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Figure (front pages): Nested flux surfaces of a "Wendelstein 7-X"-like magnetohydrodynamic
equilibrium. The outermost flux surface is discretized by a locally field-aligned mesh with 40 x 16
cells of which half is shown. The other half of the flux surface is plotted transparent. Colors depict
the norm of the magnetic field with green being large and blue small.
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ABSTRACT

The question of building reliable code is not only a question of computational resources but also
extends to the prospect of treating yet untreatable problems. Hence, mathematical structure of the
underlying equations needs to be analyzed and incorporated in numerical methods.

With this thesis being motivated by problems in plasma physics, we start with the theory of
ideal magnetohydrodynamics and deduce several eigenvalue model problems in two- and three-
dimensional geometries. These models include anisotropic wave equations and differential opera-
tors up to the fourth order. Their structural analysis yields benefits when separating resolution
parallel and perpendicular to the magnetic field. We therefore construct a discontinuous Galerkin
method using a non-conforming locally field-aligned mesh in combination with a locally field-
aligned basis.

We provide insight on the implementational challenges of the numerical method and evaluate the
results of the code developed alongside this thesis. The approach of locally aligning mesh and basis
allows to resolve highly oscillatory functions while providing the possibility of a coarse discretiza-
tion of close-to-constant parts. Furthermore, the size of eigenvalue errors no longer exclusively
depends on the frequency of the associated eigenfunction but also on the size of the eigenvalue
which supports the accurate calculation of spectra of small eigenvalues. We gain up to 6.5 orders
of magnitude in accuracy compared to a non-aligned discontinuous Galerkin method with the
same number of degrees of freedom. In particular, results improve for eigenfunctions with high
frequencies. The study of problems on flux surfaces of magnetohydrodynamic equilibria yields the
same physical behaviour as results of several existing codes which provides the foundation for
extending the method to three-dimensional applications.



ZUSAMMENFASSUNG

Die Frage der Erstellung zuverldssigen Codes stellt sich nicht nur hinsichtlich limitierter Rechnerka-
pazitdten, sondern erweitert sich auf die numerische Losbarkeit bisher unlosbarer Probleme. Daher
ist die Analyse und Einarbeitung der mathematischen Struktur zugrunde liegender Gleichungen
unerldsslich.

Diese Arbeit ist motiviert durch plasmaphysikalische Fragestellungen. Wir beginnen mit der
Einfiihrung der Theorie der idealen Magnetohydrodynamik und leiten daraus mehrere Eigenwert-
Modellprobleme in zwei- und dreidimensionalen Geometrien her. Diese Modelle beinhalten
anisotrope Diffusionsgleichungen und Differentialoperatoren bis zu vierter Ordnung. Ihre struk-
turelle Analyse zeigt Vorteile auf, wenn die Auflésung parallel und senkrecht zum Magnetfeld
getrennt festgelegt werden kann. Wir konstruieren daher ein unstetiges Galerkin-Verfahren, das
nicht-konforme lokal feldausgerichtete Gitter in Kombination mit lokal feldausgerichteter Basis
verwendet.

Wir geben einen Einblick in die Herausforderungen der Implementierung des numerischen Ver-
fahrens und evaluieren die Ergebnisse des zu dieser Arbeit erstellten Codes. Der Ansatz, lokal
ausgerichtete Gitter und Basen zu verwenden, erméglicht die Auflosung hochoszillativer Funk-
tionen bei gleichzeitiger Moglichkeit grober Approximation nahezu konstanter Anteile. Uberdies
héangt die Grofse der Eigenwertfehler nicht mehr nur von der Frequenz der zugehorigen Eigen-
funktion ab, sondern auch von der Grofie des Eigenwerts selbst. Dies ermoglicht die genaue
Berechnung von Spektren kleiner Eigenwerte. Wir erzielen bis zu 6.5 Gréflenordnungen mehr an
Genauigkeit im Vergleich zu nicht-ausgerichteten unstetigen Galerkin-Verfahren mit derselben Zahl
an Freiheitsgraden. Insbesondere verbessern sich die Resultate fiir hochfrequente Eigenfunktionen.
Die Untersuchung von Gleichungen auf Flussflichen magnetohydrodynamischer Gleichgewichte
reproduziert das physikalische Verhalten der Ergebnisse bereits existenter Codes. Dies bereitet die
Grundlage fiir die Erweiterbarkeit des Verfahrens hin zu dreidimensionalen Anwendungsfallen.
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SYMBOLS AND ABBREVIATIONS

b,
bmesh
DoF
DOF”
DOFL

m max

nmax

nnzA

LDG
LHD
MHD
Wr-X

Direction of the magnetic field on a flux surface

Direction perpendicular to b

Direction of the local alignment of the mesh

Degrees of freedom of the discretization

Degrees of freedom for discretizing the parallel direction

Degrees of freedom for discretizing the perpendicular direction
Rotational transform, in practice first component of b if b = (4, 1)T
Maximal frequency/mode number of an eigenmode in the first dimension (poloidally)
Maximal frequency/mode number of an eigenmode in the second dimension (toroidally)
Outer unit normal

Number of non-zeroes of the left hand side system matrix

Total number of cells in mesh

Number of cells in x-direction, parallel mesh resolution

Number of cells in y-direction, perpendicular mesh resolution
Degree of the basis in -direction, parallel degree

Degree of the basis in 77-direction, perpendicular degree
Normalized flux surface coordinate, s € [0,1]

Fully periodic computational domain [0, 27r)?

Eigenvalue

Upper bound for eigenvalues of interest

Eigenvalue associated to mode (m, n)

Locally field-aligned discontinuous Galerkin (method)
Bassi-Rebay 2

Discontinuous Galerkin (method)

Local discontinuous Galerkin

Large Helical Device
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Chapter 1

MOTIVATION AND OUTLINE
Laying the foundation

One of the biggest challenges of the upcoming decades is the provision of clean and reliable energy
to limit the impact of the climate change while meeting the ever growing global power demand.
[1, 2] predict an increase of roughly 30% in the global energy needs until 2040 in comparison to
2017 with the demand for electricity increasing by roughly 40%.

As of March 2018, 195 states have signed the Paris Agreement which aims at limiting "the increase
of the global average temperature to well below 2°C above pre-industrial levels" [3]. The German
government aspires to a reduction of greenhouse gas emissions by 80 — 95% until 2050 in com-
parison to 1990 [4] and a share of 65% of renewable energies in the power generation until 2030
[5]. To produce electricity while emitting close to no greenhouse gases, the inclusion of power
plants relying on fossil fuels has to be cut to a minimum. A possibility is to increase the share of
renewable energies to 100% in the long term.

Considering Germany, the expansion of wind and solar power plants should be limited to keep
the public approval of the energy revolution [6, 7]. However, expanding other renewable energies
exhibit limited potential [6, p.8]. Furthermore, the cost of the German energy revolution amounts
to a total of 1 to 2 x 10'? Euro until 2050 [6, p.79].

By analyzing the electricity data of Germany, France and Italy, [8, 7, 9] have found that the amount
of energy storage capacities needed to sustain a 100% share of renewable energies is enormous
and systems held for backup operate at a capacity of less than 17%. Considering Germany, a
backup-system supplementing about 89% of the peak load would have to be established [7].
Creating a sufficiently interconnected power grid across the European Union, allows to cut backup
capacities by roughly 30% in comparison [10]. Relying on the construction of pumped-storage
plants in Norway within the eStorage project [11], Germany’s share of wind and solar energy
can be increased loss-free to a maximum of 60% [12] which is still far away from a share of 100%
and not accounting for storage necessary for the remaining countries within the European Union.
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2 1. MOTIVATION AND OUTLINE

Hence, the provision of sufficient storage capacities for the whole European Union cannot be met
by present technology and massive investments in research on storage techniques is required.
For cutting the amount of storage systems needed, strategies of combining storage with baseload
plants are proposed [9]. Having fossil fuel based baseload plants in reserve in power systems
with high shares of wind energy pushes these plants into part-time operation and ramping which
results in increased outages and plant depreciation [13]. Besides, these baseload plants don’t
operate free of greenhouse gases. The only alternative to date is the production of energy via
nuclear fission. Germany is shutting down its remaining nuclear power plants until the end of
2022 [14] and a change of the political policy is unlikely. Furthermore, the question of depositing
highly radioactive waste remains unsolved. Hence, the necessity for research on another type of
baseload plant emitting no greenhouse gases is evident.

A mere 100 years ago, Aston deduced in 1920 that the fusion of hydrogen atoms to helium yields
energy as pointed out in [15] and ibidem Eddington suspected that exactly this is the reaction pow-
ering the stars which was later proven in 1939 by Bethe [16]. After research on nuclear fusion was
mainly pursued for military purposes within the Manhattan Project [17], concepts for harnessing
fusion energy were developed in the 1950s. Spitzer designed the setup known as a Stellarator [18].
Inspired by the ideas of Lavrentiev, Tamm and Sakharov designed the setup known as a Tokamak
[19]. Both systems rely on the magnetic confinement of hot plasma in a toroidal geometry for
achieving thermonuclear fusion [20]. Other approaches include inertial confinement [21], inertial
electrostatic confinement [22] or muon-catalyzed fusion [23].

Considering the further development of machines relying on magnetically confined plasma, the
findings of Tokamak experiment T3 [24] resulted in a concentration of research effort on the Toka-
mak design [25]. The later emerging problems of the Tokamak approach [26] and the progression
of advanced computer aided design reanimated research on Stellarator configurations [27].
Currently operated Tokamak experiments include the Joint European Torus (JET) being "the only
operational fusion experiment capable of producing fusion energy" [28] and ASDEX Upgrade,
preparing the scientific foundation for a fusion power plant of the Tokamak type [29]. Both prepare
the groundwork for the International Thermonuclear Experimental Reactor (ITER), a currently
constructed Tokamak being the first experiment expected to yield a tenfold return on energy [30].
Currently operated Stellarator experiments include the Large Helical Device (LHD), evaluating
plasma confinement properties in helical geometries [31], and Wendelstein 7-X (W7-X), evaluating
the suitability of the Stellarator concept for a fusion power plant [32].

Fusion energy seems to be a perfect candidate for baseload plants. First of all, the fusion reaction
yields Helium as a product and consequently no greenhouse gases. In fusion reactors, nuclear
meltdowns are scientifically impossible. In the process of fusion, surrounding materials become
lightly radioactively activated due to free neutrons created in the fusion reaction. However, the
activity of the components quickly declines and exhibits only a ten-thousandth of its initial activity
after 100 years [33]. The reactors are fueled by a mixture of hydrogen isotopes, namely deuterium
and tritium, of which one gram yields the same heating power as 11.5 tons of coal or 7.5 to 8 tons



of oil, which can be deduced by the energy gain of the fusion reaction [34] and its conversion to
the respective units, see [35, Appendix 1.B] and [36, Appendix B.]. Deuterium can be separated
from water using the Girdler sulfide process and electrolysis [37] whereas tritium can be produced
via a Lithium breeding process [38].

Politically, European institutes for fusion research are currently organized within the EUROfusion
consortium, aiming to develop fusion as a viable energy source by 2050 [39].

This thesis is located within fusion research, namely within the division for developing new
computational methods for plasma physics. As computing times and disk space are always lim-
ited, proper numerical algorithms have to use the available resources responsibly and focus their
computational effort on whats necessary. The identification of these necessities is however an
intricate question. Often, mathematical models in plasma physics are extremely complex due to the
abundance of details which can be taken into consideration such as the simulation of a bandwidth
of different physical processes within the plasma, the geometry of the domain of consideration
and the inclusion of boundary conditions.

However, even complicated models can exhibit a certain structure when lifted to a high level of
mathematical abstraction. Building numerical methods which preserve or exploit these identified
structures yields numerical solutions in which certain physical conservation laws are already
tulfilled by default or yields code applicable to problems which, if tackled by standard techniques,
could only if at all be solved extremely slowly. Hence, the question of building reliable code is
not only a question of computational resources but also extends to the prospect of treating yet
untreatable problems.

This thesis focuses on the identifications of the just mentioned mathematical structure of the
underlying physical equations and its incorporation in numerical methods as well as implemen-
tation and assessment of these methods. Hence, explanations of the physical background and
its equations are cut to the level which is needed for introducing the mathematical theory and
interpretation of the results.

We start with the introduction of ideal magnetohydrodynamic (MHD) equations in Chapter 2 and
reduce them to a set of structurally equivalent model problems. These model problems are meant
to act as representatives for the full set of physical equations, meaning that a method capable of
treating the model problems should be able to treat the full set of equations as well. Amongst
others, we deduce reduced MHD equations, the reduced MHD shear Alfvén wave equation and
anisotropic wave problems. Furthermore, we dwell onto the physical motivations for considering
these problems.

Chapter 3 constructs a discontinuous Galerkin (DG) method for treating anisotropic wave equa-
tions in two- and three-dimensional geometries. In comparison to regular heterogeneous diffusion
equations, the anisotropic wave equation with constant coefficients is not purely elliptic due to the
semidefiniteness of the tensor yielding an ill-posed problem. Different kinds of meshes for the



4 1. MOTIVATION AND OUTLINE

domain discretization are analyzed predominantly with respect to the capability of addressing
resolution in different preset directions separately.

DG methods can be viewed as a combination of finite element and finite volume methods. The
domain is subdivided into distinct mesh elements on which the solution is approximated typically
by high order polynomials, a feature of finite element methods. Across the domain interfaces,
solutions are allowed to be discontinuous and a communication mechanism known from finite
volumes via so-called numerical fluxes is established. DG methods are highly scalable and well
suited for large-scale computations as their discretization stencils are compact [40, p.V], and allow
for an intuitive treatment of non-conforming meshes. Furthermore, the flexibility offered by the
subdivision of the domain, the choice of basis and numerical fluxes can and should be exploited
by the numerical code.

The first DG method was introduced in 1973 for hyperbolic equations [41]. An independent
approach using discontinuous finite elements originated in the early 1970s in [42, 43, 44] later
to be adapted and then known as interior penalty methods [45, 46, 47]. In the late 1990s, DG
methods underwent a significant further development. We remark on the extension of DG methods
to purely elliptical problems such as to the compressible Navier-Stokes equations [48], diffusion
problems [49] and convection-diffusion problems [50] and [51] with the latter being known as the
local discontinuous Galerkin (LDG) method. Summaries providing a common framework for DG
methods are given by [52, 40].

Chapter 4 approaches a more complicated model problem involving up to fourth order differentials.
A DG method based on a mixed variational form involving differentials of at most first order is
constructed.

Chapter 5 focuses on the challenges of the development of the FORTRAN-code implemented along-
side this thesis for the method developed in the preceding chapters. The choice for FORTRAN is
justified by the considerations of performing large-scale computations in particular in view of
future extensions to equations mirroring more physical behaviour than the ones focused on herein.
Chapter 6 numerically analyzes the described and implemented method. The results are evaluated
from different points of view, compared with a non-aligned DG method and summarized. For
three-dimensional geometries, we compare with multiple existing codes.

Chapter 7 closes with a summary of the findings for the locally field-aligned discontinuous
Galerkin method constructed in this thesis and provides an outlook on future perspectives in
development.



Chapter 2

PHYSICAL DERIVATION
Building mathematical models

This chapter provides a short introduction to magnetohydrodynamics (MHD) which "is a fluid
model that describes the macroscopic equilibrium and stability properties of a plasma" [53, p.1].
We perform a gradual simplification of its equations for building model problems. As we focus on
the analysis of the mathematical structure as outlined in Chapter 1, we keep the classification and
explanation of physical phenomena and implications associated to the equations to a minimum.
We consider the "most basic version" of MHD, called ideal MHD equations, which "assumes that
the plasma can be represented by a single fluid with infinite electrical conductivity and zero ion
gyro radius" [53, p.1].

The outline of this chapter is as follows: Starting with the equations of ideal MHD in Section 2.1,
we introduce the notion of MHD equilibria and highlight several properties and their importance
for fusion research in Section 2.2. After linearizing the ideal MHD equations around a static MHD
equilibrium state in Section 2.3, we deduce reduced MHD equations in Section 2.4 given several
physical assumptions. From this set of equations, we build a first model problem in Section 2.5
involving a fourth order spatial operator by introducing an ansatz for a wave solution in space and
time. The transformation of the coordinate system to straight field line coordinates and further
simplifications in Section 2.6 yield an anisotropic wave equation with a second order spatial
operator. Section 2.7 closes with a motivation of the physically interesting properties of the solution
of the constructed model problems and provides an outlook on important considerations for
features of numerical methods when returning from model problems to their origin.

5



6 2. PHYSICAL DERIVATION

2.1 Ideal MHD

As a starting point, we introduce the time-dependent ideal MHD model in three dimensions given
by [53, p-9, (2.1)]

0
Mass conservation: a—f +V - (pv) =0 (2.1)
dov
Momentum: pa =] xB—-Vp (2.2)
d (p
Energy: @ (W) =0 (2.3)
Ohm’s law: E4+vxB=0 (2.4)
Maxwell-Faraday equation: V XE= —aa? (2.5)
Ampere’s circuital law: V X B =] (2.6)
Gauss’s law for magnetism: V-B=0 (2.7)

where p is the mass density, v the fluid velocity, J is the current density, B the magnetic field, p the
plasma pressure, v = 5/3 the ratio of specific heats, E the electric field and py the permeability of
free space. V- depicts the divergence operator, V x is the curl and X the cross product. Furthermore,

d 0
is the convective derivative.
Combination of Maxwell-Faraday (2.5) and Ohm’s law (2.4) yields

%If =V X (v x B) (induction equation) . (2.9)

2.2 MHD equilibria

The goal of ideal MHD equilibrium theory is the discovery of magnetic geometries which are of
interest for fusion reactors, i.e., they stably confine hot plasmas at a sufficiently high ratio of plasma
pressure to magnetic pressure [53, p.80]. An overview of MHD equilibrium theory can be found in
[53, Chapter 4]. We provide a short introduction to this theory focusing on the information needed
to understand the results of Section 6.4.

A static MHD equilibrium is a steady state solution of the ideal MHD equations (2.1) — (2.7) for
vanishing fluid velocity

v=0. (2.10)
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Insertion in (2.1) — (2.7) yields the time-independent equations for static equilibria [53, p.58, (4.1)]

Force balance equation: Jo x Bo = Vpo (2.11)
Ampere’s circuital law: V X By = woJo (2.12)
Gauss’s law for magnetism: V-By=0. (2.13)

All equilibrium quantities are marked with subscript 0. For static equilibria, it holds vy = 0.

The virial theorem [53, Section 4.3] states that the existence of an MHD equilibrium requires an
external magnetic field. Hence, no self-confining plasma configuration can be established and
fusion reactors need the setup of an external system of coils providing the said magnetic field.
A common feature of the design of Tokamaks and Stellarators is the toroidal geometry which is
motivated by "the thermal conduction loss rate parallel to the magnetic field [being] enormous
compared to that perpendicular to the field" [53, p.81].

Forming the dot product of (2.11) with By we obtain [53, p.63, (4.9)]

By-Vpo =0 (2.14)

which shows that the three-dimensional equilibrium can be subdivided into a set of nested so-
called flux surfaces on which magnetic lines reside, i.e., lines sharing the same direction on this
surface, and pg = const [53, Section 4.5].

S

fGD
2

(a) Plain torus (b) Wy-X-like geometry

FIGURE 2.1: Sketch of nested flux surfaces for different geometries. The left picture shows magnetic field lines
on the outermost surface.

Figure 2.1 shows sketches of nested flux surfaces for a plain torus and a W7-X-like geometry. The
innermost flux surface which degenerates to a single line is called the magnetic axis [53, p.63].
Being the surface of a (transformed) torus, a flux surface can be parameterized by two angles
(6, 9) € [0,27r)> with 0 being the angle of poloidal rotation and ¢ being the angle of toroidal
rotation. Flux surfaces can be characterized by the rotational transform ¢ which is the average
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change of the poloidal angle on a poloidal cross section after following a magnetic field line for
one toroidal transit [53, Section 4.6.4]. If so-called straight field line coordinates are used, the two
flux surface angles are chosen such that the direction of the magnetic field on a flux surface is

described by
v\ [us)

with s € [0, 1] being a variable identifying a normalized distance from the center of the torus. s = 0
represents the magnetic axis and s = 1 the outermost flux surface. Examples for straight field line
coordinates are Boozer [54] and PEST coordinates [55]. On so-called rational flux surfaces, i(s) is a
rational number which therefore yields field lines connecting on themselves.

2.3 Linearized ideal MHD

The linearized ideal MHD model "is a single-fluid model that describes the effects of magnetic
geometry on the macroscopic equilibrium and stability properties of fusion plasmas" [53, p.35].
For investigating small deviations from a given time-independent MHD equilibrium state which
we denote by subscript zero, we linearize all quantities in time around this state such that [53,

p-329, (8.1)]

Q (x,t) = Qo (x) + Q1 (x,t) , —e< 1 (2.16)

where Q acts as a possibly vector-valued representative variable and x = (x1, xp, X3)T. In particular,
we define the linear term of the fluid velocity v as [53, p.335, (8.13)]

=2 =70 (2.17)

such that & depicts the displacement of the plasma from the equilibrium. As we consider static
equilibria, the velocity vy vanishes. As equations are linearized, we summarize terms including the
product of two or more time-dependent variables which then are of order O (¢2) ,&¢ — 0 and drop
them. The linearized version of the mass conservation equation (2.1) is obtained by first writing

0
5; (0 +01) + V- ((po + 1) (00 + 1)) =0
35
T+ ((po+ 1) @) =0
- (2.18)
8p1
o TV (pod1) + O () =0
91

§+ﬁl-vpo+pov-ﬁl+(’)(s2) =0
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which gives
aap + 71 - Vpo+poV -3 =0 (linearized mass conservation) . (2.19)
For linearizing the momentum equation (2.2), we analyze the left hand side using (2.8)
0 N ~
pdt (po + p1) <8t (vo+vl)+(vo+vl)-V(vo+vl)>
95: 9% (2.20)
1
(o) (G0 va) —p Gt 1 0(@)
and the right hand side using the force balance equation (2.11) to obtain
JxB—Vp= (Jo+J1) x (Bo+B1) =V (po+ 1)
=JoxBo—Vpo+Ji xBo+ Jox Bi+ J1 x By = Vi (2.21)
=Ji x Bo+Jox Bi = V1 + O (¢7)
which we combine using (2.17) to
2;: 5 B
0= 52 = = J1 XxBo+ Jo x By — Vp; (linearized momentum) . (2.22)
For linearizing the energy equation (2.3), we first consider
_d(r J 4
“a()=Ge) () -
.0 9 '
=p 1 —app 4 p 710 Vp— T po - Vp.
Multiplication with p7 and insertion of the mass conservation (2.1) yields
o P 4
0= 5 +'ypV (pv)+v-Vp— 'ypv Vo
_op P 4 p
+950V-v4+950-Vo4+0v-Vp—9tov-V (2.24)
Y pP 0 P p— 0 %
9
art) +9pV-v+0v-Vp
which we linearize to
0 -
0= 2. (po+p1) +7(po+p1) V- (v0+ 1)+ (00 +01) - V(po+ 1)
op -
:%—F'Y(pO‘i'ﬁl)v'ﬁl‘}'ﬁl'V(PO‘FPl) (2.25)
8p1

=5 +ypoV - 01 +01- Vpo + O (e )
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such that the summarized linear version of the energy equation (2.3) writes

op . .

% +9poV 01+ 01 - Vpg =0 (linearized pressure) (2.26)
which we title as the linearized pressure equation since only pressure and velocity terms are
involved due to the substitution of the density via the mass conservation.

Furthermore, we linearize Ohm’s law (2.4)

E0+E1:—(’00—|—‘51) X (B0+Bl)

2.2
= -0 XBy+ O (82) (2.27)

which yields
E; = —9; x By (linearized Ohm’s law) (2.28)
and the induction equation (2.9) as a combination of Ohm’s law (2.4) and the Maxwell-Faraday
equation (2.5) by
0 - -
5 (Bo +B1) =V x ((vo +71) % (Bo -I-Bl))
0 _
—B; =V x (’51 X (Bo+B1))

ot
5 (2.29)

§1§1:Vx(61x30)+Vx(61x1§1)

E)atBl =V x (91 x Bp) + O (&%)

which we integrate in time using (2.17) to obtain
By =V x (£ xBy) (linearized induction equation) . (2.30)
For the linearization of Ampere’s circuital law (2.6), we obtain
HoJo =V x By , roJi =V x By . (2.31)

Substituting these equations and the linearized induction equation (2.30) into the linearized
momentum (2.22), we obtain the normal mode formulation of the linearized MHD stability
problem for general three-dimensional equilibria [53, p.336]

)z
Pouogtg = (V X (V X (EX BO))) X By + (V x Bp) x (V X (§>< Bo)) — Vs . (2.32)

Lastly, the linearization of Gauss’s law for magnetism (2.7) becomes

V-By=0 , V-B;=0. (2.33)
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2.4 Reduction of ideal MHD

For building model problems, we execute a gradual reduction process. We start with the linearized
ideal MHD equations of Section 2.3.
First, we introduce the magnetic vector potential A and the electric potential ¢ defined by [56,

p-15-15]

B=VxA (2.34)
0A
E=-V¢— o5 (2.35)

Furthermore, we define the parallel and perpendicular component of a vector-valued variable Q as

Q”i:l;-Q p QL::—BXBXQ , l;:: Bo .
1Boll,

(2.36)

Note that the parallel component is defined as a scalar and not a vector. We denote this by removing
the bold font of the vector-valued variable Q. For reducing the equations, we split the electric field
E; and the current density J; into parallel and perpendicular components.

