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Abstract

Metabolomics, the study of metabolite profiles at a global level, is an established tool to gain

insights into pathophysiological outcomes. In contrast to other omics data, metabolomics

measurements are informative on the overall status of the organism irrespective of where

they have been measured since metabolites are rather small molecules and diffuse quickly

throughout the body. In particular, due to their non-invasiveness, measurements in easily

accessible samples such as blood and urine have great clinical advantages.

Previous metabolomics studies were mostly limited to only blood, however, recent technical

advances have been allowing for the generation of complex, multi-fluid data. Therefore,

a recent trend is the simultaneous analysis of metabolomics data in multiple body fluids

to unravel cross-fluid processes and their links to clinical endpoints. To exploit the full

potential of this complex data, appropriate statistical approaches are needed. The aim

of this cumulative doctoral thesis was to contribute to (i) improved data preprocessing,

(ii) more powerful data analysis, and (iii) facilitated data interpretation of metabolomics

studies. To this end, each of the aforementioned aspects was addressed in three main

studies.

Untargeted MS-based metabolomics data typically contains a tremendous amount of miss-

ing values. We explored the missing values patterns in real data and exploited the gained

insights to evaluate missing value handling strategies to finally provide concrete handling

recommendations.

In our second project, we proposed a network-based approach for the analysis of com-

plex multi-fluid data, aiming to statistically reconstruct biochemical processes within and

between different bio fluids. In addition, we introduced an approach for embedding associ-

ations of metabolites with clinical outcomes into the reconstructed multi-fluid metabolic

network. The generic character and the potential of our study were demonstrated in four

follow-up applications.

Finally, we aimed to facilitate interpretation of complex associations of metabolism with

clinical outcomes, which can either cover only few metabolite associations (“sparse” effects)

or a large number of associations (“dense” effects). Our idea was to explore phenotype

associations in form of functional modules at different layers of resolution, from single

metabolites to entire pathways, to facilitate interpretation for both sparse and dense

cases. To this end, we developed a greedy algorithm based on data-driven networks to

systematically identify phenotype-driven modules. We demonstrated that our approach

enables to extract biologically relevant insights that could not have been identified with

classical association analysis. Following the current important trend to make novel generic
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algorithms available to the scientific community, we implemented our approach as an

open-source and easy-to-use R package.

In summary, we extensively evaluated existing and developed novel methods for improved

metabolomics data preprocessing, more powerful data analysis, and easier data interpreta-

tion. The work in this doctoral thesis will substantially help future metabolomics studies

to unravel the potential of complex multi-fluid data.
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Zusammenfassung

Metabolomics, die Erforschung metabolischer Profile auf globalem Level, hat sich als ein

bewährtes Hilfsmittel etabliert, um Einblicke in die patho-physiologischen Ausprägungen

eines Organismus zu erlangen. Im Gegensatz zu anderen omics-Daten sind metabolis-

che Messungen von jeder Art Probe informativ, da Metaboliten klein sind und daher

schnell in den gesamten Körper diffundieren. Das hat insbesondere klinische Vorteile, da

Metabolomics-Messungen aus leicht zugänglichen Körperflüssigkeiten wie Blut und Urin

viel Auskunft über den Organismus geben.

Die meisten veröffentlichten Humanstudien im Metabolomics-Bereich basieren auf Mes-

sungen innerhalb nur einer Körperflüssigkeit, üblicherweise Blut. Ein schnell um sich

greifender Trend, der durch jüngste technische Fortschritte ermöglicht wird, ist die Mes-

sung und Analyse von sogenannten multi-fluid -Daten – Messungen aus unterschiedlichen

Körperflüssigkeiten derselben Person. Diese Daten erlauben, nicht nur lokale, sondern

auch organübergreifende metabolische Prozesse sowie deren Verknüpfungen zu klinischen

Endpunkten zu untersuchen. Um das volle Potenzial dieser komplexen multi-fluid -Daten

auszuschöpfen, ist die Entwicklung neuer, geeigneter statistischer Ansätze von Nöten. Das

Ziel dieser kumulativen Dissertation war es in diesem Zusammenhang, geeignete Methoden

zum Preprocessing, zur Datenanalyse und zur Dateninterpretation von Metabolomics-

Studien beizusteuern. In drei Hauptprojekten wurde jeweils einer dieser Aspekte behandelt.

Untargeted MS-basierte Metabolomics-Daten beinhalten typischerweise eine enorme An-

zahl an missing values – fehlende Einträge in der Datenmatrix. Wir analysierten das

Auftreten und die Systematik von missing values in echten Daten, um die daraus abgeleit-

eten Erkenntnisse in die Evaluierung von möglichen Handhabungsstrategien einfließen zu

lassen. Mit dieser Studie konnte erstmalig eine ausführliche Beschreibung von missing

values-Eigenschaften und -Empfehlungen für die beste Umgangsstrategie geliefert werden.

Der Fokus des zweiten Hauptprojekts lag auf der netzwerkbasierten Analyse von komplexen

multi-fluid -Daten, um metabolische Prozesse innerhalb und zwischen unterschiedlichen

Körperflüssigkeiten statistisch zu rekonstruieren. Zusätzlich haben wir einen Ansatz zur

Analyse phänotypischer Outcomes im Zusammenhang mit den rekonstruierten metabolis-

chen Prozessen vorgestellt. Der generische Charakter und das Potenzial unserer Methoden

wurde erfolgreich in weiteren Follow-up-Studien unter Beweis gestellt.

Schließlich zielten wir in einer dritten Studie darauf ab, die Interpretation von komplexen

Assoziationen zwischen phänotypischem Outcome und hochdimensionalen Daten zu erle-

ichtern. Metabolische Einheiten bilden typischerweise funktionale Module, die mit dem

Phänotypen assoziiert sind. Diese Assoziationen können in der Netzwerkdarstellung sowohl
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in zerstreuter (sparse effects) als auch dichter Form (dense effects) auftreten. Um beide

Fälle angemessen interpretieren zu können, bestand unser Ansatz darin, funktionale Module

auf unterschiedlichem Auflösungs-Level (von Metaboliten-Level über Pathway-Level) zu

untersuchen. Während sparse Assoziationen auf Metaboliten-Level gut interpretierbar sind,

sind dense Assoziationen auf Pathway-Level übersichtlicher und einfacher auszuwerten.

Wir entwickelten eine netzwerkbasierte Methode, die systematisch funktionale Module

auf unterschiedlichen Levels sucht. Entsprechend dem gegenwärtigen, wichtigen Trend,

neue generische Algorithmen für die wissenschaftliche Gemeinschaft zugänglich zu machen,

haben wir unseren Ansatz als kostenfreies R package implementiert.

Zusammenfassend ist festzuhalten, dass wir einerseits bereits existierende Methoden um-

fassend evaluiert und andererseits neue Ansätze entwickelt haben, die im Metabolomics-

Bereich massiv dazu beitragen werden, ein adäquates Datenpreprocessing und eine statis-

tisch starke Datenanalyse sicherzustellen. Durch anschauliche Visualisierungsmethoden

und innovative Betrachtungsweisen wird die Dateninterpretation erheblich vereinfacht. Die

Erkenntnisse, die im Rahmen dieser Dissertation erarbeitet wurden, werden dazu beitragen,

in künftigen Metabolomics-Studien das volle Potenzial von komplexen multi-fluid -Daten

zu erkennen und auszuschöpfen.
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Chapter 1

Introduction

1.1 Metabolomics in the Central Dogma
of Molecular Biology

The Central Dogma of Molecular Biology was introduced for the first time by Francis Crick in
1958, stating that genetic information in form of the DNA is transcribed into transportable
messenger RNA, and finally translated into proteins. By now, further molecular layers and
their interactions (Figure 1.1) have been identified and are investigated with rapidly evolving
omics technologies [1]. One of the fields in the omics era is metabolomics, the identification
and quantification of intermediates and products of metabolism (metabolites) in a given
biological sample. The metabolome is the set of all small molecules present in cells, tissues,
organs or biological fluids such as carbohydrates, amino acids, or lipids [2]. Metabolites
can be produced by the host organism, but are also obtainable from microorganisms or
exogeneous sources such as diet [3]. There are several differences when comparing the
metabolome to the more classical “genetic omes” that cover compounds directly arising
from the DNA sequence such as RNAs or proteins:

First, metabolites can be considered as the only molecular species that diffuses rapidly and
is systematically transported through all organs and tissues [5]. Therefore, metabolomics
measurements throughout the body are expected to provide a dynamic reflection of tissue
and organ metabolism and their interactions. Epidemiological studies and their clinical
applications are preferably performed in easily accessible fluids such as blood to ensure
minimal invasiveness in sampling [6], but also saliva and urine have been proposed as
promising resources for non-invasive diagnostics [7–9]. Metabolomics data can be biologi-
cally conclusive in all of these fluids, for instance, with respect to understanding cellular
processes [10] or identification of disease signatures [9, 11]. In contrast, a comprehensive
global picture of other molecular pools such as the transcriptome or proteome can only
be obtained from specific tissue samples such as hepatic specimens, which are usually
challenging to obtain from living humans.
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Figure 1.1: Extended Central Dogma of Molecular Biology (Central Dogma box adapted from [4]). The
interplay between different molecular layers, which are captured by various omics technologies, occurs
body-wide, in all tissues, organs, and fluids. Although the Central Dogma reflects the directional information
flow from the genome to the metabolome, downstream layers can also influence upstream molecular species.
Here, only the most obvious and dominant relationships between the omics layers are shown, but the
information flow is much more complex and more links are possible. As depicted in this simplified scheme,
the metabolome can be seen as the endpoint of preceding omes and therefore, serves as a convenient readout
that is closely linked to physiological phenotypes.

Second, the metabolome is highly dynamic and rapidly changing. Compared to genetic
omes, environmental influences such as diet, drugs, or physical activity can change the
metabolic pool within minutes [12]. The fast response of metabolism to internal and
external factors can be attributed to the fact that the metabolic pool is based on rapid
chemical reactions instead of slow regulatory processes. That is, compared to other omes,
which indicate that a change in the organism’s phenotype may occur, changes in metabolite
concentrations produce directly observable changes, which is needed for understanding of
cellular functions in a living system [13].

Finally, it is often assumed that metabolomics data is a particularly convenient molec-
ular readout of a clinical endpoint, since it is considered to represent the downstream
biochemical end products of the preceding omes, their interactions as well as influences
from environmental factors [2, 14–16]. Metabolites are the smallest molecular building
blocks of the organism and final result of regulatory processes. They perform the actual
biochemical functions, while genes or proteins provide the “blueprint” for these functions
[17]. Therefore, metabolomics can be seen as the chemical phenotype of an organism and
is frequently used to analyze patterns in pathophysiological states [18, 19], to identify
potential biomarkers, and to predict disease incidence and progression [20].
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1.2 Metabolomics workflow

A typical scheme of a metabolomics study comprises metabolomics measurement, data qual-
ity control and preprocessing, statistical analysis covering both univariate and multivariate
analyses, and biological interpretation (Figure 1.2).

Figure 1.2: Typical workflow of a metabolomics study. After identification and quantification of metabolites
from certain samples of a study population, the data quality is first surveyed. Necessary preprocessing
steps, such as normalization and missing values imputation, are performed. Subsequently, depending on
the research question, univariate or multivariate statistical approaches are applied. In our studies, one
major multivariate approach is network inference with subsequent relation to clinical outcomes. Finally,
the obtained results are biologically interpreted.

1.2.1 Metabolomics measurement technology

In the past decade, technical improvements have accelerated the identification and quan-
tification of metabolites. One of the main approaches for metabolomics measurement is
mass-spectrometry (MS), which consists of three essential steps: The molecule is first
ionized by adding or removing an electron, resulting in a negatively or positively charged
compound, respectively. The ions are then separated according to their mass and charge
in a mass analyzer by a magnetic field. Finally, a detector captures and quantifies the sep-
arated ions, thereby producing a unique fingerprint of the original molecule as a spectrum
of mass-to-charge ratios (m/z) and a relative intensity of the measured compound. Due
to the substantial complexity of biological samples, gas- (GC) or liquid chromatography
(LC) is often performed prior to MS. In chromatography, a flow-through column is used to
separate molecules according to their different retention times (amount of time a molecule
needs to pass the column), which is dependent on chemical and physical properties of each
compound. Both the retention time and the m/z ratio are finally used to identify and
quantify the metabolites [21].

Metabolomics measurements can be performed either in a targeted or untargeted manner [2].
In targeted approaches only a limited number of already known, structurally characterized
and biochemically annotated metabolites are captured. The measurements are sensitive,
robust and absolute quantifications can be obtained. In contrast, untargeted approaches
offer the discovery of novel compounds as the measurement is not limited to pre-defined
signals. However, the annotation and quantification of metabolites is much more challenging
than for targeted measurements. For instance, in many untargeted metabolomics data sets,
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for nearly half of the quantifiable compounds the chemical identity is not known. Although
these metabolites have been reported to associate with various diseases [22], their clinical
usability remains limited.

1.2.2 Data quality control

The quality of metabolomics data can be influenced by several factors including sample
type, sample preparation, batch effects or runday-based instrument sensitivity. Therefore,
preprocessing steps are necessary to ensure high data quality and to prevent false positives
or false negatives in hypothesis testing. Typical preprocessing steps are data normalization,
data transformation, outlier handling, missing values handling, and data scaling (Figure
1.3).

Figure 1.3: Typical preprocessing steps for metabolomics studies. The data is normalized to remove
unwanted biological or technical variation, for instance, resulting from batch effects. Log-transformation
is applied since metabolite concentrations are assumed to follow a log-normal distribution. Subsequently,
univariate (point) and multivariate (sample) outliers as well as missing values are handled. Finally, the
data is scaled to force the variables to the same unit.

Normalization

Variation in metabolomics data can occur either due to technical or biological sources.
Whether biological variation is desirable depends on the research question and the study
design. For instance, when analyzing metabolomics data from multiple body fluids simul-
taneously, it might be reasonable to normalize for osmolality, since fluids such as urine
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or saliva are substantially influenced by water intake and diet. Batch effects, which are
technical sources of variation, are usually undesired. For instance, measurements can
vary due to different sample acquisition, preparation, or storage. Moreover, in large-scale
metabolomics studies, the measurements are spread across multiple days (rundays), which
can be even several months apart. Differences between these rundays such as in machine
performances or environmental conditions in the laboratory like temperature also intro-
duce variation into the measurements, which have no biological cause. There are several
normalization strategies to remove unwanted variation in the data, including mean or
median normalization, quotient normalization, or normalization by an external factor such
as urinary creatinine levels.

Transformation

Data transformation is performed to convert multiplicative to additive relations [23]. This
correction for heteroscedasticity also makes the data more symmetric such that the data
distribution resembles a normal distribution, a requirement for many statistical approaches.
A common choice in metabolomics is log-transformation, since metabolites are often
assumed to follow a log-normal distribution [24]. Another option is power transformation,
in particular the one-dimensional Box-Cox transformation where an exponent (λ) is
estimated, usually by maximum likelihood estimation, to transform the data Y to Y λ [25].
Although Box-Cox transformations might be more flexible and, therefore, more efficient to
make the data normally distributed than log-transformations, one major drawback is that
each variable can be transformed by a different λ. Thus, their different scales limit result
interpretation, for instance, if ratios of variables are investigated.

Outlier handling

Outliers can be single data points that lie outside of an expected value range (univariate
outliers) or whole samples that show unexpected deviations from the data variability
(multivariate outliers). Univariate outliers can be identified based on data location and
scatter: assuming a normal distribution of the investigated variable, a value is defined as
an outlier if it is more than x standard deviations from the mean. In the metabolomics
field, x is commonly set to three or four according to experience. Often, univariate outliers
are excluded for univariate analysis by omitting samples with an outlier for each variable.
However, for multivariate analysis this would lead to substantial loss of information such
that univariate outliers are preferably kept or replaced by a reasonable value such as the
mean or median metabolite concentration. Multivariate outliers can be detected using
metrics assessing the distance of a sample from all the other variables’ distributions such as
the Mahalanobis distance or the leverage approach [26]. Samples identified as multivariate
outliers are usually excluded for further downstream analysis.

Scaling

Finally, in untargeted metabolomics data the variables are not on the same scale, since only
the relative concentrations of the metabolites are captured. This can distort multivariate
statistics relying on dimensionally homogeneous data such as principal component analysis.
Therefore, scaling should be performed to force all variables to the same unit. For this
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purpose, most often the data is expressed in standard deviations (z-scores) with mean
equal to 0 and variance equals 1.

1.2.3 Missing values in MS-based metabolomics data

Beyond the above described preprocessing steps, a crucial aspect with often underestimated
impact on downstream statistical analysis is the handling of missing values. The existence
of missing values is an inevitable property of high-throughput measurements due to either
systematic or random loss of data. Broadly speaking, missing values are gaps in the data
matrix where a value is not available as a result of technical challenges or real biological
absence of the metabolite in the respective sample (Figure 1.4). Technical reasons include
instrument sensitivity thresholds (limit of detection, LOD), computational challenges
in spectral processing, or matrix effects through co-eluting compounds [27]. Biological
absence is typically observed for exogenous compounds such as drug metabolites, which
are only measured in patients taking the medication. Also compounds only obtainable
from nutrition are only detected in people with the respective diet. Since the reason why
a certain value is missing is challenging or even unfeasible to determine, missing values
are often statistically characterized as completely at random (MCAR), at random (MAR),
or not at random (MNAR). In the MCAR case, the probability of missing values does
not depend on the observed nor the unobserved measurements, i.e., the probability to be
missing is constant for all units. In MAR, the assumption is that the pattern of missingness
depends on the observed data, i.e., the missingness would be random if all conditional
variables were corrected for. For example, two chemically closely related metabolites could
have very similar retention times when measured with chromatography based platforms
(see section 1.2.1). This would result in their peaks being hardly separable, and therefore
only one of the two metabolites would appear as measured in each sample. Missingness in
these metabolites would be classified as MAR. In contrast, MNAR describes the occurrence
of a missing value dependent on the unobserved measurements, e.g., a limit of detection.
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Figure 1.4: Data matrix with missing values in untargeted metabolomics. Data matrices resulting from
untargeted metabolomics measurements contain many missing values (black), which can either occur
systematically within a metabolite or a sample, or randomly spread across the matrix. Excluding whole
samples or whole metabolites with missing values would lead to considerable loss of information. Therefore,
an alternative missing values handling strategy is imputation, the replacement of missing entries by
reasonable values.

In untargeted metabolomics, typically nearly one third of the data points is missing (see
Figure 1.4) [28–30], which can be handled by two main strategies: in complete case analysis
(CCA), all observations with missing values are excluded from the variable of interest. For
multivariate approaches this procedure would cause substantial loss of information. For
this reason, an alternative strategy, known as imputation, is to replace missing entries
by a reasonable substitution value. The definition of such a “reasonable” value differs
for each imputation approach, depending on their assumptions on the nature of missing
values. For instance, some methods assume low concentrations for missing entries due
to an LOD such as minimum imputation, which is widely used in the metabolomics
field [31–33]. Here, missing entries are replaced by the minimal value observed for the
respective metabolite. Other methods such as mean or median replacement assume random
missing values [9, 12, 30, 34, 35] and replace them by the mean or median of the observed
concentration values, respectively. Although more sophisticated, multivariate missing value
handling strategies exist, including multiple imputation by chained equations (MICE) [36],
imputation based on k -nearest neighbors [37], imputation based on random forests [30], or
missing value invariant PCA [38] and diffusion maps [39], in practice most often simple
substitution methods are applied. However, these simple approaches can distort statistical
analysis and mislead biological interpretation if the underlying assumptions are not correct
for the given data. Examples are illustrated in Figure 1.5.
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Figure 1.5: Bias induced by oversimplified (but commonly used) imputation on statistical analysis and inter-
pretation. Missing values imputation with wrong assumptions on the missingness pattern can substantially
affect the statistical analysis and biological interpretation of the data. In the simulated scenario A, two
metabolites are not correlated and both contain random missing values. Applying minimum imputation, as
widely used in the metabolomics field, would lead to a false positive correlation between the two metabolites.
In scenario B, two metabolites are truly correlating and have missing values due to a limit of detection.
Considering only the measured data, the correlation would be considerably diminished. Mean imputation
would even produce a false negative result.

In the first scenario (Figure 1.5A), two originally uncorrelated metabolites with random
missing values falsely become strongly correlated after minimum imputation. In a second
scenario (Figure 1.5B), two truly correlated metabolites have very low concentrations that
are below the sensitivity threshold of the machine and thus, can not be measured (missing
values due to LOD). The correlation estimated only based on observed values is already
substantially decreased, but after performing mean imputation the two metabolites are not
correlated anymore. These two examples demonstrated that if an imputation approach is
applied with incorrect assumptions on the real nature of missing values, false positive or
false negative statistics resulting in wrong biological interpretation can be a consequence.

The effects of imputation on downstream analysis of metabolomics data have been evaluated
by only few previous studies so far. All of these studies observed that overall missing
values treatment had substantial effects on the outcome and interpretation of statistical
analysis and that simple substitution approaches such as minimum and mean imputation
consistently showed poor performances [24, 29, 30, 40, 41]. Most of the studies unanimously
showed that imputation based on k-nearest neighbors was the optimal imputation approach
according to their evaluation schemes [24, 29, 41, 42].

Despite these comprehensive studies, two main aspects have been insufficiently addressed.
First, in all studies, evaluation of imputation methods was based on artificial data. Although
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simulation studies have the advantage that the true underlying values are known, and thus,
evaluation can be performed in a completely controlled setting, the challenge is to generate
artificial data resembling real data. In all previous studies, data simulation was based on
assumptions of only random or only LOD-based missing values, without confirming the
validity of these assumptions for the measured data. To create artificial data that captures
the essential properties of the real data, a detailed description of missing values patterns
is required. Second, previous studies only focused on the statistical evaluation, while the
evaluation of imputation methods by biological validity of the results has not yet been
addressed. That is, besides the reconstruction of statistical estimates between simulated
variables, insights can also be gained by evaluating whether real data retains its overall
biological conclusiveness after imputation (e.g., in metabolomics, if biochemical pathways
can still be reconstructed).

We tackled these two challenges in a study, where for the first time, an extensive investigation
of missing values patterns in real MS-based metabolomics data was performed, followed
by both statistical and biological evaluation of different imputation methods (Research
question I. in section 1.4). Briefly, we used the insights gained from the real data to
create appropriate artificial data that reflects the real patterns. In this controlled setting,
we evaluated the reconstruction of statistical estimates for 31 imputation approaches. We
addressed biological validity of the imputed data by assessing the effects of imputation on
the reconstruction of biochemical pathways, and the association of genetic variants with
metabolite levels.

1.3 Metabolomics in biomedical research

Metabolomics is frequently used to identify patterns associated with pathophysiological
states, since the metabolome is considered to represent an interplay of the preceding
omes and environmental factors as depicted in the extended “Central Dogma of Molecular
Biology” (Figure 1.1). It provides a readout that is closely linked to the phenotype
of interest, therefore, metabolomics has a wide range of applications in many research
areas, including nutrition [43], biomarker identification [5, 6], exploration of pathogenesis
[5, 20, 44, 45], and drug discovery [5, 46, 47]. One of the most active areas centers around
metabolomics biomarker discovery since classical diagnostic modalities for widespread
diseases such as angiography for coronary artery disease (CAD) or biopsy analysis for
cancer are costly and can be rather invasive [6]. In contrast, early disease diagnosis based
on metabolomics data from easily accessible fluids would lower invasiveness in diagnostic
testing and financial expenses.

In the past decade, many potential metabolic biomarkers for various health conditions
have been identified. For instance, several metabolites have been found to be strongly
associated with insulin resistance [48–51] and can even be predictive of type 2 diabetes
(T2D) [52–57]. Metabolomics was also extensively researched with respect to coronary
artery diseases (CAD), where some compounds were found to be associated with or have
predictive power for CAD [58–62]. In cancer research, metabolomics is often used for
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case-control comparisons, but other fields such as patient prognosis, therapy control and
tumor classification are also investigated [63]. Biomarker identification in the metabolomics
area has been performed for other pathophysiological outcomes as well, including asthma
[64–66], multiple sclerosis [67], or restless legs syndrom and parkinson disease [68].

Although links between metabolism and many clinical endpoints have been investigated
extensively in these studies, two aspects need further attention. First, metabolomics studies
have mainly been performed in blood, but metabolites can also be measured in other
human fluids and tissues or even in cell cultures. But the most promosing resources for
diagnostics are urine and saliva [7–9], since these fluids can be obtained in an even less
invasive way than blood. Second, besides identifying disease markers for early diagnostics,
understanding the functional mechanisms of these biomarkers and why they are linked
to a certain phenotype is essential for disease therapy. For instance, BCAAs have been
reported to be associated with insulin resistance in many studies [48, 50, 51]. Newgard
et al. contributed to the understanding of physiologic mechanisms of insulin resistance
by reporting that the excess of BCAAs, which partly accounts for impaired efficiency
of fatty acid oxidation in insulin-resistant status, may derive from the gut microbiome
[69]. Two bacterial species in the human gut produce BCAAs from organic precursors
and partly induce dysregulation of metabolic pathways and eventually the development of
T2D [69, 70]. This example illustrates that for a global and comprehensive view of disease
pathogenesis, a systematic embedding of potential biomarkers into metabolic processes is
required. In particular, these metabolic processes should also cover the crosstalk between
different body compartments.

We aimed to address these two aspects in our studies, for which reason a more detailed
description is provided below (see sections 1.3.1 and 1.3.2).

1.3.1 Multi-fluid metabolomics

Although the vast majority of metabolomics studies have been performed in only one bio
fluid, due to recent technical advances enabling cheaper metabolomics measurements with
higher sensitivity, a quickly spreading trend is to measure metabolite concentrations in
multiple body fluids of the same individuals. This trend is reflected in the increasing
number of studies covering metabolomic analysis of multiple fluids (Figure 1.6). For
instance, based on plasma and urine metabolomics measurements, metabolite signatures
for pubertal development [71], glycemic state [72], insulin resistance [48], type 1 diabetes
[73], HIV/AIDS [74], and drug effects [75] have been identified. Plasma, urine, and saliva
metabolomics samples have been used to analyze the effect of dietary components on human
metabolomics profiles [76]. In another study, the effects of the polyphenol resveratrol, a
dietary supplement assumed to act like an antioxidant, has been explored in metabolism of
blood, urine, fat, and muscle tissue in men [77].
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Figure 1.6: Number of multi-fluid (blood and urine) metabolomics studies (as of 12th January 2018). These
numbers were obtained from a PubMed search for publications, which have the terms “blood”, “urine”,
“human”, and “metabolomics” in the title and abstract. Metabolomics studies have long been performed
on only blood or urine. However, recent technical advancements have facilitated the measurement and
simultaneous analysis of multiple body fluids, as illustrated by the increasing number of studies covering
both plasma and urine (or more) metabolomics measurements from the same individuals.

