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Kurzfassung

Untersucht wurde das dynamische Verhalten des Warmeiibergangs und der Wand-
schubspannung eines Zylinders in pulsierender Querstromung fiir kleine Stérun-
gen der Stromungsgeschwindigkeit. In diesem Regime ist der zeitlich gemittelte
Wirmetibergang konstant, und Fluktuationen von Strémungsvariablen konnen als
lineares, zeitinvariantes System beschrieben werden. Es wurde ein grol3er Bereich
von Reynolds-Zahlen 0.1 < Re < 3900 mit Schwerpunkt auf die Regime ohne Wirbe-
labl6sung untersucht (Re < 40). Letztere sind besonders interessant fiir Anwendun-
gen wie das Rijke-Rohr und die Hitzdrahtanemometrie.

Methoden der Systemidentifikation in Kombination mit CFD-Simulation (CFD/SI)
wurden zur Datengenerierung verwendet. Die Ubertragungsfunktionen von Ge-
schwindigkeitspulsationen zu Pulsationen in Warmeiibergang und Wandschub-
spannung wurden mit drei verschiedenen Methoden bewertet: Anregung einer
numerischen Simulation mit der Sprungfunktion, Breitbandanregung von CFD-
Simulationen kombiniert mit linearer Systemidentifikation und Losen der lineari-
sierten Navier-Stokes-Gleichungen im Frequenzbereich. Fiir Untersuchungen bei
unterkritischer Stromung wurden LES-Simulationen verwendet.

Die Dynamik des Wiarmeitibergangs und der Wandschubspannung wird von meh-
reren Zeitskalen bestimmt. Diese entsprechen den jeweiligen Reaktionszeiten des
Geschwindigkeitsfeldes und des Temperaturfeldes. Es gibt jedoch keine einfache
Analogie wie die Reynolds-Analogie fiir stationdre Stromungen. Die Wechselwir-
kung der verschiedenen Zeitverzogerungen fiihrt zu einer nicht trivialen Abhéngig-
keit der Frequenzantwort des Warmeiibergangs und der Wandschubspannung von
Strouhal-Zahlen und Reynolds-Zahlen. In der Literatur verfiigbare Modelle fiir das
dynamische Verhalten von Wiarmeiibergang und Wandschubspannung stimmen
nur bis zu einem gewissen Grad mit den simulierten Daten {iberein. Diese Arbeit
liefert ein Meta-Modell niedriger Ordnung, das den Warmeiibergang bei Reynolds-
Zahlen in der Groflenordnung von 10 besonders gut abbildet.

Quantitative Ergebnisse werden fiir einen grol3en Bereich von Reynolds-Zahlen und
Strouhal-Zahlen angegeben. Andere moglicherweise relevante Parameter wie ab-
solute Temperaturdifferenzen, temperaturabhéngige Eigenschaften und hohe Am-
plituden wurden nicht erschépfend behandelt. Das sehr vielseitige Verfahren kann
jedoch fiir weitere Untersuchungen in dieser Hinsicht adaptiert werden.
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Abstract

The dynamic behavior of heat transfer and skin friction of a cylinder in pulsating
crossflow for small perturbations of flow velocity was investigated. In this regime,
the time-averaged heat transfer is constant, and fluctuations of flow variables can
be described as linear, time-invariant dynamics. A wide range of Reynolds numbers
0.1 < Re = 3900 was studied with emphasis on the regimes without vortex shedding
(Re < 40). The latter are of particular interest for applications like the Rijke tube and
hot-wire anemometry.

Using system identification techniques in combination with CFD simulation
(CFD/S]) for data generation, the transfer functions from velocity pulsations to
pulsations in heat transfer and skin friction were assessed with three different
methods: Step excitation of a numerical simulation, broadband excitation of CFD
simulations combined with linear system identification, and solving the linearized
Navier-Stokes equations in the frequency domain. For investigations in subcritical
flow, LES simulations were used.

The heat transfer and skin friction dynamics are governed by several time scales.
These correspond to the respective response times of the velocity field and the tem-
perature field. However, no simple analogy, like the Reynolds analogy for steady
flow, exists. The interaction of the different time lags leads to a non-trivial depen-
dence of the frequency response of heat transfer and skin friction on Strouhal num-
bers and Reynolds numbers. Available analytical models for the dynamic behavior
of skin friction and heat transfer match the simulated data only up to a point. This
thesis provides a low-order meta-model, which excels at Reynolds numbers of order
10.

Quantitative results are given for a wide range of Reynolds numbers and Strouhal
numbers. Other possibly relevant parameters, such as absolute temperature differ-
ences, temperature-dependent properties, and high amplitudes were not covered
exhaustively. However, the very versatile procedure can be very useful for further
investigations in this regard.
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1 Introduction

1.1 Motivation

1.1.1 Energy Conversion and Environmental Aspects

Energy conversion is one of the most important factors in the history of humankind.
Fire, which is the conversion of some type of fuel to chemical products, light, and
heat by oxidation, was harnessed even in prehistoric times. Later, more sources of
primary energy—natural sources of energy—were used and converted into mechan-
ical energy, e.g. in windmills, water wheels for gristmills, and trip hammers. The
industrial revolution, starting in the second half of the 18th century, was made pos-
sible by the increasing use of steam power with coal as the primary energy source.

From an engineering perspective, the conversion of energy from one form to an-
other is one of the main tasks. Energy is needed for electricity, heat, transporta-
tion, and the manufacturing of goods. In 2014, the supplied primary energy for
the whole world was 13699 million tons of oil equivalent (Mtoe) which amounts
to 159319 TWh (International Energy Agency, 2016). Oil, coal, and natural gas, all
of which are fossil fuels, made up more than 80 % of all fuel shares (International
Energy Agency, 2016). A total of 108043 TWh was consumed in 2014, 29.4 % of which
by industry and 28.3 % by transportation. A share of 8.9 % of the consumed primary
energy was put to non-energy use, e.g. chemical products (International Energy
Agency, 2017). The total generation of electricity and heat in power stations was
23816 TWh (International Energy Agency, 2016) and 3815 TWh, respectively (Inter-
national Energy Agency, 2017). With losses of 32203 TWh, this leads to an overall
efficiency for the conversion of primary energy to electricity and heat of 46.2 %.

The use of carbon (coal) or hydrocarbons (oil and natural gas) as energy source
bears—among others—two main problems: During the combustion process
nitrous oxides (NOy) and carbon dioxide (CO,) are generated in considerable
amounts. NOy is associated with negative consequences for the health of humans
(WHO Regional Office for Europe, 2003) and is a precursor for other pollutants such
as acid rain. CO plays a major role in the greenhouse effect determining earth’s sur-
face temperature (Rodhe, 1990; Lacis et al., 2010). The anthropogenic greenhouse
effect is caused to 60 % by the man-made emission of CO, (Rodhe, 1990). In the
last 200 years, the concentration of CO, in the atmosphere rose from about 280
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parts per million (ppm) to over 400 ppm (Houghton and Intergovernmental Panel
on Climate Change, 2001). CO; is besides water one of the main products of the
combustion process and can only be reduced by increasing efficiency.

To counteract the negative effect of the energy sector on the environment, the
United Nations Summit in Brasil 1992 published objectives for the “energy devel-
opment, efficiency and consumption” in the “Agenda 21” United Nations (1994):

The basic and ultimate objective of this programme area is to reduce
adverse effects on the atmosphere from the energy sector by promot-
ing policies or programmes, as appropriate, to increase the contribution
of environmentally sound and cost-effective energy systems, particu-
larly new and renewable ones, through less polluting and more efficient
energy production, transmission, distribution and use. This objective
should reflect the need for equity, adequate energy supplies and increas-
ing energy consumption in developing countries, [...], and the situations
of countries highly vulnerable to adverse effects of climate change.

This paragraph emphasizes the need for more efficient energy production and new
energy systems. Both goals can only be achieved through research on existing ma-
chinery and principles as well as on new approaches.

1.1.2 Transformation Between Thermal Energy and Acoustic Energy

One energy conversion mechanism that has to be taken into consideration is the
conversion from thermal energy to acoustic energy and vice versa. Research in this
area offers possibilities to achieve both objectives from the United Nations Summit:
higher efficiency of existing technology and new approaches to energy conversion.
Although known for about two centuries, this conversion mechanism has been ne-
glected and came into focus again rather recently. The term thermoacoustics was
coined to describe this effect which was first reported by Higgins (1802) and Rijke
(1859). Higgins (1802) discovered that a hydrogen flame placed in a tube would emit
sound. This setup is now known as the “singing flame”. Later a similar phenomenon
was found by Rijke (1859) who was experimenting with a heated wire mesh inside a
resonator tube. He also experienced a clear sound that was emitted from the open
ends of the resonator. The device is now called the Rijke tube. Credit is also due
to Rayleigh (1896) who was the first to put thermoacoustics on a firm theoretical
foundation. He recognized that the dynamics of the heat transfer between flame
or heated wire and the fluid in the tube is the essential ingredient. At the time of
these discoveries, these pioneers could not possibly image which importance their
research might have for energy systems today.
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Thermoacoustic Instabilities in Energy Systems

An example of a well-established energy system is the stationary industrial gas tur-
bine. Modern gas turbines for electricity generation operate with lean and premixed
combustion (Keller, 1995). Air is compressed to pressures as high as 30 times the
environmental pressure (Jansohn, 2010). Subsequently, the air is mixed with natural
gas in a plenum and oxidized at a high air—fuel ratio in the burner. The combustion
products enter the turbine section at temperatures up to 1400 °C (Jansohn, 2010).
The turbine converts the energy of the hot flue gas into mechanical energy driving
the compressor and an electric generator to produce electrical energy.

Gas turbines have a severe impact on the environment. A portion of 21.6 % of the
total electricity was produced from natural gas (International Energy Agency, 2016)
and mostly in gas turbines. In predictions for the year 2040, this share is expected
to rise to 27.5% (U.S. Energy Information Administration, 2016). The optimal op-
erating point, especially the flame temperature, is determined by the amount of
carbon monoxide (CO) and NOy produced in the combustion process. Lean pre-
mixed combustion is however prone to thermoacoustic instabilities (Keller, 1995;
Paschereit and Polifke, 1998; Jansohn, 2010; Laera et al., 2014). If such an instability
occurs, small fluctuations in pressure and fluid velocity are amplified greatly. This
amplitude can be as high as 1 % of the mean operating pressure of the combustion
(Paschereit and Polifke, 1998). This has a negative impact on efficiency and the life
cycle of the gas turbine (Laera et al., 2014). In turn, the amount of carbon dioxide
(CO2) emitted by the power plant is directly related to its efficiency. Moreover, ther-
moacoustic oscillations disallows certain working conditions, e.g. turndown, that
would allow a more flexible energy generation. Increasing the efficiency and flex-
ibility of gas turbines for power generation would have a positive effect on their
environmental impact.

Domestic boilers, used for heat production on a household level are also prone to
thermoacoustic instabilities. Large pulsations can be harmful to the device and im-
pede efficiency similar to the gas turbine. In domestic boilers, the heat exchanger,
which holds the water to be heated by the flue gas from the combustion, also in-
fluences the thermoacoustic stability of this system (Strobio Chen et al., 2015). The
heat exchanger is a cold, coiled tube placed in the hot flue gas stream in a cross-
flow configuration. The heat transfer between the gas and the heat exchanger tubes
can dampen or drive pressure oscillations. Of particular importance to this effect is
the time lag between heat transfer and pressure oscillation. This phase lag decides
whether acoustic fluctuations are dampened or excited.
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Harnessing the Thermoacoustic Effect

In the above-mentioned examples of the gas turbine and the domestic boiler, the
thermoacoustic effect, where thermal energy is converted into pressure fluctuations
and acoustic velocity fluctuations, are harmful and thus unwanted. However, the
thermoacoustic effect can be harnessed in devices such as a thermoacoustic engine
or a thermoacoustic refrigerator. In the thermoacoustic engine, strong temperature
gradients are created—most often through the use of heat exchangers—at a compo-
nent called stack or regenerator. The working gas moves back and forth through the
temperature gradient. It absorbs heat closer to the hot side, leading to an expansion
of the gas and releases the heat to the stack at the cold end and thus the gas is com-
pressed. Periodic compression and expansion of the working gas is acoustic energy,
which can be converted to mechanical energy or electrical energy or be transmitted
to a second thermoacoustic stage. This second stage also has a stack and two heat
exchangers. At the second stack, a temperature gradient develops caused by the
acoustic oscillation. The hot end is cooled against ambient conditions allowing the
cold side to assume temperatures below ambient conditions. This is called a ther-
moacoustic refrigerator. It does not necessarily have to be implemented as a second
thermoacoustic stage but can also be driven, e.g. by a piston. These configurations
are rather simple to build and very robust. The basic body is usually a rigid resonator
tube with closed ends. However, as of today, devices harnessing the thermoacoustic
effect suffer from low efficiency.

1.1.3 Heat Transfer Dynamics in Unsteady Flow

The configurations mentioned in the previous sections in which thermoacoustics
play a vital role can be divided into two groups. In the “singing flame” and the gas
turbine, the combustion process is driving the instabilities. In contrast, in the Rijke
tube, in domestic boilers, as well as in thermoacoustic engines and refrigerators
the fluctuations are driven by the heat transfer between the fluid (working gas) and
a solid body. This makes the heat transfer between a solid body in fluctuating flow
worthwhile investigating. Moreover, configurations with solid—gas heat transfer, like
the Rijke tube, are often used in the basic research of combustion instabilities.
The Rijke tube, in particular, is the prototype of a thermoacoustic device (Rijke,
1859; Raun et al., 1993). It has gained interest for the study of the phenomenon
of thermoacoustic oscillations in the last decades although there are little direct
applications in industry. It is a cheap tool to study thermoacoustic phenomena as
they occur, as a potentially harmful byproduct, in stationary gas turbines for power
generation (Benoit and Nicoud, 2005).

In the case of the Rijke tube, for example, the centerpiece is a heated wire, usually
in the form of a loosely wound coil or mesh. A resonator tube, hence the name Rijke
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tube, sets the conditions for fluctuations to grow in strength. This makes the config-
uration of a cylinder in pulsating crossflow the perfect specimen for basic research
in this area. The single cylinder stands for the wire, and the acoustic wave inside the
tube is represented by the pulsations.

An additional practical example, where the effect of a bluff body in fluctuating cross-
flow plays a vital role is hot-wire anemometry (Bruun, 1996). For this method for
flow measurement, turbulence and its effect on the heat transfer are important.
Here, the pulsations are due to fluctuations occurring in turbulent flow.

Closely related to the transfer of heat between solid body and fluid is the transfer of
momentum. It appears as the skin friction on the surface of the solid body. Although
of lesser importance for cylindrical configurations, the effect of its dynamic behav-
ior can be seen as the Basset history force in the case of a solid spherical particle
Basset (1888). It significantly influences the trajectory of a particle in unsteady flow
or if the particle experiences acceleration.

1.1.4 Modeling and Modeling Techniques

In the case of any complex phenomenon, there is a desire for modeling. A model,
often in the form of mathematical formulas, is a vehicle to understand phenomena,
to place them in a greater perspective and can ultimately serve as a design tool.
Hence, this thesis is also motivated by the desire to find an adequate procedure
to acquire a model for the dynamic behavior of heat transfer and skin friction of a
cylinder in pulsating crossflow and to provide models for cases like the Rijke tube.
This has never been done in such detail using data based modeling techniques.

The models presented in this thesis refer to the heated wire in the Rijke tube mostly
and can directly be used in research activities involving a Rijke tube. Additionally,
the techniques refined and assessed in this thesis can be applied on similar configu-
rations like domestic boilers and thermoacoustic engines and refrigerators. It is also
of interest in research directly related to gas turbines. This thesis tries to make a step
towards a sustainable and ecologically sensitive energy production by improving
the models and modeling techniques in the area of thermoacoustics.

1.2 Aims

This thesis had three main goals: The first objective was to give an exhaustive qual-
itative and quantitative description of the linear dynamic behavior of heat trans-
fer and skin friction of a cylinder in pulsating crossflow in different flow regimes
(Reynolds numbers). In particular, Reynolds numbers Re < 40 are of interest for
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the Rijke tube and hot-wire anemometry. Implications for these pulsating flow con-
figurations are drawn. The limitations of previous studies of this problem, e.g. by
Lighthill (1954), are scrutinized. Crucial assumptions are identified and compared
to solutions from computational fluid dynamics (CFD). This way, a much more com-
prehensive understanding of the complex flow physics was achieved.

The assessment of techniques for system identification (SI) in combination with
CFD simulation for data generation in the scope of skin friction and heat transfer
was the second aim. This procedure not only supplements the first goal but also
provides a framework for further studies in this field using SI techniques.

The final objective was to develop low-order models for skin friction and heat trans-
fer. Transfer functions—as they often appear in control theory—are well founded
in theory and provide a concise representation of the results. A parametrized low-
order model for the heat transfer dynamics is of avail in the modeling of the Rijke
tube for further studies on thermoacoustic oscillations. Particular attention was
given to two phenomena: peak gain that occurs at low but non-zero frequencies
and the phase difference at high frequencies.

1.3 Scope

This thesis is based on techniques and methods introduced by Foller et al. (2008)
for the investigation of this problem, but represents a significant advancement over
previous computational studies (Apelt and Ledwich, 1979; Kwon and Lee, 1985;
Nicoli and Pelcé, 1989; Payne, 1958; Foller et al., 2008). The heat transfer of a heated
cylinder in pulsating crossflow was analyzed through state-of-the-art CFD meth-
ods focusing on flow at Reynolds numbers of Re = 0.4, Re = 4, Re = 40, Re = 120,
Re = 240, and Re = 3900. Reynolds numbers below the vortex shedding threshold
(Re < 40) are examined in even more detail. The dynamics are quantified using SI
techniques. This approach to combine CFD simulations for data generation and SI
methods to acquire models for the transfer behavior is called CFD/SI method. It
represents the foundation for this thesis.

After introducing the phenomena of a cylinder in steady crossflow, governing equa-
tions are given, and simplifications are discussed in Chapter 2. Methods and results
from previous studies of a cylinder in pulsating crossflow reported in the scientific
literature are presented in Chapter 3. Special consideration is given to the widely
acknowledged work by Lighthill (1954) and succeeding analytical papers. Chapter 4
deals with linear dynamic systems that are used to describe the dynamic nature of
heat transfer and skin friction of a cylinder in pulsating crossflow. The framework
is introduced, and the methods employed in later chapters are shown in detail. The
methods and settings of CFD techniques are presented in Chapter 5. In Chapter 6,
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heat transfer and skin friction dynamics of a cylinder in crossflow are quantified
using data from CFD/SI method. The results are tabulated as transfer functions and
presented as step responses and frequency responses of the linear system. Differ-
ent approaches to acquire the transfer function are assessed and finally compared.
To improve the understanding of the underlying flow physics, Chapter 7 offers a
detailed view of the flow field and the spatial distribution of skin friction and heat
transfer. Low order models are presented in Chapter 8, designed to be valid for a
broad range of Reynolds numbers including corrections for different conditions.
Applications, namely the Rijke Tube, hot-wire anemometry, and heat exchangers,
are outlined in Chapter 9. In Chapter 10, conclusions are drawn, and an outlook for
further areas of research is provided.






2 Flow Around a Circular Cylinder

A circular cylinder is one of the most basic shapes in geometry. Its surface is defined
by all points in a fixed distance r from an (infinitely long) straight line, which is
called axis. Fluid flow around a circular cylinder, perpendicular to its axis, and heat
transfer between cylinder! and fluid is one of the archetypal problems of thermo-
fluid dynamics (King, 1914; Collis and Williams, 1959; Tritton, 1959; Fornberg, 1980;
Sparrow et al., 2004; Baehr and Stephan, 2011; Bergman et al., 2011; Hucho, 2011).
It is a geometrically simple example for external flow, i.e. flow around a bluff body.
The steady-state flow was assessed very thoroughly in the past (Zdravkovich, 1997)
and is an important vantage point for further analyses. In this section, the case of
a cylinder in steady crossflow is surveyed first. Subsequently, governing equations
are given and the concept of small perturbations in free-stream flow velocity, i.e.
pulsations, is introduced.

2.1 Cylinder in Steady Crossflow

A cylinder, placed in a stream of fluid with constant and uniform velocity, disturbs
the flow. The fluid can neither pass through the cylinder nor slip along its surface. At
the most upstream point of the cylinder, the fluid is at rest, and the kinetic energy of
the fluid is converted into enthalpy, i.e. pressure. This location is called the forward
stagnation point. Along a streamline close to the surface of the cylinder, the favor-
able pressure gradient forces the fluid to accelerate along the circumference of the
cylinder. It reaches a velocity higher than the velocity of the approaching flow in a
short distance to the surface of the cylinder. The pressure gradient reverses at the lee
side of the cylinder, causing the flow to decelerate until reaching the rear stagnation
point. Velocity profiles at different positions along the cylinder circumference are
sketched in Figure 2.1.

Under the assumption that the flow of a Newtonian fluid? is isothermal and in-
compressible, the velocity field around a cylinder is determined by four reference
quantities: cylinder diameter d, free-stream velocity u.,, dynamic viscosity piref, and
density pref. This relationship can be written as

u= f(d, Uoo, trefs Pref) - 2.1)

!For reasons of readability, cylinder in this thesis always refers to a circular cylinder.
2A fluid where the viscous forces are linearly dependent on the strain rate (White, 2007).
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i forward stagnation point rearward stagnation point

windward side lee side

Figure 2.1: Sketch of a Cylinder in Steady Crossflow. Velocity profiles are shown as
blue arrows. Grey lines signify the thickness of the boundary layer and
the zone of flow separation.

The basic dimensions involved are mass, length, and time. Following a dimensional
analysis, there is one parameter group describing the relationship between these
quantities. This dimensionless quantity is known as Reynolds number and is defined
as

Uso d
Re = =

(2.2)
v

with the kinematic viscosity Vet = UrefPref- The Reynolds number can also be in-

terpreted as the ratio between inertial forces and viscous forces, i.e. the ratio of

convective momentum transport to diffusive momentum transport (Bergman et al.,

2011).

Different velocity profiles lead to characteristic patterns, or regimes, of the flow
especially downstream of the cylinder, where the adverse pressure gradient is
governing the flow. Theses patterns are characterized by the Reynolds number
(Zdravkovich, 1997), as explained in a short survey of the physical phenomena in
the following section.

2.1.1 Phenomenology

Several authors gave comprehensive lists of flow regimes of cylinders in crossflow
(Gersten, 1965; Zdravkovich, 1997; Hucho, 2011). The regimes identified by Hucho
(2011) are reproduced in Table 2.1.

10



2.1 Cylinder in Steady Crossflow

Reynolds number range Regime

Re — 0 creeping flow
Re < 50 closed wake
50 < Re < 140-200 Karman vortex street
200 < Re < 260 transition in far wake
260 < Re < 1x103 transition in near wake
1x103 < Re < 2x10°  transition in shear layer
2x10° < Re < 4x10° critical
4x10° < Re < 1x10%  post-critical
1x10% < Re trans-critical

Table 2.1: Cylinder Flow Regimes (Hucho, 2011).

Regime Re
creeping flow 0.4
attached flow 4
closed vortex pair 40
Karman vortex street 120
transition in wake 240
subcritical 3900

Table 2.2: Reynolds Numbers Examined in this Thesis. The range Re < 40 is exam-
ined in more detail.

Recent numerical simulations by Rajani et al. (2009) assessed the flow past a cylin-
der in the laminar regime. Flow separation and the formation of a closed wake are
reported to occur at Re > 6.1. For the wake instability, Rajani et al. (2009) found
the onset of vortex shedding to occur at 48 < Re < 49. This is close to the value of
Re =47 reported by Norberg (2003). Rajani et al. (2009) also found that the distortion
of the spanwise vorticity (z-direction) occurs at Re > 250 and Re > 200 in streamwise
direction (x-direction). The flow is two-dimensional for Re < 200. Similarly, Norberg
(2003) reported this onset of three-dimensional structures to occur at Re > 190.

In this thesis, one exemplary Reynolds number is chosen for every regime. Table 2.2
lists the flow regimes encountered at the flow conditions examined in this thesis.

2.1.2 Heat and Momentum Transfer

To quantify the flow around a cylinder, a frame of reference has to be set. In this
thesis, three different coordinate systems are used. The Cartesian coordinate system
is the most important one. The x;-direction is parallel to the undisturbed flow. The

11
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Figure 2.2: Coordinate Systems for the Cylinder.

X»-coordinate and the x3-coordinate are normal to the first so that the x3-direction
is parallel to the axis of the cylinder. Hence, for flow with a negligible contribution in
the axial direction, the coordinate system is reduced to [x; x]”. The second frame
of reference used is polar coordinates ([r ¢]7). The origin is located in the center
of the cylinder, but against the usual convention, the angle is chosen in such way
that the forward stagnation point is located at ¢ = 0. The last coordinate system in-
troduced in this thesis is denoted by [x* y*]T. The x*-direction follows the contour
of the cylinder starting at the forward stagnation point. Accordingly, y* is the height
above the surface of the cylinder. All three coordinate systems are depicted in Figure
2.2.

If a cylinder (or any object for that matter) is submerged in a fluid and relative
movement between cylinder and fluid occurs, momentum is transferred. This mo-
mentum transfer, for a quasi-two-dimensional object like the cylinder, is quantified
by drag and lift. Drag forces act in the direction of the flow. Lift forces occur nor-
mal to the direction of the flow and the axis of the cylinder. The lift force is not
considered further in this thesis, as the problem is symmetric and therefore the net
contribution is zero. Fluctuations in the lift exist due to vortex shedding (Norberg,
2003), but are not the scope of this thesis, as they are not caused by forced pulsa-
tions. Similar to the momentum transfer, heat transfer occurs when a temperature
difference between the cylinder and the fluid exists.

Directly at the surface of the cylinder, the flow velocity is zero (no-slip condition).
At this position, momentum transfer occurs only through skin friction and pressure
differences. Skin friction is quantified through surface shear stress 7, is given by

ou
ay* y*=0

Tw=U (2.3)
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2.1 Cylinder in Steady Crossflow

Figure 2.3: Sketch of a Cylinder in Steady Crossflow.

assuming an isotropic and incompressible Newtonian fluid. The constant of propor-
tionality is the dynamic viscosity u. Similarly, the heat transfer rate at the surface g,
is given by Fourier’s law for heat conduction written as

Gu=— or (2.4)
0y* ly+=9
with thermal conductivity k.
Figure 2.3 shows a sketch of the problem with the relevant dimensionless parame-
ters which will be developed below.

Drag

At the surface of the cylinder, the fluid is at rest. Heat and momentum transfer occur
through viscous forces and pressure gradients. Conjointly, they amount to the drag
force F; acting on the bluff body. They solely depend on the fluid parameters uq,
Pref, and prer as well as the geometric quantity d. This drag force is denoted by

Fg= f(d» Uoo Prefs Mref) - (2.5)

Through dimensional analysis, this can be written as

Fq
—=f(R 2.6
1/ZAprefugo f( X 26)

where A is a reference area and 1/2 p uZ, is the dynamic pressure. The dimensionless
group on the left hand side is called drag coefficient. It is given by

Fq

= 2.7
1/ZAAOrefuczm &7

Cd

The drag is a combination of form drag, also called pressure drag, caused by the
cylindrical shape and the skin friction drag, caused by the friction on the surface.

13



2 Flow Around a Circular Cylinder

hence, the drag coefficient is the linear combination of the pressure coefficient and
the skin friction coefficient and hence reads

Cq=Cp+tcCf (2.8)

where ¢, represents the average pressure coefficient and cy is the average skin fric-
tion coefficient.

Friction Coefficients and Pressure Coefficients

The pressure coefficient is evaluated from the relative pressure at each point on the
surface of the cylinder. This is written as

p(P) — Pref

: (2.9)
1/Zplrefugo

Cpy(P) =

Accordingly, the friction coefficient is calculated from the surface normal gradient
of the flow parallel to the surface. This is denoted by
v 0u¢

—_— . 2.10
1/2u2, Or |r—as (2.10)

Crp(P) =

The frictional part of the drag is also referred to as skin friction. Unlike the pressure,
which adjusts instantaneously in an incompressible fluid, the skin friction has a
convective nature, much like the heat transfer. Figure 2.4 shows the local pressure
and friction coefficients for a cylinder in steady crossflow with Re = 0.4, Re = 4, and
Re =40.

The average friction and pressure coefficients are given by

1 Fo 2 d 1o

U U
=YL [0 === 22 4 1D

1/2u§027t0 or |,—as2 Re MOOZJTO Or |r=as2
and
] 21

- _ do. 2.12
= Of (p(@) — pret) do (2.12)

Figure 2.5 depicts pressure coefficient and friction coefficient as well as their combi-
nation, the drag coefficient, over a range of Reynolds numbers. A simple empirical
correlation for ¢, valid for 1 < Re < 2.5 x 10° was reported by White (2007). It is
given by

10.0

Cd=1+W. (2.13)
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2.1 Cylinder in Steady Crossflow
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Figure 2.4: Steady-State Friction and Pressure Coefficient Distributions. The coef-
ficients are scaled with v/Re. Friction coefficient: Re = 0.4 (—), Re = 4
(—), Re =40 (—), Re = 120( —), and Re = 240 (—). Pressure coeffi-
cient: Re=0.4(---),Re=4(---),and Re=40 (- - -).
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Figure 2.5: Mean Friction Coefficient and Correlations. Drag coefficient: Numeri-
cal simulation (—), correlation (White, 2007) (—). Friction coefficient

(- --). Pressure coefficient (----). The dots mark the values of cr for Re =
0.4 (»), Re=4 (+), Re =40 (-), Re = 120 (+), Re = 240 (+), and Re = 3900 (¢).
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2 Flow Around a Circular Cylinder

Heat Transfer

In cases of a temperature difference between the fluid and the cylinder, heat transfer
occurs. It is determined by the heat conduction at the surface, the heat conduc-
tion within the fluid, and the enthalpy transport by the flow. The involved thermo-
dynamic reference quantities are heat transfer rate g, the temperature difference
between the cylinder and the free-stream AT, isobaric specific heat capacity ¢ ref,
as well as thermal conductivity k;.f. These parameters are accompanied by three
fluid dynamic quantities: velocity us,, density pref, and dynamic viscosity . The
geometric quantity is the cylinder diameter d.The heat transfer rate can thus be
inferred from

q = f(d? Uco) Prefy Urefs Cp,ref’ kl‘ef’ AT). (2.14)

With the basic parameters—mass, length, time, and temperature—the heat transfer
is determined by four dimensionless groups of reference quantities to describe the
process

q

9 _ ¢tRe.Pr,E0). 2.15
koant - BePLEC (2.15)

In addition to the Reynolds number, two other dimensionless groups appear. The
Prandtl number

%
pr= ¢ (2.16)

a

with thermal diffusivity & = kyef/ (Oref Cp ref)- It is the ratio of the diffusive momentum
transport to the diffusive heat transfer. The group

u2

Ec= —=— (2.17)
c p,ref AT

is called Eckert number and characterizes heat dissipation by the ratio of kinetic

energy to flow enthalpy difference.

Under the assumption of small velocities, the Eckert number vanishes Ec — 0. Using
Newton’s law of cooling ¢ = h AT, the heat transfer reduces to

= f(Re, Pr,Ec). 2.18
kura ] BePRED >18)
With the Nufselt number given by
hd
Nu = —— | (2.19)
kref
this further simplifies to
Nu = f(Re,Pr). (2.20)
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2.1 Cylinder in Steady Crossflow

1.2 09 06 03 0 03 06 09 1.2
Nu/vRe

Figure 2.6: NuRelt Number Distribution. Re = 0.4 (—), Re =4 (—), Re =40 (—),
Re =120 (—), Re =240 (—), Re = 3900 (—).

Nuflelt Number

The temperature gradient at the cylinder can be non-dimensionalized using a char-
acteristic length and a characteristic temperature difference. In this case, the char-
acteristic length is the cylinder diameter d, and the characteristic temperature dif-
ference is measured between undisturbed fluid and cylinder. The resulting dimen-
sionless group is called Nul3elt number and defined by

d oT

Nug(¢p) = AT or (2.21)

r=d/2

In Figure 2.6, the Nul3elt number distribution along the surface of the cylinder (0 <
¢ < m) is shown for three different Reynolds numbers. The average Nuflelt number
is given by

27
d 1 oT
Nu =

=—— | = do. 2.22
ATZJIO or ¢ ( )

r=d/2

Similarity considerations show that identical Reynolds numbers and Prandtl num-
bers yield similar temperature distributions and thus identical Nuelt numbers
(Bergman et al., 2011). The average Nullelt number of a cylinder in steady crossflow
can be evaluated using correlations of the form Nu = f(Re, Pr) (cf. Equation (2.20)).

A number of correlations for the average Nullelt number exists with different do-
mains of validity and accuracy (Bergman et al., 2011; Collis and Williams, 1959;
Sparrow et al., 2004). Two correlations, for negligible temperature differences and
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Figure 2.7: NuRelt Number and Correlations. Numerical simulation (—), correla-
tion by Collis and Williams (1959) (—), and correlation by Sparrow et al.
(2004) (—). The dots mark the values of Re = 0.4 (¢), Re = 4 (¢), Re = 40
(*), Re =120 (¢), Re = 240 (+), and Re = 3900 ().

a Prandtl number of Pr = 0.7, as well as point values for several Reynolds numbers
under consideration are shown in Figure 2.7.

Collis and Williams (1959) developed a correlation especially for air flow (Pr = 0.7)
and low Reynolds numbers (0.02 < Re < 44). It is given as a power law by

T \0.17
Nu = (0.24 +0.56 Re"*°) (—’") : (2.23)
To
The Reynolds number is evaluated at the arithmetic mean temperature T;, between
the temperature of the cylinder and the inbound fluid with T.,. A correction for
the temperature dependence of the fluid parameters, e.g. viscosity, density, and
thermal conductivity, is introduced with the term (T},/ Too)*!”. It can be rewritten
as [1+AT/(2Ts)1%" to incorporate the temperature difference between fluid and
cylinder.

For higher Reynolds numbers (1 < Re < 1.0 x 10°), the correlation by Sparrow et al.
(2004) can be used. It is given by

1/4
L) . (2.24)

Nu = 0.25 + (0.4Re'’? + 0.06Re?'3) Pr-37 (
Hwall

18



2.1 Cylinder in Steady Crossflow

In this case, fluid properties are evaluated at the free-stream temperature T,. The
correction term p/ tyay adjusts the NulSelt number to accommodate different cylin-
der temperatures.

2.1.3 Flow Separation and Turbulence

According to Rajani et al. (2009), an important regime change occurs at Re = 6.1. In
this case, and for any higher Reynolds number, the inertia of the fluid is not strong
enough to overcome the adverse pressure gradient. Hence, the flow separates and
detaches from the surface of the cylinder.

In numerical simulations, the angle at the surface of the cylinder where separation
occurs was evaluated. The smallest Reynolds number for which separation was de-
tected in this case is Re = 6.4. The angle ¢sep, at which separation occurs at different
Reynolds numbers is shown in Table 2.3. At higher Reynolds numbers, no steady
recirculation zone exists, but vortices are shed periodically at both sides. The sepa-
ration angle changes with time. Cycle averaged values are also given Table 2.3. Flow
separation creates a wake that is no longer confined to a defined area, but the vor-
tices are convected downstream. Turbulence develops downstream of the cylinder
as a result of hydrodynamic instabilities within these flow structures.

In laminar flows, small scale disturbances of the flow are immediately dampened
out by the effect of viscosity dominating over inertia. However, flow with higher
inertial forces and smaller viscous forces tends to accommodate slowly decaying
chaotic three-dimensional flow structures. These are called turbulence. Enhanced
mixing due to turbulence increases momentum and heat transfer (Davidson, 2004).
Hence, effectively increased viscosity and thermal conductivity determine the fric-
tion coefficient and the Nufdelt number.

The Reynolds number is often used as an indicator whether the flow is laminar
or turbulent. Low Reynolds numbers point towards laminar flow and large values
characterize turbulent flow. This can also be seen in Table 2.1. Flow separation is a
precursor to turbulence.

A quantity subject to turbulence can be characterized by the mean value and the
turbulent fluctuation. As an example, this is written for a component of the velocity
vector as

up="u+u;. (2.25)
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2 Flow Around a Circular Cylinder

Re (Psep in °

10 151
20 137
40 127
120 ~116
240 ~111
3900 ~ 89

Table 2.3: Separation Angle. Angle of flow separation at different Reynolds num-
bers.

The mean value is denoted by % and u is the fluctuation.® Turbulent structures
carry energy in form of turbulent kinetic energy given by (Pope, 2000)

E=(u/ul). (2.26)

N | =

Turbulence can be observed as flow structures. These structures can be seen as
eddies of a certain wavenumber k. This wavenumber may be interpreted as the
reciprocal of a turnover time. Figure 2.8 depicts the relation between energy and
wavenumber qualitatively.

Turbulence gains kinetic energy at the largest scales (production process). This en-
ergy is transferred to smaller scales, i.e. higher wavenumbers, and finally dissipated
at the smallest scales (Kolmogorov scales). This process is called the energy cascade.

Figure 2.8 distinguishes three regions in the lifecycle of an eddy passing through the
energy cascade. Region I is the region of the largest eddies described by the integral
time scale and length scale. In the context of a cylinder in crossflow, these scales
are determined by the flow velocity and the diameter of the cylinder. The eddies,
contributing to this region, carry the major part of the energy and most energy
is produced. Region II is called the inertial range. Energy is neither produced nor
dissipated but transferred to Region III. The energy spectrum in Region II is charac-
terized by

E(x) = Ce?/3x>/3 (2.27)

where C is a universal constant and ¢ is the dissipation rate. It is often referred to as
Kolmogorov’s —5/3 spectrum (Pope, 2000). The dissipation of the eddies occurs in
Region III. This regime is characterized by the Kolmogorov length scale (~ Re™3/4)
and time scale (~ Re™/2) (Pope, 2000). Region II and Region III form the universal
equilibrium range where the influence of the integral scales is weak. This range can
be described by universal principles.

3The notation with double prime signs " was chosen to distinguish turbulent from “acoustic” fluctuations.
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energy

>

wavenumber

Figure 2.8: Energy of Turbulent Structures. Diagram adapted from Pope (2000).

Resolving these smallest scales is in many cases computationally very costly or even
impossible considering today’s computational capabilities. A practical and efficient
way is therefore to model turbulence (Pope, 2000).

2.2 Governing Equations

Fluid flow in the limit of small Knudsen numbers can be described by the con-
tinuum mechanics formulation of fluid dynamics (Pope, 2000). In three spatial
dimensions x; (x = [x; x» x3]7) and time ¢, the flow field is defined by a velocity
vector u; with one component for every spatial direction, pressure p, and temper-
ature T. Therefore, five balance equations for continuity, momentum for all three
spatial directions, and energy have to be solved. Additionally, fluid properties are re-
quired, which are generally dependent on temperature and pressure. Assuming an
isotropic Newtonian fluid, stress tensors and strain rate have a linear dependence,
and Fourier’s law for heat conduction can be applied. In this case, the so-called
transport properties are the first and the second coefficient of viscosity u(7, p) and
A(T, p), respectively, and the thermal conductivity k(7, p). They are accompanied
by the thermodynamic properties density p(7, p) and isobaric specific heat capac-
ity ¢, (T, p). Moreover, body forces b; can act on the fluid. The most complete set
of equations is the Navier-Stokes equations* which have been shown to represent
experimental observations exceptionally well (Schlichting and Gersten, 2006).

“The designation Navier-Stokes equations is used in this thesis for the full set of equations including
continuity equation and energy equation.
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2 Flow Around a Circular Cylinder

2.2.1 Navier-Stokes Equations

The full compressible Navier-Stokes equations include the continuity equation, mo-
mentum, and energy transport, and an equation of state. The following equations
are given in index notation making use of the Einstein summation convention. Fur-
thermore, 6;; is the Kronecker delta §;; = 1 for i = j and §;; = 0 for i # j. The
Navier-Stokes equations (Schlichting and Gersten, 2006; White, 2007; Davidson,
2004; Landau et al., 1959) can be written by

op  Olpuy)
% . . ~0 2.28
PR 5%, (2.28)
a(pui) a(pu,-uj) op aTij
+ = pb;— -2 4 2.29
ot ox; 7T ox ox; (2:29)
ou; O0u;j ou;
= 0iid— 2.30
Tl] u(ax]' axi ) * g axl ( )
d(pcpT) O(ujpcyT) op op) 0 (, 0T
+ =BT|—+u; + k +O 2.31
ot ij 'B (at ujax]') ax]'( axj) ( )
o=, 0 (2.32)
jax]'

where 7;; is the stress tensor and ® denotes the dissipation function.

2.2.2 Fluid Properties

Fluid properties can be classified in transport properties and thermodynamic prop-
erties. In general, fluid properties depend on the thermodynamic state, i.e. on pres-
sure and temperature. They can be interpolated from tabulated values or assessed
with expressions. Most important is the notion of an ideal gas where the fluid prop-
erties do not depend on its pressure but temperature, only.

Transport Properties

The first and second coefficient of viscosity, also called dynamic viscosity y and
bulk viscosity A, are used to calculate the stress tensor 7 (cf. Equation (2.30)). The

22



2.2 Governing Equations

dynamic viscosity can be evaluated using Sutherland’s law for the temperature de-
pendency. It can be written as
AsV'T

- O8Vo 2.33
B TrTaT (2.33)

with the constants Ag and Ts depending on the fluid (White, 2007). For air, these
constants are Ag = 1.458 x 1076kg/(msK'/?) and Ts = 110.4K. Sutherland’s law is
often given with three constants Ty, o, and S. In this case, the coefficients for Equa-
tion (2.33) are Ts = Sand Ag = (Tp+ S) o/ TS’/ 2 Both viscosities are related by Stokes’
hypothesis.

The thermal conductivity of a polyatomic gas can be evaluated using the modified
Eucken formula (Poling et al., 2001). The formula was deduced from elementary
arguments on the degrees of freedom of a gas molecule. It is given by

k=pu(c,—R)[1.32+ L7 (2.34)

= ulcy — . R S— .
HiCp cp/R—-1

where R denotes the specific gas constant. This constant is R = 287.058]/ (kgK) for

air.

Thermodynamic Properties

Fluid flows without chemical reactions or sudden changes, e.g. shock waves, exhibit
only minor deviations from the thermodynamic equilibrium. It is, therefore, com-
mon to assume that ordinary equilibrium thermodynamics are applicable (White,
2007). The most important thermodynamic properties are pressure, temperature,
density, enthalpy, entropy, and internal energy. Considering the known equations
of state, only two properties are independent. The most common choice is to use
p and T (White, 2007). These are the variables solved for in the transport equations
given above (Equation (2.28)-(2.32)).

From these primary thermodynamic variables, secondary thermodynamic proper-
ties can be derived. These are the isobaric specific heat capacity given by

Cp= on (2.35)
P= 37| :
oT|,
where h denotes the enthalpy, and the isochoric specific heat capacity written as
ey = 2 (2.36)
'Toorl,’ '
The internal energy is denoted by u. The ratio of the specific heats is
p
=—. 2.37
Y c) (2.37)
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2 Flow Around a Circular Cylinder

This ratio is close to 1.0 for nearly incompressible fluids and usually does not exceed
1.7 for any fluid (White, 2007).

A quantity of similar importance, especially in gases, is the speed of sound, defined
as

2_0p

a—ap

Gp)
=y|— . (2.38)
s Y(ap T

The thermal expansion coefficient is given by

__1(op
p= ; (aT)p' (2.39)

If pressure changes are small, the thermodynamic properties depend on temper-
ature only. For specific isobaric heat capacity, enthalpy, and entropy, polynomial
expressions in temperature have been developed (Chase, 1998). The respective
quantity is evaluated using

cp(T)=R(a1+aT+azT*+asT° + asT*), (2.40)
WD) =R(aT+ (a2 T?/2+(asT*)/3+ (as T4+ (a5 T°) /5 + ag) , (2.41)
S(T) =R (a1InT + ax T+ (a3 T?) 12+ (ay T*) 13+ (as T 14+ a7) (2.42)

where ay, ..., a; are tabulated coefficients for a large number of fluids (Chase, 1998).

Ideal Gas Law

The ideal gas law is the equation of state for an ideal gas derived from kinetic theory.
For many cases, e.g. air at ambient conditions, the ideal gas law is a good approxi-
mation (Stephan et al., 2013; White, 2007). With the pressure and the temperature
known from the transport equations, density is evaluated by

p

=—. 2.43
RT (2.43)

P

Inserting Equation (2.43) in Equation (2.38), the speed of sound for an ideal gas is
given by

a=+/YRT. (2.44)

For ideal gases, the specific enthalpy includes the internal energy and the pressure—
volume work h = u + R T. Therefore, the isobaric specific heat capacity can be eval-
uated by

cp=cy+R= %R. (2.45)

24



2.2 Governing Equations

Isobaric Perfect Gas

Under the assumption that the spatial and the temporal pressure changes are small,
the formulation for an isobaric perfect gas expressed as

_ Pret

= 2.46
P="%T (2.46)

can be used. R and py.f are constants and hence the density only depends on the
temperature.

This approximation has several consequences: Compression and expansion can
only occur through changes in temperature. Small changes in local pressure and
density are not coupled, and thus there is no wave propagation, and the speed of
sound approaches infinity a — co. Moreover, an isobaric temperature change will
not result in a change in volume or density and thus ¢, = ¢, = ¢. This also implies
Y = 1. If a gas is considered incompressible, i.e. in the limit of low Mach numbers,
still the isobaric specific heat capacity has to be considered ¢ = ¢, (White, 2007).

2.2.3 Dimensional Analysis

To identify relevant parameters and acquire independence from actual physical di-
mensions, a dimensional analysis was carried out.

Buckingham'’s [1-Theorem

The idea of finding the relationship between physical quantities from their char-
acteristic dimensions and units was formalized by Buckingham (1914). The II-
theorem makes it possible to derive an equation that only contains products of
variables and single non-dimensional products (Zierep, 1991).

In the case of the Navier-Stokes equations (Equation (2.28)-(2.32)), 11 reference
quantities are involved: velocity u.f, density pyef, cylinder diameter d, gravitational
acceleration g, ambient pressure py.f, primary viscosity pf, secondary viscosity
Aref, specific heat capacity ¢, ref, temperature Tyef, coefficient of thermal expansion
Brefr, and thermal conductivity k.. These reference quantities are accompanied by
four base units for length (m), time (s), mass (kg), and temperature (K). The dimen-
sion matrix, representing the powers of each base units occurring in the reference
quantities is given in Table 2.4. The matrix is of full rank and thus Buckingham’s
[I-theorem yields 11 — 4 = 7 dimensionless groups.
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Uref  Pref d 8  Pref HMref Aref Cp,ref Tref ,Bref ket

mass 0 1 0 O 1 1 1 0 0 0 1
length 1 -3 1 1 -1 -1 -1 2 0 0 1
time -1 0 o -2 -2 -1 -1 -2 0 0 -3
temperature 0 0 0 O 0 0 0 -1 1 -1 -1

Table 2.4: Dimension Matrix. Dimensional matrix for the reference quantities in
the Navier—Stokes equations.

Dimensionless Quantities

With the reference quantities (cf. Table 2.4), the following dimensionless quantities
are formed:

a .
xX;=dXx; t:u ft Ui = Uret Uj

re

2
N Href U of ~ Mref Uref
P:PPrefurzeerPref Q= dzreq’ Tij:—red = Tij
_ (2.47)

P = PrefP T=TeT P = Pret B
bi = gi?i Cp = Cp,ref C~p k= krefic
M= Hret [l A= Aret A

If the ideal gas law is used to replace p,.f in the expression for the pressure, an alter-
native non-dimensionalization arises. Using the definition of the speed of sound, it
is written as

~ f
p=py pﬂ% UZ o+ Dret- (2.48)

Dimensionless Numbers

Buckingham’s II-theorem yields seven dimensionless groups. These numbers can
be chosen arbitrarily. A common choice is to use

Uperd
Reynolds number: Re= < (2.49a)
Vref
12
Froude number: Fr = gr;f (2.49b)
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c
Prandtl number: Pr= M (2.49¢)
kref
12
Eckert number: Ec=— "l (2.49d)
Cp,ref Tret
Isobaric expansion ratio: Ky = —Pref Tref (2.49e)
. _ Pret
Euler number: Eu= (2.499)
12
Pref ref
. . . A 2
Ratio of viscosities: nm=—=— (2.49¢g)
L3 5

Most of the dimensionless numbers are ubiquitous; e.g. the Reynolds number was
already used in Section 2.1 to distinguish different flow regimes. The ratio of viscosi-
ties is —2/3 according to Stokes’ hypothesis. The kinematic viscosity is derived from
the dynamic viscosity by Vief = Uref/ Pref-

Other dimensionless numbers are linear combinations of the quantities given
above. With the ideal gas law, the relationship between Euler number, Mach num-
ber, and the ratio of specific heats is given by

2
Pref Aot _ 1

Eu= = =
2 2 2
PrefU s YU ¢ Y Ma

(2.50)

with the Mach number Ma. The Mach number is another ubiquitous dimensionless
group in gas dynamics given by

u
Ma = —f 2.51)

a

The alternative formulation for the pressure (Equation (2.48)) can be written as

P = DY PretMa+ pret. (2.52)

2.2.4 Non-Dimensionalized Navier-Stokes Equations

Inserting all dimensionless quantities and groups in the Navier-Stokes equations
(Equation (2.28)—(2.32)) yields the non-dimensionalized Navier-Stokes equations.
They serve as a basis for further adaptations in this thesis. Hereinafter, the tilde (7)
denoting a dimensionless quantity will be dropped. All quantities are understood
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to be dimensionless, if not indicated otherwise. The dimensionless governing equa-
tions are given by

0 olpu;j
9\ (ow) _, (2.53)
ot ax]'
dpu;) O(puiuj) 1 op 1 0 ou; Ou;j Oou;
+ =—pbj——+— + +6;; 11— (2.54
ot 0xj Fr' ' 0x; Re 0x; (ij 0Xx; Y le) (2.54)
olpc, T) Olujpc, T 0 0 1 0 0T\ E
G P )+ (]p P ):KpEcﬁT(—p+uJ- p)+ (k )+—C<D.
ot 0xj ot 0x;j) ReProx;\ 0xj/ Re
(2.55)
The ideal gas equation can be written as
P i-prT. (2.56)
Eu

Alternatively, using Equation (2.50), this equation of state can be reformulated to

pyMa®+1=pT. (2.57)

2.2.5 Incompressible Navier-Stokes Equations

Some a priori assumptions lead to significant simplifications of the equation system.
Justifications for these assumptions have to be given for the respective application.
In Chapter 9, these simplifications are discussed for the Rijke tube (Section 9.1), hot
wire anemometry (Section 9.2), and heat exchangers (Section 9.3).

Assumptions

The following three assumptions are made: (1) The flow velocity is much smaller
than the speed of sound, i.e. Ma — 0. (2) The temperature exhibits only small devi-
ations from the reference value, i.e. T — 1, and hence it does not influence the flow
field. Nevertheless, heat transfer is still present. (3) No body forces act on the fluid.
From these assumptions, several simplifications can be deduced.

Simplifications

The general equation of state for the density is expressed as p(p, T). A Taylor series
expansion around the reference state is given by

p(Tp)—1+(a—p) (T—1)+(a—p) p+ (2.58)
) aT ref ap ref ce e o .
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The series is truncated after the first derivatives. This leads to a linearization around
the reference state. Using the definitions of the coefficient of thermal expansion and
the speed of sound yields

o(T,p)=1+K, (T -1)+yMa’p. (2.59)
P Y

Applying the first assumption Ma — 0 and neglecting terms of order €'(2) or higher
in Mach number Ma reveals

p(T)=1+Kp(T-1). (2.60)

Hence, variations in the density depend only on temperature and not on the pres-
sure. For an ideal gas (K, = 1), this simplifies even further to p = T.

Furthermore, the Eckert number can be rewritten as

612

Ec=Ma?—"f 2.61)
Cp,ref Tret

If an ideal gas is assumed, the factor afef/ (Cp,ref Tret) =Y — 1 is of order unity and thus
Ec is of order @(Ma?). Therefore, also terms proportional to the Eckert number can
be neglected when the Mach number is low.

From Equation (2.60) follows that if T — 1 also p — 1. In other words, if temperature
differences are small, only small differences in density occur. The consequence is
that density becomes constant and p — 1. Moreover, the fluid properties, viscosity
u, thermal conductivity k, and specific heat capacity ¢, are also unity.

Body forces usually arise from buoyancy or an acceleration of the reference system.
Buoyancy requires a density gradients which are eliminated because of p — 1. It
is furthermore assumed that the reference system is at rest and hence the terms
proportional to b; vanish.

Incompressible Navier-Stokes Equations

The assumptions made above, in short Ma — 0, T — Ty, and b; — 0 yield the
three-dimensional incompressible Navier-Stokes equations. The energy equation
is reduced to a scalar transport equation. Only a one-way coupling from the ve-
locity field to the temperature exists but not vice versa. Temperature only occurs
in derivatives, and hence a different non-dimensionalization is more elegant. Heat
transfer between a surface with temperature T, and a fluid with temperature T, is
commonly described using a dimensionless temperature defined by

T—To

O=——.
Tw_Too

(2.62)
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2 Flow Around a Circular Cylinder

Inserting this in Equations (2.53) to (2.55) yields

ou;
—J_-p (2.63)
ij

ou; N ou; 10p N 1 62ui (2.64)
—tuUj—=— — .
ot fax]- pOx; Redx;ox;

00 0 1 4°0

—+ U j = .

ot Ox; ReProx;ox;
These are the basic equations for the CFD simulations carried out in this thesis,
except for a brief survey on the influence of the cylinder temperature T,,. In this

case, the compressible Navier-Stokes equations were solved.

(2.65)

2.2.6 Vorticity Stream Function Formulation

Equations (2.63) to (2.65) show the Navier-Stokes equations in primitive variables.
In incompressible two-dimensional flow (x = [x; x2]T), the use of the quantities
stream function ¥ and vorticity {, which are derived from velocity, is often beneficial
(Schlichting and Gersten, 2006, p. 42). Vorticity is defined as the curl of the flow
velocity vector. In two-dimensional cases only, the component associated with the
x3-direction is nonzero and given by
aug 0u1

= ox  0x (2.66)
The stream function quantifies the volumetric flow rate through a line connecting
any two points in the flow field. A line of constant stream function is considered a
streamline. The velocity components are evaluated from the partial derivatives of
the scalar stream function by

oy
_Oxz

oy
"
Using vorticity and stream function, the incompressible Navier-Stokes equations
(Equation (2.63)-(2.65)) reduce to

Py Oy
LoV 2.68
0x?  0x3 ¢ (2.68)

ui and Uy = (2.67)

o¢ o¢ 1 0%
— + u]_ -
ot 0x; Redx;o0x;

(2.69)

00 00 _ 1 0°0
ot Jaxj _RePraxjaxj'

(2.70)
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2.2 Governing Equations

The transport equation for the temperature is the same as Equation (2.65). In this
formulation, the NufSelt number is defined as in Equation (2.21). The skin friction
coefficient can be given by

2
or=2Cu 2.71)

using the vorticity at the surface of the cylinder.

The main advantage of this approach is that the pressure does not appear in equa-
tions (2.68) to (2.70) and thus need not be calculated. Moreover, the equations for
vorticity and temperature both have the structure of an advection-diffusion equa-
tion without sources or sinks. This form of the Navier-Stokes equations was used
by many researchers in the past for investigations of flow across a cylinder, e.g. by
Thom (1933), Apelt and Ledwich (1979), Fornberg (1980), and Kwon and Lee (1985).