First, linearization of (2.35) yields

Eo+E1 = -V (¢o+ 1) —;(Ao-l-z‘il) (2.37)
E1 = —V431 - aaAtl (238)

from which we extract the parallel component of the electric field variation using the linearized
Ohm’s law (2.28) which yields

(El)u =b- (=01 x By) =0 (2.39)
since 91 x By is perpendicular to By. We obtain
s o o2 0AT o o 0 [(r &

O_—b-V(])l—b-w——b-V¢1—g(b-A1) (2.40)

where the last equality holds as b is time-independent. We summarize these findings in

d(A
(atl) L (2.41)

b-V = —

Second, the parallel component of the linearization of Ampere’s circuital law (2.31) with insertion
of the magnetic vector potential (2.34) yields

Mo (Tl)” =b- (V X (V X Al)) . (2.42)
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When neglecting compressional Alfvén waves, the perpendicular component of the variation of
the magnetic vector potential A; is comparably small and therefore [57, p.159, (B.13)]

A =b (Al)H + (A1), = b (Al)H ) (2.43)
Then, (2.42) can be simplified via drift approximation to [58, p. 965, (13)]
Ho (jl)H ~ _Vi (A1>” (2.44)

where we introduce the notation for perpendicular derivatives
V:=V.V, ) VL:ZV—%vz—Bx(z}xv). (2.45)
Lastly, we apply the divergence operator to Ampere’s circuital law (2.6) to obtain
V- (VXxB)=0=yV-]J (2.46)
whose linearized form is then decomposed into

0=wV-((h), +b(h),) - (2.47)

For considering the perpendicular component of E;, we take the cross product of the linearized
Ohm’s law (2.28) with By and obtain

By x E; = —By x 9 x By . (2.48)

Furthermore, we build the cross product with the linearized electric potential equation (2.38) and

obtain ;
BOXElI—BOXV¢1—§(B0XA1)
- 0 ~ s
~ —Bg X V(Pl — § <B0 X (b (Al)”>> (249)
= —Bj X V(ﬁl

where we neglect (A1) | with (2.43). We combine (2.48) and (2.49) to

B() X 01 X Bo = BO X qu)l (2.50)
Exﬁlxﬁzm (2.51)
[1Bol|,
Bxfaxﬁleozm (2.52)
1Boll,
—9 x b= bxbx Vs (2.53)

1Boll
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where the last equation holds since b is a unit vector. Using (2.17) and the linearized momentum
equation (2.22) and forming the cross product with By, we obtain

d . _
POg(BoXﬁl)ZBOXh><Bo+Bo><Io><B1—Bo><Vﬁ1 (2.54)
which is rewritten using the force balance equation (2.11) to
) . = 5 N
PO& (BO X Ul) = B() X ]1 X BO — vp() X Bl — BO X Vpl . (255)

Neglecting all pressure-related terms and division by || By ||§ yields

po 0 SO
Bl 3t (b X v1> — bxbx]. (2.56)
Insertion of (2.53) gives
00 O (bxbx V) = —bxbx], (257)
IBoll; 9t

which is simplified using the definitions of the perpendicular component (2.36) and the perpendic-
ular gradient (2.45) to
po_ 9

HBOHZ 8t (vlcf)l) = (fl)l . (258)

Using time-independence of the mass density pg and || By||, and insertion in (2.47) yields

0 .
&V ( Poto vL‘Pl) = HOV ' <b (]1)“) . (259)

IBoll3
Defining the Alfvén velocity [59, p.25]

_ 1Bl

s 2.60
y/ HopPo ( )
we summarize (2.41), (2.44) and (2.59) to the system of reduced MHD equations
3 (A,)
SN I
V1 = 5 (2.61)
(]1)H = -Vi (4), (2.62)
09 (1v.¢) =wv- (60 6
at g ) =V (b (7)) - (263)

for whose derivation we used drift approximation and neglected pressure-related terms as well as
compressional Alfvén waves.
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2.5 Derivation of a 4"-order equation

This section transforms the reduced MHD equations (2.61) — (2.63) into an eigenvalue problem
and reduces this system to a single equation. Therefrom, we build a first coarse model problem.
For considering the stability of the MHD equilibrium, we introduce a time-periodic solution for
the pertubations of the MHD equilibrium and rewrite time derivatives of (2.61) and (2.63) using
[53, 329, (8.2)]

Q1 (x,t) = Q1 (x) exp (—iwt) (2.64)
for a not necessarily vector-valued representative variable Q;. This limits the eigenfunction space
to wave-type solutions. (2.61) — (2.63) then write

b-Vr =iw (Ar), (2.65)
Ho (h)H = —Vi (Al)” (2.66)
—iwV - (%VL%) =uV - (l:) (h)\l) (2.67)

as exponential contributions cancel. Note that the variables are now without a tilde as they are
functions of x and not of (x, t). Successive insertion of (2.66) and (2.65) into (2.67) yields

: 1 .
~ 1.
=-V- <bvi <iwb : V¢1>>

W2V - (Z}ivm) = V. (Bvi (B : w)) (2.69)

(2.68)

which we rearrange to

which is known as the eigenvalue problem associated to the reduced MHD shear Alfvén wave
equation [57, p.43] and can be found in [60, p.3698, (27)]. We dropped the subscript 1. We deduce
all model problems from (2.69).
We build a very coarse first model problem by considering (2.69) as a two-dimensional equation
in a fully periodic domain with v =1, b=0b= (by, bz)T. The reduction of dimensionality is
motivated by the choice of b = (by, by, 0)". For this problem, we rewrite the perpendicular gradient
defined in (2.45) as

V,=b,b, -V (2.70)

with b = (—by, bl)T. This redefinition removes the requirement of b being normed. Hence, we
obtain a two-dimensional equation involving a 4"-order differential operator given by

—V-(bV-(bib, -V (b-V¢)) =w?V-(bib,-V¢), inQ (2.71)

within the fully periodic domain Q = [0,27t)2. The mathematical treatment of this model problem
is investigated in Chapter 4. Throughout this thesis, (2.71) is called the 4"-order equation.
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2.6 Derivation of the anisotropic wave equations

In this section, we derive another set of model problems. We start with the eigenvalue problem
associated to the reduced MHD shear Alfvén equation (2.69) which is simplified further to a
two-dimensional anisotropic wave equation. With all quantities being related to MHD equilibria,
we aim at a change of the underlying coordinate system which represents the flux surfaces of
the MHD equilibrium state introduced in Section 2.2 in an intuitive way. For this, we use straight
field line coordinates, namely Boozer coordinates [54], and change the coordinate system from
x to (s, 6, (p)T with the poloidal, toroidal angles 6, ¢ and the radial direction represented by the
normalized flux surface coordinate s being perpendicular to a flux surface which is therefore
labeled as the radial direction such that Vs - b = 0. As resonance phenomena in plasma are related
to the coefficient of the second radial derivative of the electric potential ¢ [61], we rewrite the
reduced MHD shear Alfvén equation (2.69) and select the respective quantities. Important features
of the spectrum are thereby unaffected.

First, the perpendicular gradient (2.45) can be decomposed as

Vs Vs b x Vs b x Vs
v.0= (oo ¥) Toel; * ( sl W) Vsl (272

as both Vs and b x Vs are perpendicular to b by definition of the coordinate system. Let Q be a

scalar-valued function in the following. It holds

2 aQ +vs w22 4 vs Vgoa—Q (2.73)

which can be further simplified to

Q

20
Vs-VQ = ||Vs Hz (2.74)

as Vs is defined to be perpendicular to flux surfaces and therefore to the directions of the flux
surface coordinates 6 and ¢.
We then rewrite (2.72) as
d
Vip=Lvsig, 279

where we collect all terms that do not involve an s-derivative of ¢ in

bxVs\ bxVs
s = Vo (2.76)
P ( ¢ ||Vs||2> Vsl
We then obtain 30
V-(V.iQ) = < s Vs + Q—@s)
0 0
~(v- 99 24 v (52) vsi V0 @77
0
— v *Q+*uv SV Qo

ds
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where the third equation holds with (2.74). Applying this to the reduced MHD shear Alfvén
equation (2.69), we obtain for the left hand side

V(2 Vi0) = (Vo ) Vipt 5V (V.0)
UA UA UA
1 (10039 9 279
= (VU2> . VJ_4) + g ((V S) g + 952 HVS||2 + V- (P—@s)

A

by momentarily omitting w?. The product rule of differentiation yields

02 0%¢ ob op\  0%b

= (b-v9)=b- V(aZ)“a V(a>+352'v4’ (2.79)
such that the right hand side of (2.69) writes

5 5 (5 (5-59))) -

= v (5((%9) 2 (b-50) + 2 (b-99) 19512+ 7 (5-99) )
- V. (B <(v2s) aa (B : ch) v (ia : V(,b)ﬁas)) (2.80)

2o\ _ab _ [ap\ %
—V-(b(b v(a‘f>+zas V(af)*az cp) kuﬁ)

using (2.77) and (2.79). We now gather the second radial derivatives of the electric potential ¢ in
(2.78) and (2.80). Resolving the outermost divergence in (2.80) yields no further radial derivatives
in the scalar-valued inner terms Q since

(30 — (v . Q Q
V- (bQ) = (V- Bo) o+ Bo- V(uBon) (281)

where V - By = 0 due to Gauss’s law of magnetism (2.7) and the second addend a parallel gradient
which yields no radial derivatives. In summary, we reduce (2.69) to

zHVSHzaz _ (bHVsHZb v(az('b)) (2.82)

2 a2 2
vy ds d

by just considering second radial derivatives of ¢. We now substitute

P2

0s2

— P (2.83)

and transform the differentials and vectors from the coordinate system x to (s, 6, go)T. An important
property of the parallel gradient of a scalar-valued function Q is given by [62, p.138, (B.3.7)]

Fr(s)

BO'VJCQZ_\/g

(1(5)26Q +9,Q) (2:84)
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for functions F;(s) = dFr(s)/ds and i(s) which exclusively depend on the variable s. ((s) is the
rotational transform introduced in Section 2.2 and Fr(s) is the toroidal flux. ,/g is the Jacobian of
the coordinate transform from x to (s, 6, q))T given by [62, B.1.2. and p. 129]

\;E =Vs-(VOx Vo) . (2.85)

Note, that the radial derivative vanishes.

For the remaining part of this section, we identify the variables of differentiation on the respective
operators. Using (2.36) for rewriting b and Gauss’s law for magnetism (2.33) on the right hand
side of (2.82), we obtain

o N Vs||?
—V,- (b\\VSH%b-Vle) Z—Bo-Vx(H |\2230.vx¢>
|Boll>
0 ’ 0 (2.86)
F! (s Vsl|5 Fh(s
— Jul ) ((s) AV _M i(s) Voo
vE " IBolZvs |

where we applied (2.84) twice for the second equation. (0, «(s), D s represented in the (s, 6, 9)' -

coordinate system. We rearrange (2.86) by observing

0
\}gvs,e,q]- Fy(s) t(ls) —0 (2.87)

as Fr(s) is constant in 6, ¢. Then, we can rewrite (2.86) as

0 > 0
Fl(s Vs||5 FL(s
ﬁ L(S) 'Vs,e,q; _M l(S) 'Vs,e,(pl/J
Vi IBollz vE | 4
0 0 (2.88)

1 Vsl (EL(s))?
— _7vs,9,(p . l(S) H HZ (2T( )) [(S) . Vs,@,q)lp

VB V]Il |

Noticing that s-derivatives vanish and using the definition of v in (2.60), we summarize the
transformed version of (2.82) as

vy ((FOVITSE P (1)) g o) - wtun T2 VE
Veg (( 1) ||Bo||§\/§ <1> v9,§0¢> = w”oPo ||Bo||§ Y. (2.89)

Assuming constant equilibrium density on each flux surface, we normalize the equation via

Hopo = 1 and obtain

2 1 2 5
V- t<s>>Wswrz<FT<s>>(t<s>>_v ): VB, |
" (( 1 ||BOH§\/§ 1 bol @ ||Bo||§ ¥ m (2.90)
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with the fully periodic domain Q) = [0,27)?> which we call the anisotropic wave equation with
metric terms. This is the second model problem. Neglecting the terms associated to the metric
transformation and defining b := (i(s),1)" yields

— Vo, (bb- Vo) = WY, in O (2.91)

with the fully periodic domain ) = [0,27)? which we call the constant coefficient anisotropic
wave equation. This is the third model problem. As the tensor bb ' is semidefinite, we tag these
equations as anisotropic. Both anisotropic wave equations are analyzed in Chapter 3 with adaptions
necessary for including all metric terms of (2.90) being discussed in Section 3.7.

2.7 Spectral properties and prospects

The spectrum of the reduced MHD shear Alfvén equation (2.69) and its related model problems
are worthwhile to investigate. In general, the continuous spectrum "describes inherent plasma
properties independent of external boundary conditions" [63, p.3207]. Discussions of these prop-
erties can be found in [64]. In axisymmetric toroidal geometries, plasma heating by resonance
absorption with frequencies described by the spectrum can be constructed [60]. Furthermore, the
spectrum is of importance for the current drive [65] and for the plasma stability in the presence of
fast particles [66]. Stellarators also exhibit low frequency instabilities visible in the spectrum [67].
Therefore, we focus on the resolution of the spectrum in a neighbourhood of zero, i.e., we aim to
resolve small eigenvalues of the model problems (2.71), (2.90) and (2.91).

We put emphasis on the extensibility of the method constructed in this thesis to more complex
equations from which we deduced the model problems. For this, we particularly remark that
all model problems (2.71), (2.90) and (2.91) are two-dimensional equations. For a more accurate
reproduction of physical characteristics, e.g., consideration of the reduced MHD shear Alfvén equa-
tion (2.69) or the normal mode formulation of the linearized MHD stability problem for general
three-dimensional equilibria (2.32), the extension to a three-dimensional discretization including
the radial variable s is necessary. However, the radial discretization should be incorporated via a
tensor-product approach using the two-dimensional discretization of the flux surface.



Chapter 3

ANISOTROPIC WAVE EQUATIONS
Building methods (Part I)

In this chapter, we construct different numerical schemes for discretizing the anisotropic wave
equations derived in Section 2.6. We therefore summarize (2.90) and (2.91) by momentarily omitting
the right hand side metric terms of (2.90). The equation we consider throughout this chapter then
writes

~V.-(bb-V¢) =w?p, inQ (3.1)

with semidefinite tensor bb ' in the fully periodic domain Q) = [0, 27()2. As a matter of notation,
T . . T .

we use x = (x,y) -coordinates instead of (0, ¢) -coordinates.

Despite (3.1) being derived for straight field line coordinates, i.e.,

by

b(x)=uwa(x) <b2

) , b1, € R (3.2)
for a scalar-valued, non-zero, fully periodic function « (x) with the constant coefficient wave
equation corresponding to a(x) = 1, we execute important parts of the analysis of this chapter
for general b (x) to explore the limitations of the herein constructed method. The basic principles
of the construction of the method are however based on the consideration of the constant coeffi-
cient anisotropic wave equation, i.e., b = (b, bz)T = const, and the straight field line approach.
Whenever we assume constant b throughout a section, we put

Setting: b = (by,by) ' = const

at its beginning. If constant b is just necessary for intermediate results, we insert a remark.

The outline of this chapter is as follows: Section 3.1 discusses the exact solution of (3.1) for the case
of constant b. The choice of a suitable method is motivated in Section 3.2. Section 3.3 discusses the
domain discretization for a discontinuous Galerkin method. General methodology of discontinuous
Galerkin methods is introduced in Section 3.4. The system matrices of a primal variational form of

19
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(3.1) are constructed in Section 3.5. In Section 3.6, we build different mixed variational forms and
associated system matrices. Necessary adaptions for considering the anisotropic wave equation
(2.90) on the flux surface of an MHD equilibrium are discussed in Section 3.7. As the assembly
of system matrices can be drastically simplified for constant b, Section 3.8 introduces Kronecker
matrix products and illustrates the setup for the example of the primal variational form. This
chapter closes with the presentation of asymptotic expansions of the discrete eigenvalues of the
primal variational form for constant b and various underlying meshes in Section 3.9.

3.1 Analytical solution
Setting: b = (by,by) | = const

To investigate properties of solutions of (3.1), we consider analytical eigenfunctions and their
associated eigenvalues. Defining the norm

ol = [ 7o dx, 6:)
we state the following theorem.
Theorem 3.1. The functions
Pun (1Y) =exp (i(mx +ny)),  mneZ xycn (3.4

are analytic eigenfunctions of (3.1) with corresponding eigenvalues w3, , = (bym + byn)?. The parallel
gradient of each eigenfunction fulfills

16V (x,9) B30y < 4722, (5)
Proof:
The gradient of ¢, , is given by
v (x,y) = imexp (i (mx + ny)) _ (x,1) m (3.6)
P (oY) =1 4 exp (i(mx+ny)) ) P Y)\ ) | >

Inserting the gradient in the left hand side of (3.1) yields
— V- (bb-Vun(x,y)) = —i2(bym + byn)>ppn = (bym + byn)> Py - (3.7)

Using the representation of the gradient (3.6), we obtain

16~ Vg (2, 9) 1y = I (2, ) L(0rm + ban) |1, ) =

(3-8)
= [|pmn (x,y) Hizm) |bim + byn|* < 472 |bym + bon|* = 4wl
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277

cos(4x-5y)
1.0

0.5

N

-0.5

-1.0

FIGURE 3.1: Density plot of cos(4x — 5y) in QO = [0,2m)? with associated eigenvalue 0.11305798 for
b = (1.1659398,1) . The black dashed line indicates the b-direction.

Theorem 3.1 shows that the norm of the parallel gradient depends on the size of the eigenvalue. For
example, Figure 3.1 shows the density plot of the real part of ¢4 5. We observe that the function is
almost constant in the given b-direction which is plotted as the black dashed line. For this choice
of b, ¢4 5 is an eigenfunction with eigenvalue of order 10~!.

Hence, when resolving eigenfunctions associated to small eigenvalues, less resolution in b-direction
than in b | -direction is needed as their variation along b is small. A method for solving (3.1) should
be able to address the resolution of functions in b- and b -direction separately. This enables to
resolve the highly oscillative behaviour along b | accurately while providing a coarse discretization
of a close to constant function along b.

We call ¢, , Fourier modes with frequencies or mode numbers (1, 1) and remark that modes with
frequency ratio m/n close to —b,/b; are those producing small eigenvalues, as

m
Wiy = (bym + byn)? = ”2(b1g +by)* . (3.9)
When plotting eigenvalues over the domain of mode numbers, we observe that frequency pairs
associated to small eigenvalues gather along b which is shown in Figure 3.2.
3.2 Choice of method

The discussion of separating degrees of freedom in a numerical method is an intricate question.
Amongst others, [68, 69, 70, 71] study finite difference approaches for plasma turbulence. How-
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Ficure 3.2: Contour plot of the size of the exact eigenvalues for b = (1.1659398, 1)T with associated mode
numbers up to 20. The black dashed line indicates the direction perpendicular to b.

ever, finite difference methods allow no variational formulations and solutions only can only be
evaluated pointwise.

Considering the analysis of Section 3.1, Fourier methods seem to be the most appealing. For the
given two-dimensional equation, Fourier methods indeed perform superior to all other kinds of
methods. Considering the inclusion of metric terms as in (2.90) and the future applicability of
the method to more sophisticated three-dimensional partial differential equations as outlined in
Section 2.7, the global supports of the Fourier basis emerge to pose numerical difficulties as these
lead to the treatment of huge dense matrices.

Finite elements can be chosen as tensor products of 1D finite elements aligned in b- and b -
direction respectively. This however introduces difficulties when treating the periodic boundary as,
dependent on b, the supports of these finite elements may intersect differently than throughout
the domain. When assembling a discretization matrix, finite elements with support affected by the
periodic boundary generally have to be treated individually. This prevents the precalculation of all
matrix entries using a single finite element as reference. Figure 3.3 shows a graphic representation
of this argument which is discussed in detail in Section 3.3.2. Section 3.3 demonstrates that a
suitable mesh has non-conforming interfaces. Even though mortar methods for finite elements
exist [72], we choose to construct a discontinuous Galerkin method which naturally incorporates
the treatment of non-conforming interfaces [73].

Furthermore, discontinuous Galerkin methods offer great freedom in the subdivision of the domain
as well as the choice of the basis for each cell. The following sections therefore deal with the
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(a) in domain (1) (b) in domain (2) (c) periodic boundary

FIGURE 3.3: Intersection of supports of two finite elements in a periodic domain.

construction of a discontinuous Galerkin method which is able to address the degrees of freedom
for resolving b- and b -direction individually.

3.3 Choice of mesh
Setting: b = (bl,bz)T = const
We state desirable properties of the subdivision of the fully periodic domain Q).

1. Uniformity: The treatment of a single cell and its neighbours is exemplary for all other cells,
i.e., the number and distribution of neighbours as well as the size of a cell and its interfaces
is the same for all cells.

2. DoF-separation: The discretization assists in addressing the resolution along b and b
individually, i.e., degrees of freedom for b- and b -direction can be assigned.

In the following, we evaluate different domain discretizations. We refer to interfaces as left, right,
upper and bottom (instead of lower) to provide a framework for unique abbreviations (L,R,U,B)
for objects in the subsequent parts. The number of cells in x,y-direction is defined by Ny,N,,. Then,
the total number of cells is

Ny := NNy, . (3.10)

3.3.1 Cartesian mesh

A straight forward discretization of the domain is given by a cartesian mesh as shown in Fig-
ure 3.4(a). It is conformal and fulfills the property of uniformity. In addition, no specific information
about the differential equation (3.1) is used. Incorporating DoF-separation is not possible as in-
creasing the resolution in x- or y-direction as shown in Figure 3.4(b) generally refines the resolution
simultaneously in b- and b | -direction.
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Y g
N Ny
(a) N x N square cells (b) Nx X Ny rectangular cells

FIGURE 3.4: Cartesian meshes

3.3.2 Fully aligned mesh

Considering the property of DoF-separation, the alignment of all cell interfaces with b and b |
allows to address the resolution along the b- and b -direction directly. Furthermore, aligned
meshes are a desirable property in turbulence simulation of fusion plasmas [74]. Full alignment
however encounters the same problems as a fully aligned finite element method as mentioned
in Section 3.2. First, one set of upper and bottom or left and right interfaces has to be chosen
conformal when using cells of equal size. A general sketch of such a fully aligned mesh is shown
in Figure 3.5. Another restriction is given by the following theorem.

FIGURE 3.5: Sketch of a fully aligned mesh. An example of a periodically shifted cell is shown with blue
borders. Periodicity problems are highlighted in red.



3.3. CHOICE OF MESH 25

Theorem 3.2. Let b = (by,by) ' with by, by > 0. If an aligned mesh with conforming b-aligned and
non-conforming b | -aligned interfaces can be constructed, then

dkeIN, k= NXZZ . (3.11)
1

Proof:

Without loss of generality, we consider a representation of () such that the bottom left corner of
a cell coincides with the bottom left corner of ). This is the blue bordered cell in Figure 3.6. Its
bottom neighbour is depicted by a red boundary and their periodic continuations have dotted
boundaries.

FIGURE 3.6: Sketch for the proof of periodicity restrictions when aligning both interfaces of the cells.

Considering the extended boundaries of the blue cells, we observe that the cell width is given by
12\]—2 cos (0) with 6 = arctan (by/b;) for some N, € IN. Considering the extended boundaries of the

red cells, we observe that

U . 27
Jk €N, 2mcos (E - 5) = 2msin (0) = kﬁx cos () (3.12)

which we simplify to
Jke€IN, k= Nytan (J) = NXZ—Z (3.13)
1
using the definition of ¢.
n
Figure 3.5 illustrates the problem when choosing the cell width such that the left and right
periodicity constraints are fulfilled and (3.11) is not fulfilled. Hence, the upper and lower periodicity

constraints cannot be met as shown by the red and red-dotted cell.
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When choosing conforming b-aligned interfaces, the statement and proof of Theorem 3.2 can be
readily adapted by performing the same arguments using Figure 3.6 rotated by /2. Condition
(3.11) is generally not met as it may only apply for rational b, /b; which is discussed in more detail
later this section.

Hence, we consider the alignment of either the upper and bottom or left and right interfaces with
b as shown in Figure 3.7. Here, N, addresses the resolution in b-direction exclusively whereas
Ny addresses both b- and b -direction. To avoid strongly sheared cells, aligning left and right
interfaces is preferable whenever }szy / (1 Nx)’ > 1 whereas the alignment of upper and bottom
interfaces should be done for ]szy/ (by Nx)‘ < 1. A more detailed discussion of this can be found
in Section 3.3.3.

"1
"]
]
I //
(] 1
"]
=" //
//
=
a1 //
//
"]
Ny< = //
"]
—
// 1
—
//
"]
] A
-
\ b 4/
v =
Ny

FIGURE 3.7: Fully aligned mesh with aligned upper and bottom interfaces (black) and its periodic continuation
(gray). The blue dashed line depicts the right hand side periodic boundary.

Considering the property of uniformity, we observe that the interfaces of cells within the domain
are conforming whereas there are non-conforming interfaces at the periodic boundary as shown
in Figure 3.7 whenever

by

¢ (3.14)

which holds for all irrational by/b; € R\ Q. In the case of rational b/b; we want to avoid
restricting the mesh resolution to this quantity as we would be forced to use a fixed cell number
ratio. Hence, uniformity in general doesn’t hold for the fully aligned mesh. However, this mesh
provides a uniform treatment of all cells with no interfaces at the periodic boundary.
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3.3.3 Locally aligned mesh

Section 3.3.1 shows a mesh fulfilling uniformity whereas Section 3.3.2 shows a mesh providing
the property of DoF-separation. Combining the ideas of these sections, we construct a mesh with
locally aligned interfaces as shown in Figure 3.8. The periodic domain is subdivided into Ny x Ny
rectangular regions as in Figure 3.4(b) and the left corner points of each cell are kept fixed. The
bottom and upper interfaces are then aligned with b. As the direction of b is constant throughout (2,
this construction is the same for every cell. Hence, the resulting mesh fulfills the desired property
of uniformity as each cell has the same neighbouring structure which is depicted in Figure 3.9(a).
The left and right interfaces are non-conforming whenever

Ziﬁi ¢Z. (3.15)
111111
111111

N<AFF
o 111111
’ 111111
() sennnns

h
Ny

FIGURE 3.8: Locally aligned Ny x N, mesh in the periodic domain () (blue dashed) with right hand side
periodic continuation (gray).

In comparison to the fully aligned mesh of Figure 3.7 we obtain the locally aligned mesh by
displacement of columns of cells in y-direction. For investigating the property of DoF-separation
we consider an arbitrary point in ). Translating this point in b-direction across the periodic
boundaries, we exactly traverse N, cells before reaching a point with the same x-coordinate. When
the point is translated onto an aligned interface we still just count this as one cell instead of two.
Hence, N, addresses the resolution in b-direction. As in the fully aligned case, N, addresses the
resolution in both b- and b | -direction.

For |b1Ny/ (b2Ny)| < 1 cells are strongly sheared as depicted in Figure 3.10 which can result in
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[T7
T

v L1

(a) Aligned upper and bottom inter- (b) Aligned left and right interfaces

b/

AN

faces

F1GURE 3.9: Neighbourhood of a single cell in a locally aligned mesh.

numerically difficulties as the Jacobians of the element transformation tend to zero in the limit.
To avoid this, left and right interfaces can be aligned instead of the upper and bottom interfaces.
Starting with a rectangular mesh with Ny x Ny cells, we then fix the bottom corner points and
align the left and right interface with b. The upper and bottom interfaces are then non-conforming
whenever

b1 Ny
BN, ¢ 7. (3.16)

The resulting neighbouring structure is depicted by Figure 3.9(b).

b
FIGURE 3.70: Locally aligned mesh with strongly sheared cells.
In summary, the proposed locally aligned mesh is generally non-conforming and provides both

desired properties of uniformity and DoF-separation.
We remark that the construction process works in the same manner for b(x) with constant direction
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and varying length, i.e.,

b(x) =« (x) (Z) (17)

for a scalar-valued, non-zero, fully periodic function « (x). The mesh can therefore be used for
treating straight field line coordinates. The properties of uniformity and DoF-separation are still
fulfilled.

For general b(x) the local alignment could be generalized as shown in Figure 3.11. Depending
on the vector field, either left and right or upper and bottom alignment has to be chosen, for
example for minimizing the maximal shear. Uniformity cannot be achieved for general vector
fields especially as the amount of neighbours per cell might vary.

NN ND
NN

S

FIGURE 3.11: Locally aligned Ny X N, mesh in the periodic domain Q) (blue dashed) for the vector field
b(x,y) = (14 cos(x+y)/3,1+sin(x+y)/3)".

3.4 General remarks on discontinuous Galerkin

The analysis of this section is strongly tied to [40, Section 4.5] where a discontinuous Galerkin
method for a model problem with heterogeneous diffusion is constructed. The therein considered
equation is given by

—V-«kVu)=f, inQ, u=0, onodQ). (3.18)

The constant coefficient anisotropic wave equation is structurally equivalent to (3.18). In compari-
son, we consider (3.18) as an eigenvalue problem with periodic boundary conditions. Furthermore,
we allow for positive semidefinite tensors x = bb . [40, Section 4.5] only discusses positive definite
tensors.

