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Abstract

In this work we address the problem of event-based data scheduling for multiple heterogeneous LTI control loops over a
shared resource-constrained communication network. We introduce a novel bi-character scheduling scheme, which dynamically
prioritizes the channel access at each time-step according to an error-dependent priority measure. Given local error thresholds
for each control loop, the scheduling policy deterministically blocks the transmission from sub-systems with lower error values.
The scheduler then allocates the limited communication resource probabilistically among the eligible sub-systems based on a
prioritized measure. We prove stochastic stability of the networked control system under the proposed scheduler in terms of f -
ergodicity of the overall network-induced error. Uniform analytical performance bounds are further derived for an average cost
function comprised of a quadratic error term and transmission penalty. The simulation results show that our approach results
in a significant reduction of the aggregate network-induced error variance compared to the conventional scheduling protocols.
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1 Introduction

Traditional digital control systems are typically associ-
ated with time-triggered control schemes and periodic
sampling. The introduction of communication networks
for data transmission between distributed entities in
large-scale systems spurs the design of more advanced
sampling strategies that result in more efficient utiliza-
tion of resources. However, control over shared commu-
nication resources imposes several design challenges due
to bandwidth limitations, congestion, collisions, delays
and dropouts [9]. Many recent results [1,6] suggest that
it is often more beneficial to sample upon the occurrence
of specific events, rather than after a fixed period of time
elapses, especially when dealing with scarce resources.
The design of scheduling rules with periodic and ape-
riodic information updates is an active field of re-
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search [11, 12, 16, 17, 22–24]. It is shown that event-
triggered schemes often outperform time-triggered laws
in terms of resource consumption while preserving the
same level of control performance [11, 16, 22, 24]. The
efficiency of the event-based approaches in multi-loop
NCSs, where multiple sub-systems compete for the com-
munication resource, is even more evident [3, 12, 16, 17].
Try-Once-Discard (TOD) is a basic deterministic event-
based scheduling law which awards the channel access
to the system with the largest estimation error and dis-
cards the remaining transmission requests [23]. Stability
criteria for such systems are based on the Maximal Al-
lowable Transfer Intervals (MATI) [18, 23]. Approaches
investigating stochastic stability of NCSs under event-
based rules are presented in [7, 12, 21]. Deterministic
scheduling policies usually render improved perfor-
mance in comparison with randomized ones as they
award the channel to systems with the highest priority.
However, they often lack scalability and flexibility in
dealing with channel imperfections and might not be
convenient for practical realizations [4]. The majority
of works, with notable exceptions in [2, 3, 12, 16, 19],
consider event-based scheduling policies for single-loop
NCSs. Results on stability of multi-loop NCSs with
event-based scheduling rules are found in [12, 16, 19].
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Scheduling mechanisms can be realized in a central-
ized or distributed fashion. Time division multiple
access (TDMA), and code division multiple access
(CDMA) are two common centralized protocols often
preferred in small and medium-size networks. They of-
fer collision-free and precise channel scheduling with
higher throughput, while they consume less energy com-
pared to e.g. CSMA-CA policy, where each node senses
the channel permanently [20]. Furthermore, bandwidth
arbitration is facilitated as they can prioritize channel
access. However, they lack flexibility and scalability and
are not suitable for large-scale networks due to their
synchronous nature. Distributed approaches, represent
easy-to-install, low-cost and scalable scheduling design
suitable for NCSs with a large number of loops. How-
ever, collisions take place inevitably within distributed
protocols and need to be handled with care in the NCS
design. To exploit the advantages of both protocol types,
hybrid designs are becoming evermore popular [8,20,25].
We introduce a novel event-based bi-character schedul-
ing rule for NCSs composed of multiple stochastic
LTI control loops sharing a common communication
medium. The proposed scheduler promisesmore efficient
use of the scarce resource in comparison with conven-
tional schemes. In our design, the scheduler determin-
istically precludes transmission requests of sub-systems
with errors not exceeding pre-specified local thresholds.
Afterwards, the channel is allocated probabilistically
among sub-systems qualified for transmission, according
to an online error-dependent priority measure. Since the
local errors are driven by the Gaussian noise, transmis-
sions occur randomly under an event-based rule. Conse-
quently, by deterministically blocking the sub-systems
with smaller local errors, the performance enhancement
is attained. We show stochastic stability of the multi-
loop NCSs in terms of f -ergodicity of the underlying
error Markov chain. In addition, we derive analytical
upper bounds for an average quadratic cost function.
In the remainder, Section 2 presents the problem of in-
terest and provides necessary preliminaries. In Section 3,
stability of NCSs under the proposed policy is studied.
Performance analysis is then presented in Section 4.
Finally, numerical results are illustrated in Section 5.

