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Two nonparametric methods for the identification of subgroups with outstanding outcome values are described and compared to
each other in a simulation study and an application to clinical data. The Patient Rule Induction Method (PRIM) searches for box-
shaped areas in the given data which exceed a minimal size and average outcome. This is achieved via a combination of iterative
peeling and pasting steps, where small fractions of the data are removed or added to the current box. As an alternative, Classification
and Regression Trees (CART) prediction models perform sequential binary splits of the data to produce subsets which can be
interpreted as subgroups of heterogeneous outcome. PRIM and CART were compared in a simulation study to investigate their
strengths and weaknesses under various data settings, taking different performance measures into account. PRIM was shown to
be superior in rather complex settings such as those with few observations, a smaller signal-to-noise ratio, and more than one
subgroup. CART showed the best performance in simpler situations. A practical application of the two methods was illustrated
using a clinical data set. For this application, both methods produced similar results but the higher amount of user involvement of

PRIM became apparent. PRIM can be flexibly tuned by the user, whereas CART, although simpler to implement, is rather static.

1. Introduction

Subgroup identification, especially in high-dimensional data
situations, is a common problem. The aim is to find subsets of
the whole data set defined by covariates in which the outcome
of interest is distributed differently than in other regions.
Especially in the medical domain, there are many possibilities
for applications of methods that address this problem. For
example, in the context of personalized medicine, subgroup
identification can be of interest if a treatment effect is
enhanced or reduced for groups of patients defined by the
baseline covariates (cf. [1, 2]) or it may be desirable to find
subgroups of patients with a high risk of mortality (cf. [3]).
In addition to applications in medicine, there are also other
fields in which such methods are useful such as industrial
process control (cf. [4]).

The Patient Rule Induction Method (PRIM) and Clas-
sification and Regression Trees (CART) are two popular
nonparametric methods for subgroup identification. They

employ two different strategies which are described in this
paper. PRIM, which is less commonly used, is explained in
more detail in this paper. It formulates the research question
as an optimization problem where some target function has
to be maximized or minimized. A simple solution to this is to
find specific values or regions for a set of variables (covariates)
conditioned on which another variable (outcome) takes
extreme values. This way, one tries to identify subgroups in
the whole data set in which the mean outcome (or another
criterion) is high or low. By contrast, CART provides an
empirical description of the conditional distribution of an
outcome as it splits the data into disjoint subsets. Some of
these subsets may depict subgroups of interest to a focused
research question. To assess the performance of PRIM and
CART in subgroup identification, they were compared in
different data settings in a simulation study and an applica-
tion to clinical data. Corresponding R-codes are given in the
supplementary Appendices C-G in Supplementary Material
available online at https://doi.org/10.1155/2017/5271091.
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2. The Patient Rule Induction Method (PRIM)

A PRIM model consists of boxes that define subsets (sub-
groups) with extreme outcome values. Boxes are defined by
lower and upper threshold values for continuous covariates
and subsets of the levels of categorical covariates. They are
mainly characterized by their “target” and “support,” with
the former being the result of the target function evaluated
within the box and the latter describing the proportion of
observations lying inside the box. Later in this section it will
be shown that there is always a trade-off between those two
values. A combination of two algorithms called “peeling” and
“pasting” is used to fit the model in an iterative way (cf. [5, 6]).

2.1. Peeling. The main component of PRIM is the so-called
top-down peeling. This iterative algorithm starts with a large
box that contains all observations of a data set. Within every
peeling step, small fractions (subboxes) are removed (peeled)
from the margins of the current box, one at a time. Out of all
these possible subboxes, the one which maximizes the target
function on the remaining observations in the box is chosen
for removal. If the goal is to minimize the target function, the
algorithm acts the same way after multiplying the outcome y
with the value —1 at the beginning so that the minimization
problem is transformed into a maximization problem.

For most applications, the arithmetic mean is a useful
choice for the target function:

1 Mypg1
FO) =2 1)
m+1 =1

Here, n,,,, is the number of observations in the box:
Bm+1 = Bm \ b‘:l’ (2)

which results from the mth iterative step after a subbox b, is
chosen for removal out of the class of all possible subboxes
C(b,,) such that

b, =arg max f(y;|% €By\by). 3)

In cases with only continuous covariates xy, ..., x,, the
set of possible subboxes C(b,,) is composed as follows:

C (bm) = {bml—’ bm1+> bmz—’ bm2+’ s bmp—’ bmp+} ’ (4)
with
By = {x 1 % < Xj}»
©)

bmj = {x | xj 2 xjm(l_“)},

where x,,,) describes the a-quantile of the observations of
variable x; which lie in the current box B,,,.

Therefore, observations below the a-quantile or above
the (1 — «)-quantile are peeled off and « can be seen as a
metaparameter which is able to influence the result. Usually
one chooses small values (0.05-0.1) which introduce the
“patience” to the algorithm. o should be small enough that a

potential suboptimal step does not have too much impact on
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the result but also not too small, because otherwise the boxes

would depend strongly on the random variability in the data.
The peeling procedure is repeated until the support f3,,, of

the current box B, falls below some threshold f3,, such that

ﬂm = %ZI (Xi € Bm) < BO’ (6)
i=1

where I(+) denotes the indicator function which returns the
value 1, if the condition in brackets is true and 0 otherwise.

