17-left ordinate, and the right/left
wrist interacting with objects is also shown in Fig. 3.17-right ordinate. The right wrist
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a

b

c

d

e

Figure 3.16: The apartment environment that was used to record the high-level scenarios. (a)
The couch (start position). (b) TV table and remote positions. (c) Kitchenette
and apple positions. (d) The couch (end position). (e) Coffee table.
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Figure 3.17: Interaction with the apartment furniture (listed on the left ordinate and read
with the solid lines) and apartment objects (listed on the right ordinate and read
with the horizontally dashed lines) for the right wrist (solid/dashed black lines)
and left wrist (solid/dashed grey lines). The abscissa represents time in seconds.
Detected interaction is illustrated by lines. An example of reading the figure
would be: the right wrist was interacting with the glass (dashed black line) at
the kitchenette (black solid line) around the 8.5 second mark.

contextual information can be read using the solid/dashed black lines while the grey lines
are referring to the contextual information of the left wrist. Figure 3.17 shows an initial
interaction with the couch (initial sitting position), then as the subjects stands up his/her
movement is towards the coffee table and near the apartment walls later he/she interacts
with the kitchenette and walks back towards the couch where he/she places the apple on
the coffee table. In terms of objects, Fig. 3.17 shows longer activation with the apple, as
the subject reaches, grabs and walks back to the couch with the apple. As can be seen in
the results, the CARS only makes a selection of objects/furniture that are predicted to be
manipulated, while suppressing the other objects/furniture. The CARS as expected gives
contextual information of what and where interactions take place. The CARS also gives
context of locomotion movements necessary to understand such motion.

3.8.2 Trajectory action recognition system
Multiple TARMs are running the whole time. One for each action and their respective
features. They benefit from the output of the CARS computationally as only a subset of
TARMs are excited at each time, the others are inhibited. In the following we show results
for the TARS separately and explain why simple trajectory comparison does not aid in a
dynamical action understanding architecture.

Figure 3.18 shows a comparison of a generated mean for a step forward action, for the
feature of projection distance in the x− z plane between right and left foot. Figure 3.18(a)
shows the generated template while Fig. 3.18(b) shows the corresponding mathematical
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3 Action understanding from observed movements and context

Table 3.1: The pick a snack scenario: ground truth

Start End Furniture Object
(seconds) (seconds)

0 4.8 couch
9 10.5 kitchennete apple
16.5 19 couch

Table 3.2: The pick a snack scenario: right hand results

Start End Furniture Object
(seconds) (seconds)

0 4 couch
5.2 6.5 apartment walls
7.2 9 kitchenette apple
9 10 bed
11 13 couch apple
10.2 19 couch

mean template. Figure 3.18(c) illustrates the difference of (a) and (b). Thereby, dark
red represents the maximum value whereas dark blue represents the minimum. This com-
parison shows our approach is comparable to the mathematical formulation of a mean
template.

This mean template can be adapted dynamically given the results of recognition confi-
dence. The way that the template is adapted within DNF is shown in Fig. 3.19. Finally,
in Fig. 3.20 we show the results of comparing the step forward action against all other
action primitives. Only the step variants reach 100% finally, a fault that can be resolved
if the CARS was also connected to suppress templates that represent large movements
in the forward direction. However, the confidence level reaches a high level of confidence
late, and recognition could be confused earlier across many actions. As these results are
obtained by employing TARS alone, the CARS provide means to eliminate a large portion
of these actions and allow for a better comparison as will be discussed in the next section
that presents the results of the integrated system.

3.8.3 Integration of context and trajectory recognition
In the following section, we show our initial results of the CARS and TARS for the pick
the remote scenario. Within this example, the participant stands up from the couch, takes
a few steps forward towards the television table, picks up the remote, sits back down on
the couch and places the remote on the coffee table in front of him. The “pick the remote”
scenario’s ground truth is given in Table 3.3. Figure 3.21(a) shows the results of the CARS
and the objects the observer predicts given the participants right wrist movements. The
affordances of the objects that are predicted in the CARS step runs several TARMs at

62



3.8 Results

Figure 3.18: Comparison of a generated mean template with corresponding mathematically
calculated equivalent. the chosen example is: STEP_FORWARD, projection dis-
tance xz between right and left foot . a) Generated template. b) Corresponding
mathematical mean template. c) Difference of a) and b). Thereby, dark red
represents the maximum value whereas dark blue represents the minimum.
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3 Action understanding from observed movements and context

Figure 3.19: Influence of the adapting kernel for increasing confidence. a) Preshape adapted
with a kernel having almost 0% confidence input. b): Confidence is increased
to 50%. Finally, c) shows the adapted preshape by 100% confidence, which
corresponds the original preshape.
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Figure 3.20: Comparison result of all primitive action against STEP_FORWARD. The colored
lines represent the mean confidence of the corresponding actions (see legend).
The shaded areas around each mean shows the variance. Time has been normal-
ized with respect to the length of the recordings.

the same time as can be shown in Fig. 3.21(b). As one TARM reaches a confidence of
over 0.8, a decision is made and an action is then recognized (as shown in the instances
marked by the red ovals). The combination of the CARS and TARS then gives a semantic
understanding of what are the actions that are being observed. The results of the action
understanding system are given in Table 3.4. In this example the system understands the
movements as follows: stand up at couch (0-2.4 seconds) then step forward by the coffee
table (2.4-3.6 seconds), turn stepping left towards the TV table and approach and grasp
the remote (3.6-5.2 seconds), then step forward towards the couch (5.2-6.5 seconds) and
finally sitting down on the couch and simultaneously pushing to place the remote over the
coffee table to end the movement (6.5-7.2 seconds).

The combination of the two systems alongside the dynamic affordance logic system al-
lows for an end-to-end biologically-inspired architecture for human action understanding.
The complete system would benefit from an extensive validation given a large human be-
havior dataset as well as human behavioral studies in intention and action understanding.
However, due to space limitations, in this work we focused on presenting the building
blocks (TARS and CARS) and their interconnection. We tested the blocks individually
and provided initial results of the integration of these systems to provide an insight on
the dynamics of decision making. Future work would focus on an extensive validation of
the overall architecture. Validation should avoid static representations such as confusion
matrices and focus on using new dynamic metrics that measure the conflict between dif-
ferent competing hypotheses of action understanding. Further metrics should measure the
interaction between the TARS and CARS modules and measure the benefit to complexity
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Table 3.3: The pick the remote scenario: ground truth

Start End Action Furniture Object
(seconds) (seconds)

0 0.84 sit couch
0.85 2.35 sit-to-stand
2.36 3.28 step-forward coffee table
3.29 4.32 step coffee table
3.29 4.32 grasp TV table remote
4.33 5.22 step
5.23 6.09 step forward
6.1 6.44 turn right 90
6.45 7.59 stand to sit couch
7.6 8.83 sit couch

Table 3.4: The pick the remote scenario: results

Start End Action Furniture Object
(seconds) (seconds)

0 2.4 sit-to-stand couch
2.41 3.6 step-forward coffee table
3.6 5.2 step left
3.29 5.2 approach TV table remote
4.6 5.3 step left coffee table
5.2 6.8 step forward couch
6.1 6.44 pull coffee tabele remote
6.8 7.5 stand to sit couch
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ratio of combining both signals for a correct and early action understanding. Thus, the
proper evaluation of the developed system and definition of metrics constitutes an own
research question which will be addressed in our future work.

3.9 Discussion
There is an infinite set of intentional descriptions consistent with any given behavior stream.
However, even though there exists a large state space of possible interpretations, adults
seem to be skilled at agreeing about the semantics of an observed action to a detailed
description [5, 8]. Even from a young age, we are able to understand actions (e.g. grasping,
pointing and gazing) and attribute a meaning behind them accordingly [191]. These social
abilities of action, plan and intention understanding that we posses as humans allow us
to socially interact with others around us. We introduced an attention shift model that
has an application in the CARS and a trajectory comparison model that has applications
in TARS. We also introduced how the link between CARS and TARS could be logically
motivated using the concept of affordances and connectivity fields.

A biologically motivated approach for feature selection and generation was discussed.
While the features in this work were calculated for a generic 1.8 m tall male, given the true
height and weight of the observed actor, the whole anthropometric measures (and thus the
features) can be derived by means of correlation formulas [192]. The features calculated,
encode relations between different joints in the body. It would be beneficial to devise a
system that dynamically switches between different feature sets for enhanced recognition
and reduced computational load. Considering features that encode end-effector–objects
relations could also be in line with the current work and would enhance recognition rates.
Overall the implemented 39 features were sufficient to test the current system and produce
the results as seen in the results section.

The features themselves were represented and fed into the DFT architecture using a
biologically motivated approach, namely the DPA method which integrates naturally with
the concept of dynamic neural fields [193]. We focused on representing the tuning curves
in a way that is consistent with neural response studies in literature. The assumption that
tuning curves are the same across the population is a limiting one. Indeed, it might be
the case that the shape of the tuning curve can be different. Moreover, our assumption
of equally distributed tuning curves across the feature space is simplistic and may be
not biologically plausible. We assumed that the tuning curves are the same across the
population as well as being equally distributed over the feature space as a simplification.
Further, work on how and what it means for the optimal response values (both in value
and quantity) to be optimally distributed along the feature space might allow for a more
meaningful stimulus generation for the DFT architecture.

An attention-shift model was developed for the purpose of context understanding in
action recognition tasks. The bias introduced by the CARS aims to reduce the overall
computational power of the system. The idea that an observer’s expectation of a movement
effects how the intention behind it is understood has been shown previously in literature
[194]. Furthermore, the need for a top-down mechanism to constrain intentions of an actor
has been discussed in [122] where the Gricean pragmatic analysis of language (specifically

67



3 Action understanding from observed movements and context

Time (seconds)

Stand to sit

Sit to stand

Step forward

Step backward

Step right

Step left

Walk forward

Walk backward

Turn right 90

Turn left 90

Turn right 180

Turn left 180

Approach

Push

Pull

Grasp

Place

Open door

0 2 3 4 5 6 7 8 91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

n
fi

d
en

ce

A
ct

io
n

s

work station

TV table

television 

kitchenette

couch

coffee table

bed

apartment walls

remote

plate

pencile case

mouse

glass

bowl

apple

fu
rn

it
u
re

o
b
je

ct
s

(a)

(b) 0 2 3 4 5 6 7 8 91

Figure 3.21: Results for the pick up remote scenario (a) Results of the CARS indicating the
interaction of the right wrist with the furniture (left, solid lines) and objects (right,
solid dashed lines). This indicates that there was interaction with the couch at
the beginning and the end of the complete action, with interactions with the
coffee table and the TV table in the middle of the complete action. (b) Results
of the TARS. Many TARMs are online and comparing the observed movement
dynamically, once one of the systems in competition achieves an accuracy of
over 0.8, then all systems are reset and wait for CARS to bias the next round of
comparisons. The red ovals indicate a decision made.
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the reality and and cooperative principles) were used as the constraint to the understanding
of simple, goal-oriented actions.

In terms of neural plausibility, the online computation of the optical flow is problematic
however. This is because the online calculation of the optical flow would require rapid
and precise plasticity in the synapses that implement lateral interactions. As such, the
implementation of CARS should be seen as an algorithmic shortcut for a more complex
neural system that could generate moving peaks as described in the CARS implementation.

The TARS subsequently load only a few preshapes that are dependent on the input
from CARS. Furthermore, as internal comparison is the basis of the TARS, the current
implementation depends on a learned memory of how the motion evolves. The template
generation methods produce preshapes that are useful for the comparison process. However,
two major issues with the production of template preshapes had been observed and been
tackled, namely the branching and widening effects. Branching occurs when there are
multiple ways of performing an action kinematically (in contrast to having one way with
small variances in motion). In this occurrence we can observe a branch in the preshape that
starts from a common point and ends separately. The branching effect has been solved by
post-processing these preshapes into a DNF that ultimately picks between branches (the
one with most activation/ in this case that has been seen most) and eliminates the other.
The other issue is widening, which refers to the fact that the preshape can take wide range
of features at some parts due to large variations in the performance of an action. These
wide areas usually survive in the post processing procedures and could facilitate faulty
detection. This has many limitations, specifically an action recognition system can not
house all possibilities for the same action (different speeds/ extensions) that could encode
the same action class. We have tackled this problem by trying to adapt the preshape
dynamically as well as using a temporally invariant comparison method (traveling waves
and extracting snapshots within the learned memory/ preshape).

The CARS and the TARS are brought together such as to limit the search space using
ideas of affordances embedded in the connectivity matrix. Using affordances, however,
is not without complexity. Further, work should focus on how objects’ action potentials
are perceived and modeled within DNFs, similar to that presented in [195]. Furthermore,
detecting and learning new action abilities (primitives) is also not implemented. However,
if affordances could be attributed in future work, new actions that trigger these affordances
could be learned online given affordance understanding.