We rewrite the anisotropic wave equation (3.1) in variational form using a space of functions V
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such that the eigenvalue problem reads: Find pairs (¢, w?) € V x R such that

/Q —~V - (bb-V¢)yp dx = &? /Q ppdx VypeV (3.19)
which can be written more general as
a(9,p) = X pnpn)  VPEV (3.20)

for a bilinear form a and
(P, ) = /Q ¢y dx . (3.21)

Discretization of this weak form, i.e., imposing a finite dimensional function space V},, allows the
reformulation of the problem as: Find pairs (¢, w?) € Vj, x R such that

an(Pn, Pn) = (P n)  Vu € Vi (3.22)

for a discrete bilinear form a;, defined on Vj, x V},. Following [40, Sections 1.3, 4.2.1] this bilinear
form should be consistent, continuous, coercive and symmetric.

Definition 3.3. A discrete bilinear form ay, : Vi, x Vi, = R is called

e consistent if for an exact solution (¢, w?) of (3.1) it holds ay (¢, Y,) = w*($, Py), Vi, € V. This
strong form of consistency implies that aj can be extended to Vi x Vj, where V;, C V., C V as
remarked in [40, Section 1.3.3].

e continuous if Vo € V., Py, € Vy, it holds a,(¢p, Y,) < C||@||, ||¢nl], for some C > 0 independent of
h and norms |||, and |||, on the spaces V. and Vj, respectively fulfilling ||y ||, < ||¥ull,, Yon € Vi,
see [40, Section 1.3.4].

e coercive if Vi, € Vy, it holds ay(Py, Yr,) = €| ¢y Hifor some € > 0 independent of h [40, Definition
1.3].

. symmetric Z'qubh, Py € Vy, it holds ah(gbh, I,Dh) = ah(r,bh, ¢h)

These properties ensure the well-posedness and consequently the uniqueness of the discrete
solution of (3.22) using the Lax-Milgram theorem and allow the construction of a suitable error
analysis.

However, the eigenvalue problem (3.1) is not well-posed.

Lemma 3.4. The eigenvalue problem (3.1) is ill-posed.

Proof:
The function ¢ = ¢ for ¢ € R\ {0} is an eigenfunction with eigenvalue 0. Let (¢, w?) be an
eigenpair with eigenvalue w? # 0. Then ¥ + a¢ is an eigenfunction with eigenvalue w? for all

« € R since the differential operator of (3.1) is linear.
|
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Corollary 3.5. Let b = (by, by) " be constant with by /by € Q and (, w?) an eigenpair with w? # 0.
Then there exists an infinite-dimensional space Vy of eigenfunctions of (3.1) with eigenvalue 0 and  + ¢ is
an eigenfunction with eigenvalue w? for all ¢ € V.

Proof:
Theorem 3.1 shows that ¢y, » (x,y) = exp (i(mx + ny)) are eigenfunctions of (3.1) with eigenvalue
(bym + byn)?. Then

b 2
(bym + byn)* = b3 <blm + n) . (3-23)

As we assumed that by /b, € Q, there exists /1 € N \ {0} such that —7i := by /byt € Z. Then the
function ¢y 5 is an eigenfunction with eigenvalue 0 which is non-constant as 71 # 0. Furthermore
the function ¢y 7 has eigenvalue 0 for all k € IN as

(b N e (b
by |\ k—m+kit)] =byk | —m+7) =0 (3-24)
by by
such that Vj has infinite dimensions. As the differential operator of (3.1) is linear, i 4 ¢ has the
eigenvalue w? + 0 = w? for all ¢ € Vj.
[

Lemma 3.6. Any consistent bilinear form ay, discretizing (3.1) with ¢ € Vj, Ve € R cannot be coercive.

Proof:
Letc € R\ {0} and ¢ = ¢ € V.. ¢ is an eigenfunction of (3.1) with eigenvalue 0. As a;, is consistent,
a,(¢,¢) = 0. Then we cannot find an & > 0 such that 0 > ¢||¢||; > 0 since ||¢||7 > 0 with ¢ # 0.
|
Fixing functions up to a constant is possible, for example by setting the integral mean of solutions
over () to a fixed constant. However, the eigenspace for the eigenvalue 0 can be infinite-dimensional
as shown by Corollary 3.5 and adding some kind of special treatment for its handling seems in-
evitable. Though these cases can generally be neglected using the following argument. For constant
b= (b, l72)T with b1 /b, € R\ Q the eigenvalues for non-constant Fourier modes are arbitrary
close to 0, but the eigenspace for the eigenvalue 0 just consists of the constant mode. Additionally,
due to the Nyquist-Shannon sampling theorem [75], imposing DoF, and DoF, degrees of freedom
for discretization of the x- and y-direction, Fourier modes with mode numbers mm.x = 2 DoFy
and 7max = 2DoF, can be resolved. If b; /b, € Q is an irreducible fraction and |b;| < 2DoF,,
|b2| < 2DoFy, the eigenspace for 0 provided by a suitable method should consist of more functions
than just the constant mode. We denote the set of these b as Bns C Q2. Given a randomly selected
b € R? we remark that pg. (R?\ Q?) = 1. Furthermore pg2(Q? \ Bxs) = 1. Hence, the cases
where a method deals with an eigenspace for 0 of a size larger than 1 are generally negligible.
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Considering Lemma 3.6, we focus on the construction of weak forms fulfilling consistency, conti-
nuity and symmetry.

In the following sections, we drop the h-indices when we address discrete bilinear forms to improve
readability.

For describing discontinuous Galerkin methods, we often need to refer to objects defined on a cell
and its neighbours.

Definition 3.7. Let the following objects be defined as

o F is the set of all interfaces and F € F an interface which is shared by two distinct neighbouring
cells.

o K is the set of cells and K € IC a cell. Np(K) € K denotes the neighbour of cell K sharing the interface
F. 0K the set of all interfaces of K.

o 1K, nNe(K) is the unit outer normal of an interface F € JF viewed from the main cell K, neighbouring

cell Np(K). It holds nK = —nNe(K),

o Average {.}} and jump [.]] on an interface F are given by

Y =5 (£ ) : [f] = fon¥ 4 e e (3-25)
where fX, FNF(K) are defined as the limit on F from K, N (K) respectively. For all x € F it holds
FX) = Jim £ , PO = Jim fx). 629
x €K XkENF(K)

We note that average and jump are well-defined as they are identical when viewed from each of the
neighbouring cells of the interface.

3.5 Construction of a primal form matrix system

For the construction of a suited discontinuous Galerkin method, we consider the variational form
of (3.1) when integrating on cells K of a mesh. This section deals with the discretization of a single
integral equation. The problem reads: Find pairs (¢, w?) € Vo x R such that

Z</—V-(bb~V¢)l[de>:wZZ</471pdx> Vip € Vg . (3.27)
Kek \/K Kek \/K

Functions ¢ are called trial functions and ¢ are called test functions. In general, the spaces for
test and trial functions can be chosen independently. Throughout this thesis, we focus on the case
where these spaces coincide but mention whenever this assumption is essential for a result. The
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local space of test and trial functions Vi ¢ consists of functions with support exclusively in K. The
space of test and trial functions for () is given by

ch = U VK,cp . (328)
KeK
Having defined this space, we omit its specification in reformulations of the variational form
(3.27) to improve readability. Furthermore, we consider (3.27) for a single cell K first, which gives
Vl/JK c VK’q), VK e K

/K_v . (bb : V¢K> K dx = aJZ/K(PKl[JK dx (3-29)

where we later omit the superscript of functions ¢X, X € Vi o whenever there is no need for
differentiating the cells of definition. (3.29) is obtained by choosing X € Vi ¢ as test function in
(3.27).

Section 3.5.1 constructs the primal variational form using symmetric interior penalty fluxes.
Section 3.5.2 sets up the corresponding system matrices.

3.5.1 Construction of a primal form

Integration by parts allows to rewrite (3.27) as

v _ .2
/Kb-chb-Vl/J dx_FeZaK </Fb-ch1,bb-ndS(x)) —w /chtpdx (3.30)

where n = nX. As the solution is double-valued at the cell interfaces, we introduce a yet to be
defined numerical flux b/V\(p Another integration by parts of (3.30) allows the reformulation to

_/I<¢V.(bb.v¢) dx— ) </Fb/-V\cp1pb-ndS(x)>

FeokK

+ Z </F$b~v¢b-nd5(x)) sz/K(Pl/’dx

FeoK

(3-31)

with a numerical flux ¢ that still needs to be defined. To resolve the second order differential, we
again integrate by parts by evaluating the inner cell function ¢ on the boundary such that

/b-V¢b-V¢dx— y </b/-V\4npb-ndS(x)>
K Feok \F
(3.32)

+ Y (/ ((f—(,b)b-leb-ndS(x)) :w2/¢¢dx.
Feok \’F K
Following [40, Section 4.5], we define the fluxes as

b-Vo=1{b Vo) - ,7719 Tl =1} (3:33)
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to obtain the symmetric interior penalty (SIP) form with jumps and averages defined in (3.25).
Here,  is a stabilization parameter larger than zero and ki is a parameter dependent on the length
of the cell edge with interface F. The larger the stabilization parameter the stronger discontinuities
of the solution are penalized. We rewrite (3.32) using (3.33) VK € K, yx € Vk o

VoKD - VoK dx — L (b Tk 4 b TeNeE)) pKp . 4K
/KbV4>bV1/de Z</F2(chp+bV¢ )wbnds(x)>

FeoK
1
L </p 5 (=9 0) b Ty*p dS(x)> (339
& . F(K),,Nr(K) ) B
+FEZE)K <hF /Fb <¢KnK+¢N O ) b - n* dS(x)> = WZ/K‘PKlpK dx .

Building the sum over all elements, we impose the following lemmata for simplifying the surface
terms.

Lemma 3.8. Let ¢ be an arbitrary flux, pX € Vi o locally defined in K and v € C* a not necessarily

¥ ([ avko-nast ) - r ¥ ([0l ds) - CED)

constant vector. Then

KEIC FeoK

Proof:
When summing over all cells, each interface F is considered twice in total, once for a cell K and
once for its unique neighbour Nr(K). Hence, we obtain

KG/CFESK </ (Plp o n dS( )>
</<p1,bvnd5 +/¢¢van()d5()>

R PR (3.36)
:F;</F¢<1/J v- 1K Ny .y ()> ds(x ))
- ([0 1 ds) .
n

Lemma 3.9. Let ¢ = ¢}, v¥ € Vi o locally defined in K and v € C* a not necessarily constant vector.

Then Y ¥ </F <$_¢K) Ko - nk dS(x)) =) (/FU [¢1€w % dS(x)> : (3:37)

KeK FeoK FeF
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Proof:
When summing over all cells, each interface F is considered twice in total, once for a cell K and
once for its unique neighbour N (K). Hence, we obtain

-2 ) </ (#—9") va'anS(x)>

KeK FeoK
(/ 50" nk 4) +¢NP >1,UK dS(x))
KelCFeaK

=) L ( Lo (¢80 = 0uk) oK dS(x))

Kek FeoK

-y ¥ (/FU (50K 4 010 %wx ds(x)> (.58

KeK FeoK

=T T (folelyv< asm)

Kek FeoK

=) (/Fv-[[qﬂ];wl( dS(x)+/Fv'H</>]];¢NF<K> dS(x))

FeF

= X (foeToly (9490 asw ) = X (fro- ol asto)

FeF FeF

Applying these lemmata to (3.34), we obtain VX € Vo

T (o vote-vyar) - T ( [ab-Vopo o) dsiy))
- L ([ o Iolo-Typ dsix) (5:39)

Z( [b-[gl- [9] ds(x >_“’2K§<(/“ dr)

Considering (3.39), the property of symmetry of the bilinear form is obvious as ¢ and ¢ are
interchangeable.

The method is consistent as for a continuous solution (¢, w?) it holds {¢o} = ¢o, {b- Vo }} =
b - V¢ and [[¢po]] = 0. Insertion in (3.39) and one integration by parts allows us to retrieve (3.29).

3.5.2 Construction of the system matrices

This section shows, that the matrices discretizing (3.1) based on the variational form (3.39) are
symmetric if the spaces for test and trial functions are chosen identically. Generalized and standard
eigenvalue problem systems are set up.
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Given a basis (¢f) ;. of Vk o for all K we can write the discrete solution ¢ as

p(x) = ) Y Prgx (x) : Of €R (3-40)

KeK k

for coefficients ® = (PX). The variational form (3.39) can be translated to matrix form
A® = w’B® (3.41)

where we call A the left hand side system matrix and B the right hand side system matrix. For
assembling these matrices, we are left with the choice of suitable spaces for test and trial functions
Y, ¢ and an enumeration of the cells of the mesh. A detailed discussion of suitable bases for the
implementation can be found in Section 5.2.

We observe that the system matrices are symmetric.

Theorem 3.10. A and B are symmetric when choosing the same basis for discretizing test and trial
functions.

Proof:

Transposition of the system matrices is equivalent to exchanging test and trial functions in the
formulae for building these matrices. As ¢ and ¢ are interchangeable in (3.39) and the same basis
for test and trial functions is chosen, the resulting system matrices are symmetric.

[
Hence, discretizing ¢, ¢ by using the same function space Vg ensures the symmetry of the system
matrices and consequently real eigenvalues. The property of symmetry can simplify the calculation
of eigenvalues by using particularly suited eigenvalue solvers. More details on this discussion are
given in Section 5.5.1.
We can either solve the generalized eigenvalue problem (3.41) or reduce it to a standard eigenvalue
problem. Multiplication of the inverse right hand side system matrix B produces a system matrix
which is non-symmetric in general. This can be circumvented by using the matrix root of B which
exists since B is symmetric positive definite as a block diagonal mass matrix [76, p.448, 46.(a)] and
is defined as

BiB? = B. (3.42)
We then obtain the standard eigenvalue problem
(B*%AB*%) (B%cp) = w?B2® (3.43)

with a symmetric system matrix as

1

(B—%AB—%>T - (B‘E)TAT (B—z)T — B IAB:. (3.44)
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If eigenvectors are of interest, close attention has to be paid when using the reduced system (3.43)
as the eigenvectors are scaled by Bz.

For constant b, the system matrices can be constructed using the Kronecker matrix formalism
outlined in Section 3.8.

3.6 Construction of mixed form matrix systems

In comparison to Section 3.5, we split the anisotropic wave equation (3.1) to obtain two integral
equations in variational form and set up the resulting matrices for the discretization of this system
of integral equations. The construction focuses on the properties for bilinear forms outlined
in Section 3.4. In general, the spaces for test and trial functions can be chosen independently.
Throughout this thesis, we focus on the case where these spaces coincide but mention whenever
this assumption is essential for a result.

In Section 3.6.1, we set up the general variational mixed form. In Sections 3.6.2 and 3.6.3, we use
local discontinuous Galerkin fluxes for the mixed variational form and constructs the respective
system matrices. This is repeated in Sections 3.6.4 and 3.6.5 for Bassi-Rebay 2 fluxes.

3.6.1 Construction of a mixed form

For preserving symmetry of the system of integral equations, we propose to split (3.1) into two
equations using the substitution

b-V =
{ 4 ! (3-45)

—V-(bu) =w’¢p.

Note that the symmetric splitting of the tensor leads to a scalar-valued equation for the parallel
gradient represented by u. The associated weak form for test and trial functions v, u € Vi;, ¢, ¢ € Vo
and a mesh with cells K € I writes

I et
Z(/K—V'(bu)wdx>=w22</l<¢¢dx> Vip € Vo

KeK Kek

(3-46)

Using locally defined test and trial functions vX, uX € Vi iy, ¢, ¢* € Vk ¢ in the locally defined
function spaces Vk 11, Vk o for a cell K, (3.46) writes

/ b VKoK dx = / KoK dx voK € Viu
K K

/K—V. (buK> Pk dx = “’2/K4’K1IJK dx WK € Vo (3-47)
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The global spaces for test functions defined in () are

Vo= J Vko , Vu=J Vku - (3-48)
Kek Kek
In the following, we omit the spaces for test functions and the superscripts K whenever there is no
need for differentiating the cells of definition.
Integration by parts of (3.47) leads to

—/szv-(bv) dx+ ) (/F$vb-nd5(x)> :/Kuvdx

FeoK

/I<ub-V1,bdx—Z </Fﬁlpb-nd5(x)> :wZ/Kde

FeoK

(3-49)

for which numerical fluxes 7 and ¢ have to be defined and n = #nX. As the differential operators
in the first integrals of (3.49) act on different function spaces, namely once on Vi ; and once on
Vk o, we integrate the first equation by parts once more. Using the inner cell function ¢ on the
boundary, we obtain

/Kb-Vc[Jvdx+ ) (/F($—¢)vb-nd5(x)> :/Kuvdx

Feak

(3.50)

/ub-thdx—Z </ﬁzpb-nd5(x)> :w2/4>1pdx

K Feok \/F K
where we reformulate the first equation to obtain
—/uvdx—|— /b-chvdx+ Y </ ($—¢)vb~nd5(x)> —0

K K Feak \'F

(3.51)
/ub-wdx— y </ﬁtpb-nd5(x)> :w2/¢¢dx
K Feak \/F K

3.6.2 Local discontinuous Galerkin fluxes

As a first example for the fluxes in (3.51), we use slightly modified local discontinuous Galerkin
(LDG) fluxes proposed in [51] and summarized in [52, Table 3.1] with the choice of p = 0 and
adapted a&; such that

7= fup - ;ipb ¢ , ¢ = o} (3.52)

where jumps and averages are defined in (3.25). Similar to (3.33), 77 is a stabilization parameter
larger than zero and hr is a parameter dependent on the length of the cell edge with interface F.
We note that there are more possible choices for the fluxes. Setting 77 = 0 leads to the Bassi-Rebay 1
scheme [48]. Another example, namely the Bassi-Rebay 2 scheme, is discussed in Sections 3.6.4
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and 3.6.5. The impact of the choice of fluxes onto the numerical results is discussed in Section 6.2.5.
Insertion of LDG fluxes (3.52) into (3.51) yields VK € K

( /quK dx+/b VroK dx

(/ KK +¢NF(K)nNF(I<)) oK dS(x)> =0  VYog € Vku
FeoK 2

_ Z </F; (uK+uNF(K)> wa.nK dS(x)> (3-53)
FeoK

+Y ( / q>an<+q>NF NF<K>)¢Kb-nK dS(x))

FeoK

—|—/ ukb - VK dx = wz/ R p* dx VYK € Vo
K K

To retrieve the global variational formulation, we sum (3.53) over all over all elements K. Using
Lemma 3.9 on the surface term of the first equation of (3.53), we obtain

) <—/KMKUK dx+/Kb‘V<pKvK dx)

KeK

L [ b [9l{o} ds(x) - (354

FeF
whereas the second equation of (3.53) using Lemma 3.8 yields

- T ([anpo-whasw) + X (f Lo lole- [yl dsix))

FeF FeF

+Z</ ukp - vk dx)-wzz/qbl,b dx .

KeK KeK

(3-55)

The method is consistent as for a continuous solution (¢, to, wj) it holds {¢o}} = ¢o, {uo}} = uo
and [[¢o]] = 0. Insertion in (3.54) and (3.55) and one integration by parts in (3.55) allows us to
retrieve (3.46).

3.6.3 Local discontinuous Galerkin system matrices

In comparison to Section 3.5.2, we are now dealing with a matrix system with two coefficient
vectors U and @ given by the discretization of u and ¢ using the bases (uf), of Vi and (¢f), of
Vk o for all K such that

=) Zuk g (x / Uf e R (3.56)
KeKk k
= Y Y ol (x) , Of € R (3.57)

KeK k
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We obtain a system with coefficient vectors U and ® as the equivalent to (3.41)

My M\ [u\  ,{o o) (u
() (8] =6 ) )

which can either be solved as a generalized eigenvalue problem or by reducing (3.58) using
U=—-M;'My® to
(—M3M1‘1M2 + M4) ® = WMs® . (3.59)

However, this is only feasible if the inversion of M is possible and numerically simple which is the
case for numerical fluxes which don’t couple neighbouring cells for u. Then M; is a sparse matrix
of block diagonal structure. This is fulfilled for the choice of LDG fluxes as ¢ is independent of u.
For constant b, the individual matrices My, k =1,...,5 can be built as Kronecker matrix products
outlined in Section 3.8 using the respective spaces for test and trial functions and local cell contri-
butions given in (3.53).

For building the blocks of the left and right hand side system matrices, we associate the matrix
components using equations (3.54), (3.55) as follows

Muv + Y | ufo% dx (3.60)

Keic X Bov & ¥ [ Lo [9lb- 9] dS(x) (64
Asy & Y / b VKoK dx (3.61) FerF M

Kek 7K Augy < ) / ukp - vk dx (3.65)
Bav & ¥ [b-[¢1{o} dS(x)  (3.62) Kk /K

FeF Moy < ¥ [ ¢%¢* dx (3.66)
Buv ¢ 1 [y I dstx)  G:63) ket K

Equation (3.58) then writes

—Muyv  Aev—Bov) (U) _ ,(0 0 u
=w . (3.67)
Theorem 3.11. The system matrices
-M Aoy — B 0 0
uv oV — bov ) (3.68)
Auy — Buy Bow 0 Movw

are symmetric if the spaces for test and trial functions for v, u coincide and the spaces for test and trial
functions ¥, ¢ coincide.

Proof:
Choosing the same basis for the test and trial functions of each variable, it is obvious that the mass
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matrices Myv and Mgy and the penalization matrix Bey are symmetric. Furthermore it holds
Agpy = AIH, as well as Boy = BLTH, since ¢, ¢ and u, v are interchangeable between (3.61) and (3.65)
as well as (3.62) and (3.63).

[
We either consider the generalized eigenvalue problem in full form (3.67) or reduced form (3.59)
as My is a block diagonal mass matrix and hence easily invertible. Using the same construction

1
as at the end of Section 3.5.2, we obtain a standard eigenvalue problem using the matrix root Mgy

1 1
A (Mé)q,d)) = w*MZ,® (3.69)

with the symmetric system matrix

1

_1 _1
A= Mgd ((Auq; — Buy) ML (Ao — Bov) + qu) Mga . (3.70)

Corollary 3.12. A= A".

Proof:
Using the symmetry of the matrices in Theorem 3.11 we conclude

-
1 1
<Mq>% <(AU‘P — Buy) My (Aov — Bov) + B@‘F) M¢%>
-1\ —1 T aT 1) '
= | Mgy ((Auw — Buy) My (Aev — B<1>v)) + Boy | | M3
_1 T
= <M$T> : ((A@V — Bq;.v)T <Ml_ﬂl/) (Au\}f — Bu\{})—r + Bq>\{f> (ng;)

it 1
= Mgy <(AU‘Y — Buv) M{I%/ (Apy — Bov) + qu) Mgd .

(3.71)

1
2

|
Again, if eigenvectors are of interest, close attention has to be paid when using the reduced system

1
(3.69) as the eigenvectors are scaled by Mgy

3.6.4 Bassi-Rebay 2 fluxes

Local discontinuous Galerkin fluxes are discussed in Sections 3.6.2 and 3.6.3. As a second example
for fluxes in (3.51), we describe the Bassi-Rebay 2 (BR2) discontinuous Galerkin fluxes proposed in
[77] and summarized in [52, Table 3.1, Bassi et al.]. These are defined as

¢ ={¢o} / = fu} (3.72)

for a yet undefined so-called lifted surface gradient u* and the average defined in (3.25). The lifted
volume gradient uX € Vi is split into the local gradient gX € Vi o, VK € K on the cell K and
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interface contributions Xt ¢ Vkrr, VK € K, F € 9K, so-called lifting terms, associated with an
interface F of the cell K such that

ul =gk + 2 rKF on K. (3.73)
FeoK

The global function spaces are given by

VQ = U VK/Q ’ VR = U U VK,F,R . (3'74)
KeK KeK FeoK

Useful bases for BR2 are discussed in Section 5.2.
We define the flux containing the lifted gradient for a single interface F as

i |y = fap|p+mera{r" B (375)

with the stabilization parameter 7gr, which should be chosen larger than the number of neighbours
per cell. We note that {rf}} is well-defined. The BR2 flux only penalizes the lifting terms belonging
to interface F. Inserting (3.73) and (3.75) into (3.51), we obtain the following system of integral
equations for qK, rKE, ¢K, VK e K

/Kquf dx — /Kb VKoK dx = 0 VoK € Vi o

/I<rK'FU£<'F dx — /F %b~ <4)KnK —i—(,bNF(K)nNF(K)) v?’F dS(x) =0 VFe€ BK,vg’F € VKR

/Kqu VypKde— Y (/P; (qK+qNF(K)) Kb - K dS(x))

FeoK

-y (nBR2 [3 (5 4 0O ) gk dS(x))

FeoK

+ Y (/KrK'Fb VK dx) - wZ/K¢K¢K dx VoK € Vo

FeoK

(3.76)

where we note that the first equation was split into distinct volume terms ¢ and lifting terms rr by
definition. Summing the element contributions (3.76) over all elements K, we obtain for the first
equation

) </K gFok dx — /Kb - VKoK dx> =0. (3.77)
KeK

For the second equation, we obtain for each interface F

-y < /F %b- [¢]os* dS(x)> + ) ( /K rFoyt dx) =0. (3-78)

KeK KekK
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The volume integrals of the third equation write

Y [ %t vy*ax, (5:79)
Kek
L L [ vy, (3.80)
KeK FeoK
KZ}C/ (p 1,[) dx . (3.81)

Using Lemma 3.8 on the surface terms of the third equation of (3.76) yields

KelCFeaK (/{{q}}wa n" dS(x ) F;T/{{q}}b [¥] dS(x)

(3.82)
:KE/CFEBK </ qub [[llb]] dS( )> 3
T T (e LA B0 a5 ) = T s 070 141 85(x) »
= L ¥ [ b [9lyrF ds
KeK FeoK

The method is consistent as for a continuous solution (¢, 4o, o, w3) it holds {¢o} = Po, {90}t = 90
and [¢o] = 0. Insertion in (3.78) yields rg’F = 0 for all K, F. Then (3.83) vanishes and we obtain

</qovl dx—/b VKoK d ) —0
KeK

Y [aso-vetde— ¥ [qob-[¥]dS(x) =af Y [ ¢Fu dx

KeK FeF Kek

(3-84)

of which one integration by parts of the second part of the equation allows us to retrieve (3.46)
with gg = u.

3.6.5 Bassi-Rebay 2 system matrices

This section first deals with basics of the setup of the system matrices and their properties for the
Bassi-Rebay 2 fluxes. At the end of this section, we give details on the assembly of the system
matrices using the locally aligned mesh of Section 3.3.3.

In comparison to Sections 3.5.2 and 3.6.3, we are now dealing with a system with multiple
coefficient vectors. Defining bases on all K, (q{f)k of Vk o, (rf’F )k of Vk rr defined individually

VF € 9K and (¢f) i of Vk o, we can retrieve the parallel gradient u and the solution ¢ as

- LY (ff@)+ ¥ ¥ (R @) . QERTER (689

Kek k KeK FeodK k

=) Y P (®) , PKeR  (3.86)

Kek k
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yielding coefficient vectors Q, R and ®. The ordering of coefficients in Q and ® is done in the
same manner as in Sections 3.5.2 and 3.6.3. On top of the ordering in the number of cell K, R is
additionally indexed for the interfaces F € dK for each K.