The minimum support f, is another metaparameter
which has to be determined by the user. The choice of this
parameter depends on the analytic aims, but it should not
be chosen too small, because very small boxes have strong
dependency on the random noise in the data. Such a result
would be very sensitive to small changes in the data set and
prone to overfitting.

Example 1. A simple example of the peeling algorithm and
the sequence of boxes resulting out of it is illustrated in
Figure 1. Here we have a binary outcome Y and two metric
covariates X, and X, which are sampled from uniform
distributions between —10 and 10. There is one obvious box
in which the outcome is more frequent; therefore the mean
outcome (0/1 coded) is much higher than for the rest of the
data. To improve the appearance, « is chosen very high in this
example at 0.25.

In the left upper panel, only the initial box B, containing
all data points and the four candidate boxes for the first
peeling step are shown. The second and third graphs illustrate
the first two steps of the algorithm with the two subboxes b
and b, peeled of the current box. The fourth one shows the
result of the algorithm which is continued until 3, of 7.5% is
reached, so B, contains at least 7.5% of all observations. It is
also clear to see that the subboxes become smaller with each
step, because the «- and (1—-«)-quantiles refer only to the data
that are included in the current box. In this case, the final box
By is determined as

0.23 < x, < 4.94,
B9 = (7)
~7.64 < x, < 1.05.

2.1.1. The Trajectory. A graphical illustration of the peeling
steps is given by the so-called trajectory. It plots the value
the target function takes at each iterative step against the
corresponding box support. Users can judge a box to be
“optimal” from this trade-off between mean outcome and box
support.

The trajectory for the underlying example of Figure 1 is
plotted in Figure 2 (black dots). What can be observed here is
that the peeling starts with a box having a support of 1 and a
box mean of about 0.2. As it continues, the support decreases
and the target in most of the cases increases. In the current
example, the minimum support 3, was carefully chosen at a
point beyond which the box means do not get much larger
any more so that it would not be advisable to continue peeling
from there. Of course, in practice, it is not that simple, but
the trajectory can still help the user to choose a box with
properties that conform to specific requirements.
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FIGURE 1: Example of a box sequence produced by the peeling algorithm with a = 0.25 and 3, = 0.075 for two covariates X, and X, and a

binary outcome Y.

2.1.2. Multiple Peeling. The trajectory can be unstable since
it depends on metaparameters such as « and on random
noise in the data. Different « values can lead to different
trajectories, suggesting subboxes which may dominate each
other in terms of support and mean outcome. A box B, is
said to be dominated by another box B,, if

f(yilxiEBn)Sf(yi|xi€Bm)’ ﬁn<ﬁm (8)

or

f(yilxieBn)<f(yi|xi€Bm)’ ﬁngﬁm' (9)

There are two options to perform multiple peeling. First,
varying « values can be used, and, second, PRIM can be
applied to bootstrapped samples of the data, which is called
“bumping” (cf. [7, 8]). Generally, the best results can be
achieved with a combination of both options. In this strategy,
there are two metaparameters s and &, with the former being
the number of bootstrap samples and the latter being a vector
that describes a sequence of different peeling fractions. The
parameters have to be determined by the user who now has

to deal with a trade-off between computational effort and
goodness of the result.

Example 2. An example for multiple trajectories is added in
Figure 2 (coloured dots). The same data was used as in Fig-
ure 1. The metaparameters were set toa = (0.01, 0.05, 0.1, 0.2)
and s = 10, so, for the different a-fractions, peeling was
applied once on the original data and 10 times on different
bootstrap samples from it. After removing all dominated
boxes that would not be chosen as a final box anyway, one
gets a lucid figure (red dots) with only the relevant boxes.
Again, the trajectory has an obvious peak at about 3, = 0.075.
Dominated boxes of the multiple trajectory are illustrated by
small blue dots.

2.2. Pasting. The so called bottom-up pasting is principally
the complement of the peeling strategy. Starting with a box
determined by peeling, this algorithm sequentially enlarges
the box beyond its boundaries again. This way, the support
increases and the target function could possibly increase too.
Both are rated to be beneficial as PRIM is meant to find
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FIGURE 2: Singular trajectory for « = 0.25 and multiple trajectory
for « = (0.01,0.05,0.1,0.2) and s = 10 bootstraps per a-fraction for
sampled data.

subgroups of sufficient size with increased average outcome.
Such improvements by pasting are possible, because, during
the peeling steps, decisions on boundaries are only locally
optimal and conditional on the previous peeling steps. The
algorithm does not look ahead on subsequent peeling steps.
Therefore, the additive pasting procedure tries to correct on
this shortcoming in order to approach a solution that is more
globally optimal.

In pasting, the candidate subboxes to join the current one
are defined equivalently to peeling. Another metaparameter
Opasie defines the proportion of observations the subboxes
contain. This value can differ from the « value that is used
for the peeling. The box that maximizes the target function
is finally chosen. Pasting continues until the target function
on the data in the box decreases again (cf. [5]). Alternatively,
pasting can be continued some steps after a possible decline
to overcome local minima.