Despite great achievements in this field, the full potential of multi-fluid data to unravel
biological processes has not yet been exploited. For instance, these studies investigated
the data in each fluid separately and, subsequently, compared the results. Although
metabolomics data is highly informative in all of the investigated fluids or tissues, each
body compartment has its own physiological function and can therefore, contain fluid-
or tissue- specific information. Moreover, small molecules such as metabolites are easily
exchangeable between different compartments. Thus, the metabolic crosstalk between
different fluids or tissues is required for a fundamental understanding of the dynamics of
whole-body metabolism. One step towards this objective was already reported in a study
by Adourian et al., who analyzed correlations between plasma analytes and liver molecules
in rats [78]. However, a systematic investigation of metabolic interactions between different
human body fluids has not yet been reported (Research question II. in section 1.4).

1.3.2 Phenotype-driven metabolic networks

Associations between the metabolome and phenotypes such as clinical variables or disease
status are expected to pass beyond single metabolites and span an entire set of compounds.
Typically, metabolites are assigned to “sets” (termed “pathways”) based on their structural
or biochemical properties (metabolite-centric such as “branched-chain amino acids”) or
their participation in metabolic processes (process-centric such as “glycolysis”). Pathway
annotations can be obtained from various public databases including KEGG [79], HMDB
[80], MetaCyc [81], or Recon [82]. A common strategy to explore pathways is to perform
pathway enrichment analysis, which evaluates whether the metabolites associated with
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a certain phenotype are represented in a pathway more than expected by chance. A
considerable limitation of this analysis is that phenotype associations are explored within
pre-defined groups of metabolites. Thus, the results are strongly dependent on the quality
and type of pathway annotation.

In an alternative unbiased strategy, the aim is to identify sets of metabolites that are
co-regulated or driven by the respective phenotype, referred to as functional modules,
without relying on pre-defined metabolite pathways. Module identification approaches are
well established for omics data and are mainly based on biological networks [83–88]. In
these networks, a node corresponds to a molecule (e.g., protein, metabolite, transcript,
etc.) and edges between two nodes represent the correlation between the two respective
compounds. Network-based module identification methods aim to detect connected parts
in the underlying network that are associated with the given phenotype more than when
the single components are considered alone.

Metabolomics networks are considered as a model of metabolic processes in a given tissue of
a given organism, where nodes represent metabolites and edges correspond to interactions
between two metabolites. Most prominent publicly available models of metabolism to
date are stored in KEGG and Recon. However, public databases are not complete
and the metabolite nomenclature is inconsistent. Therefore, mappings of the measured
metabolites in the data at hand to database entries can be substantially challenging
and the obtained network is not easy to handle. Data-driven networks can circumvent
mapping difficulties since they are statistically estimated directly from the given data.
Often, Pearson correlation networks are used. However, for high-dimensional data these
networks are difficult to interpret due to their density induced by indirect correlations.
Therefore, Krumsiek et al. proposed Gaussian graphical models (GGM), which are based
on partial correlations [89]. Since partial correlations represent conditional dependencies in
multivariate Gaussian distributions, the GGM only exhibits direct correlations and, hence,
facilitates interpretation due to its sparsity. Based on cross-sectional metabolomics data,
Krumsiek et al. showed that GGMs indeed reflect real metabolic pathways [89] and are a
valuable tool to reconstruct metabolism in a data-driven manner.

Based on metabolomics networks, several studies have proposed approaches to identify
phenotype-related modules [33, 64, 90–94]. However, there are two shortcomings inherent
to these studies: First, modules were identified visually after the phenotype association of
each single metabolite has been mapped onto the network by coloring the nodes according
to the strength of the association. Thus, the selection of modules in these studies was
arbitrary, mostly based on manual evaluation. A more systematic approach was performed
by Krumsiek et al., who used the network to group the underlying metabolomics data
to highly correlated clusters, which were then explored with respect to the phenotype
[95]. However, similar to pathway enrichment analysis, this approach also relies on the
definition of “modules” (= clusters) before investigating phenotype associations. An
automatic method for the systematic identification of modules driven by the phenotype
has not yet been reported in the metabolomics field. Second, none of the published module
identification approaches consider that phenotype associations can occur at different scales,
ranging from global associations spanning entire pathways or sets of pathways (e.g., “dense”
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associations between metabolomics and gender or BMI), to localized associations with only
a few metabolites (e.g., “sparse” associations between metabolomics and insulin-like growth
factor I or asthma). In particular for dense phenotype associations, modules at metabolite
level are challenging to interpret due to their overwhelming number. In contrast, modules
at a hierarchically super-ordinate level such as a pathway network, where the plethora of
information at the fine-grained level is condensed, would notably facilitate interpretation.

Taken together, an approach for the phenotype-driven and systematic module identification
approach operating at different layers of resolution is still missing in the metabolomics
field. We addressed this need with Research question III. (section 1.4).

1.4 Research questions

For a fundamental understanding of metabolism and its link to certain clinical endpoints,
metabolic processes within and between different body compartments need to be explored.
Due to increasing technical capabilities and decreasing costs, measurement of multiple fluids
from the same individual has become feasible. This complex data needs appropriate quality
control and preprocessing methods, and in particular, in relation with a phenotype, requires
statistical approaches enabling unbiased and comprehensive data analysis and interpretation.
Within the scope of this cumulative doctoral thesis the following research questions were
addressed to contribute to three major steps of any typical metabolomics study (see Figure
1.2): data quality control, statistical analysis, and biological interpretation.

I. Which missingness patterns can be observed in real metabolomics data and how can
these missing values be handled appropriately?

II. How can metabolic processes within and between different body fluids be investigated,
and how can we use these processes to analyze pathophysiological outcomes?

III. How can interpretable functional modules be identified in a systematic and phenotype-
driven manner?

1.5 Overview of this thesis

This cumulative doctoral thesis consists of four main chapters. Chapter 1 is an in-
troductory chapter on metabolomics, achievements in this field, the needs remained for
appropriate handling and fundamental understanding of the data, and our research ques-
tions to address these needs. In Chapter 2, the available data, all computational and
statistical methods applied or developed in our studies are described. Chapter 3 gives
a summary of the first-author studies published within the scope of this doctoral thesis.
Finally, in Chapter 4, the strengths and weaknesses of our studies and possible future
perspectives are discussed.
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Chapter 2

Materials and methods

In this chapter, we briefly describe the data cohorts and the statistical approaches used
in the first-author publications. In the first section, three large-scale metabolomics data
sets are portrayed. In section two, we describe how missing values patterns in untargeted
MS-based metabolomics data were investigated, and how artificial data was generated
based on the gained insights. Moreover, we introduce 31 imputation approaches, which we
grouped into four categories that are outlined in the second section. Next, we describe two
approaches to analyze metabolic pathways with respect to a given phenotype. Network
inference, visualization, and analysis are explained in section four. And finally, we developed
a network-based algorithm for phenotype-driven identification of functional modules, which
is illustrated in the last section.

2.1 Metabolomics cohorts

German Cooperative Health Research in the Region of Augsburg
(KORA) F4

The KORA F4 study is a regional population-based cohort established in 1996 [96].
Metabolomics measurements using ultra-high performance liquid-phase chromatography
(UHPLC) and gas-chromatography (GC) separation coupled with tandem mass spectrom-
etry (MS/MS) in both positive and negative modes were performed by Metabolon, Inc.
for fasting serum samples of 910 females and 858 males, aged between 25 and 74 years.
Samples were divided in 53 rundays, with 34 samples on average per runday. In total,
516 metabolites were quantified, of which 303 have known chemical structures. Each
metabolite was annotated with one of 68 sub-pathways (see section 2.3) representing
biochemical subclasses or metabolic pathways (e.g., Branched-chain amino acid), and one
of 8 super-pathways representing more global metabolite classes (e.g., Amino acid).
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Qatar Metabolomics Study on Diabetes (QMDiab)

QMDiab is a cross-sectional case-control study that was conducted in 2012 at the Derma-
tology Department of Hamad Medical Corporation in Doha, Qatar. The cohort comprises
180 females and 189 males of Arab and Asian ethnicity aged between 17 and 81 years. 188
and 181 individuals were classified as type 2 diabetes patients and non-diabetic controls,
respectively. Untargeted metabolomics measurements were performed for non-fasting
plasma, urine, and saliva samples on 11 rundays using UHPLC-MS/MS and GC/MS by
Metabolon, Inc. In addition, targeted metabolomics measurements were performed for
plasma by Biocrates Life Sciences AG (MS-based) and for urine samples by Chenomx,
Inc. (nuclear magnetic resonance based). For our studies, untargeted measurements from
Metabolon, Inc. were used. A total of 2,251 metabolites, of which 1,563 represent unique
compounds (Figure 2.1) were measured. 762 compounds have a known chemical structure.
Each known metabolite was assigned to one out of 85 sub-pathways and to one out of 8
super-pathways.

Study of Health in Pomerania (SHIP-TREND)

SHIP-TREND is a population-based study conducted between 2008 and 2011 in West
Pomerania, Germany, comprising 4,420 participants between 20 and 81 years. Untargeted
metabolomics measurements for fasting plasma, urine, and saliva samples of 561 females
and 439 males were performed by the Genome Analysis Center, Helmholtz Zentrum Munich,
Germany on the platform UHPLC-MS/MS developed by Metabolon, Inc. A total of 1,665
metabolites across all fluids, of which 1,191 represented unique compounds were determined
(Figure 2.1). Each metabolite was assigned to one out of 73 sub-pathways and to one out
of 8 super-pathways.

Figure 2.1: Number of metabolites measured in different fluids in the QMDiab and SHIP-TREND studies.
Both cohorts comprise metabolomics measurements of plasma, urine, and saliva samples from the same
individuals. Only a small fraction of the identified metabolites was measured in all three fluids, and the
vast majority was only detected in one of the three fluids.
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2.2 Missing values

In this section, we give a brief overview of the statistical approaches performed in our
study [97], but detailed descriptions can be found in the Methods section and in the
supplementary material of our publication.

2.2.1 Derivation of missingness mechanisms from real data

For this section, let X = {xi,j} be an Rn×p matrix of metabolite concentrations with sam-
ples i, i = 1, ..., n and metabolites j, j = 1, ..., p, where n is the total number of observations
and p is the total number of metabolites. In many studies, the number of samples to be
measured exceeds the number of samples that can be measured on one day by far. Hence,
the measurements are spread across multiple “rundays”. Each sample was measured on a
runday d, d = 1, ..., l, and Id is the set of samples measured on runday d (Figure 2.2). The
data can contain missing values, which are gaps in the data matrix, where the measurement
value is not available (denoted as NA).

Figure 2.2: Schematic metabolomics data matrix with missing values and rundays. Typically, metabolomics
data is represented as an Rn×p matrix X = {xi,j} with the samples i = 1, ..., n in rows and the metabolites
j = 1, ..., p in columns. In large cohorts, the measurements are divided into different rundays. Therefore, in
the data matrix, each row is additionally assigned to one respective runday d. Black cells correspond to
missing values, which are gaps in the data matrix where a measurement was not available (denoted as NA).

Limit of detection

It is commonly assumed that missing values in metabolomics data correspond to very low
concentrations of the respective compound, which could not be measured due to a limit
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of detection (LOD). We investigated this assumption for each metabolite with more than
10% and less than 70% missing values in the KORA F4 data set using Pearson correlation
analysis. For a given metabolite j, an auxiliary metabolite jaux defined as the metabolite
with the highest Pearson correlation coefficient above r = 0.3 to j was determined. A
Wilcoxon-Mann-Whitney test was applied to compare the concentrations of jaux in samples
with missing values and samples with observed values in j. The missingness pattern of j
was assumed to follow an LOD tendency, if the p-value of the Wilcoxon-Mann-Whitney
test was significant with α = 0.05 after Bonferroni correction for multiple testing.

Runday effects

To check runday effects on the occurrence of missing values, we compared the proportions
of missing values across rundays within each platform. For a metabolite j and a runday
d, let qj,d = |{xi,j | xi,j is NA and i ∈ Id}| be the number of missing measurements of
the given metabolite in the samples measured on the given runday. Then the normalized
missingness mj,d was calculated as the number of missing values for j in d divided by the
total number of samples measured in d, divided by the median value of missing data of j
over all run days.

mj,d =
1
|Id|
·qj,d

median(qj,1,...,qj,l)
. (2.1)

A normalized proportion of missingness mj,d = 1 is the average runday-specific amount of
missing values. Cross-platform dependencies were investigated by calculating the Pearson
correlation coefficient and corresponding p-value between the median normalized runday-
specific missing values across all metabolites of two platforms.

Runday-dependent limit of detection

Previous studies have already suspected that batch (runday) effects can give rise to multiple
detection limits [98, 99]. To verify this assumption, we calculated the Pearson correlation
between the runday-specific proportion of missing values and the runday-specific mean
measurement for each metabolite. A positive correlation indicates higher amounts of
missing values with higher concentrations of the respective metabolite, while a negative
correlation illustrates an inverse relationship of runday mean and runday-specific missing
values.

Missingness mechanisms

Based on the insights gained from the real data, we derived five mechanisms for the
occurrence of missing values (Figure 2.3). In the Fixed LOD mechanism, missing values
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were assumed to be below a global limit of detection. The Probabilistic LOD mechanism
was an attenuated form of Fixed LOD where probabilistic means that the probability of a
value being missing gets lower with higher values. Runday-specific fixed LOD should mirror
cases where the LOD is assumed to vary across rundays. Runday-specific probabilistic LOD
was a mechanism where the probabilistic LOD is assumed to occur in each runday. Finally,
Unsystematic missingness should represent missing values occurring completely randomly.
Single missingness mechanisms are described in more detail below.

Figure 2.3: Derived missing values mechanisms (figure from [97]). Based on insights gained from real
untargeted MS-based metabolomics data, five mechanisms for the occurrence of missing values were derived.
Fixed LOD is a mechanism where missing values occur due to a fixed threshold. Probabilistic LOD is a
mechanism where the probability of a value to be missing inversely depends on the value. Runday-specific
fixed and probabilistic LOD describe the two aforementioned mechanisms within each runday. Finally,
Unsystematic missingness is a mechanism where missing values occur randomly.

2.2.2 Simulation of missingness mechanisms in artificial data

For this section, let x and y be two normally distributed vectors of length n, where x(i)

denotes entry i in the vector of ordered concentrations in x.

Fixed LOD

It was assumed that all values below a fixed limit of detection are missing. This LOD
was defined as LOD = xround(n∗miss) with miss as the proportion of missing values to be
simulated and round() is a probabilistic rounding function.
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Probabilistic LOD

It was assumed that LOD is not fixed but the probability that a value is missing inversely
depends on itself. The probability of missingness for each observation i, of a variable x was
modeled as a function of x as P (xi missing) = logistic(β0 +β1xi), with logistic(a) = ea

1+ea

is the logistic function and coefficient β1 resembles the dependence of the probability of
missingness from variable value. β0 is the intercept and was estimated by solving the

equation 1
n

n∑
i=1

P (xi missing) = miss, where miss was achieved by drawing n×miss times

from a multinomial distribution with probability vector (P (xi missing))i = 1, ..., n.

Runday-specific fixed LOD

It was assumed that the runday-specific fixed LOD varies around the global fixed LOD
according to a normal distribution. For variables x and y and a runday d, we used the
approximation

(
missx,d
missy,d

)
∼ N

((
missx
missy

)
,

(
σ2
miss,x rmiss · σmiss,x · σmiss,y
rmiss · σmiss,x · σmiss,y σ2

miss,y

))
. (2.2)

missx and missy are the global amount of missing values for the two variables, σ2
miss,x

and σ2
miss,y denote the variation of the proportion of missing values across rundays, and

rmiss is the correlation of runday-specific missingness between the two variables. σ2
miss was

estimated with

σ2
miss =

{(min(miss,1−miss)
4

)2
, moderate variability of missingness across rundays(min(miss,1−miss)

2

)2
, strong variability of missingness across rundays

(2.3)

Runday-specific probabilistic LOD

This missingness mechanism was simulated similarly to the runday-specific fixed LOD.
The runday-specific β1d was either kept constant across rundays or was simulated to vary

similarly to miss with mean at the global β1 and variance σ2
β1

=
(
β1d
2

)2
for strong variation

of β1d across rundays.
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2.2.3 Imputation methods

In our study [97], we evaluated 31 imputation methods, each having at least one of the
following features (Figure 2.4).

Figure 2.4: Imputation approaches (figure from [97]). The venn diagram on the left panel shows four
different properties inherent to 31 imputation approaches. Note that the figure contains complete case
analysis (CCA), which is not an imputation method, and is noted in brackets. CCA and mean were
placed outside of the Venn diagram, as they do not comprise any of the four characteristics. LOD: limit of
detection. The right panel consists of names and short descriptions of the imputation methods.

Imputation based on an LOD

Methods that explicitly assume LOD-based missing values replace missing entries with very
low values. The most commonly used approach is minimum imputation, where missing
values are replaced by (half of, or squared of) the lowest number observed in the data. A
related method was proposed by Richardson and Ciampi (in the following referred to as RC
method), who assumed that metabolites with missing values follow a left-truncated normal
distribution [100]. They suggested to estimate the truncated distribution of a vector x with
maximum likelihood estimation (MLE) using the smallest observed value as truncation
point and the log-likelihood function

logL(x) = (n− o)× lnΦ
(LOD − µx

σx

)
− oln

(√
2πσx

)
−

o∑
i=1

(xi − µx)2

2σ2
x

, (2.4)

where L is the likelihood, i, i = 1, ..., n are the observations, o is the number of observed
values for x, n − o is the number of missing values for x, µx and σx are the mean and
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standard deviation of observed values in x, and Φ(x) is the cumulative Gaussian distribution
function. After computing the marginal MLEs µ̂x and σ̂x, missing values were replaced by
the expectation value:

E(x|x ≤ LOD) = µ̂x − σ̂
−

(LOD−µ̂x)2

2σ̂2
x

x

Φ(
LOD−µ̂x

σ̂x
)
. (2.5)

Based on the idea of Richardson and Ciampi, we developed an approach for imputation
by truncated sampling (ITS). Similarly to RC, a left-truncated normal distribution was
estimated with MLE with the lowest observed value as truncation point. But missing values
were then replaced by random draws from the originally censored part of the estimated
distribution.

Imputation considering runday effects

Based on observations from real untargeted MS-based metabolomics data, we implemented
runday-specific versions of RC and ITS, termed RC-R and ITS-R, respectively. To this
end, the imputation methods were performed for each runday before runday normalization
(see section 1.2.2). For a robust performance of MLE, we set the minimal required number
of non-missing observations per runday to 17 (half of the average number of observations
per runday in KORA F4). For RC-R the missing entries in the remaining rundays, i.e.
rundays with less than 17 observations, were set to the mean expected values across all
rundays with a sufficient number of values. For ITS-R, the remaining missing values were
replaced using imputation by chained equations with Bayesian regression as primary model
(see below).

Multivariate imputation

Multivariate approaches take the correlation between the variables into account for im-
putation. We applied multiple imputation by chained equations (MICE) and k -nearest
neighbors (KNN) imputation with different parameter settings.

MICE assumes that missing values are missing at random (MAR), that is, the probability
of a value being missing depends only on observed values (see section 1.2.3). Therefore,
the idea is that if all available variables are controlled for, then the remaining missingness
is completely random [101]. The principle of imputation by chained equations (ICE) is a
repeated chain of equations through the incomplete variables - variables with at least on
missing entry -, where in each imputation model the given incomplete variable is modeled
as a function of the remaining variables. This procedure can be summarized in a few steps:
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– First, an initial mean imputation is performed for the incomplete data set.

– Then for a given incomplete variable x, the mean imputed entries are set back
to missing (NA) and a regression model (also called “primary model”) with x as
response and the other variables in the data set as predictors is formed.

– The missing values in x are imputed with predictions from this regression model.

– This imputation procedure is performed for each incomplete variable in the data set
as response variable using the newest imputations for the predictors (one “iteration”).

– At the end of an iteration, all missing values were replaced by predictions from the
variable-specific regression models, which reflect the relationship of the observed
data.

– A user-specific number of iterations can be performed, resulting in one final imputed
data set that is assumed to contain converged (stable) imputations.

– To perform multiple ICE (MICE), the described ICE procedure is performed m times,
generating m imputed data sets (see Multiple imputation in section 2.2.3).

In our work [97], we used predictive mean matching and Bayesian regression (for details see
[101] and [36]) as primary models and performed variable pre-selection for computational
speed-up by only using predictors with at least r = 0.1 correlation to the respective
incomplete variable. Additionally, for each model age, sex, and BMI were included as
covariates. (M)ICE was performed using the R package mice, version 2.25. A detailed
description of the complete MICE algorithm is provided in [101].

KNN-based imputation replaces missing values for each variable by the weighted k nearest
variables or observations, defined by a distance measure. In our projects, we used the
Euclidean distance as distance measure. Weights were chosen as e−dist, where dist is the
distance between two variables or observations. In case the nearest neighbors were defined
as observations, we performed variable pre-selection by including only strong correlated
variables at r ≥ 0.2 in the calculation of the distances [37]. On the one hand, this dimension
reduction decreases the computational time, and on the other hand, pre-selection of variables
to only highly correlated pairs was shown to improve the imputation performance [97],
most likely by reducing the noise in identification of the k nearest neighbors.

Multiple imputation

Usually single imputation does not take the uncertainty of the imputed data into account,
for which reason multiple imputation (MI) is often performed. The idea of MI is to impute
the given data multiple times to generate multiple imputed data sets. The differences
between these data sets reflect the uncertainty of the missing values.

Multiple imputation techniques usually cover the three steps (i) imputation, (ii) analysis,
and (iii) pooling. In (i), an imputation procedure is applied m times on the incomplete
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data, which produces m different imputed data sets. In (ii), statistical analysis is performed
for each of the imputed data sets such that m statistical results are generated. Finally (iii),
the m statistical results are pooled to one final result.

Figure 2.5: Multiple imputation concept (figure adapted from [36]). The given incomplete data is imputed
m = 4 times, followed by statistical analysis of each of the four imputed data sets. This results in four
different statistical results, which need to be combined into one single result.

For pooling statistical estimates, a routine established by Rubin [102, 103], available within
the R package mice, version 2.25 was used. The number of imputations was set to m = 20
for all multiple imputation procedures. In a modified version of multiple imputation, we
imputed the incomplete data set m times and pooled the m imputed values by calculating
their average across the data sets. Finally, statistical analysis was performed only once on
the averaged imputed values.

2.3 Pathway analysis

Metabolites are commonly assigned to sets of compounds, termed “pathways”, according to
their biochemical or structural properties. In our work, we mainly used pathway annotations
provided by Metabolon, Inc.: each metabolite with known chemical structure is assigned
to exactly one super-pathway representing metabolite classes such as “Lipid” or general
metabolic processes such as “Energy”, and one sub-pathway representing biochemical
subclasses or processes within a super-pathway such as “Lysolipid” or “TCA cycle”,
respectively.

Pathway enrichment

In our study [104], we investigated whether significantly many metabolites of a certain
pathway tend to occur exclusively in a certain body fluid. To this end, we performed
Fisher’s exact test based on the following contingency table:
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In pathway Not in pathway

Unique in fluid a b

Not unique in fluid c d

where a is the number of metabolites in the investigated pathway, which are unique in a
fluid (only measured in this fluid); and b is the number of metabolites uniquely occurring
in the respective fluid, but which do not belong to the given pathway. Accordingly, c
is the number of metabolites in the pathway, which have been measured in at least two
body fluids. Finally, d is the number of metabolites not in the pathway and not uniquely
occurring in the investigated fluid. The hypergeometric probability of getting the observed
numbers on the null hypothesis was given by

p =

(
a+b
a

)(
c+d
c

)(
p
a+c

) . (2.6)

Similarly, in another analysis, we aimed to identify whether metabolites uniquely occurring
in a body fluid are related to a given phenotype.

Pathway representation

A more general approach for pathway analysis was based on pathway representatives. A
representative is a variable that aggregates all concentrations in the set of metabolites into
a single value. For each pathway a representative was defined either by the eigenmetabolite
[105] or the average approach. In the former, a principal component analysis (PCA) for a
given pathway was performed after scaling all variables to a mean of 0 and a variance of 1.
The first principal component (eigenmetabolite), which is the direction explaining most
of the data variation, was used as the representative variable. In the average approach
all variables were also scaled such that the mean is 0 and the variance is 1. The pathway
representative was then defined as the average of all variable values in the given pathway
(aggregated z-score).

The pathway representatives represent a new data matrix, for which any univariate or
multivariate statistical approach of interest could be performed. For instance, in the case
of phenotype association analysis, a regression model was used to estimate the association
of each pathway representative with the given phenotype.

2.4 Network inference

In omics research, networks are widely used to describe relationships between molecular
components. In general, a network is a collection of nodes typically visualized as circles,
which are connected by edges visualized as lines between two nodes. Although this may
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also be correct for a “graph” and these two terms are used indistinguishably in literature,
we understand a graph as the structural information of a p× p adjacency matrix A, where
p is the number of variables in the given data set. The graph consists of nodes presenting
the variables in the adjacency matrix, and edges corresponding to the entries in A:

aij =

{
1 if there is an edge between nodes i and j

0 otherwise
(2.7)

A network is then a graph with additional node and edge attributes (e.g., edge weights),
which are not contained in the adjacency matrix.

Biological networks can either be knowledge-driven (connections between the nodes are
based on prior knowledge), or data-driven (the edges are statistically inferred from data).
Since prior knowledge on interactions between molecular entities is often incomplete, in
our studies, we used Gaussian graphical models (GGMs) for network inference.

Gaussian graphical models

Graphical models are a class of probability distributions, and a Gaussian graphical model is
a graphical model in which the joint distribution of the random variables is Gaussian. GGMs
are based on partial correlations to estimate the conditional dependencies in multivariate
Gaussian distributions. That is, the partial correlation of two variables is the association
of these variables controlled for all other available variables. Thus, a GGM is a symmetric
partial correlation matrix representing an undirected network, which contains only direct
correlations. Here, the variables of the correlation matrix are represented by nodes, and
two nodes are linked by an edge, if the partial correlation between the two respective
variables is above a given significance threshold. The partial correlation r̃xy between two
variables x and y can be calculated from the inverse of the covariance matrix

(
ωxy
)

= Σ−1:

r̃xy =
−ωxy√
ωxxωyy

(2.8)

For high-dimensional data with low sample sizes (n� p), regularized partial correlations
proposed by Schäfer and Strimmer [106] can be estimated. They make use of a shrinkage
covariance estimator based on the Ledoit-Wolf lemma [107] for the calculation of the
optimal shrinkage intensity λ∗ on the empirical correlations R = (rxy) instead of using the
sample covariance matrix.

λ∗ =

∑
x 6=y var(rxy)∑

x 6=y r
2
xy

(2.9)

This shrinkage intensity is used to calculate the shrinkage covariance matrix, which is
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positive defined even for small sample sizes. Partial correlations are then calculated
by applying formula 2.8 on the inverse of the shrinkage covariance matrix. To assess
significance of partial correlations, a mixture model was fitted to the partial correlations
resulting in two-sided p-values for the null hypothesis of no correlation.

The estimation of partial correlations and the corresponding p-values were performed using
the R package GeneNet version 1.2.13. The partial correlation matrix was filtered based
on the corresponding p-values after multiple testing correction. We applied Bonferroni
correction controlling for the family-wise error rate at α = 0.05. Thus, partial correlations
with a p-value greater than α/

(
p
2

)
, where

(
p
2

)
= p(p− 1)/2 is the number of tests performed,

were set to zero. In addition, we also excluded all partial correlations for which the Pearson
correlation was not significant after Bonferroni correction to avoid statistical artifacts.

