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Abstract

English

Quantum cascade lasers (QCLs) are unipolar, semiconductor devices emitting coherent

radiation in the underdeveloped far- and mid-infrared portions of the electromagnetic spectrum.

QCLs achieve lasing in those frequencies by "quantum engineering" of the optical transition in

epitaxially grown quantum well heterostructures. Sub-nano scale control over the quantum well

thickness ensures that the available conduction band states take only discrete energy values,

where the energy spacing between the two lasing levels determines the emitted frequency.

The ever increasing complexity of chip-scale devices necessitates correspondingly sophisti-

cated theoretical modeling. In the last two decades, we have seen a steady progress in the

design of quantum cascade lasers, resulting in devices with high electrical stability, emitting

spectra with various desirable characteristics such as high-power single mode emission, short

pulse and frequency comb generation. By contrast, it seems that theoretical or simulation

models have struggled to keep up with the pace of experimental progress in the field. For

example, to date most theoretical papers reduce the QCL complexity to only two energy

levels which, albeit sometimes being able to give qualitative agreement with experiment, is

often insufficient to achieve quantitative accuracy or explain some of the relevant physics. In

addition, QCLs exhibit highly non-trivial dynamics, stemming from the intricate interplay of vari-

ous coherent and incoherent processes, nonlinear light-matter interactions and complicated

electro-optical phenomena, the understanding of which requires sophisticated theoretical

models, unfortunately well beyond the analytically solvable such.

To this end, the thesis attempts to outline in greater detail coherent light-matter interaction

models, suitable for transient analysis of terahertz (THz) quantum cascade lasers for frequency

comb generation. Therefore, there are two main focal points. First, this is the development

of sufficiently accurate theoretical models and corresponding algorithms for their solution.

And second is the usage of these models to investigate the physics behind frequency comb

generation in two main modes of QCL operation, i.e. free running and actively/passively mode

locked regime.

The thesis begins with a very brief and informal introduction to lasers in general and quantum

cascade lasers in particular, before presenting the essential theory on which all subsequent

simulations are based. The resulting Maxwell/density matrix model is then discretized and

numerical algorithms for its solution are presented, together with theoretical and numerical

analysis of their accuracy (consistency) and stability. Next, follow the essential parts of the

thesis, and namely the usage of the outlined models for time-domain simulations of QCLs

for frequency comb generation. In that context, two different approaches to the production

of frequency combs are considered, first by free running devices, where the main mode
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proliferation mechanisms are a consequence of high order nonlinearities in the device, and

secondly by active and passive mode locking, where comb generation is equivalent to the

production of a periodic train of pulses in the time domain.

Several achievements can be mentioned. For example, this is the extension of the traditional

two level Maxwell-Bloch model to multiple level such and subsequent simulations of free

running THz QCLs. Importantly, the new model includes coherent tunneling between the

injector and upper laser level of QCLs, and its simulation is shown to deliver results in very

good agreement with available experiment, both for data in time and Fourier domains. Next,

the same model is utilized to emulate laboratory experiments by numerical such, in order to

characterize the multimode dynamics of longitudinal optical phonon terahertz QCLs, which

results in several important insights about the behavior of these devices. Additionally, the model

is adapted to simulate ultrashort pulse generation in the THz with specific emphasis on passive

mode locking via a fast saturable absorber. It is also shown how one can exploit the natural

"multi-pulse" regime of QCL operation to obtain very stable second and higher harmonic pulse

emission. To date, no passively mode locked QCL device has been presented and it remains

to be seen if this theoretical possibility could be realized experimentally. The thesis also

outlines the beginnings of an extended model, suitable for self-consistent microwave-optical

simulations, capturing the interaction dynamics between the intracavity QCL light and the

propagating current/voltage along the device. Finally, as a small detour from the main topic, the

author also investigates the possibility to engineer metamaterials for slowing down terahertz

light, based on the so called tunneling induced transparency effect.

Deutsch

Quantenkaskadenlaser (QKL) sind unipolare Halbleiterlaser, die kohärente Strahlung im

Terahertz- (THz) und im mittleren Infrarotbereich emittieren. Diese Bereiche gehören zu

den technisch wenig erschlossenen Teilen des elektromagnetischen Spektrums. In QKL

werden diese Frequenzbereiche mit Hilfe von Quantentopf-Heterostrukturen erreicht, die durch

Epitaxieverfahren hergestellt werden. Mit diesen Verfahren ist es möglich, Quantentöpfe im

Sub-Nanometerbereich herzustellen, die die verfügbaren Leitungsbandzustände auf diskrete

Energiewerte reduzieren. Der Abstand zwischen zwei Energiewerten, die durch passende

Konstruktion als Laserniveaus bestimmt werden, bestimmt dann die emittierte Frequenz.

Die ständig zunehmende Komplexität von Strukturen im Nanometerbereich erfordert eine

entsprechend ausgereifte theoretische Modellierung. In den letzten zwei Jahrzehnten konnte

man einen stetigen Fortschritt beim Entwurf von Quantenkaskadenlasern beobachten, der

zu Strukturen mit hoher elektrischer Stabilität sowie mit verschiedenen wünschenswerten Be-

triebsarten – wie zum Beispiel Hochleistungsemission im Dauerstrichbetrieb, Kurzimpuls- oder

Frequenzkammbetrieb - führte. Im Gegensatz dazu scheint die Entwicklung von theoretischen

oder Simulationsmodellen Schwierigkeiten zu haben, mit dem Tempo des experimentellen

Fortschritts Schritt zu halten. So reduzieren etwa die meisten theoretischen Arbeiten die Kom-

plexität, in dem nur zwei Energieniveaus betrachtet werden. Obwohl dieser Ansatz manchmal

eine qualitative Übereinstimmung mit dem Experiment liefern kann, ist er oft nicht ausreichend,

um eine quantitative Genauigkeit zu erreichen oder die zugrunde liegende relevante Physik
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zu erklären. Darüber hinaus weisen QKL eine nicht-triviale Dynamik auf, die aus dem kom-

plizierten Zusammenspiel verschiedener kohärenter und inkohärenter Prozesse, nichtlinearer

Licht-Materie-Wechselwirkungen und elektrooptischer Phänomene resultiert. Deren Verständ-

nis erfordert aufwändige theoretische Modelle, die leider in der Regel nicht analytisch lösbar

sind.

Zu diesem Zweck wird versucht, kohärente Licht-Materie-Wechselwirkungsmodelle, die für

die transiente Analyse von Terahertz-QKL für den Frequenzkammbetrieb geeignet sind, näher

zu beschreiben. Dabei gibt es zwei Hauptschwerpunkte. Einerseits werden erweiterte theo-

retische Modelle und entsprechende Algorithmen zu deren Lösung entwickelt, andererseits

werden diese Modelle verwendet, um die physikalischen Grundlagen der Frequenzkamm-

generierung zu untersuchen, wobei auf zwei Hauptbetriebsarten der QKL – freilaufender

Betrieb und aktive/passive Modenkopplung – eingegangen wird.

Diese Arbeit beginnt mit einer sehr kurzen und informellen Einführung in die Grundlagen von

Laser im Allgemeinen und Quantenkaskadenlaser im Speziellen, bevor die wesentliche Theo-

rie vorgestellt wird, auf der alle nachfolgenden Simulationen basieren. Die Diskretisierung der

resultierenden Maxwell/Dichtematrix-Gleichungen und die Verwendung numerischer Algorith-

men für deren Lösung werden zusammen mit einer theoretischen und numerischen Analyse

ihrer Genauigkeit (Konsistenz) und Stabilität präsentiert. Als Nächstes folgen die wesentlichen

Teile der Arbeit, und zwar wird die Verwendung der skizzierten Modelle für dynamische Simu-

lationen von QKL für Frequenzkammbetrieb beschrieben. In diesem Zusammenhang werden

zwei unterschiedliche Ansätze zur Generierung von Frequenzkämmen betrachtet. Der erste

Ansatz betrifft Strukturen im freilaufenden Betrieb, wobei die Moden des Frequenzkamms eine

Folge von Nichtlinearitäten höherer Ordnung in dem Lasermedium sind. Als zweite Möglichkeit

wird aktive und passive Modenkopplung verwendet, um eine periodische Folge von Impulsen

im Zeitbereich zu erzeugen, was im Frequenzbereich einem Frequenzkamm entspricht.

Mehrere Ergebnisse können erwähnt werden. Zunächst wurde das traditionelle Maxwell-

Bloch-Modell von zwei Niveaus auf mehrere Niveaus erweitert und für die Simulation von

Terahertz-QKL im freilaufenden Betrieb angewendet. Dabei ist von Bedeutung, dass das neue

Modell ein kohärentes Tunneln zwischen dem Injektorniveau und dem oberen Laserniveau

von QKL berücksichtigt. Mit diesem Ansatz konnte eine gute Übereinstimmung von Simula-

tionsergebnissen mit verfügbaren Experimenten erreicht werden, sowohl im Zeitbereich als

auch im Frequenzbereich. Als nächstes wurde das gleiche Modell verwendet, um Laborexperi-

mente numerisch zu emulieren und somit die Multimodendynamik von Longitudinal Optical

Phonon Terahertz-QKL zu charakterisieren. Dies führte zu mehreren wichtigen Erkenntnissen

über das Verhalten dieser Strukturen. Zusätzlich wurde das Modell so angepasst, dass die

Erzeugung von ultrakurzen Pulsen im Terahertz-Bereich simuliert werden kann. Dabei wurde

der Schwerpunkt auf die passive Modenkopplung mit einem schnellen sättigbaren Absorber

gelegt. Ferner wird auch gezeigt, wie man den natürlichen Mehrpulsbetriebsmodus des QKL

ausnutzen kann, um eine sehr stabile zweite (und höhere) harmonische Pulsemission zu

erhalten. Bislang wurde kein passiv modengekoppelter QKL vorgestellt und es ist noch eine

offene Frage, ob diese theoretische Möglichkeit experimentell realisiert werden könnte. Dann

werden die Anfänge eines erweiterten Modells skizziert, das für selbstkonsistente Simulationen

geeignet ist und die dynamische Wechselwirkung zwischen dem Licht in dem QKL-Resonator
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und dem/der sich ausbreitenden Strom/Spannung im Mikrowellenbereich entlang der Struk-

tur erfasst. Schließlich untersucht der Autor als kleinen Umweg vom Hauptthema auch die

Möglichkeit, Metamaterialien zur Verlangsamung von Terahertz-Licht durch den sogenannten

„tunneling induced transparency“ Effekt zu entwickeln.
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1 Introduction

1.1 Foreword

As scientific knowledge progresses, designing successful experiments to directly test theo-

retical predictions is becoming increasingly difficult. In the field of quantum cascade laser

(QCL) research, which this thesis attempts to penetrate into, this is partially so because of the

practical inability to experimentally investigate some of the properties of these highly sophisti-

cated, and also very delicate devices. A typical QCL has dimensions of several millimeters

in length, and several micrometers in thickness and width, which makes them difficult and

expensive to manufacture and analyze. The situation is further complicated due to the QCLs’

multiple degrees of freedom, giving rise to electrical and optical instabilities. This, coupled

to the fact that the fundamental processes, determining the laser performance, are quantum

mechanical in nature, and despite that our abilities to manipulate matter at the minuscule scale

have considerably increased over the last decade, makes the direct experimental observations

of the inner workings of a QCL extremely difficult. Exactly at this frontier between theory and

experiment, is where computational science and simulations are most helpful. Combining the

advancement in physical theory and computational machinery, simulation scientists are able

to conduct more and more comprehensive numerical experiments in all areas of science and

engineering. In particular in the field of quantum cascade laser research, there is an increasing

interest from the community in population dynamics, electron transport, active region design

as well as emission characteristics [1–6]. Different models with varying degree of complexity

are being developed, ranging from classical rate equation models, Monte-Carlo simulations,

up to entirely quantum mechanical approaches based on density-matrix or non-equilibrium

Green’s function methods [7, 8]. Naturally, the end goal of all of this research is to improve the

understanding of QCLs, or on a more practical note, to deliver cheap, robust and high quality

technology to the scientific and engineering world.

What makes quantum cascade lasers so interesting? Since the radiative transitions in

QCLs are based on intersubband transitions and are thus determined purely by active region

engineering and not by the band gap of the used materials, QCLs are very potent sources

of coherent and tunable light in the underdeveloped regions of the mid- and far-infrared

portions of the electromagnetic spectrum. Having a stable laser in this frequency domain

unlocks a great diversity of applications such as high precision optical spectroscopy [9, 10],

telecommunications [11], explosive and other dangerous chemicals’ fingerprint detection [12]

and many others.

Ever since the first experimental realization of a quantum cascade laser by J. Faist and

co-workers in 1994, in the next twenty-five years, there has been a surge of research activity

on the topic. Recent advances include the creation of room temperature mid-infrared QCLs,
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1 Introduction

delivering devices emitting up to 3 W of optical power in the continuous-wave regime [13], the

demonstrations of stable frequency combs in both spectral regions, emitted by free-running

lasers [14–16], the generation of picosecond pulses with actively mode locked devices [17–19]

and others, with the general tendency of shifting away from purely conceptual work towards

applications. Despite these recent advances, there are still a great many challenges that

the research community must overcome, especially in the field of terahertz QCLs, before

this technology can mature. To this end, accurate and reliable numerical simulations of the

light-matter interaction dynamics in QCLs can help the community gain a better understanding

of the main processes that undermine the realization of the quantum cascade laser technology

to its full potential. Thus the main tasks assumed at the onset of this thesis are two. First

of all, the aim is to develop efficient and accurate carrier transport models, simultaneously

treating the coherent nature of the light-matter interaction [20] as well the multi-level behavior

of those laser systems. Secondly, the proposed models shall be used to investigate transient

dynamics of QCLs, especially at higher operating currents, which is characterized by both

stable and unstable multimode emission [21], and the gained knowledge shall be applied

to understand frequency comb formation (by either free-running or mode locked devices) in

QCLs. As the latter task needs to allow for the inclusion of non-linear optical processes, such

as four-wave mixing (FWM), difference frequency generation (DFG) etc., this necessitates

that the undertaken approach resolves the optical field in both space and time. Additionally,

to minimize the exposure to estimation error, and to increase the generality of the proposed

model, the simulation approach shall be self-consistent, in the sense that it depends on no (or

at least very few) empirically chosen parameters.

To address these goals, this thesis has undertaken a multi-domain simulation approach,

combining stochastic carrier transport simulations such as the ensemble Monte-Carlo (EMC)

method, with semi-classical light-matter interaction models, based on a formalism coupling

the quantum mechanical time evolution of the system with Maxwell’s equations. While EMC

simulations are comprehensive enough to treat hopping transport due to various perturbation

potentials, they are too computationally demanding in order to discretize the system in space

and time, and thus capture field propagation effects. On the other hand, the semi-classical

model treats only a portion of the interactions quantum-mechanically, and as such is rather

"light-weight" for simulation purposes, and thus allows for full discretization of the system. The

coupling between those two worlds is done via the Lindblad formalism and is discussed in

Chapter 2. Importantly, the combined approach leverages the advantages of each individual

model and allows for self-consistent and efficient light-matter interaction simulations, capturing

hopping transport, coherent interactions, propagation effects (such as spatial hole burning),

dispersion, optical nonlinearities etc., and as such has the potential to deliver results with an

increased quantitative accuracy.

The general organization of the thesis is the following: in the remainder of this chapter, a

brief introduction on laser fundamentals in general, and quantum cascade lasers in particular is

given. Next, Chapter 2 and Chapter 3 provide us with the more detailed theoretical foundations

and numerical algorithms, needed for the understanding and simulation of the employed

models. The second part of this thesis focuses on the main achievements by the author.

Namely, Chapter 4 analyzes transient dynamics in free-running terahertz quantum cascade
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1.1 Foreword

lasers for frequency comb generation. Chapter 5 is concerned with the possibility of ultrashort

THz pulse generation via various forms of (active and passive) mode locking of the same

type of devices. Finally, Chapter 6 concludes with a small detour from the main topic of the

thesis and discusses the possibility of slowing down THz light with the tunneling induced

transparency effect.

The full work is based on four peer-reviewed publications, in which the author of this thesis

has been the main contributor. For completeness, the titles of the publications together with

their short abstracts are included below.
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1 Introduction

Time domain modeling of terahertz quantum cascade lasers for

frequency comb generation
Petar Tzenov1, David Burghoff2, Qing Hu2, and Christian Jirauschek1

1Institute for Nanoelectronics, Technical University of Munich, D-80333 Munich, Germany
2Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract : The generation of frequency combs in the mid-infrared and terahertz regimes

from compact and potentially cheap sources could have a strong impact on spectroscopy,

as many molecules have their roto-vibrational bands in this spectral range. Thus, quantum

cascade lasers (QCLs) are the perfect candidates for comb generation in these portions of

the electromagnetic spectrum. Here we present a theoretical model based on a full numerical

solution of Maxwell- Bloch equations suitable for the simulation of such devices. We show that

our approach captures the intricate interplay between four wave mixing, spatial hole burning,

coherent tunneling and chromatic dispersion which are present in free-running QCLs. We

investigate the premises for the generation of QCL based terahertz combs. The simulated

comb spectrum is in good agreement with experiment, and also the observed temporal pulse

switching between high and low frequency components is reproduced. Furthermore, non-comb

operation resulting in a complex multimode dynamics is investigated.

Publication Journal Optics Express 24.20:23232-23247

Date of submission 4 Aug 2016

Date of publication 27 Sep 2016

URL https://doi.org/10.1364/OE.24.023232
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Slow terahertz light via resonant tunneling induced

transparency in quantum well heterostructures
Petar Tzenov, and Christian Jirauschek

Institute for Nanoelectronics, Technical University of Munich, D-80333 Munich, Germany

Abstract : We present a theoretical and computational investigation of the possibility of

achieving slow terahertz light by exploiting the tunneling induced transparency (TIT) effect in

suitably engineered quantum well heterostructure devices. We design such a meta-material

and show how TIT could lead to large values of the group refractive index, unfortunately at the

cost of strong field attenuation due to decoherence. As a suitable alternative, we propose a

grating, consisting of a buffer and a quantum cascade amplifier regions, arranged in such a

way as to achieve slow light and simultaneously compensate for the large signal losses. Our

calculations show that a binary message could be reliably transmitted through this system,

with non-critical reduction of the signal to noise ratio, as we achieve a slow-down factor of

more than 70.

Publication Journal Proceedings of SPIE 10226:1022603

Date of submission 26 September 2016

Date of publication 5 January 2017

URL https://doi.org/10.1117/12.2262367
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Analysis of operating regimes of terahertz quantum cascade

laser frequency combs
Petar Tzenov1, David Burghoff2, Qing Hu2, and Christian Jirauschek1

1Institute for Nanoelectronics, Technical University of Munich, D-80333 Munich, Germany
2Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract : In recent years, quantum cascade lasers (QCLs) have shown tremendous poten-

tial for the generation of frequency combs in the mid-infrared and terahertz portions of the

electromagnetic spectrum. The research community has experienced success both in the

theoretical understanding and experimental realization of QCL devices, capable of generating

stable and broadband frequency combs. Specifically, it has been pointed out that four wave

mixing (FWM) is the main comb formation process and group velocity dispersion (GVD) is the

main comb-degradation mechanism. As a consequence, special dispersion compensation

techniques have been employed, in order to suppress the latter and simultaneously enhance

the former processes. Here, we perform a detailed computational analysis of FWM, GVD,

and spatial hole burning (SHB), all known to play a role in QCLs, and show that SHB has

a considerable impact on whether the device will operate as a comb or not. We therefore

conclude that for a successful implementation of a quantum cascade laser frequency comb,

one would need to address this effect as well.

Publication Journal IEEE Transactions on Terahertz Science and Technology 7.4:351-359

Date of submission 9 January 2017

Date of publication 26 April 2017

URL https://doi.org/10.1109/TTHZ.2017.2693822
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1.1 Foreword

Passive and hybrid mode locking in multi-section terahertz

quantum cascade lasers
Petar Tzenov1, Ihar Babushkin,2,3, Rostislav Arkhipov4,5, Mikhail Arkhipov4, Nikolay Rosanov5,6,7, Uwe

Morgner2, and Christian Jirauschek1
1Institute for Nanoelectronics, Technical University of Munich, D-80333 Munich, Germany
2Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany

3Max Born Institute, 12489 Berlin, Germany
4St. Petersburg State University, 199034 St. Petersburg, Russia

5ITMO University, 197101 St. Petersburg, Russia
6Vavilov State Optical Institute, Kadetskaya Liniya v.o. 14/2, St Petersburg 199053, Russia
7Ioffe Physical Technical Institute, Politekhnicheskaya str. 26, St Petersburg 194021, Russia

Abstract : It is believed that passive mode locking is virtually impossible in quantum cascade

lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and

theoretically show that stable mode locking and pulse durations in the few cycle regime at

terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs.

We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber

sections. The critical ingredients are the very strong coupling of the absorber to both field and

environment as well as a fast absorber carrier recovery dynamics. Under these conditions,

even if the gain relaxation time is several times faster than the cavity round trip time, generation

of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse

generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode

locking.

Publication Journal New Journal of Physics 20.5:053055

Date of submission 24 November 2017

Date of publication 24 May 2018

URL http://stacks.iop.org/1367-2630/20/i=5/a=053055
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1 Introduction

1.2 Laser fundamentals

The LASER, or Light Amplification by Stimulated Emission of Radiation, is probably one of the

most important scientific discoveries of the twentieth century. This technology has penetrated

our daily lives with unforeseen speed, and has found applications in a wide range of fields

such as electronics, medical procedures, astronomy, national security and defense, natural

and applied sciences and many others, to name a few.

So what is a laser? Simply put, a laser is a device that emits coherent and collimated

electromagnetic radiation ranging from the ultraviolet, through the visible, up to the far-infrared

electromagnetic spectrum [22]. Depending on the area of application, lasers come in wide

a variety of sizes, performance characteristics, price ranges etc., from the everyday diode

laser-pointers used in classrooms to powerful industrial gas lasers used in medicine and

industry. All those devices, however, are based on one and the same fundamental physical

principle - that of stimulated emission.

Stimulated emission is a very interesting phenomenon. It is intuitively described as a "forced"

or stimulated de-excitation (i.e. transition from a higher to a lower energetic state) of a charge

carrier due to its interaction with an electromagnetic (EM) field. Such a transition occurs when

the incoming electromagnetic wave has energy equal to or close to the transition energy of

the carrier particle. Due to energy conservation laws, this quantum process is accompanied

by emission of a photon, or equivalently an electromagnetic wave, with the same momentum,

polarization and phase as the incoming EM field. Quite symmetrically, if a certain material can

be forced to emit energy due to interaction with radiation, then the opposite situation should

also be possible, i.e. the same material should be able to absorb some of the energy of the

field. Indeed, such a process occurs and it is called absorption (for the obvious reasons).

Now, armed with as little as few lines of understanding about stimulated emission and

absorption, we are ready to, at least conceptually, design our first laser. First, take a material

that can efficiently interact with light in the frequency domain we are interested at. Then, we

also need a mechanism to ensure that the overall number of stimulated emission events is

larger than that of absorption (or any other lossy processes), in order for the newly generated

photons to be more than the lost ones, i.e. to achieve net amplification of the original field.

Without proper understanding of those other lossy processes, we will be designing terrible

lasers, but in order to illustrate a concept let us assume that the material we have chosen can

have its charge carriers in one of two energy levels only, and the only excitation mechanism

is absorption and also the only de-excitation mechanism is stimulated emission. Then, it

is evident that if we wish to amplify our original EM signal, we will need to ensure that on

average we have more charge de-excitations, i.e. stimulated emission processes, than charge

excitations. Since by necessity, the net optical scattering rate ought to depend on the difference

in carrier density in both levels, we thus need to design our system so that it has more charges

in the upper energy state than in the lower one. Such a situation is called population inversion,

and is evidently a non-equilibrium state of matter. In that sense population inversion can rarely

be found in nature, even though there are some such examples [23, 24], which means that

appropriate "material engineering" will be necessary in order to achieve our goal.
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1.2 Laser fundamentals

Next, let us now see how we can construct a very primitive laser. As we mentioned we need

a lasing/interacting material, usually called an active region, which we need to make sure that

it is in the state of population inversion. We do so by artificially "pumping" more charge carriers

into the upper energetic state than into the lower one. In practice this pumping mechanism,

or pumping scheme, can be anything from driving electrical current into the active medium,

forcing population inversion with intense external radiation, or populating the medium with

highly energetic "particles", which in their collisions with the constituents of our active region,

drive the system out of equilibrium.

Once we have gotten our population inversion, we also need a way to efficiently direct the

laser beam, or the electromagnetic field we wish to amplify, in and out of our active region.

This is achieved via the so called optical cavity, which is there to confine the input/generated

electric field and maximize its interaction with the amplifier. Summarizing, most lasers consist

of two components - the gain medium and a feedback mechanism, with the latter usually

implemented by partially reflecting mirrors. A schematic of two of the most common designs,

the so called Fabry-Perot and the ring-type cavity, are depicted in Fig. 1.1.

Figure 1.1 Fabry-Perot (left) and ring-type (right) laser cavity schematics. The active region, together with the
mirror setup, is referred to as optical cavity.

In practice, based on the choice of lasing material, lasers can be broadly divided into the

following categories:

• Semiconductor lasers - the active region is made of different semiconductive materials,

such as GaAs, AlGaAs etc. (typically III-V semiconductors due to their superior prop-

erties), where the most common pumping mechanism is via current injection into the

structure. Prominent examples are the diode laser and also the quantum cascade laser.

The lasing action occurs due to radiative recombination of electrons from the conduction

band with holes of the valence band (in diode lasers), the so called interband transitions,

or intersubband transitions of electrons between states in the conduction band (as in

QCLs) or holes in the valence band (not realized conceptually).

• Solid state lasers - the active region is a solid, the so called host material, usually a

glass, in the form of a rod or optical fiber, or a crystal, which is then doped with charge

carriers, usually metallic ions. The main pumping mechanism is optical, i.e. illumination

with an external light source, and common examples are the Nd:YAG, the Ruby laser,
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and the Ti:Sapphire laser, which is very important in the context of pulse and frequency

comb generation. The lasing action occurs due to radiative electron decay into lower,

more stable energy levels.

• Dye lasers - the active region consists of a liquid solution of organic dye, containing

molecules able to fluoresce. The pumping mechanism is optical illumination, as in solid

state lasers, with the lasing action occurring due to fluorescence.

• Gas lasers - the active region is in gaseous state and the pumping mechanism is gas

discharge current. Prominent examples are the "HeNe" or helium-neon laser or the CO2

laser. Here the utilized charge carriers are not necessarily electrons, where for the CO2

laser, for instance, lasing occurs due to relaxation of vibrationally excited CO2 molecules

to a lower vibrational level.

• Other lasers such as excimer lasers, chemical lasers etc., with a plethora of different

pumping mechanisms and optical cavity designs.

For a very thorough and pedagogical introduction to lasers and laser technology refer to [22,

25].

1.3 Quantum cascade lasers

As mentioned above, in traditional semiconductor lasers the lasing transition occurs due to

recombination of electrons from the conduction band with holes from the valence band of the

material. Those types of lasers, for e.g. the diode laser, are very cheap compact sources

of coherent radiation and are intensively used for a wide range of applications. A schematic

illustration of a typical semiconductor p-n junction diode laser is depicted in Fig. 1.2.

+ + + ++

_ _ _ _ _ _ _

+ +

Conduction

band

Valence 

band

Conduction band

Valence band

Al0.15GaAs0.85 GaAs Al0.15GaAs0.85

Figure 1.2 (Left) One GaAs layer sandwiched between two Al0.15GaAs0.85 layers to form a conduction/valence
band well, trapping electrons/holes respectively. The transition of a single electron from the conduction band to a
vacancy in the valence band is accompanied by emission of a photon with approximately the same energy as the
band gap of the material. (Right) Energy-band diagram illustration of the transition. GaAs band gap value taken
from [26].

As it can be seen from Fig. 1.2, the emitted radiation’s frequency is determined by the band

gap of the materials involved. This means that we cannot, at least at this stage, hope to
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1.3 Quantum cascade lasers

build such semiconductor lasers operating at any desired frequency. Due to the lack of low

band gap semiconductors, it turns out that there is a frequency range very poorly covered

by conventional semiconductor lasers [27]. These are the mid- to far-infrared wavelengths,

defined to encapsulate frequencies between (10-60) THz for the former, and (0.3-10) THz for

the latter. Nevertheless, coherent light emitters and detectors in that range are desired for

spectroscopy and sensing applications, since many molecules have roto-vibrational bands in

that region [9, 28–30].

This is where QCLs come into play, as they allow for very accurate engineering of the

lasing transition, and thus give access to this underdeveloped electromagnetic region. Now,

QCLs are n-doped semiconductor lasers, consisting of a stack, or an array, of quantum

wells, the so called heterostructure, in which the interacting electrons are constrained to the

conduction band of the medium. As illustrated in Fig. 1.3, the fundamental difference in the

operating principles of QCLs as compared to conventional semiconductor lasers, is in that

the electron transitions in QCLs occur within the conduction band itself, and not between the

conduction and the valence band states. That is why sometimes such a radiative transition

is called intersubband transition. Due to energy conservation, the emitted photon will have

energy equal to the difference between the electronic states in the conduction band of the

heterostructure, and will not depend in any way on the band gap. This allows scientists to

overcome the band gap limitation and open the already mentioned low energy spectral regions

to exploitation.

Quantum well array Condution band pro le at zero bias

Conduction band pro le

at operating bias

_

Intersubband transition

_

Figure 1.3 Schematic diagram of quantum cascade laser operating principles. Upper-left we have the material
stack with the corresponding conduction and valence band profiles. The images on the upper-right and lower-left
depict the resulting conduction band profile - a quantum well array, without and with applied bias, respectively.
Lastly, the lower-right image illustrates the transition in the reciprocal lattice.

Due to quantum mechanical effects, the electrons have bound states and their wave-

functions (at least those with energies close to the conduction band edge) generally span one

or more quantum wells, since there is a finite probability for the electron to tunnel through an
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energetic barrier. When the right voltage difference, i.e. bias, is applied onto the quantum

well array, the probability of electrons to tunnel through the barriers increases due to resonant

tunneling [31]. In this way, the charges that populate the conduction band start cascading

down the structure, hopping from quantum well to quantum well via resonant tunneling and

emitting a photon each time they undergo radiative transition. Care must be taken as this is a

vast simplification of the dynamics actual devices, as typical QCLs have more bound states

participating in the conduction, and in addition to tunneling, exploit other scattering mechanism

for electron transport [27]. This means that a single electron can, in principle, generate

multiple photons as it cascades through the system, unlike in conventional semiconductor

lasers where a single charge is responsible for at most one photon. This property hints about

the large efficiencies that can be obtained with QCL. Quite evidently QCLs are electrically

pumped devices where the carrier transport is custom-tailored as to ensure maximum possible

population inversion, via wave function engineering.

The original idea of light amplification by intersubband transitions has originally been

proposed by two soviet physicists, Kazarinov and Suris already in 1971 [32], however due

to technological limitations a working QCL was only first demonstrated in Bell Labs in 1994

[33]. For the last 25 years or so, there has been a surge in research activity in developing

and improving the technology. Currently, QCLs have been established as potent room-

temperature mid-infrared radiation sources, emitting both continuous wave and pulsed signals

with high power and wall-plug efficiently [17, 34, 35]. There is a multitude of different active

region and waveguide designs for optimal performance of the devices, depending on the

desired application, and there are even several industrial companies producing and distributing

commercial QCLs [36, 37].

The situation is a bit different for far-infrared devices, due to the ultracold temperatures

needed for their operation. THz quantum cascade lasers are, due to the smaller energy

spacing between the lasing levels, extremely sensitive to temperature variations. State of the

art technology has allowed for a maximal operating temperature of 200 K, with this record,

set in 2012, still to be improved [38]. Certain advancements have been made in, for example,

achieving negative differential resistance at 290 K [39], but the search for a room-temperature

THz QCL is largely still on-going [40, 41]. Nevertheless, cryogenically cooled THz QCLs can

still be useful especially for the generation of frequency combs either by free-running lasers or

with mode locking. A brief introduction to the concept of a frequency comb and the principles

of mode locking is given in the following sections.

1.4 Mode locking of lasers and frequency comb generation

1.4.1 Mode locking

Mode locking is a method with which a fixed-phase relationship between the longitudinal modes

of a laser is established in order to make the device emit short, very power-intensive pulses of

light. Mode locked lasers are useful in a variety of applications ranging from laser ablation,

a process when intense light is cast upon a material to alter its nano-scale structure [42],

through different kind of probing experiments, to even the so called internal confinement fusion
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1.4 Mode locking of lasers and frequency comb generation

in nuclear fusion research. To avoid confusion, it should be noted that mode locking is a

more general concept than ultrashort pulse generation, i.e. the time domain profile of a phase

locked laser is not necessarily a periodic train of pulses. Indeed, there are devices, such as

QCLs for example, which have shown to emit mode locked, coherent multimode light, even in

a free running regime of operation [14, 15]. Nevertheless in this thesis, with a slight abuse of

terminology, the term mode locking will be used to refer to the multitude of methods used for

the generation of optical pulses of light. With this in mind, in this section the fundamentals of

mode locking, both active and passive, are introduced together with some relevant notation.

First of all, let us consider the concept of a longitudinal laser mode. Longitudinal or axial

mode formation is an interference phenomena that determines the allowed frequencies at

which a wave can oscillate inside a bounded region of length L. It is basically the formation of

standing wave patterns with a discrete set of allowed frequencies, due to the confinement of

the light inside a finite domain. Longitudinal modes are the optical analogue of normal modes

for a vibrating string with its both ends fixed.

To see the interference nature of this phenomena, imagine that we have an optical cavity of

length L, at both ends of which we have positioned perfectly reflecting mirrors (r1 = r2 = 1.0).

Assume that at time t on position x = 0 there is the following electric field

E(t, 0) = E0cos(ωt+ φ), (1.1)

where φ is the phase and ω is the fields angular frequency. The signal, starting from x = 0 at

time t, will travel through the cavity with velocity, say v, reflect from the right mirror and come

back to x = 0 in exactly TR = 2L/v seconds. Obviously, the reflected wave will interfere with

the wave crest at x = 0 at time t+TR and in case of destructive interference, the reflected and

emitted waves will quickly cancel each other and the total electric field will vanish. Conversely,

constructive interference will occur if the phase shift of the reflected wave is exactly an integer

multiple of 2π. Therefore, we get

ωTR = m2π, (1.2)

where m = 0, 1, 2... is an integer determining the mode order, as the condition for constructive

interference. Rewriting in terms of usual frequency reads

fm = m
v

2L
= m

c

2Ln
. (1.3)

Note that in Eq. (1.3) c denotes the velocity of light in vacuum and n is the refractive index.

Another interesting quantity is the separation frequency between two adjacent modes, i.e.

∆f = fm − fm−1 =
c

2Ln
, (1.4)

where in general one might assume that the refractive index and hence ∆f are frequency

dependent (the so-called dispersion).

Generally, a laser’s gain medium will have a non-vanishing gain over a wide range of

longitudinal modes. This means that it is, in principle, possible to extract broadband radiation

from such a device. Additionally, given a multimode emission spectrum, how can one impose

a fixed phase relationship between the lasing longitudinal modes, so that in the time domain,

the laser emits ultra short pulses? Generally, there are two methods to achieve that: active

and passive mode locking.
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Within active mode locking, pulsed operation is achieved by placing an externally controlled

gain or loss modulator inside the cavity. When this component, also known as attenuator, is

switched on, the losses inside the cavity overcome the gain, which prevents the device from

lasing. This, naturally, leads to a buildup of population inversion, due to whatever pumping

mechanism we are using, and hence storage of a large quantity of energy inside the device.

Now, when the attenuator is switched off for a short time, the losses become smaller than

the gain and the built-up energy is quickly released in a powerful pulse, thus depleting the

gain. After some time, the attenuator is switched on again and the same process is repeated.

Examples of such active mode locking mechanisms are radio frequency (RF) injection-current

modulators, acousto-optical modulators or even simple mechanical shutters that that open and

close in brief intervals. In the frequency domain, active mode locking is best represented as

amplitude or frequency modulation of the field, with some frequency ωm. It can be shown [43]

that, if the modulation frequency is equal or close to the mode spacing of the laser, the

effect of an amplitude modulating component is to couple ("lock") adjacent lasing modes and

perpetually broaden the lasing spectrum. Namely, because the modulation frequency ωm has

to be driven externally, this technique is called active mode locking. When the laser cavities are

very short (on the order of couple of millimeters for semiconductor lasers), then also the round

trip times will be small, from where it follows that the modulation frequency has to be very large

(order of GHz). Creating a controllable switching mechanism working at such high frequencies

is a formidable engineering challenge, which limits the applicability of this technique, or at least

the minimum pulse-width that can be achieved via active mode locking. Figure 1.4 illustrates

how loss modulation via an externally driven oscillator can lead to pulse formation.

Figure 1.4 (Top) Fabry-Perot optical cavity containing an externally driven modulator component. (Bottom)
Gain/Loss dynamics under harmonic modulation of the losses and resulting pulse-shape. Adapted from [43].

On the other hand, there is also passive mode locking, where the attenuating mechanism

is internal to the laser and does not need to be controlled externally in any way. Passive
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mode locking is a consequence of non-linear effects such as four-wave mixing, saturable

absorption, Kerr-lensing and other mechanisms [44, 45], which favor multimode operation over

continuous wave lasing. One of the most common methods for passive mode locking is the

already mentioned saturable absorption, where the gain medium contains a special material

with intensity dependent losses. This dependence is usually represented as

l(t) =
q0

1 + I(t)/Isat
, (1.5)

where I(t) is the intensity of the field at time t, Isat is the so called saturation intensity and q0

denotes the losses in the absence of the photon field (i.e. the "small signal" losses). From

the above expression it is evident how the pulse will shape itself as it propagates through the

medium. When the intensity is very large, the pulse’s peak sees more net gain (less losses)

than the pulse’s wings, which shortens the signal on each traversal of the cavity. Naturally, this

shortening process stops when the bandwidth of the pulse reaches the gain bandwidth, or the

pulse-width approaches some minimal resolution, generally determined by the gain recovery

dynamics of the medium. For the formation of very short pulses, passive mode locking turns

out to be more effective than its active counterpart [43].

1.4.2 Frequency combs

A closely related concept to the notion of mode locking is the idea of frequency combs. A

frequency comb is a device, emitting a broadband spectrum of evenly spaced frequency lines.

The famous time-bandwidth product rule from Fourier analysis tells us that in the spectral

domain, a periodic repetition of ultrashort pulses consists of multiple frequency lines. Building

upon the previous discussion about ultrashort pulse generation, we can clearly see that a

stable-pulse emitting laser can also be a frequency comb.

However, the notions of pulse-formation and frequency comb generation are not completely

interchangeable, i.e. even though short periodic pulse trains form a frequency comb in the

spectral domain, not all frequency combs are trains of short pulses in the time domain. Perfectly

frequency modulated signal can also be a comb [46]. The only requirement for a frequency

comb laser is that its spectral modes shall be separated by a constant frequency spacing [47].

An ideal frequency comb contains mode lines indexed by the following expression (see

Fig. 1.5)

fn = fo + n∆f , (1.6)

where n an integer denoting the mode index, ∆f is the frequency spacing and fo < ∆f is the

so called carrier-envelope offset frequency. In general, both fo and ∆f are in the microwave

frequency domain, e.g. a couple of GHz, which implies that Eq. (1.6) maps a set of optical

modes to a set of radio frequencies. This means that one can measure optical oscillations by

down-conversion to this lower frequency regime with, for example, heterodyne mixing [10, 48].

For a more intuitive picture, imagine the frequency comb as a very fine ruler in the spectral

domain with which we can accurately measure different frequencies. Such a capability to

count optical cycles with RF detectors promises a wide range of very significant applications

in both everyday life and the frontiers of science [9, 29, 45, 47]. The importance of this new

emerging technology has already received the highest sign of recognition by the international
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scientific community in 2005, when the researchers Theodor Hänsch and John Hall shared

the Nobel Prize in physics "for their contributions to the development of laser-based precision

spectroscopy, including the optical frequency comb technique" [49].

Figure 1.5 An illustration of a frequency comb spectrum. A broadband gain medium lases evenly spaced
frequency lines, separated by frt. The offset frequency is also shown as fo.

What are the difficulties in constructing frequency combs? As many lasers’ gain media are

broadband in nature, emitting a mixture of frequencies is not so much the problem, rather,

stabilizing the mode separation frequency ∆f (usually equal to the repetition rate of the signal

frt) and also the carrier-envelope offset frequency fo poses the biggest technological chal-

lenges. Building upon years of research in ultrashort pulse generation and pulse stabilization,

frequency comb generation techniques based on mode locking have been the most successful

so far, with the culmination of this research - the Kerr-lens mode locked Ti:Sapphire laser [50].