2.3. Covering. If one seeks to identify several subgroups, a
strategy called “covering” is used. Observations included in
abox are removed from the data set to make PRIM search for
another one in the remaining parts. The procedure continues
until some stop criterion is reached; for example, both values
or either value of the target function and the support of boxes
does not exceed some threshold. In addition to these criteria,
it is also possible to define a maximum number of boxes. This
is useful in cases when the user knows how many subgroups
he wants to search for.

The final output is a set of boxes {BY, ..., B®} which can
be pooled to a larger region R = U;il BY, if that is useful
for the given situation. If the sequence of boxes is used for
prediction, it can be seen as a “decision list” (cf. [9]). In this
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case, the prediction for a new observation would always be
the box mean of the first box in the list it belongs to.

Example 3. A simple illustration of covering is pictured in
Figure 3. The data here are similar to those in Figure 1 with
the difference that now there are obviously two regions with
an increased mean outcome y. In this case, boxes with a
minimum target of 0.9 having at least support of 0.01 were

sought: a was set to 5% and o, was set to 1%.

2.4. User Involvement. An important factor that must not
be underestimated in the application of PRIM is the user
involvement. There are many possibilities to influence the
method and, therefore, the final result. One of them is the
definition of the metaparameters « and f3, (and s). Another
is the decision on a box which is made by the user by looking
at the (multiple) trajectory. The latter may be guided by
prior knowledge about the size or the target of the sought
subset. Furthermore, the user can decide on pasting steps, for
instance, with the choice of a,, .. The number of boxes to be
found in the data is also determined by the user.

Any o and o, values can lead to a result that best
suits an applicant’s requirements. In that sense, they cannot
serve as tuning parameters that could be optimized to find a
“best” solution. Accordingly, it has been suggested in [5] to
apply sets of alpha values and to use cross-validation to avoid
overfitting issues.

An advantage of the strong user involvement is that
it supports deliberate decision-making and leads to results
that meet the users’ needs. In addition, a user needs to
make himself familiar with the given data situation and the
interim results of the algorithm which may provide further
information. An apparent disadvantage is that there needs to
be sensible prior knowledge. Too much user involvement may
also increase the risk of overfitting the algorithm to the given
data.

3. Classification and Regression Trees (CART)

CART pursues goals similar to those of PRIM; that is, it
also defines subsets in the data but uses a different strategy
to do so. CART is a machine learning approach which fits
prediction models to given data as it recursively splits the data
into two disjoint parts by minimizing the heterogeneity of the
outcome within each part. This heterogeneity is quantified by
some impurity measure. The basic steps of the algorithm can
be described as a short pseudocode as done in [10]:

(1) Start at the root node (whole data set).

(2) For all covariates X i find the split S that minimizes
the sum of the impurities in the two child nodes and
choose that split S* which gives the minimum over all
X;andS.

(3) Stop, if a given stopping criterion is reached; other-
wise, run step 2 for each child node.

Classification trees are used for nominally scaled out-
comes y that take k different values. Here, the impurity mea-
sure is the Gini index. Regression trees are fit to quantitative
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FIGURE 3: Illustration of the covering strategy for a binary outcome Y and two covariates X, and X,.

outcomes y. The impurity is measured by the residual sum of
squares in that case.

The resulting model can be illustrated by a decision
tree. A corresponding example is given for the application
study in Figure 8. The output is similar to PRIM, since it
defines subsets, which explains the trees’ popularity for sub-
group identification. CART is implemented by the function
rpart () in the R-package rpart (cf. [11]).

4. Comparison of PRIM and CART

4.1. Simulation Study

4.1.1. Study Design. The following simulation study was per-
formed to compare PRIM with the alternative method CART
with respect to their performance in identifying subgroups.
In this section, the basic structure of such studies is described
and possible factors that are able to influence the results are
mentioned. Some factors that can potentially be modified
between the simulation runs are the number of observations
(n), the number of covariates (p), the scaling of covariates,
the covariance of covariates (covariance matrix %), the scale
of the outcome, the number of existent subgroups, the
complexity of subgroups, the position of subgroups, and the
signal-to-noise ratio (effect size versus random variability).

For this study, different numbers of simulated observa-
tions (n = {250,500, 1000}) were sampled and for each of
these observations six quantitative input variables X, ..., X,
were generated from uniform distributions:

ii.d. .
X; ~U(-L1) j=1...,6 (10)

In this scenario, X, ..., X4 are independent from each other,
which means that no covariance structure is assumed.

Boxes as shown in Figure 4 are defined by X; and X, only.
The quantitative outcome Y, which should be distributed

differently within and outside the boxes, is generated by a
random sample from a normal distribution, so that

Y, ~N(w,1) i=1,...,n (11)

with

8 observation i lies inside a box
Wi = (12)
0 else.

