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Abstract. In this work, we revisit the theory of stochastic
electromagnetic fields using exterior differential forms. We
present a short overview as well as a brief introduction to the
application of differential forms in electromagnetic theory.
Within the framework of exterior calculus we derive equa-
tions for the second order moments, describing stochastic
electromagnetic fields. Since the resulting objects are con-
tinuous quantities in space, a discretization scheme based on
the Method of Moments (MoM) is introduced for numeri-
cal treatment. The MoM is applied in such a way, that the
notation of exterior calculus is maintained while we still ar-
rive at the same set of algebraic equations as obtained for the
case of formulating the theory using the traditional notation
of vector calculus. We conclude with an analytic calculation
of the radiated electric field of two Hertzian dipole, excited
by uncorrelated random currents.

1 Introduction

The most widely used concept for the formulation of
Maxwell’s equations is the vector field approach. Even
though vector calculus became a quasi-standard for engi-
neering applications, other formulations like tensor calcu-
lus, quaternions and differential forms could provide deeper
insight into the underlying physics (Warnick and Russer,
2014). The theoretic treatment for stochastic electromagnetic
fields, originating from noise sources with Gaussian prob-
ability distribution, has been given by Russer and Russer
(2015), using the traditional notation of vector calculus.

Characterization and modeling of stationary stochastic
electromagnetic fields using field correlations has been ex-
panded to the transmission line matrix method in Russer
et al. (2016), to noisy cyclostationary fields (Russer et al.,
2015b, c), and it has been used for source localization (Gor-
bunova et al., 2013; Baev et al., 2013; Kuznetsov et al.,

2016) and imaging of radiated electromagnetic interference
(EMI) sources (Russer and Russer, 2011b). Free space elec-
tromagnetic field propagation considering field-field corre-
lations has been addressed in (Gradoni et al., 2015). Near
field measurements for radiated EMI is discussed in (Russer
et al., 2015d), while analysis of measurement data by princi-
pal component analysis, critical for large data sets acquired in
characterizing fields by correlation information, is discussed
in (Arnaut and Obiekezie, 2014; Haider and Russer, 2017).

As in the case of deterministic fields, it can be expected
that differential forms may lead to a better understanding of
stochastic electromagnetic fields. Within this work, we take
advantage of differential form representation for the model-
ing of noisy processes. Noise is an inevitable perturbation in
wireless communication scenarios. While noise is a stochas-
tic process also interfering signals originating from determin-
istic processes may have to be treated as quasi-stochastic sig-
nals due to lack of knowledge or the prohibitive complexity
to model the deterministic process. Accurate noise model-
ing is crucial with respect to electromagnetic compatibility
(EMC), electromagnetic interference (EMI), and signal in-
tegrity (SI) considerations for the design of electronic com-
ponents and systems. A careful modeling of noisy processes
and stochastic electromagnetic fields shows also potential to
improve wireless- and on-chip communication (Nossek et al.,
2013).

2 Differential forms

The calculus of exterior differential forms was introduced by
Élie Cartan (1945), based on previous work from Hermann
Grassmann, who himself introduced the exterior algebra in
(Grassmann and Kannenberg, 1995). The exterior algebra is
based upon the exterior product,

a ∧ b =−b∧ a , (1)
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which is defined in more detail in Russer (2006, p. 631 ff) as
well as in Warnick and Russer (2014, 2006). We begin with
introducing the fundamental elements of the mathematical
framework of exterior calculus. Let A : U ⊆ R3

→ R3 be a
vector field. We consider the line integral of A along a piece-
wise smooth curve C ⊂ U , given by∫
C

A(r) · dr . (2)

The dot-product in Eq. (2) assigns each element of A a differ-
ential for the respective direction in R3. By including these
differentials into the vector field itself, a new quantity is in-
troduced. With the choice of a certain basis in R3, this quan-
tity can be expressed by its coefficients,

A= Ax dx+Ay dy+Az dz . (3)

Using this expression, the integral from Eq. (2) can be rewrit-
ten as∫
C

A . (4)