Following the above line of thoughts, mode locking quantum cascade lasers should lead

to frequency comb generation in the mid- and far-infrared regimes. There is a very intensive

ongoing research on this topic with some partial success, with the shortest pulse widths

achieved so far at around 2.5 ps, produced via a complex combination of pulse seeding and

active modulation of the injection current [51]. It is generally thought that active mode locking

of QCLs, so that they emit short and powerful pulses, is very challenging [4], which is mainly

due to the inherently fast gain recovery time (on the order of few picoseconds) in this kind of

devices. Intuitively, the gain recovery time can be considered similar to the relaxation time

of the upper laser level, as it determines the speed at which saturated gain can return to

values above threshold. When a pulse propagates through an active region with very long

gain recovery time, the peak of the pulse saturates the gain so that its wings experience less

amplification, which in turn shortens the signal. By way of contrast, if the gain medium has

fast gain recovery, on the order of the length of the pulse, the pulse tends to be prolonged

at every pass through the active region. In Chapter 5 the possibility of ultra-short pulse

generation in QCLs will be revisited. Note that to date, no passively mode locked QCL has

been demonstrated.
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On the other hand, there is the possibility to generate free-running frequency combs. For

example, in [14] the authors demonstrated a mid-infrared frequency comb based one a free-

running QCL, lasing in a spectral region where the group velocity dispersion (GVD) of the

medium was close to zero. For clarity, GVD is a material determined coefficient specifying

the rate at which pulses spread out in time, due to differences in the individual modes’ phase

velocities. Therefore the absence or the compensation of GVD is crucial for the temporal

coherence of the emitted signal.

The multimode behavior of that same laser, on the other hand, was theoretically explained [4]

to be due to non-linear processes such as cascaded four wave mixing occurring inside the

optical cavity. Similarly, a frequency comb, with the unprecedented bandwidth of 14 % of

the laser’s central frequency, was later reported for the terahertz regime, again based on

a free-running device [15]. In this paper, GVD was accounted for by a special dispersion

compensation mechanism - a kind of corrugation grating etched into the waveguide of the

QCL. It might be worth mentioning explicitly that, interestingly enough, the THz device did

not produce output light in the form of pulses, but rather lased in the continuous wave regime,

i.e. with approximately constant instantaneous intensity. Such a behavior is characteristic for

frequency modulated signals.

1.5 Conclusion

In this chapter the central problem that this thesis addresses, namely the theoretical inves-

tigation of means for frequency comb generation with quantum cascade lasers, has been

outlined. Related publications were introduced, followed by some elementary remarks about

lasers in general and quantum cascade lasers in particular. Lastly, as a gentle preparation

for the upcoming chapters, some basic concepts concerning pulse generation via active and

passive mode locking, as well as frequency comb generation by free-running devices, were

introduced.
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2 Theoretical models for light-matter
interaction

2.1 Introduction

This chapter introduces step by step derivation of various light-matter interaction models,

suitable for transient simulations of quantum cascade lasers. The exposition begins in Sec. 2.2

with a classical description of the electromagnetic field, based on Maxwell’s equations, be-

fore applying considerable simplifications to produce an alternative model, better suited for

computer simulations. The coupling of the electromagnetic field to the carrier dynamics is ac-

complished in Sec. 2.3 via a classical rate equations approach and also a quantum mechanical

model, within the framework of the density matrix. After a brief introduction to the theory of the

latter, the main equations of motion for the density matrix are derived, where the carrier-photon

dynamics is treated coherently (via a unitary transformation to the state), whereas additional

interactions are captured in the Markov approximation via a Lindblad superoperator. From the

quantum mechanical model, a classical limit (in the form of rate equations) is also presented

and the assumptions under which this classical description is valid are discussed. Finally,

in Sec. 2.4, the landmark two-level Maxwell-Bloch equations are developed, and several

important quantities relating the quantum and the classical world are summarized.

2.2 Classical models for the optical field

In this section we consider several approaches to modeling the electromagnetic field in optical

systems. Due to the typically large number of photons in laser devices, quantization of the

field is not strictly necessary as a purely classical model ought to suffice in reproducing all of

the relevant physics.

From classical electrodynamics we know that the electromagnetic field satisfies the cel-

ebrated Maxwell’s equations, which serve as a starting point for the derivation of the main

optical model, used throughout the thesis. Concretely, it will be shown how, employing the right

set of assumptions about the material system and the field, this allows for the considerable

simplification of Maxwell’s equations, resulting in a pair of traveling wave equations. Detailed

explanation is given in the following.
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Figure 2.1 An illustration of a generic laser resonator consisting of an active region of length LAR
and two reflective mirrors with reflectivities r1 and r2.

2.2.1 Maxwell’s equations

Consider a generic laser geometry as depicted in Fig. 2.1, an active section packed inside a

linear cavity of certain length L. The time evolution of the electric and magnetic field vectors,

E(r, t) and H(r, t), respectively, is classically described by Ampere’s and Faraday’s laws,

∇×H =
∂D

∂t
+ j, (2.1)

∇×E = −∂B
∂t

, (2.2)

together with a pair of constitutive relations

D = εE + P, (2.3)

B = µ0H + M, (2.4)

where∇ is the familiar nabla operator, r is the coordinate vector, D is the electric displacement

field, B is the magnetic induction, j is the free carrier current density, and lastly P and M refer

to the electric and magnetic polarization fields. Also in the constitutive relations, Eqs. (2.3)-

(2.4), ε = ε0εr denotes the material permittivity decomposed as the product of the vacuum

and the relative permittivities, ε0 and εr, respectively, and µ0 is the magnetic permeability.

Specifically, Eq. (2.3) assumes both linear polarization term, encoded in the dimensionless

parameter εr, and an additional polarization P, which is general enough to describe arbitrary

system response to an applied external electric field E.

In quantum cascade lasers, one can first of all neglect the magnetic polarization term,

i.e. set M = 0. Furthermore, due to quantum mechanical selection rules [52], only the

resonator modes parallel to the heterostructure growth direction, in this case assumed to

be the z−direction, can couple to the intersubband transition and thus be amplified. For

slab-waveguide lasers, this condition will be generally satisfied by a transverse magnetic (TM)

mode, however as a rough approximation, one can also neglect electric field components

in longitudinal direction, i.e. assume a transverse electromagnetic (TEM) mode propagating
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2.2 Classical models for the optical field

inside the resonator. Taking this and the constitutive relation assumptions into account, the

original equations are reduced to the pair

∂tÊz = ε−1[−σÊz − ∂tP̂z + ∂xĤy], (2.5a)

∂tĤy = µ−1
0 ∂xÊz. (2.5b)

In Eq. (2.5a), F̂j is used to denote the corresponding (jth) component of each of the field

vectors, and additionally the free carrier current is modeled via Ohm’s law as ĵz = σÊz, with σ

denoting the material’s conductivity parameter.

Despite reducing the number of differential equations from 6 to only 2, Eqs. (2.5a)-(2.5b)

still depend on all three spatial coordinates. At this point, the problem can be further simplified

by integrating over the transverse spatial directions, i.e. over the y and z coordinates, which in

this text will be denoted via the change in notation
∫∫

F̂j(x, y, z)dydz = Fj , i.e. to indicate that

an integration over y and z has been performed, we simply remove the ·̂ from all field terms.

The resulting system can serve as a starting point for various light-matter interaction models

[53, 54], and where analytical solutions are not available, can be solved numerically via the

established finite difference time domain (FDTD) method, the pseudo-spectral time-domain

method (PSTD) and others [55, 56]. Unfortunately, the numerical solution of Eqs. (2.5a)-(2.5b)

imposes quite stringent requirements on the discrete time step or grid size, and for short

wavelength fields, or alternatively large simulation regions, can be quite time and resource

consuming endeavor. Next to "brute force" implementations, various approximation and/or

parallelization techniques can be employed to speed up the calculation time [57]. Since

this thesis focuses on exploring the physics of quantum cascade lasers, rather than on the

numerical efficiency of the underlying models, the author has taken an approximation approach

to simplify the computational load. However, it must be noted that in the age of fast many-core

computer architectures, it is high time for a paradigm shift in the way those "intractable"

numerical problems are tackled. Instead of devising elaborate approximations, which are

usually capable of treating only corner cases, one should directly approach the full complexity

of the system with models (usually computationally demanding) based on first principles and

physical laws, rather than approximations. Alternatively, where parallelization techniques are

not possible, or do not scale efficiently, "multi-domain" models, where one combines various

simulation tools, are also possible. This thesis partially incorporates the latter approach, as a

combination of Schrödinger-Poisson solvers, ensemble Monte Carlo simulations together with

density matrix-based models, have been used to simulate and prototype QCL dynamics. More

on this will be elaborated in later chapters of this thesis.

2.2.2 The traveling wave equations

As mentioned previously, since Eqs. (2.5a)-(2.5b), even in the 1D case, are too computationally

demanding to enable fast prototyping and analysis of THz QCLs, here a simplification of the

Maxwell’s equations will be employed. This results in the so called "traveling wave equation",

which is a widely employed approximation of Eqs. (2.5a)-(2.5b), used to capture the axial

dynamics of various types of lasers and optical amplifiers [58–61].
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2 Theoretical models for light-matter interaction

For starters, use Eq. (2.5b) to express the mixed derivative of Hy and completely remove

the magnetic field from the dynamics. After some simple algebra one comes up with the one

dimensional inhomogeneous wave equation

c2

n2
∂2
xEz − ∂2

tEz =
σ

ε0n2
∂tEz +

1

ε0n2
∂2
t Pz, (2.6)

where n =
√
εr denotes the background refractive index, c denotes the vacuum speed of light

and εµ0 = n2/c2.

Fortunately, Eq. (2.6) can be greatly simplified by employing one very common approxima-

tion, the so called slowly varying envelope approximation or SVEA for short [62]. In the SVEA

approximation it is assumed that the optical field can be written as a product of an envelope

function, say E+(x, t) and a carrier wave ei(β0x−ω0t), where ω0 is usually considered to be the

angular frequency of the central mode of the laser, and β0 is the corresponding wave number.

Taking the electric field as a superposition of forward and backward propagating waves, one

can write

Ez(x, t) =
1

2

[
E+(x, t)ei(β0x−ω0t) + E−(x, t)e−i(β0x+ω0t) + c.c.

]
, (2.7)

where c.c. denotes the complex conjugate of the preceding expression and the + and − signs

specify the forward/backward propagating waves’ envelopes, respectively. To complete the

approximation, add the slowly varying part, which limits the spatio-temporal variations of E±
to be seen as slow in the length/time scale of the spatial/temporal oscillation period of the

carrier. What that physically means is that we consider a frequency spectrum of much smaller

bandwidth than the absolute value of the central frequency ω0, which is indeed justified for

most QCL devices, even in mode locked regime of operation [15, 19, 63]. Employing SVEA

will allow one to neglect partial derivatives of second and higher order, and thus substantially

simplify the wave equation.

Straightforward substitution of Eq. (2.7) into the wave equation Eq. (2.6) gives two first order

partial differential equations for the envelopes E±. To see how, it will be convenient to employ

a more compact notation as to simplify the partial differentiation, summation and complex

conjugation. Write

Ez(x, t) =
1

2

∑
α=±

Eαe
i(αβ0x−ω0t) + c.c. , (2.8)

where the α is simply a sign specifier. Additionally, it is useful to decompose the polarization

into a slowly varying term times a carrier wave as follows

Pz(x, t) =
1

2

∑
α=±

Pαe
i(αβ0x−ω0t) + c.c. . (2.9)

This assumption is reasonable as Pz will be proportional to the electric field if the interaction is

linear, and will depend on higher orders of Ez for non-linear interaction [64].
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2.3 Models for the active region

Now, computing the first and second partial derivatives of the field and polarization with

respect to x and t gives

∂tEz(x, t) =
1

2

∑
α=±
{∂tEα − iω0Eα} ei(αβ0x−ω0t) + c.c., (2.10)

∂xEz(x, t) =
1

2

∑
α=±
{∂xEα + iβ0Eα} ei(αβ0x−ω0t) + c.c., (2.11)

∂2
tEz(x, t) =

1

2

∑
α=±

{
∂2
tEα − 2iω0∂tEα − ω2

0Eα
}
ei(αβ0x−ω0t) + c.c., (2.12)

∂2
xEz(x, t) =

1

2

∑
α=±

{
∂2
xEα + 2iαβ0∂xEα − β2

0Eα
}
ei(αβ0x−ω0t) + c.c., (2.13)

∂2
t Pz(x, t) =

1

2

∑
α=±

{
∂2
t Pα − 2iω0∂tPα − ω2

0Pα
}
ei(αβ0x−ω0t) + c.c.. (2.14)

Plugging into Eq. (2.6), employing the slowly varying amplitude approximation or |∂tE±| �
|ω0E±|, |∂2

xE±| � |β0∂xE±|, |∂2
tE±| � |ω0∂tE±| (similarly for the polarization) and finally

the dispersion relation β0 = ω0n/c, the derivation simplifies to

∑
α=±

{
∂tEα + α

c

n
∂xEα

}
ei(αβ0x−ω0t)+c.c =

1

2

∑
α=±

{
− σ

ε0n2
Eα + i

ω0

ε0n2
Pα

}
ei(αβ0x−ω0t)+c.c..

(2.15)

Equating terms in front of matching carrier wave components one can obtain the pair of

propagation equations for the forward and backward propagating electric field envelopes (E±)

n

c
∂tE± ± ∂xE± = −a

2
E± + i

ω0

2ε0nc
P±, (2.16)

where a = σ/(ε0nc) denotes the cavity linear loss parameter, which can also be related to the

photon lifetime τp via τp = n/(ac). This pair of equations, Eq. (2.16), serves as the basis of

the above mentioned traveling wave equation model and needs to be supplemented by an

adequate description of the light-matter coupling, i.e. a specific form for the polarization term

P± ought to be specified.

2.3 Models for the active region

2.3.1 Rate equation models

In order to establish a complete carrier-light model, one needs to decide on a specific form on

the source term in Eq. (2.16). This can be done in various different ways and is a topic subject

to its own research. For starters, assume that the polarization envelope P± is proportional to

the electric field envelope, i.e. P± = ε0χE±, with the proportionality coefficient χ(x, t), which

is generally position and time dependent and is also known as the susceptibility of the material

[64]. Plugging this ansatz into Eq. (2.16), multiply the latter equation by the complex conjugate

of the E-field envelope, i.e. E∗±, which yields

n

c
(∂tE±)E∗± ± (∂xE±)E∗± = −a

2
|E±|2 + i

ω0

2nc
χ|E±|2. (2.17)
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2 Theoretical models for light-matter interaction

Now one can take the complex conjugate of the previous expression and add the resulting

equation to Eq. (2.17), to obtain a pair of propagation equations for the intensity I± ∝ |E±|2 of

the forward and backward envelopes

n

c
∂tI± ± ∂xI± = −aI± −

ω0

nc
Im{χ}I±, (2.18)

where Im{·} denotes the imaginary part (with Re{·} representing the real part). As previously

mentioned, a in Eq. (2.18) is interpreted as the linear waveguide loss parameter, whereas the

term g = −ω0 Im{χ}/[nc] captures the polarization response of the system and is also known

as the gain coefficient. With this new notation at hand, the field propagation equations can be

written in a more canonic form as

n

c
∂tE± ± ∂xE± = −a

2
E± +

gΓ

2
(1− iα)E±, (2.19)

where α = Re{χ}/ Im{χ} is also known as the linewidth enhancement factor, famously

derived by Henry in 1982 [65], and is responsible for the observed increase in the spectral

linewidth as compared to the quantum limit. Additionally, in order to consider the fact that the

electric field does not fully overlap with the active region, it is customary to multiply the gain

coefficient in the above expression by the field overlap factor Γ, defined as

Γ =

∫∫
Sg
|Êz|2dydz∫∫∞

−∞ |Êz|2dydz
, (2.20)

where in the numerator one integrates over the gain medium cross sectional area Sg [52].

Now, it is time to couple the traveling wave equations to an additional model for the gain. Its

dependence on the density of active carriers N , i.e. the population inversion, and thus the

injection current J , is usually parametrized as some empirical function of N , motivated by

fitting theoretical curves to experimental data. For quantum well lasers, experimental evidence

indicates that a logarithmic such dependence provides a good approximation, where the gain

curve is given by [61]

g(x, t) =
g0 log(N/N0)

1 + (I+ + I−)/Isat
, (2.21)

where g0 is the small signal gain, N0 is the carrier density at transparency and Isat is the

saturation intensity. Alternatively, one can take a more simple, linear model for the gain

g(x, t) = g0(N/N0 − 1). (2.22)

These relations are additionally appended by a rate equation for the time evolution of N , which

for example for quantum well lasers can take the form

∂tN =
J

eVg
− c

n
Γg(N)Φ− rnr(N)− rsp(N), (2.23)

where Φ = n2ε0|Ez|2/(2~ω0) is the photon number, rnr(N) denotes the nonradiative electron-

hole recombination rate, rsp(N) is the spontaneous emission rate, J is the injected current,

Vg is the gain volume and e the elementary charge. The nonradiative total recombination rate

can include, among other models, the SRH (Shockley-Read-Hall) recombination or Auger
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2.3 Models for the active region

recombination [26, 66], and its precise modeling is out of the scope of this work. For quantum

cascade lasers, where intraband transitions do not play a role, the term rnr can be dropped in

favor of a rate equation model including nonradiative scattering events between the various

subband levels. Additionally, since for QCLs those scattering events occur on much shorter

time-scales as compared to spontaneous emission, then the rsp term can also be dropped

from the model. Such rate equation approaches have been extensively studied for QCLs and

in some cases have proven to give quite a satisfactory agreement with experiment [67–69].

An exemplary such system for a model considering only two subband levels, the upper and

the lower laser level, can be written down as [52]

∂tN2 = η2
J

eVg
− τ−1

2 N2 − σ21I(N2 −N1), (2.24)

∂tN1 = η1
J

eVg
− τ−1

1 N1 + τ−1
21 N2 + σ21I(N2 −N1), (2.25)

with N2 and N1 denoting the carrier concentration in the upper and lower laser level, respec-

tively, I is the total optical intensity in the active region at the lasing frequency, and σ21 is the

so called scattering cross section for stimulated emission from level 2 to level 1. Additionally,

Eqs. (2.24)-(2.25) have been generalized to take into account that a η2 fraction of the current

is injected in the upper level and η1 into the lower laser level, with η2 + η1 = 1, and also τ2

and τ1 denote the corresponding level lifetimes and τ21 the nonradiative scattering term for the

transition 2→ 1.

Further extension of the two level rate equations model, in the case of multiple subband

levels, is the N−level system model with time evolution equations

dnj
dt

= Rej +
∑
i 6=j

Γi,jni − Γjnj , for j = 1, 2...N , (2.26)

where nj and Rej denote the population density and the electron injection rate (proportional to

the injection current) in the jth level, respectively, Γi,j = τ−1
i,j =

∑
(s) Γ

(s)
i,j is the out-scattering

rate (inverse lifetime) from subband level i to level j, which includes the contributions from all

possible (radiative and nonradiative) scattering mechanisms s and Γi =
∑

k Γi,j is the total

out-scattering rate from level i. Here, for compactness of notation, the radiative scattering to

and from each level due to absorption and stimulated emission, respectively, has also been

taken into account with equal rates given by the formula [52]

Γoptical
i,j (ω) = Γoptical

j,i (ω) =
π|di,j |2

ε0cn~2
IωLi,j(ω). (2.27)

In Eq. (2.27) the various terms are defined as follows: di,j is the so called dipole matrix

element [70], which describes the strength of the optical coupling between levels i and j, ε0 is

the vacuum permittivity, c is the velocity of light, n is the refractive index in the active region, ~
is the reduced Plank constant and finally Iω denotes the optical intensity at angular frequency

ω and Li,j(ω) is the lineshape function for the transition i↔ j [22].

2.3.2 Periodic rate equation model

Since QCLs not only have multiple (M ) subbands per period, but also have multiple (usually

> 30) periods (Np), a simulation based on Eq. (2.26) would need to time-step M × Np
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2 Theoretical models for light-matter interaction

independent levels, which is cumbersome, numerically demanding and practically unnecessary.

Additionally, the arbitrary inclusion of intersubband scattering rates would generally violate the

conservation of charges in the system as the sum
∑

m ∂tnm 6= 0. To truncate the system to

only a few periods, and simultaneously to ensure charge conservation, one could modify the

level lifetimes by incorporating periodic boundary conditions as follows.

Let us assume that the discrete energy levels consist of an "injector" level, henceforth

denoted by "in", from where the electrical current enters the system, M intermediate "channel"

levels, {i}Mi=1, and one output level, "out", which serves as an extractor for the scattered elec-

trons. In the incoherent limit, the master equation for this system [71], with phenomenologically

included electron injection rate Re, is given

dnin

dt
= Re +

∑
i 6=in

Γi,inni − Γinnin, (2.28a)

dnj
dt

=
∑
i 6=j

Γi,jni − Γjnj , for j = 1, 2...M , (2.28b)

dnout

dt
= −Re +

∑
i 6=out

Γi,outni − Γoutnout. (2.28c)

To close the system, assume that all electrons that enter the extractor level, "out", are immedi-

ately re-injected into the input level "in". This "translates" to the condition that the former will

be always empty, i.e. nout ≡ 0, which from Eq. (2.28c) allows to find an expression for the

carrier injection rate term Re as Re =
∑

i 6=out Γi,outni. Now plugging this into Eq. (2.28a) one

obtains the final "periodic rate equation system"

dnin

dt
=

∑
i 6={in, out}

[Γi,in + Γi,out]ni − Γinnin, (2.29a)

dnj
dt

=
∑
i 6=j

Γi,jni − Γjnj , for j = 1, 2...M . (2.29b)

2.3.3 Principles of quantum mechanics

The traveling wave model for light matter interaction presented by Eq. (2.19) together with

Eq. (2.23) or alternatively Eqs. (2.24)-(2.25) (also Eqs. (2.29)) suffers from the substantial

limitation that the spectral bandwidth of the gain is assumed infinitely wide, i.e. these set of

models adopt the so called flat gain approximation. To investigate the impact of gain dispersion

onto the spatio-temporal dynamics of lasers, this essentially necessitates the inclusion of

additional numerical techniques to impose the bandwidth limit of the gain medium [61, 72, 73].

By contrast, coherent light-matter interaction models based on the density matrix equations

intrinsically capture the spectral dependence of the gain and can serve as a theoretical basis

for further extension and modeling. Namely these approaches, commonly referred to as the

Maxwell-Bloch type equations, will be reviewed in this section.

This subsection begins with a quick overview of the main principles and notations used in

quantum mechanics. This is by no means an exhaustive tutorial on the subject, but rather

should serve to lay out foundations for the more advanced models comprising the main work
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2.3 Models for the active region

of this thesis. The interested reader is referred to the excellent textbooks by J.J. Sakurai [74],

Nielsen and Chuang [75] or Rodney Loudon [76] for an exhaustive review of the subject.

Quantum mechanics is built upon several postulates, which serve as the axiomatic basis

for that branch of physics. The first of those says that the state of a quantum system can be

completely described by a vector in a complex vector space, equipped with an inner product,

the so called Hilbert-space [75]. Employing Dirac notation, let us denote a member of this

space as |Ψ〉, which is also referred to as ket-vector. Assuming a finite N−dimensional Hilbert

space H with some basis set {|k〉}Nk=1, from linear algebra it is known that an arbitrary vector

|Ψ〉 ∈H can be expanded as a linear combination of the basis states

|Ψ〉 =
∑
k

ck |k〉 . (2.30)

In Eq. (2.30) the ck are complex-valued coefficients, the amplitude squared of which, |ck|2,

is interpreted as the probability of the system being in state |k〉. In quantum mechanical

language, the state |Ψ〉 is also known as a "pure state" and the expansion Eq. (2.30) is referred

to as a "quantum superposition".

The set of linear transformations Ô : H → H is the set of all linear operators acting

on the Hilbert space. Another important postulate of quantum mechanics says that any

physical observable O of a quantum mechanical state is represented by a Hermitian linear

operator Ô acting on H . Furthermore, the process of measurement of the observable O of

the system, initially prepared in the pure state |Φ〉, is mathematically described by applying the

corresponding operator Ô onto the state, i.e. Ô |Φ〉. Due to the probabilistic interpretation of

quantum mechanics, performing the same measurement on two identically prepared systems

will generally yield different results, so instead one works with expectation values. For example,

the expectation value of the observable O for a system initially in the state |Φ〉 is given by the

inner product

〈Ô〉 = 〈Φ|Ô|Φ〉 . (2.31)

The next postulate that will be mentioned here is related to time evolution and it states that

any closed quantum mechanical system, described by the ket |Φ(t)〉, evolves according to the

Schrödinger equation

i~
d |Φ(t)〉
dt

= Ĥ |Φ(t)〉 , (2.32)

where Ĥ is a very special operator, called the Hamiltonian of the system. Another, more

general formulation of this principle is that the time evolution of any closed system is governed

by a unitary operator Û acting on that system (Û is called unitary if Û Û † = Û †Û = Î holds,

where Î is the identity operator and Û † is the conjugate transpose of Û ).

2.3.4 The density matrix

As already mentioned, it is a peculiarity of quantum mechanics that two independent mea-

surements on two identically prepared quantum systems will not, in general, yield the same
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2 Theoretical models for light-matter interaction

result. Such phenomena are not consequences of our "lack of knowledge" about the sys-

tem(s) under investigation, but it is thought that they arise due to disturbances introduced

by the measurement process. Mathematically this is modeled by assuming special relations

between quantum mechanical operators. That is, if two operators corresponding to two distinct

observables commute, it is possible to prepare the system such that both properties are

simultaneously known, whereas if they do not commute - simultaneous knowledge of both

properties is impossible (this is the famous uncertainty principle). In this context one says

that a quantum mechanical system is in a pure state, if it is prepared in such a way that

there is maximal knowledge about the system, which means that one knows the outcome of

measurement of a complete set of compatible observables (i.e. commuting observables). It is

more often the case, however, that we are concerned with physical systems full information

about which is hard or impossible to obtain. The system in such a situation is said to be in a

mixed state and its modeling within the ket-vector formalism is impractical. The mathematical

apparatus, which will allow us to treat mixed and pure states on equal footing is the so called

density matrix and will be introduced below.

Another occasion when the concept of mixed state will come in handy, is when one considers

an ensemble of quantum mechanical systems, say the atoms of a crystal. It is virtually

impossible to know simultaneously the exact state of every single atom of the crystal, even

though it might be possible to know the pure state of a particular such atom. In this case,

this statistical ensemble of atoms in pure states can be modeled as a single atom in a mixed

state, which will lead to a shift in the interpretation of different quantities, e.g. from occupation

probabilities to population densities and so on.

To illustrate the concept of a density matrix, let us assume that our system consists of n

identical atoms, each of which is in some pure quantum mechanical state |φi〉 for the ith atom.

Now, a measurement of the observable property M̂ of atom i will yield the expectation value

Mi = 〈M̂〉i = 〈φi|M̂ |φi〉 with the macroscopic average over all atoms given by

〈M̂〉 =
1

n

n∑
i=1

〈M̂〉i =
1

n

n∑
i=1

〈φi|M̂ |φi〉 . (2.33)

Next, assume that the set of possible atomic states {φi}ni=1 "lives" in an N−dimensional

Hilbert space with the basis {|k〉}Nk=1. Then, the atomic pure states |φi〉, of the system can be

given by a quantum superposition of the basis states, i.e.

|φi〉 =
N∑
k=1

cki |k〉. (2.34)

Insert Eq. (2.34) into Eq. (2.33) to obtain

〈M̂〉 =
1

n

n∑
i=1

N∑
k,l=1

(cki )
∗cli 〈k|M̂ |l〉 (2.35)

In this sum the (·)∗ denotes the complex conjugate and (cki )
∗cli, for k = l can be interpreted

as the probability of atom i to be found in basis state |k〉, whereas for k 6= l is a term giving

rise to "quantum interference" between states |k〉 and |l〉.
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2.3 Models for the active region

Now, Eq. (2.35) can be cast in a more compact form by defining the "density matrix" operator

for atom i via

ρ̂i ≡
N∑

k,l=1

(cki )
∗cli |l〉 〈k| = |φi〉 〈φi| . (2.36)

Then Eq. (2.35) is simply

〈M̂〉 =

N∑
l=1

〈l|

[
n∑
i=1

1

n
ρ̂iM̂

]
|l〉 =

n∑
i=1

1

n
tr(ρ̂iM̂), (2.37)

where tr(·) denotes the trace operation, given as

tr(Ô) =

N∑
l=1

〈l| Ô |l〉 . (2.38)

With this definition, we see that the macroscopic expectation value of the dynamical observable

M̂ is given as the ensemble average over the traces of M̂ multiplied by the ith atom’s density

matrix ρ̂i. Similarly, one can define a density matrix quantity, representing the full ensemble

as ρ̂ =
∑

i piρ̂i, where the individual contribution (weight) from every atom is more generally

written as 0 ≤ pi ≤ 1, with
∑

i pi = 1. From there, it follows that 〈M̂〉 = tr(ρ̂M̂).

In fact, writing the density matrix as an average over all atoms in the ensemble is inconvenient

for the simple reason that in a usual system there could be some 1015 or more particles. An

equivalent and more convenient definition of ρ̂ is therefore given in terms of the atomic state

basis {|l〉}Nl=1, where typically N � n,

ρ̂ =
N∑

k,l=1

ρl,k |l〉 〈k| , (2.39)

with the matrix element ρl,k =
∑

i pi(c
k
i )
∗cli. From this definition it is seen that the diagonal

elements ρl,l of the density matrix, give the fraction of the ensemble in the state |l〉, whereas

the off-diagonal elements ρl,k quantify the quantum mechanical correlation (or coherence)

between the l-th and the k-th basis states.

For closed systems, i.e. unitary dynamics, the time evolution of ρ̂ is governed by the von

Neumann equation, which is a direct consequence of the Schrödinger equation,

i~∂tρ̂ = [Ĥ, ρ̂], (2.40)

with Ĥ being the total Hamiltonian of the system, and [·, ·] is the usual commutator of operators.

The unitarity of the time evolution of ρ̂ is a rather strong assumption for any quantum

mechanical system S of interest, as generally S will interact with the surrounding environment

which will introduce deviations from the law in Eq. (2.40). Nevertheless, if one takes a larger

system, consisting of S and its environment E, then the composite system S + E can be

considered, to a good approximation, as closed and thus its time evolution will indeed be

unitary. Typically the system S is used to denote the atom of interest, whereas E refers to a

phonon/photon bath. Let us initially assume that the density matrix of S + E can be written as

a separable tensor product of two density matrices, i.e.

ρ̂(0) = ρ̂S(0)⊗ |iE〉 〈iE | , (2.41)
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2 Theoretical models for light-matter interaction

where ρ̂S(0) is the initial density matrix of S and |iE〉 is some initial state of the environment.

Since the time evolution of S + E is unitary, with some operator ÛSE , it follows that

ρ̂(t) = ÛSE ρ̂(0)Û †SE = ÛSE ρ̂S(0)⊗ |iE〉 〈iE | Û †SE . (2.42)

Tracing out the environment in Eq. (2.42), one obtains the density matrix of the system alone

ρ̂S(t) =
∑
kE

〈kE |ρ̂(t)|kE〉 =
∑
kE

〈kE | ÛSE ρ̂S(0)⊗ |iE〉 〈iE | Û †SE |kE〉 =
∑
kE

M̂kEρs(0)M̂ †kE ,

(2.43)

where |kE〉 is an arbitrarily chosen basis set of E and

M̂kE = 〈kE |ÛSE |iE〉 . (2.44)

Based on this formalism, three different representative cases for this system+environment

interaction will be outlined, and it will be shown how those lead to either phase-coherent or

incoherent time evolution.

First, let us consider the phase-coherent case. Assume that after propagating ρ̂(0) in time,

the environment does not change its state, but only the system S does, i.e. suppose that the

unitary operator ÛSE can be decomposed into the tensor product

ÛSE = ÛS ⊗ ÎE , (2.45)

where ÛS is an operator acting on the Hilbert space HS and ÎE is the identity operator in

HE . From the unitarity of ÛSE and also the decomposition Eq. (2.45), it follows that ÛS is also

unitary and also that future states of the composite system are given as

|Ψ〉S |iE〉 → (ÛS |Ψ〉S) |iE〉 . (2.46)

This rather trivial case cannot be observed in practice, but to a certain degree of approximation

one can get close. For example when the environment E describes a photon bath with a

large photon density, such as in optical amplifiers, then it is obvious that a single transition of

one carrier would not severely change the photon number in the bath and thus the statistical

properties of E will be unaltered. This is namely the premise which will be employed in subse-

quent sections, where the coherent light-matter interaction will be treated without resorting to

quantization of the electromagnetic field itself. For large photon numbers n, as assumed in

this thesis, this semi-classical modeling is justified and in fact it can be shown that the fully

quantum theory approaches the semi-classical model in the limit when n→∞ [76].

Next, consider a little less obvious scenario, modeling the coupling of a single, initially

excited, atom with a photon field. Suppose that the atom, i.e. system S, has two possible

states |0〉S and |1〉S denoting the ground and the excited state, respectively. Also, take an

initially empty "environment", i.e. zero photons. Let γδt denote the probability of the atom to

relax to its ground state, emitting a resonant photon in the process, within a time interval of δt

seconds. Then, the evolution after time δt is non-unitary and is given as

|0〉S |0〉E → |0〉S |0〉E , (2.47)

|1〉S |0〉E →
√

1− γδt |1〉S |0〉E +
√
γδt |0〉S |1〉E . (2.48)
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Next, trace out over the possible states of the environment E, and use the definition of the

operators M̂k to obtain

ρ̂S =
∑

k∈{0,1}

M̂kρS(0)M̂ †k =

[
ρ00 + γδtρ11

√
1− γδtρ01

√
1− γδtρ10 (1− γδt)ρ11

]
, (2.49)

where ρij are the elements of the initial density matrix ρ̂S(0) [77]. Finally, apply ÛSE consecu-

tively m−times to get

ρ̂S(tm) =

[
ρ00 + [1− (1− γδt)m]ρ11 (1− γδt)m/2ρ01

(1− γδt)m/2ρ10 (1− γδt)mρ11

]
. (2.50)

Equation (2.50) leads to the expected exponential decay of ρ11(t) = e−γtρ11(0) with the decay

rate γ and a corresponding exponential loss of coherence ρ01/10 with half of that rate, which is

also familiar as lifetime broadening [22].

The last possible scenario to consider is the situation where upon interaction S does not

change its energy/state, whereas the environment E undergoes a transformation. Such

situations arise, for example, in modeling collisional broadening [76], where elastic collisions

do not induce atomic transitions, but rather only random perturbations to the phase of S. This

gives rise to the so called "pure dephasing" [76], which can be quite significant in QCLs due to

intrasubband transitions [78], and can be modeled as an additional contribution to the decay

rate in the time evolution of the off-diagonal elements of the density matrix.

At this point we are finished with the theoretical foundations needed to derive time-domain

models for quantum cascade lasers. In the following sections we will employ the notations,

definitions and principles outlined above to derive a concrete semi-classical light-matter

interaction model suitable for simulating the dynamics of terahertz quantum cascade lasers,

detectors and other meta-materials [5, 6, 79].

2.3.5 Unperturbed Hamiltonian

Until now no special assumptions about the nature of the quantum system under investigation

had been made. At this point, a particular specialization of the physical laws to reflect the

specifics of quantum cascade lasers is necessary. For example, depending on the level of

detail in the undertaken modeling approach, various forms for the Hamiltonian operator can be

assumed. In general Ĥ can be divided into the sum of the unperturbed system Hamiltonian,

Ĥ0, and an additional term ĤI , which can include the physics of both single and many body

interactions, such as carrier-phonon, carrier-carrier or carrier-light coupling [71]. The coherent

inclusion (i.e. unitary evolution) of the full device physics into the dynamics is an enormous

theoretical and practical endeavor which is out of the scope of this thesis. As an example

of one such approach, one may give the so called non-equilibrium Green’s function method

and the interested reader may refer to the work in [7, 8, 52] for a more detailed overview.

Instead, here a divide and conquer approach is adopted, where one treats coherently only

the carrier-light coupling Hamiltonian (ĤF ), whereas all other scattering mechanisms will be

included via incoherent rate equations models, with the corresponding rates computed form

Fermi’s golden rule [52, 74].
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2 Theoretical models for light-matter interaction

The unperturbed Hamiltonian represents the bare superlattice Hamiltonian ĤSL and an

additionally applied external time-constant electric field F0, parallel to the growth direction z,

and is written as

Ĥ0 = ĤSL + eF0ẑ, (2.51)

where ẑ is the position operator. In three dimensions, taking into account the periodicity of the

crystal lattice via a position dependent effective mass tensor, Eq. (2.51) can be rewritten in

coordinate representation as

Ĥ0 =

[
− ~2

2m∗‖(z)
∇2
‖ −

~2

2
∂z

1

m∗⊥(z)
∂z + VSL(z) + eF0z

]
, (2.52)

where∇‖ andm∗‖(z) denote the in-plane direction (here assumed along the x and y coordinate

axes) nabla differentiation operator and effective mass, respectively, m∗⊥(z) is the effective

mass in the growth direction, VSL(z) is the superlattice potential (i.e. the conduction band

profile of the heterostructure), F0 denotes the strength (in units of V/m) of the applied bias

field, and lastly ~ is the reduced Plank constant.

With this form of the Hamiltonian in mind, the next step is to look for the solution of the

time-independent Schrödinger equation

Ĥ0Ψ(~r) = EΨ(~r), (2.53)

where ~r is the position vector in 3D. Due to the x − y independence of the superlattice

potential, as well as the applied field, one can factor Ψ(~r) = φ(z)F (r), where from now on

r will be used to denote the 2D position vector in the in-plane direction, i.e. r = xêx + yêy.

Assuming z−independent term m∗‖, simple algebraic manipulations give the general solution

Ψm,k(~r) = φm(z)eik·r with k = (kx, ky) being the in-plane wave vector and φm(z) the m−th

eigensolution of the Sturm-Liouville equation[
−~2

2
∂z

1

m∗⊥(z)
∂z + VSL(z)− eF0z

]
φm(z) = Emφm(z). (2.54)

It is worthwhile to note that φm(z) are formally referred to as the Wannier-Stark states and

satisfy the translational symmetry relations

φm+Np(z) = φm(z − Lp), (2.55)

Em+Np = Em + eF0Lp, (2.56)

where Np are the number of subbands considered per superlattice period and Lp is the length

of the SL period [80].

Since Ĥ0 is diagonal in the basis of its eigenstates {Ψm,k}, going back to Dirac notation, it

can be expanded as

Ĥ0 =
∑
m,k

Em,k |Ψm,k〉 〈Ψm,k| , (2.57)

where Em,k is the energy of an electron in subband m with wave vector k, also given as

Em,k = Em +
~2|k|2

2m∗‖
, (2.58)

where k = |k| is the magnitude of the wave vector.
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2.3 Models for the active region

2.3.6 Carrier-light interaction Hamiltonian

The carrier-light coupling is modeled to first order via the electric dipole approximation [76],

ĤF = eẑEz(t), (2.59)

where ẑ denotes the position operator in z−direction, Ez is the corresponding component of

the (classical) electric field vector and again e is the elementary charge. In the Wannier-Stark

basis the matrix elements of HF read

〈Ψm,k1 |ĤF |Ψn,k2〉 = eEz(t) 〈φm|ẑ|φn〉 δ(k1 − k2), (2.60)

where the Dirac-delta δ(k1 − k2) term ensures that the optical coupling is k−conserving and

zm,n = 〈φm|ẑ|φn〉 denotes the one dimensional dipole moment.

2.3.7 Time-evolution

Firstly, due to the 1D confinement of the electron inside the quantum well heterostructure, the

basis of eigenstates of Ĥ0 is given as (in position representation)

〈~r|Ψm,k〉 = Ψm,k(~r) = Φm(z)ei(kxx+kyy). (2.61)

This yields the corresponding expression for the elements of the density matrix

〈Ψm,k1 |ρ̂|Ψn,k2〉 = ρm,k1

n,k2
, (2.62)

and also similar notation for the matrix elements of Ĥ . Plugging this into Eq. (2.40), the time

dynamical law for ρm,k1

n,k2
is obtained

i~∂tρm,k1

n,k2
=
∑
l,k

Hm,k1

l,k ρl,kn,k2
−H l,k

n,k2
ρm,k1

l,k . (2.63)

Next, one explicitly evaluates Eq. (2.63) by including the contribution of the unperturbed

and interaction Hamiltonians and leaves out the rest of the system interactions to be treated

separately. Since both Ĥ0 and ĤF were shown to be k−preserving, then it will be also

reasonable to assume that for k1 6= k2 it follows that ρm,k1

n,k2
= 0 [71] (since there is no coherent

coupling between states |Ψm,k1〉 and |Ψn,k2〉). This leads to the following set of equations

∂tρm,n;k = −iEm − En
~

ρm,n;k − i
eEz(t)

~
∑
l

zm,lρl,n;k − zl,nρm,l;k. (2.64)

where the k−dependence in the energy difference vanishes, since we have considered

subband-independent in-plane effective massm∗‖. Since Eq. (2.64) is practically k−independent,

the degrees of freedom, and thus the computational complexity, of the end-system can be dras-

tically reduced by summing over the possible states in k−space. Define ρm,n =
∑

k ρm,n;k

and sum both sides of Eq. (2.64) to obtain

∂tρm,n = −iEm − En
~

ρm,n − i
eEz(t)

~
∑
l

zm,lρl,n − zl,nρm,l. (2.65)
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2 Theoretical models for light-matter interaction

Indeed Eq. (2.65) is much simpler to solve (numerically) since we have effectively removed out

the dependence on the wave vector k which had introduced intractable degrees of freedom in

the general time evolution.