As shown in Figure 4, one or two boxes are used with different
sizes. If there are two of them, they are equally sized with no
overlapping, while same § is applied in both. Their support
takes the values 5%, 20%, 40%, 2 - 5%, 2 - 10%, and 2 - 20%,
respectively. To explore the influence of the box’s position
on the results, situations were included with one/two box(es)
lying at the margin of the distribution of the covariates. The
higher the value of § chosen, the larger the effect of the
subgroup by a constant random noise over the groups (here,
0” = 1). So & determines the signal-to-noise ratio which in
this case is /0 = §. The simulations are performed for every
d in the sequence {0,0.33,0.67,1,1.33,1.67,2,2.33,2.67, 3}
and each simulation is repeated 250 times.

4.1.2. Evaluation Criteria. To measure the ability of an algo-
rithm to identify given subgroups, a criterion for the simi-
larity of two classifications is needed. With this, it is possible
to quantify the goodness of a prediction, made by one of the
algorithms, by comparing its classification to the true one of
the simulated data. This can be done via a cross table such
as Table 1. Of primary interest is how many observations are
allocated correctly (TP and TN) compared to those incor-
rectly allocated (FN and FP).
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FIGURE 4: Designs of the simulations.

TaBLE 1: Cross table of true against predicted classification (1 =
observation belongs to the subgroup according to the corresponding
classification; 0 = otherwise).

Classification of the algorithm
1 0
True positives (TP)

True 1
Classification 0

False negatives (FN)

False positives (FP) True negatives (TN)

Two criteria that address this issue are sensitivity and
specificity. These can be calculated as follows:

TP
Sens = ——,
TP + FN
(13)
S TN
eC= —m—m.
P IN T FP

Sensitivity, which is also called true positive rate, describes
the proportion of positive observations (i.e., belonging to
the true subgroup) that are correctly identified as part of a
subgroup by the algorithm. Specificity, or true negative rate,
describes the proportion of negative observations correctly
classified as not belonging to a subgroup. Both measurements
have a range from 0 to 1 and they are only useful if they are
considered together.

A closely related criterion that combines the sensitivity
and specificity is Youden’s J statistic (cf. [12]) which can be
calculated as

J = Sens + Spec — 1. (14)

This statistic weights sensitivity and specificity equally and
is normalized so that it takes the value 0, on average, if the
classification by the algorithm is completely random. It does
not depend on the support size of the predicted subgroup.
The value 1 in this case is taken if the two classifications are

exactly the same. Due to this, Youden’s J statistic is a suitable
criterion to compare the agreement between the predicted
classification and the true classification.

The estimation of sensitivity and specificity may be biased
if performed on the training data. According to that, test data
consisting of another 10,000 observations was drawn from
the same data generating process in order to obtain unbiased
estimates of sufficient precision [13].

It should be noted that all of the above-mentioned statis-
tics are commonly used for the evaluation of diagnostic tests.
However, they can appropriately be applied in the context
of the identification of subgroups, as done, for instance, in
[14].

4.1.3. Settings of the Applied Functions. In this study, three
different methods for the identification of subgroups were
compared to each other, with two of them being variations
of PRIM.

Asdescribed in Section 2.4, the user involvement of PRIM
plays an important part which means that it is not possible
to specify general rules for the application of PRIM. For
that reason, two different approaches were followed, with
the first one reflecting a user involvement that is optimal
regarding the support sizes. This implies that the user knows
the true subgroup sizes, which is an overoptimistic scenario
in most cases. Careful investigation of trajectories could at
least help to approximate this optimal result. In summary, this
algorithm seeks for one or two boxes by maximizing the box
mean over all boxes having at least the true support size.

The second variation of PRIM was to seek for boxes with
the largest possible support for a given minimum box mean of
Sinin = 2. Since the true box mean § ranges from 0 to 3, there
are situations included in which the simulated user underes-
timates or overestimates the true box mean. This approach
should represent a rather “bad” or naive user involve-
ment, because the user always sticks to the same assumed
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fmin independent of the current situation (overall mean,
trajectory, etc.).

These two approaches shall represent the extremes of
possible user involvement. In reality, results would probably
lie somewhere in between. o was set to {0.01,0.02,...,0.5}
each time. Bootstrap sampling was not performed to limit the
computational effort needed and due to our experience that it
is more important to process several « values instead. In both
cases, the maximum number of boxes determined by PRIM
was restricted to the actual number of true subgroups.

The third method is a version of CART. The R-function
rpart() from the package rpart (cf. [11]) was used to
implement CART. Since the outcome used was continuous,
regression trees were fitted. When there are one or two true
subgroups, the leaf with the highest or the two leafs with
the highest mean outcome determine(s) the estimated sub-
group(s). For a fair comparison and because the maximum
number of boxes found by PRIM is restricted, the maximum
depth of the trees in CART was also limited. This stops
them from becoming unnecessarily complex. Therefore, the
maximum depth of a tree (corresponding to the function
parameter maxdepth) was set to 4 and 8 as required in the
case of one or two true subsets, respectively. In the cases with
the boxes lying at the margins, this parameter was set to 2 or 4.

A second version of CART was also implemented, where
the maximum depth of the trees was not limited substantially
with a value of 30. After the tree was fitted, it was pruned to
minimize its cross-validated prediction error. This procedure
is intended to mimic what applicants usually do.