The quantityA is called differential form. It is of degree one,
i.e. it can be integrated over a curve C, which is a function
possessing one degree of freedom. Differential forms of de-
gree two and three are introduced in the same way, where
a two-form is a quantity which can be integrated over area,
while a three-form is integrated over volume. For the defi-
nition of two- and three-forms we make use of the exterior
product, shown in Eq. (1). The exterior product accounts for
the orientation of a surface in a natural way, when we in-
tegrate a two-form over an area. Two-forms, often referred
to as bivectors (Lindell, 2004), are themselves dual to a cor-
responding one-form. This duality is reflected by means of
the Hodge star operator ?. One can say that the star operator
takes a differential form and converts it to a new differential
form consisting of the differentials missing in the old form
(Warnick and Russer, 2014). The action of the Hodge dual
for one-forms and two-forms is given by

?dx = dy ∧ dz ? dy ∧ dz= dx , (5)
?dy = dz∧ dx ? dz∧ dx = dy , (6)
?dz= dx ∧ dy ? dx ∧ dy = dz , (7)

and for the three- and zero-form by

?dx ∧ dy ∧ dz= 1 . (8)

A one-form is naturally dual to a vector in R3. As long as
Cartesian coordinates are used, the components of the dual
vector are just given by the coefficients of the respective
differential form. This duality relation changes, for differ-
ent coordinate systems. We see that Eq. (4) keeps its form,
irrespective of the considered coordinate system. Only the

components of the dual vectors must be evaluated for each
coordinate system separately, if a representation by compo-
nents is needed. When considering electromagnetic fields,
the notation becomes completely independent of the choice
of a specific coordinate system, an advantage of differential
forms over vectors. Furthermore, Warnick and Russer (2014)
presented a very intuitive way for visualizing one-, two- and
three-forms.

Maxwell’s equations are often given in terms of differen-
tial equations, incorporating “curl” and “div” operators in
traditional vector calculus notation. This representation can
be generalized to differential forms, by introducing the exte-
rior differential operator “d”. The exterior differential oper-
ator acting on an n-form A yields a new (n+ 1)-form, rep-
resenting the spatial variations of A. In a three-dimensional
Cartesian coordinate system, the exterior derivative operator
has the representation,

d=
(
∂

∂x
dx+

∂

∂y
dy+

∂

∂z
dz
)
∧ , (9)

where the differentials of the operator are connected with
those of the differential form by the exterior product, while
the partial derivatives act on the respective coefficients.

With the framework presented so far, we can postulate
Maxwell’s equations in a very general and coordinate inde-
pendent way, starting with Gauss’ law, which relates an elec-
tric displacement field D to a charge density Q. The charge
density Q is represented by a form of degree three, since
it is a quantity which can be integrated over volume. We
call Q closed, since dQ= 0. This fact can be easily verified
by using Eqs. (1) and (9). Poincaré’s lemma (Lang, 1999,
p. 137 ff), then ensures the existence of a two-form D, such
that dD =Q. By this, Gauss’ law is a direct consequence
of how we describe fields by differential forms. Altogether,
time harmonic Maxwell’s equations expressed using differ-
ential forms are given by

dE =−jωB , (10)
dH= J + jωD , (11)
dD =Q , (12)
dB = 0 . (13)

Compared to vector calculus notation, we do not have
the “div” and “curl” operators within Maxwell’s equations.
Hence, we unified their form by introducing exterior calcu-
lus to electromagnetics.

3 Stochastic electromagnetic fields

As pointed out by Russer and Russer (2015), noise has to be
modeled as a stochastic electromagnetic field. Under the as-
sumption that the considered fields can be assumed as Gaus-
sian stationary random processes, it suffices to focus on the
first and second order moments (Russer and Russer, 2015).

Adv. Radio Sci., 15, 21–28, 2017 www.adv-radio-sci.net/15/21/2017/



M. Haider and J. A. Russer: Differential form representation 23

The first order moment, i.e. the mean, can be set to zero
without loss of generality. The second order moments are
described by auto- and cross-correlation spectra. Consider
a random current density J representing the source of a
stochastic electromagnetic field. We obtain the electric field
E , excited from J by the integral

E =
∫
V ′

G ∧J ′ , (14)

with a suitable Green’s double one-form G (Russer, 2006,
p. 129). The Green’s double one-form relates the source cur-
rent J ′ in primed coordinates, i.e. the domain where J ′ is
non-vanishing, to the electric field E in the observation do-
main (Warnick and Arnold, 1996). The integral is extended
over the complete volume of the source domain in primed
coordinates. In order to represent the second order moments
of the electric field E and source current J , we define auto-
and cross-correlation functions of random signals {si}Ni=1 in
time-domain by

cij (τ )=

∞∫
−∞

si (t) sj (t − τ) dt . (15)