Following Section 3.6.3, the system matrices are set up as block matrices. We associate matrix
components using equations (3.77) — (3.83) as follows

MQV1 A (/ qKUf dx) (3-87)
K Kek

Aoy, © < / b VKoK dx) (3.88)
K KeK

Mgy, < </ rKvaF dx> (3.89)
K Kek,FedK

1 xr

Bov, & ( [ b [958 ds(x)) (.90
F KeK,FedkK

Agy </ g<b - Vi~ dx) (3.91)
K Kek

ARy < (/ IR VAT dx> (3.92)
K Kek,FedK

Moy < < / KK dx> (3.93)
K Kek

1

Bov (Z [ 50 Iyl dS(JC)) (3.94)

Feak /F Kek
1
Bry (UBRZ/ b- [[IP]]EVK’F dS(x)) (3-95)
F Kek,FedK

where the blocks of the matrices are either indexed by K € K or by a common index accounting
for K € K and F € dK which is mentioned in the subscript. The system matrices then write

May, 0 —Asv\ (Q 00 O Q
0 Mgy, Bov, R|=w?’|00 0 R| . (3.96)
Aoy —Boy Ary —Bry 0 @ 0 0 Moy/ \@

The left hand side system matrix is generally not symmetric as for example Ay, has no boundary
contributions in comparison to Agy — Bgy. For obtaining a symmetric system matrix, we reduce
(3.96). Being block diagonal mass matrices, Mgy, and Mgy, are efficiently invertible, yielding

Q = Mgy, Aev, @ (3.97)
R = — Mgy, Boy, @ (3.98)

Hence, we obtain
A® = WMoy ® (3-99)
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with system matrix
A= (AQ\IJ — BQ\IJ) Mé%/]Aq)Vl — (AR‘F — BR‘P) ME‘}ZB‘I)VZ . (3.100)

Theorem 3.13. If Vk o = Vkr,r VK € K, F € F and the respective spaces for test and trial functions
are identical, then A = AT,

Proof:
In parts, this proof is closely related to those of Theorems 3.10 and 3.11. We split A into

AQ‘YMé‘l/lA@Vl — BQ‘YMé\l/lAtbvl - AR\PME‘}Z Boy, + BR‘PME‘Z Bov, (3.101)

to investigate the symmetry of its components. First
T T
(AQq:Mé%,l A¢V1) — Agy. (Mé‘l/] ) Aby = ALy Mol Aly = AgyMgh Aoy, (3.102)

where the 3™ identity is fulfilled as ¢, and g, v; are interchangeable in (3.88) and (3.91).
Secondly, it holds

T T
(Bre My, Bov,) = Bay, (Mgl ) Bhy = Bay, My, By = Bry Mg, Bov, (3.103)

as ¢, and r&F, vg’F are interchangeable in (3.90) and (3.95). We note that the stabilization factor

1BR2 is a global scalar constant which can be translated multiplicatively.
To finish the proof, we need to show

-

(AR‘I‘ME\}ZBCDVZ + BQ‘YMé‘l/lA<bV1> = AR‘PMEéZBqWZ + BQ‘I’Mé\l/lAQVl . (3.104)
As Vko = Vkrr VK € K,F € F,we can exchange rKE v?’F , qK, v{( in the integral expressions
and obtain the same matrices. We consider the extended matrix

By o ( [ 300 [v] d(x) ) (3105

Kek,FedK

and observe (BST) s Bov, as ¢ and ¢ as well as gX and v?’F are interchangeable in (3.90) and
(3.105).

Considering matrices Mgy, and Mgy,, the former is built of mass blocks for each K € K and the
latter is built of mass blocks for each K € K and for each F € dK. For both matrices, these mass
blocks are identical due to the choice of Vg o = Vi r r. Considering matrices A;Vl and Agy, the
former is built of blocks for each K € K and the latter of blocks for each K € K and for each
F € 9K. As ¢ and ¢ as well as vX and rXF are interchangeable in the integral expressions (3.88)
and (3.92) these blocks are the same. Hence, we obtain

(BQxyMé‘l/lAqu) ! = Agvl (Mé%/l) ! ng;

(3.106)
~ e (M) (85) " = Axvig, v .
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which concludes the proof.

n
System (3.99) can be transformed to a standard eigenvalue problem using the inverse square root
of Moy as presented at the end of Section 3.5.2 in (3.43) as Moy is symmetric positive definite as
a block diagonal mass matrix.
We remark that the reduced system matrix has a higher sparsity compared to, e.g., the reduced
system matrix (3.70) for LDG fluxes, as the decomposition of u into local and lifted gradients for
each edge reduces the coupling of neighbouring cells [77].
We now discuss the setup of system matrices when using the locally aligned mesh presented in
Section 3.3.3 for constant b. Then, each cell has the same neighbouring structure and the coefficient
vector R can be organized as

R = (RFl,...,RF"’)T (3.107)

for a given enumeration of the 6 interfaces where each Rt = (RkK ’F")k P is organized in the same

way as Q and ®. We obtain the following structure for matrices (3.89); (3.90), (3.92) and (3.95)

]VIRFlsz1 B‘szF1

Mgy, = , Boy, = : , (3.108)
NIRF@VZ‘th B‘szpé

ARy = (ARF11F ARF6\Y> ’ Bry = (BRFl‘I’ BRF6‘I’) : (3.109)

In case of a conforming locally aligned mesh, two of the six interfaces collapse to a point and the
respective boundary integrals evaluate to zero.

Each block of the system matrices (3.108), (3.109) and the remaining matrices of (3.87) — (3.94) can
now be built using the Kronecker matrix formalism presented in Section 3.8.

3.7 Mixed variational form for MHD equilibria

So far, the anisotropic wave equation (3.1) is solved within the logical, fully periodic domain Q).
For physical applications, we solve this equation on a flux surface of an MHD equilibrium as
outlined in Section 2.2. This transformation yields additional metric factors which have to be taken
into account as outlined in Section 2.6 and summarized in (2.90). We cite the anisotropic wave
equation in the frequency domain here once again in the form

o (BHVs@(P;(s»ZE,w) _ 2Vl ve

(3.110)
2 2
1Boll> v/& 1Boll
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where b = (i(s), 1)T with the normalized flux surface coordinate s. Introducing the x-dependent
definitions for the metric terms

wty o IVsa FEE) wty o IVSI31vE]

, (3.111)
1 2
1Boll, [ v/8]? [IBol[2
where we account for the sign of /g, we can construct a mixed form of (3.110) as
./\/lll_? . V([) =1u
_ ) (3.112)
—V - (Mibu) = w* Moo

to obtain a symmetric system of integral equation.
The addition of metric terms is readily incorporated in the mixed variational forms of Section 3.6
as they hold for general b(x). We only have to include M, in the mass integrals of the right hand
side which yields

Moy < (/ MapFypX dx) (3-.113)

K Kek

for equations (3.66) and (3.93). The symmetry of the system matrices remains unaffected by this
operation since My is only introduced in the right hand side mass matrix.
We remark that M b fulfills the setting of b(x) = a(x) (b1, b,) " with constant (by,by) " = (i(s), n'
on a single flux surface and scalar variation a(x) = M. Therefore, a locally aligned mesh can be
constructed as outlined in Section 3.3.3.

3.8 Kronecker system matrices
Setting: b = (bl,bz)T = const

For constant b, the process of assembling the system matrices of Sections 3.5.2, 3.6.3 and 3.6.5
can be simplified using Kronecker matrix products [76, Section 4.2]. This section provides a brief
overview of the definition and a selection of properties and exemplarily constructs the system
matrices of the primal variational form discussed in Section 3.5 using the locally aligned mesh of
Section 3.3.3.

Definition 3.14. See [76, p.243, 4.2.1]. Let A = (ai]-)z.]. € C*!, B € C™*", then the Kronecker product of
A and B is defined as A ® B € CF>!" with
anB El]zB .. LZUB
a21B ElzzB e Elle
A®B= _ ) i . (3.114)

ale asz ale
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Theorem 3.15. Let A,C € Ck<I B, D € C™*" then

(A9B)' = AT @B’ (3.115)
(A9B) ' =A"1@ B! (3.116)
(A®B)(C®D)=AC®BD (3.117)

Proof:

See [76, p.243, 4.2.4], [76, p.244, 4.2.11] and [76, p.251, 14.(a,b)] respectively.
|

Theorem 3.16. Let A € C"™*™ have eigenvalues (A;); and B € C"*" have eigenvalues (yj)].. Then the
eigenvalues of A ® B are given by (Aiptj)i]..
Proof:

See [76, p.245, 4.2.12].
|

Theorem 3.17. Let A,C € C"*™ and B,D € C"*". Assume A and C diagonalize in the same basis. Let
(Ai);, (ui); be the eigenvalues of A, C and the spectrum of a matrix A be denoted by o (A). Then

c(A®B+C@D)=Jo(AB+wD) . (3.118)

1

Proof:
As A and C diagonalize in the same basis, there exists a transform matrix T such that

T 'AT = diag (1)), , TICT = diag (u;); (3.119)
where diag (v) is the diagonal matrix with main diagonal v. Then
(T®ld,) ' (A® B4+ C®D)(T®Id,) = diag (A;); ® B+ diag (1;), ® D . (3.120)

The basis transform using T ® Id,, leaves the spectrum of A ® B + C ® D invariant where Id, is
the n x n identity matrix. diag (A;); ® B + diag (y;); ® D is a block diagonal matrix with blocks
Ai @ B+ p; ® D. This finishes the proof as the spectrum of a block diagonal matrix is the union of
spectra of each block.

n
For constructing the system matrices of the primal variational form introduced in Section 3.5, we
first note that the basis functions can be chosen identical up to translation. We then introduce
a unique cell index for each cell Kj,...,Ky, and assemble the system matrices as shown in
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trial functions

Vo Vige .. VKye
Vi@
wn
g Vo
g
Q
=
R
=
wn
]
2
v
Ky, @

FIGURE 3.12: Occupation block structure of a system matrix.

Figure 3.12. This block matrix is sparse since the block (i, ) is 0 whenever K; and K; share no
interface as the intersection of the supports of the respective test and trial functions is empty in
this case.
We assemble the matrices by reducing the global variational form (3.39) to the local variational
form (3.34) by using a test function ¢X € Vi ¢. As the same basis for each cell up to translation is
chosen and the neighbouring structure of each cell is the same which is ensured by the usage of
the locally aligned mesh, the local variational form (3.34) is representative for building each row
of blocks in Figure 3.12. (3.34) is split in main and neighbouring cell contributions by separating
integrals with ¢X from those with ¢NF(K). The main cell contributions containing the volume
integral and all boundary integrals with ¢* build a block diagonal substructure in the system
matrix. Abbreviating the block containing these parts by Ay, the main cell contribution matrix is
given by

IdNy ®Idn, ®Am (3.121)

using the Kronecker matrix product where Idy is the N x N identity matrix.

We are left with the arrangement of blocks belonging to the neighbours of each cell. This assembly

is summed up by introducing an appropriate enumeration of cells. Starting with the bottom left

cell, we assign an index for the column and the row of the cell as shown for example in Figure 3.13.
Picking a cell with index (k,I), the indices of the neighbouring cells can now be calculated.

Figure 3.14 shows the change of indices for the general case of possibly sheared meshes. We define

the vertical shift constant ¢ and the horizontal shift constant cy as

co= b Ny cy = by Ny (3.122)
o bl Nx ! A= b2 Ny 3.
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FIGURE 3.13: Locally aligned N, x N, mesh with enumerated cells.

\

(=1,-0)

\

(-1,—c-1)

\
\

(0,+1)

(+1,+c+1)
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(a) Aligned upper and bottom interfaces

(+ey,+1) (+eg +1,+1)

(-1,0) (+1,0)

(—eg —1,-1) (=en, 1)

(b) Aligned left and right interfaces

F1GURE 3.14: Change of indices of neighbouring cells respective to the index of a reference cell up to periodicity

treatment.
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where |.| are lower Gauss brackets. However, whenever the index (k,1) of a neighbouring cell
fulfills one of the properties k,I < 1, k > Ny, I > N,, we have to adapt this index due to the
periodic boundary. Tables 3.1 and 3.2 summarize how to account for the periodicity.

upper, bottom interface aligned

adaption k (neighbour) I (neighbour)
(-=1,—c—1) mod(k—2, Ny)+1 mod(l—c—2, N,)+1
(0,-1) k mod (I -2, N) +1
(=1,—c) mod(k—2, Nx)+1 mod(I—c—1, Nj)+1
(+1, +c) mod (k, Ny)+1  mod (I+c—1, Ny) +1
(0,+1) k mod (l, Ny) +1
(+1,+c+1)  mod (k, Ny) +1 mod (I +¢, Ny) +1

TaBLE 3.1: Indices of the neighbours of cell (k,1) for aligned upper and bottom interfaces.

left, right interface aligned

adaption k (neighbour) I (neighbour)

(—ecy—1,-1) mod(k—cy—2, Ny)+1 mod (I -2, N,) +1
(—ch,—1) mod (k—cy—1, Ny)+1 mod (1—2, Ny) +1

(—1,0) mod (k—2, Ny) +1 l

(+1,0) mod (k, Ny)+1 !
(+cy, +1) mod (k+cy—1, Ny) +1 mod (I, N,) +1
(+ca+1,+1) mod (k +cy, Ny)+1 mod (I, N,) +1

TaBLE 3.2: Indices of the neighbours of cell (k,1) for aligned left and right interfaces.

Using this information about the neighbouring structure, we can now construct the left hand side
system matrix A of (3.41). We use the definition and properties of circulant matrices [78]. Using
the locally aligned mesh with aligned upper and bottom interfaces, defining the circulant matrix

01 0 ... 0
00 1 0 ...0
Py = 0 00 T e RVN , (3.123)
L 10
0 0 0 1
10 ... 0 0 O

and Ag, Au, AL, ALu, Ars,Aru as the matrices containing the bottom, upper, left bottom, left
upper, right bottom, right upper interface contributions of the boundary integrals in (3.34), A
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writes

A =Idy, ®Idn, ®Am + Py ® Idn, ®Ag + Py, ® Idn, ® Ay
! ! ’ (3.124)

+Py T @ Py @ A + Py @ Pyl ® Apu + PR, ® Py, © App + PR © Py, ® Aru -
For aligned left and right interfaces, we define Apy, Agr, AL, Ar, Aur, Aur as the matrices
containing the bottom left, bottom right, left, right, upper left, upper right interface contributions
of the boundary integrals in (3.34). A is given by

A =Idy, ® Idy, @Ay + Pﬁyl ® P&:H—l ® Apr + Pﬁyl ® PﬁfH ® ABRr (3.125)
i IdNy ®P§x1 ® AL+ IdNy ®Pn, ® AR + Py, ® Pﬁ,’j ® Aur + Pn, ® ch\rierl ® AuURr -

We note that P, = Idy. The right hand side system matrix B of (3.41) uses the mass matrix M
given by the mass integral on the right hand side of (3.34). It can be written as

B =Idyn, ® Idn, ®M . (3.126)

3.9 Asymptotic formulae
Setting: b = (b1, by)' = const

For constant b, Section 3.8 shows that the system matrices for the primal variational form intro-
duced in Section 3.5 using the locally aligned mesh can be represented by Kronecker products
(3.124), (3.125) involving circulant matrices. In this case, this section shows that the effort for
calculating eigenvalues can be reduced further to systems of the size of the underlying basis of
Vk @. Furthermore, we present asymptotic expansions for the eigenvalues of the discrete system in
the number of cells for the choices of different meshes and a two-element basis.

We first investigate the spectrum of circulant matrices and observe that they diagonalize in the
discrete Fourier basis [78, Section 3.1].

Definition 3.18. wy is defined as the N™ root of unity given by

2mi
W = exp <N> . (3.127)

Fy is defined as the N x N discrete Fourier matrix given by

1 w0 wkl AT
Fy = — N N N . (3.128)

VN : :
wl(\]Nfl)-O wl(\]Nfl)'l W&Nq).(Nq)
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Theorem 3.19. Let k € Z and N € IN. The eigenpairs of P, with Py defined by (3.123) are given by
(lei}(l_l), (FN)1> where (Fy), is the I'™ column of Fy.

Proof:
See [78, Section 3.1].
[ |

Corollary 3.20. FIglP’Zﬁ]FN = diag (1,w’f\,,...,w§\]N71)k> where diag (v) is the diagonal matrix with

main diagonal v.

Proof:
Using Theorem 3.19 we have

PK,PN = Fy diag (1,w§‘\,, . ..,wg\]N_l)k> . (3.129)

Multiplication with Fy' concludes the proof.

n
In the following sections, we apply this information to obtain the desired asymptotic expansions
for different discretizations. Section 3.9.1 explores locally aligned meshes, Section 3.9.2 explores
cartesian meshes and Section 3.9.3 explores fully aligned meshes for special choices of b.

3.9.1 Locally aligned mesh
Dealing with the locally aligned mesh, we transform the system matrix of (3.43) to obtain

Corollary 3.21. Let 0y, be the spectrum of

M_% (AM + w]?]ynAB + (U?\]yAu + wgly(ﬁ_l)nwﬁiﬂALB
1
—cn =M A cn o omoA (c+1)n  m A M_% (3.130)
+ cuNy wy, Aru + W, WN, ARB + wNy wn, ARu
for aligned bottom and upper interfaces and
M (A oo A+ O " Ak + oy AL (3131)
3.131

m n  cpm n  (ca+1l)m 1
+waAR+wNywl\’,i AUL+wNwaX Ayr | M2

for aligned left and right interfaces. The spectrum of B ~2AB7z, namely the system matrix of (3.43) using a
locally aligned mesh, with A respectively defined by (3.124) or (3.125) and B defined by (3.126), is given by

Ny—=1N,—1

U U omn- (3.132)

m=0 n=0
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Proof:
We transform B~2AB™2 using the transform matrix Fy, ® Fy, ® Id and obtain

(PNy ® Fy, ® Id) B <B*%AB*%) (FM/ ® Fy, ® Id) . (3.133)

Corollary 3.20 shows that P, diagonalizes in the same basis for all powers k. Furthermore Pﬁ,y ® le\rx
diagonalize in the same basis, namely using the transform matrix FNy ® Fn,, for all powers k, [.
The respective eigenvalues are given by combination of Theorem 3.16 with Corollary 3.20 as
<w§\"]§w}{}x> . Subsequent application of Theorem 3.17 then provides the desired result.

|
Corollary 3.21 shows, that the eigenvalues of (3.43) can be retrieved using those of (3.130) or (3.131)
respectively. This is a reduction of the size of the matrices by a factor of the number of cells Ns.
We present asymptotic expansions for these eigenvalues for Ny, N, — oo when choosing a basis
with degree 0 in x-direction and 1 in y-direction for aligned upper and bottom interfaces and
degree 1 in x-direction and 0 in y-direction for aligned left and right interfaces. Then, matrices
(3.130) and (3.131) are in R>*2. The exact eigenvalues are given by Theorem 3.1. For (3.130), this
writes

N
(bym + byn)? nﬁz +0 (N,’EN;) (3.134)

and for (3.131) we obtain

N
(bym + bzn)2 nﬁ; +0 (N,’EN;) (3.135)

fork,l € Z,k+1 < —2. Choosing 17 = % for aligned upper and bottom interfaces and 7 = % for
aligned left and right interfaces, we obtain for (3.130) the asymptotic expansion

2

(bym + byn)* — ﬁm (b3m® + 4bbym*n + 6b1bsmn® + 4b3n°)
2 g x 4, ™ 2\ 4 kgl (5139
R A (1+2¢)n + @bZ (1+6c+6c2) n*+ 0 (NxNy)
and for (3.131) this yields
2
(bym + byn)* — 3bT[N2n (4bym® + 6biboym*n + 4byb3mn* + b3n®)
o (3:137)
2 g i, ™ 2\ 4 kgl 7
~ SN, (1 20 mt & 5t (1+ 60 +6ck) m* + O (NN} )

with ¢ and cy defined in (3.122) and k,l € Z,k+1 < -2,k < =2V ] < —2. We remark that these
particular choices for # are necessary whenever choosing a basis which resolves just one direction.
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3.9.2 Cartesian mesh

Using a cartesian mesh presented in Section 3.3.1, the neighbouring structure simplifies in compar-
ison to Figure 3.14 which is shown in Figure 3.15. The respective indices are summarized in Table

33

(0,+1)

(=1,0) (+1,0)

(0,-1)

FiGure 3.15: Change of indices of neighbouring cells respective to the index of a reference cell up to periodicity
treatment for the cartesian mesh in Figure 3.4(b).

cartesian mesh

adaption k (neighbour) I (neighbour)
(=1,0) mod(k—2, Ny)+1 l
(+1,0) mod (k, Ny)+1 I
(0,—1) k mod (I -2, N,) +1
(0,4+1) k mod (I, Ny) +1

TaBLE 3.3: Indices of the neighbours of cell (k,1) for the cartesian mesh in Figure 3.4(b).

The left hand side system matrix in (3.41) then writes

A— IdNy ®Idn, ®Apm + IdNy ®P§X1 ® AL

,1 (3.138)
+ IdNy ®PNX ® Ar + PNy (9 Ide ®Ap + PNy X Ide KAy

with the respective left, right, bottom, upper interface contribution matrices Ay, Ag, Ap, Au. The
right hand side system matrix stays the same as there are no neighbouring cell contributions.
Transforming this system to a standard eigenvalue problem, we can structurally reduce the system
matrix as in Section 3.9.1.
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Corollary 3.22. Let 0y, be the spectrum of
_1 _ _ _1
Mt (AM + WAL+ @l Ag + Wy Ap + w?\,yAu>M : (3.139)

The spectrum of B~1AB2, namely the system matrix of (3.43) using a cartesian mesh, with A defined by
(3.138) and B defined by (3.126), is given by

Ny—1N,—1

U U Omm - (3.140)

m=0 n=0

Proof:
The result can be obtained using the same construction as in Corollary 3.21.

n
Using the same basis as at the end of Section 3.9.1 for aligned upper and bottom interfaces, i.e.,
a basis with degree 0 in x-direction and 1 in y-direction, the asymptotic expansion of (3.139) for
Ny, Ny — oo yields

2bybymn + b3n* + b%mziyﬁy — b2m? ( Y Y 4. ) +0 (N,EN;) (3.141)
X

IN: | PNZ PN
with k,l € Z,k +1 < —2. We obtain

N, °°<Ny>i,
— — =1 142
N l; N, (3.142)

2 2
which holds for 1 = lejjl\]]\y] ! where % < 1 holds in particular. Using this 7, we obtain the

asymptotic expansion for the eigenvalues

2
(bym + bon)?* — %blm (4bon (m* + ) + by (m® — 2mn?)) +
X
withk,l e Z,k+1< -2,k < -2VI< -2
Comparing this expansion with (3.136) and (3.137), no structural advantage of the locally aligned

2

382 bnt+0 (N,]EN;) (3.143)

mesh is evident in this representation. For a full comparison, all parts of the asymptotic expan-
sions with exponents k 1 = —2 of N,’§N; have to be considered. Furthermore, bases of higher
degrees should be implemented. However, the calculation of asymptotic expansions of analytical
eigenvalues of a 3 x 3 matrix is a complex undertaking. Therefore, we resort this discussion to the
comparison of numerical results in Section 6.2.1 for bases with higher degrees.

3.9.3 Fully aligned mesh

This section considers the fully aligned mesh presented in Figure 3.7 for the case of conforming
boundary interfaces. This is the case whenever

b b
CUB = ﬁNy €N p CIR = F;Nx €N (3144)
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for aligned upper and bottom or left and right interfaces respectively as previously mentioned in
(3.14). In these cases, the neighbouring structure of each cell is the same as for the cartesian mesh
presented in Figure 3.15 except for cells at the periodic boundary. Hence, the indices presented
in Table 3.3 have to be adapted for the left- and rightmost cells in the case of aligned upper
and bottom interfaces and the upper- and bottommost cells in the case of aligned left and right
interfaces. These results are summarized in Table 3.4 and Table 3.5.

fully aligned mesh (upper, bottom interfaces aligned)

adaption k (neighbour) I (neighbour)
(=1,0),k #1,Ny mod (k—2, Ny)+1 1
(+1,0),k #1, Ny mod (k, Ny)+1 I
(=1,0),k=1 Ny mod (I —cyg —1, Ny) +1
(—f—l,O),k:Nx 1 mod (Z+CUB—1, Ny) +1
(0,-1) k mod (I —2, N,) +1
(0,+1) k mod (I, N,) +1

TaBLE 3.4: Indices of the neighbours of cell (k, 1) for the fully aligned mesh in Figure 3.7 with aligned upper
and bottom interfaces.

fully aligned mesh (left, right interfaces aligned)

adaption k (neighbour) I (neighbour)
(—=1,0) mod (k—2, Ny)+1 !
(+1,0) mod (k, Ny)+1 !
(0,—1),I #1,N, k mod (I -2, N,) +1
(0,+1),1 #1,N, k mod (I, Ny) +1
(0,-1),I=1 mod (k—crr —1, Ny) +1 N,
(0,+1),I =Ny, mod(k+cr—1, Nx)+1 1

TABLE 3.5: Indices of the neighbours of cell (k,1) for the fully aligned mesh in Figure 3.7 with aligned left

and right interfaces.

Defining the matrices

01 0 0
0 ... 0
00
Dy = | ERVN sy = e RNVN - (3.145)
0 0 1 1 0 0
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the Kronecker matrix structure presented in Section 3.8 can then be applied to build the system
matrices of (3.41) which write

A =1dy, @ 1dy, @Ay + (Idy, 8D, + Py @81 ) @ A

(3.146)
+ (IdNy ®Dn, + Py ® SNX) ® A + Py ®@1dn, ® Ap + Py, ® Idy, ®Ay
Y ¥
for aligned upper and bottom interfaces and
A =1dy, ®ldn, ®Am +1dy, ®Py ® A +1dy, ®Py, © AR
' (3-147)

+ (DZEy ®1dy, +S3, ® Plgf“?@) ® Ap+ (Dx, ® I, +5n, @ Pﬁ%) ® Ay

for aligned left and right interfaces where A;, Ar, Ag, Ay denote the left, right, bottom, upper
interface contribution matrices respectively. The right hand side system matrix stays the same as
there are no neighbouring contributions. Reduction to a standard eigenvalue problem using the
matrix root of the right hand side system matrix yields

Theorem 3.23. Let 0y, , be the spectrum of

_nUB ug
M2 (AM + wN: N WAL + w?\ly’\’x wy, AR + wI'QyAB + wg,:Au) M2 (3.148)
for aligned bottom and upper interfaces and
-1 m —m —n _mE’ETI; n m%—ﬁ -1
M™% (A + @ AL+ oM AR + wlwy, A + @l Ay )M (3-149)

for aligned left and right interfaces. The spectrum of B :AB"z, namely the system matrix of (3.43) using a
fully aligned mesh, with A respectively defined by (3.146) or (3.147) and B defined by (3.126), is given by

Ny—1N,—1

U U omn- (3.150)

m=0 n=0

Proof:

This proof is closely related to the proof of Corollary 3.21. We focus on the case of aligned upper
and bottom interfaces as the the same methodology can be applied for the case of aligned left and
right interfaces.