2.2.7 Potential Flow

Potential flow represents further simplification of the Navier-Stokes equations. In
addition to the incompressibility (p = 1), potential flow is inviscid, i.e. ¢ = 0, and
irrotational, i.e. { = 0. The flow (without temperature) is hence fully described by
applying the simplifications to Equation (2.68). This yields

0° 0°
2V, 2Y o (2.72)
ox;y  0x;

which is a Laplace equation for which analytical solutions exist in simple cases.

It is named after the velocity potential ¢, which is defined in such a way that the
velocity is equal to the gradient of ¢. Hence,

) 3 o’y 0%¢ 3 _621//

= ) = ) (2.73)
0xz  0x5 0x; 0x?
and
02 02
Sl (. ) (2.74)
dxl 0x2

Lines of equal velocity potential and stream lines are always orthogonal. The so-
lution of the potential flow also solves the Navier-Stokes equations except for the
no-slip condition at the surface of the cylinder.

Pressure is evaluated by integrating

op _ oy &y oy dy
0x;  0xp0x10x, 0x; 0x3

(2.75)

31



2 Flow Around a Circular Cylinder

Analogously, the pressure gradient in x»-direction can be integrated (Fornberg,
1980).

Flow around a cylinder is represented by the superposition of a dipole (source and
sink of equal strength) and parallel flow. If the dipole is located in the origin and par-
allel flow occurs in x; -direction, velocity potential, and stream function are given by

2)) . (2.76)

! ) and V=X (1
= X2 -
) 4 (xf + x5

=X |1+ ——
! ( ERE
Transforming to polar coordinates (r, ¢b), the velocities in radial and circumferential
direction read

1 1
U, = (1_E) cos¢ and Up = (1+ﬁ) sing (2.77)

respectively.

2.3 Transfer Analogies

The temperature in Equation (2.65) and also in Equation (2.70) is an advection-
diffusion equation (Davidson, 2004). The temperature, in this case, is a passive
scalar, i.e. it does not affect the flow field. If the boundary conditions may be for-
mulated in a corresponding manner, temperature can be replaced by any scalar
quantity to be assessed. The only adjustment necessary refers to the dimensionless
group quantifying the ratio between convective and diffusive transport, e.g. RePrin
the case of temperature. A widely used analogy is the one between heat transfer and
mass transfer. As can be seen by inspecting Equation (2.69), also the transport of
vorticity follows this principle.

2.3.1 Analogy of Heat and Mass Transfer

Mass transfer by diffusion from the surface of the cylinder is denoted by the specific
flux of species 714 ([77] = mol/ m?s). It is described by Fick’s law given by

. dca

na=—-Dap — =hm(ca—Ccaco)- (2.78)

I' lr=d/2

The coefficient of diffusion D 4 quantifies the diffusive transport in the binary mix-
ture of components A and B. cy4 is the molar concentration of component A and &,
is the convective mass transfer film coefficient. This is analogous to Fourier’s law (cf.
Equation (2.4)) and Newton’s law of cooling.
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2.3 Transfer Analogies

The energy equation in the incompressible Navier-Stokes equations (2.65) has the
structure of an advection—diffusion equation (Davidson, 2004) for the temperature.
The temperature can, therefore, be interchanged with the dimensionless concentra-
tion c4. Transport properties have to be adapted accordingly, and new dimension-
less parameters arise for mass transfer. The Sherwood number, defined as

d acA

)
CA—CAco OT |r—gp2

Shy (¢) = (2.79)

quantifies the surface normal gradient of the concentration. The averaged Sher-
wood number is given by

Sh = hpyd

= . (2.80)
D sp

Hence, it is the mass transfer counterpart of the Nuf3elt number. The Prandtl num-
ber is replaced by the Schmidt number, defined as the ratio between the momentum
diffusion and the species diffusion by

v
Sc= ——. (2.81)
Dap
If Schmidt number Sc and Prandtl number Pr are equal, i.e. the Lewis number is
unity Le = Sc/Pr = 1, the dimensionless temperature and concentration fields coin-
cide.

The useful result of this analogy is that any correlation or consideration of the physi-
cal argument given for temperature also holds for concentration. This thesis focuses
on heat transfer. However, the substitutions T"— c4, Nu — Sh, and Pr — Sc are valid
throughout.

Investigations explicitly concerned with the mass transfer from a cylinder to pulsat-
ing flow can be found in Ohmi and Usui (1982); Sung et al. (1994); Zierenberg et al.
(2006, 2007)

2.3.2 Reynolds’ Analogy

Similar to the argument given for the analogy of heat and mass transfer, an anal-
ogy between heat and momentum transfer can be deducted (Bergman et al., 2011).
Vorticity (cf. Equation (2.69)) is, like temperature and concentration, governed by an
advection—diffusion equation. The boundary equations are different to some extent,
but nevertheless, the analogy still applies with acceptable accuracy. For Pr =Sc =1,
the equalities

R
cf?e =Nu = Sh (2.82)

33



2 Flow Around a Circular Cylinder

are found. Following this argument, Reynolds’ analogy can be formulated by

Re Nu Sh
Cpf—=—=—. (2.83)
2 Pr Sc

Strictly, this expression only yields good results, if Prandtl number and Schmidt
number are close to unity and there is no pressure gradient. In the Chilton—Colburn
analogy, this statement is further refined to

Re  Nu  Sh
I TpAB T g3

(2.84)

This is valid for a larger range of Prandtl numbers Pr and Schmidt numbers Sc, but
only for favorable pressure gradients. If valid, this analogy may also be applied to
surface averaged values.

2.4 C(ylinder in Unsteady Crossflow

The scope of this thesis is to investigate a cylinder in unsteady crossflow. In this case,
flow quantities depend on time. To cope with this additional complexity, methods
to handle perturbations are established. The response to small forced perturbations
in velocity is quantified with transfer functions. This concept is introduced and re-
visited in Chapter 4 within the framework of linear dynamic systems.

2.4.1 Perturbation Approach and Small Amplitudes

To study unsteady flow, i.e. pulsations in the free-stream, a perturbation approach
is considered. Any arbitrary variable f consists of a time independent mean contri-
bution and a fluctuation. This relationship is expressed by

fx,0=f@x)+f(x0 (2.85)

where the bar () denotes the mean value
1 "
f® = lim — f f(x,ndr. (2.86)
t*—oo t*
0
A prime (') signifies the fluctuation. A fluctuation in the flow velocity results in

fluctuations in skin friction and heat transfer.

All variables are dimensionless. Thus, they can be linearized using the same variable
€ denoting the relative amplitude of any flow variable. The flow variables are treated
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2.4 Cylinder in Unsteady Crossflow

Pr C_i+ c}
Nu + Nu’

Figure 2.9: Sketch of a Cylinder in Pulsating Crossflow.

by Fourier series expansion, i.e. as a sum of complex exponential functions. This is
written as

f@x, 0= folx) +eR (fi(x) e5) +€? [ fi(x) + R (fo(x) e57)] +... (2.87)

where f is an arbitrary variable, and R (-) denotes the real part. In this case, fp and
fs are real-valued and f; and f> are complex-valued. The Strouhal number Sr is a
dimensionless frequency and is defined by

Sr=—-. (2.88)

The angular frequency is denoted by w. The quantity f;(x) (with index s) signifies the
streaming component. This is a nonlinear time independent contribution caused
by the oscillations or pulsations.

The amplitude € is assumed to be small. Terms of higher order in ¢, e.g. €2, can thus
be neglected to reasonable accuracy. An arbitrary variable f is written by

fx, 0= fox) +eR (fi(x) ), (2.89)

Note that the streaming component mentioned above is a term of order @ (¢?) and
therefore neglected. This also implies that no net contribution, i.e. a positive or
negative contribution, when averaged over one cycle, occurs.

2.4.2 Pulsations

The aim of this thesis is to investigate pulsations in the far field velocity and the
resulting responses in skin friction and heat transfer. Figure 2.9 depicts this rela-
tionship. To investigate the transient response, pulsations in velocity are introduced
and resulting fluctuations are assessed. In this thesis, the term fluctuations refers to
quantities experiencing changes in time and space. The term pulsations is used for
temporal variations only. The significance of this convention is that flow variables
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2 Flow Around a Circular Cylinder

are usually subject to fluctuations. On the other hand, lumped quantities like the
mean Nulselt number Nu changes with time only and therefore is subject to pulsa-
tions.

In conjunction with unsteady flow, the term oscillating flow is often used, e.g. by
Stokes (1851). Oscillations can be seen akin to pulsations. The difference is that it
implies the reversal of the flow direction during a cycle. Peak velocities are larger
than the mean flow velocity; hence, the assumption of small amplitudes does not
hold in this case. This also applies to oscillations without any mean flow present.

Velocity Pulsations

The velocity field is given by the vector u = [u; u u3]”. In the far field, the influence
of the cylinder is negligible. For simplicity, the velocity in the far field is chosen
to have only a single contribution in x-direction and is denoted by u., or simply
Uso- This restriction to solely one coordinate direction is relaxed in Section 9.2 only,
where the far field velocity has a fluctuating angle of attack.

Hence, a pulsation is introduced in u, in the form of
Uoo (1) = Too + UL (1) (2.90)
As Fourier series expansion this reads
Uoo (1) = U oo + R (141,00 (ST) €7) . (2.91)

The pulsations occur around a steady velocity which is also used as the reference
velocity Uso = U 00 = Uref-

The velocity pulsations are the driving force for any other fluctuation. It is conve-
nient to chose the parameter € = u; o/ Uy 0. Hence, a small parameter € is equiv-
alent to assuming that the velocity pulsations are small compared to the mean
velocity Uy 0o <K Up,co-

The Reynolds number for a cylinder is defined with the free-stream velocity (cf.
Equation (2.2)). With pulsation imposed on i, also the Reynolds number exhibits
pulsations of the form

Re(r) =Re+Re'(1), (2.92)
leading to a Fourier series expansion written by
Re(t) = Reg + R (Re; (Sr)e™>') . (2.93)
The mean flow Reynolds number is defined by the steady-state velocity

- uo’oo d

Rep =Re = (2.94)
Vref

36



2.4 Cylinder in Unsteady Crossflow

Pulsations in Friction Coefficient and NufRelt Number

The friction coefficient and the Nuflelt number are used to quantify skin friction
and heat transfer. Pulsations are treated in the same manner as for the Reynolds
number. This leads to

cr(t) =Cr + (1) and Nu(#) = Nu+Nu'(2). (2.95)
A Fourier series expansion yields
crt)=cro+R(cp1(S0e™) and Nu(f) =Nug+R (Nui(Sne™), (2.96)

respectively.

Pulsation Frequency

The introduction of a (forced) pulsation frequency leads to another reference quan-
tity that has to be incorporated in the dimensional analysis. The number of basic
dimensions stays the same and hence one additional dimensionless group, quan-
tifying the frequency, occurs. The Strouhal number as defined in Equation (2.97)
is used in this thesis. With the given definition of the reference velocity, it can be
written as

wd
Sr=——. (2.97)
Uo,c0
The Strouhal number is therefore the number of cycles divided by 27 that occur
during the time it takes the fluid to cover a distance of d. For example Sr = 27 = 6.28
means exactly one cycle of sinusoidal fluctuation takes place while at the same time
the fluid advances a distance equal to the diameter of the cylinder.

Two other dimensionless groups are commonly used. As determined by the dimen-
sional analysis, both can be given as products of the established set of dimension-
less numbers. The Helmholtz number is given by

wd

He = — = SrMa (2.98)

and will be revisited in Chapter 9. It is a crucial measure on the applicability of
the incompressibility assumption. In confined flows, often the Womersley number
defined by

w d?
Wo = T =V SrRe (299)

is used. It describes in the thickness of the unsteady boundary layer as detailed in
Section 3.1.2.
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2 Flow Around a Circular Cylinder

2.4.3 Transfer Function and Frequency Response

The relations between the pulsations of different flow quantities,i.e. between flow
velocity, heat transfer, and skin friction is quantified using transfer functions.
Reynolds number, Nullelt number, and friction coefficient are used to quantify this
dynamic behavior. Transfer functions from Reynolds number pulsations to pulsa-
tions in NulSelt number and friction coefficient are given by

/e

=T
! Re’/Re

Nu’/m

e and G
Re’ / Re

GNu = (2.100)

respectively.

The angular frequency is real-valued and hence is the Strouhal number. Due to this,
the quantities Rej, Nuy, and c,; are also real-valued. Using this and Equation (2.89),
the transfer behavior can be represented as the frequency responses denoted by

Nu; (Sr) /Nug
Re; (Sr) /Rey

cr1(S0)/cro
Re; (St)/Reg

GnNu(St) = and G, £ (Sr) = (2.101)

respectively.
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3 Cylinder in Pulsating Flow—Literature
Review

This chapter offers an overview of the literature associated with objects, in partic-
ular cylinders, in (continuously) pulsating flow. At first, the essential basic obser-
vations of the thermoacoustic effect are presented in Section 3.1, including early
mathematical models. The development of the boundary layer equations offered a
means to acquire solutions for viscous flows at high Reynolds numbers and for basic
geometries. Section 3.2 shows the application of the boundary layer equations to
perturbed flow. The works by Lighthill (1954) and Gersten (1965) are examined in
detail as they offer the best insight into the phenomenon. Apart from the boundary
layer equations, which provide a good approximation for high Reynolds number
flows, another simplified solution for low Reynolds numbers was used successfully
in the past. Based on the Oseen equations, Bayly (1985) developed a mathemati-
cal model for pulsating flow at low Reynolds numbers. This model is presented
in Section 3.3. With the increased use of computers and CFD methods, better ap-
proximate solutions for the full Navier-Stokes equations could be obtained within
reasonable time. The approach by Kwon and Lee (1985) is presented, who solve
a linearized version of the Navier-Stokes equations in the frequency domain. The
development of methods for time series analysis gave rise to a multitude of other ap-
proaches in which CFD simulation is combined with the adequate post-processing.
The CFD/SI method, as used in this thesis, was applied by Foller et al. (2008). Studies
involving the Navier-Stokes equations are presented in Section 3.4. Selected works
related to the subject of pulsating flow including nonlinear effects and heat transfer
enhancement is summarized in section 3.5.

3.1 Early Works on Unsteady Flows and Thermoacoustics

The first reports on thermoacoustic oscillations date back over 200 years. Subse-
quently, the “curio” was assessed systematically and lead to the principles and first
mathematical models. They founded the basis for further investigations on heat
transfer and skin friction in pulsating flows.
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3 Cylinder in Pulsating Flow—Literature Review

3.1.1 Thermoacoustics

The first experiments on pulsating flows in conjunction with heat release from com-
bustion were carried out in the late 18th century by Higgins (1802). A hydrogen
flame was observed to produce audible sound if confined in a suitable glass tube.
The “singing flame” was seen as an amusement, but should prove to be a signifi-
cant discovery concerning combustion instabilities occurring in rocket engines and
modern gas turbines (Keller, 1995).

In pulsating or oscillating flow, heat transfer can damp, but also drive instabilities.
The first observations of this thermoacoustic effect caused by heat transfer were
reported by Sondhaul$ (1850) and Rijke (1859). Sondhaul$ (1850) described an effect
experienced by glass blowers. In a heated glass bulb with a long neck, thermal en-
ergy is transformed into acoustic energy, which can be perceived as audible sound.
This effect can be intensified by the use of a stack, a porous medium inside the
neck, which extends the surface area (Swift, 2002, 2007). The important mecha-
nisms for this self-sustaining oscillations take place in the boundary layer, which
establishes in an oscillating flow at the solid surface. Kirchhoff (1868) described the
influence of heat transfer on acoustic fields mathematically, and Rayleigh (1896)
gave a widely accepted explanation for the thermoacoustic effect. A complete math-
ematical model of the Sondhaul tube was given by Kramers (1949) and eventually
improved significantly by Rott (1969).

The setup examined by Rijke (1859) is similar to the Sondhaul} tube. It also has a
glass tube as the main corpus. As in the case of the Sondhaul! tube, the tube in
Rijke’s case serves as a resonator in which a standing wave exists. However, in this
case, it is open at both ends. A heated wire mesh, placed in the lower half of the
vertical tube induces a buoyancy driven mean flow. The heat transfer at the mesh
responds dynamically to fluctuations in mean flow velocity so that the heat transfer
and the standing wave pressure interact constructively.

3.1.2 High Frequency Oscillations over a Flat Plate

One of the basic problems in unsteady flows is a fixed wall subject to an oscillating

fluid. This is known as Stokes’ second problem (Stokes, 1851). Later, it was also con-

sidered by Rayleigh (1911).! The velocity parallel to the plate can be described using

the Navier-Stokes equations. In the limit of high frequencies, only the acceleration

term and the viscous terms remain, and thus Equation (2.64) can be simplified to
Oy 1 0%uys

=— . 3.1
0t  Re dy*2 &b

In the original statement, the fluid is at rest and the plate is oscillating but both configurations are
equivalent.
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3.1 Early Works on Unsteady Flows and Thermoacoustics

This is in accordance with the theory of differential equations with large parame-
ters, which states that large terms and the highest derivatives have to be retained
(Lighthill, 1954). Inserting the Fourier series expansion (Equation (2.89)) yields

1 62 Uy — Ul,co

— 3.2
Re  ay*? 6.2

iSr(u1 — 1,00) =

At the surface, the fluid is at rest, i.e. u; (y* = 0) = 0, and approaches the undisturbed
flow velocity u; — u;, in a great distance to the plate y* — oo. This differential
equation can be solved analytically. The solution is given by

U1 = U 0o [1 —e_‘/iJ’*/‘SSt] ) (3.3)

The similarity variable y*/dg; uses the dimensionless thickness of the unsteady

boundary layer (Stokes layer)
2
Ost = 34
t=\/ Rest (3.4)

for non-dimensionalization. The index St is chosen to emphasize that this boundary
layer thickness is associated with Stokes flow. By introducing an oscillating free-
stream velocity u;_ = € Up o Cos(Srt), the solution (Schlichting and Gersten, 2006;
Lighthill, 1954) written as

U1 = € Up,eo |COS(STT) — e 1%t cos(Sr £ — y* 165y (3.5)

is achieved. Figure 3.1 shows profiles of the velocity calculated with Equation (3.5)
in proximity to the plate.

The shear stress at the surface of the plate is proportional to the velocity gradient at
this location. Hence, the slope of the velocity is a measure for the skin friction. The
shear stress at the surface is given by

u
Tw=Vi=2, (3.6)
st
Assuming oscillating flow as in Equation (3.5) yields
V2€ g o0 4
Tw= 6—Stcos (Srt+Z) . (3.7

The fluid motion is driven by the pressure far away from the plate given by

op .
— iSrt
Fyie iSruj o€ .

It always exhibits a phase advance of 7/2 in the far field. However, the boundary
layer responds quicker to the pressure change, and thus close to the surface the

(3.8)
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Figure 3.1: Velocity Profiles of Oscillating Flow Close to a Surface. Instantaneous
values of velocity for one full period from 0 to 27 in increments of /4
(—). Additionally, the root mean square (RMS) value of the velocity is
depicted (—).

pressure leads the velocity by only /4. This causes the phenomenon that the shear
stress, for sufficiently high frequencies, is 7/4 ahead of the free-stream velocity
which might seem to contradict causality.

Another important aspect is the thickness of the unsteady (acoustic) boundary
layer, i.e. Stokes layer thickness dg;. It scales inversely with the square root of the
Reynolds number and the Strouhal number. Hence, the boundary layer is thin at
high Reynolds numbers and high Strouhal numbers. A fact also observed in steady
boundary layers. Moreover, higher frequencies result in smaller dg;. The shear stress
is inversely proportional to the boundary layer thickness and therefore rises with
rising Reynolds number Re and Strouhal number Sr.

3.1.3 Motion of a Sphere

Basset (1888) derived a formula for the motion of a sphere in a viscous fluid. He also
accounted for the acceleration and how the evolution of the flow field affects the
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motion at the present time. This resulted in the so-called Basset force. For a spherical
particle, the Basset forces is evaluated with

(s —up)

t
d
Fg = Gnrppff K(t—1) i dr. (3.9)

The (convolution-) integral sums the contributions of past particle acceleration
weighted with the time that has passed since the acceleration occurred. This weight-
ing factor, or kernel K (¢ — 1), decays over time with t~1/2, It is given by Basset (1888)
as

K(t—1) = L . (3.10)

Vavilt = 1) /15

This kernel can be seen as the impulse response (cf. Section 4.1.3) of the skin friction
at the particle surface to perturbations in the acceleration of the particle relative to
the flow. The dynamics of skin friction of a sphere in (accelerated) flow is important
for the motion of particles in acoustic fields or under the influence of body forces
like gravity. The Basset force was revisited since 1888 by several authors, e.g. by Yang
and Leal (1991) as well as Mei and Adrian (1992). It is closely linked to the dynamics
of skin friction assessed numerically in this thesis. However, a spherical geometry is
not in the scope of this thesis and thus will not be considered further.

3.2 Perturbation Boundary Layer Equations

The first study on the matter of a cylinder in pulsating crossflow was published by
Moore (1951). Lighthill (1954) followed a similar approach and specifically tailored it
for a cylinder in pulsating crossflow. This study is one of the most recognized in this
field of research. Under the assumption that the dynamics of a cylinder in crossflow
are mainly governed by the stagnation point flow at the front quarter, the boundary
layer equations for this case (Hiemenz layer, HL) were solved approximately. This
led to two solutions for skin friction and heat transfer; one for low frequencies and
one for high frequencies, respectively. This study was thereafter extended to com-
pressible flow by Gribben (1961). Glauert (1956) examined transversal movement of
a cylinder in crossflow with the methods provided by Lighthill (1954).

Following this approach, Gersten (1965) solved the same equations numerically, us-
ing a series expansion in frequency. Similar results were achieved, but with more
consistent values for intermediate frequencies. Especially, the description of the
skin friction dynamics is more consistent. Solutions were developed for stagnation
point flow and flow over a flat plate (Blasius layer, BL). A solution for compressible
flow based on Gersten (1965) was again developed by Gribben (1971).
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Ackerberg and Phillips (1972) investigated the flow over a flat plate using an asymp-
totic analysis in combination with numerical integration. The skin friction results
were very similar to the solutions developed in this thesis. E.g. a characteristic dip
in the phase of the friction coefficient in the transition between the initial rise and
the saturation at 7/4 was found and is recovered using the CFD/SI method in this
thesis.

Telionis and Romaniuk (1978) solved the boundary layer equations numerically, but
yet again for a different kind of flow. The boundary layer solution for Howarth flow,
i.e. the flow close to a stagnation point with prior deceleration, was chosen. How-
ever, like the HL, this is also a rough approximation for the flow around a cylinder.

Ayawed cylinder undergoing spanwise and chordwise oscillations was investigated
by Sarma and El-Hadi (1986); Sarma and Srivastava (1986). The skin friction was
assessed using the boundary layer equations (Sarma and El-Hadi, 1986). Using a
compressible formulation the heat transfer for this configuration was investigated
Sarma and Srivastava (1986).

3.2.1 Boundary Layer Equations

The so-called boundary layer equations can be deduced from the Navier-Stokes
equations (Equation (2.63)-(2.65)). A thorough derivation was given, e.g. by
Schlichting and Gersten (2006). They make use of the fact that, if the viscosity
is small, a surface with no-slip condition affects the flow field only in a small region
close to the surface: the boundary layer. Two main assumptions are made to derive
the equations: (1) The boundary layer thickness is proportional to the square root
of the viscosity § ~ /v. (2) The boundary layer thickness is much smaller than the
characteristic length of the body submerged in the fluid. For a streamlined body,
the characteristic length is the length along which the flow occurs. In the case of a
cylinder, this is usually the diameter, i.e. § < d. Combining both yields

0 1
— - (3.11)

d VRe
and hence the boundary layer thickness tends towards zero 6 — 0 for infinitely large
Reynolds numbers Re — oco. Quantities associated with the y-direction, i.e. y and v
are proportional to 6. Therefore, when the limit Re — oo is considered, the Navier—
Stokes equations reduce to the boundary layer equations.

The effect of viscosity due to the presence of the surface is captured by the boundary
layer. Hence, the outer flow is governed by the Euler equations (White, 2007), which
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3.2 Perturbation Boundary Layer Equations

neglect the viscous terms. The outer flow velocity is often denoted by a capital U.
The momentum equation then reads

ou ou  adp 312

ot " oxr | oxt 3.12)
The outer flow velocity U is a concept similar to the free-stream velocity u. The
notation with the capital letter is kept here to emphasize the relation with the
boundary layer equations. The pressure gradient acting in the boundary layer is the
same as in the outer flow, so Equation (3.12) can be used to replace the unknown
pressure gradient in the momentum equation. Moreover, the outer flow solution
serves as boundary condition and hence the full two-dimensional problem is given

by
ou N ov 0 3.13)
ox*  oy* '
6u+u6u+vau_0U+U6U+1 0%u (3.14)
or  dx* dy* 0t  0x* Redy*? '
or oT oT _ 1 0°T 615
—+u v = .
ot  0x*  0y* ReProy*?
with the boundary conditions
y"=0: u=0, v=0, T =Ty (3.16)
y* —o0: u—1U, T — Teo. (3.17)

3.2.2 Lighthill

The equations used by Lighthill (1954) are given in Section 3.2.1 as a simplifica-
tion of the Navier-Stokes equations invoking the boundary layer approximations.
In a landmark paper, Lighthill (1954) studied the response of laminar skin friction
and heat transfer to fluctuations in the stream velocity. He presented approximate
solutions for near-wall velocity and temperature profiles for the case of small pul-
sation amplitudes (linear regime) and evaluated the corresponding displacement
thickness, skin friction, and heat flow rate, respectively. For the case of a cylinder
in low Reynolds number crossflow, the heat transfer frequency response in terms of
amplitude reduction and phase lag was determined. Lighthill states that his solution
“applies only at Reynolds numbers for which the boundary layer approximation
has some validity (say R > 10)” and “in the range of Reynolds number for which
a laminar boundary layer exists” (Lighthill, 1954).

Lighthill (1954) already suggested that the unsteady response of the heat transfer
rate to the perturbation of free-stream velocity is determined by the adaptation
time of the viscous and thermal boundary layers. For harmonic perturbation, this

45



3 Cylinder in Pulsating Flow—Literature Review

time lag controls the phase of the heat transfer frequency response function. For
low frequencies, the time lag of the heat transfer was estimated as one fifth of the
ratio of cylinder diameter and free-stream velocity.

Perturbation Approach

Lighthill’s approach was to introduce small oscillations about a steady mean in the
form of (cf. Equation (2.91))

u(x*,y*, 0= uo(x*,y*)+€u1(x*,y*)ei‘“t (3.18)

and terms collected according to different powers of €. The zeroth order equations
are then just equal to the boundary layer equations (Equation (3.13)—(3.14)). Evalu-
ating the time derivative, the first order equations are given by

6u1 le

+ =0 3.19
ox* oy* (5.19)
iwuy+u 6u1+u 6u0+v 6u1+v auO—in+ d (UU)+V62u1 (3.20)
P0G T o T 0y T gy T T T e 0T T Ty
. 6T1 aTo 0T1 6T0 62u1
i T+ Uy oo+ o+ Vo= + 11 oy~ Koy (3.21)

with the boundary conditions

y*=0: u; =0, v =0, T,=0 (3.22)
y* —oo: uy — Uy, T, —0. (3.23)

Lighthill (1954) considered two limiting cases for skin friction and heat transfer,
respectively. In the case of high frequencies, the acceleration terms are large com-
pared to other contributions, and hence, only those and the derivatives of the high-
est order are kept. For the calculation at low frequencies, such a simplification
cannot be invoked. To solve the boundary layer equations, an integral Kirméan-
Polhausen treatment (Schlichting and Gersten, 2006, Section 8.1) was used. The re-
sults are therefore an approximation within the accuracy of the assumptions made,
e.g. the velocity profile is modeled as a fourth order polynomial in y.

Skin Friction

The momentum equation for high frequencies reduces to

62 u1

5y (3.24)

iw(u-U;)=v
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3.2 Perturbation Boundary Layer Equations

This is equivalent to Stokes’ second problem (cf. Equation (3.1)) and hence the solu-
tion is

w = U, (1 - e_y‘/m) . (3.25)

The shear stress at the surface of the cylinder is given by (Lighthill, 1954, Equation

(14))
(a”‘)) +eel®! U, \/i—w (3.26)
I'L ay* y*:O I’l’ 0 v * ¢

Using the definition of the transfer function (Equation (2.100)) and inserting equa-

tion (3.26) yields
iwt iw Oup
e ulp/% /ﬂ(ay*)y*zo

G, Lighthill =
€U e"‘”‘/uo

(3.27)

For low frequencies, Lighthill arrives at the following equation (Lighthill, 1954, equa-
tion 38)

p(3m) e
0y* J =g

iwt

. 3 1
=19 +ee'®! S0+ inonc?S

M(Ous) +iw,u(au2)
0y* )+~ 0y* ) =g

where the fluctuating velocity is decomposed into a quasi-steady part and an accel-
eration dependent part, respectively, written as u; = us+ i w u. From a comparison
between Equation (3.26) and Equation (3.28), Lighthill deduces a “matching fre-
quency” given by

(3.28)

37
W = —— (3.29)
P U() 60

where & is the displacement thickness. At this frequency, both solutions approx-
imately coincide in amplitude and phase as well as in their respective velocity
profiles. Finally, Lighthill assessed the quantitative value of this frequency for two
different types of boundary layers: the boundary layer near a stagnation point (HL)
and the flat plate boundary layer (BL).

The velocity profile of the inviscid flow (potential flow) near a stagnation point is

given by Uy = * x and Vy = —f* y. Considering the potential flow solution of a

cylinder in crossflow (Equation (2.76)) at the stagnation point, the derivative of the

impinging flow velocity with respect to the distance to the surface is evaluated as
LV _ A _ o 021[/ _ X1 (xf +3x§)

- = = = . (3.30)
d oy* 0x; 0x10x2 2 (xf n x§)3
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Figure 3.2: Frequency Response of Skin Friction for the HL (Lighthill, 1954). Am-
plitude (top) and phase (bottom).

Directly at the stagnation point, this simplifies to
x
== —4. (3.31)
(x1=1/2,x=0) 2X]

*V_aul
h d 0x;

The curvature of the cylinder causes a deviation from the pure stagnation point flow.
However, this influence is minor and was accounted for by averaging the velocity, i.e.
the constant factor 8*, over the first quadrant of the cylinder to yield

/4

ﬁ%:ﬁ*g f cos()de = 3.6. (3.32)

—ml4

The matching frequency for the HL is reported to be wg = 5.6y ~/d. Hence, the
Strouhal number, as used in this thesis, is Srp = 20. Amplitude and phase of the skin
friction frequency response for the HL are depicted in Figure 3.2. For the BL, the
matching Strouhal number depends on the distance from the start of the flat plate
and is Sro L = 0.6 x*/d. The skin friction frequency response is depicted in Figure
3.3 in terms of amplitude and phase.

At low frequencies, i.e. small values of Strouhal number Sr, Lighthill (1954) reported
an “anticipation time” for the skin friction of 7 = 0.05d/up ~ for the HL and 7 =
1.7d/up  for the BL. The anticipation times can be given as dimensionless time
constants ¢; = 0.05 and ¢; = 1.7, respectively. The boundary layer reacts faster to
the pressure gradient necessary to accelerate the flow than the free-stream. This
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Figure 3.3: Frequency Response of Skin Friction for the BL (Lighthill, 1954). Am-
plitude (top) and phase (bottom).
creates the impression of the skin friction anticipating a change in velocity, which
can be seen as a phase lead in the frequency response given by
Gep = K el (3.33)
where K is the steady-state gain. The low-frequency limits are reported as
Sr—0: |Gey Lighthinl = 1.5 £Ge; Lighthill = 0.

The steady-state gain according to Lighthill (1954) has a value of K = 1.5, due to the
fact that ¢y ~ ug’/ 020 It is stated that the approximation for the phase is applicable for
Sr < 20.

At high frequencies, all models agree on a square root dependence of the frequency
response on the Strouhal number. This is closely related to a shear wave solution (cf.
Section 3.1.2), which also predicts the constant phase lead of 45°. The limits for high
frequencies are reported as

Sr — oo |Gey Lighthilll — 00 Z£Gep Lighthill = /4.

Heat Transfer

The treatment Lighthill (1954) applied to the temperature was similar to the proce-
dure for the skin friction. Only the HL was considered as Lighthill (1954) argues that
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Figure 3.4: Frequency Response of Heat Transfer (Lighthill, 1954). Amplitude (top)
and phase (bottom).

the major part of the heat transfer takes place at the front quadrant of the cylinder
containing the stagnation point. The heat flux density is given by (Lighthill, 1954,
equation 61)

0T i
—k( 2) +leelot
0y* )y W

Approximate solutions for high frequencies and low frequencies were calculated
from this equation. For the latter, Lighthill again applied a Kirmédn—-Polhausen treat-
ment. Time lag and steady-state gain according to Lighthill’s approximation for low
frequencies are determined to 7 = 0.2d/up (¢; = 0.2) and K = 0.5, respectively.
The steady-state gain is taken from a linearization of King’s law (King, 1914).

dUo(aT()) 1 ( 62T() ) 1+2Pr1’2

dx*

The low frequency and high-frequency approximations for the heat transfer fre-
quency response can be written as

0.5 2.0

GNu Lighthill = ———— and GNu Lighthill = — - 3.34
Nu,Lighthill = 77 70—0 e Nu,Lighthill = 7 (3.34)

These relations are shown in Figure 3.4 as amplitude and phase of the heat transfer
frequency response.
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Lighthill (1954) stated that the first expression in Equation (3.34) is only applicable
if Sr < 20. However, the heat transfer shows the behavior of a low-pass filter and as
the limits

Sr—0: |GNu, Lighthilll = 0.5 Z GNu,Lighthill = 0
Sr—o0: |GNu, Lighthilll = 0 Z GNu,Lighthill = —7/2

indicate, high frequencies have very low gain and a phase lag of 90°, which agrees
well with the high frequency approximation.

Experimental Verification

Hill and Stenning (1960) revisited the solution for the skin friction of a flat plate in
pulsating flow by Lighthill (1954). They extended the treatment to boundary layers
of Howarth type and conducted experiments in this regard. Lighthill’s analysis for
the BL agree well with measurements in the frequency range 0 < Srx/d < 0.6. For
higher frequencies, an intermediate regime was identified and modeled.

Conclusions

As it was unavoidable to introduce severe approximations to solve the equations of
motion, Lighthill himself cautioned that his results would only be solutions of lim-
ited accuracy and range of validity and applicability. Mariappan (2012) and Moeck
(2010) also found discrepancies between Lighthill’s predictions and their experi-
ments. They argued that the time lag should be larger than 7 = 0.2 d/ 1 . Lighthill’s
results were only validated for velocity amplitudes in the unsteady boundary layer,
but never with respect to heat transfer (Hill and Stenning, 1960). Presumably, this
is due to the difficulties of time resolved measurements of heat flow rates. Never-
theless, Lighthill’s estimate for the time lag has since been used in many studies
of the thermoacoustic instability of the Rijke tube (Hantschk and Vortmeyer, 1999;
Matveev and Culick, 2003; Subramanian et al., 2010). In particular, Subramanian
et al. (2010) carried out a comprehensive bifurcation analysis of thermoacoustic
instability.

3.2.3 Lin

Lin (1957), in contrast to Lighthill (1954), concerned himself not only with the fluctu-
ation but with the net change of any flow quantity due to pulsations. Lin’s approach
is based on the method of averaging (Telionis, 1981). Perturbed quantities in the
fashion of Equation (2.85) were introduced in the boundary layer equations and
subsequently averaged. This procedure is similar to Reynolds averaging (Gersten,
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1965; White, 2007; Davidson, 2004) and hence it also yields Reynolds stress terms
known from turbulence treatment. For closure, Lin considered the high frequency
approximation given by

ou'  ov
ox +aye O (3.35)
ou' Ous  0%u
= +v (3.36)

ot ot oy*?’

With 1 (x*, 1) = Uso(x™) cos(w 1), this is equivalent to Stokes’ second problem and
hence the solution can be written as

/ % —vi L * w
U =uUj(x)coswt)—e Y Vavcos|wt— Y oy (3.37)
r ou'
'=— dy. 3.38
v ox* Y (5:38)

0

This information made it possible to evaluate the nonlinear terms u'(0u')/ (0x) and
v'(0u')/(0y). The method of averaging and the model for the Reynolds stress does
not require the pulsations to be small. According to Telionis (1981) this approach
has not gained much attention since the 1950s.

3.2.4 Gersten

Gersten (1965) revisited Lighthill’s analysis and adapted it to the Falkner-Skan equa-
tions. This form of the boundary layer equations provides a unified framework for
wedge flow including stagnation point flow and flat plate flow. Gersten (1965) intro-
duced first and second order perturbations to capture fluctuations and second or-
der streaming effects with a non-vanishing net contribution. In contrast to Lighthill
(1954), he used series expansions in the similarity variable and the frequency pa-
rameter instead of an integral Kirmén-Polhausen treatment.

Falkner-Skan Equations

The Falkner-Skan equations are for wedge flows where the velocity is of the form
Uy = Bx"". In this case, the Navier-Stokes equations have self-similar solutions with
the similarity variable

_yVRe _ y ﬁx(m—n/z_

— (3.39)
Il x %
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This includes, as special cases, stagnation point flow and flat plate flow. In the case
of the HL, the exponent is m = 1. Thus, Lighthill’s estimation to acquire § for a cylin-
der (cf. Equation (3.32)) can be used. In the case of the BL, m = 0, i.e. the velocity is
constant.

To derive the Falkner-Skan equations the stream function as in Section 2.2.6 (Equa-
tion (2.67)) is used. Furthermore, two functions of the similarity variable n were
introduced:

y(x,y)
M) =— (3.40)
J@ vvxU(x)
g\n) = To—Tw .
The Falkner-Skan equations are ordinary differential equations of the form
-1
i — /" +m(1-f?)=0 (3.42)
1, m-1_,
- + =0. 3.43
8 T I8 (3.43)
The boundary conditions for steady-state wedge flow are given by
n=0: f=0, f'=0, g=1 (3.44)
n—oo: =1, g=0. (3.45)

Series Expansion

Pulsations were superimposed on the free-stream, which is denoted as outer flow
by Gersten (1965). The velocity is hence described by

U=Ul[l+e€cos(w?)]. (3.46)

To non-dimensionalize the frequency, the frequency parameter

WX 0 gy

= — = A4
U(x) ﬁx 340

was used. The frequency parameter can be converted into a Strouhal number as
defined in Equation (2.97). For the HL this yields (m = 1) Sr = 3.6X and (m = 0)
Sr = X - d/x for the BL.

For the two prominent cases, the HL and the BL, Gersten developed transfer func-
tions as power series of Sr. Similar to Lighthill’s approach, the solution comprises
separate approximations for low and high frequencies. Furthermore, Gersten (1965)
claims to have remedied a mistake by Lighthill (1954) leading to a wrong far field
boundary condition for the temperature.
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Skin Friction

The dynamic skin friction was reported by Gersten (1965) as

;—Rw_ — £"(0) + €A, (ST) cOS(ST £ + A7 (ST)). (3.48)
(]

The fluctuating part is given as series expansion of the frequency parameter. The
coefficients of these series were tabulated. A;(Sr) and A, (Sr) denote the amplitude
and the phase shift of the pulsations. f”(0) is the steady-state shear stress and evalu-
ated to 1.2326 and 0.3321 for HL and BL, respectively. The transfer function for skin
friction pulsation caused by pulsations of the free-stream velocity can be acquired
from
Ar(S1) 5.
cf = W e . (349)
The frequency response for the HL is shown in Figure 3.5. The anticipation time eval-
uated by Gersten is about 7 = 0.043d/ 1y ~, and his model shows a smooth transition
from low to high frequencies. The applicability of the low-frequency approximation
is limited to Sr < 10 in this case. The low-frequency limit is reported to be K = 1.5.
Low and high-frequency limits are given by
Sr—0: |Gcf,Gersten,HL| =15 4Gcf,Gersten,HL =0

(3.50)
Sr—oo0: |Gcf,Gersten,HL| — 00 AGcf,Gersten,HL =ml/4.

For the BL, the anticipation timeis T = 1.7d/ ug  (¢; = 1.7). The frequency response
for low and high frequencies are depicted in Figure 3.6. Both approximate solutions
match reasonably well at Srx/d = 0.8. The low and high frequency limits are the
same as for the HL (Equation (3.50)).

Heat Transfer

In an analogous manner, the pulsating heat transfer was given by Gersten (1965) as

Nu _ "(0) + €A, (Sr) cos(Srt+ A, (Sr)) (3.51)
VRe © “ 7o '

The coefficients for the series expansion of the temperature gradient at the surface
were tabulated and A4(Sr) and A4(Sr) denote amplitude and phase shift of the series,
respectively. The steady-state values g’(0) = 0.4959 and g’ (0) = 0.2927 for HL and BL,
respectively, are used for scaling. With the definition of the transfer function and
Equation (3.51) the transfer function can be evaluated as

_ Aq(SD)

M= o) elta. (3.52)
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Figure 3.5: Frequency Response of Skin Friction for the HL (Gersten, 1965). Am-
plitude (top) and phase (bottom).
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Figure 3.6: Frequency Response of Skin Friction for the BL (Gersten, 1965). Ampli-
tude (top) and phase (bottom).
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Figure 3.7: Frequency Response of Heat Transfer for the HL (Gersten, 1965). Am-
plitude (top) and phase (bottom).

The frequency response of the Nul3elt number to pulsation in the free-stream veloc-
ity for the HL is shown in Figure 3.7. The dotted part of the graph are values from
a spline interpolation connecting the approximative solutions for low frequencies
and high frequencies. The limits for low and high frequencies are

St—0: G =05 £G =0
Nu,Gersten,HL Nu,Gersten,HL (3. 53)

Sr—0: |GNu,Gersten,HL| =0 ZGNu,Gers‘[en,HL =-m/2

The results are in good agreement with the solutions of Lighthill (1954). The steady-
state gain K = 0.5 as predicted by King (1914) and the time lag is ¢; = 0.188.

The BL was not assessed with respect to heat transfer by Lighthill (1954). In contrast,
Gersten (1965) reports the respective series coefficients and the resulting frequency
response is depicted in Figure 3.8. Again, a dashed line is shown where a spline
interpolation was necessary to match the low and high-frequency solutions. The
behavior in the limit of low and high frequencies is identical to Equation (3.53), but
the phase lag is approximately c¢; = 0.874d/ x.

Conclusions

The investigation by Gersten (1965) followed the approach by Lighthill (1954) to a
large extent. Therefore, the solution for Gy, 1 are almost the same in both cases.
For the skin friction, the respective solutions are also in good agreement. The most
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Figure 3.8: Frequency Response of Heat Transfer for the BL (Gersten, 1965).

prominent difference is visible for the phase at the frequency where low and high-
frequency approximations match. The series expansion used by Gersten (1965)
yields a smoother transition.

For the heat transfer in the flow over a flat plate, depicted in Figure 3.8, a peak in
amplitude is visible. This peak gain occurs at approximately Srx/d = 0.7 and repre-
sents a distinct difference in the dynamic behavior compared to the flow close to a
stagnation point.

With the use of a series expansion, Gersten (1965) could work around the limita-
tions of the integral treatment used by Lighthill (1954). However, in the scope of the
cylinder, the major limitations remain similar. The known solutions for wedge flow
with fixed angle cannot reproduce the curvature of the cylinder and are therefore
approximations for a certain region of the cylinder at best. For the Falkner—Skan
equations to be valid, the mean flow Reynolds number has to be sufficiently high.
Under these conditions, flow separation occurs, which cannot be handled by the
current treatment. Nevertheless, the results by Gersten (1965) suggest that the dy-
namic behavior of a cylinder is a mixture between that of the HL and the BL.

3.2.5 Telionis and Romaniuk

Telionis (1981) summarized the advances in describing unsteady viscous flows, and
a whole chapter of his book is devoted to fluctuations imposed on the steady flow.

57



3 Cylinder in Pulsating Flow—Literature Review

Both the analytical and the numerical investigations applying the boundary layer
equations are discussed. Most notable for the scope of this thesis is the numerical
solution of the unsteady boundary equations by Telionis and Romaniuk (1978). Al-
though no transfer function was derived, relations between fluctuating and steady
temperature gradients shed some light on the heat transfer behavior. In contrast
to Lighthill’s solutions, but in agreement with Gersten (1965), a peak in fluctuation
amplitude at low Strouhal numbers was reported.

3.3 Approximation for low Reynolds Numbers

To find an approximate solution for flow at low Reynolds numbers, Stokes’ equation
(Stokes, 1851) can be used. In this formulation, inertia terms, which have only a
small contribution, are neglected. Better solutions are to be gained with the Oseen
equations (White, 2007). In these equations, inertia is included with a separate con-
vective velocity. Bayly (1985) used this simplification of the incompressible Navier—
Stokes equations to derive a solution for a cylinder in pulsating crossflow at low
Reynolds numbers.

3.3.1 Oseen Equation

The Oseen equations are a simplification of the incompressible Navier-Stokes equa-
tions (cf. Equation (2.63) - (2.65)). The velocity u in the convective term is re-
placed by an independent convective velocity u;(0u;)/(0x;) — b;j(0u;)/(0x;). This
amounts to a linearization of the Navier-Stokes equations around b;. The convec-
tive velocity is an additional variable, and thus an equation for the outer flow is
necessary to solve for all variables. Outer and inner flow are matched using a pertur-
bation approach. The Oseen equations represent a significant improvement over
Stokes’ equation which neglects the convective term altogether and yield accept-
able results up to higher Reynolds numbers. In the first half of the 20th century,
solutions for the steady-state drag coefficient and Nuf3elt number were developed
(White, 2007). Nevertheless, due to the linearization, this approximation leads to
severely wrong results at Re = 1. Weisenborn and Mazur (1984) extended the ap-
proach to yield values with acceptable accuracy for the steady-state drag even up to
Reynolds numbers of order ten.

3.3.2 Bayly

Bayly (1985) included the time derivatives in the Oseen equations. From this start-
ing point, he developed a model for the unsteady heat transfer at very low Péclet
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numbers, i.e. Re-Pr « 1, to be used for wires in Rijke tubes or hot-wire anemometers.
Oseen’s approximations allowed for the problem to be solved for a real cylindrical
geometry. The skin friction was not addressed in the study by Bayly (1985).

If the Prandtl number is of order unity, the solution by Bayly (1985) is accurate for
Re — 0. The dimensionless frequency chosen in this work is

wk  Sr
pepul, RePr’

(3.54)

This introduces a dependence on Reynolds number not present in the models based
on the boundary layer equations, e.g. by Lighthill (1954) and Gersten (1965). Intro-
ducing the perturbation parameter § = [-In(RePr) +1In(4) — yg]~! and neglecting
terms of order @ (6%) the frequency response can be written as

3 0 In(1 +4iSr/(RePr))
Nu = 4 iSr/ (Re Pr)

) (3.55)

where yg = 0.577 is the Euler constant. The perturbation parameter is chosen in
such a way that a consistent perturbation theory is achieved. Moreover, it yields
the most accurate solution considering the fact that higher order terms of 6 are
neglected. Low and high frequency limits are given by

Sr—0: |Gl =6 /G=0
Sr—oo0: |Gl =0 LG =-m/2. (3.56)

This frequency response is depicted in Figure 3.9 for three different Reynolds num-
bers, Reg = 0.01, Reg = 0.05, and Rey = 0.1. Higher Reynolds numbers lead to unreal-
istically high values for the perturbation parameter 6, which is also the steady-state
gain of the transfer function.

3.4 Navier-Stokes Equations

With the advent of CFD, it became possible to compute solutions of the full Navier—
Stokes equations. Different approaches were developed. The first numerical sim-
ulations using the Navier-Stokes equations for a cylinder in unsteady flow were
carried out by Apelt and Ledwich (1979). Kwon and Lee (1985) solved the linearized
Navier-Stokes equations in frequency space. This provided a very efficient method
for Re < 40. A unique model was developed by Nicoli and Pelcé (1989). They solved
the compressible Navier—Stokes equations in only one dimension using a series
expansion with the temperature before and after the heater as expansion param-
eter. Hantschk and Vortmeyer (1999) carried out time domain simulations of a
complete but under-resolved thermoacoustic device. A time series analysis, in the
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Figure 3.9: Frequency Response of Heat Transfer (Bayly, 1985). Solutions for Pr =
0.7 and three different mean flow Reynolds numbers, Reg = 0.01 (—),
Reg = 0.05 (—), and Reg = 0.1 (—), are shown. The depicted range is
restricted to Sr < 4

CFD/SI framework was conducted by Foller et al. (2008). Later, Selimefendigil et al.
(2012) examined the cylinder in pulsating crossflow regarding its nonlinear behav-
ior. Many more numerical studies touched the subject of a cylinder in unsteady
flow, but in most cases, the focus was on cycle averaged behavior or on the vortex
shedding at higher Reynolds numbers. Numerical studies also included oscillations
of the cylinder transverse to the flow (Pham et al., 2010) and rectangular cylinders
(Yuetal., 2014).

Zheng et al. (2017) examined the heat transfer and the momentum transfer numer-
ically with a Lattice-Boltzmann code. This method is of great interest for further
development because of its potential for massively parallelized computations due
to its scalability to a high number of computational cores. The investigations on
monofrequent pulsations at four different frequencies and four different pulsation
amplitudes yielded information on the evolution of the circumferential distribution
of Nullelt number and drag coefficient. Moreover, net heat transfer enhancement
was investigated.

Wang et al. (2015) carried out simulations similar to Hantschk and Vortmeyer (1999).
Thermoacoustic oscillations were investigated in a full-scale simulation using the
Lattice-Boltzmann method. The numerical model can serve as a proof of concept
but not as an accurate quantification of the physical effects.
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3.4.1 Apelt and Ledwich

Apelt and Ledwich (1979) carried out the first numerical simulations of a cylinder
in unsteady crossflow that also included heat transfer. The Navier-Stokes equations
were solved in vorticity—stream function formulation (cf. Equation (2.68) - (2.70))
on a log-polar grid. The equations were discretized with central differences and in-
tegrated explicitly in time using a two-step method. Investigated Reynolds numbers
were in the range 1 < Re < 40, i.e. below the threshold of vortex shedding. Three dif-
ferent cases of unsteadiness were considered: An impulsive start from rest, a sudden
increase in flow velocity from a steady state (step input), and sinusoidal pulsations
(monofrequent modulation) of the free-stream velocity.

Results were given as graphical representations of Nul3elt number, drag coefficient,
and friction coefficient over time. In response to the step input, the Nul3elt number
rises exponentially to its new steady-state value, similar to time lag elements in con-
trol theory. The drag coefficients drop to lower values instantaneously and slowly
restore to a new steady state. For the sinusoidal pulsations only one frequency was
reported, and hence only one point of the frequency response function could be
acquired. For this case, the amplitude reduction and enlargement for heat transfer
and skin friction were reported respectively.

3.4.2 Linearized Navier-Stokes Equations

The work of Kwon and Lee (1985) is of particular relevance for the present study.
A vorticity-stream function formulation (cf. Section 2.2.6) was used to model in-
compressible, two-dimensional flow around a heated wire. Perturbation equations
were derived for the case of small amplitude harmonic perturbations and solved
numerically in a two-dimensional domain. The circumferential distribution of the
oscillating heat transfer amplitude, as well as amplitude and phase of the total heat
transfer rate, were evaluated for flow conditions typical for a Rijke tube. The results
were used, e.g. by Matveev (2003a), because for Reynolds numbers of order unity
neither Lighthill’s nor Bayly’s analytical solutions are valid. However, the nondimen-
sional groups chosen in this work do not permit a detailed comparison since the
inverse of the angular frequency was used as characteristic time instead of the ratio
between cylinder diameter and unperturbed free-stream velocity (Lighthill, 1954;
Gersten, 1965).

The results of Kwon and Lee (1985) were translated to the set of dimensionless quan-
tities used in this thesis to facilitate comparison. The values reported by Kwon and
Lee (1985) were extracted and transformed. The results provided yielded a cloud in
the Gny-Reg-Sr space and a surface, linking these points, was created using linear
interpolation. The accuracy of this surface depends on the given data and is not
optimal at values where the original data had to be extrapolated. Figure 3.10 shows
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Figure 3.10: Amplitude of the Frequency Response (Kwon and Lee, 1985). Rey =
0.4 (—), Reg =4 (—), and Reg = 10 (—). Dashed lines represent the
model developed in this thesis for Reg = 0.4 (---), Reg =4 (---), and
Rep =10 (---). The steady-state gain was adjusted. The depicted range
is restricted to Sr < 3.

the amplitude of the frequency response Gy, for three slices of the interpolated
surface at Reg = 0.4, Reg = 4, and Rey = 10. Especially, the interpolated graph for
Rep = 4 shows the distinctive features of the dynamic behavior of the heat transfer
that could also be confirmed in this thesis.

The concept of computing the linearized Navier-Stokes equations in frequency do-
main was revisited by Lu and Papadakis (2011, 2014). The focus of this study was
on the numerical method and how to apply it to any code solving the Navier-Stokes
equations iteratively in the time domain. Drag forces were computed and related to
an analytical expression for oscillating flow.

3.4.3 Hantschk and Vortmeyer

Hantschk and Vortmeyer (1999) carried out numerical simulations solving the com-
pressible Navier-Stokes equations. A complete Rijke tube like geometry was dis-
cretized in two dimensions, and the flow variables were solved using a finite volume
approach. With this approach, they were able to simulate the thermoacoustic insta-
bilities occurring in the Rijke tube including the main physical phenomena such as
heat transfer and acoustic wave propagation. The numerical model is a complete
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representation of the underlying mechanisms including the exponential growth of
fluctuation amplitudes and the damping mechanisms causing the system to settle
to a limit cycle with constant pulsations. The phase difference between velocity fluc-
tuations and heat transfer fluctuations was determined to 64.8° in the investigated
case.

The results, however, cannot be used as a model with quantitative validity. With the
coarse mesh used in that study, boundary layer effects were underresolved. The grid
spacing close to the heater bands was much larger than the layer thickness assessed
in Section 3.1.2. Moreover, unrealistically high temperatures had to be imposed as
boundary conditions to acquire the desired thermoacoustic instabilities. This might
also be attributed to the lack of spatial resolution.

3.4.4 Time Series Analysis

Foller et al. (2008) investigated the unsteady heat transfer of a heated cylinder in
pulsating crossflow using numerical simulations to acquire data in combination
with the identification of an impulse response based on the inversion of the Wiener—
Hopf equation (Polifke et al., 2001). The approach was termed CFD/SI method, as
it represents a combination of CFD and system identification. Ultimately, a finite
impulse response (FIR) model was acquired for the heat transfer. They showed that
the heat transfer dynamics depend strongly on the response times of the boundary
layers. These time scales are reported to depend on Reynolds number. A number
of distinct features were identified for the frequency response of the heat transfer,
such as a maximum amplitude in heat transfer rate at frequencies greater than zero.
Moreover, a discrepancy in the high-frequency range in comparison to Lighthill’s
predictions was found. An attempt was made to physically motivate the heat trans-
fer behavior by qualitatively assessing the flow-field response close to the cylinder
to a sudden increase in inlet velocity.