Lastly, to complete the picture, Eq. (2.65) will be supplemented with an additional term,

describing the generally non-unitary nature of carrier dynamics. In the similar spirit as derived

in the previous section, we will treat the rest of the intersubband scattering mechanisms via

incoherent scattering rates Γi,f , where Γi,fδt describes the probability of a carrier initially in

state |i〉 to transition to state |f〉 within a time-interval δt. Adhering to the operator formalism

introduced before, the term "i~G (ρ̂)" will also be added to the right hand side of Eq. (2.40) to

denote those non-unitary contributions to ∂tρ̂. In his seminal work in 1976 Lindblad derived

the mathematical form which G (ρ̂) should have in order to describe a physically reasonable

assumption [81]. For all possible i→ j transitions, model G (ρ̂) =
∑

i,j G ij(ρ̂), where

G ij(ρ̂) = Ĉij ρ̂Ĉij† − 1

2

{
Ĉij†Ĉij ; ρ̂

}
, (2.66)

with Ĉij =
√

Γi,j |j〉 〈i| and {·; ·} denoting the anti-commutator [81, 82]. Finally, in a similar

manner, one also adds to Eq. (2.40) the sum

i~D(ρ̂) = i~
∑
i,j

D̂i,j ρ̂D̂i,j†(δij − 1) (2.67)

to include "pure dephasing" to the time evolution of the off-diagonal elements of the density

matrix with the rate Γ∗i,j . Employing similar notation, D̂ij =
√

Γ∗i,j |j〉 〈i|.
Despite their "fancy" operator-form, Eqs. (2.66)-(2.67) present a simple rate equation

contribution to the "unitary" part of the von Neumann equation, which eventually do not pose

any particular difficulties for their solution. As a conclusion, the complete time evolution of

the reduced density matrix is written, describing the dynamics of a generic optical system,

coherently interacting with a classical electric field Ez, and also including incoherent carrier

scattering events, captured within the Lindblad formalism,

∂tρ̂ = − i
~

[
Ĥ0 + eEz ẑ; ρ̂

]
+
∑
i,j

[
Ĉij ρ̂Ĉij† − 1

2

{
Ĉij†Ĉij ; ρ̂

}
+ D̂i,j ρ̂D̂i,j†(δij − 1)

]
.

(2.68)

2.4 The Maxwell-Bloch equations

In this section we combine the field-evolution and carrier-transport models derived in Sec. 2.2

and Sec. 2.3 to obtain a comprehensive light-matter interaction model for dynamic simulations

of quantum cascade lasers. The previously outlined framework is general enough to couple

the full Maxwell’s equation dynamics to an arbitrary level system, however due to its symbolic

importance, here a detailed derivation and analysis of the two level Maxwell-Bloch equations

in the rotating wave and the slowly varying envelope approximations will be presented.

First, take a two level system, consisting of an upper laser level |a〉 and a lower laser level

|b〉, with respective eigenenergies Ea and Eb, such that |a〉 and |b〉 are radiatively coupled by
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an electric field Ez with a dipole moment za,b. Quantum mechanically, the state is described by

a 2x2 density matrix ρ̂, where the unitary time evolution generator is the combined Hamiltonian

Ĥ = Ĥ0 + ĤF =

[
Ea eza,bEz

ezb,aEz Eb

]
. (2.69)

Taking the commutator of Ĥ with ρ̂, plugging into the von Neumann equation Eq. (2.40), and

expanding one gets

∂t∆ρ = 2i
eza,b

~
Ez(ρa,b − ρ∗a,b), (2.70a)

∂tρa,b = −iEa − Eb
~

ρa,b + i
eza,b

~
Ez∆ρ. (2.70b)

Due to the Hermitian symmetry of the density matrix and the Hamiltonian, the original 4

coupled ODEs have been reduced to Eqs. (2.70) by assuming za,b = zb,a = z∗a,b and denoting

the population inversion as ∆ρ = ρa,a − ρb,b. Typically, the non-unitary time evolution of

the resulting system is modeled either via rate equations, as in Eqs. (2.24)-(2.25), or by

phenomenologically included "current" term, describing the steady injection of electrons into

the upper laser level [21]. If one switches off the electric field, this injection current will lead

to some steady state population inversion ∆̄ within some characteristic time constant T1 (the

population inversion lifetime). Additionally, since this non-unitary evolution does change the

distribution of carriers in either level, as elaborated in Sec. 2.3.4, this would also lead to a

corresponding lifetime broadening, next to which we also phenomenologically add a pure

dephasing rate to obtain a total dephasing rate of 1/T2. Including these assumptions into

Eq. (2.70), one can rewrite

∂t∆ρ = 2i
eza,b

~
Ez(ρa,b − ρ∗a,b)−

∆ρ − ∆̄

T1
, (2.71a)

∂tρa,b = −i[ωa,b − i
1

T2
]ρa,b + i

eza,b

~
Ez∆ρ, (2.71b)

where ωa,b = (Ea −Eb)/~ is the optical resonance’s angular frequency. Several remarks here

are in order. First of all, since we have taken that the field propagation direction is x (with

heterostructure growth direction z), this implies the assumption that at every point x there

is a separate two level system, with the total active region being described by a time and

position dependent density matrix ρ(x, t). Also, it is worth keeping in mind that ρ is a positive

semidefinite, unitless quantity, the diagonal elements of which denote the probability of finding

an electron in each respective state [75]. This means that in order to relate this microscopic,

quantum mechanical description of the carrier dynamics, to a macroscopic classical variable

of the electron ensemble, we need to take the expectation values of respective dynamical

observables, and furthermore re-normalize these expectation values to the correct carrier

densities. For example, for the dynamical observable O, described by the operator Ô, the

corresponding macroscopic value should be given as

O = N 〈Ô〉 = N tr(ρ̂Ô), (2.72)

where N is the carrier density in the system.

49



2 Theoretical models for light-matter interaction

Now the coupling of Eqs. (2.70) to the Maxwell’s equations Eqs. (2.5) is done straightfor-

wardly, via the polarization term P (x, t). Similarly to the polarization of a classical electric

dipole [64], for the two level system P (x, t) is given by

P (x, t) = −eN 〈ẑ〉 = −eN tr(ρ̂(x, t)ẑ) = −eNza,b [ρa,b(x, t) + ρb,a(x, t)] , (2.73)

which, combined with Eq. (2.71b), allows for the explicit evaluation of

∂tP (x, t) = J(x, t) = −2eNza,b

(
ωa,b Im{ρa,b}(x, t)− 1

T2
Re{ρa,b}(x, t)

)
, (2.74)

where the term J(x, t) has been used to make explicit the fact that ∂tP is classically interpreted

as the polarization-current density (bound charge current density) of the system.

2.4.1 Rotating wave approximation

Equations (2.5)-(2.71), coupled via Eq. (2.74) are commonly referred to as the full Maxwell-

Bloch (MB) equations [53, 54]. In practice there is another, more commonly used, variant of

the Maxwell-Bloch equations, also known as the optical-Bloch equations [18, 62, 64, 83–85],

where the rotating wave approximation (RWA) and the SVEA have been employed to simplify

the underlying system [62], which in some cases could even lead to an analytically tractable

problem [86]. For the RWA, in addition to the factorization of the field into a product of a slowly

varying envelope and a carrier wave Eq. (2.7), neglecting backward propagating waves for

simplicity, one can also assume

ρa,b = ηa,be
i(β0x−ω0t). (2.75)

Now, plugging Eq. (2.75) into Eqs. (2.71), performing the multiplication, and (within the RWA)

neglecting terms ∝ e±2iω0t [62], one eventually derives what will be referred to as the reduced

Maxwell-Bloch equations

n

c
∂tE+ + ∂xE+ = −i

NΓeza,bω0

2ε0cn
ηa,b −

a

2
E+, (2.76a)

∂t∆ρ = +i
ezab
~
(
E∗+ηab − E+η

∗
ab

)
− ∆ρ − ∆̄

T1
, (2.76b)

∂tηab = i

[
(ω0 − ωa,b) + i

1

T2

]
ηab + i

ezab
2~

E+∆ρ. (2.76c)

2.4.2 Susceptibility & gain coefficient

Here we will perform a steady state analysis of the optical Bloch equations to analyze the

response of the system to an applied electric field. One very common approximation, called

the "adiabatic limit", will be employed, which under the right conditions will allow to eliminate

the term ηa,b from the set of equations. The resulting system presents an incoherent model for

light-matter interaction dynamics, which will be used to derive some useful expressions for the

gain and linewidth enhancement factors, for the stimulated emission/absorption rates as well

as for the susceptibility, a quantity representing the optical response of the ensemble.

In the adiabatic limit, suppose that 1/T2 � |eza,bE+/~|, which is satisfied for either weak

optical fields or for fast dephasing rates. With this in mind, one can argue that ∂tηa,b = 0 can

50
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be set. Indeed, when 1/T2 � |eza,bE+/~| holds, any dipole oscillations induced by the electric

field will quickly be dampened by the fast relaxation term and thus ηa,b will be approximately

stationary. Then the steady-state solution for ηa,b is

η̄a,b =
eza,b

2~
E+∆ρ × [ω0 − ωa,b − i

1

T2
]/[(ω0 − ωa,b)

2 + (
1

T2
)2]. (2.77)

Plugging Eq. (2.77) into Eq. (2.76a) and using the notation in Sec. 2.2 for the gain g and the

linewidth enhancement factor α, we go back to Eq. (2.19)
n

c
∂tE+ + ∂xE+ =

g

2
(1− iα)E+ −

a

2
E+, (2.78)

where this time the gain coefficient is g = σω0∆N , with the scattering cross-section parameter

σω0 =
Γ|eza,b|2ω0

2ε0cn~
× 1/T2

(ωa,b − ω0)2 + (1/T2)2
, (2.79)

the linewidth enhancement factor α = (ωa,b−ω0)T2, and the average number of active carriers

∆N = ∆ρ ×N . Additionally, we can also derive an expression for the stimulated emission

rate. Plugging in Eq. (2.77) into Eq. (2.76b) one obtains the rate equation for the population

inversion

∂t∆ρ = −
|eza,b|2

2~2

1/T2

(ω0 − ωa,b)2 + 1/T 2
2

× |E+|2∆ρ −
∆ρ − ∆̄

T1
, (2.80)

with the stimulated emission/absorption rate

Ba,b = Bb,a =
|eza,b|2

2~2

1/T2

(ω0 − ωa,b)2 + 1/T 2
2

× |E+|2. (2.81)

Lastly, using that g = −ω0 Im{χ}/nc and α = Re{χ}/ Im{χ} (as derived in Sec. 2.3.1) the

complex susceptibility of the system can be found,

χ = Re{χ}+ i Im{χ} =
∆NΓ|eza,b|2

2~ε0

1

ω0 − ωa,b − i1/T2
. (2.82)

Notice that Eq. (2.82) is not the linear susceptibility of a two level system, even though it

resembles the expression typically found in literature [62]. The fact that Eq. (2.82) contains the

term ∆N = ∆ρ ×N means that χ will contain also optical nonlinearities, since ∆ρ depends

on |E+|2 via the rate equation Eq. (2.80).

2.5 Conclusion

In this chapter the main theoretical knowledge, needed to understand the following parts of

the thesis, was introduced. Concretely, the traveling wave equation model was derived from

Maxwell’s equations, which was then coupled to various different methods for the theoretical

treatment of the carrier dynamics. After presenting the intuitive rate equations approach, a

more involved density matrix model was also derived. In the process, a short introduction of

the theory of the density matrix, particularly focused on modeling of the carrier dynamics in

quantum cascade lasers, by for example taking into consideration the specifics of the wave

function, was outlined. Lastly, building upon the previous sections of the text, the celebrated

Maxwell-Bloch equations were derived and analysis and interpretation of various quantities

was presented.
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3 Numerical Methods

3.1 Introduction

Except of a few limiting cases, the Maxwell-Bloch equations are not analytically solvable,

and as such they need to be simulated on a computer. Numerical simulations have routinely

been employed for the analysis of various light-matter interaction systems, ranging from

investigations on self-pulsations in lasers [87], the coherent interaction of ultrafast pulses

with matter [53], self-induced transparency mode-locking [88] and many others. Unlike the

aforementioned scientific papers, which are typically concerned with very specific systems, i.e.

with a well-defined set of parameters, and the equations are simulated over short time-intervals,

the investigation of frequency comb formation with THz QCLs necessitates a drastically

different simulation approach. First and foremost, in order to be able to capture various

regimes of operation, i.e. ranging from single mode operation to coherent and incoherent

multimode lasing, one cannot impose strict assumptions on the model parameters, except

of course the restriction that the involved energies, lifetimes and losses are characteristic

for those type of devices. Furthermore, especially for the simulation of comb-formation in

free-running devices, where various mode proliferation and degradation mechanisms are at

play, steady state is reached after a relatively long time-period (compared to the picosecond

time-scales in the QCL active region) which necessitates millions of iterations until transients

are eliminated. Therefore, for high-fidelity simulations, one must employ carefully selected

algorithms, ones that do not introduce substantial numerical artifacts in the end result. As

mentioned already, the situation is additionally complicated by the fact that (in general) the

Maxwell-Bloch equations do not posses analytical solution, which makes the verification of

the selected algorithm quite a difficult task. In this PhD thesis, building up on the results from

my master thesis [89], several different algorithms for the numerical solution of the reduced

Maxwell-Bloch equations will be investigated, and subsequently important properties which

these algorithms must satisfy in order to deliver credible results will be outlined. Next, the

proposed algorithms will be numerically tested in various simulation scenarios, in order to

extract the best possible algorithm for the scientific investigations in upcoming chapters. As

a final test, the selected algorithm will be additionally verified in a very specific simulation

scenario, where the light-matter interaction dynamics is analytically solvable.
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3 Numerical Methods

3.2 Discretization

In this section, three different numerical algorithms will be derived for the solution of the model

advection-type equation

1

c

∂E±
∂t

= ∓∂E±
∂x

+ f±(x, t) + kE±, (3.1)

where k is some real-valued constant (here assumed to be a negative number and hence

representing linear losses) and f±(x, t) represents some (complex-valued) source term, which

in the context of the Maxwell-Bloch equations models the (non-linear) optical response of the

atomic system.

Before one can dive into details around the discretization methods, it will be useful to

examine more carefully the various terms in Eq. (3.1), in order to understand the dynamics

they are supposed to introduce. As mentioned, the term on the right hand side kE± models

some linear response of the active medium to the presence of the electric field, where

usually k = −|α|/2 < 0 represents the waveguide amplitude losses (|α| representing the

power losses). The latter typically arise due to free-carrier losses in the metal and doped

semiconductor areas of the waveguide [90].

In addition, the term f±(x, t), is included to represent any nonlinear material response, e.g.

optical gain, which arises in the active medium. As already mentioned in Sec. 2.3, various

mathematical models can be employed to specify the term f±(x, t). If we assume, for simplicity,

a ring-type of cavity, then it is reasonable to expect that the electric field will propagate in a

single direction (e.g. in the positive x-direction). In that case, one of the simplest possible

models for the optical gain can be given by the equation

f+(x, t) =
g(I+)

2
E+ =

g0

2

1

1 + I+/Isat
E+, (3.2)

where I+ ∝ |E+|2 is the intensity of the forward propagating wave, and Isat is the saturation

intensity, defined as the intensity at which the gain coefficient g(I+) is half its small signal

value g0.

With this form of f+(x, t) in mind, we recast Eq. (3.1), into an expression for the e-field

intensity as follows
∂I+

∂t
+ c

∂I+

∂x
= c

[
g0

1 + I+/Isat
− |α|

]
I+, (3.3)

To gain further insight, integrate Eq. (3.3) over the full cavity length, e.g. 0-L, to obtain

d

dt

∫ L

0
I+(x, t)dx = cI+(0, t)− cI+(L, t) + c

∫ L

0

[
g0

1 + I+/Isat
− |α|

]
I+(x, t)dx, (3.4)

Ignoring the integral on the right hand side of the above equation, we see that Eq. (3.4)

represents a conservation law, asserting that the total change in intracavity intensity is equal

to the flux of intensity coming from the left side of the cavity, minus the flux of intensity exiting

through the right side of the cavity, i.e. at point x = L. In case of periodic boundary conditions,

i.e. E+(0, t) = E+(L, t), both contributions cancel and we have the conserved quantity

Q(t) =
∫ L

0 I+(x, t)dx.
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3.2 Discretization

Next, let us examine the role of the third summand term on the right hand side of Eq. (3.4).

First, due to the fact that I+ ≥ 0, we see that g(I+) attains its maximum g0 at I+ = 0 (hence

the name small-signal gain) and monotonously decreases as a function of I+. This means

that in order for lasing to start whatsoever, the active region’s g0 coefficient must be larger than

the power losses |α|. If this condition is satisfied, the total intracavity intensity will gradually

increase, which in turn will reduce the available gain, by virtue of Eq. (3.2). This process

will continue unabated, until the system reaches steady state with g(I+) = |α|. From then

on, again assuming periodic boundary conditions, the total intracavity intensity will remain

constant at a value of

Ī+ = Isat(
g0

|α|
− 1) (3.5)

for all x ∈ [0;L].

Furthermore, in this model one can additionally show that the obtained equilibrium is stable.

To do so, let us assume that after steady state is established, the intracavity intensity gets

perturbed by some small amount ∆I , i.e. I+ → Ī+ + ∆I , which could be either a positive or a

negative quantity. Plugging this into Eq. (3.4), we obtain that

dQ̄(t) + ∆Q(t)

dt
= c[Ī+ + ∆I] + c

∫ L

0

(
g0

1 + (Ī+ + ∆I)/Isat
− |α|

)
(Ī+ + ∆I)dx, (3.6)

where [S] represents the difference S(0, t) − S(L, t) and ∆Q =
∫ L

0 ∆Idx. Since ∆I is

assumed to be small, we can expand the gain coefficient around Ī+ yielding

dQ̄(t) + ∆Q(t)

dt
= c[Ī+ + ∆I] + c

∫ L

0

(
g(Ī+)(1− ∆I

Isat
)− |α|

)
(Ī+ + ∆I)dx, (3.7)

Finally, using the equilibrium condition at Ī+ and eliminating higher order terms in ∆I, one

can obtain a differential equation for the perturbation ∆Q

d∆Q

dt
= c[∆Q]− cg(Ī+)

I+

Isat
∆Q. (3.8)

In a periodic cavity [∆Q] ≡ 0 which directly yields the solution

∆Q(t+ ∆t) = e
−cg(Ī+)

I+
Isat

∆t
∆Q(t). (3.9)

From Eq. (3.9) we see that the perturbation will decrease exponentially to 0, with a character-

istic time constant τ = Isat/[cg(Ī+)I+], which from the equilibrium condition Eq. (3.5) can be

recast in the form

τ =
1

c(g0 − |α|)
. (3.10)

From the above discussion, it becomes evident how the examined system will ‘self-regulate’

itself to maintain equilibrium. Namely, when the total perturbation is positive ∆Q > 0, the

active region will provide a negative feedback to the system, whereas when ∆Q < 0, the

feedback will be positive.

Of course, in the more general situation, i.e. when f±(x, t) models the polarization P±,

which in turn satisfies a system of auxiliary differential equations, as in Eq. (2.76), the total

system dynamics is substantially more complex and could posses both stable and unstable

equilibria [84, 91].
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3 Numerical Methods

3.2.1 The Lax-Wendroff method

After the short pedagogic discussion on the expected dynamics of the model Eq. (3.1), let us

go back to the focal point of this chapter and discuss various discretization methods.

Equation (3.1) resembles the advection equation, which belongs to a more general family of

conservation equations of the form

∂U(x, t)

∂t
+
∂F (U)

∂x
= 0, (3.11)

where U is the conserved quantity (or a vector of conserved quantities) and F (U) is some

(generally nonlinear) function of U determining the ‘flux’ of U at points x and t. Various

numerical methods for the solution of conservation laws, such as Eq. (3.11), are familiar

from the theory of computational fluid dynamics (CFD) [92]. One of the most celebrated

such algorithms is the so called Lax-Wendroff method [93], and an outline of its derivation is

presented in the following. It is worthwhile to note, however, that the propagation equation we

are trying to solve here, i.e. Eq. (3.1), in general will not conserve E±, due to the presence

of the k factor as well as f±(x, t). Nevertheless, direct usage of numerical methods from the

field of CFD is justified as Eq. (3.1) is structurally similar to Eq. (3.11), and it can be thought of

as a conservation law with various sources and sinks, modeled namely by the inclusion of the

polarization and linear losses terms.

Proceeding with the derivation of the Lax-Wendroff method, first of all, assume that the

differential equation Eq. (3.1) is discretized over the equidistant grid G∆x∆t := {(xm, tn)|xm =

m∆x , tn = n∆t}, with the value of the e-field envelopes onto the grid given as E±(xm, tn) =

E±(m,n). As usual, to obtain a time-stepping procedure, we start with a Taylor series

expansion of E±(xm, tn+1) around the point xm and tn

E±(m,n+ 1) = E±(m,n) + ∆t
∂E±(m,n)

∂t
+

∆t2

2

∂2E±(m,n)

∂t2
+O(∆t3). (3.12)

Now the partial derivatives of the envelopes in t can be expressed as partial derivatives in x,

due to the relation Eq. (3.1), which in turn can be discretized with suitable finite difference

expressions. The following identities hold

∂E±
∂t

= ∓c∂E±
∂x

+ cf±(x, t) + ckE±, (3.13a)

∂2E±
∂t2

= ∓c∂
2E±
∂x∂t

+ c
∂f±(x, t)

∂t
+ ck

∂E±
∂t

, (3.13b)

∂2E±
∂t∂x

= ∓c∂
2E±
∂x2

+ c
∂f±(x, t)

∂x
+ ck

∂E±
∂x

. (3.13c)

Next, eliminating the mixed derivative from the equations we get

∂2E±
∂t2

= c2∂
2E±
∂x2

+ c
( ∂
∂t
∓ c ∂

∂x

)
(f±(x, t) + kE±), (3.14)
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3.2 Discretization

which can be inserted in the Taylor expansion of Eq. (3.12). This procedure yields the

Lax-Wendroff method

E±(m,n+ 1) = E±(m,n) + c∆t

{
∓
[
∂E±
∂x

]n
m

+ f±(m,n) + kE±(m,n)

}

+
c2∆t2

2

{[
∂2E±
∂x2

]n
m

+
1

c

[
∂f±
∂t

]n
m

∓
[
∂f±
∂x

]n
m

}

+
kc2∆t2

2

{
∓ 2

[
∂E±
∂x

]n
m

+ f±(m,n) + kE±(m,n)

}
, (3.15)

with the terms in square brackets being the finite difference approximations[
∂E±
∂x

]n
m

=
E±(m+ 1,n)− E±(m− 1,n)

2∆x
, (3.16a)[

∂2E±
∂x2

]n
m

=
E±(m+ 1,n)− 2E±(m,n) + E±(m− 1,n)

∆x2 , (3.16b)[
∂f

∂x

]n
m

=
f±(m+ 1,n)− f±(m− 1,n)

2∆x
. (3.16c)

A quick comment on the order of consistency of the numerical method is in order. By virtue

of the Taylor expansion in Eq. (3.12) and Eq. (3.16), it is straightforward to see, by the way

the scheme was constructed, that Eq. (3.15) has a local approximation error (LE) of the order

O([∆t∆x2], [∆t3]). The LE is defined by

|E±(m,n+ 1)− Ẽ±(xm, tn+1)|, (3.17)

where Ẽ± is the analytical and E±(m,n + 1) the numerical solution at the new time-step,

assuming the initial condition E±(m,n) = Ẽ±(xm, tn). For example, let us first examine the

truncation error due to the finite difference approximation of the various spatial derivatives,

e.g. ∂f±(x, t)/∂x. In Eq. (3.16) the central differences have been used to approximate the

operator ∂/∂x, from where it follows that the approximation error induced is O(∆x2). Even if

the differential had been approximated only to first order accuracy in ∆x, this would have not

reduced the overall order of the approximation error, since all FD expressions involving f± are

further multiplied by ∆t2, which reduces the total approximation error by this factor. Note that,

due to the second term on the right hand side of Eq. (3.15), it is essential to use Eq. (3.16a)

for ∂E±/∂x in order to preserve the high order accuracy. Finally one gets an absolute local

error of the order of O(∆t2∆x). Similar analysis can be conducted for the approximation of

the time derivative of f±(x, t), which will yield an absolute local error of the order O(∆t3).

Despite it’s second order consistency (and conditional stability as it will be shown later), the

Lax-Wendroff method is not the optimal candidate for the numerical solution of the propagation

equation. To see why, let us consider the homogeneous case of Eq. (3.1), i.e. when both

k = 0 and f±(x, t) ≡ 0, for a wave propagating only in, for example, the forward direction.

Applying the Lax-Wendroff method in this situation, yields the following difference equation

Un+1
m − Unm

∆t
+ c

Unm+1 − Unm−1

2∆x
=
c2∆t

2

Unm+1 − 2Unm + Unm−1

∆x2
, (3.18)
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3 Numerical Methods

where Unm = E+(m,n) is used. The solution to this difference equation will, in general, not

satisfy the original propagation equation, but instead a different PDE, the so called modified

equation. To find the analytical form of the latter, one needs to perform the reverse of the

procedure that lead to the derivation of the numerical method, i.e. to substitute the finite

differences with their Taylor expansions. Doing so, yields (for the separate terms)

Un+1
m − Unm

∆t
= Ut +

∆t

2
Utt +

∆t2

6
Uttt +O(∆t3), (3.19a)

Unm+1 − Unm−1

2∆x
= Ux +

∆x2

6
Uxxx +O(∆t4), (3.19b)

Unm+1 − 2Unm + Unm−1

∆x2
= Uxx +O(∆x2). (3.19c)

Combining Eq. (3.19) and plugging into Eq. (3.18) produces the modified equation, which is

the one actually solved by the Lax-Wendroff method,

Ut + cUx = −∆t

2
(Utt − c2Uxx)

− ∆t2

6
Uttt −

c∆x2

6
Uxxx +O(∆t3, ∆t∆x2, ∆t2∆x, ∆x3). (3.20)

Now, the first term on the right hand side of Eq. (3.20) is identically zero, as can be seen from

Eq. (3.14), which leaves us with a second order truncation error, proportional to ∆x2Uxxx.

Note, that if we had expanded Eq. (3.12) only to first order in ∆t, the second order derivatives

on the right hand side above would have not canceled out. What that means is that during

simulation, the presence of a diffusion term Uxx will lead to a numerical loss of energy, even

for a conservative system. In fact, this kind of behavior is characteristic of first order linear

numerical methods for Eq. (3.11), and its prevention requires restrictively small time-steps [94].

For the second order accurate Lax-Wendroff method, however, the dominant error term is

(after expressing Uttt = −c3Uxxx [94])

Ut + cUx =
c∆x2

6
(ν2 − 1)Uxxx + higher order terms, , (3.21)

with ν = c∆t/∆x. Now, we have rid ourselves from the diffusion term, at the cost of introducing

a dispersive term Uxxx. This is problematic, since this third order spatial derivative will induce

nonphysical dispersion into the solution, which could have quite a dramatic effect on the

credibility of the results, especially in the context of frequency comb simulations. Let us see if

we can do better.

3.2.2 The Risken-Nummedal method

Equation (3.21) indicates that the third order derivative term could be eliminated if we set

c∆t = ∆x. In fact, in the homogeneous case, making that choice guarantees that the

truncation error will be identically zero (i.e. the “higher order terms” will also cancel [94]) and

thus the modified equation and the original equation will coincide, which also means that

the numerical solution is in fact the analytical solution. Elaborating further, this could be the

starting point for an improvement of the original Lax-Wendroff scheme in terms of improving

its numerical dispersion error.
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3.2 Discretization

Such an algorithm for the computer-based solution of Eq. (3.1) was introduced already

in 1968 by H. Risken and K. Nummedal in [87]. The derivation basically proceeds in an

analogous way to that of the Lax-Wendroff method, with two subtle differences. First of all, the

“magic time-step” condition that c∆t = ∆x is imposed. This ensures that the expression

E±(m∓ 1,n) = E±(m,n)∓ c∆t
[
∂E±
∂x

]n
m

+
c2∆t2

2

[
∂2E±
∂x2

]n
m

, (3.22)

where the partial derivatives are approximated as in Eq. (3.16), holds. As shown above,

this eliminates the dispersive terms form the modified PDE of the homogeneous part of the

equation. Secondly, to discretize the inhomogeneous part of the propagation equation, the

spatial derivatives of E± or f± are approximated with a forward or backward finite differences,

depending on the direction of wave propagation, to yield the the RNFD (Risken-Nummedal

Finite-Differences) algorithm

E±(m,n+ 1) = E±(m∓ 1,n) + c∆t
(
f±(m,n) + kE±(m,n)

)
+
c2∆t2

2

{
1

c

[
∂f±
∂t

]n
m

∓
[
∂f±
∂x

]n
m

∓ 2k

[
∂E±
∂x

]n
m

+ kf±(m,n) + k2E±(m,n)

}
(3.23)

with [
∂E±
∂x

]n
m

= ±1
E±(m,n)− E±(m∓ 1,n)

∆x
. (3.24)

By way of construction, we saw that when k = 0 and f ≡ 0, then the RNFD method

satisfies the original PDE exactly, i.e. the modified equation and the propagation equation are

equivalent. In order to obtain some insight about eventual numerical issues introduced by this

method, one would need to analyze not the homogeneous conservation law, but rather

∂E+

∂t
= −c∂E+

∂x
+ ckE+, (3.25)

where again only the case of a forward propagating wave will be considered (for simplicity).

Here, the term f+(x, t) was omitted, since it is too general to be susceptible to analysis. A

tedious, but conceptually simple, calculation yields the modified equation of the RNDF method

Ut + cUx − ckU =
∆t2c3k2

2
Ux −

∆t2k3c3

6
U +O(∆t3). (3.26)

Two things become evident from the above expression. First of all, when k 6= 0, then the

RNFD method does not deliver the exact solution (as expected), and secondly, the leading

error terms introduce small modifications of both the propagation velocity and the losses.

Rewriting Eq. (3.27) becomes

Ut + c(1− µ

2
)Ux − ck(1− µ

6
)U = O(∆t3). (3.27)

Here µ = ∆t2c2k2 denotes the modification factor, and represents a unitless quantity, the

magnitude of which is easily calculated. For typical values of ∆t ≈ 10−13 s, k ≈ 1000 m−1

and the velocity of light rounded to c = 3× 108 m/s, µ is 0.09%, which is too small to have

considerable impact.
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3 Numerical Methods

Next, the analysis of the RNFD scheme is continued, by demonstrating that it satisfies

an essential numerical property, that of monotonicity preservation. For a partial differential

equation, a monotonicity preserving scheme can be formally defined as follows [92].

Definition 3.1 A numerical scheme for the solution of Eq. (3.11) is called monotonicity pre-

serving if for every non-decreasing (non-increasing) initial condition

{φ0
j} = {...,φ0

j−1,φ0
j ,φ

0
j+1, ...},

the numerical solution at all later time-instances

{φnj } = {...,φnj−1,φnj ,φnj+1, ...},

for n = 1, 2..., is non-decreasing (non-increasing).

From the above definition one intuitively sees that if a scheme is monotonicity preserving, then

the numerical solution is less likely to have phase errors. In Fig. 3.1, a hypothetical example

of a Gaussian pulse, propagated with a scheme that does not posses this property [92], is

shown.

Figure 3.1 A Gaussian pulse being propagated between times t1 and t2 along the positive x-direction, by a
scheme that does not preserve monotonicity.

It can be easily seen that, in case f± ≡ 0, a sufficient condition for the RNFD scheme to be

monotonicity preserving does exist. One can prove the following lemma, shown here for the

case of a wave propagating in positive x-direction.

Lemma 3.2 The Risken-Nummedal finite difference scheme, i.e. Eq. (3.23), for the solution

of Eq. (3.25) is monotonicity preserving if k ≥ 0 or, for k < 0⇒ ∆t ≤ 1
|ck| .

Proof Assume that the initial sequence {E+(m,n)} is non-decreasing. From Eq. (3.23), set

f±(x, t) ≡ 0, and drop the subscript + for simplicity. Then the update rule reads

E(m,n+ 1) = (1 + ck∆t)E(m− 1,n) +
∆t2c2k2

2
E(m,n), (3.28)

E(m+ 1,n+ 1) = (1 + ck∆t)E(m,n) +
∆t2c2k2

2
E(m+ 1,n). (3.29)
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Now taking the difference Eq. (3.29) - Eq. (3.28)

E(m+ 1,n+ 1)− E(m,n+ 1) = (1 + ck∆t)[E(m,n)− E(m− 1,n)]

+
∆t2c2k2

2
[E(m+ 1,n)− E(m,n)]. (3.30)

The second term on the right hand side is always positive, since we have assumed that the

sequence at time tn is non-decreasing, while the first term is > 0 in two cases

1. if k ≥ 0, or

2. k < 0 and (1− |ck|∆t) ≥ 0, i.e. ∆t ≤ 1
|ck| .

The latter condition imposes a restriction on the chosen time-step. To estimate how conse-

quential that is, simply plug in the above quoted values for c and k, to obtain 1/|ck| ≈ 3.3 ps.

This value is much longer than our characteristic time-step ∆t.

As for the Lax-Wendroff scheme, we have already seen that the modified equation, among

other terms, contains third order spatial derivatives of the propagating wave. This indicates that

the numerical solution will not be monotonicity preserving. In fact, a more general statement

can be proven about higher order, one-step linear numerical methods for the solution of the

advection equation. This result is famous as the “Godunov’s Order Barrier Theorem” [95, 96]

and is re-stated below.

Theorem 3.3 (Godunov’s Barrier Theorem)

Linear one-step second-order accurate numerical schemes for the convection equation

∂ϕ

∂t
+ c

∂ϕ

∂x
= 0, t > 0, x ∈ R (3.31)

cannot be monotonicity preserving, unless

σ = |c| ∆t

∆x
∈ N. (3.32)

3.2.3 Method of lines approach

Next, the method of lines approach to derivation of numerical schemes will be introduced.

The basic algorithm originates from the idea of reducing the solution of a PDE to that of a

system of ordinary differential equations (ODEs), by discretizing along all but one coordinate

and propagating the resulting tensor with one of the many ODE solvers from literature [97].

The semi-discretized version of Eq. (3.1) is written as

dV±

dt
= ∓cDNV

± + F± + ckV± , (3.33)

where V± is the vector-valued representation of the solution, already discretized over a finite

spatial grid, i.e. V±i (t) = E±(xi, t). Once the grid size and grid points have been determined,

one needs to approximate all spatial derivatives by a suitable transformations in the N -

dimensional vector space. In this thesis, DN is used to denote a linear such transformation by

means of a specifically chosen differentiation matrix. Lastly F± is cf±(x, t), also sampled on

the same spatial grid.
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When we have reduced the equation to a system of ODEs, we are left their integration in

time, for which a great variety of algorithms exist. In this thesis, due to its relative simplicity

and high order of accuracy, I have selected the m-step Adams-Bashforth (AB) method as time-

propagator. Of course other methods could also be used, such as for example Runge-Kutta

or Backward Differentiation Formulas (BDF) [97], but those were not rigorously investigated,

since the former method empirically delivered credible results, as it will be seen in Sec. 3.3.3.

For any arbitrary m the linear, m−step AB method reads

(V±)n+1 = (V±)n + ∆t
m−1∑
j=0

aj

(
∓ cDN (V±)n−j + (F±)n−j + ck(V±)n−j

)
, (3.34)

with coefficients aj , chosen as to maximize the order of the approximation error [97].

To complete the description, the differentiation matrix DN also needs to be specified. There

are various ways to define DN , such as for example compact high-order finite differences

approximation schemes [98], or one can also use spectral differentiation matrices [99]. For the

purpose of this thesis, a Chebyshev differentiation matrix DN is chosen [99], which is known to

result in extremely high order accurate (i.e. O(∆xN ) ) approximation of the spatial derivative.

However, this comes at a cost of increased computational complexity since DN is essentially

dense, and it is well known that dense matrix-vector multiplication is an expensive procedure.

The individual elements of DN can be computed from the formulas [100]

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
, (3.35)

(DN )jj =
−xj

2(1− x2
j )

, j = 1, 2...N − 1, (3.36)

(DN )ij =
ci
cj

(−1)i+j

xi − xj
, i 6= j i, j = 1, 2...N − 1 , (3.37)

where ci = 2 if i = 0 or N and ci = 1 otherwise.

Unfortunately, checking for the monotonicity preservation property, even in the simplest case

when the time propagator is the explicit Euler scheme, yields that the above derived method is

not monotonicity preserving. For more complicated time-propagators (for e.g. the AB method),

it is rather difficult to prove general statements about this property. Instead, computational

experiments can be conducted to uncover the degree to which numerical dispersion errors are

introduced by the scheme.

Since numerical dispersion errors arise mainly when the gradient of the solution is large, one

can design simple tests to capture such effects. Consider the propagation of a box-car pulse

in the positive x-direction of a ring-type cavity. For simplicity, here the homogeneous version

of Eq. (3.1) is propagated with the Lax-Wendroff, RNFD and the method of lines numerical

schemes. The results are plotted in Fig. 3.2.

The image clearly illustrates the problems which arise with the Lax-Wendroff and the method

of lines approaches. One can see how the solution immediately develops strange oscillations

around the steep gradient, the origin of which is purely numerical. In contrast, the RNFD

method (the solid red line on Fig. 3.2) does not suffer from these issues as it propagates the

solution exactly.
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Figure 3.2 A box-car shaped pulse being propagated for with the Lax-Wendroff, RNFD and method of lines
approach for a little longer than three round trips. The inset represents a zoom in of the pulse from the first round
trip.

It is easy to extrapolate this in the context of simulations of free running QCLs. In this more

complex scenario, such numerical errors could severely damage the quality of the solution as

they could obscure important physical effects. As such, it is rather clear that the RNFD method

is possibly the best algorithm to use in these cases. Nevertheless, in order to substantiate the

choice of a numerical method even more, in the following section the convergence properties

of each scheme will also be investigated.

3.3 Implementation and testing

3.3.1 Wave equation solvers

In this subsection it will be shown, by means of numerical experiment, that Lax-Wendroff and

the RNFD schemes are second order consistent in both time and space. Of course, this could

naturally be expected from the analytical derivation presented in the preceding sections, but

it is always nice to verify one’s implementation by investigating to what extend does each

scheme satisfy its mathematically provable properties.

The method of lines approach, on the other hand, is expected to have order of consistency

dominated by the accuracy of the chosen time-propagation scheme, due to the fact that the

error induced by approximating the spatial derivative is much smaller than the errors during

time-stepping.

As a benchmark, the following test function can be specified, which satisfies Eq. (3.1), for

k = 0 and

f+(x, t) = (x+ ct)ei(βx−ωt). (3.38)

This solution is given by

u(x, t) = xtei(βx−ωt) + constant , (3.39)

where the usual dispersion relation ω/c = β holds (and here c > 0 is assumed).
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To measure the local approximation error, the standard L∞ metric is used, with the error at

time step tn defined as

εn = ||yn − u(x, tn)||∞, (3.40)

where yn is the numerical solution at the current step and u(x, tn) is the analytical solution eval-

uated at time tn onto all grid points x. Next, the global approximation error, after Nt−iterations

of the algorithm, is given by

ε = max
n=1,2..Nt

εn. (3.41)

Furthermore, since one would like to examine the convergence properties of the solution

upon variation of both ω and N , two additional quantities can be defined, denoted by 〈ρN 〉
and 〈ρω〉. Those are simply the averaged convergence rates of each method’s global error

as a function of grid size N and angular frequency ω, respectively. The term "convergence

rate" denotes the exponential dependence of the error with respect to the cited quantity. For

example, for two measurements of the error as a function of, e. g. the grid size N , ρN is

calculated from

ρN =
log ε(N1)− log ε(N2)

logN2 − logN1
, (3.42)

with Ni denoting the selected grid size and ε(Ni) the calculated global error for simulations

with Ni points. In case of several measurements, each conducted on a different grid size Ni

(or in that context also ωi), the arithmetic average is taken as a qualitative measure.