2 Problem Statement and Preliminaries

Consider a set of N heterogeneous LTI control loops
coupled through a shared communication channel as de-
picted in Fig. 1. Each individual loop consists of a dis-
crete time linear stochastic sub-system Pi and a con-
troller Ci, where the link from Pi to Ci is closed through
the shared communication channel. A scheduling unit
decides when a state vector xik∈R

ni at time-step k is to
be scheduled for channel utilization, where ni is the di-
mension of the ith sub-system. The LTI plant Pi is mod-
eled by the following stochastic difference equation:

xik+1 = Aix
i
k + Biu

i
k + wi

k, (1)

where wi
k ∼ N (0, I) is i.i.d. at each time k, and for

each sub-system i, while constant matrices Ai∈R
ni×ni

and Bi∈R
ni×mi describe system and input matrices of

sub-system i, respectively. Initial state xi0 is randomly
chosen from an arbitrary bounded-variance distribution.
The overall network initial state x0, together with the
overall noise sequence wk, generates a probability space
(Ω,A,P), where Ω is the set of all possible outcomes,A is
a σ-algebra of events associated with probability P. The
variable δik ∈ {0, 1} represents the scheduler’s decision
on whether a sub-system i transmits at a time-step k:

δik =

{

1, xik is sent through the channel

0, xik is blocked.

We assume a loss-less channel, i.e. if a packet is transmit-
ted, it will not be dropped. Data scheduling over lossy
channels is investigated in [14]. It is assumed that the ith

controller merely has local knowledge of Ai, Bi, and the
distributions of process noise wi

k and xi0, where the pair
(Ai, Bi) is stabilizable. The control law γ

i is described by
a measurable and causal mapping of past observations:

uik = γik(Z
i
k) = −LiE

[

xik|Zi
k

]

, (2)

where Zi
k = {xi0, δi0, . . . , xik, δik} is the ith controller ob-

servation history, and Li is the feedback gain. A model-
based estimator computes the state estimate if δik=0:

E
[

xik|Zi
k

]

= (Ai −BiLi)E
[

xik−1|Zi
k−1

]

, (3)

with E
[

xi0|Zi
0

]

=0. The network-induced error eik ∈R
ni

is defined as eik , xik − E
[

xik|Zi
k

]

. Employing (1)-(3),

and the definition of the estimation error eik, results in

xik+1 = (Ai −BiLi)x
i
k +

(

1− δik
)

BiLie
i
k + wi

k, (4)

eik+1 =
(

1− δik+1

)

Aie
i
k + wi

k. (5)

It follows from (4) that if the ith-loop is closed at time
k, i.e. δik =1, the stabilizing gain Li ensures the closed-
loop matrix (Ai −BiLi) is Hurwitz. Moreover, (5) indi-
cates that the evolution of eik is independent of the sys-
tem state xik and control input uik. Define [xiTk e

iT
k ]T as

the aggregate state of sub-system i. Stability of a closed-
loop system i, however, does not imply convergence of
the error state eik. Hence, given a stable closed-loop ma-
trix (Ai −BiLi), showing convergence of eik suffices to
show stability of sub-system i with the aggregate state
[xiTk e

iT
k ]T. We show later that if Ai is unstable, then the

ith loop needs to be closed “often enough” over an inter-
val to ensure a converging error dynamics. This separa-
tion enables us to design the scheduler, which affects the
error state eik, independently from the control law uik. To
that end, we employ an emulation-based control strat-
egy with the minimum required assumptions, i.e. stabi-
lizing and linear control law, to ensure the closed-loop
systems are stable in the absence of capacity constraint.
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In the scheduling design, the goal is to develop a new
scheme which allocates the limited communication re-
sources more efficiently resulting in an improved overall
performance, while preserving stability of the stochas-
tic NCS introduced in (1)-(5). We assume that the
communication channel is subject to the capacity con-
straint such that not all sub-systems can simultaneously
transmit. Consequently, some of ready-to-transmit data
packets are blocked. Here we introduce a novel error-
dependent scheduling rule that dynamically prioritizes
the channel access among the control loops competing
for transmission. The scheduler decides on the priorities
at each time-step according to all sub-system’s latest
error states. The following scheduling rule defines the
probability of channel access for a sub-system i, at a
time-step k + 1, based on the received error values ek:

P[δik+1=1|ejk,λi]=















0 ‖eik‖2Qi ≤λi
1 ‖eik‖2Qi>λi ∧ jλ≤c

‖eik‖
2

Qi
∑

jλ
‖ej

k
‖2

Qj

‖eik‖2Qi>λi ∧ jλ>c,
(6)

where c < N , λi ∈ R≥0, and jλ ∈ W denote the chan-
nel capacity, error threshold, and the number of loops
satisfying ‖eik‖2Qi > λi, respectively, and ‖ · ‖Qi repre-

sents the weighted norm. The proposed rule possesses a
probabilistic-deterministic nature. First, if ‖eik‖2Qi ≤ λi
at a time k, then no transmission request associated with
sub-system i is submitted for time-step k+1. This feature
helps to allocate the channel more efficiently by exclud-
ing the sub-systems for which a transmission is not cru-
cial. If jλ≤c, then all eligible sub-systems transmit. Oth-
erwise, the channel is allocated probabilistically until
the capacity is reached, and other transmission requests
are blocked. Indeed, if jλ > c, each eligible sub-system
associated with its assigned probability takes part in a
biased randomization. As an example, consider an NCS
with N=4, where only two are eligible for transmission
at a certain time, while c= 1. Let the priorities be as-
signed as 0.8 for sub-system 1, and 0.2 for sub-system 2.
The biased randomization is then a “single” toss of an
unfair coin where head (transmission for sub-system 1),
and tail (transmission for sub-system 2) turn up with
probabilities 80% and 20%, respectively. As a result, it
is not guaranteed that the sub-system with higher prior-
ity transmits, though it is likelier. Furthermore, (6) is a
collision-free policy as transmissions are centrally sched-
uled. For the sake of brevity, assume c=1. Therefore:

∑N

i=1
δik = 1, ∀k ≥ 0. (7)

The results provided below can easily be extended to-

wards the general case
∑N

i=1
δik = c, where c > 1. We

define the aggregate error state ek ∈ R
n by stacking the

error vectors from all control loops in one vector, as fol-
lows:

ek = [e1Tk , . . . , eNT

k ]T, (8)

Pi

Ci

‖ei
k
‖

xi

k

ui

k

zi
k

δi
k

Shared Communication Network

Scheduler

Fig. 1. Multi-loop NCS with shared communication channel.

where n=
∑N

i=1
ni. The scheduling law (6), which gen-

erates the input signal for the error state ek according to
(5), is a randomized policy depending only on the most
recent error values, i.e. the decision on which sub-system
eventually transmits at an arbitrary time-step k+1 is
correlated with the latest error state ek. Moreover, the
Gaussian noise wi

k in (5) has a continuous everywhere-
positive density function at any element eik of the overall
state ek meaning that there is a non-zero probability to
reach any subset of Rn. This implies that there exists
a transition probability for any event E ∈ A such that
P (ek+t ∈ E|em,m < k, ek) = P t(ek+t ∈ E|ek), where
P t(ek+t ∈ E) denotes the probability that ek enters a
set E after t transitions, and m is an arbitrary time in-
dex before time-step k. Since the scheduling policy (6)
is forgetful about the error states em,m < k, when de-
ciding the possibility of next transmission via δik+1

, the
stochastic process (8) is a Markov chain. The process
is homogeneous because the difference equation (5) is
time-invariant and noise process wi

k is i.i.d. for every i=
{1, . . . , N}, and for any time-step k. Since the noise dis-
tribution is absolutely continuous with an everywhere-
positive density function, every subset of the state-space
is accessible within one transition, i.e. the d-cycle is one,
thus the Markov chain is aperiodic and ψ-irreducible,
where ψ is a non-trivial measure on the state space Rn.

Remark 1 The probabilistic attribute of the policy (6)
provides a design flexibility, via tuning the scheduling
parameters, to achieve desired properties such as coping
with data loss, and distributed implementation [13, 14].

2.1 Preliminaries

We employ the notion of f -ergodicity as the stability
concept. A stochastic process is called ergodic if the time-
average of its events over a sample sequence of transitions
represents its overall behavior in the entire state-space.

Definition 1 [15, Ch. 10] Let the Markov chain Φ =
(Φ0,Φ1, . . .) evolve in state space X, which is equipped
with some known σ-algebra B(X). The Markov chain Φ
is said to be positive Harris recurrent (PHR) if
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(1) a non-trivial measure ν(B)>0 exists for a set B∈B
such that for allΦ0∈X, P (Φk∈B, k<∞)=1 holds.

(2) Φ admits a unique invariant probability measure.