The minimum support beta_min was set to 7/n for the
second PRIM version (PRIM (fi, = 2)), since the default
size of a leaf in rpart () is at least 7 observations. In the first
version (PRIM (opt. ), beta_min is already determined by
the true support size.

4.1.4. Results

One True Subgroup. Figure 5 plots the observed median
sensitivity, specificity, and Youden’s J statistic (14) of each
method against the effect size § for different support sizes in
the case of a single true subgroup and an overall sample size of
n = 250. Corresponding interquartile ranges of the 250 runs
are shown by (dashed) error bars.

For a small centered subgroup with 8 = 5%, the specificity
of all methods is high. This is easy to accomplish in such cases,
even for algorithms that detect no subgroup, that is, miss the
true subgroup. Therefore, the results for sensitivity should be
focused upon. For each method, except for CART (pruned),
the median sensitivity increases with rising effect sizes 6.
PRIM (opt. ) benefits from the correct prior knowledge
about the actual size of the subgroup and performs best. For
0 > 1.5 PRIM (f,,;, = 2) is on a similar level. Similar results
on the sensitivity are observed for § = 20% and 8 = 40%
with the important difference that CART shows a superior
performance apart from small effect sizes. For PRIM ( f,i, =
2), there is a noticeable decrease of specificity for § > 2. The
latter can be explained by the tendency of this method to
select too big subgroups if the true subgroup has an actual
mean that is larger than the one searched for. For PRIM (opt.

B), the specificity for small § is slightly lower. The reason is
that it is forced by the input parameters to choose a subgroup
with at least the true support size. All methods show a better
performance for subgroups lying at the margin of the input
space for given 5 of 5%. In this case, both CART methods
seem to perform better than PRIM.

Table 2 lists the proportions of runs in which a subgroup
was predicted by the methods. PRIM (opt. ) and CART
(maxdepth), for all combinations of § and the true support
size 3, find a subgroup in 100% of the cases. Even if in fact
there is no subgroup, that is, § = 0, both methods always
predict one. Therefore, the methods show a false positive
rate of 100% in such cases. At least for PRIM (opt. ), this
result is not very surprising, because there was no constraint
regarding the box mean, which makes the algorithm always
find a subgroup with the specified support size. Only the
methods PRIM (f,,;, = 2) and CART (pruned) do not always
predict subgroups, which is why they have low false positive
rates in case that there is no subgroup (8 = 0). The larger the
true subgroup becomes, the more often the methods detect
subgroups with a steeper increase for PRIM. In conjunction
with the results about the sensitivity of methods (cf. Figure 5),
one can conclude that although the methods (almost) always
find something, it is not until increased effect sizes that these
findings show some concordance to the true subgroup.

So far, the case with one true subgroup and n = 250
observations has been presented. Results for n = 500 and
n = 1000 are similar and are therefore shown in Appendix A.
In general, all methods predict the subgroups better than
for less observations, with CART showing the strongest
improvement.

Two True Subgroups. Starting with the lowest sample size
(n = 250), the observed medians and interquartile ranges
of the corresponding sensitivity, specificity, and Youden’s ]
statistic are illustrated in Figure 6. The proportions of runs
with predicted subgroups are also listed in Table 2.

Independent of the effect size and for rising support of
the true boxes, PRIM (opt. 3) again benefits from the correct
specification of the box sizes searched for and is always among
the best performing approaches in terms of sensitivity, if the
subgroups do not lie at the margin. PRIM (f,;, = 2) can only
catch up for higher values of the effect size, that is, when its
specification about the searched effect becomes correct, too.
The performance of CART decreases with increasing support
sizes. This deficiency is possibly because of the well-known
fact that the algorithm often fails to find a useful first split
in chessboard-like “XOR” problems (cf. [15]). Switching the
positions of the subgroups towards the margin of the input
space makes both CART versions clearly improve. Referring
to specificity, all methods show very good performances,
while decreased values can be observed for PRIM (opt. 3) and
PRIM (fnin = 2) with low and high effect sizes, respectively.
Similar results for increased sample sizes of n = 500 and
n = 1000 are given in Appendix B. CART shows again the
most pronounced improvements, here.

4.2. Application to Clinical Data. In this section, the appli-
cation of PRIM and CART is illustrated using a real data
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FIGURE 5: Medians and interquartile ranges of the sensitivities, specificities, and Youden’s J statistics of all simulation runs with n = 250

observations and one true subgroup.

example. The data set PimaIndiansDiabetes2 has been
taken from the R-package mlbench (cf. [16]). It contains
768 observations from individuals that were tested “positive”
or “negative” for diabetes. The data are from women with
a minimum age of 21 and a Pima Indian heritage. From
the 768 women, 268 (35%) tested positive and 500 (65%)
tested negative. In addition to the outcome variable, the data
set contains 8 quantitative covariates: pregnant (number of
pregnancies), glucose (plasma glucose concentration (mea-
sured by a glucose tolerance test)), pressure (diastolic blood
pressure [mmHg]), triceps (triceps skin fold thickness
[mm]), insulin (2-hour serum insulin [mu U/mL]), mass
(body mass index), pedigree (diabetes pedigree function),
and age (age in years).