Given the above discussion, we describe in the following how the different modules
interact with each other using the “pick up remote” scenario presented in the results
section. Initially, as the observed agent moves around in the environment, its skeleton
is transformed onto the observer’s egocentric coordinate frame. Furthermore, the Body
Joint Extension and the Projected Relative Angle features are calculated.. As the pelvis
and wrists of the agents move, they provide input to their individual CARMs to detect a
manipulation movement (towards an object/ furniture) or a locomotion movement (towards
a virtual object). In our example the agent is interacting with the couch. The CARS makes
a decision that the couch is being manipulated. This affects the affordance logic block to
activate the TARMs that are related to the couch e.g. sit-to-stand action or stand-to-sit.
The TARS loads the appropriate TARMS (sit-to-stand action and stand-to-sit), allowing
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the prehshapes of each action across the different features to be loaded. The comparison
occurs in each of the TARMS relating to the action/feature pairs against the observed
motion as discussed in the comparison block in section 3.5.2. A decision is achieved within
the TARS as one of the TARS achieves an accuracy of 0.8 or above. This resets the system
and waits for the CARS for the next input. In this case it is recognized as a locomotion
action (the attention shift was towards a virtual object), which forces several locomotion
TARMS to turn on as well as the new affordance of the coach (sittability, now that the
couch is available to be sat on again). The next round of TARS detects that the agent is
stepping forward, and so on until the end of the complete series of intentional actions.

Compared to MNS computational models, our model resembles the HAMMER architec-
ture in that we do not emphasize a motor control role in the current implementation. This
is in contrast to the MOSAIC model that was conceived for purposes of dynamic motor
control.

In terms of input, the kinematics of certain joints of interest is used in our model similar
to the MSI model. However, unlike other implementations we explain how features can
be represented in population of neurons for the purpose of action recognition and the
generation of long-term memories for each class of actions.

Similar to the MNS and MSI models, we present a model that gives a central role to
the objects in the environment and adopts a object-centered representation. We give this
representation further importance and build the CARS to extract information of attention
shifts towards objects, select them, read out their affordance and allow this information
to bias the TARS. Goal-setting then is a focus in our model, while it is not addressed
in MOSAIC, HAMMER and RNNPB models. While other models might allow for goal-
setting explicitly it is not an automatic procedure by any means and the link to the object
affordances and motion parsing is not well established, which is what we focus on in our
implementation.

Projection of the acting agent to the observer is a main block in the TARS which allows
the system to be agent-independent and complies with the ideas of “internal simulation”
and “motor resonance”. This self-observation mechanism is also shared with the MNS
and MSI models [196]. However, unlike its use in the feedback-loop for action generation
in the MSI model, our implementation uses self-observation in our implementation such
as to associate the observed stimulus in an associative memory manner to achieve action
understanding. We also address how spatio-temporal variance between the stored long-
term memories and the observed data could be handled using dynamic neural fields and
to obtain a correct classification of the correct motion. Tackling this spatio-temporal
variance/similarity between same/different class of actions has not been tackled in the
mirror neuron computational models and is vital for the correct classification.

All of the discussed models employ a metric to calculate the similarity between the
observed or generated (learned representation) of the action. While RNNPB operates on a
parameter space, similarity is calculated based on the distance between the calculated and
observed actions. The HAMMER architecture defines similarity based on the completion
of the goal. The MSI model, similar to the MOSAIC architecture, simply calculates instan-
taneous error (or what is called the responsibility signals in the HAMMER model) based on
the difference between the predicated and observed movement. These three architectures,
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namely HAMMER, MSI AND MOSAIC, in contrast to the RNNPB operate on trajectory
space and thus are able to calculate the similarity metrics based on the observed/generated
motion trajectories [197]. In our model, we obtain a classification decision in two steps.
First using the CARS selection of the object and the actual possible action affordances
available at that time step. Secondly, the motion trajectory is parsed in a second step
and a decision is made based on the overall activation of a neuron population representing
the stored memories of the actions, and how far the traveling wave propagates in that
structure.

The setup we proposed within our model allows for online action recognition. Online
recognition can also be achieved in the MSI and HAMMER architectures. It can also be
achieved in the MOSAIC architecture given the possibility of comparison between different
responsibility signals. In terms of verification, our model evaluates the results on real data
of an everyday life scenario. Out of the models reviewed, RNNPB and the HAMMER
approach used real data as opposed to simulated data used by the other models.

Compared to similar work in literature, we presented a novel predictive system within
DFT that models attention-shifts and pairs up with a trajectory parsing system in a second
step. Special focus has been given to how kinematic trajectories are introduced into DFTs
and how comparison could be performed regardless of possible spatiotemporal variations
between the performed and saved representations of the actions.

3.10 Conclusions
Overall, the AU architecture in this work presents, for the first time, a novel predictive
system within DFT that models attention-shifts and pairs up with a trajectory parsing
system in a second step while utilizing an affordance logic system. Compared to the state-of-
the-art, the AU architecture in this work combines both context recognition and trajectory
recognition alongside affordance logic rather than opting for one or the other solely for task
of action understanding. Furthermore, the action recognition systems presented in this
chapter, and their underlying subsystems, are modeled using concepts within DFT rather
than combining different methods as is prevalent in other approaches in the literature.

The action understanding systems proposed in this chapter were realized using DNFs
and are novel within DFT. The first of which, TARS, takes information of movement
kinematics. The CARS on the other hand takes information of movement kinematics,
object locations as well as affordances in the environment. The TARS produced cognitive
decisions that answer questions of what is the action that is being performed, where it is
being performed and towards which object. The success of the two systems stems from
the tight, dynamic coupling between the environment and the decision making units. This
allowed for the production of contextual information necessary for further processing. The
initial results generated using the integration of the two systems provide an important step
towards a robotic cognitive ability of mental state estimation and intention understanding.
Further work should focus on further validating the complete system using the recorded
dataset as well as extending the realized system with action production modules to augment
the long-term memory templates that are currently being used within TARS.
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4 Internal simulation of reaching motion

Within the embodied situated cognition stance, intelligent human behavior can be un-
derstood as the adaptive response an agent produces due to the tight coupling between
the agent’s body, the environment and the agent’s decision making processes [1, 2]. As
the agent’s decision making processes develop an intention, a series of intentional actions
are sequentially produced to fulfill that intention within the current environment. This
mutual interaction between the agent and the environment dynamically influences the
equilibrium state of the agent. Accordingly, these shifts in the equilibrium states (neural
control signals) that are shared between the agent and the environment results in voluntary,
intentional motor actions. This is the basic premise of the equilibrium point hypothesis
(EPH), more generally referred to as threshold control theory (TCT) [92, 198]. The result
of the top-down systems, discussed in the previous chapter, are used to decide on the ob-
ject of most and current interest. In this chapter we present an algorithm that calculates
the emerging trajectories that bring the hand towards this object. Explicitly, this chapter
presents the concept of internal simulation of a reaching motion using TCT as an alter-
native to comparing observed motion against saved memories (which was discussed in the
previous chapter). Assuming that the understanding of reaching movement is explained by
the direct matching hypothesis within MNS, we answer the question of how the internal
simulation of a reaching movement is performed given the initial movement information
and the context of the motion.

Specifically, we model the dynamically generated internal simulation signal with the
reciprocal R command of the end-effector as explained by the threshold control theory [92].
This R command is modeled using a dynamic attractor system and is also validated within
our work on a musculoskeletal arm model as explained by the threshold control theory.
This is in compliance to descriptions within MNS in which the internally simulated motion
should be identical to the one generated when actually performing the action as opposed
to just understanding it. Therefore we model the referent control block that dynamically
generates the signals required to produce a reaching motion in a musculoskeletal arm
model given the objects in the environment and the hand position. This is presented in Fig.
4.1, where we extract the internal simulation block from the overall AUA as illustrated
previously in Fig. 2.1.

Compared to the related work in [136, 199–203], we present for the first time, a novel
biologically inspired referent control formulation using dynamic system theory [1, 2], given
information of the initial direction of the end effector during a reaching movement as
well as the positions of goal/obstacles in the environment. We explicitly use attractor
dynamics to define the equilibrium hand trajectories. The model links the formulation of
the equilibrium trajectory with the environment, allowing elements of obstacle avoidance
and controls the duration of shifts according to task completion.

The rest of this chapter is organized as following. We present the related work and
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Figure 4.1: Reaching motion simulation modules and their connections.

highlight our contribution with regards to it in section 4.1. Next, we present our con-
tribution in a novel biologically inspired referent attractor dynamics system to model the
dynamic equilibrium trajectory as explained within referent control and TCT and highlight
how obstacle avoidance can be achieved in the same formulation as simple point-to-point
movements. This is presented in section 4.2. We validate this equilibrium trajectory formu-
lation using a musculoskeletal system simulation and present the results of the simulation
in section 4.3. Finally, we give a discussion in section 4.4 and present the conclusions in
section 4.5.

4.1 Related work
Within TCT, the role of the central nervous system (CNS) is not to specify motor com-
mands such as trajectories, forces, stiffness, velocity etc. but it is rather to define a central
command, consisting of the referent configuration that influences ranges in which neuro-
muscular elements are active. The referent configuration is generally composed of the
threshold position R and referent coactivation command C. The threshold position R is
defined in a field of possible spatial configurations within a frame of reference RF . There
exists many frames of reference at different levels of abstraction depending on the desired
action in the environment e.g. whole body movements are defined under the referent body
configuration Rb, hand grasping action are defined under referent hand aperture Rh, etc.
For example, the referent arm configuration Ra is the origin of a personal FR that con-
sists of all possible arm configurations Qa in the immediate environment. Ultimately it
is the difference between the actual arm configuration Qa and the reference arm configu-
ration Ra within this FR that leads to shifts in the referent arm location, which in turn
decreases the threshold lengths λ of muscles. This generates activity and forces leading
to a reaching action in the environment. Within this setting, the referent C command
contributes in defining a range around the threshold position Ra in which the antagonis-
tic group of muscles are active. The description given above is the basic premise of the
minimization rule that explains how the redundancy problem is addressed within TCT.
Explicitly that there is no redundancy in choosing the specific muscles required to perform
any specific action, the solution to which e.g. muscles are required and level of activation
emerges automatically as a function of the current RF , Q, and the control of referent
variables R, C and λ [204].
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4 Internal simulation of reaching motion

The idea of referent control is generalized over many actions by defining a referent body
configuration. Within this work we focus on intentional arm reaching movements in the
transverse plane. Explicitly, we focus on the relation between referent, equilibrium and
hand trajectories. We briefly explain the difference in the following. During an intentional
reaching action an equilibrium point (EP) trajectory is generated. The EP characterizes
the set of joint angles and load torques required to produce this reaching motion. The grad-
ual shift of the equilibrium position of the hand (EP component) generates an equilibrium
trajectory during this motion. The equilibrium trajectory itself, just like the actual posi-
tion of the hand, is not predetermined. They are emergent properties of referent control,
and arise due to the dynamic tendency of the arm to follow the equilibrium trajectories
that emerge due to the interaction of the body with the environment. There has been
many attempts to formalize theses equilibrium trajectories leading to a debate on how
complex or simple they might be. It has been shown within TCT that the equilibrium tra-
jectories are emergent properties of the dynamic reaching action, that are not isochronous
with the actual hand movement (taking 1/3 of the time) and can range from short-last
monotonic movements in simple point-to-point movements to complex non-monotonic in
more complex reaching movements such in the case of e.g. obstacle avoidance [204].

Previous work focusing on modeling equilibrium trajectories can be found in [136, 199–
203]. Generally it was shown that fast point-to-point reaching motions result from fast,
monotonic simple trajectories. Flash calculated static stiffness values and simulated reach-
ing motions using an arm model in [199]. The form of the hand equilibrium trajectory pro-
duced by the neuromuscular system was assumed to follow a simple linear model. Results
showed that this formulation predicted hand trajectories that were similar in qualitative
features and quantitive kinematic characteristics.

Dynamic mechanisms were incorporated in the work of Flanagan et.al. in [202] to
generate the equilibrium trajectories. This was evaluated by comparing the simulated and
actual trajectories of movement. The results suggested different rates of shifts for the R
and C command that can be utilized in different portions of the work space.

A monotonic ramp-shaped model for the formulation of the R command was used in
[203]. Different movement distances were simulated by modulating the duration of shift
in the equilibrium state. The results showed that both the empirical and model data
were similar and that the neural control process generating such shifts in equilibrium
states preceded the end of the actual movement. Furthermore, neither the timing nor the
amplitude of electromyographic signals are pre-planned, but rather an emergent response
of the central, reflex and mechanical components of the system that emerge dynamically
due to the shift in the equilibrium state.

The timing pattern of the R and C commands were discussed in [136]. Results showed
that the equilibrium shifts indeed terminate ahead of movement completion.

As discussed earlier the idea of threshold position is generalized to many types of actions
an agent might perform to influence his/her immediate environment or as a reaction to
changes in the environment. Taking that into account, the range of threshold positions can
be expanded towards goal-directed movements in this environment. As such, the position
of the hand is to be coupled with the environment such that decisions on manipulating
specific objects drive the action of e.g. reaching. To that end, we utilize a meaningful
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decision making system by using formulations within Dynamic Field Theory (DFT) that
integrates seamlessly to perform selection tasks on objects in the environment. The output
of this decision framework defines the set points (attractors and repellers) that are required
by the attractor dynamic system which models the equilibrium trajectory that guides the
neuromuscular system towards the reaching action and away from obstacles.