We call cii (τ ) auto-correlation function for i = j and cross-
correlation function for i 6= j . It should be pointed out here,
that a stationary random process is not square integrable
over time in general. Therefore, one needs to introduce time-
windowed quantities in order to properly define frequency
domain variables by Fourier transform. We treat each spa-
tial component of ET and JT as the Fourier transform of a
time-windowed stationary random processes with Gaussian
statistics. For a compact notation, subscripts 1 and 2 denote
the dependency on different spatial coordinates, r1 and r2,
while a subscript T indicates time-windowing. The correla-
tion double one-form for the electric field, and the double
two-form for the current density are given by

0E (r1,r2,ω)= lim
T→∞

1
2T

〈
E1T ⊗ E∗2T

〉
, (16)

0J (r1,r2,ω)= lim
T→∞

1
2T

〈
J1T ⊗J ∗2T

〉
, (17)

where the brackets 〈·〉 denote the forming of an ensemble
average, the star superscript ·∗ means complex conjugate,
and ⊗ is an implied tensor product. By inserting Eq. (14)
into Eq. (16), we obtain the correlation double one-form of
the electric field from the correlation double two-form of the
source currents,

0E (r1,r2,ω)=

∫
V ′1

∫
V ′2

G1 ∧0J
(
r ′1,r

′

2,ω
)
∧G∗2 . (18)

Similar results have been obtained in (Russer and Russer,
2015, 2011d, a, c; Russer et al., 2014), however, with tradi-
tional vector calculus notation.

4 Method of moments

The correlation double one-forms and two-forms for the elec-
tric field and the source currents, respectively are continu-
ous in space. In order to enable a numerical treatment of
problems related to stochastic electromagnetic fields, a dis-
cretization scheme has to be introduced. We use the method
of moments (MoM) to transform field problems to network
problems following (Russer and Russer, 2011a; Felsen et al.,
2009; Harrington, 1968). The MoM is based on expanding
an unknown function f into a series of known basis func-
tions {un}Nn=1 with unknown coefficients. The dimension of
the problem needs to be truncated after a finite N ∈ N in or-
der to facilitate numerical evaluation on a computer. The goal
is to establish a linear equation, relating the unknown series
coefficients to known source coefficients. So let f be an un-
known function which is mapped to a known function g by a
linear operator L,

L(f )= g . (19)

By developing f into a series of basis functions {un}Nn=1, we
obtain

N∑
n=1

anL(un)= g . (20)

Note that so far, we did not make any approximations, if
{un}

N
n=1 forms a complete basis. Also the known function

g can be expanded by a sum over a set of so called weighting
functions {wm}Nm=1,

g =

N∑
m=1

bmwm , (21)

where the coefficients bm are obtained by the inner product

bm = 〈wm,g〉 . (22)

After the second series expansion, the final problem reads as

N∑
n=1

an 〈wm,L(un)〉 = 〈wm,g〉 , (23)

for each index m≤N . By summarizing the coefficients
{an}

N
n=1 and {〈wm,g〉 }Nm=1 into vectors, we arrive at our de-

sired system of linear equations, relating unknown coeffi-
cients to source coefficients,
〈w1,L(u1)〉 · · · 〈w1,L(uN )〉
〈w2,L(u1)〉 · · · 〈w2,L(uN )〉

...
. . .

...

〈wN ,L(u1)〉 · · · 〈wN ,L(uN )〉



a1
a2
...

aN

=

〈w1,g〉

〈w2,g〉
...

〈wN ,g〉

 .
(24)
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After addressing some fundamentals of the differential form
representation of the electromagnetic field we proceed to ap-
ply the method of moments as outlined above. First of all, we
need to define a proper inner product for imposing Hilbert
space structure in our solution domain. Let our solution do-
main be U ⊆ R3 and let ω and ν be differential forms of the
same degreeD ∈ {1,2} on U . We define an inner product for
one-forms and two-forms on U by

〈ω,ν〉 =

∫
U

ω∗ ∧ ?ν . (25)

This definition satisfies the requirements for an inner product
(Lang, 1999), as we will verify in the following. Let a,b ∈ C
be constants, and let ω, µ, ν be differential forms of degree
D ∈ {1,2}. Then the following holds,