The aim of the analysis is to identify a possible association
between the covariates and the occurrence of a positive test
result which can be addressed by finding subgroups with
proportionally many cases of diabetes.

There are some missing values that need to be handled
in the analysis methods. Most of them can be found in

the variables triceps and insulin with absolute (relative)
frequencies of 227 (30%) and 374 (49%). Out of all 768
observations, there are only 392 (51%) complete cases, which
draws the appropriateness of complete case analysis into
question in this case.

The data are illustrated in Figure 7 by pairwise scatter
plots of all covariates. This figure gives a first impression
of how the variables are distributed and their pairwise
correlations. For example, there appears to be a quite strong
positive correlation between triceps and mass along with
some other medium and weak correlations. Relations to the
outcome can be derived too and point at potential candidates
for a splitting criterion. It seems that women with high
glucose and mass (BMI) values are more likely to have
diabetes.

A classification tree (cf. Section 3) was fit to the data using
the function rpart () with its default settings. The tree was
pruned according to the I-SE rule (cf. [17]). The resulting
decision tree is illustrated in Figure 8. Missing values are
handled by CART internally via surrogate splits (cf. [18]).
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observations and two true subgroups.

The suggestion from Figure 7 that the variables glucose and
mass can split the data well is confirmed by the tree, where
these variables are also used for splitting rules. age also has
predictive value in this model.

Since the aim is to find a subgroup with proportionally
many cases of diabetes, the leaf with the highest mean
outcome can be seen as this subgroup by CART. So the high
risk group defined by CART, which can also be seen as a box
B gt containing 92 (12%) observations, has a mean outcome
of 0.87 and is defined as

glucose > 158,
X € Bearr = 15)
mass > 30.

PRIM was applied once using singular peeling without
bootstrapping and & = 0.05 and once using multiple peeling
with s = 10 bootstrap samples and the a-vector (0.01,
0.02,...,0.5). It can also handle missing values in the covari-
ates if applied as suggested by Friedman and Fisher [5]. In

this case, all missing values in one covariate are treated as a
category, so that in each peeling and pasting step this whole
category can be peeled or pasted from the current box. This
way, the algorithm tends to use surrogate variables instead
of variables with many missing values. If the category that
indicates missing values is used for the box definition, this
suggests that the data may not be missing completely at
random.

The trajectories are shown in Figure 9, where for multiple
peeling all dominated boxes were removed. Multiple peeling
seems to provide only small improvement over the singular
version here. Both trajectories are quite smooth, such that
they do not suggest a definite box for selection. A user would
have to make a deliberate decision based on subject specific
knowledge. This flexibility is a desirable property of PRIM
and is seldom given by other methods.

If the aim was, for instance, to search for a subgroup
with a proportion of positive tested women of at least 80%
and maximum support (by using the multiple trajectory), the
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TABLE 2: Proportions of cases with a predicted subgroup when using the methods PRIM (f,,;, = 2) and CART (pruned) for given n = 250
observations and one or two true subgroups. Results for the methods PRIM (opt. ) and CART (maxdepth) are not shown here, because their

proportions were 1 for each 5 and d.

B Method 0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3
50 PRIM (foin = 2) 0.05 0.07 0.14 0.32 0.55 0.76 0.9 0.98 1 1
CART (pruned) 0.03 0.04 0.04 0.05 0.18 0.18 0.2 0.27 0.37 0.47
. PRIM (fpin = 2) 0.08 0.08 0.09 0.21 0.4 0.69 0.86 0.93 0.98 0.99
5% (margin)
CART (pruned) 0.08 0.06 0.08 0.13 0.41 0.58 0.69 0.77 0.86 0.92
0% PRIM (f, ;, = 2) 0.1 0.2 0.58 0.9 0.99 1 1 1 1 1
CART (pruned) 0.04 0.06 0.15 0.41 0.85 0.97 1 1 1 1
0% PRIM (f,,;, = 2) 0.11 034 082 1 1 1 1 1 1 1
CART (pruned) 0.08 0.1 0.35 0.91 1 1 1 1 1 1
2% 5% PRIM (fiin = 2) 0.08 0.08 0.14 0.36 0.63 0.86 0.97 1 1 1
CART(pruned) 0.17 0.19 0.06 0.08 0.11 0.16 0.24 0.31 0.4 0.54
2 x 5% (margin) PRIM (foin = 2) 0.05 0.07 0.11 0.25 0.5 0.82 0.97 1 1 1
CART (pruned) 0.2 0.21 0.08 0.13 0.3 0.61 0.8 0.9 0.95 0.97
5 % 10% PRIM (f,;, =2)  0.06 0.15 0.34 0.71 0.93 1 1 1 1 1
CART (pruned) 0.14 0.13 0.03 0.08 0.25 0.56 0.76 0.86 0.92 0.96
2% 20% PRIM (fopin = 2) 0.08 0.24 0.67 0.97 1 1 1 1 1 1
CART (pruned) 0.16 0.17 0.08 0.18 0.42 0.69 0.81 0.89 0.92 0.96

resulting box B! which can be seen as a high risk group
would be defined as

glucose > 129, triceps > 15,

W 126 < insulin < 544,
xe B = (16)

mass > 30,mass # missing,

age > 24.