Pathway-based modularity

Biochemical validity of a GGM was assessed by analyzing whether edges connect metabolites
from the same or from between different pathways. The assumption was that metabolite
correlations mainly occur within a pathway since these metabolites share common biological
and biochemical properties and therefore, participate in the same metabolic processes. Let
(P1, ..., Pq) be the non-overlapping sets of nodes, with Pv containing the nodes assigned to
a pathway v. Here, we used pre-defined pathway annotations provided by Metabolon Inc.
(see section 2.3). Then the pathway-based modularity can be mathematically described by

Q =

q∑
v=1

[
A(Pv, Pv)

A(P, P )
−
(
A(Pv, P )

A(P, P )

)2]
, (2.10)

where A(Pv, Pw) is the number of edges between the two node sets Pv and Pw. A high Q
value corresponds to high pathway-based modularity in the GGM, that is, edges tend to
occur between metabolites of the same pathway rather than between metabolites from
different pathways.

Phenotype embedding and visualization

The GGMs were visualized as networks with nodes corresponding to the metabolites and
edges representing partial correlations after filtering. Edge width represented the absolute
partial correlation strength. To contextualize a phenotype, e.g. clinical parameters
or disease status, with metabolic correlations, the nodes in the inferred network were
colored according to the association of the respective metabolite with the given phenotype,
which was obtained from a differential analysis (Figure 2.6). The colored networks were
interactively visualized with Cytoscape, version 2.8.3 or yEd, version 3.12.2.
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Figure 2.6: Phenotype embedding into networks. A network reflecting statistically inferred metabolic
processes is inferred by estimating partial correlations between the metabolites, followed by significance
filtering. In a differential analysis, associations of the single metabolites with a given phenotype are
determined. The nodes in the network are then colored according to these phenotype associations.

2.5 Phenotype-driven module identification

In our work [108], we developed a network-based method - implemented in the R package
MoDentify - for the phenotype-driven identification of functional modules on different layers
of resolution; from fine-grained metabolites to global pathways. At metabolite level, the
network is inferred based on Gaussian graphical models (see section 2.4). At pathway level,
we first performed module representation (see section 2.3), followed by GGM estimation.
Based on the given network, MoDentify searches for functional modules that are highly
associated with the phenotype of interest by score maximization.

Figure 2.7: Network-based module identification (figure from MoDentify package vignette [108]). The
first step is the generation of a network using Gaussian graphical models (GGMs). Optionally, a pathway
network can also be inferred by first defining the pathway representatives with the eigenmetabolite or
average approach and subsequently, estimating a GGM based on the pathway representatives. The second
step is the application of a greedy search procedure on the inferred network to identify an optimal module
by score maximization. From an initial seed node, the algorithm extends the candidate module along the
network edges, until no further score improvement is possible.
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Module search

Given a phenotype vector P containing the condition for each individual (either continuous
such as age or binary such as case vs. control), an n×p data matrix, a network represented
by an adjacency matrix containing the p metabolites as nodes and vectors with node
and edge attributes, and a scoring function, a greedy approach is applied to search for
functional modules by score maximization. The algorithm performs the following procedure
iteratively, starting with a seed node as the initial candidate module (Figure 2.7):

Let M be the candidate module. The neighborhood of M , defined as the set of nodes
connected to any node in M in the given network is determined. Successively, each neighbor
is then added to M and the score of the extended module is calculated. The neighbor i
that meets the following requirements is finally added to M :

1. Score improvement: the score of the extended module M ∪ i is higher than the score
of the original module M .

2. Maximal score improvement: there is no other neighbor, which leads to higher score
improvement than i.

3. The score of the extended module M ∪ i is higher than the scores of all of its single
components.

The new candidate module is then M ∪ i and the described procedure is repeated. The
algorithm terminates if no score improvement is possible. The significance of the final
module is assessed at α = 0.05 after applying Bonferroni multiple testing correction for
p tests. After the algorithm is applied to all seed nodes as initial candidate modules, all
overlapping final modules are merged in a consolidation step and the respective modules
scores are re-calculated.

Module scoring

Given a candidate module M , the score was obtained from the multivariable linear regression
model

RM = βM,0 + βM,1 × P +

|C|∑
i=1

(βM,i+1 × ci) + εM , (2.11)

where RM is the module representative, βM,0 is the intercept, βM,i is the regression coeffi-
cient for the respective independent variable, P is the given phenotype, C = {c1, ..., c|C|} is
a set of covariates, and εM is a normally distributed error term. RM was calculated using
the average method as described in section 2.3. If M consisted of multiple pathways, then
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RM was calculated based on the union set of all metabolites from the respective pathways
(without using the pathway representatives). The module score was defined as the negative
logarithm of the p-value corresponding to βM,1.

Module visualization

Besides R data structures and flat files, MoDentify enables the interactive visualization of
the modules within the given network in the open source software Cytoscape [109]. One
of the major advantages of our package is the direct call of Cytoscape from within R via
the RCytoscape package [110] without the usual cumbersome exporting of data files from
R and re-importing them into Cytoscape. The visualized network contains all necessary
node and edge attributes, including different node colors and node sizes, which depict the
membership of a node in a certain module and its association with the given phenotype
from a classical, single-molecule association analysis, respectively. Moreover, significance
of the phenotype association is indicated by diamond-shaped nodes.
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Summary of contributed articles

A summary of all first-author publications that resulted from my doctoral studies is
provided below, sorted by the research questions introduced in section 1.4. Shared first
authorships are indicated by * symbols in bibliographic nominations.

I. Which missingness patterns can be observed in real metabolomics data and how can
these missing values be handled appropriately?

Kieu Trinh Do*, Simone Wahl*, Johannes Raffler, Sophie Molnos, Michael Laimighofer,
Jerzy Adamski, Karsten Suhre, Konstantin Strauch, Annette Peters, Christian Gieger,
Fabian J Theis, Harald Grallert, Gabi Kastenmüller, Jan Krumsiek (2017), Charac-
terization of missingness in untargeted MS-based metabolomics data and
evaluation of missing data handling strategies. Under review in Metabolomics

In mass-spectrometry based untargeted metabolomics data typically 20-30% of the
data is missing. Missing values are either excluded (complete case analysis, CCA) or
imputed (replaced by a reasonable value). The handling of these missing values as
a data quality control step is of crucial importance, since all downstream statistical
analyses will be affected. We statistically evaluated the best missing values handling
strategy in a controlled setting based on artificial data, and also assessed biological
validity of the data for each strategy. To this end, this study covers four parts: the
investigation of missing values mechanisms in real MS-based metabolomics data, the
evaluation of imputation methods based on artificial data that was generated based
on the gained insights, the evaluation of imputation methods based on biochemi-
cal pathways, and the evaluation of imputation methods based on associations of
metabolites with quantitative trait loci.

We analyzed possible underlying mechanisms of missing values in the KORA F4 study
(see section 2.1). We found that 62% of the metabolites contain missing values that
most probably occurred due to a limit of detection (LOD). However, there was no
single fixed LOD, but rather a blurred detection limit for all metabolites. We also
observed that the amount of missing values differ substantially across rundays, most
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likely reflecting shifts in instrument sensitivity. Finally, we found that the majority
of metabolites display an inverse relationship of runday mean and runday-specific
amount of missing values (see sections 2.2.1 and 2.2.1), indicating a runday-dependent
LOD-based mechanism, which might give rise to the observed blurred overall LOD.

We evaluated 31 imputation approaches (see section 2.2.3) in a framework consisting
of three evaluation schemes. In the first scheme, we aimed to evaluate imputation
methods in a controlled setting by simulating incomplete data that reflected the
real-data properties based on the obtained insights from the previous analysis on
real data (see section 2.2.2). The imputation performance was assessed based on the
ability of the approaches to achieve unbiased statistical estimates and valid hypothesis
test results after conducting correlation and regression analyses. We observed that
KNN-based imputation on the observations with variable pre-selection (KNN-obs-
sel) and Multiple Imputation by Chained Equations (MICE) performed best in this
evaluation scheme (see section 2.2.3).

In the second evaluation scheme, we conducted biologically-driven analyses using real
data from the KORA F4 cohort. We investigated how accurately real biochemical
pathways can be reconstructed in data-driven metabolic networks inferred from the
imputed data. To this end, a Gaussian graphical model is estimated after imputation
(see section 2.4), and pathway-based modularity, indicative of the partition of the
data-driven network into pre-defined pathways, was assessed from the fraction of
metabolite-metabolite correlations occurring within pathways compared to across
pathways (see section 2.4). High modularity suggested biological validity of the
GGM and served as a quality criterion for the imputation method in this analysis.
Imputation with MICE resulted in a GGM with the highest modularity, closely
followed by imputation with KNN-obs-sel.

In the final biological evaluation scheme, we explored the ability of imputation methods
to preserve effects of genetic variants on metabolite levels while increasing statistical
power. We investigated the association of 18 SNP-metabolite pairs, for which a
functional relationship was evident from previous studies. An imputation strategy
was assumed to perform well if there was statistical power gain while the effect size
of the SNP-metabolite association was preserved after imputation. Again, we found
KNN-obs-sel to perform well throughout all pairs.

Overall, for the first time, we presented a detailed description of missing values mech-
anisms in MS-based metabolomics data. We performed comprehensive evaluation of
imputation strategies based on both statistical and biological readouts. KNN-based
imputation on observations with variable pre-selection consistently performed best
in all three evaluation schemes and is recommended for missing values handling in
future MS-based data.

My contribution: This publication was a joint work with the co-first author Simone
Wahl. The general idea to analyze missing values in metabolomics data originates
from Jan Krumsiek. Together with him, Gabi Kastenmüller, and Simone Wahl, I
planned the study design. I performed data preprocessing and ensured data quality
control. I had the idea to analyze the limit of detection property of missingness,
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and to look for influences of runday effects. To this end, I designed the descriptive
analysis and performed all statistical analysis and created and interpreted all result
figures. I had the idea to compare imputation approaches to find the best strategy
to handle missing values. To this end, I performed imputation on the real data and
evaluated the methods based on biochemical pathways. I created and interpreted
all result figures for this part. The idea to analyze metabolite-SNP pairs originated
from Gabi Kastenmueller, and Johannes Raffler performed the statistical analysis.
Interpretation of the results was done by Gabi Kastenmüller, Jan Krumsiek, Johannes
Raffler and me. The statistical evaluation of imputation methods based on simulated
data originated from Simone Wahl and she initially performed all computational
analyses for this part. I adapted the code and created and interpreted the result
figures after she left Helmholtz Zentrum Munich. Finally, I wrote the complete draft
of the manuscript, which I then finalized based on comments from Jan Krumsiek,
Gabi Kastenmüller, and Simone Wahl.

II. How can metabolic processes within and between different body fluids be investigated,
and how can we use these processes to analyze (patho-) physiological outcomes?

Kieu Trinh Do, Gabi Kastenmüller, Dennis O Mook-Kanamori, Noha A Yousri,
Fabian J Theis, Karsten Suhre, Jan Krumsiek (2015), Network-based approach
for analyzing intra- and interfluid metabolite associations in human blood,
urine, and saliva. J Proteome Res, 14: 1183-1194

For an integrated picture of metabolic interactions and physiological processes in the
human body, a simultaneous analysis of multiple body fluids or tissues is essential,
but yet missing. In this work, we addressed this challenge by inferring networks
that reflect a comprehensive view of multi-fluid metabolic interactions. The analysis
was based on untargeted metabolomics measurements for plasma, urine, and saliva
samples from the QMDiab cohort (see section 2.1).

With this comprehensive view we aimed to answer three questions: (i) How similar
are the fluids in terms of metabolic composition and correlations? (ii) How do fluids
interact metabolically? And (iii), how can phenotype information be integrated into
these metabolic processes and which insights can be gained?

To address question (i), we first compared the metabolic composition of the fluids
by analyzing the occurrence of metabolite classes (see section 2.3) in the fluids. We
found that certain groups of metabolites, such as lipids, were fluid-specific (e.g., they
significantly occurred in only one body fluid) while others, such as amino acids, were
shared across fluids (e.g., they occurred significantly often in at least two fluids), indi-
cating strong exchange of these metabolites between the body fluids. To compare the
within-fluid correlation structure, a Gaussian graphical model (GGM) was estimated
for each body fluid (see section 2.4). The fluid-specific GGMs were superimposed for
a direct comparison of the fluids. While plasma had the highest number of metabolite
correlations, saliva showed the lowest number of correlations. Blood and urine are
physiologically connected through excretion processes in the kidneys; and as expected,
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these two fluids were more similar to each other than to saliva. To systematically check
the biological validity of the statistically derived metabolite correlations, we performed
Fisher’s exact test to analyze whether correlating metabolites were assigned to the
same pathways (see section 2.3). In all fluids, a substantial high number of edges
occurred within a pathway, indicating that the inferred networks were biologically
reasonable. Finally, we provided an in-depth view of the networks by discussing
arbitrarily extracted example subnetworks, including purines, amino acids, and fatty
acids as well as free acylcarnitines.

To address question (ii), a GGM for all metabolites from all fluids was estimated to
obtain the cross-fluid metabolite correlations. We found a considerable higher fraction
of edges between plasma and urine than between plasma and saliva, or urine and
saliva. This was expected, since blood and urine are physiologically connected through
excretion and re-absorption processes in the kidneys. In contrast, the correlations
found between urine and saliva might reflect stable concentrations throughout the
body, e.g., small changes between food intake and excretion. We repeated the
biochemical validity check for the cross-fluid GGM and observed a remarkably high
fraction of edges within pathways. Moreover, correlations occurring between fluids
were mainly between the same metabolites, pointing to excretion, transport, and
diffusion processes. Finally, we provided an in-depth description of the cross-fluid
GGM by discussing subnetworks containing cotinine, saccharin, as well as cortisol
and cortisone.

To address question (iii), we generated a consolidation of three types of information.
Statistical correlation between metabolites were combined with direct comparison
of the fluids as already obtained for question (2). In addition, we integrated the
association of metabolites to the four phenotypes, type 2 diabetes (T2D), age, gender,
and BMI into the cross-fluid GGM. To this end, nodes were depicted as pie charts
that reflected the strength of phenotype associations obtained from a multivariable
linear regression model (see section 2.4). With this approach we were able to visually
identify metabolic modules that were related to one of the phenotypes, e.g., a group
of correlating monosaccharides associated with T2D. Moreover, we could directly
compare the phenotypes and their effects on metabolism. For instance, steroid
hormones were associated with age mainly in urine, and with sex mainly in blood.
We also found that metabolites associated with T2D and age were significantly
shared between the fluids, suggesting widespread effects of these phenotypes on
metabolism in the human body. Finally, we discussed phenotype related subnetworks
spanning steroid hormones, monosaccharides, the drug metformin, and amino acids
and derivatives.

Overall, we introduced a network-based framework for the analysis of multi-fluid
metabolomics data and their associations with clinical outcomes. Our approach is
generic and therefore, widely applicable, which was demonstrated by its application
on type 2 diabetes [111], insulin-like growth factor I [IGF-I) [112], and restless legs
syndrome and Parkinson’s Disease [68] in follow-up studies.
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My contribution: The original idea to analyze multi-fluid metabolomics data based
on network inference was from Karsten Suhre and Jan Krumsiek. I had the idea to
create overlaid within-fluid networks and a combined cross-fluid network. I performed
data preprocessing and ensured data quality control. For the publication, I planned
the design of the study and performed all computational analyses. All visualization
ideas originated from me and I developed and applied all necessary steps. I created
and interpreted all result figures and wrote the first complete draft of the publication,
which I then finalized based on comments from Karsten Suhre, Jan Krumsiek, and
Gabi Kastenmüller.

III. How can interpretable functional modules be identified in a systematic and phenotype-
driven manner?

Kieu Trinh Do, Maik Pietzner, David Rasp, Nele Friedrich, Matthias Nauck, Thomas
Kocher, Karsten Suhre, Dennis O Mook-Kanamori, Gabi Kastenmüller, Jan Krumsiek
(2017), Phenotype-driven identification of modules in a hierarchical map
of multi-fluid metabolic correlations. NPJ Syst Biol Appl. 2017;3:28

Phenotype associations typically span sets of correlating metabolites, termed func-
tional modules. Module identification algorithms are established for omics data, but
none of the methods considered the fact that there are different scales of phenotype
associations. For phenotypes with only few metabolite associations (”sparse” effects),
the identification and interpretation of modules is usually straightforward. However,
there are also phenotypes associating with more than half of the metabolome (”dense”
effects), which complicates biological interpretation due to the sheer quantity of
associated compounds. The aim of this work was to develop an approach for the
systematic identification of metabolic modules associated with a given phenotype.
In particular, these modules should be well interpretable for all types of phenotype
effects. To this end, our idea was to adapt the metabolic resolution of the module
identification to the scales of phenotype effects.

To obtain a multi-level view on metabolism, we generated a hierarchical map reflecting
multi-fluid human metabolism at different resolution levels using plasma, urine, and
saliva untargeted metabolomics data from the SHIP-TREND cohort (see section
2.1). We inferred networks depicting metabolite-metabolite and pathway-pathway
correlations within and between the three body fluids. The metabolite networks were
inferred by estimating Gaussian graphical models (see section 2.4). For pathway-
pathway interactions we generated two networks – one for “sub-pathways” and one
for “super-pathways” (see section 2.3). The sub-pathway network was inferred by
estimating a GGM on the sub-pathway eigenmetabolites (see section 2.3). The super-
pathway network was generated by collapsing the sub-pathway network. These three
networks formed a hierarchical map, which reflected human metabolism at three
different layers of resolution.

We obtained a general overview of the hierarchical map by comparing plasma, urine,
and saliva in terms of metabolite composition and correlation structure. The results
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suggested diverse metabolic processes in the fluids, most likely due to substantially
different physiological roles of each fluid. In addition, we confirmed observations
from our previous work that plasma and urine were tightly connected, while urine
and saliva shared only few edges [104]. Cross-fluid correlations were mainly between
biochemically closely related molecules, most probably due to transport and exchange
processes between fluids.

Next, we developed a network-based greedy approach for the identification of functional
modules (see section 2.5). A module is defined as a group of metabolic entities
(metabolites or pathways) that is stronger associated with a given phenotype then
all of its single components. We applied the module identification approach to
insulin-like growth factor (IGF-I) representing phenotypes with sparse effects, and
gender representing phenotypes with dense effects, at all levels of the hierarchical
map. Thereby, we illustrated that for the sparse effects, modules at the fine-grained
metabolite level were well interpretable, while at the global pathway levels no modules
were identified. In contrast, for the dense phenotype associations, we identified
73 modules at metabolite level, which were unraveled to 13 sub-pathway modules,
alleviating biological interpretation. The results for gender were successfully replicated
using the QMDiab cohort (see section 2.1). Despite substantial differences in study
design, metabolomics measurement, and power, half of the modules found in SHIP-
TREND were also identified in QMDiab.

With this work we introduced a systematic approach for the identification of phenotype-
driven modules. In particular, we showed that phenotype effects are in fact on different
scales (sparse vs. dense), and module interpretation can be substantially enhanced if
the metabolic resolution is adapted to these scales. Moreover, we demonstrated that
the identified modules provide deeper insights into mechanistic aspects of phenotype
associations, and a holistic view can only be obtained when multiple body fluids
are simultaneously analyzed. Finally, our approach showed considerable increase in
statistical power compared to classical association analysis.

My contribution: I had the idea to identify modules based on multi-fluid metabolic
networks. Together with Jan Krumsiek, we decided to apply the module identifi-
cation on multiple layers of resolution. I developed, implemented, and applied all
computational approaches. I performed data preprocessing and ensured data qual-
ity control. I created and interpreted all result figures and wrote the first complete
draft of the manuscript, which I then finalized based on comments from Jan Krumsiek.

Do KT, Rasp D, Kastenmüller G, Suhre K, Krumsiek J (2017), MoDentify: a
tool for phenotype-driven identification of modules based on hierarchical
networks Under review in Oxford Bioinformatics

The aim of this work was to provide the developed approach for phenotype-driven
module identification reported in our previous publication [104] to the scientific
community.

To this end, we implemented an R package named MoDentify for the phenotype-driven
module identification at different layers of resolution 2.5. Thus, the algorithm can
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detect functional modules for a given phenotype at the fine-grained metabolite level
as well as at coarser pathway levels. MoDentify consists of four main steps: (i)
network inference, (ii) module identification, (iii) module scoring, and (iv) module
visualization.

We implemented two approaches for (i): data-driven networks can either be estimated
as Gaussian graphical models using partial correlations (see section 2.4), or as Pearson
correlation networks. At the fine-grained level, the nodes in the resulting network
correspond to metabolites, while at the global level, a node represents a whole pathway.
Edges depict significant (partial) correlations between two nodes. Pathway networks
can be inferred using pathway representative variables (see section 2.3). In addition,
it is also possible to use an external network as a basis for the module identification
procedure.

Based on the network, a greedy approach is performed to identify optimal modules
associated with the phenotype of interest (ii). Given an initial candidate module
(seed node), an iterative procedure is performed: the neighborhood of the candidate
module is scanned, and the candidate module is extended by the node leading to
the highest score improvement. The score of a candidate module is obtained from a
multivariable linear regression model (iii) with the module representative (see section
2.3) as response and the given phenotype and optional covariates as predictors (see
section 2.5). The algorithm terminates if no further score improvement is possible.
Finally, identified modules can be visualized interactively within the underlying
network (iv). To this end, the open source software Cytoscape can be directly called
from within R (see section 2.5).

With MoDentify, we provided a freely available and easy-to-use R software, which is
widely applicable for all types of data due to its generic character.

My contribution: I developed the algorithm and implemented it in MATLAB. I
supervised a Bachelor student to translate the algorithm to R and to create the
backbone of the R package MoDentify. I debugged, extended and finalized MoDentify.
I wrote the package vignette. I prepared the example data set and made it publicly
available. I applied the method to the example data and created all result figures. I
wrote the first complete draft of the Application Note, which I then finalized based
on comments from Jan Krumsiek.
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Chapter 4

Discussion and future perspectives

4.1 Discussion

Metabolomics, the study of metabolic profiles at a global level, is frequently used to identify
patterns associated with various (patho-) physiological outcomes. Technical advancements
in this field have led to substantially increased complexity in measured data since much
more compounds in more than one type of sample can be measured. Although the
biological insights obtainable from this complex data facilitates fundamental understanding
of metabolism and its link to clinical parameters and disease outcomes, the data complexity
poses a considerable challenge to both appropriate data quality control, and the statistical
approaches for data analysis and result interpretation.

We contributed to improved data quality by investigating the best approach to handle
missing values. We provided a comprehensive overview of missing values patterns in real
MS-based data, and offered imputation guidance under consideration of both statistical
and biological evaluation schemes; two aspects that have not yet been addressed [97].

We contributed to more powerful metabolomics data analysis by developing a network-based
approach to extract biological insights from complex multi-fluid metabolomics data and
their links to clinical endpoints [33]. To the best of our knowledge, this was the first study
involving the systematic, unsupervised and large-scale analysis of multiple body fluids
based on human in vivo samples. Our approach is generic, and therefore, can be applied to
any other metabolomics data set as demonstrated in three follow-up studies [68, 111, 112].

As an extension of our previous work, we moved from visual investigation to systematic
assessment of phenotype associations in the context of complex (multi-fluid) metabolism.
We developed a network-based greedy procedure to systematically and automatically
identify functional modules – groups of correlating metabolic entities that are driven by a
given phenotype [104]. With this work we also contributed to easy result interpretation
of complex metabolomics data by adapting our approach to different layers of metabolic
resolution such that results are easily interpretable for any scale of phenotype association;
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from sparse associations such as for asthma and insulin-like growth factor I [64, 112], to
dense associations such as for gender and BMI[90, 91, 95]. To the best of our knowledge,
we were the first to address the challenge of searching for phenotype-driven modules in
metabolic networks at different layers of resolution. In particular, we allow to consider
cross-fluid communication by analyzing multiple body fluids simultaneously. Our approach
has been shown to be statistically much more powerful than common association methods
(e.g., t-test, regression analysis, correlation analysis). Importantly, with the increased
statistical power we identified links between phenotype and metabolism, which have been
hidden before. In a follow-up publication, we made our generic approach available to the
scientific community by implementing an open-source and easy-to-use R package called
MoDentify.

Despite our relevant contributions to improved metabolomics data quality control, data
analysis, and data interpretation, our studies could be extended in several directions: (1)
We found runday-effects on the occurrence of missing values in MS-based data. To exploit
this information in the imputation process, we developed algorithms to explicitly consider
global or runday-specific LOD-based mechanisms based on a truncated distribution. Un-
expectedly, these methods did not achieve better imputation performances compared to
other imputation approaches, even in simulated data with only LOD-based missingness.
A possible reason may lie in the low number of observations available within rundays.
Since the developed methods rely on maximum likelihood estimation to reconstruct the
truncated distribution, low sample sizes limit the statistical power as have been shown in
previous studies [42, 98]. Another possible reason is the omission of the data covariance
structure. Taking the correlation between the variables into account may improve imputa-
tion performance, however, the specification of multivariate truncated distributions can be
fairly challenging and might be addressed in future studies.

(2) We analyzed occurrence and handling of missing values in KORA F4. It would be also
interesting to investigate whether missingness in data from a another cohort, from other
sample types, or from other measurement platforms show similar patterns, and whether the
same imputation performances can be expected. In addition, we performed our analyses
independent of the other preprocessing steps (see section 1.2.2), but it would be interesting
to investigate whether the handling of missing values is also influenced by normalization,
transformation, and outlier handling. This aspect will be discussed in more detail in section
4.2.

(3) To generate an atlas of multi-fluid metabolic correlations in the human body [33], we
used QMDiab, which at that time was the only available study with human multi-fluid
metabolomics data. This study is a type 2 diabetes case-control cohort with non-fasting
participants. Although non-fasting samples may diminish the statistical power to find
intrinsic metabolic correlations, the correlations that persist in the non-fasting state can
be assumed to be robust and stable throughout different metabolic states. With this in
mind, investigating multiple body fluids under different dietary conditions may provide
additional biological insights that can not be extracted with a single measurement, as
piloted by the HUMET study from Krug et al. comprising 15 healthy men undergoing
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various nutritional challenges [12].

(4) We condensed the complex metabolic correlations at metabolite-level to a more global
and more interpretable pathway level. To this end, we inferred a network based on pathway
representatives. Following the eigengene approach, we defined a pathway representative as
the first principal component of its metabolic intensities (eigenmetabolite). For the majority
of pathways, the degree of variance captured by the eigenmetabolite is high (>50%), but for
very heterogeneous pathways such as “Phenylalanine and Tyrosine Metabolism” or “Food
Component / Plant” the eigenmetabolite may not be representative. Instead of relying
on pathway representatives, more sophisticated approaches such as canonical correlation
analysis [113] or O2-PLS [114] could be adapted to model the relationship between entire
pathways.

(5) To identify modules, we follow a greedy procedure by score maximization. A well-known
problem of this local optimization technique is its inability to identify global minima (or
global maxima in our case) if a local movement would increase the cost (or decrease the
score in our case). Thus, with this approach, we prohibited “bridging” nodes – nodes that
decrease the phenotype association if added to the candidate module, but which would
connect to other nodes that would substantially increase the phenotype association. One
possible solution to this limitation would be the use of global optimization techniques such
as simulated annealing [115].