Recently, Li et al. (2016b) used the online identification of a FIR model for the con-
trol of a Rijke type burner?. The model was built upon the pressure measurements
from a microphone and hence differs from the transfer functions based on velocity
pulsations in this thesis. However, the identification method is similar, and Li et al.
(2016b) were able to quickly control a loudspeaker to counteract the thermoacous-
tic oscillations.

2A Rijke tube with a Bunsen burner instead of a heated wire.
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3.5 Further Literature on Heat Transfer in Unsteady Flow

This section gives a brief overview of literature regarding the wider context of the dy-
namics of a cylinder in pulsating crossflow. Most notably, some experimental results
have been obtained for similar configurations. Very similar to pulsating crossflow is
oscillating crossflow. In this case, the steady mean flow component is zero, and the
amplitude is determined by the fluid displacement rather than relative to the mean
flow. Flow regimes and computational methodology are, however, quite different.
Another aspect of a cylinder in pulsating crossflow is the nonlinear behavior of the
heat transfer at high pulsation amplitudes. Although this thesis focuses on the linear
regime, i.e. small amplitudes, the nonlinear behavior is of interest for some applica-
tions. Foremost, an enhancement of the net heat transfer can be caused by high
amplitude fluctuations of the free-stream.

3.5.1 Experimental Investigations of Unsteady Flow

Over the course of several decades, the pulsating flow across a cylinder has been
investigated experimentally several times. Not least due to the requirements of the
measurement equipment, most studies were carried out for flow in the “transition
in shear layer” regime (cf. Table 2.1). Hori (1963) investigated the velocity profiles at
an oscillating cylinder at 3600 < Re < 9000. Quintessence of most studies was an in-
crease in net heat transfer (heat transfer enhancement) as a result of the pulsations.
Base et al. (1981) found a dependence of the heat transfer enhancement/reduction
on frequency in the range 1220 < Re < 4890. Similar experiments were carried out
by Perwaiz and Base (1992, 2300 < Re < 13500). Moreover, the evolution of the cir-
cumferential distribution was assessed by Andraka and Diller (1985, Re = 50 x 10%)
and Mikheev et al. (2017, 0.4 x 10* < Re < 1.06 x 10%, 0 < Sr < 11). Heat transfer en-
hancement up to 15 % were reported, strongly dependent on the flow condition, e.g.
the Strouhal number of the pulsation. The largest deviation from the steady state
occurred on the lee side of the cylinder, especially at the separation point. Sung et al.
(1994) investigated the circumferential distribution of the mass transfer in pulsating
flow across a cylinder at 4500 < Re < 12450.

Investigations at lower Reynolds numbers were carried out by Li et al. (2013, 71 <
Re <282; 1.2 <Sr<16), Lietal. (2016a, 205 < Re <822; 1.1 < Sr < 18), and Kikuchi
et al. (2000, Re = 400, 0 < Sr < 8.6). Li et al. (2013) also assessed the heat transfer
enhancement at different inclination angles. The circumferential distribution of the
NulBlelt number for Re = 400 was reported by Kikuchi et al. (2000). The increase in
heat transfer is attributed to flow reversal at the lee side of the cylinder. The force
of pulsating flow on a cylinder was measured by Schewe (1983) at 2.3 x 10* < Re <
7.1x 106,
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In a unique experiment, Lin et al. (2006) investigated the influence of pulsation on
a cylinder in a water tunnel. The Reynolds numbers were in the range 1 <Re <5, i.e.
the laminar regime without recirculation.

3.5.2 Oscillating Flow

This thesis deals with pulsating flow, especially with pulsations around a steady
mean flow that are small compared to the mean flow itself (c.f. Section 2.4.2). An-
otherrelated topic that was investigated in the past and still is of interest is a cylinder
in oscillating flow. In this configuration, the mean flow velocity is zero or small
compared to the peak velocities, and the amplitude is determined via the fluid dis-
placement. Phenomenologically the largest difference to pulsating flow is that flow
reversal occurs at any given amplitude.

Idiosyncratic for investigations on oscillating flow is the use of the Keulegan-
Carpenter number as frequency parameter. It is usually defined as the inverse of
the Strouhal number or in terms of frequency as 27/Sr.

Sarpkaya (1986) investigated a cylinder in oscillating crossflow with Re = 100 evalu-
ated with the maximum velocity experimentally. A threshold frequency below which
the shear wave model (cf. Section 3.1.2) does not yield acceptable results was found.
Other experiments were conducted by Gopinath and Harder (2000) and Iwai et al.
(2004). The latter also included a numerical study and was concerned with the heat
transfer enhancement in oscillatory flow. Other numerical studies were conducted
by Ohmi and Usui (1982), Uzunoglu et al. (2001), and Elston et al. (2006).

3.5.3 Nonlinearity of Heat Transfer

It is emphasized that the thesis is limited to relatively small oscillation amplitudes.
Specifically, the amplitude of the forced velocity perturbations was below 30 % of
the mean flow velocity for all cases considered. At these amplitude levels, the dy-
namic response of heat transfer to imposed velocity fluctuations expressed as the
relative amplitude and phase of heat flow rate oscillations, is linear. Heckl (1990)
as well as Hantschk and Vortmeyer (1999) reported this behavior investigating the
Rijke tube phenomenon experimentally and numerically, respectively.

Selimefendigil et al. (2012) investigated the nonlinear behavior of a cylinder in pul-
sating crossflow with the CFD/SI method. The nonlinear regime, i.e. at fluctuation
amplitudes above 30 % of the mean flow velocity is important for the achievable
amplitudes of limit cycles in a Rijke tube. The developed nonlinear models were
used to predict these limit cycles (Selimefendigil and Polifke, 2011).
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Selimefendigil and Polifke (2011), as well as Selimefendigil et al. (2012), have studied
the transition from linear to nonlinear behavior and the application of nonlinear
identification methods at fluctuation amplitudes exceeding 30 % of the mean flow
velocity. Algorithms for nonlinear system identification were further developed,
tested and applied to problems of heat transfer by Selimefendigil and Oztop (2013,
2014). Those studies followed a “black box” approach, as is typically the case in
system identification.

3.5.4 Heat Transfer Enhancement

Numerical and experimental studies on the average heat transfer in pulsating flows
across a cylinder (Andraka and Diller, 1985; Al-Sumaily and Thompson, 2013; Li
etal., 2016a) have shown that the influence is negligible for amplitudes smaller than
one-third of the mean velocity. In the linear regime, terms that scale with the second
order of oscillation amplitude may be neglected. A change in amplitude leads then
to a proportional change in the response in heat transfer. Moreover, the superposi-
tion principle applies. The overall response in heat transfer to a flow perturbation
can be described as a straightforward sum over contributions from different physi-
cal mechanisms.

Papadakis and Bergeles (2001) investigated the heat transfer in pulsating flow at
Rep = 100, i.e. in the regime of laminar periodic vortex shedding numerically. The
free-steam velocity was pulsed at several forcing frequencies up to three times the
natural shedding frequency f < 3.5 f. It was found that alock-on of the vortex shed-
ding to the pulsation frequency occurs at pulsation frequencies 1.5 < f < 2.4 f5. In
this case, the actual vortex shedding differs from the natural shedding frequency in
a steady flow and is approximately one half of the forcing frequency. Papadakis and
Bergeles (2001) assessed the heat transfer at several locations on the circumference
of the cylinder. Close to the forward stagnation point up to the point of separation,
the pulsations result in an increase of the root mean square (RMS) value of the
NulBlelt number but not the mean Nullelt number. An increase in mean value was
only observed downstream of the separation point; however, the contribution to the
overall heat transfer is small. The largest heat transfer enhancement was reported
for a forcing frequency of f = 2.4 fy.

The effect of vortex shedding can be seen as nonlinear with respect to the forcing as
the frequency of the heat transfer variation is not necessarily the same as the forcing
frequency (c.f. Section 4.1.1). However, during lock-on, heat transfer and velocity
pulsations occur with the same frequency (twice the vortex shedding frequency)
and hence some kind of linearization occurs.

The reader should bear in mind that this thesis is not concerned with an increase (or
decrease) of cycle-averaged heat transfer in pulsating or reciprocating flow, which
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has been observed at large pulsation amplitudes in a number of studies (Hill and
Stenning, 1960; Zhao and Cheng, 1998; Dec et al., 1992; Andraka and Diller, 1985;
Selimefendigil et al., 2012; Al-Sumaily and Thompson, 2013; Li et al., 2013, 2016a).
The amplitude of the imposed velocity perturbations was limited to 30 % of the
mean flow velocity or less, which is in fact considerably below the threshold where
changes in the average heat transfer are noticeable.

3.6 Rijke Tube

The Rijke tube is the key aspect of applications in this thesis. As mentioned above,
the Rijke tube was first described phenomenologically by Rijke (1859). Rayleigh
(1896) explained the thermoacoustic effect in detail by a periodic transfer of heat
and a phase difference that occurs between acoustic pressure pulsations and heat
transfer. The first quantification of this phase difference was proposed by Lighthill
(1954). Heckl (1988, 1990) revisited the existing literature to develop mathematical
models which are widely used until now. Quite a few researchers have since also
tackled the Rijke tube and its mathematical description.

3.6.1 Modeling Approaches

One of the most widely used equations modeling the heat transfer between a thin
wire and the surrounding fluid was given by King (1914). The heat flux is given by

Q:Lw(Tw—Too)(k+2\/ﬂkcyp§|u|), (3.57)

where L,, and T, denote the length and the temperature of the wire, respectively.
This equation is known as King’s Law and adopts the square root relationship be-
tween heat transfer and flow velocity from boundary layer theory. It should be noted,
that correlations for the heat transfer as provided by Collis and Williams (1959) and
Sparrow et al. (2004) (cf. Equation (2.23) and Equation (2.24), respectively) offer
much better accuracy than King’s Law.

Heckl (1988) linearized King’s Law and modified it with a time-lagged velocity fluc-
tuation u'(t — 7) to account for the dynamics of the heat transfer. This simple model

is written as
. nkcy,pd
Q' =Ly (T — Teo) \ / _Z%p u', (3.58)

which is an application of the n — 7 model, is called Modified King’s Law.
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The model by Lighthill (1954) for low frequencies (cf. Equation (3.34)) is a first or-
der lag model (proportional with first order time lag, PT1). The parameters are the
steady-state gain K and a time constant c;. It is used to describe the heat transfer
dynamics in conjunction with the Modified King’s Law where the time constant is
not used in conjunction with a PT1 model, but as the time lag of the n — 7 model.
The significance of this, which is essentially a linearization of Lighthill’s PT1 model
is discussed in Chapter 8. For the original model by Lighthill, the parameters are
K=1/2and 7 =0.2d/ up -

Heckl (1990) introduced empirical factors to the Modified King’s Law to account
for the heat transfer behavior at high amplitudes. These terms cause a reduction of
the heat transfer amplitudes if the velocity pulsations exceed one-third of the mean
flow velocity. To account for the dynamics, again the time constant 7 = 0.2d/ ug
was used. This model will be referred to as Heckl’s model in this thesis and reads

. / d 1 1 (|
= Ly (T~ Too) | k+2¢[mkec,p= ||1-—=|VE+— y—+/
< ( : mre pz(( 3\/§) ! V3V I3 .

The fluctuating heat flux is evaluated analogous to Equation (3.58).

) . (3.59)

3.6.2 Time Constant

Essential to the description of the thermoacoustic oscillations occurring in the Rijke
tube is the phase lag between acoustic pulsations and heat transfer. The Modified
King’s Law (Heckl, 1988) and thus Heckl’s Model (Heckl, 1990) modeled this as a
fixed time lag. In Lighthill’s original work (Lighthill, 1954), however, the phase lag is
effectuated by a PT1 model with a time constant. This time constant is given in the
form

T=C——, (3.60)
uO,oo
where c¢; was evaluated to 0.2.

Most literature concerned with the Rijke tube uses a different frame of reference.
Instead of wire diameter d, and unperturbed inlet velocity up ., the length of the
Rijke tube L and the speed of sound a are used for non-dimensionalization. Hence,
the time constant is given by

L
T=cr= (3.61)
a
and translates to Lighthill’s frame of reference (which is also used in this thesis) by
% L Uy, % L
q:ggif:qEM& (3.62)

For typical working conditions the factor Ma L/d is expected to be approximately of
order one.
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3.6.3 Literature Survey

The literature survey in Table 3.1 gives an overview of some of the literature on elec-
trically heated Rijke tubes. The working conditions in terms of mean flow Reynolds
number and Strouhal number are also detailed. The Reynolds number and the
Strouhal number refer to the diameter of the wire. The frequency used was that
of the occurring oscillations. If no specific frequency was given, the fundamental
frequency of the tube used in the experiments or computations was considered.

If a model was used for the unsteady heat transfer, this is listed in the table including
the time constant c; necessary for the dynamics of the heat transfer. Unfortunately,
many publications are unspecific about the frame of reference that has been used.
The column for the time constant was assembled to the best of the author’s abilities.

Publication Model forunsteady Re  Sr ¢;
heat transfer
Kwon and Lee (1985) CFD of wire N/A N/A NJ/A
Heckl (1988) Modified KingsLaw 19 0.8 0.2
Heckl (1990) Heckl’s model 19 08 0.2
Bisio and Rubatto (1999) reference to Bayly N/A N/A N/A
(1985) and Kwon
and Lee (1985)
Hantschk and underresolved CFD 8.3 1.9 N/A
Vortmeyer (1999) of Rijke tube
Blonbou et al. (2000) neural network N/A N/A NJ/A
Bittanti et al. (2002); turbulent mixing 8 058 T~d3/u?
Agostino et al. (2002) model
Matveev (2003a,b) Reference to Bayly 23 4.0 NJ/A
(1985) and Kwon
and Lee (1985)
Culick (2006) n -1, reference to N/A N/A NJ/A
Kwon and Lee
(1985)
Deng et al. (2007) underresolved CFD N/A N/A N/A
of Rijke tube
Balasubramanian and Heckl’s model N/A N/A 03l=sc/=<14

Sujith (2008)
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Publication Model forunsteady Re  Sr ¢;

heat transfer
Mariappan et al. (2010);  CFD of wire 20 ~6.3 NJ/A
Mariappan and Sujith
(2011)
Subramanian et al. Heckl’s model N/A N/A 0.15<c; <0.85
(2010)
Juniper (2011a,b) Heckl’s model N/A N/A ¢} =0.02
Gelbert et al. (2012) PT1 21 074 04
Xu et al. (2012) CFD, heater as N/A N/A NJ/A

porous medium
Subramanian et al. Heckl’s model N/A N/A 05c¢S1
(2013)
Gopalakrishnan and N/A(experimental) 05 1.5 NJ/A
Sujith (2014) - -

1.3 29

Sayadi et al. (2014) Heckl’s model N/A N/A 05crS1
Surendran and Heckl n-t,nomeanflow N/A N/A 7=15x10"*s
(2014)
Zhao and Reyhanoglu Heckl’s model N/A N/A ¢} =0.8,0.025
(2014)
Olgac et al. (2014a,b); PT1 N/A N/A NJ/A
Zalluhoglu et al. (2016);
Zalluhoglu and Olgac
(20164a,b)
Epperlein et al. (2015) PT1 52 1.6 NJ/A
Mariappan et al. (2015) n-7 42 12 0.2
Yang et al. (2015) Heckl’s model 1.7 13 ¢f=0.025,0.01
Aguilar et al. (2016) n-t N/A N/A 7=0.001s
de Andrade et al. (2016)  discrete PT1 N/A N/A NJ/A
Gopalakrishnan et al. Linearized n—71 N/A N/A N/A
(2016)
Hosseini et al. (2016) n-t N/A N/A 0=7=<0.003s
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Publication Model forunsteady Re  Sr ¢;
heat transfer

Lietal. (2016c) Heckl’s model 16 12 4
Orchini et al. (2016) Modified King’s Law N/A N/A 0.2
Rigas et al. (2016); N/A (experimental) 3 79 NJ/A
Jamieson et al. (2016,
2017)°
Etikyala and Sujith N/A (experimental) 1.3 1.3 N/A
(2017) —_ -

78 25
Mohan and Mariappan ~ Heckl’s model 69 20 03-15
(2017)
Sui et al. (2017) N/A (experimental) 5.8 4.4 N/A
Yang et al. (2017) Heckl’s model, N/A N/A 0.2

reference to
Lighthill (1954)

Table 3.1: Survey of the Recent Literature on the Rijke Tube.

The values in Table 3.1 show that typical Reynolds numbers for the mean flow
around a heated wire investigated in studies are in the range [1,50]. Strouhal num-
bers are usually of order one but can be as high as 12.6. This underlines the necessity
for a model for the heat transfer dynamics covering these ranges, which cannot be
provided by the existing models, e.g. by Lighthill (1954) and Bayly (1985).

3Private communication, 2016
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4 Linear Dynamic Systems

In science and engineering, it is in many cases beneficial to divide problems in
smaller parts and concentrate on one specific part instead of trying to find a descrip-
tion for a phenomenon encompassing all different aspects simultaneously. Such a
part is called a system, whereas the remaining aspects represent the environment
(Pintelon and Schoukens, 2012). The concept of systems is widely used in many
research areas (SO0derstrom and Stoica, 1989), e.g. physics, biology, engineering,
economics (Heij et al., 2006; Goldberger, 1991) as well as in social sciences and psy-
chology (Kohler, 2008). Within a system, different variables influence each other on
multiple time and space scales (Keesman, 2011; Ljung, 1999). A system may interact
with the environment (Pintelon and Schoukens, 2012) through signals and is then
referred to as open system (Keesman, 2011).! If signals change over time (Verhaegen
and Verdult, 2007), the system is specified as a dynamic system.

Signals can be distinguished into inputs, outputs, and disturbances. Outputs y are
the products or the responses of a system. Hence, they are called endogenous. These
signals are observable or measurable by an agent. Inputs u are exogenous signals
that can be manipulated by an agent. Disturbances cannot be manipulated. They
occur from the influence of the environment on the system, within the system itself,
or are caused by the errors in measurements. A representation of a system with
input and output is given in Figure 4.1.

Systems can have multiple inputs and multiple outputs interacting with each other.
Systems with only one input and one output are denoted single-input single-output
(SISO) systems. Accordingly, multi-input multi-output (MIMO) systems have more
than one input and more than one output. Analogously, systems can also be termed
SIMO and MISO (Hespanha, 2009).

This thesis is mostly concerned with SIMO systems. The input is the pulsation of the
freestream velocity (as Re’) and outputs are heat transfer fluctuation (as Nu’) and
shear stress fluctuation (as c}). However, this particular SIMO system can be split
into two SISO systems by considering only one output at a time. Therefore, descrip-
tions are given for SISO systems, if not marked otherwise, but may also apply—with
some generalization—to MIMO systems.

To understand and describe a complex system, occurring in nature or technical de-
vices, a model of some sort is sought. Modeling is used in many branches of science

!In contrast to closed systems which do not interact with the environment according to this definition.
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environment

u(tr) (1)
system '

Figure 4.1: Representation of a General (Open) System. Input(s) # and output(s) y

and engineering (Soderstrom and Stoica, 1989). The main aims are to aid in the
design process as well as to estimate, control, and monitor systems (Tangirala, 2014;
Soderstrom and Stoica, 1989).

Soderstrom and Stoica (1989) distinguish three main types of models: (1) mental,
intuitive or verbal models, (2) graphs and tables, and (3) mathematical models.
Graphs and tables may be used to represent systems in a comprehensible manner.
Differential and difference equations (and similar representations) are mathemati-
cal models. However, many different ways to classify systems exist and the above-
mentioned list is by far not exhaustive.

In this chapter, basic modeling concepts of linear time invariant dynamic models
are introduced in Section 4.1. Subsequently in Section 4.2, different concepts of
data used in the modeling process are presented. These concepts lead to different
model representations demonstrated in Section 4.3. Section 4.4 deals with the sys-
tem identification process employed to build models from acquired data and finally
techniques to validate identified models are shown in Section 4.5. The last section
of this chapter (i.e. Section 4.6) shows how system theory is applied to the dynamics
of heat transfer and skin friction of a cylinder in pulsating crossflow.

4.1 Linear Time Invariant Systems

The notion of a linear and time invariant (LTI) system is important for the applica-
tion of system theory. A large set of methods exists to describe and process this type
of system. The assumptions involved—linearity and time invariance—are often jus-
tified, or situations can be found when an LTI description is sufficiently accurate.
In these cases, considerations based on linear theory lead to good results (Ljung,
1999).

74



4.1 Linear Time Invariant Systems

4.1.1 Definition

An LTT system is defined by two characteristics: linearity and time invariance. Time
invariance implies system characteristics do not change with time and thus its re-
sponse to a certain input signal does not depend on absolute time (Ljung, 1999).
This means that an arbitrary operator f, representing the system dynamics, applied
to a signal shifted in time yields the same result but with the same shift in time as
the signal. This can be represented by

If u(1) z, y(t), then u(t—1) 7, y(t—1) (4.1)

where u and y denote input time series and result time series of a time invariant
operation f and 7 is a constant shift time (Tangirala, 2014).

A system, represented by the operator f, is considered linear if its response to a
linear combination (sum) of inputs is the same as the linear combination of the re-
sponses to the individual inputs (Ljung, 1999). This holds, even if a constant scaling
factor is applied and can be written by

flauy+ up) = a f(uy) + f(u) (4.2)

where u; and u, are the variables, f is the linear operation, and a is a constant
(Tangirala, 2014). Linearity implies that the principles of homogeneity (multiplica-
tion with a constant factor) and superposition (addition of inputs) hold. The latter
explicitly allows any complex time series to be decomposed into simpler signals, e.g.
individual impulses.

The linearity requirement may be violated due to constant offsets in input and
output. In this case, linear models can relate deviation variables that vary around
a nominal operating point. These offsets are estimated (mean) and removed to
achieve a linear equation, e.g.

(y—y0) = f(u—uo) (4.3)

where yp and uy denote the (quasi-)steady state of output and input, respectively
(Tangirala, 2014). Generally, the linear model may consist of a first-order Taylor’s
series approximation of the nonlinear system around a steady state (cf. Section 2.4)
(Tangirala, 2014).

4.1.2 Properties

LTT systems exhibit two general properties important for modeling purposes:
causality/non-causality and stability/instability. A suitable model has to reflect these
properties, e.g. a model should be non-causal if the system is non-causal.
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Causality

If the response at a certain time depends only on the input up to this instant in
time, i.e. it does not depend on "future” values, then the system is called causal. A
system in which the past, present, and future inputs are involved is referred to as
non-causal (Ljung, 1999).

Stability

The assumption of stability implies that the response of a system will not grow in-
definitely. More precisely, an LTT system is said to be stable, if all bounded-inputs
yield bounded-outputs (Tangirala, 2014). This is the concept of a BIBO stable system
which is a standard definition for LTT system. BIBO stability is denoted by

ly(0)ll <oo forall |[u(f)| <oo. (4.4)

This is important for the modeling process as a model for a stable system should
also be stable (Tangirala, 2014). If a steady state exists, this indicates that the system
is stable (Tangirala, 2014).

4.1.3 Convolution Model and Impulse Response

A model should relate an input (function) to an output (function) by a mathematical
operation. For an LTI system, this can be achieved using the convolution operation.
From the pointwise multiplication of a function with another (shifted) function in-
tegrated over the shift variable a third function results. This can be written as

y(t) = f g u(t—1)dr = g(1) * u(t). (4.5)

This type of model is referred to as convolution model and is the most fundamental
representation of an LTT system (Tangirala, 2014). The third function involved, g(7),
is called impulse response function. This is due to the fact that this is the response
generated by the system when excited with a unit impulse (Dirac § function, the
neutral element of the convolution) defined by

O0(t)=0forall t #0and f(?(t)dt:l. (4.6)
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The impulse response exhaustively describes the dynamic behavior of an LTI system
(Keesman, 2011). It is equivalent to the concept of Green’s Functions (Duffy, 2001).
For a causal system with zero initial conditions, the convolution model is given by

t
y(1) :fg(r)u(t—r)dr 4.7)
0

using only information from a start time “0” up to the current time ¢.

The foundation of the impulse response function is the superposition principle. It
states that the response of a linear system to the simultaneous action of several
causes is obtained by first determining the effects of the separate causes and then
adding them in the proper manner (cf. definition of linearity and time invariance).

If a system is BIBO stable, then the impulse response is absolutely convergent (Tan-
girala, 2014). This can be expressed as

f g(ndt < oo. (4.8)

4.1.4 Transfer Function

Causal convolution in the time domain is equivalent to multiplication in the
Laplace domain (Keesman, 2011). Applying the Laplace transform (Phillips et al.,
2008) defined by

F(s):z{f(t)}:ff(t)e‘”dt 4.9)
0

with the complex-valued frequency parameter s = o + iw to input u(t), output y(1),
and impulse response function g(¢), Equation (4.5) can be written as

Y(s)=G(s)-U(S). (4.10)
The frequency parameter s € C is a complex-valued quantity with the angular fre-

quency w as imaginary part and the growth rate o as real part. G(s), which is the
Laplace transform of the impulse response function g(t), is called transfer function.

For convenience, the notation
y=Gu (4.11)

is introduced. It reads “the linear operator G, representing the LTI system, is applied
to u”. The operator G has to be in the same domain as the signals y and u. This is
the fundamental representation of dynamic behavior used in this thesis.
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v(t)

Y

u(t) (1)
> system >

Figure 4.2: Representation of a General (Open) System with Disturbance. Input(s)
u, output(s) y, and a disturbance v. Based on Séderstrom and Stoica
(1989).

4.1.5 Disturbances

In dealing with real systems, the mapping from input to output may not be perfect,
yet disturbances can influence the system. Among these disturbances are measure-
ment noise and uncontrollable inputs. In general, they represent the influence of
the environment on the system. These disturbances have to be taken into account
as they effect the quality of the model.

Different authors categorize disturbances in various ways, but most distinguish two
types. An input disturbance w is characterized by the fact that it is an exogenous
signal originating from the environment and directly affecting the behavior of the
system (Keesman, 2011). It can be measured (Ljung, 1999; Tangirala, 2014) and it
has external causes (Isermann and Miinchhof, 2011), i.e. the influence of the en-
vironment on the system. In contrast, the output disturbance v (Keesman, 2011)
is an exogenous signal that affects the output but cannot be manipulated like the
input. This disturbance is not measured (Tangirala, 2014), but may be observed
due to its impact on the output (Ljung, 1999). It can also be interpreted as inter-
nal disturbance (Isermann and Miinchhof, 2011). A distinction between measured
disturbance w and inputs u is often less important for the system identification
process (Ljung, 1999). Thus, w is omitted in the following sections.

Figure 4.1 above depicts a system that is only influenced by inputs. This corresponds
to a purely deterministic model. However, in the scope of disturbances, a more re-
alistic system is shown in Figure 4.2. A stochastic disturbance v(t) is included to
account for unpredictable signals.
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¢e(t)

stochastic

v(t)
u_}(t) deterministic x(1) & (@) »

Figure 4.3: Representation of a General Model for an LTI System. Input(s) u, out-
put(s) y, disturbance v, undisturbed output x(¢), and white noise e(1).
Based on Tangirala (2014).

Modeling a System with Disturbances

To account for disturbances in the model representations of any given LTI system,
disturbances v(¢) are added to the right-hand side of Equation (4.5). The output y(¢)
is then the sum of a disturbance-free output x(#) and the disturbance written as

y() =x(t) +v(r). (4.12)
The noise free deterministic model is given by
x(t) = Gu(r) (4.13)

where G is the representation of the deterministic part of the system, i.e. transfer
function, applied to the input. The disturbance itself is unpredictable, i.e. it origi-
nates from white noise, but may be colored. This is denoted by

v(t) = He(t) (4.14)

where H is a model for the noise spectrum applied to the white noise sequence e(?).
Figure 4.3 depicts these relationships.

Following Tangirala (2014, p. 14), the continuous time description is widely used
for deterministic systems. Stochastic influences, i.e. disturbances, are quantified in
a discrete time frame as they are picked up by sensors usually working in discrete
time. This is in accordance with Ljung (1999, p. 233) who regards continuous time
white noise descriptions as delicate mathematical objects. He suggests dealing with
hybrid models, where the noise is handled in discrete time. Nevertheless, Beygi
and Dounavis (2012) reported an approach to include noise modeling using an in-
strumental variable method. In this thesis a purely discrete time point of view was
adopted whenever disturbance or noise modeling was of importance.
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White Noise and Colored Noise

The disturbance v is generally any kind of signal not part of the deterministic system
and therefore, by definition, unpredictable. To account for this, it is deduced from
a random signal e(¢) and filtered by a model for the stochastic part H (c.f. Equa-
tion (4.14)).

The random signal is often modeled as white noise (Tangirala, 2014). Itis a sequence
of uncorrelated variables with zero mean (stationary) and finite variance. A useful
assumption is that the variables follow a normal distribution .4 with variance o2.
This is denoted by

e[k] ~ A (0,0%) (4.15)

and is called Gaussian white noise (GWN).

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a measure for the strength of the (true) response
of the system compared to the noise. A high SNR is paramount for all estimation
methods to achieve good models. The overall SNR is evaluated as the ratio of the
variances of output and noise given by

SNR = (4.16)

.3
IN|= DN

A frequency dependent estimate can be found by using the asymptotic ensemble av-
erage of the power spectral density (PSD) y. The SNR is defined in frequency domain
as

Y xx(w)

SNR(w) =
Yvv (w)

(4.17)

where y«, and y,, are the PSDs of the noise-free output and the noise, respectively
(Tangirala, 2014).

Coherence

The coherenceis used to determine if a linear relationship between two signals exists.
It is given by

1
" 1+1/SNR(w) "

qu((l))
VYuu)yyy )

Kyu(@)* = (4.18)
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If the coherence is not unity |1<yu(a))|2 # 1 this can cave two reasons. (1) © and
y depend on each other non-linearly or (2) the linear relationship is hidden by a
high noise level. This is shown in Equation (4.18), where the coherence is linked to
the SNR. These measures are used to determine a priori if good estimates can be
expected at certain frequency ranges when estimating an LTT model.

4.2 Data Basis

Information on systems can be acquired from various sources and in different
frameworks. Most commonly, it can be distinguished between time and frequency
domain as well as between discrete and continuous data. These concepts are impor-
tant for data handling and data manipulation.

4.2.1 Continuous and Discrete Time Data

Time is usually experienced as continuous and variables evolving over time are thus
modeled as continuous variables. Many concepts, i.e. differential equations, are
based on the notion of continuity. However, measurements are usually snapshots
taken at certain instants in time. Successive measurements may be acquired distinct
intervals of time apart. Thus, the variable is observed at discrete sampling instants.
This concept, in contrast to continuous time, is called discrete time. In numerical
computations of unsteady processes, only solutions at discrete instants in time are
calculated.

Sampling

The transformation from continuous time to discrete time is called sampling. Dis-
crete values are picked from a continuous time series in intervals called sampling
times. In the case of periodic sampling, the temporal spacing between sampling
instants is constant. This time T is referred to as the sampling interval with [T] =
time units per sample. It can be seen as one time unit. Any sampled instant is writ-
ten in continuous time by ¢ = kT with k = 0,1,..., N —1 where N is the total
number of samples. Accordingly, a sampling frequency is defined by F; = 1/ T with
[Fs] = samples/time (Tangirala, 2014) and w; = 2nF; = 21/ T for the angular fre-
quency, respectively.

One of the most important statements in signal processing is the Nyquist-Shannon
sampling theorem (Astrém and Wittenmark, 1997). It states that for a given sam-
pling frequency F perfect reconstruction of a signal (in continuous time) is possible
for a bandlimit of Fxy = Fg/2. The term bandlimit refers to a finite frequency above
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which the power spectral density of the signal is zero. The frequency Fyy is called
the Nyquist frequency. Similarly, the Nyquist rate, at which a bandlimited signal has
to be sampled, is 2 Fyy.

If the sampling theorem is violated, aliasing occurs. Frequencies higher than the
Nyquist frequency appear as lower frequencies falsifying the signal. This defect can-
not be recovered a posteriori and has to be avoided, e.g. by low-pass filtering a signal
before (down-)sampling. (Tangirala, 2014)

Sampling (with zero-order hold) has an impact on the definition of causality of a
system. Although a system is still considered causal, if no future inputs affect the
output, the term strict causality is introduced (Tangirala, 2014). It also excludes in-
stantaneous effects at time k = 0 which are “unphysical” in a sense that if input and
output are measured at the same instant, any signal would have to travel infinitely
fast in order to cause a response at k = 0.

Reconstruction

A common way to transform a discrete time signal to continuous time is to hold
the discrete value for T and then assume the next discrete value. This is called
zero-order hold (ZOH). Analogously, the first-order hold (FOH) interpolates linearly
between two successive values. This, however, is only possible, if the next value is
already known.

4.2.2 Frequency Domain

In contrast to the time domain, the frequency domain does not quantify the evolu-
tion of a signal but the recurrence of patterns. The most versatile representation of
the frequency domain is the s-domain or Laplace domain. For periodic signals, i.e.
a superposition of sine waves, the Fourier transform was established. In the discrete
framework, both concepts are represented by the Z-domain and the discrete Fourier
transform, respectively.

Laplace Domain

A signal in s-domain is the function of a complex-valued frequency variable s =
o +iw, where o is a growth rate specifying the (exponential) change in amplitude
and w is the frequency. The Laplace transform converts a function in the time
domain to the frequency domain. It is defined in Equation (4.9) and (originally)
restricted to functions of ¢ with ¢ > 0 (unilateral Laplace transform). The inverse
Laplace transform is denoted £ ..
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Fourier Transform

The continuous Fourier transform is similar to the Laplace transform with two ma-
jor differences: The Fourier transform is evaluated for —oo < t < oo rather than
starting at zero, which would be equivalent to a bilateral Laplace transform. Further-
more, the complex-valued argument s is reduced to iw, i.e. the growth rate o = 0.
Thus, it can only represent stable systems (Tangirala, 2014). The Fourier transform
is defined as

+00

flw)=F{flkl} = f e @ f(p)de. (4.19)
—00
The result of a Fourier transformation is called the frequency domain representa-
tion of f(#). It can be interpreted as the amplitude and the phase shift at a certain
frequency w.

In discrete time, the discrete-time Fourier transform (DTFT) exists. The DTFD for-
mally requires an infinitely long input signal. Hence, for computational purposes,
the signal is assumed to be periodic, and the corresponding technique is called
discrete Fourier transform (DFT) given by

N-1
Fy@) = —= Y flkle ol (4.20)
N k=0
for a sampled signal f[k]) with k =0,1,2,..., N — 1. Discrete angular frequency is
given by wy =2nl/Nwith[1=0,1,2,..., N—1. Several computationally very efficient
algorithms called fast Fourier transform (FFT) had been developed to perform the

DFT (Phillips et al., 2008).

The squared magnitude of the Fourier transform scaled with the number of samples
| f()|?/ N is called periodogram. It is an estimate of the power spectral density (PSD)
Y rr of f(2). Similar techniques, like Welch’'s PSD estimate, deliver smooth values for
the PSD.

Z-Domain

Like the Laplace transform for the continuous time, a conversion from discrete time
to a complex-valued frequency domain representation exists. It is called (unilateral)
Z-transform and is defined by

Flzl = Z{flkl} = Y flklz™*. (4.21)
k=0

Substituting z = e’ shows that it is equivalent to the Laplace transform in discrete
time. z~! can be seen as e~*’s, which is the Laplace transform of a unit delay, thus
z~! can be interpreted as a delay operator (Keesman, 2011).
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The DFT can be achieved using z = e®’s and the bilateral Z-transform summing
from —oo to oo.

4.2.3 Transformations Between Laplace- and Z-Domain

The transformation between the discrete Z-domain and the continuous s-domain
is achieved by using numerical approximations. The most basic method is Euler’s
approximation (Ljung, 1999)

z—1
T

S and z=1+sTs. (4.22)

Tustin’s method uses bilinear transform to approximate this relationship with
(Ljung, 1999; Tangirala, 2014)

1+sT/2 2 z-1
N — and S~ — .

(4.23)

Tustin’s method is a conformal mapping preserving stability. Features in the transfer
function may shift in frequency but neither in gain nor phase. This frequency shift is
negligible at low frequencies but substantial at frequencies close to the Nyquist fre-
quency. An overview of the relations between different domains and transformation
summarizing this section is given in Figure 4.4.

4.3 Representations of LTI Systems

Transformations between different types of data and mathematical manipula-
tions allow various representations of LTI systems. These representations, although
equivalent in most aspects, can have advantages for certain applications. All rep-
resentations shown in this thesis are of input-output type. Other types, e.g. state-
space representations will not be discussed here.

4.3.1 Continuous Time Transfer Function

The continuous time transfer function was introduced in Section 4.1.4 as
Y(s)=G(s)-U(s). (4.10)

It is often used to represent deterministic systems. Disturbances are not regarded in
this approach.
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Figure 4.4: Overview of Different Domain Representations. The transforms link-
ing these representations are included.

The most common mathematical representation is a rational function, i.e. a fraction
of two polynomials in the frequency parameter s:

m .
Zb-sl+b0
Dys™+ -+ by1s + bo P
G(s) = p ) =— (4.24)
anps"+an—18 +---+a18+ Qg ;
> a;js!+ag
J=1

where {b;} and {a;} are the (usually real valued) model coefficients (parameters) of
numerator and denominator, respectively.

The roots of the numerator polynomial and denominator polynomial are the ze-
ros and poles of the transfer function, respectively. They provide insight on certain
properties of the transfer function, e.g. information on stability. Factorization of
Equation (4.24) yields

(5= B1)(s—P2) - (5= Bm) _Kigl(s_ﬁ”

(s—a)(s—az)-—(s—ay)

G(s)=K- (4.25)

n
(s—aj)
=1

J

where {f;} are the zeros and {«a ;} the roots of the transfer function. The coefficient K
represents a constant scaling factor. In contrast to the polynomial coefficients, roots
and poles are often complex-valued.
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Using partial fraction decomposition, the continuous time transfer function (Equa-
tion (4.24)) can be written as
Tj

r 5 r 1
G(s) = + tot——+d=)
s—a; S—ao s—ay, os-aj

+d. (4.26)

Here, {a;} are again the poles of the transfer function. The residues of the decom-
position are denoted {r;} and a constant additive component d exists. It denotes
the response at infinite frequency G(s — oco) = d and is usually zero in any system
occurring in nature. However, models including a non-vanishing coefficient d may
be valid in a certain frequency range and may possess other desirable features like
better accuracy at lower order N. Note that d = 0 corresponds to by = 0 in the poly-
nomial representation (Equation (4.24)).

4.3.2 Discrete Time Transfer Function

Similar to the continuous time approach but including disturbances, the general
discrete time model is given by

ylkl = G(q)ulk]l + H(q)elk]. (4.27)

Choosing polynomials to model the dynamics, the most general description of an
input-output system in discrete time is given by

C(q)

Alq)ylkl = %u[k— nyl + D) elk] (4.28)

with the polynomials
A@)=1+a1g ' +axg™*+--+ay,qg ", (4.29)
B(q)=bo+b1q " +b2q >+ + bn,-nq~ "V, (4.30)
Cq)=1+c1q ' +coqg *+-+cuqg ™, (4.31)
D(q)=1+dig " +dag *+ -+ dpn,q ", and (4.32)
F(@)=1+fiqg ' + foq 4+ fu,q7 . (4.33)

The shift operator (g~ ""x[k] = x[k — n]) is used to relate to past inputs and outputs.
The parameters of the model are denoted by {a;}, {b;}, {ck}, {d;}, and {f;;}. The
constants ng, np, nc, ng, and ny are the numbers of free parameters each the poly-
nomial. They correspond to the model orders, except in the case of B, where the
order is ny, — 1. This is due to a free parameter, denoted by by, corresponding to
an instantaneous feedthrough from input to output similar to d in Equation (4.26).
ny is a time delay which is assumed zero in all models here and therefore omitted
henceforth.
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Note that at least A or D and F must be unity in order to maintain uniqueness of
the representation. Additionally, if no model for the disturbance is sought, C and D
may be set to unity. The shift operator q is directly linked to the z variable of the Z
transform introduced in Section 4.2.2 and any method or rule directly applies.

4.3.3 Unit Impulse Response

The unit impulse response is a time domain model. It shows the response to the
Dirac delta function as defined in equation (4.6) in continuous time. The equivalent
in discrete time is a unit impulse:

k= Lo k=0 (4.34)
u = . .
0 0, k#0
The convolution model in discrete time can be written as
ylkl= ) glnlulk-n]. (4.35)
n=—oo

Physically, the impulse response can be interpreted as contribution of the input at
each individual instant in time to the immediate output.

4.3.4 Unit Step Response
Similarly to the unit impulse response, the unit step response gives the cumulated

contribution at each instant in time. The step response is the output acquired in
answer to a Heaviside step function given by

0, t<0
O(1) = { . (4.36)
1, =0

Inserting in the convolution equation yields
(o0
Yyo(t) = f gr)O(t—-1)dt. (4.37)
—0o0

The Heaviside step function O is the integral of the Dirac delta function. Analo-
gously, the step response is the integral of the impulse response. Assuming the
system is causal (g(t < 0) = 0), the step response is given by

t
yo(t) = h(t) =fg(r)dr. (4.38)
0
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In discrete time, the unit step function is given by

0, k<O
ulk] = { (4.39)
1, k=0

and the step response is therefore, for a causal system, computed with

k
hlkl= ) glnl. (4.40)
n=0

The step response is an important time domain model, because it is rather easy to
obtain in most cases, e.g. when the SNR is not too low. In the scope of CFD, much
better results are obtained using a step input instead of an impulse. The impulse
response (i.e. the convolution model) can always be acquired by computing the
derivative g = (dh)/(d?), e.g. using finite differences.

hik] - hlk—1]

glkl = T . (4.41)

Information on three main characteristics of a system can be deduced from the
step response. The steady-state gain K, also referred to D.C. gain in the context of
electronic circuits, is given by

K = hlk — o0]. (4.42)
It is also equal to the frequency response in the low frequency limit G(s — 0).

The characteristic time constant of a system c¢; can be acquired from the rise time.
Although multiple time scales may play a role in a system, a first order approxima-
tion, with one dominant time scale, is the time the system needs to reach 63.21 %
(1-e~! =0.6321) of the steady-state gain K

c; = h™'[0.6321K]. (4.43)
Another common definition, the rise time from 10 % to 90 % of the steady-state gain
is not investigated further in this thesis.

The third important characteristic is the time delay, i.e. the time until the output h
is significantly different from zero. No delay is expected for the systems examined
in this thesis hence no attention is given to this property.

4.3.5 Frequency Response

The frequency response is based on the response to a sinusoidal input given by

u(t) = Ae'?? (4.44)
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with constant amplitude A and frequency w. The response is given by

Vol(t) = A f g(r) el Ddr, (4.45)

Frequency Response Function

The frequency response function is deduced from Equation (4.45) by expanding the
exponent of the exponential function:

Volt) = Ael®! f g(r) e T dr. (4.46)

The term Ae'®’ is the original input and therefore the response function can be
written by

G(el?) = f g(r) e 97 dr. (4.47)

It is linked to the Laplace transform of the impulse response with s = o +iw through
o =0, i.e. zero growth rate.

Bode Plot

The Bode plot consists of a magnitude plot |G(iw)| and a phase plot ZG(iw) of the
frequency response G(iw). Although often depicted as log-log plot and lin-log plot,
respectively, it will be shown with linear axis scaling in this thesis predominantly as
it is custom for flame transfer functions (Polifke, 2014). Figure 4.5 shows the magni-
tude and phase of the exemplary transfer function G(s) = 1/(1+0.2s). The frequency
response constituting the Bode plot is highlighted in red.

4.3.6 Differential/Difference Equation

A general differential equation model can be given by

d”y(1) dy(t) dy(r) d" u(r)
t)=bou(t)+b +b,———— 4.48
qpm +et+a + y(t) = bou(t) + by a7 n " qm ( )
with the parameters {a,,} and {b,}. In discrete time, this can be written as a differ-

ence equation.

m

Ng ny
ylkl+ Y amylk—=ml=)_ byulk—nl. (4.49)
n=0

m=1
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|G($)]

Figure 4.5: Amplitude and Phase of the Transfer Function 1/(1 + 0.2s). The fre-
quency response (o = 0) is highlighted in red.

The parameters {a,,} and {b,} of the discrete time representation are not the same
as in the continuous time but they are related through the sampling time.

The difference equation is a parametric model. In contrast to the convolution
model, the impulse response is parametrized with {a,,} and {b,}. Expanding Equa-
tion (4.49) and inserting y[k — 1] recursively with zero initial conditions yields

ylk] = boulk] + (by — a1 bo) ulk — 11+ (b — byay + aiby — azbo)ulk —2] +... (4.50)
The number of past outputs that affect the system n,, is also called the input mem-
ory. Likewise, the number of past outputs 1, may be seen as the system’s memory

and determines the order of the parametric model (Tangirala, 2014). The difference
equation representation is also able to handle time delays, i.e. the number of time
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instants passing before the input affects the output. Such time delays are not rele-
vant for the models developed in this thesis and thus will be omitted.

4.4 System Identification

A model mimics the behavior of a system with respect to certain requirements and
restrictions. With a model, the output of a system can be predicted from known
inputs. The subject of SI is concerned with the inverse process: To acquire a model
for a system from known input and output data. In his introduction, Ljung (1999)
even states that “Inferring models from observations and studying their properties
is really what science is about.”

The process of SI is very general and widely known in different fields such as elec-
trical engineering, economy, and psychology. SI is used when processes are either
too complex to gain insight using first principles, i.e. physical laws, or the calcu-
lation is too costly in terms of time or resources. Its goal is to obtain an efficient
and accurate model for a process from acquired data. The properties of this model
can be analyzed to get insight in the process, or the model may be used for further
calculations.

Overviews of a wide variety of SI methods are given in a number of books. The
work of Séderstrom and Stoica (1989) is a very complete collection of theory on SI
developed systematically since the 1960s. A milestone is the book by Ljung (1999). It
includes many useful methods explained on a mathematical level. Heij et al. (2006)
also approached the theme of SI from a mathematical viewpoint. The focus of Pin-
telon and Schoukens (2012) is on the frequency domain. Very complete and detailed
insight is provided by the more recent work by Tangirala (2014). A more practical
point of view is assumed by Keesman (2011) as well as Isermann and Miinchhof
(2011). Verhaegen and Verdult (2007) focused on state-space models but include
insight also for input-output models.

4.4.1 Identification Procedure

The essential steps in SI are data acquisition, model estimation, and model valida-
tion. Data acquisition can be further divided into the design of the experiments and
the execution of the experiments. The term experiment also refers to numerical sim-
ulations. Model estimation also has two components: The choice of model structure
and the estimation of parameters. Figure 4.6 shows a more detailed flow chart of the
procedure.
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Figure 4.6: Flowchart of the Identification Procedure. Adopted from Soderstrém
and Stoica (1989).
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4.4.2 Parameter Estimation

The estimation of the parameters of the chosen model type is a key process in the
SI process. A great variety of model types, i.e. representations of L'TT systems, exists.
Some very common model types, which are of interest in this thesis, are given in
Section 4.3. The estimated output j(n) to an independent variable n of any model
of these types is written as

yn)=¢n,0)0 (4.51)

where ¢@(n,0) is the row vector of p regressors and @ is the column vector of un-
known model coefficients (parameters), one for every entry in the regressor vector.
Estimated quantities are denoted by a hat (*), e.g. the estimated output computed
from the model equation is j. The independent variable is designated n here to
give credit to the fact that generally any variable can be used here. In the scope
of dynamic models the independent variable, however, is usually continuous time
t, discrete time k or frequency Sr. The notation ¢(n,0)0 reflects the fact that the
vector of regressors may depend on the coefficients.

Measurements, e.g. an input signal, are usually available as discrete values. These
values can be assembled in vectors allowing for a matrix notation of Equation (4.51).
The vector of n =1,..., N estimated outputs y is then given by

y=v0 (4.52)
where ¥ is the observation or regressor matrix written as
¥=[p1,0) 926 - eN,0)] . (4.53)

The regressor matrix is an N x p matrix comprised of the available data, e.g. the
inputs and outputs of the system. Each row corresponds to one available data point
and each column corresponds to one coefficient. The (linear) equation system is
over-determined and cannot be solved directly. To find an approximate solution the
residuals given by

e=y-y=y-vo (4.54)

have to be minimized. By inspecting Equation (4.54), it can be seen that ¥ is the
Jacobian matrix of the residuals—a key feature in many optimization algorithms
(Nocedal and Wright, 2006). The least squares minimization problem can be written
as

N
argmin ¥ _ (y(n) — ¢(n,0)0)? (4.55)
0

n=1

which is equal to minimizing the sum of squared residuals (hence the name).
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Ordinary Least Squares

The ordinary least squares method (OLS), also called the linear least squares method,
is a basic approach in SI that is also the underlying technique for many more ad-
vanced procedures. In this case, the regressors ¢(n) are independent of the coeffi-
cients and the regressor matrix (Equation (4.53)) is denoted by ®. To facilitate the
estimation of the parameters 9, a cost function V is defined as

N
Vo)=Y en)?’. (4.56)
n=1
In vector notation, this reads
V@) =c'e=(y'-0"@")(y-00). (4.57)

The cost function is convex and therefore, a minimum of V can be found where its
derivative with respect to the coefficients is zero:

v (e
% =—20"y+20"®0 =0 (4.58)

This leads to the so-called normal equations given by
o’vo=0Ty. (4.59)

The expression ®” ® denotes the Hessian matrix of V. Mathematically, it is also the
Gramian matrix of ® and the product ® 'y is the moment matrix of regressand by
regressors. The solution of the OLS problem is given by

0=(@"0) @y (4.60)

where ®' = ((I>T<I>)_1 @7 is also known as Moore-Penrose pseudoinverse of the ma-
trix ®@.

Instead of using the normal equations, the OLS problem can be solved using QR-
factorization (Nocedal and Wright, 2006; Golub and Van Loan, 2013) which results
in a better conditioning of the problem. The QR-factorization of the matrix ® which
is N x p is defined as

®=QR=[Q; Q] [’f,l] = QiR (4.61)

where Q is an orthogonal matrix of size N x N with Q7 Q = I. R is an upper triangular
martix of size N x p. Only the first p rows of R are nonzero, so a square matrix R
with p x p can be constructed. Analogously, the matrix Q; is N x p and contains only
the first p columns of Q. The solution of the OLS with QR-factorization problem is
given by

6=R{'Qly. (4.62)
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Weighted Least Squares

As an addition to the OLS method, the rows of ® (and y accordingly) can be
weighted. This is advantageous, e.g. if only a certain frequency range is of interest or
variance information on measurements is available. It results in the weighted least
squares (WLS) method (Franklin et al., 1997; Golub and Van Loan, 2013; Isermann
and Miinchhof, 2011; Keesman, 2011; Ljung, 1999; Pintelon and Schoukens, 2012;
Tangirala, 2014; Verhaegen and Verdult, 2007). Parameter estimation is then given
by

0=(0"we) o’wy (4.63)

with weighting matrix W. Often the weighting matrix is diagonal with weights {p;},
but also filter operations can be realized in W. Using the WLS method is equivalent
to pre-filtering the data as can be shown by

(\/WcD)T (Vwe)é-= (\/W(D)T (vwy) (4.64)

where (VWYy) is the pre-filtered output and (vVW®) the pre-filtered regression ma-
trix.

Regularization

Tikhonov regularization is often used to solve ill-posed or ill-conditioned linear
equation systems. The general solution of a regularized least squares problem reads

o=@ ®+1'r) @’y (4.65)

with the regularization matrix I’ (S6derstrom and Stoica, 1989; Golub and Van Loan,
2013; Isermann and Miinchhof, 2011; Keesman, 2011; Ljung, 1999; Tangirala, 2014;
Verhaegen and Verdult, 2007).

A special case is the so-called Ly-regularization where the regularization matrix is a
scaled version of the identity matrix I' = AI. I is the identity matrix and A a scalar
factor determining the effect of the regularization. For the parameter estimate, this
yields

0=(@"®+A21) @ y. (4.66)

Regularization can not only be used to solve ill-conditioned problems, but also
to exert some control over bias and variance of the estimates of any model. Con-
trolling bias and variance is most desirable in SI as it can prevent overfitting by
reducing variance (Isermann and Miinchhof, 2011). In many cases, one can only
be minimized at the cost of the other and thus, regularization allows influencing on
the trade-off between bias and variance. This is often denoted as constrained least
squares (CLS).
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Related Nonlinear Methods

The least squares methods, as mentioned above, solve estimation problems that
are linear in the parameters 8. However, there are many situations in which the
minimization problem is not linear and a nonlinear least squares (NLS) method is
needed.

Several methods exist to solve nonlinear optimization, and many are related to
the least squares approach applying it iteratively. The pseudo-linear regression
method calculates new values for ¢(k,0) at each iteration using the least squares
method and the parameters evaluated in the previous iteration. Similarly, the
Gauss—Newton method uses the OLS method on the residuals to improve an initial
guess of the parameters iteratively.

For the Gaul3-~Newton method, the residual of the ith iteration is given by
€; :y—j‘/(ﬂ(”) (467)

where the estimated output j/(B(i)) depends on the parameters evaluated in the
ith iteration. As for the OLS method, the goal of the Gaul-Newton method is to
find a minimum where the derivative of the objective function with respect to the
coefficients is zero. Instead of introducing the objective function V, like in Equa-
tion (4.56), it is more convenient to use the derivatives of the estimated output
evaluated by

0e(0) g

V() = oc
~ 00 00,
as defined in Equation (4.53). These are called pseudo-regressors in the nonlinear
framework. In matrix form for all samples, ¥ is the Jacobian matrix of y(8). The

iteration rule is then similar to the OLS method:

(4.68)

_ ) _ -1 .
g+l — gl 4 (‘I’(O(”)T‘I’(H(’))) YO Te;. (4.69)

The relation of the NLS method to the OLS method becomes even more apparent in
the fact that if the estimator is linear, then ¥ — ® (Nocedal and Wright, 2006).

The Levenberg-Marquardt method (Nocedal and Wright, 2006) can be seen as an
improved version of the GauB—-Newton algorithm. It uses a trust region approach,
similar to regularization, to enhance stability and convergence. Moreover, efficient
implementations involving QR-factorization are known for the Gaul3~-Newton and
Levenberg—-Marquardt methods.

The mentioned NLS methods need initial values for the search algorithm. These
initial values are crucial as NLS algorithms are prone to become “trapped” in a local
minimum instead of finding the true global minimum. Suitable initial values can be
found, e.g. by using the OLS method.
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Alternative methods for nonlinear minimization are so called derivative free op-
timization algorithms, e.g. the Nelder-Mead simplex-reflection method (downhill
simplex algorithm) (Nocedal and Wright, 2006; Isermann and Miinchhof, 2011) or
genetic algorithms Isermann and Miinchhof (2011).

4.4.3 Influence of Disturbances

As discussed in Section 4.1.5, disturbances have an influence on the parameter es-
timation. This influence can be quantified by the mean squared error (MSE). The
MSE consists of two contributing factors: bias and variance, which can be estimated
(Tangirala, 2014, p. 307, 322).