〈ω+µ,ν〉 =

∫
U

(ω+µ)∗ ∧ ?ν

=

∫
U

ω∗ ∧ ?ν+

∫
U

µ∗ ∧ ?ν , (26)

〈ω,aν〉 =

∫
U

aω∗ ∧ ?ν = a

∫
U

ω∗ ∧ ?ν = a 〈ω,ν〉 , (27)

〈ω,ν〉 =

∫
U

ω∗ ∧ ?ν =

∫
U

ν ∧ ?ω∗ = 〈ν,ω〉∗ . (28)

The last requirement for a valid inner product is that it has
to be a positive semi-definite functional. Since ω is either a
one-form or a two-form, ?ω has exactly the opposite degree.
For showing positive semi-definiteness, we choose ω to be a
one-form, without loss of generality. The Hodge dual ?ω is
therefore given as a two-form, with the same coefficients as
the one-form ω. We proceed by expressing ω by a sum over
its components. Hence, we have

〈ω,ω〉 =

∫
U

ω∗ ∧ ?ω

=

∫
U

(∑
n

ωn dxn

)
∧

(
1
2

∑
i,j

ωij dxi ∧ dxj

)
, (29)

where ωij is an anti-symmetric tensor, i.e. ωij =−ωji . The
coefficients ωij are related to the coefficients ωn, by

ω1 = ω23 =−ω32 , (30)
ω2 = ω31 =−ω13 , (31)
ω3 = ω12 =−ω21 . (32)

as can be seen from Eqs. (5)–(7). For n= i, n= j , or i = j
we do not get any contribution, since dxi∧dxi = 0. There are
only contribution, if n 6= i 6= j holds. Thus, we get

〈ω,ω〉 =

∫
U

(
ω∗1ω23 dx1 ∧ dx2 ∧ dx3

+ω∗2ω13dx2 ∧ dx1 ∧ dx3+ω
∗

3ω12 dx3 ∧ dx1 ∧ dx2
)
,

=

∫
U

(
|ω1|

2
+ |ω2|

2
+ |ω3|

2
)

dx1 ∧ dx2 ∧ dx3 , (33)

where we used the Hodge duality relations given in Eqs. (5)–
(7). Since each contribution is non-negative, we can conclude
that

0≤ 〈ω,ω〉 , (34)

where 〈ω,ω〉 = 0 only holds, if ω = 0. We have defined the
zero-element to be a form with all coefficients equal to 0.

�

In the next step, we expand the electric field E and the
current density J into basis elements. Since E and J are
differential forms, the basis elements also need to be one-
forms and two-forms, respectively. The series expansions are
given as

E =
N∑
n=1

Vn (ω)Un , (35)

J =
N∑
n=1

In (ω)Vn , (36)

where the basis one-forms Un for the electric field and the ba-
sis two-forms Vn for the current density are of the same fam-
ily, i.e. Un = ?Vn. This choice can be interpreted as the dif-
ferential forms version of Galerkin’s method (Gibson, 2008).
The differential form bases are chosen in such a way, that the
orthogonality relation

〈Um,Un〉 =
∫
V

U∗m ∧ ?Un = δmn , (37)

holds. In practice, this is quite uncommon since numerical
solvers utilizing the method of moments often use triangular
or sinusoidal basis functions with an extent over several mesh
cells. Nevertheless, we use this restriction in order to make
the following equations more readable. The coefficients Vn
and In can be considered as generalized voltages and gen-
eralized currents (Russer and Russer, 2011c). Inserting the
series expansions (35) and (36) into the electric field integral
Eq. (14) and applying the inner product (25) yields

Vm (ω)=

N∑
n=1

In (ω)

∫
V

∫
V ′

V∗m ∧G ∧V ′n . (38)

We can identify the MoM matrix elements by

Zmn (ω)=

∫
V

∫
V ′

V∗m ∧G ∧V ′n , (39)
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and simplify the Eq. (38) to

Vm (ω)=

N∑
n=1

In (ω)Zmn (ω) . (40)

The same result has been obtained in Russer and Russer
(2011c), but with traditional vector calculus notation. Since
differential forms are naturally dual to vectors, and a double
one-form can be expressed by a dyadic function in a cho-
sen coordinate system, it can be argued that both results are
indeed equal.