(6) In all projects, we analyzed metabolic pathways relying on pathway annotations provided
by Metabolon Inc. These annotations were analogous to KEGG pathways, but were non-
overlapping (each metabolite is assigned to exactly one pathway), which might not fully
reflect real metabolic pathways. Additional analysis based on other available pathway
annotations such as from HMDB [80], MetaCyc [81], or Recon [116] may strengthen the
validity of our approaches; however, mapping metabolites to database entries could result
in substantial loss of information since a large number of measured metabolites will not be
covered in these databases.

(7) Multi-fluid data can be extremely useful for the identification and analysis of easier
accessible, and therefore less invasive alternatives for known biomarkers (surrogate marker).
For instance, in our study we found that salivary 1,5-anhydroglucitol is strongly correlated
with the same metabolite measured in blood. And indeed, this salivary metabolite turned
out to be a promising candidate as a non-invasive marker for short-term glycemic control
[9]. This interesting aspect will be discussed in more detail in section 4.3.

4.2 Metabolomics preprocessing

Although preprocessing of metabolomics data – normalization, transformation, outlier
and missing values handling, and scaling – substantially affects all downstream statisti-
cal analyses and result interpretation, these aspects are often omitted and there is no
standard workflow available. Several studies [28–30, 41, 117–119], including our work on
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metabolomics missing values imputation [97], have investigated single preprocessing steps;
however, these single steps influence each other, thus, not only the inherent effects of each
step, but also their combination and the order of application have effects on the final
data quality. One example is the order of application of probabilistic quotient normal-
ization and missing values imputation: Normalization before imputation may require the
exclusion of variables with missing values in order not to distort the estimation of the
dilution factor. However, this approach is accompanied by massive loss of information for
untargeted metabolomics data. In contrast, normalization after imputation would make
use of all available data, but depending on the performance of the imputation method,
the estimated dilution factor could be strongly biased. This example demonstrates that
the entire preprocessing procedure as a whole and the influence of the single steps on
each other need to be investigated to obtain a comprehensive standardized preprocessing
pipeline for metabolomics studies.

A successful launch of such a study would require the evaluation of data quality based
on artificial data where the ground truth is known and preprocessing can be performed
in a completely controlled setting. However, the simulation of appropriate artificial data
for such a study poses several challenges. First, simulated data should reflect a real data
situation as best as possible. To this end, data characteristics driving each preprocessing
step, such as technical or biological variation for normalization, and missing values patterns
for imputation, must be identified. This is a rather challenging and sometimes even an
unfeasible task. Second, these data characteristics can be fairly different between different
types of data (e.g., MS-based data versus NMR data), or even between data sets of the
same type (e.g., MS-based data measured in the 1990s and MS-based data measured only
recently). That is, there is no guarantee that the simulated data reflects other data than
the data at hand. Finally, the more data properties are considered the more complex is
the simulation process.

4.3 Surrogate marker identification in multi-fluid data

In clinical medicine and research, biomarkers are medical signs with diagnostic or predictive
power for a clinical endpoint. In some cases, the measurement of such a biomarker is
technically challenging or fairly expensive. An alternative with the same descriptive and
predictive power for such a biomarker, but which is easier and cheaper to obtain – here we
will call it a surrogate marker – would be extremely convenient. An eligible surrogate for
a known biomarker would be the same compound, a very similar compound, or a higly
correlated compound that is measured in an easier accessible body fluid, for which reason
multi-fluid data are exceptionally useful for the identification of surrogate markers. In our
studies, we analyzed blood, urine, and saliva samples of the same individuals. Even more
than blood, urine and saliva are samples that can be collected in the least invasive way, for
which reason biomarkers in these fluids have considerable clinical advantages. For instance,
a marker in saliva would enable a systematic screening for a given disease by dentists and
oral hygienists with marginal efforts and expenses [9].
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Often, biomarkers for a certain clinical endpoint are known from previous studies, but the
clinical variable itself is not available in the data at hand, such that an association analysis
of a candidate surrogate marker with the clinical variable is not feasible. Therefore, an
interesting question is whether it is possible to propose a surrogate marker only based on
its association with the known biomarker. Or formulated differently: if a biomarker is
strongly associated with a given phenotype, and a candidate marker is strongly associated
with the biomarker, under which condition is it possible to infer that the candidate marker
is also associated with the phenotype? To answer this question, we started a pilot study
in form of a master’s thesis analyzing the occurrences of correlation triples in multi-fluid
metabolomics data [120] with the conclusion that although Pearson correlations are not
always transitive, the best candidate markers tend to be metabolites with very strong
correlations to the given biomarker. However, much further work is needed to identify
useful and clinically applicable surrogate markers. For instance, it could be possible that
the surrogate marker of a metabolic biomarker is not a single other metabolite, but a set
of different compounds.

4.4 Conclusion

Due to technical advancements and lower costs, a vast amount of high-dimensional and
complex multi-fluid metabolomics data exists for which statistical approaches for appropri-
ate data handling, analysis, and interpretation are in need. In this thesis, we addressed
these needs by extensively evaluating existing approaches and developing novel strategies
for preprocessing and statistical analysis of complex data. To the best of our knowledge,
we were the first to systematically investigate multi-fluid metabolomics data from human
in vivo samples. In particular, our approaches have been successfully applied in many
follow-up studies and will continue to be valuable for future studies in biomedical research,
aiding to move towards precision medicine.



44 CHAPTER 4. DISCUSSION AND FUTURE PERSPECTIVES



Bibliography

[1] Mete Civelek and Aldons J. Lusis. Systems genetics approaches to understand
complex traits. Nature Reviews Genetics, 15(1):34–48, January 2014. ISSN 1471-
0056. doi: 10.1038/nrg3575. URL http://www.nature.com/nrg/journal/v15/n1/

full/nrg3575.html.

[2] Gary J. Patti, Oscar Yanes, and Gary Siuzdak. Innovation: Metabolomics: the
apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4):263–269,
April 2012. ISSN 1471-0072. doi: 10.1038/nrm3314. URL http://www.nature.com/

nrm/journal/v13/n4/full/nrm3314.html.

[3] Caroline H. Johnson, Andrew D. Patterson, Jeffrey R. Idle, and Frank J.
Gonzalez. Xenobiotic Metabolomics: Major Impact on the Metabolome.
Annual Review of Pharmacology and Toxicology, 52(1):37–56, 2012. doi:
10.1146/annurev-pharmtox-010611-134748. URL https://doi.org/10.1146/

annurev-pharmtox-010611-134748.

[4] Jan Krumsiek, Jörg Bartel, and Fabian J Theis. Computational approaches for sys-
tems metabolomics. Current Opinion in Biotechnology, 39:198–206, June 2016. ISSN
0958-1669. doi: 10.1016/j.copbio.2016.04.009. URL http://www.sciencedirect.

com/science/article/pii/S0958166916301173.

[5] Bo Peng, Hui Li, and Xuan-Xian Peng. Functional metabolomics: from biomarker
discovery to metabolome reprogramming. Protein & Cell, 6(9):628–637, September
2015. ISSN 1674-800X. doi: 10.1007/s13238-015-0185-x. URL http://www.ncbi.

nlm.nih.gov/pmc/articles/PMC4537470/.

[6] G. A. Nagana Gowda, Shucha Zhang, Haiwei Gu, Vincent Asiago, Narasimhamurthy
Shanaiah, and Daniel Raftery. Metabolomics-Based Methods for Early Disease
Diagnostics: A Review. Expert review of molecular diagnostics, 8(5):617, September
2008. ISSN 10.1586/14737159.8.5.617. doi: 10.1586/14737159.8.5.617. URL http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC3890417/.

[7] Marta Esteban and Argelia Castaño. Non-invasive matrices in human biomonitoring:
A review. Environment International, 35(2):438–449, February 2009. ISSN 0160-4120.
doi: 10.1016/j.envint.2008.09.003. URL http://www.sciencedirect.com/science/

article/pii/S0160412008001992.

http://www.nature.com/nrg/journal/v15/n1/full/nrg3575.html
http://www.nature.com/nrg/journal/v15/n1/full/nrg3575.html
http://www.nature.com/nrm/journal/v13/n4/full/nrm3314.html
http://www.nature.com/nrm/journal/v13/n4/full/nrm3314.html
https://doi.org/10.1146/annurev-pharmtox-010611-134748
https://doi.org/10.1146/annurev-pharmtox-010611-134748
http://www.sciencedirect.com/science/article/pii/S0958166916301173
http://www.sciencedirect.com/science/article/pii/S0958166916301173
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537470/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537470/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890417/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890417/
http://www.sciencedirect.com/science/article/pii/S0160412008001992
http://www.sciencedirect.com/science/article/pii/S0160412008001992


46 BIBLIOGRAPHY

[8] David T. W. Wong. Salivaomics. Journal of the American Dental Association (1939),
143(10 Suppl):19S–24S, October 2012. ISSN 1943-4723.

[9] Dennis O. Mook-Kanamori, Mohammed M. El-Din Selim, Ahmed H. Takiddin,
Hala Al-Homsi, Khoulood A. S. Al-Mahmoud, Amina Al-Obaidli, Mahmoud A.
Zirie, Jillian Rowe, Noha A. Yousri, Edward D. Karoly, Thomas Kocher, Wafaa
Sekkal Gherbi, Omar M. Chidiac, Marjonneke J. Mook-Kanamori, Sara Abdul Kader,
Wadha A. Al Muftah, Cindy McKeon, and Karsten Suhre. 1,5-Anhydroglucitol
in Saliva Is a Noninvasive Marker of Short-Term Glycemic Control. The Journal
of Clinical Endocrinology & Metabolism, 99(3):E479–E483, January 2014. ISSN
0021-972X. doi: 10.1210/jc.2013-3596. URL http://press.endocrine.org/doi/

abs/10.1210/jc.2013-3596.

[10] Souhaila Bouatra, Farid Aziat, Rupasri Mandal, An Chi Guo, Michael R. Wilson,
Craig Knox, Trent C. Bjorndahl, Ramanarayan Krishnamurthy, Fozia Saleem, Philip
Liu, Zerihun T. Dame, Jenna Poelzer, Jessica Huynh, Faizath S. Yallou, Nick
Psychogios, Edison Dong, Ralf Bogumil, Cornelia Roehring, and David S. Wishart.
The Human Urine Metabolome. PLoS ONE, 8(9), September 2013. ISSN 1932-
6203. doi: 10.1371/journal.pone.0073076. URL http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3762851/.

[11] Aihua Zhang, Hui Sun, Xiuhong Wu, and Xijun Wang. Urine metabolomics. Clinica
Chimica Acta, 414(Supplement C):65–69, December 2012. ISSN 0009-8981. doi: 10.
1016/j.cca.2012.08.016. URL http://www.sciencedirect.com/science/article/

pii/S0009898112004135.

[12] Susanne Krug, Gabi Kastenmüller, Ferdinand Stückler, Manuela J. Rist, Thomas
Skurk, Manuela Sailer, Johannes Raffler, Werner Römisch-Margl, Jerzy Adamski,
Cornelia Prehn, Thomas Frank, Karl-Heinz Engel, Thomas Hofmann, Burkhard Luy,
Ralf Zimmermann, Franco Moritz, Philippe Schmitt-Kopplin, Jan Krumsiek, Werner
Kremer, Fritz Huber, Uwe Oeh, Fabian J. Theis, Wilfried Szymczak, Hans Hauner,
Karsten Suhre, and Hannelore Daniel. The dynamic range of the human metabolome
revealed by challenges. The FASEB Journal, 26(6):2607–2619, June 2012. ISSN
0892-6638, 1530-6860. doi: 10.1096/fj.11-198093. URL http://www.fasebj.org/

content/26/6/2607.

[13] Jeremy K. Nicholson, John Connelly, John C. Lindon, and Elaine Holmes. Metabo-
nomics: a platform for studying drug toxicity and gene function. Nature Reviews.
Drug Discovery, 1(2):153–161, February 2002. ISSN 1474-1776. doi: 10.1038/nrd728.

[14] Nathan Blow. Metabolomics: Biochemistry’s new look. Nature, 455(7213):697–700,
2008. ISSN 0028-0836. doi: 10.1038/455697a. URL http://www.nature.com/

nature/journal/v455/n7213/full/455697a.html.

[15] Rima Kaddurah-Daouk, Bruce S. Kristal, and Richard M. Weinshilboum.
Metabolomics: A Global Biochemical Approach to Drug Response and Dis-
ease. Annual Review of Pharmacology and Toxicology, 48(1):653–683, 2008. doi:

http://press.endocrine.org/doi/abs/10.1210/jc.2013-3596
http://press.endocrine.org/doi/abs/10.1210/jc.2013-3596
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762851/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762851/
http://www.sciencedirect.com/science/article/pii/S0009898112004135
http://www.sciencedirect.com/science/article/pii/S0009898112004135
http://www.fasebj.org/content/26/6/2607
http://www.fasebj.org/content/26/6/2607
http://www.nature.com/nature/journal/v455/n7213/full/455697a.html
http://www.nature.com/nature/journal/v455/n7213/full/455697a.html


BIBLIOGRAPHY 47

10.1146/annurev.pharmtox.48.113006.094715. URL http://dx.doi.org/10.1146/

annurev.pharmtox.48.113006.094715.

[16] Marissa Fessenden. Metabolomics: Small molecules, single cells. Nature, 540(7631):
153–155, December 2016. ISSN 0028-0836. doi: 10.1038/540153a. URL http:

//www.nature.com/nature/journal/v540/n7631/full/540153a.html.

[17] T. W. M. Fan. 2.35 - Metabolomics-Edited Transcriptomics Analysis (Meta).
In Charlene A. McQueen, editor, Comprehensive Toxicology (Second Edition),
pages 685–706. Elsevier, Oxford, 2010. ISBN 978-0-08-046884-6. doi: 10.1016/
B978-0-08-046884-6.00239-6. URL https://www.sciencedirect.com/science/

article/pii/B9780080468846002396.

[18] Ho-Youn Kim, Hae-Rim Kim, and Sang-Heon Lee. Advances in Systems Biology
Approaches for Autoimmune Diseases. Immune network, 14(2):73–80, April 2014.
ISSN 1598-2629. doi: 10.4110/in.2014.14.2.73.

[19] Karsten Suhre. Metabolic profiling in diabetes. Journal of Endocrinology, 221(3):
R75–R85, June 2014. ISSN 0022-0795, 1479-6805. doi: 10.1530/JOE-14-0024. URL
http://joe.endocrinology-journals.org/content/221/3/R75.

[20] Christopher B. Newgard. Metabolomics and Metabolic Diseases: Where Do
We Stand? Cell Metabolism, 25(1):43–56, January 2017. ISSN 1550-4131.
doi: 10.1016/j.cmet.2016.09.018. URL http://www.cell.com/cell-metabolism/

abstract/S1550-4131(16)30503-4.

[21] Arnald Alonso, Sara Marsal, and Antonio Julià. Analytical Methods in Untar-
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ABSTRACT: Most studies investigating human metabolomics measurements are limited to a single
biofluid, most often blood or urine. An organism’s biochemical pool, however, comprises complex
transboundary relationships, which can only be understood by investigating metabolic interactions and
physiological processes spanning multiple parts of the human body. Therefore, we here propose a data-
driven network-based approach to generate an integrated picture of metabolomics associations over
multiple fluids. We performed an analysis of 2251 metabolites measured in plasma, urine, and saliva,
from 374 participants of the Qatar Metabolomics Study on Diabetes (QMDiab). Gaussian graphical
models (GGMs) were used to estimate metabolite-metabolite interactions on different subsets of the
data set. First, we compared similarities and differences of the metabolome and the association
networks between the three fluids. Second, we investigated the cross-talk between the fluids by
analyzing correlations occurring between them. Third, we propose a framework for the analysis of
medically relevant phenotypes by integrating type 2 diabetes, sex, age, and body mass index into our
networks. In conclusion, we present a generic, data-driven network-based approach for structuring and
visualizing metabolite correlations within and between multiple body fluids, enabling unbiased
interpretation of metabolomics multifluid data.

KEYWORDS: multiple body fluids, multifluid, metabolomics, network inference, partial correlation, Gaussian graphical models,
type 2 diabetes

■ INTRODUCTION

Metabolomics is the holistic study of metabolic processes at a
global level and has been used to analyze crucial biochemical
mechanisms in various organisms, tissues, and conditions.1 A
metabolite profile represents a quantitative description of all
relevant small molecules in a tissue sample or a body fluid. The
metabolome is considered to represent an end point of complex
genomic, transcriptomic, proteomic, physiological, environ-
mental, and dietary processes, and thus provides a readout that
is closely linked to the phenotype of interest.2,3 Metabolomics
is thus frequently used to identify patterns associated with
pathophysiological states.4−6 Moreover, because of its dynamic
nature, metabolomics has gained importance as a key
technology for systems biology.1,7

Most clinical studies on human metabolomics data have
focused only on one body fluid type, typically blood or urine.
However, an organism’s biochemical pool comprises complex
relationships that pass beyond the border of a single tissue or

body fluid. A comprehensive approach, combining metabolo-
mics analysis of two or more types of biosamples, should allow
to generate an integrated picture of metabolic interactions and
physiological processes that encompass multiple parts of the
human body. Several studies already investigated metabolomics
data from multiple fluids.8−17 For example, Munshi et al.16

performed multivariate analysis (PCA and PLS-DA) and
pathway analysis on plasma, urine and saliva metabolomics
data from HIV/AIDS patients. Multivariate analysis was also
performed by Walsh et al.,17 who collected plasma, urine, and
saliva metabolomics samples to investigate the effect of acute
dietary standardization on human metabolomics profiles.
However, none of those studies performed a systematic
investigation of the interactions across the fluids. Between-
fluid relationships were studied by Adourian et al.,18 who
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calculated a correlation network spanning plasma and liver
tissue of rats to study circulating blood biomarkers related to
liver tissue changes. Others analyzed metabolic processes across
multiple tissues without metabolomics measurements. For
example, Nyman et al.19 used whole-body models to explore
insulin signaling and glucose homeostasis. Shlomi et al.20

predicted and compared human tissue-specific metabolism
using gene and protein expression data that were integrated
into Recon 1, a comprehensive reconstruction of the human
metabolic network.21 Bordbar et al.22 developed a genome-scale
multitissue model based on Recon 1, online databases and
literature-curated data to study the metabolic differences in
obese and obese T2D individuals. However, a simultaneous,
systematic integration and network-based analysis of multifluid
metabolomics data on human in vivo samples has not been
performed yet.
The Qatar Metabolomics Study on Diabetes (QMDiab) was

a case-control study with 374 participants, and the first to
include plasma, urine, and saliva untargeted metabolomics
measurement. The main objective of QMDiab was to shift the
focus that has previously been on plasma and urine toward
saliva for the identification of new biomarkers for type 2
diabetes. In particular, since saliva has been proposed as a
promising resource for noninvasive diagnostics.4,23 Although
QMDiab was originally conducted for the investigation of T2D,
in this paper, we focused more generally on multifluid data
analyses.
We previously demonstrated that Gaussian Graphical Models

(GGMs) applied to metabolomics data is capable of
reconstructing biochemical pathways without use of prior
knowledge.24,25 The key idea behind GGMs is to use partial
correlations rather than Pearson correlations to estimate
conditional dependencies in multivariate Gaussian distributions,
which enables to distinguish between direct and indirect
interactions.25 Network inference with GGMs is purely data-
driven and does not require mapping of metabolites to known
pathways available from public databases, such as KEGG26 and
METLIN.27 In general, only a small fraction of metabolites can
be mapped to corresponding database entries due to
inconsistencies in biochemical annotations or lack of chemical
identity of the measurement signal (usually referred to as
unknowns24). These inconsistencies and unknowns can massively
hamper the analysis of metabolic processes.28−30 In contrast to
knowledge-based methods, data-driven methods such as GGMs
provide an unbiased alternative by avoiding metabolite
mappings. In this study, we determined whether GGMs can
also reveal biologically and medically relevant relations when
applied to a metabolomics data set that covers three fluids in
parallel: blood, urine and saliva. With a study such as the
QMDiab available, here we introduce the application of GGMs
to multifluid metabolomics data.
First, we systematically compared the metabolomes of the

body fluids to investigate their differences and similarities.
Subsequently, we raised three major questions for the analysis
of metabolic correlations in multiple fluids. First, how similar
are the networks derived from the body fluids? Second, how do
metabolites and metabolic networks connect and interact
between the body fluids? Third, since the primary goal of
metabolomics research is to relate metabolic patterns to
medically relevant phenotypes, we asked how the integration
of such phenotype information into a multifluid network can be
achieved and which insights can be obtained. We addressed
these questions by evaluating two complementary approaches

to construct networks consisting of within- and between-fluid
correlations. We then integrate phenotype data of diabetes
status, age, sex, and BMI into our visualizations to provide a
comprehensive phenotype association analysis for all metabo-
lites considered. The analysis workflow is shown in Figure 1.

To the best of our knowledge, we are the first to
simultaneously and systematically integrate multifluid metab-
olomics data by network inference on a human case-control
study.

■ MATERIALS AND METHODS

Study Design

The data set was based on the QMDiab study, which was
conducted in 2012 at the Dermatology Department of Hamad
Medical Corporation and the Weill Cornell Medical College in
Doha, Qatar. QMDiab included 374 males and females of Arab
and Asian ethnicities aged 17−81 years. The study was

Figure 1. Study workflow. The QMDiab study included 758
metabolites in plasma, 891 metabolites in urine, and 602 metabolites
in saliva, which resulted in a total of 2251 measured metabolites. For
each body fluid, a single Gaussian graphical model (GGM) was
generated. These GGMs were overlapped and visualized as a single
network for comprehensive comparisons of multiple body fluids
(overlaid network). In parallel, between-fluid metabolite correlations
were investigated to explore the interactions of the three body fluids
(fused network). Subsequently, metabolite associations with multiple
phenotypes were integrated into the overlaid network (phenotype-
integrated networks).
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approved by the Institutional Review Boards of HMC and Weill
Cornell Medical College-Qatar (Research Protocol number
11131/11). Written informed consent was obtained from all
participants. The study included 184 people as controls
(defined by an absence of major systemic disorders) and 190
cases with a primary form of T2D. Cases with incomplete
records were excluded, leaving 188 cases and 184 controls. Each
participant provided a sample for nonfasting plasma, urine, and
saliva, yielding a total of 1116 samples. Study enrollment was
conducted between February and June 2012 during hospital
visits as outpatients. General information, including age, sex,
ethnicity, BMI, and any history of T2D, was obtained using
questionnaires.4

Metabolomics Measurements

Samples were sent to Metabolon Inc. for untargeted metabolite
identification and quantification. The analyses included LC/MS
in both positive and negative modes and GC/MS, followed by
metabolite identification and quantification. Details of the
experimental procedures are provided in our previous paper.4

Overall, the Metabolon data set included 2251 measured
metabolites, 1022 of which could be detected in only one, 394
in two, and 147 in all three body fluids, which resulted in 1563
unique metabolites. Overall, urine was the largest data set with
891 metabolites, followed by plasma with 758 metabolites and
saliva with 602 metabolites. Approximately 45% of the
measured compounds were chemically unidentified (un-
knowns). A detailed list of metabolites, including their
associated pathways, is provided as Supporting Information
Table S1.

Data Preprocessing

Metabolite concentrations were normalized by dividing by the
median of each run day. Moreover, concentrations measured in
urine and saliva were divided by the respective fluid’s osmolality
(osmoles of solute per kilogram: osmol/kg). Measurements
from all three body fluids were log-transformed and stand-
ardized using z-scores. Metabolites with >80% missing values
were excluded from the data set to prevent artifacts during
partial correlation analysis and to preserve statistical power.
Remaining missing values were imputed to the lowest
concentration determined for a given metabolite, assuming
that missing measurements are generally below the particular
detection threshold. Metabolite measurements were defined as
outliers if their values differed from the mean levels by more
than four standard deviations over all samples. After filtering,
the data set comprised 1951 metabolites (637 plasma, 825
urine, and 489 saliva compounds) in 372 samples (184 controls
and 188 diagnosed diabetics).

Fluid-Specific Pathway Occurrence

We tested whether a metabolite class (superpathways) tends to
occur uniquely in either one of the fluids. After excluding
unknowns, there were eight classes in total: amino acids,
carbohydrates, cofactors and vitamins, energy, lipid, nucleotide,
peptide, and xenobiotics. We performed Fisher’s exact tests on
the two conditions: fluid-specificity (unique occurrence in one
of the fluids) and pathway annotation. A positive association
indicates that significantly many metabolites of a certain
pathway occur exclusively in a fluid. In contrast, a negative
association denotes that metabolites of a certain pathway tend
to be shared by at least two body fluids. We corrected for
multiple testing using a stringent Bonferroni level of
significance of 0.05/(3*9) ≈ 0.001850.

Network Inference

Network inference was performed by estimating GGMs from
the metabolite concentration data. GGMs are based on partial
correlations, which represent the associations between two
variables corrected for all remaining variables. We previously
showed that these models could reconstruct metabolic
pathways from metabolomics data sets.24,25,57 Since the data
set contained less samples than variables, a regularized GGM
approach was used. We used “GeneNet”, a shrinkage estimator-
based approach for partial correlation calculation, which is
freely available as an R package.58 Links between metabolites
were defined if both their Pearson correlations and their partial
correlations were statistically significant at α = 0.05 after

Bonferroni corrections (correcting for ( )p
2 tests, where p is the

number of metabolites). For the overlaid, fused, and
phenotype-associated correlation analyses, networks were
inferred using different subsets of the data.

Phenotype Integration

To estimate the associations between metabolites and the four
phenotypes, multivariate linear regression models were
constructed as

β β β β

β ε

≈ + · + · + ·

+ · +

metabolite diabetes age sex

BMI

i i i i i

i i

0 1 2 3

4

where i is the index of the metabolite, βi0 is the intercept, βi1, ...,
βi4 are the regression coefficients for each explanatory variable,
and εi is a normally distributed error term. Since T2D and sex
are binary variables, the linear regression corresponds to a t test.
For each phenotype, the corresponding log p-values obtained
from this regression analysis were mapped onto the network as
node size and node pie charts. To explore the fluid-specificity of
phenotype related metabolites, for each phenotype we
performed Fisher’s exact test on the two conditions fluid-
specificity and phenotype association. We corrected for
multiple testing with a Bonferroni significance cutoff of 0.05/
(3*4) ≈ 0.0667.