Bias

A good estimator should provide accurate estimates. Without infinitely long time
series, this is only possible, if averaging over all realizations cancels out the error
(Tangirala, 2014). If this is not the case, the estimate is biased. Bias is formally de-
fined as

AQ = E[0] -6, (4.70)

where 0 is the true values of the parameters and E[] denotes the expected value.
Good estimators yield unbiased estimates or at least asymptotically unbiased esti-
mates given by

lim A@ =0. 4.71)

N—o00

An estimate for the bias of the OLS method is given by (Keesman, 2011)
M =E|(@"®) @e|. (4.72)

With the OLS method, only one minimum—the global minimum—exists and is
therefore found unambiguously. However, if the residuals are not GWN, the OLS
procedure will never yield the true values of 8 (Ljung, 1999). Hence, the regression
model is biased whenever the equation error is colored (Tangirala, 2014).

Variance

Besides accuracy, the ability to estimate the “true” value, precision is important.
Precision manifests in estimates with low variance. The variance of the parameter
estimates is formally defined as

03 =E[6-E[0))?]. (4.73)
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In the scope of the OLS method, the variance is given by

Cov(d) = E|(@@) "' @ Covie)@ (@"®) '|. (4.74)

Assuming the residuals are GWN, the covariance matrix § is estimated using the
Gramian matrix of the regressor matrix:

§=Cov®) =62 (@"®) " (4.75)

The variance of the residuals 62 is estimated by
L % £%(n) (4.76)
T N-14 ' '

Confidence intervals for the identified coefficients can thus be given as

éi—Ca Sii < 0o < éi+Ca\/ Sii 4.77)

where §;; is the ith diagonal of Sand C, is the a-level of the normal distribution for
the desired confidence level, e.g. C, = 2.58 for 99% confidence intervals (Tangirala,
2014, p. 342).

Bootstrapping

Another method to estimate the uncertainty in the coefficient estimates (vari-
ance) is bootstrapping (Soderstrom and Stoica, 1989; Ljung, 1999; Pintelon and
Schoukens, 2012; Tangirala, 2014). A new set of N regressors is drawn from the
set {¢} in random order “with replacement”. The new regressors form a regressor
matrix ®@(;), which is used to calculate the estimate for the coefficients 8 ;). From all
coefficient samples, mean and covariance matrix can be computed using estimates
for the sample mean and the sample covariance.

Mean Square Error

The MSE is defined as
MSE (6) = E[116 - 6,15] (4.78)

where 0 is the true value of the estimator. In terms of bias and variance, this is
expressed as (Tangirala, 2014)

MSE (0) = tr(Sp) + 110013 (4.79)
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where tr (39) denotes the trace of the covariance matrix.

The MSE is estimated calculating the sample average of the residuals

. j
MSE = —— e(n). 4.80
N-1 2 (n) ( )

For a consistent estimator, MSE (9) — 0 for N — co.

Efficient Estimators

The most efficient estimator is the minimum variance unbiased estimator (MVUE).
This implies that the estimate is unbiased and the variance is at the lowest theoreti-
cal bound (Cramer—Rao lower bound) (Tangirala, 2014, p. 332). An MVUE may not
exist, and hence the best linear unbiased estimator (BLUE) is sought. The BLUE is
equal to the MVUE when the observations y are governed by a linear model, and
the noise e is GWN. This is known as the Gauss-Markov theorem (Tangirala, 2014, p.
332).

The MVUE or BLUE are unbiased, but can still have high variance. The minimum
mean square error estimator (MMSE) tries to achieve the best trade-off between
bias and variance leading to the smallest MSE. In this case, the variance can be
smaller than the Cramer-Rao lower bound at the cost of bias. The MMSE is achieved,
e.g. by using regularization techniques.

4.4.4 Identification of Discrete Time Models
For discrete time models, it is assumed that the output y[k] can be constructed from
the deterministic signal x[k] and the stochastic noise v[k] as in

ylkl = x[k] + v[k]. (4.81)

The one-step ahead predictor (in this case the predictor evaluated from all inputs
until the kth instant and measurements evaluated until the (k — 1)-th instant) is
given by

ylklk—1] = xX[k] + D[k] (4.82)
where X[k] stands for the deterministic model and ¥[k] for the noise model.

Coefficients for a discrete time input-output model of a priori defined structure and
model orders as in Equation (4.28) can be found by minimizing the one-step ahead
prediction errors given by

elklk—1] = y[k] - ylklk—1]. (4.83)
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The one-step ahead prediction error is the difference between known output y and
predicted output y at every instant k. These errors are also referred to as innovations
Tangirala (2014). For a more general description, the prediction error sequence may
be filtered by a stable linear filter L(g):

er(k,0)=L(q)e(k,0). (4.84)

This type of estimation method is called prediction error method (PEM).

For the minimization procedure, the cost function

N-1
V(O) =) e5(k,0) (4.85)
k=0

is defined and minimized. Choosing the sum of the squared errors as the cost func-
tion corresponds to a minimization problem denoted by

N-1
argmin Y %(k,0). (4.86)
0 k=0

This is called the quadratic-criteria PEM (PEM-QC).

The general discrete time model is given in Equation (4.27) as
ylkl = G(q)ulk]l + H(q)elk]. (4.87)
This yields the one-step ahead predictor
ylklk—11= H ' ()G(q)ulkl + 1 - H ) ylkl]. (4.88)

Numerous ways to parametrize G and H exist (Tangirala, 2014). The most widely
used method is shown in Section 4.3.2. The theoretical one-step ahead prediction
error is the white-noise sequence (Tangirala, 2014).

Models with Linear Estimators

The autoregressive with exogenous input (ARX) model is a model structure often
used because of its simplicity in estimating the coefficients. It is given by

A(q) ylk] = B(q) ulk] + e[k]. (4.89)

This model is of equation error type as the error enters the equation rather than the
output.? The one-step ahead prediction error is written by

elklk—11 = A(q)ylk] - B(q)ulk]. (4.90)

2As opposed to the output error models.
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The innovations are linear in the coefficients A(g) and B(q). Therefore, the coeffi-
cient estimation is linear, and the OLS method (or WLS/CLS method respectively)
can be used. This leads to one of the main advantages of this method: Only a
global minimum exists which is found unambiguously by the estimation procedure
(Ljung, 1999). The major drawback, however, is that the model inherently assumes
that the noise is predictable with a linear predictor. Thus, the least squares proce-
dure will not converge to the true values of the coefficients, if the equation error
v[k] = 1/ A(g)vik] is not GWN. In this case, the estimation yields a biased estimate
(Ljung, 1999).

The finite impulse response (FIR) model is written as
ylkl = B(q)ulk] + e[k] . (4.91)

It is equal to the ARX model with A = 1 and thus also has a linear estimator. The
FIR model is often referred to as non-parametric model (Tangirala, 2014) because
the impulse response is equal to the identified coefficients and not parameterized
via a denominator polynomial. It has the advantage that no model order has to be
chosen, but the length of the impulse response is specified directly via the num-
ber of coefficients n; and the sampling time step 7. The impulse response is zero
after ny, - Ts, hence the name finite impulse response. Following Equation (4.8), FIR
models are always stable. However, the pre-specified length of the impulse response
is also the greatest weakness of the model. For dynamics slowly varying in time
or large differences in time scales, a large number of coefficients is necessary to
capture the dynamics correctly (Tangirala, 2014).

In contrast to the ARX model, the equation error in the FIR model is assumed to be
unpredictable, i.e. D[k] = 0 and v[k] = e[k]. Deterministic model G(gq) and noise
model H(q) (cf. Equation (4.27)) are parametrized independently and the deter-
ministic model converges to the true value (Tangirala, 2014). This property is called
consistency (Tangirala, 2014).

Before a parametric model (with a reasonable number of coefficients) is identified
insight on the model order can be gained by identifying a high order FIR model. This
type of model also benefits greatly from regularization, i.e. it is advantageous to use
the CLS approach for coefficient estimation (Keesman, 2011).

Output-Error Model

An output-error (OE) model is achieved when only the deterministic part of the
general discrete time input-output structure (Equation (4.28)) is sought. All other
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Figure 4.7: Block Diagram of the Output-Error Model.

coefficients are unity (A = C = D = 1) and hence not identified. This corresponds to
an error term that is added to the output of the system.? The model takes the form

_B(g)

= Fg K+ etk (4.92)

ylk]

Figure 4.7 sketches a block diagram of an OE model.

If the model structure is re-written in equation-error form given by
F(q)ylkl = B(q)ulk] + v[k], (4.93)

it can be shown that a least squares estimate would be biased due to v[k] = F(qg)elk].
Hence, a nonlinear parameter estimation method is necessary.

Using the PEM framework for the OE model, the one-step ahead prediction error
can be written as
B(q)

klk—1]=ylkl - ——ulk]. 4.94
elkl 1=ylkl F(q)u[] (4.94)

Introducing instrumental variables equal to the predicted (noise free) outputs
¢kl = ylk]l = B(q)! F(q) ulk], the prediction equation for a single instant k in time is
given by

k0] == fidlk—1]1 = fodlk—2] — - = fn, Sk — ngl (4.95)
+boulk] + byulk — 1]+ -+ + by, ulk — nyp). '
In short, this is denoted as
y1kl0] = @(k,0)0 (4.96)
where the regression vector is
p=[-¢k-1,01 —¢[k-2,0] - —¢lk—ng,01 ulk]l wulk—1]--- ulk- np+11]
(4.97)

3This is in contrast to the equation error models where the error term is included in the equation like in an
ARX model.
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and the vector of parameters 07 = Lf1, for---) fnf, bo, b1, ..., by, -1]. Both vectors have
the length ny, + ng.

The OE model can also be seen from a pre-filtering viewpoint. If input and output
are filtered with a linear filter that is the inverse of the denominator polynomial
F(q),i.e.with yr[k] =1/F(q)ylk] and ur(k] = 1/F(q)ulk], Equation (4.92) reads

F(q)yrlkl = B(q)urlk] + e[k]. (4.98)

This is equivalent to the ARX model structure. The coefficients of the polynomials
{b} and {f} are found during identification by nonlinear regression. Three different
algorithms arise from the descriptions given above and may be used to estimate the
parameters. A linear least squares method is applied to achieve a biased estimate
of the parameters. The predicted output y[k] and thus the instrumental variables
¢[k] are computed. This procedure is repeated until the change in 0 is negligible.
However, convergence cannot be guaranteed (Ljung, 1999; Soderstrém and Stoica,
1989). This method is known as pseudo-linear regression (Tangirala, 2014). The al-
gorithm by Steiglitz and McBride (1965) uses pre-filtering to iteratively compute
a least squares estimate of the coefficients on input-output time series. The filter,
which is the inverse of the denominator polynomial, is evaluated iteratively until
convergence. Ultimately, the NLS method, e.g. the Gaul-Newton algorithm, can be
used. The gradient necessary for the NLS method can be computed using

1
k] = ——¢lk]. 4.99
(419 F(q)qb[ ] (4.99)

The OE model, similar to the FIR model, is a consistent estimator. The determinis-
tic part and the noise are parameterized independently and hence B(q)/F(q) con-
verges to the true value. For the initialization, when ¢[k, 8] is yet unknown, an OLS
approach is applied using the measured output y[k] (ARX model). The algorithms
for the identification used in this thesis are implemented in the SI toolbox of MAT-
LAB (The MathWorks, Inc., 2016; Ljung, 2016a,b).

Box-Jenkins Model

The Box-Jenkins (B]) model is an extension of the OE model. Not only the determin-
istic process is modeled, but also the (stochastic) noise. The use of this model type
is indicated if the noise dynamics differ severely from the assumption of GWN, i.e.
H # 1. The addition of a noise model offers more flexibility but at the cost of an
increase in model complexity (Tangirala, 2014, p. 601). The model is given by

ylkl = Mu[k] + Me[k]. (4.100)

F(q) D(q)
The block diagram of a B] model is depicted in Figure 4.8. The one-step ahead pre-
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Figure 4.8: Block Diagram of a Box-Jenkins Model.

diction error for the B] model is given by

D D(q)B
elklk—1) = 29, - D@B@)

ulk]. (4.101)
C(q) Cl@)F(q)

For the parameter estimation, similar procedures as for the OE model can be used.
The most efficient method is applying one of the NLS algorithms. The Jacobian ma-
trix, required in the NLS procedure, is evaluated by

__DP@ (4.102)
C(@)F(q)

The deterministic model and the stochastic model are parametrized independently

as in the case of the OE model and thus converge to their true values. However, the

main difference is that the model for the noise is identified and not restricted to

H(q) = 1. The B] model is the most versatile model structure at the cost of complex-

ity and number of coefficients.

The BJ model includes a parametrization for the noise. It is of no use to regard the
noise model as a transfer function as the input, the noise input e[k], is by definition
unknown. It is therefore more useful to consider the spectrum of the noise given by
|H(St,0)|? (Ljung, 1999, p. 202).

4.4.5 Identification of Continuous Time Models

The second method for SI that was successfully evaluated in this thesis is the identifi-
cation of continuous time transfer functions from frequency domain data. Continu-
ous time identification is an emerging branch in SI (Tangirala, 2014) and offers some
advantages. Frequency domain data can, e.g. be acquired from linearized equations
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in frequency space or by transforming time domain data, i.e. using the FFT method.
Similar to the OE model in discrete time, only the deterministic part G(s) is modeled.
The noise term is omitted in this case. The goal in the identification of continuous
time models is the direct identification of a rational function in powers of the fre-
quency parameter s as shown in Section 4.3.1. The transfer function is modeled
using

npn
> rp(pp(s)

Gs) = N _ p=0 (4.103)
D(s) "a _
) rp(Pp(S)
p=0

where N(s) and D(s) represent numerator and denominator of the transfer function,
respectively.

The identification of continuous time models is based on the application of least
squares methods to data acquired at discrete (but not necessarily equidistant) fre-
quencies. Early methods, including Levy’s polynomial fitting (Levy, 1959), were
numerically poorly conditioned, suffered from unbalanced weighting, or were
likely to produce unstable models. The Sanathanan-Koerner (SK) iteration method
(Sanathanan and Koerner, 1963) overcame the weighting problem and yielded far
better results. In 1998, vector fitting (VF) was introduced (Gustavsen and Semlyen,
1998, 1999). VF originally used partial fractions as basis iteratively identifying poles
and residues. This pole relocation method was successfully applied in the scope
of thermoacoustic by Orchini et al. (2016). Stable models can easily be enforced
with this method. It was further improved by to orthonormal basis functions (OVF)
(Deschrijver et al., 2007) and by including a /% error measure (QuadVF) (Drmac
etal., 2015). The use of QR-decomposition to solve the least squares problem lead to
better conditioning for all variants of this identification technique (cf. section 4.4.2).

The behavior of a system is characterized by nj frequency domain data samples
(sk, Go(sg)), i.e. frequency and frequency response. If the acquired data is in time
domain, Gy(sg) can be gained by

(4.104)

The model parameters can be estimated using least squares techniques similar to
the discrete time case. The minimization problem formulated for rational transfer
function is written by

Ny N(Sk) 2
argmin — Go(sg) (4.105)
L 2 Do~

This is a nonlinear problem that cannot be solved by the OLS method in a straight-
forward manner. The two methods employed in this thesis, SK iterations and the VF
approach are now explained in more detail.
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Sanathanan-Koerner Iteration

A method to solve Equation (4.105) are SK iterations. The minimization problem is
reformulated to

argmin Z IN(sp) — D(s) Go(sp) % . (4.106)

Tp:Tp | (Sk) |2
A WLS method is used to solve Equation (4.106) iteratively. The ith iteration is given
by

1 . . 2
argmlnz —‘N(’)(sk)—D(”(sk)Go(sk)’ ) (4.107)
g 0| DUV (sp)]

The term 1/ |D(i_”(sk)|2 acts as the weighting which is the denominator polyno-

mial evaluated in the previous iteration. The remainder |N @ (s1) — DY (s) Go (s1) |2
is linear in the coefficients {r,} and {7 ,}. For the first iteration, the weighting matrix
is equal to the identity matrix, i.e. no weighting is applied. This is equivalent to
the approach by Levy (1959). Note the analogy to the OE model in discrete time.
A linear estimator is achieved by pre-filtering with a filter equal to the denominator
polynomial. The solution procedure by Steiglitz and McBride (1965) also updates
the estimate for the denominator, and thus the pre-filter, iteratively.

This procedure has proven to yield fairly good results, but suffers from two draw-
backs: (1) The regression matrix assembled to solve the least squares problem is a
so-called Vandermonde matrix that tends to be ill-conditioned. (2) It is not guar-
anteed that this procedure converges to the solution of the original minimization
problem (Equation (4.105)).

Vector Fitting

To overcome these deficiencies, Gustavsen and Semlyen (1998, 1999) suggested to
use rational basis functions ¢, = 1/(s — @) instead of monomial basis functions
¢p = sP. In the minimization problem Equation (4.105), numerator and denomi-
nator are replaced in a way such that no weighting is necessary. The minimization
problem is written as

nj 5 N
argmin Y | N(s) = D(s0)Go(sp)|* (4.108)
Fp,Fp k=0
where
- n ?p n 7
Di)=) ——+1 and N(s) = Z (4.109)
p=15S—p p=1 p
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4.4 System Identification

are rational functions with identical poles {@,}. The weighting procedure from the
SK iteration method is replaced by the relocation of poles. Starting values for the
poles have to be given initially.

Ultimately, the transfer function is approximated by

N(s) T
~ = 4.11
G(s) D (p; s—a,,) +d (4.110)

where {a )} and {r),} are the poles and residues of the partial fractions, respectively.
The least squares problem can be solved by expanding

N(s) = D(s)Gy(s) (4.111)

which yields

(Z i )+EI=[(Z i )+1 Go(s). (4.112)

po1S+ap po1S+ap

This equation is linear in the residues {7 ,} and {F,} as well as in the direct term d.lt
is solved using the least squares approach. Similar to Equation (4.51), the “output”
in this case is the estimated transfer function given by

G(sp) = p(k)0 (4.113)
with the vector of regressors
1 1 1 —Go(sp)  —Go(sk) —Go(sg)
(p(k) = — — e — 1 — — e —
Sk—a&1  Sp—a2 Sk—Q&n Sk—a&1 S~ a2 Sk—&n
(4.114)
and the coefficient vector 0 = [?1 oo PpdiyFp - - ?n]T
Reformulating
IR (o) ~ (k)
_ ) d+;(rp /s—ap)
CYREEANNC) p=1
GRO= 5 = — - (4.115)
D™ (s) 1+p§1(rp /s—ap )
in terms of zeros and poles yields
n n _ n
(s=Pp) ) Ml (s—ap) TI(s—Pp)
p=1 p=1 p=1
G(s) = =— . (4.116)
n - n e
(s=By [ M (s—a, ILE=F)
pl;ll ﬁp /pl;ll p p=1
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This reveals that the zeros of D(s) are the poles of G(s). The new poles for every
iteration of this procedure can be calculated from

{@p} = (B} = eig(A-b-c') (4.117)

with matrix A including the poles {&} of the previous iteration as diagonal, a col-
umn vector of ones b and the residues {7} in vector c’. This uses the fact that the
eigenvalues are the roots of the characteristic polynomial of a matrix. If a stable
model is desired, this can be enforced by flipping unstable poles, i.e. Re ({&p}) > 0
into the left half plane &, = —&,. The pole relocation procedure is repeated until
D(s) approaches 1. The poles calculated in the final iteration with D(s) = 1 are
the poles of the identified transfer function {a,} = {&,}. In the second stage, the
residues {rp} of the transfer function estimate are calculated. This is achieved by
solving Equation (4.110) in a least squares sense using the final poles from the first
step.

The procedure implemented in MATLAB R2016b (The MathWorks, Inc., 2016; Ljung,
2016a,b) uses the SK iteration method in the first iteration for an initial guess for the
poles. All successive iterations use the OuadVF scheme by Drmac et al. (2015) with
orthonormal basis functions to acquire an accurate model and to improve the con-
ditioning of the matrix. Theoretically, it is also possible to use an NLS algorithm to
solve Equation (4.105) with PEM-QC. This is numerically inferior to the VF approach
(Deschrijver and Dhaene, 2006), but can be used to refine the solution acquired with
VE This approach is also implemented in MATLAB R2016b (The MathWorks, Inc.,
2016).

4.5 Model Validation

There are several tests that can be performed to assess the quality of an identified
model.

Least Squares Fit

The goal in SI is to find the estimate with the least MSE (cf. Section 4.4.3). The MSE
is evaluated using

MSE—iNf( =y (4.118)
—Nkzoyy—N_ly il -

A small MSE is an indicator for a good model. However, it is complicated to compare
the MSE evaluated from different models.
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4.5 Model Validation

A suitable ramification is to normalize the MSE with using the MSE a constant
model estimated with the sample mean produces. Using the square root of the
MSE gives a greater sensitivity to small deviations, i.e. small errors appear amplified.
This results in the normalized root mean squared error (NRMSE). To get a fit value
with higher values signifying a better fit the NRMSE is subtracted from unity. The
NRMSE-fit between output y and estimated output y is evaluated by

_q_ly=yl2

—. (4.119)
ly—=yl2

NRMSE-fit values are usually given in per cent. 100% signify a perfect fit and nega-
tive values would indicate that a constant mean value y is actually a better predictor
than the estimated dynamic model.

Parameter Variance

A covariance matrix for the parameters @ is computed during the identification
process. The identified parameters should have small variances, i.e. the confidence
intervals of a parameter should be narrow. This is given by

~ [N
Ca\/Sii < 0; (4.120)

where Cj, is a suitable constant for the a-level, e.g. C, = 2.58 for a 99 % confidence
interval. All parameters should be significantly different from zero. Models not ful-
filling this requirement are discarded as this is a sign of an unsuitable model order.

Histogram of the Residuals

The estimation procedure does not give an exact solution but reduces the prediction
error €. These prediction errors or residuals can be used as an indicator of model
quality. The histogram, which is a graphical representation of the distribution of
the residuals, is inspected visually. Many models assume the residuals to be GWN,
which can be confirmed qualitatively in this manner. Moreover, neither the mean
nor the maximum value of the residual vector should be too large.

Whiteness

For models with linear estimators, like the ARX model, the residuals should be GWN.
Otherwise, the estimates will be biased. The test for whiteness is, therefore, a test for
the noise model (Ljung, 1999; Keesman, 2011; Tangirala, 2014). In the case of the
BJ model, residuals with the properties of white noise indicate a good noise model.
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For the OE model, it is not required to achieve white noise as it will still converge to
the true model values. Whiteness is tested by computing the auto-correlation of the
residuals given by
o0
Reelll= ) elkle*[k+1] (4.121)
k=-o00
where €* is the complex conjugate of ¢. Using the zeroth lag coefficient to standard-
ize, the scales auto-correlation reads
4 R&‘E [l]

Reelll = : 4.122
eelll Rec (0] ( )

The test is passed, if all coefficients of the auto-correlation (except for the first coef-
ficient which is unity by design) are R < 1/v/N, i.e. not significantly different from
Zero.

Independence

Another criterion is the independence of residuals and input vector (Tangirala, 2014,
p. 425). Independent residuals prove that no more information on the system re-
sponse to the excitation signal is included in the residuals, i.e. the identification
process was able to extract all information possible from the input. Independence of
residuals and inputs is assessed computing the cross-correlation function between
the two time series given by

(o]

Reulll= ) elklu™k+1]. (4.123)

k=-o00
Standardization is achieved by calculating

_ Relll

eulll=—F/——. 4.124
[] lello - [zl ( )

A significance test is used to prove the insignificance of the cross-correlation coeffi-
cients in the range between [ = +25 lags. The cross-correlation coefficients are not
significantly different from zero, if

|Reulll] < \/%Ca (4.125)

Pi= ) Relll-Ryull] (4.126)

n=—00

where

and C, is the a-level for the desired confidence level.
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Scatter Plot of Residuals and Output

The time series of the residuals and outputs are plotted in a single graph. The ab-
scissa and the ordinate show the output values and residuals, respectively. Each
instant in time is represented by a single point in the plot forming a point cloud.
The cloud is inspected visually for indicators concerning the properties of the data.
The cloud is expected to be of elliptical shape with both principal axes aligned with
the coordinate axes. Any deviation from this shape points towards two deficits of
the model: (1) The model may not be able to capture the complete dynamics. In
this case, a change of model order or type can be used as a remedy. (2) The system
displays a non-negligible nonlinearity that calls for a nonlinear modeling approach
(Biihner and Ziegler, 2009).

Cross-Validation

As a final performance check, a cross-validation test is carried out. The validation
set, "fresh“ data not used to develop the model parameters, serves as a data basis.
The cross-validation fit is a very strong indicator of the ability of the model to repre-
sent the dynamics of the true system. Testing to a new dataset also gives information
on the model’s tendency to over-fit the data. In this case, the cross-validation fit
would be poor although the other tests have indicated high model quality. The cross-
validation fit is given as NRMSE-fit (cf. Equation (4.119)).

Pole-Zero Cancellation

Finding the right model order is an important task in SI. Insufficient model orders
yield poor predictions because the dynamics are not captured sufficiently. On the
other hand, too large model orders lead to over-fitting, resulting in bad predictions
as well, and computational efficiency suffers. To some extent, the model order also
depends on the purpose of the model and whether accuracy (sophistication) or
simplicity (feasibility) is valued more (Ljung, 1999).

Except for the cross-validation, which is a test for over-fitting, none of the above
can give information on the correct model order. A way to approach this is to check
the parameters and their covariances in the form of poles and zeros (e.g. Equa-
tion (4.25)) for a continuous time transfer function). Surplus poles and zeros will
be found to have very similar values on the real and imaginary axis. The result is
that they cancel each other to reproduce the system dynamics and may therefore
not be necessary. If a pole lies within the confidence region of a zero or vice versa,
the model order can probably be reduced.
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Validation with A Priori Knowledge

If only little of a system is known, model validation relies completely on the acquired
data. However, if there is additional information available, this information can be
used and interpreted with regard to the model quality. One possibility is to assess
the behavior of a model in its limits. A good model has to be able to capture the low-
frequency limit Sr — 0, which can in some cases be inferred from a quasi-steady
state. The behavior in the limit of high frequencies may be given due to simplified
calculations from first principles. Smoothness or the number and location of peaks
in the frequency response may also be explained qualitatively from prior consider-
ations. An example of this validation technique is the stability of a system, i.e. the
behavior of the impulse response for t — oo. If a steady state exists, the impulse
response has to assume and hold zero after a certain time (BIBO stability, cf. Sec-
tion 4.1.2).

4.6 Dynamics of Heat Transfer and Skin Friction

In the scope of this thesis, linear models are developed representing the relationship
between velocity fluctuations in the flow and heat transfer as well as skin friction.
The systems are nonlinear by nature, but can be cast into the linear framework
by making use of the perturbation approach (cf. Section 2.4.1). Linearization is
achieved by removing the mean value of the respective quantity written as

Nu'(#) = Nu(#) - Nu and cr(t) = cp() = Cf . (4.127)
The fluctuations are scaled with the mean and hence input and outputs are given
Re'() Nu'(#) cr(®)

t:_, t:_,d t:T. 4128
Uge() = YNu(?) il Ve (1) T ( )

The identified transfer functions for heat transfer and skin friction are therefore
related to NufSelt number Nu and friction coefficient ¢y by

Nu'/Nu cylcr
Nu = — and Gcf = —. (4.129)
Re'/Re Re'/Re
This is equal to Equation (2.100). The full quantities can be recovered by
— Re’ _ Re’
Nu=Nu|l+ Gny— and Cr=cCf 1+Gcf: . (4.130)
Re Re
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5 Data Generation

With the computational resources available today;, it is possible to determine the
flow around a cylinder by solving the full (incompressible) Navier-Stokes equations
numerically without the assumptions which the boundary layer equations or Os-
een’s method rely on.

This chapter deals with the methods used in this thesis to generate the data to assess
the dynamic behavior of a cylinder in pulsating crossflow. All methods are based on
the incompressible Navier—Stokes equations (Equation (2.63)—(2.65)). The use of the
incompressible formulation is justified for three important applications in Chapter
9. There, also the compatibility of incompressible fluid dynamics with the inher-
ently compressible effect of thermoacoustics is discussed. In Section 5.1, the basic
simulation setup is presented. It is based on the laminar flow simulations detailed
in Section 5.2 for 0.1 < Rey < 40 and for the laminar vortex shedding regime, i.e.
Rep = 120 and Re = 240. In Section 5.3, the extensions and modifications necessary
to simulate flow at Rey = 3900 as an exemplary condition for subcritical flow are
reported. A considerably different method to acquire frequency domain data is pre-
sented in Section 5.4. A perturbation is introduced in the Navier-Stokes equations.
They are linearized around a steady state solution and transformed to the frequency
domain (LNSE approach). Figure 5.1 gives an overview over different approaches to
simulate a cylinder in pulsating crossflow and to determine the transfer function.
The work shown here was previously published in parts in Witte and Polifke (2017a).

5.1 Basic Setup

The basic setup incorporates considerations concerning the boundary conditions,
the computational domain, and the two-dimensional mesh which is in turn modi-
fied for further investigations like the Large Eddy Simulation (LES). A thorough grid
independence study was carried out to investigate the spatial discretization with
respect to steady-state and pulsating flow.

5.1.1 Boundary Conditions

Solving the Navier-Stokes equations is essentially the numerical integration over a
given domain. The boundary conditions are necessary to evaluate the integration
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basic grid
[
0.1 <Repy <40 0.1 <Rep <240 Rep = 3900
2D log-polar
mgesl})1 2D mesh LES mesh
| |
) broadband broadband
LNSE step Input input input
| | | |
frequency step
response response OE model BJ model
| | | |
transfer function

Figure 5.1: Overview of Different Approaches to Determine the Transfer Function.
The gray area marks steps of the SI procedure detailed in Chapter 6.

constants, i.e. the integrals become definite integrals. The flow enters the domain
at the inlet where an inlet velocity tx () = Uso,0 + UL (1) is prescribed. This velocity
value consists of a mean flow component u, o and a time dependent fluctuation
ul (1) (cf. Equation (2.85)). The latter is either a sudden increase in velocity by 10 %
at time t = £y, which is then held constant to yield the step response of the heat
transfer (cf. Section 6.1), or a random sequence of velocity values. This provides a
broadband, colored noise input signal for the SI procedure (cf. Section 6.3). The
(relative) pressure at the inlet has zero normal gradient, and the inbound fluid has
a constant temperature of © = 0.

The flow passes the cylinder, represented by a no-slip wall with a constant temper-
ature set to © = 1. At the outlet, the relative kinematic pressure (P = p/p) is fixed to
P =0 and Neumann type boundary conditions are applied for the velocity and the
temperature. With such an outflow condition, flow variables are effectively extrapo-
lated to the boundary nodes.

All other boundaries, parallel to the flow, are symmetry boundaries. Close to the
cylinder, actual symmetry is enforced as justified by the symmetric flow patterns
expected to occur. The symmetry condition at the far field acts as a slip wall con-
dition. Figure 5.2 sketches the computational domain and the boundaries used in
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symmetry

50d

50d 50d

Figure 5.2: Sketch of the Computational Domain. Boundaries and the basic dimen-
sions are marked. A dashed line represents the plane where input data
is acquired. The four sectors of the cylinder used in post-processing a
marked with the respective number. Representation is not to scale.

this study, including the final dimensions as determined in the grid independence
study.

The boundary conditions are summarized as

. op
inlet Ul = Uso u, =0 — =0 =0 (5.1)
0x
6u1 Oug 00
tlet —=0 —=0 =0 —=0 5.2
outie 0x 0x p 0x (5-2)
. op
cylinder u; =0 u, =0 an =0 0= (5.3)
) ouy ou, 0 op ) 00 ) (5.4)
symmetr — = 2 — P _ o~ .
Y Y oy oy oy oy

where 71 denotes the surface normal vector at the cylinder.

5.1.2 Domain and Basic Mesh Topology

The computational domain chosen to represent laminar flow across a cylinder rep-
resents the upper half of a square with a circle placed in the center (cf. Figure 5.2).
This domain is discretized with a block-structured, three-dimensional mesh consist-
ing of hexahedrons with only one cell of unit thickness in the direction of the axis
of the cylinder. At the cylinder, the cells are square with respect to the plane nor-
mal to the axis of the cylinder and aligned to the curvature. Gradients aligned and
normal to the surface of the cylinder are thus resolved equally. This corresponds to
the nature of creeping and laminar flow. The cylindrical structure of the grid makes
it possible to adjust the radial and circumferential node distribution close to the
cylinder. At the same time, the near wall flow is kept aligned with the control volume
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Figure 5.3: Mesh Topology of Exemplary Mesh. 36 Cells along Cylinder Perimeter.
The boundaries are in a distance of 504 to the cylinder. The grids used
for computations were at least four times finer.

boundaries. The surface adjacent region is strongly refined towards the surface of
the cylinder to properly resolve the steep gradients. Around the inner circular block,
another O-type grid is fitted to achieve a smooth transition from the cylindrical cen-
ter to the outer rectangular region. The remaining blocks are of H-type with regular
cell spacing. The topology of the mesh is shown in Figure 5.3. Figure 5.4 depicts a
detail of the mesh close to the cylinder.

To achieve a high-quality grid with the least amount of skewness and a cell aspect ra-
tio close to unity, square cells are enforced at the cylinder boundary. In combination
with the fixed size of the H-O-transition zone, this choice determines the cell sizes
throughout the domain as a function of the resolution at the cylinder. The number
of cells N, along the surface of the half cylinder is chosen as the measure of the
grid resolution. The size of the surface adjacent cells in radial and circumferential
direction Ax, is therefore given by Ax./d = n/(2 N,).

5.1.3 Grid Study

The insensitivity of computational results to spatial and temporal discretization was
ascertained in three stages: The dependence of the solution on the domain size (1a)
and the cell size (1b) was assessed for steady flow. In a second stage, a sinusoidal
modulation of the inlet velocity with an amplitude of 5 % of the mean velocity and a
frequency of Sr = 40 was imposed at the inlet. This represents a high frequency mod-
ulation resulting in a very thin unsteady (acoustic) boundary layer. The impact of
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Figure 5.4: Detail of an Exemplary Mesh. 36 Cells along Cylinder Perimeter. The
mesh is designed to feature almost square cells close to the cylinder. The
grids used for computations were at least four times finer.

the cell size (2a) and the time step size (2b) on the heat transfer frequency response
at this high frequency were assessed. Finally, grid independence for the complete SI
process was demonstrated with a grid resolution chosen according to the results of
the second stage and the next finer grid (3). A basic initial grid study was carried out
by Brandl (2014) during the course of a bachelor’s thesis, which was supervised by
the author of this thesis.

Domain Size and Cell Size in Steady Flow

The size of the computational domain is characterized by a single length scale L, i.e.
the minimal distance between the axis of the cylinder and the domain boundaries
(cf. Figure 5.2). Steady-state simulations with increasing distance between the do-
main boundaries with boundary conditions as stated above and the cylinder were
conducted at a moderate mean flow Reynolds number (Rey = 12.71). The goal of
this first stage was to evaluate the upstream and sideways displacement of fluid re-
sulting from the presence of the cylinder. The inlet boundary of the computational
domain was then placed at a position where such displacement was not noticeable.
Similarly, the lateral domain size was chosen in such a way that the influence of the
slip-wall boundaries on the flow close to the cylinder was considered insignificant,
as detailed below.
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Lgld Nuy Agzin%

15 2.064 1.31
20 2.055 0.89
30 2.047 0.49
40 2.044 0.30
50 2.041 0.20
100 2.037 —

Table 5.1: Results of the Steady-State Domain Size Study. Grid study (1a), Reg =
12.71, CFL < 1, N, = 144, steady state Sr = 0.

The effect of the domain size on the Nul3elt number was tested in the range 15 <
Lgi < 100. The computed Nul3elt numbers Nug and the deviations from the largest
domain A; = [Nug(Lg) — Nug(100d)] /Nug(100 d) are shown in Table 5.1.

Eventually, a domain size of L; = 50d was chosen with a relative difference in
Nuflelt number to the largest domain of A; = 0.20%. This choice should ensure a
very small influence of domain size A; < 1% at lower Reynolds numbers, where the
region influenced by the presence of the cylinder is somewhat larger. The extent
of the domain used in all subsequent simulations is depicted in Figure 5.2. It was
confirmed that flow reversal did not occur at the outlet for any of the flow conditions
considered in this study.

The results of the grid independence study for steady flow are given in Table 5.2.
A¢ = [Nug(N,) — Nug re| /Nug gE is the difference in mean NuRelt number to a solu-
tion evaluated using Richardson extrapolation (RE) (Ferziger and Peri¢, 2002) with
an estimated scheme order of 2.00. A grid with N, = 72 cells along the surface of the
half cylinder, corresponding to a total of about 39 x 103 finite volumes, assures very
small sensitivity of steady-state heat transfer A, < 0.1 % on the grid resolution.

Cell Size and Time Step Size for High-Frequency Harmonic Modulation

The thickness of the unsteady Stokes boundary layer 85 = (2v/w)!/? (cf. Sec-
tion 3.1.2) decreases with frequency. At high frequencies, this layer is small, but it is
necessary to resolve it in order to achieve a good model with quantitative accuracy
for the dynamics of the unsteady flow. The Stokes layer at high frequencies is also
much smaller than the steady boundary layer, which makes this a more demanding
requirement than grid independence in the steady case. In order to test for grid inde-
pendence in the unsteady case, a single frequency sine wave was superimposed on
the inlet velocity u. () = € uxo0sin(wt). The frequency w was chosen at the upper
end of the range of interest Sr = 40, the amplitude was set to € = 0.05 to remain in
the linear regime at all times.
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N, Nugy Ac;in% Ax./d Total
-1073 number

of cells
36 3.2709 0.187 43.6 2466
72 3.2665 0.052 21.8 9864
144 3.2652 0.013 10.9 39456

288 3.2649 0.003 5.45 157824
576 3.2648 0.0008 2.73 631296
1152 3.2648 0.0002 1.36 2525184

Table 5.2: Results of the Steady-State Cell Size Study. Grid study (1b), L; = 50, Reg =
40, CFL < 1, steady state Sr = 0.

The heat transfer frequency response Gy (Sr = 40) was evaluated at the excitation
frequency using Fourier transforms of the time series and Equation (4.104). The
frequency response was scaled with respect to the mean values Rey and Nuy. Any
constant offset was removed. Suitable reference values to assess relative differences
between results computed with different meshes were chosen. These are the theo-
retical low-frequency limit (steady-state gain K) for the amplitude and the theoreti-
cal high-frequency limit for the phase. Relative differences in amplitude and phase
were calculated using the reference values mentioned above by

G(Ng)| -GN, =576
A|G|(Nc)=| (NC)| IK( )l (5.5)

/ZG(N,) - ZG@2N,)
—7/2 '

AsG(Ne) = (5.6)
For the given mean flow Reynolds number Rey = 40, the steady-state value evalu-
ated to K = 0.41. The results for the frequency response and its relative change are
presented in Table 5.3.

Both amplitude and phase show monotonic convergence. The amplitude value for
the finest grid is slightly larger than expected from a simple extrapolation of the
values at N, = 144 and N, = 288. This could be due to the fact that steady mean flow
conditions were not fully achieved during this computationally expensive simula-
tion. However, all amplitude differences were below Ajg| < 0.5% and thus even the
coarsest mesh gave good results for the transfer function amplitude at Sr = 40. The
differences in phase were slightly larger, but values A 5 < 1% could be achieved
with N, = 288 or finer.

The Stokes layer thickness depends inversely on the mean flow Reynolds number
and the Strouhal number 8¢ = d [2/(Re Sr)]}/2. To transfer this finding to simula-
tions with different Reynolds numbers, the number of surface adjacent cells within
the unsteady Stokes boundary layer was kept at Ns; = 6s¢/Ax, = 5.
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N¢ |G| ZGin°® Agin% Aygin% Ns;
144 0.04244 -79.88 0.05948 1.186 3
288 0.04249 -80.49 0.04709 0.4309 6
576 0.04269 -80.84 — — 12

Table 5.3: Results of the Dynamic Cell Size Study. Grid study (2a), L; = 50, Reg = 40,
CFLpax < 0.2, Stokes layer size 6s¢(Reg = 40, Sr = 40) = 0.03536 d.

For a Reynolds number Rey = 40, it was necessary to resolve the field close to the
cylinder with N, = 288 (158 x 103 cells in total). Considering the same range of
Strouhal numbers, a resolution of N, = 144 (39 x 103 cells in total) was sufficient for
cases with Reg < 4. Using a coarser grid for lower Rey is also justified by the strong
low-pass behavior of the frequency response. The response at high frequencies was
near zero and hence is irrelevant for most technical purposes.

The time step size of the simulation was determined by the CFL number defined by

Atu At
CFLs — =~ — (5.7)

Ax AV
where At is the time step, u the velocity in a finite volume cell, and Ax is a measure
for the cell size. In the CFD code, the CFL number was approximated using the flux
at the cell faces ¢ and the volume of the respective cell AV. The results for simu-
lations at various maximum CFL numbers CFL,4x are given in Table 5.4. The heat
transfer frequency response for a single frequency Gy (St = 40) was determined and

differences were computed with Equation (5.5) and Equation (5.6).

For all simulations throughout different meshes, At was chosen to satisfy the con-
dition CFL < 0.2 in every cell. Refining the time step size further led to changes of
AGnul» Az < 1% in gain and phase.

Grid Resolution for Broadband Modulation and System Identification

In the final stage (grid study 3), simulations with broadband excitation were per-
formed (u/ (?) is a specifically generated signal with certain properties, cf. Sec-
tion 5.2.1). The meshes used in this stage were the ones proven to be sufficiently fine
to resolve high frequency fluctuations in the previous stage (N, = 144 for Reg = 0.4
and Rey = 4 as well as N, = 288 for Rey = 40) as well as the next finer grids. Only
very minor differences between the two grids were detected for each of the tested
mean flow Reynolds numbers. As criterion for the agreement between the frequency
responses in the whole frequency range 0 < Sr < 40, the NRMSE-fit (cf. Section 4.5)
evaluated at 1 x 10* equidistant frequencies was chosen. The agreement between
N =144 and N, = 288 was 92.0 % and 97.4 % for Rey = 0.4 and Req = 4, respectively.
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CFLmax |G ZGin°® Agin% Aygin% CFL

2.0 0.07583 —89.92 26.28 17.75 0.1130
1.0 0.1409 -83.35 8.690 10.46 0.05680
0.5 0.1662  -76.21  1.848 2.525 0.02880
0.2 0.1732  -74.37 0.05017 0.4724 0.01170
0.1 0.1731 -73.94 — — 0.005810

Table 5.4: Results of the Dynamic Time Step Size Study. Grid study (2b), L; = 50,
Rey =4, N, = 144, Sr = 40.

For Rey = 40, the agreement between the N, = 288 and N, = 576 was 97.2 %. These
values were in the same range as the NRMSE-fit of the individual models to the
time domain data they were trained on. As a result of the grid independence study
the meshes used further featured L; = 50d, N, = 288 for Reg > 4 and N, = 144 for
Rey <4, as well as CFL 5 < 0.2.

5.2 Laminar Time Domain Simulation

This thesis endeavors to give a broad overview of the dynamic behavior of the heat
transfer and skin friction of a cylinder in pulsating crossflow. Nevertheless, the main
focus remains the flow at low Reynolds numbers where the steady state exists and is
two-dimensional and axis-symmetric. The boundary conditions and mesh used in
this investigations are without modifications those explained in Section 5.1. Prior to
the simulation run, an excitation signal to be imposed on the inlet was generated.

5.2.1 Excitation Signal Generation

Three different types of excitation signal were used in the course of this study: (1) a
step input to directly evaluate the step response of heat transfer and skin friction, (2)
a sinusoidal wave input representing a single frequency, and (3) a broadband signal
for the subsequent SI procedure. Type (2) was used during the grid independence
study (cf. Section 5.1.3) and for a quick survey of the nonlinear behavior of the heat
transfer in the presence of high amplitude oscillations (cf. Section 8.3.3).

For reasons of computational efficiency, the simulations were carried out with a
variable time step size determined by the CFL number (cf. Section 5.1.3). Input val-
ues are supplied to the CFD solver as tabulated values of time and corresponding
velocity vector in a separate file. The according boundary condition in OpenFOAM
is called “uniformFixedValue”. If the table entry does not correspond to the actual
time step of the simulation, a linear interpolation is performed.
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Step Input

To assess the step response of the system, a small, sudden change in inlet velocity is
forced in the simulation after reaching an initial stationary state. A weak perturba-
tion (¢ = 0.1) was imposed to assure a linear response. The sudden change is applied
within one time step and simulation is continued until a new stationary state (only
very small changes over time) is reached. The input signal can be expressed as
Re(t) = Reg + Re/ (1) where

, 0 <t
Re'(1) = . (5.8)
eRey =15

Sine Input

A sinusoidal input was used to evaluate the response of the heat transfer and the
skin friction at a single frequency; i.e. Strouhal number. The signal is described by

Re(t) =Rep (1 +€sin(Srt)) . (5.9)

Again, € denotes the amplitude of the pulsation and is set to € = 0.1 to investigate
the linear frequency response. This amplitude was chosen to keep well below the
threshold of about € = 0.3 where the approximation of an LTI systems ceases to be
valid in the case of the heat transfer (Heckl, 1990; Hantschk and Vortmeyer, 1999;
Selimefendigil et al., 2012). A nonlinear response in heat transfer and even flow
reversal could be achieved by € > 1.0.

Broadband Input

The broadband excitation is used in simulations to create and acquire the data for
the SI procedure. The broadband input in combination with SI has many advan-
tages over the step input and the sine input. In contrast to the step input, which
would theoretically be sufficient to describe the LTT dynamics, a broadband signal
continuously excites the system and is, therefore, less prone to disturbances influ-
encing the response. The frequency spectrum of the input can be predefined and
hence also very high frequencies, possibly interfering with the convergence of the
numerical procedure, are avoided. This is also the main advantage over the sine
input. With a sine wave, it is only possible to acquire the response at a single fre-
quency.

The input signal is created using the non-Gaussian simulation algorithm by Mas-
ters and Gurley (2003). For the signal generation in the CFD/SI approach this algo-
rithm was implemented and tested by Foller and Polifke (2011). This routine creates
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a vector of random values from a given cumulative distribution function (CDF)
and amplitude distribution. These distributions are taken from the properties of a
Daubechies wavelet scaling function. Hence, this signal was termed wavelet based
excitation signal. The prototype wavelet is designed with the desired features like a
specific corner frequency.

The time series is created with the desired overall length as fluctuations in the
interval [—1, 1]. To acquire the proper input signal for the CFD simulations, the
time series was scaled, and a constant for the mean flow was added. If necessary,
the time series was pre-filtered with a fifth order Butterworth filter to achieve the
desired frequency spectrum. This is beneficial for CFD simulations, because the
signal varies smoothly between time instances. The corner frequency chosen for
this thesis corresponds to Sr = 60. This is high enough so that a good power spectral
density of the frequency range of interest 0 < Sr < 40 is achieved, but the changes
between successive input values are small enough to not impede the convergence
of the CFD simulation.

To have a sufficiently smooth input signal, a recommendation is to ensure

W
20<— <40 (5.10)
Wp
where w = 27/ T is the sampling frequency and wy, is the 3 dB bandwidth of the
signal (Franklin et al., 1997, Chapter 11). It was therefore reasonable to sample the
input signal with T = 0.001.

An advantage of the non-Gaussian simulation is that the input signal does not fol-
low a Gaussian distribution, but is almost uniformly distributed. This results in a
comparably high crest factor (Tangirala, 2014), which is desirable for identification
experiments because the amplitude extrema are assumed more often than in the
case of a random Gauss signal.

5.2.2 Computational Procedure

To perform SI, time series data for the quantities of interest needed to be generated.
In order to obtain these time series, a simulation over a certain period of time had
to be carried out. For this simulation an algorithm that solves Equations (2.63) to
(2.65) accurately for every time step was necessary. This was achieved by using the
PIMPLE algorithm implemented in the OpenFOAM (OpenFOAM Foundation, 2014)
framework. This algorithm is the combination of two well-known algorithms for
transient simulations, PISO (Issa, 1986) and transient-SIMPLE (Patankar and Spald-
ing, 1972; Caretto et al., 1973). It employs two so-called “correctors”, which are loops
of the PISO algorithm, to compute a Laplace equation for pressure correction. Sub-
sequently, new values for the momentum are calculated. In addition, for every time
step, there are “outer correctors” corresponding to loops of the transient-SIMPLE
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algorithm. In these corrector steps, also the mass flux across the faces of the finite
volumes is updated. For every time step, several outer corrections were computed
until a specified initial residual of 1 x 107® was reached for pressure, velocity, and
temperature. Usually, 10 to 50 outer correctors are necessary to achieve this min-
imum tolerance. Each of these transient-SIMPLE loops triggered two PISO loops.
This algorithm was computationally more expensive than each algorithm by itself
(about a factor of two compared to PISO, which needed more iterations of the lin-
ear equation solvers). However, the PIMPLE scheme results in stable and accurate
solutions.

In this application, a solution for every time step was sought that provided good
results up to frequencies in the range of Sr = 40. Small time steps were necessary to
achieve this. Time step size was determined by the CFL number which was fixed to
CFL < 0.2. Larger CFL numbers lead to an overprediction of the amplitude of Gy,
although the simulation runs stable.

Using only the PISO algorithm, yielded good values for |Gny| and was computa-
tionally less expensive. However, the mass flux was only updated once each time
step and therefore “lagged” behind. This lag leads to overpredicted values at high
frequencies in Gy or necessitates much smaller time steps.

Spatial gradients and divergence terms were approximated using a central differ-
ence scheme (termed “linear” in OpenFOAM) that is second order in space. An
unbounded, second order, conservative scheme (named “corrected”) was used for
Laplacian terms and surface normal gradients are calculated with explicit non-
orthogonal correction (named “corrected”).

As the temporal scheme, a second order approximation was chosen using three time
levels calculating present values from two previous time instants. For the first time
step, the implicit Euler scheme (Ferziger and Peri¢, 2002) was used. The size of each
time step was evaluated with the calculated velocities forcing the maximum CFL
number to CFLy5x < 0.2. The maximum time between two instances was limited to
At =5x 1073, even if the CFL number was CFLax < 0.2. This ensured a specified
minimum temporal resolution for the highest frequency.

The fluid properties were represented by the Prandtl number with a fixed value of
Pr=0.71 and the Reynolds number. To achieve the desired value for Rey, given an
unperturbed inlet velocity and a cylinder diameter, the kinematic viscosity v was
set accordingly.

At least two seconds were simulated using the finite volume approach. This yielded
more than 40 x 103 instances in time that were used in the identification procedure.
The duration of the simulation corresponded to the unperturbed flow passing the
cylinder at least 200 times.
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Axis-Symmetric Flow

For mean flow Reynolds numbers below the vortex shedding threshold Rey < 40 (cf.
Section 2.1), the symmetric mesh, as described in Section 5.1, was used. Simulations
were carried out for Reg = 0.4, Rey = 4, and Rey = 40. To acquire a more information
and provide a more extensive investigation, additional simulations were computed
at Reg = 0.1, Reg = 0.2, Reg = 0.5, Reg = 0.7, Reg = 1.0, Reg = 2.0, Reg = 3.0, Reg = 10,
Rey = 20, and Reg = 40.

Laminar Vortex Shedding Regime

Numerical simulations at mean flow Reynolds numbers Rey = 120 and Rey = 240,
where periodic vortex shedding occurs, are carried out on a two-dimensional grid
featuring the full cylinder. This mesh was identical to the mesh presented in Sec-
tion 5.1, but mirrored at the flow aligned axis through the center of the cylinder. At
Rey = 240 weak three-dimensional structures are present, which cannot be repre-
sented in the two-dimensional simulation. LES simulations at this Reynolds num-
bers showed that those three-dimensional structures have a negligible effect on
NulBlelt numbers and friction coefficient.

5.2.3 Data Acquisition

To evaluate the dynamic response of the heat transfer rate and skin friction (con-
sidered as the “responses” or “outputs”) to free-stream velocity fluctuations (the
“signal” or “input”), CFD data was extracted at each time step for subsequent post-
processing. As the flow field is considered incompressible, a perturbation in overall
mass flow rate imposed at the inlet boundary propagates without delay throughout
the domain. Hence, a time lag due to finite propagation speed did not have to be
taken into account.

A cross-sectional area average of axial velocity u(z) is acquired at a monitor plane
9d upstream of the cylinder, where the fluid is not influenced noticeably by the
presence of the cylinder (cf. Figure 5.2). In order to get a dimensionless value, the
velocity is scaled with the cylinder diameter and the kinematic viscosity to form an
(unsteady) Reynolds number. Additionally, time is non-dimensionalized according
to Section 2.2.3 using cylinder diameter and unperturbed free-stream velocity.

Temperature gradients and shear stresses were obtained as a surface average over
four sub-domains “1” to “4”, respectively, each representing a 45° sector of the sur-
face of the half cylinder (cf. Figure 5.2). The sub-domains were chosen equally dis-
tributed, similar to Foller et al. (2008). Different sectors coarsely stand for different
flow regimes without regard for changes in flow patterns with mean flow Reynolds
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number Rey. In sector 1, stagnation point flow, also examined by Lighthill (1954), is
dominant. Sectors 2 and sector 3 might be considered more similar to flat plate flow
conditions, featuring a favorable and an adverse pressure gradient in steady state,
respectively. Sector 4 contains the rear stagnation point and, at higher Reynolds
numbers, the recirculation region. The gradients were stored for every time step
during the computation and Equation (2.21) is used to calculate the Nul3elt number.

The sector-wise integration over the heat flux resolved circumferential variations of
the heat transfer dynamics in a rudimentary manner. In particular, it will be shown
below that sector 4, located on the lee side of the cylinder, exhibits a behavior that
is qualitatively different from the upstream sectors. It would have been possible, of
course, to use more sectors and thus analyze the circumferential variation of heat
transfer dynamics in more detail. However, with four sectors, a good compromise
between the level of detail and ease of presentation is achieved. The sum of the
NulBlelt number and the friction coefficient in the four sectors yields a measure for
the overall heat transfer rate and shear stress, respectively.

5.3 Large Eddy Simulation

For laminar flow, no modeling of turbulence is necessary, and the simulations are
inherently direct numerical simulations (DNS). If the flow becomes turbulent, it
would be necessary to resolve even the smallest length and time scales to perform
DNS (cf. Section 2.1.3), i.e. the cell size and the time step size have to be of the order
of the smallest turbulent length scales and time scales. The Large Eddy Simulation
(LES) approach can be used for turbulent flow instead. The smallest turbulent scales
are universal to some extend and can hence be modeled. The majority of the energy,
contained mostly in the larger scales, is still resolved. The advantage of LES is the
vast reduction of computational cost. The investigation in the subcritical regime
was limited to only one mean flow Reynolds number of Rey = 3900 in this thesis.
It is, therefore, to be understood as proof of concept rather than a comprehensive
quantitative survey of the dynamic behavior as it was carried out in the case of lam-
inar flow. The work shown here was previously published in Witte et al. (2016a,b).

Subcritical flow across a cylinder was studied quite extensively in the past. Vidya
et al. (2016) performed DNS at Re = 2000 and Liang and Papadakis (2007) investi-
gated the case of Re = 2580 experimentally and with LES, also in the presence of a
single sinusoidal frequency excitation.

A mean flow Reynolds number of Rey = 3900 is suitable for this investigation be-
cause numerous results from experiments (Meyer et al., 2010), LES (Kravchenko and
Moin, 2000; Franke and Frank, 2002) and DNS (Lehmkuhl et al., 2011) are available.
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Domain size Cylinder position N Cd
from the inlet

30d x 20d x nd 10d 2.96x10% 1.066+0.105

45d x 30d x nd 15d 3.72x10% 1.048+0.093

60d x 40d x nd 20d 4.79x10%° 1.065+0.110

Table 5.5: Results of the Steady-State Domain Size Study (LES Case). Rey = 3900,
CFLmax < 0.5, N, =108.