For the numerical experiments, the cavity is assumed to be of length 3, the phase velocity

of the wave is set to c = 1 and the simulation time interval is chosen to be T = 1 (in

arbitrary units). With this setup, Table 3.1 illustrates the global approximation error for all three

numerical methods, when the number of grid points N and the angular frequency ω are varied.

Importantly, in all measurements, the magic time-step condition c∆t = ∆x holds, whereas

for the method of lines approach, due to the non-equidistant nature of the computational grid,

∆x = x1 − x0 has been chosen. Lastly, for time-propagation of the semi-discretized solution

vector V(t)+, the 3-step Adams-Bashforth method has been used.

First of all, it is worthwhile to notice that both the Lax-Wendroff method and the RNFD

method deliver equivalent results. This comes to no surprise, since it was already shown

that when the magic time-step is assumed, and also when k = 0, these methods deliver

identical results. Also, both methods are second order convergent, since the convergence

rate 〈ρN 〉 ≈ 2 in all experiments, which is in excellent agreement with the derived theoretical

results and confirms the validity of our implementation. Additionally, these finite difference

schemes seem to exhibit a quadratic dependence on the angular frequency parameter ω,

with the numerical solution diverging from the analytical such when the ratio ω/N increases

(hence the negative sign in 〈ρω〉). This is also not unexpected, since in such finite difference

approximations one would need several grid points per oscillation period, in order to be able to

correctly resolve the underlying frequency.

Next, one can examine the results from simulations based on the m.o.l.-adams approach.

As mentioned, in the conducted numerical experiments the time-propagator was provided with

3 initial conditions (as needed by the 3-step AB-method), so that the error in the solution is

dominated by the error originating from the discretization in time. That being said, the numerical

tests indicate that the convergence rate (for small values of ω) is approximately ρN ≈ 4! The
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Table 3.1 RNFD (rnfd), Lax-Wendroff (laxwen) and the method of lines (m.o.l.-adams)’s global error ε as a
function of the grid size N and the frequency ω.

ω=4 ω=16 ω=64 ω=256 〈ρω〉
rnfd

N = 512 2.8329e-04 4.4060e-03 7.0111e-02 1.0571e+00 -1.9776

N = 1024 7.0838e-05 1.1018e-03 1.7580e-02 2.7714e-01 -1.9890

N = 2048 1.7697e-05 2.7526e-04 4.3951e-03 7.0055e-02 -1.9918

〈ρN 〉 2.0004 2.0003 1.9978 1.9577

laxwen

N = 512 2.8329e-04 4.4060e-03 7.0111e-02 1.0571e+00 -1.9776

N = 1024 7.0838e-05 1.1018e-03 1.7580e-02 2.7714e-01 -1.9890

N = 2048 1.7697e-05 2.7526e-04 4.3951e-03 7.0055e-02 -1.9918

〈ρN 〉 2.0004 2.0003 1.9978 1.9577

m.o.l.-adams

N = 512 3.0432E-07 1.2133E-06 2.2422E-05 2.9048E+00 -1.9816

N = 1024 1.8725E-08 7.4656E-08 3.7858E-07 2.5645E+00 -1.6481

N = 2048 1.1612E-09 4.6297E-09 1.8515E-08 1.3228Ee-06 -1.3169

〈ρN 〉 4.0042 4.0042 4.0673 5.9983

origin of this discrepancy is currently unknown to me, but could probably be attributed to some

kind of averaging effect between the global error induced by the time-stepping procedure

and the global error of the spectral differentiation procedure. Next, it can be noticed that

m.o.l.-adams delivers significantly smaller magnitudes of ε, and that the method is visibly

less sensitive to the angular frequency ω (with the exception of the results for ω = 256).

Nevertheless, the calculation time needed to compute the solution (especially for N = 2048),

is much longer due to the O(N2) complexity of the matrix-vector multiplication operation

(Eq. (3.34)), which makes the usage of this method for long-time simulations impractical.

Finally, a brief mention on the stability properties of the three different algorithms must be

included. I will not go in great detail, as those results were already presented elsewhere [89],

and instead will expose only a brief summary of the most important points.

First of all, conventional von Neumann stability analysis of the finite difference schemes,

shows that both the rnfd and the lax-wen methods are conditionally stable [89], with the

stability condition r < 1 (where r = c∆t/∆x is also known as the Courant number) for the

lax-wen method. Furthermore, the analysis showed that the choice of the magic time-step for

the rnfd method automatically guarantees the stability of the rnfd method.

On the other hand, the stability of the method of lines approach was not verified analytically,

as it depends on the properties of the used time propagation scheme. Furthermore, for this

algorithm there is no straightforward definition of a Courant number, because the interpolation

in Sec. 3.2.3 is performed on a non-equidistant spatial grid. For these reasons the stability

of the method was investigated only numerically, via simulations of the planted solution in

Eq. (3.39).
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Table 3.2 Stability check for the m.o.l-adams approach in combination with different variants of the m-step
Adams-Bashforth method. For comparison, simulation data with the default version of Matlab’s ode45 time
propagator has also been included. Reprinted from [89].

X-stable
x-unstable

2−step A.B. 3−step A.B. 4−step A.B. 5−step A.B. ode45

r = 0.4 X X X X X

r = 0.6 X X X x X

r = 0.8 X X X x X

r = 1.0 X X x x X

r = 1.2 X X x x x

As it is often the case that it takes some time for the round-off error to build up and manifest

itself, one needs to ensure that the simulation runs over a long enough time interval. For that

purpose, the simulation time T was set to T = 20 (in arbitrary time-units). Additionally, the

order of the m-step Adams-Bashforth method was examined by varying the parameter m and

for comparison, time-stepping with the famous Matlab ODE solver, the adaptive Runge-Kutta

method ode45 [101], was also performed. The results were obtained for the parameters

set: c = 1 , ω = 4, T = 20 and the domain [0; 3], with r = c∆t/min (∆xj). With those

"initial conditions" the above outlined numerical tests reveal the following stability properties

for m.o.l.-adams, summarized in Tab. 3.2.

3.3.2 Density matrix equations solver

The optical Bloch equations, e.g. Eqs. (2.76b)-(2.76c) constitute a system of ODEs describing

the population dynamics of the atoms in our lasing material during its interaction with the

optical field. For the numerical solution of such systems, a wide range of numerical algorithms

is available. In this work, a family of multi-step Adams-Bashforth methods are suggested as

a suitable tool for the task. In general, the linear m−step Adams-Bashforth method, for the

solution of the equation
dy

dt
= f(t, y) , (3.43)

can be written down in the following simple form

yn+1 = yn + ∆t

m−1∑
k=0

ckf(tn−k, y
n−k) , (3.44)

where the coefficients ck are chosen so that the order of consistency of the method is

maximized. As the relevant theory is well established [97, 102, 103], it is not worthwhile to go

in great detail in revealing these methods’ convergence and stability properties, but instead

the focus is shifted on testing the numerical implementation.

A mention of a peculiar detail about the computer implementation of the multi-step Adams-

Bashforth method is in order. For each m, as seen from Eq. (3.44) the m−step AB method

needs no more and no less than m past instances of f(t, y). However, in computational

physics and similar disciplines, it is usual to have only a single initial condition, from which one
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wishes to evolve the system in time, and similarly only the ‘gradient’ at the current time point (n)

is known. To deal with this issue the implementation is adapted as follows. First of all, during

initialization, the m−step Adams-Bashforth solver checks how many initial f(t, y)’s have been

provided, and automatically chooses the coefficients ck, in order to achieve a maximal order of

the approximation error. For example, if only p instances of f(t, y) (with p < m), are given,

the implementation ‘regresses’ to a p−step Adams-Bashforth method for a single time step.

After that time step, the algorithm updates its history and its coefficients, becoming a (p+ 1)−
step method and so on, until m is reached. As it will be shown further below, this does affect

the quality of the algorithm as it reduces the overall order of approximation. However, for the

purposes of this thesis, i.e. simulations of free running QCLs, where typically one starts with

random initial conditions, this issue does not pose any serious threat.

Table 3.3 Numerical errors in the solution of Eq. (3.45), accumulated by the m-step Adams-Bashforth solver
for different values of m and ∆t. For each m and ∆t pair, we are looking at two different cases, one where the
solver has been initialized with the full set of initial conditions, i.e. 3, 4 and 5 initial points, respectively, and the
scenario where only the initial point, y(0) = 1, was specified. Last line includes the calculated convergence rates
of the solvers with respect to the choice of step-size. Reprinted from [89].

3-step A.B. 4-step A.B. 5-step A.B. ∆t

3 i.c. 1 i.c. 4 i.c. 1 i.c. 5 i.c. 1 i.c.

2.13E-05 4.98E-04 6.19E-07 4.89E-04 1.83E-08 4.89E-04 1.56E-03

2.66E-06 1.23E-04 3.87E-08 1.22E-04 5.73E-10 1.22E-04 7.81E-04

3.33E-07 3.07E-05 2.42E-09 3.06E-05 1.79E-11 3.06E-05 3.91E-04

3.00 2.01 4.00 2.00 5.00 2.00 ← ρ(∆t)

Expectedly, with the above mentioned approach one will not gain the full order of accuracy

of a m−step A.B. method unless the solver is initialized with exactly m initial conditions. From

some tests, it turns out that for the adaptive approach, when one supplies only a single initial

data (p = 1), the implementation results in a method with maximal order of accuracy up to 2.0,

for m = 3, 4, 5. If, however, the solver is provided with a complete set of initial data points, the

full m−th order accuracy is recovered, as predicted by theory. The implementation has been

tested on the equation

dy

dt
= ky, k < 0,

y(0) = 1, (3.45)

which has the analytical solution y(t) = ekt. The global approximation errors for k = −1 + 20i

and simulation window T = 10, for 3, 4 and 5-step Adams-Bashforth methods, are summarized

in Tab. 3.3. The data is divided in two different categories, depending on the initial setting.

First, this is when the solver has been initialized with the full set of initial conditions (i.c.), i.e.

3, 4 and 5 initial points, respectively, compared to the setup where only one initial point is

specified at y(0) = 1.
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3.3.3 Putting it all together

After having separately tested all the numerical solvers, it is clear that the Risken-Nummedal

finite differences algorithm is superior to its two alternatives, the Lax-Wendroff and the method

of lines approaches, for the simple reason that it is both second order consistent, stable

(under the magic time-step condition) and also monotonicity preserving. Additionally, from

implementation point of view, the RNFD algorithm computes several vector operations (i.e.

multiplication of a vector by a number, addition of two vectors etc.), and as such has the

inherent complexity of O(N), where N is the number of grid points along the propagation

direction, which makes it the preferred algorithm to the m.o.l-adams method.

For the density matrix equations, them−th order Adams-Bashforth method has high order of

consistency, it is easily implementable and can be programmed efficiently since its complexity

is also O(N). This makes it a great match to the RNFD method in terms of the accuracy it

delivers, the ease of implementation and modification, as well as speed with which a single

time step is evolved.

With this in mind, as a final step we are ready to test the full Maxwell-Bloch solver. As

mentioned in the beginning of this chapter, the Maxwell-Bloch equations, in their general form,

are almost never susceptible to analytical solution. In several few limiting cases (one of which

I will present here), however, such an analytical solution does exist, and can be used as a

starting point for one last test of the numerical methods.

The analytical solution I have selected, is based on the famous "Area Theorem" solution of

the reduced Maxwell-Bloch equations, published by McCall and Hahn in their groundbreaking

work [86]. To trace back their derivation, let us start with the reduced Maxwell-Bloch equations

for an electric field interacting with a two level system, with upper laser level |a〉 and lower

laser level |b〉 (see Sec. 2.4.1).

n

c
∂tE+ + ∂xE+ = −i

NΓeza,bω0

2ε0cn
ηa,b, (3.46a)

∂t∆ρ = +i
ezab
~
(
E∗+ηab − E+η

∗
ab

)
− ∆ρ − ∆̄

T1
, (3.46b)

∂tηab = i

[
(ω0 − ωa,b) + i

1

T2

]
ηab + i

ezab
2~

E+∆ρ. (3.46c)

First, in order to simplify notation, re-normalize the equations as follows

F (x, t) =
eza,b

~
E+(x, t),

P (x, t) =
NΓ(eza,b)

2ω0

~ε0cn
ηa,b,

D(x, t) =
NΓ(eza,b)

2ω0

~ε0cn
∆ρ. (3.47)
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Secondly, assume that the envelope predominantly real, which means that the field is simply

amplified, without experiencing any dispersion during its interaction with the two level system.

This transforms the original Eq. (3.46) to

n

c
∂tF + ∂xF = − i

2
P , (3.48a)

∂tD = −2F ImP − D − D̄
T1

, (3.48b)

∂tP = i

[
(ω0 − ωa,b) + i

1

T2

]
P +

i

2
FD, (3.48c)

which, one must admit, is much more pleasant to the eye than Eqs. (3.46). In Eq. (3.48a) there

is small discrepancy with our ansatz for a purely real electric field, as this assumption implies

that P will be purely imaginary. This however, contradicts Eq. (3.48c), since the right hand

side contains contribution to both the real and imaginary part of P . Namely,

∂t ReP = −(ω0 − ωa,b) ImP − 1

T2
ReP , (3.49)

∂t ImP = (ω0 − ωa,b) ReP +
1

2
FD − 1

T2
ImP . (3.50)

From this we see that the real part of P will vanish, provided that the detuning ∆ω = ω0−ωa,b is

negligibly small, which will indeed be the case when the incoming field has a carrier frequency

in or close to resonance with the optical transition frequency.

To proceed with the solution, it is also needed to assume that the inversion lifetime T1 and

the linewidth broadening time T2 are very long so that the terms 1/Ti can be eliminated from

the original equations. This allows to represent Eqs. (3.48b)-(3.48c) in vector form

d~P

dt
= ~P × ~Ω, (3.51)

where ~P = [2 ReP , 2 ImP ,D] is the so called Bloch-vector and Ω = [F , 0,−∆ω] [64].

Equation (3.51) is structurally familiar from the theory of classical electrodynamics, e.g. Lamor

precession [104], nuclear magnetic resonance [105] and obviously optics [64], as it describes

precession of the vector ~P around ~Ω with the precession frequency proportional to the

magnitude of ~Ω. Importantly, since T1 and T2 have been assumed large and thus eliminated

from the equations, Eq. (3.51) describes a purely coherent interaction process, with the length

of the Bloch-vector preserved at all times. Solving further, McCall and Hahn observed that

upon its interaction with the e-field envelope, ~P will be rotated around ~Ω at a net angle of

θ(x) =

∫ ∞
−∞

F (x, t)dt, (3.52)

with the quantity θ(x) also known as the pulse area [86] ( see Fig. 3.3).

While it is obvious that the two level system is modified via its interaction with F , the field

envelope also experiences either attenuation or amplification depending on the sign of D, as

follows from Eq. (3.48a). With the newly introduced quantities at hand, as well as some minor

additional assumptions [106], one can derive a differential equation for the pulse-envelope

area [86]
dθ

dx
= −α

2
sin θ(x), (3.53)
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Figure 3.3 Illustration of the Bloch sphere and precession of ~P around ~Ω.

where α is the intensity absorption coefficient. The solution of this ODE is easily found to be

tan
θ(x)

2
= tan

θ(x0)

2
exp[−α

2
(x− x0)], (3.54)

with its various branches, plotted in Fig. 3.4.
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Figure 3.4 Branches of Eq. (3.54) for θ(x0) = 0.9π, 1.1π, 0.9× 3π, 1.1× 3π, with x0 = −1 and α = 4.

Figure 3.4 is subject to a straightforward interpretation. Depending on the initial pulse area,

i.e. which branch of the solution will θ evolve in, the field will either experience amplification

or attenuation. Consider for example the branch, corresponding to the blue curve in Fig. 3.4.

A pulse with initial area 0.9π will exponentially decay to a zero-area pulse as it propagates

through the two-level medium. On the contrary, if the envelope has initial area of θ(x0) = 1.1π,

according to Eq. (3.54), the pulse will be reshaped and amplified to a steady state area of 2π.

In fact, McCall and Hahn have shown that the only field configuration which could propagate

stably (as a soliton) inside the resonant region is a sech pulse with the following (normalized)

envelope

F2π =
2

τp
sech

[
1

τp

(
t− cx

n

)]
, (3.55)

which has area exactly equal to 2π.

Finally, in order to test the numerical algorithms derived in this chapter, the propagation of

three different sech pulses with respective areas of π, 2π and 3π, inside a two level system with
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the same parameters as in [53], has been examined. For the numerical solution of the Maxwell-

Bloch system, I chose the Risken-Nummedal finite differences method from Sec. 3.2.2, and

for the density matrix equations, the 3-step Adams-Bashforth method from Sec. 3.3.2.

The initial pulse width τp in all cases was set to 100 fs and all carriers in the system were

assumed to start in their lower energetic state.
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Figure 3.5 Propagation of a π-pulse through a two-level coherent medium.

Let us first look at snapshot of a π-pulse injected from the left-hand-side of the cavity in

Fig. 3.5. The image clearly illustrates that the area theorem is satisfied, as the population

inversion (right-axis in the figure), is completely inverted after its interaction with the pulse.

This corresponds to a rotation of the vector ~P = [0, 0,−1] at 180 degrees in Bloch-space. Also,

it was observed that after propagating some 100 µm or so, the pulse gets strongly attenuated,

in another agreement with the statement of the theorem.

Next, we examine the propagation of a 2π-pulse, which according to McCall and Hahn [86],

should instead propagate stably inside the cavity, whereas simultaneously inverting the popu-

lation twice. Assuming the same initial conditions as in Fig. 3.5, the result for a 2π-pulse, is

plotted in Fig. 3.6. It is immediately evident that the population inversion swings from -1 to
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Figure 3.6 Propagation of a 2π-pulse through a two-level coherent medium.

1 and back, as the latter interacts with the optical field. Furthermore, the initial intensity of

the pulse remains constant (as it gains as many photons from- as it losses to the population

inversion) leading to a stable soliton propagation inside the cavity.

As a last test of the theory and the numerics, an initially 3π-pulse is propagated through

the cavity and results thereof are plotted in Fig. 3.7. Now the population inversion undergoes

three half-cycles, between the transitions −1→ 1→ −1→ 1. Since this dynamics results in

a net absorption (since more photons are given up than gained), the pulse intensity also gets

gradually reduced from its initial value.
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All of these three experiments unequivocally confirm that the area theorem is satisfied, but

also more importantly that the used numerical methods yield physically interpretable solutions.
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Figure 3.7 Propagation of a 3π-pulse through a two-level coherent medium.

3.4 Conclusion

After offering a comprehensive mathematical derivation of Maxwell-Bloch’s equations in

Chapter 2, following the good practices in computational science, this part of the thesis

focused on developing numerical solvers for the system at hand. To this end three different

computational schemes for the wave propagation equation, coupled with a multi-step Adams-

Bashforth method for the optical Bloch equations, have been demonstrated. Analytical study

as well as experiments with the proposed solvers, gave results in accordance with theory, for

the laxwen, rnfd and the Adams-Bashforth methods, demonstrated convergence rates equal

to those obtained from their Taylor expansions. This does not come out as a surprise, but it

rather ensures us that the actual implementation of those solvers is correct. A simple lemma

was also proven, showing that under some special conditions, the rnfd scheme is monotonicity

preserving, whereas direct application of "Godunov‘s Barrier Theorem" and a simple check

(for the method of lines approach) showed that laxwen and m.o.l.-adams do not posses that

property. This favorable result for the rnfd that distinguishes it from the other two schemes, is

technically a virtue of the choice of time step ∆t = ∆x/c.

Next, numerical study on all schemes lead to the discovery of some interesting properties

of these solvers. First of all, we saw that all three schemes for the propagation equations,

i.e. laxwen, rnfd and the m.o.l.-adams, experience decrease in accuracy with increasing

oscillation frequency, ω, of the wave. This deterioration was quantified and it was reported

that the first two schemes demonstrate quadratic convergence with respect to ω, whereas

m.o.l.-adams sub-quadratic. This suggests that the latter is more robust when one has to

solve highly oscillating problems. These good news, however, do not come for free, as the

m.o.l.-adams method uses a dense pseudospectral differentiation matrix for discretization of

the partial derivatives along the spatial direction. That means that at each time step, this solver

has to perform a matrix-vector multiplication, an operation that is very costly.

The stability conditions for the proposed PDE solvers were also investigated, using both

numerical experiments and analytical von Neumann spectral analysis for the purpose. In

doing so it has been shown [89] that laxwen and rnfd are conditionally stable when the linear
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Table 3.4 Summary of the wave propagation schemes and their most important properties for k ≤ 0 .

Name Order Stability k < 0 Stability k = 0 Monotonicity

Lax-Wendroff 2 cond. stable cond. stable NO

RNFD 2 stable stable YES if ∆t ≤ 1
|ck|

3-M.O.L-Adams 4 cond. stable cond. stable NO

source term, i.e. kE±, is modeled as a linear loss, i.e. k < 0. On the other hand, if k > 0,

we observed unconditionally unstable behavior for both schemes, something also familiar

to the computational electrodynamics scientific community. As for the m.o.l-adams method,

the scheme’s stability regions were investigated numerically when the time propagation is

done via a multi-step Adams-Bashforth (with different number of steps) method or Matalab’s

adaptive Runge-Kutta solver "ode45" [101]. It was discovered that at some instances, the

custom implementation of the Adams-Bashforth method couples much better with spectral

differentiation to give looser stability constraints onto the choice of time-step. Additionally, the

accuracy and stability of the multi-step Adams-Bashforth solver was briefly analyzed and it

was shown that the implementation lives up to its theoretical description.

A summary of the wave propagation schemes and their properties is presented in Tab. 3.4.

From Tab. 3.4, one can easily pick out the best candidate for solving the wave propagation

equation. This is namely the rnfd-scheme due to its second order accuracy, stability and

monotonicity preserving properties as well as the computational efficacy of the method. Lastly,

one final test of the coupled Maxwell-Bloch solver was performed via a simulation of the

coherent self-induced transparency phenomenon. The numerical results produced were

analyzed and compared to the analytical solution and a satisfactory match was found, assuring

that the final choice of algorithms is suitable.

73



3 Numerical Methods

74



4 Free running THz QC lasers

4.1 Introduction

In this chapter time domain simulations of free-running terahertz quantum cascade lasers

will be considered, based on the theoretical framework introduced in Chapter 2, utilizing the

numerical methods from Chapter 3. It will be shown how the Maxwell-Bloch framework serves

as a wonderful tool to investigate the complexities of the transient dynamics of free-running

QCLs, which have been shown to produce both coherent and incoherent multimode spectra.

Furthermore, since the focus of this thesis in general is answering questions about frequency

comb formation in QCLs, with the presented simulation methods various comb formation and

degradation mechanisms will be investigated, with the end goal to give the research community

a better insight,s as well as the tools to prototype QCL-based combs which are stable over a

wide dynamic range.

Quantum cascade lasers are potentially efficient, cheap and compact generators of fre-

quency combs in the mid- and far-infrared portions of the electromagnetic spectrum. QCL

based combs in both spectral regions have been experimentally demonstrated [14, 15, 63, 107,

108], but their spectral coverage has been limited to a fraction of their central frequency. From

an application point of view, frequency combs with bandwidths spanning an octave are highly

desirable, since then the carrier offset frequency can be readily identified via a self-referencing

scheme based on heterodyne detection [109]. However, achieving comb stability over such

a broadband frequency range has proven to be difficult [16], namely due to the distorting

effect of chromatic dispersion. Nevertheless, also more narrowband QCL combs could be

useful for practical applications, as demonstrated using the so-called dual-comb spectroscopy

technique [9, 10].

The experimentally demonstrated QCL frequency combs are based on free running lasers

[14–16, 63]. Here, high order nonlinear optical processes, in particular four wave mixing

(FWM), have been identified as the main mode proliferation mechanisms that contribute to

comb formation [4, 110]. In contrast, it has been argued that group velocity dispersion (GVD)

leads to unstable multimode operation and thus limits the full exploitation of the gain bandwidth

of the material [111]. In the terahertz regime, two of the widest comb generating devices

demonstrated so far have shown a strong variation of the beatnote’s linewidth with changing

injection current, indicating that comb operation comprises only a fraction of the whole dynamic

range of these lasers [15, 16].

This chapter addresses fully time dependent simulations of free-running QCL comb opera-

tion based on a multiple level extension of the reduced Maxwell-Bloch laser equations, the

theoretical basis of which was derived in Sec. 2.4. In the literature, mode locking in QCLs and

the emergence of coherent optical instabilities have so far been analyzed based on numerical
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solutions of the MB equations [83–85, 91, 112, 113]. Simulations are even more intricate for

comb operation, since the optical field must be propagated over some 104 cavity round trips

to obtain converging results, which in turn poses strong requirements on the accuracy and

numerical efficiency of the undertaken approach. Here, extended version of the Maxwell-Bloch

equations is derived, which also includes coherent resonant tunneling between the injector

and upper laser level, as required for a realistic modeling of QCL-based THz combs. These

equations are coupled to self-consistent ensemble Monte Carlo (EMC) carrier transport simu-

lations which provide the non-radiative transition rates between the energy levels, eliminating

the need to use empirical electron lifetimes. The addressed simulation approach considers

the full transient dynamics of the system, directly solving the extended MB equations without

invoking any further assumptions. In this way, also regimes of non-comb or imperfect comb

operation can be analyzed, including cases where spectrally separated sub-combs exist or

only part of the spectral lines are phase-locked and participate in comb operation.

The chapter is organized as follows: Section 4.2 introduces the theoretical model, based

on the Maxwell-Bloch equations in the tight-binding basis approximation. In that context,

Sec. 4.2.1 presents a numerical procedure to calculate the tight binding eigenstates and

the corresponding level coupling terms, and Sec. 4.2.2 outlines a detailed derivation of an

extended system of equations, coherently treating both the optical and resonant tunneling

transitions. This approach is used in Sec. 4.3 to investigate the active region of a longitudinal

optical (LO) phonon depopulation THz QCL design, experimentally shown to produce one of

the most broadband THz QCL frequency combs to date [15]. Here the focus lies on effects

relevant for the comb operation, in particular the gain characteristics, group velocity dispersion,

four wave mixing as well as spatial hole burning (SHB). In their corresponding sections each

mechanism is investigated in detail and its effect on the transient dynamics of the device is

discussed. As a verification of the undertaken approach, Sec. 4.3.5 presents simulation results

for comb and non-comb operation of the device in question and compares theoretical results

with experimental data both in frequency and time domain. This is pushed a step further in

Sec. 4.3.6, where we consider in detail the evolution of the lasing modes in the presence and

absence of multimode instabilities and show how spatial hole burning could have a dramatic

effect onto the laser behavior (Sec. 4.3.6). Lastly, Sec. 4.3.7 studies the influence, exerted

onto the system dynamics, by the first modes that start to lase.

Some of the results, contained in this chapter, were presented on several scientific confer-

ences and also featured in journal publications [5, 6, 114].

4.2 Model

The investigations are based on the Maxwell-Bloch laser equations, which present a suitable

model for the description of light-matter interaction in microscopic systems. Specifically, here

extended Bloch equations are used to describe the optical transition between the upper and

lower laser level, additionally accounting for coherent resonant tunneling between the injector

and upper laser level to obtain a realistic description of the investigated THz QCL design. The

standard rotating wave and slowly varying envelope approximations are employed to reduce the

numerical load of the solution [62, 83, 84, 112]. The effect of various scattering mechanisms
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Figure 4.1 A diagram of the employed multi-domain modeling approach, combining a Schrödinger-
Poisson solver, and ensemble Monte-Carlo carrier-transport simulation and density matrix/Maxwell’s
equations based models to enable self-consistent analysis of QCLs.

onto the carrier dynamics is then captured phenomenologically via a periodic rate equations

approach, motivated by the assumed Markovian dynamics of the non-unitary interaction

between the QCL system and its environment, see Sec. 2.3.4. The level eigenenergies, dipole

moments and anticrossing strengths are obtained from a Schrödinger-Poisson solver [115].

The MB approach is coupled to a well-established ensemble Monte Carlo (EMC) carrier

transport simulation code for QCLs [116–119], which provides the scattering rates. In that

sense, the approach is self-consistent and does not require empirical parameters, with the

exception of pure dephasing rates. A diagram of the undertaken "multi-domain" simulation

method is illustrated in Fig. 4.1.

4.2.1 Tight-binding basis

In resonant LO-phonon THz QCLs, tunneling plays an important role especially for thick

barriers where the subbands involved in the electron transport have a small energy separation,

which particularly applies to the injection barriers of various QCL designs [80, 120, 121]. This

effect is usually treated in the tight-binding (TB) approximation [122], where the wave functions

are calculated for a single isolated period, and the electron subbands in adjacent modules are

simply obtained by adequate translation in energy and space by the module length Lp [80]. The

energetic coupling between levels spanning the intermodule barrier is modeled by including

the corresponding anticrossing energies in the Hamiltonian matrix [120, 121].

The following briefly outlines a numerical procedure to relate these tight-binding states to the

original eigenstates, and also shows how one can find the value of the anticrossing energies.

Let us begin by assuming that the computational domain consists of three identical het-

erostructure periods. Decompose the unperturbed Hamiltonian Ĥ of the system into a

tight-binding Hamiltonian ĤTB and a residual term, where the TB Hamiltonian is assumed to

be identical to Ĥ over one particular period and have infinitely thick barriers everywhere else.

Next, denote quantities belonging to each of the three periods with sub/super-script indices
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L,C and R for the left, central and the right period, respectively. An illustration of Ĥ and ĤC
TB

for a simple two well QC structure is given in Fig. 4.2(a).

=
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Figure 4.2 (a) Graphical illustration of the difference of the full and tight binding basis conduction band
profiles, under some constant applied bias F . (b) a plot of the "naked" conduction band heterostructure
profile V0(z) inside the central period and (c) a graphical representation of the decomposition of Ĥ
into ĤC

TB and ∆V C .

With this notation at hand, the original three-period Hamiltonian operator takes the following

form

Ĥ = −~
2
∂z

1

m∗⊥(z)
∂z + V0(z − zL) + V0(z) + V0(z − zR)− eFz, (4.1)

where V0(z) is illustrated in Fig. 4.2(b) and consists of the conduction band barriers in the

central period and is zero otherwise, and F is some applied constant bias field. Furthermore,

in the same figure Lp is the length of the period, and zL and zR are the mid-points along the

growth direction of the left and right period, respectively (the mid point of the central period is

assumed to be zero). Then, one can write

Ĥ = ĤL
TB + ∆V L = ĤC

TB + ∆V C = ĤR
TB + ∆V R. (4.2)

The terms ∆V j are the residual terms when one takes the difference between the original

and the tight-binding Hamiltonians, with ∆V C graphically illustrated in Figure 4.2(c).

In the beginning of the calculation compute, using a Schrödinger-Poisson solver, the tight-

binding Hamiltonian eigenstates, for example for the central period, whereas the eigenstates

for the adjacent periods are the former translated in energy and space according to the applied

bias and the period length, respectively. For the Ath period, where A ∈ {L,C,R}, denote

the νth eigenvalue and eigenstate of ĤA
TB with EAν and φAν , respectively. Now, since all TB

wave functions together form a complete basis set in the three period system, any arbitrary

wave function Ψ of the full system can be given as a linear combination with some complex

expansion coefficients aAν , e.g.

Ψ =
∑
ν,A

aAν φ
A
ν =

∑
ν

(
aLν φ

L
ν + aCν φ

C
ν + aRν φ

R
ν

)
. (4.3)
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Since Ψ can span multiple periods, those wave functions will be referred to as the delocalized

basis. A particular such basis is important, and namely this is the set of states Ψ in which

the original Hamiltonian is diagonal. Now, one looks for the solution of the time independent

Schrödinger equation

ĤΨ =
∑
ν,A

aAν (ĤA
TB + ∆V A)φAν = ε

∑
ν,A

aAν φ
A
ν , (4.4)

with the eigenenergy ε.

Using Eq. (4.2) and Eq. (4.3), find the expansion coefficients aAν by taking the inner product

of both sides of Eq. (4.4) with the state φBµ

〈φBµ |Ĥ|Ψ〉 =
∑
ν,A

[
aAν (EAν 〈φBµ |φAν 〉+ 〈φBµ |∆V A|φAν 〉)

]
= ε

∑
ν,A

aAν 〈φBµ |φAν 〉 . (4.5)

This defines an eigenvalue problem. To see how, set a = [aL1 , . . . , aLN , aC1 , . . . , aCN , aR1 , . . . , aRN ],

where it is explicitly assumed that there are N tight-binding levels per period. Then Eq. (4.5) is

rewritten in matrix form as

Ha = εDa, (4.6)

determined by the matrices

D =


DLL DLC DLR

DCL DCC DCR

DRL DRC DRR

 , S =


SLL SLC SLR

SCL SCC SCR

SRL SRC SRR

 , and H =


HLL HLC HLR

HCL HCC HCR

HRL HRC HRR

 ,

(4.7)

which have dimension 3N × 3N and the individual elements are given from Eq. (4.5) as

DAB
µν = 〈φAµ |φBν 〉 , SABµν = 〈φAµ |∆V B|φBν 〉 , and HAB

µν = EBν D
AB
µν + SABµν . (4.8)

As a reminder, note that in Dirac notation the inner product 〈φ|Ô|ψ〉, where Ô is any arbitrary

quantum mechanical operator, is an integral in the position representation

〈φ|Ô|ψ〉 =

∫ ∞
−∞

φ∗(z)Ôψ(z)dz. (4.9)

A simplistic interpretation of the integrals in Eq. (4.8) is in order. First of all, DAB
µν is the so

called overlap integral, the elements of which are not necessarily zero since the wave functions

of different tight-binding Hamiltonians, i.e. when A 6= B, are generally non-orthogonal. On the

other hand SAAµµ is known as the shift integral [122], as it can be shown to induce a (negative)

shift in the tight-binding eigenergies. Lastly SAA±1
µν is the coupling strength integral (also

known as transfer integral), which estimates the potential coupling between two wave functions

sharing a barrier and is the term responsible for the energy splitting/anticrossing between two

TB states close to resonance.

As mentioned above, since the tight-binding states, which will be needed as basis states in

the subsequent density matrix formalism, are not eigenstates of the original Hamiltonian Ĥ ,

the matrix representation of Ĥ in the TB basis will generally not be diagonal but will additionally
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contain off-diagonal level-coupling terms, the so called anticrossing energies. For two levels,

spanning a module barrier, the coupling energy is given by

~ΩAB
µν = 〈φAµ |Ĥ|φBν 〉 = EBν D

AB
µν + SABµν = HAB

µν , (4.10)

which also provides us with an interpretation for the elements of the matrix H .

To conclude, the validity of the outlined procedure is demonstrated by a numerical test. First,

the quantum well heteorstructure in Fig. 4.2(a) is taken and its delocalized basis eigenstates

{Ψ} are numerically calculated by finite difference discretization of Ĥ and a Schrödinger-

Poisson (SP) solver [115]. Then with the same SP solver the tight-binding eigenstates {φAµ }
are computed by assuming that the structure has infinite barrier outside of the period of interest,

say C. Finally, the matrices D,S and H are constructed and Eq. (4.6) is solved. With the

knowledge of the coefficients aAν and the expansion formula Eq. (4.3), one then calculates

anew the delocalized states {Ψ′}, but this time as a linear combination of φAν states. If the

procedure has been performed correctly, then the states {Ψ} and the states {Ψ′} shall be

approximately identical. An illustration of this verification test is displayed in Fig. 4.3.
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Figure 4.3 (a) The delocalized basis wave functions (WFs), i.e. the states {Ψ} calculated directly from
the SP solver. (b) The delocalized basis WFs {Ψ′} calculated from Eq. (4.3) and (c) the tight-binding
basis wave functions {φAµ }.

4.2.2 Three level density matrix model

Next, the density-matrix based model is derived. In order to introduce some notation, consider

taking a simple prototype for a resonant phonon THz QCL, depicted in Fig. 4.4. In this

configuration there are four relevant bound states |1′〉, |3〉, |2〉 and |1〉 which are the injector

level, the upper and lower laser levels and the depopulation level, which also serves as the

injector level for the next period. The state |1′〉 couples to |3〉 via the anticrossing energy

}Ω1′3, whereas the upper and lower laser levels interact via the instantaneous Rabi frequency

ΩL(t) = −ez32Ez(t)/}. Here, z32 = 〈3| ẑ |2〉 is the dipole matrix element of the lasing states.

The energy separation between |1′〉 and |3〉 is denoted with ∆E1′3 = }ε and that between the

upper and lower laser levels as ∆E32 = }ω32.
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�

Figure 4.4 Schematic diagram of a simple three-level LO-phonon depopulation THz QCL, where the
upper laser level is populated via resonant tunneling.

In this tight-binding basis, the time evolution is governed by the von Neumann equation

which, with phenomenologically included scattering rates, reads

d

dt


ρ1′1′ ρ1′3 ρ1′2

ρ31′ ρ33 ρ32

ρ21′ ρ23 ρ22

 =
i

}



ρ1′1′ ρ1′3 ρ1′2

ρ31′ ρ33 ρ32

ρ21′ ρ23 ρ22

 ,

resonant tunneling and radiative coupling︷ ︸︸ ︷
}ε
2 }Ω1′3 0

}Ω1′3 −}ε
2 −}ΩL(t)

0 −}ΩL(t) −}ε
2 − }ω32




+


−ρ1′1′

τ1′
+ ( 1

τ31′
+ 1

τ31
)ρ33 + ( 1

τ21′
+ 1

τ21
)ρ22 τ−1

‖1′3ρ1′3 τ−1
‖1′2ρ1′2

τ−1
‖1′3ρ31′

ρ1′1′
τ1′3
− ρ33

τ3
+ ρ22

τ23
τ−1
‖32ρ32

τ−1
‖1′2ρ21′ τ−1

‖32ρ32
ρ1′1′
τ1′2

+ ρ33
τ32
− ρ22

τ2


︸ ︷︷ ︸

scattering rates matrix

.

(4.11)

In Eq. (4.11) the ρij = 〈i| ρ̂ |j〉 denote the corresponding density matrix elements and the zero

energy has been set at (E1′ +E3)/2. Furthermore τ−1
ij denotes the outscattering rate from

level i to level j, τi is the lifetime of level i with τ−1
i =

∑
j 6=i τ

−1
ij , and

τ−1
‖ij =

1

2

(
1

τi
+

1

τj

)
+

1

τpureij

(4.12)

is the damping rate of the coherence between levels i and j, containing lifetime broadening

and a "pure" dephasing time τpureij [80].

Notice that Eq. (4.11) omits the time evolution related to state |1〉, because it serves as the

injector level for the next period, which allows for the elimination of this level from the model

by employing "periodic" boundary conditions in the scattering rates matrix. It is vital for the

simulation that these periodic boundary conditions are implemented correctly, because the

model is formulated in a manner which does not phenomenologically include the injection

current density J into the equations. Instead, a periodic system is assumed, where all carriers

that reach the depopulation level |1〉 are immediately re-injected into the system through level

|1′〉. The boundary conditions for this kind of periodicity were already introduced in Sec. 2.3.2.
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The coupling of the microscopic density matrix equations to the macroscopic Maxwell’s

equations is again done via the incorporation of the polarization term in Maxwell’s equations

as the expectation value of the quantum mechanical dipole moment operator,

Pz = −NΓtr(ρ̂eẑ) = −NΓe(z32ρ32 + z23ρ23) = −NΓez32(ρ32 + ρ23), (4.13)

where Γ is the spatial overlap factor between the optical field and the active region. Assuming

no free electric charges and also weak inhomogeneity, the optical field evolution is governed

by the wave equation Eq. (2.6).