Related work in which DFT was connected to neuronal dynamics for goal-directed
movement generation was proposed in [205]. The model integrates timing patterns within
DFT for motion generation, as well as feedback of the sensed joining configuration. The
movement predicted by the model was compared against experimental data collected from
participants. Results indicate the presence of self-motion that does not move the end
effector, and is linked to the curvature of the resulting end-effector movement.

Compared to the related work discussed in this section, we present for the first time, a
novel biologically inspired referent control formulation using dynamic system theory [1, 2],
given information of the initial direction of the end effector during a reaching movement
as well as the positions of goal/obstacles in the environment. The model links explicitly
the formulation for the equilibrium trajectory with the environment, allowing elements
of obstacle avoidance and controls the duration of shifts according to task completion.
We explicitly use attractor dynamics to define the equilibrium hand trajectories. The
motivation behind such an approach is to define an attractor point of the dynamic system
as the state the system is trying to reach, and allow the actual hand trajectory to emerge
dynamically as the solution of this dynamic formulation.

4.2 Methods
In this section, the different modules that are used to simulate a reaching motion and
their connections are discussed. The modules are shown in Fig. 4.1. The current location
of the end-effector (hand) (xh, yh) as well as the positions of different objects (xobj, yobj)

(goals/obstacles) in the environment are used as an input to the decision making system.
The decision making system dynamically represents the environment, classifies objects
into obstacles and goals (xo,g, yo.g), and holds these decisions in the working memory. This
process is illustrated in the decision making block and is discussed in section 4.2.1 where
the contextual action recognition system (CARS), presented in section 3.4, is used as the
decision making system for the internal simulation of the reaching motion. Following the
information of the locations of the end-effector/goal/obstacles from the decision making
block, an equilibrium trajectory emerges dynamically due to the process of referent control.
The equilibrium trajectory guides the motor control units driving a musculoskeletal arm
model to the final desired configuration as explained by TCT. This process occurs in
the referent control block as shown in Fig. 4.1. The equilibrium trajectory (Rx, Ry) that
emerges from referent control is modeled using attractor dynamics and is discussed in
section 4.2.2. The reference trajectory is forwarded to the musculoskeletal system block for
motion generation. The musculoskeletal arm model that is used to validate the dynamic
equilibrium trajectory is discussed in section 4.2.3.

As discussed previously, the referent control command is a dynamically evolving com-
mand. We model it using the dynamic approach to behavior generation which is based
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on dynamic system theory and neural components from neural fields [206]. This approach
on which we base our work upon utilizes attractor dynamics for behavior generation origi-
nally developed for planning and controlling autonomous robots [206–208] and robotic arm
control [209].

The dynamic approach to behavior generation is based on three concepts. Firstly, behav-
ior is described and constrained by defining a set of task variables (e.g. heading direction
of reaching movement, velocity of reaching etc.) called behavioral variables. Secondly, be-
haviors are generated dynamically as solutions of dynamical systems where the set points
(attractors/ repellers) represent desired/undesired behaviors along the dimensions of the
behavioral dimensions. This concept is referred to as behavioural dynamics and motivates
our work in referent control presented in section 4.2.2. Thirdly, the information about
the values of the attractors and repellers are neurally represented by the use of neural
field dynamics. This concept is referred to as neural representation of information and is
discussed in detail in the next section.

4.2.1 Decision making using dynamic field theory
Decision making in the context of reaching motion is the process of selecting or withholding
an action based on its importance, relevance and effect, given a specific context within
the environment the agent is embedded in. The contextual action recognition system,
presented in section 3.4, is used for the purpose of decision making within the task of
dynamic generation of reaching motions, where stable states of heading direction is to
be maintained based on the hand position and environmental information of obstacle/goal
locations. The CARS gives an output of the locations of objects of interest required for the
calculation of the emerging trajectories. Additionally, sensory information of the locations
of obstacle/goal should be maintained in the working-memory for further processing into
attractor/repeller states such that the sensory-motor interface is adequately defined.

4.2.2 Referent control using attractor dynamics
As discussed in the related work, section 4.1, referent control dynamically shifts the referent
hand position Rh to produce a reaching motion. We model the referent hand position Rh

using the dynamic approach to behavior generation which is based on dynamic system
theory and neural components from neural fields [206–208].

In the following we describe the referent hand position Rh model for reaching motions
based on the attractor dynamics approach. Furthermore, we discuss our choices for the
behavioral variables as well as the dynamical system that drives the arm towards desired
objects and away from obstacles.

Dynamic attractor system

The basic premise within this work is to design a referent hand dynamical system around
the hand position that directs the arm movement towards the goal objects while taking
the whole arm configuration into account. The dynamic referent shifts resulting from the
behaviour of the hand acts as the equilibrium trajectory that is fed into the motor control
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Figure 4.2: (a) The setup of the attractor dynamics system. The task of referent hand dy-
namical system (xh, yh) is to drive the arm to the goal position at (xg, yg) with
a trajectory which is usually characterized by a slightly s-curve. It should also be
able to avoid any possible obstacle e.g. at position (xo, yo) while taking the whole
arm into account. (b) The behavioral variables of the referent hand location.

elements of the musculoskeletal system as described by TCT to be realised by the arm
model.

A simple reaching motion is shown in Fig. 4.2(a). It is composed of rotations at both
of the shoulder and the elbow to guide the hand location from the initial position (xh, yh)

to the goal position (xg, yg). A point to point reaching motion is characterised by a
slightly curved line directed towards the goal. This is illustrated by the grey dotted line
in Fig. 4.2(a). In the presence of an obstacle, as shown in Fig. 4.2(a) at position (xo, yo),
the arm is expected to move towards the goal and avoid collision with the end effector and
the arm. The referent hand dynamical system should account for the whole arm such as
to avoid collision with the objects as reaching is performed. A challenging setup of hand,
goal and obstacle positions is shown in Fig. 4.2(b), in which the obstacle is under the
straight line that connects the hand and the goal position. In the case that the width of
the referent hand allows a straight line plan, the forearm would collide with the obstacle
if the complete arm configuration is not taken into account.

A successful referent controller therefore requires fulfillment of several criteria. Firstly,
it should allow for straight line trajectories, while dynamically avoiding obstacles as they
come into view as well as adapting to changes in goal position. Secondly, it does not allow
for a collision to occur with the rest of the arm. Additionally, and as observed neuronally,
the final equilibrium trajectory should spatially close to the actual trajectory. However,
it would not be isochronous. That is the equilibrium trajectory would lead the actual
trajectory. In the case of simple reaching motion the equilibrium trajectory would be three
times faster than the actual trajectory and reaches the goal location as the tangential
velocity of the hand reaches its peak velocity [198].

In order to achieve these criteria we designed a dynamical system that would success-
fully plan the referent shifts. The first design parameter, the behavioral variable, describes
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the evolution of the dynamic reaching motion behavior. In order to be compliant with a
physical hand and human reaching motions, behavioral variables are chosen to be contin-
uous and observable by a sensor. Motivated by findings in behavioral and neural studies,
in which reaching motions are found to be specified with both a direction and amplitude,
we pick our behavioral variable to be the heading direction ϕ and the movement velocity
v. [210]. The behavioral variable ϕ is shown in Fig. 4.2(b). The desired values for ϕ are
towards ϕg and away from ϕo. The amplitude of the movement v (referent speed of hand
motion) and the heading angle ϕ (referent direction of hand motion) are related to the Rh

command given
Ṙh,x = v cos(ϕ)
Ṙh,y = v sin(ϕ).

(4.1)

The above formulation transforms the referent direction and speed of hand motion into
the x, y direction. This was chosen as we focus in this work on two dimensional reaching
motions in the transverse plane. This can be generalized to three dimensional reaching
motions by adopting a spherical coordinate system (r, θ, ψ) as described in neural studies
[211] and by accounting for gravity in the formulation of the referent command as discussed
in [204].

Heading angle behavior variable attractor dynamics

The behavioral variable evolves based on solutions of dynamic equations whose steady
points are the set of desired/undesired states we would design the system to achieve/avoid.
This is mathematically equivalent to the equation:

ϕ̇ =
i∑
1

ftar,i(ϕ(t)) +

j∑
1

fobs,j(ϕ(t)) +
k∑
1

farm,k(ϕ(t)) + fstoc (4.2)

where multiple elementary behaviors are integrated. Namely goal heading, obstacle avoid-
ance and arm awareness in the ftar, fobs, farm respectively. Stochastic noise is also inte-
grated in the model by way of fstoc. The indices i, j, k indicate the possibility of having
more than one target, obstacle and arm location, that are integrated into the behavior
generation by way of burification theory [212].

The goal heading function ftar,i is designed to be a nonlinear dynamical system with a
fixed point at the desired goal location ϕg,i, and is mathematically defined in (??), it is also
illustrated in Fig. 4.3(a). The nonlinear function ftar is a product of a Gaussian function
and a linear function. The slope m at the fixed point ϕg is set to be negative such that
an asymptotically stable state is achieved. This would guarantee that when the system is
close to the attractor and would always sit in the basin of attraction, such that all initial
states of the behavioral variable would converge to the attractor value and tracks it as it
changes dynamically

The obstacle avoidance function on the other hand is defined in (4.3), and is illustrated
in Fig. 4.3(b). It is a product of three terms. The first term is similar to the attractor
function in that it is a positive slope linear function that is limited in range by a Gaussian
function. The slope is determined by a factor 1/∆ψ that represents the angular size
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Figure 4.3: (a) A nonlinear attractor system that is a product of a linear term (dotted black
line) and a gaussian term (dashed black line). The linear term is characterized
with a negative slope m and an a zero solution at the desired behavioral variable
(in this example π, where the system would be heading towards a goal). The
width of the Gaussian defines the area of effect. (b) A nonlinear repeller system
that has a positive slope, as apposed of the negative slope of the attractor. The
dynamic system drives the system away from the fixed point π, which is in this
case an undesirable behavior (heading towards an obstacle).

(angular range that the obstacle is active as a repelling force) of the obstacle. The spatial
term controls the contribution of the overall repulsion strength as function of the sensed
obstacle distance dobs. The exponential function’s parameters Robs, Rhand are the radius of
the obstacle and radius of the hand, respectively. While d0 is a form factor that shapes the
exponential function. The angular range term on the other hand determines the strength
of repulsion based on the visibility of the obstacle. It is a sigmoidal function with model
parameters h1 and δ and its function is to control overall repulsion strength to be nonzero
when the hand is facing the obstacle. Otherwise, the repulsion strength would be zero

fobs(ϕ) =

repeller term︷ ︸︸ ︷
(ϕ− ψobs)

∆ψ
exp

(
−1− |ϕ− ψobs|

∆ψ

) spatial term︷ ︸︸ ︷
exp

(
−dobs −Robs −Rhand

d0

)
1

2

(
tanh

(
h1
(
cos(ϕ− ϕobs)− cos(2∆ψ + δ)

))
+ 1

)
︸ ︷︷ ︸

angular range term

.

(4.3)

In order to take the rest of the forearm into account, we design a function farm, defined
in function (4.4), that contributes to the heading angle of the hand ϕ̇. We therefore model
several control points that would contribute to the attractor and repeller force observed
at the hand. For this task we utilize forward kinematics calculation, as defined in (4.5),
to obtain the position of each point k along the upper arm given the joint angles. Each
position (xk, yk) is calculated using the factor ηk that takes values [0, 1] in increments of
1/k. Inverse kinematics in a first step allows the calculation of the joint angles θ1, θ2 given
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the current hand position.

farm,k(ϕ(t)) =

attraction force︷ ︸︸ ︷
1√
2πσ2

exp
(
−(ϕ− ϕg,k)

2

2σ2

)
m(ϕ− ϕg,k)+

(ϕ− ψobs,k)

∆ψ
exp

(
−1− |ϕ− ψobs,k|

∆ψ

)
exp

(
−dobs,k −Robs −Rhand

d0

)
︸ ︷︷ ︸

repulsion force

(4.4)

xk = l1 cos(θ1) + ηkl2 cos(θ1 + θ2)

yk = l1 sin(θ1) + ηkl2 sin(θ1 + θ2)
(4.5)

where ψobs,k represents the dynamic angle between the k-th referent position on the fore-
arm and the obstacle location. Similarly, ϕg,k is the dynamically changing angle between
the k-th referent position on the forearm and the goal location. The term dobs,k is the
distance between the obstacle and the k-th referent position on the forearm, which is also
a dynamic variable that varies with time. Then for each arm point k the correspondent
farm,k(ϕ(t)) is calculated and the contribution is added to the hand’s heading angle. The
main contribution of farm,k(ϕ(t)) is performing the task of obstacle avoidance. The angular
range that was used in the hand’s obstacle avoidance was disregarded for farm,k(ϕ(t)) since
the lower arm movement is dependent on the hand itself.