Definition 2 [15, Ch. 14] Let f≥1 be a real valued func-
tion in R

n. A Markov chain Φ is said to be f -ergodic, if

(1) Φ is PHR with unique invariant measure π,

(2) the expectation π(f) ,
∫

f(Φk)π(dΦk) is finite,

(3) limk→∞ ‖P k(Φ0, .)−π‖f = 0 for every initial value

Φ0 ∈ X, where ‖ν‖f , sup|g|≤f |ν(g)|.

Definition 3 Let V : Rn → R≥0, and Φ be a Markov
chain. For any measurable function V , the drift ∆V (·) is

∆V (Φk) = E[V (Φk+1)|Φk]− V (Φk), Φk ∈ R
n. (9)

Theorem 1 (f-Norm Ergodic Theorem) [15, Ch.
14] Suppose that the Markov chain Φ is ψ-irreducible and
aperiodic and let f (Φ)≥1 be a real-valued function inR

n.
If a small set D and a non-negative real-valued function
V exist s.t. ∆V (Φ)≤−f(Φ), for every Φ ∈R

n\D, and
∆V <∞, for Φ ∈ D, the Markov chain Φ is f -ergodic.

Remark 2 [15, Ch. 5] All compact subsets of linear
state-spaces are small sets and a small set is also petite.

In summary, an f -ergodic process converges to an invari-
ant finite-variance measure over the entire state-space,
confirming the Markov chain is a stationary process.

3 Stochastic Stability

In this section, stochastic stability of the described
multiple-loop NCS is investigated in terms of f -
ergodicity of the error Markov chain ek. First, we select
a non-negative quadratic function V :Rn→R≥0 as:

V (ek) =
∑N

i=1
ei

T

k Q
ieik. (10)

Due to the characteristics of the selected function V
in (10), f -ergodicity of the Markov chain (8) cannot al-
ways be guaranteed employing the drift ∆V over one
transition step, i.e., for k → k+1 as in (9). We illustrate
this observation by constructing the following example.
Illustrative example Let an NCS be composed of two
identical scalar sub-systems competing for one channel
slot. Assume Q1=Q2=1 and e1k=e

2
k= ēk>λ1=λ2. The

transmission chance for each sub-system is clearly 1

2
ac-

cording to (6). Employing (10), it is straightforward to
show that the drift in (9), with ek = [e1k e

2
k]

T, becomes

∆V (ek)=E[V (ek+1)|ek]−V (ek)=2+‖Aēk‖22 − 2‖ēk‖22.

For A>
√
2, the drift is positive, which violates the drift

condition in Theorem 1. We show later that the ergodic-
ity of Markov chain (8) is recovered considering the drift

over an interval with multiple time-steps. Intuitively,
only after all sub-systems have a chance to transmit, a
negative drift ∆V over some interval of interest can be
guaranteed. To fulfill this, we investigate the ergodicity
of the Markov chain over the interval with length N .
It should be mentioned that ergodicity over an interval
implies ergodicity over any longer interval [15, Ch.19].
To infer f -ergodicity over an interval with length N , i.e.
[k, k+N ], we modify the drift definition in (9) as follows:

∆V (ek, N) = E[V (ek+N )|ek]− V (ek), ek ∈ R
n. (11)

Note that eik+N can be expressed as function of a previ-

ous state eik+ri
at a time-step k+ri, with ri∈ [0, N−1]:

eik+N =
∏N

j=ri+1

(

1− δik+j

)

AN−ri
i eik+ri

(12)

+
∑N−1

r=ri

[

∏N

j=r+2

(

1− δik+j

)

AN−r−1
i wi

k+r

]

.

Theorem 2 Consider an NCS consisting of N hetero-
geneous LTI stochastic sub-systems modeled as (1), and
a transmission channel subject to the constraint (7), and
the control, estimation and scheduling laws given by (2),
(3) and (6), respectively. Then for any λi ∈ R≥0 and
positive definite Qi, the Markov chain (8) is f -ergodic.

Proof To study stability, we let the NCS operate freely
over the time interval [k, k+N ] under the scheduling pol-
icy (6), considering all possible outcomes in the state-
space Rn. To that end, we define at every k′∈ [k, k+N ]
two time-varying, complementary and disjoint sets S1

k′

and S2
k′ such that for every i ∈ {1, . . . , N}, i ∈ S1

k′ if
‖eik′‖2Qi ≤ λi and i ∈ S2

k′ if ‖eik′‖2Qi > λi. Note that, in-

clusion in either sets S1
k′ or S2

k′ depends not only on the
transmission occasions but also on the randomnoise pro-
cess. To take this into account, we discern the following
three complementary and disjoint cases characterizing
dynamics evolution of a sub-system i in the state-space
R

n, over the time interval [k, k+N ]. So, a sub-system i:

c1: has either transmitted or not over [k, k+N ], but
has not been eligible for transmission at k+N , i.e.
i∈S1

k+N−1
, which implies ‖eik+N−1

‖2
Qi ≤ λi.

c2: has transmitted at least once over [k, k+N ], and
has been eligible for transmission at k +N , i.e. i∈
S2
k+N−1, which implies ‖eik+N−1‖2Qi> λi.

c3: has not transmitted over [k, k+N ], i.e. δik′ = 0 for all
k′ ∈ [k, k+N ], and has been eligible for transmis-
sion at k+N , i.e. i∈S2

k+N−1
, and ‖eik+N−1

‖2
Qi> λi.