First, transforming B 1AB 2 using the matrix Fy, ® Idy, ® Id and Corollary 3.20 we obtain a
block diagonal matrix with blocks »

tdy, @Au + (D, + Wl ) AL+ (Dy, + @y @Sy, ) @ A
+ CL)K[y Ide ®QRAp + wg,; Ide ®RAY

(3.151)
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forn=1,..., Ny. Note that the exponents of wnN, were reordered for standardizing the notation.
We observe

-1
(DR, +@ksy,) = (Dw, + @y, ) (3.152)

v
such that both diagonalize in the same basis. The eigenpairs of
<DNX + wK,y”CUBS Nx) are given by

e\
X
WN, YN,

N, wNy / cuUB
W N
NN,

1

(3-153)

reproducible by straightforward calculation. The eigenvalues of the inverse matrix are the inverse
eigenvalues. Denoting the matrix of eigenvectors by Fﬁx and using that all first matrices in the
Kronecker products of (3.151) diagonalize in this basis, we can now use the transform matrix
Fn, ® F{\}x ®Id on B"2AB~? and successively apply Theorem 3.17 to obtain the desired result.

n
We present asymptotic expansions for the eigenvalues of (3.148) and (3.149) for Ny, N, — oo, using
the same bases presented at the end of Section 3.9.1. Again, we choose 17 = % for aligned upper

and bottom interfaces and # = % for aligned left and right interfaces. For (3.148) we obtain

2

s
(bym + bon)? + T (bym + byn)* + O (N,’;N;) (3.154)
and for (3.149) this yields
2
T
(bym + byn)* + WNﬁ (bym +bon)* + O (NL‘N;) (3.155)

fork,l e Z,k+1 < —4.
In comparison to (3.136) and (3.137), we see that the lowest order error terms of (3.154) and
(3.155) scale with the size of the eigenvalue. Hence, the smaller the eigenvalue, the better the

approximation using the fully aligned mesh. However, this is only possible whenever (3.144) is
fulfilled.
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Chapter 4

A 4TH.ORDER EQUATION
Building methods (Part II)

In this chapter, we construct a numerical scheme for discretizing the 4M-order equation
~V-(bV-(b b, -V(b-V¢§))) =w?V-(b b, -V§), inQ (4.1)

derived in Section 2.5 in (2.71) in the fully periodic domain Q = [0,27)2. The left hand side
operator is of order 4 and the right hand side operator of order 2. The analysis of this chapter
is inspired by and tied to the findings of Chapter 3. Despite (4.1) being derived for constant b,
we introduce a mixed variational form of this equation for general b (x). We remark that the
generalized perpendicular direction b (x) is defined up to a sign in two dimensions which poses
no difficulties as it cancels in (4.1).

The outline of this chapter is as follows: Section 4.1 explores the analytical solution of (4.1) for
constant b and establishes similarities to the exact solution of the constant coefficient anisotropic
wave equation discussed in Section 3.1. Section 4.2 constructs a discontinuous Galerkin method
discretizing (4.1).

4.1 Analytical solution

Setting: b = (b1, by) " = const
A variant of Theorem 3.1 presented in Section 3.1 holds for (4.1).

Theorem 4.1. The functions

Gmpn (x,y) = exp (i (mx 4+ ny)), mneZ, xyec (4-2)
are analytic eigenfunctions of (4.1) with corresponding eigenvalues w? , = (bym + byn)?* whenever
b, - (m, n)" # 0. The parallel gradient of each eigenfunction fulfills

16 -V (x,9) 3 ) < 422, (43)

61
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Proof:
Forv = (01,2)2)T € C? and ¢ € C constant, it holds

v -V (cPmn) = ic (vym+van) pmpn =V - (vcPmn) - (4-4)
Insertion in (4.1) yields

— V- (bV-(brby -V (b-Vun)))

==V (bV - (b by -V (i(bim + bon)Pmu)))

=~V (bV - (b 2 (~bam + byn) (bym + ban)pn) ) 4-5)
= —V - (bi®(—bam + byn)?(bym + ban) Py )

= —i*(—bym + byn)2(bym + ban) P

for the left hand side and
Vo (biby - Vun) =V - (bLi(=bamm + bin)pu,n) = (—bam + brn) P (4.6)
for the right hand side operator. Together this yields

—i4(—b2m + bln)z(blm + bzn)ngm,n = wziz(—bzm + bln)chm,n

(4-7)

for (—bym +bin) = b, - (m,n) # 0. We remark that for (—bym + byn) = 0 no eigenvalue w can
be associated to the problem.
The inequality holds as shown in Theorem 3.1.

[
As of Theorem 4.1, we expect difficulties for the approximation of eigenfunctions ¢, , with mode
numbers m, n such that b, - (m, n)T = 0 which is particularly the case for the constant mode ¢ .
However, besides the constant mode, the results of Theorem 3.1 can be recovered whenever we

JELACE) - NN b DI
b b )

for (m,n) # (0,0). Hence, w3 , < 1yields b, - (m,n)" # 0. In this case, the theory developed
for solving the anisotropic wave equation (3.1) can be extended for (4.1). We point out that the

consider eigenvalues w%m <1as

+ (4-8)

<

eigenvalue problem (4.1) is ill-posed with the same proof as Lemma 3.4.
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4.2 Construction of a mixed form matrix system

Referring to Sections 3.4, 3.5 and 3.6, the goal of this section is the construction of a symmetric and
consistent mixed variational form of (4.1) involving differentials of at most first order.
The primal variational form reads: Find pairs (qb, wz) € Vo X R such that

)3 (/K_V'(bv'(bJ_bJ_'V(b-V@))t/de)

Kek (4'10)
:w22</v-(bJ_bJ_-V<p)1/de> Vip € Vg .
Kek K
The element-local form writes
/ V- (bV - (b1b1 -V (b VX)) p¥ dx
K (4.11)

:w2/V-<bLbl-chK)l/Jde VK € Vo, K € K
K

for the locally defined function spaces Vi ¢. The global and local function spaces are connected
by Vo = Ukex Vko. Again, we simplify the notation by omitting the superscript of functions
¢, pX € Vi ¢ whenever there is no differentiation between multiple cells.

Sections 4.2.1 and 4.2.3 derive a mixed variational form of the 4M-order left hand side and the
2" order right hand side operator respectively whereas Sections 4.2.2 and 4.2.4 construct the
associated system matrices. The final system is built in Section 4.2.5 and the overall construction
process is summarized.

4.2.1  4™M-order operator mixed form

To improve readability, we omit the definition of test spaces for the variational formulations and
until the summary of the final system.
Using the differential degree as a lower index, we propose the mixed form

251 =b- V(P
Un = bJ_ . Vul

(4.12)
us =V. (bJ_uz)

-V (bug,) = RHS
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where the right hand side equations of Section 4.2.3 are abbreviated by RHS, with corresponding
variational forms

—/ulvldx +/b-V¢vldx =0
K K
/ugvzdx —/bL-Vulvzdx =0
N p (4.13)
—/M303dx +/V'(bJ_u2)03dx =0
K K
—/v-(bu3)¢dx — RHS
K

We now need to introduce boundary integrals for enabling the communication with neighbouring
cells. Therefore, we integrate the first and second equation of (4.13) by parts twice. The first
integration by parts introduces a new numerical flux for each equation which we define as ¢
and i1;. The second integration by parts is carried out using the respective inner cell function.
Furthermore, we integrate the third and fourth equation of (4.13) by parts once, introducing a
new numerical flux for each equation which we define as i, and 3. Defining the local test spaces
Viu,, Vku,, Vi us, the full system is then given VK € K by

—/ uqv1 dx —I—/b-Vqu dx
K K
+ 2 (/ (g/g—q)) 'Ulb'ﬂdS(X)) = 0 Vvl EVK,Ul
Feok \/F
/ Urvp dx — / b, - Vuivy dx
K K
- (tp —u1)v2by -m dS(x)> =0 Vo, € Vku
ng (/F 2 (4.14)

—/1/[303 dx +/1/l2bJ_'VU3 dx
K K

+ Z </ ﬁzU3bJ_ n dS(x)> =0 Yus € VK,U3
Feok \’F
/u3b-w dx — Y </ ﬁ3¢b~nd5(x)> — RHS V€ Vio
( /K Feok \/F

In summary, we are now dealing with four fluxes 7, it, #13 and $ As in Section 3.6.2, we choose
fluxes inspired by local discontinuous Galerkin fluxes such that

o= ) - me [us] , = {u2} (4.15)
s = () — 120 [9] : b= {0} (416)

where 773,774 are constant stabilization parameters and /i is a parameter dependent on the length
of the cell edge with interface F. Flux jumps and averages are defined in (3.25). Note, that omitting
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the stabilization in u, by just using average fluxes for u; is beneficial for reducing the size of the
system matrices as outlined in Section 4.2.5.

We return to the global variational forms by summing local contributions in (4.14) over all elements.
Using the global test spaces Vuj = Uker VK,U/-/ j =1,2,3, Lemmata 3.8 and 3.9, the system then
writes Vi € Vq>,v]- S Vuj,j =123

E ([ B (e

M ARCICYEEE) -

) </1< 70, dx) - </K by - Vi, dx>

# L (fo e dsto)

£ L ([ bl dse) =0 w17)
() (o)

F L ([Hmppsplasw) =0

T ([ b vy ax) - & ([Awpy- w1 as)

e X ([l Wl ast)  —ws

The method is consistent as for a continuous solution (¢o, 11,0, 20, 30, w3) it holds {@o}} = ¢o
and [[¢o] = 0 for all po € {¢po, u1,0, U2, 430} Insertion in (4.17) and one integration by parts of the
second and fourth equation directly yields the variational form of (4.12).

4th

4.2.2 -order operator system matrix

The setup of system matrices associated to the variational form (4.17) is closely related to Sec-
tion 3.6.3. We are now dealing with a system matrix with four coefficient vectors U;,j = 1,2,3 and
® given by the discretization of u;,j = 1,2,3 and ¢ using the bases (u]Ifk>k of VK,uj and (g‘b{f)k of
Vk o for all K such that

uj(x) = Y Y Ufuf(x) , uf € R i=1,23 (4.18)
KeK k
p(x) = ) L Pigr () : of € R (4.19)

KeK k
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For b = const, the blocks of this system matrix can be built as Kronecker matrix products as
outlined in Section 3.8 using the respective spaces for test and trial functions and local cell contri-
butions summarized in (4.14).

From a global standpoint, we associate the integrals of system (4.17) to block matrices as follows.
The volume terms are given by

Ay, < Z / b, - Vuivy dx (4.23)
MLI1V1 A E / uy01 dx (4'20) Kek 7K
Kek /K
Mu,y, < Z / uzvs dx (4.24)
Aoy, < Z / b-V¢ov; dx (4.21) Kek /K
Kek /K '
Ay, < Y / upb | - Vous dx (4.25)
Muy, <> Y | 1202 dx (4.22) Kek 7K
KeK Auy © /K ush - Vip dx (4.26)

whereas the boundary terms are

Bov, ¢+ ) /Fb'[[4>]]{{01}} dS(x)  (427) Buw ¢ ) /F{{uz}}lu o]l dS(x) (4.30)

FeF FeF
Bu,v, < Fer/FbL [ur] {v2) dS(x) (4.28) Bu,w, <> F;:/P Zbe [u2]lby - 2] dS(x) (4.31)
Buw & Y [ b 91 dS(x)  429)  Bow o )y [ite-Iolb- [yl ds(x) (432

The left hand side system matrix then writes with the coefficient vectors

_MU1V1 0 0 Ad)V1 - B<I>V1 u;
_AU1V2 + BU1V2 MU2V2 + BUZVZ 0 0 u2 (4 33)
0 _AU2V3 + BLI2V3 _MU3V3 0 Us;
0 0 Auy — Buyy Boy @
We exchange the ordering of test functions, namely change v; and v3, to obtain
0 —Aw,v; + Bu,s —Muyv, 0 (25}
_AU1V2 + BU1V2 MU2V2 + BUZV2 0 0 u2 (4 34)
_MU1V1 0 0 A<I>V1 - B<I>V1 U;
0 0 Au3\y — Bu3‘{f B(I)‘P P

which allows us to prove the symmetry of the system matrix.

Theorem 4.2. If the respective spaces for test and trial functions coincide and besides Vi, = Viz,, then the
system matrix (4.34) is symmetric.
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Proof:
When choosing the same basis for test and trial functions for each variable, it is obvious that
the mass matrices My,v;, j = 1,2,3 and the penalization matrices By,v,, Boy are symmetric. Fur-
thermore it holds AIth = Ay,y, as well as Balvz = By,v, as uy, v, and uq,v3 are interchangeable
between (4.23) and (4.25) as well as (4.28) and (4.30) and Vy;, = Vyg,. It holds MLTllv1 = My,v, as
Vu, = Vi, Further, it holds AES\F = Aoy, as well as Bgﬂ = Bov, as ¢, and uz, v; are interchange-
able between (4.26) and (4.21) as well as (4.29) and (4.27) and Vi, = Vig,.

|

4.2.3 2"9-order operator mixed form

The right hand side operator of (4.1) is structurally equivalent to the anisotropic wave problem
(3.1) up to a sign with tensor b b . We discretize it using the mixed variational form of Section
3.6.1 with local discontinuous Galerkin fluxes presented in Section 3.6.2 and summarize the results
here.

Using the substitution variable 14 where the lower index is no longer related to the degree of
differentiation but a continuation of the previous indexing, the equation system for the right hand
side is defined as

wluy = w?by V¢
(4-35)

LHS = a)ZV : (bJ_u4)

with uy € Vi, = Ugex Viku,, left hand side equations of Section 4.2.1 abbreviated by LHS and
associated local variational form Voy € Vky,, ¥ € Vko, K € K

0:w2< /I;M4U4dx—/1<b-v¢v4dx— 2 </F($—¢)U4bj_-nd5(x)>>

FeoK
(4-36)
— (2 _ . n .
LHS = w ( /KM4bJ_ v¢dx+F§K</Fu4¢bl ndS(x)>>
where the fluxes are given by
= sl — b1 [9] : =19} 437)

with stabilization constant #g with subscript E for clarifying that it belongs to the eigenvalue part
of (4.1). Flux jumps and averages are defined in (3.25). Using Lemma 3.9, the global variational
forms of the first equation of (4.36) is given by

0= w2< ¥ (f ket ax [ b1 vgol ar) +T (oo lolesd astw) ) (439

KeK



68 4. A 4TH.ORDER EQUATION

whereas the second equation of (4.36) using Lemma 3.8 yields

LHS:aJ2<— © ([ tor 9 ax) + 3 ( [Qdos Dol aso)

Kek

(4-39)
L ([ fEvs toies v asts >)>

4.2.4 2"9-order operator system matrix

The setup of the left hand side system matrix associated to (4.38) and (4.39) is done in the same
way as outlined in Section 3.6.3 using the coefficient vectors U, and ® given by the discretization
of uy and ¢ with the bases <M‘I§k>k of Viu, and (¢f), of Vko for all K such that

=) Yu k”4k , Uf,k €eR (4-40)
Kek k

=) Lo (v) , P € R (4.41)
Kek k

The matrix block associations are given by formulas (4.38) and (4.39) such that

Mgy, < Y / ugof d (442) AQy & ) / ufby - Vo~ dx (4-45)
KeK KeK

Ay, & ¥ [ br-Veko @43) Bliwo ¥ [{udbr [¥]dS(x) (446
Kek FeF

Bgy, <+ Y / by - [¢]{{vs} dS(x) (4.44) Boy <> Y / Ty, - [¢]by - [¢] dS(x) (4.47)

FeF FeF

with superscript E for avoiding double definitions with the left hand side system from which we
obtain the right hand side system matrix

0 — wz MIEI4V4 _AgV4 + ng U4 (448)
LHS —AY ¢ + Bl y —BE, ®

which is symmetric if the respective spaces for test and trial functions coincide due to Theorem 3.11.

4.2.5 System matrices, reduction and summary

We summarize the results of Sections 4.2.2 and 4.2.4 to construct the generalized eigenvalue
problem and discuss conditions for reduction to a generalized eigenvalue problem of smaller size.
Using the system matrices given in (4.34) and (4.48), the generalized eigenvalue problem is given
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by
0 —Au,vs + Bu,vg — My, 0 0 u,
—Auv, + Buyv,  Mu,v, + Bu,y, 0 0 0 u,
_MU1V1 0 0 0 Aq>v1 — B(DVl Us;
0 0 0 0 0 u,
0 0 AUg‘F — BU3‘F 0 Boy (0]
(4-49)
00 0 0 0 u
0 00 0 0 U,
=w?|0 0 0 0 0 U,
000 M, ~AE, +BE, | | W
0 0 0 —Afy+By —BEy @

with symmetric left and right hand side system matrices. The right hand side system is reduced
analogously to the end of Section 3.6.3 while neglecting the inverse root of the mass matrix.
Relating to (3.70), we define

AP = (A]lalﬁ’ - BlEl4‘P> (MELM)_I <A§I>V4 - ng) + Boy (4.50)

such that the system writes

0 —Au,vs + Bu,vg — My, 0 u,
—Auyv, + Buyv,  Mu,v, + Buyv, 0 0 U,
—Mu,v, 0 0 Aoy, — Bovy, Us
0 0 ALI3‘F - BuSlIrr B@‘P P
(4.51)
0 00 0 u;
_ 2000 o0 U,
0 00 0 Us;
0 0 0 —AE d

The left hand side system is reduced by solving for the coefficient vectors U;,j = 1,2, 3. We retrieve
the equations

U, = Mgy, (Aev, — Bay,) @ (4.52)
U = (Mu,v, + Buw,) ™' (Awvs — Buyy,) U (4-53)
U; = _Ml}gl‘/é (Aqus - BU2V3) u; (4-54)

from which we obtain the reduced generalized eigenvalue problem
A® = W AEP (4-55)

with the reduced left hand side system matrix
A= (Auzy — Buyy) ML_131V3 (Aupvs — Bus) (Muv, + Bupvy) ™

(4.56)
(Auyv, — Buyws) My, (Aev, — Bov,) — Boy -
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Corollary 4.3. If the respective spaces for test and trial functions coincide and besides Vi, = Vi, then
A=AT.

Proof:
This follows directly from the symmetry of (4.34) given by Theorem 4.2 as

AT :< (AU3‘F - BU3‘Y> Mljl3lv3 (AU2V3 - BU2V3) (MUZVZ + Buzvz)il

;
(Awv, — Buyvy) My, (Aov, — Bovy) ) — Boy

T T
T -1 T -1
= (Ao = Bov)) " (Mgly,) (Auw, = Bui) " (Muys + Busre) ') (4.57)
T
T _
(Au,vs — Buyvs) <Mu31v3) (Aus¥ — Buyy) — Boy
= (Auy — Buyw) Mgy, (Auyv, — Buyvy) (Mu,y, + Buyy,) ™
(Auvs — Buyws) Mypy, (Aev, — Bavy) — Bay = A .
[ |

However, the inversion of My,yv, + By,y, is costly as it is not a block diagonal matrix. In this case,
the multiplication with the inverse of My,v, + By,v, further couples neighbouring cells resulting in
a system matrix of lower sparsity. This can be circumvented by setting 77, = 0, i.e., impose average
fluxes for u; and uy, such that the fluxes in Section 4.2.1 write

i = fu} , i = fur}} - (4.58)

Then, By,y, = 0 and the inversions in (4.56) are carried out for block diagonal mass matrices
Mujvj, j = 1,2,3 which is numerically efficient.

We further remark that the huge nullspace of the right hand side system matrix in (4.51) poses dif-
ficulties for several solvers of generalized eigenvalue problems and prevents further simplifications
to a standard eigenvalue problem. Reducing the system to (4.55) leaves us with a nullspace of
dimension 1 for the right hand side system matrix A for most choices of b as shown in Section 3.4.
We summarize the mixed form equations

(14 =b-V¢
Uy =b, -Vuy
us =V - (bLuy) (4-59)
~V - (buz) = w?V-(bruy)

Cam = w?b - V¢

and propose to use average fluxes for u, u; given in (4.58), local discontinuous Galerkin fluxes for
u3, ¢ given in (4.16) and for u4, ¢ given in (4.37) for the setup of the reduced generalized eigenvalue

problem (4.55).



Chapter 5

IMPLEMENTATION
Building code

This chapter focuses on the implementation of the numerical method presented in Chapters 3 and
4. Predominantly, we discuss these issues independent of the programming language. The code
for this thesis is implemented in FORTRAN.

We consider the generation of a locally aligned mesh introduced in Section 3.3.3 with aligned
upper and bottom interfaces as aligned left and right interfaces can be readily obtained by a change
of variables. For this, the direction of b has to be constant. We allow the local alignment of the
mesh to deviate from b and therefore introduce

bim
bmesh = ! € ]Rz . (51)

by

This provides the possibility to investigate the impact of the mesh-alignment as well as the choice
of besh =~ b such that the conformity condition (3.14) for fully aligned meshes is fulfilled.

The outline of this chapter is as follows: Section 5.1 is a technical derivation of the analysis
necessary for transforming integrals of the variational forms to a reference element. Section 5.2
then presents quadratures for evaluating these transformed integrals and introduces the bases
for the discontinuous Galerkin method. Section 5.3 deals with the construction of data structure
for generating the underlying mesh. As a tool for postprocessing solutions, Section 5.4 outlines
the framework for associating eigenvectors to Fourier modes. We follow with an overview of the
libraries included in the FORTRAN-code in Section 5.5. This chapter closes with an overview of the
main input parameters of the FORTRAN-code in Section 5.6.

5.1 Integral transform to reference element

For constructing the system matrices of Sections 3.5.2, 3.6.3, 3.6.5, 3.8, 4.2.2 and 4.2.4, various
integrals need to be evaluated on cells and parts of their boundary. The goal of this section is

71
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1
1
e A SV | (1,1)
y L'
—_—
K/ > <
_
b L
K
* (—1,—1) 1, -1)

FIGURE 5.1: Map of the reference element to a cell K and its inverse.

to provide the groundwork for the numerical quadrature of volume and surface integrals by
transforming the domain of integration to a reference element which we choose as [—1,1]2. We
define the coordinate system of the reference element by (¢, 7])T.

For fixed byesh, explicit formulae for the transform maps and their derivatives are presented in
Section 5.1.1. Transformed volume and boundary integrals are derived in Section 5.1.2.

5.1.1 Domain transform

This section provides explicit formulae for transform functions and their derivatives for the locally
aligned mesh with aligned upper and bottom interfaces presented in Section 3.3.3. The results for
aligned left and right interfaces can be obtained by performing the calculations for the coordinate
system with exchanged coordinates.

We define

2
hy =

27
= — h .——
N, ’ Y

= ﬁy . (5.2)

Using the cell indexation defined in Section 3.8, we define the map of the reference element to a
cell K with index (k,1) as Lk and its inverse as

A 1
x > 0) [z (k=3)h )
=L , = - y + gﬁ . , .
(y) k (6,1) (bg?nhi hz) (17> (bb?nhz (=1yn, (53)
AN AN 2%k-1
<v> Sl (é’ii f) (y> ) (21—1—2<k—1>2§n’2; ' oy

The corresponding sketch of this map and its inverse is depicted in Figure 5.1. The Jacobian

=
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matrices are given by

b2 2

D¢y Lk (¢, 1) = (bgﬁhx hy) / DyyLy' (x,y) = W2 g (5-5)

which are constant in their respective variables with determinants given by

hxhy
= |det (D¢, Lk (&,m)| = =~ : det (Dyy Ly (x,y)) = ~

(5-6)

The maps on boundaries of the reference element are given by

x k T+3)hy
(]/) :LK(:ELW): <(2)>77+( ( b P hy +()l 1)hy> (5.7)

hx 1
X — L ,:|:1 — ( ot > + ( o ( 7) ) .8
(y) k(¢,+1) bbm}zx ¢ h;?j;x +(1-1£)n, 59

with the norms of their derivatives being

1Dy Lk (£1, )2 = hl , F y-aligned

jP,K = b (5.9)

2
IDeLi (&, £1) |2 = %4/1+ (W) , F bpesn-aligned

5.1.2 Integral transforms

This section provides formulae for the transform of the volume and boundary integrals presented
at the end of Sections 3.5.1, 3.6.2, 3.6.4, 4.2.1 and 4.2.3. The integration is carried out on the reference
element [—1,1]2. For simplifying the notation, sub- and superscripts indicating specific cells and
associated maps are dropped whenever there is only one cell and map considered.

When performing integral transforms, we have to consider derivatives in the respective transformed
coordinate system and hence state the following Lemma.

Lemma 5.1. Let f : K — C be a scalar-valued differentiable function and L : [—1,1]?> — K a vector-valued
differentiable function, (x,y) " the coordinate system on K and (&,4) " the coordinate system on [—1,1]2.
Then, it holds

(Vey (f 1)) (Em) = (Dayl ™ (19)) - (Ve (Fo L) @) (5.10)
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Proof:
Using the transform function L and its inverse L~! given in the left equation of (5.3) and (5.4), we
obtain

(Vay (FoL) (&) = (Vay (foLoL ™)) (1)

_ ((vm (FoL) (&) (L) <x,y>> -
(Vey (foL)) (@n)- (L) (x,y) >
= (DeyL " (1,y)) -~ (Vey (Fo L)) (Gn) - _

Using Lemma 5.1, we establish the transformed volume integrals using the rules for integration by
substitution. Defining the scalar-valued functions f, g : K — C, these write for general b(x,y)

Jfedtey=[ (oL gor)Td @) (512)
Jo o Vaagdey) = [ (FoL)@m) (o) @) - (Vy(goL) @) T d (@)

-
= /Mz (FoL)(@&m) (boL) En)- (DoyL ™ (xy)) - (Vey(goL) Em T d(En)  (5:13)
where J denotes the Jacobian given in (5.6). For fixed byesh, the Jacobian matrix DWL_1 (x,y) is
constant in (x,y). For extensions to general, (x,y)-dependent by,eq, this term has to be treated
further to translate (x, y)-dependence into (&, #)-dependence.
For the transformation of surface integrals, we establish the building blocks for treating all
presented combinations of flux-pairs. Constants are not affected by the transformation process.
Let f,g : O3 — C be scalar-valued functions. Considering a single interface F with neighbouring
cells K and N (K), the boundary integrals for flux jumps and averages defined in (3.25) are
transformed as follows

[o-Uds ey = [

LI;](F) (b o LK) s Nk (fK o LK> JF,K ds (6,11) +

1
+ L;]i(K)(F) (b o LNp(K)) .nNF(K) <fNF(K) o LM:(K)) jF,Np(K) ds (6,77) G
1 K
AR as @y = [, 5 (Fo L) e ds (@)
+ » 1 (fNF(K) o LNF(K)) jF,NF(K) ds (6,17) (5‘15)
Lyrao (F) 2

where Jrx are the norms of the path parameterization induced by the map Lk given in (5.9)
as the transformation can be carried out over the full edge on which the interface F is located.
Establishing the treatment of products of functions fX and g™N*(K) with support on neighbouring
cells as

K _Nr(K) _ K Nr(K) -1
/Ff g d(xy) = /LKl(F) (f OLK) ((8 r OLNF(K)) oLy, OLK) Jrx dS(g,n) , (5.16)
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the framework necessary for dealing with all presented combinations of flux-pairs on interfaces is
complete.

5.2 Bases and integral evaluation

This section presents quadrature rules for integral evaluation and deals with the construction of a
particularly suited basis for the transformed integrals presented in Section 5.1.2.

For the evaluation of these integrals, we use Legendre-Gauss [79, p.887, 25.4.29] or Legendre-Gauss-
Lobatto [79, p.888, 25.4.32] quadrature. For weights and nodes in the (¢, 77)-coordinate system, we
use the notation

WG, k=0,...,pe W, k=0,...,p, (5.17)

for pg, py € IN. In the code, we globally assign one number of nodes each for all quadratures in ¢-
and #-direction.