In each time step then, the new position of the hand is calculated through dead reckoning
as shown in (4.1). The virtual positions (xk, yk) on the lower arm are calculated through
inverse/forward kinematics. It is important to note that the behavioral variables and
indeed the parameters continuously change in time as the dynamical system evolves. The
obstacle and goal direction are dependent on the current position and is calculated such
that

ϕg(t) = arctan
(
xh(t)− xg(t)

yh(t)− yg(t)

)
, (4.6)

and
ϕo(t) = arctan

(
xh(t)− xo(t)

yh(t)− yo(t)

)
. (4.7)

The final term of (4.2), fstoc, is a stochastic force modeled as Gaussian white noise, that
aims to push the system out of a repeller stable state in a limited amount of time.

Velocity behavior variable attractor dynamics

There are two behavior variables of attractor dynamics, one is heading direction ϕ, the
other one is movement speed v. The goal is, to have a smooth and fast movement of the
effector to the target, which resembles how a human would reach an object with the hand.
The speed of movement should be restricted such that the moving attractors/repeller are
capable to be tracked in time. This is important as we expect that the system is near
an attractor/repeller at all times to guarantee stability. It was shown that the relation
between maximum rate of shift of the attractors/repellers is ψ̇max = v/d where d is the
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distance to the attractor/repeller we want to track [213]. By tuning the parameter ψ̇max

in (4.8) successful tracking can be guaranteed as discussed in [213]

Vi = diψ̇max. (4.8)

A dynamical system can then be erected over the behavioral variable v as follows

v̇ =

velocity attractor︷ ︸︸ ︷
[−cobs(v − Vobs)− ctar(v − Vtar)]

spatial term︷ ︸︸ ︷[
2Vmax

1 + exp−αdg
,−1

]
(4.9)

where dg is the sensed distance to the goal and α is a shaping parameter for the sigmoidal
spatial term. The estimated parameters Vobs and Vtar describe the maximum passing speed
of the objects to the effector, regarding the current distance between them, and a fixed
maximum angle velocity ψ̇max as shown in (4.8). The parameter Vmax is defined as the
maximum possible speed of the hand during a reaching motion. The factors cobs and ctar
are adjusted in a way that, if the effector is close to an obstacle, cobs dominates, and vice
versa. The factors cobs, ctar are defined in the following equations

cobs = cv,obs · (0.5 + arctan[c · U(ϕ)]/π), (4.10)

ctar = cv,tar · (0.5− arctan[c · U(ϕ)]/π), (4.11)

where the potential function U(ϕ) is defined to be

U(ϕ) = Σn
i (λiσ

2
i exp[−(ϕ− ψobs,i)

2/2σ2
i ]− λiσ

2
i /
√
e), (4.12)

such that U(ϕ) takes positive values, if the heading direction leads to strong repeller
presence. Otherwise, if the repellers influence is not strong, it takes negative values. It is
important to set up the relaxation rate cv,obs and cv,tar as well as the parameter λtar and
λobs in the right hierarchy to ensure a compatible behavior with the dynamic of heading
direction

λtar ≪ cv,tar, λobs ≪ cv,obs, λtar ≪ λobs. (4.13)

The result of the velocity model is a steady and fast movement to the target. It is
compatible with the dynamics of heading direction and also converges to the targets.

4.2.3 The musculoskeletal arm model
In the following we give a description of the musculoskeletal arm model that is used to
validate the equilibrium trajectory that emerges from the referent control as described in
the previous section. In section 4.2.3 we discuss the two dimensional planar arm model that
is used, in terms of muscles, kinematics and dynamics and how it is connected to control
signals for force production. Section 4.2.3 discusses muscle torque production around the
elbow and shoulder joints that arise due to the referent control signals as described by
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Figure 4.4: (a) The arm model with two kinematic degrees of freedom in the horizontal plane.
The model includes six muscles, two single joint muscles around the elbow and the
shoulder and two double joint muscles. (b) Kinematic and dynamic parameters of
the human arm model.

TCT. Finally, the referent control signals are discussed in 4.2.3.

Arm model

The arm model used in this work is adapted from a model previously presented in [202, 214,
215]. The arm is modeled with two kinematic degrees of freedom in the horizontal plane.
It can rotate around the shoulder and elbow joint. The arm is actuated with six muscle
groups. The shoulder has single joint extensors and flexors, these are the pectoralis and
deltoids respectively. The elbow has both single and double joint extensors and flexors.
The biceps long head and triceps lateral head are the single joint extensors and flexors
respectively. While the biceps short head and triceps long head are the double-joint flexors
and extensors respectively. The muscles are shown in figure 4.4(a).

Muscle insertions were calculated anatomically [216, 217]. The geometrical and inertial
constants needed for the equation of motion are shown in figure 4.4(b).

The equations of motion for the arm model in the horizontal plane, that calculates the
torques around the shoulder and the elbow τ =

(
τ1
τ2

)
given the angles θ̈ =

(
θ̈1
θ̈2

)
are:

τ1 = M11θ̈1 +M12θ̈2 + C1

τ2 = M21θ̈1 +M22θ̈2 + C2,
(4.14)

where the inertial terms M =
(
M11 M12
M21 M22

)
and the Coriolis-centrifugal terms C =

(
C1
C2

)
are:

M11 = I1 + I2 +m1(l1/2)
2 +m2

(
l21 + (l2/2)

2 + 2l1(l2/2) cos θ2
)

M12 = M21 = I2 +m2

(
(l2/2)

2 + l1(l2/2) cos θ2
)

M22 = I2 +m2(l2/2)
2,

(4.15)
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C1 = −m2l1θ̇2
2
(l2/2) sin θ2 − 2m2l1θ̇1θ̇2(l2/2) sin θ2

C2 = m2l1θ̇1
2
(l2/2) sin θ2.

(4.16)

The inverse dynamics equations can be transformed and solved for θ̈ =
(
θ̈1
θ̈2

)
to give

θ̈ =
(
M−1

)
(τ − C) . (4.17)

The angular accelerations calculated in (4.17) are double integrated to calculate the
joint angles required to calculate current muscle lengths and moment arms as shown in
the biomechanical arm model and the moment arm and muscle length calculation blocks
in Fig. 4.5(a).

The muscle lengths (in [mm]) are calculated based on calculations in [218] and are based
on the following equation:

ML = cst+ t6θ
6
2 + t5θ

5
2 + · · ·+ t1θ2 + u1θ1, (4.18)

given joint angles θ1, θ2. It is worth noting that there is no distinction between the lengths
of the Biceps short head and the Biceps long head, they are considered to have the same
length. The same applies to the Triceps lateral head and long head. Similarly, moment
arms (in [mm]) of the different muscles are calculated based on calculations in [218] and
are based on the following equation:

MA = c5θ
5
2 + c4θ

4
2 + · · ·+ c1θ2 + c0 + d0, (4.19)

given elbow angle θ2.
The torques, which are the inputs in (4.17), are calculated given the moment arms and

the forces generated by each muscle as shown in Fig. 4.5(b).
The muscle model shown in Fig. 4.5(b) generates force depending on the muscle length

and the rate at which the muscle is changing its length. Moreover, the graded development
of force over time and the passive elastic stiffness of the muscle are also modeled. This is
discussed in section 4.2.3 in detail.

Muscle model

In the following we describe the muscle model used in our work. For a full description
we refer the reader to the following sources [133, 219, 220]. The muscle model is shown
in figure 4.5(b). The first block is the force generation mechanism. To generate forces
each muscle receives an activation A, that according to the TCT, depends on the current
muscle length l and its derivative l̇, and the threshold length λ which is centrally defined
for motoneuron recruitment. The muscle activation is then defined by

A = [l(t− d)− λ(t− d) + µl̇(t− d) + ρr + ϵ(t)]+ (4.20)

where
[x]+ = max[0, x] (4.21)
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Figure 4.5: (a) The musculoskeletal simulation model building blocks. The simulation model
is composed of an inverse kinematics block that takes spatial reference commands
Rx,y and transfers them into joint angle reference commands Rθ1,2 . The mus-
cle geometry calculates the λ commands for each muscle given the desired joint
angle. The muscle system block generates the forces in each muscle based on
the difference between current and desired muscle length based on the TCT. The
biomechanical arm model calculates the joint angles based on the torques around
each joint. Finally, the joints angles are used for visualization as well as calculat-
ing the current moment arms and muscle lengths requires for the next simulation
time step. (b) The muscle model that is used to generate force for each muscle
given current and desired muscle length and moment arm. It is composed of four
main blocks. The force generating mechanism produces a moment given desired
and current muscle length and current muscle velocity. The graded force devel-
opment models the filter-like properties of a muscle due to calcium kinetics and
the force-velocity relationship is modeled in the following block. Passive stiffness
is a parallel block that adds to the force. The combined force is transformed into
torques around each joints.
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The d parameter models reflex delays, and was determined in [133] by estimating delays
observed in unloading responses of human arm muscles and is the same for all muscles
[221]. The µ parameter is a damping factor due to proprioceptive feedback, and models
the dependency of the muscle’s threshold length on the velocity [214]. The parameter ρr
models the shift in the threshold length resulting from reflex inputs e.g. inter-muscular
interaction and cutaneous stimuli. The temporal changes in the threshold resulting from
intrinsic properties of motoneurons are modeled in the ϵ(t) parameter [92].

Muscle forces f result from changes in A, in an exponential fashion approximated in

f = ρ[exp(cA)− 1], (4.22)

where ρ is a magnitude parameter specified for each muscle.
The ρ parameter is a specific parameter for each muscle, relating to its force-generating

capability. It was calculated in relation to the cross-sectional area of each muscle, in which
the area was scaled by 1 N/cm2. The form parameter c on the other hand, models the MN
recruitment gradient and is fixed for all muscles. This parameter was estimated empirically
using regression methods in [220].

The instantaneous muscle force M is then obtained in a second step by processing M̃
with a second-order, critically damped, lowpass filter that models the graded development
of muscle force due to calcium kinetics as described in the following:

M = τ 2 ¨̃M + 2τ ˙̃M + M̃. (4.23)

The velocity dependency is illustrated in the force-velocity relationship block in fig-
ure 4.4(b). The maximal amount of force a muscle can deliver decreases or increases
depending on whether it is concentrically or eccentrically contracting (shortening or elon-
gating, respectively). This is in accordance with the sliding filament theory [222]. The re-
lationship is usually captured in a sigmoidal function that saturates at maximal shortening
and elongation. The sigmoid function was estimated from empirical data from cat soleus
muscle in which the motor nerve was stimulated at different levels. The resulting function
is multiplied with M to calculate the active muscle force as shown in equation (4.24).

The final muscle forces also includes a linear term that models passive force in absence
of neural input, and as a simplification is linearly dependent on the difference between
the current muscle length l, and the muscle resting length r. Muscle resting lengths were
calculated given the initial arm configuration. While the passive stiffness term k was
calculated by the force-length relations shown in [223], and are linearly varying with the
cross-sectional area of the muscle [133].

The resulting force

F =M
[
f1 + f2 · atan(f3 + f4l̇)

]
+ k(l − r) (4.24)

is then dependent on active and passive forces. The shape of the sigmoidal function that
represent the active force is dependent on f1 to f4. Forces f are then produced via the
muscle model given an input of threshold muscle lengths λ, which are generated by means
of referent control as discussed in the next section.
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Referent control

The neural control signals that are required for the force generation are designed as de-
scribed in the threshold control theory (TCT). Within TCT, neural control signals set the
muscle threshold lengths λ for α motoneuron recruitment. A force is then generated as the
λ values change compared to the current muscle length and the rate at which the muscle
is changing in length. The basic premise in TCT is that by setting the λ values for all
muscles, we achieve a static configuration for the arm. Therefore, by dynamically changing
the λ values, a smooth movement from one point to another can be generated. The λr
value is calculated given higher level Rθ commands that set the equilibrium positions for
the joint angles. The Rθ1,2 can be also computed using inverse kinematic equations from
higher level Rx,y that represents the spatial equilibrium positions in Cartesian coordinates.
The Rx,y command is calculated as discussed in section 4.2.2.

Shifts in the threshold position R are produced due to reciprocal control on motorneu-
rons of opposing muscle groups, and produce angular threshold shifts that activate the
muscle groups in the same direction as the common threshold angle. In a complimentary
fashion, coactivation commands C shift the actuation thresholds of the muscle groups
around a specific joint in the opposite direction of the common threshold angle. Therefore
the C command defines an area of activation around the R command and moves together
with the R command. The C command relates to the task demands of the movement and
can be increased or decreased by the CNS [198]. The λr and λc are superimposed to form
the final λ command as follows:

λ = λr + λc − l. (4.25)

Both R and C commands have been studied in the context of fast single-joint movements
in [224] and have different contributions to reaching motion. It is the difference between
the equilibrium joint position defined by Rθ and the actual position Qθ that generates
muscle activation and torques for movement generation. The C command on the other
hand, provides stability by increasing the stiffness and the damping during the reaching
movements and is the main factor behind the acceleration and deceleration towards the
final goal position [198, 201].