We can now calculate correlation matrices for the general-
ized voltages Vn (ω) and the generalized currents In (ω),

CV,mn (ω)= lim
T→∞

1
2T

〈
VmT (ω)V

∗

nT (ω)
〉
, (41)

CI,mn (ω)= lim
T→∞

1
2T

〈
ImT (ω)I

∗

nT (ω)
〉
. (42)

The matrix elements can be obtained directly from the corre-
lation double one-forms and two-forms, by

CV,mn (ω)=

∫
V1

∫
V2

Vm∗ ∧0E (r1,r2,ω)∧Vn , (43)

CI,mn (ω)=

∫
V ′1

∫
V ′2

U ′m
∗
∧0J

(
r ′1,r

′

2,ω
)
∧U ′n . (44)

The correlation matrix of generalized voltages CV (ω), given
by its coefficients CV,mn (ω) can be related to the matrix
of generalized currents CI (ω), given by CI,mn (ω) using
Eq. (40). Hence, we obtain

CV (ω)= Z(ω)CI (ω)Z† (ω) , (45)

By this we have established a direct connection between the
correlation matrix of the sources and the correlations of the
observed field.

5 Analytic calculations

In order to show, that exterior calculus could improve our un-
derstanding of electromagnetic fields in general, and stochas-
tic electromagnetic fields in particular, we perform ana-
lytic calculations on the stochastic emission of two Hertzian
dipoles.

The Green’s double one-form G, we introduced in
Eq. (14), can be expanded as

G =Gxx′ dx⊗ dx′+Gxy′ dx⊗ dy′+Gxz′ dx⊗ dz′

+Gyx′ dy⊗ dx′+Gyy′ dy⊗ dy′+Gyz′ dy⊗ dz′

+Gzx′ dz⊗ dx′+Gzy′ dz⊗ dy′+Gzz′ dz⊗ dz′ , (46)

when choosing a Cartesian coordinate system. For the sake
of a more streamlined notation, we write∣∣r − r ′

∣∣=√(x− x′)2+ (y− y′)2+ (z− z′)2 , (47)

Source plane Observation plane

z, z′

x′

y′

x

y

d

d
J (r′

1)

J (r′
2)

d

dE (r1)

E (r2)

h

Figure 1. Setup for analytic calculations.

instead of writing down each spatial component separately.
Let us also introduce the functions g1

(
r,r ′

)
and g2

(
r,r ′

)
as

part of the Green’s double one-form as

g1
(
r,r ′

)
=−

3j

|r − r ′|5
−

3k

|r − r ′|4
+

jk2

|r − r ′|3
, (48)

g2
(
r,r ′

)
=−

jk2

|r − r ′|
+

k

|r − r ′|2
+

j

|r − r ′|3
. (49)

With Eq. (47), (48) and (49), the coefficients of the Green’s
double one-form from Eq. (46) can be expressed as

Gxx′ =
Z0e
−jk|r−r ′|

4πk

[
g1 ·

(
x− x′

)2
+ g2

]
, (50)

Gxy′ =Gyx′ =
Z0e
−jk|r−r ′|

4πk
g1 ·

(
x− x′

)(
y− y′

)
, (51)

Gxz′ =Gzx′ =
Z0e
−jk|r−r ′|

4πk
g1 ·

(
x− x′

)(
z− z′

)
, (52)

Gyy′ =
Z0e
−jk|r−r ′|

4πk

[
g1 ·

(
y− y′

)2
+ g2

]
, (53)

Gyz′ =Gzy′ =
Z0e
−jk|r−r ′|

4πk
g1 ·

(
y− y′

)(
z− z′

)
, (54)

Gzz′ =
Z0e
−jk|r−r ′|

4πk

[
g1 ·

(
z− z′

)2
+ g2

]
. (55)

We consider two Hertzian dipoles oriented in x direction, ex-
cited with random currents, I1 (ω) and I2 (ω). The model of
two Hertzian dipoles is simple enough, to allow for an ana-
lytic treatment.

A sketch of the setup we use for our analytic considera-
tions is given by Fig. 1.