The quadrature formula for a function f : [—1,1]?> — C writes
P Py :
[, fem a@n ~ LY of!f @) 518)
T i=0j=0

which is exact for integrating polynomials with degrees in ¢, 77 less or equal than 2ps +1,2p, + 1
for Legendre-Gauss and less or equal than 2ps —1,2p,, — 1 for Legendre-Gauss-Lobatto quadrature.
Defining the Legendre polynomials P,(¢) using the three term recurrence [79, p. 775, 22.3.8. and p.
782, 22.7.10]

P(¢) =1, P(5)=¢

(5.19)
(n+1) Puy1(6) = (21 +1) EPu(E) — nPa-1(S)
we can retrieve the Legendre-Gauss weights and nodes for k = 0, ..., ps as
& is the (k+1)™ zero of Py, +1(8) (5.20)
2
wt = X - (5.21)
/
(1-2) (P (&)
whereas for k =1,..., pz — 1, the Legendre-Gauss-Lobatto weights and nodes are
& is the k™ zero of P;’qg(é) So=—1,Gp, =1 (5.22)
2 2
w,f = Wo = Wy, = (5.23)

pe (pe +1) (Pp(80)) pe (pe +1)

The same holds respectively for w/, 7.
Using a set of interpolation points {g’k}zé, we can build Lagrange basis polynomials [79, p.878,
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25.2.2] defined as

li(g):ﬁg_&‘, p=0,...,p¢ , lg(n):ﬁm, q=0,...,py . (5-24)
k0 5p — Ok k=0 Ta — "k
k#p k#q

We now choose the spaces of basis functions Vk o, Viu, Vo, VkFr, VK,U]-/ j =1,2,3,4 of Sec-
tions 3.5, 3.6, 4.2 for all K € K structurally as

Vk = span{(l%l,?) oLgl, p=0,...,ps, q= 0,...,;9,7} (5.25)

where the degrees of basis functions pg, p, are the same for all K € K but may differ among the
different approximated functions. Note that the degrees might have to coincide in some cases to
ensure the symmetry of the resulting system matrices as outlined in the previously mentioned
sections.

Exploring some properties of the chosen basis, we first observe

I5(8k) = p , 1 (i) = S (5.26)

by definition where ¢ is the Kronecker delta. For f(§,7) = lg(('j)l;] (1) in (5.18) this yields

Pg Py Pz Py
/[—1 . 501 () d(&, ) = Zo ;)wfwjzg(gi)zg(qj) - Zo gwfw;?(spi(sqj = whw! (5.27)
’ =U7= i=0 j=

which allows us to hugely simplify the evaluation of mass integrals. By insertion of the basis
functions (5.25) into (5.12) for f and g, we obtain

/K (512 o L (1,0) oL d (x,y) = /[1 . 1 T d (8 )
Pg Py

= T YY" Wbl (&) ()15, (&)1 () (5.28)

i=0;=0
P¢ Py

_ Sols 5 5 .5 i
=J) ) w W} 0p1i0g1j0p3i0g0) = T Wy Wy, OpypOagy -
i=0j=0

Hence, the mass matrices are diagonal as the integral is non-zero if and only if test and trial
function coincide.

As derivatives appear in the remaining volume integrals, we need the derivative of the basis of
Legendre polynomials

alg() Pe 1 p: P 0
gé‘ _HM];) H.@_gk)’ p=Y..,pg (5.29)

k#p j#p k#Pi
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which can be stated analogously for 91/ /9y. Defining

.y - g y - (530)
I} = , I = 5.30

P k=0 5p — Gk ! k=0 Mq — Mk

k#p k#q
the derivatives evaluated at the quadrature nodes yield

alg : Pz Pt Z;] =0 ‘jp G = p
ag =15 ) T (@ —¢) = ]gép (5.31)

/=0 k=0 I IT, (& — &) I#p

ip k2P k#p,l

The volume and boundary integrals are evaluated using the presented Legendre-Gauss or Legendre-
Gauss-Lobatto quadrature.

When inserting test and trial functions in the volume and boundary integrals of Section 5.1.2, we
note, that the evaluation of these functions is reduced to evaluating Lagrange polynomials and
their derivatives at the quadrature nodes by definition of the bases (5.25). Information about the
map to the reference element is only used in the Jacobians and transformation of b.

We further note that the Lagrange polynomials can be built with other nodes than the ones used for
the quadrature. This allows to increase the number of quadrature points while keeping the degrees
of the bases fixed which is beneficial for variable b, the Fourier postprocessing of Section 5.4 and if
integrals include metric terms. However, in this case formulae (5.26), (5.27), (5.28) and (5.31) don’t
hold and the mass matrix becomes a block diagonal matrix with each block being a dense element
mass matrix.

Considering the evaluation of boundary integrals on non-conforming interfaces, the integration is
carried out over parts of the whole edge. The quadrature nodes and weights for boundary integrals
are transformed to these intervals.

For solving the anisotropic wave equation of Chapter 3 using the mixed variational form with LDG
fluxes presented in Sections 3.6.2 and 3.6.3, we choose the same degrees for all bases of Vi ¢ and
Vi u. For Bassi-Rebay 2 fluxes presented in Sections 3.6.4 and 3.6.5, we choose the same degrees
for all bases of Vx o, Vi o and Vi rr.

Considering the symmetry condition in Corollary 4.3 for the 4'-order problem of Chapter 4, we
opt for the same degrees for all bases of Vi ¢, VK,u]., j =1,2,3,4. For all equations and bases, p¢
and p, may differ.

5.3 Mesh generation

This section outlines the implementation of data structures for the locally aligned mesh presented
in Section 3.3.3 with aligned upper and bottom interfaces.
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The mesh is generated using the parameters

bmesh/ Ny, Ny (532)
as input.
We first assign a global index to all cells. Using the (k, I)-index introduced in Section 3.8, we define
the global index
ie (k,1) ==k + (I —1)Ny , k=1,...,Ny , I=1,...,N,. (5-33)

The (k,1)-index can be retrieved via

(k1) = (mod (e ~1, N +1, | ) (534)

where |.| are upper Gauss brackets. For visualizing the mesh and calculating the transformed
integrals presented in Section 5.1.2, we identify the corners and points of non-conformity of each
cell as well as the interfaces as shown in Figure 5.2. Note that an index from 1,...,6 can be
assigned to each point and interface. This index association is set globally throughout the code.
Further note that the interfaces have a fixed orientation.

&
&
A J
N33 Dt

» 4
AN P R NCe y

(4

R_LOWER R _UPP

P_R_LOWER

L_LOWER L_UPPE

/F) @
\“
ll—‘

Z,

@)

R 7
FIGURE 5.2: Nomenclature of cell points and interfaces.

gj’t

Using the vertical shift constant ¢ = L% %J defined in (3.122) and map L' onto the reference
1 X

element defined in (5.4), we summarize the coordinates of these points in Table 5.1. The start and

end points of each interface can then be established by combining Figure 5.2 and Table 5.1.
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point x-abscissa y-ordinate ¢-abscissa n-ordinate
P_L_LOWER  (k—1)i (I—1)h, ~1 ~1
P_L_UPPER  (k—1)h Ih, ~1 1
P_R_ LOWER Kk, B 4 (1—1)hy 1 -1
1
P_R_UPPER Kk b 4 1hy 1 1
1
P_L_NC (k=Dhe S+ -c—1h, -1 —1+2(B o)
1 bm%h Yy

— 2 _°x

P_R_NC ki, (14 c)hy 1 1-2 (b% c)

TasLe 5.1: Coordinates of cell points of K with index (k,I).

Note that the points of non-conformity coincide with a corner point for a conforming mesh. The
respective integral evaluations then collapse to integrals over a single point which evaluate to 0.
Boundary integrals are evaluated for each interface F. Hence, we establish a global interface index
by successive enumeration. More details are provided later this section. Furthermore, knowledge
of the indices of the neighbouring cells as well as the local position of the interface within these
cells is necessary. Using the uniformity of the neighbourhood when using the locally aligned mesh,
the local position of interfaces can be established as shown in Table 5.2.

local interface index local interface index of neighbour

L_LOWER R_UPPER
L_UPPER R_LOWER
R_LOWER L_UPPER
R_UPPER L_LOWER
LOWER UPPER
UPPER LOWER

TaBLE 5.2: Local interface indices within a cell and its respective neighbour.

The connection of the index (k,I) of a cell and its neighbour is summarized in Table 3.1. We update
this table using the local position of interfaces in Table 5.3.

Lastly the unit outer normals for each interface are summarized in Table 5.4.

Using the number of all cells Nx. = NyN,, previously defined in (3.10), we summarize this informa-
tion in the following data structure with the given dimensionality.

e KL_To_Elem: N, X N, see (5.33)

— 15t dimension: k-index

- 2nd dimension: l-index
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local interface index k (neighbour) I (neighbour)
L_LOWER mod (k—2, Ny)+1 mod (I —c—2, Ny) +1
L_UPPER mod (k—2, Ny)+1 mod (I—c—1, Ny) +1
R_LOWER mod (k, Ny)+1  mod (I+c—1, N,) +1
R_UPPER mod (k, Ny) +1 mod (I +¢, Ny) +1
LOWER k mod (I -2, N,) +1
UPPER k mod (I, Ny) +1

TasLE 5.3: Indices of the neighbours of cell (k,1) sharing a certain local interface.

local interface index unit outer normal
L_LOWER (-1,0)"
L_UPPER (-1,0)"
R_LOWER (1,0)"
R_UPPER (1,0)"
LOWER (O3, —6) " /|| (—02, ) "
UPPER (=6 67) " /I (—0 ) |

TABLE 5.4: Unit outer normals of interfaces.

Elem_To_KL: 2 X Ny, see (5.34)

- 1%t dimension: contains: (k,I)-index

— 27 dimension: global cell index i,

Interface_To_Points: 2 X 6, see Figure 5.2

- 1% dimension: contains: local start (1) and end (2) point index

- 21 dimension: local interface index

XCoordsElem: 2 X 6 X Ny, see Figure 5.2 and Table 5.1

- 1% dimension: contains: (x,y)-coordinates
— 2™ dimension: local point index

— 3™ dimension: global cell index i,

LocalInterfaceID: 2 X 6, see Table 5.2

— 1%t dimension: contains: local interface index in main cell , neighbour cell

— 2" dimension: local interface index in main cell
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e InterfaceInfo: 4 x 6 X Ny, see Figure 5.2, Tables 5.2 and 5.3

- 1% dimension: contains: global interface index, local interface index, cell index of neighbour,
local interface index of neighbour

— 2™ dimension: local interface index in main cell

— 3™ dimension: global cell index i,

e LocallntLimits: 2 X 4 X 6 X Ny, see Figure 5.2 and Table 5.1

- 1% dimension: contains: (&, 77)-coordinates
— 27 dimension: start (1,3), end (2,4) point of interface in main, neighbouring cell
- 34 dimension: local interface index in main cell

- 4 dimension: global cell index i,
e UnitQOuterNormals: 2 X 6 X Ny, see Table 5.4

— 15t dimension: contains: unit outer normal #
— 21d dimension: local interface index

- 3" dimension: global cell index i,

For the assignment of the global interface index of InterfaceInfo, we start with
InterfaceInfo(1l,1,1) =1 = InterfaceInfo(l,i,j) (5-35)

where j is the index of the neighbour of cell 1 sharing the local interface 1 in cell 1 and i the local
position of the interface within cell j. After an increment of the global interface index by 1, this
process is repeated for each unset global interface component of InterfaceInfo.

We note that the data structure for UnitOuterNormals is redundant in its current form as the
normals are the same for each cell. However, the proposed structure allows generalizing b.

The Jacobian matrices and Jacobians for the volume and surface integrals are the same for each cell.
Hence we can store (5.5) and (5.6) once and (5.9) once for each interface. For the extension to gen-
eral b the associated data structure can be generalized in the same manner as for UnitOuterNormals.

5.4 Fourier postprocessing

As Fourier modes are exact eigenfunctions of (3.1) and (4.1), we are interested in associating them
to the discrete eigenvalues and eigenvectors. After computing the eigensystem of the non-reduced

generalized (3.67), (4.51), reduced generalized (3.41), (3.59), (3.99), (4.55) or standard (3.43), (3.69)
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eigenvalue problem which share the form
AV = ?BV ) AM:® = M2 ® (5.36)

where the generalized eigenvalue problem is shown on the left and the standard eigenvalue
problem is shown on the right, we project the obtained eigenvectors, which are multiplied by M~z
in the standard eigenvalue problem case, onto a truncated space of Fourier modes. Note that in
the case of non-reduced generalized eigenvalue problems, we are only interested in projecting the
components of the eigenvector associated to the coefficient vector ®.

The space of Fourier modes is defined as

{ @ (x,y) = exp (i (mx +1y)) | ] < o, 1] < v | (5:37)

with maximal mode numbers #max, max. We recall

Z ZCIDf(pk (x,y) , PReER,® = <<I>kK>kK (5.38)
Kek ,

where the basis functions 4),1(( are defined in (5.25) and eigenvector ®. The Fourier coefficients of
the basis functions are given by

Pik = /]RQ ¢ (x,y) exp (i (mx +ny)) dx. (5:39)
Using
¢ Coy)= Y, ) diexp(i(mx+ny)), (5-40)

M=—Mmax N=—HNmax

we obtain the Fourier expansion of ¢ via

¢ (xy) =Y, Y o (v,y)

KeK k
K Mmax Nmax
SDIDIL DY > ‘PkK exp (i (mx +ny)) (5-41)
KeKk k M=—Mmax N"=—MNmax
Mmax Mmax

= Y, Y Y Y ool exp (i(mx+ny))

M=—Mmax N=—Nmax KEX k

which yields the Fourier coefficients of the eigenfunction ¢

S IPI T (542)

KeKk k
We determine the maximal amplitude of Fourier modes over all eigenvectors given by

Ag = max max ’gb?m’”‘

|m|<mmax ‘n‘gnmax

, Amax == max Ae (5.43)

@ eigenvector
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and associate the eigenvectors whose maximal amplitude is larger than a certain fraction of Amax

which we set as ,

A(D = EAmax . (544)
We argue that eigenvectors with a significantly smaller, i.e., with less than a factor of 1/40,
amplitude are either associated to a mode number larger than mmax Or 71max Or are not sufficiently
converged yet. In either case we want to discard these results in the evaluation of the eigensystem.
Setting this constant to 1/40 is debatable. We experienced the choice of 1/4 as too restrictive and
1/100 as too generous.

We then associate the Fourier mode (mg, ne) to the eigenvector ® with

(5-45)

(me,ne) = argmax ‘q?m”
|m|<mmaxl|n‘<nmax
If this is not unique, we choose the representative with m > 0. If there is still more than one, we
choose one representative with m > 0 at random.
Dependent on the choice of quadrature points given in Section 5.2 for evaluating the Fourier-
coefficients, we might end up with aliasing effects in the Fourier representation of eigenvectors. In
the case of constant b, Section 3.9.1 considers the locally aligned mesh and the primal variational
form of Section 3.5. Therein, the matrices collapse to systems of the size of the basis with powers
of the roots of unity wy, = exp (27i/Ny), wn, = exp (2mti/Ny) as scalar factors. As
o i cn __ cn+itNy S~

Wy, = Wy, , Wy, = Wy, Ve, m,n,m, i € Z (5.46)
the Fourier coefficients of a mode (m, n) and a mode number with multiples in the mesh resolution
(m 4 1mNy,n + 7iN,) cannot be distinguished on a discrete level. Therefore, if the mesh resolution
is too low, we expect less precise results for the Fourier postprocessing. This can be prevented by
choosing

N, —1 Ny —1
Mmax < x2 ’ Nmax < ]/2 (547)

for a given mesh.

5.5 Linked libraries

This section provides a short overview of and motivation for the libraries linked in the FORTRAN-
code. Section 5.5.1 presents the FEAST eigenvalue solver which is particularly suited for computing
all eigenvalues within a certain interval. Section 5.5.2 provides an overview of used formats
for sparse matrices and libraries for sparse matrix operations. For moving to three-dimensional
geometries, Section 5.5.3 introduces a library providing the metric factors of the MHD equilibrium
geometry necessary for the anisotropic wave equation with metric terms.
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5.5.1 FEAST

We compute the eigensystem of the non-reduced generalized (3.67), (4.51), reduced generalized
(3-41), (3-59), (3.99), (4.55) or standard (3.43), (3.69) eigenvalue problem which share the form

AV = w?BV ) AM?® = ?M?® (5.48)

where the left hand side system matrix A is symmetric positive semidefinite matrix and B is
symmetric positive definite for the reduced system of the anisotropic wave equation presented
in Chapter 3. Note, that B is symmetric positive semidefinite for the non-reduced system of the
anisotropic wave equation of Chapter 3 and the 4M-order problem of Chapter 4. Therefore, we need
an eigenvalue solver which is capable of dealing with generalized eigenvalue problems where
both system matrices might be symmetric positive semidefinite.

Furthermore, as outlined in Section 2.7, we are interested in small eigenvalues located in a fixed
interval which we define as [0, w?2,,,]. As the amount of discrete eigenvalues within this interval is
unknown, commonly used methods like the Arnoldi iteration or the Lanczos algorithm are not as
well-suited for this problem.

The FEAST algorithm "contains elements from complex analysis, numerical linear algebra and
approximation theory, to produce an optimal subspace iteration method using spectral projectors"
[80, Section 2.1]. The full documentation of FEAST can be found in [80]. Amongst other techniques,
complex contour integrations are used for solving the eigenvalue problem. For each contour
integration point, a linear system has to be solved.

We provide a list of input parameters for the FEAST eigenvalue solver which can be specified in the
parameter-file of the FORTRAN-code and provide the used default configuration.

e [Emin,Emax]: Search interval for the eigenvalues.
e MO: Upper bound for the number of eigenvalues in the search interval.
e cigsolveFlag: Type of eigenvalue solver used

- R: Real-value based eigenvalue solver for B symmetric positive definite; calls dfeast_srcix.
Default for anisotropic wave equation.

— C: Complex-value based eigenvalue solver for B symmetric positive semidefinite; calls
zfeast_srcix. Default for 4M-order equation.

e feast_nCP/fpm(2): Number of contour integration points on a half contour; addresses the
accuracy of the algorithm within one iteration. Default: 16.

e feast_epsexp/fpm(3): Abort criterion; residue < 10~ *¢as%-¢PseXP_ Default: 10

e feast_maxNumLoops/fpm(4): Maximal number of iterations. Default: 6
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As a default for MO, we use the system size for calculating all eigenvalues and a quarter of the
system size for calculating eigenvalues in an interval. For large system matrices, this number can
be reduced by a larger margin.

We remark that in the case of the complex eigenvalue solver zfeast_srcix, the convergence of
FEAST is highly dependent on the initial guess for the number of eigenvalues MO as well as the
accuracy of the eigenvalue solver set by feast_nCP. Small variations of these numbers decide
whether the algorithm converges.

5.5.2 SPARSKIT and MUMPS

For a cell-based assembly of the building blocks of the system matrices, see for example the
individual matrices of (3.70), we use the coordinate based COO format [81, Section 2.1.1] storing

(row-indices, column-indices, values) . (5.49)

For combining these parts to system matrices, we transform them to the compressed sparse row
(CSR) format [81, Section 2.1.3] storing

(values, non-zero-indices, column-indices) (5.50)

where the non-zero-indices of a M x N matrix is an array of length M + 1 recursively defined
Vk=2,...,M+1by

e non-zero-indices[1] = 0
e non-zero-indices|k] = non-zero-indices[k — 1]+ number of non-zeroes in row k — 1

For performing matrix sums and multiplications of CSR-matrices, we use the SPARSKIT library
[81].

Using the symmetry of the resulting system matrices, we convert them to lower triangular COO
matrices to reduce disk space. These matrices are then used by the eigenvalue solver. For perform-
ing matrix multiplications and factorizations as well as the solution of linear systems needed by
the FEAST eigenvalue solver, we use the MUMPS library [82, 83].

5.5.3 VMEC

For solving the anisotropic wave equation on a flux surface of a magnetohydrodynamic equilibrium
as outlined in Section 3.7, we need the metric terms (3.111) for the transformation to the fully
periodic reference domain Q.

The magnetohydrodynamic equilibrium is provided by the 3D-Variational Moments Equilibrium
Code [84, 85], short VMEC, which "uses a variational method to find a minimum in the total energy
of the system" [86].
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This precalculated VMEC-equilibrium can be evaluated at a specified position (s, 8, ¢) in straight field
line coordinates yielding the constant direction of the magnetic field b = (i, 1)" of the associated
flux surface. Furthermore, given a flux surface coordinate s and quadrature nodes (x,y)=(0, ¢) of
Section 5.2, we can compute all metric factors needed in (3.111).

5.6 Input parameters

The FORTRAN-code offers the specification of a broad range of input parameters for its setup. Several
of these parameters have a default configuration. Parameters for the eigenvalue solver are listed in
Section 5.5.1. Whenever we deviate from either of these settings in the numerical evaluation of
Chapter 6, we highlight the changes appropriately.

e Beq: Sets b.

e Bmesh: Sets the direction of the mesh as outlined at the beginning of this chapter. Default:
Bmesh = Beq.

e nElemsX, nElemsY: Sets Ny and N, i.e., the parallel and perpendicular resolution of the mesh.

"

e stabilizationEtaV: V € { "", BR2, 2, Phi, E }. Sets the respective stabilization constants 7y.
Default: 6; Default for V.= 2: 0

o degXiV, degEtaV:V € { Phi, U, Q, U1, U2, U4 }. Sets the degrees p¢, p, of the respective bases
(5.25).

e degXiEval, degEtaEval: Specifies the number of quadrature nodes —1 for integral evalua-
tion, see (5.17).

e nodeTypeInterpol: Sets the type of nodes for building the Legendre polynomials for the
basis functions (5.25), 1 are Legendre-Gauss nodes, 2 are Legendre-Gauss-Lobatto nodes, see
Section 5.2. Default for anisotropic wave equation: 2, Default for 4"-order equation: 1

e noteTypeEval: Same as nodeTypeInterpol, but instead sets the type of nodes for the quadra-
ture (5.17). Default: 1

As outlined at the end of Section 5.2, we choose the same value for all degXiV and a not necessarily
different value for all degEtaV, V € { Phi, U, Q, U1, U2, U4 }. To account for the proper evaluation of
terms not related to the bases, e.g., metric terms and Fourier postprocessing, we choose higher
values for degXiEval and degEtaEval, namely

degXiEval = [1.5 degXiPhi | , degEtaEval = [1.5 degEtaPhi] . (5.51)
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In the following we refer to degXiPhi as pg and to degEtaPhi as p,.
The parallel and perpendicular resolution (degrees of freedom) is defined as

DoF) == (pg +1) Ny , DoF, := (p, +1) N, (5.52)

yielding the total resolution
DoF := DoF| DoF (5.53)

which is the size of the system matrices for reduced generalized and standard eigenvalue problems.
The system size doubles for the non-reduced generalized eigenvalue problem using LDG fluxes
for the anisotropic wave equation (3.67) and quadruples when considering the non-reduced
generalized eigenvalue problem of the 4M-order equation (4.51).

For setting up the eigensystem, we offer

e useReducedSystem: Determines whether the system matrices for mixed variational forms
should be reduced in size. Default: TRUE

e generalizedEV: Cannot be FALSE if useReducedSystem is FALSE

— TRUE: Set up a generalized eigenvalue problem (default)
— FALSE: Set up a standard eigenvalue problem

e EVmaxMode: Sets Mmax, 'max for the Fourier postprocessing of Section 5.4
For VMEC-equilibria, we offer

e readBFromFluxSurface: Determines whether to use a VMEC equilibrium as an input. Default:
FALSE

e radiusFluxSurface: Normalized flux surface coordinate s
e vmecWoutFile: Directory of the VMEC equilibrium
e VMEC_swap_theta_zeta: Addresses the alignment of interfaces

— TRUE: aligned left and right, i.e., toroidally non-conforming, interfaces (default)
— FALSE: aligned upper and bottom, i.e., poloidally non-conforming, interfaces
Additionally, we offer to visualize the mesh as well as the eigenvectors by setting visualizeMesh

and visualizeEV. For visualizing the mesh on a flux surface, we offer mapToXYZ. nvisu_mesh and
nvisu_EV are arrays of length 2 which specify the number of visualization points in ¢, #-direction.
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Chapter 6

NUMERICAL RESULTS
Evaluating methods

This chapter discusses the numerical results of the schemes presented in Chapters 3 and 4 using
the implementation outlined in Chapter 5. Independent of the concrete choice of variational form,
flux and equation, we refer to the method as locally field-aligned discontinuous Galerkin method
(ADG). The basic ingredients of ADG consist of the local field-alignment of mesh and basis and a
distribution of resolution with DoF; > DoF,. We explicitly allow for byesh ~ b.

For the constant coefficient anisotropic wave equation (3.1) and the 4t _order equation (4.1) with
constant b, analytical solutions are known. This allows us to study errors of the eigenvalues of
the numerical approximations. Throughout this chapter, we present relative errors whenever we
speak of errors if not marked explicitly otherwise. If the exact eigenvalue of a mode is zero, we
use absolute errors instead. This is particularly the case for the constant mode.

Furthermore, we consider the anisotropic wave equation with metric terms (3.110) on the flux
surface of a three-dimensional MHD equilibrium where no analytical solution is known. Hence,
we compare the results with existing codes.

For all equations, we examine the impact of the local alignment of mesh and basis. In particular,
we compare to non-aligned cartesian meshes. We further investigate different ratios DoF, / DoF|
for the distribution of resolution by varying the parallel and perpendicular degrees of the bases as
well as the resolution of the locally field-aligned mesh. We study the convergence of ADG and, if
possible, the dependence of the error on different directions of b.

We remark that system matrices are stored as lower triangular sparse matrices as mentioned in
Section 5.5.2. Therefore, we investigate ADG regarding the numbers of non-zeroes of the lower
triangle of the left hand side system matrices in relation to the total number of matrix entries and
abbreviate this percentage by nnzA. All eigenvalues are calculated from generalized eigenvalue
problems.

The outline of this chapter is as follows: A reference configuration with constant b for the com-

89
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parison of results is presented in Section 6.1. Section 6.2 studies ADG applied to the constant
coefficient anisotropic wave equation whereas Section 6.3 discusses the results for the 4"-order
equation. In Section 6.4, we consider the anisotropic wave equation with metric terms from the
flux surface of a three-dimensional MHD equilibrium and compare ADG with existing codes.

6.1 Reference case

For the purpose of a first evaluation and comparison of ADG, this section defines a reference test
case by fixing the magnetic field direction b = (1up(s), 1)T at s = 0.9. The LHD-like-i-profile [87],
is defined by

hnp(s) = 0.47262 +0.32392 s + 0.49604 s* +5.3991 x 10~¢ s°

(6.1)
—3.165 x 1072 s* +4.7963 x 1072 s> — 2.2824 x 1072 s°

yielding b = (1,1) " == (1.165939762441386,1) ' . We choose this value of : to be physically meaning-
ful and result in a locally aligned mesh with low shear and non-conforming interfaces of different
lengths. Furthermore, we avoid a low rational number such that all considered eigenvalues differ
from zero except for the constant mode.

Since b is constant, the exact eigenvalues of the constant coefficient anisotropic wave equation and
the 4th-order equation are given by wi = (im+ n)2 as shown in Theorems 3.1 and 4.1.