In our work we use the end-point (hand) stiffness to calculate the C command as it has
been shown that the function of the C command is to increase stability through controlling
stiffness [225]. Our motivation here is that end-point stiffness relates to the task of the
movement and the agent might regulate this depending on the specific task requirements
e.g. accuracy as discussed in [226]. The stiffness at the end-point is defined as the change
in force with respect to change in position:

Kx =
df
dx =

[
dfx
dx

dfx
dy

dfy
dx

dfy
dy

]
=

[
k11 k12
k21 k22

]
. (4.26)

To transfer the end-point stiffness to joint stiffness (stiffness in the joint angles), we need
to transform forces f in the Cartesian coordinate system x to torques τ defined in angular
coordinate system q. This is done using the Jacobian that describes the relationship
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between x and θ as follows:
J(θ) =

dx
dθ
, (4.27)

which can be used to transform forces in Cartesian coordinate system into torques in the
angular coordinate system accordingly using the principle of virtual work as follows:

τ = J(θ)f. (4.28)

The end-point location as a function of joint angles is defined as follows

x =

[
x

y

]
=

[
l1 cos(θ1) + l2 cos(θ1 + θ2)

l1 sin(θ1) + l2 sin(θ1 + θ2)

]
. (4.29)

The derivative of the the end-point position with respect to joint angles become:

J(θ) =
dx
dθ

=

[
−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
. (4.30)

Joint stiffness can then be defined as:

Kj =
dτ

dθ
=
d(J(θ)T )f)

dθ
=
d(J(θ)T )

dθ
f + J(θ)T

df
dθ
, (4.31)

which can be approximated given small arm displacements, and expanding df/dθ:

Kj ≈ J(θ)T
df

dθ
≈ J(θ)T

df

dx

dx

dθ
≈ J(θ)TKxJ(θ). (4.32)

We obtain equilibrium torques by multiplying Kj with the angular displacements in
the joints. We transform the equilibrium torques into λc by applying the following set of
simplified equations based on (28-33):

First, the equilibrium torque is transferred into force by dividing by the lever arm
calculated in (4.19) using

F = τ
d
. (4.33)

Then, the resulting instantaneous muscle force is calculated by solving for M using (4.24)
to obtain

M = F−k(l−r)
f1+f2 tan(f3) . (4.34)

The activation of the muscle is calculated by solving for A using (4.20), that results in the
simplification:

A =
ln(M

ρ
+1)

c
. (4.35)

Finally, λc is calculated given the current muscle length in

λc = l − A. (4.36)

87



4 Internal simulation of reaching motion

4.3 Results
In the following we present results obtained from our simulation model. This combines
high level goal-setting with the attractor dynamics equilibrium trajectory. The resulting
equilibrium trajectory provides the reference commands to the TCT model to actuate the
musculoskeletal arm model.

4.3.1 Experimental-parameters, setup and human-recordings
The model was implemented on MATLAB/Simulink. In terms of the parameter values
that are used for the generation of the results in this section, the geometrical and inertial
constants needed for the equation of motion (4.14) are given in Table 4.1. The coefficients
required to calculate muscle lengths in (4.18) are given in Table 4.2. Additionally, the
coefficients used to calculate moment arms in (4.19) are given in Table 4.3. The values of
passive stiffness that are used in (4.24) are given in Table 4.4. The value of the reflex delay
d as well as the form parameter c and the damping factor µ that are used in (4.20) are
given in Table 4.5. The magnitude parameters ρ for each muscle that is used in (4.22) are
given in Table 4.4. The values of the passive stiffness term k for each muscle that is used
in (4.24) are also given in Table 4.4. The values of f1 − f4 that are used in (4.24) and are
given in Table 4.5. The choice of the τ value in (4.23) is also given in Table 4.5 and leads
to a critically damped filter with an asymptotic response to a step function in 90 ms [227],
which is similar to empirical data observed in human muscles [228] as discussed in [220].
The attractor dynamics parameters used for the simulations, as discussed in section 4.2.2,
are given in Table 4.6. The same parameters are used throughout the different simulations
in this section.

Table 4.1: Geometrical and inertial constants of the arm model

Arm Mass Length Moment of
segment /(kg) /(m) inertia /(kg m2)

Upper arm 2.1 0.34 0.015

Lower arm 1.65 0.46 0.022

In terms of the setup, we had invited twenty participants to record ten simple, untrained,
reaching trajectories towards a target located 30cm in the +y direction. We used an
Xsens MVN full-body inertial motion capture (MoCap) suit [189]. The average trajectory
(and one unit variance around the mean) of these 200 trajectories, were projected on
the transverse plane, and are shown in Fig. 4.6(a). The kinematic variables, namely the
displacements in the x, y axis and the tangential velocity, are shown in Fig. 4.6(b-d),
respectively. A unit variance around the mean is shown using the shaded regions Fig. 4.6(b-
d). The average trajectory is slightly curved towards the goal position, and with a unimodal
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Table 4.2: Coefficients θ1 and u1 of equation (4.18) for muscle lengths.

Muscle group
Parameter Pectoralis Deltoids Biceps Triceps

cst/(mm) 155.19 157.64 378.06 260.05

t6 ∗ 1011 - - - 6.1385

t5 ∗ 108 - - - −2.3174

t4 ∗ 107 - - 5.2156 33.321

t3 ∗ 105 - - −3.1498 −22.491

t2 ∗ 103 - - −7.9101 5.2856

t1 ∗ 102 - - −25.587 40.644

θ1 ∗ 101 −8.8663 13.743 −5.0981 4.4331

Table 4.3: Coefficients ci, c0, and d0 of equation (4.19) for moment arms.

Muscle group
Biceps Biceps Triceps Triceps

Parameter Pectoralis Deltoids short head long head lateral head long head

c5 ∗ 109 - - - - −3.5171 -
c4 ∗ 107 - - - - 13.277 -
c3 ∗ 105 - - - −2.8883 −19.092 -
c2 ∗ 103 - - - 1.8047 12.886 -
c1 ∗ 101 - - - 4.5322 −3.0284 -
c0 - - - 14.660 −23.287 -
d0 50.80 −78.74 29.21 - - −25.40

Table 4.4: Muscle force-generating parameters

Muscle group
Biceps Biceps Triceps Triceps

Parameter Pectoralis Deltoids short head long head lateral head long head

ρ/(N/cm2) 14.9 14.9 2.1 11 12.1 6.7

k/(N/m) 258.5 258.5 36.5 190.9 209.9 116.3

Table 4.5: Force generation model variables

d/(ms) µ/(s) c/(mm−1) τ/(ms) f1/(s/m) f2/(s/m) f3/(s/m) f4/(s/m)

10 0.06 0.112 15 0.82 0.50 0.43 58
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Table 4.6: Simulation model variables

xi/(m) yi/(m) xf/(m) yf/(m) xo,1/(m) yo,1/(m) xo,2/(m) yo,2/(m) k

0.15 0 0.15 0.28 0.15 0.15 0.15 0.5 100

m σa Ga ϕ0/(◦) ϕ1/(◦) rh/(m) ro/(m) marm δ

100 1.5 1.5 0 −45 0.025 0.05 75 0.1

d0 h1 vmax ψmax c cv,obs cv,tar λ σ

0.05 10 2 0.5 1 0.001 5 0.01 1

velocity profile. The average reaching path is seen to be terminating slightly away from the
goal position with a displacement of 10cm in the−x direction. This could be for three main
reasons. Firstly, the average reaching path is across all trials. Secondly, the participants
were untrained. Thirdly, the Xsens MoCap suit was not calibrated with respect to the
environment, as such a calibration is not possible. We hypothesize that the third option
is the most probable as the unit variance around the mean is rather broad towards the
end of the movement, and towards one side of the target, which gives a strong indication
of a systematic error and a system inherent problem. Nevertheless, the main kinematic
features of a reaching motion (the smooth trajectory and the unimodal velocity profile),
which set the standards for the comparison against the simulated trajectories, are rather
clear in Fig. 4.6.

4.3.2 Simulation of a reaching motion
The result of simulating a similar forward reaching trajectory is shown in Fig. 4.7. The
forward reaching trajectory starts from the initial position (0.15, 0) and terminates at the
goal position (0.15, 0.28) as given in Table 4.6 where the rest of the parameters used for
the simulation is tabulated. The choice of this specific starting location is calculated
such that the initial θ1 = 45◦ and θ2 = 90◦. The reference trajectory resulting from the
attractor dynamics equilibrium trajectory is shown as the dotted grey line in Fig. 4.7(a).
As observed in Fig. 4.7(a), it is a straight line in the x− y plane. The simulated dynamics
of the arm, however, show an end-effector trajectory that is curved, initially moving to the
right until it finally converges towards the target at the end. For comparison, the resulting
solution from the minimum jerk optimization is also shown in Fig. 4.7(a) in the dashed
black line. The minimum jerk solution is a straight line directly towards the goal position.
The displacement in the x direction of the reference trajectory is shown using the dotted
grey line in Fig. 4.7(b), while the end-effector displacement in the x direction is shown
using the black solid curve. The minimum jerk solution is also shown in Fig. 4.7(b) using
the dashed black line. Compared to the resulting simulation of the attractor dynamics,
the minimum jerk trajectory tracks the desired x position very well with no deviations.
Similarly, the displacement in the y direction of the reference trajectory (dotted grey), end-
effector trajectory (solid black) and the resulting minimum jerk trajectory (dashed black)
are shown in Fig. 4.7(c). Finally the tangential velocity of the end-effector position is shown
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Figure 4.6: (a) The average reaching path of 20 participants performing 10 trials each, with
a unit variance around the mean (shaded grey). (b) The mean trajectory in the x
direction (solid black), with a unit variance around the mean (shaded grey). (c)
The mean trajectory in the y direction (solid black), with a unit variance around
the mean (shaded grey). (d) The mean tangential velocity (solid black), with a
unit variance around the means (shaded grey).
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in Fig. 4.7(d) as the solid black line. The tangential velocity resulting from the minimum
jerk solution is shown using a dashed black line. The results show a comparable end-effector
trajectory to that in Fig. 4.6 and a similar unimodal tangential velocity. The reference
trajectory, however, as described in literature, terminates around the third of the complete
movement, and close to the peak of the tangential velocity. Furthermore, the resulting end-
effector trajectory (solid-black) differs from the reference trajectory (dotted-grey) especially
in the second half of the motion. This is because the reference trajectory shift completed
half-way during the motion and it is the muscle dynamics (inertial and reflex delays, etc.)
and reflex properties that are then responsible for the deceleration of the movement and
achieving the goal position; which could lead to the simulated musculoskeletal end-effector’s
trajectory deviation from the reference trajectory as discussed in [198]. The difference
between the resulting end-effector trajectory (solid-black) and the minimum jerk trajectory
(dashed-black) seems to be a function of maximum velocity. The resulting end-effector
trajectory starts later and ends earlier, thus having a higher maximum velocity. The
oscillations that are observed in the tangential velocity profile in Fig. 4.7(d) around 400ms
can be attributed to the musculoskeletal system’s hook motion towards goal position in
Fig. 4.7(a). In this instance the final position of the reference trajectory aims at eliminating
the movement error and guides the musculoskeletal system towards the goal position by
changing direction of movement and slightly increasing the tangential velocity.

The above results show the ability of the attractor dynamics systems to generate neural
equilibrium trajectories that can be realized by the musculoskeletal system using the EPH
concepts. The resulting neural trajectory provides the Rx,y commands that are used within
the TCT. The neural attractor dynamics trajectory planner does not depend on complex
calculations, and produces simple straight trajectories when no obstacles are observed. The
calculations depend on the dynamically evolving behavioral variables, and are a function of
the desired goal location, obstacles in the environment and the current arm configuration.
The dynamic parameters of the arm model, as well as the muscles lead to a trajectory that
is slightly curved as observed usually in a human reaching trajectory.

It is worth noting that the maximum tangential velocity achieved via the simulated
movement is higher than that observed through the minimum jerk solution for a simi-
lar motion duration of 650ms. The tangential velocity can be increased by setting the
movement duration to be less than e.g. 650ms.