Again, the variables glucose, mass (BMI), and age,
which also played an important role in the CART model,
are used. In addition, the variables triceps and insulin
define further box limits. Concerning BMI, missing values are
excluded from the box. This could indicate a relation between
the probability of a value to be missing and the outcome.

By this simple box definition, the data can be divided
into a subgroup with a very high mean outcome (0.8)
containing 140 (18%) observations and a group that contains
the remainder of observations with a relatively small mean
(0.25). With the covering procedure, even more boxes can be
sought. This would lead to the identification of three more
boxes with means 0.81, 0.83, and 0.83 containing 37 (5%), 29
(4%), and 29 (4%) observations, respectively. The remaining
533 observations have a proportion of positive diabetes tests
of approximately 15%.

5. An Extension of PRIM for Survival Data

As described above, the original PRIM algorithm can only
handle quantitative and binary (0/1 coded) outcomes. A
useful extension, especially in the medical domain, is to
enable PRIM to handle censored survival outcomes. In such
cases, every observation provides a survival time t; and an
indicator §; taking the value 1 if the event occurred at ¢;

and 0 if the observation is censored. A suggested extension
of PRIM is to use the hazard rate as the target function for
maximization.

Y
=L
Qim ki

Under the assumption of time-constant risks, subgroups
with different survival can be sought with this target function.

ft.90)= 17)

Application Example. To illustrate the application of PRIM
on censored survival data, the data set “Whitehall 1”7 from
[19] was used. It is from a prospective, cross-sectional cohort
study of 17260 male British Civil Servants employed in
London. The aim of this study was to examine the influence
of some baseline variables on the risk of dying due to a
coronary heart disease (CHD). Therefore, the time to death
from CHD was measured for the participants as a censored
survival time. Additionally, the following variables were
measured: cigs (daily cigarette consumption), map (mean
arterial pressure), age (age (years)), ht (height (cm)), wt
(weight (kg)), chol (cholesterol (mmol/L)), and jobgrade
(job grade (nominal)).

To find subgroups with high risk of dying from CHD,
PRIM was applied with the hazard rate as target function
by using multiple peeling with s = 5, « = (0.01, 0.03,0.05,
...,0.31), and B, = 0.01. Since the not dominated boxes of
the multiple trajectory form a smooth curve, the user can
practically choose every box out of these. So the proportion
of box definitions in which a variable is included can be
interpreted as the probability of this variable to define the
subgroup, if the user chooses randomly out of these boxes.

In this data example, we get lower boundaries for the
variables age, map, chol, and cigs in 99%, 80%, 31%, and
17% of the relevant boxes, which indicates that increases in
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group and the number of contained observations are shown.
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FIGURE 9: Trajectories for singular and multiple peeling (after removal of the dominated boxes) on the diabetes data.

those variables are associated with increasing risk of CHD.
This result is similar to the one reported in [20] (p. 142), where
the authors used fractional polynomials with logistic regres-
sion to model the 10-year survival rate and they concluded
that increases in age, cigarette consumption, cholesterol,
body weight, and mean arterial pressure are associated with
increasing risk of CHD and the opposite is true for height.

6. Discussion and Conclusion

PRIM, as described in Section 2, is a very flexible tool for
the identification of areas in the data which show increased
or decreased outcome values. Besides PRIM, there are other
methods pursuing similar goals with different strategies, such
as CART.

In a simulation study, both methods showed strengths
and weaknesses. PRIM seemed to be the better choice in
several rather complex data settings with small subgroups,
few observations, and small effect sizes. In all other cases,
CART was a competitive alternative and showed advantages
in rather simple settings. This differential behaviour makes it
difficult to give a universal rule about which method should
be preferred, especially as the complexity of the problem is
usually unknown to the applicant.

PRIM has high user involvement (see Section 2.4), which
can strongly influence the goodness of the result. Misspec-
ification of the subgroup properties, that is, mean outcome
and size, can substantially decrease the performance. This
also became clear in the simulation study, where two different
versions of PRIM were applied simulating different acting
users. These two versions in some cases (especially in simpler
data settings) differed strongly. This fact underlines the
importance of a close interaction between a user and the

PRIM algorithm, for example, by looking at the trajectories
to obtain a suitable result.

A real data example showed how these two methods
can be applied for subgroup identification. Here, both meth-
ods came to a similar result. It again became clear that
PRIM can be flexibly tuned by the users concerning their
needs, whereas CART, although simpler to use, is rather
static.

R-Implementation. All features of PRIM described in this
paper and some more are implemented in the R-package
PRIM, which is available at GitHub (https://github.com/a090/
PRIM) together with a manual documenting its functions.
The package contains additional functions for graphical diag-
nostics and other features described in [5].

Appendix

A. Further Simulation Results with
One True Subgroup

See Figures 10 and 11 and Tables 3 and 4.

B. Further Simulation Results with
Two True Subgroups

See Figures 12 and 13 and Tables 5 and 6.
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FIGURE 10: Medians and interquartile ranges of the sensitivities, specificities, and Youden’s J statistics of all simulation runs with n = 500

observations and one true subgroup.