Moreover, Lysenko et al. (2012) used the OpenFOAM framework to conduct LES
simulations with the same turbulence modeling as used in this thesis.

5.3.1 Computational Domain and Grid

The domain and the mesh were deduced from the basic mesh (cf. Section 5.1)
and adjusted to the requirements for LES. Turbulent flow structures are three-
dimensional by nature, and hence the mesh is extended in the direction of the cylin-
der axis. Further adjustments include discretization in the axial direction, proper
spatial resolution, and turbulence handling.

Domain

The computational domain was chosen smaller than in the laminar case (cf. Sec-
tion 5.1). The boundary layer thickness, i.e. the part of the flow field strongly influ-
enced by the cylinder, scales with Re~!/2. A smaller domain is hence justified by a
smaller boundary layer. The direction along the axis of the cylinder is resolved in the
domain spanning nd (Franke and Frank, 2002; Lysenko et al., 2012). Table 5.5 shows
the domain size study for the LES case. The tested domains span 10d, 15d, and 20d
in the directions perpendicular to the axis of the cylinder. In the direction of the
outlet border, twice this value was chosen, respectively. The drag coefficient ¢, (cf.
Section 2.1.2) was chosen as an integral value to compare and test for convergence.
Due to fluctuations in the flow, attributed to turbulence and vortex shedding, the
value of ¢y is fluctuating even with steady, uniform inflow. To account for this fact,
also the 95 % confidence interval is reported in Table 5.5.

Mesh

The topology of the three-dimensional mesh for LES was very similar to the two-
dimensional mesh for the laminar simulations shown in Figure 5.2. It was adapted
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N, N Cq Acin% Axc/dly Axc/ld|, Ngt
1073 1073
72 1.11x10% 1.1164 13.8 21.8 3.63 0.987
108 3.72x10% 1.0286 4.80 16.4 2.73 1.31
144 8.70x10% 0.9963 1.50 10.9 1.82 1.97
180 16.6 x10° 0.9815 — 9.54 1.59 2.25

Table 5.6: Results of the Cell Size Study (LES Case). 45d x 30d x nd, Reg = 3900,
CFLpax < 0.5, Stokes layer size dsi(Reg = 3900, Sr = 40) = 0.003581 d.

to the smaller domain size, and the spanwise direction was discretized. Three refine-
ment steps in coaxial cylindrical regions with decreasing radius around the cylinder
ensured that cells were refined in the direction of the cylinder axis. This yielded a
total of 216 cells at the surface of the cylinder in the spanwise direction. Additionally,
the grid close to the cylinder experienced a grading in radial direction so that the
cells formed layers around the cylinder. The non-dimensional wall distance was
y* = 1 for the innermost cell, and the aspect ratio was ~ 6. The results of the cell
size study are given in Table 5.6. The difference in drag coefficient between the eval-
uated grid and the finest gird is quantified by A; = [c4 — ¢4 (IN: = 180)] / ¢4 (N, = 180).
Moreover, the extent of the wall adjacent cells in circumferential direction (¢) and
radial direction (r) are reported. Using the latter values, an estimate can be given
how many cells Ng; discretized the unsteady Stokes boundary layer.

The mesh chosen to conduct this study featured a domain size of 45d x 30d x 7 d, i.e.
the medium sized domain in Table 5.5. Although all three meshes show very similar
values for ¢, (all within the confidence intervals), this grid produced the smallest
confidence interval and presented a good trade-off between computational cost
and accuracy. The circumference of the full cylinder was discretized using 2 N, =
216 cells. The same number of cells was used to discretize the spanwise direction.
This lead to a total of 3.72 x 10° cells. A detail of the mesh close to the cylinder is
shown in Figure 5.5.

The drag coefficient of the cylinder for the mesh used in this thesis (c; = 1.029) was
about 5 % higher than the drag coefficient simulated with the finest mesh (c; = 0.98)
and also 5 % higher than values reported in experiments (c¢; = 0.98) (Norberg, 1994;
Meyer et al., 2010). This corresponded to one standard deviation of the fluctuating
quantity. Gradual refinement of the grid provided a continuous decrease in the drag
coefficient towards the value of the finest mesh. The length of the recirculation zone
and the vortex shedding frequency were within the range of experimental results
reported in literature (L, =1.19-1.33d; f =0.21 - 0.22 up .o/ d) (Meyer et al., 2010).
Although the comparatively high Reynolds number leads to a very small Stokes layer
at high frequencies, at least one cell was within a distance Jg; to the cylinder.
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Figure 5.5: Topology of LES Mesh in Spanwise Direction. Cut through the y = 0-
plane. The full spanwise extent is shown.

Boundary Conditions

The boundary conditions were chosen in the same way as in the two-dimensional
laminar cases. Additionally, the boundaries in spanwise direction were specified as
periodic boundaries. Flow leaving the domain on one of these boundaries reenters
the domain at the other boundary to emulate an infinitesimally long cylinder. Two
additional flow variables, the subgrid scale (SGS) turbulent kinetic energy ksgs and
the SGS viscosity vsgs, had to be accounted for.

It was assumed that the flow at the inlet was laminar. Hence, the free-stream turbu-
lence was not a parameter in this investigation. The SGS turbulent kinetic energy
ksgs was therefore set to a small value at the inlet. At the outlet, a zero gradient
boundary condition was applied.

For the boundary conditions of the SGS variables at the surface, three approaches
were considered. The first strategy was to apply wall models for ksgs and vsgs. How-
ever, the mesh close to the surface of the cylinder was fine enough to resolve the
gradients at the wall (y* ~ 1) and hence a wall model for the SGS turbulent kinetic
energy, recommended for y* > 30 is not applicable. In the second approach, the
variables were chosen to ksgs = 0 and vsgs = 0 at the surface. These conditions are
very strict and theoretically only applicable in the limit of fully resolved turbulence
(DNS). The boundary conditions applied in this thesis combined both approaches.
Instead of a wall model for ksgs, zero gradient conditions were selected, i.e. the
diffusive flux of turbulent kinetic energy through the surface is zero (Ferziger and
Peri¢, 2002). The SGS viscosity vsgs was calculated explicitly for the whole domain
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except for the cylinder boundary. At the cylinder boundary, Spalding’s formula for
the law of the wall (Spalding, 1961) was used. This wall function provides suitable
values for the SGS viscosity over a large range of y* values and explicitly also for
ASES

5.3.2 Turbulence Modeling

In the LES approach chosen in this thesis, the computational grid acts as a filter
(grid filter) separating the larger, resolved scales from the smaller, modeled scales.
Hence, the size of the mesh determines the filter width A. The mesh was chosen in
such a way that more than 80 % of the turbulent kinetic energy is part of the resolved
portion, i.e. at wavenumbers smaller than the cutoff wavenumber of the filter. The
SGS at higher wavenumbers included only a smaller fraction of the energy. In Fig-
ure 2.8, this SGS part is illustrated by the hatched area of the graph. As indicated in
Figure 2.8, the cutoff frequency should lie in the inertial range. Then, the modeled
portion is in the universal equilibrium range.

In the LES approach, the filtered Navier—Stokes equations are solved (Pope, 2000;
Davidson, 2004). The quantity that needs to be modeled is the SGS stress tensor
TsGs, also called residual stress tensor. A popular method is to use eddy viscosity
models. An effective viscosity which is the sum of the molecular viscosity and a SGS
viscosity vegr = v + vsgs (Boussinesq hypothesis) was used in the filtered equations.

One Equation Eddy Viscosity Model

In this thesis, a dynamic subgrid kinetic energy model (Ghosal et al., 1995; Menon
et al., 1996), also referred to as dynamic one equation eddy SGS model, was chosen
to model the unresolved portion of turbulence. In the one equation eddy viscosity
model by Deardorff (1980), the modeled turbulent kinetic energy k was calculated
with an additional transport equation. The SGS stress tensor 7°° was modeled us-
ing

TZSJGS - %51']'1'%%8 = —ZCkAkl/zgij . (5.11)

The strain rate tensor S; ; is given by

axj ax,-

1(0u; auj
=3 + (5.12)

(cf. Newton’s law 7;; = 2vS;;, Section 2.2.1 and Section 2.2.5) and S; j denotes its
filtered value.
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The transport equation for the dimensionless SGS turbulent kinetic energy is given
by

ok ok 0 1 0k
TR R ( SGS) +P—c (5.13)
ot 0Xxj 0x;j \Reesr 0x;
with the production rate and the dissipation defined by
28;iS;; Cek3/2
p="""Y and e= ——5C8, (5.14)
Resgs A

The SGS viscosity as it appears in the effective Reynolds number Re is evaluated
by

VsGs = Ckkégsﬁ (5.15)

The coefficients are determined to C, = 1.048 and Cy = 0.094 (OpenFOAM Founda-
tion, 2014) for the standard one equation eddy viscosity model.

In the dynamic model (Germano et al., 1991), the coefficients C, and Cy. are adapted
locally and dynamically. A test filter with twice the filter width than the grid filter is
applied. The constant Cy is determined by solving a variational problem (Ghosal
etal., 1995).

Measure of Turbulence Resolution

The measure of turbulence resolution, often called Pope’s criterion (Pope, 2000), is
the ratio of modeled turbulent kinetic energy to its total value. This measure is given
by

kscs

= (5.16)
kres + kSGS

where ks denotes the resolved turbulent kinetic energy. The modeled turbulent
kinetic energy ksgs is a transported quantity and hence available as a field variable
for every instant in time. Not the instantaneous value, but the mean (time averaged)
quantity was used for this analysis to account for variations in time.

The resolved turbulent kinetic energy was evaluated from the filtered velocity field.
Generally, the mean kinetic energy of the flow can be decomposed as

(Ey=Ep+k (5.17)

where E = 1/2(u) (@) is the kinetic energy of the mean flow and k = 1/2(z" %"} is the
turbulent kinetic energy. Using the fact that the RMS value of a quantity is related to

mean and standard deviation by x2_ . = (x)? + 02 = (x?) yields

1
kies = 5 (07 + 05 + 055) (5.18)
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Figure 5.6: Measure of Turbulence Resolution. M < 0.2 is considered an adequate
resolution for LES (Pope, 2000).

for the resolved turbulent kinetic energy. An estimate of 02 = var(u) was calculated
at every time step during the simulation.

Pope’s criterion states that the measure of turbulence resolution should be small,
e.g. M < 0.2. Figure 5.6 depicts the criterion for the simulation carried out in this
thesis.

5.3.3 Computational Procedure

For the LES, a centered scheme was used for the gradients and a flux-limited scheme
(“limited linear”) for the divergence terms. The limiter function blends between first
order schemes, e.g. upwind scheme (UD), and second order schemes, e.g. central
scheme (CD), to ensure the stability of the computation. This is achieved by com-
puting an arbitrary variable f using

f=fuop+¥)(feo - fup) (5.19)

with flux limiter function ¥ and the ratio of successive gradients r. The flux limiter
was chosen not to follow the total variation diminishing approach (Sweby, 1984),
but to tend more towards the higher order scheme. As in the two-dimensional cases,
a second order time discretization was chosen. To reduce the computational time a
maximum CFL number of CFL = 0.5 is applied to determine the time step size.
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5.3.4 Data Acquisition

The data acquisition procedure is essentially the same as in the laminar cases (cf.
Section 5.2.3). The instantaneous Reynolds number Re(#) is taken as an area average
from the x = —9d-plane. Nu(¢) and c¢(¢) are area averages from the cylinder. The
spatial proportionment into sectors was discarded as turbulence not only leads to
circumferential differences, but also to spanwise fluctuations. Instead only integral
values for the whole cylinder were extracted and saved as tabulated time series.

5.4 Linearized Navier Stokes Equations

Another possibility to generate a linear model for the heat transfer and skin fric-
tion dynamics is to linearize the governing equations. This approach was chosen by
Apelt and Ledwich (1979) to study the behavior of a cylinder in unsteady flow. Ulti-
mately, Kwon and Lee (1985) used this approach to examine the transfer behavior
of a heated wire in the scope of Rijke tube thermoacoustic oscillations.

Following the approach by Kwon and Lee (1985), a vorticity—stream function formu-
lation was chosen for the Navier—Stokes equations. The advantage of this method is
that pressure is dropped from the formulation and only three equations have to be
solved in two dimensions. The dimensionless governing equations are presented
in Section 2.2.6 (Equation (2.68)-(2.70)). In this approach, a steady-state solution
was computed first. The perturbation equations, linearized around this steady state,
were solved subsequently. To achieve good results a steady state has to exist. Hence,
only Rey < 40 was considered for this treatment. With this method, the frequency
response of skin friction and heat transfer can be assessed directly without SI or
other time series analysis techniques. The frequency response function can be ap-
proximated evaluating the response at multiple discrete frequencies for the same
steady-state solution. The complete procedure was implemented in MATLAB (The
MathWorks, Inc., 2016).

5.4.1 Computational Domain and Grid

Computational domain and grid are to a great extent based on the basic setup de-
scribed in Section 5.1. Especially the resolution close to the surface of the cylinder
and the domain size were chosen according to these investigations. The solver, in
this case, was written for only this purpose and therefore a very efficient, but other-
wise limited method could be implemented using a log-polar grid.
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Figure 5.7: Mesh for LNSE Approach. Mesh shown in real coordinates (left) and
in transformed coordinates (right). The domain boundaries are marked
with colors.

Introducing modified polar coordinates 1 and ¢, the so-called log-polar coordi-
nates, yields

r

n=In (3) : (5.20)

The transformation to the x—y-system is achieved with

x=—e"l-cos(¢) and y=¢€l-sin(¢). (5.21)

With this transformation, concentric circles around the origin have exponentially
growing radius r with linearly growing 1. This type of mesh offers two advantages:
On the one hand, the region close to the surface of the cylinder is greatly refined.
In the far field, however, where gradients are comparably small, the mesh is rather
coarse, which reduces the cell count. On the other hand, the governing equations
can be formulated like in Cartesian coordinates except for a scaling factor related
to the transformation. Figure 5.7 shows the grid created with this approach in x-
y—coordinates (left) and in transformed coordinates (right). The mesh was created
using the information acquired in the grid independence study in Section 5.1.3.
Hence, the following dimensions given in Table 5.7 were used.

5.4.2 Perturbation Equation in Vorticity-Stream Function Form

To compute the frequency response to pulsations in the free-stream velocity, i.e.
stream function, Equations (2.68) to (2.70) were modified. Harmonic perturbations
were introduced for the flow variables stream function v, vorticity {, and tempera-
ture © in Equations (2.68) to (2.70). These perturbed quantities are given by

1,U=1,U0+€17[/1818rt, C=(0+€Clelsrt , and ®:®0+€®1815rt
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5.4 Linearized Navier Stokes Equations

N. N, A¢ Anld Total
.107%  .1073 number of
cells
37 53 0.0849 0.0869 1961
73 106 0.0430 0.0434 7738
145 212 0.0217 0.0217 30740

289 424 0.0109 0.0109 122536

Table 5.7: Different Meshes Used in the LNSE Approach. Results of the steady-state
cell size study for the log-polar grid, L; = 50, Rey = 40, steady state.

where € denotes the perturbation amplitude. It serves as a small parameter that is
used for bookkeeping in the derivation of the linearized equations, i.e. ultimately
only terms of order @ (') or lower are kept. The flow variables with indices forfeit
their dependence on time. The temporal derivative can be computed directly. The
resulting equations were separated according to the order of the bookkeeping vari-
able €. Terms with €°, i.e. zeroth order terms, form the equations for the steady state.
These equations are still nonlinear as is the nature of the flow. First order terms
amount to the linearized perturbation equations. Terms with higher powers in €
were neglected as they become small for € — 0, i.e. small fluctuation amplitudes.

Steady-State Equations

The zeroth order equations describe the steady-state flow. They are given by

0>y  0°wo

2
o " agr Y o

o L (%6 0

Codwo  0Co 0y _ (5 (1,0 (1) (5.23)
0¢ on  On 0¢  Reo\dn® = 0¢?
00 "0, &

00yy 0090y, _ 1 (0 0 9 91)_ (5.24)
0 o o1 0p RegPr{on® ' 0¢?

These equations in (¢, ) coordinates are equal to Equations (2.68) to (2.70) in (x, y)
coordinates save for the transformation parameter r. The steady-state variables do
not depend on time and hence the time derivatives are dropped.

Boundary conditions given in primitive variables in Section 5.1.1 had to be trans-
lated to the solved variables. In the far field 17 = npax, the stream function was given
by the potential flow solution reported in Section 2.2.7, Equation (2.76). The as-
sumption of potential flow at this boundary also implies ¢ = 0. In order to allow the
vorticity created at the surface of the cylinder to leave the domain, the downstream
part of the far field boundary is set to zero gradient conditions ((0¢)/(0n) = 0). The
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temperature of the flow corresponds to the temperature in the far field and thus
© = 0. In an analogous manner, the far field downstream is set to (00)/(dn) = 0.

At the surface of the cylinder, the application of a no-slip boundary is not trivial
with the given variables. Both the velocity through the surface and the slip along
the surface have to be zero. The first requirement is fulfilled by setting ¥ = 0 at the
boundary. The gradient of the stream function vanishes in circumferential direction
which leads to (0y)/(0¢) = u; = 0. This is also in accordance with the potential flow
solution. The second requirement is then formulated, by the use of Equation (2.68),
in plain Cartesian coordinates as

— +(=0. (5.25)

Hence, a wall vorticity enforcing the no-slip condition had to be calculated. This
also shows that the surface of the cylinder is the (only) source of vorticity. Follow-
ing the approach discussed in Section 2.2.5 the temperature at the surface of the
cylinder is fixed and therefore ©,, = 1.

Parallel to the flow to the windward and to the lee side of the cylinder are symme-
try boundaries. The flow velocity is determined by the derivatives of the stream
function. No flow crosses the symmetry boundary which dictates that the stream
function has to be constant along it. With the defined value of ¢ = 0 at the surface
of the cylinder, this condition also applies to the symmetry boundaries. In this po-
sition, vorticity also cancels to { = 0 as any mirrored flow feature exhibits a vorticity
with opposite sign. The temperature gradient vanishes at the symmetry condition,
i.e. (00)/(0n) =0.

The boundary conditions are summarized as

n=In(1/2) wo=0 Co=Cow Q=1 (5.26)
1 — 00 Vo = Up,co I SIN(P) %_4;70:0 Oy=0 (5.27)
=0 =0 (=0 @—0 (5.28)
b= Yo = 0= op - :
=27 =0 (=0 @—o (5.29)
¢ = Yo = 0= 3 .

To quantify skin friction and heat transfer, the steady-state friction coefficient and
the steady-state NufSelt number were computed using

2 .
Nug ¢ = and Cf,x,0,p = R_eo( 0,w Sin(¢). (5.30)

on n=In(1/2)
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Perturbation Equations

In the perturbation equations or first order equations, the terms of order O (¢) are
collected. The equations read

0° 0°
0:7’121 + G(ZJ; = —r2( (5.31)
001 0yo  0C1 Oyrg N 0Co0y1 00y _ 1 (02(1 N 0%
op 0n 0n 0p O¢p 0n 0n 0P Rey\on? 0P?
00, 0'(//() B 00, 01//0 + 00 01//1 B 00 awl _ 1 (02(91 + 6261)
dp dn On op 0P On Oy 0 RegPr\ on?  o¢? )’
(5.33)

iSrr?¢, + ) (5.32)

iSrr’0; +

Time derivatives are resolved explicitly with (8¢;e'>'%)/(0¢t) = iSr{;e'S'! and the
transformation parameter r.

The boundary conditions for the perturbation equations are very similar to those
of the steady state. Besides the fact that these boundary conditions apply to the
perturbed quantities v, (1, and ©; the main differences concern the stream func-
tion at the far field boundary and the temperature at the surface of the cylinder. The
stream function is directly linked to the excitation as it decides upon the free-stream
velocity. Hence, it is computed from the potential flow solution with the pertur-
bation velocity in the far field u; o, = € up . The temperature at the cylinder is a
Dirichlet boundary condition. It is fixed to a given value and hence ©g = 1. This also
dictates, that no pulsations may occur at the surface of the cylinder or otherwise
this condition would be violated. It follows from this that the pulsating quantity is
zero O, = 0 at this position.

Summarizing, the boundary conditions for the periodic fluctuations are given by

n=1In(1/2): ¥1=0 (1=CLw 0:=0 (5.34)
nN—00: W1 = Ul SIN(P) %—i; =0 ®;=0 (5.35)
=0: =0 (1=0 @—0 (5.36)
$=0: Y= 1= ob :
=27: =0 (1=0 @—0 (5.37)
¢= : v = 1= 6¢) =0. .

Analogous to the steady state, the Nullelt number and the friction coefficient of the
fluctuations are computed by

2 .
Nup gy = — and Crxl,p= R—Cl,w sin(¢) . (5.38)
N Ip=In/2) €o
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5.4.3 Finite Difference Approach

The governing equations in stream function vorticity formulation (Equation (5.22)
to Equation (5.24) and Equation (5.31) to Equation (5.33)) were solved using a finite
difference approach on alog-polar grid (Thom, 1933; Fornberg, 1980; Kwon and Lee,
1985).

On an equidistant, rectangular grid such as the one employed in this case (cf. Fig-
ure ??), the finite difference formulation is equal to the finite volume formulation.
Therefore, it is argued that this approach offers similar accuracy as state of the art
tools using the finite volume approach, e.g. OpenFOAM.

Derivatives were approximated using central differences and thus second order ac-
curacy in space was achieved. For any given flow variable f, the central difference
is given by

of _firnj—fi-nj of _fijr1-fij1

d 5.39
on 2An an 0P 2A¢ -39
Second derivatives were approximated by
02£:ﬁ+1,j_2ﬁ,j+]ci—l,j and azf:fi,j+l_2fi,j+fi,j—l (5.40)
on (An)? 0p? (Ap)?

which also is a central difference. At the boundaries, one sided differences of second
order were used.

Vorticity at the Surface of the Cylinder

The vorticity at the surface is an important factor in these simulations. The wall
boundary conditions, i.e. no-slip and no penetration, have to be enforced. The no-
slip condition is violated by the potential flow solution, and the vorticity has to be
calculated to counteract. Thom (1933) developed a formula that provides first order
accuracy. In this thesis, the equation

118y~ Vi
272 (An)2

w
was used, which is second order accurate (Weinan and Liu, 1996). With this approxi-

mation, slip cannot be suppressed completely. Hence, the slip velocity (0y)/(0n) | w
is used as a secondary criterion for convergence and quality of the results.
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5.4 Linearized Navier Stokes Equations

5.4.4 Computational Procedure
Steady State

To evaluate the linearized equations, it was first necessary to find a steady state at
which the linearization is carried out. This was achieved by solving the nonlinear
equations sequentially.

The nonlinear equation system was solved by using an initial velocity, calculated
from the potential equations (cf. Section 2.2.7), to evaluate the stream function.
The derivative of the stream function was used as the velocity in the subsequent
iteration. The vorticity generated at the surface of the cylinder to fulfill the no-slip
condition was propagated. This procedure was repeated until changes in the solu-
tion were small compared to the initial change. Convergence was improved through
the use of a relaxation factor. Figure 5.8 depicts a flow chart of the iterative proce-
dure. The temperature is not coupled with the other equations and could hence be
calculated in a final step outside the iteration loop.

The change in vorticity normalized with the vorticity after the first iteration written
as

e IO -1y
el
was used as the convergence criterion. Additionally, the slip velocity at the surface

of the cylinder (0y)/(0n) was evaluated to check for the fulfillment of the no-slip
boundary condition.

(5.41)

A relaxation factor p was applied to the wall vorticity. The relaxed vorticity at the
surface was computed for the ith iteration with

o =pl0 4 a-p)li-b, (5.42)

The relaxation factor had to be very small initially (p = 0.05). To find an optimum
between stability and convergence, the relaxation factor was adapted. Depending
on the behavior of the convergence criterion, the relaxation factor was adjusted. If
o rose from one iteration to the next, p was decreased to enhance stability. Vice
versa, p was increased for even faster convergence, if o dropped rapidly. To make
this adaptive relaxation scheme robust, p was forced to stay in the interval [0.001, 1].
The simulation was restarted with a lower initial value for p if the solution diverged
fatally.

This algorithm for the solution of the nonlinear coupled steady-state equation sys-
tem, although it may seem crude, proved to be more efficient than the built-in MAT-
LAB (The MathWorks, Inc., 2016) function provided by the optimization toolbox.
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Figure 5.8: Flowchart of the Steady-State Solver.

Perturbed Quantities

The first order equations are linear and can hence be solved efficiently by using
the matrix left division function from MATLAB (The MathWorks, Inc., 2016, mldi-
vide “\”). The equations for stream function and vorticity are coupled, and they are
hence collected in a single system matrix. For convenience also the temperature is
induced. This is not strictly necessary and can also be calculated sequentially. The
structure of the matrix can be depicted as

Ay Bye 0] [y] [w
Ciw A O (l=1¢C . (5.43)

0 0 Ale] [e],

The finite difference stencil for the respective Equation (5.31) to (5.33) is included in
Ay, A, and Ag. The submatrix By, ; couples the vorticity with the stream function
equations. In an analogous manner, the derivatives of the stream function (veloci-
ties) are coupled with the vorticity equation through C¢ . 6Q denotes the boundary
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5.4 Linearized Navier Stokes Equations

conditions. The terms iSr7?{; and iSrr? ©; serve as source terms and are included
through the diagonals in A; and Ae.

Excitation

The excitation is equivalent to a sine wave excitation as detailed in Section 5.2.1. In
time domain it is given by

Re(t) =Reop (1 +€sin(Srt)) . (5.9)

In the frequency domain approach with the linearized Navier-Stokes equations, this
is achieved in two steps. The amplitude € is specified in the boundary condition for
the stream function pulsation

W1n—oco = Upoo€ T -SIN(¢P). (5.44)

The frequency, i.e. the Strouhal number Sr, is included in the system matrix, in the
iSrr?{; and iSrr?@®,; term, and can be specified according to the desired excitation.

5.4.5 Acquisition of Frequency Domain Data

The steady-state solver was used to find a solution (v, (o, and ©y) for a specified
mean flow Reynolds number Rey and Prandtl number Pr. These converged results
were used to compute the fluctuating quantities (1, {1, and ©;) at the same Reg
and Pr and at specified frequencies Sr. The frequencies were chosen from the inter-
val of interest [0,40]. A smaller distance between sequential frequencies was used
in regions where greater changes were assumed. The frequency response for the
heat transfer and the skin friction at each Strouhal number was evaluated using
Equation (2.101) in the form

Nu; (Sr)/Nug cr1(Sn)/cro

GNu(Sr) = — and G, £ (Sr) = (5.45)

This frequency response data serves as input for the continuous time identification
procedure introduced in Section 4.4.5. Results are presented in Section 6.2.

5.4.6 Discussion and OQutlook

For Reynolds numbers higher than the onset of vortex shedding, which occurs
around Re = 47 (cf. Table 2.1), no steady-state solution exists. The dynamics of the
wake are inherently unsteady but repeat periodically. Fornberg (1980) computed
steady-state solutions even beyond this threshold up to Re = 300. However, these

141



5 Data Generation

solutions are found numerically by neglecting the time derivative in the Navier—
Stokes equations and are not physically meaningful.

A possible approach would be to compute cycle averaged solutions for the flow
fields (wg, (o, and Op) and subsequently calculate the linearized perturbation vari-
ables. Without further improvements, this would not yield acceptable results and is
thus beyond the scope of this thesis.

This approach to acquiring the frequency response of the skin friction and the heat
transfer of a cylinder in pulsating crossflow proved to be very efficient. Depend-
ing on the desired accuracy, the same results as computed with the time domain
computation in a matter of days was obtained in several minutes. However, this
method is limited to the flow regime Rey < 40, where no vortex shedding occurs.
Another limitation is that the type of mesh chosen in this thesis is restricted to
cylinder geometries. This can be circumvented by the use of specialized software,
e.g. finite element solvers for unstructured grids. Besides this, the main advantage
of this method is its high accuracy combined with low computational cost.
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6 Transfer Function Identification

This section deals with different methods to identify transfer functions from free-
stream velocity pulsations to heat transfer and skin friction from CFD data. A direct
approach might be to simulate the system introducing an impulse in the inlet veloc-
ity. The response, acquired during the simulation, would be the impulse response,
which completely quantifies the LTT system. A transfer function is achieved by ap-
plying the Laplace transform (or Z-transform in discrete time) on the unit impulse
response. However, this method is not feasible. The available numerical procedures
cannot conserve the forcing impulse which would lead to a deteriorated response.
A better approach, from a numerical point of view, is to use step excitation instead.
The post-processing of a step response is straightforward. This is shown in Sec-
tion 6.1, where also methods to acquire a transfer function are discussed. Simulating
a step response can often be used as a preliminary tool to gain information vital for
more sophisticated identification methods.

Another approach, often used in experiments, is the excitation with a single fre-
quency Sr; (u(t) = Ay sin(Sr; 1)). The response for an LTT system is again a sine wave,
but usually with different amplitude and shifted in time. These time series can be
evaluated using the Fourier transform, so the response at this particular frequency
is

y(Sr;)

G(Sr;) = WS
i

(6.1)

Repeating this procedure for multiple frequencies in the range of interest leads
to a typical frequency response that can be further processed to form a transfer
function. This has some advantages over an impulse excitation or step excitation
and is usually directly implemented in experiments. Advantages are that the exci-
tation amplitude can be chosen for each frequency individually and the influence
of disturbances can be minimized by using several periods of the same frequency.
However, use of CFD simulations in the time domain to generate the data is rather
time consuming. For every frequency, a simulation has to be carried out over several
periods of the given excitation frequency. In Section 5.4, a method was introduced to
acquire a frequency response by simulating in the frequency domain. In Section 6.2,
Sl is applied to the frequency response yielding a transfer function.

Section 6.3 deals with the application of the CFD/SI approach. The data acquired
from time domain simulations (cf. Section 5.2 and Section 5.3) is processed with
methods introduced in Section 4.4. Instead of an impulse, a step or sine waves, per-
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sistent excitation is used together with SI techniques to develop the desired transfer
function.

6.1 Step Response

The adaptation of the boundary layers after changes in the free-stream velocity
controls the dynamics of the transfer of momentum and heat in the unsteady case.
Payne (1958) studied starting flow past a cylinder at moderate Reynolds numbers,
using numerical integration of Helmholtz’s vorticity equation. In a similar manner,
Apelt and Ledwich (1979) studied the response of drag force and heat transfer of
a heated cylinder to impulsive forcing from rest, as well as impulsive increases in
velocities by 50 %. The step response technique was also used by Surendran et al.
(2016) to study the dynamic behavior of a cold heat exchanger in flue gas crossflow.

In this thesis, the development of the boundary layers and the heat transfer rate
and skin friction in response to a sudden, small increase of the free-stream velocity
by 10 % (step forcing) are investigated. The results obtained with the step input are
simpler to interpret physically than the response to periodic perturbations and can
be used to elucidate effects observed in the case of the periodic velocity pulsations
(see below). The work shown here was previously published in parts in Witte and
Polifke (2017a).

The step response is an immediate output of the computation with data acquisi-
tion procedures as described above (cf. Section 5.2.2). For reasons of simplicity, the
time instant when the step occurs was chosen to be z; = 0. The response is given as
reported in Equation (4.127) by

Nu'(#) = Nu(#) — Nu(0) and cj (1) = ¢p(8) = cf(0) 6.2)

where Nu(0) = Nug and ¢f(0) = cf,o denote the (steady-state) Nullelt number and
friction coefficient before the step input, respectively.

The unit step responses were calculated with

U /NUO) g i /ep©@ ey

= and h..(t) = -
Re'(r) /Re(0)  ¢Nu(®) T R [Re@) €< O

hNu(t) = (6.3)

where the Nuflelt number and the friction coefficient are normalized with their re-
spective steady-state value before the step. The computed response is scaled with
the strength of the perturbation € to yield a unit step response, although the excita-
tion was weaker than unity. This scaling is valid as it was assumed to be within the
limits of linearity. After this step, the simulation was continued with constant input
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until the output did not change anymore, i.e. the flow had adopted to a new steady
state.

From the unit step response, apart from qualitative insight into the flow dynamics,
the quasi-steady gain K can be assessed easily. The gain corresponds to the value of
the unit step response when a new steady state is reached. This is also the limit of the
unit step response for very long times Kny = hny(f — 00) and K, = h. f(t — 00) and
again appear as low frequency limits in the frequency responses (cf. Section 6.5).

In the following sections, results for the unit step responses hny, and h, ; as simu-
lated directly are shown. Snapshots of the temperature field surrounding the cylin-
der at discrete instants in time at two Reynolds numbers are reported in Section 7.2.
The investigated Reynolds numbers (Reg = 0.4, Reg = 4, and Rey = 40) correspond
to the three flow regimes of creeping flow, attached flow, and flow with recircula-
tion in wake without vortex shedding. This corresponds to the flow conditions of
interest for the Rijke tube and hot-wire anemometry. However, the vortex shedding
phenomenon limits this approach also to Rey < 40, because the changes in Nullelt
number and friction coefficient due to this unsteady behavior severely impede the
results. In other words, no steady state exists above the threshold for vortex shed-
ding, which complicates the interpretation of the results drastically.

6.1.1 Heat Transfer
Full Cylinder

The temporal development of the response is depicted in Figure 6.1. The thick solid
lines represent the response evaluated directly from simulations with a step input.
The dashed line denotes the steady-state gain (taken at ¢ = 80 for Reg = 0.4 and
at t = 20 for Reg = 4 and Re( = 40). For comparison, the step responses computed
from a transfer function identified with the CFD/SI approach (cf. Section 6.3) are
depicted as dash dotted lines.

The sudden increase in the inlet velocity leads to a rise in the heat transfer rate. For
Rey = 40, the heat transfer increases rapidly until a local maximum is reached near
t = 1.5. At lower mean flow Reynolds numbers, this peak is less pronounced and
occurs at later times (¢ = 5 for Reg = 4) or not at all (Rey = 0.4). All step responses
approach a new steady-state value Kyy. This value is smaller if the Reynolds num-
ber is smaller. The limits for t — co are Kyy = 0.25, Kny = 0.37, and Ky = 0.42 for
Reynolds numbers Rey = 0.4, Reg = 4, and Reg = 40, respectively.

The step response shows that at low Reynolds numbers the dynamic behavior of the
heat transfer rate can be interpreted as a single, comparatively large time scale that
governs the time delay until a new steady-state value is reached. Towards higher
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Figure 6.1: Unit Step Response of Nul3elt Number. Rey = 0.4 (—), Reg = 4 (—),
and Rep = 40 (—). The dashed lines (---) denote the steady-state gain
Knu taken at ¢ = 20 for Reg = 4 and Rey = 40 and at ¢ = 80 for Rey =
0.4. Dash dotted lines (- - -) represent the response evaluated with the
CFD/SI method.

Reynolds numbers (Reg = 4), this dominant time scale becomes shorter and a sec-
ond effect appears. It is visible as a local maximum in the response. This effect has
a different time scale and is even stronger at Regy = 40.

Circumferential Distribution

In order to gain more insight into spatial differences of the temporal development of
the heat transfer, four equally sized sectors were examined separately. The sectors,
as marked in Figure 5.2, are labeled 1 to 4 starting at the windward side of the cylin-
der. The choice is justified by the different flow regimes that are present at various
locations (cf. Section 5.2.3). The step response of the individual sectors is computed
with

Nu; ()
eNu(0)

P, i (1) = (6.4)

where i = 1,2, 3,4 denotes the sector. Figure 6.2 shows the Nullelt number gain nor-

malized with the area of the whole cylinder for Reynolds numbers Rey = 0.4, Rey = 4,
and Rey = 40. The sum of the four curves results in the graph shown in Figure 6.1.
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Figure 6.2: Unit Step Response of Heat Transfer for Individual Sectors. Sectors: 1
(—),2(—),3 (), and 4 (—). Mean flow Reynolds number Rey = 0.4
(a), Reg =4 (b), and Rey =40 (c). The responses of the individual sectors
are normalized with the heat transfer at the full (half) cylinder.

At the lowest Reynolds number (Req = 4, cf. Figure 6.2 (a)), it can be seen that sectors
1 through 3 show a behavior very similar to the complete cylinder. The sector 1
contributes most to the overall heat transfer followed by sector 2 and sector 3 and
thus they show the highest gain. However, the behavior of sector 4 differs. It drops
below the initial steady-state value directly after the step input occurred. At about
t = 2.5 after the perturbation, the heat transfer becomes greater than in steady state
again and settles asymptotically to a value below that of the sector 3.

The flow configurations with Rey = 4 (Figure 6.2(b)) and Rey = 40 (Figure 6.2(c))
show essentially the same characteristics. In contrast to Reg = 0.4, a peak response
occurs for Rep =4 and Rey = 40 in sectors 1 to 3, which again determine the behavior
of the complete cylinder to the largest extent. For higher Reynolds numbers, these
maxima are more pronounced and occur shortly after the step input. The occur-
rence of the peak is strongest in sector 3, which includes the flow separation point.
The relative contribution of the windward side of the cylinder is greater for higher
Reynolds numbers.
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Figure 6.3: Unit Step Response of Skin Friction. Rey = 0.4 (—), Rep =4 (—), and
Rep = 40 (). The dashed lines (---) denote the steady-state gain K,
taken at t = 80 for Reg = 0.4 and at ¢ = 20 for Rey = 4 and Rey = 40. Dash
dotted lines (---) represent the response evaluated with the CFD/SI
method.

6.1.2 Skin Friction
Full Cylinder

Like the step response of the heat transfer, the temporal evolution of the skin friction
is shown. Figure 6.3 depicts the normalized response of the friction coefficient to
step forcing. The thick solid lines represent the response evaluated directly from
simulations with a step input. The dashed line denotes the steady-state gain (taken
at t = 20 for Reyp = 4 and Rey = 40 and at ¢ = 80 for Rey = 0.4). For comparison,
the step responses computed from transfer functions that were identified with the
CFD/SI approach (cf. Section 6.3) are plotted as dash dotted lines.

The skin friction responds instantly to the step input by assuming large values. The
following decrease is very steep as well, but slows down eventually. This restoration
process is due to the transport of excess vorticity, created when the step excitation
takes place, away from the surface of the cylinder. The friction coefficient settles to
a new steady state above the initial conditions, but much lower than the peak. The
restoration is fastest for Rey = 0.4 and slowest for Reg = 40. The new steady-state
value, equivalent to the steady-state gain K, ;= 1.242, K, ;= 1.414, and K, .= 1.450
for Rep = 0.4, Rey = 4, and Re( = 40, respectively.
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Figure 6.4: Unit Step Response of Individual Sectors. Sectors 1 to 4 (upstream-—
downstream) to step forcing at (a) Reg = 0.4, (b) Rey =4, and (c) Reg = 40.
The responses of the individual sectors are normalized with the skin fric-
tion at the full (half) cylinder.

The peak values are only limited by the numerical procedure and reach such high
values because an incompressible fluid is assumed. Such a harsh peak is associated
with very high frequencies, for which the compactness assumption (c.f. Section
9.1.3) does not strictly hold. Nevertheless, the delay in returning to a steady state
is captured adequately.

Circumferential Distribution

Figure 6.4 depicts the response of the individual sectors 1 to 4 of the skin friction
coefficient to step forcing. Graphs are given for (a) Rey = 0.4, (b) Rey = 4, and (c)
Rep = 40. The behavior of each individual sector is very similar to the full cylinder
given in Figure 6.3. For the heat transfer, a clear trend was apparent: Most heat is
transferred close to the forward stagnation point, and the heat transfer declines
towards the backward stagnation point. This is not the case for the skin friction.
For all Reynolds numbers, the strongest response is observed in sector 2. This is
in accordance with the position of the greatest steady-state skin friction (cf. Sec-
tion 2.1.2, Figure 2.4). Immediately after the step excitation, the friction coefficient
experiences the second largest change in sector 3. At Reynolds numbers Rey = 4 and
Rep = 40, however, it is overtaken by sector 1 which adapts faster, but finally assumes
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Reg Steady-state Rise time Rise time Overshoot
gain 0%-63.2 % 10 %-90 % in %
0.4 0.2495 6.0289 16.8758 0
4 0.3649 0.9124 2.1246 2.96
40 0.4161 0.2378 0.4091 18.95

Table 6.1: Step Response Characteristics of Heat Transfer.

a new steady state with a relative change above sector 3. When a recirculation zone
exists at the lee side of the cylinder, friction values are negative. This can be ob-
served in plot (c) at Rey = 40 where the steady state of sector 4 is negative, which
corresponds to a stronger recirculation in the new steady state (Re = 44). The skin
friction response in sector 4 (cf. Figure 6.4 (c)) is positive until ¢ = 0.7. This indicates
that the recirculation zone collapses and is restored over time to the new steady
state. The reason for this is the strong pressure gradient necessary to accelerate
the flow to the new velocity from one time step in the simulation to the next. The
adverse pressure gradient that leads to flow separation and hence recirculation is
counteracted. The pressure becomes favorable, and the flow stays attached to the
surface of the cylinder. This effect only holds as long as the acceleration occurs, i.e.
as long as there is a strong external pressure gradient. In the restoration process,
the pressure gradient at the cylinder switches back instantly, and the flow starts to
detach again. This process becomes even more apparent in the flow-field represen-
tation in Section 7.2.

6.1.3 Characterization of Dynamic Behavior

The basic dynamic characteristics, i.e. simplified dynamics, can be quantified by a
few parameters. These parameters can be gained from the step response. They in-
clude the steady-state gain, the rise time or fall time associated with a time constant,
the overshoot over the final new steady state, and the dead time which is the time it
takes the system to show a significant response (cf. Section 4.3.4). The latter is not
relevant in the cases under investigation, as all systems respond instantaneously
and is hence not considered further.

In accordance with the theory of LTI systems (cf. Section 4.1), the step response pro-
vides a complete description of the system. Characteristic quantities describing the
dynamics are obtained simply by graphical evaluation. This information can also be
used as prior knowledge for more sophisticated methods of SI. The characteristic
quantities, as mentioned in Section 4.3.4, are given in Table 6.1 for the heat transfer.
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6.1 Step Response

Reg Steady-state Time to settle

gain to K-(1+0.1)
0.4 1.242 3.884
4 1.414 2.421
40 1.450 5.651

Table 6.2: Step Response Characteristics of Skin Friction.

The steady-state gain and the rise time from 0% to 63.2% (= 1 —e™!) describe a first
order time lag behavior. More accurately, they represent Ky, and ¢; from the first
order model G = Kny /(1 + ¢; Sr) (cf. Section 8.1.2).

The rise time is a measure for the time scale of the dynamics. It can be used to
determine an adequate sampling for further processing. The recommended time
step sizes T for an impulse response model are 7/10 — 7/4 for control purposes,
but might be higher depending on the application (Astrém and Wittenmark, 1997).
This leads to the recommended sampling time steps of 7, = 0.6029, 7, = 0.0912, and
75 = 0.0238 for Rey = 0.4, Rey = 4, and Re( = 40, respectively. These correspond to
Nyquist Strouhal numbers of Sr = 5.2109, Sr = 34.4320, and Sr = 132.1096, respec-
tively.

A similar analysis can be carried out for the friction coefficient. Due to the shape of
the skin friction step response, it is reasonable to compute a settling time instead
of arise or fall time. The settling time chosen in this thesis is defined as the time re-
quired to reach a value within some error margin around the final new steady-state
value. The chosen error is 10 % and hence the settling time is the duration from the
occurrence of the step until |../K¢; — 1| < 0.1. Steady-state gain and settling time
for the skin friction step response of the investigated mean flow Reynolds numbers
are listed in Table 6.2.

The settling times calculated from the step response of the skin friction are well
within the range of the rise times of the heat transfer step response. Therefore, the
derivation of the time step size still holds. It is noteworthy that the settling time
does not behave monotonically like the heat transfer rise time. The case with Rey =
4 is quickest to settle to a value slightly below the predicted steady-state gain of
3/2 (Lighthill, 1954). This also holds for Rey = 40 although the time necessary to
reach the 10 % bounds is more than twice as high. The settling time for the smallest
Reynolds number is in between the other values, but the new steady-state value is
lower. This effect can be attributed to the change in circumferential distribution (cf.
Section 6.1.2). This corresponds to the expectation that the drag scales linearly with
velocity at low Reynolds numbers (linear drag regime).
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6 Transfer Function Identification

6.1.4 Transfer Function from Step Simulation Data

Within the framework of LTT systems, it is possible to acquire a transfer function for
heat transfer and skin friction pulsations caused by pulsations in the free-stream
velocity from a step response. Four different methods were surveyed to achieve
this goal: (1) Use the time series of step input and step response to perform SI. (2)
Compute a frequency response first using FFT and subsequently identify a trans-
fer function from frequency data. From the discrete data, acquired from the CFD
simulation, an impulse response can be computed with an approximation of the
derivative. This leads to method (3) which uses the impulse response directly as
coefficients of an FIR model. (4) Compute the frequency response from the impulse
response padded with zeros and perform identification on the frequency data.

Choice of Method

Method (1), the use of the CFD/SI procedure directly on step response data, was
rejected because the input signal is not optimal for SI. The PSD of the signal is signif-
icantly diminished at high frequencies, and hence inaccurate results are expected.
The broadband excitation (cf. Section 6.3) provides better results at almost the same
effort.

A frequency response is gained computing the element-wise (frequency-wise) quo-
tient written as

A

G(Sr) = hA (6.5)
€eH

where H denotes the Fourier transform of the Heaviside step function. Continuous
time identification can be used to develop a transfer function (method (2)). The fre-
quency resolution of the FFT is determined by the length of the time series. A better
resolution can be achieved by appending the last value of the times series (the new
steady-state value) multiple times. This is allowed as the value should not change
as long as the input is constant. A discrete Fourier transform of the Heaviside step
function, however, leads to zeros at certain frequencies in the transformed quantity.
This is not desirable because at these frequencies the computation of the frequency
response is inaccurate or fails completely. Therefore, this method was rejected as
well.

The step response h[k] is the integral of the impulse response g[k]. Hence, the im-
pulse response can be computed from the step response data with finite differences
given by

hik] - hlk—1]

glk] = T . (6.6)
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6.1 Step Response

These impulse response coefficients g[k] can directly serve as the coefficients of an
FIR model. Mathematically, this corresponds to the application of the Z-transform
on the computed data. This method is straightforward, but the FIR model has cer-
tain disadvantages like a large number of coefficients depending on the time step
size. Thus, method (3) was also rejected in favor of method (4). The most promising
procedure to acquire a transfer function from step response data is detailed in the
following.

Data Preparation

The time series data was acquired from the simulation as described in Section 5.2.3.
The computations were performed with variable time step to ensure a constant CFL
number. These time steps are usually much smaller than the desired maximum fre-
quency to ensure a certain smoothness of the signals. For further processing, the
time series were linearly interpolated to a constant sampling time step equivalent
to the smallest time step of the simulation. This occurs at rates much higher than
the range of interest where the PSD of the signal is low. Hence, the information
loss and the aliasing introduced by the interpolation are minimal. Subsequently,
an anti-aliasing filter was applied to the time series, and they are downsampled
to a bandwidth Strouhal number Sr = 240. This is still six times higher than the
maximum frequency of interest, but the amount of data is reduced considerably.

Frequency Response

At first, the impulse response was computed from the step response data using
Equation (6.6). The final steady-state value, which is zero in the case of a BIBO
stable system such as the one at hand, was appended to the original time series
to enhance the frequency resolution of the Fourier transform in the consecutive
step. To acquire a frequency response, it is only necessary to compute the Fourier
transform of the impulse response. The Fourier transform of the unit impulse is
unity, i.e. it is the neutral element in frequency space, and a frequency-wise division
like in the case of the step response is not required. This avoids the problem arising
in the ill-conditioned computation of the frequency response directly from the step
response.

The frequency response computed from step response data is shown in Figure 6.5
for the heat transfer pulsations caused by velocity pulsations and in Figure 6.6 for
the skin friction as solid lines. For comparison, the frequency response of the trans-
fer function computed in Section 6.3 are included as dashed lines. It can be seen
that indeed for the investigated mean flow Reynolds numbers Rey = 0.4, Rey = 4,
and Re( = 40 the results are very similar and only minor deviations are visible. The
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Figure 6.5: Frequency Response of Heat Transfer from Step Simulation. Rey = 0.4
(—), Reg =4 (—), and Rey = 40 (—). Step simulation results are shown
as solid lines (—). For comparison, results from CFD/SI are depicted as
dash-dotted lines (- --).

largest discrepancies occur for skin friction at the lowest Reynolds number and high
frequencies.

Transfer Function

The frequency response can be used to compute transfer functions with the meth-
ods of identification of continuous time models (cf. Section 4.4.5) in particular VF
related methods. The frequency response, computed as shown above, is acceptably
smooth as can be seen in Figure 6.5 and Figure 6.6. Hence, the identification with
VF is straightforward, and the results are expected to be very similar to that of the
CFD/SI method. Details and results from the transfer function identification are
omitted at this point and are reported in the following sections associated with the
LNSE approach and the CFD/SI approach.

6.2 Transfer Function from LNSE

The LNSE provide a method to compute the frequency response directly by simu-
lation in frequency space (Kwon and Lee, 1985). The solver and the solution pro-
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Figure 6.6: Frequency Response of Skin Friction from Step Simulation. Rey = 0.4
(—), Reg =4 (—), and Rey = 40 (—). Step simulation results are shown
as solid lines (—). For comparison, results from CFD/SI are depicted as
dash-dotted lines (- --).

cedure for the LNSE were detailed in Section 5.4. The steady-state flow field was
computed for a specified mean flow Reynolds number Rey < 40 and Prandtl num-
ber Pr = 0.7123. Based on this steady-state solutions, the linearized perturbation
equations were solved for 50 logarithmically spaced Strouhal numbers in the range
[0.01,40].

From the temperature fields and their derivatives in radial direction, the steady-
state Nullelt Nug number and the perturbed NuRelt Nu' number were calculated.
The values were subsequently averaged over the circumference of the cylinder, and
a frequency response was calculated (cf. Section 5.4.5). The frequency response
function was approximated by the discrete values at 50 Strouhal numbers.

In an analogous manner, the friction coefficient ¢y was calculated from the vortic-
ity fields. This frequency response data was used to identify transfer functions for
heat transfer and skin friction from velocity perturbation at Re; € {0.1,0.2,0.4,

0.5,0.7,1.0,2.0,3.0,4.0,10.0,20.0,40.03.

6.2.1 Identification from Frequency Response Data

Continuous time transfer functions were identified using the VF technique detailed
in Section 4.4.5. The input for the VF method is the frequency response of the
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Figure 6.7: Frequency Response of Heat Transfer from LNSE. Rey = 0.4 (—), Reg =
4 (—), and Reg =40 (—). Step simulation (—), CFD/SI (- --).

heat transfer (Gny(Sr)) and the skin friction (Gcf (Sr)) to pulsations in free-stream
velocity, respectively. The VF method does not require the frequency samples to be
evenly distributed. The frequency samples are logarithmically distributed over the
Strouhal number range [0.01,40] with a higher density of samples at low frequencies.
This spacing was chosen to credit the fact that changes, especially in phase, are
stronger at lower frequencies. A logarithmic spacing, however, shifts more weight
to low frequencies in the identification process. This is desired for the skin friction.
For the heat transfer, this was partially counteracted by using the inverse frequency
response gain |1/ Gny (Sr)| as weighting vector. Stability of the resulting transfer func-
tions was enforced by pole flipping.

6.2.2 Results

Figure 6.7 depicts the heat transfer frequency response Gny(Sr) of the identified
transfer functions for the mean flow Reynolds numbers Rey = 0.4, Rey = 4, and
Rey = 40. For comparison, the result from the time domain CFD/SI approach are
included as dash dotted lines. Both solution techniques lead to very similar results
also observed in the frequency response computed from step response data in Fig-
ure 6.5.

Correspondingly, the frequency response of the skin friction G, (Sr) to pulsations
in the free-stream velocity are depicted in Figure 6.8. The response functions, rep-
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Figure 6.8: Frequency Response of Skin Friction from LNSE. Rey = 0.4 (—), Reg =
4 (—), and Rey =40 (—). Step simulation (—), CFD/SI (- --).

resenting the transfer functions identified from data from the LNSE, matches well
with the response evaluated with the CFD/SI approach (dash dotted lines).

In consideration of the good match between the models evaluated from LNSE and
CFD/SI, only the results acquired from CFD/SI are reported in Section 6.4 for the
parameter study. For completeness the fit values and transfer function from the
LNSE approach are reported in Appendix A.

6.3 CFD/SI

The CFD/SI method, combining numerical simulation with SI was proposed by Po-
lifke et al. (2001). It has been applied to various problems in aero-acoustics and
thermo-acoustics (Polifke, 2014). The identification of the transfer function of the
heat transfer was published in Witte et al. (2016a,b); Witte and Polifke (2017a).

Figure 6.9 illustrates the procedure in a flow chart: First, an unsteady CFD simu-
lation of flow and heat transfer around the cylinder with imposed excitation of the
free-stream velocity is conducted. Specifically, a spatially homogeneous, broadband
perturbation signal u,(#) is imposed as inflow velocity. The Reynolds number of the
axial velocity upstream of the cylinder Re represents the input. The Nullelt number
of the heat transfer Nu, as well as the friction coefficient between the surface of the
cylinder and fluid cy, are used as the outputs. Second, a transfer function is iden-
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Figure 6.9: Diagram of the CFD/SI Approach.

tified from input and output data using SI methods. Continuous time and discrete
time identification techniques were considered. Subsequently, the transfer function
is validated, i.e. the model quality is assessed. The best model for each mean flow
Reynolds number Rey is reported in Section 6.4.

The CFD/SI approach allows to determine the response function over a wide fre-
quency range using data from a single CFD simulation with broadband excitation.
In contrast, the FFT approach, based on forcing with a single frequency, requires
one simulation per frequency. Other types of signals, e.g. sums of sinusoids, chirps,
or sawtooth signals, have also been used in the past but did not perform as effi-
ciently as broadband noise. This is due to the fact that the latter provides high and
constant power spectral density over all frequencies of interest. Hence, the excita-
tion is persistent and limited in amplitude (Tangirala, 2014). Moreover, different
signal time series can be designed to be decorrelated. This allows extending the
available time series for identification by simply concatenating the series of two
separate experiments or simulations. For the identification with multiple inputs
(MISO or MIMO systems), decorrelated excitation signals allow the SI procedure
to distinguish between the inputs.

Numerous SI procedures and auxiliary tools are implemented in MATLAB (The
MathWorks, Inc., 2016). The CFD/SI procedure can be divided into five main steps:
After an input signal is created with the desired properties and the solver is set up
to give an accurate representation of the underlying physics, this signal is used in
the CFD simulation. During the computation, time advances and time series are
acquired at every time step. These time series are used for parameter estimation and
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for validation. This data is processed and eventually fed to the identification rou-
tine. A model based on the data is fitted by the identification algorithm, i.e. model
parameters are estimated. The structure of the model as well as other settings and
the choice of routines is made beforehand. The identification is followed by a model
validation in which the performance and some characteristics of the model are as-
sessed. All steps may be repeated in order to find the best model. A flowchart of the
CFD/SI procedure is depicted in Figure 6.10. A priori acquired data from the step
response simulation (cf. Section 6.1) and the discretization study (cf. Section 5.1)
was used to aid the process in finding a suitable solver setup and model structure.
Moreover, this information was employed in the validation process.