4.3.3 Simulation of a reaching motion with obstacle avoidance
In presence of obstacles, however, the simple system of the neural attractor dynamics equi-
librium trajectory generator adapts, and produces the reference trajectories accordingly.
We simulate the case of obstacle avoidance in Fig. 4.8. The forward reaching trajectory
starts from the initial position (0.15, 0) and terminates at the goal position (0.15, 0.28).
The obstacle is located at position (0.15, 0.15) as given in Table 4.6 where the rest of
the parameters used for the simulation is tabulated. The reference trajectory resulting
from the attractor dynamics equilibrium trajectory is shown as the dotted grey line in
Fig. 4.8(a). As observed in Fig. 4.8(a), it is a curved line in the x − y plane. The so-
lution of the minimum jerk optimization through the via point (0.3, 0.15) is also shown
in Fig. 4.8(a) as the dashed black line. The simulated dynamics of the arm, however, as
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Figure 4.7: (a) The reference path (dotted gray) and simulated musculoskeletal end-effector
trajectory (solid black) as well as the minimum-jerk solution (dashed black) for the
reaching motion in the transverse plane. The reaching motion consists of a forward
movement from the black diamond labeled start to the black diamond labeled goal
in the +y direction. (b) The reference trajectory (dotted gray) and simulated
musculoskeletal end-effector trajectory (solid black) as well as the minimum-jerk
solution (dashed black) in x displacement vs. time. (c) The reference trajectory
(dotted gray) and simulated musculoskeletal end-effector trajectory (solid black)
as well as the minimum-jerk solution (dashed black) in y displacement vs. time.
(d) The tangential velocity of the simulated end-effector (solid black) as well as
the tangential velocity resulting from the minimum-jerk solution (dashed black)
vs. time.

illustrated in Fig. 4.8(a) using the solid black line, show an end-effector trajectory that
can be categorized by three movement portions. The first is a slow forward movement and
recovery away from the obstacle, this is highlighted by the marker (1) Fig. 4.8(a). The
second portion of the movement is marked by the marker (2) and is characterized by a
slightly curved line to avoid the obstacle and finally a curved trajectory towards the goal
position that is marked by the marker (3). The displacement in the x direction of the ref-
erence trajectory is shown using the dotted grey line in Fig. 4.8(b), while the end-effector
displacement in the x direction is shown using the black solid curve. The displacement in
the x direction of the solution of the minimum jerk trajectory is shown using the black
dashed curve. Similarly, the displacement in the y direction of both the reference (dotted
grey) and end-effector (solid black) as well as the resulting minimum jerk (dashed black)
trajectories are shown in Fig. 4.8(c). Finally the tangential velocity of the end-effector
position is shown in Fig. 4.8(d). The tangential velocity is characterized by three peaks
that are consistent with the three movement portions. The tangential velocity resulting
from the minimum jerk solution is shown using a dashed black line in Fig. 4.8(d), and is
characterized by two distinct peaks. The first portion relates to avoiding the obstacle and
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Figure 4.8: (a) The reference trajectory (dotted grey) and simulated musculoskeletal end-
effector trajectory (solid black) as well as the minimum-jerk solution (dashed
black) in the transverse plane.in the transverse plane. The movement simulated
is a movement towards the (+y) direction to avoid the obstacle (black circle).
Additionally the three distinct portions of the movement are highlighted)(1-3).
(b) The reference trajectory (dotted grey), simulated musculoskeletal end-effector
trajectory (solid black) as well as the minimum-jerk solution (dashed black) in
x displacement vs. time. (c) The reference trajectory (dotted gray), simulated
musculoskeletal end-effector trajectory (solid black) as well as the minimum-jerk
solution (dashed black) in y displacement vs. time. (d) The tangential velocity of
the simulated end-effector (solid black) as well as the tangential velocity resulting
from the minimum-jerk solution (dashed black) vs. time

then moving towards the goal in the second portion.
As shown in Fig. 4.8, the equilibrium trajectory dynamically avoids obstacles in relation

to the whole arm. We highlight this in the next set of results shown in Fig. 4.9(a-d). In our
current implementation, we chose k which is the number of control points along the lower
arm to be 100. The initial heading angle ϕ0 defines the evolution of the neural trajectory.
Neurally, the heading angle is described as the angle of the vector pointing towards the
goal position from the current end-effector position [175]. Setting the heading angle ϕ0 = 0

would lead to an incorrect overall trajectory since the lower arm collides with the obstacle
(grey star), as shown in the simulation result in Fig. 4.9(a). This can be adjusted however,
by setting ϕ1 = −45◦. The simulation, shown in Fig. 4.9(b), shows the arm avoiding the
obstacle by correctly passing under it. This suggests however, that the initial value of the
behavioral variable ϕ should take into account the locations of obstacles and take values
that not only avoid these obstacles but avoid collision with the forearm.

In order to solve the problem of initial value setting, similar to what is shown in
Fig. 4.9(a), as well as Fig. 4.9(c), we devise a repeller term over the entire arm as dis-
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cussed in section 4.2.2. The scenario in Fig. 4.9(c), represents a challenging case as the
obstacle is located slightly below its previous position, and with a radius that would allow
for the end-effector to safely pass through using a mathematically and logically accurate
initial angle of ϕ0 = 0. While the simulation results in Fig. 4.9(c) were obtained without
the repelling function farm and results in an incorrect trajectory that leads to a collision
with the forearm, the simulation results in Fig. 4.9(d) were obtained with the addition of
the farm term. The results in Fig. 4.9(d) show a correct trajectory that avoids the obstacle
by traveling under the obstacle with an initial heading angle of ϕ0 = 0.

The kinematic and attractor dynamic terms related to the simulation result shown in
Fig. 4.9(d) are shown in Fig 4.10(a-j). The x and y displacements are shown in Fig. 4.10(a)
and Fig. 4.10(b) respectively. The displacement show smooth trajectories towards the loca-
tion of the goal. The heading angle as shown in Fig. 4.10(c) initially takes negative values
to avoid the obstacle both at the end effector and forearm locations and raises in values
as it avoids the obstacle to head towards the goal. The additive terms of heading angle
and obstacle avoidance and arm awareness as well as the stochastic noise term are given
in Fig 4.10(a-g) respectively. The farm term is initially dominant driving the autonomous
system to large negative values such as to guarantee the forearms movement below the ob-
stacle. The ftar then increases to drive the system back to achieve the goal position. The
stochastic term provides the means to escape any spurious local maxima stable points that
might occur that are undesired. The velocity generated given in Fig. 4.10(a-g) depends on
the values of the spatial velocity terms vspace and the velocity attractor term vatr. As can
be seen in Fig. 4.10, the equilibrium trajectory end-point velocity is a unimodal velocity
profile that resembles that desired end-effector tangential velocity of the arm.

4.4 Discussion
The threshold control theory is a special case of dynamics systems theory that is consistent
with cognitive theory. Specifically it is consistent with embodied enacted cognition where
cognition is said to arise for action and perception. The dynamic shifts of the equilibrium
point within threshold control theory is a function of the agent as well as the objects
as modeled within this work. While we present a model for the generation of reaching
motions, several models in the literature have proposed the use of threshold control theory
for standing, gripping and complete body movements [132, 229, 230].

The threshold control theory additionally uses the ideas of attractors indirectly by using
incremental equilibrium positions along the desired trajectory. Similar models in literature
[136, 199–203] are complex in nature and are unable to adapt dynamically to the environ-
ment. Compared to related work, we presented a novel simple attractor dynamics systems,
that takes the body configuration and environment state into account, to generate the
reference trajectories.

Through the use of the neural trajectory planner, we have shown that dynamic plans
towards the goal can be obtained such as to account for obstacles and the kinematics of
the arm. This is discussed in the referent control block. This would substantially limit the
amount of training data required by other methods in the same class, shifting the analysis
to intentional variables such as the heading angle, to dictate the behavior given its initial
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Figure 4.9: (a) Simulated neural trajectory result for an obstacle in between the starting and
goal locations. The initial value of ϕ was equal to zero. (b) Simulated neural
trajectory result for an obstacle in between the starting and goal locations where
the initial value of ϕ was changed to −45. (c) Simulated neural trajectory result
for an obstacle slightly lower than the middle location between the starting and
goal points. The initial value of ϕ was equal to zero. The simulation was run
without the arm awareness function farm. (d) Simulated neural trajectory result
for an obstacle slightly lower than the middle location between the starting and
goal points. The initial value of ϕ was equal to zero. The simulation was run with
the additive arm awareness function farm.
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Figure 4.10: Temporal development of the kinematic and attractor dynamic terms that re-
sulted in the simulations shown in Fig. 4.9. (a) The x displacement of the neural
reference trajectory. (b) The y displacement of the neural reference trajectory.
(c) The heading angle of the autonomous robot at the hand location. (d) The
goal acquisition term. (e) The obstacle avoidance term. (f) The arm awareness
term. (g) The stochastic noise term. (h) The spatial term of of velocity. (i) The
velocity attractor term. (j) The velocity of the autonomous robot at the hand
location. 97



4 Internal simulation of reaching motion

value. Finally the last building block discussed was the musculoskeletal arm model that
was used to validate the output of the referent control and simulate reaching motions with
and without the presence of an obstacle.

The results show the systems ability to successfully complete a forward reaching motion
with and without the existence of an obstacle. Furthermore, the results were compared to
the output of minimum-jerk optimization. Minimum-jerk was proposed as an explication
to how the brain plans and controls movements in an optimal manner in order to solve
the redundancy problem on a kinematic level in 2D settings. The cost function within
the minimum-jerk optimization problem minimizes the time integral of the square of jerk
(rate of change of acceleration). Minimum-jerk was able to predict the regularities in hand
paths of multi-joint arm movements. Explicitly, minimum-jerk was able to predict smooth
movements, with unimodal, symmetrical velocity profiles. Compared to the minimum-jerk
prediction of the obstacle-free movement, the simulated movement using referent control
showed similar characteristics. Explicitly, the simulated movement showed smooth move-
ments with unimodal, mostly symmetrical velocity profiles. It is worth noting that the
simulated movement seems to have a higher maximum tangential velocity compared to
the solution of the minimum-jerk optimization problem, however the movement duration,
which is an input parameter to the minimum-jerk optimization problem, was not simi-
lar. The discrepancy in movement duration could explain the variation between maximum
tangential velocities.

Furthermore, minimum-jerk optimization requires definition of via-points, as well as
the condition of passing through those via-points (velocity and acceleration through the
via-point) while the attractor dynamics does not. Additionally, the work presented here
easily extends to 3D cases where the minimum jerk model holds for 2D scenarios. In the
case of the obstacle avoidance problem there was a slight difference between the predictions
within the minimum-jerk model and the simulation of the referent control signals. Explic-
itly, the simulation predicted three segments of motion for obstacle avoidance, while the
minimum-jerk optimization predicted two symmetrical motion segments. The minimum-
jerk optimization takes the parameter of the via-point position as an input to the model,
while the attractor dynamic solution produces the “via-points” dynamically. However,
both trajectories in x and y directions were smooth. It is worth noting that the simulated
trajectory initially lagging the minimum-jerk model as if to give the arm the best possible
chance to avoid the obstacle until second 0.6. Starting then, the simulated movement
was leading compared to the prediction of the minimum-jerk model. As the repeller force
generating from the attractor dynamic repulsion from the obstacle are overcome by the
attraction forces of the goal.

4.5 Conclusions
We presented in this chapter, for the very first time, a novel approach to dynamic reaching
motion generation through the integration of attractor dynamics with referent control
theory. Similar work in literature that model reaching trajectories through referent control
suffer mainly from two issues. Firstly, the models are usually complex and hard to explain.
Secondly, they are unable to adapt dynamically to the environment.
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4.5 Conclusions

In contrast to the above, the work presented here offers a novel, biologically-inspired
referent control formulation using dynamic systems theory to model a reaching motion
that is both simple and adapts to the environment. Results showed the dynamic genera-
tion of the reference trajectory that was validated using a musculoskeletal arm model for
simulation both in open space and in an obstacle avoidance scenario.

Although not investigated throughly in this work, the dynamics approach for behavior
generation benefits from the DNF for high-level decision making (e.g. identifying goals
and obstacles). Indeed, future work would focus on investigating dynamic changes in goal
setting, and studying the effect of those changes on the simulated paths generated by
the musculoskeletal systems. Future work could additionally investigate human-recorded
obstacle avoidance to extract common via-points for comparison. Furthermore, future work
could investigate varying the number of via-points within the minimum-jerk optimization
for comparison purposes as well.
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5 Plan understanding

So far, we have addressed the problem of proximal intention understanding from two
directions. The first step was a top-down understanding of the observed kinematics and
the agent’s interaction with the environment, as discussed in chapter 3. The second step
was a bottom-up internal simulation of the predicted movement. The bottom-up approach
was discussed in chapter 4, where we focused on the simulation of reaching motions. Given
the understanding of the proximal intention, which gives an indication of the atomic actions
an agent is performing, the distal intention of the agent can also be understood. Distal
intention understanding refers to understanding the plan of the agent given a series of
observed actions. In robotics, the field of plan, action and intention recognition systems
(PAIRS) has been active in investigating distal intention understanding and developing
intelligent systems to that end.

Research in the field of PAIRS follows a trend in linking actions to plans in order to
understand human intentions. Action recognition aims to classify patterns from low-level
sensory information, such as cameras or inertial sensors, into semantic labels of human
actions. Plan and intention recognition operates on a higher-level and aims to infer ac-
tion plans and intents by appending a meaning to the temporal relationship between the
recognized primitive actions.

It is thought that humans perform plan recognition through utilizing an inferential
system. This inferential framework readily accommodates our ability as perceivers to deal
with the complex link between actions and intentions [40]. In this system, an intentional
plan is determined not only given recognized actions but also from external information.
This information includes cues in the immediate context e.g. the setting, location, presence
of specific people and equipment. They should also include prior knowledge about the
observed agent as well as the script within which the agent’s motions are embedded. These
additional characteristics allow the inferential system to reduce the search space to a smaller
set out of many possibilities. The bottom line here is that the inferential system allows
intentions to be recognized given the bigger picture that the action stream is embedded
in. Keeping the above points into consideration a set of inputs to intention and plan
recognition systems can be defined. First input would be a set of conceivable intentions,
secondly a set of plans achieving each intentions given, namely, a plan library that is biased
to context, agent and environment.