■ RESULTS

Plasma, Urine, and Saliva Metabolome

Our analyses were based on QMDiab, which was conducted in
2012 in collaboration with the Dermatology Department of
Hamad Medical Corporation in Doha, Qatar.4 QMDiab
included 374 males and females of various ethnicities and a
wide age range between 17 and 81 years. The study included
184 individuals as controls (no major systemic disorders) and
190 cases with a primary form of diagnosed T2D.4 Untargeted
metabolomics measurements resulted in 758 plasma, 891 urine,
and 602 saliva metabolites (Figure 1). After preprocessing,
quality control steps, including normalization, treatment for
missing values, and outlier detection, a total of 188 cases and
184 controls were included for further analysis. A total of 637
plasma, 825 urine, and 489 saliva metabolites passed our quality
control procedures. For each metabolite, a superpathway and a
subpathway annotation is available (Supporting Information
Table S1). The first corresponds to the general metabolic class
(e.g., amino acid, lipid, carbohydrate, etc.), while the latter
represents the more specific metabolic pathway of the
metabolite (oxidative phosphorylation, glycolysis, etc.). For
GGM generation, all metabolite partial correlations calculated
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in this study were corrected for confounding effects of age,
body mass index, sex, and T2D.
In our first analysis, we characterized the differences between

the measured metabolomes of the three fluids. Urine had the
highest number of quantified metabolites, half of which were
also found in plasma or saliva. To assess whether metabolites
from certain metabolic pathways (amino acid, carbohydrate,
cofactors and vitamins, energy, lipid, nucleotide, peptide, and
xenobiotics) tend to uniquely occur in either one of the fluids,
we performed Fisher’s exact tests for each superpathway/fluid
combination (for details see Supporting Information Table S2).
A positive association indicates that significantly many
metabolites of a pathway occur exclusively in a fluid. In
contrast, a negative association denotes that metabolites of the
pathway are significantly underrepresented in the set of
metabolites unique to the fluid. We observed that plasma
lipids tend to be uniquely occurring in plasma and were not
measured in urine or saliva. In contrast, lipids measured in urine
or saliva are significantly shared. This might be partly due to the
water insolubility of lipids, which need to be actively
transported from blood to other fluids or tissues. For all
body fluids, amino acids were significantly negatively associated
with their exclusive occurrence in the corresponding fluid. The
same applies for urinary and salivary carbohydrates as well as
for plasma and urine xenobiotics. These negative associations
indicate that the respective metabolite classes are being
extensively shared between all three fluids. For plasma
carbohydrates and saliva xenobiotics, no significant association
could be observed.

Overlaid Network: Within-Fluid Correlations

To compare the network structure and pairwise partial
correlation differences, we generated a GGM for each of the
body fluids and overlaid them for direct visual comparison. We
excluded all compounds detected in one fluid only to compare
correlation differences and overlaps in metabolic interactions
between the different body fluids. This resulted in nearly equal

numbers of compounds in the urine and plasma subsets (Figure
2A). For each reduced data set, a metabolic network was
inferred by generating GGMs.25 Edges were drawn between
metabolite pairs if both partial correlations and standard
Pearson correlations were statistically significant at α = 0.05
after Bonferroni correction. Interactive versions (Cytoscape
sessions) of the networks are available as Supporting
Information S3.
We observed substantial differences between the network

connectivity of the three body fluids. The urine network
comprised a slightly higher number of nodes than the plasma
network (Figure 2A). Interestingly, urine showed a smaller
proportion of significant edges (Figure 2B) compared to
plasma. In contrast, saliva had the lowest number of nodes and
the smallest proportion of significant correlations. In general,
plasma and urine had higher node degrees than saliva, which
also showed the highest proportion of metabolites not
connected to any other node (Figure 2C). The node degrees
in the urine and plasma networks were similarly distributed.
Comparing the partial correlation coefficients between the

same metabolite pairs across different body fluids showed that,
in general, there were fewer differences between plasma and
urine than between plasma and saliva or urine and saliva
(Supporting Information Figure S4). While the mean of the
partial correlation differences of all comparisons approached
zero, the variance of plasma vs urine was substantially lower
than those for urine vs saliva and plasma vs saliva.
To systematically assess the biochemical validity of the three

networks, we analyzed whether edges connect metabolites from
the same super- and subpathways (Table 1). For this
comparison, edges connected to an unknown metabolite were
excluded. 78−81% of the correlating metabolites were
annotated with the same superpathway, 48−63% also showed
the same subpathway (Table 1). A detailed result list is available
in Supporting Information Table S5. Although the plausibility
of the remaining edges would need further manual investigation

Figure 2. Graph statistics for fluid-specific GGMs. (A) Metabolites detected in only one body fluid were excluded from this analysis, which resulted
in nearly equal numbers of metabolites for the urine and plasma data sets. Light-colored bars correspond to the original data set sizes and dark-
colored bars are the data set sizes after exclusion. (B) Plasma had the highest proportion of significant metabolite correlations at α = 0.05 after
Bonferroni corrections, followed closely by urine. Saliva metabolite concentrations showed fewer correlations. (C) The highest node degrees were
found for urine and plasma with degrees up to 4, whereas the maximum saliva node degree was 2. The saliva network was generally less connected
for the selected significance cutoff, while distributions for plasma and urine were similar.

Table 1. Correlating Metabolites Sharing Super- and Sub-Pathway in Overlaid Networka

aP = plasma, U = urine, S = saliva.
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and can be addressed in future studies, the results show that for
the most part the networks inferred for plasma, urine and saliva
are biochemically valid.
To enable a visual comparison of the metabolic networks

derived from the three body fluids, the three GGMs were
superimposed to a single network comprising 464 nodes and
435 edges. This network (in the following termed overlaid
network) represents the pairwise overlap of all within-fluid
partial correlations (Figure 3). After systematically checking the
single networks for biochemical validity above, we arbitrarily
extracted three exemplary subnetworks to provide an in-depth
view of the overlaid network.
The first subnetwork (Figure 3A) includes acylcarnitines and

a set of free fatty acids (FFAs). Both fatty acids and their
corresponding acylcarnitines were measured in plasma, whereas
saliva only contained FFAs and urine only contained
acylcarnitines. This was expected because only a relatively
small amount of FFAs are secreted into urine due to their water
insolubility. In contrast, their respective acylcarnitines were
detected in urine in this study and also in previous studies.31

This could have been due to the buffering function of carnitine,
which plays an important role in controlling the acyl group pool

in the body by excretion.32,33 Moreover, acylcarnitines are
water-soluble and thus more likely to be excreted in urine.
Interestingly, in this subnetwork, we primarily observed
significant partial correlations between metabolites in plasma
and only a few in saliva and urine.
The second subnetwork includes a set of nine amino acids

(Figure 3B). Methionine and asparagine were not detected in
saliva, whereas the remaining amino acids, alanine, glycine,
serine, threonine and the branched-chain amino acids valine,
leucine, and isoleucine, were detected in all three body fluids.
We only found significant correlations in either plasma or urine,
but there was no overlap between these two fluids. Although
detected in saliva, these amino acids showed no statistically
significant associations in that fluid.
The third subnetwork shown in Figure 3 includes

compounds from xenobiotics and caffeine metabolism. All
metabolites were detectable in plasma and urine, with caffeine,
paraxanthine, theobromine, and 1,7-dimethylurate also being
detected in saliva. Associations were primarily observed in
plasma and urine, which mirrors the breakdown of caffeine into
its derivative compounds, further metabolism to N-methyl-
xanthines, and finally, the excretion of these xenobiotics in

Figure 3. Overlaid network. This network represents an overlay of all three fluid-specific GGMs, thus only including within-fluid partial correlations.
It consists of 464 metabolites measured in at least two body fluids, with a total of 435 edges. Metabolites without significant edges were excluded
from the visualization. Pie chart area colors and edge colors correspond to the body fluid in which the metabolite or association was measured. Red =
plasma, green = urine, blue = saliva. Panels A, B, and C show three exemplary subnetworks, which are discussed in the main text.
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urine. The plasma associations between these xenobiotics were
already described for the German KORA cohort in a previous
study.24 Remarkably, there was also a strong partial correlation
between saliva theobromine and paraxanthine, as well as
between saliva paraxanthine and caffeine, reflecting the direct
metabolization of caffeine to paraxanthine and partly to
theobromine. The correlation of salivary caffeine and para-
xanthine was previously reported and their ratio was suggested
as a potential marker for evaluating CYP1A2 metrics and liver
function.34

The overlaid network contains systematic signatures of
metabolic pathways and interesting subnetworks for deeper
analysis. In the next step, we focus on the interactions between
the different body fluids.

Fused Network: Between-Fluid Correlations

To study how the body fluids are connected and interact, we
generated a network consisting of both within- and between-
fluid correlations. In contrast to the overlaid network, identical
metabolites measured in different body fluids were here
considered as individual nodes. The final network (fused
network) comprised 1951 nodes and 2947 significant edges
(Figure 4).
The fused network showed a substantial higher fraction of

metabolic correlations between plasma and urine than between
plasma and saliva or urine and saliva. The total number of
significant between-fluid edges for plasma and urine was 536,
which represented 93.5% of all between-fluid correlations in
this network (Figure 4A).
We again checked the edges of the fused network for

biochemical validity, defined by shared pathway annotations of

Figure 4. Fused network. The fused network comprises plasma (red), urine (green), and saliva (blue) nodes, which are connected by three types of
edges. Gray edges indicate correlations between metabolites measured in the same body fluid and black edges represent between-fluid partial
correlations. Solid black edges represent correlations between different metabolites and dashed edges indicate correlations between the same
metabolites. Metabolites without significant edges were excluded from the visualization. (A) Proportions of between-fluid correlations for each fluid
pair, were divided into correlations between either different or the same metabolites. (B, C, and D) Exemplary subnetworks, which are discussed in
the main text.
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the correlating metabolites. There is a slightly lower fraction of
within-fluid correlating pairs in the fused than in the overlaid
network (Table 2) sharing the same super- and subpathways
(71−81% and 40−59%, respectively). In contrast, the fraction
of shared annotations for between-fluid pairs is remarkably
high. 92−100% of correlating metabolites measured in different
fluids were assigned to the same superpathway, and 87−100%
also share the same subpathway. These results indicate that
almost the whole network in general consists of biochemically
valid edges. Note that the overlaid network was estimated based
on a subset of the data set (only nonunique metabolites), while
the fused network consists of all metabolites. In contrast to
Pearson correlations, the correlation structure can be slightly
different if partial correlations are calculated on different
underlying data sets. Therefore, the overlaid network and the
within-fluid part of the fused network are not identical, albeit
highly similar.
Between-fluid associations can occur between measurements

for the “same” metabolites (e.g., plasma glucose and urine
glucose) or between “different” metabolites (e.g., plasma
glucose and urine mannose). 191 same- and 341 different-
pairs showed significant partial correlations (Supporting
Information Table S6). Partial correlations in the top list of
between-fluid correlations occurred primarily between the same
metabolites. Moreover, many of the correlated “different”
metabolites were chemically related, for example, by glucur-
onidation (salicylurate vs salicyluric acid) or by oxidation
(cotinine vs cotinine N-oxide). Examining the between-fluid
top list revealed that for plasma−urine correlations, the highest
partial correlation between metabolites of known identity was
found for the same-metabolites homostachydrine, which is
widely used by people as a dietary supplement.35 The second
highest plasma−urine correlation was found for the same-
metabolites 1,2-propanediol (propylene glycol), a synthetic
organic chemical that can be found in cosmetics, pharmaceut-
icals (e.g., lorazepam), and other products.36 The high between-
fluid partial correlation between both homostachydrine and 1,2-
propanediol may reflect the unchanged excretion of these
exogenous compounds in urine. For plasma−saliva edges, the
highest absolute partial correlation was found for tryptophan
betaine, while cotinine correlates strongest between urine and
saliva. The corresponding plasma−urine and urine−saliva
partial correlations were also significant, although these
correlation values were lower.
The high fraction of between-fluid metabolite pairs sharing

the same super- and subpathway annotations and in particular,
the more frequent occurrence of between-fluid correlations
between the same metabolites observed in the fused network is
biologically plausible, because fluids exchange parts of their
biochemical pools by excretion or transport processes in the
kidneys and salivary glands.

Similar to the overlaid network, we provide a zoom-in view
of three arbitrarily selected subnetworks consisting of biochemi-
cally related molecules.
The first subnetwork included the tobacco metabolite

cotinine and 2-ethylphenyl sulfate, a metabolite from benzoate
metabolism (Figure 4B). Cotinine is the main derivative of
nicotine, which is an exogenous alkaloid occurring naturally in
many plants. Nicotine enters the organism for instance during
active or passive smoking or nicotine containing chewing gum.
In the body it is mainly converted to cotinine.37 In our study,
plasma and urine cotinine are strongly correlated with each
other, while their correlation to the salivary compound is
weaker but still significant. These between-fluid edges probably
reflect the unchanged excretion of cotinine after nicotine
metabolization.
The second subnetwork contained saccharin (see Figure

4C), an artificial sweetener from the family of aromatic
heterocyclic compounds, which is not metabolized and excreted
by the kidneys.38 As mentioned above, exogenous compounds
are expected to be excreted unchanged, accounting for the
reasonable correlations between plasma, urine, and saliva.
Urinary and salivary saccharin are significantly correlated, while
interestingly we did not observe a significant correlation
between the plasma and saliva compounds.
The third subnetwork included the steroid hormone cortisol

and its inactive form cortisone (Figure 4D). Cortisol plays an
important role in the human body stress response by its effects
on intermediary metabolism.39 In this study, cortisol was only
detected in plasma, whereas cortisone was detected in all three
body fluids. Hydrophobic, insoluble steroid hormones like
cortisol are converted in the liver to their water-soluble inert
forms for urinary excretion. This could explain why cortisol was
not detected in urine. In our study, plasma cortisol levels were
significantly correlated with saliva cortisone levels, which is in
accordance with previous findings that salivary cortisone rather
than cortisol is a surrogate for free serum cortisol.39,40

Phenotype Integration into the Multifluid Network

As a final step in our study, we provide a showcase of how to
analyze associations of multifluid metabolites and phenotypes.
We determined the statistical associations of each metabolite to
the four phenotypes BMI, age, sex and type 2 diabetes (T2D)
by linear regression (linear regression results can be found in
Supporting Information Table S7).
Similar to our analysis of the basic multifluid metabolomes,

we first addressed the question of whether the metabolites
significantly associating with a phenotype tend to occur
exclusively in one body fluid. Plasma and urine metabolites
associating with type 2 diabetes show a negative association
with respect to their exclusive occurrence. That is, significantly
many T2D associating metabolites occur in at least two body
fluids. The same trend can be observed for age-associated

Table 2. Correlating Metabolites Sharing Super- and Sub-Pathway in the Fused Networka

aP = plasma, U = urine, S = saliva.
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metabolites measured in plasma (see Supporting Information

Tables S2). For sex and BMI, no significant associations were

observed.
As a next step, we integrated these phenotype associations

into a multifluid network by regenerating the overlaid GGM

from Figure 3, this time including all metabolites into the
analysis. The new network was a consolidation of three types of
information: (i) statistical associations between measured
metabolites; (ii) the metabolite assignment to different body
fluids for direct visual comparisons of plasma, urine, and saliva;

Figure 5. Overlaid networks with phenotype integration. We integrated phenotypic information for diagnosed T2D, age, sex, and BMI into the
overlaid network, which included all metabolites for this analysis. Pie chart areas represent the ratios of −log10 p-values for the phenotype
associations for each fluid. The node size corresponds to the lowest p-value (i.e., strongest association in all three fluids). The same subnetworks
comprising a total of 48 nodes and 64 edges are shown for all phenotypes.
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and (iii) the statistical associations of all metabolites to the four
phenotypes.
In the following, we present four subnetworks that included

steroids, amino acids, carbohydrates, and keto acids for all four
phenotypes (Figure 5). These subnetworks were manually
selected such that the heterogeneity of the phenotypic
association is best visible. Full networks can be found in
Supporting Information S3.
The first subnetwork (Figure 5) included steroid hormones

around dehydroisoandrosterone sulfate (DHEA-S) and showed
significant associations with age and sex, but not with T2D and
BMI. Several components of this subnetwork tended to have a
stronger association with age in urine, whereas associations with
sex were higher in plasma. DHEA-S is an endogenous steroid
hormone that is produced from cholesterol primarily in the
adrenal glands, gonads, and brain. It is a precursor for
testosterone, androstenedione, estradiol, and estrone and is a
marker of aging.41 The subnetwork partly captures the steroid
hormone biosynthesis pathway. All significant partial correla-
tions between plasma compounds were also significant for the
same urine metabolites. In contrast, some edges were urine-
specific and did not occur in plasma, although this metabolite
was detected in plasma. DHEA-S was also measured in saliva
but showed no significant associations with any phenotype.
The second subnetwork included monosaccharides, which

were strongly associated with T2D only. As previously observed
in one of our studies performed with the QMDiab data set,4 a
significant T2D association was found for plasma and salivary
1,5-anhydroglucitol (1,5-AG), while this metabolite showed no
significant association in urine. Plasma 1,5-AG, a clinical
biomarker for short-term glycemic control,42 was highly
partially correlated with X-11315, an unknown metabolite
that was negatively associated with T2D in both plasma and
saliva. The saliva within-fluid partial correlation between these
two metabolites was not significant. Other monosaccharides,
such as glucose, mannose, fructose, and their related
metabolites, were also highly associated with diabetes. In
contrast to 1,5-AG, these molecules showed very high
associations in plasma and were also significantly associated
in urine. Although these monosaccharides were also detected in
saliva, their salivary concentrations were not statistically
associated with T2D.
The third subnetwork included the T2D drug metformin,

amino acids and their derivatives, and several carbohydrates.
Metformin was detected in all body fluids and was highly
associated with T2D in plasma and urine and also significantly
in saliva but to a lesser extent. This drug was mainly measured
in T2D cases, although it was also observed in a substantial
number of controls (Supporting Information Table S8). We
assume that this is due to the use of metformin as a prophylaxis
against diabetes or for ovulation induction.43 Metformin
showed a strong plasma link to citrulline, which has also
been statistically associated with diabetes and was described as a
promising factor for therapies for obesity and diabetes due to its
blood glucose-lowering properties.44,45 A second T2D-related
metabolite in this subnetwork was myo-inositol in urine, which
is linked to its epimer chiro-inositol, which had no significant
associations to any of the analyzed phenotypes. Interestingly,
plasma myo-inositol concentrations were statistically correlated
with age. Elevated urine myo-inositol levels in diabetes cases
were previously reported by several groups.46−48 However, to
the best of our knowledge, its plasma concentrations have not
been investigated with respect to age.

Amino acids, monosaccharides, and intermediates of the
TCA cycle formed a fourth subnetwork. Significant associations
with phenotypes were primarily found in urine. Malate and
glutamate were only associated with T2D, while other
intermediates of the TCA cycle (α-ketoglutarate, 2-hydrox-
glutarate, and citrate) were also associated with sex. These
intermediates were detected in all body fluids, but the partial
correlations were only significant for the urine metabolites. The
carboxylic acid glutamate in plasma was associated with both
sex and BMI values. The lowest p-value for BMI in the data set
was detected for the unknown urinary metabolite X-12689.
Taken together, this section suggested an approach to

analyze statistical associations of metabolites from all body
fluids to multiple phenotypes. On the basis of four subnetworks
we showed known and several novel fluid-specific phenotype-
associated metabolite sets.

■ DISCUSSION
We developed a network-based approach to structure and
visualize metabolite correlations in a multitissue metabolomics
setting. We applied this approach to a three body fluid data set
from the QMDiab cohort. To the best of our knowledge, this is
the first study to address multifluid metabolomics data from a
human case-control study using network inference.
First, we systematically investigated metabolites from which

pathways tend to occur exclusively in a certain fluid. We found
that many lipids are plasma-specific, which might be due to
their water insolubility. In contrast, the significant occurrence of
amino acids, carbohydrates and xenobiotics in at least two body
fluids indicates a strong exchange of these metabolites between
the fluids.
With the overlaid network (Figure 3), an overlay of the

within-fluid plasma-, urine-, and saliva-GGM, we compared the
body fluids in terms of within-fluid partial correlations between
metabolites. Since one node represents the same metabolite
from multiple body fluids, this type of visualization facilitates
comparisons of metabolite level correlations that are either
fluid-specific or found across all fluids. Systematically checking
whether correlating metabolites in the network shared the same
super- and subpathway annotations revealed that the major part
of the overlaid network was biochemical valid. A small fraction
of metabolite pairs not having the same superpathway
remained, which need further investigations to determine
whether they are statistical artifacts or due to actual biochemical
or physiological processes. The overlaid network enables the
analysis of physiological processes and pathways. We illustrated
this approach with detailed descriptions of biologically
interesting subnetworks that included FFAs, acylcarnitines,
amino acids, and exogenous purines.
The fused network (Figure 4), a merged network comprising

both within-fluid and between-fluid correlations, allows for the
investigation of interfluid metabolic correlations. Again we
checked systematically for biochemical validity and observed a
substantially high fraction of between-fluid metabolite pairs
with both the same super- and subpathway annotations. As a
next step, we distinguished between correlations for the same
and different metabolites measured in different body fluids and
found that the former appeared substantially more frequently
than the latter. Both the more frequent occurrence of partial
correlations between same-metabolites and the described
subnetworks comprising steroid hormones, saccharin and
exogenous compounds showed that our GGM-based approach
can infer biologically meaningful between-fluid correlations.
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We found a higher overlap of within-fluid correlations
between plasma and urine than between plasma and saliva and
urine and saliva. In addition, we observed more plasma−urine
than plasma−saliva and urine−saliva between-fluid correlations.
These two observations reflect the close relationship between
plasma and urine due to excretion processes in the kidneys.
Urine can be considered as a subset of plasma, since in contrast
to saliva, urine is not directly influenced by external factors. All
substances excreted through urine are transported through
blood into the kidneys to be filtered into the bladder to form
urine. Metabolite correlations that were found for plasma, but
not for urine, could be explained, e.g., by rapid absorption
processes or homeostasis maintenance in blood. Blood is a
tightly controlled fluid due to homeostasis, whereas urine is a
waste product for which a biochemical balance cannot be
expected. Moreover, complex reabsorption processes may
substantially alter the correlation patterns between metabolites.
Saliva is produced by the salivary glands, which are perfused by
blood capillaries to facilitate the entry of molecules from the
systemic circulation into saliva.49,50 Many compounds can be
actively transported from blood to the salivary glands where
they are secreted into saliva. However, serum constituents that
are not part of saliva, such as drugs or hormones, can also enter
this fluid by passive diffusion or by ultrafiltration.49 Moreover,
saliva can be considered to be substantially less well controlled
than blood or urine, because it can be directly affected by
external factors such as dietary intake or oral hygiene. For
instance, the described presence of FFAs in saliva was most
likely due to dietary fat intake. In contrast, plasma FFA
correlations are probably most likely due to biochemical
process in organ tissues. Urine and saliva are physiologically
connected through blood. Thus, the links between saliva and
urine metabolites possibly reflect stable concentrations
throughout the body, for example, showing small changes
between food intake and excretion. Such correlations would be
expected to occur for molecules that are not metabolized in the
body, as observed for instance, for cotinine, hippurate, catechol
sulfate, and their derivatives.
In a third approach, we integrated phenotypic associations

into our multifluid metabolomics analysis. At a general level, we
observed that metabolites related to T2D and age are
significantly shared between fluids. Investigating these associ-
ations in detail, we found single metabolites that were
associated with only one of the analyzed phenotypes in certain
body fluids, such as T2D-associated monosaccharides (e.g.,
glucose, mannose) and metformin, or sex-related intermediates
of the TCA cycle (e.g., citrate, malate). Moreover, we identified
a series of metabolites with fluid-dependent associations with
two different phenotypes. For example, urine myo-inositol was
associated with T2D, whereas its plasma concentrations were
associated with age. Similarly, the DHEA-S cluster was found to
have stronger associations with age for urine, while sex
associations were higher for plasma. We confirmed previous
findings with regard to markers, such as 1,5-AG and DHEA-S,
for T2D and age, respectively. Furthermore, we identified
previously unreported associations (e.g., plasma myo-inositol
association with age), which can be investigated in future
studies.
There are also metabolites that have been previously

reported to associate with one of the phenotypes, but did not
reach significance in our study. For instance, plasma branched-
chain amino acids were observed to be associated with T2D in
several studies.51 In our data, only a significant association with

urine BCAAs could be found, which is corroborated by other
studies.52 The lack of association in plasma may be explainable
by the nonfasting state of the study participants, which could
blur the signal. As already observed in the HuMet study53

nonfasting states, as in our study, can substantially affect the
behavior of plasma BCAA concentrations in healthy men.
Our study could be extended in several directions. (1) It may

be interesting to assess the differences between body fluid
networks statistically by performing tests for differences of
dependent, nonoverlapping correlations as suggested by
Raghunathan et al.54 (2) The multifluid analysis should be
replicated in population studies with larger sample sizes. For
example, the Study of Health in Pomerania (SHIP) included
more than 1000 samples with several follow-up studies that
includes deep phenotyping and collection of blood, urine, and
saliva samples.55 Moreover, in contrast to case-control studies,
population studies include a wide range of metabolic states,
which may provide a more unbiased exploration of body fluid
correlations. (3) As already discussed, our analyses were
performed on plasma, urine and saliva samples from nonfasting
study participants, possibly diminishing statistical power to find
intrinsic metabolic correlations. Nevertheless, correlations that
persist despite increased variability in the nonfasting state can
be considered as robust and stable throughout different
metabolic states. (4) Investigating multiple body fluids under
controlled dietary challenging conditions, for example, after
intake of a standardized meal following a prolonged fasting
period, may provide further associations that cannot be
detected from a single measurement time point.56 A pilot
study that included 15 people was published by Krug et al.
(HuMet53), which comprised timeline data for blood, urine,
and breath samples for 15 young, healthy men who were
undergoing various nutritional challenges. (5) For a small
fraction of the within- and between-fluid correlations found in
our data, we could not determine direct biochemical
explanations. Further studies that investigate the actual
metabolically active organs involved will be needed for this
analysis. This may include studies with animal models to
investigate tissue metabolomics for the brain, liver, muscles, and
other organs. (6) Knowledge of interactions between fluids can
facilitate the search for alternatives for known biomarkers in
potentially easier accessible body fluids (e.g., saliva markers for
known plasma markers). For instance, in QMDiab we identified
salivary 1,5-anhydroglucitol as a noninvasive surrogate marker
for short-term glycemic control, based on its strong correlation
to the same metabolite in plasma.4 In general, the identification
of biomarkers would be addressed by conventional regression
approaches rather than GGMs, which are an exploratory tool
for the investigation of fundamental metabolic mechanisms and
pathways.
In conclusion, we have presented a data-driven network-

based framework to analyze metabolic associations using
multifluid data. Since our approach is generic, it can be applied
to any other metabolomics data set that includes multifluid or
multitissue data, as well as phenotypic information for the
samples.