In the reference case, we limit the space of the Fourier postprocessing of Section 5.4 to maximal
mode numbers Mmax = Mmax = 20. Figure 3.2 shows the distribution of eigenvalues for a logarith-
mically scaled color map. For improving readability and comparability, Figure 6.1 is the same as
Figure 3.2. As outlined at the end of Section 3.1, we emphasize that small eigenvalues are gathered
along the direction perpendicular to b.

As modes with small parallel gradient and therefore small associated eigenvalues are of interest as
outlined in Section 2.7, we aim to resolve all modes with associated eigenvalue w%/n <02 =w2,,.
We call these modes a band of modes with eigenvalues smaller than w?,,,.

Note, that if all eigenvalues have to be computed, we set up the search interval of the eigenvalue
solver to [Emin, Emax| = [—0.01,2000].

6.2 Constant coefficient anisotropic wave equation

In this section, we study the impact of the mesh alignment and different discretization parameters
of ADG onto the accuracy of the eigenvalues in the reference case for the constant coefficient
anisotropic wave equation (3.1). For this, the construction of the method is outlined in Chapter 3.
For exploring the capabilities of and a useful setup for ADG, we first examine the mixed variational
form using LDG fluxes, as presented in Sections 3.6.2 and 3.6.3, as a reduced, generalized eigenvalue
problem.
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Ficure 6.1: Contour plot of the size of the exact eigenvalues for b = (1.1659398, 1)T with associated mode
numbers up to 20. The black dashed line indicates the direction perpendicular to b.

The outline of this section is as follows: Section 6.2.1 examines the impact of the local alignment
of mesh and basis. Section 6.2.2 discusses a variety of different distributions of parallel and
perpendicular resolution DoF| and DoF, regarding the choice of different degrees for the bases
as well as different mesh resolutions. We follow with a study of the convergence by refining the
mesh in Section 6.2.3. Section 6.2.4 explores the dependence of the accuracy on b. The different
fluxes for the mixed variational form of Chapter 3 are compared in Section 6.2.5. We close with a
summary in Section 6.2.6.

6.2.1 Impact of the local alignment

This section compares a non-aligned cartesian mesh, see Figure 3.4, with ADG. Furthermore, we
examine the impact of the local alignment of the mesh by varying bp,esn such that the conformity
condition (3.14) is fulfilled and a fully aligned mesh could be constructed. The proposed values
are the two closest rational numbers for the considered case of a mesh with N, = 8.

We plot the eigenvalue errors for all Fourier modes considered in the reference case. Figure 6.2
shows these as contour line plots for various choices of byesn. We observe in the case of the
cartesian mesh of Figure 6.2(a) that the error increases for higher mode numbers. We observe this
dependence for the locally aligned cases in Figure 6.2(b)-(d) as well, but additionally a coupling
of the error to the magnitude of the eigenvalue is introduced. The well resolved region is tilted
towards the direction perpendicular to bpesn, Which is the region where small eigenvalues reside
for byesh = b. Figure 6.2(d) illustrates that the well resolved region is indeed tilted towards the
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FIGURE 6.2: Errors of a non-aligned cartesian case, i.e., byesnh = (1, O)T, ADG with byegn = b and ADG
using an almost aligned mesh fulfilling the conformity condition (3.14), in the reference case with DoF = 212
for the constant coefficient anisotropic wave equation. In between the black dashed lines resides the band of
modes with eigenvalues w? < w2, = 0.2.

direction perpendicular to byesh = (8/6, 1)T. Taking a closer look at the band of modes with
eigenvalues w? < w2, as plotted in Figure 6.3, we observe that the errors of eigenvalues with large
mode numbers modes are smaller by 1.5 to 2 orders of magnitude for ADG in comparison to a non-

aligned discontinuous Galerkin method. For this discretization, i.e., p = p, =7 and Ny = N, = 8,
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FIGuRre 6.3: Comparison of errors of a non-aligned cartesian case with ADG for different alignments in the
reference case with DoF = 212 for the constant coefficient anisotropic wave equation.

the almost aligned meshes yield roughly the same results as for b,.sn = b. However, we observe
that for very large mode numbers, i.e., (16, —19) and (17,20), ADG with by,esn = (8/6, 1)T yields
slightly worse results than the other two configurations with bpegn closer aligned to b. This effect
is discussed in more detail in Section 6.2.2. We conclude that the mesh alignment improves the
accuracy.

The white regions in the bottom left and top right corners of Figure 6.2(c) depict modes to which
no eigenvalue is associated which can be seen in a variety of upcoming contour plots. These
regions are characterized by large eigenvalues with large associated mode numbers which we
don’t aim at resolving.

6.2.2 Distribution of resolution

Considering the band of modes for w? < w?

“iax in Figure 6.2 and the distribution of exact eigenval-

ues in Figure 6.1, we observe that too much effort is spent on resolving mode numbers outside
this band. Remembering the discussion in Section 3.1 that eigenfunctions with small eigenvalues
have a small parallel gradient, we aim to distribute the resolution DoFH and DoF | of the method
such that DoF| > DoF|. This section explores different choices for this distribution dependent on
wrznax and Mmax, Nmax-

As a first measure, we keep the total number of cells constant but change the cell distribution
by refining N, and coarsening N, as shown in Figure 6.4. The effects are shown in Figure 6.5(a)
where we used the mesh of Figure 6.4(b). In comparison to Figure 6.2(b), we observe that the
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FIGURE 6.4: Meshes of ADG with different resolutions in the reference case.
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FIGURE 6.5: Errors of ADG for high and low degree pg but same parallel resolution DoF| with DoF = 212,

in the reference case for the constant coefficient anisotropic wave equation. In between the black dashed lines
resides the band of modes with eigenvalues w? < w2, = 0.2.

well-resolved region with errors smaller than 10~%, indicated in blue and white gathers narrower

around the interesting band of modes and extends into regions of larger mode numbers.

Taking a closer look at the band of modes in Figure 6.6, we observe that changing the cell distribu-

tion yields an increase in accuracy of 4 to 5 orders of magnitude for mode numbers larger than 4.

Combining this with the results of the previous section, we gain 5.5 to 7 orders of magnitude by

aligning the mesh and distribute its resolution such that DoF, / DoF| = 4 in comparison to the
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with DoF = 212, in the reference case for the constant coefficient anisotropic wave equation. A high degree
configuration with DoF | / DoF| = 1 is plotted as a reference.

non-aligned cartesian case with the same total resolution DoF = 212,

Another way to adapt the ratio DoF | / DoF is to modify the degree of the basis functions. Fig-
ure 6.5(b) shows a configuration with p; = 3, while keeping DoF, / DoF| = 4. In comparison to
Figure 6.5(a) we observe that the well resolved region gathers even closer around the interesting
band of modes whereas the errors related to the mode number are of the same magnitude. This
is confirmed in Figure 6.6 where the errors roughly have the same order of magnitude for most
modes when comparing p; = 7 and p; = 3 with DoF, / DoF| = 4. However, when choosing a
lower degree pg, we obtain system matrices of higher sparsity with 1.33% instead of 1.65%, so we
trade some accuracy for higher sparsity.

For creating a framework for the comparison of different configurations regarding the discretiza-
tion parameters pg, py, Ny and Ny, we set wrznax = 0.2 and Mmax = Nmax = 10. As a quality measure
we opt for minimization of the biggest error among all these modes and compare only parameter
combinations yielding the same number of DoF. As the eigenvalues are close to zero, we investigate
both the absolute and relative error

~2 2
2 = max w, ., — W (6.2)
Wihax/Mmax,Mmax ‘m‘gmmax, ‘n|<nmax m,n m,n
w;zn,ngwrznax
~2 2
. }wm,n - C‘)m,n ~2
Rw%qax/mmaw”max = max max 2 4 max ‘wm,ﬂ (63)
|| <mMmax, [1]<Hmax Winn |m|<Mimax, |1]<Mmax

O#Wzm,n S‘*’zmax ‘”%l,n =0
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where w3, is the exact eigenvalue and @3, , the approximated eigenvalue associated to mode
(m,n).
basis mesh resolution  sparsity log,,(errors)

pe Py Nx Ny DoF | / DoF| nnzA Ao21010  Roz210,10
3 3 2 2° 1 0.168% —3.21 +0.69
3 3 24 26 4 0.168% —5.45 —1.61
3 3 2 27 16 0.168% —8.18 —4.34
7 3 24 25 1 0.208% -3.17 +0.69
7 3 23 26 4 0.208% —6.42 —2.58
7 3 22 27 16 0.208% —8.27 —4.43
3 7 2° 24 1 0.333% —7.80 —4.79
3 7 24 2° 4 0.333% -11.0 —6.89
3 7 23 26 16 0.333% —9.82 —6.62
7 7 24 24 1 0.412% —7.83 —4.85
7 7 23 2° 4 0.412% —11.7 —8.58
7 7 22 26 16 0.412% -11.4 —7.62

TaBLE 6.1: Results of configurations of ADG with DoF = 2% and w2 = 0.2, Mmax = Nmax = 10, in the
reference case for the constant coefficient anisotropic wave equation.

basis mesh resolution  sparsity log,,(errors)
pe Py Ny Ny DoF | / DoF| nnzA Ap21010  Roz,1010
3 3 24 2° 2 0.336% -3.17 +0.69
3 3 23 26 8 0.336% —6.42 —2.58
7 3 23 2° 2 0.415% —3.64 +0.21
7 3 22 26 8 0.415% —6.38 —2.48
3 7 24 24 2 0.665% —7.83 —4.86
3 7 23 2° 8 0.665% —9.85 —6.14
7 7 23 24 2 0.824% —8.53 —5.60
7 7 22 2 8 0.824% —11.2 —7.48

TasLE 6.2: Results of configurations of ADG with DoF = 213 and cu,%mx = 0.2, Myaxy = Nyax = 10, in the
reference case for the constant coefficient anisotropic wave equation.

The results are summarized in Tables 6.1 and 6.2. First we observe that pz > p, yields worse results
than ps < p;. Hence, when aiming for systems of higher sparsity, p, should be increased prior to
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pe. Furthermore, we observe that the errors are generally the smaller the bigger DoF | / DoF| is.
However, for DoF | / DoF =16 and p, = 7, the parallel resolution becomes too small as the errors
are bigger than for DoF, / DoF| =4in Table 6.1. Hence, for this setting of wrznax, Mmax, Hmax W€
propose to choose DoF, / DoF|| € {4,8}. Whether to choose p; = 3,7 depends on the requirements
on the sparsity of the system and the desired accuracy of the results.

In the parameter choices of Tables 6.1 and 6.2, (6, —7) is the mode yielding the largest relative error.
This is due to the fact that for Mmax = Hmax = 10, w§,_7 = 1.90 x 1075 is the smallest non-zero
eigenvalue among the considered ones.

Revisiting the almost aligned meshes discussed in Section 6.2.1 for distributed resolution, the
alignment of the well resolved regions perpendicular to by,s, is again observed, see Figure 6.7.
Taking a closer look at the interesting band of modes in Figure 6.8, we observe that the different
mesh alignments overall perform very similar which is particularly indicated by the errors for the
mode numbers 10 < |m|, |n| where the largest deviations had to be expected due to the biggest
deviation of the well resolved region from the fully aligned case.

2 pe=3, py=7, Nx=8, N,=16, nnzA=1.53% rel. err. 20 pe=3, py=7, Nx=8, N,=16, nnzA=1.53% rel. err.
16 \ |100 16 100
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[ L1072 [ 11072
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.g 10 _g 10
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E _1» 10° & _1o \ 107°
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@) biesh = (16/14,1) (b) bimesh = (16/13,1)

FIGURE 6.7: Errors of ADG using an almost aligned mesh fulfilling the conformity condition (3.14) with
DoF, / DoF| =4, DoF = 212 in the reference case for the constant coefficient anisotropic wave equation.
In between the black dashed lines resides the band of modes with eigenvalues w? < w2, = 0.2.

Whether to choose an almost aligned over an aligned mesh is an intricate question. As the well
resolved regions are tilted perpendicularly to byesh, the approximation properties of almost aligned
meshes overall perform worse for a broad band of interesting modes, i.e., large w?,,,, as well as for
high frequency modes, i.e., large mmax, max, as the wrong tilt of the region affects the accuracy
more and more. However, this can be thoroughly balanced with a broadening of the well resolved
band by choosing a higher degree p: as indicated by Figure 6.5(a) or also by choosing a higher
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mode numbers
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FiGUre 6.8: Comparison of errors of ADG for different alignments with DoF, / DoF| = 4, DoF = 212 in
the reference case for the constant coefficient anisotropic wave equation.

mesh resolution which then allows the choice of a closer rational approximation of b as indicated
by (3.14).
Analogously, for a broad band of interesting modes, we suggest to use a high parallel degree p;

in addition to the high perpendicular degree p;. As the norm of the parallel gradient gets bigger

2

for large wi ax

as shown in Theorem 3.1, more resolution is needed along the parallel direction.
Hence, the ratio DoF | / DoF| can be chosen large for small w2, and vice versa. From now on we
focus on the case where by,esn = b.

In the mixed form (3.45), the basis of the parallel gradient u can be chosen differently than the
basis of ¢. We investigate the impact of choosing a parallel degree of pz — 1 for all Vi 1 if pg is the
parallel degree for all Vi .

Figure 6.9 shows two sets of configurations of ADG with DoF | / DoF = 4, 8. We observe that both
configurations of the basis of Vi ; yield similar results. As we consider reduced system matrices,
a decrease in the size of the basis for u does not yield an increase in the sparsity of the system

matrices. Hence, we opt for keeping the same degrees for all bases of the discretization.

6.2.3 Convergence

In this section, we analyze the behaviour of ADG when refining the locally aligned mesh and
investigate the convergence of ADG for different ratios DoF | / DoF| in the framework of the
previous section and the reference case.

Figure 6.10 shows contour line plots for various mesh resolutions. When refining the parallel
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mode numbers
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FIGURE 6.9: Comparison of errors of ADG with pz = 3, py, = 7 for Vk,e and pz = 2,3, py, = 7 for Vi u, in
the reference case for the constant coefficient anisotropic wave equation.

resolution DoF| by increasing Ny, we observe by comparing Figure 6.10(a) with Figure 6.10(b)

that the region of well resolved eigenvalues broadens along b, i.e., modes with larger eigenvalues

2

wm,n

are better resolved, whereas the magnitude of errors related to the maximal mode number
which is indicated by the length of the well resolved region in the direction perpendicular to b
roughly stays the same. Refining the perpendicular resolution DoF | by increasing N,, we observe
the exact opposite by comparing Figure 6.10(a) with Figure 6.10(c): The width of the well resolved
region along b stays the same whereas the length in the direction perpendicular to b increases and
eigenvalues associated to large mode numbers are better resolved.

This fits well with the developed theory where we aimed at a discretization which allows to ad-

dress the parallel and perpendicular resolution individually. The parallel resolution DoF| mainly

2

inn as these are related to the norm of the

controls the error related to the size of the eigenvalues w
parallel gradient as shown in Theorem 3.1. The perpendicular resolution DoF; mainly addresses
the error related to the mode number (1, 1) of the eigenmode as the mode is highly oscillatory in
the direction perpendicular to b.

For closely examining the convergence behaviour of ADG, we use the framework of Section 6.2.2
and trace the errors (6.2), (6.3) for wrznax = 0.2, Mmax = 20, nmax = 20 in the reference case . For one
setup we use degrees p; = 3,p, = 7 and pz = 7,p;, = 7 and different choices for DoF, / DoF.
The mesh is refined simultaneously in Ny and Ny by a factor of two to keep DoF, / DoF| fixed
throughout the convergence process. Figure 6.11 summarizes these results. As a second setup, we
compare p, = 3,7 as well as a different refinement strategy of the mesh, shown in Figure 6.12. We

set the search interval for these figures to [Emin,Emax] = [—0.01,0.4] to account for approximated



100 6. NUMERICAL RESULTS

pe=3, pr=7, Nyi=8, N,=16, nnzA=1.33% rel. err. 20 Pe=3, p;=7, Ny=16, N,=16, nnzA=0.665% rel. err.
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FIGURE 6.10: Errors of ADG with pz = 3, p, = 7 and different mesh resolutions, in the reference case for the
constant coefficient anisotropic wave equation. In between the black dashed lines resides the band of modes
with eigenvalues w? < w2, = 0.2.

eigenvalues which might end up bigger than 0.2 due to errors of the approximation.

In Figure 6.11, we observe that the parallel degree ps has minor impact on the convergence prop-
erties. For the same resolution, DoF | / DoF| = 8 yields an improvement of 2.5 to 3 orders of
magnitude compared to DoF, / DoF = 4.

Figure 6.12 shows that the numerically observed rate of convergence depends on p,. This encour-
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FIGURE 6.11: Convergence of the maximal absolute and relative errors (6.2) and (6.3) keeping pe, py fixed and
increasing the mesh resolution in Ny, N, simultaneously, in the reference case for the constant coefficient
anisotropic wave equation. The black dashed line shows a theoretical convergence rate of O (DoF_7) as
referenice. Nodes on the curves are labeled with the mode producing the largest error.
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FIGURE 6.12: Convergence of the maximal absolute and relative errors (6.2) and (6.3) for different setups
of ADG, in the reference case for the constant coefficient anisotropic wave equation. For a specified ratio
DoF,| / DoF|, the mesh refinement is simultaneous in Ny and Ny. For Ny = 8, the refinement is done in
Ny exclusively. Dashed lines show a theoretical convergence rate of O (DoF~ ™€) as reference. Nodes on
the curves are labeled with the mode producing the largest error.
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ages the use of a high perpendicular degree p, as indicated by Tables 6.1 and 6.2. We further
observe in Figure 6.12 that we obtain rapid convergence when keeping the parallel resolution Ny
fixed and just improve the perpendicular resolution DoF by increasing N,. This convergence pro-
cess lasts until the given parallel resolution is too coarse to obtain better results. The discussion of
Section 6.2.2 of how to choose DoF | / DoF| therefore extends. The optimal choice of DoF, / DoF|
strongly depends on the total resolution DoF of the discretization.

For the simultaneous refinement of the mesh in N, and N, the experimentally observed conver-
gence is of the order of the perpendicular degree p, of the underlying basis, i.e.,

A02,2020, Ro2,2020 = O (DoF~7) (6.4)

as indicated by the dashed lines in Figures 6.11 and 6.12. Note, that this property is independent
of pz. As we consider the convergence of multiple eigenvalues at once, we leave this formula as a
bare observation of the numerical results rather than stating it as a general property of ADG for
arbitrary wlznax, Mmax, Nmax-

We remark that the curves flatten in the case of relative errors due to the abort tolerance of the
eigenvalue solver and round-off errors. The smallest eigenvalue except zero for the constant mode
is approximately 1.9 x 10~ for the mode (6, —7) in the reference case. A relative error of order
1078 for this eigenvalue for a total resolution of 2!°> and 2!¢ implies absolute deviations of order
10713,

6.2.4 b-dependence

For investigating the impact of different directions of b, we run ADG using b = (1, 1)T for

6{10,11,...,200} (6.5)
100" 100 100

and pgz = 3, py, =7, Ny = 8, N, = 16 such that DoF | / DoF|| = 4. For small ¢, we deal with strongly
sheared meshes. For properly evaluating the Fourier postprocessing outlined in Section 5.4 along
the above-average long interfaces parallel to b, we increase degXiEval to 90 for all ; to ensure
comparability. However, this increase in evaluation points is only needed for small : when aligning
the upper and bottom interface of the locally aligned mesh.

Figure 6.13 shows absolute and relative errors for different values of .. We observe that for
1 € [0.7,2], the dominant error contribution is given by the maximal mode number as indicated
by Figures 6.6 and 6.8 for the respective configuration of ADG. For : < 0.7 we observe that this
coupling dissolves and the maximal error starts to increase for decreasing :. This increase in the
error can be traced back to the huge shear of the mesh, e.g., for 1 = 1/10, an aligned interface has
the length 71v/101/4 ~ 7.9. However, ADG yields results with relative errors of the order 10~2° for
this configuration. We suggest to use a mesh with aligned left and right interfaces for small values
of 1 as outlined in Section 3.3.3.
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FIGURE 6.13: Absolute and relative errors of ADG with pz = 3,p; =7,Nx =8, N, =16 and b = (1, '
for the constant coefficient anisotropic wave equation. Colors indicate the maximal mode number associated
to the eigenvalue.

For 1 > 2 we expect results of similar quality as the mesh converges to a cartesian mesh. Considering
absolute errors, ADG yields results of similar order for the presented range of ;. Considering
relative errors, the deviations can be larger as certain (-configurations have exact eigenvalues very
close to zero which yield large relative errors.
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6.2.5 Choice of fluxes

In this section, we evaluate the choice between local discontinuous Galerkin (LDG) and Bassi-
Rebay 2 (BR2) fluxes for the mixed variational form of Section 3.6.

% rel. err.

pe=3, pp=7, Nx=8, Ny=16, nnzA=1.33 3, pp=7, Nx=8, Ny=16, nnzA=1.09% rel. err.
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FIGURE 6.14: Errors of ADG with p; = 3,p, = 7,Ny = 8, N, = 16 and different fluxes for the mixed
variational form of Section 3.6, in the reference case for the constant coefficient anisotropic wave equation. In
between the black dashed lines resides the band of modes with eigenvalues w? < w2, = 0.2.

Figure 6.14 shows contour line plots for the two flux choices for a fixed configuration of ADG with
DoF, / DoF| = 4. We observe on the global scale that both fluxes yield structurally equivalent
results. However, we remark that system matrices using BR2 fluxes exhibit a higher sparsity than
for LDG fluxes as reported in Section 3.6.5 and deduced in [77].

Taking a closer look at the band of modes in Figure 6.15, we observe that BR2 fluxes yield superior
results by a little less than one order of magnitude for DoF | / DoF| = 4 whereas there is no such
trend identifiable for high parallel degree p; and DoF, / DoF| = 8. In addition, BR2 exhibits
system matrices of higher sparsity.

Hence, we conclude that BR2 fluxes should be used preferably.

Remark: The primal variational form of Section 3.5 was only evaluated for theoretical investigations
using a prototype of the presented locally field-aligned discontinuous Galerkin method written in
MATHEMATICA. Since the primal form therein yields results very similar to the mixed variational
form using LDG fluxes, it is not incorporated in the FORTRAN-code.
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FIGURE 6.15: Comparison of errors of ADG for different fluxes of the mixed variational form of Section 3.6,
in the reference case for the constant coefficient anisotropic wave equation.

6.2.6 Summary

We summarize the results of Section 6.2. Section 6.2.1 illustrates that the local alignment of mesh
and basis improves the approximation of eigenvalues by 1.5 to 2 orders of magnitude compared to
a cartesian mesh, when using Ny = N, = 8 and p; = p, = 7. The distribution of resolution into
more DoF and less DoF yields an improvement of 4 to 5 orders of magnitude, in particular for
large mode numbers as discussed in Section 6.2.2. These findings are summarized in Figure 6.16.
In the reference case, a ratio of DoF, / DoF| = 4 yields 5 to 6.5 orders of magnitude for mode
numbers larger than 6 compared to the cartesian case with the same DoF = 2!2.

Section 6.2.1 further yields that small deviations from the local alignment yield similar results.
However, larger bounds wrznax, Mmax, Nmax Narrow the range of these deviations. Section 6.2.3
shows the convergence of ADG for various configurations. Given a sufficient resolution DoF|, the
refinement of the mesh can be done by increasing N, exclusively. To generalize the findings of the
reference case, we show in Section 6.2.4 that the accuracy of ADG remains on the same level for a
broad range of b. However, the quality of the results decreases when b produces strongly sheared
meshes in the case of small : which can be circumvented by aligning left and right interfaces
instead of upper and bottom interfaces. Section 6.2.5 shows that using BR2 fluxes yields slightly
superior results in comparison to LDG fluxes and also generates reduced system matrices of higher
sparsity.
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FIGURE 6.16: Comparison of errors of a non-aligned cartesian case to ADG with DoF = 212, in the reference
case for the constant coefficient anisotropic wave equation.

6.3 4™-order equation

In this section, we analyze ADG for the 4-order equation (4.1) constructed in Chapter 4 and

evaluate the impact of different discretization parameters as well as the dependence on the maximal

2

ax and the maximal mode numbers Mmax, max. This evaluation takes

eigenvalue of interest w
results of Section 6.2 into consideration as the underlying equations share structural similarities.

As outlined in Section 4.1, we expect difficulties in approximating modes for which b, - (m, n)T =0
or w2, > 1. In particular, problems are expected when approximating the constant mode. Note,
that the constant mode is therefore for the most part excluded in the upcoming error evaluations.
Accounting for these expected issues for the eigenvalue calculation, we lower the accuracy goal of
the eigenvalue solver to 107 (feast_epsexp= 7).

The outline of this section is as follows: Section 6.3.1 examines the impact of the local alignment
of mesh and basis. Section 6.3.2 discusses a variety of different distributions of parallel and
perpendicular resolution DoF| and DoF regarding the choice of different polynomial degrees
for the bases as well as different mesh resolutions. We follow with a study of the convergence by
refining the mesh in Section 6.3.3. Section 6.3.4 explores the dependence of the approximation on

b. We close with a summary in Section 6.3.5.

6.3.1 Impact of the local alignment

In this section, we compare a non-aligned discontinuous Galerkin method using a cartesian mesh,
see Figure 3.4, with ADG.
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In comparison to Section 6.2.1, we cannot rely on contour line plots such as Figure 6.2 as the
approximation of eigenvalues w? > 1 is unreliable as outlined at the beginning of Section 6.3.
Indeed, FEAST did not convergence for p; = p, = 7, Ny = N, = 8 using a cartesian mesh when
calculating all eigenvalues of the associated system matrices even when using high values for the
accuracy feast_nCP. However, for aligned meshes we were able to produce results.

20 pe=7, pp=7, Ny=8, Ny=8, nnzA=41.4% rel. err. 20 pe=7, pp=7, Ny=4, N,=16, nnzA=26.6% rel. err.
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FIGURE 6.17: Errors of a ADG with ps = p, = 7 and different mesh resolutions with DoF = 212, in the
reference case for the 4M-order equation. In between the black dashed lines resides the band of modes with
eigenvalues w? < w2, = 0.2.

Figure 6.17 shows contour line plots of the errors of two configurations of ADG among the domain
of modes. The white regions surrounding the colored parts depict modes to which no eigenvalue
is associated. Aiming at the calculation of all eigenvalues results in a reduced region of modes in
which eigenvalues are associated. We experienced that the size of this domain strongly varies with

different configurations of ADG. For some configurations using aligned meshes, no convergence
2

max
same behaviour as Figure 6.2(b), namely a coupling of the error to the magnitude of the eigenvalue

was observed. Hence, we advise to ensure w < 1. Nevertheless, Figure 6.17(a) indicates the
as the well resolved region is tilted towards the direction perpendicular to byesh.