Given the discussion so far, the interpretation of the sequence (using a plan library
and an inferential system) of actions houses vital information that explains how people
identify the intentions of others. The important question becomes, how do people choose
their sequence of actions? In the field of philosophy, it is argued that in ToM mental
states are inferred through the application of the “rationality principle” [20]. This is also
in compliance with the “teleological stance” through the psychological principle of rational
action [28]. The principle of rational action assumes that (rational) actions emerge to
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fulfill an intention (goal-state) by the most efficient way. Furthermore, the goal states
are realized by choosing the most rational action (most efficient, least risky, fastest, etc..)
currently available given the constraints of the situation (current state of the environment).
Thus, an explanation of the intention behind observed behavior is said to be acceptable and
well-formed if, and only if, the observed action (intention) can be thought to be rational in
accordance with a goal state (desire) given the situational constraints (belief). Therefore,
for a successful recognition of intentions, both the observer and the actor should share
a common understanding of the environment and the what it affords in terms of action
possibilities. The situational constraints in our work are modeled using the concepts within
affordances.

We give in this chapter an outlook on how the task of plan understanding can be linked
with the presented work of action understanding. We introduce a cognitive, neurally in-
spired model of plan understanding for the purpose of human intention recognition. The
architecture models a robotic ToM which follows descriptions from simulation theory and
respects the dynamic nature of intentions. The model follows the embedded, situated
cognitive stance in which the tight coupling of the agent, the environment and the brain
is respected. We build upon our previous work of (primitive) action understanding that
models the attention shift of an observer to objects of interest, and uses contextual infor-
mation of affordances to classify the trajectory information of the observed agent. The
model proposed here respects the dynamic nature of intentions and the inputs in the envi-
ronment as well as the embedded situated stance of cognition and is modeled using system
dynamic theory of dynamic neural fields.

We present in this work, for the first time, a DFT-based plan understanding system
that extends the different components discussed in chapter 3 to the higher-level abstrac-
tion of plan understanding. Explicitly, compared to the state-of-the-art in DFT-based
plan understanding presented in [231], we present an affordances-based approach within
dynamic field theory that generates plans dynamically given new observations of actions.
Furthermore, we present a novel plan comparison approach that extends the TARS system
presented in section 3.5. The components of the plan recognition model are presented in
section 5.2. The implementation results of plan prediction are presented in section 5.3.
Finally we give a discussion in section 5.4.

5.1 Related Work
Early work on plan recognition is found in the work of Robert Wilensky [232, 233] and
James Allen [234], in which systems were developed for the tasks of narrative plan under-
standing. The focused shifted from small scale plan understanding into large scale plan
understanding for the tasks of speech recognition in the work of VERBMOBIL [235, 236]
and TRAINS [237, 238], that was later expanded into TRIPS [239].

Similar to the discussion of state-of-the-art in intention recognition in the introduction of
this thesis, logic approaches and probabilistic approaches are dominant in the task of plan
understanding. Appelt and Pollak in [240] show an example of formal logic approaches in
which weighted abduction was used to extract plans from a set of rules based on observation.
On the other hand Konolige and Pollack in [241] utilized a probabilistic approach to reason
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about the most likely plan within a specific problem domain. Charniak and Goldman in [61,
62] introduced Bayesian inference for plan understanding, leading to the use of dynamic
belief networks as a way to apply Bayesian inference for the task of plan understanding in
the work of Albrecht et al. in [53, 242]. Probabilistic plan recognition was also used in the
work of Goldman et al. in [243] where partially-ordered plans, multiple interleaved plans
and effects of context were taken into consideration.

In addition to probabilistic models, optimization techniques were also used in modeling
plan recognition systems. In the work of Sukthankar and Sycara [244] a plan recognition
system was developed based on a cost minimization approach for Military Operations in
Urban Terrain (MOUT). The system aimed at recognizing a plan of an agent that is tasked
to achieve a specific goal within a military operation. The proposed approach utilizes an
environmental simulator to generate the final results given the solution of the minimum
cost optimization.

Recently, Baker and Tenenbaum [245] tackled the problem of cognitive plan recognition
by modeling ToM. This follows the same motivation presented in this chapter of modeling
human cognition through ToM. Due to the fact, that the mental states of others are un-
known, this becomes a difficult task. Different mental states can result in the same action/
behavior, whereas similar mental states can result in different behavior [245]. Since men-
tal states are hidden and there exists no explicit one-to-one mapping between actions and
behavior they proposed a Bayesian approach to tackle those issues. The authors propose a
Bayesian Theory of Mind framework in which knowledge as well as ontology is integrated
at different abstraction levels. Explicitly, they follow a common path within PAIRS in
which a generative model of decision making is utilized for inductive reasoning in a second
step given observations. The generative model is modeled as a partially observable Markov
decision problem (POMDP) in which beliefs about the environment and their uncertainty
are probabilistic distributions and the desires/preferences constitute the reward functions.
The generative algorithms presented by Baker and Tenenbaum decide on actions that have
the highest expected reward. Compared to the work presented by Baker and Tenenbaum,
the work presented here predicts the next action step based on a learnt transition between
actions. In terms of plan understanding, the work presented by Baker and Tenenbaum
performs Bayesian inference on the inverted value function to reason about the agents
beliefs and reward function given the agent’s observed actions. This work, on the other
hand, utilizes direct comparison between expected and observed actions for comparison.

Doshi et. al. in [246, 247] similarly model human condition through ToM using
POMDPs for inductive reasoning. The work presented by Doshi et. al. uses ideas of
interactive POMDPs such that the observing agent’s decision making processes is taken
into account as well as the observed agent’s plan in a nested manner. This is helpful in
adversarial settings as the nested POMDPs allows to model the observed agents’s ability
to plan his actions given other agents reasoning about that plan. Compared to the work
presented by Doshi et. al., we do not model adversarial settings.

The advantages and disadvantages of probabilistic and logical approaches to plan un-
derstanding are similar to what has already been introduced in section 1.2. Optimization
techniques on the other can be very powerful in finding an optimal solution to a cost func-
tion that describes the decision making process of intentional action plans. They suffer
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however from several limitations such as finding an appropriate formulation of the cost
function as well as the high computational cost of evaluating an optimal solution in a
simulation scenario. The work presented in this chapter presents a decision making ap-
proach that utilizes simple comparisons to recognize action plans given the affordances of
the objects in the immediate environment. Furthermore, it does so by utilizing the same
systems used in the task of action understanding in a dynamic manner.

5.2 DFT-based plan understanding
The first step to achieve plan understanding is to maintain the observed actions into a
time-series that represents the plan observed so far. This time-series can be expanded to
include possible future actions to facilitate the task of plan understanding. The generation
of future actions to extend the observed action plan could allow for faster comparison
(against learnt plans in the plan library) and aid in producing more reliable results. A
system that allows for the prediction of possible future actions is required to dynamically
adapt to changes in this action plan time-series as new actions are observed. We present
DFT to model the situational constraints and affordances in section 5.2.1. Furthermore, we
use DFT to perform the task of dynamic plan generation given information of affordances
in section 5.2.2. Finally, the task of comparing plans for the task of plan understanding is
presented in section 5.2.3.

5.2.1 Affordance-based Approach
Affordances are at the heart of plan understanding similar to its function in the action
understanding systems discussed in chapter 2. Furthermore, we model the situational con-
straints of the environment through the use of affordances. Explicitly within this work, we
hypothesize that an action plan is represented by a sequential manipulation of affordances
in the immediate environments. The same logic-based approach discussed in section 3.6 is
utilized here.

The basic premise in this approach is as follows. As an agent produces an intention, it
acts on the environment through a series of manipulation actions that ultimately changes
the set of available affordances accordingly. The connectivity field models the interaction of
the agent with the available affordances and the dynamic effect on the perceived affordances
as a consequence of this interaction. The sequential changes in the affordances would allow
for reasoning about the set of future actions as well as the required actions (affordance
manipulations) required to achieve a certain goal.

Generally for action understanding the difference between the current affordance state
of the environment and the final goal allows for the inference of the set of actions required
to achieve that specific goal. Actions are then methods required to manipulate, use or
change the set of available affordances. As an example, if an agent is sitting on the couch
in the living room and develops an intention to drink water, then the affordance of the
glass in the kitchen needs to be changed from approachable to graspable to e.g. drinkable
and for that the agent needs to perform a locomotion action to locate itself in a grasping
reach, and fill the glass with water so it is drinkable such that the agent can perform the
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final action of drinking from the glass. In order to utilize this affordance-based approach,
the plan understanding system would require to encode knowledge regarding the dynamic
nature of affordances when an agent manipulates the different objects. The connectivity
field discussed in section 3.6 allows to learn and reason regarding these changes.

Having the ability to model affordances and their dynamic interaction within the connec-
tivity field would allow us to reason about the possible next actions in an observed agent’s
plan. This would allow us to generate dynamic plans given the series of observed actions.
We present this dynamic generation of action plans in the next section (section 5.2.2).

5.2.2 Generating dynamic plans
Within this approach, the past, current and future prediction actions are maintained in a
consistent neural field that represents the understood plan. It is important to note that
action sequences discussed in this work are time-independent. That is, action sequences
are stored in action time-steps and durations of actions are not of importance as they do
not add valuable information for the task of plan understanding.

In the generation of the plan, past actions are addressed first. Past actions are saved
within a memory field directly given the input of the action understanding systems. The
same applies to current actions observed in the current action time-step. The integration of
future actions within the plan generation is not as straight forward as integrating past and
current actions. Future actions are generated sequentially and randomly given information
from the connectivity field and the CARS as introduced in section 3.4.

Given the output of the CARS, the contextual information of which object the action
is directed towards is obtained. Once the object of interest is identified, the corresponding
connectivity field is selected. The set of possible future actions are read out from the
connectivity field given the current action. A selection kernel is then used to select an
action from the set of possible future actions given the activation strength of the different
actions in the connectivity field. The selected action then goes through the same process
to predict the second possible future plan and so on. This process is repeated given the
desired number of look-forward steps desired. This is in line with Lashley’s description of
sequence learning as discussed in [248].

It is worth noting that a selection is performed at each action step across all possible
connectivity fields as a function of the possible manipulable objects by way of a selection
kernel. Alternatively, it is possible to perform a selection step initially across the different
possible objects before performing a selection in the selected object’s connectivity field.
The process of performing the prediction steps within a connectivity field is illustrated in
Fig. 5.1.

In the following, we walk through the example given in Fig. 5.1 when predicting the
next series of actions given the currently observed actions. The currently observed ac-
tion, observed at the current action time step t, in this example is a1. This is shown in
Fig. 5.1(a) on the action time step axis. The possible future actions can be read out from
the connectivity field. In this case actions a2 and a3 are read out. The read out 1D slice
of the connectivity field is used as an input to the decision field as shown in Fig. 5.1(b). A
decision in the decision field is made between a2 and a3 and a2 is selected as illustrated in
the output of the selection field in Fig. 5.1(b). The action a2 is used to perform the next
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Figure 5.1: Plan generation example. a) to d) shows the prediction of an action sequence
using a connectivity field. A detailed description of this figure is provided in
section 5.2.2.
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prediction step in Fig. 5.1(c) to read out the possible next actions, which in this case are
actions a3 and a4. The same procedure is repeated to perform a selection between a3 and
a4 which in turn influences the possible action at action time step [t + 3] and so on, until
we reach our fixed number of look-ahead steps.

Our dynamic plan generation method that reuses the same central affordance logic
system modeled within the connectivity field. The connectivity field couples with a selection
field that produces an output of the next possible actions in the next time steps. The
previous, current and future actions generate a dynamic plan that is saved in memory for
the purpose of comparison and further inference as discussed in the next section.

5.2.3 Plan comparison
In this section, we present the plan comparison approach given the dynamically generated
plan discussed in the previous section. The basic premise in this work is that a comparison
has to be performed between the generated plan and a set of learnt plan templates in order
to confirm the understood plan. This is similar to our approach for action understanding in
which the TARS compares on a trajectory-level the goal-directed movement anticipated by
CARS. The plan comparison method presented here reuses the TARS discussed previously
in 3.5.

Plan comparison based on path trajectory

The plan comparison approach based on the path trajectory comparison discussed in this
section is based on the TARS approach discussed in section 3.5. The basic premise here is
that the generated plan is treated similar to that of the stimulus of observed movements.
This approach is motivated by descriptions of plans being a sequence of time-dependent
actions as discussed in [248]. It is important to note that a preshape in this case does not
encode a movement but rather a sequence of actions. This generated plan is compared
against a set of learnt templates of plans similar to how the stimulus of observed movements
is compared against a set of preshapes of learnt movements. The learnt template uses a
set of action plans that might be very different than one another in terms of the order of
actions. Therefore, branching (of parallel actions) within the template generation step is
allowed. This ensures that multiple actions are allowed to be represented at a same action
time step within one intentional plan. This generalized template would allow different
variations of the same distal intention to be taken into account. Within the plan trajectory
method, the dynamically generated plan is projected into a memory field and a moving
wave is allowed to propagate through it for the purpose of comparison similar to action
comparison discussed in the TARS in section 3.5.