■ ASSOCIATED CONTENT
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metabolites, all networks as Cytoscape sessions, comparison of
absolute partial correlation differences, biochemical validity,
same versus different between-fluid correlations, phenotype
associations for all metabolites, and metformin measurement.
The Matlab code for the analyses is available upon request.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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Phenotype-driven identification of modules in a hierarchical
map of multifluid metabolic correlations
Kieu Trinh Do1, Maik Pietzner2, David JNP Rasp1, Nele Friedrich2,3, Matthias Nauck2,3, Thomas Kocher4, Karsten Suhre5,6,
Dennis O. Mook-Kanamori6,7,8, Gabi Kastenmüller5,9 and Jan Krumsiek 1,9

The identification of phenotype-driven network modules in complex, multifluid metabolomics data poses a considerable challenge
for statistical analysis and result interpretation. This is the case for phenotypes with only few associations ('sparse' effects), but, in
particular, for phenotypes with a large number of metabolite associations ('dense' effects). Herein, we postulate that examining the
data at different layers of resolution, from metabolites to pathways, will facilitate the interpretation of modules for both the sparse
and the dense cases. We propose an approach for the phenotype-driven identification of modules on multifluid networks based on
untargeted metabolomics data of plasma, urine, and saliva samples from the German Study of Health in Pomerania (SHIP-TREND)
study. We generated a hierarchical, multifluid map of metabolism covering both metabolite and pathway associations using
Gaussian graphical models. First, this map facilitates a fundamental understanding of metabolism within and across fluids for our
study, and can serve as a valuable and downloadable resource. Second, based on this map, we then present an algorithm to
identify regulated modules that associate with factors such as gender and insulin-like growth factor I (IGF-I) as examples of traits
with dense and sparse associations, respectively. We found IGF-I to associate at the rather fine-grained metabolite level, while
gender shows well-interpretable associations at pathway level. Our results confirm that a holistic and interpretable view of
metabolic changes associated with a phenotype can only be obtained if different layers of metabolic resolution from multiple body
fluids are considered.
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INTRODUCTION
Metabolomics is the study of metabolic profiles at a global level.
The metabolome is a readout of the biochemical transformations
that involve small molecules in a body fluid or organ, and it
reflects a snapshot of the state of a biological system.1,2 Therefore,
metabolomics has frequently been used to identify patterns
associated with various pathophysiological states in humans, such
as diabetes mellitus,3,4 cardiovascular disease,5,6 and Alzheimer’s
disease.7–9

Most published metabolomics studies focused on only one
body fluid, usually blood or urine; however, phenotypes usually
have links to metabolism in multiple fluids simultaneously. For
example, we reported multifluid associations for type 2 diabetes in
two recent studies.10,11 With continuous technical advancements
and decreasing costs, datasets with simultaneous metabolomics
measurement should become available rapidly, as can be seen by
the increasing research in this field.12–16

Phenotype associations in such large-scale, heterogeneous
metabolomics datasets can be expected to be substantially
complex, spanning functional modules, possibly across multiple
fluids (Fig. 1). Functional modules are commonly defined as
groups of correlating entities that are functionally coordinated,
coregulated, or generally driven by a common biological

process.17 Systematic module identification algorithms are well
established for omics data,17–22 but have rarely been applied to
high-throughput metabolomics data. A few metabolomics studies
proceeded toward this objective by finding clusters in metabolite
correlation networks, and by subsequently performing enrichment
analyses with respect to a certain phenotype;23–26 however, none
of these studies performed a systematic phenotype-driven
module search. Moreover, these analyses were performed in only
one single fluid.
The identification and interpretation of modules for phenotypes

that show rather few ('sparse') associations with metabolomics
data are usually straightforward; however, phenotypes such as
gender or BMI have been described to associate with more than a
third to half of the blood metabolome.26–28 A module search
would lead to numerous results covering the majority of the
metabolic network ('dense' associations), thereby impeding
interpretation by their sheer quantity (Fig. 1). To solve this, we
suggest performing association analysis and module identification
at a coarser level, by grouping metabolites into their common
pathways (defined as groups of metabolites with common
biochemical and biological properties based on prior knowledge).
The general idea is that while sparse phenotypic associations can
only be detectable at the metabolite level, modules of dense
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phenotypic associations might be easier to interpret at the
pathway levels.
In this study, we present a method for the systematic phenotype-

driven identification of modules from multifluid metabolomics data,
operating both at the single metabolite and at the pathway level.
Specifically, we created a hierarchical map of multifluid metabo-
lomics correlations as a template for the underlying metabolic
network. Based on this network, we automatically extracted
modules associating with two example phenotypes.
To create this hierarchical map, we generated data-driven

multifluid networks from blood, urine, and saliva metabolomics
data of the German Study of Health in Pomerania (SHIP-TREND)

cohort.29 Specifically, we estimated Gaussian graphical models
(GGMs) based on partial correlations at the metabolite level and at
two pathway levels: 'super-pathways' representing metabolite
classes such as 'Lipid' or general metabolic processes such as
'Energy' and 'sub-pathways' representing biochemical subclasses
or processes within a super-pathway such as 'Lysolipid' or 'TCA
cycle,' respectively. The three networks (metabolite, sub-pathway,
and super-pathway) together depict the hierarchical map.
Moreover, we developed a module search algorithm inspired by

Chuang et al.20 and applied it to serum measurements of insulin-
like growth factor I (IGF-I) and gender. IGF-I is a growth hormone
with high sequence homology to insulin. It participates in

Fig. 1 Concepts of sparse and dense phenotype associations in metabolic networks. The figure depicts the concepts of sparse (top) and
dense (bottom) phenotypic associations in metabolite (left) and pathway (right) networks. Metabolites, represented as nodes, can be grouped
by knowledge-driven pathway information for visualization purposes. In addition, the nodes can be colored according to their phenotype
associations (e.g. determined by a t-test). Network inference is performed to create a network, where an edge between two nodes represents
their statistical correlation. Based on this network a module identification approach is applied to search for groups of correlating entities that
are related to a phenotype of interest. For the pathway analysis, metabolites of the same pathway are aggregated to generate a pathway
representative, which again can be colored according to phenotype associations. A pathway network is generated by connecting two
pathway representations that are statistically correlated. Finally, a module identification approach is applied on this pathway network
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numerous biochemical processes, in particular in the stimulation
of cell growth and proliferation, and has been found to be
associated with various disorders such as diabetes, cardiovascular
diseases, and cancer.30–34 Despite its key roles in various
biochemical processes, mapping IGF-I−metabolite associations
onto a metabolite network in a previous study on the same
dataset from the SHIP cohort resulted in only a relatively small
number of blood and urine metabolites.34 Thus, IGF-I here serves
as a trait with sparse associations. For gender associations, on the
other hand, we found associations with a major part of the
metabolic network,26 thus representing a trait with dense
associations.

RESULTS
Our analysis was based on data from the SHIP-TREND cohort. The
dataset comprised 906 individuals, 512 females and 394 males, for
which fasting plasma, urine, and saliva samples were available.
Untargeted metabolomics measurements were performed by
ultra-high liquid-phase chromatography coupled with tandem
mass spectrometry (UPLC-MS/MS). Data preprocessing included
run-day normalization, dilution factor normalization (for urine and
saliva), log transformation, outlier handling, and handling of
missing values. After preprocessing, 610 known metabolites and
387 metabolites, whose chemical structures had not been
identified yet, were available for further analysis. For each
metabolite, knowledge-based pathway annotations from the
metabolomics platform (Metabolon Inc.) were used. Each known
metabolite was annotated with one of 73 'sub-pathways', which
represent metabolic pathways or biochemical subclasses of the
compounds (e.g., 'Branched-chain amino acid', 'Lysolipid',

'Glycolysis'). In addition, each sub-pathway was assigned to one
of eight broad 'super-pathways' ('Amino acid', 'Lipid', 'Carbohy-
drate', 'Nucleotide', 'Peptide', 'Energy', 'Cofactors and vitamins',
and 'Xenobiotics'). These pathway annotations have been
frequently used in previous studies that investigated data from
the same platform (see e.g. refs. 35–37). Metabolites, their
annotations, and a comparison of the measured metabolite pools
between fluids can be found in Supplementary Information S1.

Pathway representation and generation of the hierarchical map
We generated the hierarchical metabolic map by inferring three
networks, representing the metabolic processes at three decreas-
ing levels of granularity (Fig. 2): The first comprised multifluid
correlations between single metabolites based on a GGM, a
correlation-based network inference approach. Note that
unknown metabolites were used to estimate the metabolite
network, but were excluded from this view. To generate a sub-
pathway network, a GGM was calculated based on sub-pathway
eigenmetabolites. The majority of these eigenmetabolites showed a
high degree of explained variance for their respective metabolites
(Supplementary Information S2), and thus were reasonable
statistical representatives of the pathways. To generate the
super-pathway network, the sub-pathway GGM was collapsed by
connecting any two super-pathways that showed at least one
connection in the sub-pathway network. This procedure was
chosen instead of calculating GGMs on the corresponding super-
pathway eigenmetabolites due to the substantially high hetero-
geneity of most of the super-pathways (e.g., the very broadly
defined ‘Lipid’ super-pathway). This is reflected by low-explained
variances for super-pathway eigenmetabolites (Supplementary

Fig. 2 Hierarchical map of multifluid metabolic processes at a metabolite, b sub-pathway, and c super-pathway levels. In the metabolite and
sub-pathway network, edges were drawn if both partial correlation and Pearson correlation were significant at α= 0.05 after Bonferroni
correction for multiple testing. The super-pathway network c was generated by collapsing the sub-pathway GGM, i.e. drawing an edge
between two super-pathways whenever at least one pair of their sub-pathways was connected. Note that all three networks share the same
overall layout
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Information S2), which would not suffice as true pathway
'representatives'. Note that unknowns were excluded from the
pathway analysis since these metabolites could not be assigned to
a sub-pathway or super-pathway.
Interactive versions of the networks as yEd .graphml files, as well

as corresponding correlation matrices, are available in Supple-
mentary Information S3. Detailed lists of all correlation coefficients
and the associated pathways can be found in Supplementary
Information S4.
At the most fine-grained level, the hierarchical map contained

335 plasma, 473 urine, and 189 saliva metabolites, with a total of
1244 edges between them (1041 intrafluid and 203 interfluid
edges, Fig. 2a, Fig. 3a). The sub-pathway GGM comprised 54
plasma, 53 urine, and 45 saliva eigenmetabolites, and, in total, 110
edges out of which 90 were within fluids and 20 were across fluids
(Fig. 2b, Fig. 3b). The coarsest level represented by the collapsed
super-pathway network consisted of 24 nodes, and 27 intrafluid
and 10 interfluid edges (Fig. 2c, Fig. 3c). In general, we observed
most correlations to be intrafluid in all the three networks. Since,
in particular, salivary metabolomics measurements can be
dependent on the oral hygiene of the study participants, we
investigated whether the hierarchical map was influenced by the
participants’ teeth brushing behavior. Overall, we found only
marginal differences in the correlation structures, which were
mainly based on statistical variance rather than biologically driven
by oral hygiene (Supplementary Information S5).

Similarities and differences of correlation structures across body
fluids
To obtain a general overview of the hierarchical map, we explored
it at the highest level of body fluids considering two aspects: (i)
How similar are the intrafluid correlation structures when
comparing the three different fluids? (ii) How can the crosstalk
between fluids be characterized?

Similarity of body fluids. For all the three fluids, we determined
the fluid-specific correlations, i.e., those exclusively occurring in
only one body fluid, and the correlations shared between at least
two fluids (Figs. 3d–f). At all levels, the number of fluid-specific
edges far exceeds the number of shared edges.
At the metabolite level, 266, 447, and 207 intrafluid edges were

exclusively found in plasma, urine, and saliva, respectively. A
pairwise comparison of the fluids yielded 57 edges that occurred in
at least two body fluids, with the majority (31) shared between
plasma and urine (Fig. 3d). Plasma and saliva shared 17 correlations,
whereas urine and saliva shared only 2 correlations. Overall, 50 and
77% of the fluid-specific metabolite edges occurred within the
same sub-pathway and super-pathway, respectively, while for
correlations that can be found in at least two fluids 80% were
observed within sub-pathways and 90% in super-pathways
(Supplementary Information S4). This indicates that, if correlations
are shared across fluids, the two correlating metabolites more often
act in similar biochemical processes compared to exclusive
correlations. Comparing all the three fluids simultaneously, an
overlap can only be reasonably analyzed for metabolites that were
also measured in all the three of them. Inspecting only edges
between such metabolites (black numbers in Fig. 3d) left 49
intrafluid edges, of which seven occurred in all the three fluids.
At the sub-pathway level, we found 69 fluid-specific and

10 shared edges (Fig. 3e). Only one edge occurred in all fluids
(‘Fatty Acid Metabolism (also BCAA Metabolism)’ with ‘Fatty Acid
Metabolism (Acyl Carnitine)’). Two edges were observed in both
plasma and urine, and interestingly, urine and saliva shared seven
edges (Supplementary Information S4), all of which were within
the same respective super-pathway. Overall, at the super-pathway
level, more fluid-specific edges (14) were observed compared to
the shared edges (5) (Fig. 3f).

Crosstalk between fluids. We investigated the crosstalk between
the fluids by analyzing the interfluid correlations in the
hierarchical map (Figs. 3a–c). In total, there were 203 crossfluid

Fig. 3 Global structure of the hierarchical map. a–c Absolute number and percentage of significant intra-fluid and interfluid edges. The
percentage is calculated as the number of edges divided by all possible edges. d–f Number of intrafluid edges occurring in only one fluid or
shared across two or all three fluids. Black numbers correspond to links between metabolites, sub-pathways, or super-pathways that were
measured in all the three body fluids, while gray numbers represent metabolites and pathways that occur in at most two body fluids
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edges at the metabolite level (Fig. 3a). A vast majority of edges
was observed between plasma and urine (173), while there were
only 21 and 9 edges between plasma and saliva and urine and
saliva, respectively. In total, 98 of these 203 edges (75 plasma-
urine, 19 plasma-saliva, and 4 urine-saliva) were between the same
metabolites measured in different fluids, for example, between
plasma betaine and urine betaine (Supplementary Information S4).
At the sub-pathway level, we found 20 crossfluid correlations,
collapsed to 10 interfluid links between super-pathways (Fig. 3b).
The majority of sub-pathway and super-pathway edges could
again be observed between plasma and urine. Except one
(‘Tocopherol Metabolism’ and ‘Food Component/Plant’), all cross-
fluid edges were between the same sub-pathways. Six out of eight
plasma super-pathways were linked to the respective same super-
pathway node in urine, reflecting the aforementioned strong
connection between those two fluids (Fig. 3c). In contrast, plasma
and saliva, as well as urine and saliva were connected by only a
few links.
Summarizing the results from this section, we found the

majority of intrafluid correlations to be fluid-specific at all levels,
providing evidence for substantial discordance of correlation
structures across the different fluids. All edges, in particular, the
shared correlations, occurred mainly between entities of the same
pathways. Our results also indicated that plasma and urine are
both more similar and more strongly connected to each other
than to saliva, while saliva has a higher similarity and more
connections to plasma than to urine. In general, crossfluid
correlations were mostly observed between the same pathways,
pointing toward a substantial impact of transport and exchange
processes on the metabolomes between the fluids.

Phenotype-driven module identification procedure
We developed a procedure to identify modules associated with a
phenotype at different levels of the hierarchical map. The
algorithm is graphically outlined in Supplementary Information
S6. Briefly, given a network, a phenotype variable, a scoring
function, and a seed (=starting) node; a greedy search algorithm
identifies an optimal module by score maximization. The optimal
module is determined by extending candidate modules along its
network edges, until no further score improvement can be
achieved. Each candidate module is scored by the negative
logarithmized p-value of a regression-based association of a
representative value of all metabolites in the module with the
phenotype (see Methods). Notably, a single metabolite is scored
by its univariate association with the phenotype. In a final
consolidation step, overlapping optimal modules, for instance,
those obtained from neighboring seed nodes, are identified and
combined into a maximal module.
We followed a conservative multiple testing correction

approach: To be significant, the p-value of a module had to be
lower than the significance level of 0.05 divided by the number of
network nodes (Bonferroni correction at node level). In addition,
we required each module’s score to be higher than the maximum
score observed across all single components of the module.
The procedure was applied to two phenotypes at all the three

levels (metabolite, sub-pathway, and super-pathway): IGF-I as a
phenotype with sparse associations, and gender as a trait with
dense associations.

Phenotype-driven module identification for sparse associations:
IGF-I
Associations of IGF-I with blood and urine metabolites in the SHIP-
TREND dataset were investigated in a previous study by Knacke
et al.34 Here, we additionally integrated metabolomics measure-
ments from saliva. Notably, in the work by Knacke et al., IGF-I
associations were analyzed for males and females separately. In
our study, however, the results of a module search stratified by

gender were mostly covered by modules from a joint gender
analysis, which is why the latter analysis was chosen. Furthermore,
Knacke et al. used a more relaxed multiple testing correction (FDR
at 0.05), while in this study we applied the conservative Bonferroni
correction, since we expected a substantially increased statistical
power for the module-identification approach.
At the metabolite level, our algorithm identified six modules

associated with IGF-I (Fig. 4). For the sub-pathway network, we
obtained only one module comprising plasma and urine ‘Steroid’
pathway metabolites (Supplementary Information S7). Furthermore,
no modules were found at the coarsest level for super-pathways,
confirming that IGF-I associations are rather sparse in the metabolic
network. Therefore, we restricted the following analysis to the
modules identified at the fine-grained metabolite level.
The six identified modules demonstrate that the module-

identification algorithm enhances classical association analysis in
several ways: It detected modules that (i) cover multiple pathways
(see modules A and F) and (ii) span multiple body fluids (see
modules B–E). (iii) Moreover, the algorithm was able to dissect
apparently related but distinct processes. For example, modules C
and E were in close proximity in the network and both contained a
steroid amongst unidentified metabolites; however, the identifica-
tion of two distinct modules suggested that they reflect two
different processes that are independently associated with IGF-I
levels. (iv) The algorithm increased the statistical power in several
cases. For modules A–C, none of the single metabolites inside the
modules was significant, whereas the entire module showed a
significant p-value. This can be attributed to the reduction of
statistical noise when aggregating concentrations of multiple
metabolites.
Beyond the advantages of our approach compared to classical

association analysis, we found a series of biologically interesting
results. Initially, we were able to confirm previously identified IGF-I
associations. For instance, it has been reported that there is a
complex interplay between sex hormones and IGF-I.38,39 In our
study, we identified a multifluid module containing a cluster of
plasma and urine epiandrosterone and androsterone metabolites
(module B). IGF-I has also been linked to the maintenance of
physiological mitochondrial function via regulation of the expres-
sion of the mitochondrial pyrimidine nucleotide carrier PNC1.34,40

The association of single blood metabolites from the pyrimidine
pathway with IGF-I has already been reported by Knacke et al. In
the present study, we additionally observed that the aggregation
of several blood and urine metabolites from this pathway (module
D) yielded a considerably lower p-value than the single
components, further supporting the link between pyrimidines
and IGF-I. Both modules B and D contain metabolites from plasma
and urine, indicating that not only the concentration levels of the
respective metabolites in these fluids but also their crossfluid
transport processes might be associated with IGF-I.
We also detected IGF-I associations, that to the best of our

knowledge, have not been reported previously. We found a saliva
module (A) comprising three amino acids, 2-hydroxyglutarate, a
lipid, and laurylsulfate, a xenobiotic, each of which alone was not
significantly associated with the phenotype. Associations of these
metabolites with IGF-I have not previously been reported, in
particular not in human saliva. Module F contained the xenobiotic
2-ethylhexanoate (EHA) and the fatty acid caprylate (8:0), neither
of which has been reported with IGF-I to date; however, in this
case, the module score seems to be mainly driven by EHA, while
the fatty acid only contributes marginally to the score.
Finally, we investigated the effects of oral hygiene on the

modules identified for IGF-I by correcting for the teeth brushing
behavior of the study participants in the module identification
process. Exactly the same modules were found, indicating that
oral hygiene has no effects on metabolic changes related to IGF-I
(Supplementary Information S5).
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Phenotype-driven module identification for dense associations:
Gender
We next applied the module-identification algorithm with gender
as phenotype, representing a trait with dense associations. As
expected, for the metabolite network, we found a high number

(73) of gender-associated modules (Supplementary Information
S8). At the sub-pathway level, we identified 13 regulated modules
(Fig. 5). Finally, at the super-pathway level, two modules indicating
associations at a very global level were detected (Supplementary
Information S8): the first module comprised plasma ‘Amino acid’

Fig. 4 IGF-I modules. This metabolite network is a relayouted version of the metabolite GGM in Fig. 2a. Edge widths reflect absolute partial
correlation values. Each colored region corresponds to an identified IGF-I module. For readability, p-values are given in e-notation (e.g., 1.5e
−5=1.5·10−5). Node label prefixes P::, U::, and S:: indicate metabolites measured in plasma, urine, and saliva, respectively
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and ‘Peptide’, and the second module consisted of saliva
‘Carbohydrate’ and ‘Amino acid’. Herein, we focus on modules
detected at the sub-pathway level, which seemed to be an
appropriate compromise between the metabolite and super-
pathway levels.

From the 13 sub-pathway modules, 9 were within one fluid only
(Fig. 5). We observed three multifluid modules comprising both
plasma and urine sub-pathways (H, K, L). These results again
demonstrate the strength of our approach to find phenotype-
associated processes that span multiple pathways and even

Fig. 5 Gender modules. This sub-pathway network is a relayouted version of the sub-pathway GGM in Fig. 2b. Edge widths reflect absolute
partial correlation values. Each colored region of this network corresponds to one identified module. For readability, p-values are in e-notation
(e.g., 1.5e−5=1.5·10−5). Node label prefixes P::, U::, and S:: indicate metabolites measured in plasma, urine, and saliva, respectively
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multiple body fluids. We were also able to reveal more subtle,
non-obvious phenotype associations as shown in module J, where
the combination of a gender-associated and a non-associated
pathway led to a lower p-value than each pathway alone. In
addition, the results show that the proposed method was able to
link processes that appeared to be unrelated, since they were
assigned two different pathways. This is shown in module I, which
consisted of the plasma sub-pathways ‘Nicotinate and Nicotina-
mide Metabolism’ and ‘Xanthine Metabolism’. Both pathways
contain metabolites related to coffee metabolism. The former
covers caffeine derivatives, while the latter consists of trigonelline,
an alkaloid found in coffee. Interestingly, the module identification
approach recognized the phenotype-driven relationship between
these two pathways and grouped them into one gender module.
Similar to the IGF-I results, the method identified both

previously reported and novel phenotype associations. A well-
known metabolome–gender association, the steroid pathway, was
thereby detected as a multifluid module, spanning the plasma and
urine pathways (Module H). We also detected three intrafluid lipid
modules (B–D), showing multiple processes within this pathway in
which men and women differ. Modules C and D comprised
pathways from blood, while module B consisted of salivary ‘Fatty
acid, monohydroxy’ and ‘Fatty acid, Dicarboxylate’. Several
metabolites of these pathways in blood and saliva were found
to associate with gender in previous studies,10,26,41,42 but in
addition, we were able to show that all pathways in saliva had a
lower p-value when considered in combination. In module K, we
found an association of histidyl peptides with gender, confirming
previous findings in human muscle tissue that the female gender
is associated with reduced levels of such peptides.43,44 Moreover,
we here illustrated that this sexual dimorphism can be observed
across human blood and urine. Besides confirming known gender
associations, we found a module (L) comprising plasma and
urinary lipids of ‘Fatty acid, Amino’, which to the best of our
knowledge, have not been reported before.
We investigated whether our identified modules could be

replicated in the Qatar Metabolomics Study on Diabetes
(QMDiab3). Since the set of measured metabolites differ between
SHIP-TREND and QMDiab due to different profiling platforms, we
only considered metabolites measured in both cohorts for an
appropriate comparison. We generated a new hierarchical map
based on the reduced SHIP-TREND dataset comprising 752
metabolites in total (490 known and 262 unknown), which were
grouped into 134 different sub-pathways. The module search
algorithm was run at the sub-pathway level of this newly
generated hierarchical map for both SHIP-TREND and QMDiab.
One-third of the gender-associated modules identified in the
reduced SHIP-TREND were replicated in QMDiab (Supplementary
Information S9). One factor accounting for this observation was
the differing number of samples, i.e., the power of the cohorts.
SHIP-TREND included 906 individuals with metabolomics mea-
surement of all three body fluids, whereas QMDiab comprised a
total of 372 participants. Finally, SHIP-TREND and QMDiab also
differed in the study design. In SHIP-TREND, samples of fasting
individuals were collected; whereas in QMDiab, the participants
were nonfasting. The SHIP-TREND was conducted in West
Pomerania, Germany, whereas the individuals in the QMDiab
cohort were mainly of Arab and Asian ethnicity. Moreover, in
contrast to SHIP-TREND, which was designed as a healthy cohort,
QMDiab was a case-control study for type 2 diabetes. Despite
substantial differences in study design and metabolomics
measurement, QMDiab is, to the best of our knowledge, the only
available cohort comprising metabolomics measurements in
plasma, urine, and saliva, and therefore the only cohort available
for replication of our results. Moreover, the replication of one-third
of the results despite the substantial differences between the
cohorts indicated that these results are very robust and
generalizable.

We investigated the effects of oral hygiene on the gender-
related modules. However, this analysis might be statistically
unfeasible, because teeth brushing frequency was significantly
associated with gender. Nevertheless, only one module was
omitted when we corrected for the effects of oral hygiene
(Supplementary Information S5).