The distance between the dipoles is 2d in y direction.
Thus, we define the source-current density as

J = I1 (ω) lδ (x)δ (y− d)δ (z) dy ∧ dz
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+ I2 (ω) lδ (x)δ (y+ d)δ (z) dy ∧ dz . (56)

According to Eq. (14), we can obtain the electric field, ex-
cited from this current density by

E =
∫
V ′

G ∧J ′ =
∫
V ′

(
Gxx′ dx+Gyx′ dy+Gzx′ dz

)
×

× I1 (ω) lδ
(
x′
)
δ
(
y′− d

)
δ
(
z′
)

dx′ ∧ dy′ ∧ dz′

+

∫
V ′

(
Gxx′ dx+Gyx′ dy+Gzx′ dz

)
×

× I2 (ω) lδ
(
x′
)
δ
(
y′+ d

)
δ
(
z′
)

dx′ ∧ dy′ ∧ dz′ . (57)

The Dirac delta functions within J act as a spatial shift, such
that we need to evaluate the coefficients for the Green’s dou-
ble one-form only for specific source points,

r ′1 = [0,d,0]T , (58)

r ′2 = [0,−d,0]T . (59)

We introduce the following functions

g1(±) =−
3j(√

x2+ (y± d)2+ z2
)5

−
3k(√

x2+ (y± d)2+ z2
)4

+
jk2(√

x2+ (y± d)2+ z2
)3 , (60)

g2(±) =
−jk2√

x2+ (y± d)2+ z2
+

k(√
x2+ (y± d)2+ z2

)2

+
j(√

x2+ (y± d)2+ z2
)3 , (61)

where gi (−) is given by gi
(
r,r ′1

)
, and gi (+) is given by

gi
(
r,r ′2

)
.

Using the shorthand functions gi (−) and gi (+), we obtain
the solution for the electric field one-form in the whole ob-
servation domain as

E =
I1 (ω) lZ0e

−jk
√
x2+(y−d)2+z2

4πk
× (62)

×

[
g1(−)

(
x2 dx+ x (y− d) dy+ xzdz

)
+ g2(−) dx

]
+
I2 (ω) lZ0e

−jk
√
x2+(y+d)2+z2

4πk
×

×

[
g1(+)

(
x2 dx+ x (y+ d) dy+ xzdz

)
+ g2(+) dx

]
.

The current density two-forms at locations r ′1 and r ′2 are sim-
ply given by

J
(
r ′1
)
= I1 (ω) dy ∧ dz , (63)

J
(
r ′2
)
= I2 (ω) dy ∧ dz . (64)

With this, we are able to calculate the correlation matrix ele-
ments for the source currents,

0J
(
r ′1,r

′

1,ω
)
=
〈
J
(
r ′1
)
⊗J ∗

(
r ′1
)〉

(65)

=
〈
I1 (ω)I

∗

1 (ω)
〉
dy′1 ∧ dz′1⊗ dy′1 ∧ dz′1 ,

0J
(
r ′1,r

′

2,ω
)
=
〈
J
(
r ′1
)
⊗J ∗

(
r ′2
)〉

(66)

=
〈
I1 (ω)I

∗

2 (ω)
〉
dy′1 ∧ dz′1⊗ dy′2 ∧ dz′2 ,

0J
(
r ′2,r

′

1,ω
)
=
〈
J
(
r ′2
)
⊗J ∗

(
r ′1
)〉

(67)

=
〈
I2 (ω)I

∗

1 (ω)
〉
dy′2 ∧ dz′2⊗ dy′1 ∧ dz′1 ,

0J
(
r ′2,r

′

2,ω
)
=
〈
J
(
r ′2
)
⊗J ∗

(
r ′2
)〉

(68)

=
〈
I2 (ω)I

∗

2 (ω)
〉
dy′2 ∧ dz′2⊗ dy′2 ∧ dz′2 .

The currents I1 (ω) and I2 (ω) are chosen to be uncorrelated,
i.e.

〈
I1 (ω)I

∗

1 (ω)
〉
=
〈
I2 (ω)I

∗

2 (ω)
〉
= 1 and

〈
I1 (ω)I

∗

2 (ω)
〉
=〈

I2 (ω)I
∗

1 (ω)
〉
= 0. The correlations double one-forms of the

excited fields are continuous in space, just like the correla-
tion two-forms of the source currents. But in contrast to the
sources, defined by Dirac delta functions, the fields do not
vanish everywhere, except for the observation points. Hence,
we want to observe the correlations of the electric field only
at two distinct locations at some distance h from the Hertzian
dipoles in z direction, in order to obtain finite dimensional
correlation matrices, which we can compare to the source
correlations.

The locations of our observation points are given by the
coordinates,

r1 = [0,d,h]T , (69)

r2 = [0,−d,h]T . (70)

Figure 1 also shows how source and observation plane are
aligned.