The comparison approach, illustrated in Fig. 5.2, is a combination of three distinct
logical parts (layers). The first layer is a memory field as described in section 3.2, and
is composed of the plan up to and not including the action at action step t. The second
layer is composed of the current action at action step t, and is the output of the AUA.
Finally, the third layer is composed of the future actions beyond action step t as discussed
in section 5.2.2. Overall the combination of the three parts compose a two dimensional
memory trace which constitutes a set of atomic actions against time. The atomic actions
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Figure 5.2: Plan trajectory comparison: this figure visualizes the generation of a plan in trajec-
tory form. The trajectory is composed of the past, current and predicted actions.
Further description of this figure can be found in section 5.2.3.

are imagined as neurons that contribute to the field with their own tuning curve in a manner
consistent with DPA descriptions as discussed in section 3.2.2. It is worth noting that unlike
the continuous case when angles or distances are used as features in motion trajectories
within DFT, the actions do not interact with each other. As such the tuning curves have
their own optimal response values that separate the activation peaks accordingly.

The first layer of the plan trajectory is generated by using a traveling peak, as discussed
in section 3.2.5, that activates regions in the path trajectory field corresponding to the
actions detected. That is, as actions are recognized in the past, traveling waves activate
the corresponding neurons dynamically.

As for currently recognized actions, they are integrated through a second layer at an
action step t. The reasoning here is this layer has a different purpose functionally. It
encodes information that is highly dynamic. That is the current action is not fully under-
stood until it is completed. Therefore, this layer is implemented by a DNF that allows
dynamic changes.

The third and final layer is integrated in a similar fashion to the currently recognized
action in the second layer. The only difference is that the future actions depend on each
other in a temporal fashion, that is each DNF decision field requires the decision in the
previous DNF to perform the action. Finally all layers are integrated in a final layer by
adding up activations from the aforementioned three layers. The activations are added into
the final layer when a traveling wave scans through each of the three layers sequentially. For
example, to integrate future actions, the traveling wave should be positioned at the action
time step [t + 1]. The integration of the three layers generates the plan trajectory that is
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Figure 5.3: Dynamic generated plan. Illustrated is the activation or a DNF for different actions
a1 to a7 with respect to time.

capable of being compared against a plan template in a manner similar to that performed in
TARS, discussed in section 3.5. This approach allows for a dynamic continuous comparison
that takes plan changes into account at different (current and future) layers that could
occur at every action time step.

5.3 Results

In this section, we show the results of the dynamic plan generation. The trajectory-based
comparison implements the same TARS, however without the use of the Sequence of inter-
est module. As such, for further discussion and results regarding trajectory-based compar-
ison, we refer the reader to section 3.5 and section 3.8.2 respectively. As for the dynamic
plan generation, the same concepts of using a traveling wave for prediction discussed in
section 3.2.5 is utilized here. The traveling waves are set to be equidistant with medium
speed. We implemented 5 look forward steps to predict the next five actions. The future
actions are predicted given the connectivity field and a DNF with a selection kernel. The
results of a dynamic generated plan is shown in Fig. 5.3.

The connectivity field itself is learned. The learning is implemented as follows: as the
action understanding systems provide the action sequences observed the connectivity field
is populated sequentially. As this process occurs over different examples, the transition
between different actions is preserved within the connectivity field and would thus allow
for representations of plans accordingly.

108



5.4 Discussion

5.4 Discussion
We have presented in this chapter a DFT module for dynamic plan generation that memo-
rizes the sequence of understood actions performed by an agent. Furthermore, the dynamic
plan generation module allows the dynamic integration of the currently observed action,
as well as reasoning about future actions given a learnt connectivity field. The dynamics
within DFT allows the overall adaption to changing output from the action understanding
systems that are dynamic in their nature as well. We have also presented the plan compar-
ison method based on path trajectory that reuses the same concepts from TARS to reason
about the observed plans.

Compared to related work that model ToM (e.g. Baker and Tenenbaum’s work in [245]
as well as Doshi et. al.’s work in [246, 247]), the presented approach allows for dynamical
plan generation and comparison. The overall system adapts accordingly to observed actions
as the action understanding modules update their beliefs. Furthermore, the generalized
template plans themselves are dynamic and allow for different action paths over time to
explain the same intentional plan.

The current system however does not generate a plan library of plan templates. A gener-
ative model for simulating plan libraries can be considered given the respective connectivity
field. In that sense, multiple plans can be generated based on the states of the environment
and the connectivity field of the respective intentional plan. Learning connectivity fields
could be then an advantage as it allows for the possibility of generating different plans
online and comparing them dynamically against the observed action plan in a second step.

Furthermore, the current system does not take feedback signals into account. Explicitly,
feedback signals linking the action understanding system to the plan understanding could
be integrated. The feedback signal from the dynamically generated plans to the connectiv-
ity field within AUA could give hints to the AUA which affordances to prune when loading
the next preshape (or generating the trajectories of the movement) . It would do so by
removing the set of affordances that are not compliant with the predicted plan.

Other challenges should also be taken into consideration within the plan understanding
systems. Explicitly, interruptions as well as unrecognized actions should be taken into
account. Furthermore, we assume in this work that there is no ordering between the
discrete actions along the feature space that defines the different DNFs (e.g. connectivity
field). It could be the case that actions could be ordered along the feature space based on
their similarity and their underlying connections, which in turn could allow for them to
interact meaningfully if their tuning curves were to overlap.

5.5 Conclusions
We presented in this chapter a distal intention recognition system that reuses the same
modules that were used for action understanding for the purposes of plan understanding.
This is inline with descriptions of MNS that promotes an emulation as well as an imitation
functionality to the MNS. We presented a module that is capable of dynamically generating
plans given the connectivity field, and explained how the TARS can be reused for the task of
comparing the observed plan against a learnt preshape encoding the intentional action plan.
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The presented work is novel in DFT and in contrast to other work in literature, reused the
same mechanisms used in the action understanding step to perform plan understanding in
a meaningful cognitive framework. Future work should focus on the interaction between
the plan understanding systems and the AUA through feedback/feedforward signals. The
interaction between the two systems should also be evaluated in terms of e.g. time to
decision making and recognition accuracy etc. Further future work could investigate the
topics of interruptions and unrecognized actions.
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6 Conclusions

The task of human intention understanding is a central problem that should be addressed
adequately if robotic systems are to be integrated socially into our everyday life. Intention
understanding is biologically motivated by findings in MNS and philosophical descriptions
within ToM. However, similar to most cognitive tasks that biological systems effortlessly
demonstrate, replication on artificial systems is not without complications. The basic
premise of this work is to transfer the functions of the MNS at different levels of abstraction
into a robotic, dynamic cognitive framework via dynamic systems theory. Dynamic systems
theory adequately provides the framework to describe behavior in a top-down and bottom-
up approach and across different abstractions in a biologically motivated and cognitively
valid manner. In this work, dynamic field theory within dynamic system theory is used
to tackle the different challenges of intention recognition in three different chapters. The
solutions that were provided were chapter-specific and were discussed accordingly. In the
following, we summarize the main contributions of this thesis and provide an outlook for
different future research directions.

6.1 Summary of contributions
In chapter 2 we presented our motivation and design for the action understanding archi-
tecture that tackles the challenges of proximal intention understanding in a top-down,
bottom-up approach. The primary focus of this work was aimed at identifying the signals
used by humans when detecting/simulating intentional actions of other observed agents,
modeling it within DFT and designing a decision-making system that makes use of these
signals in a meaningful manner. The AUA presented in this work is a deterministic model
that reacts to the input and produces decisions dynamically. This is in contrast to proba-
bilistic models proposed in the literature. Specifically, we can classify our AUA approach as
a dynamic, single-layered exemplar-based sequential method, that depends on contextual
information when choosing the example (template). Exemplar-based sequential methods
have an advantage of requiring less training data to perform recognition when compared
to probabilistic methods.

In chapter 3, two explicit systems were introduced to address the top-down approach of
action understanding. These are the CARS and TARS which make use of the affordance
logic system that models the immediate environment and the available affordances of the
objects within this environment. Overall, the AU architecture in this work presents a
novel predictive system within DFT which models attention-shifts and integrates with a
novel trajectory parsing system in a second step. The trajectory parsing system takes
into account the spatial as well as the temporal variations that are usually problematic
when understanding actions on a trajectory level. Particular attention is given on how
objects and the environment are integrated into the overall architecture and on how they
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can drive action understanding. The overall systems were evaluated given a dataset of
participants performing high-level intentional actions. Results show that the integration
of both the attention-shift system and the trajectory comparison system yields good action
understanding results compared to each of them alone.

In chapter 4, we presented a bottom-up approach to aid in the task of action understand-
ing. Explicitly, we introduced the dynamic simulation of action trajectories in the case of
reaching movements. We described how the cognitive decision-making system (such as at-
tention shift model) could select objects using DFT which in turn sets attractors that drive
the behavior of a reaching motion. We linked the environment to the end-effectors and
described the dynamic nature of reaching motion generation as motivated by threshold con-
trol theory. The reference command was modeled using attractor dynamics. We validated
the resulting referent and coactivation commands on a two-dimensional musculoskeletal
arm model and compared the output against examples from participants performing the
same movement. Furthermore, we described how attractor dynamics could aid in the task
of obstacle avoidance within threshold control theory.

In chapter 5, the plan understanding system was introduced. We explained how the
different modules that were presented in chapter 3 are reused in the task of plan under-
standing. Furthermore, we explained how the affordance logic system that is central to
the task of action understanding is also at the heart of plan understanding. Through sim-
ulation, we showed how the observations of a few actions would allow the system to reason
about the next immediate action and project the possible future actions. The work in this
chapter highlights the use of the different systems for the solution of both the action and
plan understanding task. This is in-line with descriptions of MNS where the underlying
function of MNS could explain imitation (action-level), emulation (goal-level) or intention.

6.2 Future directions
The work presented in this thesis motivates directions for future work.

Biological motivated features: We have discussed within this work two sets of
biologically-inspired features for action understanding; the body joint extension and the
projected relative angle features. Additionally, we discussed how they could be neurally
represented within concepts of DPA and DFT. Future work could focus on investigating
different combinations of features and discuss how they are optimally mixed under differ-
ent contexts. Furthermore, the context under which specific features operate best could
be investigated.

Learning affordances: Learning how to perceive affordances is an integral part of the
social capabilities of humans. We have discussed at length within this thesis the importance
of affordances in predicting and planning intentions. The concept of robotic learning of
object affordances has not been discussed within DFT despite being an important concept
within the cognitive capabilities of humans. Future work could focus on expanding the
simple concept of affordance-based logic fields we present in this thesis such that it encodes
the relationships between actions, objects, and effects in an active manner.
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6.3 Concluding remarks

Dynamic affordances: The concepts of nested affordances and sequential affordances
were introduced by Gaver in [187]. Informally, they describe the dynamic nature of af-
fordances in that manipulating a set of affordances changes either the affordance of the
manipulated item or that of the other objects in the immediate environment. Future
work could focus on the formalization of the concepts of nested and sequential affordances
dynamically within DFT.

Full-body referent control using attractor dynamics: The concepts of locomotion and
manipulation have been investigated under threshold control theory. The attractor dy-
namics approach described in this thesis could be extended to represent a broader range of
goal-directed movements. Future work could focus on defining attractors around different
behaviors that could be achieved dynamically using full-body movements.

Comparison metrics for plan understanding: We have discussed in this thesis the con-
cept of comparison within DFT. The comparison was performed within the context of a
movement which is usually described using continuous variables. Plans, on the other hand,
are described by discrete atomic variables (actions) that are unordered. Therefore, the
concept of direct comparison is unrealistic. Future work could focus on defining dynamic
comparison metrics within DFT between a set of plans to achieve intention understanding.

Proactive robotic interaction: Once a robotic system understands the intention of the
human agent, that information should be acted upon proactively. Furthermore, the selected
proactive robotic action, along with the human’s reaction should be taken into account in
a feedback loop to reinforce or debunk the understood intention. Future work could focus
on the formulation of behavioral feedback loops within DFT and model their effect on the
decision-making process within the different intention recognition systems.

6.3 Concluding remarks
We have presented in this thesis novel systems to achieve intention understanding within
dynamic systems theory, and DFT, that are inspired by the function and mechanisms
of the mirror neuron system and ToM. The systems are capable of extracting essential
information from movement kinematics and parse objects in the environment into goals
and obstacles as well as reason about the agent’s action plan. Furthermore, dynamic
neural trajectories are planned towards the possible goal in the immediate environment.
The presented work advances the state-of-the-art by combining the key concepts of dynamic
behavior generation world of Schöner et. al. with the intentional dynamics of Kelso et
al. such that the interaction is understood using the affordance concept of Gibson et al.
and movement is directed towards them using concepts pioneered by Feldman et al. for
cognitive action understanding within the cognitive framework of DFT.
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