6.3.1 DataPreparation

The acquired data were pre-processed for the SI. If the simulation had to be
restarted, the data series were concatenated to form a single long time series for
each variable. Depending on whether the full cylinder or only parts of it should be
analyzed, the data of the individual sectors were combined as desired. All time series
were recorded with variable time steps as the simulation was set to keep the CFL
number constant to a specific maximum value (CFL,,x < 0.2). To achieve a constant
sampling time, necessary for the identification procedure, the data were linearly
interpolated to a constant sampling time step corresponding to the smallest time
increment in the simulation. The PSD at frequencies associated with the smallest
time step is low and hence the aliasing introduced by the interpolation is negligible.

Subsequently, the data is filtered and down-sampled to a larger sampling time T.
A general guideline to choose the T in practice is about 20 to 40 samples in one
settling time c¢;, where c; is the dominant time constant or the time constant of
a first order approximation of the system (Astrom and Wittenmark, 1997, Chapter
2). For ¢; = 0.2 (Lighthill, 1954), this leads to Ts = 0.005 — 0.01. In this thesis, T =
0.01309 was chosen, which yields a Nyquist frequency of Srnyquist = 240 six times
higher than the frequency of interest. In the step response simulations, a rise time
of ¢; = 0.2378 for a mean flow Reynolds number Rey = 40 was found. This result
confirms the choice of sampling time.

The down sampling procedure removes high-frequency noise from the interpola-
tion and keeps only information necessary for the identification procedure. The
choice of Sryax = 240 proved to yield the best results in the identification of OE
models. The desired range of frequencies in terms of Strouhal number is 0 < Sr < 40,
similar to Lighthill’s study (Lighthill, 1954). If a transient process at the beginning of
the time series was observed, this part was removed before further processing.

At this point, it would have been possible to filter the time series further to enhance
desirable properties or reduce contamination and therefore aid the identification
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Figure 6.10: Flowchart of the CFD/SI Procedure. Adapted from Séderstrom and
Stoica (1989) (cf. Figure 4.6).
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process. Filtering the data series does not modify the transfer behavior itself, as long
as both input and output are treated with the same filter. This does, however, not
hold for the noise. For the transfer function identification, filtering is equivalent to
weighting, but the filter changes the color of the noise and hence it is not recom-
mended to use “pre-filtering”if a proper noise model is sought.

In the next step, the normalized pulsations of the instantaneous Reynolds number,
the Nul3elt number, and the friction coefficient are determined by

Re(f) —Re Nu(f) — Nu cr(t)—cr
uRe(t):M, yNu(t):M, and ycf(t)zg. (6.7)
Re Nu Cr

The quantities Re, Nu, and ¢y are the sample means of the according time series
evaluated by

N

¢[n] (6.8)

n=1

5 _ ].

N
where ¢ stands for Re, Nu, and ¢y. The means served as estimates for Reg, Nug, and
cr,0 respectively.

Finally, input and response data were split into two sets. A larger set, containing 80 %
of the complete time series, was used to estimate the model (estimation set). The
rest served as a validation set, which the model output was compared to as a test
on “fresh” data (cross validation). The data for every mean flow Reynolds number
was collected for a simulation time of more than ¢ > 200, i.e. the free-stream passes
the cylinder more than 200 times. Therefore, the estimation set had at least a length
of 160 and the validation set at least a length of 40. The acquired time series are
examined in more detail.

Reynolds Number Time Series

For the SI procedure, the time series of the input signal was acquired over a cross-
sectional plane inside the simulation domain. This was done to ensure that any
effect of the simulation tool, e.g. the implementation of the inlet boundary or of the
numerical procedure, affected the signal in the least possible way. In other words:
This ensured that the velocity actually acting on the cylinder is acquired, which
equals not necessarily exactly the imposed input signal.

Figure 6.11a shows an excerpt of the time series acquired from the CFD simulation.
The signal never exceeds the interval [-0.05, 0.05]. This corresponds to the desired
amplitude of the 5 % of the mean flow Reynolds number.

Figure 6.11b depicts Welch’s estimate of the acquired input signal. The PSD is high
at low frequencies and nearly constant between 0 < Sr < 40. The cutoff frequency,
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Figure 6.11: Input Time Series (Reynolds Number). Bars denote the bins of the
input time series. A normal distribution with the same mean and stan-
dard deviation as the data is indicated (—).
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where the PSD is 3dB lower than the steady-state value, is around Sr = 60. This was
also a design parameter for the input signal generation. Especially above Sr = 100,
no significant power is contained in the acquired time series. The highest frequency
that can be reconstructed from the signal is the Nyquist frequency Srpyax = 240,
which was determined by the down sampling.

The histogram of the times series offers insight into the amplitude distribution of
the data. Occurrences of values within a certain range (bin) are counted, and the
final sums are shown in Figure 6.11c. The excitation signal was generated by non-
Gaussian simulation (sampling). Hence, the acquired Reynolds number fluctuation
does not deviate too much from the amplitude distribution created with the tool
by Foller and Polifke (2011). It is almost uniform with a wave-like shape favoring
positive values. The almost uniform distribution is advantageous for SI, because
extreme values are reached comparably often, i.e. a good crest factor is achieved.

Nufelt Number Time Series

The Nullelt number was acquired as the time series comprising the output of the
system. A similar procedure as for the input signal was applied to post-process the
data. Figure 6.12a shows an excerpt of the acquired relative Nuf3elt number fluctua-
tion for all sectors combined. The same period of time as in Figure 6.11a was chosen
for comparison. The time series has less high amplitude peaks and also the general
range is only in the range [-0.01, 0.008] in this excerpt indicating the expected low-
pass behavior.

This tendency to respond weaker at higher frequencies can also be seen in the PSD
as depicted in Figure 6.12b. Within the frequency range of interest the PSD drops
more than 20dB in this case (Rey = 40). As expected, the cutoff frequency of the
input signal is visible as a sudden drop in PSD at frequencies above Sr = 60. There is
no significant PSD above Sr = 100.

The amplitude distribution of the Nufelt number fluctuation in response to the ex-
citation in Reynolds number is depicted in Figure 6.12c. In comparison to a normal
distribution with zero mean value and the same standard deviation, yn, resembles a
Gaussian distribution which may be explained through the Central Limit Theorem.

Friction Coefficient Time Series

The skin friction is quantified by the friction coefficient. Again, only the relative
fluctuation y., is considered for the SI procedure. The time series depicted in Fig-
ure 6.13a includes the same time range as in Figure 6.11a and Figure 6.12a. High
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relative amplitudes of up to 70 % can be detected which is a lot stronger than the
5% of the excitation.

Inspection of the PSD of the friction coefficient, as shown in Figure 6.13b, reveals
that the PSD rises with the frequency until the cutoff of the input signal is reached.
Comparison with the PSD of the Reynolds number fluctuation indicates a high-
pass behavior. It is to be expected that the amplitude would grow indefinitely with
frequency. This is in accordance with the analysis of Stoke’s second problem (cf.
Section 3.1.2). It predicts the shear stress pulsations to grow with the square root of
the Strouhal number Sr. However, at some frequency much higher than examined
in this thesis, the assumption of incompressibility will cease to be valid.

For the amplitude distribution of the friction coefficient pulsation, a similar shape
as for the Nullelt number is acquired (Figure 6.13c). However, the high-pass behav-
ior does not force the amplitude distribution to be Gaussian as does the low-pass
behavior of the heat transfer.

Coherence of Input and Outputs

The coherence of the input and the output signal (cf. Section 4.1.5) is an indicator for
the linearity of the system. If excitation and response share a linear relationship, the
coherence is close to unity. The coherence is also linked to the signal-to-noise ratio
and hence shows at which frequencies a good model is to be expected. Figure 6.14
depicts the coherence between the Nuf3elt number pulsations and Reynolds num-
ber pulsations as well as the coherence between the pulsation of the friction coef-
ficient and the pulsation of the Reynolds number. For the first, the value is above
0.9 in the complete range of interest and almost unity in the range 5 < Sr < 70. At
very low frequencies, coherence is not as high, which suggests a higher noise level.
This can be attributed to the fact that the time series has finite length. It is therefore
expected that models will show higher errors at these frequencies. Above Sr = 90,
the PSD of the excitation is at the level of the disturbances and hence coherence is
low, i.e. signal-to-noise ratio is low. This is reasonable considering the PSD of the
excitation signal is also very low above this frequency.

For the coherence between Reynolds number pulsation and skin friction pulsation,
a very similar behavior is observed. Coherence is high in the frequency range of
interest indicating, a linear relationship and a high signal-to-noise ratio. Again, like
the coherence between Re’ and Nu’, at very low frequencies signal-to-noise ratio is
not as high (~ 0.8) and identified models are expected to be less accurate in this
region. Beyond the cutoff frequency of the excitation, the coherence drops, but not
as fast for the heat transfer. These higher coherence levels might be due to the high-
pass nature of the skin friction.
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Figure 6.13: Output Time Series (Friction Coefficient). Bars denote the bins of the
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Figure 6.14: Coherence (Welch’s Estimate) of Input and Outputs. Coherence of uge
and yny (—), as well as uge and y, 5 (—).

From the inspection of the coherence, the following conclusions can be drawn: For
both the NulSelt number Nu and the skin friction cy at the given mean flow Reynolds
number Rey and the given excitation amplitude A = 0.05 - Rey the relationship to
the Reynolds number fluctuation is fairly linear. The signal-to-noise ratio is high
throughout the frequency range of interest, but slightly lower at very low frequen-
cies and where the PSD of uge is low.

6.3.2 Development of Discrete Time Models
Model Structure and Parameter Estimation

The problem at hand can be described as a SISO system, and the quantities of in-
terest can be acquired directly from CFD data. No prior knowledge of the physics
involved should be used, i.e. a black-box model is sought, so the model is not re-
stricted in this regard. Therefore, it is most convenient to identify a model in input-
output structure (cf. Section 4.3.2). For Rey = 40, laminar flow was assumed in the
whole domain. No vortex shedding occurs even at the highest Reynolds number
considered, and the routines for data extraction are not subject to “sensor noise”,
as would be the case for most hardware sensors. This leads to the conclusion that
the level of stochastic disturbance or noise in the system is low and most likely not
strongly colored. Thus, as a model structure, an OE model as sketched in Figure 4.7
was chosen.
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6 Transfer Function Identification

For the identification, model orders n;, and ny have to be chosen beforehand. The
CFD simulation is a causal system, in which an instantaneous feed-through of veloc-
ity perturbations exists. The Reynolds number fluctuation at the present time has
to be taken into account, and no pole may be present at the origin in the transfer
function. Thus, the model orders are constrained by nj, = n¢ + 1. A model providing
the best estimate is sought, preferring models with lower orders. This was achieved
with n, =5 and ny = 4.

Model Representations

Different representations of the identified models are shown in the plots in Figure
6.15 to Figure 6.17 exemplary for Rey = 40. The SI procedure was the same for
all mean flow Reynolds numbers. During parameter estimation (cf. Section 4.4.2),
the coefficients of the B polynomial and the F polynomial yielding the smallest
prediction error were calculated. A graphical representation of these parameters
is given in Figure 6.15. Blue dots show the coefficient values. The 99 % confidence
interval calculated during parameter estimation (cf. Section 4.4.3) is indicated by
the area confided by red lines around zero. A parameter within this region would
indicate that this parameter is not significantly different from zero and possibly
point towards a too high model order. However, in the case of the model depicted in
Figure 6.15, the confidence intervals are very narrow, and it may be concluded that
all coefficients provide a significant contribution to the description of the system
dynamics.

As described in Section 4.1.3 and Section 4.3.3, the (unit) impulse response is an
important representation. On the one hand, it facilitates physical interpretation of
a process in the time domain. On the other hand, it is a simple and well-known
model for linear systems.

The impulse response of the identified OE model is depicted in Figure 6.16. The heat
transfer responds instantly and strongly to an impulse in the velocity. The deviation
from the mean Nuf3elt number continues at ¢ > 0, although the impulse is already
in the past, but decays to even slightly negative values before settling to zero at later
times. A value of zero at infinite times is in accordance with the fact that the system
is BIBO stable. Stability is required because the system is also stable, which can be
deduced from the fact that a steady state exists (cf. Section 4.1.2). The response at
time ¢ = 0 is approximately half as strong as at the next instant ¢ = Ts. This is due to
the discretization in the discrete time framework and not present in a continuous
time model. The impulse response indicates that the OE model is to be preferred
over the simpler FIR model, as often used in conjunction with the CFD/SI method
in the past, due to the slow changing dynamics with large time scales compared
to the sampling time. For an FIR model, a huge number of coefficients would be
necessary. This tends to be problematic without proper regularization techniques.
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Figure 6.15: Identified Model Parameters of Polynomials B and F. The abscissa
gives the exponent of the time shift operator g. Red lines mark the 99 %
confidence interval.
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Figure 6.17: Poles and Zeros of the Transfer Function. The unit circle is marked.
The insert magnifies the region close to 1+ 0i

The response of the heat transfer to a unit step in the flow velocity, also as depicted
in Figure 6.16, is another time domain model (cf. Section 4.3.4). It can also be seen as
the cumulative sum of all impulse responses up to a certain instant in time. Hence,
no new information is acquired from the representation. However, it is possible to
simulate the step response in a CFD simulation directly as shown in Section 6.1.
This makes the step response an excellent tool to compare and to validate the SI
procedure as shown in Section 6.1. It is, however, also limited as can be seen in the
case of Rep = 3900 (cf. Section 6.3.5).

The frequency response expresses the model behavior in the frequency domain.
It quantifies the relation between input and output for a sinusoidal excitation at
Strouhal number Sr. The complex-valued frequency response, depicted as a Bode
plot with amplitude and phase of the complex-valued quantity, is reported for all
identified models in Section 6.4.

The coefficients of the OE model can be transformed to poles and zeros of the ra-
tional function that is a mathematical representation of the OE model. They are
shown in Figure 6.17 as crosses (poles) and circles (zeros). All poles are within the
unit circle, which indicates that the discrete time model is BIBO stable. The poles are
also very close to the unit circle, which is a sign of slowly varying dynamics. All poles
(and zeros) are located on the real axis. Hence, no oscillating component (complex
exponential) is introduced in the impulse response.
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A pole-zero pair very close to the unit circle (cf. insert in Figure 6.17) indicates
that a smaller model order might lead to similarly good results. Indeed, a smaller
model order has proven to be sufficient at higher Reynolds numbers. At lower mean
flow Reynolds numbers, a higher model order is necessary to capture the dynamics
satisfactorily. The model order n; =5 and ny = 4 was chosen here to be consistent
with the models for other mean flow Reynolds numbers identified with the same
procedure.

6.3.3 Development of Continuous Time Models
Model Structure and Parameter Estimation

As an alternative to the identification of a discrete time model like the OE model,
the identification of continuous time models using Quad-VF was investigated. The
best model fit was achieved using fourth-order polynomials for both the numerator
and the denominator of the transfer function. The time series prepared as detailed
in Section 6.3.1 were used for the identification. The major difference to the iden-
tification of an OE model is that the data was first transformed to the frequency
domain using FFT. The FFT leads to data at evenly distributed frequencies. Working
with frequency domain data offers some advantages: Weighting factors can easily be
assigned to certain frequencies. At higher mean flow Reynolds numbers (Rey > 1),
lower frequencies were emphasized to accurately reflect the peak gain. At lower
mean flow Reynolds numbers, the weighting shifted towards higher frequencies.
This supports an accurate identification, although amplitudes are very low due to
the low-pass behavior.

Any type of VF-related method is poorly conditioned if the order of the identified
model becomes higher than twice the number of peaks present in the transfer func-
tion. This can be controlled to some extent by regularization, i.e. using the CLS
approach to relocate the poles during the identification procedure. Regularization
achieves lower variance at the cost of bias. In the case of a comparatively high model
order, a small regularization factor in the order of the floating-point relative accu-
racy A = 1 x 1071 for an L,-regularization proved to drastically reduce the variance
with a negligible effect on the identified parameters.

Nonlinear parameter estimation methods are prone to become trapped in a local
minimum and therefore rely on good initial conditions. Further improvement of the
identification procedure could be achieved by successive identification of models
with different mean flow Reynolds numbers using a predefined set of poles. The
initial poles were taken from the model identified with a similar Reynolds number.
In particular, the transfer function G(Rey = 40) was used as initial condition for
G(Rep = 20) and so on. The mean flow Reynolds numbers were chosen in such a
way that the changes from one model to the next were not too large. The identifica-
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Figure 6.18: Identified Model Parameters of Nominator and Denominator of G(s).
The abscissa gives the exponent of the Laplace parameter s. Red lines
mark the 99 %-confidence interval.

tion of a single model is not an isolated event, but the complete set of data is used
to support the process. The resulting models are rational functions of the Laplace-
parameter s.

Model Representations

Exemplary for all identified models, the model representations for Gny(Reg = 40)
are discussed in this section. The identified models are primarily represented by
the model coefficients and the covariance matrix. Figure 6.18 shows the coefficients
of the numerator and the denominator of the rational function that was used to
model the transfer behavior. The variance of each parameter, the diagonal entries of
the covariance matrix, is represented as the 99 % confidence intervals plotted in red.
The abscissa indicates the power of the Laplace parameter s in the transfer function.

All parameters are significantly different from zero, and the presented model pro-
vides the best fit to the given data. However, the parameter associated with s* in the
numerator polynomial is very small. It can be set to zero with only a minor reduction
of the model fit (< 1%). This modification yields a model with |Gny| — 0 for Sr — co
and is to be preferred if a well-behaved approximation of the real physics is valued
over accuracy.
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Figure 6.19: Impulse Response and Step Response of Transfer Function from VE
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The impulse response and the step response are continuous functions in the case
of a continuous model. Both response representations are depicted in Figure 6.19.
The graphs are very similar to that of the discrete time model except for the dis-
cretization. The impulse response is strongest at £ = 0 and declines in the shape of
superimposed exponential functions. It becomes negative at ¢ = 1.6 and settles to
zero for t — 0. Accordingly, the step response reaches its maximum at ¢ = 1.6 and
the quasi steady-state limit is Ky = 0.4235.

For a transfer function, usually given as a rational function, poles and zeros can
easily be calculated. For the case at hand, they are shown in Figure 6.20. Zeros are
represented by circles and poles by crosses. All poles are located in the left half plane.
Hence, the continuous time model is BIBO stable. This condition is enforced during
identification by pole flipping. All poles and zeros are real-valued and no complex-
valued poles, which would occur as complex conjugate pairs, are present. This also
shows that no oscillatory component is present in the impulse response.

6.3.4 Model Validation

The model validation tests, introduced in Section 4.5, were performed for every
identified model. Exemplary for all acceptable models, graphical representations
of the validation are given for the identification procedure of the OE model for
Gnu(Reg = 40) (cf. Section 6.3.2).
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Figure 6.20: Poles and Zeros of the Continuous Transfer Function. The insert mag-
nifies the region close to the origin 0 + 0Oi.

Residuals

Basic test criteria focus on the residuals of the identification process. They cor-
respond to the prediction errors, i.e. deviations of the modeled output to the
“true” (CFD simulated) output. In Figure 6.21a, an excerpt of the time series is de-
picted. The same interval as in the plots for the input and output data is shown. The
mean value is close to zero indicating that the model is unbiased. The residuals are
in the range [-2.9 x 1074, 2.9 x 10™*] which is small compared to the model output,
i.e. the relative Nul3elt number fluctuation ([-0.014, 0.014]).

Welch’s estimate for the PSD of the residuals is depicted in Figure 6.21b. The noise
has substantial PSD in the frequency range where also the excitation, hence the
response, is strong and drops by several orders of magnitude around Sr = 80. At very
low values of the Strouhal number, the PSD is higher because of the finite length of
the time series. This is in accordance with the coherence of input and outputs (cf.
Figure 6.14) which shows values below unity and can thus be attributed to higher
noise levels, i.e. a lower signal-to-noise ratio. Around Sr = 5 a local minimum is
reached. At this point, length effects are negligible, and the output yn, has a com-
paratively high amplitude, and hence the prediction error minimization yields best
results in this region. This can be seen as a natural weighting in the case of an OE
model. In cases where a noise model was identified, i.e. a B] model structure was
chosen, the model for this PSD is used to find the optimal one-step ahead predictor.
The VF approach does not rely on the minimization of the prediction error but on
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Figure 6.21: Time Series of Residuals (Nul3elt Number). Bars denote the bins of
the input time series. A normal distribution with the same mean and
standard deviation as the data is indicated (—).
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the smart relocation of poles. For this reason, no weighting occurs in this manner in
the VF procedure and residuals are often larger.

Figure 6.21c shows the histogram, i.e. the amplitude distribution of the residuals for
the model estimated for Rey = 40. A normal distribution derived from the sample
mean and of the residual time series is included in Figure 6.21c. It can be concluded
by inspection that the residuals are close to normally distributed and hence the
noise, which is equal to the prediction error in case of an OE model, has a Gaussian
distribution.

Figure 6.22 depicts the output yny, and the residuals ey, as a scatter plot. Every
instant in the time series is represented as one point. This plot can be used to detect
patterns in the residuals and relations between residuals and output. The red dots
mark the data of a model identified with a 5% amplitude in excitation velocity. An
excitation of 25 % was used to create the blue time series for comparison. The shape
of the red cloud for the lower amplitude is elliptical with the principal axis aligned
with the coordinates yny and eny. This indicates that no systematic relationship
between output and residuals is present. In the case of the higher amplitude, how-
ever, the cloud exhibits a half moon shape. At extreme values of yny, the residual
also exhibits extreme and always positive values. The positive values and the curved
shape indicate a (slightly) nonlinear behavior that cannot be handled by the linear
model and hence condenses in the residuals. It is also strongest at extreme values,
which points towards a nonlinearity associated with the excitation amplitude. For
all identification procedures reported in Section 6.3, an excitation amplitude of 5 %
of the mean flow velocity was used.

Correlation Tests

Two correlation tests are commonly performed during model validation: a test for
whiteness and a test for independence. Before the correlations were computed
the according time series were down sampled to Srpax = 60. This way, the high-
frequency noise did not appear in the correlation and the overall time covered by
20 samples, which is a typical number, is four times larger.

In the whiteness test (cf. Section 4.5), the auto-correlation of the residuals was com-
puted as shown in Figure 6.23. The two red lines mark the 99 % confidence interval.
Correlation coefficients within the red lines are considered not significantly differ-
ent from zero. The assumption of GWN is only proven true if the auto-correlation is
insignificant for every lag > 0. This is a condition hardly achieved with an OE model
structure as it was in this case. However, due to the independent parametrization
of the deterministic part and the noise (which is not modeled at all), this has no
impact on the deterministic model.
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Figure 6.22: Scatter Plot of Residuals and Output. Every dot corresponds to one
instant of the time series. Red dots represent data acquired from a sim-
ulation with an excitation amplitude of 5 %. Blue dots indicate 25 %.
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Figure 6.24: Independence Test. Cross-correlation function of residuals and in-
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The second correlation test is between the residuals and the input. If the cross-
correlation between residuals and input is not significant, both time series are
independent (cf. Section 4.5). This means that no information in the residuals is
related to past inputs and hence all information is contained in the model output.
Figure 6.24 depicts the cross-correlation between residuals of the identification of
Gnu(Rep = 40) and the input signal used in the estimation. The 99 % confidence
intervals are shown in red. There is no significant correlation at negative lags which
would indicate feedback of any kind. A noticeable correlation is visible at lags 0, 1,
and 2. They are associated with high frequencies and are insignificant if the time
series for identification are pre-filtered with a low-pass filter, i.e. the high-frequency
content is reduced beforehand.

Cross-Validation

The most important test is probably the cross-validation test. A “fresh” data set, of
which input and output are known, was compared to the model response to the
input provided by this validation set. This test is only applicable in this manner with
high signal-to-noise ratio, i.e. in cases where stochastic disturbances have only little
effect on the output. A validation time series is created for every data set, i.e. for ev-
ery mean flow Reynolds number, by splitting the acquired time series into two parts.
The second, much shorter part (20 % of the full time series length) is solely used for
the cross-validation. Figure 6.25 shows an excerpt of the CFD simulated output. For
comparison, the response computed with the model is plotted on top. The lines
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match very well for this case. The goodness of fit is quantified by the NRMSE-fit.
The fit values for all identified models are given in Table 6.3 for the heat transfer and
in Table 6.5 for the skin friction. For the continuous time identification, models and
fits are reported in the appendix. All fit values are above 95 % (except for Reg = 1,
which has ® =94 %) and hence perform excellently in the cross-validation test.

6.3.5 Identification in the Presence of Tonal Noise and Turbulence

Vortex shedding creates a tonal noise at a distinct frequency (twice the vortex shed-
ding frequency). In this case, the noise cannot be assumed white but is strongly
colored, which impedes identification. Moreover, turbulence creates broadband
disturbances with a characteristic spectrum (cf. Section 2.1.3). Several measures can
be taken to remedy this problem.

Tonal Noise

The influence of the vortex shedding on heat transfer and skin friction is part of
the noise. As the vortex shedding occurs at a distinct frequency, the contribution
to the noise is tonal. The response to vortex shedding must not be included in the
deterministic model for two reasons: First, it is not a response to the input signal
but also exists in the (quasi) steady state. Second, the linearity requirement is not
fulfilled as the strength of the vortex shedding depends on the mean flow and not
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on the excitation. The later also is detectable in the coherence between input and
output.

Turbulent Noise

Disturbances in the heat transfer and the skin friction are caused by turbulent fluc-
tuations of the flow velocity. Turbulence is by nature three dimensional, chaotic,
and highly transient. It is independent of the input signal and hence clearly part of
the system noise. Measuring the Reynolds number with an area average over a plane
diminishes the effect of turbulence on the acquired input signal. However, the effect
of turbulent structures on the heat transfer and the skin friction can only be factored
out partially by calculating average values for the Nul3elt number Nu and the friction
coefficient cy. It is possible to identify unbiased purely deterministic models in the
presence of turbulence if the length of the time series is sufficient. In many cases, it
may not be possible to acquire time series long enough through simulation. The
model of choice is then the B] model with independent parametrization for the
deterministic part and the disturbances.

Approaches to Signal Processing

Due to the tonal nature of the vortex shedding influence, any deterministic model
will include this effect if the model order is high enough to represent it. This results
in three fundamental approaches: (1) removing the tonal noise from the response
during pre-processing before parameter estimation, (2) choose a small model order
so the strongly bandlimited effect cannot be represented, or (3) identify a noise
model that includes this effect.

For a wide range of Reynolds numbers, the vortex shedding Strouhal number is
Sry ~ 0.2, evaluated with frequency f = w/(27). For smaller Rey, it is somewhat
below this value. Due to symmetry, the frequency of the tonal disturbance is twice
the shedding frequency. Using the angular frequency to define the Strouhal number,
as it is done throughout this thesis, yields Sr = 2.5.

The vortex shedding phenomenon occurs for mean flow Reynolds numbers of Reg 2,
47. Hence, the investigated mean flow Reynolds numbers Rey = 120, Reg = 240, and
Rep = 3900 exhibit this periodical detaching of the recirculation zones. At Rey = 120,
the fluctuation in Nu3elt number Nu is not as strong and can be compensated with
a high signal-to-noise ratio, i.e. higher excitation amplitudes. This is not possible for
higher Reynold numbers, because the strength of the tonal noise is comparable to
the limit of linearity.
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Tangirala' proposed to transform the output signal using FFT, and reduce the co-
efficient associated with the vortex shedding frequency. Subsequently, the signal
is transformed back to time domain (using inverse fast Fourier transform IFFT).
This approach does not lead to satisfactory results, because complete removal of
the vortex shedding frequency; i.e. setting the FFT coefficient to zero, also leads to
distortion at this frequency.

A notch filter with a very small stopband was used as another method to remove the
tonal noise component. This is equivalent to factor in the vortex shedding frequency
with only a small weight. The notch filter, however, is difficult to set up. A narrow fil-
ter width greatly diminishes one specific frequency but does not necessarily capture
the effect of the vortex shedding satisfactorily. On the other hand, if the filter width
is too broad, this influences the low frequencies to a large extent and does not yield
acceptable results either.

Approaches (2) and (3) were used in combination for the identification of the mod-
els at Rey = 120, Rey = 240, and Rey = 3900. A low-order for the deterministic model
was chosen in conjunction with a high order of the noise model to successfully de-
termine the transfer behavior.

System Identification with Noise Modeling

For the transfer function identification from LES data, a B] model structure (cf. Sec-
tion 4.4.4) was chosen. The B] model is similar to the OE model with the addition of
a parametrization for the noise. This increase in model complexity is necessary to
deal with the two phenomena vortex shedding and turbulence.

A fitting of the deterministic model to the noise dynamics has to be avoided. This
is especially critical in the case of the tonal noise from vortex shedding. To achieve
this, a low deterministic model order is complemented by a high order for the noise
model. The time series data was prepared in the same way as for the identification
from laminar simulations (cf. Section 6.3.1).

6.4 Results from Transfer Function Identification

In this section, the results from the identification processes are shown. The mean
flow Reynolds number Req serves as a parameter. A transfer function for the heat
transfer and the skin friction of a cylinder to pulsations in the flow velocity for every
mean flow Reynolds number considered in this thesis was identified. The estimated
coefficients of the transfer functions were tabulated. The frequency responses are

1private communication, 2014

181



6 Transfer Function Identification

shown as Bode plots to give a graphical representation of the dynamic behavior
and the differences between the models evaluated at different mean flow Reynolds
numbers. The results reported here were previously published in parts in Witte et al.
(2016a,b); Witte and Polifke (2017a).

The models identified with discrete time identification techniques, OE model or
BJ model, are reported here. For mean flow Reynolds numbers Rey < 40, it was
possible to calculate transfer functions with three substantially different methods.
The only commonality was that the data was acquired from numerical simulations
solving the incompressible Navier-Stokes equations. All methods, the step response
simulations, the LNSE approach and the CFD/SI method lead to results with only
minor differences. Two different approaches to SI, one for discrete time and one for
continuous time, were examined and the results also match within a small margin.
For completeness, these models are reported in the appendix.

The coefficients of the transfer function were determined through parameter esti-
mation during the identification process. In the discrete time framework, the mod-
els depend on the sampling time. To achieve independence from this discretization,
the discrete time models were transformed to continuous time using bilinear trans-
form (cf. Equation (4.23)). The original sampling time was short enough so that
the transformation has a negligible effect on the frequency response in the range
0 < Sr < 40. {b,;} and {a;,} denote the model coefficients in continuous time. The
general transfer function model, given as a rational function of the Laplace parame-
ter s = 0 +iSr (cf. Equation (4.24)), can be written as

bo +bys+ b282 + b383 + b4S4

G(s) = .
1+a;s+azs®+azs3+ agst

(6.9)

The coefficients are reported for all mean flow Reynolds numbers under considera-
tion in Table 6.4 and Table 6.6.

The BJ models for mean flow Reynolds numbers Re > 40 can be written as
y=G(q)uge + H(q)elk]. (6.10)

The deterministic models were transformed to a continuous time transfer function
by bilinear transform. These transfer functions for heat transfer and skin friction are
also reported in Table 6.4 and Table 6.6, respectively.

6.4.1 Heat Transfer

The dynamic behavior of the heat transfer of a cylinder in pulsating crossflow at
different mean flow Reynolds numbers is reported as transfer functions and visu-
alized as Bode plots of the frequency response. These results have previously been
published in parts by Witte and Polifke (2017a).
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Reg @ in %
Estimation Cross-validation
0.1 96.11 97.94
0.2 95.50 97.30
0.4 93.89 98.31
0.5 94.62 97.05
0.7 93.39 95.58
1.0 90.17 94.54
2.0 93.85 95.66
3.0 94.46 96.18
4.0 96.16 97.06
10.0 98.33 99.07
20.0 94.73 99.25
40.0 98.64 98.69
120 99.99
240 99.99
3900 99.93

Table 6.3: NRMSE-Fit of the Identified Transfer Functions of Heat Transfer.

Transfer Functions

The transfer functions are transformed OE models or B] models identified from
CFD data. The goodness of fit achieved during estimation and the goodness of fit
from the cross-validation test are reported in Table 6.3. For models with a mean
flow Reynolds number above the threshold for vortex shedding Re( > 40, for which
also a noise model was identified, almost perfect fit values during estimation were
achieved. This is due to the high order noise model with ten coefficients for each
of the two polynomials. The computation of an infinite-step ahead prediction for
cross-validation was not useful due to the strong unpredictable noise content in
the data.

Table 6.4 gives the coefficients transformed to continuous time to acquire inde-
pendence of the sampling time. For every mean flow Reynolds number Rej, two
rows are noted in the table. One for the numerator coefficients {b,,;} and one for the
denominator coefficients {a;,}. Each column stands for one power of the Laplace
parameter. The first row of coefficients includes the constant terms which are equal
to the steady state limit of the transfer function by = Kny. The constant coefficient
of the denominator polynomial is always one and therefore omitted. For mean flow
Reynolds numbers Rey < 40, five coefficients for the numerator n, = 5 and four
coefficients for the denominator 7, = 4 have been estimated and hence the highest
power is s?.

183



6 Transfer Function Identification

Rey s0 st s s st
0.1 b 02015  1.893 1.739 0.1407 0.0002416
a 31.7 132.3 64.85 2.338
02 b 02193  1.683 1.324 0.09926 1.78 x107*
a 20.58 66.25 27.53 0.975
04 b 02561  1.228 0.7184 0.04635 8.009 x 107
a 11.98 25.1 7.98 0.263
0.5 b 02648  0.8961 0.3885 0.02026 2.629 x 1075
a 9.102 13.96 3.382 0.09405
0.7 b 02806  0.6385 0.19 0.007419 6.163 x 107
a 6.483 6.814 1.168 0.02586
1.0 b 0.2921  0.5471 0.1495 0.005533 3.61 x1076
a 4.91 4.364 0.6943 0.01499
2.0 b 03342 99.76 74.39 5.545 0.008733
a 300.3 739.3 259.3 10.62
3.0 b 03537  5.543 3.167 0.1983 2.164 x 107*
a 16.45 28.6 8.078 0.2952
4.0 b 03662  2.846 1.895 0.1821 3.881 x 1074
a 8.392 13.13 4.508 0.2586
10.0 b 0.3949  4.153 1.265 0.04329 -9.961 x 107
a 9.869 8.916 1.481 0.03482
20.0 b 0.4145  3.221 0.5823 0.01029 ~1.141x107°
a 7.007 4.28 0.4704 0.006289
40.0 b 0.4181  8.033 18 0.8508 —-8.151x 1074
a 17.13 39.37 13.73 0.4533
120.0 b 0.4484 1.506 x 10™* —2.696 x 1077
a 0.2331 1.081 x107°
240.0 b 0.538 0.7906 —0.001383
a 2.602 0.4011
3900.0 b 0.538 0.001374  —2.908 x 107°
a 0.4887 3.363 x 1074

Table 6.4: Estimated Coefficients of the Transfer Function of Heat Transfer. All val-
ues are transformed to continuous time using bilinear transform.
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Figure 6.26: Amplitude of the Heat Transfer Frequency Response (Re( < 40). Blue
to red. Reynolds numbers: 0.1, 0.2, 0.4, 0.5, 0.7, 1, 2, 3, 4, 10, 20, and 40.
The insert in the top right corner magnifies small frequencies Sr < 2.

Frequency Response at Re( < 40

The frequency response, as a representation of the transfer function, shows the
response to continuous forcing of sine waves with a certain Strouhal number and
a constant amplitude. Special attention is given to mean flow Reynolds numbers
Reg = 40. This is the relevant range for the applications motivating this thesis, i.e.
first and foremost the Rijke tube (cf. Table 3.1).

The amplitude of the frequency response depicted in Figure 6.26 shows a low-pass
behavior. The response is below unity throughout all frequencies, yet high frequen-
cies are damped more strongly. This effect is more pronounced at lower Reynolds
numbers. In terms of filters, the cutoff frequency is higher for higher mean flow
Reynolds numbers. The amplitude at zero frequency Sr — 0 is the steady-state
gain Ky, also obtained through analysis of the step response (cf. Section 6.1.1 and
Section 6.5.2). Again, a dependence on Reynolds number is evident and higher
Reynolds number flow achieves greater gain values.

The insert in Figure 6.26 magnifies the region of small Strouhal numbers in the
range of 0 < Sr < 2, i.e. at low frequencies. For Reynolds numbers of order unity
or larger, a peak in amplitude can be found in 0 < Sr < 1, which is also in agree-
ment with the results of the step response simulations. Again, at higher Reynolds
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Figure 6.27: Phase of the Heat Transfer Frequency Response (Reg < 40). Blue to
red. Reynolds numbers: 0.1, 0.2, 0.4, 0.5, 0.7, 1, 2, 3, 4, 10, 20, and 40.
The insert in the top right corner magnifies small frequencies Sr < 2.

numbers, this effect appears in a more pronounced manner and the peak frequency
moves towards higher Strouhal numbers.

Figure 6.27 shows the phase difference between normalized velocity and heat re-
lease rate fluctuations. For all Reynolds numbers, the phase starts at zero but shows
a dependence on Reynolds number similar to the amplitude at Sr > 0. In general for
all mean flow Reynolds numbers, there is a strong initial decay at low frequencies
that becomes less steep towards higher Sr. If the mean flow Reynolds number is
lower, the descent is steeper at low frequencies and more flat-angled towards higher
Sr. At intermediate mean flow Reynolds numbers (10 < Req < 40), slightly positive
values (phase lead) occur at Strouhal numbers below 0.5. This effect was already
predicted by Lighthill (1954), but his solution approach was not able quantify it. The
insert in Figure 6.27 magnifies the values at very low Sr where this phase lead occurs.

For higher frequencies, phase values approach a value slightly larger than —z/2 for
Sr — oo. The theoretical high frequency limit for a first order system limg; ., ZG =
—m/2 in never reached. This is due to the flow field at the lee side of the cylinder,
which could not be accounted for by the analytical investigations. In the step re-
sponse in Figure 6.2, sector 4 assumes negative values leading to phase values of 7,
but with only a small contribution to the overall heat transfer. In the representation
of the temperature fields (e.g. Figure 7.6 and Figure 7.17), this can be seen as hot
zones close to the backward stagnation point of the cylinder. For the lowest mean
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Figure 6.28: Frequency Response of the Heat Transfer (Req > 40). Rey = 120 (—),
Rey = 240 (—), and Rey = 3900 (——). Dashed lines mark the 99 % con-
fidence intervals. The cross shows the low frequency limit evaluated
from the correlation by Sparrow et al. (2004).

flow Reynolds numbers, the initial drop in heat transfer rate at sector 4 is even
stronger than the increase in sector 1 through sector 3. This is the reason for the
phase to have alocal minimum at Sr < 40 and rise again towards higher frequencies.
For all mean flow Reynolds numbers, the phase lags coincide at a frequency close to
Sr = 7 with a value of about —/3. The flow fields at this coincidence were inspected
in Section 7.3.2, but no immediate cause could be found.

Frequency Response at Re > 40

The frequency response of the identified deterministic models for Reg = 120, Rey =
240, and Rey = 3900 is shown in Figure 6.28. The estimated 99 % confidence intervals
are represented by dashed lines.

The cross sign on the y-axis marks the theoretical low frequency limit evaluated
using the correlation by Sparrow et al. (2004). The steady-state gain is higher than
in the case of Rey = 40 as predicted by the correlation, but no peak occurs at low
frequencies. Also, no phase lead is visible and the high frequency limit is higher than
in the laminar cases. No clear trend concerning the steepness of the initial decay
can be made out, but the decay at Rey = 3900 is clearly stronger that at Rey = 40.
All steady-state values deduced from the correlation are within the 99 % confidence
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Figure 6.29: Noise Spectrum of Heat Transfer Pulsations (Re > 40). Rey = 120 (—),
Reg = 240 (—), and Rey = 3900 (—). The —5/3 slope is depicted to
facilitate comparison with the turbulent inertial range.

intervals of the respective frequency response except for Rey = 120. This is in accor-
dance with the behavior of the phase.

At low frequencies, two impeding effects accumulate. The estimate is less accurate
because the finite length of the time series and the vortex shedding, which occurs
around Sr = 2.4 represents strong tonal noise. For this reason, the results have to be
interpreted with care.

The BJ model includes a parametrization for the noise. The spectrum of the iden-
tified noise model |H(Sr)|? is given in Figure 6.29 for Rey = 120, Rey = 240, and
Rep = 3900. At the lowest mean flow Reynolds number shown in this figure, the
vortex shedding frequency is visible as a strong and sharp peak. At Rey = 240, this
peak is broader and it is only visible as a hump at Rey = 3900. Moreover, the peak
frequency is shifted to higher Strouhal numbers with higher mean flow Reynolds
number, which is in accordance with observations reported in literature.

For comparison with the spectrum of turbulence (cf. Section 2.1.3 and Figure 2.8),
a line with slope —5/3 representing the turbulent cascade process (inertial range)
is included. Besides the vortex shedding effect, a second and very weak deviation
occurs at Sr = 8 and Rey = 3900. This is approximately the frequency of Kelvin-
Helmholtz instabilities in the free shear layer of the vortices. The exact frequency
was determined by Lehmkuhl et al. (2011) to Srgy = 8.42 at Reg = 3900.
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Reg @ in %
Estimation Cross-validation
0.1 98.85 99.62
0.2 98.70 99.65
0.4 98.66 99.60
0.5 99.57 99.55
0.7 98.52 99.37
1.0 98.67 99.16
2.0 98.69 99.30
3.0 98.64 99.43
4.0 99.50 99.49
10.0 98.73 99.59
20.0 98.52 98.85
40.0 98.52 99.56
120 91.48
240 75.62
3900 48.33

Table 6.5: NRMSE-Fit of the Identified Transfer Functions of Skin Friction. CFD/SI
method with OE model (Rey < 40) or B] model (Rey > 40).

For the validation of the results, the correlation tests were performed as shown
for Rep = 40 in Section 6.3.4. It was not possible to perform a meaningful cross-
validation test due to the strong unpredictable noise content. However, it is possible
to refer to a priori known data like the low frequency limit evaluated from the steady-
state correlation by Sparrow et al. (2004).

6.4.2 Skin Friction

The skin friction is processed and reported in a way similar to the heat transfer. The
results have in parts been published previously (Witte and Polifke, 2015, 2016).

Transfer Functions

The transfer functions are transformed OE models identified from CFD data. The
goodness of fit that was achieved during estimation and the goodness of fit from
the cross-validation test is reported in Table 6.5.

At mean flow Reynolds numbers Rey < 40, fit values achieved during estimation and
in comparison to the validation data set are always ® > 98 %. The identification of
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the BJ for Rey > 40 was performed with more weight on the lower frequencies. This
achieves a better fit at lower frequencies, which are underrepresented due to the
high-pass behavior of the skin friction, and the low-frequency limit is closer to its
theoretical prediction. However, this is at the cost of higher frequencies. Because of
the high amplitudes, small deviations at high frequencies lead to large prediction
errors. Hence, fit values are considerably worse for the B] models, although low-
frequency limits are more realistic.

All identified transfer functions using OE model structure had five coefficients in the
numerator and four coefficients in the denominator to represent the data accurately.
At a mean flow Reynolds number Rey > 40, B] models were identified to cope with
the tonal and turbulent noise. Table 6.6 gives the coefficients identified as an OE
model and transformed to continuous time using bilinear transform. This table can
be read like Table 6.4.

Frequency Response at Rey < 40

The frequency response of the skin friction is depicted in a manner similar to the
heat transfer. Figure 6.30 shows the amplitude of the complex-valued frequency
response. The region of low frequencies Sr < 2 is magnified in the insert on the
bottom right. The low frequency values are close to the predicted steady-state gain
of 3/2 (Lighthill, 1954). If the mean flow Reynolds number is higher, also the quasi
steady-state value is higher. Towards larger values of Strouhal number, a rise in am-
plitude can be seen in a manner of a square root dependence as predicted by Stokes
(1851) (cf. Section 3.1.2). A strong dependence on amplitude is visible throughout
the whole range of Strouhal numbers. At the highest Strouhal number under con-
sideration Sr = 40, the amplitude at Reg = 40 (|G| = 11.8) is approximately twice as
high as at Rep = 0.1 (IGCfI =5.88).

Figure 6.31 depicts the phase between free-stream velocity pulsations and skin fric-
tion pulsations. Mean flow Reynolds number from Rey = 0.1 (blue) to Rey = 40 (red)
are shown. The phase difference in the limit Sr — 0 is zero, like in the case of the
transfer function of the heat transfer. Phase values rise towards a phase lead of
£Ge; = m/4 in the limit of high Strouhal numbers. No clear dependence on mean
flow Reynolds number is visible for the initial rise starting from Sr = 0. At about
Sr = 0.5, the lowest Reynolds numbers depart from the initial inclination and satu-
rate. This saturation occurs later for higher mean flow Reynolds numbers. At Sr = 40,
the highest Strouhal number considered in this thesis, the phase of the frequency
response shows a sequential order. The response of the Rey = 0.1 case is substan-
tially below £G., = /4, where the response at Rey = 40 has almost reached the
theoretical limit.
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Re s0 st s2 3 st
0.1 b 127 2253 0.4837 0.01882 0.0001044
a 1.024 0.121 0.002304  4.499x 1076
0.2 b 1.329 2.333 0.5046 0.01991 0.0001161
a 0.9694 0.1128 0.002164 4.276x 107
04 b 1.388 2302 0.4959 0.01966 0.0001183
a 0.8886 0.1002 0.001891  3.45 x 1076
0.5 b 1416 221  0.4555 0.0173 9.892 x 107>
a 0.823 0.08767 0.001565 2.519x107°
0.7 b 1397 2292 0.5041 0.02052 0.0001296
a 0.8502 0.09546 0.00182 3.297x 1078
1.0 b 1375 2292 0.5066 0.02043 0.0001258
a 0.8323 0.09132  0.00169 2.817x 1076
20 b 1426 2.173 0.4668 0.01863 0.0001143
a 0.7432 0.07702 0.001385 2.246x107°
3.0 b 1474 2.086 0.4361 0.01717 0.0001046
a 0.6885 0.06866 0.001209 1.938x107°
40 b 1521 1.997 0.3903 0.01452 8.313x107°
a 0.6289 0.05842 9.684x107* 1.403 x 107
100 b 1581 2.048 0.4231 0.01696 0.0001015
a 0.6283 0.06124 0.001067 1.334x107°
20.0 b 1.571 2.387 0.604 0.03016 0.0002389
a 0.7755 0.09358 0.002061 4.379x 107
40.0 b 1.659 2.249 0.4783 0.02007 0.0001289
a 0.6448 0.06432 0.001177 1.739x 107
1200 b 1.659 1.029 0.03855
a 0.1575 0.001384
240.0 b 1.528 1.044 0.04215
a 0.1759 0.001641
3900.0 b 1.197 1.13  0.05315
a 0.1986 0.002823

Table 6.6: Estimated Coefficients of the Transfer Function of Skin Friction. All val-
ues are transformed to continuous time using bilinear transform.
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Figure 6.30: Amplitude of Skin Friction Frequency Response. Blue to red. Reynolds
numbers: 0.1, 0.2, 0.4, 0.5,0.7, 1, 2, 3, 4, 10, 20, and 40. The insert in the
top right corner magnifies small frequencies Sr < 2.
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Figure 6.31: Phase of Skin Friction Frequency Response. Reynolds numbers: 0.1,
0.2,0.4,0.5,0.7, 1, 2, 3, 4, 10, 20, and 40 (blue to red). The insert in the
top right corner magnifies small frequencies Sr < 2.
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Figure 6.32: Frequency Response of the Skin Friction (Reg > 40). Rey = 120 (—),
Rey = 240 (—), and Rey = 3900 (——). Dashed lines mark the 99 % con-
fidence intervals. The cross shows the low frequency limit (Lighthill,
1954).

Frequency Response at Re > 40

The frequency responses of skin friction to pulsations in the free-stream velocity
for Reg = 120, Rey = 240, and Rey = 3900 are depicted in Figure 6.32. The responses
of these identified deterministic models are very similar to the Rey = 40 case (cf.
Figure 6.30 and Figure 6.31). The estimated 99 % confidence intervals are shown as
dashed lines. They are much larger than in the case of the laminar models, especially
at Rep = 3900. This is due to turbulent disturbances and the fact that higher number
of coefficients was estimated because of the noise model.

The low frequency limit of 3/2 for the amplitude (Lighthill, 1954) is underpredicted
in the case of Rey = 3900 and overpredicted for Rey = 120 and Rey = 240. These
deviations could be due to the low-order of the deterministic model. The amplitude
rises almost linearly with frequency and all three modes do not show substantial
differences. At the highest Strouhal number under consideration Sr = 40, the ampli-
tude is approximately |G, | = 11 for all models.

The phase of the frequency responses shows a steep rise towards the limit of ZG,, =
n/4 at high frequencies. The rise is steeper at higher mean flow Reynolds numbers.
At Rey = 3900, a slight overshoot is visible. However, the bounds of the 99 % confi-

193



6 Transfer Function Identification

0
_20 L |
) -5/3
=
E  _a0f .
=
3]
O A
)
L 60 .
2
o
A
_80 - |
-10 | | | i\
8.01 0.1 1 10 100 240

Sr

Figure 6.33: Noise Spectrum of Skin Friction Pulsations (Reg > 40). Reg = 120 (—),
Reg = 240 (—), and Rey = 3900 (—). The —5/3 slope is depicted to
facilitate comparison with the turbulent inertial range.

dence intervals are still within the limit and the overshoot may be attributed to the
low-order of the deterministic model.

In the model noise spectrum, shown in Figure 6.33, a similar behavior as for the
heat transfer model is visible. General noise levels are higher due to the weighting
in favor of low frequencies. The spectrum was modeled with seven coefficients for
the numerator polynomial and denominator polynomial for Rey = 120, Rey = 240,
and Rep = 3900. Again, the —5/3 slope is shown to establish the connection to the
turbulent energy spectrum. Indeed, the power spectrum of the noise closely resem-
bles the turbulent spectrum for Rey = 3900.

The peak associated with vortex shedding is much more pronounced at Rey = 3900
than for the heat transfer. For Reg = 120, this effect is reversed and no peak is visible
at the vortex shedding Strouhal number, where a clear maximum was visible in Fig-
ure 6.29. No distinct deviation is visible at the frequency of the Kelvin-Helmholtz
instability. A small peak at Sr = 60 occurs due to perturbations in the excitation
signal which has its cutoff frequency at this value.
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6.5 Discussion

6.5.1 Identification Method

Three different methods were used to develop transfer functions of heat transfer
and skin friction of a cylinder in pulsating crossflow. The first used the time series
from the response to a step excitation. The step excitation is an important step for
preliminary assessment before more complex methods are used. Nevertheless, it is
possible to develop a transfer function under certain conditions. Following this path
proved to be successful for Reg < 40.

The second method reported in this chapter was processed the frequency response
data from the LNSE simulations. The identification of a continuous time transfer
function from the acquired data yields results with a very good fit to the raw data.
The identification requires only a small amount of data preparation. Together with
the efficiency of the (incompressible) LNSE approach, this is the quickest way to de-
velop transfer functions for Rey < 40. However, this approach, like the step response
method, fails to deliver acceptable results when vortex shedding occurs due to the
fact that a true steady-state solution is required. Using a time or cycle average in-
stead of a steady-state solution might be possible together with further adjustments,
but no acceptable results could be achieved in due time.

The CFD/SI method, was the third method. It used time domain data generated
with broadband excitation and subsequently, a transfer function was developed.
Two different identification approaches were considered.

Continuous time identification uses the time domain data transformed into fre-
quency space to directly develop a continuous time transfer function. The identi-
fication method is basically the same as in the LNSE approach, but the frequency
domain data, acquired using FFT, is not as good-natured as the frequency response
data from the LNSE. The results showed the best agreement with the simulated data
in cross-validation tests for mean flow Reynolds numbers Rey < 40. The VF identifi-
cation method can be used on data with Reg > 40, i.e. data contaminated by tonal
or turbulent noise. However, noise in discrete time domain data cannot be handled
by the VF approach, and hence it competes with the OE model identification but
yields inferior results compared to a B] model in the presence of intense or strongly
colored disturbances.

Discrete time identification in the framework of the CFD/SI approach proved to
be the most versatile method. The identification of OE models from time domain
data yielded excellent results. The time series acquired from a CFD simulation with
broadband excitation can be used directly with very little pre-processing (resam-
pling and linearization). Theoretically, the OE model identification can find the
transfer function of the deterministic part even in the presence of higher noise
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levels. Transformation to a continuous time transfer function is facilitated through
bilinear transform. The B] model is an OE model with parametrization of the noise
and, hence, basically an extension when noise handling, e.g. in the cases with
Rep > 40, is necessary.

Step excitation and simulation in the frequency domain are unsuited to develop
transfer functions in the presence of tonal or broadband noise. The excitation of
the system with only one single step, which is superimposed by disturbances, is not
enough to separate the deterministic response from the stochastic noise. Hence,
the true step response cannot be inferred like in the case of laminar flow (cf. Sec-
tion 6.1). This was also shown by Cabrera (2015) for the case of Rey = 3900. Moreover,
a single step excitation is also only of limited avail in determining step response
characteristics like steady-state gain, rise time, and overshoot (cf. Section 6.1.3).
Similar reasoning holds for tonal noise. No technique exists to distinguish between
an overshoot or oscillations of the step response and the sinusoidal disturbance of
the tonal noise. A clear distinction between deterministic system and noise would
only be possible if several steps are used and the noise contribution cancels to zero
across all steps due to its nature. This already leads to the principle of persistent
excitation which is the idea behind broadband excitation in conjunction with SI.

In the scope of tonal noise or turbulent noise, the LNSE approach is an interesting
method. Both tonal noise originating from vortex shedding and broadband noise
from turbulence are transient phenomena. To be represented in the model, these
effects have to be included in the solution the linearization is based upon, i.e. the
“steady-state” solution. Hence, instead of a true steady-state solution, which can
only be found for Rey < 40, an averaged solution may be computed. In the presence
of tonal noise, a cycle-average may be used at this point. This would allow simulat-
ing a frequency response giving credit to the noise through the averaged solution. A
transfer function can be identified from this response at discrete frequencies with-
out a noise model. However, in the case of the flow around a cylinder, it was not
possible to compute an averaged solution that allowed for a stable solution of the
linearized equations. Some stabilization technique might represent a remedy for
this numerical instability, but it was not within the scope of this thesis. Moreover,
in order to treat turbulent flow with this method, the LNSE solver would have to be
extended to three spatial dimensions and probably a model for the turbulence.

To conclude the capabilities of each identification method in the presence of tonal
or broadband noise, only OE, BJ, and the VF method remain. B]J is suited best be-
cause of the possibility to combine a low order model for the deterministic transfer
function with a noise model of rather high order that is able to reproduce the char-
acteristics of the tonal noise or broadband noise.
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6.5.2 Heat Transfer

For the heat transfer, several empirical and analytical results have been reported in
the literature. The analytical results by Lighthill (1954) and Bayly (1985) can be com-
pared to the transfer functions identified in this thesis. Moreover, the steady-state
heat transfer correlations, e.g. by Collis and Williams (1959) as well as Sparrow et al.
(2004), can be used to deduce the response amplitude in the limit of zero frequency,
i.e. the steady-state gain K.