Next, consider a Fabry-Perot resonator of a certain length L, and employ the rotating wave

(RWA) and the slowly varying envelope approximations (SVEA) [62, 84]. The optical field

inside the cavity is written as a superposition of counter-propagating waves

Ez(x, t) =
1

2
{E+(x, t) exp [i(β0x− ω0t)] + E−(x, t) exp [−i(β0x+ ω0t)] + c.c} , (4.14)

where "c.c." denotes the complex conjugate of the preceding expression, the + and − signs

specify the positive/negative direction, respectively, and ω0 and β0 are again the field’s carrier

frequency and wave number. Since the superposition of two counter-propagating waves forms

a standing wave, this will lead to the formation of an inversion grating along the propagation

direction x, a phenomenon also known as spatial hole burning (SHB). Later, a separate section

will be dedicated on this phenomenon as it turns out that its analysis is extremely important for

the understanding of the complex multimode dynamics observed in THz QCLs. To model SHB

within the SVEA+RWA approximations, make the following ansatz for the diagonal elements of

the density matrix

ρii(x, t) = ρ0
ii(x, t) + ρ+

ii (x, t) exp (2iβ0x) + ρ−ii (x, t) exp (−2iβ0x) , (4.15)

where ρ+
ii = (ρ−ii )

∗ are the inversion grating’s amplitudes [83]. Lastly, decompose the coher-

ences of the density matrix as

ρ32(x, t) = η+
32(x, t) exp [i(β0x− ω0t)] + η−32(x, t) exp [−i(β0x+ ω0t)] , (4.16a)

ρ1′2(x, t) = η+
1′2(x, t) exp [i(β0x− ω0t)] + η−1′2(x, t) exp [−i(β0x+ ω0t)] , (4.16b)

ρ1′3(x, t) = ρ0
1′3(x, t) + ρ+

1′3(x, t) exp (2iβ0x) + ρ−1′3(x, t) exp (−2iβ0x) . (4.16c)

Notice that Eqs. (4.16a) and (4.16b) follow the electric field ansatz since the corresponding

transition energies are in close resonance with the optical field. In contrast, the ansatz

Eq. (4.16c) is chosen in analogy to Eq. (4.15) for the diagonal elements since the term ρ1′3 is

expected to oscillate only slowly due to the small energetic spacing between subbands 1′ and

3.

Finally, plugging Eqs. (4.14)-(4.16) into Eqs. (4.11)-(4.13) and Eq. (2.6) and invoking the

rotating wave and slowly varying amplitude approximations, the model is reduced to its final

form

1. Propagation equations

n

c
∂tE± ± ∂xE± = −i

NΓez32ω0

ε0nc
η±32 −

a

2
E±, (4.17)
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2. Population densities

dρ0
1′1′

dt
= iΩ1′3

(
ρ0

1′3 − ρ0
31′
)

+

(
1

τ31′
+

1

τ31

)
ρ0

33 +

(
1

τ21′
+

1

τ21

)
ρ0

22 −
ρ0

1′1′

τ1′
, (4.18a)

dρ+
1′1′

dt
= iΩ1′3

(
ρ+

1′3 − ρ
+
31′
)

+

(
1

τ31′
+

1

τ31

)
ρ+

33 +

(
1

τ21′
+

1

τ21

)
ρ+

22 −
(

1

τ1′
+ 4β2

0D

)
ρ+

1′1′ ,

(4.18b)

dρ0
33

dt
= iΩ1′3

(
ρ0

31′ − ρ0
1′3

)
+ i

ez32

2}
(
E∗−η

−
32 + E∗+η

+
32 − c.c.

)
+

1

τ1′3
ρ0

1′1′ +
1

τ23
ρ0

22 −
ρ0

33

τ3
,

(4.18c)

dρ+
33

dt
= iΩ1′3

(
ρ+

31′ − ρ
+
1′3

)
+ i

ez32

2}
[
E∗−η

+
32 − E+(η−32)∗

]
+
ρ+

1′1′

τ1′3
+
ρ+

22

τ23
−
(

1

τ3
+ 4β2

0D

)
ρ+

33,

(4.18d)

dρ0
22

dt
= −i

ez32

2}
(
E∗−η

−
32 + E∗+η

+
32 − c.c.

)
+

1

τ1′2
ρ0

1′1′ +
1

τ32
ρ0

33 −
ρ0

22

τ21
, (4.18e)

dρ+
22

dt
= −i

ez32

2}
[
E∗−η

+
32 − E+(η−32)∗

]
+

1

τ1′2
ρ+

1′1′ +
1

τ32
ρ+

33 −
(

1

τ2
+ 4β2

0D

)
ρ+

22, (4.18f)

3. Coherence terms

dρ0
1′3

dt
= −iερ0

1′3 + iΩ1′3

(
ρ0

1′1′ − ρ0
33

)
+ i

ez32

2}
(
E∗+η

+
1′2 + E∗−η

−
1′2

)
− τ−1
‖1′3ρ

0
1′3, (4.19a)

dρ±1′3
dt

= −iερ±1′3 + iΩ1′3

(
ρ±1′1′ − ρ

±
33

)
+ i

ez32

2}
E∗∓η

±
1′2 −

(
τ−1
‖1′3 + 4β2

0D
)
ρ±1′3, (4.19b)

dη±32

dt
= i (ω0 − ω32) η±32 + i

ez32

2}
[
E±(ρ0

33 − ρ0
22) + E∓(ρ±33 − ρ

±
22)
]
− iΩ1′3η

±
1′2 − τ

−1
‖32η

±
32,

(4.19c)

dη±1′2
dt

= i (ω0 − ω32 − ε) η±1′2 + i
ez32

2}
(
E±ρ

0
1′3 + E∓ρ

±
1′3

)
− iΩ1′3η

±
32 − τ

−1
‖1′2η

±
1′2. (4.19d)

Notice that in Eq. (4.17) a linear loss coefficient a is phenomenologically added, and in

Eq. (4.18b), Eq. (4.18d), Eq. (4.18f) and Eq. (4.19b) a diffusion term 4β2
0D is included,

describing the rate at which carriers diffuse away from peaks of the population grating. Here D

denotes the diffusion constant, which for GaAs/AlGaAs systems is 46 cm2/s [17, 91]. The fields

E± in Eq. (4.17) satisfy the boundary conditions E+ (0) = rE− (0) and rE+ (L) = E− (L)

[83], with the (amplitude) reflection coefficient r.

4.3 Theoretical analysis of a LO phonon depopulation THz QCL

with a strong injector anticrossing

In this section the three level model, outlined in Sec. 4.2, is extended to simulate the QCL

design in [15]. This laser is based on a resonant LO phonon depopulation active region

lasing at the central frequency f0 ≈ 3.5 THz, and has been shown to produce a stable comb

spectrum containing more than 70 equidistant longitudinal modes in a free running regime of

operation. At optimum bias, field autocorrelation measurements indicate multimode lasing,
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and radio frequency (RF) measurements produce a very strong and narrow beatnote with a

minimum reported full width at half-maximum (FWHM) linewidth of approximately 1.53 kHz,

indicating that at least part of the modes are phase-locked [14–16, 63]. Furthermore, a novel

comb coherence detection technique, shifted-wave interference Fourier-transform (SWIFT)

spectroscopy, has been developed to prove the stability of the THz comb over a large number

of round trips [123]. To correctly model this device, one needs to first determine operating

regimes where the "single resonant tunneling and single optical transition" assumption, made

in Sec. 4.2, is justified.

Figure 4.5(a) illustrates the calculated wave functions at a bias of 11 kV/cm obtained with

the tight-binding approximation. From graphical inspection it can be seen that there are in

total five relevant levels per period, which are referred to, according to their assumed role, as

|ULL〉 for the upper laser level, |LLL1〉 for the higher energy level from a pair of lower laser

levels, |LLL2〉 for the lower energy level from the same pair, |DEP1〉 for the higher energy

level from a doublet of depopulation levels, and finally |DEP2〉 for the lowest energy level.

Furthermore, since the structure is periodic, the depopulation levels from the previous period

are denoted as |INJ1〉 and |INJ2〉.
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Figure 4.5 (a) The modulus squared of the wave functions of the THz QCL in [15] within the tight-
binding approximation. (b) The anticrossing coupling strengths between the pair of injector levels,
|INJ1〉 , |INJ2〉, and the upper laser level |ULL〉, computed via the method outlined in Sec. 4.2.1.
(c) Dipole elements calculated for the possible transitions ULL↔ LLL1 and ULL↔ LLL2 .

Figure 4.5(b) and Fig. 4.5(c) depict the calculated coupling strengths }Ωij between the

injector states and the upper laser level for different biases, as well as the magnitudes of

the dipole matrix elements, |zij |, between the upper laser level and the doublet of lower

laser levels. The anticrossing (AC) energies were calculated via the method described in

Sec. 4.2.1, and the numerical values were verified by diagonalization of the tight-binding

Hamiltonian. Focusing on bias values at around 11 kV/cm, the calculations show that there is

almost perfect energetic alignment between |INJ2〉 and |ULL〉, whereas |INJ1〉 and |ULL〉
are separated by approximately ∆EINJ1,ULL ≈ 4.3 meV (not shown in the figure). Even

though the anticrossing energies }ΩINJ1,ULL ≈ 1.18 meV and }ΩINJ2,ULL ≈ 1.38 meV

are of comparable strength, the strong resonance condition between the pair |INJ2〉, |ULL〉
enhances the tunneling probability, i.e. reduces the tunneling time, between those levels [27],

as compared to the tunneling transition between |INJ1〉 and |ULL〉. This means that the
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majority of the tunneling electrons will prefer the |INJ2〉 ↔ |ULL〉 transport channel and

hence our model, which includes only a single tunneling transition, ought to correctly capture

the microscopic dynamics of the real device. From dipole moment calculations in Fig. 4.5(c),

one can see that the optical transition at 11 kV/cm is most likely to occur between the pair

|ULL〉, |LLL1〉, and thus the state |2〉 in the model can be assigned to be subband |LLL1〉
from the system under investigation. Similarly, due to the discussion above, one can set the

injector level in the model, i.e. |1′〉, to state |INJ2〉. Finally, |3〉 is mapped to subband |ULL〉 .
The remaining states |INJ1〉 and |LLL2〉 are then treated within a rate equations approach

and included into the scattering rates matrix by adequately extending Eq. (4.11).

Table 4.1 Simulation parameters for a THz QCL, modeled after the device in [15]. The modal overlap
factor and the facet reflectivities are selected based on [90] for a metal-metal waveguide with thickness
10µm and width of 20µm.

Parameter Symbol Value

Avg. carrier density N 5.6×1015 cm−3

Overlap factor Γ 0.9

Linear amplitude loss l0 11 cm−1

Dipole matrix element ez32 4.0 nm ×e
Refractive index n0 3.6

Diffusion constant D 46 cm2/s

Left mirror reflect. RL 0.8

Right mirror reflect. RR 0.8

1’→3 pure deph. time τ pure
1′3 0.6 ps

3→2 pure deph. time τ pure
32 1 ps

1’→2 pure deph. time τ pure
1′2 1 ps

3 ↔ 2 resonance en-
ergy

∆E32 15.82 meV

1’↔ 3 detuning energy ∆E1′3 -0.43 meV

1’↔ 3 anticrossing }Ω1′3 -1.3447 meV

In Tab. 4.1 the parameter set used for the simulations is summarized and in Tab. 4.2, the

scattering rates between each pair of the active region subbands calculated with our ensemble

Monte Carlo simulation code [52] are shown. The code includes all relevant scattering

mechanisms reported to play a role in quantum cascade lasers, including longitudinal optical

phonons, acoustic phonons, interface roughness and impurity scattering as well as electron-

electron scattering. The calculated rates include all these mechanisms and are presented in

units of ps−1.

4.3.1 Gain and dispersion characterization

In order to extract the spectral gain profile as well as the strength of the chromatic dispersion

induced by the active region design, simulations are performed emulating the THz time-

domain spectroscopy (THz-TDS) technique, often used for gain characterization of THz QCLs

[124–126].
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Table 4.2 Total scattering rates between each pair of relevant subbands of the device in [15] for a bias
of 10.8 kV/cm. The rates are presented in ps−1.

INJ1 INJ2 ULL LLL1 LLL2 DEP1 DEP2

INJ1 0 0.8179 0.0200 0.0016 0.0007 0.0025 0.0029

INJ2 0.4906 0 0.0451 0.0016 0.0007 0.0024 0.0031

ULL 0.0471 0.0894 0 0.1252 0.1101 0.0503 0.0464

LLL1 0.0329 0.0425 0.0794 0 0.4949 0.7787 0.6196

LLL2 0.0214 0.0280 0.0357 0.2810 0 1.0196 1.0960

DEP1 0.0026 0.0037 0.0029 0.0031 0.0042 0 0.8179

DEP2 0.0017 0.0026 0.0018 0.0013 0.0042 0.4906 0

The model is applied to a ring cavity configuration with length L = 2.5 mm with neglected

spatial hole burning effects, which are not expected to play a role for this simulation. As

illustrated in Fig. 4.6, a weak unchirped Gaussian pulse is propagated inside the cavity for one

round trip of length L. At each time step tn of this simulation, as well as at different points xj
along the cavity length, the electric field envelope Enj is recorded for further data processing.

From this data the real and imaginary parts of the refractive index can be calculated in a

straightforward manner, as briefly discussed below.
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Figure 4.6 Diagram of the performed numerical "experiment" used to infer the spectral gain and
dispersion.

In a ring cavity, there are only forward propagating waves (no standing waves) and thus

the electric field can be written as Ez(x, t) = Re{f(x, t) exp [i(β0x− ω0t)]}, where f is the

(slowly varying) envelope function. Let us denote the electric field of the injected seed pulse

at the input facet of our cavity as Ein(t) and the field of the detected pulse as Eout(t). Their

Fourier transforms are Ein(ω) and Eout(ω), with the angular frequency ω. The corresponding

envelope functions are fin (t) and fout (t), with the Fourier transforms Fin (ω) and Fout (ω),

respectively. For a weak seed pulse the light-matter interaction is linear, and the active

region can be described by its complex refractive index n (ω) = n′ (ω) + in′′ (ω), with the

amplitude gain coefficient given by g(ω) = −n′′(ω)ω/c. The dependence between the seed

and output fields is then given by Eout(ω) = Ein(ω) exp (iωnL/c), which corresponds to

Fout(ω − ω0) exp(iβ0L) = Fin(ω − ω0) exp (iωnL/c). From this, one obtains

n′(ω) =
c

Lω
∠{Fout(ω − ωc)/Fin(ω − ω0)}+

cβ0

ω
, (4.20)

n′′(ω) = −g(ω)c/ω = − c

Lω
ln{|Fout(ω − ω0)|/|Fin(ω − ω0)|}. (4.21)
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Figure 4.7 shows the results from numerical THz-TDS simulations at a bias of 10.8 kV/cm

for the active region in [15] for a single round trip of the seed THz pulse. Since the aim
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Figure 4.7 Simulated spectral gain profile (blue curve, left y-axis) together with the normalized group
velocity vgn/c (red curve, right y-axis). (Left inset) The higher order phase acquired by the test pulse.
(Right inset) The second derivative of the wave number with respect to the angular frequency.

is to probe the unsaturated gain profile, for these numerical experiments a weak Gaussian

seed pulse has been used with an initial field amplitude (normalized to its Rabi-frequency) of

0.5 ns−1 and FWHM duration of 0.707 ps, corresponding to a FWHM bandwidth of 623 GHz for

a transform limited pulse. In Fig. 4.7 the blue curve illustrates the simulated spectral amplitude

gain, obtained from Eq. (4.21). One can clearly observe a pronounced splitting of the gain

spectra into two frequency lobes, one centered around 3.55 THz and another one around

4.21 THz. The red curve in Fig. 4.7 depicts the frequency resolved group velocity, calculated

from vg = [∂β(ω)/∂ω]−1 with β(ω) = n′(ω)ω/c, and normalized to the central frequency’s

phase velocity c/n. Due to the strong resonances at 3.55 THz and 4.21 THz, the low and high

frequency components are delayed with respect to each other as vgn/c approaches 0.9511

and 0.9326 for the low and high frequency gain peaks, respectively, where this ratio depends

on the strength of the corresponding transition. The upper left inset of Fig. 4.7 depicts the

calculated higher order phase Ψ = β(ω)L (with the linear part removed) together with a third

order polynomial fit to it, Ψfit, and shows that the dispersion relation within the spectral range

of interest (i.e. from 3.5 THz to 4.2 THz) is approximately cubic. Additionally, the top right

inset illustrates the second derivative of the wave number with respect to frequency, i.e. β′′(ω),

which is a measure of GVD.

From the above analysis it can be concluded that even in the absence of bulk or waveguide

dispersion, the doubly peaked resonant nature of the transition will cause significant dispersion

in the cavity which is expected to deteriorate the comb performance. Here a question naturally

arises: "How does the presence of strong chromatic dispersion impact the mode proliferation

process?" If the multimode behavior of free-running QCLs is due to FWM, as suggested in

[4, 110], then one would intuitively expect that such a high GVD will violate the phase matching

condition and thus render this nonlinear process ineffective. However, from experiment

[15, 16], multimode operation of both mid-infrared and THz QCLs could be observed, even

in the presence of strong dispersion. To investigate further this question, the nature of this

mode generation mechanism is analyzed and the amount of phase mismatch induced by the

resonant transition is estimated.
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4.3.2 Four Wave Mixing (FWM)

Both theoretical [4] and experimental [110] investigations have confirmed that four wave mixing

(FWM), induced by the large third order nonlinearity χ(3), acts as the main comb-formation

mechanism in free-running mid- and far-infrared QCL devices. For example, a series of pump-

probe experiments were performed in [110], where a mid-infrared QC amplifier was pumped

with two single mode lasers, emitting a pair of frequencies, f1 and f2 (with f1 < f2), lying

well under the gain spectrum of the device, Fig. 4.8(a). Outcoupled light was consecutively

recorded and subsequent spectral analysis revealed the clear footprints of degenerate four

wave mixing, i.e. the generation of a pair of conjugate modes at the Stokes and anti-Stokes

frequencies of fs = 2f1 − f2 and fa = 2f2 − f1, respectively. Combined with the inherently

broadband gain of QCLs, this effect could support the generation of more sidebands in a

cascaded manner, ideally spanning the full bandwidth of the laser. Since FWM is an energy

conserving process, in this way it should lead to an equidistant multimode spectrum and thus

a frequency comb.

However, this does not always occur due to the competition of FWM with various comb-

degradation mechanisms. These include group velocity dispersion (GVD) and multimode

instabilities such as the Risken-Nummedal-Graham-Haken (RNGH) instability [87, 127], which

has a lower threshold in QCLs due to spatial hole burning (SHB) [84]. From these the

former, i.e. GVD, has been shown to play a major role in blocking the formation of a nice

equidistantly-spaced spectrum [123, 128]. That is why state of the art QCL frequency combs

usually employ sophisticated dispersion compensating mechanisms (DCMs), either based on

a chirped corrugation structure embedded into the laser cavity [15] or GTI-mirrors positioned

behind one of the facets of the laser [128]. Both techniques have been shown to be very

successful in eliminating the dispersion, leading to comb formation. However, there is still

lack of clear understanding as to why lasers operating at negative GVD are easier to phase-

lock [128] or why the DCMs can be effective only within a narrow range from the overall

operating regime [15].

With the Maxwell-Bloch model presented earlier, one can investigate the effect of different

parameters on the efficacy of FWM by essentially emulating laboratory experiments similar to

those in [110]. Figure 4.8(c) and Fig. 4.8(d) show data from two such computations, where

a traveling wave amplifier was simulated, seeded through the left facet by two modes with

frequencies f1 and f2. In both cases, the simulations were based on the THz QCL from [15],

biased at 11 kV/cm which is approximately the bias aligning the injector and the upper laser

levels, i.e. ε ≈ 0. All scattering rates and other relevant active region parameters were

calculated with the aid of Schrödinger-Poisson and ensemble Monte Carlo codes [52] and their

values are not considerably different from the data published in Tab. 4.2. Importantly, here the

left and right amplitude reflectivities have been set to only 5%, chosen to be sufficiently low as

to ensure the elimination of spatial hole burning from the simulation, and thus isolate FWM as

the only mode proliferation mechanism.

Concretely, in Fig. 4.8(c), the system was pumped from the left facet and the electric field

at the right end of a cavity of length L = 2.5 mm was collected, for a total simulation time of

1 ns. The logarithmic optical power spectrum clearly shows the emergence of signals at the
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Figure 4.8 (a) Optical spectra obtained from pump-probe experiments with a mid-IR QCL, presented in
[110], where the authors pumped the device with two optical modes, ω1 and ω2, and observed sideband
generation at the Stokes and anti-Stokes frequencies, ωs and ωa, respectively. (b) Experimental
data, again from [110], illustrating the dependence of the output power of the Stokes and anti-Stokes
frequencies on to the input power of the ω1 mode, while keeping the input power in the ω2 mode
constant. (c) Simulation of the pump-probe experiment in (a), performed for a THz QCL with the
Maxwell-Bloch model presented in this chapter. (d) The same plot as in (b) however this time the data
comes from time-domain simulations performed with the same model.

Stokes (fs) and anti-Stokes (fa) frequencies in excellent agreement with experimental data in

Fig. 4.8(a). Based on the formalism in [129], one knows that the amplitudes of the generated

sidebands at fa and fs will experience the following dependence on the pump amplitudes, i.e.

Aω1 and Aω2 , and the nonlinear susceptibility χ(3):

Aωa ∝ χ(3)(−ωa;ω2,−ω1,ω2)Aω1A
2
ω2

,

Aωs ∝ χ(3)(−ωs;ω1,−ω2,ω1)A2
ω1
Aω2 . (4.22)

Figure 4.8(d) shows namely this dependence when the strength of the first pump at f1 is varied,

whereas all other parameters are kept fixed. Denoting with Pωj the spectral power in the j−th

mode, it can be seen that in the weak pumping regime, Pωa exhibits linear dependence on Pω1 ,

whereas Pωs quadratic. Further, in agreement with experiment, Fig. 4.8(b), there can be also

observed saturation effects and, more interestingly, the previously reported threshold behavior

of Pωs , emerging only after Pω1 is large enough as compared to Pω2 [110]. One can push this

analysis a little further and estimate the spectral dependence of the non-linear susceptibility

from the relation [129]

χ(3)(−ωs;ω1,−ω2,ω1) ∝ Aωs/[ωsA2
ω1
Aω2 ]. (4.23)

The results from this procedure are graphed in Fig. 4.9, as a contour plot of χ(3) as a function

of f1 and f2. As expected [110], the strength of the nonlinearity decreases as the detuning

between the seed frequencies is increased. Additionally, Fig. 4.9 reports that χ(3) is strongest

in the interval between 3.6 THz and 3.9 THz, which is natural since this spectral range fits

under the gain spectrum, and one can also observe that the FWM efficacy decreases as the

detuning between the seed modes is increased. The latter is another result in qualitative
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Figure 4.9 Simulation of the nonlinear susceptibility χ(3) (in arbitrary units) as a function of the two
seed frequencies, f1 and f2.

agreement with experiment [110]. Even though this approach lacks the robustness of a direct

mathematical proof, these calculations unequivocally confirm that it is indeed four wave mixing

which is observed, and not other multi-mode generation effects.

Lastly, a couple of words on the efficacy of FWM for multimode lasing. The phase mismatch

for the anti-Stokes component of the degenerate FWM process is [64]

L∆β = [2β(ω2)− β(ω1)− β(ωa)]L, (4.24)

where β(ω) is the "wave number"↔ "frequency" dispersion relation. For a Fabry-Perot laser

of length L, the intracavity mode spacing is ∆ω = πc/ (nL), so Taylor-expanding around ω2

up to third order in ∆ω yields, with ω1 = ω2 −∆ω and ωa = 2ω2 − ω1 = ω2 + ∆ω,

L∆β = −L∆ω2 ∂
2β

∂ω2

∣∣∣∣
ω2

+O(∆ω4) ≈ − 1

L

(
πc

n0

)2 ∂2β

∂ω2

∣∣∣∣
ω2

. (4.25)

Plugging in typical values of L = 5 mm, n = 3.6 and ∂2
ωβ ≈ 2 ps2/mm as an upper estimate

for GVD, one obtains a phase mismatch of L |∆k| = 0.0274 rad, which is negligible. This

means that despite significant dispersion present in the cavity, under the favorable conditions

of broadband gain, strong third order nonlinearity and some kind of multimode instability

mechanism, such lasers can potentially emit a multitude of longitudinal modes even in a free

running regime of operation, as reported in numerous experiments [14, 16, 63, 124]. This,

however, does not mean that such GVD is not strong enough to hamper the comb formation

over the full spectral bandwidth. It will be elaborated further in Sec. 4.3.5 on the detrimental

effect of GVD onto the comb coherence, where we will consider simulations of devices with

and without GVD compensation.

4.3.3 Spatial Hole Burning (SHB)

An additional mode proliferation mechanism, highly relevant for quantum cascade lasers, is

spatial hole burning. This effect arises due to interference of counter-propagating waves in

lasers with Fabry-Perot type cavities, and it has been shown to induce multimode instabilities

and also hamper active mode locking of QCL devices [83, 84, 112]. The principle, under which

SHB leads to multimode lasing, is straightforward to understand [22].
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Assuming single mode lasing with angular frequency ω1 and wave number β1, the forward

and backward propagating components of the field, with intensities I+
1 = cnε0|E+|2/2 and

I−1 = cnε0|E−|2/2, will interfere to produce the total intracavity intensity

I1(x) = I+
1 + I−1 + 2

√
I+

1 I
−
1 cos(2β1x+ θ1), (4.26)

where θ1 is the phase difference between the forward and backward propagating field (taken as

zero for simplicity). For a cavity with equal facet reflectivities, i.e. rL = rR = r, both of which

are close to 1, one can take that the intensity of the field in both directions is approximately

constant and has equal value, i.e. I+
1 = I−1 = I1. Thus the above expression simplifies to

I1(x) = 4I1 cos2(β1x). (4.27)

During lasing, the net gain seen by the mode will be equal to the round trip losses, giving the

condition [130]

σ1

∫ l

0
N(x)I1(x)dx =

∫ l

0
aI1(x)dx, (4.28)

where the left hand expression is proportional to the net gain and the right hand side to the

total round trip losses, with a = aw + am being the distributed loss parameter, incorporating

both waveguide and mirror losses.

The steady state dependence of the population inversion on intensity can be given by the

formula

N(x) = N∆(x) = N∆eq/[1 + I1(x)/Isat]. (4.29)

Here, N is the average electron density, ∆eq is the equilibrium population inversion, Isat =

cnε0~2/(2µ2T1T2) is the saturation intensity of the material [22], with T1 the inversion lifetime

parameter, T2 the total dephasing time, µ the dipole matrix element (in units C · m), and

σ1 = σ(ω1) is the gain cross-section at the particular lasing frequency ω1.

For multimode lasing, the above threshold condition Eq. (4.28) outlines a procedure for the

estimation of the modal intensity under SHB. Assume that there are a total of k candidate

cavity modes for lasing, specified by the set Mk = {(ω1,β1, I1), (ω2,β2, I2), . . . , (ωk,βk, Ik)},
where the triplet (ωj ,βj , Ij) denotes the j−th mode angular frequency, wave number and

intensity, respectively. If one neglects interference effects, then each mode, e.g. the ith, ought

to approximately satisfy the balance equation

σ(ωi)N∆eq
∫ L

0

Ii cos2(βix)dx

1 + 4
∑k

j=1 Ij cos2(βjx)/Isat
=

∫ L

0
a(x)Ii cos2(βix)dx, (4.30)

which will have to hold irrespective if the mode is lasing (in which case we get Ii = 0 and thus

the identity 0 ≡ 0) or not. Equation (4.30) can be rewritten in the following form

Ii = Fi(I1, I2, ...Ik) =
σ(ωi)N∆eq∫ L

0 a(x) cos2(βix)dx
×
∫ L

0

Ii cos2(βix)dx

1 + 4
∑k

j=1 Ij cos2(βjx)/Isat
, (4.31)

which is a system k equations for k unknowns (the mode intensities). Furthermore, since

Eq. (4.31) is written in the form of an iterated function, one can try a fixed point iteration

algorithm

Im+1
i = Fi(I

m
1 , Im2 , ...Imk ), for i = 1, 2, . . . , k, (4.32)
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where m is the iteration index, to find the steady state solution and determine the lasing modes.

As a proof of concept, an exemplary such fixed-point iteration was performed for a hypothetical

laser with a single optical transition, homogeneously broadened with a Lorentzian lineshape,

cross-section given by the formula Eq. (2.79), and suitably chosen other parameters (not

mentioned here since the exact values are not relevant). Importantly the central frequency

was chosen at f0 = 3 THz and the total losses were set to a = 15 cm−1. Results from

the fixed-point iteration in Eq. (4.32) are plotted in Fig. 4.10(a)-(c) and clearly illustrate how

spatial hole burning enables multimode emission, even in homogeneously broadened lasers.

Figure 4.10(a) shows the time-evolution of the field modes, whereas Figure 4.10(b) shows the

saturated gain at the end of the algorithm, i.e. after m = 500 iterations. Note how, at steady

state, each of the modal amplitudes is "chosen" in such a way so that the modal gain will

exactly balance the losses (plotted with a horizontal red line in Fig. 4.10(b)).
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Figure 4.10 Results from fixed-point iteration simulations of Eq. (4.32). (a) Electric field modal
amplitude versus iteration number. (b) Modal round trip gain versus frequency and (c) electric field
amplitude versus frequency after 500 iterations (i.e. steady state solution).

The obtained results do raise some immediate concerns. First of all, even to the author’s

own surprise, the fixed-point iteration algorithm does converge to a steady state solution, with

constant values for the intensities Ij , without exhibiting any irregular variation in the modal

amplitudes. This is in stark contrast with experimental data, which reports an "incoherent"

multimode spectrum when the laser is pumped high above threshold and SHB is strong [21, 84].

It might be that the steady state loss=gain relation, Eq. (4.30), utilizes a too simplistic model

for the dependence of carrier inversion onto the intracavity intensity, or that nonlinear effects

such as self- and cross- phase modulation (stemming from intensity dependent refractive

index and hence frequency↔ wave number dispersion relation) might play a role. Additionally,

at each iteration m one might need to consider random perturbations of the modal photon

density, arising due to spontaneous emission or external "environmental" factors jeopardizing

the frequency stability of the laser. All of these extensions are out of the scope of this thesis,

so the interested reader is encouraged to further pursue these questions.
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Figure 4.11 Results from simulations of a numerical pump-probe experiment, performed with our
model in [5]. (a), (b) and (c) display the variation of the free spectral range as a function of the mode
index m, for values of the pump pulse amplitude, expressed in terms of the Rabi-frequency, of 0.1
ns−1, 1 ns−1 and 10 ns−1, respectively. For illustrative purposes we also plot the cavity modes (black
lines), calculated via fm = m× c/[2Ln′(fm)], with amplitudes weighted by the normalized gain. (d),
(e) and (f) Spectral gain (left y-axis) and the real part of the refractive index (right y-axis) as a function
of the mode index m and for different pump pulse amplitudes. All simulations were performed at an
applied bias of 11 kV/cm, where the upper-lower laser level transition frequency was calculated as
f0 = 3.88 THz. The refractive index at f0 was set to n = 3.6 and the simulated cavity length was
chosen as L = 5 mm, giving a free spectral range FSR(f0) = 8.3 GHz and a corresponding central
mode index m0 = 487.

4.3.4 Comb degradation mechanisms

It is known that chromatic dispersion, i.e. frequency dependence of the refractive index, affects

the equidistance of the Fabry-Perot modes, and thus hampers the formation of a comb. Direct

estimation of the GVD of a device is difficult, as it has a strong dependence on the system

parameters, waveguide design, as well as the power spectral density of the lasing modes (due

to self- and cross- phase modulation effects) [128]. This also makes the theoretical treatment

very challenging and therefore impedes the computer aided design of QCL frequency combs.

Again, one finds that the Maxwell-Bloch equations provide a suitable framework for the

rigorous treatment of dispersion, as the density matrix equations intrinsically capture po-

larization effects, and thus dispersion due to optical gain. The model can be extended by

the phenomenological inclusion of different dispersive components, e.g. waveguide or bulk

dispersion, via complementary ordinary differential equations, modeling this additional material

response in the time domain [55].

Here we restrict ourselves to modeling only dispersion due to optical resonances, i.e. gain

dispersion, and in the following several computational experiments to characterize its impact

on the equidistance of the cavity modes are performed.

Again, the simulation technique introduced in Sec. 4.3.1 is applied. There the general idea

was to treat the gain medium of length L as a nonlinear filter with some unknown transfer

function. If one were able to extract the magnitude and frequency response of this transfer

function, this information could be used to infer the real and imaginary part of the refractive

index. This can be done quite easily by simulating the passage of a pulse, with suitably

chosen spectral width and amplitude, through the medium, recording the pulse at the output
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facet of the simulation region, and finally processing the input and output data in frequency

domain. The real power of this method lies in its universality, as it allows us to characterize the

time-dependent behavior of the system under different operating conditions, by simply varying

the model parameters.

From basic laser theory [22], it is well known that a Fabry-Perot cavity of length L will sustain

longitudinal modes, determined by the relation fm = m × c/[2Ln′(fm)], where m is some

(large) integer, fm denotes the frequency of the mth mode, c the velocity of light in vacuum

and n′(fm) is the corresponding value of the real part of the refractive index. The spacing

at the mth longitudinal mode is also known as the free spectral range (FSR) and is given by

FSR(m) = fm+1 − fm ≈ c/[2Ln′(fm)], which is generally index-dependent.

In free-running QCLs, due to their broadband nature and ultrafast carrier dynamics [4],

there will be a strong competition between FWM and dispersion, the outcome of which will

determine the emission spectrum of the device. This is because, while the former is an

energy conserving process and thus tends to homogenize the mode spacing, the latter has

a detrimental influence as it results in an FSR depending on frequency. It has been shown

that at operation regimes where the different components of dispersion cancel each other

out [16], or when special dispersion compensation mechanisms are employed [15], four wave

mixing can defeat intracavity dispersion via the injection-locking effect [22], resulting in a broad

comb spectrum. Generally, however, those comb regimes cover only a fraction of the whole

dynamic range of the device and are usually limited to near-threshold operation. In fact, a

clear explanation of why FWM loses to GVD is somehow missing. It has been suggested [128]

that in cases of large dispersion the phase-matching condition for FWM is violated and

therefore the process becomes inefficient. However, in Sec. 4.3.2, it was shown, via a simple

Taylor expansion, that for the type of FWM depicted above, values of the GVD coefficient as

high as 2 ps2/mm cannot introduce a sufficiently strong phase-mismatch [5]. Here one can

observe another comb-degrading effect, which can be related to spatial hole burning-induced

instabilities, and could turn out to be also one of the reasons for the breakdown of comb-like

operation at high pump currents.

First, the frequency dependence of the refractive index is investigated in detail, using the

computational method outlined in the beginning of this section, when the amplitude of the

input pump pulse is varied. In doing so, one can analyze the net effect of different intensity-

dependent phenomena, such as gain saturation and also self- and cross-phase modulation,

onto the system dynamics.

For these simulations take the QCL of Ref. [15], and again apply the technique from

Sec. 4.3.1. This time, the cavity length is set to 5 mm and the pump pulse is propagated only

once before post-processing. Figure 4.11 illustrates the results from this procedure when the

strength of the input pulse is varied. The latter is chosen as an unchirped Gaussian, with

an intensity full-width at half maximum (FWHM) duration of 1 ps, corresponding to a FWHM

bandwidth of 440 GHz, whereas the amplitude Ainit is normalized to the Rabi-frequency of

the material.
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As a figure of merit for the effect of chromatic dispersion on the comb-spacing, one can

calculate the frequency dependent variation of the free spectral range via [131]

∆FSR(m) = (fm+1 − fm)− (fm − fm−1). (4.33)

Figures 4.11(a)-4.11(c) illustrate the dependence of ∆FSR upon the pump pulse intensity. For

completeness Fig. 4.11(d), Fig. 4.11(e) and Fig. 4.11(f) also plot the shapes of the calculated

spectral gain and the real part of the refractive index.

The plots in Fig. 4.11(a)-Fig. 4.11(f) show large variations in ∆FSR upon gain saturation.

This is due to the fact that causality imposes an intimate relationship between the real and

imaginary parts of the refractive index, via the Kramers-Kronig relations [132]. In particular,

one can see from Fig. 4.11(b)-(c) and Fig. 4.11(e)-(f) that at places where the saturated

spectral gain has a large curvature, due to the dependence ∆FSR(m) ∝ ∂2fm/∂m
2, this

would lead to strong variation of the free spectral range and thereby very uneven mode spacing.

This reveals that dispersion control is a highly non-trivial problem, deeply rooted in the laser

dynamics (e.g. the fluctuations in the mode intensities), which might explain the difficulties of

designing a dispersion compensation mechanism which can be effective over a broad range

of operating conditions.

As mentioned in the previous section, spatial hole burning is directly related to amplitude and

phase instabilities in QCLs due to the effective lowering of the RNGH-threshold, and therefore

deserves a more detailed study. A thorough analytical investigation of SHB was already

performed in [84] via a linear stability analysis of the Maxwell-Bloch equations. The authors

showed how, in the presence of spatial hole burning, a two level system with a population

inversion lifetime T1 and a dephasing time T2, will experience parametric gain, with maximum

values at frequencies separated from the central frequency by the following distance-squared

Ω2
max ≈

1

T1

√
p− 1

3T1T2
, (4.34)

where p is the pump parameter and p = 1 means that the laser is biased exactly at threshold.

When driven high above threshold, many QCLs, candidates for frequency comb emitters,

show the spectral splitting, predicted by the above formula, confirming the correctness of the

analysis [83].

Ideally, SHB will not play a significant effect if the pumping is weak, i.e. p ≈ 1, or the peaks

of the parametric gain are well outside the gain full width at half maximum bandwidth, i.e.

∆ωFWHM . Assuming, for simplicity, that T1 ≈ T2, one could impose the condition

T1 � Tmax1 =
1

∆ωFWHM

√
p− 1

3
, (4.35)

from where it is evident that for lasers with extremely fast gain recovery, spatial hole burning

could not be expected to play a significant role. The order of magnitude of the gain recovery

time needed, in order to suppress SHB, can be calculated directly. For a value of p = 2,

for example, and a value of ∆ωFWHM ≈ 2π × 1 THz, this yields Tmax1 ≈ 0.06ps, which is

unfortunately too fast to be realistic.

Another method to suppress spatial hole burning is by incorporating the gain medium into a

ring cavity instead of a Fabry-Perot one. In [133] it has been demonstrated that integrating
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the active region into an external ring cavity leads to dramatic improvement of the quality of

active mode locking and consecutively the emission of short pulses by a mid-infrared QCL,

known to be infamously hard to mode lock. A more accessible method for reducing SHB is

by creating a cavity with asymmetric mirror reflectivities such that the outcoupling is much

stronger at, for example, the right facet of the cavity than the left. In such a scenario, the

intensity of the right to left propagating component of each mode will be much smaller than

the one in the opposite direction, which will lead to suppression of the interference term in

Eq. (4.26) and thus reduction of the depth of the inversion grating. In Sec. 4.3.6, this latter

scenario is simulated, and it is shown how, when SHB is weak, a free-running laser can settle

in a regime of stable phase- and amplitude-coherent operation and therefore emit a frequency

comb.

4.3.5 Simulations of comb operation and comparison to experiment

In this section, simulation results for comb operation of the device in [15] are presented, now

considering counter-propagating waves in the Fabry-Perot cavity with a length L = 5 mm,

giving rise to spatial hole burning. The simulations only use the device specifications and

well known material parameters as an input, with the exception of empirical dephasing times,

which were adapted from [121]. Again, the electron wave functions and eigenenergies are

computed with a Schrödinger-Poisson solver, and the carrier lifetimes are extracted from

Monte Carlo carrier transport simulations. The used model parameters are listed in Tab. 4.1

and the scattering rates are in Tab. 4.2. The simulation time lasts ∼15000 round trips to obtain

results close to steady state.

In Fig. 4.12, the calculated spectra and beatnotes are compared from simulations without

dispersion compensation, Fig. 4.12(c) and Fig. 4.12(d), and with dispersion compensation,

Fig. 4.12(e) and Fig. 4.12(f), to experimental data, Fig. 4.12(a) and Fig. 4.12(b). Here,

the simulation bias is set slightly below "injector" ↔ "upper laser level" resonance, i.e., at

10.8 kV/cm.

In both the dispersion compensated and uncompensated case, there is a reasonable

agreement with the experimental optical power spectra, Fig. 4.12(a), however substantial

differences arise when one considers the corresponding beatnotes.

Let us first discuss the simulation results in Fig. 4.12(c) and Fig. 4.12(d). While experimental

data show a strong and narrow beatnote with an FWHM linewidth of approximately 0.55 MHz,

Fig. 4.12(b), in Fig. 4.12(d) one observes a multi-beatnote signal distributed around 8.14 GHz.