DISCUSSION
In this paper, we presented an approach for the phenotype-driven
identification of modules associated with phenotypes at multiple
scales. To this end, a hierarchical, multifluid view of metabolism at
three levels of granularity was generated and analyzed for
metabolomics data from plasma, urine, and saliva of 906
participants in the SHIP-TREND cohort. A hierarchical module-
identification procedure was then applied to this map for IGF-I
measurements and gender representing phenotypes with ‘sparse’
and ‘dense’ associations, respectively.
The hierarchical map serves as a template of human

metabolism for the module identification approach. But in
addition, it allows to obtain a fundamental understanding of
biochemical processes captured within and across body fluids. At
all levels and as expected, the majority of correlations occurred
within the same fluid. Moreover, most network edges were fluid-
specific, that is, solely occurred in only one fluid, suggesting
diverse metabolic processes in the fluids. This can probably be
attributed to the substantially different physiological roles of each
fluid, capturing metabolism at various levels. Analyzing the
crosstalk between fluids, correlations were mainly observed
between plasma and urine, followed by plasma and saliva, while
only a few edges were found between urine and saliva. The strong
link between plasma and urine was expected and reflects their
close relationship through the excretion and reabsorption
processes in the kidneys. Blood and saliva are also physiologically
connected through the salivary glands. Finally, the weak
urine–saliva crossfluid correlation might reflect an indirect
connection of these fluids through blood. Overall, nearly half of
the crossfluid correlations were observed between the same
metabolites (e.g., plasma betaine and urine betaine). In the sub-
pathway network, crossfluid correlations mostly connected the
same sub-pathways (e.g., plasma ‘Xanthine Metabolism’ and saliva
‘Xanthine Metabolism’). Such correlations between biochemically
closely related molecules may arise due to transport and
exchange processes across the fluids.
We then performed a module identification approach based on

the hierarchical map. We found that IGF-I was associated with
rather local parts of the metabolic network, while at the more
global level (sub-pathways and super-pathways) fewer modules
were detected. In contrast, for gender, we identified a large
number of modules (73) in the fine-grained metabolite network.
At the sub-pathway level, these numerous modules were fused
into 13 sub-pathway modules, facilitating biological interpretation
by providing a better overview over parts of metabolism affected
by gender. Two modules were detected at the coarse super-
pathway level, but did not promote biological interpretation in
this case.
For both IGF-I and gender, we could confirm previously

reported associations. In addition, our analyses extended these
findings to multiple fluids. For example, we could extend the
association between IGF-I and plasma pyrimidine metabolites to
urine, which has already been reported by Knacke et al.34

Moreover, to the best of our knowledge, in this study, IGF-I
associations were analyzed in saliva for the first time. For gender,
for instance, we showed that the association with histidyl peptides
appears across human blood and urine. For both the phenotypes,
the identification of multifluid modules suggested that not only
the concentration levels of the respective metabolites in the
corresponding fluids, but also the transport and exchange
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processes between the fluids were associated with the pheno-
types. These types of findings could only be leveraged through a
module search on multifluid data.
Our results demonstrated an increase in statistical power for the

phenotype-driven module identification approach compared to
classical analysis. We found significant modules comprising
components that were not significantly associated with the
phenotype when the single components were considered alone
(e.g., IGF-I modules A–C). Moreover, by combining metabolite
groups from different body fluids, statistical power is also
substantially increased compared to the results from just a single
fluid (e.g., gender modules H, K, L). This increase is most likely due
to the reduction in statistical noise while aggregating measure-
ments of multiple metabolites. Another major advantage of the
module approach lies in overcoming borders of pathway
definitions, which are inherently arbitrary for any commonly
available metabolite-centric or process-centric pathway annota-
tions. Our algorithm recognizes the phenotype-driven interplay of
pathways and merges them, if appropriate, as shown in gender
module I. This module reflected the well-known gender associa-
tion with metabolites from caffeine metabolism,45 which were
originally assigned to two different pathways according to sub-
pathway definitions in this study.
The present study could be extended in several directions. (i)

We used pathway annotations provided by the metabolomics
platform, which are analogous to KEGG pathways.46 For future
studies, other pathway definitions, such as in the HMDB47 or
MetaCyc48 could be used; however, since a large number of
measured metabolites will not be covered in those databases,49

this approach would currently result in a substantial loss of
information. (ii) Following the eigengene approach,50 we defined a
pathway representative as the first principal component of its
metabolites. To capture a higher degree of variance explained,
multivariate association methods, such as canonical correlation
analysis51 and O2-PLS52 could be adapted to model the relation-
ships between the two pathways. (iii) Our module identification
approach is only suitable for finding modules where all
components show the same direction of association with the
phenotype (all positively or all negatively associated), while
opposing effects will cancel out. A possible solution to this
restriction would be the use of the multivariate modeling
approaches mentioned in the previous point. (iv) We used data
from the Qatar Metabolomics Study on Diabetes (QMDiab,
Supplementary Information S9) to replicate the gender results. It
would be interesting to also replicate our IGF-I results in a suitable
cohort. To the best of our knowledge, no dataset comprising
human plasma, urine, and saliva metabolomics data, as well as
measurements of IGF-I are currently available besides the SHIP
study. Moreover, to the best of our knowledge, QMDiab is the only
available cohort comprising metabolomics measurements of
plasma, urine, and saliva from the same individuals. (v) We
applied our module identification approach to a multifluid
metabolomics dataset. Owing to the rapid progress in high-
throughput technologies, other omics data types have become
readily available. It would be particularly interesting to include
SNPs or transcripts, for instance, into the network.
In conclusion, we introduced a hierarchical map, that besides

serving as a template of human metabolism for the module
identification algorithm, can also be a valuable, downloadable
resource for future studies, since it allows for a fundamental
understanding of the complex correlation structure within and
across multiple body fluids. Based on this map, we proposed an
approach for the phenotype-driven identification of modules
spanning multiple pathways and multiple body fluids. These
modules provide deeper insights into mechanistic aspects of
phenotype associations. Importantly, our module approach is

generic, and therefore widely applicable. An R implementation of
the algorithm is freely available as supplementary material for this
paper. It can be used directly for any other dataset, given the
presence of a data matrix, annotations of the respective variables,
and a phenotype.

MATERIALS AND METHODS
Study cohort, metabolomics, and IGF-I measurement
Metabolomics data were obtained from the Study of Health in Pomerania
(SHIP-TREND), conducted between 2008 and 2011 in West Pomerania,
Germany, with 4420 participants. The study was approved by the local
ethics committee and conformed to the principles of the Declaration of
Helsinki. Written informed consent was obtained from all participants.
Details about sample acquisition and experimental procedures can be
found elsewhere.29,34 Briefly, metabolomics measurements were performed
for a subset of 1000 participants without self-reported diabetes. The dataset
included 561 females and 439 males with an age distribution of 50.14 ±
13.17 (mean ± SD) and 50.08 ± 14.24, and a BMI distribution of 26.99 ± 5.12
and 27.85 ± 3.7, respectively. Fasting (≥8 h) plasma and urine samples were
collected between 07:00 and 12:00 am. Blood was sampled from the cubital
vein of subjects in a supine position. Samples were stored at −80 °C.
Stimulated saliva was collected with a commercially available collection
system (Salivette®). The subjects chewed a plain cotton roll for exactly 1min
to stimulate salivation. The rolls with the absorbed saliva were placed into
the Salivette® and immediately centrifuged at 1000×g for 20min at 4 °C to
remove food remnants, insoluble material, and cell debris. The resulting
supernatant was stored at −80 °C. Samples were analyzed on an untargeted
metabolomics platform established by Metabolon Inc. (Durham, USA) with
ultra-high liquid-phase chromatography coupled with tandem mass
spectrometry (UPLC-MS/MS) in both positive and negative modes. The
measurements were performed at the Genome Analysis Center, Helmholtz
Zentrum, Munich, yielding a total of 1665 metabolites across all fluids, of
which 1190 represented unique metabolites. Blood IGF-I concentrations
were determined by automated two-site chemiluminescent immunoassays
on the IDS-iSYS kit (Immunodiagnostic Systems, Boldon, UK).

Preprocessing and quality control
To correct for daily variations of the metabolomics platform, raw ion
counts of each metabolite were rescaled by their respective median value
on the run day. To ensure valid medians, metabolites with fewer than three
measured values for more than the half of the run days were filtered out.
This procedure resulted in 1317 total (475, 558, and 284 metabolites for
plasma, urine, and saliva, respectively) and 991 unique metabolites from all
three body fluids. Probabilistic quotient normalization (PQN) was then
applied to urine samples to account for diurnal variation. PQN has
previously been shown to be superior to common creatinine scaling.53

PQN was, moreover, used to normalize saliva measurements for dilution
variations. For the PQN procedure, first a ‘pseudo-sample’ (reference) was
calculated as the mean of all metabolites with no missing entries for all
participants (131 urine and 37 saliva metabolites). Subsequently, a dilution
factor was estimated as the median quotient between the reference and
each sample. Finally, all measurements were divided by the respective
dilution value. Of note, urine creatinine and the estimated urinary dilution
factor were substantially correlated (r = 0.91, p < 0.001) within the SHIP-
TREND data (Supplementary Information S1).
All metabolite levels and serum IGF-I measurements were log2-

transformed. Multivariate outlier detection (using only metabolites with
no missing values across all samples) was performed separately for all
fluids using an algorithm proposed by Filzmoser et al. (2008),54

implemented in the pcout function within the R package mvoutlier. Briefly,
this algorithm calculates an outlier score for each sample using principal
component analysis and the Mahalanobis distance on a robustly scaled
data matrix. Default parameters were used for the identification process,
and the exclusion criterion was set to 4 SD. As a result, 13, 8, and
16 samples from plasma, urine, and saliva, respectively, were excluded
from further analyses. After these preprocessing steps, the dataset
comprised 906 individuals for which fasting plasma, urine, and saliva
samples, as well as IGF-I measurements were available.
Since for the network inference procedure a fully observed data matrix is

required, missing values were imputed by the following procedure: All
metabolites with more than 20% missing values (320) were excluded from
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the dataset to avoid false positive results and to preserve statistical power.
The first step of imputation was performed per run day on the log-
transformed raw data (before normalization). Following the assumptions
that missing values occur due to a detection threshold and that
metabolites are log-normally distributed, each missing value was replaced
by a random value drawn from the censored part of a normal distribution
reconstructed by maximum-likelihood estimation.55,56 To ensure robust
parameter estimation for the truncated normal distributions, this
procedure was only applied to metabolites for which the respective run
day contained more than 10 nonmissing concentration values. Remaining
missing values were imputed with the mice R package (version 2.22) with
predictive mean matching as an elementary imputation model. Note that
we also used the stringent threshold of 20% to exclude variables with
missing values, because estimating (partial) correlations based on too
many imputed values that in turn were generated by mice using the
covariance structure of the data might introduce unwanted bias. The final
imputed dataset consisted of 906 samples and 997 metabolites.

Metabolite pathway representation
Each metabolite with known chemical structure (610 metabolites) was
annotated with one of the 73 sub-pathways (such as ‘Lysolipid‘, ‘TCA Cycle‘,
‘Glycolysis‘, ‘Branched-chain amino acid‘), and one of eight more general
super-pathways (‘Amino acid’, ‘Lipid’, ‘Carbohydrate’, ‘Nucleotide’, ‘Pep-
tide’, ‘Energy’, ‘Cofactors and vitamins’, and ‘Xenobiotics’). The remaining
387 metabolites have unknown chemical structure (unknowns), and thus,
cannot be assigned to any pathway for which reason they were excluded
from the pathway analyses. A detailed list of metabolites and their
annotated pathways is provided in Supplementary Information S1.
For each sub-pathway, a principal component analysis was performed

after scaling all variables to a mean of 0 and a variance of 1. The first
principal component was used as a representative value for the entire set
of metabolites in the pathway. These eigenmetabolites23,50,57 were then
subjected to the network inference procedure below.

Network inference
Two networks were inferred using GGMs, one for metabolite concentra-
tions (all metabolites) and one for the sub-pathway eigenmetabolites
(unknowns excluded) using the GeneNet R package, version 1.2.12. GGMs
are based on partial correlations, which represent the linear associations
between two variables corrected for all remaining variables in multivariate
Gaussian distributions. We included age, gender, and BMI as standard
covariates into the model. Edges between metabolites or sub-pathways
were assigned if both their Pearson correlations and their partial
correlations were statistically significant with α = 0.05 after the Bonferroni
correction for p

2

� �
tests, where p is the number of metabolites or sub-

pathways, respectively.
To obtain a global view of connections between the super-pathways,

the sub-pathway GGM was collapsed into a super-pathway network. To this
end, a link between two nodes was drawn if there was at least one
connection between any two sub-pathways assigned to the two respective
super-pathways in the underlying sub-pathway GGM.

Module identification algorithm
Module representatives. For a candidate module M, a representative value
RM is defined as the average of scaled intensities (average z-score) of all
metabolites in M. If M consists of sub-pathways, then the representative is
calculated as the mean z-score of all metabolites in the set union of all sub-
pathways. Notably, for pathway network estimation, a pathway represen-
tative was defined as the sub-pathway eigenmetabolite based on the
assumption that pathway components share common chemical and
biological properties. In contrast, we chose to use mean z-scores as module
representatives, since modules are considerably more heterogeneous.

Scoring function. The score of each candidate module M is obtained from
the multivariable linear regression model

RM � βM;0 þ βM;1 � P þ βM;2 � genderþ βM;3 � ageþ βM;4 � BMIþ 2M (1)
where RM is the aforementioned representative value, βM,0 is the intercept,
βM,1,…,βM,4 are the regression coefficients for each independent variable, P
is the phenotype of interest, and ϵM is a normally distributed error term.
The module score is then defined as the negative logarithmized p-value of
the coefficient βM,1, which represents the magnitude of phenotype

association. Notably, the score of a single component equals its negative
logarithmized p-value from a univariate analysis. Furthermore, the scoring
function for gender does not contain gender as a covariate.

Module identification. Given the scoring function and an initial node (seed
node), a greedy search procedure is performed to identify an optimal
module. In every iteration, each neighboring node of the candidate module
is added and the score of the extended module is calculated. The neighbor
leading to the highest score improvement is then added to the module.
Furthermore, a neighbor is only added if the score of the new module is
higher than the scores of all single components. The algorithm terminates
if no further improvements can be made. In a final step, overlapping
optimal modules from different seed nodes are combined into a single
module (maximal module), which is rescored by the scoring function.
For the identification of IGF-I-associated and gender-associated mod-

ules, the procedure was applied to all three networks, namely, the
metabolite, the sub-pathway, and the super-pathway networks. To assess
the significance of the modules, a conservative multiple testing correction
procedure was used with a significance level of α = 0.05 after the
Bonferroni correction for the total number of nodes in the underlying
network. The proposed algorithm is visually described in Supplementary
Information S6 and available as R code in Supplementary Information S10.
An example of how to execute the R scripts in S10 is explained in S11.

DATA AVAILABILITY
The data that support findings of this study are available from the Ernst-
Moritz-Arndt-Universität Greifswald but restrictions apply to the availability
of these data (the informed consent given by the study participants does
not cover data posting in public databases), which were used under license
for the current study, and so are not publicly available. Data are however
available from the authors upon reasonable request and with permission
of the Ernst-Moritz-Arndt-Universität Greifswald or can be directly applied
for via www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php?
lang=ger.

Code availability
An implementation of the generic approach and an example script is freely
available as supplementary material (Supplementary Information S10 and
S11).
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Abstract 
Summary: Metabolomics is an established tool to gain insights into (patho)physiological outcomes. 

Associations of metabolism with such outcomes are expected to span functional modules, which are 

defined as sets of correlating metabolites that are coordinately regulated. Moreover, these associations 

occur at different scales, from entire pathways to only a few metabolites, which is an aspect that has not 

been addressed by previous methods. Here we present MoDentify, a freely available R package to 

identify regulated modules in metabolomics networks at different layers of resolution. Importantly, 

MoDentify shows higher statistical power than classical association analysis. Moreover, the package 

offers direct visualization of results as interactive networks in Cytoscape. We present an application 

example using a complex, multifluid metabolomics dataset. Owing to its generic character, the method 

is widely applicable to any dataset with a phenotype variable, a data matrix, and optional pathway 

annotations.  

Availability and Implementation: MoDentify is freely available from GitHub: 

https://github.com/krumsiek/MoDentify 

The package vignette contains a detailed tutorial of the analysis workflow. 
Contact: jan.krumsiek@helmholtz-muenchen.de 

 

 

1 Introduction  

Associations with phenotypic parameters and clinical endpoints in large-

scale, heterogeneous metabolomics datasets are complex. They typically 

span entire functional modules, which are defined as groups of 

correlating molecules that are functionally coordinated, coregulated, or 

generally driven by a common biological process (Mitra et al, 2013). 

The systematic identification of modules is often based on networks, 

where nodes correspond to the molecules under investigation, and edges 

represent the correlations or associations between two molecules. 

Modules are commonly identified as highly connected parts of the 

network that contain nodes that are coordinately associated with a given 

phenotype. 

Systematic module identification algorithms are well established for 

various types of omics data (Polanski et al, 2014; Chuang et al, 2007; 
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May et al, 2016; Martignetti et al, 2016). However, they have scarcely 

been applied to metabolomics data. Moreover, none of these methods 

consider that phenotype associations can occur at different scales, 

ranging from global associations spanning entire pathways or even sets 

of pathways (e.g., “dense” associations between metabolomics and 

gender or BMI), to localized associations with only a few metabolites 

(e.g., “sparse” associations between metabolomics and insulin-like 

growth-factor I levels or asthma) (Do et al, 2017). For sparse 

associations, the identification and interpretation of modules is usually 

straightforward. However, modules for dense phenotype associations at 

the metabolite level are challenging to interpret due to their 

overwhelming number. To facilitate interpretation, the plethora of 

information at the fine-grained metabolite level can be condensed to a 

hierarchically superordinate level, such as a pathway network. Here, 

nodes correspond to entire pathways, edges represent pathway 

relationships, and modules reflect phenotype-associated processes 

covering sets of pathways.  

We have recently introduced a module identification algorithm for 

multifluid metabolomics data (Do et al, 2017). The approach was applied 

to blood concentrations of insulin-like growth factor (IGF-I) and gender 

as examples of sparse and dense phenotype associations, respectively. 

We here present MoDentify, a free R package implementing the 

approach for general use. In particular, MoDentify offers (i) the 

estimation of data-driven networks based on Gaussian graphical models 

(GGMs), (ii) module identification at both fine-grained metabolite level 

and more global pathway levels, and (iii) visualization of the identified 

modules in an interactive network through Cytoscape (Shannon et al, 

2003). MoDentify increases statistical power compared with classical 

association analysis due to the reduction of statistical noise and can 

easily be applied to any type of quantitative data because of its generic 

character. 

2 Description 

MoDentify identifies network-based modules that are highly affected by 

a phenotype of interest. The underlying network is either directly 

inferred from the data at the single metabolite or pathway level (see 

below) or can be provided from an external source. 

 

Network inference: MoDentify estimates either classical Pearson 

correlation networks or GGMs using the GeneNet R package (Opgen-

Rhein & Strimmer, 2007). GGMs are based on partial correlations, 

which represent associations between two variables corrected for all 

remaining variables in multivariate Gaussian distributions (Krumsiek et 

al, 2011). An important property of GGMs compared with Pearson 

correlation networks is their sparsity, because only direct correlations are 

included. At the fine-grained level, the GGM consists of nodes 

corresponding to metabolites and edges representing significant partial 

correlations between two nodes after multiple testing correction. At the 

pathway level, the GGM consists of nodes corresponding to entire 

pathways (sets of metabolites), whereas edges represent significant 

partial correlations between two pathways. To estimate a correlation 

network between pathways, representative values are computed for each 

pathway (see Pathway representation). Alternatively, a network from 

an external source can be provided. Importantly, all nodes in the network 

must be measured in the given dataset. 

 

Pathway representation: As stated above, in addition to regular 

network inference, MoDentify can build a network of interacting 

pathways. To this end, a new variable is defined as a representative for 

each pathway, which aggregates the total abundance of metabolites from 

the pathway into a single value. MoDentify provides two approaches for 

pathway representation: 

(1) eigenmetabolite approach: For each pathway, a principal 

component analysis (PCA) is performed after scaling all 

metabolites to a mean of 0 and a variance of 1. The first principle 

component  also termed eigenmetabolite  is used as a 

representative value for the entire set of variables in the pathway 

(Langfelder and Horvath 2007).  

(2) average approach: All variables are first scaled to mean 0 and 

variance 1. Subsequently, the pathway representative is 

calculated as the average of all variable values in the pathway. 

MoDentify computes the amount of explained variances explained by 

each eigenmetabolite per pathway to facilitate the choice between these 

two approaches. If explained variances are high, the eigenmetabolite 

approach should be used; otherwise, the average approach might be the 

more appropriate choice.  

 

Module identification: To identify functional modules, MoDentify uses 

a score maximization approach. Given a network, a scoring function, and 

a starting node (seed node) as the initial candidate module, the algorithm 

identifies an optimal module by score maximization. For a given 

candidate module, the following procedure is performed: Each 

neighboring node of the module is subsequently added to the candidate 

module, and the score of the extended module is calculated (see Module 

scoring). The neighbor resulting in the highest score improvement is 

finally added to the candidate module, if the new module score is higher 

than the score of each of its single components. The procedure is 

repeated until no further score improvements can be made, yielding the 

optimal module for the given seed node. In an optional consolidation 

step, overlapping optimal modules from different seed nodes are 

combined into one module, which is reevaluated by the scoring function.  

 

Module scoring: The score of a candidate module is obtained from the 

multivariable linear regression model  

 

𝑅 = 𝛽0 + 𝛽1 × 𝑃 + ∑ 𝛽𝑖+1 × 𝑐𝑖
|𝐶|
𝑖=1 + 𝜖  

 

where 𝑅 is the module representative defined by the eigenmetabolite or 

average approach (see Pathway representation), 𝛽0 is the intercept, 𝛽𝑖 

are the regression coefficients for the respective independent variables, 𝑃 

is the phenotype of interest, 𝐶 is an optional set of covariates 𝑐𝑖, and 𝜖 is 

a normally distributed error term. The module score is then defined as 

the negative log-transformed p-value of 𝛽1. The significance of the 

modules is assessed by correcting for the total number of nodes in the 

underlying network.  

 

Module visualization: MoDentify offers visualization of the identified 

modules within an interactive network in the open source software 

Cytoscape (Shannon et al, 2003). The network contains different node 

colors and node sizes, which depict the membership of a node in a 

certain module and its association with the given phenotype from a 

classical, single-molecule association analysis, respectively. Moreover, 

significance of the phenotype association is indicated by diamond-

shaped nodes. In addition to returning R data structures and producing 

flat-file results, one of the main advantages of our module visualization 

is the direct call of Cytoscape from within R via the RCytoscape package 

(Shannon et al, 2013) for external visualization, without cumbersome 

exporting of data files from R and re-importing them into Cytoscape.  
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3 Application example 

We demonstrate the easy use of MoDentify on plasma, urine, and saliva 

metabolomics data from the Qatar Metabolomics Study on Diabetes 

(QMDiab) (Mook-Kanamori et al, 2014), aiming to identify functional 

modules associated with type 2 diabetes (T2D). The multifluid dataset 

comprises mass spectrometry-based metabolomics measurements for 190 

diabetes patients and 184 healthy controls of Arab and Asian ethnicities 

aged 17–81 years. The dataset consists of 1524 metabolites. For each 

metabolite, two levels of pathway annotation are available. The 

preprocessed QMDiab data (normalized, log-transformed, missing values 

handled, and scaled) are integrated within the MoDentify package. The 

dataset is also available from the following figshare repository via the 

following link https://doi.org/10.6084/m9.figshare.5904022. 

 

MoDentify was applied to the QMDiab dataset at both metabolite and 

pathway levels. The following code with default parameters produces a 

list of metabolite modules associated with T2D, as well as interactive 

visualization of the modules in the underlying network in Cytoscape 

(Figure 1A). Here, we only show code for the application of MoDentify 

at the metabolite level. Code for application at the pathway level (Figure 

1B) can be found in the package vignette, available from the GitHub 

repository. 

  
# Load MoDentify 
library(MoDentify) 
 
# Network inference 
met.graph <- generate.network(data = qmdiab.data, annotations = qmdiab.annos) 
 
# Module identification 
modules.summary <- identify.modules(graph = met.graph, data = qmdiab.data, 
                                  annotations = qmdiab.annos, 
                                  phenotype = qmdiab.phenos$T2D) 
 
# Module visualization 
draw.modules(graph = met.graph, summary = modules.summary) 

 

By default, generate.network estimates partial correlations between 

metabolites and assigns edges using a significance threshold of 𝛼 = 0.05 

after Bonferroni multiple testing correction. identify.modules searches 

network modules for the given phenotype, where the default module 

representation approach is the average approach, 𝛼 = 0.05 is set for 

significance filtering, and Bonferroni multiple testing correction is 

applied. The output structure modules.summary contains a list of 

modules with their components and scores, which can be visualized 

within an interactive network in Cytoscape using draw.modules.  

 

MoDentify identified 36 modules for T2D at the metabolite level (Figure 

1A). Many of these modules consist of metabolites that are not 

significantly associated with T2D if considered alone. However, in 

interplay with other metabolites, they form a module that is more 

strongly associated with T2D than all of its single components. This 

increased statistical power in MoDentify can be attributed to the 

reduction of statistical noise when aggregating module components and 

allows the detection of links between metabolites and phenotype that 

would have been missed with classical association analysis. MoDentify 

found several modules containing metabolites from at least two fluids. 

For instance, one module (orange in Figure 1A) comprises the three 

vitamin B derivatives plasma pantothenate (vitamin B5) and pyridoxate 

(vitamin B6), and urine riboflavin (vitamin B2). Although pyridoxate and 

riboflavin are not related to T2D when analyzed alone, they form a 

module in combination with pantothenate that is significantly associated 

with the phenotype. This module corroborates previous observations that 

vitamin B levels in blood and urine are associated with T2D (Nix et al, 

2015; Unoki-Kubota et al, 2010; Valdés-Ramos et al, 2015). In addition, 

the results indicate that not only the concentration levels in blood and 

urine but also exchange processes between the two fluids are linked to 

T2D as well. At the pathway level (Figure 1B), six modules were 

detected. These modules show the interplay of multiple pathways in 

diabetes. For instance, one module comprises plasma metabolites from 

glutathione and histidine metabolism and urinary metabolites from 

histidine metabolism (yellow in Figure 1B). Although histidine and 

glutathione were shown to be related to diabetes in previous studies 

(Kimura et al, 2013; Sekhar et al, 2011), the identified module suggests 

that histidine and glutathione metabolism as well as the secretion of 

histidine derivatives might be part of the same process in T2D. 

4 Conclusion 

To the best of our knowledge, MoDentify implements the first approach 

for the systematic identification of phenotype-driven modules at different 

layers of resolution. To this end, the algorithm allows the estimation of 

data-driven networks based on Pearson or partial correlations. 