Frequency Response

Lighthill (1954) presented a model for heat transfer fluctuations at comparatively
high mean flow Reynolds numbers (Re > 10). At such Reynolds numbers, most of
the heat transfer takes place close to the forward stagnation point, so only the HL
is considered. The model is detailed in Section 3.2.2 and the frequency response is
shown in Figure 3.4. Bayly (1985) gives an expression for the unsteady heat trans-
fer at low Péclet numbers for the whole cylinder. The derivation of the model is
sketched in Section 3.3.2 and the frequency response is depicted in Figure 3.9. A
comparison between the models identified in this thesis and analytical results was
given by Witte and Polifke (2019).

Lighthill's and Bayly’s models are represented in Figure 6.34 and Figure 6.35 as
dashed lines and dash dotted lines, respectively. Figure 6.34 depicts the amplitude
and the phase is shown in Figure 6.35. Solid lines denote models for Rey = 0.4,
Rep = 4, and Rey = 40 identified in this thesis. The figures depict amplitude and
phase of the frequency response of heat transfer fluctuations to velocity perturba-
tions.

As already reported by the respective authors, the analytical models have limited ap-
plicability in the range 0.1 < Rey < 40. Bayly’s model matches well with the identified
frequency response at low Reynolds numbers. The relation given by Bayly (1985)
yields fair results up to Re = 0.1 (as shown in the figure as dashed lines) but should
not be used for mean flow Reynolds numbers above Re = 0.5.

Lighthill (1954) stated that his model is applicable if a laminar boundary layer exists
and gave Re > 10 as a limit. This is due to the fact that the boundary layer equations
used by Lighthill (1954) make use of the limiting process Re — co. Indeed, the iden-
tified frequency response at Reg = 40 shows very similar low and high-frequency
limits in the amplitude. Lighthill’s time constant ¢; = 0.2, however, is considerably
smaller than the dominant time scale in the Reg = 40 case from SI (¢; = 0.3).

This is due to the fact that only certain types of flow geometries can be handled
analytically with the boundary layer equations. For flow across a cylinder with its
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Figure 6.34: Comparison of Heat Transfer Frequency Response (Amplitude). The
amplitude from CFD/SI is shown as solid lines for Reg = 0.4 (—), Reg =
4 (—), and Rey =40 (). The dashed lines denote the results reported

by Lighthill (1954) (- - -) and Bayly (1985) (- --).
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Figure 6.35: Comparison of Heat Transfer Frequency Response (Phase). The
phase from CFD/SI is shown as solid lines for Reg = 0.4 (—), Reg = 4
(—), and Reg = 40 (—). The dashed lines denote the results reported

by Lighthill (1954) (- - -) and Bayly (1985) (---).
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curvature and flow separation, further approximations were necessary. The assump-
tion that most of the heat transfer occurs close to the forward stagnation point,
as stated by Lighthill (1954), is also a very coarse approximation slightly better at
higher mean flow Reynolds numbers.

On the one hand, the good match to frequency responses reported in the litera-
ture confirms the quality of the results from SI. On the other hand, a substantial
improvement in accuracy was achieved. A wide range of Reynolds numbers and
Strouhal numbers was covered, and the , as well as the behavior in the limit of very
low and very high frequencies, was determined in superior detail. The most sub-
stantial improvement is the dependence on mean flow Reynolds number, which
was determined with the CFD data based methods for a great range and and very
accurately.

Low Frequency Limit

The low frequency limit Ky, serves two purposes in this work. Firstly, this quasi-
steady-state gain may be used as a good approximation for processes with very slow
dynamics, i.e. small Strouhal numbers. The use of Ky, instead of the complex trans-
fer function might be sufficient in this case. Secondly, it is used here as validation for
the identified models. The derivation of the low-frequency limit from heat transfer
correlations was detailed by Witte and Polifke (2017a).

The low frequency limit or quasi-steady gain can be read from the frequency re-
sponse amplitude at St — 0 (e.g. Figure 6.26) or from the step response at ¢ — co (cf.
Figure 6.1). However, there is a third method deriving the quantity from a steady-
state Nul3elt correlation like the ones given by Collis and Williams (1959) (cf. Equa-
tion (2.23)) and Sparrow et al. (2004) (cf. Equation (2.24)). A similar approach was
pursued by Polifke and Lawn (2007) for premixed flames.

The steady-state correlations for the Nul3elt number Nu are nonlinear functions of
the Reynolds number Re. In some cases, also the Prandtl number Pr is included
as a parameter and the fluid and cylinder temperatures. In this thesis, however,
the Prandtl number is Pr = 0.7123 in most cases, and absolute temperature differ-
ences are neglected. To acquire the quasi-steady-state response to pulsations in the
crossflow, a rise in Reynolds number by ARe is assumed. The correlation Nu(Re)
is linearized around Rey and hence the new Nuf3elt number is given by the Taylor
series
ONu(Re)

Nu(Reg + ARe) = Nu(Reg) + —— ARe + G ((ARe)?) (6.11)
ORe Reg
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6 Transfer Function Identification

Model Rey
0.4 4 40 120 240 3900
Kny from Collis and Williams (1959) 0.27 0.37 0.41 0.45

Kny from Sparrow et al. (2004) 0.26 0.41 0.50 0.52 0.53 0.56
Kny from identification 0.26 0.37 0.44 0.45 054 0.54
Kny from step response 0.25 0.37 0.42

Table 6.7: Values for the Steady-State Gain K. Calculated from linearized correla-
tion as well as from identification and direct simulation performed in this
work for different mean flow Reynolds numbers.

truncated after the first order derivative. Inserting Equation (6.11) into the defini-
tion of the transfer function Gy (cf. Equation (2.100)) yields the low frequency limit
of the transfer function
Reg 0Nu(Re)
Nu =
NU() ORe Reg

(6.12)
which is called quasi-steady gain Kyy. Using the correlation by Collis and Williams
(1959) (cf. Equation (2.23)), the steady-state gain can be evaluated with

_ 0.252Re™®
© 0.24+0.56Re%45

Nu (6.13)

For higher Reynolds numbers, the correlation by Sparrow et al. (2004) (cf. Equa-
tion (2.24)) is recommended. The steady-state gain is then

~ Re!/2 +0.2Re?/3
1.25Pr %37 4 2 0Re!/2 + 0.3Re?’3

Knu (6.14)
Considering the same Reynolds numbers as for the simulated step response (cf.
Section 6.1), the results of the linearization are compared to identification and step
response in Table 6.7. It can be seen that the results agree reasonably well, especially
for Rey = 4, with the largest discrepancy between correlation and identification for
Rey = 40 of about 7 %.

6.5.3 Skin Friction

A comparison between the models identified in this thesis and analytical results was
given by (Witte and Polifke, 2019).

The analytical models providing the best description of the dynamic behavior of the
skin friction over a wide range of frequencies were reported by Lighthill (1954) and
Gersten (1965). However, no single model for the whole range of Strouhal numbers
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G|

LG,

Figure 6.36: Skin Friction Frequency Response. Amplitude (top plot) and phase
(bottom plot) from CFD/SI are shown as solid lines for Reg = 0.4 (—),
Rey = 4 (—), and Rey = 40 (). Dashed lines denote the results for
the HL reported by Lighthill (1954) (- - -) and Gersten (1965) (---) and
dash-dotted lines represent the results for the BL reported by Lighthill
(1954) (---) and Gersten (1965) (---).

considered exists, instead only approximations for high and low Strouhal numbers
are given. Furthermore, two different types of boundary layers HL. and BL were con-
sidered respectively by both authors (cf. Section 3.2). Flat plate flow was evaluated
with the frequency parameter Srx/d.

Figure 6.36 shows amplitude and phase of the complex-valued frequency response
of the skin friction to pulsation in the free-stream velocity. Solid lines denote iden-
tified models for Reg = 0.4, Reg = 4, and Rey = 40. The model by Lighthill (1954)
was detailed in Section 3.2.2. The frequency responses for HL and BL are shown in
Figure 3.2 and Figure 3.3, respectively. They are represented in Figure 6.36 in green.
The frequency response developed by Gersten (1965) is shown in Figure 3.5 and
Figure 3.6 for the HL and the BL, respectively. Section 3.2.4 outlines the derivation.
Lines associated with the results developed by Gersten (1965) are colored purple.
The graphs of the HL solution is dashed, and the BL solution is shown dash dotted
for x/d =1.

At low frequencies, i.e. small values of Strouhal numbers Sr, the results from
Lighthill (1954) and Gersten (1965) match well. The steady-state gain derives from
the fact that the drag force depends on velocity by F; ~ u®/? in the boundary
layer approximation. In the results from SI, the low frequency limits are changing

201



6 Transfer Function Identification

with Reynolds number with values only slightly above unity for small mean flow
Reynolds numbers (regime of linear drag) and approaching a value of two at higher
Rey (F; ~ u?) (Polifke and Lawn, 2007).

Lighthill (1954) and Bayly (1985) reported an anticipation time for the skin friction
of ¢; = 0.05 for the HL and ¢; = 1.7x/d for the BL. The pressure gradient necessary
to accelerate the flow acts faster on the boundary layer than on the free-stream. This
creates the impression of the skin friction anticipating a change in velocity, which
manifests itself as a phase lead. Lighthill (1954) stated that the approximation is
applicable for Sr > 20. Hence, at this Strouhal number, the low frequency solution
merges with the high frequency approximation. Gersten’s series expansion yields
a smoother transition between low and high frequency approximation. CFD/SI re-
sults show an approximate anticipation time of ¢; = 0.7, which is not depending on
Reynolds number.

At low Strouhal numbers, neither the HL solution nor the BL solution is comparable
to the identified frequency response. This is due to the fact that neither limiting
case of the wedge flow is particularly fitting for the skin friction at the cylinder.
This is supported by the examination of the circumferential distribution of the skin
friction pulsations (cf. Section 7.4). At low frequencies, the gross of the skin friction
fluctuations occur at an angle of ¢ = /4 which is exactly in between the HL (¢ = 0)
and the BL (¢ = 7/2).
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7 Flow Field Representations

To shed light on the dynamic processes in the flow field around the cylinder, various
representations of flow patterns and temperature distributions are presented in this
chapter. To provide a reference, the steady-state flow fields for mean flow Reynolds
numbers Rey = 0.4, Reg = 4, and Rey = 40 are depicted in Section 7.1. Section 7.2
shows changes in the velocity field and the temperature field caused by a sudden
increase in the free-stream velocity by 10 %. This corresponds to the conditions of
a simulated step response and the flow fields originate from the same simulations
as in Section 6.1. The fields are calculated with the time domain approach (cf. Sec-
tion 5.2). From the solution of the linearized Navier-Stokes equations, fluctuations
in temperature and vorticity at specific frequencies can be depicted. Section 7.3 in-
cludes fields of amplitude and phase of these fluctuations for a range of frequencies.
Qualitative explanations for certain occurring phenomena, like the peak gain and
the phase lag at high frequencies, that differ from previously reported studies are
provided. Circumferential distributions of the fluctuations of the Nullelt number
and the friction coefficient are reported in Section 7.4.

7.1 Steady State

For all simulations, the steady-state solution serves as a reference point. The step
response computation needs a preliminary steady state which is excited with a sud-
den increase in velocity. The LNSE results are linearized around a steady state and
also the CFD/SI procedure requires a steady-state (or quasi-steady-state) flow field
as an initial solution. This way, the influence of an initial transient, which should
not be part of the solution, is minimized.

Figures 7.1 to 7.3 show the steady-state temperature distribution on the left and the
velocity magnitude on the right. The plots are captured from the same simulations
carried out to acquire the data for the step response detailed in Section 6.1. The
excerpt extends from —2d to 4d in x;-direction and from 0 to 3d in x,-direction.
Black lines represent the pseudo-streamlines of the flow (from left to right). The
colors indicate regions where values of dimensionless temperature 0y = 0(x, y,0)
and values of dimensionless velocity magnitude |ug| = |u| (x, y,0), respectively, are
higher (red) or lower (blue). Figure 7.1 depicts the steady-state flow field for a mean
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Figure 7.1: Representation of the Steady-State Flow Field for Rey = 0.4. Tempera-
ture O (left) and velocity magnitude |uy| (right) are represented by the
coloring. Black lines depict the streamlines.
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Figure 7.2: Representation of the Steady-State Flow Field for Re = 4. Temperature
Oy (left) and velocity magnitude |ug| (right) are represented by the color-
ing. Black lines depict the streamlines.
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Figure 7.3: Representation of the Steady-State Flow Field for Rey = 40. Tempera-
ture O (left) and velocity magnitude |uy| (right) are represented by the
coloring. Black lines depict the streamlines.
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7.2 Step Response

flow Reynolds number of Rey = 0.4. The cases Rey = 4 and Rey = 40 are shown in
Figure 7.2 and Figure 7.3, respectively.

At low Reynolds numbers and low Péclet numbers, heat conduction and viscous
effects dominate over the convective transport. The flow field around the cylinder
is influenced in a large area as can be seen in the case of Rey = 0.4 in Figure 7.1. At
higher Reynolds numbers, the area of the flow field affected by the presence of the
cylinder becomes smaller (cf. Figure 7.2). This is attended by stronger gradients. At
Reg = 40, recirculation occurs which is visible in Figure 7.3.

7.2 Step Response

The flow around the cylinder is subject to a sudden change in flow velocity (step
excitation). The Reynolds number is increased by ¢ = 0.1, i.e. 10% of the initial
Reynolds number Rey. This step response model is described in Section 6.1.

The response of the flow field is represented here as absolute differences in dimen-
sionless temperature 60® and dimensionless velocity magnitude du at a specific
time instant compared to the initial steady-state field. This can be expressed as

60(x,y,1) =[O(x,y,1)-0O(x,y,0)] and (7.1)
Sulx,y, ) = [lul(x,y, 1) — lul(x,y,0)] . (7.2)

The following figures (Figure 7.4 — Figure 7.9) show the flow field in proximity to the
cylinder for mean flow Reynolds numbers Rey = 0.4, Rey = 4, and Re( = 40, respec-
tively. The plots were captured from the same simulations carried out to acquire the
data for the step response detailed in Section 6.1. The excerpt extends from —2d
to 4d in x;-direction and from 0 to 3d in xp-direction. Black lines represent the
pseudo-streamlines of the flow (from left to right). The colors indicate regions where
values of temperature (left column) and values of velocity magnitude (right column)
respectively are higher (red) or lower (blue) than the stationary values before the
step occurs. A gray color signifies no change. In the figure series, time advances from
top to bottom.

7.2.1 Common Features and Behavior

The flow fields for all of the mean flow Reynolds numbers depicted here show some
common features. The hydrodynamic and the thermal boundary layer are distorted
and adapt over time to the new steady-state flow. Initially, the velocity field changes
drastically. The red color of the far field depicts the new velocity magnitude after the
step input.
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7 Flow Field Representations

The velocity field changes instantly showing some acceleration of the flow next to
the cylinder. The red spot close to the side of the cylinder relative to the flow marks
noticeably higher velocities in proximity to the surface. A gray color directly at the
cylinder boundary indicates no change, which reflects the fact that the no-slip con-
dition is imposed. The flow field relaxes to the new steady state over time, to some
extent reversing the sudden changes.

The drastic change instantly after the step input is due to the immediate high pres-
sure gradient establishing to facilitate the acceleration of the flow. This favorable
pressure gradient is responsible for large velocity gradients in proximity to the cylin-
der. Another way to interpret this is an increased generation of vorticity at the cylin-
der, which is subsequently transported by convection and diffusion.

A new, thinner, thermal boundary layer establishes after the step excitation, and hot
fluid in proximity to the cylinder is swept away. This is indicated by the comparably
cooler (blue) region that forms at the windward side of the cylinder and spreads
further downstream at later instances in time. This cooler region shows that there
is a higher temperature gradient at the cylinder, resulting in a rise in heat transfer
rate.

In addition, a hotter zone is initially forming at the lee side of the cylinder over a
time of approximately one passage time. Eventually, it is swept away downstream
with the flow, and the temperature at the backward stagnation point of the cylinder
is also slightly lower than before the perturbation. This is in accordance with the
step response behavior of sector 4 as shown in Figure 6.2. The appearance of this
hot zone is visible as a drop below the original steady-state value shortly after the
step input occurred. The hotter fluid starts to move downstream between ¢t = 0.7
and £ =1.5.

7.2.2 Behavior at Different Mean Flow Reynolds Numbers

Figure 7.4 and Figure 7.5 show the flow fields for Rey = 0.4. At this low Reynolds
number, the flow fields are in transition for a long time, and a new steady state is
not reached at the end of the figure series, although the last flow field was captured
25 flow passage times after the step occurred. This can also be seen in Figure 6.1.
However, the cold leeward zone and the hot windward zone can readily be detected.
Also, the sudden change of the velocity field restores slightly and within a compara-
bly large amount of time until the new steady state is reached.

In the case of Rey = 4 (Figure 7.6 and Figure 7.7), gradients are much stronger and
cold and hot zones are more pronounced. In the chosen section, it can be seen that
cold and hot regions are confined spots and only extend a few cylinder diameters
beyond the center. The zones are more confined than in the case of Reg = 0.4. Their
size is the same order of magnitude as the steady state boundary field visible in
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Figure 7.2. The development of the cold zone is partially counteracted and it reaches
its maximum after about ¢ = 7 (Figure 7.7, second row). The change in heat transfer
rate slows down towards the new steady-state value but still overshoots it. After ¢ = 2,
the hot zone visible in the third row in Figure 7.6 departs. This corresponds to the
positive values that are assumed in the heat transfer step response of sector 4 (cf.
Figure 6.2 (b)).

The step response flow field of a cylinder in crossflow with an initial Reynolds
number of Rey = 40 (Figure 7.8 and Figure 7.9) shows a slightly different behavior.
The recirculation zone (circular pseudo-streamlines at the lee side of the cylinder)
contracts suddenly at time ¢ = 0 and slowly grows again until a stationary state is
reached. Only a small section at the cylinder, close to the flow separation point,
remains colored in gray indicating no change.

Again, the pressure gradient necessary to accelerate the flow affects the boundary
layer. The adverse pressure gradient due to the curvature is counteracted by the
favorable pressure gradient from the step input. This causes the separation point,
where the flow cannot longer follow the curvature of the cylinder and the recircu-
lation zone starts, to shift towards the rearward stagnation point. The recirculation
zone seems to collapse and is restored when the excess of vorticity is transported
downstream.

The size of the colder and hotter zones are smaller than in the case of Reg = 0.4 and
Rep = 4, similar o the steady-state boundary field visible in Figure 7.3. Gradients
are stronger (different color scales are used) and changes are faster, e.g. happen in
shorter succession to the step input than at lower mean flow Reynolds numbers.
Stronger gradients also indicate a greater change in heat transfer rate. While the
hotter zone is washed downstream after about one passage time, the size of the
colder zone peaks around ¢ = 2 and shrinks until a new steady state is reached.
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Figure 7.4: Flow Field Representation of the Step Response (Reg = 0.4) 1. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are t = 0.3, t = 0.7, t = 1.5 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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Figure 7.5: Flow Field Representation of the Step Response (Reg = 0.4) II. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are t =3, t =7 and ¢ = 25 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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Figure 7.6: Flow Field Representation of the Step Response (Reg = 4) I. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are t = 0.3, t = 0.7, t = 1.5 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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Figure 7.7: Flow Field Representation of the Step Response (Reg = 4) II. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are t =3, t =7, and ¢ = 25 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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Figure 7.8: Flow Field Representation of the Step Response (Reg = 40) 1. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are ¢t = 0.3, t = 0.7, t = 1.5 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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Figure 7.9: Flow Field Representation of the Step Response (Reg = 40) II. Left col-
umn: Fields of temperature difference 6©. Right column: Fields of veloc-
ity difference 6 u. Time instances (rows) are t =3, t =7, and ¢ = 25 (top to
bottom). Colors range from blue (negative) to red (positive). Black lines
show pseudo-streamlines.
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7.3 Representations of the Linearized Flow Field

The linearized Navier-Stokes equations solver does not only offer the possibility
to acquire the frequency response of Nufdelt number and skin friction at discrete
predefined frequencies (cf. Section 6.2). It can also show the response of the com-
plete (linearized) flow field around the cylinder subject to fluctuations of a specific
frequency.

7.3.1 Amplitude of Vorticity and Temperature Fluctuation

In the following series of figures (Figure 7.10- Figure 7.15), the amplitude field of
linearized temperature fluctuations |0 | (left column) and the field of vorticity fluc-
tuation amplitude |(;| (right column) are shown. The excerpt extends from —2d to
4d in x;-direction and from 0 to 3d in x,-direction. Black lines are isolines of the
steady-state stream function v, i.e. they are streamlines for the mean flow from left
to right.

Figure 7.10 and Figure 7.11 show the linearized temperature field and velocity mag-
nitude field at a mean flow Reynolds number of Rey = 0.4 for different Strouhal
numbers Sr € {0.01,0.1,0.5,1,2,5,10,40}. A Strouhal number of Sr = 0.01 was cho-
sen to approximate a quasi-steady state. A major outcome is that the temperature
fluctuations are strong for Sr < 0.5. At Strouhal numbers of Sr = 0.01 and Sr = 0.1,
the amplitude of ®; assumes large values upwind of the cylinder visible as red areas.
The fluctuations at values greater than Sr > 0.5 are comparably weak. This corre-
sponds to the strong low-pass behavior visible in Figure 6.26.

The amplitude field of the vorticity fluctuations |{;| does not change much at
Strouhal numbers below the order of one. All vorticity fluctuations are generated at
the cylinder and most strongly in sector 2. The frequency response of the skin fric-
tion also shows only minor changes in amplitude at low Strouhal numbers, which
confirms this behavior. At higher Strouhal numbers, e.g. at Sr = 40, the generation of
vorticity fluctuations is much stronger than at low Strouhal numbers. The dynamic
boundary layer thickness is small, and hence the velocity gradients are large. The
maximum of the vorticity generation moves slightly downstream so that the field
becomes almost symmetric to the y-axis.

Representations of the linearized flow field subject to periodic pulsations of the
velocity at a mean flow Reynolds number of Rey = 4 are given in Figure 7.12 and
Figure 7.13. At the lowest frequency (Sr = 0.01), the temperature fluctuations close
to the forward stagnation point are strong. A localized region of approximately two
diameters upstream is affected the most by the velocity fluctuations. The zone of
strong fluctuations (red zone) is largest in the second row at Sr = 0.1. This concurs
with the peak gain in the transfer function of the heat transfer (cf. Section 6.2). At
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Sr = 0.5, a second region of higher fluctuation amplitudes is visible on the lee side
of the cylinder. This effect could also be observed for Rey = 0.4 and is weaker than
the fluctuations in front of the cylinder. The fluctuation amplitude is reduced with
higher frequency until no fluctuation is visible in the chosen color scale for Sr = 40.
The vorticity fluctuations (right column) behave again differently and are concen-
trated around ¢ = /4 where most of the vorticity fluctuations are generated at the
surface of the cylinder. The affected region extends significantly downstream. As the
fluctuations grow stronger at higher frequencies (with a peak value of |{}|nax = 26.5
at Sr = 40), they concentrate close to the surface of the cylinder. The peak vorticity
is located close to ¢p = /2, i.e. where the cylinder is thickest.

The behavior of the fluctuating quantities, temperature and vorticity, for a mean
flow Reynolds number Rey = 40 is shown in Figure 7.14 and Figure 7.15. Similar
features occur, e.g. the temperature fluctuation at the windward side of the cylinder
and the temperature fluctuation right behind the rearward stagnation point, which
starts at the very low frequencies (Sr = 0.01) and is visible even at the higher Strouhal
numbers. The vorticity fluctuation also behaves similarly to Rey = 4 with the most
substantial difference visible at the smallest frequencies where the affected region
reaches further downstream. Again, the highest value (|1 |max = 81.0) is measured at
Sr = 40.

A major difference to the behavior at the lower mean flow Reynolds numbers is the
occurrence of high amplitude fluctuations downstream of the cylinder and in the
shear layer next to the recirculation zone. The recirculation zone is visible as the
closed streamline at the lee side of the cylinder. The temperature fluctuations in
front of the cylinder are comparable in amplitude to the Rey = 4 case. The smaller
size of this upstream fluctuation zone leads to stronger gradients and hence to
larger fluctuation amplitudes in Nullelt number. However, this third fluctuation
zone located approximately at ¢ = 37/4 exhibits amplitudes almost twice as strong
as the forward fluctuation zone. This effect is mostly visible at Sr = 0.5, Sr = 1.0, and
Sr = 2.0 (third row and fourth row in Figure 7.14 and first row in Figure 7.15).

This sidewards fluctuation zone might explain why the gain of the heat transfer
fluctuations exceeds the steady-state value strongly at Strouhal numbers of order
one. This region is also visible in the vorticity field but much weaker and without
influence on the skin friction fluctuation.
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Figure 7.10: Linearized Flow Field Representation for Re( = 0.4 I. Left column: Am-
plitude of temperature fluctuation ®; (Sr). Right column: Amplitude of
vorticity fluctuation {; (Sr). Strouhal numbers are Sr =2, Sr =5, Sr = 10,
and Sr = 40 (top to bottom).
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Figure 7.11: Linearized Flow Field Representation for Rey = 0.4 II. Left column:
Amplitude of temperature fluctuation ®, (Sr). Right column: Amplitude
of vorticity fluctuation {;(Sr). Strouhal numbers are Sr = 2, Sr = 5,
Sr =10, and Sr = 40 (top to bottom).
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Figure 7.12: Linearized Flow Field Representation for Reg = 4 I. Left column: Am-
plitude of temperature fluctuation ®; (Sr). Right column: Amplitude of
vorticity fluctuation {;(Sr). Strouhal numbers are Sr = 0.01, Sr = 0.1,
Sr=0.5, and Sr = 1.0 (top to bottom).
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Figure 7.13: Linearized Flow Field Representation for Reg = 4 II. Left column: Am-
plitude of temperature fluctuation ®; (Sr). Right column: Amplitude of
vorticity fluctuation {; (Sr). Strouhal numbers are Sr =2, Sr =5, Sr = 10,
and Sr = 40 (top to bottom).
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Figure 7.14: Linearized Flow Field Representation for Reg = 40 I. Left column: Am-
plitude of temperature fluctuation ®; (Sr). Right column: Amplitude of
vorticity fluctuation {;(Sr). Strouhal numbers are Sr = 0.01, Sr = 0.1,
Sr=0.5, and Sr = 1.0 (top to bottom).
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Figure 7.15: Linearized Flow Field Representation for Reg = 40 I1. Left column: Am-
plitude of temperature fluctuation ©;(Sr). Right column: Amplitude
of vorticity fluctuation {; (Sr). Strouhal numbers are Sr = 2.0, Sr = 5.0,
Sr=10.0, and Sr = 40.0 (top to bottom).

221



7 Flow Field Representations

S

0 0.25 0.5 0.75 1.0 - —-7m/2 0 /2 /4

Figure 7.16: Flow Field Representation of ©; for Reyp =4 and Sr = 0.5. Amplitude
(left) and phase (right) of temperature fluctuation.
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Figure 7.17: Flow Field Representation of ©; for Rey = 40 and Sr = 0.5. Amplitude
(left) and phase (right) of temperature fluctuation.

7.3.2 Amplitude and Phase Fields of Temperature Fluctuation

In the figure series of the previous section, only amplitude values are shown. This
section links these representations to the phase field of the complex temperature
fluctuations O, relative to the excitation with €'/, Low frequencies, at which a peak
gain Gny > Kny occurs (St = 0.5), are examined as well as the case of Sr = 7, where
all transfer functions coincide in a phase value of approximately Z/ Gy, = —37/8 (cf.
Section 6.4.1).

Low Frequencies (Sr = 0.5)

Figure 7.16 shows amplitude (left) and phase (right) of the temperature fluctuations
caused by periodic pulsations of the flow velocity at a mean flow Reynolds number
of Reyp = 4 and a Strouhal number of Sr = 0.5. The amplitude field is the same as
in Figure 7.12, (third row, left column). It shows the typical windward and leeward
fluctuation zones but no sideward fluctuation. The strong windward fluctuations
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Figure 7.18: Flow Field Representation of ©; for Rey = 4 and Sr = 7. Amplitude (left)
and phase (right) of temperature fluctuation.
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Figure 7.19: Flow Field Representation of ©; for Rey = 40 and Sr = 7. Amplitude
(left) and phase (right) of temperature fluctuation.

have positive phase values. In contrast, the leeward fluctuations exhibit lower, even
negative phase values.

For temperature fluctuations at Rey = 40, as depicted in Figure 7.17 (cf. Figure 7.15,
third row left column), the sidewards fluctuation zone is visible. For this mean flow
Reynolds number, the assessed Strouhal number Sr = 0.5 is very close to the max-
imum of the peak gain phenomenon. The phase values, depicted on the right of
Figure 7.17, are only shown in places where the amplitude is above 10~3, Windward
and sideward fluctuation zones are in the region with positive phase values, i.e.
phase lag. The dark blue spot at an angle of ¢ = 37/4, indicating phase values of
approximately —7, is due to phase wrapping. It occurs when values exceed 7. Hence,
again most fluctuations lag in phase except for the leeward zone, which shows neg-
ative values in Gny.
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Intermediate Frequencies (Sr = 7)

The temperature fluctuations at an intermediate frequency (Sr = 7) and a mean
flow Reynolds number Rey = 4 are depicted in Figure 7.18. The amplitude values
are rather small compared to lower frequencies as was to be expected from the
frequency response (cf. Section 6.4.1). The phase field shows a distinct difference be-
tween the forward fluctuation zone and the leeward fluctuation zone. In the range
of ¢ = 0 to approximately ¢ = 37/4 around the circumference of the cylinder (sector
1 —sector 3), the phase exhibits a lag of approximately 7/2.

The phase at Rey = 40 and Sr = 7 is shown in Figure 7.19. The essential features are
the same as in the case of Rey = 4. Like in Figure 7.17, phase values are only depicted
where the amplitude is above 1073, Partition of the field close to the surface of the
cylinder is visible like in the case of Rey = 4. A pattern of “phase waves” is superim-
posed with a wavelength of approximately one cylinder diameter. This corresponds
to sinusoidal fluctuations convected with the undisturbed mean flow velocity g oo
(Sr/2m = 1).

7.4 Circumferential Distribution of Heat Transfer and Skin
Friction

Section 7.3 and Section 7.2 gave descriptions of the linearized flow field close to
the cylinder. This section focuses directly on the skin friction and the heat trans-
fer computed with the LNSE solver (cf. Section 5.4 and Section 6.2). Similar to the
steady-state values for the Nul3elt number and the friction coefficient, reported in
Section 2.1.2, the circumferential distributions of the fluctuating quantities Nu; and
cr,1 are shown in polar plots. The top half of each plot represents the amplitude
of the complex-valued quantity. The phase is depicted at the bottom of the figure.
This viewpoint allows more insight into the influence of the cylindrical shape on the
transfer behavior.

Figure 7.20 depicts the Nullelt number fluctuations at three different frequencies,
Sr = 0.5 (blue), Sr = 7 (red), and Sr = 40 (yellow), for a mean flow Reynolds number of
Rey = 4. The amplitude of Nu; greatly reduces with frequency, which concurs with
the low-pass behavior of the transfer function (cf. Chapter 6). From this figure, it
can be seen that most of the fluctuations occur at the forward stagnation point and
diminish towards larger angles. This behavior is also observed for the steady-state
values (cf. Figure 2.6).

At angles of ¢ = 37/4, the amplitude is at its low mark. It recovers slightly towards
the backward stagnation point. This change in dynamic behavior is also apparent
in the phase of the NuRelt number. Phase values are always below zero for the con-
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Figure 7.20: Nul3elt Number Distribution at Rejg = 4. Sr=0.5 (—), Sr =7 (—), and
Sr=40 (—).

sidered frequencies. At Sr = 7 and Sr = 40, phase wrapping occurs, yielding positive
values. This is another indicator for the change of dynamic behavior in sector 4 of
the cylinder as it can be observed in the flow fields (cf. Section 7.2 and Section 7.3)
as well as in the step response (cf. Section 6.1).

At higher Reynolds numbers, the behavior is similar, yet more pronounced. Fig-
ure 7.21 shows the circumferential distribution of fluctuating heat transfer at the
cylinder at a mean flow Reynolds number of Rey = 40. At Sr = 0.5, which is close to
the peak gain frequency of the transfer function, the amplitude values are highest.
Again, a drop to very small values is visible at an angle slightly above ¢ = 37/4. At
the backward stagnation point, the amplitude rises to about 1/4 of the maximum.
At angles before the amplitude minimum, the phase exhibits positive values, i.e.
phase lag. In this position, the sideward fluctuation zone (cf. Figure 7.17) is located.
Although the fluctuations are quite strong, the zone is far away, and hence gradients
are comparatively low.
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Figure 7.21: Nul3elt Number Distribution at Rey = 40. Sr = 0.5 (—), Sr =7 (—),
and Sr=40 (—).

The phase at high frequencies tends towards lower values. At a distinct angle close
to ¢ = 3m/4, the phase drops about an amount of 7 causing the phase to be wrapped
in Figure 7.21. The angle at which the phase jump occurs is slightly dependent on
frequency and moves towards smaller angles with rising Strouhal number.

Figure 7.22 displays the friction coefficient pulsation cy,;, derived from the lin-
earized flow fields for three different frequencies (Sr = 0.5, Sr = 7, and Sr = 40) and
a mean flow Reynolds number of Rey = 4. The maximum amplitude rises with fre-
quency as can as well be seen in the skin friction transfer function. No fluctuation
occurs at the forward stagnation point. Hence, the amplitude appears egg-shaped
in the polar plot. At the lowest frequency shown here (Sr = 0.5), the maximum
occurs at approximately ¢ = 37/4 and moves to an angle of ¢ = 7/2 at very high
Strouhal numbers. The skin friction at high frequencies shows symmetry also in
the direction perpendicular to the flow, which is also visible in the linearized flow
field (cf. Figure 7.13). Moreover, this is reflected in the phase of ¢y ; which uniformly
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Figure 7.22: Friction Coefficient Distribution at Reg = 4. Sr=0.5 (—), Sr =7 (—),
and Sr=40 (—).

approaches < cy; = /4 at high Strouhal numbers. At Sr = 0.5, it can be seen that
the phase lead close to the backward stagnation point is almost Zcf; = 7/2. This
shows that only weak inertial forces act on the fluid in this region and it responds to
a change in pressure, which is necessary to accelerate or decelerate the flow, almost
instantly.

At a mean flow Reynolds number of Rey = 40, as shown in Figure 7.23, the friction
coefficient behaves in a very similar manner. The amplitudes are smaller than in the
case of Rey = 4, but this also applies to the steady-state value to an even larger extent.
Hence, the frequency response (cf. Figure 6.26) has higher amplitudes at greater
mean flow Reynolds numbers. The phase lead close to the backward stagnation
point exceeds Zcr; = —7m/2, i.e. even precedes pressure fluctuations required to
accelerate the flow. This is probably caused by the recirculation zone.
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Figure 7.23: Friction Coefficient Distribution at Reg = 40.Sr=0.5 (—),Sr=7 (—),
and Sr=40 (—).

7.5 Discussion

Three different representations of the spatial distribution of fluctuations in flow
quantities have been shown in this section. The flow fields acquired from the step
response give a detailed insight into the temporal evolution of the velocity field
and the temperature field close to the cylinder. The same detail is depicted for
periodic forcing computed with the LNSE. This illuminates the dynamic behavior
from a frequency space point of view, which is the basis for the transfer functions.
Also computed with the linearized solver are the circumferential distributions of
the NuRelt number and friction coefficients. They are a direct result of the surface
normal gradients in the LNSE flow fields at certain Strouhal numbers. All of these
representations shed light on the dynamic behavior of the heat transfer and the skin
friction as well as the distinct features of the respective transfer functions.
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7.5 Discussion

Deviations from models reported previously, especially the model by Lighthill
(1954), can be physically motivated and explained. Most notably, the peak gain
phenomenon and the phase lag in the heat transfer as well as the low-frequency
behavior of the skin friction. The latter is very uniquely linked in its time scales to
the cylindrical shape.

In the light of these investigations, the analytical approach by Lighthill (1954, cf.
Section 3.2.2) can be reassessed. In short, Lighthill’s assumptions and simplifica-
tions can be summarized as follows: (1) The boundary layer equations were used
to describe the flow. Lighthill (1954) then treated these equations differently for
the limit of low and high frequencies. He later identified Sr = 20 as the frequency
where both limiting solutions approximately matched for the skin friction. (2) High
frequencies were assessed using the solution of Stokes’ second problem (Stokes,
1851, cf. Section 3.1.2). (3) For low frequencies, the term including the frequency
parameter (Strouhal number) could not be assumed small, and hence, simplifica-
tions similar to those made by Stokes were not possible. Instead, Lighthill used
an integral Kdrman-Polhausen treatment (Schlichting and Gersten, 2006). (4) The
parameters for the fourth order polynomial profiles were taken from solutions for
the flat plate boundary layer (Blasius layer) and the stagnation point flow (Hiemenz
layer) (Schlichting and Gersten, 2006).

From the steady-state flow fields depicted in Section 7.1, it already becomes evi-
dent that the notion of a boundary layer (assumption 1) does not apply to the flow
around a cylinder with mean flow Reynolds numbers of Rey = 0.4 and Rey = 4 (Fig-
ure 7.1 and Figure 7.2, respectively). Even at Rey = 40, the zone disturbed by the
flow is not only a thin layer (Figure 7.3). Lighthill (1954) stated that his approximate
solution should be valid above Rey > 10, but this limit has to be raised in the light
of this investigation. This is noteworthy inasmuch as most Rijke tubes operate at
mean flow Reynolds numbers below Reg < 40 (cf. Table 3.1).

Lighthill (1954) built his model on the observation that the major part of the heat
transfer occurs in the front quadrant of the cylinder (assumption 4). The findings in
this thesis confirm this also for the fluctuations and even for lower Reynolds num-
bers. However, still a significant part of the heat transfer occurs at angles ¢ > n/4.
This also points to one of the main limitations in any study using the boundary
layer equations to describe the flow (assumption 1).

The heat transfer at the lee side of the cylinder (sector 4 at angles ¢ > 37/4) is not
negligible and has a different phase than the windward part of the cylinder (cf. Fig-
ure 7.20 and Figure 7.21). It causes the theoretical phase limit of ZGn, > —7/2 at
Sr — oo predicted by Lighthill (1954) never to be reached. Using Stokes’ solution for
the high frequency behavior cannot represent this as Stokes developed it for a flat
plate (assumption 2). Also, the low frequency approximation, which is a first order
time lag system, has the same theoretical limit of ZGny (St — co0) = —n/2 and can-
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not represent this phenomenon. For the skin friction at high frequencies, however,
Stokes’ second problem (cf. Section 3.1.2) is a good approximation even for curved
geometries like the cylinder.

Foller and Polifke (2012) also reported that the limiting frequency was above
ZGny > —m/2. However, the recirculation zone, as proposed by Foller and Polifke
(2012), can now be ruled out as a cause for this difference in phase because no
recirculation occurs at Rey = 4. The enlarged phase limit occurs predominately at
low mean flow Reynolds numbers. Inspecting the solution by Bayly (1985), which
specifically treats Rey < 1, reveals also phase values above /Gny > —7/2 at high
Strouhal numbers. However, the limit of Bayly’s formula is still —7/2 which is
reached through a prolonged descent.

Assumption (3) was not assessed in further detail in this thesis. However, it can be
assumed that a fully resolved solution of the incompressible Navier-Stokes equa-
tions is more accurate than the integral treatment approximating velocity profiles
and temperature profiles by fourth order polynomials.
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Heat Transfer

The identified models presented in Chapter 6 for the heat transfer show very good
agreement with the data acquired from CFD simulations. Each model can be seen
as the best fit for the respective mean flow Reynolds number. To acquire a model for
mean flow conditions not reported in this thesis, an interpolation technique can be
used: For the two models at the conditions closest to the desired one, the impulse
response has to be computed. Ideally, this is done in discrete time at the desired
sampling rate. Linear interpolation between two coefficients of different models
representing the same time lag is subsequently used to acquire a new impulse re-
sponse coefficient at every time lag. The new model can be used as an FIR model
directly, or as data for the identification of a new transfer function in the desired
framework. The work shown here was previously published in parts in Witte and
Polifke (2016, 2019).

In this chapter, a different approach is pursued. Simple models for the dynamics of
the heat transfer have been used in the past. Especially in modeling the heat transfer
dynamics of the Rijke tube, two model types stand out: the n-7 model and the PT1
time lag model. In most of the literature associated with the modeling of thermoa-
coustic oscillations in a Rijke tube one of these models is used (cf. Table 3.1). In this
chapter, a PT1 model including the mean flow Reynolds number as a parameter is
proposed. The complexity is reduced to yield a model in the manner of Lighthill
(1954) or Bayly (1985).

The n-7 model and the PT1 model are introduced in Section 8.1 as simple models for
heat transfer behavior with some desirable properties. Both models are compared,
and the strengths and weaknesses of each model type are reported. A first order
time lag model parametrized with the mean flow Reynolds number is presented
in Section 8.2. The chapter concludes with three case studies showing the impact
of temperature dependent fluid properties, i.e. different Prandtl numbers, different
cylinder temperatures, and amplitude in the order of the mean flow Reynolds num-
ber (cf. Section 8.3).
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8.1 Low Order Models

Low order models are popular in the modeling of thermoacoustic devices. On the
one hand, they offer certain mathematical advantages over more sophisticated
methods and can be used in pen and paper calculations as well as for educated
guesses. On the other hand, the accuracy provided by these low order methods is
not as good as the accuracy of the individually identified models but probably still
within the margins of other uncertainties.

8.1.1 7n -1 Model

A model for low frequencies, very often used in thermoacoustic applications, is that
of a time delayed heat transfer, the so-called n — 7 model. It assumes that an output
depends only on one past input which occurred some time 7 in the past, scaled with
the interaction index n. Time and frequency domain representations are given by

YNu=nNnugpe(t—c;) and (8.1)
Gny=ne 5 (8.2)

with the dimensionless time constant ¢; = 7- Uy o/ d. The scaled pulsation in NuRelt
number Nu'/Nuy is again denoted by yn, and likewise for the Reynolds number
pulsations uge. In the frequency domain, it has a constant gain of 7, and the phase
decreases linearly with slope —c;.

This model is especially interesting for computations in the time domain. As a dis-
crete model, the impulse response has only one nonzero coefficient which consider-
ably simplifies calculations compared to other dynamic models. It can also be used
in conjunction with the theory of delayed differential equations.

8.1.2 PT1 Model

The PT1 model is a continuous time transfer function of order one. It follows the
structure outlined in Equation (4.24), but with only one parameter for numerator
and denominator. It reads

bo

G(s) = .
l+a;s

(8.3)

The numerator coefficient by = K is the steady-state gain and the coefficient of the
denominator is a time constant a;.

The PT1 model, like the n — 7 model, has two parameters. Under the assumption
of a positive time constant, the system is always BIBO stable. However, its impulse
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Figure 8.1: Frequency Response of PT1 and n — 7. Amplitude (top plot ) and phase
(bottom plot) of the frequency responses with interaction index/steady-
state gain n = K = 1 and time constant ¢; = 1.

response can become arbitrarily long depending on the time constant. In the fre-
quency domain, this is the simplest representation of a low-pass filter which fulfills
the condition that the amplitude approaches zero G(s) — 0 in the limit of high fre-
quencies s — oo.

8.1.3 n -1 Model as Linearization of First Order Lag

PT1 model and n — 7 model are related in that sense that the slope of the phase of
the frequency response at zero frequency can be perceived as originating from a
time lag c;. This relationship can be seen in the phase graph in the bottom plot of
Figure 8.1 where both models coincide at low frequencies.

Another point of view is that the PT1 model can be acquired from a Taylor expansion
of the n — 7 model. The n — 7 model is given in Equation (8.1). A response is caused
by a signal that occurred at a dimensionless time - ¢; in the past. This is equivalent
to saying a signal will cause a response at ¢ + c; in the future. Hence, the model is
reformulated to

YNul(l+¢Cr) = nuge. (8.4)
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Figure 8.2: Impulse Response of PT1 and n — 7. Interaction index/steady-state gain
n =K =1 and time constant ¢; = 1.

Applying a Taylor series expansion around ¢ and omitting terms of order @(c?) and
higher yields

OJ/Nu
ot

This ordinary differential equation is the time domain equivalent to the PT1 model
with n = by and ¢; = a;.

YNu(l) + Cr = NURe(T). (8.5)

Figure 8.2 shows the impulse response of a PT1 model (continuous time) anda n—1
model (discrete time). Both the interaction index/steady-state gain and the time
constant, are set to unity, i.e. n = K =1 and ¢; = 1, respectively.

8.1.4 Comparison of Low Order Parametrized Models

The advantage of the pure time delay model (n — 7 model) is that the convolution
equation, necessary to determine the heat transfer for any velocity perturbation in
the time domain, is a simple multiplication and thus reduces complexity. However,
compared to a first order transfer behavior, i.e. Equation (3.34) or Equation (8.3), it
is important to note that the differences in amplitude and phase increase with fre-
quency. The deviation can be assessed by analyzing the quantity ¢, -Sr. The time con-
stant is the inverse of the cutoff frequency of the first-order system and Sr. = 1/¢;
is the cutoff Strouhal number. Hence, c; - Sr = 1 corresponds to the cutoff frequency.
At this frequency, the difference in amplitude is already around 30 % relative to the
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steady-state value and about 12° (0.0687) in phase. At c¢; - Sr = 3, i.e. three times
the cutoff frequency, the amplitude of the n — 7 model is more than 384 % too high,
and the difference in phase is greater than n/2. These values can be observed in
Figure 8.1 where n = K = 1 and ¢; = 1 and hence the cutoff frequency of the PT1
model is Sr. = 1.

This is noteworthy inasmuch as Rijke tubes may operate in this regime. Matveev
(2003a) for example reported working conditions (Re = 2.3, Sr = 4.0) leading to a
value of ¢; - Sr = 4.5 considering Equation (8.6) for the time constant.

8.2 Parametrized First Order Time Lag Model

Following the model by Lighthill (1954, cf. Equation (3.34)) approximations to the
higher order identified transfer functions are given as a PT1 model. This is possible
because the dynamic behavior is governed to a large extent by only one time lag and
a steady-state gain. For all mean flow Reynolds numbers, the steady-state gain and
time constant were determined by identifying a transfer function with one free pa-
rameter for the numerator and the denominator respectively using continuous time
identification (cf. Section 4.4.5). Through nonlinear regression over K and c; of 12
identified models in the range 0.1 < Re( < 40, respectively, the following correlations
were found:

K = 0.25Re)* and c; = 1.8Re;*?+0.2 (8.6)

With these expressions the PT1 model proposed as low order model for the heat
transfer oscillations caused by pulsations in free-stream velocity reads

0.25Re)
1+ (1.8Re;*8+0.2)iSr’

GNu(Sr,Re) = 8.7)

The goodness of fit (NRMSE-fit ®) for the models by Lighthill (1954) and Bayly
(1985) as well as the first order approximation presented here is shown in Figure 8.3.
Additionally, the ®-values for the best identified models (at a specific mean flow
Reynolds number) are given, which correspond to the frequency responses reported
in Section 6.4.

As already reported by the respective authors, Lighthill's and Bayly’s models have
limited validity in the range 0.1 < Rey < 40. Bayly’s model shows high accuracy for
Rey — 0, but should not be used for Reynolds numbers above Rey = 0.5. Lighthill
states that his model is applicable if a laminar boundary layer exists and gives Re >
10 as the limit. However, better accuracy can be achieved by using the Reynolds
number dependent model presented here.
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Figure 8.3: NRMSE-Fit of Different Models. Output from Lighthill (——), Bayly (=)
The first order approximation presented here (——) and the identified
models providing the best fit (—e-).

8.3 Limitations and Corrections of the PT1 Model

The mean flow Reynolds number is one of the most important parameters, espe-
cially in the range of low Reynolds numbers as they occur in Rijke tubes. Never-
theless, there are other parameters not explicitly accounted for in the PT1 model
presented in this thesis. This includes the Prandtl number of the flow, the actual
temperature difference between wire and free-stream, and the amplitude of the
oscillations in the flow velocity.

8.3.1 Influence of Prandtl Number

The Prandtl number is a parameter in the incompressible Navier—Stokes equations,
more precisely in the temperature equation (Equation (2.65)). It can be seen as
the ratio of the boundary layer thicknesses and is therefore directly related to the
dynamic behavior. All simulations for this thesis were conducted with Pr = 0.7123,
which is a common value for air at ambient conditions.

Figure 8.4 and Figure 8.5 show the frequency responses of the heat transfer at mean
flow Reynolds numbers Rey = 4 and Rey = 40, respectively, at different Prandtl num-
bers. The responses were evaluated with the LNSE approach (cf. Section 5.4) and for
several Prandtl numbers in the range 0.5 < Pr < 10. This covers most gases and also
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Figure 8.4: Frequency Response of Heat Transfer at Rey = 4 and Various Pr. Ampli-
tude (top) and phase (bottom) at Pr=0.5 (—), Pr=0.7123 (—),Pr=1.0
(—),Pr=20(C ),Pr=5.0(—),and Pr=10.0 (—).
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Figure 8.5: Frequency Response of Heat Transfer at Rey = 40 and Various Pr. Am-
plitude (top) and phase (bottom) at Pr = 0.5 (—), Pr = 0.7123 (—),
Pr=10( ),Pr=2.0( ),Pr=5.0(—),and Pr=10.0 (—).
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some liquids like water. For gases, for which the Prandtl number is usually between
0.5 < Pr < 1.0, Pr has only a minor influence and may be negligible for most pur-
poses. Higher Prandtl numbers have a similar effect as higher Reynolds numbers.
The amplitude of the frequency response has a greater low-frequency limit, and
the peak around Sr = 1 is more pronounced. Moreover, the dominant time scale
becomes smaller which manifests in the phase of the frequency response as a less
steep initial descent.

8.3.2 Influence of Absolute Temperature

A much more important factor than the Prandtl number for many applications is
the actual temperature difference between the surface of the cylinder and the free-
stream. If the temperature at the surface of the cylinder is substantially different
from the flow temperature, the fluid parameters are not constant and lead to a dif-
ferent dynamic behavior. The small temperature difference assumption, introduced
for most computations in this thesis, allowed to reduce the complexity of the CFD
simulations and to compare the results with other studies.

The influence of the cylinder temperature was surveyed using the full compressible
Navier-Stokes equations (Equation (2.28)-(2.32)) together with SI (CFD/SI). The
computational procedure was the same as detailed in Section 5.2 and the fluid
properties were evaluated using the instantaneous temperature field as well as the
laws given in Section 2.2.2 for air. An ambient temperature of 300K was chosen
for the computations, and the temperature of the cylinder was determined by a
temperature difference AT. Four temperature differences, AT = 10K, AT = 100K,
AT =300K, and AT = 600K, were assessed at mean flow Reynolds numbers Rey = 4
and Reg = 40. The first AT is well within the limits of small temperature differences
while the latter corresponds to a cylinder temperature of 626.85 °C. A heated wire
would show a faint red glow at this temperature. The numerical procedure was also
adapted from the incompressible simulations. This also includes the time step size,
which means that acoustic waves were underresolved and the acoustic CFL number
was much greater than unity.

The frequency response at different AT is depicted in Figure 8.6. The color of the
graph indicates the temperature from blue to red. For comparison, the frequency
responses assessed with the incompressible Navier-Stokes equations at Reg = 2 and
Rep = 4 are included as dashed lines. The frequency response at the lowest tem-
perature difference matches fairly well with the response from the incompressible
Navier-Stokes equations at the same mean flow Reynolds number. The largest dif-
ference is visible in the phase at high frequencies. This is due to the fact that the
assumption of acoustical compactness becomes weaker at high frequencies (high
Helmholtz numbers, cf. Section 2.4.2). The time it takes for an acoustic pulsation
to reach the cylinder is infinitely small in the case of the incompressible Navier—
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Figure 8.6: Frequency Response of Heat Transfer at Rey = 4 and Different A T. Am-
plitude (top) and phase (bottom) at AT = 10K (—), AT = 100K (),
AT =300K (), and AT = 600K (—). For reference, the frequency re-
sponse for Rep = 4 and Rey = 2 (incompressible) are shown (---).

Stokes equations. When the compressible Navier-Stokes equations are solved, the
finite propagation speed leads to slightly higher phase lags. However, the complete
system, consisting of data acquisition plane and cylinder with an extent of approx-
imately 9d, is still acoustically fairly compact (He < 0.1, c.f. Section 9.1.3). Higher
temperature differences, i.e. higher cylinder temperatures, lead to a reduction in
amplitude of the frequency response. At AT = 600K, the frequency response is com-
parable to lower mean flow Reynolds numbers. This effect can be explained by the
influence of the temperature on the fluid properties. The fluid close to the cylinder
heats up substantially, resulting in a higher viscosity. This, in turn, implies a smaller
Reynolds number. To account for this effect, an effective mean flow Reynolds num-
ber can be calculated from the arithmetic mean of the free-stream viscosity and the
viscosity at the cylinder temperature. With this effective Reynolds number, Equa-
tion (8.7) can be used with reasonable accuracy at higher temperature differences.

At a mean flow Reynolds number of Rey = 40, this tendency is reversed. As depicted
in Figure 8.7, the amplitude reaches higher values, and the peak gain is more pro-
nounced. This could be attributed to the thermal conductivity of air, which rises
with rising temperature. The lowest temperature difference (AT = 10K) produced
results with rising amplitude towards higher frequencies. This was unexpected,
since higher temperature differences, as well as the quasi-isothermal simulation,
do not exhibit this behavior. It is, therefore, most likely an artifact occurring at
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Figure 8.7: Frequency Response of Heat Transfer at Rep = 40 and Different A T.
Amplitude (top) and phase (bottom) at AT = 10K (—), AT = 100K (),
AT =300K (), and AT = 600K (—). For reference, the frequency re-
sponse for Reg = 40 (incompressible) is shown (---).

high frequencies and low temperature differences in fully compressible simulations.
Temperature differences up to AT = 300K, however, match fairly well with the in-
compressible solution. The most distinct feature is the peak gain at AT = 600K
which is more pronounced and shifted towards higher frequencies than at lower
temperature differences.

8.3.3 High Amplitudes

The constraint to small amplitudes, as it was chosen in this thesis to stay within the
framework of an LTT system, may be too restrictive in some cases. In the Rijke tube,
for example, amplitudes can be as high as the mean flow itself when a limit cycle,
i.e. a state of quasi-steady high-amplitude oscillations, is reached Matveev (2003b).
With an LTI model, the initial stability and growth rates can be assessed, but not the
high amplitude behavior due to its nonlinear nature. Selimefendigil (2010) investi-
gated the nonlinear behavior of the heat transfer of a cylinder in pulsating crossflow
(Selimefendigil and Polifke, 2011; Selimefendigil et al., 2012). More information on
the nonlinear behavior was also given by Orchini et al. (2016).

In this thesis, only a glimpse at the nonlinear behavior in the form of high-
amplitude periodic oscillations is provided. The results shown here are based on
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Figure 8.8: NuRelt Number for Sinusoidal Fluctuations of Sr=0.5 at Reg = 40.
Steady-state correlation by Collis and Williams (1959) (—), oscillations
simulated with linear model and amplitude € = 1.0 (---), oscillations
simulated with linear model and amplitude € = 1.5 (---), CFD simula-
tion with amplitude € = 1.0 (—), CFD simulation with amplitude e = 1.5

(—).

a bachelor’s thesis by Calak (2017) supervised by the author of this thesis. Figure 8.8
depicts the Reynolds number and the Nul3elt number as acquired from simulations
with monofrequent modulation of the inlet velocity. The black line shows the steady-
state correlation by Collis and Williams (1959) (cf. Equation (2.23)). The solid blue
and red lines show the evolution of Re and Nu acquired from simulations with rel-
ative excitation amplitudes of 100 % and 150 % of the mean flow Reynolds number,
respectively. The velocity was forced at Sr = 0.5 and a mean flow Reynolds number
Reo = 40. The dashed lines represent the respective response from identified linear
models.