This deviates from the experimental value of around 6.8 GHz because the experimental

implementation of GVD compensation in the cavity results in an increased effective cavity

length. In the RF spectrum of Fig. 4.12(d), two peaks can be distinguished, one at 8.149 GHz

and another at 8.151 GHz, both with a FWHM of approximately 3 MHz (Fourier transformation

of 104 round trips yields a frequency resolution of 0.83 MHz, where at least two frequency

intervals are required to resolve the peak). From the group velocity delay plot in Fig. 4.7

as well as from the spectra, one can deduce that since the high frequency lobe’s spectral

components carry more power and have lower group velocity vg, the stronger peak in the

beatnote belongs to those frequency components, whereas the weaker one is associated with
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Figure 4.12 Optical power spectra (left column) and beatnotes (right column) from experiment and
simulations of the device in [15]. (a), (b) Experimental data for the dispersion compensated laser, at
driving current of 0.9 A. Simulation results without dispersion compensation (c)–(d) and with dispersion
compensation (e)–(f). The experimentally detected beatnote in (b) has a FWHM of approx. 0.553MHz,
whereas the simulated beatnote in (f) has a resolution limited FWHM of 1.66MHz. The strongest peak
in (d) has a FWHM of 3.04 MHz.

the lower frequency modes. This means that there ought to be two co-propagating pulses,

albeit with a different vg, which interfere in the beatnote measurement to produce the chaotic

RF spectrum in Fig. 4.12(d). The amount of noise in this non-comb regime of operation can be

therefore traced mainly to the timing-jitter induced by the difference in group velocities of those

pulses. This will be elaborated further below, when the results in time domain are considered.

The situation drastically changes when dispersion compensation is added to the simulations.

To cancel the accumulated higher order phase components, after each round trip one Fourier-

transforms the electric field envelope, subtracts from the resulting phasor the phase Ψ,

extracted analogously to the simulation in Fig. 4.7, and inverse Fourier-transforms the result.

The obtained, with this procedure, spectral power density and RF spectra are plotted in

Fig. 4.12(e) and Fig. 4.12(f). One can see that such a procedure equilibrates the difference

in the group velocities of different lasing modes, which results in a single, strong and narrow

beatnote with a linewidth corresponding to the numerical frequency resolution, as expected

from the experimental results for comb operation in Fig. 4.12(b).

In [123] it was shown that the strong injector anticrossing leads to a splitting of the emitted

comb spectra in frequency domain and to an effect which was coined as "temporal hole

burning" in time domain. To compare our simulation results to experiment, a low-pass and

high-pass finite impulse response filter are applied to the simulated electric field, in order

to separate the low and high frequency lobe components of the signal, respectively. Since

the experimental design is dispersion compensated, let us first first consider this scenario,

corresponding to the results in Fig. 4.12(e) and Fig. 4.12(f). The smoothed experimental and
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simulated instantaneous intensity are depicted in Fig. 4.13(a) and Fig. 4.13(b), respectively,

with a smoothing length of 10 ps in experiment and 3 ps in simulation.
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Figure 4.13 Time domain separation of the optical field into high and low frequency lobe components.
(a) Measured intensity over time from [123] for the same THz comb device as in [15], driven with 0.9 A

current. (b) Simulated intensity over time for a dispersion compensated QCL evolved for ∼15000
round trips. (c) Time dependence of the electron populations in the injector and upper laser level ( i.e.
ρ1′1′ , ρ33) as well as the dressed states (i.e. ρ++, ρ−−).

This approach already yields decent agreement between experiment and simulation as

both data demonstrate a pulse switching behavior between the high and low frequency lobe

components of the spectra. The high frequency lobe pulse (blue curve) has a longer time

duration than the low lobe signal (red curve). This results from the difference in relative

strengths of the corresponding spectral lobes, as the high lobe components experience more

gain, as evident in Fig. 4.7. Furthermore, in the experimental trace an additional oscillatory

substructure emerges, the reason for which remains to be clarified. However, a possible

explanation could be the presence of windowing effects of the Fourier transform spectrometer.

The dependence of the relative strengths of both lobes on the bias has already been

discussed in [121], however its implications on the time domain behavior of the laser were

not considered in greater detail. To summarize the conclusions in [121], the inclusion of a

strong injector anticrossing leads to a splitting of the injector |1′〉 and upper laser level |3〉
into a doublet of so-called "dressed states". The higher energy level is denoted by |+〉 (also

known as the "anti-symmetric" state), and the other level by |−〉 (i.e. the "symmetric" state).

These states are separated by approximately the anticrossing energy 2}Ω1′3 (depending on

the detuning), which can be readily confirmed from experiment [124]. The relative radiative

coupling strength of states |+〉 and |−〉 with the lower laser level depends on the detuning

from resonance. Assuming low intracavity intensity, it can be shown that below the resonant

bias, i.e., for }ε < 0, the high frequency lobe of the gain dominates the transition, whereas

above resonance the low lobe does [121]. As simulations and experimental data show, this

results in a longer high frequency pulse.
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4.3 Theoretical analysis of a LO phonon depopulation THz QCL with a strong injector anticrossing

Figure 4.13(c) displays the calculated density matrix elements ρ33, ρ++, ρ−− and ρ1′1′ as

a function of time. For all four terms, dampened Rabi-oscillations occurring upon a pulse

switching event are observed, which manifest the intramode beating of the high and low lobe.

The period of these oscillations is approximately 2.84 ps, giving a frequency of 350 GHz, which

is namely the beat frequency between the high and low lobes of the dispersion compensated

laser’s spectrum (see Fig. 4.12). One can also clearly observe that whenever the high

frequency lobe lases, state |+〉 gets more strongly depleted, whereas whenever the low lobe

is switched on, state |−〉 saturates.
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Figure 4.14 Simulated high (blue) and low (red) frequency pulses for a numerically dispersion
compensated (left column) and an uncompensated (right column) THz QCL. Data from round trip
4615-4618 (top) and 4710-4713 (bottom) are shown.

To illustrate the implications of the existence of co-propagating high and low frequency

lobe pulses in the presence of GVD, the simulated instantaneous intensities with (left column)

and without (right column) dispersion compensation are shown in 4.14 for different temporal

intervals. Temporal hole burning, or pulse switching, is clearly present in both cases. With

dispersion compensation, the periodicity is preserved over many round trips, as can be seen

by comparing the intensity traces for the two displayed temporal intervals. By contrast, in the

presence of GVD the high and low frequency lobes constantly compete with each other, which

leads to a complex non-periodic temporal shape of the signal. Thus, while the signal from

a low GVD QCL has a minimal timing jitter, which results in a narrow and strong beatnote,

the one from a dispersion uncompensated device operates in a multi-pulse regime with a

complicated temporal and spectral profile, and thus never quite reaches a steady state. From

this it follows that a coherent comb cannot be formed over the full spectrum, but either no

comb or sub-combs can be observed [16, 63].

One can naturally extrapolate these conclusions to a situation where the effects of material

and waveguide dispersion add to a much more complicated dispersion profile, as compared to

the one in Fig. 4.7. In such a case, the competition between electric field signals propagating

with various different group velocities will lead to a chaotic and unstable beatnote, characteristic

for multimode non-comb behavior of QCLs [16, 63].

Lastly, it is noteworthy to add that with these density matrix simulations, the temporal hole

burning effect could be reproduced at different values of the applied bias ranging between 10.7

and 11.4 kV/cm (not shown here). For lower or alternatively higher biases, lasing occurred
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4 Free running THz QC lasers

only in the dominant frequency lobe, due to the large difference between the corresponding

components of the gain, and thus no pulse switching could be observed. Also it was found

that the temporal overlap increases as the spectral gap between the high and low lobes is

decreased, i.e. with decreasing anticrossing energy }Ω1′3, as well as with broadening of the

radiative transition’s linewidth.

4.3.6 In-depth analysis of the modal dynamics and the impact of spatial hole
burning

In the following a more detailed study of the presented results from long-time simulations of the

hypothetical THz QCL for a self-starting, free-running configuration under different boundary

conditions is performed. In the subsequent analysis the simulations are always started with

some sufficiently small (and randomly chosen) value for the envelope f(x, t = 0), physically

corresponding to some random fluctuations of the field, and the system is evolved for 3000

to 4000 round trips until the envelope could be assumed to reach steady state. Within this

analysis, it is found that spatial hole burning has a dramatic effect on the comb performance,

one that appears even more relevant than dispersion. To see how SHB affects the dynamics,

the time evolution of the phase and amplitude of each of the lasing modes in the spectrum is

studied in greater detail.
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Figure 4.15 Simulations of non-comb and comb regime of operation of a THz QCL where both
mirror reflectivites were set to 100%. (a)-(d) Modal phase, modal power, optical log-spectrum and
radio-frequency (RF) beatnote, respectively, of a dispersion uncompensated device. (e)-(h) Modal
phase, modal power, optical log-spectrum and RF beatnote, respectively, of a dispersion compensated
device. The modal phases and powers were obtained via the short-time Fourier transform with a
Hanning window function of duration 5 round trips (round trip time is approximately Trt = 120 ps) for a
total simulation time of 4500 round trips. The phases are presented after filtering out the constant
linear time-drift, obtained with least squares estimation. We plot the results for the 10 strongest modes
(ordered in increasing order from 1 to 10) in the corresponding spectra in c) and g), the locations
of which are indicated by star-shaped markers. The color coding for each mode is presented in the
legend.

In order to establish a criterion as to what this time evolution should be in the case of a

comb and a non-comb regime of operation, the simulations from Sec. 4.3.5 of the same device

with and without dispersion compensation are revisited, remembering that in the former case

the laser emitted a comb, whereas in the later - an incoherent multimode spectrum. Here, a
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4.3 Theoretical analysis of a LO phonon depopulation THz QCL with a strong injector anticrossing

deeper look into the data is presented, where we track the time-evolution of the amplitudes

and phases of the 10 strongest lasing modes in both cases.

The results are summarized in Fig. 4.15. Note that for these simulations the laser was

biased at 10.8 kV/cm, which is when the injector level is energetically below the upper laser

level (i.e. ε < 0). A quick comparison of Fig. 4.15(a)-(d) and Fig. 4.15(e)-(h) reveals a striking

difference in the time-domain dynamics of both scenarios. In Fig. 4.15(a)-(d), demonstrating

the non-comb operational regime, one observes irregular fluctuation of phase and amplitude

without any noticeable regularity or tendency for convergence. In fact, it almost seems that all

individual modes switch on and off at random time intervals. This is namely a manifestation of

multimode phase and amplitude instabilities and could be due to the RNGH-instability effect,

discovered independently by Risken and Nummedal [87] as well as Graham and Haken [127].

In contrast, whenever the laser operates as a comb, i.e. Fig. 4.15(e)-(h), after several hundred

round trips the lasing modes quickly converge to their steady state values with very little

variation what so ever. Thus the modes are lasing constantly and are clearly phase-locked.
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Figure 4.16 Simulation results of a free-running THz QCL, biased at 11 kV/cm, where both the left
and the right facet reflectivities were set at 100%, in order to support a strong spatial hole burning
effect. (a) and (b) illustrate the modal phase and power of the top ten strongest lasing modes in the
spectrum. (c) Optical power log-spectrum (normalized) and (d) RF beatnote of the simulated device.
The modal characteristics, i.e. (a) and (b), were extracted using the short-time Fourier transform with
a Hanning window of 5 round trips over a total simulation time of 3000 round trips. The color coding is
identical to Fig. 4.15.

Now, let us investigate whether SHB has any impact on the laser spectrum. First the device

under study is simulated when biased at 11 kV/cm, in a free-running regime of operation,

without dispersion compensation, when both outcoupling mirror reflectivities were set to 100%.

Since equal facet reflectivities favor the formation of standing waves, this will lead to a strong

SHB.
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4 Free running THz QC lasers

Unsurprisingly, the simulation results reveal a similar behavior to the one in Fig. 4.15(a)-(c),

with irregular variation of the spectral modes in Fig. 4.16(a)-(b) and a highly irregular beatnote

signal around frt = 8.3 GHz, Fig. 4.16(d). One can conclude, quite expectedly, that when

there is no dispersion compensation and spatial hole burning is strong, the laser fails to

produce a comb.
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Figure 4.17 Simulation results for the same configuration as in Fig. 4.16, with the difference that
the right reflectivity coefficient was set to 5%, whereas the left was maintained at 100%, in order to
support a weak spatial hole burning effect. (a) and (b) depict the modal phase and power of the top
10 strongest modes, visible in the optical spectrum in (c). (c) Optical log-spectrum produced by the
simulation with the top 10 modes indicated by red star-shape markers and corresponding mode index.
(d) RF beatnote, calculated from the simulation.

Next, consider simulations for a free-running laser with asymmetrically chosen outcoupling

losses, where the left reflection coefficient was maintained at 100% and the right one was set

to 5%. As discussed in Sec. 4.3.3, this strengthens the unidirectionality of the emission and

thus suppresses SHB. Notice that here also no dispersion compensation has been employed,

in contrast to the simulation results in Fig. 4.15(e)-(h). The plots in Fig. 4.17(a)-(d) show that

by only eliminating spatial hole burning one can recover the comb-like stable behavior.

Additionally, similarly to the spectrum in Fig. 4.15(g), Fig. 4.17(c) shows that the comb-

like behavior seems to come at the expense of significantly reduced spectral bandwidth (as

compared to e.g. Fig. 4.16(c)). Note again that this was experimentally observed in Ref. [21],

where the elimination of SHB was shown to result in a sparse, but coherent multimode

spectrum.

4.3.7 Seeding the comb formation

Before the analysis of free-running THz QC lasers is concluded, it will be worthwhile to

discuss the various possible regimes of multimode dynamics. From the previous Sec. 4.3.6,
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4.3 Theoretical analysis of a LO phonon depopulation THz QCL with a strong injector anticrossing

it seemed that eliminating spatial hole burning is the "ultimate remedy" for recovering of the

comb-like characteristics of the emission spectrum. Unfortunately, this is not always the case,

as eliminating SHB will (a) reduce the number of lasing modes and thus the covered spectral

range and (b) might still result in an unstable, incoherent multimode behavior as experimentally

confirmed in [21].

Due to the two separate transitions in the laser under investigation, let us study the effect of

spectral cross-talk between the corresponding frequency lobes. Until now, the self-consistently

extracted experimental parameters had such values as to ensure a minimal overlap between

modes belonging to the high and the low frequency lobes, as is also observed in the corre-

sponding experiment [15]. Even though such a device (i.e. a comb with a gap in the spectrum)

could be deemed as defect, time-domain simulations indicate that whenever the cross-talk

between the two optical transitions is minimal, the device is easier to phase lock. This could

be due to the fact that in the presence of cross-talk, one lobe tries to impose its own FSR

(via FWM) onto the other (and vice versa), which results in a constant competition for gain

between modes from separate gain lobes. In case the FSR of both lobes is different, which

will most probably be the case namely due to asymmetrical saturation effects, see Fig. 4.7,

this will incur a constant mode competition which might not "settle" in favor of one particular

choice for the FSR, but rather destabilize the modal dynamics altogether.
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Figure 4.18 Simulations of a free-running laser (FRL) with symmetrically (a) and asymmetrically (b)
chosen reflection coefficients. (c) Simulations of a free-running laser with the effect of pure dephasing
removed, yielding an optical spectrum with minimal cross-talk between the distinct optical transitions.
(d) Simulations with the same parameter set as in (c), however in the case where the lasing has been
seeded with two pairs of resonant modes, one located under each frequency lobe of the gain.

To illustrate this effect, simulations of the same resonant LO-phonon QCL, biased at 11

kV/cm, with slightly altered pure dephasing parameters (see Tab. 4.1), are presented. Namely,

the value of τpure
32 was decreased to 0.4 ps (in effect increasing the linewidth of both transitions),

in order to ensure that both spectral lobes are sufficiently "close" to each other and thus

induce spectral cross-talk. Results from those simulations are illustrated in Fig. 4.18(a) and
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4 Free running THz QC lasers

Fig. 4.18(b), with the former presenting the case when SHB is strong due to equally set facet

reflectivities, and the latter illustrating weak SHB due to asymmetric reflection coefficients. The

abbreviations in the figure read: FRL - free-running laser, SL - seeded laser, SHB - spatial

hole burning.

Let us look in depth at the results of Fig. 4.18(a)-(b), showing the spectrogram, computed

with a short-time Fourier Transform, of the electric field. We see that both in the presence

and absence of SHB, the spectrum consists of multiple modes, which drift away from the

center of the spectrum towards its periphery. This is probably to due to cascaded FWM,

which "transports" the maximum modal power from inside to the outside of the gain spectrum.

Such a peculiar behavior, which to the best of the author’s knowledge has not been reported

before, seems to be due to the presence of a large overlap in the spectra of both transitions.

Furthermore, in this case, the elimination of SHB in Fig. 4.18(b) does nothing to stabilize the

spectrum.

On the other hand, Fig. 4.18(c)-(d) reveal simulations when the contribution of the pure

dephasing time τpure
32 has been removed completely, in order to ensure minimal spectral-cross

talk between the distinct gain lobes. In Fig. 4.18(c) one sees the spectrogram from free-running

laser simulations, whereas Fig. 4.18(d) illustrates the case when the same laser (i.e. with

the same parameter set as in (c)) has been seeded with two pairs of modes, with one pair

located under each gain lobe. In both simulations, the facet reflectivities were set to 100%, as

a prerequisite for strong spatial hole burning.
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Figure 4.19 Detailed "look" into the simulation results from Fig. 4.18(d). Time-dependence of the
modal phase (a) and amplitude (b) of the 10 strongest lasing frequencies from the optical power
spectrum in (c).

From Fig. 4.18(c) we see that reducing the spectral cross-talk "straightens" the spectrum as

now the evolution of the modal-power maximum proceeds somewhat parallel to the arrow of

time, i.e. a significant drift of this peak is not observed. Nevertheless, from the spectrogram

alone, one can quickly conclude that the laser emission will not satisfy the requirements for

a frequency comb, since the modal amplitudes are not constant in time, but instead vary
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without any discernible pattern. Indeed, beatnote calculations for the spectrum of that same

simulation (not shown here), reveal a strong peak at the approximate round trip frequency of

8.2 GHz, surrounded by two side-bands around 1 GHz apart, indicating amplitude modulation.

By contrast, when one considers calculations with the same parameter set as in Fig. 4.18(c),

however with the lasing being started with two pairs of seed frequencies, both having the

same FSR, one observes that the comb behavior is recovered, albeit again at the expense

of a reduced spectral bandwidth. The full modal analysis of this simulation is presented in

Fig. 4.19(a)-(c). The phase and amplitude of the top 10 lasing modes quickly settles to some

constant value, without any sign of amplitude modulation, Fig. 4.19(a)-(b). In Fig. 4.19(c), the

spectrum consists of two distant narrow-band frequency lobes, with the initial seed frequencies,

indexed accordingly, carrying also the most energy. One can see that even in the presence of

SHB the laser can act as a frequency comb, provided the correct comb formation mechanism

has been "ignited" in some adequate way.

4.4 Conclusion

In this chapter a theoretical model was presented, which is suitable for the analysis of transient

dynamics of THz quantum cascade lasers designed for frequency comb operation. It was

shown on multiple instances how the simulation results agree well with experimental data both

in the time and frequency domain. The reader has hopefully also gained a deeper insight into

the intricate coupling between various comb generation and comb degradation mechanisms at

play in free-running QCLs. Since the complexity of the theoretical model does not allow for a

mathematical solution, the underlying dynamics was investigated via numerical experiments

through simulations. Of course this technique to perform the analysis of complex systems

does not yield comparable intuitive understanding as a rigorous analytical result, however

it is probably more powerful as it delivers results with better empirical accuracy (due to the

increased explanatory power of the model), and as such allows us to "design" these numerical

experiments in a targeted way in order to gain knowledge about the device.
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5.1 Introduction

In the previous chapter it was shown how, due the intrinsically multimode nature of QCL

emission spectra, these devices can be used for the generation of coherent frequency combs,

even in free-running regime of operation, i.e. without taking any particular effort to introduce

phase-locking in the lasing modes. While free-running QCLs rely on four wave mixing for their

mode proliferation, group velocity dispersion and multimode instabilities can easily deteriorate

the phase and amplitude stability of the device, making the formation of frequency combs a

daunting task. The question naturally arises, as to what effect will an intentional phase control

have onto the spectrum of the device? What familiar techniques are there, possibly from other

areas of laser science, to introduce a fixed phase relationship between the spectral lines and

thus recover the comb-like characteristics of the QCL emission?

Naturally, it is also of great scientific and practical interest to enable the formation of short,

mode locked pulses of light with QCLs. This would be a major advancement for THz and

mid-infrared (MIR) spectroscopy as it will open up the stage for ultrafast optical experiments,

such as for example time-resolved THz spectroscopy [134], with compact, on-chip, direct

sources. Additionally, since mode locked pulses are frequency combs in the Fourier domain,

ultrashort pulse generation via QCLs will provide an alternative approach to obtain broadband

frequency combs.

Unfortunately, experience shows that QCLs are notoriously difficult to mode lock [18], with

the shortest pulse widths achieved so far being around 2.5 ps in the THz via active modulation

of the injection current [51]. It is believed that, due to the ultrafast processes that govern

intersubband transitions, active mode locking of QCLs is feasible only close to lasing threshold,

whereas passive mode locking (PML), in the traditional sense, is virtually impossible [17]. This

is because the intrinsically short carrier relaxation times, typically several times smaller than

the cavity round trip time, obstruct the formation of short bursts of light since the trailing edges

of any propagating pulse would be amplified by the fast recovering gain [43].

In the author’s opinion there is no fully conclusive evidence to support these claims, espe-

cially in the THz, as the gain recovery dynamics has not been extensively studied. In fact,

to my best knowledge, to present date there have been only two publications experimentally

investigating the gain recovery time in bound-to-continuum (BTC) THz devices, and none in

resonant-phonon QCLs. Interestingly, both experimental results indicate sub-threshold life-

times on the order of several tens of picoseconds [135, 136]. These measurement techniques

are based on a pump-probe experimental method where a perturbing resonant pump pulse is

injected into the gain medium followed by a temporally detuned probe pulse interacting with

the saturated gain. In the publication in Ref. [135], the photocurrent induced by stimulated
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emission between the upper and the lower laser level was recorded as a function of the

delay between both pulses, and a Gaussian fit was used to infer the speed of the recovery of

population in the upper laser state. The measured lifetimes were ≈ 50 ps which, as it will be

shown, are long enough to enable mode locking. In fact one might argue that BTC QCLs are

among the most optimal devices for mode locking, since the energy exchange between the

propagating pulse and the saturable gain is most efficient when the carrier dynamics is faster

than the round trip time.

This chapter is concerned with theoretical models for both active and passive mode locking

of quantum cascade lasers. The method to realize passive mode locking is based on well

established techniques for quantum dot and conventional semiconductor lasers [73, 88, 137–

140], where PML is routinely achieved based on a saturable absorber (SA) and a gain medium

as separate components of a multi-section wave guide. Here absorption is implemented by

reverse biasing the gain medium. Carrying this concept to QCLs was first suggested by Franz

Kärtner [141], whereas Talukder and Menyuk were the first to point out that rather than reverse

biasing the gain, carefully chosen positive biases should be used for QCLs [142]. In this

work the authors simulated passive mode locking for mid-infrared devices, where the intensity

dependent saturation was implemented via a (slow) quantum coherent absorber. Along these

lines simulations for PML in THz QCLs have also been presented [143, 144]. In this chapter, it

is expanded upon previous works by i) using an extended theoretical model, ii) showing that

guided by classical principles one can achieve passive mode locking by simply using a fast

saturable absorber instead [145], and iii) in addition to the conventional PML approach, the

possibility of hybrid and colliding pulse mode locking will be also discussed. The way in which

the fast saturable absorber (FSA) enables mode locking is twofold [59, 61]. First, the FSA

provides more gain for shorter pulses, strong enough to bleach the material, while at the same

time it also suppresses weak background fluctuations. Secondly, it also acts as a compensator

for the dispersion introduced by the gain medium, as both gain and loss interact resonantly

with the intracavity intensity, albeit with different signs in the polarization term. As a result, if

the gain and absorber sections are packed into a compact structure, with the small round trip

time only several times longer than the relaxation time in the gain section, very stable mode

locking with one or two pulses per round trip arises.

Next to passive mode locking, a theoretical model for the computational treatment of the

active mode locking of QCLs is also presented. This envisaged approach is based on coupling

between the Maxwell-Bloch equations, used for carrier-light interaction dynamics, and a

transmission line approach, used for simulating the electrical characteristics of the device.

Due to the provably strong interaction between the modulation voltage wave and the THz field

propagating inside the cavity [18, 146], such microwave-optical simulations could provide the

community with a deepened understanding of the operational principles of mode locked QCLs

and hopefully enable the generation of few-cycle THz and mid-infrared pulses therefrom.

This chapter is organized as follows: Sec. 5.2 investigates, via semi-analytical calculations

and computer simulation, the possibility to passively mode lock ring cavity terahertz quantum

cascade lasers. On the other hand, Sec. 5.3 discusses different variants of PML for Fabry-Perot

QCLs, where next to conventional passive mode locking the more exotic colliding pulse mode

locking and hybrid mode locking are considered. Lastly, in Sec. 5.4, the microwave-optical
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5.2 Passive mode locking of ring cavity QCLs

model based on the transmission line/Maxwell-Bloch equations is presented together with

some preliminary tests of its validity.

Some of the results, contained in this chapter, were presented on several scientific confer-

ences and also featured in a journal publication [143, 147].

5.2 Passive mode locking of ring cavity QCLs
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Figure 5.1 (a) A two-section Fabry-Perot cavity, consisting of an absorber of length La and a gain
section of length Lg. (b) Monolithic ring-shaped multi-section resonator. (c) The Fabry-Perot cavity of
(a) reflected off its right outcoupling facet (at coordinate ξ3) to form a quasi-ring resonator.

In the next few sections a study of the possibility to passively mode lock multi-section

ring cavity quantum cascade lasers will be presented. Despite the multilevel dynamics of

these devices, we initially assume that the gain and the saturable absorber regions can each

be represented as a two level system, which will allow us to analytically reason about the

equations. Furthermore, since the inclusion of spatial hole burning also complicates the

theoretical treatment, it is necessary to also presuppose that the field propagates inside a

ring laser as illustrated in Fig. 5.1(b). Being aware of the fact that the typical QCL cavity

design is the linear Fabry-Perot resonator [27], this approximation is nevertheless used, as

the ring model is much easier to analyze. One might also argue that this is admissible if

one takes the original Fabry-Perot cavity in Fig. 5.1(a) and unwraps/mirrors it with respect to

one of the outcoupling facets as graphically depicted in Fig. 5.1(c). Then, instead of treating
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5 Mode locked THz QC lasers

counter-propagating fields E±(x, t), one defines a single quantity E(x, t) over the doubled

cavity length L = La + Lg as

E(x, t) =

E+(x, t) x ∈ [0,L)

E−(2L− x, t) x ∈ (L, 2L],
(5.1)

and, assuming no outcoupling losses, employs the "periodic" boundary condition E(0, t) =

E(2L, t), which is the same as E+(0, t) = E−(0, t). The treatment of more realistic models,

including counter propagating waves and spatial hole burning, is reserved for a later section,

where results from computer simulations are presented.

Taking into account the multi-section structure of the laser, let us write down the well

known Maxwell-Bloch equations for a two level system in the rotating wave and slowly varying

amplitude approximation. This model couples the slowly varying field amplitude E(x, t) to

the 2×2 density matrices ρk of each section, written in terms of the population inversion,

∆k, and the envelope of the polarization, ηk, with k = {g, a} indexing the gain and absorber,

respectively. It is worth mentioning that, due to the nature of the employed approximations, the

results will be limited to pulses with duration longer than ~1 ps. The equations now read

∂E

∂x
+
n

c

∂E

∂t
= −iΓkµkω0

ε0cn
Nkηk −

ak
2
E, (5.2a)

∂t∆k = i
µk
~

(
E∗ηk − Eη∗k

)
−

∆k −∆eq
k

T1k
, (5.2b)

dtηk = −i(ωk − ω0)ηk + i
µk
2~
E∆k −

ηk
T2k

, (5.2c)

where ωk denotes the resonance frequency in the k = {g,a} medium, µk the corresponding

dipole moment (in units C· m), ak denotes the distributed power losses, Γk ≈ 1 the (dimen-

sionless) field overlap factor, ∆eq
k is the quasi-equilibrium inversion in each section, and the

rest of parameters are as defined in Chapter 2. Also define the "pump strength" as

p = ∆eq
g /∆

th
g ≈ Jg/J th

g , (5.3)

which is approximately the ratio between the injected current in the gain section and the current

at lasing threshold, with ∆th
g being the value of the gain inversion at threshold.

5.2.1 Threshold gain

Here, the steady state solution of the Maxwell-Bloch equations at threshold is examined.

Neglect, for a second, the effect of the saturable absorber losses onto the threshold condition.

Then at and below the threshold pumping, the electric field is zero, so from Eqs. (5.2), for

k = g, one gets the steady state solution ∆̄g = ∆eq
g = ∆th

g . At threshold, the peak of the

gain, attained at some angular frequency ω, will exactly balance the losses. This condition

establishes that

NgΓgµ
2
gω

2ε0c~n
× γg
γ2
g + (ω − ωg)2

× ∆̄g =
1

2
σg(ω)Ng∆

th
g =

ag
2

, (5.4)
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5.2 Passive mode locking of ring cavity QCLs

where γg = T−1
2g is the dephasing rate and σg(ω) is the gain cross-section at that particular

frequency, given by

σg(ω) =
Γgµ

2
gω

~ε0nc
× γg
γ2
g + (ω − ωg)2

. (5.5)

This yields the threshold population inversion as

∆th
g =

ag
σg(ω)Ng

, (5.6)

where the primary lasing frequency, i.e. ω, will generally be the cavity mode yielding the largest

possible value of σg(ω) and thus smallest possible value for the inversion ∆th
g . Since it is

reasonable to assume that ω ≈ ωg ≈ ω0, then the threshold inversion reduces to the formula

∆th
g = a× ε0c~n/

[
NgΓgµ

2
gω0T2g

]
.

Now, one can include the effect of the saturable absorber, i.e. consider the losses ex-

perienced by the optical field upon its resonant interaction with this non-inverted medium.

Assuming an absorber with inversion ∆eq
a < 0, length La, and distributed losses aa, then the

condition in Eq. (5.6) becomes

σg(ω)Ng∆
th
g Lg + σa(ω)NaLa∆

eq
a = agLg + aaLa,

⇔

∆th
g =

ag
σg(ω)Ng

+
aaLa

σg(ω)gNgLg
− σa(ω)NaLa∆

eq
a

σg(ω)NgLg
,

⇔

∆th
g =

agLg
Gg

+
aaLa
Gg

− Ga
Gg
×∆eq

a , (5.7a)

where subscript indices g/a denote the respective quantities of the gain/absorber section and

Gj = σjNjLj . From Eq. (5.2)), one can immediately see that, if Ga×∆eq
a > Gg, then ∆th

g > 1,

and no lasing will start whatsoever.

5.2.2 Gain recovery time

Here an exact expression for the gain recovery time will be derived, based on the two level

approximation. Assume that the pulse has just interacted with the system at a particular point

along the length of the gain medium, and at time t = t0, saturated the inversion to ∆g(t0). The

gain recovery time will be defined as the time it takes for the population inversion to recover to

the threshold value ∆th
g from its initial value of ∆g(t0).

Immediately after passage of the pulse (i.e. when E ≈ 0), the population inversion obeys

the following simple ordinary differential equation

∆̇g(t) = −∆g(t)−∆eq
g

T1g
, (5.8)

which has the solution

∆g(t) =
[
∆g(t0)−∆eq

g

]
e
− t−t0
T1g + ∆eq

g . (5.9)
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Now substituting ∆eq
g = p∆th

g and requiring that at t = t1 the gain has recovered to the

threshold value ∆th
g , one obtains

∆th
g =

[
∆g(t0)− p∆th

g

]
e
− τgr
T1g + p∆th

g , (5.10)

which can be solved for the gain recovery time τgr = t1 − t0, leading to the expression

τgr = T1g ln
p∆th

g −∆g(t0)

∆th
g (p− 1)

. (5.11)

To investigate the dependence of the maximal saturation ∆g(t0) onto the different parame-

ters, address the equation for the population inversion in the adiabatic limit (see Chapter 2)

∆̇g(t) = −
µ2
g

~2
T2g|E|2∆g(t)−

∆g −∆(eq)
g

T1g
. (5.12)

Assuming instantaneous response of the system to the applied field, the population inversion

will reach its minimum as a function of time, at a point where ∆̇g = 0 and E = E0, with E0

being the peak value of the propagating pulse. This readily gives the solution

∆g(t0) =
p∆th

g

1 + µ2
gT1gT2g|E|2/~2

≥
p∆th

g

1 + |E0|2/W g
sat

, (5.13)

with W g
sat = 1/[T1gT2gµ

2
g/~2]. By simple substitution, we come to the equation

τ∗gr = T1g ln

[
p

(p− 1)
× |E0|2/W g

sat

(1 + |E0|2/W g
sat)

]
, (5.14)

which is an upper bound for τgr and can, in principle, be determined by a suitably designed

experiment. It will be shown, by means of computer simulations, that τgr is an important

system parameter, which serves as a good indicator for the regime of mode locking achieved.

5.2.3 Background stability condition

In order for the proposed mode locking scheme to be of any practical interest, one needs to

investigate its robustness upon variation of the experimental parameters. A semi-analytical

procedure, based on a model by Vladimirov and Turaev [73], provides a good indication of the

parametric regions where both fundamental and higher harmonic mode locking are possible,

even though it gives quite a conservative estimate. The main idea is based on the insight

that when a pulse is formed inside the cavity, two distinct time-scales govern the evolution

of the population inversion in the system. Due to the very large dipole moments in QCLs,

and consequently large coupling strengths, the stimulated emission rate in these devices

could be an order of magnitude larger than the nonradiative transition rates. When a pulse is

formed, the two scattering processes, i.e. radiative and non-radiative, act on a single two level

system at different times. This allows us to solve separately the gain and absorber equations,

Eqs. (5.2), for the two distinct cases and then build the global solution by "matching" the partial

ones at the boundary.
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5.2 Passive mode locking of ring cavity QCLs

Start by writing the traveling wave equation for both gain and absorber sections for a field

with a carrier frequency ω0,

∂E

∂x
+
n

c

∂E

∂t
= −iNkΓkµkω0

ε0cn
ηk. (5.15)

In the adiabatic limit, where one assumes that 1/T2g � µgE/~, express the coherence term

(ηk) in Eq. (5.15) via its steady state solution

ηk =
µk
2~
E∆k ×

(ωk − ω0) + iγ‖k

(ωk − ω0)2 + γ2
‖k

. (5.16)

Plugging back Eq. (5.16) into Eq. (5.15), rewrite Eq. (5.15) into the familiar form

∂E

∂x
+
n

c

∂E

∂t
=
gkΓk

2
(1− iαk)∆kE, (5.17)

where gk = σk(ω0)Nk is the differential gain/absorption coefficient, αk = (ωk − ω0)T2k is the

linewidth enhancement factor.

Following the work of Vladimirov and Turaev [73], perform a change of coordinates in

a co-moving frame (t,x) → (τ , ξ) where τ = (t − xn/c)/T1a is the retarded time nor-

malized to the inversion lifetime in the absorber (T1a), ξ = x is the position coordinate.

Additionally, also normalize the electric field by its saturation value in the gain medium, i.e.

[T1gT2gµ
2
g/~2]1/2E(τ , ξ)→ A(τ , ξ). Then Eq. (5.17) becomes

∂A

∂ξ
=
gkΓk

2
(1− iαk)∆kA(τ , ξ), (5.18)

while the equations for the inversion transform to

∂τ∆g(τ , ξ) = γ
(
∆eq
g −∆g

)
− γ|A|2∆g, (5.19a)

∂τ∆a(τ , ξ) = ∆eq
a −∆a − s|A|2∆a. (5.19b)

In Eqs. (5.19a)-(5.19b), γ = T1a/T1g, and s = W g
sat/W

a
sat, with W j

sat = 1/[T1jT2jµ
2
j/~2],

denotes the ratio of the saturation value of the electric field squared in the gain and the

absorber sections, respectively. Note that the linear losses have been excluded from the

propagation Eq. (5.18), which will eventually be accounted for via the out-coupling losses

parameter κ. Next, define

Q(τ) = gaΓa

∫ ξ2

ξ1

∆adξ, (5.20a)

G(τ) = ggΓg

∫ ξ3

ξ2

∆gdξ, (5.20b)

as the total (dimensionless) losses and gain experienced by the field when propagating through

the absorber medium, assumed here to be located between ξ1 and ξ2, and the gain medium

distributed from ξ2 to ξ3, see Fig. 5.1(b).

Now using the definition in Eq. (5.20), the formal solution of Eq. (5.18) can be written as

A(τ , ξ2) = exp{1− iαa
2

Q(τ)}A(τ , ξ1), (5.21)

A(τ , ξ3) = exp{1− iαg
2

G(τ)}A(τ , ξ2). (5.22)
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After one full round trip (in re-normalized coordinates T = Trt/T1a) in the ring cavity, the field

is transformed according to

A(τ + T , ξ1) =
√
κ exp{1− iαg

2
G(τ) +

1− iαa
2

Q(τ)}A(τ , ξ1), (5.23)

where the periodicity condition A(t, ξ + L) = A(t + T , ξ) has been used. To complete the

system we need to find the time-evolution of the quantities G(τ) and Q(τ). Directly using

Eq. (5.19) and Eq. (5.20), results in

∂τQ(τ) = q0 −Q(τ)− s
(
|A(τ , ξ2)|2 − |A(τ , ξ1)|2

)
, (5.24)

∂τG(τ) = g0 − γG(τ)− γ
(
|A(τ , ξ3)|2 − |A(τ , ξ2)|2

)
, (5.25)

for the absorber and the gain, respectively. Here, g0 = ggΓgγ∆eq
g Lg denotes the (total) small

signal gain (multiplied by the scaling factor γ) in the active region of length Lg, and analogously

q0 = gaΓa∆
eq
a La the small signal losses in the absorber.

Figure 5.2 The field intensity |A(τ)|2, total gain G(τ) and losses Q(τ), as a function of the retarded
time coordinate τ .

At this point, assume twofold dynamics of the population inversion in both the gain and

the absorber, as illustrated in Fig. 5.2. First this is the dynamics when the photon flux is

negligible. Then the evolution of the two level populations are governed by the corresponding

nonradiative lifetimes T1g and T1a. On the other hand, whenever there is a large number of

light quanta interacting with either system, the population inversion is mainly governed by

stimulated emission and absorption. Adhering to Vladimirov and Turaev’s style, the latter is

referred to as the fast section, whereas the former will be called the slow section. This being

said, assume that the slow section occurs between co-moving time coordinates τ1 and τ2,

whereas the fast section takes place between τ2 and T where T is the (normalized) round trip

time. Finally suppose that τ2 − τ1 ≈ T approximately holds.

With these arguments in sight, the strategy for the solution is obvious. One would solve

separately Eqs. (5.24)-(5.25) for each of the two τ−intervals and then fit the integration

constants so that the solution is continuous at the interfaces. First, in the case when there

is no photon density at a particular coordinate (τ , ξ), then the population dynamics can be

straightforwardly solved for, yielding

Q2 = Q1e
−T + q0(1− e−T ), (5.26)

G2 = G1e
−γT +

g0

γ
(1− e−γT ), (5.27)
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with Gj = G(τj) for j = 1, 2 (and similarly for Qj) and also τ2 − τ1 ≈ T .

On the other hand, in the fast section, the absorber dynamics approximately obeys the

following laws

∂τQ(τ) ≈ −s(|A(τ , ξ2)|2 − |A(τ , ξ1)|2)

= −s(eQ(τ) − 1)|A(τ , ξ1)|2, (5.28)

where Eq. (5.21) has been used. Analogously, using both Eq. (5.21) and Eq. (5.22) one finds

for the gain

∂τG(τ) ≈ −γ(|A(τ , ξ3)|2 − |A(τ , ξ2)|2)

= −γ(eG(τ) − 1)eQ(τ)|A(τ , ξ1)|2. (5.29)

To solve the above equations, it is easier to further define the (dimensionless) pulse area

P (τ) =

∫ τ

0
|A(τ ′, ξ)|2dτ ′, (5.30)

for τ ∈ [0, τ1] and also recognize that |A(τ , ξ)|2 = dP/dτ and that P (0) = 0 and P (τ1) = ∆P .

Now, we can proceed with the solutions. First, solve the equation for Q as a function of the

pulse area P , which yields

ln
eQ

1− eQ
= sP ⇒ eQ =

esP

1 + esP
. (5.31)

Next, integrating over the fast section and noting that Q(P = 0) = Q2 and Q(P = ∆P ) = Q1,

obtain

Q1 −Q2 − ln
eQ1 − 1

eQ2 − 1
= s∆P . (5.32)

A similar procedure yields the solution for G as a function of the pulse area

eG =
(1 + esP )γ/s

1 + (1 + esP )γ/s
(5.33)

for the indefinite integral which, when evaluated over the desired interval, leads to

G1 −G2 − ln
eG1 − 1

eG2 − 1
= ln

[
1 + es∆P

2

]γ/s
. (5.34)

Finally integrating the square of Eq. (5.23) over τ ∈ [0; τ1] and using the solutions from

Eqs. (5.31)-(5.33), one obtains∫ τ1

0
|A(τ + T , ξ1)|2dτ = κ

∫ τ1

0
exp{G(τ) +Q(τ)}|A(τ , ξ1)|2dτ

⇔

∆P =
κ

γ
ln
eG2 − 1

eG1 − 1
. (5.35)

Equations (5.26)-(5.27), Eq. (5.32) and Eqs. (5.34)-(5.35) comprise a system for the unknowns

G1, G2, Q1, Q2 and ∆P , which can be solved via many "off the shelf" numerical methods.