We investigate (11) for all cases in order to invoke
Theorem 1. For all sub-systems i∈c1, we know δik+N =0.
Employing the Cauchy-Schwarz inequality, we obtain

∑

i∈c1
E

[

‖eik+N‖2Qi |ek
]

≤
∑

i∈c1
λi‖Ai‖22+tr(Qi). (13)
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For a sub-system i∈c2, assume a transmission occurred
at time k + ri, i.e. δ

i
k+ri

= 1, where ri ∈ [0, N ]. Hav-
ing statistical independence between the noise sequence
wi

k+r and error state eik+ri−1
, we have from (12)

∑

i∈c2

E

[

‖eik+N‖2Qi |ek
]

≤
∑

i∈c2

∑N

r=ri
tr(Qi)‖AN−r

i ‖22. (14)

To infer f -ergodicity, we split the sub-systems i ∈ c3 into
two complementary and disjoint sub-cases, as follows:

lc31 : Sub-system i has not transmitted over the interval
[k, k+N ], but i∈S1 at least once over [k, k+N−1],

lc32 : Sub-system i has not transmitted over the interval
[k, k+N ], and i∈S2 at all those N time-steps.

Within sub-case lc31 , suppose that k+ ri is the last time
for which i ∈ S1

k+ri
, which implies ‖eik+ri

‖2
Qi ≤λi. Know-

ing that δik′ =0 for all i∈c3, at all k′∈ [k, k+N ], we reach

∑

i∈l
c3
1

E

[

‖eik+N‖2Qi |ek
]

≤
∑

i∈l
c3
1

λi‖AN−ri
i ‖22

+
∑

i∈l
c3
1

∑N−1

r=ri
tr(Qi)‖AN−r−1

i ‖22. (15)

All sub-systems i ∈ lc32 are in S2
k′ , at all k′ ∈ [k, k+N ],

since ‖eik′‖2Qi
>λi. From (12) with r′=0, it follows

∑

i∈l
c3
2

E

[

‖eik+N‖2Qi |ek
]

≤
∑

i∈l
c3
2

[

‖AN
i ‖22‖eik‖2Qi

]

+
∑

i∈l
c3
2

[

∑N

r=1
tr(Qi)‖AN−r

i ‖22
]

. (16)

The upper bound (16) depends on the initial value via
the first term. As all the cases cannot happen all to-
gether, we calculate the probability that a sub-system i
belongs to lc32 , under the scheduling policy (6). If sub-
system i does not transmit during the entire interval
[k, k+N ], then there exists another sub-system, say q,
which is awarded the channel access more than once. It
is clear that q∈c2. Let k + rq is the most recent time at
which sub-system q has transmitted, i.e. δqk+rq

=1. The

probability that q re-transmits at k+N , in presence of
a sub-system i ∈ lc32 can be computed as follows:

P[δqk+N = 1|δqk+rq
= 1, δik′ = 0, ‖eik′‖2Qi > λi]

= E

[

P[δqk+N = 1|ek]|δqk+rq
=1, δik′ = 0, ‖eik′‖2Qi >λi

]

= E

[

‖eqk+N−1
‖2Qq

∑

i∈c2
‖eik+N−1

‖2
Qi +

∑

i∈c3
‖eik+N−1

‖2
Qi

|zi,q
]

≤ E

[

‖∑N
r=rq

AN−r
q w

q
k+r−2

‖2Qq

∑

i∈c2
λi +

∑

i∈l
c3
1

λi +
∑

i∈l
c3
2

‖eik‖2Qi

∣

∣

∣
zi,q

]

≤
∑N

r=rq
tr(Qq)‖AN−r

q ‖22
∑

i∈c2
λi+

∑

i∈l
c3
1

λi+
∑

i∈l
c3
2

‖eik‖2Qi

= Pl
c3
2

, (17)

where zi,q abbreviates the conditions of the expectation,
and the worst case scenario is considered which entails
‖eik′‖2Qi ≤‖eik′+1‖2Qi , for all i ∈ lc32 . From (17), probability

of subsequent transmission for a sub-system, in presence
of the ones with larger errors and no prior transmission,
can be made arbitrarily close to zero by tuning λi’s and
Qi’s. Incorporating the occurrence probability for the
case lc32 , the N -step drift can be upper-bounded as