Especially when the flow decelerates, i.e. at low instantaneous Reynolds numbers,
the simulated response differs from the linear models and the steady state. The lat-
ter is due to the dynamic behavior in general, which at a Strouhal number of Sr = 0.5
differs considerably from the steady state. The outputs of the linear models appear
as perfect ellipses with position and size determined by the input and the transfer
function. The true response, however, is subject to nonlinearities which lead to a
distortion of the ellipse. This distortion is already quite articulate at Reg = 20. This is
in accordance with the observation, e.g. by Heckl (1990) that nonlinearities become
eminent at amplitudes of 30 % and above.
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8 Low Order Parametrized Model for Heat Transfer

From Figure 8.8, it can also be seen that dynamic response and amplitude are not in-
terdependent. The identification of a Wiener-Hammerstein model (Tangirala, 2014,
p. 781), a simple nonlinear model incorporating an OE model for the dynamics,
did not yield significant improvement over purely linear models. With a Wiener—
Hammerstein model, it is possible to skip the linearization and scaling steps in
the data preparation, but the nonlinearity is added as one or two separate blocks,
separating dynamics and nonlinearity. However, the NRMSE-fit of the linear model
to data acquired from broadband simulation with amplitudes up to 150 % was still
® > 80%. This means that even in the case of amplitudes higher than the linear limit,
the linear models perform adequately as long as the determination of the exact
pulsation amplitude is not the primary purpose. Even higher amplitudes, however,
will lead to worse model fits due to the discrepancy between model output and CFD
simulation data visible at low and negative Re.

8.3.4 Discussion

In this chapter, well known low order models used in the modeling of Rijke tubes
were introduced. Building upon this foundation a new low order PT1 model for the
heat transfer dynamics with the mean flow Reynolds number was introduced. It
was developed from simulations at 12 different mean flow Reynolds numbers in
the range 0.1 < Rey < 40 using SI methods. This newly developed model yields a
better description of the time lagged dynamics than the n — 7 model with just one
time delay and constant amplitude. It was also shown that it performs considerably
better than the analytical models reported by Lighthill (1954) and Bayly (1985) in
the range of interest.

The new parametrized PT1 model was developed based on CFD simulations, per-
formed with the incompressible Navier-Stokes equations, and identified with a
linear model structure. Three different shortcomings of this approach have been
addressed: Different Prandtl numbers, variable fluid properties in conjunction with
large temperature differences, and high pulsation amplitudes. It was shown that
the Prandtl number has a much weaker impact on the frequency response than the
Reynolds number and can readily be omitted from the parametrization. Moreover,
although the temperature difference between the free-stream and the surface of the
cylinder has some influence on the dynamic behavior, it does not change it fun-
damentally and may be corrected with simple measures, e.g. an effective Reynolds
number. The model is by its nature restricted to the linear regime. However, if ex-
citation amplitudes do not exceed the mean flow too much, the parametrized PT1
model may still yield fair approximations of the true nonlinear dynamics. Excita-
tion amplitudes up to € = 1.5, i.e. 150 % of the mean flow velocity, were examined.
Reasonable agreement of ® > 80 % was found for this case.
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9 Aspects of Applications

Three different aspects of applications of a cylinder in pulsating crossflow will be
presented in this chapter. The first application, detailed in Section 9.1, is the Rijke
tube. This device was the main reason for the original study by Lighthill (1954) and
likewise for the investigations in this thesis. Additionally, the hot-wire anemometer
is discussed in this regard in Section 9.2. Not only pulsations in the magnitude of the
velocity are considered but also a fluctuating angle of attack. Finally, the common-
alities and differences between a cylinder in crossflow and a heat exchanger (HX) as
used in domestic boilers are mentioned briefly in Section 9.3.

9.1 Rijke Tube

A Rijke tube, named after Pieter Leonard Rijke, who in 1859 was the first to describe
its assembly and operation, is a prototype of a thermoacoustic device. Reviews on
the subject were written by Feldman (1968) and Raun et al. (1993). A short survey of
recent studies was given in Section 3.6. The response of the heat transfer between
cylinder and fluid to fluctuations in flow velocity plays an important role in the Ri-
jke tube. Thermal energy, introduced through a heated wire mesh, is transferred to
acoustic energy, which can be experienced as audible sound. Prerequisites for this
effect are a resonator tube, a mean flow through the tube, and proper positioning of
the wire mesh. The Rijke tube is depicted schematically in Figure 9.1. A single wire
of the mesh can be treated as a heated cylinder in crossflow.

A standing wave exists in the resonator tube similar to an organ pipe. The acoustic
pulsations of the fluid velocity in the tube cause pulsations of the heat transfer rate.
The transfer behavior between these velocity perturbations and the heat transfer is,
therefore, an important parameter for the stability of thermoacoustic oscillations
and the operation of the Rijke tube in general. This transfer behavior is described
by the transfer functions developed in this thesis (cf. Chapter 6).

9.1.1 Mode of Operation

The mode of operation can be divided into an acoustic part, the mean flow, and the
interaction of both causing thermoacoustic instabilities.
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<?> -

Figure 9.1: Sketch of a Rjike Tube. Basic dimensions and the mean flow are marked.

Acoustics

The Rijke tube is usually built as a short pipe from a rigid material such as alu-
minum, steel, or glass. Similar to an organ pipe, the gas column inside the tube has
a natural frequency. Both ends of the tube are open. Hence, pressure nodes occur
at the openings, and the tube serves as a half-wave resonator. The fundamental
wavelength A, neglecting end effects, is approximately twice the length of the tube
A =2L. The Strouhal number of the fundamental frequency is hence given by

nd 1
Sr=——.
L Ma
Higher harmonics are integer multiples of this frequency. Although higher harmon-
ics may occur, the focus is given to the fundamental mode only.

9.1

The temporal evolution of acoustic pressure and velocity within one cycle is shown
in Figure 9.2. In the first graph, fluid exits the resonator at both ends. The velocity
is positive with respect to the spatial coordinate direction x in the upper half of the
resonator and negative in the lower half. The pressure in the tube decreases until
the acoustic velocity reverses. This leads to a rise in pressure and in turn to the flow
reversing again which closes the circle. This can be depicted in frequency space as
spatial distribution of the amplitude of pressure and velocity as well as the phase
shift between both (cf. Figure 9.3).

Mean Flow

In addition to the existence of a standing wave, another prerequisite is mean flow
through the tube. A constant stream through the tube removes hot fluid and trans-
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Figure 9.2: Acoustic Pressure and Velocity in a Tube (Time Domain). Time domain
representation of velocity oscillations u’ (blue) and pressure oscillations
p' (red). One cycle is represented in eight steps corresponding to a phase
difference of 7/4 between each graph. Time advances from left to right
(x€[0,L]).

ports cold fluid to the heater. This results in a convective heat transfer between wire
mesh and working medium. In other thermoacoustic devices, like the thermoacous-
tic engine, where no mean flow is present, this is facilitated by heat exchangers. The
steady mean flow can either be forced by applying a pressure gradient or originate
from buoyancy. In the first case, the Rijke tube is often arranged horizontally induc-
ing the flow with a blower. Vertically arranged Rijke tubes usually rely on natural
convection. In this case, hot fluid in the upper part of the tube has a lower density
than the surroundings and is pulled upwards by buoyancy forces. This is counter-
acted by hydraulic losses. The temperature and thus the density of the hot fluid are
determined by the heating power and the enthalpy transport caused by the flow. In
both cases, flow through the tube can be quantified by a mean velocity, i.e. a mean
flow Reynolds number

oo D _ g2 9.2)

d

where D is the tube diameter. The flow is usually laminar or in the lower transitional
regime.

ReD =

Thermoacoustic Instability

If both prerequisites, resonator and (steady) heat transfer, are given, thermoacoustic
instabilities may be excited. Rayleigh (Rayleigh, 1896) described this in what is now
known as the Rayleigh criterion: If heat is added to a fluid parcel already compressed
by the (acoustic) fluctuations, it will be compressed further. Thus, pressure fluctua-
tions are amplified. In turn, if less heat is transferred to the fluid parcel during times
of low pressure, i.e. compression by heating is comparatively small, pressure fluctua-
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/2
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Figure 9.3: Acoustic Pressure and Velocity in a Tube (Frequency Domain). Fre-
quency domain representation of velocity oscillations (blue) and pres-
sure oscillations (red). Amplitude is shown on the left. The right graph
represents the phase difference between p’ and u/'.

tions are amplified as well. This link between heat transfer and pressure demanding
an in-phase behavior was later formalized as

RI= f p'Q'de>0. (9.3)
RI is called the Rayleigh Index. In the case of the electrically heated Rijke tube, the

heat flux Q is given by Newton’s law of cooling by

Q:N%kndlw(Tw_Too) (9.4)

where [, is the length of the heated wire. Rearranging the definition of the transfer
function of the heat transfer (Equation (2.100)), the Nuf3elt number can be written
as

— Re’
Nu=Nu|l+Gng—] . (9.5)
Re

Inserting Equation (9.5) in Equation (9.4) yields

Re’
) (9.6)

2=Ko |1+ Gnu—
Q Q( NuReO

with the constant factor Kg = Nug k7l (Ty — Too). Using only the fluctuating part
of Equation (9.6), the Rayleigh integral can be rewritten to

RI= Ko j( p' GnuRe'dr. 9.7)
Reo
The Reyleigh criterion reads then
RI= j{ p' GnuRe'dE > 0. (9.8)

The Rayleigh criterion is a condition that is necessary, but not sufficient to cause
instabilities.
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Figure 9.4: Normalized Rayleigh Index. Normalized RI computed for mean flow
Reynolds numbers Req € {0.1,0.2,0.4,1,2,4,10, 20,40} (blue to red).

Itis evident that the transfer function Gyy, is an important parameter for the stability
of the Rijke tube. For the following investigation, only the upstream part of the Rijke
tube, where the pressure lags behind the velocity by 7/2 is considered. This corre-
sponds to the configuration of most Rijke tube test rigs where the heater is located
approximately 1/4 L from the inlet. However, this analysis can be made for the upper
part with phase lag of —7/2 in an analogous manner. Without instantaneous heat
transfer, the pressure and the velocity would be out of phase by 7/2 resulting in
RI = 0. Thus, neither infliction nor damping of thermoacoustic oscillations takes
place. However, phase lag between pressure and heat transfer is 7/2 + ZGny and
hence the Rayleigh Index is positive if -7 < ZGny < 0.

To give a more detailed description, the Rayleigh Index is shown in Figure 9.4. It was
computed for a series of mean flow Reynolds numbers in the range 0.1 < Rey < 40
and for Strouhal numbers in the range 0 < Sr < 5 with the transfer functions reported
in Section 6.4.1. The amplitude of the oscillations in pressure and velocity (Reynolds
number) were set to unity, so the depicted values can be seen as a normalized
Rayleigh Index.

The Rayleigh Index shows similar tendencies as the amplitude of the frequency re-
sponse at a certain mean flow Reynolds number, but there are several important
differences owed to the phase of Gyny. At low mean flow Reynolds numbers, the
highest values for RI occur at small values of Sr. The maximum shifts towards higher
Strouhal numbers for higher mean flow Reynolds numbers. Additionally, the higher
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gain values at larger mean flow Reynolds numbers lead to higher maximum values
in RI. At low Strouhal numbers and Rey 2 10, the Rayleigh Index is even negative
due to the phase lead in the transfer function of the heat transfer. The chart in
Figure 9.4 can serve as a design criterion to achieve the desired instability in a Rijke
tube. A rough estimate for the Strouhal number at which the normalized Rayleigh
Index is at a maximum for a specific Reynolds number in the range Reg € [0.1,40]
can be given by

Srr1max(Reg) = 0.444/Rep. (9.9)
With this correlation, an optimal wire diameter in meters can be approximated with
d = 0.02 LRe; Ma?, (9.10)

where Re; denotes the Reynolds number evaluated with the tube length L as char-
acteristic length.

For a heater placed in the downstream half of the Rijke tube the plot in Figure 9.4
would be flipped at the abscissa. Hence, the heater dampens acoustic oscillations
except for the case of Rep = 10 and very low Strouhal numbers (Sr = 0.05).

9.1.2 Significance of the Heat Transfer Model

The normalized Rayleigh Index can be used to demonstrate the significance of the
dynamic heat transfer model. Figure 9.5 shows the normalized Rayleigh Index com-
puted for different heat transfer models. Results computed with the CFD/SI method
are depiced with solid lines and the same coloring as in Figure 9.4. Additionally, the
normalized Rayleigh Index was computed using the PT1 model from Lighthill (1954)
(dashed lines) and the n — 7 model as used by Heckl (1988, dash—dotted lines). For
the sake of completeness, the frequency responses of these models can be written
as
GNu,-,Lighthill = % and GNujn-7 = ne 10251

The range of Strouhal numbers was chosen to reflect the range found in the litera-
ture survey in Section 3.6, where in most cases Sr € [0.5, 8].

The Rayleigh Index is an indicator for the amplification of acoustic pulsations in
the Rijke tube. Other losses that are not included here would virtually increase the
threshold of positive amplification to values higher than RI = 0. The plot shows
that for lower mean flow Reynolds numbers the maximum in RI is located at lower
Strouhal numbers. The results computed with the PT1 model by Lighthill (1954) and
the n — 7 model almost coincide due to the relationship between both models (cf.
Section 8.1.3). Compared to the identified models, RI is drastically under-predicted.
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Figure 9.5: Comparison of the Normalized Rayleigh Index. Normalized RI from
CFD/SI results for Reg = 0.4 (—),Reg =4 (), and Reg = 40 (—), from
Lighthill (1954) (---) and from the n — —7 model (---) as used e.g. by
Heckl (1988).

Towards higher Reynolds numbers, the RI computed from the identified models is
more similar to the PT1 model by Lighthill (1954) and the n — 7 model. However,
only the identified models predict negative values of RI, which is due to the phase
lead in the model. Above Sr = 3, the identified models for lower Reynolds numbers
predict much lower values of RI than the PT1 and the n — 7 model. The identified
model for Rey = 40 is fairly similar to Lighthill’s PT1 model. The n—7 model, however,
drastically over-predicts RI. This analysis sheds new light on results obtained with
previously published models, e.g. by Lighthill (1954) and Heckl (1988) and empha-
sizes the significance of an accurate model for the heat transfer dynamics.

9.1.3 Justification of the Assumptions

In this thesis, certain assumptions have been invoked a priori to solve the governing
equations (cf. Section 2.2.5). These assumptions are justified for the flow conditions
found in Rijke tubes.
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Low Mach Number

As can be seen from the Rayleigh Index in Figure 9.4, the transfer of thermal energy
to acoustic energy is strongest at Strouhal numbers of order one for typical mean
flow Reynolds numbers (0.1 < Reg < 40). With the relationship between Mach num-
ber and Strouhal number given in Equation (9.1), the Mach number under these
conditions is

nd
Ma= —.
L

Usually, the wire diameter d is about three orders of magnitude smaller than the
length of the resonator tube L. Hence, the Mach number is of order 1073, and the
assumption of low Mach numbers is justified.

(9.11)

Low Helmholtz Number

In the case of a Rijke tube, the speed of sound is much larger than the free-stream
velocity. Therefore, the Mach number is of order 1073, Indeed, even for moderate
Strouhal numbers (Sr < 40 in the present study) the Helmholtz number is also
small He = SrMa « 1. Thus, the region of heat transfer is “acoustically compact”, i.e.
its length is much smaller than the acoustic wavelength (Rienstra and Hirschberg,
2015; Telionis, 1981). This implies that an incompressible flow model is adequate.

Low Eckert Number

Lange et al. (1998) gave a relation between Nulselt number and viscous heating. The
Nullelt number is corrected by

ANu
—— =0.4Ec. (9.12)
NU()

However, as it was established that Ec ~ Ma?, viscous heating does not have a sub-
stantial influence in the case of the Rijke tube.

Overheating

The influence of the temperature difference (or overheating) AT is neglected in this
work to ensure comparability to analytical methods. The influence in the steady
state can be estimated from the correction factor of Nu8elt number correlations.

Collis and Williams (1959) (cf. Equation (2.23)) gave the correction factor
(Tl Too)?'?, where T, stands for the arithmetic mean between the temperature
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of the cylinder and the inbound fluid with T,. This factor accounts for the tem-
perature dependence of fluid properties like viscosity and thermal conductivity. It
can be rewritten as [1+ AT/ (2 T»,)]%!7 indicating that low temperature differences
between fluid and cylinder have negligible effect on the Nul3elt number, e.g. for
wire temperatures of AT = 200K above a fluid temperature of T, = 300K this term
enlarges the Nullelt number by only 5% and less than 11% for AT = 500K.

In the correlation by Sparrow et al. (2004) (cf. Equation (2.24)), the correction fac-
tor is (u/ )4, The temperature dependence of the dynamic viscosity is given by
Sutherland’s law (Equation (2.33)). This results in a Nuf3elt number reduced by 8.8 %
for AT =300K and 15.5% for AT = 500K at an ambient temperature of 300 K.

Constant Wall Temperature

Heat conduction in the cylinder was not resolved. Instead, a constant temperature
Ty, on the surface of the cylinder was assumed. This assumption is also justified
for Rijke tubes (Gelbert et al., 2012; Subramanian et al., 2010). A lumped thermal
capacitance model (Baehr and Stephan, 2011; Bergman et al., 2011) is applicable, if
the Biot number is much smaller than one Bi « 1. The Biot number is linked to the
NuBelt number by Bi = Nu- k¢/(2ks) and thus correlates with Reynolds number by
Equation (2.23) or Equation (2.24). For combinations of wire material and fluid that
are common in practice as well as mean flow Reynolds numbers typical for Rijke
tubes, the NuRelt numbers are of order one and the Biot numbers the order 1073,
as shown in Table 9.1. Hence, a lumped thermal capacitance model may be applied
with excellent accuracy, implying a spatially homogeneous temperature within the
cylinder.

The equation for a lumped thermal capacitance (Bergman et al., 2011) is given by

oT
Vspscp,s_t = hA(T - T, (9.13)

0
where V; and A denote the volume and surface area, respectively. This equation
can also be deduced from Equation (2.65) with Newton’s law of cooling as a bound-
ary condition. Introducing the cylindrical geometry and the definition of the Nufelt
number, the time constant 7 for this first order differential equation can be given
as

2
d PsCp,s

= 9.14
4Nukf ( )

Twire

Typical values for the time constant are given in Table 9.1.
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Quantity Value

d 0.001 m

Os 19.25 x 103 kg/m3
Cprs 138]/ (kgK)

kf 0.0262 W/(mK)
Vs 1.57 x 107> m?/s
Reg 0.1-40

Nu 0.44-3.2
Twire ~57.85s-8.0s
Sr. ~0.011-0.00021

Table 9.1: Exemplary Properties and Conditions for a Heated Wire in a Rijke Tube.
The material properties are those of pure tungsten.

A cutoff Strouhal number Sr. for temperature pulsations of the wire can be calcu-
lated from

Sr, = iy 9.15)

This shows that the temperature of the cylinder reacts to very low frequencies, but
thermal inertia is too high at Strouhal numbers of order unity and above to substan-
tially change due to pulsations of the flow crossflow.

Natural convection

If the Rijke tube is mounted vertically, the mean flow is driven solely by natural con-
vection. This mean flow velocity establishing in the resonator tube can readily be
converted to a Reynolds number. In the case of a horizontal Rijke tube, the forced
convection in horizontal direction may superimpose with natural convection in a
direction perpendicular to the tube axis and thus mixed convection occurs. The
Richardson number is a measure for the relative strength of natural convection. It is
given by

Ri= 9.16)
i=— .
Re?
where the Grashof number is defined as
d3 T, — T
Gr= gﬁref( w stat) ' (9.17)

2

Vref

Natural convection is negligible for Ri < 0.1. For Ri > 10, natural convection is dom-
inant and forced convection may be neglected. In the intermediate region, mixed
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convection should be considered (Schlichting and Gersten, 2006). According to

Lange et al. (1998), the influence of natural convection is negligible, if Re = 2 Gr!/2.

In the Rijke tube, another factor comes into play. No net flux of fluid can occur in
the direction perpendicular to the tube axis, i.e. it cannot penetrate the solid tube
material. Hence, mixed convection effects are neglected in this thesis.

Radiative Heat Transfer

Radiative heat transfer was neglected in the simulations. This has two main reasons:
(1) The working gas, which is air for most Rijke tubes, is transparent for radiation at
wavelengths corresponding to typical wire temperatures. (2) Differences between
wire temperature and ambient temperature were assumed to be small in the nu-
merical procedure.

Nevertheless, Kopitz (2007) showed, that radiative heat transfer it not negligible
concerning the overall heat transfer in the Rijke tube. In his experiments, there was
significant energy exchange between the heater and the tube wall. This impeded
temperature measurements and caused heat-up of the whole tube.

9.1.4 Limitations

In this thesis, the heat transfer dynamics of a Rijke tube were investigated by solving
the incompressible Navier-Stokes equations for just one isolated wire. Thus, this
method causes the following limitations.

Overheating

In a real Rijke tube, a certain amount of thermal power has to be introduced in order
to overcome the hydraulic losses and achieve a limit cycle. Hence, the temperature
of the wire has to be substantially higher than the ambient temperature. The as-
sumption of low temperature differences is violated. It was, however, established in
Section 8.3.2 that the dynamic behavior does not change fundamentally and some
correction, e.g. the use of an effective mean flow Reynolds number, copes with this
shortcoming.

High Amplitudes

The linear regime only describes the onset of thermoacoustic oscillations in the
Rijke tube. At higher amplitudes, the nonlinearity of the heat transfer plays an im-
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portant role, but it cannot be handled accurately by a linear model. Nevertheless, as
shown in Section 8.3.3, the dynamics are still represented adequately to some extent
even at pulsation amplitudes in the order of the mean flow velocity.

Non-Uniformity

A constant velocity profile is used in the CFD computations for a single wire. How-
ever, in the resonator tube, a boundary layer will establish, leading to a character-
istic velocity profile. This is not so much of concern for a single wire, because the
wire diameter is usually much smaller than the tube diameter d < D. Yet, different
wires placed at a different distance from the cylinder axis experience different mean
flow velocities and therefore locally different Reynolds numbers and Strouhal num-
bers. Moreover, oscillations in the Rijke tube do not only scale the velocity profile
in the tube but also interact with the boundary layer at the tube wall and introduce
additional dynamics.

Wire Pattern

As the last limitation, the isolated wire has to be mentioned. To introduce the nec-
essary amount of thermal energy, the heated wire has to be inserted in the tube as
a coil or some sort of repeating pattern. This also means that the wires interact with
each other. If the distance of the wires in lateral direction is large enough, however,
this interaction is negligible. Usually, this distance is several wire diameters and
fulfilling the far field requirement.

A different picture can be drawn in the case of successive wires where one wire
is in the (thermal) wake of the other. A simulation was conducted at a mean flow
Reynolds number of Rey = 3 with two successive wires at a distance of 10d. The
transfer function of the second wire was of the same shape as that of the first, but
the amplitude values were about 10% to 20% smaller. This is due to the fact that
the fluid arriving at the second cylinder is hotter, and hence the amount of heat
transferred is smaller. The basic behavior of the heat transfer, however, is still the
same as for a single wire.

9.2 Hot-Wire Anemometry

Hot-wire anemometry is used to measure velocities in laminar and turbulent flows
for a wide range of velocities. A thin, electrically heated wire, mounted on prongs, is
placed in the flow as a probe. An advantage of this method is that very small probes
allow determining flow velocities very accurately at a specific position. Turbulent
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Quantity Value

d 5x107%m

Pw 21.45 x 10% kg/m3

Cp,s 130]J/(kgK)

k¢ 0.0262 W/(mK)

Reg 0.1-40

Nu 0.44-3.2

Twire ~1.516x10735-0.209 x 10735
Sr, ~10.502 x 1073 -0.1907 x 1073

Table 9.2: Exemplary Properties and Conditions for a Hot-Wire Anemometer. The
material properties are those of pure platinum.

structures in the flow do not appear as mere local fluctuations, but the probe may
be fully submerged detecting changes in velocity and angle of attack.

9.2.1 Mode of Operation

Different measurement methods were developed. Hot-wire devices can be classi-
fied as CCA (constant current anemometer), CVA (constant voltage anemometer)
and CTA (constant-temperature anemometer) (Bruun, 1996). In the first method,
changes in the wire temperature lead to changes in electrical resistance. To keep
the current constant, a change in voltage is necessary and serves as a measure
of the flow velocity. Similarly, in the CVA method, changes in electrical current at
constant voltage are measured. The most accurate and most widely used method
is CTA. In the CTA method, a controller holds the temperature of the heated wire
constant. The voltage necessary to do so is again linked to the flow velocity that is
to be measured.

9.2.2 Justification of Assumptions

For constant temperature anemometry, the electric current delivered by the power
amplifier is controlled to maintain a constant wire temperature, so the assumption
of constant surface temperature T, is valid by design. Moreover, wire diameters are
very small, and hence Helmholtz numbers are small.

A low Mach number is, however, not a necessary condition for hot-wire anemom-
etry. On the contrary, this method is often used to examine high-velocity flows.
Table 9.2 gives exemplary properties and conditions for a hot-wire probe made of
platinum (Bruun, 1996).
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9.2.3 Fluctuation of Angle of Attack

Hot-wire anemometers are often used to measure velocities in strongly turbulent
environments. Turbulence, as detailed in Section 2.1.3, includes chaotic three di-
mensional fluctuations in velocity. This causes not only changes in the magnitude
of the flow velocity but also fluctuations in the angle of attack. A fluctuating angle
of attack was also mentioned by Lighthill (1954) in his original article as a vantage
point for future investigations.

Mechler (2016), in his bachelor’s thesis supervised by the author of this thesis, fo-
cused on changes in the angle of attack in the plane perpendicular to the axis of
the cylinder a. The simulations were carried out on a similar setup as detailed in
Section 5.1 and Section 5.2. At the inlet the velocity was excited with fluctuations in
x- and y-direction. Fluctuations in velocity parallel to the inlet boundary propagate
not with the speed of sound, which is infinite in the incompressible formulation
used here, but with the convective velocity. This effect is similar to the shear waves
described in Section 3.1.2. It poses a difficulty in the data acquisition as the signal
imposed at the inlet decouples. Two changes were implemented in the computa-
tional procedure to minimize this effect: The domain boundary was chosen circular
so with any inflow angle the face normals of the inlet point towards the cylinder. The
second change concerned the position of the data acquisition plane. It was located
as close to the cylinder as possible to acquire the actual input accurately.

Velocity fluctuations, i.e. Reynolds number fluctuations, and fluctuations in the an-
gle of attack influence the heat transfer. Hence, the system is of MISO type, and
an according model had to be identified. The identification yielded two transfer
functions, which in sum determine the Nullelt number fluctuations. The dynamic
influence of Reynolds number fluctuations on Nuflelt number fluctuations Gge is
expected to be the same as Gyy in Section 6.3. The transfer behavior between the
angle of attack and the Nullelt number G, shows a low gain at high frequencies
where the boundary layer cannot adapt to the fast changes in the flow. In the quasi-
steady limit, the adaption occurs instantly, and no change in heat transfer occurs.
However, at reasonably low frequencies changes in the boundary layer affect the
NufBlelt number.

The relative influence of both fluctuations, Reynolds number fluctuations and fluc-
tuations in the angle of attack, is determined by standardization of all quantities.
From the standardized transfer functions conclusions can be drawn on how much
of the variance in NuBelt number is explained by either Re’ or a'. A standardized
quantity has zero mean and a variance of unity. The quantities Re’, Nu’, and o'
already fulfill the first requirement. The mean value was subtracted in the post-
processing of the data series. The second requirement was achieved by dividing the
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Figure 9.6: Frequency Response of Heat Transfer to Re and Angle of Attack. Fre-
quency response to Re’ (—) and Frequency response to a’ (—).

signal by its respective standard deviation, e.g. Zny = Nu'/ony. The input-output
relation with standardized quantities is thus given by

Nu Nu , Re¢ Nu o

- Re — TGO,’_ (918)
ONu Re ORe O Oq

*

with the scaled transfer functions G, and G, for Reynolds number and angle of
attack, respectively. To achieve the original scaling for the transfer function from
Re’ to Nu’

o *
G=——-08G (9.19)

is used. Hence, Equation (9.18) can be written as

/ N_u / N_u ,URe
Nu' = —GgreRe + —Gpa' —. (9.20)
Re a Oq

Figure 9.6 depicts the frequency response of the identified MISO model.

9.2.4 Interactions of Dynamic Subsystems

In hot-wire anemometry, not only the dynamics of the fluid are of interest, but also
the solid wire and possibly a controller. Both can be characterized by their frequency
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response as well. The wire can be modeled as a first order time lag (lumped capaci-
tance) model with time constant c; s (cf. Equation 9.14).

As a possible controller, a critically damped second order time lag model with a
cutoff frequency of 55 kHz is assumed. This represents typical values for CTA (Bruun,
1996). The natural frequency can be brought into the dimensionless framework by

2nd?
Sr=f 7

. 9.21
Reg v ( )

Figure 9.7 shows the amplitude of the frequency responses in a Bode diagram in
a log-log plot. This format was chosen to display a wide range of frequencies. The
values were assessed for a wire probe made of platinum and air at ambient condi-
tions. The mean flow Reynolds number is Reg = 40. The cutoff Strouhal number of
the CTA controller depends on the wire diameter and was evaluated for d = 5pm.
Thicker wires would only affect the graph of the CTA and place the cutoff frequency
further to the right.

Heat conduction and storage in the solid wire are comparatively slow processes
which can be seen by the low cutoff Strouhal number of the wire itself. Both the
response to velocity magnitude fluctuations and fluctuations in the angle of attack
can be considered quasi-stationary in this frequency range. This is also mostly true
if the CTA controller is considered. Peak and drop in the gain of Gg, are well beyond
the operating range of the controller for very thin wires. The influence of the angle
of attack is negligible in the low-frequency limit. The boundary layer adapts to slow
changes in the angle of attack comparably fast and therefore the gain is zero. The
influence of the angle of attack becomes stronger towards the cutoff frequency of
the controller. The rise in gain is about one order of magnitude. This effect would
even be stronger if thicker wires were considered and the peak gain of G, is in the
pass-band of the controller. Towards even higher frequencies, the inertia of the fluid
leads to a band-pass-like behavior as visible in Figure 9.7.

The comparison between the frequency ranges of the wire and the CTA controller
with the frequency responses of the heat transfer fluctuations to pulsations in ap-
proaching flow velocity and angle of attack shows that anemometers operate mostly
in the quasi-steady limit. Hence, the heat transfer dynamics play only a minor role.
Only the response to fluctuations in the angle of attack starts to come into effect
within the operating range of the CTA controller. However, the amplitude of the fre-
quency response is small, and anemometers are usually not used for measurements
at such high frequencies.
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Figure 9.7: Frequency Response Magnitudes for Hot-Wire Anemometry. The am-
plitudes of Gny (—) and G, (—) are compared to the wire itself (---)
and a possible realization of a CTA controller (----)

9.3 Heat Exchanger in Domestic Boilers

Heat exchangers (HX) in domestic boilers are used to transfer the heat created in
a combustion process to water for household use. Recently, the effect of an HX
on thermoacoustic combustion instabilities in a heating system was investigated
by Surendran and Heckl (2014, 2015). In these studies, the so-called n — 7 model
was used to describe unsteady heat transfer. This model corresponds to the low-
frequency limit of Lighthill’s results for heat transfer in pulsating crossflow: A charac-
teristic time delay 7 leads to a linearly growing phase lag in the frequency response.
This approach is simple and quite popular but does not give a realistic description
of the dynamics.

The HX in crossflow itself is much like the configuration investigated in this thesis,
in particular, a low-pass behavior is obtained. However, the interactions between
consecutive elements of an HX have a significant impact on its response function
(Strobio Chen et al., 2015). Combinations of HX and flames, as found in configura-
tions of applied interest, were investigated with respect to the dynamic heat transfer
behavior from a hydrodynamic and thermoacoustic point of view by Hosseini et al.
(2014b,a) and from a system point of view by Strobio Chen et al. (Strobio Chen et al.,
2016). Surendran et al. (2016) determined the frequency response function of the
HX in this configuration from the discrete Fourier transform of the response of the
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heat transfer rate to a step input, which was determined by numerical simulation.
The HX is principally very similar to the (isolated) cylinder assessed in this thesis.
However, some differences arise, which are addressed in the following.

9.3.1 Temperature Difference

The temperature difference between inflow and outflow of the HX and the resulting
change in fluid properties play an important role in quantifying the dynamic be-
havior. The qualitative behavior, however, is very similar to the heated cylinder. The
most substantial difference is the arrangement. In the case of the cylinder, one bluff
body is singled out surrounded by a theoretically infinite amount of fluid. The HX,
in contrast, consists of tightly wound coils with only small clearances between the
exchanger pipes. A specifically determined amount of fluid passes through, trans-
ferring its excess in enthalpy to the fluid in the exchanger tubes. This especially
impacts the quasi-steady behavior, i.e. the low-frequency limit.

9.3.2 Low Frequency Limit

Heat transfer between a surface and a convective flow can be described by Newton’s
law of cooling (Bergman et al., 2011) given by

q=h(Ty-T). (9.22)

In the isolated wire configuration (Rijke tube) addressed in this thesis, the enthalpy
change of the flow is insignificant. Both temperatures T,, and T, are constant. The
low-frequency limit is determined by the heat transfer coefficient h, i.e. the Nuf3elt
number. This is different in the case of the HX. The initially large temperature differ-
ence (T, — T,) between HX surface and passing flow diminishes along the exhaust
gas path until it almost vanishes. This is necessary to achieve high efficiencies. The
low-frequency limit, in this case, is controlled by the enthalpy difference rather than
the heat transfer.

The heat transferred in the HX is given by
q=upcy(Ty—Ty) (9.23)

where T, and T, are the fluid temperatures upstream and downstream of the HX.
Asymptotic expansion of velocity u#, downstream temperature 7,;, and density p
yields

go+€q = cplug+eu)(po+ep") (Tu—(Typ+€Ty)) . (9.24)

To leading order, Equation (9.24) is recovered with 1, pg, and T, . Collecting the
terms of first order in € yields

q' = cp [(Tuto— Taouo)p' + (Tupo— Taopo)u' — uopoTd'| - (9.25)
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Assuming p’ = 0 and inserting in the definition of the transfer function (Equa-
tion (2.100)) leads to

ug Cp [ (Tupo—T, Yu'— ugpo T, DTy
Knu = Gru(Sr = 0) = — p[Tupo=Taopotl ~tiopoTa] | WHTd g
u uppoCp(Ty — Typ) Tu—Tap

The downstream temperature can be inferred from a local balance. For reasons of
simplicity, a constant distance s between two successive tubes is assumed. The tem-
perature is given by

-hL
Tg=Ty+(Ty,—-Ty) exp( ) . (9.27)
puUscy

Using the definition of the NuRelt number leads to

(9.28)

—NukL

2pus?cy
Assuming that fluctuations in temperature are only caused by velocity fluctuations,

it may be argued that T can be approximated by a Taylor series

! ar / /
T(up+eu)=T(up) + Eeu +02)=Top+€T . (9.29)
0

The derivative of T; with respect to 1 is given by

(9.30)

aTy NukL —NukL
(Ty—Tw) exp| ———] -

= 22
duy 2pugsecp

Finally, the expression

(9.31)

. NukL ( ~NukL ) ,
Ty = ———— —|u

= (T, — Ty) ex
2pus?c, " P

can be given for the downstream temperature fluctuation.

Combining Equation (9.31) and Equation (9.26) yields

KNuzl_

(9.32)

Ug NukL NukL

Tu—Tao2puis?cp

for the low frequency limit.
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Table 9.3: Exemplary Properties and Conditions for a Heat Exchanger. Adapted
from Strobio Chen et al. (2015)

A rough estimate can be given for the case investigated by Strobio Chen et al. (2015).
Fluid properties and dimensions, taken from Strobio Chen et al. (2015), are shown
in Table 9.3. With the fluid properties at the upstream side, the low-frequency limit

Quantity Value

Upstream Downstream

Nu 7.54

L 0.036m

s 0.8x103m

k 0.0764W/(mK) 0.0262W/(mK)
o 0.29kg/m3 1.18kg/m?3
Uo 14m/s 3.5m/s
Cp 1175/ (kgK) 1005]/ (kgK)

evaluates to K = 0.88.
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The path towards a sustainable usage of the worlds primary energy resources leads
through many intermediate landmarks. Two of which are the improvement of exist-
ing devices and the development of new technologies with high potentiality. This
thesis strives to aid this process through the following findings.

10.1 Summary

The dynamic response of the heat transfer and skin friction of a cylinder in pulsat-
ing crossflow were investigated for small perturbations of flow velocity. The cycle-
averaged heat transfer is independent of the fluctuations such that pulsations of
flow variables can be described as LIT systems. The foundation of this study was
time series data acquired from CFD simulations of a single cylinder in crossflow
solving the incompressible Navier-Stokes equations. The assumptions leading to
this simplified treatment are justified for the application that was the primary mo-
tivation for this thesis: the Rijke tube. The numerical procedure was designed and
examined thoroughly to yield optimal results regarding the desired dynamic behav-
ior.

The dynamic behavior was quantified by transfer functions. These are models in
the framework of LTI systems known from control theory and electrical engineer-
ing. Three fundamentally different ways—with the incompressible Navier-Stokes
equations as the only commonality—were implemented and compared. Transfer
functions were developed from the response to a sudden rise in input velocity (step
response), from a frequency domain approach, where perturbations are linearized
and solved with finite differences (LNSE), and from time domain simulations with
broadband excitation (CFD/SI). For the latter, discrete time identification and con-
tinuous time identification were considered. The results are in excellent agreement
for all simulation and identification methods for mean flow Reynolds numbers of
Rey < 40. The CFD/SI approach offers more variability, as it does not rely on the
existence of a steady state. Several improvements were easily possible such as the
extension to the regime of vortex shedding and transition to turbulence in the wake
Reg > 40.

Continuous time identification and discrete time identification yielded compara-
ble results as long as disturbances were well-behaved. However, in the cases where
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vortex shedding occurs, and a strong tonal component is present in the noise, the
OE model structure from the discrete time framework can readily be extended to a
BJ model with a parametrization of the disturbance. In addition to the assessment
of model types and parameter estimation methods, other advanced identification
techniques, e.g. regularization and uncertainty quantification, were surveyed.

The results of the investigations were tabulated and depicted as Bode plots of the
frequency responses. The heat transfer dynamics and the skin friction dynamics
are governed by several time scales, corresponding to the response times of the
velocity field and temperature field, respectively. The interaction of the different
time lags leads to a non-trivial dependence of the respective frequency responses on
Strouhal numbers and mean flow Reynolds numbers. The transfer behavior of the
heat transfer appears like a low-pass filter with one dominant time scale, similar to
the analytical predictions by Lighthill (1954) or Bayly (1985). However, several devia-
tions from this behavior were found and explained, most notably the occurrence of
a peak gain at 0 < Sr < 1 and the phase values at very high frequencies. The skin fric-
tion, in contrast, behaves like a high-pass filter. A strong dependence on the mean
flow Reynolds number exists which is not present in the existing analytical models
by Lighthill (1954) and Gersten (1965). Unification in the manner of a Reynolds
analogy is not possible in the dynamic case. The present study represents also a
significant advancement over previous computational studies (Apelt and Ledwich,
1979; Kwon and Lee, 1985; Nicoli and Pelcé, 1989; Payne, 1958; Foller et al., 2008).
In particular, the time lag, which is of paramount importance for thermoacoustic
stability in a Rijke tube, is determined with quantitative accuracy.

The advantage of CFD simulations is complete access to the flow field at any instant
in time. This is used to examine the evolution of the near field of the cylinder in
unprecedented detail. Step response simulations and the results from the LNSE
approach allow insight in the temporal development and the behavior in the fre-
quency domain, respectively. This was also used to show detailed circumferential
distributions of the Nu3elt number fluctuations and friction coefficient fluctuations
at different excitation frequencies.

To make the results from this thesis readily available in tasks like the modeling of
a Rijke tube, a first order parametrized model was developed. The model includes
the dependence of the transfer behavior on Strouhal number and Reynolds number
and can be used in the range 0.1 < Rep < 40 and 0 < Sr < 40. The steady-state gain
and the time constant are given as correlations developed from the complete series
of simulations in the regime without vortex shedding.

Three applications are investigated in the scope of a cylinder in pulsating crossflow:
The Rijke tube, hot-wire anemometry, and an HX as an acoustic element. Special
consideration was given to the Rijke tube, and the transfer functions developed in
this thesis were related to the stability of thermoacoustic oscillations in the tube. For
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the hot-wire anemometer, an additional fact was investigated. A fluctuating angle of
attack, which originates from turbulent fluctuations of the flow to be measured, has
some impact on the heat transfer dynamics and therefore on the measurement.

10.2 Implications for Further Research

Further investigations will address gas turbines as well as the Rijke tube as a proto-
type of a thermoacoustic device. Moreover, machinery exploiting the thermoacous-
tic effect, e.g. thermoacoustic engines and refrigerators, will profit from the results
and methods assessed in this study. Although high amplitudes, and therefore the
nonlinear heat transfer dynamics, play a vital role in this type of device, linear stabil-
ity (or instability) is still a primary design criterion. Thermoacoustic prime movers
are of interest, e.g. for the power generation from waste heat (Witte et al., 2015). High
efficiency is of secondary importance compared to acquisition costs and service
costs. These devices are predestined for this task as they are simple to build and very
robust in operation once they are adequately designed. This argument also applies
to thermoacoustic refrigerators. They may be used where robustness is a crucial
requirement as they can be built with no moving parts. This gives these devices
an advantage over conventional compression refrigerators even though the latter
offer much higher efficiencies. Recent investigations in thermoacoustic devices in-
clude the possibilities to incorporate thermoacoustic prime movers or refrigerators
in other assemblies. One aspect that has been studied in the past was the influence
of mean flow inside the device (Holzinger et al., 2012, 2015). Such a configuration, in
turn, is similar to the Rijke tube. Thermoacoustic devices are in need of much more
robust design tools and smart concepts for integration in machinery that supplies
heat or acoustic energy.

Although linear models, such as those assessed in this study, offer a great deal of
insight and the possibility to investigate linear stability, the nonlinear behavior has
to be subject to further investigations. A system may be linearly stable but nonlinear
or non-normal effects may trigger high amplitudes. Moreover, if high amplitudes
are desired, linear models often seize to be valid and can at most predict the coarse
behavior but usually fail to recover correct amplitudes or power output.

Another application with cylinders subject to pulsating flow, which is of interest for
future investigations is the total artificial lung (TAL). The TAL is a device still under
development, and it aims to replace all functions of a human lung, i.e. to remove
CO; from blood and to supply it with oxygen (O,). To achieve this, the (pulsatile)
blood flow passes small tubes from which the mass transfer occurs. Lin et al. (2006)
studied these mass transfer effects in a water tunnel at very low Reynolds numbers.
Numerical investigations were carried out by Zierenberg et al. (2006, 2007, 5 < Re <
40,0.25 < Wo =< 4,0.25 < A < 0.75,Sc = 1000), Qamar et al. (2011, 0.33 < KC < 1,
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0.5d < A< d, 5 < Re < 20), and Qamar et al. (2012, 0.2 < A < 0.6, 0.57 < KC < 2,
Re = 5,10). The flow conditions examined in these studies are not unlike to the
range of interest in this thesis. The Reynolds numbers are in the range 1 < Re < 50
and the fluid is incompressible. The largest difference is the high Schmidt number
(Sc = 1000) which is much larger than the ratio of transport properties considered
in this thesis which mainly focuses on air (Pr =0.7).

Besides the cylinder, another archetypal problem in thermo-fluid dynamics is a
sphere in crossflow. CFD/SI methods or the LNSE can be used to investigate the
impact of pulsations on the skin friction and the heat transfer. The skin friction
plays an important role in the movement of small spherical particles or droplets.
The movement can be described by a force balance including effects like inertia,
virtual mass, and fluid drag. The latter has a “history” that has to be considered
due to the dynamics of the skin friction. This history force, often called Basset force,
can be identified from numerical simulations in a similar manner as the friction
coefficient. The major difference is the dependence on flow acceleration instead
of velocity like in this thesis. The Basset force plays an important role in the case of
continuous acceleration, e.g. under the influence of gravity or in the case of droplets
oscillating in an acoustic field. Moreover, the heat transfer between a droplet and
the surrounding fluid plays a role in the evaporation of liquid fuels, and the heat
transfer dynamics can influence the spray combustion process.

A topic explicitly excluded in this thesis are state space models. These models exist
besides input—-output models and have certain desirable properties, especially in
conjunction with computational methods and systems with a large number of in-
puts and outputs. The models reported in this thesis can easily be transformed into
state space models. However, in the field of SI, useful methods like balanced trunca-
tion model reduction and model order identification exist, which makes the direct
identification of state space models an exciting topic for further investigations.

This thesis offers detailed models for the behavior of heat transfer and skin friction
of a cylinder in pulsating crossflow. Moreover, a comprehensive procedure is given
to acquire accurate results at flow conditions not investigated in detail in this thesis.
The reported results allow the development of models with different levels of detail
in investigations, e.g. of the thermoacoustic effect in the Rijke tube. Findings con-
cerning the field of thermoacoustic can be transferred to other devices. On the one
hand to help suppress thermoacoustic instabilities and ensure proper performance,
e.g. in the case of stationary gas turbines for power generation or in domestic boilers.
On the other hand, the thermoacoustic effect may be used purposefully in devices,
e.g. in thermoacoustic engines and refrigerators. The ultimate goal is to contribute
to maintaining the standard of living that was granted by the devices mentioned
above, while most importantly reducing the toll on the environment. Specifically, to
reduce noxious emissions like NOy and small particles as well as greenhouse gases
like CO».
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Supervised Theses

Im Rahmen dieser Dissertation entstanden an der Professur fiir Thermofluiddy-
namik der Technischen Universitdit Miinchen in den Jahren 2013 bis 2017 unter
wesentlicher wissenschaftlicher, fachlicher und inhaltlicher Anleitung des Autors
die im Folgenden aufgefiihrten studentischen Arbeiten. In ihnen wurden verschie-
dene Fragestellungen zur Dynamik des Warmeiibergangs und im Speziellen dessen
Quantifizierung untersucht. Ergebnisse aus diesen Arbeiten sind in Teilen in das
vorliegende Dokument eingeflossen. Der Autor dankt hiermit nochmals explizit
allen ehemals betreuten Studentinnen und Studenten fiir ihr Engagement bei der
Unterstiitzung des hier behandelten Forschungsprojekts sowie der damit verkniipf-
ten Dissertation.

Associated with the research under discussion, there are a number of different
"student theses“ (Semesterarbeiten, Diplomarbeiten, Bachelor theses, or Master
theses). This students’ contribution was prepared at the Thermo-Fluid Dynamics
Group (Professur fiir Thermofluiddynamik) of the Technical University of Munich
in the years 2013 through 2017 under the close supervision of the author of this Ph.D.
thesis with regard to all academic, professional, and context-related concerns. Vari-
ous issues were investigated contributing to heat transfer analysis and in particular
to its quantification. Finally, the author would like to express his sincere gratitude to
all formerly supervised students for their commitment and support of this research
project and of the Ph.D. thesis at hand.

Student Title

Patrick Brandl Grid Independence Study of two-dimensional, laminar, pulsat-
ing Cross-Flow around a circular Cylinder, Bachelor’s Thesis,
2014

Ana Cabrera Linear System Identification of the Heat Transfer Behavior of a

Cylinder in Pulsating Cross-Flow at Re = 3900 Using Large Eddy
Simulation, Master’s Thesis, 2015

Magnus Mechler Dynamic Heat Transfer Behavior of a Wire for Constant-
Temperature Anemometry Applications in Cross-Flow with
Fluctuating Angle of Attack, Bachelor’s Thesis, 2016

Ates Calak Identification of Wiener-Models for the Heat Transfer between
a Cylinder and a Pulsating Cross Flow, Bachelor’s Thesis, 2017
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A Complementary Identification Results

Fit Values

Heat Transfer

Re @ estimation & validationSet

40.0 99.13 98.92
20.0 99.17 99.07
10.0 98.69 98.84
4.0 97.12 97.47
3.0 96.33 96.16
2.0 95.18 95.41
1.0 94.25 94.02
0.7 96.58 95.58
0.5 97.99 97.33
0.4 98.15 98.48
0.2 98.09 97.66
0.1 97.42 97.84

Table A.1: NRMSE-Fit of the TF of the Heat Transfer (CFD/SI with VF). Transfer
functions identified with VF from CFD/SI.

Re (DNu Re (DNu
0.1 9947 2.0 99.16
0.2 98.97 3.0 99.39
0.4 99.08 4.0 99.54
0.5 99.26 10.0 99.60
0.7 99.57 20.0 99.14
1.0 99.58 40.0 99.67

Table A.2: NRMSE-Fit of the TF of the Heat Transfer (LNSE with VF). Transfer
functions identified with VF from LNSE.
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Skin Friction

Re @ estimation & validationSet

40.0 99.43 91.30
20.0 99.64 90.80
10.0 99.31 91.40
4.0 99.32 92.73
3.0 99.30 92.71
2.0 99.31 92.52
1.0 98.99 92.96
0.7 99.48 92.99
0.5 99.69 93.37
0.4 99.70 93.41
0.2 99.63 94.21
0.1 99.55 94.55

Table A.3: NRMSE-Fit of the TF of the Skin Friction (CFD/SI with VF). Transfer
functions identified with VF from CFD/SI.

Re CIDCf Re CIDCf

0.1 98.92 2.0 99.17
0.2 98.97 3.0 99.18
0.4 99.07 4.0 99.19
0.5 99.09 10.0 99.20
0.7 99.12 20.0 99.18
1.0 99.14 40.0 99.21

Table A.4: NRMSE-Fit of the TF of the Skin Friction (LNSE with VF). Transfer
functions identified with VF from LNSE.
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Transfer Functions

Heat Transfer
G _b1+b28+b3$2+b483+b584
(8)= 1+f1$+f282+f53,83+f484
Re s9 st s s st
0.1 N 0.2039 2.009 2.053 0.1875 0.0004536
D 32.6 145.1 79.31 3.284
0.2 N 0.2139 1.504 1.155 0.09033 0.000199
D 19.4 58.83 24.24 0.9187
0.4 N 0.2511 1.061 0.5675 0.0363 7.299 x107°
D 11.18 21.1 6.266 0.2112
0.5 N 0.259 0.8698  0.3907 0.0224 4.176 x107°
D 8.93 13.73 3.482 0.1089
0.7 N 0.2836 0.729 0.2441 0.01138 1.843x107°
D 6.995 8.088 1.567 0.04224
1.0 N 0.3002 2.481 2.602 0.2885 0.0009421
D 11.72 32.44 16.63 0.9465
20 N 0.3228 15.3 11.4 0.9206  0.001895
D 48.01 113.1 40.42 1.826
3.0 N 0.346 8.375 4.998 0.3475  0.0005566
D 24.3 44.05 13.05 0.5361
40 N 0.371 3.186 1.712 0.1147 0.0001651
D 9.302 13.54 3.722 0.152
10,0 N 0.4051 3.206 1.186 0.05908 4.39 x107°
D 7.727 7.373 1.486 0.05046
20,0 N 0.4179 3.047 0.6752  0.02236 1.13 x107°
D 6.631 4.299 0.5855  0.01489
40.0 N 0.4235 6.162 9.311 0.7889 0.000664 7
D 12.92 21.57 7.821 0.4523

Table A.5: Estimated Coefficients of the TF of the Heat Transfer (CFD/SI with VF).

Transfer functions identified with VF from CFD/SI.
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b1+b28+b3$2+b483+b584

G(s) =
(s) 1+f1$+f282+f2383+f484
Re s0 st s2 $3 st
0.1 N 0.1594 0.6932 0.3687 0.02529 9.582 x 107°
D 19.18 41.9 13.33 0.5255
0.2 N 0.2181 1.595 1.262 0.1119 0.000482
D 20.34 62.98 27.39 1.332
04 N 0.2544 1.276 0.7815 0.05934 0.0002117
D 12.38 26.59 9.04 0.3835
0.5 N 0.2663 1.112 0.5965 0.04166 0.000135
D 10.22 18.6 5.61 0.2221
0.7 N 0.2848 0.8881 0.3842 0.02334 6.382x107°
D 7.615 10.67 2.654 0.09393
1.0 N 0.305 0.6883 0.2335 0.01204 2.663 x107°
D 5.559 5.843 1.173 0.03655
20 N 0.3398 9.222 7917 0.7234 0.002106
D 28.46 72 29.09 1.498
3.0 N 0.3587 6.173 4.174 0.3276 0.0007472
D 17.94 34.16 11.3 0.5258
40 N 0.3707 5.062 2.912 0.2053 0.000386
D 14.07 22.25 6.442 0.2798
10,0 N 0.3989 3.479 1.196 0.05844 4.739x107°
D 8.409 7.813 1.501 0.05156
200 N 041 3.264 0.6306 0.01842 O
D 7.12 4.405 0.539 0.01263
400 N 042 6.3 10.13 0.9059 0
D 13.3 23.23 8.63 0.5363

Table A.6: Estimated Coefficients of the TF of the Heat Transfer (LNSE with VF).
Transfer functions identified with VF from LNSE.
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Skin Friction

3 by + by s+ b3 s° + by s° + bs s

G(s) =
() 1+f18+f282+f383+f484
Re s0 st s2 $3 st
0.1 N 1.118 6.725 5.056 0.6118 0.01095
D 4.24 2.038 0.1381 0.0009137
0.2 N 1.172 6.648 4.92 0.5989 0.01093
D 3.915 1.765 0.114 0.0007237
04 N 1.232 5.986 4,132 0.4889 0.008861
D 3.302 1.326 0.07941 0.0004767
05 N 1.251 5.764 3.884 0.4546 0.0082
D 3.119 1.205 0.07044 0.0004153
0.7 N 1.28 5.469 3.563 0.4104 0.007345
D 2.882 1.055 0.05951 0.0003419
1.0 N 1.309 5.279 3.374 0.3858 0.006888
D 2.725 0.9583 0.05264 0.0002967
20 N 1.357 5.356 3.475 0.4039 0.007303
D 2.722 0.9344 0.05033 0.0002792
30 N 1.38 5.656 3.769 0.4462 0.00816
D 2.877 0.9925 0.05339 0.0002953
40 N 1.394 5.934 4.029 0.4826 0.008893
D 3.021 1.047 0.05631 0.000311
10,0 N 1.421 7.066 5.089 0.6346 0.012
D 3.583 1.279 0.06939 0.0003842
200 N 1.424 8.79 6.949 0.9193 0.01806
D 4.476 1.726 0.09712 0.0005499
400 N 1.414 12.68 11.44 1.61 0.03293
D

6.543 2.794 0.1636  0.0009554

Table A.7: Estimated Coefficients of the TF of the Skin Friction (LNSE with VF).
Transfer functions identified with VF from LNSE.
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