More importantly, obtaining the values of Gi and Qi will allow us to examine the parametric
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regimes where fundamental and higher harmonic mode locking is possible. According to

New [148], a sufficient condition for the formation of ultrashort pulses in passively mode locked

devices is that upon the passage of the pulse, for the whole duration until its return on the

next round trip, the saturated gain shall remain lower than the total losses. This can be

mathematically expressed as

G1 +Q1 + lnκ < 0, (5.36a)

G2 +Q2 + lnκ < 0, (5.36b)

which indeed requires that there is no net round-trip gain in the time interval [τ1; τ2]. This

criterion is also known as the New’s background stability condition, and is widely employed in

the analysis of mode locking of semiconductor lasers [73, 148].

In the next few paragraphs, it is time to finally utilize Vladimirov & Turaev’s model to get a

rough estimate of the possibility of passively mode locking of THz quantum cascade lasers.

Namely, we will investigate parametric regimes where the New stability condition Eqs. (5.36)

holds. As already mentioned, the above model gives a rather conservative estimate of the

parametric regions where mode locking is possible. The reason for this is twofold. First of

all, as Vladimirov and Turaev themselves suggested [73], the background stability criterion

in Eqs. (5.36) is not a necessary condition for the formation of a mode locked pulse. Even

if the dynamics of the system is such that it allows some background intensity to build up

after the passage of the main pulse, the condition does not take into account the fact that this

perturbation can be later absorbed by the FSA and thus will not disrupt the pulse formation.

Secondly, the so derived stability criterion adiabatically eliminates the off-diagonal element

of the density matrix η and thus neglects the influence of quantum coherence effects onto

the light-matter interaction. In fact, it has been suggested that in special configurations such

effects can enable ultrashort pulses, beyond the bandwidth limit of the gain, via self-induced

transparency mode locking [88, 149–151].

Adhering to the original idea, the model accounts for a fast saturable absorber, coupled

to a slow saturable gain. For the absorber, assume an inversion recovery time T1a = 3 ps

whereas for the gain section this parameter is set to 30 ps. Furthermore, the ratio of the dipole

moments in the absorber and the gain medium, i.e. d = µa/µg, is chosen to be 2, since

this would yield smaller saturation intensities in the FSA and thus satisfy the familiar passive

mode locking (PML) condition that "the absorber should saturate stronger than the gain" [43].

Notice that this choice is also in-line with the assumed values for the T1g parameter for the

gain section, as values for the dipole moment zul ≈ 2 nm are characteristic for diagonal QCL

designs, which also exhibit longer upper state lifetimes [17].

With this in mind, Equations (5.26)-(5.27), Eq. (5.32) and Eqs. (5.34)-(5.35) are solved for

the parameters in Tab. 5.1, with varying values for p and the total strength of the absorber

q0, which is adjusted by changing the doping density Na. Then this solution is inserted into

Eqs. (5.36) for two values of the assumed round trip time, first Trt = 30 ps, and secondly

for Trt = 15 ps, effectively modeling fundamental mode locking (FML) and second harmonic

mode locking (SH-ML), respectively. The results are plotted in Fig. 5.3, where the (black) solid

curve denotes the outer boundary for parametric regions where FML is predicted, and the

(red) dashed line the boundary for SH-ML.
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Table 5.1 The parameters for the absorber (A) and gain (G) section of a two-section ring QCL. In the
table below e ≈ 1.602× 10−19C denotes the elementary charge.

Parameter Unit A G

Dipole matrix el. (µk) nm· e 4 2

Resonant angular freq. (ωk) ps−1 3.4× 2π 3.4× 2π

Recovery time (T1k) ps 3 30

Dephasing time (T2k) ps 0.5 0.5

Length (Lk) mm 0.5 2.0

Doping density (Nk) cm−3 3×1014 3×1015

Linear power loss (a) cm−1 0 10

1.1 1.2 1.3 1.4 1.5
Pump strength (p)

FML

SH-ML

-1.8

-1.4

-1

A
b

s
o

rb
e

r 
s
tr

e
n

g
th

 (
q
0
)

Figure 5.3 Solutions of Equations (5.26)-(5.27), Eq. (5.32) and Eqs. (5.34)-(5.35) for two different
cases when Trt = 30 ps and Trt = 15 ps, effectively modeling fundamental mode locking (FML) and
second harmonic mode locking (SH-ML). The solid line indicates the upper bound for FML, and the
dashed line the same for SH-ML

To compare this semi-analytical result with Eqs. (5.2), the full system of equations is

propagated over several hundreds of round trips, for the basis set of parameters in Tab. 5.1.

This time only the gain pump parameter p was varied, whereas the absorber characteristics

were kept constant. For p = {1.1, 1.2, 1.3, 1.4, 1.5} the corresponding values of q0, for which

the full simulations were performed, are denoted with a red asterisk on Fig. 5.3.

Figures 5.4(a)-5.4(c) illustrate the intracavity intensity and inversion, the position dependence

of the pulse full-width at half maximum (FWHM) and its power, as well as the resulting spectrum,

for p = 1.1 and T1g = 30 ps. Interestingly, the steady state solution is not a stable soliton, but

rather one observes a slightly "breathing" pulse, with the pulse power and duration varying

with spatial position according to Fig. 5.4(b). While the pulse is amplified as it propagates

inside the gain, it also broadens due to the anomalous dispersion introduced in this medium.

By contrast, when it enters the absorber, the pulse is compressed due to the opposite sign

of the group velocity dispersion (GVD), confirming that the FSA also acts as a dispersion

compensator for the gain.

When p is varied, from Fig. 5.4(d) we see that the pulse full width at half maximum exhibits

a 1/
√

(p− 1) dependence, whereas the intracavity power is proportional to (p− 1)2. Next,

Fig. 5.4(e) illustrates the gain recovery time, calculated with Eq. (5.11), as a function of the

pump strength p. We see that while τgr drops with increasing p, by virtue of Eq. (5.11), it
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Figure 5.4 Dynamics of a two section ring cavity QCL for T1g = 30 ps and other parameters given by
Table 5.1. (a) A snapshot of the intensity (left y-axis) and population inversion distribution in the cavity
(right y-axis), (b) positional dependence of the pulse full width at half maximum (left y-axis), its power
(right y-axis) and (c) spectrum for value of the pump parameter p = 1.1. (d) Dependence of FWHM
pulse duration, peak power as well as (e) the gain recovery time τgr on the pump strength p.

remains sufficiently long as to enable fundamental mode locking over the full dynamic range,

as compared to the results from Fig. 5.3.

In fact, T1g = 30 ps is a rather large value for QCLs. As a next step, consider a more realistic

scenario with T1g = 10 ps, in which case richer dynamics can be observed as a function of

the system parameters, as both fundamental and second harmonic mode locking emerge.

To obtain a deeper insight into the conditions that enable either types of mode locking, it is

reasonable to perform a "parameter scan", i.e. a series of simulations as a function of the

strength of the absorber q0 and the pump parameter p.

Results from this computation are displayed in Fig. 5.5(a), where the gain recovery time τgr
is plotted as a function of q0 and p. Again, in order to increase or decrease q0, the value of

the carrier density in the absorber Na is tweaked accordingly. The spheres in Fig. 5.5 denote

discrete grid points for which Eqs. (5.2) have been evolved for 600 round trips, whereas the

intermediate points on that same plot are obtained via bi-linear interpolation from the original

coarser grid. The color coding of the small spheres also indicates the mode locking regime

that has been observed at this particular simulation, with blue for fundamental mode locking

and red for second harmonic mode locking. A clear relationship between q0, p, τgr and the

mode locking regime can be inferred from Fig. 5.5(a). We see that for stronger total absorption

q0 and lower values for p, i.e simulations close to lasing threshold, the gain recovery time τgr
is longer (at q0 ≈ −1.9 and p = 1.1, τgr ≈ 21 ps) which enables the formation of a single

pulse inside the cavity. By contrast, whenever p increases and q0 is weakened (i.e. decreased

|q0|), the gain recovery time drops to values even shorter than T1g = 10 ps, which hampers

FML and instead leads to the formation of two pulses propagating inside the cavity. This can

be explained intuitively by the fact that the round trip time is approximately 30 ps, and so the

pulse splits into two identical copies, such that, as seen by the inversion, the effective round

trip time reduces to about half of the original value.

Finally, Fig. 5.5(b) and Fig. 5.5(c) illustrate "corner cases", when τgr = 21.7 ps is the longest

possible gain recovery observed in the parameter scan and the minimum case when τgr = 6.5

ps, respectively. In the former scenario, there is a single pulse formed, the spectrum of
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Figure 5.5 (a) A plot of τgr as a function of the pump parameter p and the absorber strength
parameter q0. The black and red spheres denote the grid points over which simulations of Eqs. (5.2)
were performed over 600 round trips, whereas the intermediate points are bi-linearly interpolated from
the former. The basic simulation parameters are the same as in Tab. 5.1, with the exception of T1g
which was set to the more "pessimistic" value of 10 ps. Additionally, (b) and (c) show snapshots of the
pulse propagating inside the cavity and the corresponding spectra, for the corner cases where τgr is
maximal and minimal, respectively.

which contains more than 25 frequency components, equidistantly separated by the round

trip frequency, spanning a spectral FWHM bandwidth of around 400 GHz. In contrast, in the

second harmonic case, two pulses propagate inside the cavity, which results in a spectrum

with mode spacing equal to twice the round trip frequency, as expected.

Despite the rather unlikely application of ring cavity QCLs for passive mode locking (due to

the challenging fabrication and also the trickiness of outcoupling light from the device), the

above study has deepened our insight about the underlying system dynamics. Quite expectedly,

for mode locking to succeed, it is evident that the saturable absorber shall be as strong as

possible, but not too strong as it will violate the threshold condition Eq. (5.7). Additionally,

we have seen that the gain recovery time, τgr, is a dynamical system parameter, depending

on the pump above threshold p, as well as the strength of the light matter interaction, which

proves to give quite a reliable indication of the observed mode locking regime. Concretely,

since τgr is seen to decrease with larger values of p, one can deduce that in lasers with fast

gain recovery, fundamental mode locking can be observed only close to threshold, with higher

harmonic mode locking or multi-pulse emission, high above it. All of these insights will be used

in the following section, where an extension of Eqs. (5.2) is employed to treat the multi level

dynamics of bound to continuum QCLs as well as incorporate counter propagating waves and

spatial hole burning, which are inevitable in Fabry-Perot QCLs.

5.3 Various regimes of mode locking in Fabry-Perot QCLs

After having reasoned both analytically and numerically about the possibility of passively mode

locking ring cavity QCLs, it is time to will consider the more widely employed Fabry-Perot (FP)

cavity designs. The conceptualized waveguides are illustrated in Fig. 5.6 for two different

configurations, the A-G and G-A-G alignments, favoring conventional and colliding pulse

mode locking, respectively. The general geometry consists of two or more sections with

different biases and effective dipole moments. This can be realized either via wafer-bonding of
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5 Mode locked THz QC lasers

separately designed and grown structures, or by designing a single heterostructure operating

either as a gain or absorber medium, depending on the driving current [152]. Despite the more

challenging fabrication as compared to having epitaxially stacked gain and absorption layers,

or external cavity multi-section QCLs [133], monolithic wave guides are an essential ingredient

as they offer two obvious advantages: i) these structures provide short round trip lengths, i.e.

relatively small round trip times, and also ii) arranging the gain and absorber in series, as

depicted in the figure, allows for independent control of the injection current in all sections.
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Figure 5.6 An example of multi-section Fabry-Perot (FP) cavity geometry, consisting of spatially
separated gain (G) and absorber (A) regions for (a) conventional passive mode locking and (b)
colliding pulse mode locking. (c) Conduction band diagram and wave functions of a typical bound to
continuum (BTC) GaAs/Al0.15GaAs0.85 THz quantum cascade laser (the structure is analogous to
that in Ref. [153]). The upper and lower laser levels, ULL and LLL, are outlined with thick lines. The
electron transport in the device is characterized by drift transport (scattering) inside the miniband and
optical transition between minibands.

Before introducing the equations of motion for the envisaged system, a careful consideration

of the transport processes in a BTC quantum cascade laser is in order. An exemplary such

active region is illustrated in Fig. 5.6(c). Typically, electron transport through the heterostructure

can be described by three different lifetimes, the superlattice relaxation time, i.e. τSL, defined

as the transit time of a carrier from the top of the miniband to the upper laser level, τ2

defined as the lifetime of the upper laser level and lastly τ1 denoting the same for the lower

laser level [68]. A usual modeling approach in literature is to eliminate the population of

the lower laser level, ρ11, from the system of equations by assuming that ρ11 ≈ 0 at all

times [52, 84, 142]. This choice can be justified by the relatively fast out-scattering from this

level to lower energetic states in the miniband, compared to the other non-radiative lifetimes in

the system, i.e. τ1 � τ2, τSL. Such an approximation is valid for determining the steady state

solutions of the rate equations in the absence of an optical field, however it breaks down when

one additionally considers photon assisted scattering, since the latter dramatically reduces the

upper laser level lifetime [68]. Concretely, when 1/τ1 < 1/τ2 + 1/τst(|E|2), where τst(|E|2)

is the stimulated emission/absorption lifetime and E is the electric field, the dynamics of the

lower laser level can no longer be excluded, as the QCL essentially operates as a three level

system [68]. A value of τ1 ≈ 2 ps was reported for the first THz BTC-QCL [154], indicating

that typical values for the lower laser level lifetime are of that order. Keeping this in mind, again

a density matrix model is employed to describe the electron transport through the triplet ρSL,

ρ22 and ρ11 for the population density of the electrons in the miniband, the upper laser level
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5.3 Various regimes of mode locking in Fabry-Perot QCLs

and the lower laser level, respectively. A similar system was used in the work of Choi et al. to

provide evidence for the quantum coherent dynamics in mid-infrared QCLs, where an excellent

agreement between simulation and experimental data was achieved [20]. Expanding on the

usual two level Bloch equations approach, write down the Maxwell-Bloch (MB) equations for

the three level system, however excluding the effect of resonant tunneling, in the rotating wave

and slowly varying amplitude approximations, taking into account counter-propagating waves

and spatial hole burning. The resulting model for the gain is given by

∂E±
∂x
± n

c

∂E±
∂t

= −iΓgµgω0

ε0cn
Ngη± −

ag
2
E±, (5.37a)
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=
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The symbols η± denote the forward and backward propagating slowly varying coherence

terms between levels 1 and 2. Similarly as before (see Chapter 4) the population of the jth

state is expanded as

ρjj = ρ0
jj + ρ+

jje
2iβ0x + (ρ+

jj)
∗e−2iβ0x, (5.38)

where ρ0
jj is the average population, ρ+

jj denotes the (complex) amplitude of the grating. The

rest of the simulation parameters for both absorber and gain are specified in Table 5.2.

On the other hand, in order to impose a minimal set of assumptions about the absorber, it

will be modeled as a two level density matrix system in the rotating wave and slowly varying

amplitude approximation with average inversion ∆0, inversion grating amplitude ∆+ and a

coherence term π±. Again, sub-/superscript a is used to specify where a particular parameter

or variable relates solely to the saturable absorber. The usual MB equations read

∂Ea±
∂x
± n

c
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= −iΓaµaω0

ε0cn
Naπ± −

a

2
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, (5.39c)
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Ea±∆0 + Ea∓∆±

]
− π±
T2a

. (5.39d)

In the following, by means of computer simulations, various schemes are investigate, which

might enable the generation of ultrashort pulses with THz QCLs. Besides conventional

121



5 Mode locked THz QC lasers

Table 5.2 The parameters for the absorber (A) and gain (G) section of the two-section ring QCL from
Fig. 5.6(a). In the tables below e ≈ 1.602× 10−19C denotes the elementary charge.

Parameter Unit Value (G) Value (A)

Dipole matrix el. (µj) nm·e 2 6

Resonant angular freq. (ωj) ps−1 3.4× 2π 3.4× 2π

Gain superlattice transport time (τSL) ps 40 ×
Gain upper laser level lifetime (τ2) ps 40 ×
Gain lower laser level lifetime (τ1) ps 2 ×

Absorber lifetime (T1a) ps × 3

Dephasing time (T2a/g) fs 200 160

Length (Lj) mm 1 0.125

Doping density (Nj) cm−3 5×1015 1×1015

Overlap factor (Γj) dimensionless 1.0 1.0

Linear power loss (a) cm−1 10 10

passive mode locking, colliding pulse and hybrid mode locking are also treated as alternative

approaches to improve the pulse characteristics. Importantly, for the envisaged design to work,

a slowly saturable gain, with inversion recovery time only several times faster than the round

trip time, must be coupled with a fast saturable absorber [61]. To model this scenario assume

a parameter set as presented in Table 5.2, with values believed to be realistic for THz QCLs.

Specifically, for the BTC-QCL lifetimes assumed in Table 5.2, simulations similar to Ref. [155]

yield a gain inversion lifetime of T1g ≈ 12 ps, while for the 1.125 mm FP cavity the round

trip time is about 28 ps. In all of the following sections, the presented results are obtained

from simulations of free-running, self-starting devices. To solve Eq. (5.37) and Eq. (5.39),

the numerical method outlined in Chapter 3 are used, where all simulations are started from

random noise.

5.3.1 Passive mode locking (PML)

As we have seen in Sec. 5.2, the higher the coupling between the absorber and optical

field, the more beneficial are the conditions for pulse formation. This, in fact, is one of the

main results from the classical theory of passive mode locking, i.e. the condition that the

absorber should saturate faster than the gain [145], and will serve as a starting point for further

calculations. The non-linear saturation parameter is given by εj = µ2
jT1jT2j/~2 and denotes

the inverse of the saturation value of the electric field squared |E|2 in each active region

(j = {a, g}). When the condition r = εa/εg > 1 is met, the propagating pulse will bleach the

absorber more strongly than the amplifier and thus will open a net round trip gain window. In

fact, simulations for quantum dot lasers have shown [61] that the pulse duration decreases

approximately exponentially with increasing value of r. Conversely, classical theory and also

additional simulations (results not shown here) predict that no mode locking is possible when

r < 1 [61, 145].
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Figure 5.7 (a) Normalized pulse intensity vs time for values of the absorber lifetime of 2 ps, 3 ps and
5 ps. (b) The intensity FWHM duration as T1a is varied between 2-9 ps, where for T1a = 7 ps and
9 ps, the FWHM values of the main and also the satellite pulses are presented. (c) The normalized
optical intensity for T1a =5, 7 and 9 ps.

Another requirement for successful mode locking is that the absorber should have a fast

recovering population inversion. One can easily see the benefits of a short T1a lifetime. Upon

entering the absorber, the pulse front will saturate the active medium, which on the other

hand will be quick enough to recover prior to arrival of the pulse tail. This type of dynamics

would naturally shorten the pulse as the duration of the net gain window will decrease with

decreasing T1a. Following this logic, one might expect to obtain shorter pulses with decreasing

absorber lifetimes, which is indeed confirmed by the simulations. Importantly, absorbers with

fast carrier recovery ought to be easy to realize based on resonant phonon QCL designs,

taking advantage of strong longitudinal optical phonon scattering.

Similarly to their zero-dimensional counterparts (quantum dot lasers), QCLs could be

passively mode locked provided systems with suitably chosen parameters are designed. To

illustrate this possibility Eq. (5.37) and Eq. (5.39) have been simulated with a parameter set

characteristic for QCLs (see Table 5.2).

To investigate the importance of absorber lifetime for PML of QCLs, the recovery time of

the absorber is varied between 2 and 9 ps and the coupled system is simulated for around

400 round trips. Since the change of T1a also changes the value of r, for each simulation

the absorber dipole moment needs to be re-adjusted in order to maintain constant r. This

is necessary in order to have controlled numerical experiments where only T1a and not r

changes. Finally, the gain carrier density was also adjusted from its value in Table 5.2, in order

to ensure that in all subsequent simulations the active medium was biased at p = 1.2 times

above threshold.

The results from these simulations are presented in Fig. 5.7(a) and Fig. 5.7(b) and display

behavior in agreement with expectation. When the absorber lifetime is sufficiently short,

Fig. 5.7(a), as T1a increases so does also the pulse duration. In fact, for the PML regime

of lasing in Fig. 5.7(b) a clear linear relationship between T1a and the intensity full width at

half maximum (FWHM) pulse duration is observed. On the other hand, for slower absorbers,
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the complicated interplay between the optical field and the active region dynamics produces

irregular pulsations (IP) with no well defined temporal profile. From Fig. 5.7(c) we see that

the onset of this regime occurs already for absorber lifetimes T1a ≥ 7 ps and is characterized

by multiple pulses with varying intensity. Additionally, for those cases one can also observe

modulation of the pulse amplitude with a period spanning several tens of round trips, a phe-

nomenon baring resemblance to Q-switched mode locking [156]. These results unequivocally

validate the important role of the absorber lifetime for the pulsation dynamics and confirm that

for successful mode locking of QCLs, besides slowly saturable gain media, also absorbers

with short T1a lifetime and large r = εa/εg ratio are essential.

5.3.2 Colliding pulse mode locking (CPML)
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Figure 5.8 (a) A snapshot of the optical intensity (left y-axis) and population inversion (right y-axis)
inside the cavity. (b) Optical spectrum of the field emitted from the right facet of the cavity. (c) A
log plot of the beatnote signal versus frequency (normalized to the cavity round trip frequency frt)
produced by the device.

A special type of passive mode locking, useful for shortening even further the pulse duration,

but probably more importantly to achieve high repetition rates, is the so called colliding pulse

mode locking, where two gain sections of equal length are symmetrically placed around the

absorber [59, 157]. When such a geometric arrangement is achieved, two identical pulses per

round trip can be emitted from the device, resulting in a doubled repetition rate equal to the

second harmonic of the round trip frequency. In fact, it could be expected that CPML will be

easier to achieve via BTC quantum cascade lasers as devices with short gain recovery time

will naturally favor such multi-pulse regime of operation [143, 158].

To understand why CPML occurs, consider the schematic in Fig. 5.6(b), illustrating a multi-

section cavity design in the G-A-G (gain-absorber-gain) configuration. Let us assume that a

single pulse with amplitude E0 propagates inside a gain medium with some group velocity

vg. Close to the resonator mirrors, during its forward pass the pulse will saturate the gain

and there will be not enough time for the latter to recover in order to re-amplify the reflected

signal. This leads to a reduction of the effective length of the gain medium by ∆L = vgτgr/2,

which is half the distance traveled by the pulse in time τgr, where τgr 6= T1g denotes the time it
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5.3 Various regimes of mode locking in Fabry-Perot QCLs

takes for the gain to recover to its threshold value. Since τgr is a monotonously increasing

function of |E0|2, as such ∆L will be shorter if the pulse would split into two identical copies

with half the total intensity each, since then τgr will also decrease. The most stable two-pulse

configuration in a G-A-G Fabry-Perot cavity are indeed pulses, colliding in the cavity center, as

those will saturate the absorber more deeply and further reduce the round trip losses.

To confirm these expectations, Eq. (5.37) and Eq. (5.39) are simulated in the G-A-G

arrangement for the parameter set in Table 5.2. Figure 5.8 illustrates the results. After about

50 round trips the laser emission transforms into two identical counter-propagating pulses

which collide inside the center of the cavity, Fig. 5.8(a). The spectrum in Fig. 5.8(b) consists

of more than 15 modes separated by twice the round trip frequency, frt, whereas beatnote

calculations, Fig. 5.8(c), indicate a strong component at the second harmonic of frt. This

second harmonic regime is stable over hundreds of round trips, with the beatnote linewidth in

Fig. 5.8(c) being limited by the Fourier transform resolution of the simulations. Such a device

essentially represents a very stable local oscillator with a repetition frequency of around ≈71

GHz [159].

5.3.3 Hybrid mode locking (HML)
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Figure 5.9 (a) Schematic diagram of hybrid mode locking with radio frequency (RF) modulation of the
absorber bias. (b) Intensity profile for T1a =2-5 ps. (Inset) Intensity FWHM vs absorber lifetime for
the hybrid configuration of (a) and the same parameter set as the one which produced the results in
Fig. 5.7(b).

As shown above, the multi-section gain/saturable absorber system might lase in a regime of

irregular pulsations [59]. In order to enforce phase-locking of the modes, one can additionally

modulate the current/voltage of the gain or the absorber at the round trip frequency of the

optical field. Such a hybrid approach could be envisaged for QCLs, where the applied bias of

the absorber is superimposed with a sinusoidally varying radio frequency source via a bias-T,

and the gain medium is pumped with a DC current (see Fig. 5.9(a)) [140, 160].

To simulate this technique the term m0 sin(2πfrtt) is introduced in the right hand side of

Eq. (5.39b), modeling the RF source [112], where the modulation amplitude is set to 25 % of

the DC current, i.e. m0 = 0.25×∆eq
a /T1a. Again, the simulations from Fig. 5.7 were repeated

to evaluate how effective this active+passive mode locking will be as compared to the simple

PML case. The results are plotted in Fig. 5.9(b).

From Fig. 5.9(b), within the fast absorber regime (i.e. T1a = 2 − 5 ps), we see that the

applied RF modulation does not seem to have any significant impact on the pulse widths, as

the calculated FWHM-values are of almost the same magnitude as in Fig. 5.7(b). This is not
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so surprising as the laser already operates in a mode locked regime and so additional RF-

injection would have little to no effect on the dynamics. However, substantial improvement in

the pulse structure and duration is observed for slower absorbers as the satellite pulsations are

strongly suppressed in favor of more regular pulses. In particular, comparing the time-domain

profile of the intensity in Fig. 5.7(c) and Fig. 5.9(b), we see that as a result of this additional

active modulation, the pulse at T1a = 7 ps has completely recovered its integrity whereas the

pulse substructures for T1a = 9 ps are drastically reduced. Again, drawing insights from the

quantum dot laser community [161, 162], one might expect that with this HML technique an

improvement in the overall stability of the pulse train and mode locking parameter range can

be achieved, as compared to when utilizing the passive mechanism alone.

5.4 Coupled microwave and optical simulations of QCLs

The modeling of HML dynamics presented above suffers from a serious flaw. By incorporating

a RF modulation in Eq. (5.39b), the dependence of the numerous system parameters on the

applied bias, F , is completely neglected. This is a bad approximation as the wave functions

themselves, their eigenenergies, dipole moments, anticrossing terms and scattering rates etc.,

are, generally, a function of the field F [116, 163]. Now, any variation of the system parameters

could also alter the level populations and hence the 2D current density J through the laser,

which in turn will affect the value of the applied bias F . This twofold feedback mechanism, i.e.

the influence of the voltage drop onto the carrier dynamics and vice versa, is characteristic

for QCLs and thus, in order to achieve reliable simulation results, an additional time domain

model for the injection current is necessary.

Here a possible solution to the above introduced problem is outlined, where a coupled

transmission-line/Maxwell-Bloch equations approach is envisaged for the study of microwave-

optical interactions in quantum cascade lasers. The author must acknowledge that the original

idea stems from his correspondence with Dr. David Burghoff and Dr. Christian Jirauschek,

however most of the analytical work done is the author’s own contribution. Furthermore, the

model to be presented is only at a preliminary stage of development as time constraints have

delayed its full completion. Nevertheless, the proposed mathematical model could serve as a

first step in an attempt to extend the traditional Maxwell-Bloch equations beyond their known

limitations and hence capture more of the physics at play in real devices.

To gain a deeper understanding of the underlying physical picture, let us consider the

schematic diagram of Fig. 5.10. Assume an ideal DC source, applying constant voltage VDC
coupled through a bias-T to an RF source, generating a time-varying signal VRF (t). The

output of the bias-T is connected to a coaxial cable of length l and internal impedance Z0

(usually 50 Ω), which is terminated at the QCL waveguide position xk. The QCL resonator is

considered as a double-metal waveguide, which in fact is the preferred guiding structure for

THz devices, especially for active mode locking applications [3, 19, 146].

In such structures the total electromagnetic field will be comprised of a THz field, which is

the light actually emitted by the QCL, and a GHz field, the origin of which is in the propagating

voltage variations along the waveguide. Despite the fact that there is only one electromagnetic

field, it will be more convenient to treat the THz and GHz waves via separate mathematical
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Figure 5.10 A general schematic for DC+RF voltage injection into a double-metal QCL waveguide.
The current from the RF source is combined with a DC signal before being transported over a coaxial
cable transmission line (TL) to the QCL. The QCL waveguide is also seen as a micro-strip transmission
line, at some position xk of which the source current is being injected.

models, the former with the usual Maxwell-Bloch equations, and the latter via the well known

transmission line equations. The coupling between those two worlds will be done via the

voltage u(x, t) and current density J(x, t), along the QCL longitudinal direction, in a manner

as illustrated in Fig. 5.11. After pre-computing, with the aid of our Schrödinger-Poisson

and ensemble Monte Carlo codes, the bias dependence of all relevant system parameters

(eigenenergies, dipole moments, scattering rates etc.), this "input data" is provided to the

algorithm as a model for the QCL. Using this data, from the current value of the voltage

u(x, t) (the bias is given as F = u/h, where h is the height of the QCL), one interpolates

the aforementioned parameters, and with these new numbers propagates for one time-step

the Maxwell-Bloch system. From the new state of the density matrix, one computes the QCL

current density J(x, t) and feeds it into the transmission line equations solver, in order to

calculate an update for the voltage u(x, t) → u(x, t + dt). This iteration is repeated in the

same manner until the end of the simulation time is reached, i.e. t ≥ tsim.

MB equations

TL 

equations

Fin

In
p
u
t 
d
a
ta

Figure 5.11 Coupled transmission-line/Maxwell-Bloch equations algorithm, suitable for microwave-
optical simulations of electrically pumped lasers.

5.4.1 Current injection through a coaxial cable

Until this point, quite some time was spent in modeling the QCL carrier-light interaction

dynamics via various forms of the Maxwell-Bloch equations. In the following paragraphs a

model is outlined for the transmission line structures delivering the applied current/voltage

to the QCL device. Since direct discretization of the coaxial cable (typically of length over
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several cm) would necessitate the propagation over many thousands of grid points, assume a

lossless cable, as then analytical solutions to the underlying equations are readily available.

As a further simplification also frequency independent distributed parameters will be used.

Formally, the coaxial cable is modeled as a lossless transmission line with distributed

capacitance C and inductance L and total length l. The telegrapher’s equations for voltage V

and current I along the cable are simply

∂V

∂x
= −L∂I

∂t
, (5.40a)

∂I

∂x
= −C∂V

∂t
, (5.40b)

with the additionally specified initial and boundary conditions,

V (x = 0, t) = Vin(t), (5.41a)

V (x = l, t) = Vs(t), (5.41b)

I(x = 0, t) = Iin(t), (5.41c)

I(x = l, t) = Is(t), (5.41d)

V (x, t = 0) = 0, (5.41e)

I(x, t = 0) = 0. (5.41f)

Note that it has been assumed that initially there are no currents & voltages inside the cable,

which is justified if the source is slowly turned on.

Below, the results from [164] will be adapted for the particular case where one treats a

lossless transmission line with constant, frequency independent distributed inductance L and

capacitance C. Using the Laplace transform, Eqs. (5.40) turn into

∂V(x, s)

∂x
= LI(x, 0)− LsI(x, s), (5.42a)

∂I(x, s)

∂x
= CV (x, 0)− CsV(x, s), (5.42b)

where I(x, s) = L {I(x, t)}[s] and V(x, s) = L {V (x, t)}[s] are the Laplace transforms

of the current and voltage in the coaxial cable, respectively. As done in [164] , change

the variables from I and V to P(x, s) and Q(x, s) defined as P(x, s) = (V + Z0I)/2 and

Q(x, s) = (V − Z0I)/2, with the intuitive interpretation of forward and backward propagating

voltage, respectively. Then P and Q obey the differential equations

∂P
∂x

+ λ(s)P =
LI0(x) + CZ0V0(s)

2
, (5.43a)

∂Q
∂x
− λ(s)Q =

LI0(x)− CZ0V0(s)

2
, (5.43b)

where I0 and V0 are the initial current and voltage and λ(s) = s
√
LC. As mentioned above,

since the initial conditions are set to zero, one can immediately come up with the analytical

solutions of Eqs. (5.43)

P(x, s) =
V(x, s) + Z0I(x, s)

2
= A(s)e−λ(s)x, (5.44)

Q(x, s) =
V(x, s)− Z0I(x, s)

2
= B(s)eλ(s)x, (5.45)
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with A and B being s−dependent constants, appropriately chosen as to satisfy the boundary

conditions (BC)

V (0, t) = Vin(t), (5.46a)

V (l, t) = Vs(t), (5.46b)

I(0, t) = Iin(t), (5.46c)

I(l, t) = Is(t). (5.46d)

Applying the BCs we get that A and B are given by

A =
V(0, s) + Z0I(0, s)

2
, (5.47)

B = e−λ(s)lV(l, s)− Z0I(l, s)

2
. (5.48)

Finally, re-expressing I and V in terms of P and Q the final solution (in the frequency domain)

is obtained

V(x, s) + Z0I(x, s) = e−λ(s)x [V(0, s) + Z0I(0, s)] , (5.49)

V(x, s)− Z0I(x, s) = e−λ(s)(l−x) [V(l, s)− Z0I(l, s)] . (5.50)

What remains is to inverse-Laplace transform the above equations in order to obtain the

solutions in the time-domain. For this procedure, use the fact that the inverse Laplace

transform of F(s) · G(s), where F(s) = L {f(t)}[s] and similarly G(s) = L {g(t)}[s], is the

convolution of f and g, i.e.

L −1{F(s) · G(s)}[t] =

∫ t

0
f(τ)g(t− τ)dτ . (5.51)

In case of a lossless transmission line, which is what has been assumed for the coaxial cable,

the convolutions are done with Dirac-delta functions since the inverse Laplace transform of

the exponent L −1{e−λ(s)x}[t] = L −1{e−s
√
LCx}[t] = δ(t−

√
LCx). Using the convolution

theorem and this previous fact, the following analytical expression is obtained

V (x, t) =
V (0, t−

√
LCx) + V (l, t−

√
LC(l − x))

2
+ Z0

I(0, t−
√
LCx)− I(l, t−

√
LC(l − x))

2

=
Vin(t−

√
LCx) + Vs(t−

√
LC(l − x))

2
+ Z0

Iin(t−
√
LCx)− Is(t−

√
LC(l − x))

2
,

(5.52)

and similarly

I(x, t) =
V (0, t−

√
LCx)− V (l, t−

√
LC(l − x))

2Z0
+
I(0, t−

√
LCx) + I(l, t−

√
LC(l − x))

2

=
Vin(t−

√
LCx)− Vs(t−

√
LC(l − x))

2Z0
+
Iin(t−

√
LCx) + Is(t−

√
LC(l − x))

2
.

(5.53)

Equations (5.52)-(5.53) have a straightforward physical interpretation. They simply state that

the current/voltage at time t and position x inside the coaxial cable, are the appropriately
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taken superposition of the current/voltage coming from the left boundary and these arriving

from the right boundary of the cable. In this context, the expression 1/
√
LC is nothing else

but the propagation velocity of the electromagnetic wave inside the cable. Now, since we are

interested only at what happens at the boundary, substitute x = l and x = 0 in the above

equations to obtain the relationships

I(l, t) = Is(t) =
Vin(t− l

√
LC)− Vs(t)

2Z0
+
Iin(t− l

√
LC) + Is(t)

2
, (5.54)

I(0, t) = Iin(t) =
Vin(t)− Vs(t− l

√
LC)

2Z0
+
Iin(t) + Is(t− l

√
LC)

2
, (5.55)

from where the boundary currents can be expressed in terms of the boundary voltages at time

t

Iin(t) =
Vin(t)− Vs(t− l

√
LC)

Z0
+ Is(t− l

√
LC), (5.56a)

Is(t) =
Vin(t− l

√
LC)− Vs(t)
Z0

+ Iin(t− l
√
LC). (5.56b)

Notice that Eqs. (5.56) gives a recurrent relationship for the currents in terms of the voltages in

the present time t and the past values of the boundary currents. Hence, with knowledge of

two out of those four quantities (at each boundary), Iin/s(t) and Vin/s(t), as well as the initial

conditions, the other two are completely determined. What now remains is to fix the left hand

side boundary conditions for the input voltage (the right boundary conditions will be given from

the "coupling" to the QCL transmission line). As the coaxial cable is assumed to be connected

to a DC+RF voltage source set

V (0, t) = Vin(t) = VDC + VRF (t) = VDC +mA sin(ωmt), (5.57)

with mA and ωm the modulation amplitude (in Volts) and angular frequency, respectively.

5.4.2 QCL transmission line model

After finding the solution for a the coaxial cable, the focus shifts on the electrical modeling of

the QCL structure. As already explained above, the laser resonator is treated as a (possibly

lossy) micro-strip transmission line with frequency-independent distributed capacitance CQCL,

inductance LQCL, resistance RQCL and conductance GQCL. The transmission line equations

for the QCL voltage u(x, t) and current i(x, t) are

∂u(x, t)

∂x
= −LQCL

∂i(x, t)

∂t
−RQCLi(x, t), (5.58a)

∂i(x, t)

∂x
= −CQCL

∂u(x, t)

∂t
−GQCLu(x, t)− wJ(x, t), (5.58b)

where w is the width of the QCL and J(x, t) denotes the current density through the structure

(i.e. the current through the QCL stages). In Eqs. (5.58), an additional Ohmic leakage current

component has been included, specified by the distributed conductance parameter GQCL,

as well as any general current density J(x, t) flowing through the gain medium. Formally

J(x, t) ought to incorporate both types of current, however the distinction here is made for
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convenience, as generally wJ(x, t) could be used to denote the current contribution calculated

from the density matrix equations, whereas GQCLu(x, t) can model any additional flow of

electrons which cannot be captured by the Bloch carrier model (such as for example the

leakage of electrons into the continuum [40]).

Next, the QCL voltage u(x, t), current density J(x, t) and line current i(x, t) are discretized

on the traditional staggered I-V type of Yee grid [56], i.e. take current on i(xj− 1
2
, tn) = in

j− 1
2

, the

voltage on grid points u(xj , tn− 1
2
) = u

n− 1
2

j , and the current density on J(xj , tn− 1
2
) = J

n− 1
2

j ,

for j = 1, 2...M and n = 1...Nt.

z

y

Coax cable

Source

QCL line
x

Figure 5.12 Illustration for the QCL-coaxial cable interface. The inset denotes the equivalent circuit
representation of a differential element of the QCL with length ∆x.

To understand the coupling between coaxial cable and QCL waveguide, let us revisit our

schematic from Fig. 5.10 redrawn in Fig. 5.12, this time with a bit more focus on the QCL

geometry. As illustrated in the figure, it has been assumed that x is the propagation direction,

z the growth direction and y the transverse waveguide direction. With this notation, the parallel

plate QCL current, denoted by i(x, t), flows along the x−direction, whereas the voltage drop

u(x, t) and the current density J(x, t), are aligned with the growth direction, i.e. z. Since we

consider only a single QCL module, within the periodic rate equations model (see Sec. 2.3.2),

we have indirectly assumed a homogeneous distribution of J and u along the growth direction.