∆V (ek, N) ≤
∑

i∈c1,c2,l
c3
1

E

[

‖eik+N‖2Qi |ek
]

+ Pl
c3
2

∑

i∈l
c3
2

E

[

‖eik+N‖2Qi |ek
]

−V (ek). (18)

Applying the probability (17) for the sub-case lc32 , we
find the upper bound for theN -step drift (18) as follows:

∆V(ek, N)≤
∑

i∈c1

λi‖Ai‖22+tr(Qi)+
∑

i∈c2

N
∑

r=ri

tr(Qi)‖AN−r
i ‖22

+
∑

i∈l
c3
1

[

λi‖AN−ri
i ‖22 +

∑N−1

r=ri
tr(Qi)‖AN−r−1

i ‖22
]

+ Pl
c3
2

∑

i∈l
c3
2

[

∑N

r=1
tr(Qi)‖AN−r

i ‖22+‖AN
i ‖22‖eik‖2Qi

]

−V (ek)

≤ ζ+b +

∑N

r=rq
tr(Qq)‖AN−r

q ‖22
∑

i∈c2
λi+

∑

i∈l
c3
1

λi

∑

i∈l
c3
2

[

N
∑

r=1

tr(Qi)‖AN−r
i ‖22

]

+
∑N

r=rq
tr(Qq)‖AN−r

q ‖22
∑

i∈l
c3
2

‖AN
i ‖22−V (ek), (19)

with ζ+b representing all the bounded positive terms
correspond to the cases c1, c2, l

c3
1 , and (19) is ensured

since ‖eik‖2Qi ≤ ∑N

j=1
‖ejk‖2Qj = V (ek), for every i ∈

{1, . . . , N}. Define f(ek) = ǫV (ek) − ζ+b − ξ+b , where

ǫ∈ (0, 1], and ξ+b stands for the second and third terms
in the right side of the latest inequality. Then, we can
find a small set D and an ǫ such that f(ek) ≥ 1, and
∆V (ek, N) ≤ −f , which readily proves f -ergodicity of
the Markov chain (8) according to the Theorem 1. �

Remark 3 Theorem 2 ensures the Markov chain (8)
visits compact sets D⊂R

n at most every N time-steps.
The boundary of D, however, varies with parameters λi,
Qi, N , and Ai, as it is discussed in Section 4.

Corollary 1 The multiple-loop NCS described in (1)-
(5) with the overall network state [xTk , e

T

k ]
T, under the

scheduling law (6) is Lyapunov mean square stable.

Proof An LTI system with state vector Xk is said
to be Lyapunov mean square stable (LMSS) if given
ε > 0, there exists ρ(ε) s. t. ‖X0‖2 < ρ implies
supk≥0 E

[

‖Xk‖22
]

≤ε, [10]. Let Xk=[xTke
T
k ]

T. The over-

all NCS state is LMSS if
∑

cj
Pcj E

[

‖eik‖22|i ∈ cj
]

≤ ε,

assuming that the stabilizing control gains Li exist for
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all i∈{1, . . . , N}. Starting from time k, uniform upper-
bounds for E[‖eik+N‖22] for sub-systems i ∈ {c1, c2, lc31 }
are derived in (13)-(15) over N -step intervals, setting
Pcj = 1. For the case lc32 , the uniform upper-bound

for Pl
c3
2

E
[

‖eik‖22|i ∈ lc32
]

is obtained in (19), excluding

ζ+b −V (ek). Note that LMSS implies f -ergodicity but not
vice-versa since the latter holds not only with quadratic
Lyapunov function but also with p-power variations. �

4 Performance Bounds

To investigate performance of the scheduler (6), we de-
fine the following per-time-step cost function for all i∈
{1, . . . , N}, associated with weight matrices Qi > 0:

Jek =
∑N

j=1
e
jT

k Q
je

j
k+ηδ

j
k=

∑N

j=1
‖ejk‖2Qj+ηδ

j
k, (20)

where η ≥ 0 denotes the cost of channel utilization.

Remark 4 According to (20), we solely evaluate the
performance of the scheduler, i.e. there is no penalty on
the signals uik and x

i
k. Due to the independence of control

inputs from the scheduling policy, terms involving uik
and xik can be readily added to the cost function. A
potential minimization of those terms directly affects the
design of gain Li, which is out of scope of this work.