In the following, we set the search interval for FEAST to [Emin, Emax| = [—0.01,0.4] in the reference
case to account for errors of eigenvalues in the desired interval [0, 0.2]. We obtain the results shown
in Figure 6.18. First, we observe that the constant mode has a comparably large error as expected
and argued at the beginning of Section 6.3. For the cartesian mesh, we increased the accuracy of
FEAST to feast_nCP= 32. We observe that many modes still have no associated eigenvalue for the
cartesian mesh. The local alignment of the mesh yields an increase of 1 to 2.5 orders of magnitude



6.3. 4TH-ORDER EQUATION 109

mode numbers

{0, 0} {1,-1} {2,-2} {4,-5} {5, -6} {6,-7} {7.-8 {8, -9} {10,-12} {11,-13} {12, 14} {13, -15} {14, -16} {16, -19} {17, -20}

. u
10 ]

1109:) - ° ® o
107
107°
107
107° ® [
107°
107 ® a
107°
107° u
10—10

relative error
onm
®
®
onm
®»m
)

W pe=7, py=7, N}=8, N,=8, nnzA=29.1%, cartesian
@ Ps=7, py=7, Ny=8, N,=8, nnzA=41.4%, aligned

FIGURE 6.18: Comparison of errors of a non-aligned discontinuous cartesian case to ADG with DoF = 212,
in the reference case for the 4™-order equation.

for mode numbers larger than 5 and all modes but (—17,20) are associated. As we used the default
accuracy feast_nCP = 16 for the locally aligned mesh, Figure 6.18 indicates that the discretization
using a locally aligned mesh is easier to handle by FEAST.

6.3.2 Distribution of resolution

In this section, we analyze the distribution of resolution DoF| and DoF,. As outlined in Sec-
tion 6.2.2, we aim at discretizations with DoF | / DoF| > 1.

Comparing Figure 6.17(a) with Figure 6.17(b) shows that increasing the perpendicular resolu-
tion in comparison to the parallel resolution yields a narrower well-resolved region around the
interesting band of modes which is the same result as in the case of the constant coefficient
anisotropic wave equation as depicted by Figures 6.2(b) and 6.5(a). This provides first evidence
that DoF | / DoF| > 1 again emphasizes the resolution of small eigenvalues. Considering the band
of modes of the reference case, distributing the resolution such that DoF, / DoF = 4 yields an
increase of 2 to 5 orders of magnitude for mode numbers larger than 7 as shown in Figure 6.19.
Comparing the parallel degree pz, we observe that p; = 3 overall yields better results than p; = 7.
Furthermore, the resulting system matrices exhibit a higher sparsity.

For further insight, we use the framework introduced in Section 6.2.1 and consider the er-
rors (6.2), (6.3). Tables 6.3 and 6.4 summarize the results in the reference case for w2, = 0.2,

max
Mmax = Nmax = 10.
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F1GURE 6.19: Comparison of errors of ADG for high and low degree in pg but same parallel resolution
DoF| with DoF = 212, in the reference case for the 4M-order equation. A high degree configuration with
DoF | / DoF| = 1is plotted as a reference.

basis mesh resolution  sparsity log,,(errors)
pe Py Ny Ny DoF, / DoF| nnzA Ao21010  Roz1010
3 7 24 23 1 21.5% —4.69 —2.44
3 7 23 24 4 21.0% —7.97 —4.57
3 7 22 25 16 20.8% —7.05 —3.98
7 7 23 23 1 41.4% —4.43 —2.81
7 7 22 24 4 26.6% —7.61 —4.20
7 7 21 25 16 35.1% —7.32 —3.40

TasLE 6.3: Results of configurations of ADG with DoF = 212 w2 = 0.2, Mmax = Nmax = 10, in the
reference case for the 4M-order equation.
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basis mesh resolution  sparsity log,,(errors)
pe Py Ny Ny DoF, / DoF| nnzA Ap21010  Roz,1010
3 7 24 24 2 10.7% —6.81 —3.45
3 7 23 25 8 10.5% —6.64 —-3.47
7 7 23 24 2 21.0% —6.43 —-3.10
7 7 22 25 8 20.8% —6.26 -3.32
TABLE 6.4: Results of configurations of ADG with DoF = 213, w2 . = 0.2, Mmax = Nimax = 10, in the

reference case for the 4M-order equation.

We observe an increase of 1.5 to 2 orders of magnitude for the relative error when comparing
DoF, / DoF| =1 to 4 in Table 6.3. Again, DoF, / DoF| = 16 lacks parallel resolution as the results
for DoF | / DoF| = 4 are better by 0.5 to 1 order of magnitude. For producing results for the config-
uration (3,7,2%,2%) we used feast_nCp = 20 and for (7,7,2!,2%) we used feast_nCp = 18. pe=3
yields higher sparsity than pz = 7. As hinted by Figure 6.19, we obtain worse approximations for a
high parallel degree pz = 7. The choice of the same basis for all substituted variables in (4.59) due
to symmetry requirements might yield too big ansatz spaces for the resolution of these functions.
Furthermore, using high degree bases without a stabilization introduces numerical dissipation.
Considering Table 6.4, no evidence whether to choose DoF, / DoF| = 2,8 is provided. Again
pe = 3 performs superior to pz = 7 in regard of sparsity and approximation quality.

Despite using half of the resolution of Table 6.4, the results of Table 6.3 for DoF | / DoF| = 4 are
better by roughly 1 order of magnitude. This is closer examined in Section 6.3.3.

In the parameter choices of Tables 6.3 and 6.4, (6, —7) is the mode yielding the largest relative error.
This is due to the fact that for mmpmax = fmax = 10, w§,_7 = 1.90 x 107% is the smallest non-zero
eigenvalue among the considered ones.

6.3.3 Convergence

In this section, we analyze the behaviour of ADG when refining the underlying locally aligned
mesh and investigate the convergence of ADG for different ratios DoF, / DoF|.

Figure 6.20 shows errors for various mesh resolutions. Results for the constant mode are excluded.
When refining the parallel resolution DoF|| by increasing Ny, we observe by comparing N, =
8, N, = 16 with N, = 16, N, = 16 that we obtain worse results despite having a higher resolution.
Increasing the perpendicular resolution DoF | by increasing N, and comparing N, = 8, N, = 16
with N, = 8,N, = 32, we observe a loss of up to 1.5 orders of magnitude for mode numbers
smaller than 9 and a gain of 1.5 to 4 orders of magnitude for mode numbers larger than 10.
Increasing the parallel resolution from N, = 8, N, = 32 to N, = 16, N, = 32 again worsens the
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FIGURE 6.20: Errors of ADG with pg = 3, p, = 7 and different mesh resolutions, in the reference case for the
4t order equation.

results by up to 1 order of magnitude.
This indicates that the method doesn’t converge when increasing the parallel resolution.
For examining the convergence behaviour of ADG for the 4"-order equation more closely, we use

the framework of Section 6.2.2 and trace the errors (6.2), (6.3) with w?

max — 0-2; Mmax = 201 Nmax =

20 in the reference case. For one setup we use degrees pz = 3, py =7 and DoF, / DoFH =2,8.
The mesh is refined simultaneously in Ny and Ny by a factor of two to keep DoF, / DoF| fixed
throughout the convergence process. As a second setup, we keep the parallel resolution fixed and
refine the mesh by increasing N,,. The results are summarized in Figure 6.21.

We observe that we obtain no convergence for either configuration.

6.3.4 b-dependence

For investigating the impact of different directions of b, we run ADG using b = (1, 1)T for

10 11 200
6{1()(),1()(),...,1()()} (6-6)

and pz = 3,py =7, Ny = 8, N, = 16 such that DoF, / DoF|| = 4. For small ;, we deal with strongly
sheared meshes. For properly evaluating the Fourier postprocessing outlined in Section 5.4 along
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the above-average long interfaces parallel to b, we increase degXiEval to 90 for all  to ensure
comparability. However, this increase in evaluation points is only needed for small : when aligning
the upper and bottom interface of the locally aligned mesh.
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FIGURE 6.22: Absolute and relative errors of ADG with pg = 3,p; =7,Ny =8,N, =16 and b = (i, n’
for the 4%-order equation. Colors indicate the maximal mode number associated to the eigenvalue.

Figure 6.22 shows absolute and relative errors for different values of 1. We observe that the full
t-spectrum exhibits falsely associated modes which are indicated by dots with relative error
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10° in Figure 6.22(b). This can be traced back to FEAST reporting that the resulting subspace of
eigenvectors is not biorthonormal. Hence, eigenvectors might not be accurately associated to a
mode.

The purple dots in [0.5,2] x [107>,10°] in Figure 6.22(a) are associated to the (0,0) mode. As
remarked at the beginning of Section 6.3, we observe difficulties when approximating the constant
mode.

For some ¢, FEAST did not converge which is indicated by missing data points. This is in particular
the case for 1 ~ 1.6 and fractions with small numerator and denominator. In the former case,
running FEAST with a higher accuracy or by adapting the expected number of eigenvalues in
the search interval MO can fill in the gaps as remarked in Section 5.5.1. In the latter case, it holds
b, -(m, n)T = 0 for many (m,n) in the considered range. Hence, we expect difficulties for solving
the associated eigenvalue system.

For 1 € [0.7,2], we observe as in Section 6.2.4 that the dominant error contribution is given by the
maximal mode number as indicated by Figures 6.19 and 6.20 for the respective configuration of
ADG. For 1 < 0.7 we observe that this coupling dissolves and the maximal error starts to increase
for decreasing . This increase in the error can be traced back to the huge shear of the mesh, e.g.,
for 1 = 1/10, an aligned interface has the length 71v/101/4 ~ 7.9. We suggest to use a mesh with
aligned left and right interfaces for small values of : as outlined in Section 3.3.3.

For 1 > 2 we expect results of similar quality as the mesh converges to a cartesian mesh. For
converged modes, we observe that the magnitude of the error is independent of b for + > 0.2 and
strongly worsens for smaller values.

6.3.5 Summary

We summarize the results of Section 6.3. First, we remark that for all results where convergence of
the eigenvalue solver was achieved, FEAST warned that the resulting subspace of eigenvectors is
not biorthonormal. For some settings of input parameters, FEAST did not converge. The inclusion
of SLEPC [88] as another eigenvalue solver did not improve the convergence properties of the
eigenvalue solver. It is known that generalized eigenvalue problems with semidefinite matrices are
hard to solve [89]. Furthermore, the process of deriving the 4M-order equation in Section 2.5 is very
coarse and important features of the reduced MHD equations might not be well represented or
the equation itself is too artificial. The problem of the semidefinite right hand side can be tackled
by including metric terms as in the derivation of the anisotropic wave equation in Section 2.6
to diminish the space of zero eigenvalues. Furthermore, the extension to three dimensions and
inclusion of radial boundary conditions as for the structurally equivalent reduced MHD shear
Alfvén wave equation (2.69) might assist in the evaluation. However, the previous sections illustrate
the following:

Section 6.3.1 shows that the local alignment of mesh and basis improves the approximation of
eigenvalues by 1 to 2.5 orders of magnitude. Furthermore, FEAST is able to resolve more modes
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when using an aligned mesh. The distribution of resolution yields another 2 to 5 orders of
magnitude, in particular for large mode numbers as discussed in Section 6.3.2. These results
are summarized in Figure 6.23. In the reference case, a ratio of DoF, / DoF| = 4 yields an
improvement of 4 to 5.5 orders of magnitude for mode numbers larger than 6 when compared to
the cartesian case with the same DoF = 212.

mode numbers
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FIGURE 6.23: Comparison of errors of a non-aligned cartesian case to ADG for DoF = 212, in the reference
case for the 4M-order equation.

Section 6.3.3 shows that the method is not converging. The magnitude of the results of ADG stays
the same for a broad range of b as discussed in Section 6.3.4. The quality of the results decreases
when b yields strongly sheared meshes which can be circumvented by aligning left and right
interfaces instead of upper and bottom interfaces. However, modes might be wrongly associated
and problems occur for b = (1, 1)T where ( is a fraction with small numerator and denominator.
We conclude that the theoretically discovered difficulties when dealing with the 4"-order equation
(4.1) prevail in the numerical method. Nevertheless, for small accuracy goals, the local alignment
approach of ADG provides results accurate to 3 orders of magnitude in the reference case for
DoF = 212,
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6.4 Anisotropic wave equation for MHD equilibria

In this section, we analyze ADG for solving the anisotropic wave equation (3.110) with metric
terms from a flux surface of a three-dimensional MHD equilibrium.

The results of this section are obtained using the VMEC-equilibrium, see Section 5.5.3, of the W7-X
high-mirror case [9o, Table IV], with units normalized in tesla and meter.

Throughout this section, we use pz = 3, p, = 7 and [Emin,Emax] = [—0.01,0.4] for finding eigenval-

2

ues with w? < w2,

= 0.2. Furthermore, we set mmax = max = 25 for associating mode numbers
(m,n). m denotes the poloidal and 7 the toroidal mode number. As no analytic results exist for the
eigenvalues of the given MHD equilibrium, we present the discrete results for the eigenvalues and
their associated mode numbers over the normalized flux surface coordinate s instead of errors.
We leave out flux surfaces close to the magnetic axis, consider s € [0.1,1] and choose a stepsize of
0.01 in s-direction. On each flux surface at position s, we solve the two-dimensional eigenvalue
problem of the anisotropic wave equation with the corresponding metric terms of the flux surface.
The outline of this section is as follows: We first investigate the impact of aligning upper and
bottom interfaces in comparison to left and right interfaces and compare to a non-aligned cartesian
mesh in Section 6.4.1. In Section 6.4.2, we show the convergence of the eigenvalue spectrum when
increasing the mesh resolution. A comparison with the codes CONTI and CKA regarding the

eigenvalue spectrum is performed in Section 6.4.3. The results are summarized in Section 6.4.4.

6.4.1 Choice of cell alignment

So far, we discussed the alignment of upper and bottom and left and right interfaces for constant
b=, 1)T, where the accuracy just depends on ¢ and the ratio Ny/N,.. Now, including metric
terms and three-dimensional geometries, we reevaluate the choice of the cell alignment.

Figure 6.24 shows locally aligned meshes with aligned upper and bottom and aligned left and
right interfaces mapped onto a flux surface of the MHD equilibrium. Aligned upper and bottom
interfaces yield non-conforming interfaces in poloidal direction 6 whereas aligned left and right
interfaces yield non-conforming interfaces in toroidal direction ¢. For aligned upper and bottom
interfaces, N, is associated to poloidal and N is associated to toroidal resolution. For aligned
left and right interfaces, Ny is associated to toroidal and N, is associated to poloidal resolution.
The mesh discretization is chosen such that N is the parallel and N, the perpendicular mesh
resolution as summarized in Section 5.6.

In the case of the W7-X-like equilibrium, a five-star symmetry is used [91], meaning that the
geometry is defined on a fifth of the toroidal direction and then repeated periodically as shown in
Figure 6.24(c),(d). Such a toroidal subsection which uniquely defines the geometry is called a field
period. Hence, the number of field periods of the Wy-X-like equilibrium is M = 5. Simulations can
be carried out only on a single field period, but then boundary conditions have then to be taken
into account or only modes with a toroidal mode number of a multiple of M can be considered.
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FIGURE 6.24: Meshes with Ny = 8, N, = 16 and toroidally or poloidally non-conforming interfaces for ADG
on a flux surface of a W7-X-like MHD equilibrium. For this representation in Ny, N, field periods were not
taken into account. The mapping between logical and physical domain is highlighted for two colored cells.

For simplicity, we choose to simulate the full domain and include M in the total cell count. For
a given field period resolution (Ny, Ny), the setup of ADG uses (MNy, Ny) cells for toroidally
non-conforming meshes and (N, MN,/) for poloidally non-conforming meshes.

For a selection of mode numbers, Figure 6.25 compares results of toroidally and poloidally non-
conforming meshes for DoF, / DoFH = 4 within a field period. Note, that due to the inclusion of
metric terms, eigenfunctions of the anisotropic wave equation with metric terms are no longer
Fourier modes. We recall that the Fourier postprocessing of Section 5.4 associates the eigenvalue to
the Fourier mode with the largest amplitude. In the transition from one flux surface to another,
this association may shift from one mode to another. Therefore, when tracing a single Fourier
mode along the normalized flux surface coordinate, jumps may appear within its eigenvalue
spectrum. The represented modes were selected such that multiple jumps are present and the
whole eigenvalue spectrum of [0,0.2] is represented.

In Figure 6.25, modes are distinguished by the shape of markers. The usage of poloidally and
toroidally non-conforming meshes is indicated by the filling of markers where empty markers
represent poloidal non-conformity. Results of the coarse mesh are depicted in red and refined
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mesh results in blue. We observe that some eigenvalues coincide for coarse and fine mesh which
means that these eigenvalues are already converged. Further, we observe that more eigenvalues
are already converged for the toroidally non-conforming mesh. In particular, the poloidally non-
conforming coarse mesh shows deviations for the modes (8, —6) for s > 0.3, (1, —2) for s > 0.25
and (2, —1) for s > 0.6. Overall, all results differ by a larger margin due to strong metrics at the
boundary of the MHD equilibrium for s > 0.95. We therefore conclude superior approximation
properties when using toroidally non-conforming meshes and focus on these in the following.

In Figure 6.26, we compare ADG using a toroidally non-conforming mesh with a non-aligned
cartesian mesh using the same number of DoF for the selection of modes of Figure 6.25. We observe
that both agree for small mode numbers. However, the higher the mode number, the more the
results differ for the cartesian mesh. This is indicated by the modes (8, —6) and (12, —11) which
suggests that eigenvalues are not converged yet for high mode numbers in the cartesian case.
Compared to the poloidally non-conforming mesh investigated in Figure 6.25, the cartesian mesh
produces lager deviations.

6.4.2 Convergence

We investigate the convergence of ADG for the anisotropic wave equation with metric terms using
toroidally non-conforming meshes.
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FIGURE 6.27: Convergence results of ADG with pz = 3, p, = 7 for the anisotropic wave equation with metric
terms. Toroidally non-conforming meshes of increasing resolution are used. Modes are indicated by their
shape, and resolution by colour. DoF | / DoF| = 4 within a field period is fulfilled.

Figure 6.27 shows results for increasing mesh resolutions fulfilling DoF, / DoF| = 4 within a field
period for the selection of modes of Figure 6.25. We observe that the spectra of N, = 8, N, = 16
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and Ny = 16, N, = 32 overall coincide. Therefore, we deduce that further refinement of the mesh
yields roughly the same results. For Ny = 4, N, = 8, eigenvalues of higher mode numbers, namely
(12,—11) for all s and (8, —6) for s < 0.3, are not converged yet. The eigenvalues of low mode
numbers have converged as the results coincide for all meshes.

We now consider a broader range of mode numbers up to #max, #max = 25.
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FIGURE 6.28: Results of ADG with pz = 3, p, = 7 using toroidally non-conforming meshes for the anisotropic
wave equation with metric terms. Colors indicate the maximal mode number associated to the eigenvalue.

Figure 6.28 shows the spectra of ADG for different meshes. High perpendicular resolution of
N, = 32 yields two clean gaps within the eigenvalue spectrum located in a neighbourhood of
w? ~ 0.02 and w? ~ 0.1 where no eigenvalues reside for all s as indicated by Figures 6.28(c),(d).
The lower gap is the so-called toroidicity-induced Alfvén eigenmode gap (TAE gap), the upper gap
the so-called ellipticity-induced Alfvén eigenmode gap (EAE gap) and both are related to plasma
instabilities [92]. Therefore, we aim at resolving these gaps accurately and assume that the results
are converged if the gaps are clean. For N, = 16, mode numbers larger than 17 exhibit eigenvalues
within these gaps as shown in Figures 6.28(a),(b). These modes are not converged yet. We observe
that only an increase in perpendicular resolution clears the gaps as given by Figures 6.28(b),(c).
Given high perpendicular resolution, a further increase in parallel resolution yields similar results
as Figures 6.28(c) and (d) are structurally equivalent.
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6.4.3 Comparison

This section compares results of ADG to different codes for the same or structurally equivalent
problems to determine whether the same physical behaviour depicted by the eigenvalue spectrum
can be observed. We setup ADG using a toroidally non-conforming mesh with the resolution
on a single field period being N, = 8, N, = 32 and basis degrees p = 3,p, = 7 which yields
DOFL / DOF” =8.

As a first comparison, we choose CONTI [93] solving the same equation as ADG, namely the
anisotropic wave equation with metric terms (3.110) on flux surfaces. CONTI uses a Fourier
approach for discretizing functions on a field period. To account for different families of toroidal
mode numbers which otherwise cannot be resolved when discretizing a single field period, a
phase factor shift o € {0,1,..., M — 1} is introduced where M is the number of field periods. The
setup uses poloidal mode numbers with 11y,,« = 58 and toroidal mode numbers

m € {—45,—40,—-35,-30,...,30,35,40,45} — o (6.7)

as M = 5 for the underlying W7-X-like equilibrium. For evaluating metric terms, we use a
resolution of 240 x 80 points in poloidal, toroidal direction. The results of CONTI were kindly
provided by Axel Konies.

Secondly, we compare with the code for the calculation of kinetic Alfvén waves in three-dimensional
geometries (CKA) [94] which solves the reduced MHD shear Alfvén wave equation (2.69) in three
dimensions. As this problem is structurally equivalent to the anisotropic wave equation with
metric terms as deduced in Section 2.6, we expect similar results. CKA uses B-splines for the
discretization of all three dimensions. The setup uses 100 x 25 splines for the discretization of
the poloidal, toroidal direction without an alignment of the mesh. For the radial direction, 150
splines are used and a zero Dirichlet boundary condition is enforced at s = 1. As the computations
are performed on only one field period as for CONTI, a phase factor shift is used to account for
different families of toroidal mode numbers. The results of CKA were kindly provided by Tamas
Béla Fehér.

Figure 6.29 shows results for the selection of modes of Figure 6.25 for CONTI, CKA and ADG.
For ADG we use filled markers and for CONTI and CKA empty markers. We observe that the
results of all codes overall agree with deviations at the boundary of the equilibrium, i.e., s > 0.9,
where strong metric terms reside and ¢ tends towards 1. In particular, the values of CONTI and
ADG coincide with few exceptions for mode (12, —11) and s > 0.9. For 1 = 1, multiple modes
couple and their proper resolution is difficult. Considering the constant coefficient anisotropic
wave equation (3.1) for b = (1,1) " and its analytical solution given by Theorem 3.1, we note that
the zero-eigenspace has infinite dimensions. This is the case for all 1 € Q but : = 1 produces the
largest zero-eigenspace within the truncated space of Fourier modes for fixed #max = 1max. We
observe multiple outliers in the results of CKA for all modes but (12, —11) in Figure 6.29(b) which
pollute the spectrum.
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Figure 6.30 shows a collection of eigenvalues for all resolved modes. Modes for CONTI are
determined by its setup. The CKA results show mode associations up to maximal mode numbers
Mmax = "max = 14. For ADG, the maximal mode numbers are set to Mmax = Mmax = 25. We
find the gaps at the same positions as in Figure 6.28(c),(d) around the toroidicity-induced gap at
w? 2~ 0.02 and the ellipticity-induced gap at w? ~ 0.1 but observe a certain amount of outliers in
the toroidicity-induced gap and multiple modes with eigenvalues narrowing the ellipticity-induced
gap for CKA. The spectra of ADG and CONTI overall coincide.

6.4.4 Summary

We summarize the results of Section 6.4. Section 6.4.1 illustrates that toroidally non-conforming
meshes perform superior to poloidally non-conforming meshes. Furthermore, locally aligned
meshes with toroidally non-conforming interfaces yield more precise results than a cartesian
mesh in particular for higher mode numbers which proves the impact of locally aligning the
mesh. Section 6.4.2 shows the convergence of ADG and the benefits of distributing resolution. The
formation of toroidicity-induced gaps and ellipticity-induced gaps is observed. Comparisons with
CONTI and CKA in Section 6.4.3 shows that ADG reproduces physically important properties.
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Chapter 7

CONCLUSIONS AND PROSPECTS
Wrapping up

Starting from the equations of ideal magnetohydrodynamics (MHD) linearized around an equilib-
rium state in Chapter 2, we deduce a 4'-order equation, the anisotropic wave equation with metric
terms from three-dimensional geometries and the constant coefficient anisotropic wave equation.
The analysis of analytical solutions for constant magnetic field b yields benefits when decoupling
and distributing the resolution in parallel and perpendicular direction. In Chapters 3 and 4, we
develop a discontinuous Galerkin method with a locally field-aligned mesh and basis for all model
problems and highlight the case of constant b where matrix assembly simplifies and asymptotic
behaviour of the method can be studied. In Chapter 5, we emphasize the implementation of the
locally field-aligned discontinuous Galerkin method (ADG) on non-conforming two-dimensional
meshes, considering the numerical evaluation of variational forms as well as the association of
discrete eigenfunctions to Fourier modes.

The study of numerical results in Chapter 6 shows the following: We assert that the local alignment
of mesh and basis indeed allows to decouple the resolution in parallel and perpendicular direction.
Therefore, the resolution can be distributed such that highly oscillatory functions are well resolved
while providing the possibility of a coarse discretization of close to constant parts. Furthermore,
the size of eigenvalue errors no longer exclusively depends on the magnitude of the mode numbers
of the associated Fourier eigenmode but also on the size of the eigenvalue itself. This supports the
accurate calculation of the spectrum of small eigenvalues which is relevant for plasma heating and
stability considerations, see Section 2.7.

For all model problems, we examine the impact of the local alignment of mesh and basis. For the
constant coefficient anisotropic wave equation and the 4"-order equation for constant b, ADG
respectively yields an improvement of up to 6.5 and 5.5 orders of magnitude in accuracy when
comparing to a non-aligned cartesian case with the same number of degrees of freedom. In
particular, a large gain in accuracy is found for high mode numbers. We study the anisotropic

127



128 7. CONCLUSIONS AND PROSPECTS

wave equation with metric terms from a three-dimensional MHD equilibrium for meshes with
toroidally and poloidally non-conforming interfaces as well as for the cartesian case. Toroidally
non-conforming meshes yield the best results. Poloidally non-conforming meshes are superior to
the cartesian case. Furthermore, we investigate the convergence of ADG for all model problems.
For the 4!"-order equation, no convergence was found due to the ill-posedness of the problem and
cancellations shown in the analytical derivation of the solution. For the anisotropic wave equations
with constant coefficients and with metric terms, we observe rapid convergence of the results. The
converged result of ADG for the eigenvalue spectrum of a MHD equilibrium displays the same
physical behaviour as and good agreement with the one provided by existing codes. Furthermore,
we prove the distribution of resolution to be impactful even in three-dimensional geometries.

So far, ADG relies on two-dimensional meshes such that wave solutions can only be studied on iso-
lated flux surfaces of an MHD equilibrium. Considering further development, three-dimensional
equations such as the reduced MHD shear Alfvén wave equation (2.69) or the normal mode
formulation of the linearized MHD stability problem for general three-dimensional equilibria
(2.32) couple over different flux surfaces. Hence, the mesh has to be extended to also discretize
the normalized flux surface coordinate s. As flux surfaces are nested, the inner flux surfaces
are smaller than the outer flux surfaces with the innermost flux surface, namely the magnetic
axis, degenerating to a line. We therefore aim at a coarser discretization of the inner part and a
finer discretization of the outer part of an MHD equilibrium, i.e., a distribution of resolution in
s-direction, which can be achieved using non-conforming interfaces in s-direction. The choice of a
non-conforming discontinuous Galerkin method readily establishes the mathematical methodology
in two dimensions and a radially extended tensor-product approach can be introduced. However,
the local alignment on the different flux surfaces varies with s and the treatment of two-dimensional
non-conforming interfaces is numerically challenging. As small deviations from the alignment
of cells are possible as shown in Sections 6.2.1 and 6.2.2, the construction of a three-dimensional
non-conforming mesh could be simplified.

We conclude that the local alignment of mesh and basis allows the distribution of resolution
and therefore improves the accuracy by multiple orders of magnitude in comparison to non-
aligned meshes for all model problems. ADG offers the flexibility to focus the computational effort
on the numerically challenging and structurally important aspects of the physical problem.
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