TABLE 3: Proportions of cases with predicted subgroups when using one of the methods for n = 500 observations and one true subgroup.

B Method 0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3

PRIM (fpin = 2) 0.1 0.13 0.28 0.59 0.86 0.99 1 1 1 1

50 PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.04 0.04 0.05 0.16 0.22 0.34 0.58 0.8 0.9 0.94

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1

PRIM (fpin = 2) 0.08 0.11 0.16 0.35 0.64 0.93 1 1 1 1

5% (margin) PRIM (opt. f3) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.05 0.04 0.1 0.39 0.69 0.88 0.98 0.98 1 1

CART (maxdepth) 0.98 0.99 0.99 0.99 1 1 1 1 1 1

PRIM (foin = 2) 0.1 0.34 0.78 0.99 1 1 1 1 1 1

0% PRIM (opt. f) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.04 0.06 0.23 0.92 1 1 1 1 1 1

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1

PRIM (£, = 2) 0.1 0.46 0.97 1 1 1 1 1 1 1

40% PRIM (opt. ﬁ) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.06 0.13 0.85 1 1 1 1 1 1 1

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1
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TABLE 4: Proportions of cases with predicted subgroups when using one of the methods for n = 1000 observations and one true subgroup.

B Method 0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3
PRIM (fin = 2) 0.2 0.24 0.43 0.86 0.98 1 1 1 1 1

5% PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.04 0.04 0.04 0.19 0.61 0.87 0.97 1 1 1

CART (maxdepth) 0.38 0.38 0.48 0.66 0.84 0.94 0.97 0.98 1 1

PRIM (f,;, = 2) 0.19 0.21 0.34 0.72 0.96 1 1 1 1 1

506 (margin) PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.07 0.11 0.31 0.82 0.99 1 1 1 1 1

CART (maxdepth) 0.31 0.44 0.72 0.94 1 1 1 1 1 1

PRIM (f,, = 2) 0.13 0.5 0.97 1 1 1 1 1 1 1

0% PRIM (opt. 8) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.06 0.14 0.85 1 1 1 1 1 1 1

CART (maxdepth) 0.42 0.66 0.99 1 1 1 1 1 1 1

PRIM (f,;, = 2) 0.12 0.63 1 1 1 1 1 1 1 1

20% PRIM (opt. 8) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.07 0.36 1 1 1 1 1 1 1 1

CART (maxdepth) 0.42 0.9 1 1 1 1 1 1 1 1
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TABLE 5: Proportions of cases with predicted subgroups when using one of the methods for n = 500 observations and two true subgroups.

B Method 0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3

PRIM (fin = 2) 0.14 0.18 0.32 0.6 0.9 0.98 1 1 1 1

5% 5% PRIM (opt. 8) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.08 0.06 0.2 0.16 0.19 0.42 0.64 0.82 0.94 0.98

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1

PRIM (f,, = 2) 01 0.12 02 048 077 098 1 1 1 1

2 x 5% (margin) PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.04 0.04 0.21 0.4 0.74 0.94 1 1 1 1

CART (maxdepth) 0.99 0.99 1 1 1 1 1 1 1 1

PRIM (f,;, = 2) 0.1 018 048  0.86 1 1 1 1 1 1

5 % 10% PRIM (opt. ) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.05 0.07 0.19 0.37 0.74 0.94 0.99 1 1 1

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1

PRIM (f,,, = 2) 01 033 086 1 1 1 1 1 1 1

2 % 20% PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1

CART (pruned) 0.04 0.04 0.24 0.59 0.87 0.98 0.99 1 1 1

CART (maxdepth) 1 1 1 1 1 1 1 1 1 1
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observations and two true subgroups.

TABLE 6: Proportions of cases with predicted subgroups when using one of the methods for n = 1000 observations and two true subgroups.

B Method 0 0.33 0.67 1 133 1.67 2 233 2.67 3
PRIM (f,;, = 2) 0.19 0.25 0.46 0.82 0.98 1 1 1 1 1

5% 5% PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.11 0.04 0.08 0.23 0.71 0.98 1 1 1 1

CART (maxdepth) 0.37 0.38 0.53 0.74 0.92 0.98 1 1 1 1

PRIM (f,;, = 2) 0.15 0.22 0.34 0.71 0.96 1 1 1 1 1

2 x 5% (margin) PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.1 0.08 0.3 0.86 0.99 1 1 1 1 1

CART (maxdepth) 0.36 0.46 0.82 0.97 1 1 1 1 1 1

PRIM (f,;, = 2) 0.14 0.29 0.75 0.97 1 1 1 1 1 1

5% 10% PRIM (opt. B) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.11 0.06 0.26 0.88 1 1 1 1 1 1

CART (maxdepth) 0.37 0.46 0.8 0.97 1 1 1 1 1 1

PRIM (f,;, = 2) 0.16 0.56 0.94 1 1 1 1 1 1 1

5 % 20% PRIM (opt. ) 1 1 1 1 1 1 1 1 1 1
CART (pruned) 0.08 0.05 05 0.93 1 1 1 1 1 1

CART (maxdepth) 0.36 0.44 0.78 0.96 1 1 1 1 1 1
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