Lemma 1 [5] Let ek be a Markov chain with state
space X. Introduce Jek :X→R and a measurable func-
tion h :X→R, where h (ek)≥0 for all ek∈X. Define the

average cost Jave=limT→∞ sup 1

T

∑T−1

k=0
E [Jek ]. Then

Jave ≤ supek∈X {Jek + E [h (ek+1) |ek]− h (ek)} .

Lemma 1 provides the upper-bound according to
one step time-transition of h function. Since ek is ψ-
irreducible and evolves in the uncountable space Rn, one
can generate a Markov chain by sampling the states of
the original chain at steps {0, N, 2N, ...}. It is straight-
forward to show that the generated Markov chain is also
ψ-irreducible, aperiodic, and time-homogeneous [15, Ch.
1]. This facilitates the upper-bound on the average cost
Jave to be defined over anN time-step interval as follows

Jave ≤ supek∈X {Jek + E [h (ek+N ) |ek]− h (ek)} . (21)

Let h (ek)=
∑N

i=1
‖eik‖2Qi , then from (20), we conclude

Jave ≤ supek∈X

∑N

i=1

[

E

[

‖eik+N‖2Qi |ek
]

+ ηδik

]

. (22)

Theorem 3 Consider the NCS described in Theorem 2.
Then the average cost Jave=limT→∞ sup 1

T

∑T−1

k=0
E [Jek ]

is upper-bounded as a strictly increasing function of
‖Ai‖, tr(Qi), N , and η, over all initial conditions and for
all i∈{1, . . . , N}, while the dependency on λi’s is convex.

Proof We derive uniform upper-bounds for the average
cost (22) for each case c1, c2 and c3, considering the NCS
model described in Theorem 2. For the cases c1, c2, and
lc31 the upper-bounds derived in (13)-(15) are valid and
only the communication cost should be added. There-
fore, we derive the followings for the average cost (22):

J i∈c1
ave ≤

∑

c1
λi‖Ai‖22 +Nη + tr(Qi), (23)

J i∈c2
ave ≤Nη+

∑

c2

∑N

r=ri
tr(Qi)‖AN−r

i ‖22, (24)

J
i∈l

c3
1

ave ≤
∑

l
c3
1

[

λi‖AN−ri
i ‖22+

N−1
∑

r=ri

‖AN−r−1

i ‖22 tr(Qi)

]

, (25)

where, Nη upper-bounds the cost of communication for
cases c1 and c2. Note that no transmission occurs within
case c3. For sub-systems in lc32 , the non-uniform upper-
bound (16) is valid. Therefore, according to (22), we have

J
i∈l

c3
2

ave ≤ sup
ek

∑

l
c3
2

‖AN
i ‖22‖eik‖2Qi+

∑N

r=1
tr(Qi)‖AN−r

i ‖22.

We rewrite the average cost (22) for different cases as

Jave = Pc1J
i∈c1
ave +Pc2J

i∈c2
ave +Pl

c3
1

J
i∈l

c3
1

ave +Pl
c3
2

J
i∈l

c3
2

ave . Since

δi
k̄
=0 for all sub-systems i∈ lc32 and for all k̄ ∈ [k+N ],

J
i∈l

c3
2

ave ≤ supek∈Rn

∑

i∈l
c3
2

E

[

‖eik+N‖2
Qi |ek

]

. Given the

probability of occurrence for the sub-case lc32 in (17),
and considering the worst-case scenario, we conclude

Pl
c3
2

J
i∈l

c3
2

ave ≤
∑N

r=rq
tr(Qq)‖AN−r

q ‖22
∑

i∈c2
λi+

∑

i∈l
c3
1

λi

∑

i∈l
c3
2

N
∑

r=1

tr(Qi)‖AN−r
i ‖22

+
∑N

r=rq
tr(Qq)‖AN−r

q ‖22
∑

i∈l
c3
2

‖AN
i ‖22. (26)

Summing up the uniform upper-bounds (23)-(26) for
all cases {c1, c2, c3}, we obtain overall upper-bound for
the average cost function (22) independent of the ini-
tial state. The overall upper-bound is strictly increas-
ing w.r.t. ‖Ai‖, N, tr(Qi), and η, for all i ∈ {1, . . . , N}.
Since, the error thresholds λi’s are determined locally
for each sub-system i, and moreover the obtained over-
all upper-bound for the average cost is the summation of
local functions which are convex w.r.t. their correspond-
ing local threshold λi, the overall upper-bound is convex
w.r.t. the λi’s, and the proof then readily follows. �

Intuitively, lowering λi’s implies that more sub-systems
compete for channel access which increases the probabil-
ity that sub-systems with lower priorities transmit and
consequently increases the average cost. On the other
hand, setting λi’s higher results in more sub-systems be-
ing deterministically kept out of channel access compe-
tition and subsequently they remain in open-loop. This
convex property in the error thresholds enables us to
search for the unique minimizing λi’s, resulting in the
sub-optimal upper-bound for the average cost (22).
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5 Numerical Results

We consider NCSs comprised of two heterogeneous sys-
tem classes each consisting of homogeneous scalar sub-
systems. The first class includes N

2
control loops with

unstable plants and parameters A1=1.25, B1=1, while
the second class contains N

2
loops with stable processes

with parameters A2=0.75, and B2=1. We select xi0=0
for each sub-system i, and wi

k ∼N (0, 1). To control the
plants, deadbeat control laws Li=Ai, and model-based
estimator (3) are used. For simplicity, we select Qi=I.
Fig. 2 shows the changes in error variance (8) w.r.t. the
local thresholds λ, for NCSs with different number of
sub-systems, under the scheduling policy (6). It suggests
that it is possible to tune the thresholds optimally in or-
der to minimize the error variance. Expectedly, the opti-
mal value of λ monotonically increases by increasing N ,
because the competition among sub-systems to access
the sole channel slot intensifies with increasing N .
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Fig. 2. Error variance vs. local error thresholds.

Fig. 3 provides comparisons in terms of average er-
ror variance between our bi-character policy, TOD,
TDMA, CSMA, event-triggered threshold policy [16],
and event-triggered pure probabilistic scheme [12], for
different NCS setups with N ∈{2, 4, 6, 8, 10, 20}, subject
to the constraint (7). Note that for N>2, we have more
unstable sub-systems than the transmission slots per
time-step. The variances are calculated via Monte Carlo
simulation with 2×105 samples. For the results to be
comparable, we disregard the communication penalty,
i.e. η = 0. We calculate the variances setting equal λ’s
for allN sub-systems in a certain NCS setup. The chosen
thresholds are the optimal values according to Fig. 2.
For fair comparisons, we derived the optimal TDMA
pattern by brute force search over a finite time window
(infinite horizon optimal TDMA pattern is NP-hard).
The optimal search is however extremely exhaustive,
while the pattern changes sensitively with the changes
of system parameters. For the CSMA scheme, the
transmission probability for a sub-system i is pre-given

by
A2

i
∑

N

j=1
A2

j

at each time-step. As seen in Fig. 3, this pro-

tocol results in an acceptable performance up to N=4.
This is expected as the static CSMA may result in a
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Fig. 3. Comparison of the average error variance.

lengthy non-transmission period for unstable systems.
To highlight the convenience of deterministic feature of
the policy (6), the pure probabilistic approach, which
considers all sub-systems for channel access competition
at every time-step, i.e. λi = 0, for all i, is additionally
investigated. Expectedly, the error variance grows com-
pared to the bi-character scheme, as sub-systems with
small errors might use the channel in the presence of
those with larger errors. A bi-character scheme proposed
in [16] which disregards the error-dependent prioritiza-
tion in policy (6) and instead employs a randomization
with uniform probabilities to selects c sub-systems for
transmission, in case jλ > c. Fig. 3 shows that our ap-
proach outperforms all mentioned schemes, especially
when N increases. Moreover, the performance of the
bi-character approach closely follows the TOD scheme.
Table 1 provides analytic upper-bounds for the average
cost (22), according to the expressions (23)-(26), for
NCSs with N = {2, 4, 6, 8, 10}. The upper-bounds are
calculated for the analytic optimal error thresholds de-
rived from (23)-(26), and they do not necessarily equal
the optimal thresholds obtained from simulation. For
simplicity, we assume ηi = λi. Recall that the upper
bounds are derived for the worst case scenario and they
are conservative compared to the simulation results.

Table 1
Analytic upper bounds for the average cost (22).

Number of loops (N) 2 4 6 8 10

Error threshold (λ) 0.28 6 10 15 18

Upper bound on Jave 3.12 3.99 6.14 12.28 25.60

6 Conclusion

We present an error-dependent scheduling policy for
multi-loop shared-resource NCSs. The scheduler is ca-
pable of allocating communication resources more effi-
ciently based on an error-dependent priority measure.
Given stabilizing feedback controllers, we show con-
vergence of the network-induced error, and therefore

7



stability of the overall multi-loop NCS. We furthermore
derive analytical performance bounds for an average
cost function. Simulation results illustrate major per-
formance improvements in terms of the overall error
variance in comparison with the conventional schemes.
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