Now, it is time to focus on the interface between the coaxial cable and the QCL transmission

line. As mentioned before, it is assumed that the bonding pads are located at grid point

xk (aligned with the voltage grid). For this particular configuration one can apply Kirchhoff’s

voltage and current laws to derive the boundary conditions connecting the QCL with the coaxial

cable. From the current balance law at grid point xk calculate

Ins + in
k− 1

2

= in
k+ 1

2

+ CQCL∆x
∂unk
∂t

+ w∆xJnk +GQCL∆xunk

≈ in
k+ 1

2

+ CQCL∆x
u
n+ 1

2
k − un−

1
2

k

∆t
+
w∆x

2
(J

n+ 1
2

k + J
n− 1

2
k ) +

GQCL∆x

2
(u
n+ 1

2
k + u

n− 1
2

k ),

(5.59)
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where the time derivative of unk is approximated with finite difference expression, centered

around (xk, tn), and also Jnk ≈ (J
n+ 1

2
k + J

n− 1
2

k )/2 and similarly for unk . Secondly, applying

Kirchhoff’s voltage law, for the closed loop between the end of the coaxial cable and going

through the QCL transmission line at xk, yields

V n
s = unk =

u
n+ 1

2
k + u

n− 1
2

k

2
. (5.60)

For the rest of the grid points the following (standard) staggered discretization applies

u
n+ 1

2
j = αu

n− 1
2

j − β(in
j+ 1

2

− in
j− 1

2

)− γ(J
n+ 1

2
j + J

n− 1
2

j ), for j = 1, 2, ..., k − 1, k + 1, ...,M − 1,

(5.61)

in+1
j− 1

2

= δin
j− 1

2

− ε(un+ 1
2

j − un+ 1
2

j−1 ) for j = 2, 3...,M , (5.62)

where α,β, γ, δ, ε are constants, given by

α =
2CQCL −∆tGQCL
2CQCL + ∆tGQCL

, (5.63a)

β =
2∆t

∆x(2CQCL + ∆tGQCL)
, (5.63b)

γ =
w∆t

2CQCL + ∆tGQCL
, (5.63c)

δ =
2LQCL −∆tRQCL
2LQCL + ∆tRQCL

, (5.63d)

ε =
2∆t

∆x(2LQCL + ∆tRQCL)
. (5.63e)

As for the left and right hand side boundary conditions, assume "open" circuit boundaries, i.e.

that i(x = 0, t) = 0 and i(x = l, t) = 0, which can be approximated on the chosen grid with

in+1
1
2

= 0, (5.64)

u
n+ 1

2
M = u

n+ 1
2

M−1. (5.65)

5.4.3 Interface currents

As mentioned already, in Eqs. (5.56a)-(5.56b) there is a recurrent relation between the values

of Iin(t) and Is(t), which is given by

Inin =
V n
in − V n−m

s

Z0
+ In−ms , (5.66a)

Ins =
V n−m
in − V n

s

Z0
+ In−min , (5.66b)

where n is the present time index and m =
√
LCl/dt is the number of iterations it takes for

the microwave signal to propagate through the coaxial cable of length l. The numerical update
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rule for u
n+ 1

2
k can be found from the boundary condition of Eq. (5.59), using the recurrence

relations in Eqs. (5.66)

V n−m
in

Z0
−
u
n+ 1

2
k + u

n− 1
2

k

2Z0
+ In−min + in

k− 1
2

= in
k+ 1

2

+ CQCL∆x
u
n+ 1

2
k − un−

1
2

k

∆t
+
w∆x

2
(J

n+ 1
2

k + J
n− 1

2
k ) +

GQCL∆x

2
(u
n+ 1

2
k + u

n− 1
2

k ).

(5.67)

Rearranging Eq. (5.67) leads to

u
n+ 1

2
k

(
CQCL∆x

∆t
+

1

2Z0
+
GQCL∆x

2

)
= u

n− 1
2

k

(
CQCL∆x

∆t
− 1

2Z0
−
GQCL∆x

2

)
+
V n−m
in

Z0
+ In−min + in

k− 1
2

− in
k+ 1

2

− w∆x

2
(J

n+ 1
2

k + J
n− 1

2
k ), (5.68)

which can be solved for u
n+ 1

2
k to find the next value of u at the "QCL" ↔ "coaxial cable"

interface.

5.4.4 Numerics for the transmission line model

In this subsection the numerics for solving the QCL transmission line equations Eqs. (5.58) are

summarized, for two distinct types of grids, the above introduced I-V grid, where the current

discretization spatially precedes the voltage, and the V-I grid where the opposite choice is

made.

The I-V grid is specified as (for j = 1, 2, ...,M and n = 1, 2, ...,Nt)

in
j− 1

2

= i[(j − 1

2
)∆x,n∆t], (5.69)

u
n− 1

2
j = u[j∆x, (n− 1

2
)∆t], (5.70)

J
n− 1

2
j = J [j∆x, (n− 1

2
)∆t]. (5.71)

The time-stepping procedure for Eqs. (5.58) can be written as

u
n+ 1

2
j = αu

n− 1
2

j − β(in
j+ 1

2

− in
j− 1

2

)− γ(J
n+ 1

2
j + J

n− 1
2

j ), for j = 1, 2, ..., k − 1, k + 1, ...,M − 1,

(5.72)

in+1
j− 1

2

= δin
j− 1

2

− ε(un+ 1
2

j − un+ 1
2

j−1 ) for j = 2, 3...,M , (5.73)

with the coefficients as specified in Eqs. (5.63). If k 6= M we have the "open-circuit" boundary

conditions

in+1
1
2

= 0, (5.74)

u
n+ 1

2
M = u

n+ 1
2

M−1, if k 6= M , (5.75)

and the update of u
n+ 1

2
k is found from

u
n+ 1

2
k

(
CQCL∆x

∆t
+

1

2Z0
+
GQCL∆x

2

)
= u

n− 1
2

k

(
CQCL∆x

∆t
− 1

2Z0
−
GQCL∆x

2

)
+
V n−m
in

Z0
+ In−min + in

k− 1
2

− in
k+ 1

2

− w∆x

2
(J

n+ 1
2

k + J
n− 1

2
k ). (5.76)
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If the current injection is assumed to occur at the beginning of the QCL waveguide, i.e. at

x = 0, it is more convenient to incorporate a V-I discretization grid for the numerical solution,

i.e. (for j = 1, 2, ...,M and n = 1, 2...Nt)

inj = i[j∆x,n∆t], (5.77)

u
n− 1

2

j− 1
2

= u[(j − 1

2
)∆x, (n− 1

2
)∆t], (5.78)

J
n− 1

2

j− 1
2

= J [(j − 1

2
)∆x, (n− 1

2
)∆t]. (5.79)

The numerical method now reads

u
n+ 1

2

j− 1
2

= αu
n− 1

2

j− 1
2

− β(inj − inj−1)− γ(J
n+ 1

2

j− 1
2

+ J
n− 1

2

j− 1
2

), for j = 2, ..., k − 1, k + 1, ...,M ,

(5.80)

in+1
j = δinj − ε(u

n+ 1
2

j+ 1
2

− un+ 1
2

j− 1
2

) for j = 1, 2, 3...,M − 1, (5.81)

with the similar "open-circuit" boundary conditions

u
n+ 1

2
1
2

= u
n+ 1

2
3
2

, if k 6= 1, (5.82)

in+1
M = 0. (5.83)

Lastly, the injection condition at grid point xk− 1
2

= (k − 1
2)∆x gives us the update equation

u
n+ 1

2

k− 1
2

(
CQCL∆x

∆t
+

1

2Z0
+
GQCL∆x

2

)
= u

n− 1
2

k− 1
2

(
CQCL∆x

∆t
− 1

2Z0
−
GQCL∆x

2

)
+
V n−m
in

Z0
+ In−min + ink−1 − ink −

w∆x

2
(J

n+ 1
2

k− 1
2

+ J
n− 1

2

k− 1
2

). (5.84)

5.4.5 Discussion and preliminary verification of the model

To simulate the QCL operation, the formalism introduced in Sec. 2.3.7 can be employed.

Therein electronic states are described with a density matrix of a suitably chosen dimension,

the time evolution of which is given by Eq. (2.68), with the additional assumption that all

parameters are voltage (or equivalently bias) dependent. To couple the carrier transport

equations to the transmission line model, one will need to additionally define a particular

form for the current density J(x, t) through the laser cascade. An illustration of all possible

contributions to the electron current in a QCL is shown in Fig. 5.13.

Generally, the total current along the active region growth direction is the sum of three

distinct components: the incoherent/scattering current due to the non-radiative transport in

the structure, a coherent component of the current which is due to interaction with the optical

field and/or due to resonant tunneling, and lastly a possible "leakage current" contribution,

originating from electrons escaping the structure through the continuum. When the mathe-

matical model for the density matrix is implemented as to conserve the electron number (see

Sec. 2.3.2), the latter component of the current density cannot be derived from the density

matrix alone, but can rather be incorporated via the Ohmic relation as in Eq. (5.58b).
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Figure 5.13 Exemplary QCL heterostructure, wave functions together with a highlight of the various
contributions to the total current density flowing through the QCL. The flow of coherent and incoherent
currents is constrained in the quantum well heterostructure, whereas the leakage current flows through
the continuum of states.

The scattering and coherent currents can be found from the density matrix model as the

expectation value of the time derivative of the position operator

J = Ne
d

dt
〈ẑ〉 = Ne

d

dt
tr(ρ̂ẑ) = Netr(

d

dt
ρ̂ẑ). (5.85)

Since the focus here is not on the particular quantum mechanical model used for the QCL, a

concrete expression for Eq. (5.85) will not be given. Instead let us focus on investigating the

effects of J and GQCLu onto the transmission line dynamics. Take Eq. (5.58b). Integrate over

the QCL cavity length L and assume that current i0 is injected at x = 0, to obtain∫ L

0

∂i(x, t)

∂x
dx = −

[
GQCL + CQCL

d

dt

] ∫ L

0
u(x, t)dx− w

∫ L

0
J(x, t)dx

⇔

i0 −
[
w

∫ L

0
J(x, t)dx+GQCL

∫ L

0
u(x, t)dx

]
︸ ︷︷ ︸

Iout

= CQCL
d

dt

∫ L

0
u(x, t)dx, (5.86)

where i(x = L, t) ≡ 0 and i(x = 0, t) = i0 have been used. A straightforward interpretation

comes from the capacitor "structure" of the micro-strip transmission line. Equation (5.86)

simply tells us that if the net current flow is positive, then the capacitor will gradually charge

(increasing the voltage drop) and discharge for negative values of the net current. This yields

the "steady state condition" for DC-pumped laser, i.e. i0 = iout.

Next, a numerical test for the algorithm in Sec. 5.4.4 will be presented. Since this will

only be a proof of concept experiment, the density matrix model will be neglected in the

underlying simulation, and instead a lossless QCL waveguide is modeled by setting to zero the

conductance GQCL, current density J , and the resistance RQCL = 0. Additionally, assume

that the QCL and the coaxial cable are impedance-matched, both with impedance Z0 = 50 ,
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5 Mode locked THz QC lasers

while the QCL transmission line is terminated at x = L with a resistive load with impedance

ZL. Note that terminating the line with a finite value for the impedance alters the corresponding

boundary condition from its open circuit variant. A numerically stable formulation for the BCs

of a transmission line, terminated by a resistive load, can be found in [165].

Standard transmission line theory tells us that when ZL 6= Z0, the supplied voltage wave

ought to reflect from the terminal at which the load is connected, with a ratio between the

forward and backward propagating voltages given by the reflection coefficient

Γ =
V −

V +
=
ZL − Z0

ZL + Z0
, (5.87)

where V ± denote respectively the forward and backward propagating waves. The latter can

be easily found using the relations

Is(t) = I+
s − I−s =

V +
s − V −s
Z0

, (5.88)

Vs(t) = V +
s + V −s , (5.89)

and are given by

V +
s =

Vs + Z0Is
2

, (5.90)

V −s =
Vs − Z0Is

2
, (5.91)

where the end point of the coaxial cable has been chosen for reference (the same analysis

can be done for every other point either along the cable or the QCL).
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Figure 5.14 (a) Forward and backward propagating voltages as a function of time in the DC pumping
regime, with a time-constant source voltage Vin(t) = 10 V. (b) Same as in (a), with the additional
inclusion of a harmonic modulation of the input voltage with amplitude 1 V and modulation frequency
fRF = 13 GHz, i.e. Vin(t) = [10 + sin(2πfRF t)] V.

To test this, two distinct cases are simulated, first when Vin is a DC voltage of 10 V (Fig. 5.14)

and second, when it is a DC voltage of 10 V + a radio frequency (RF) voltage of 1 V with

modulation frequency fRF = 13 GHz. For both scenarios, assume that the coaxial cable and

the QCL transmission line are lossless and have an impedance ZQCL = Z0 =
√
L/C = 50 Ω.

Furthermore, the coaxial cable is connected to the x = 0 coordinate of the QCL transmission

line, and also that the resistive load has resistance ZL = 80 Ω.
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5.5 Conclusion

According to Eq. (5.87), we see that both V +
s and V −s shall have the same sign (positive

valued) (since ZL > Z0) and that their ratio shall be approximately 30/130 ≈ 0.2308. Sim-

ulating the system yields numerical results in perfect accordance with the analytical theory.

For example in Fig. 5.14(a), after some initial transients the forward voltage settles at around

V +
s ≈ 8.125 V whereas the backward such V −s ≈ 1.875 V, yielding a numerical reflection

coefficient of 0.2308. The same reflection coefficient is also found for the case when RF

modulation is abruptly switched on after 170 ps of the simulation time, see Fig. 5.14(b). Also

note that in accordance with the initial conditions in Eq. (5.41), Vs(t = 0) is set to zero. In

order to have a smooth solution, i.e. one without spurious oscillations due to discontinuities in

the initial/boundary conditions, one needs to slowly turn on the source voltage from zero to its

desired value, just like in the lab, slowly enough for the quantities V , I, u and i, to be able to

adapt and settle to their steady state values. The switching-on of the source is implemented

by multiplying Vin(t) by some sigmoidally shaped function, with sufficiently smooth raise time.

In this case the cumulative distribution function of the normal distribution has been used,i.e.

Vin(t)← 1

2

[
1 + erf

(
t− t0
2σ2

t

)]
Vin(t), (5.92)

where erf(·) is the error function, and t0 and σt denote some suitably chosen mean and

standard deviation, respectively.

5.5 Conclusion

In this chapter we have discussed feasible approaches to ultrashort pulse generation in

terahertz quantum cascade lasers. First on the agenda was passive mode locking, where in

the corresponding sections it was argued that, due to the relatively long inversion lifetimes in

bound-to-continuum THz QCLs, these devices would be more suitable for PML as compared

to resonant LO-phonon structures. The realization of this mechanism was suggested based on

a paradigmatic model for PML via a fast saturable absorber, implementable via multi-section

monolithic Fabry-Perot cavities. It was shown that, if the sections are designed correctly, the

formation of picosecond pulses, with FWHM limited by the gain bandwidth of the device, could

be possible. The presented calculations show that besides a suitably engineered gain medium

with slowly recovering population inversion, a fast saturable absorber with very strong coupling

to the optical field is essential. Carefully conducted simulation experiments indicate that the

multi-section configuration is prone to entering into a regime of irregular pulsations if the

absorber recovery time is very large, which should be an important point to consider in future

designs. Furthermore, besides conventional passive mode locking, alternative approaches to

pulse generation in QCLs, i.e. hybrid and colliding pulse mode locking, have been considered.

We have seen how, by utilizing active modulation of the injection current in the absorber,

the former method recovers the regular pulsations from a regime of irregular such. On the

other hand, CPML might be easier to achieve with THz QCLs as multi-pulse lasing is the

naturally preferred mode of operation in fast gain recovery active media. Lastly, an extension

to the widely used Maxwell-Bloch equations to include microwave-optical interaction dynamics

was presented. This approach, based on the coupled Maxwell-Bloch and transmission line
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5 Mode locked THz QC lasers

equations, could serve as a theoretical basis for the computational prototyping and design of

actively mode locked quantum cascade lasers.
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6 Metamaterials for slowing down THz light

6.1 Introduction

This thesis will conclude with a slight deviation from the main topic of THz quantum cascade

lasers, instead focusing on metamaterials with custom-tailored and sometimes exotic proper-

ties. Concretely, this chapter will outline a theoretical and computational investigation on the

possibility of achieving slow terahertz light by exploiting the tunneling induced transparency

(TIT) effect in suitably engineered quantum well heterostructures. Such a metamaterial will be

designed and simulated, showing how TIT could lead to large values of the group refractive

index, unfortunately at the cost of relatively strong field attenuation due to decoherence. As a

suitable alternative, the construction of an array is proposed, stacked with alternating buffer

and quantum cascade amplifier regions, arranged in such a way as to achieve slow light and

simultaneously compensate for the large signal losses. Calculations show that a simple 8-bit

binary message could be reliably transmitted through this system, with non-critical reduction of

the signal to noise ratio, and a slow-down factor of more than 70 as compared to the velocity

of light in vacuum c.

Some of the results, contained in this chapter, were presented on a scientific conference [79].

���������	


����
������������������	

Figure 6.1 Comparison between the real and imaginary part of the refractive index, as seen by a
probe field Ep in resonance with a regular two level system (top row) and a three level EIT system
(bottom row).

It has been known for a long time that optical resonances can modify the group velocity (vg)

of light, leading to smaller or larger values than c. For homogeneously broadened transitions,

such effects are hard to detect experimentally due to the inherently strong absorption of the

incident probe field. An alternative, where optical losses due to stimulated absorption can be
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6 Metamaterials for slowing down THz light

partially or even completely canceled while retaining the large values of the group index, is the

so called electromagnetically induced transparency (EIT) effect. Comparison between the real

n′ and imaginary n′′ parts of the refractive index for a usual two level system resonance and

EIT is shown in Fig. 6.1. For EIT, in addition to the probe field Ep there is an additional control

beam Ec, which is used to induce the hole in the optical spectrum.

The first laboratory observation of EIT was reported in [166], where the authors demon-

strated an approximately 20-fold decrease in the absorption of ultraviolet light in a 38Sr vapor

cell, via quantum mechanical interference effects [167, 168]. These first results initiated a very

intensive and fruitful research on the topic, with probably one of the highlights of all of these

collective efforts being the reduction of vg to a mere 17 m/s in ultra-cold atomic vapor [169].

Possible applications include the construction of optical buffers [170], imaging [171, 172]

and quantum memory, where light is not only slowed down but needs to be completely

stopped [173]. In view of the potential commercialization of these technologies, it is very

important to be able to implement the desired optical properties on a chip [174], and preferably

with solid state media [175]. Furthermore, with the rapid development of semiconductor growth

and processing technology, it has become even more tempting to realize slow or ultrafast light

with suitably engineered quantum wells and/or quantum dots.

To understand the mechanism, in which photons are slowed down upon resonantly interact-

ing with the EIT system, it is useful to borrow a very instructive analogy presented in [176].

Figure 6.2 illustrates the process of trapping a photon in a three level system containing the

ground state |g〉, the excited state |e〉 and an additional so called "spin state" |s〉.
The key of obtaining very large slow-down factors is in making the dressed state produced

by the beating between |s〉 and |g〉 as long-lived as possible. This is typically achieved in media

where the s↔ g transition is forbidden whatsoever (via selection rules), for example between

specially selected levels of ultra-cold lead vapor [167, 168]. Carefully tuning the frequency and

amplitude of the control beam, would allow not only the selection of the appropriate s−level but

also the tuning of the slow-down factor. Despite the great success of the EIT effect in slowing

down or even stopping electromagnetic radiation, it also suffers from drawbacks as ultra cold

temperatures are typically needed. Additionally, the realization of this effect necessitates the

usage of two optical fields, which complicates the experimental setup.

Tunneling induced transparency (TIT) is an effect similar to EIT, with the difference that

the reduction in the absorption spectrum is induced by a strong tunneling coupling between

a pair of quantum states, rather than a control electric field. Both quantum well [177] and

quantum dot [178] configurations have been proposed as possible implementations of TIT,

but unfortunately experimental success seems to be limited to the observation of Fano-

interference in quantum well heterostructures [179, 180], suggesting that more accurate

theoretical modeling is needed. Below, we entertain the possibility of achieving slow light in

such semiconductor metamaterials, with a slow-down factor of 70 and above all with minimal

pulse attenuation. The theoretical approach is based on self-consistent simulations, involving

heterostructure design via a Schrödinger-Poisson (SP) solver [115], and parameter study, with

the aid of an ensemble Monte-Carlo (EMC) code [52, 117, 118], as well as full time-domain

simulations of the field propagation inside the optically active material, via the Maxwell-Bloch

laser equations [5, 52, 83, 91].
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Figure 6.2 Intuitive explanation of EIT. 1. A probe photon enters the (initially non-inverted) system. 2.
The coherent electro-optical interaction excites Rabi-oscillations between the excited state |e〉 and the
ground state |g〉. 3. The control beam transfers the coherent oscillations from the e ↔ g transition
to the (hopefully long-lived) s↔ g transition. 4. Eventually, the charge returns to the original e↔ g

oscillation. 5. The charge returns to the ground state and releases the photon in the process. Adapted
from [176].

This chapter is organized as follows: Section 6.2 outlines the theoretical model and the

equations involved. In Sec. 6.3 an analytical expression for the group refractive index and

the transmission coefficient (Sec. 6.4) are derived. In Sec. 6.5 a prototypical heterostructure

design is presented together with a parameter analysis to demonstrate that it yields group

index values as large as 140, however at the cost of a large signal attenuation. Lastly, in

Sec. 6.6, a possible solution of the strong absorption problem is suggested, via incorporating

an amplifying element in our design.

6.2 Theoretical model

The model is based on a three level Λ-type system, realized by bound states in the conduction

band of a quantum well heterostructure, where a pair of states, which are denoted |g〉 for

the ground and |e〉 for the excited state, is coupled via a signal field Ez oscillating with the

central frequency ω0, which is approximately in resonance with the g ↔ e transition frequency

ωeg. On the other hand, an additional "spin" state is coupled to |e〉 via the tunneling coupling

energy ~Ωse (for explanation of the origin of the term ~Ωse and a detailed discussion on

the tight-binding basis see Sec. 4.2.1). A thick barrier separates the states |e〉 and |s〉 in

space, and its width or the applied voltage can be adjusted to control the coupling strength. A

schematic representation of the envisioned system is illustrated in Fig. 6.3.

To capture the optical quantum interference effects, leading to TIT, a non-classical carrier

model is needed. Again, one finds that employing a density matrix approach to describe the

statistical behavior of the atomic ensemble in the system, coupled to the classical Maxwell’s

equations via a polarization term, i.e. solving the Maxwell-Bloch equations, gives an excellent
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Figure 6.3 Schematic illustration of a Λ 3-level model, consisting of an excited and ground state, |e〉
and |g〉 respectively, separated via a thick barrier from a third level |s〉. The states |g〉 and |e〉 are
coupled via the signal field Ez, while |e〉 and |s〉 via the tunneling coupling energy ~Ωse.

representation of the physical system. Including space dependence and employing the slowly

varying envelope and rotating wave approximations, the familiar equations read

∂tf + ∂xf = −iNΓezegω0

ε0nc
ηeg, (6.1a)

dρss
dt

= iΩse(ρse − ρes) + Γesρee + Γgsρgg − Γsρss, (6.1b)

dρee
dt

= iΩse(ρes − ρse) + i
ezeg
2~
(
f∗ηeg − c.c.

)
, +Γseρss + Γgeρgg − Γeρee, (6.1c)

dρgg
dt

= −iezeg
2~
(
f∗ηeg − c.c.

)
+ Γsgρss + Γegρee − Γggρgg, (6.1d)

dρse
dt

= −iερse + iΩse(ρss − ρee) + i
ezeg
2~

f∗ηsg − Γ‖seρse, (6.1e)

dηeg
dt

= i(ω0 − ωeg)ηeg + i
ezeg
2~

f(ρee − ρgg)− iΩseηsg − Γ‖egηeg, (6.1f)

dηsg
dt

= i(ω0 − ωeg − ε)ηsg + i
ezeg
2~

fρse − iΩseηeg − Γ‖sgηsg, (6.1g)

with the usual envelope ansatz

Ez(x, t) =
1

2

[
f(x, t)ei(β0x−ω0t) + c.c.

]
, (6.2)

ρeg = ηege
i(β0x−ω0t), (6.3)

ρsg = ηsge
i(β0x−ω0t), (6.4)

decomposing the electric field and the coherences into a product of slowly varying envelopes

and a carrier wave with angular frequency ω0 and wave number β0 = nω0/c. The rest of the

parameters are as defined throughout the previous chapters of this text.
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6.3 Group index derivation

6.3 Group index derivation

Based on the density matrix model in Eqs. (6.1), an analytical formula for the group refractive

index of the TIT system can be found. First, consider the linear polarization, given by

P (x, t) = ε0χ
(1)Ez(x, t) = ε0

1

2

[
χ(1)f(x, t)ei(β0x−ω0t) + c.c.

]
= −NΓezeg

[
ηeg(x, t)ei(β0x−ω0t) + c.c.

]
,

(6.5)

from where one can derive an expression for the linear susceptibility

χ(1) = −2
NΓezeg
ε0

ηeg(x, t)/f(x, t). (6.6)

The steady state solution of ηeg is directly computed from Eqs. (6.1), and in the weak field limit

(i.e. |ezegf/~| � |Ωse|) reads

ηeg = −[
Ω2
se

γse
(
γsgγeg − Ω2

se

) × (ρss − ρee) +
γsg(

γsgγeg − Ω2
se

) × (ρee − ρgg)]×
ezeg
2~

f(x, t),

(6.7)

where γsg = (δω − ε+ iΓ‖sg), γeg = (δω + iΓ‖eg), γse = ε− iΓ‖se, and δω = ω0 − ωeg is the

detuning of the probe field from resonance. Assuming that the populations of |s〉 and |e〉 are

almost equal, χ(1) simplifies to

χ(1) =
NΓe2z2

eg

ε0~
× γsg
γsgγeg − Ω2

se

× (ρee − ρgg), (6.8)

which is the standard expression for the linear susceptibility of the 3 level Λ-system, familiar

from the theory of electromagnetically induced transparency[167, 170]. Note that the term

that has been dropped in Eq. (6.7) can be associated with the so called Raman gain in

the system [121] and can be exploited for gain assisted slow light [181] or inversion-less

lasing [182].

Let us also assume a background susceptibility χ0 = n2− 1, taken to be constant for narrow

frequencies around the central carrier frequency. Then the total (complex) refractive index

n = n′ + in′′ is given by

n2 = n2 + χ(1), (6.9)

which can be Taylor expanded to yield

n = n+
1

2n
χ(1) = n(1 + rΩp ×

γsg
γsgγeg − Ω2

se

). (6.10)

In Eq. (6.10) r = (ρee − ρgg) ≈ −1 is the population inversion factor and

Ωp =
NΓe2z2

eg

2n2ε0~
> 0 (6.11)

is the modified plasma frequency. Assuming ε ≈ 0, the group refractive index is finally given by

ng = n+ ω0 Re{ ∂n
∂δω
}
∣∣∣∣
δω=0

= n
(

1− rω0Ωp ×
Ω2
se − Γ2

‖sg

[Ω2
se + Γ‖sgΓ‖eg]2

)
. (6.12)
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6.4 Transparency under decoherence

The power transmission coefficient over propagation length dL is simply

T (ω) = exp(−2ωc−1 Im{n(ω)}dL), (6.13)

where n′′ = Im{n(ω)} denotes the imaginary part of the refractive index. Calculating n′′

from Eq. (6.10), one can quickly see that absorption will vanish in case of Γ‖sg = 0 and

δω = (ω − ωeg) = 0, which is exactly what is termed as tunneling induced transparency [178].

Unfortunately, the relatively small coherence times, i.e. large Γ‖sg, in solid state materials

present a great obstacle in realizing slow light in such non-gaseous media.

This problem is tackled in two different ways. First of all, in Sec. 6.5, a quantum well

heterostructure is presented, which has been designed in order to minimize the decoherence

between the spin and the ground state of Fig. 6.3, and simultaneously maximize the value

of the group index. It is found, however, that despite the optimal structure design, s ↔ e

lifetimes are still on the order of nanoseconds. Thus reasonable values of ng can be only

achieved at the cost of a considerable electric field attenuation. Therefore, in Sec. 6.6 we

discuss a prototype system, incorporating an amplifying element, as means to compensate for

this defect in the optical buffer.

6.5 Coherent three well system

With the use of a Schrödinger-Poisson solver, coupled to the ensemble Monte Carlo simulation

code, a quantum well heterostructure corresponding to the model in Fig. 6.3 can be engineered.

The SP solver is used to calculate the eigenstates and with the EMC code one evaluates the

scattering rates at a fixed temperature, here chosen to be 10 K. The resulting structure and

the corresponding system parameters are displayed in Fig. 6.4 and Tab. 6.1, respectively. The
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Figure 6.4 (a) The three well design calculated with the SP solver. The assumed barrier/well material
is Al15GaAs0.85/GaAs, and the heterostructure has the following thicknesses (with the barriers in
boldface): 100/90/10/90/90/90/100 in 10−10 m. Shown is the calculated real refractive index, (b),
group index, (c), and transmission coefficient, (d), centered at the e↔ g resonance frequency ωeg.

structure consists of three quantum wells per period where the left pair of wells is separated by

a thick 9 nm barrier from the third well, confining the |s〉 state. At a bias of approximately 4.4

kV/cm, there is a strong repulsion between the states |s〉 and |e〉, which leads to their splitting
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6.6 Gain compensated slow light system

by twice the coupling energy 2~Ωse. From the plots in Fig. 6.4(b)–Fig. 6.4(d), we see that

around δω = 0 the real refractive index n′ has a very steep slope, which results in a group

refractive index of approximately ng = 136, Fig. 6.4(c), when calculated with Eq. (6.12). On

the other hand, decoherence of Γ‖sg = 0.018 THz yields a very strong absorption coefficient

(α ≈ 165 cm−1), which results in only 20% of the incident light being transmitted through a

0.1 mm long medium. In the next section, a possible solution to this problem is proposed,

based on the construction of a grating structure, consisting of alternating slow-light and

amplification regions.

6.6 Gain compensated slow light system
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Figure 6.5 Schematic diagram of the buffer/amplification grating structure. The buffer consists of
M slow-light regions (blue), each of length dA, with loss coefficient and group index lA and nAg ,
respectively. The amplifier consists of NG short gain media (white), each of which has a length of dG,
a small signal gain gG and a group index nGg .

A rather obvious remedy for the strong absorption of the signal field is to try to compensate

for the attenuated light with a quantum cascade amplifier [183] with some desired properties.

What would those be though? To answer this question, let us start off by assuming a patterned

grating consisting of M of the quantum well heterostructures from the model in Fig. 6.4(a),

alternating with NG quantum cascade amplifier regions, as illustrated in Fig. 6.5. Let us

assume that each slow light region has length dA and each amplifier region length dG, then

the total length is LA = MdA for the buffer region, and LG = NGdG for the amplifier. Specify

the slow-down factor S as the ratio of the light’s traversal time of the active region in Fig. 6.5

versus its traversal time of a cold cavity of length L. Then S is

S =

(
LAn

A
g

c
+
LGn

G
g

c

)
× c

L
=
LAn

A
g

L
+ (1− LA

L
)nGg ≈

LAn
A
g

L
, (6.14)
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6 Metamaterials for slowing down THz light

where it has been taken that nAg � nGg . On the other hand, any input intensity, Iin, will be

attenuated and amplified upon propagation through this composite material. At the output

facet, the intensity will thus be given by

Iout = Iin exp
(
gGLG − αLA

)
, (6.15)

where gG is the power gain coefficient of the amplifier and α is the absorption coefficient

in the optical buffer. To achieve transparent pulse propagation, the system needs to satisfy

gGLG = αLA, which combined with Eq. (6.14) yields the relation

gGLG = αS × L/nAg . (6.16)

For the old parameter values nAg = 136, α = 165 cm−1 and gain region length LG = L/2,

solve for the gain coefficient to obtain gG = 36.3971 cm−1, for a desired slow-down factor of

60. Such values for gG are perfectly reasonable for state of the art QCL technology.
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Figure 6.6 Simulation results from a binary message sent through a grating structure of length
L = 2 mm. The blue curve shows the input bits (10111110) and the red one the output bits.

Another point worth mentioning here is that none of Eqs. (6.14)-(6.15) require that the

slow-light and gain regions in Fig. 6.5 should be alternating. So why does one make that

choice? This point becomes important when one considers the highly nonlinear dispersion

of the slow-light material, depicted in Fig. 6.4(b). Significant pulse distortion will occur if

the propagation length in the medium is longer than the corresponding dispersion length,

and therefore this is prevented by adequately choosing the length dA and distributing the

slow-light/gain regions in alternating fashion.

To illustrate that the above schematic can be used for implementation of optical buffers,

the transmission of a binary message, i.e. the number (125)10 = (10111110)2, has been

simulated though a grating structure of total length L = 2 mm. The gain medium was simulated

as a two-level Maxwell-Bloch system [52], amplifying at the central frequency ω0 with the rest

of the parameters specified in Table 6.1.

Figure 6.6 shows the results of this simulation, where the input message (blue) is superposed

in time with the output signal (red). We immediately see that each bit takes around 470 ps to

traverse the 2 mm cavity, which gives us a total slow-down factor of S ≈ 70.45. Furthermore,
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Table 6.1 Parameter values for the slow-light region (left) of Fig. 6.4a and for the amplifying medium
(right) modeled as a two-level system [52].

Parameter Value Units

Γ‖se 0.2145 THz

Γ‖eg 0.2038 THz

Γ‖sg 0.0180 THz

zeg 4.6 nm

Ωse 0.0587×2π THz

ωc 5.0433×2π THz

N 7.89×1021 m−3

Parameter Value Units

Gain recovery time 10 ps

Dephasing time 2.35 ps

Steady state inversion (w0) 1

Waveguide losses (l0) 10 cm−1

zeg 4.6 nm

ωc 5.0433×2π THz

N 5.2×1020 m−3

calculations reveal that the signal to noise ratio has been deteriorated due to dispersion, but

not to a such an extend as to make the message unreadable. The input signal is composed of

Gaussian pulses with intensity full width at half maximum (FWHM) of 30 ps, yielding a spectral

bandwidth of 14.6 GHz at FWHM, which is within the transparency region induced by the

tunneling splitting, Fig. 6.4(c).

Lastly, Fig. 6.7 illustrates a snapshot from simulations when two of the input bits are

simultaneously present inside the cavity. The green-shaded regions denote the slow-light

media, whereas in the white areas are located the quantum cascade amplifiers. For this

simulation both regions’ lengths have been set equal, i.e. LG = LA = 1 mm, with the input

bits injected from the left facet.
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Figure 6.7 Signal propagation inside the cavity. The shaded area delineates the slow-light regions
whereas the transparent area indicates the amplifying material. For this simulation M = 100 and
LG = LA = 1 mm.

6.7 Conclusion

In this chapter we considered the usage of quantum well heterostructures for slowing down

terahertz light, by harnessing the tunneling induced transparency effect. Such an approach

offers the possibility to electrically control the optical properties of the system via simply varying

the applied bias, however it suffers from the drawback that the inherently short coherence

times in these media lead to a significant absorption of the signal field. As a possible solution,

the construction of a buffer/amplifier composite grating structure was proposed, intended to

compensate for the strong attenuation in the slow-light region. The actual processing and
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growth of the envisaged grating structure could provide an insurmountable difficulty into the

practical realization of this experiment. The problem lies in the fine level of control needed

to stack two or more micro-structures in a manner as illustrated in Fig. 6.5. Other obvious

drawbacks of the proposed approach are that such a schematic could be constrained to work

under only very low temperatures and also that there might be reflections at the buffer/amplifier

interfaces. In a publication presented at a renowned international conference [184], the latter

issue has already been addressed it was shown that an optimal grating structure can be

chosen so that reflections do not pose a threat to the success of the experiment.
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The presented work focused on theoretical and computer-aided investigation of various

mechanisms for frequency comb formation in terahertz quantum cascade lasers. The main

workhorse model was the so called Maxwell/density matrix equations model, which was shown

to reliably capture the most important physical effects, known to play a role in determining the

multimode dynamics of QCLs. The most important contributions of this thesis are as follows.

First, based on a version of the Maxwell/density matrix equations, a versatile semi-classical

method for the time-domain simulation of light-matter interaction in QCL-heterostructures was

derived. The model extended previously known theoretical results by including the coherent

interaction dynamics between a pair of tunneling levels, namely the injector and the upper laser

level. It was later shown by simulations that this extension is essential in order to reproduce

experimental results in both frequency and time domain.

Next, solid numerical methods, suitable for the long-time simulations of THz quantum

cascade lasers for frequency comb generation, were developed. These algorithms were

thoroughly tested both theoretically and numerically, resulting in the selection of an optimally

performing scheme to be used for the time-propagation of the electro-optical ensemble. The

selected method was shown to have a good order of accuracy and importantly was proven

to be devoid of low order dispersion errors, which is a virtue of its monotonicity preserving

property.

Following the careful numerical study, the derived algorithms were employed to investigate

the physics of both free running and mode locked QCLs, namely in the context of frequency

comb generation. For the former scenario, it was shown that free running QCLs can suffer

from multimode instabilities due to the intricate interplay between various comb forming and

comb-degrading mechanisms. Specifically, the destabilizing influence of spatial hole burning

(SHB) and spectral cross-talk onto the emission was identified and possible remedies were

examined. For example, in the former case the processing of a device with asymmetric facet

reflectivies was suggested, whereas in the latter it was shown how combination between laser

seeding and careful gain design (i.e. one with minimal spectral cross-talk) could lead to a more

coherent spectrum. The original idea, which motivated the investigations in Chapter 4, was to

eventually outline a rough recipe, containing a set of necessary conditions for the formation of

a comb from a free running laser. It must be admitted that this ambitious task was not fully

accomplished, however recent publications (issued after the aforementioned research was

conducted) have partially confirmed some of the findings presented. For example in [21] the

detrimental effect of SHB was clearly demonstrated. However, it still remains to be seen if

clever laser seeding experiments will be able to kick-start the comb formation and turn an

unstable multimode spectrum to a stable one, as stipulated in Chapter 4.
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Next, the possibility to actively participate in the phase locking of the lasing modes, by

means of mode locking techniques, was also theoretically considered. Both passive and active

mode locking were examined in Chapter 5, where some important insights about the possibility

to passively mode lock (PML) QCLs were presented. For example, contrary to the popular

opinion that PML is unattainable with QCLs, provided a suitable design is employed, it was

shown that ultra-short terahertz pulses can be emitted by virtue of a classical PML with a fast

saturable absorber. In fact, THz QCLs might be, in a sense, some of the most optimal lasers

to passively mode lock, as when the gain recovery time has the same order of magnitude as

the cavity round trip time, maximum energy can be transferred from the population inversion

to the photon field. Additionally, it was shown that higher harmonic mode locking is also

achievable with THz QCLs, and it was elaborated that this technique will probably be easier to

implement than fundamental PML. In fact, there is some experimental evidence backing-up

these conclusions, e.g. experiments showing spectrum with components separated by a higher

harmonic of the round trip frequency [185], or the proven inherently multi-pulsed time-domain

profile of free running devices [158]. It is worthwhile to mention that this part of the dissertation,

contrary to the results in Chapter 4, has a predictive character, i.e. it did not aim to reproduce

experimental results, but rather intended to stimulate such research.

In addition to passive mode locking, a comprehensive theoretical model for the microwave-

optical simulations of transmission line effects in quantum cascade lasers was also introduced

in Chapter 5. Even though, because of time constraints, the presented research was left only

at preliminary stage of development, it nevertheless remains a promising avenue for further

theoretical study. This is because transmission line effects, manifested in injection locking of

the beatnote, self-mixing effects etc., could potentially be exploited for various applications, for

example for imaging and ultra-short pulse generation via active mode locking [85, 146, 186].

Lastly, the weaknesses of the derived model as well as possible perspectives for future

research should be outlined. As already mentioned, the slowly varying envelope (SVEA) and

rotating wave approximations (RWA) are too restrictive on the MB-equations for modeling of

QCLs with arbitrary characteristics. This is so, for example because the regimes in which

the assumed approximations apply, do not allow for the simulation of a broadband device.

Additional limitation is the average intensity which could be simulated by those models,

since within the RWA one is constrained to solving only for relatively weak optical fields

(ones for which the related Rabi-frequency is not close to the optical transition frequency).

Another constraint, which I find as probably the biggest limitation when using the reduced

Maxwell/density matrix equations, is that one is bound to include only one or at most two

optical transitions in the simulation. This is so, because employing SVEA and RWA on a device

with multiple optical transitions, results in a very large system of equations, which is somewhat

cumbersome to derive and is error-prone to implement. On the other hand some QCLs,

especially bound-to-continuum (BTC) designs, can contain a multitude of levels clustered into

minibands, and as such the exact optical transitions are difficult to identify. In order to be able

to accurately model such structures, one should instead try to construct a full Maxwell/density

matrix approach, capable of simulating arbitrary interaction Hamiltonians and arbitrary number

of laser levels, also without employing any of the above mentioned approximations. Then the

resulting equations will be simpler to write down and the models easier to extend, however
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the main obstacles will then lie in the development of reliable numerical algorithms and their

implementation.

As for future prospects, I firmly believe that the next logical step would be indeed to simulate

QCLs from first principles, possibly also quantizing the electromagnetic field, in order to capture

finer details in the dynamics of these devices. Additionally, a promising subject for further

research could be the investigation of colliding-pulse mode locking with THz QCLs, which in

fact is a two-fold research topic, partly necessitating accurate gain region design, by means

of e.g. Monte Carlo simulations, and also extensive time-domain simulations by means of

the methods described in Chapter 5. Lastly, for free-running devices, one could dive deeper

(by means of simulations) in investigating the initial processes that determine the multimode

stability of the laser, as seminal works on Kerr-frequency comb sources indicate the immense

importance of the initial dynamics in deciding which operating regime will the laser settle

in [131]. Further insights along this line might lead to free running QCL combs with greater

bandwidths, which are stable over a wide portion of their dynamic range.
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