The electric fields at locations r1 and r2 are given by

E (r1)=
I1 (ω) lZ0e

−jkh

4πk
g2(−) (r1) dx

+
I2 (ω) lZ0e

−jk
√

4d2+h2

4πk
g2(+) (r1) dx , (71)

and

E (r2)=
I1 (ω) lZ0e

−jk
√

4d2+h2

4πk
g2(−) (r2) dx

+
I2 (ω) lZ0e

−jkh

4πk
g2(+) (r2) dx . (72)

From this, we can evaluate the matrix elements of the corre-
lations of the electric field at locations r1 and r2. The auto-
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and cross-correlation spectra are given by

0E (r1,r1,ω)=
〈
E (r1)⊗ E∗ (r1)

〉
=

l2Z2
0

16π2k2

∣∣g2(−) (r1)
∣∣2 dx1⊗ dx1

+
l2Z2

0
16π2k2

∣∣g2(+) (r1)
∣∣2 dx1⊗ dx1 , (73)

0E (r1,r2,ω)=
〈
E (r1)⊗ E∗ (r2)

〉
=
l2Z2

0e
−jk

(
h−
√

4d2+h2
)

16π2k2 ×

× g2(−) (r1)g
∗

2 (−) (r2) dx1⊗ dx2

+
l2Z2

0e
−jk

(√
4d2+h2−h

)
16π2k2 ×

× g2(+) (r1)g
∗

2 (+) (r2) dx1⊗ dx2 , (74)

0E (r2,r1,ω)=
〈
E (r2)⊗ E∗ (r1)

〉
=
l2Z2

0e
−jk

(√
4d2+h2−h

)
16π2k2 ×

× g2(−) (r2)g
∗

2 (−) (r1) dx2⊗ dx1

+
l2Z2

0e
−jk

(
h−
√

4d2+h2
)

16π2k2 ×

× g2(+) (r2)g
∗

2 (+) (r1) dx2⊗ dx1 , (75)

0E (r2,r2,ω)=
〈
E (r2)⊗ E∗ (r2)

〉
=

l2Z2
0

16π2k2

∣∣g2(−) (r2)
∣∣2 dx2⊗ dx2

+
l2Z2

0
16π2k2

∣∣g2(+) (r2)
∣∣2 dx2⊗ dx2 . (76)

This shows that the excited fields at a distance are no longer
uncorrelated, since the radiation from the source at r ′1 also af-
fects the field observed in r2. As expected, the magnitude of
the cross-correlation spectra increases compared to the auto-
correlation spectra with increasing observation distance. The
analytic expression presented here describes how our ability
to distinguish between the two dipole sources recedes as the
observation distance h increases while d remains constant.
The correlation matrix of the field samples exhibits block
Toeplitz character in the far-field (Russer et al., 2015a).

6 Conclusions

We have revisited the the theoretic description of stochastic
electromagnetic fields and introduced exterior calculus for
their description. The method of moments was applied within

the framework of differential forms in order to obtain equa-
tions which can be treated numerically. These equations are
equivalent to those obtained from traditional vector calculus.
The main advantage, however, of the formulation presented
over the traditional formulation, given in terms of the vector
calculus notation, is the formulation’s independence of any
choice of a particular coordinate system. Other benefits, like
the graphical representation of stochastic field forms, may
be worth to be further explored. We derived the correlation
matrix of stochastic generalized voltages from the correlation
matrix of generalized currents. The involved linear operators,
i.e. the impedance matrices Z(ω) are the same as calculated
for deterministic problems. The impedance matrices, in turn
only depend on the basis functions and the Green’s dyadic
for the considered field problem. Thus, the transformation
matrix computed for deterministic field problems can also be
applied to noisy field problems (Russer and Russer, 2015).
This facilitates the use of numerical tools, developed for solv-
ing deterministic field problems, to treat, in combination with
the method presented, problems related to stochastic electro-
magnetic fields. Finally, we have given an analytic example
for calculating field-field-correlations at distinct observation
points in free space, using the framework of exterior calculus
on stochastic electromagnetic fields. While the example of
two dipole sources presented here is simple, it can be easily
extended to the case of a two-dimensional source (dipole-
) array, representing for example the currents on a printed
circuit board (PCB). This allows the investigation of noisy
electromagnetic field propagation in complex environments
or the investigation of inverse problems such as stochastic
source localization based on near-field measurements.
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