Optionally, a network from an external source can be provided. To 

facilitate result interpretation for different scales of phenotype 

associations, MoDentify enables the module search at both fine-grained 

metabolite level and more global pathway levels. Owing to the increased 

statistical power of the approach, novel links between clinical parameters 

and molecular levels can be detected. We presented an application 

Figure 1 Visualization of identified modules for type 2 diabetes. The metabolomics 

networks with embedded modules at metabolite level (A) and pathway level (B) are 

screenshots of the interactive versions in Cytoscape produced by MoDentify. Zoom-ins 

have been added to highlight examples for MoDentify's increased statistical power and its 

ability to extract biologically valuable insights. Round nodes correspond to metabolic 

entities not significantly associated with T2D when considered alone. Diamond nodes 

represent metabolic entities significantly related to T2D. 
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example using a complex multifluid metabolomics dataset, but owing to 

its generic character, this approach can be applied for any quantitative 

dataset. 
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Appendix D

Characterization of missingness in
untargeted MS-based
metabolomics data and evaluation
of missing data handling
strategies.
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Abstract  34 

BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing 35 

values that reduce statistical power and can introduce bias in epidemiological studies. However, a 36 

systematic assessment of the various sources of missing values and strategies to handle these data 37 

has received little attention. Missing data can occur systematically, e.g. from run day-dependent 38 

effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of 39 

sample preparation. 40 

METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of 41 

serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation 42 

methods in a simulation framework and biologically validated the results by applying all imputation 43 

approaches to real metabolomics data. We examined the ability of each method to reconstruct 44 

biochemical pathways from data-driven correlation networks, and the ability of the method to 45 

increase statistical power while preserving the strength of established genetically metabolic 46 

quantitative trait loci.  47 

RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the 48 

metabolomics dataset. Although multiple imputation by chained equations (MICE) performed well in 49 

many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) 50 

imputation on observations with variable pre-selection showed robust performance across all 51 

evaluation schemes and is computationally more tractable. 52 

CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. 53 

Based on our results, we recommend that KNN-based imputation is performed on observations with 54 

variable pre-selection since it showed robust results in all evaluation schemes.  55 

Keywords: untargeted metabolomics, missing values imputation, limit of detection, batch effects, 56 

runday effects, MICE, K-nearest neighbor, mass spectrometry 57 
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Key messages 58 

 Untargeted MS-based metabolomics data show missing values due to both batch-specific 59 

LOD-based and non-LOD-based effects. 60 

 Statistical evaluation of multiple imputation methods was conducted on both simulated and 61 

real datasets. 62 

 Biological evaluation on real data assessed the ability of imputation methods to preserve 63 

statistical inference of biochemical pathways and correctly estimate effects of genetic 64 

variants on metabolite levels. 65 

 KNN-based imputation on observations with variable pre-selection and K = 10 showed robust 66 

performance for all data scenarios across all evaluation schemes. 67 

  68 
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Introduction  69 

In epidemiological studies, metabolomics is an established tool that provides insights into disease 70 

mechanisms (1), as metabolite profiles generate a molecular readout that is closely linked to the 71 

(patho-)phenotype (2,3). Recent metabolomics studies have identified many metabolites as 72 

candidate biomarkers for various health conditions, such as diabetes (4–6) and cardiovascular 73 

diseases (7,8). Mass spectrometry (MS)-based metabolomics measurements can be performed either 74 

in a targeted or untargeted manner (9). In the former, only a limited number of already known and 75 

biochemically annotated metabolites are captured. In the latter, the measurements are not limited 76 

to predefined signals and offer discovery of novel compounds. While missing values in targeted MS-77 

based data occur rarely, untargeted MS-based techniques typically produce 20-30% missing values, 78 

affecting more than 80% of the measured compounds (10–13). 79 

 There are various reasons why metabolite concentrations can be missing in an untargeted 80 

metabolomics dataset. First, it is possible that the molecules are truly absent from the sample, a 81 

situation that may occur e.g. for drug metabolites that only appear in a subset of people taking that 82 

medication. On the other hand, there are several technical reasons that could result in missing 83 

values, including: (i) instrument sensitivity thresholds, below which concentrations of a specific 84 

metabolite might not be detectable in a sample (i.e., below the limit of detection, LOD); (ii) matrix 85 

effects that impede the quantification of a metabolite in a sample through other co-eluting 86 

compounds and ion suppression; (iii) declining separation ability of the chromatographic column and 87 

increasing contamination of the MS instrument; and (iv) limitations in computational processing of 88 

spectra, such as poor selection and alignment of the spectral peaks across samples (14).  89 

 Commonly, observed patterns of missing data are categorized as either missing completely at 90 

random (MCAR), missing at random (MAR), or missing but not at random (MNAR) (15). In the MCAR 91 

category, the probability of missing values does not depend on observed or unobserved 92 

measurements. In contrast, the occurrence of MAR depends on other observed measurements (for 93 
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instance, resulting from technical effects, such as overlapping peaks). MNAR describes the 94 

occurrence of missing values that depend on unobserved measurements (for instance, due to issues 95 

with the performance of the machine). 96 

 Although it is clear that the handling of missing values affects all downstream analyses, it is 97 

less clear how to appropriately handle their occurrence statistically. A simple ad hoc approach is 98 

known as complete case analysis (CCA), which only considers samples that do not contain any missing 99 

values in the metabolites analyzed in each statistical analysis step. However, missing data may occur 100 

in some systematic way (i.e., they are dependent on external factors). For example, if all cases in a 101 

case-control study have more missing data than the controls, removing observations that are missing 102 

will lead to bias in biological interpretation (16). Furthermore, CCA can cause severe loss of 103 

information and statistical power by excluding a majority of observations if multivariate methods, 104 

such as principal component analysis or partial correlation networks, are to be performed.  105 

 A widely used and flexible class of missing data strategies is imputation, which involves the 106 

replacement of missing values by reasonable substitute values. The most commonly used imputation 107 

approaches for metabolomics data assume that missing data occur because they are below the limit 108 

of detection (left-censoring, a variant of MNAR). Therefore, all missing entries of a metabolite are 109 

replaced by a low constant value, such as the actual LOD (if known), zero, or the smallest value found 110 

in the dataset for that metabolite (13). Another LOD-based substitution strategy assumes a 111 

parametric left-truncated normal distribution and performs likelihood-based parameter estimation 112 

on the observed values to reconstruct the truncated part of the distribution. Missing values are then 113 

replaced by numbers drawn from this estimated part (16,17). Additional imputation-based 114 

substitution approaches assume MCAR and replace missing values by the mean or median per 115 

metabolite (12). Advanced approaches use multivariate statistical methods for imputation, including 116 

multiple imputation by chained equations (MICE) (18) and K-nearest neighbors (KNN) imputation 117 

(19,20). 118 
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 Several previous studies have investigated the occurrence and effects of different strategies 119 

for missing values in metabolomics data. Taylor et al. (21) reported that no single imputation method 120 

was universally superior, but constant substitution methods consistently showed poor performance. 121 

Gromski et al. (12) recommended imputation by Random Forests (RFs) for GC/MS metabolomics data 122 

after evaluating the outputs of supervised and unsupervised learning approaches. Di Guida et al. (15) 123 

investigated various combinations of different preprocessing steps to determine which were the 124 

most appropriate for univariate and multivariate analyses of UHPLC-MS metabolomics data. The 125 

authors recommended RF and KNN-based imputation for PCA and PLS-DA, respectively (15). 126 

Armitage et al. (10) studied missing values in CE/MS metabolomics data and reported KNN 127 

imputation to be more effective compared with simpler substitution-based imputation methods. 128 

Finally, in a study by Hrydziuszko and Viant (11), a KNN-based imputation approach also 129 

outperformed competing strategies in an investigation of direct infusion Fourier transform ion 130 

cyclotron resonance (DI-FTICR) MS-based metabolomics data. 131 

 Despite these advances in our understanding of the effects of imputation on metabolomics 132 

data analysis, several aspects have not been addressed by those previous studies. (i) A detailed 133 

statistical description of the patterns of missing values in MS-based metabolomics data has not yet 134 

been published. Most previous studies evaluated imputation strategies assuming only random or 135 

LOD-based missing values without assessing whether this applies to real metabolomics datasets. In 136 

particular, the influence of batch effects on the occurrence of missing values has not been 137 

investigated in any study. If a cohort comprises a large number of samples, the MS runs usually are 138 

spread across multiple days, which is known to influence metabolite measurements due to variation 139 

in instrument sensitivity. Here, the LOD itself is also expected to vary across run days, an assumption 140 

that has not been explicitly accounted for in any studies. (ii) In addition, a simulation framework that 141 

reflects realistic data situations is needed to provide an unbiased evaluation of strategies for handling 142 

missing values. Evaluation of previous studies has been biased in the sense that “complete” 143 

measured data (created by excluding all variables with missing values) with artificially introduced 144 
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missing values were simulated, which most likely does not mirror realistic missing value patterns. (iii) 145 

Finally, biological validation and biochemical interpretation of the data have not been addressed in 146 

the majority of papers. Only Hrydziuszko et al. evaluated the ability of different imputation strategies 147 

to preserve metabolic differences between biological groups, which then were related to KEGG 148 

pathways (11).  149 

 In the present study, we analyzed patterns of missing data and evaluated the performance of 150 

various imputation strategies for untargeted MS-based metabolomics data from serum samples of 151 

the German Cooperative Health Research in the Region of Augsburg (KORA) F4 cohort. Data were 152 

measured on a typical, widely used untargeted MS-based metabolomics platform (Metabolon, Inc., 153 

USA) and should be representative of many untargeted population-scale metabolomics studies. The 154 

study consisted of three steps: (i) We described and analyzed patterns of missing values and their 155 

possible underlying mechanisms in a real untargeted metabolomics dataset. In particular, we 156 

investigated the occurrence of missing values within and across batches of measurements. (ii) The 157 

insights gained from these analyses were used to introduce realistic patterns of missing data into 158 

simulated data. We applied 31 imputation methods to the datasets and evaluated them with respect 159 

to their ability to achieve correct statistical estimates and hypothesis test results in various data 160 

scenarios. (iii) Finally, the imputation methods were applied to real metabolomics data (KORA F4), 161 

followed by two biologically-driven evaluation schemes. First, we assessed how accurately real 162 

biochemical pathways were reconstructed in data-driven correlation networks inferred from the 163 

imputed data. Second, we verified whether imputation led to a gain in statistical power, while 164 

preserving effects of genetic variants on metabolite levels. The study workflow is visualized in Figure 165 

1. 166 
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Results 167 

Characterization of missing data patterns in KORA F4 untargeted metabolomics 168 

data 169 

We used an untargeted metabolomics dataset from the KORA F4 study, which was generated from 170 

fasting serum samples measured on three platforms: LC/MS in both positive (LC/MS+) and negative 171 

modes (LC/MS−), as well as a GC/MS platform. After log-transformation and outlier handling (see 172 

Methods), 1757 samples and 516 metabolites were available for analysis.  173 

 The dataset contained 19.41% missing values, with 416 (80.6%) metabolites and all 174 

observations showing at least one missing value. The majority (301) of these 416 metabolites had 175 

fewer than 10% missing values (Figure 2A). For only 9.9% (51) of the metabolites, more than 70% of 176 

the measurements were missing. The amount of missing values per observation ranged from 11.4% 177 

to 32.2%, with an average of 19.6% (Figure 2B).  178 

LOD-based missing values 179 

For metabolomics data, a common assumption is that missing values occur because of low 180 

concentrations that are below the limit of detection. To explore this assumption, we analyzed missing 181 

values of a metabolite using a second, strongly correlated metabolite, which we term the auxiliary 182 

metabolite. The auxiliary metabolite is defined as the metabolite with the highest correlation (𝑟) to 183 

the given metabolite. Due to its strong correlation, we assume that insights into the pattern of 184 

missing values of a metabolite can be gained from the corresponding non-missing observations of its 185 

auxiliary metabolite. For example, assuming that metabolite A has missing values in certain 186 

observations for which its auxiliary metabolite B has measurements. If these measurements in B are 187 

low then a missing value in A most likely occurred because the actual concentrations were below the 188 

LOD. We required a minimum correlation of 𝑟 =  0.3 for auxiliary metabolites, but other values gave 189 

qualitatively similar results (File S1). 190 
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 Overall, an auxiliary metabolite was available for 56.6% of the metabolites. Of those, 62.0% 191 

showed a clear tendency for missing values to below the LOD (see Methods and File S1). An example 192 

for a clear LOD-tendency is shown for 7-methylxanthine in Figure 2C. This compound is a metabolite 193 

of caffeine metabolism that is correlated with 3-methylxanthine. The majority of observations with 194 

missing data in 7-methylxanthine showed low values for 3-methylxanthine, indicating that the 7-195 

methylxanthine values were most probably below the LOD. An example for a metabolite pair that 196 

does not show an LOD-based missingness pattern is provided in Figure 2D for 1-197 

arachidonoylglycerophosphocholine (1-AGPC) and its auxiliary metabolite 1-198 

docosahexaenoylglycerophosphocholine (1-DGPC). Unlike the previous example, observations with 199 

missing data for 1-AGPC showed values varying over the whole range of 1-DGPC. Consequently, this 200 

suggests that LOD does not adequately explain the pattern of missing values for 1-AGPC. Scatterplots 201 

of investigated metabolites and their corresponding auxiliary metabolites, as well as boxplots of 202 

concentrations in the auxiliary metabolites for missing and non-missing observations in the 203 

investigated metabolites can be found in File S1. 204 

Although the LOD-tendency was observed for many metabolites, there was no clear LOD threshold 205 

separating missing and observed measurements across all metabolites (Figure 2C), which would have 206 

been the case if LOD was the only underlying mechanism for missing data. Instead, the values of the 207 

auxiliary metabolites with missing values in the investigated metabolites were spread broadly over a 208 

range of lower values, indicating a blurred rather than a single fixed LOD for all metabolites.  209 

Run day-dependent missing values 210 

Batch (run day) effects also can drive systematic patterns of missing data due to daily variation in 211 

instrument sensitivity. To examine whether missing data depended on overall run day quality, we 212 

examined the amount of missing values per run day for each platform (LC/MS+, LC/MS–, or GC/MS). 213 

Subsequently, we investigated whether metabolites were affected differently by runday quality. 214 
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 The KORA F4 samples were measured on 53 run days with 34 samples on average per day. If 215 

missing values were dependent on run day quality due to variation in instrument performance (e.g., 216 

caused by LC or GC column decline), we would expect there to be some days for which samples 217 

overall contained more (“bad” run day) or fewer (“good” run day) missing values compared with the 218 

average. Indeed, we observed such “bad” and “good” run days for all three platforms (Figure 3A). 219 

While the run day-specific amount of missing values tended to be correlated between LC/MS− and 220 

LC/MS+ (correlation of the run day-specific median of missing values between the two platforms was 221 

𝑟 = 0.36), there was no correlation between LC/MS+/− and GC/MS. This suggests that changes in 222 

instrument performance, rather than global effects (such as those that could originate from sample 223 

preparation) were responsible for differences in run day quality. 224 

 Although there was an overall effect of run day quality on the pattern of missing values, we 225 

observed considerable differences in the standard deviations (SD) of run day-specific missing values 226 

for metabolites with the same amount of missing data (Figure 3B). This suggests that metabolites 227 

were affected differently by run day quality. For example, the bile acid ursodeoxycholate (46% total 228 

missing data) showed relatively low variation in run day missing data (SD = 0.12) (Figure 3Figure 3C). 229 

However, for gamma-glutamylisoleucine (Figure 3D), a metabolite with a similar total amount of 230 

missing values (42%), the observed variation in missing data across run days was substantially larger 231 

(SD = 0.22). 232 

Run day-dependent LOD mechanism 233 

The observed run day-dependent pattern of missing data, together with the blurred LOD-based 234 

pattern, suggests that different run days may exhibit different LODs, which contributed to the blurred 235 

global LOD effect. To verify this, we calculated the correlation between run day mean and run day 236 

missingness for all metabolites. A histogram of the correlation coefficients is shown in Figure 4A. The 237 

majority of metabolites displayed a strong tendency for negative correlations. An example for run 238 

day-specific LODs is shown in Figure 4B–C: for 7-methylxanthine, the correlation of run day mean and 239 
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the run day-specific amount of missing values is 𝑟 = −0.68 (Figure 4B). Run days with low means 240 

tended to have a higher amount of missing values (Figure 4C). Density plots for all metabolites before 241 

and after run day normalization can be found in File S2. 242 

 243 

Taken together, we observed that batch (run day) effects on the limit of detection can result in a 244 

blurred LOD-effect after run day normalization, which can explain patterns of missing values in most, 245 

but not all, metabolites. 246 

 247 

Evaluation of imputation approaches in a simulation framework 248 

As shown in the previous analyses, not all of the missing data in MS-based metabolomics studies can 249 

be attributed to run day-dependent LOD-based missing data. Thus, the optimal imputation approach 250 

should perform well across all possible patterns. We conducted a simulation study to compare 251 

statistical estimates between imputed and complete data. We simulated incomplete data according 252 

to the patterns of missing values observed in the real metabolomics data and imputed these data 253 

using various imputation approaches. We then evaluated these approaches for recovering correct 254 

statistical estimates after conducting correlation and regression analyses. 255 

Simulation setup and evaluation criteria 256 

We simulated six mechanisms for missing data derived from observations in the real data (see 257 

Methods, File S3, and Figure 5A–E): (i) Fixed LOD, as an extreme form of systematic missing values 258 

below a global LOD; (ii) Probabilistic LOD, where the probability of a missing value increases at lower 259 

values, which should resemble the blurred LOD-based patterns observed in the real data; (iii) Run 260 

day-specific fixed LOD, where LOD is assumed to vary across run days; (iv) Run day-specific 261 

probabilistic LOD, where a probabilistic form of LOD is assumed to occur across run days; (v) 262 

Unsystematic (random) missingness, for missing data with an unknown reason; and (vi) Mixtures of 263 

LOD-based and unsystematic missingness. Based on these 6 mechanisms, we created various 264 
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parameter scenarios resembling realistic conditions. For each scenario, we conducted 250 265 

simulations to assess whether the imputation methods could reconstruct statistical estimates of 266 

Pearson correlation, partial correlation, linear regression (results shown in File S3), and logistic 267 

regression. To this end, we calculated type 1 error as the proportion of simulations in which a 268 

significant estimate was obtained when the true correlation was equal to zero. In addition, we 269 

calculated power as the proportion of significant estimates when the true correlation was unequal to 270 

zero. We also estimated bias, which is shown in File S3. A detailed description of the simulation and 271 

evaluation framework is also provided in File S3. 272 

Missing data handling strategies 273 

We applied 31 imputation approaches (see Figure 5F; detailed descriptions in Methods and File S4) 274 

on the simulated data. Some were adapted to account for run day-specific missing values. The 275 

imputation approaches followed different concepts, which could have one of the following four 276 

properties or combinations thereof: (i) approaches that explicitly assume LOD-based missing values, 277 

(ii) approaches that consider run day-specific missing values, (iii) multivariate procedures using 278 

correlations among variables, and (iv) multiple imputation (MI) strategies. The MI approaches usually 279 

comprise imputation, analysis, and pooling steps. In the first step, the incomplete data are imputed 280 

m times to produce m complete datasets. Subsequently, statistical analysis is performed on each of 281 

the m complete datasets and then the m analyses are combined to one final result.  282 

Simulation results  283 

In the following, we evaluate the performance of the four imputation properties (i)–(iv) introduced 284 

above. Simulation results from other data scenarios, all variations of the imputation approaches 285 

used, and the combination of parameter settings are available in File S5. 286 

 Property (i): Methods that explicitly assume LOD-based missing values and perform 287 

imputation globally without taking run day information into account (min, Richardson & Ciampi (RC), 288 

imputation by truncated sampling (ITS)), showed inflated type 1 error rates and low power for both 289 
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correlation and regression analysis. This was expected for three reasons. First, for a data scenario 290 

with run day-dependent probabilistic LOD-based missing values, these methods underestimate the 291 

LOD for most of the rundays and replace missing entries by too low values (Figure 6A). Second, for a 292 

data scenario with random missing values, they expectedly fail since the underlying assumption of an 293 

LOD is not met (Figure 6B). Finally, min and RC impute a metabolite by replacing all of its missing 294 

entries by a constant value, which substantially distorts the metabolite distribution (see File S5). 295 

Property (ii): The LOD-based methods that take run days into account (RC-R, ITS-R) were 296 

expected to perform well in a simulated data scenario with run day effects (Figure 6A). Unexpectedly, 297 

we observed an inflated type 1 error rate and decreased power for all three statistical analyses 298 

(Pearson correlation, partial correlation, and logistic regression). RC-R and ITS-R assume that the 299 

observed values of a metabolite follow a truncated normal distribution, which is parametrized by 300 

maximum likelihood estimation (MLE), in order to replace missing values with randomly drawn values 301 

from the truncated part. The instability of MLE due to small sample sizes available within run days 302 

could explain the poor performance of these approaches. The same poor performance was observed 303 

for scenarios with a mixture of run day-dependent LOD-based and random missing values (Figure 6C). 304 

For the dataset with only random missing values, LOD- or run day-based approaches showed the 305 

expected strong reduction in power since here the underlying assumption of a truncated normal 306 

distribution is false (Figure 6B). 307 

 Property (iii): Multivariate approaches (imputation based on chained equations (ICE) and 308 

KNN-based imputation) take into consideration the correlation between variables or observations. 309 

ICE approaches had high power, but an increased type 1 error rate when missing value proportions 310 

increased (Figure 6). KNN-based imputation on observations with variable pre-selection and K = 10 311 

(KNN-obs-sel(10)) was one of the best performing methods with high power and an overall marginal 312 

type 1 error rate, even for a high amount of missing values. The power for KNN-obs was also high, 313 

but it showed high type 1 error rate and therefore a poor ability to correctly identify truly absent 314 
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associations. In contrast, KNN-vars had a low type 1 error rate, but decreased power, which became 315 

more pronounced at higher amounts of missing values. 316 

 Property (iv): Single imputation procedures often underestimate the variability of statistical 317 

estimates, resulting in inflated type 1 error rates. This should be avoided by approaches performing 318 

multiple imputations (MI). MI versions based on LOD- (MITS) and run day-effects (MITS-R) indeed had 319 

decreased type 1 error rates, although power was low (Figure 6). MICE with Bayesian linear 320 

regression (MICE-norm) or predictive mean matching (MICE-pmm) as imputation model showed 321 

negligible type 1 error rates and high power for all scenarios with up to 50% missing values. At higher 322 

amounts of missing data, the power decreased considerably, but the type 1 error remained marginal 323 

(File S5). A slight modification of the MICE algorithm applied widely in the metabolomics field (here 324 

termed MICE-avg) was performed on each imputed data, and comprised the pooling of the imputed 325 

data with subsequent statistical analyses rather than pooling the statistical estimates after analysis. 326 

This approach showed high power, but increased type 1 error rates, in particular for >30% missing 327 

values. 328 

 Taken together, when considering all patterns of missing data and all evaluation criteria, 329 

KNN-obs-sel(10) and MICE-norm were the most robust approaches. For higher amounts of missing 330 

data (≥50%), MICE showed a strong decrease in power with marginal type 1 error, whereas KNN-obs-331 

sel(10) had only slightly increased type 1 error rates with high power. 332 

 333 

Evaluation of imputation approaches on real MS-based metabolomics data 334 

We conducted a biological evaluation of all approaches using the metabolomics data from the KORA 335 

F4 population study. An objective criterion for evaluation is challenging to construct, since the true 336 

values underlying the missing ones are unknown. We devised two indirect tests that assessed 337 

imputed values for biological validity. First, we assessed the ability of imputation methods to 338 

statistically reconstruct biochemical pathways in metabolomics data. Second, we evaluated the gain 339 
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in statistical power while preserving the true effect size of genetic variants (SNPs) on metabolite 340 

levels. 341 

Evaluation based on pathway modularity 342 

GGMs are based on partial correlations and reflect conditional dependencies in multivariate Gaussian 343 

distributions (5,22). When applied to metabolomics data, they reconstruct a precise picture of the 344 

metabolic network, showing a modular topology with respect to known pathways. In other words, 345 

metabolites will tend to be correlated with other metabolites from the same biochemical pathway 346 

(5,22,23). We used this pathway-based modularity in a metabolic network as a quality criterion to 347 

indicate whether the imputation methods generally were capable of maintaining biochemically valid 348 

edges.  349 

 Each imputation strategy was applied to the KORA F4 metabolomics data, and a GGM was 350 

estimated for each obtained dataset. Subsequently, we used a priori pathway annotations from 351 

Metabolon Inc., where each metabolite was assigned to one pathway (e.g., branched-chain amino 352 

acids, lysolipids, xanthines) to calculate pathway-based modularity (𝑄), according to (22,24). This 353 

measure reflects the ratio of metabolite correlations within versus across pathways. A high Q value 354 

indicates a dense within-pathway correlation compared with cross-pathways. Variability was 355 

estimated by bootstrap resampling (see Methods).  356 

 Across all datasets, we obtained modularity values ranging from 0.384 to 0.434 (Figure 7A). 357 

Imputation methods that explicitly considered the LOD-based mechanism and their run day-specific 358 

versions (Figure 5, property (ii)) did not outperform alternative approaches. Multivariate, single 359 

imputation methods (property (iii)) yielded low 𝑄 values, except for KNN-obs-sel, which achieved the 360 

overall third best result (𝑄 = 0.422 for K = 10) (Figure 5). The performance of KNN-based imputation 361 

methods strongly depended on the definition of neighbors (variables or observations) and on the 362 

number of these neighbors (K). The MI procedures (property (iv)) MITS, MITS-R, and MICE-avg 363 

performed poorly, whereas the networks generated on MICE imputed data showed the overall 364 
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highest modularity (𝑄 = 0.434 and 𝑄 = 0.424 for MICE-norm and MICE-pmm, respectively) (Figure 5). 365 

Overall, the three best performing approaches were MICE-norm, MICE-pmm, and KNN-obs-sel(10). 366 

Evaluation based on metabolite-SNP associations 367 

Using KORA F4 data (n = 1750), we determined the ability of imputation methods to gain statistical 368 

power compared with complete case analysis (CCA, deleting samples with any missing values) while 369 

preserving the effect of genetic variants on metabolite levels in human blood. For the evaluation, we 370 

selected a set of metabolite-SNP associations from a previous genome wide association study 371 

(GWAS) in the KORA F4 and TwinsUK cohorts, for which a functional connection between the gene 372 

and the metabolite was biologically evident (Table S8) (25). For example, GOT2 (rs4784054), which 373 

was associated with concentrations of phenyllactate, encoded an enzyme that catalyzes the 374 

conversion of phenylalanine to phenylpyruvate, which is then converted to phenyllactate (25,26).  375 

 We investigated the gain in statistical power when using imputed datasets compared with 376 

the power obtained with CCA for 18 of such metabolite-SNP pairs, where the metabolite had 377 

between 10% and 70% missing values. Statistical power gain was calculated as the negative log10 of 378 

the ratio of the p-values estimated for the imputed data to the p-values estimated for CCA in 379 

corresponding linear regression models (detailed results in File S8 and Table S8). A high ratio 380 

indicates greater power for imputed data. As a second evaluation criterion, we calculated the log2 381 

absolute ratio of the effect sizes obtained from the regression models for imputed data and those 382 

derived from CCA in KORA F4 (see Methods). A log2 ratio close to zero indicates that the imputation 383 

method was able to preserve effect sizes, whereas imputations yielding a highly negative or positive 384 

log2 ratios indicate underestimation or overestimation of the effect sizes, respectively. 385 

 Imputation with LOD-based methods (property (i)) yielded a gain in power for up to seven 386 

genetic associations of the 14 metabolites (Figure 7Figure 7). For two of these associations 387 

(tetradecanedioate and SLCO1B1; and hexadecanedioate and SLCO1B1), effect sizes were 388 

underestimated, and for the association between 1-methylurate and NAT2, the effect size was 389 

.CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/260281doi: bioRxiv preprint first posted online Feb. 11, 2018; 



17 
 

overestimated across all methods, except for MITS-R. Run day-specific imputation methods (property 390 

(ii)) performed well, with ITS-R yielding the highest number of associations (12) with greater 391 

statistical power, of which seven showed effect sizes similar to effect sizes derived from CCA. The 392 

best methods among multivariate approaches (property (iii) and (iv)) were MICE-avg-norm, KNN-obs-393 

sel(10), and KNN-obs-sel(20), all three of which generated a gain in statistical power for 12 394 

associations. These methods also showed good performance in preserving genetic effects and did not 395 

show severe overestimation or underestimation of effect sizes. MICE-norm/-pmm/-adjR showed only 396 

moderate performance with a power gain for seven associations.  397 

 In an additional analysis, we used results from the EPIC-Norfolk cohort with n = 10 634 398 

subjects (27), to assess the ability of imputation methods to preserve effects of genetic variants on 399 

metabolites. We hypothesized that the effect sizes would be estimated more accurately in this much 400 

larger dataset, and effect sizes obtained with KORA F4 imputed data should approximate effect sizes 401 

derived from EPIC-Norfolk. Overall, we observed that the majority of SNP-metabolite pairs showed 402 

either an overestimation or an underestimation of effect sizes across all imputation methods. This 403 

tendency might reflect differences between the cohorts KORA F4 and EPIC-Norfolk rather than 404 

differences between imputation strategies (see detailed results in File S7 and Table S8). 405 

 Overall, for nearly all metabolite-SNP pairs, this analysis showed that statistical power was 406 

increased by imputing missing values and the effect sizes could be preserved. ITS-R, MICE-avg-pmm, 407 

KNN-obs-sel with K = 10 and K = 20 were the imputation methods that generated the highest number 408 

of associations (12) and resulted in a gain in statistical power compared with CCA. 409 

  410 
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Discussion 411 

In this study, we investigated patterns of missing data in a typical example of untargeted MS-based 412 

metabolomics data and their possible underlying mechanisms. Insights gained from these analyses 413 

were used to generate simulated data that reflected the real data situation for a comprehensive 414 

evaluation of 31 imputation methods. Finally, we applied the imputation strategies to real MS-based 415 

metabolomics data from the German KORA F4 study and evaluated them using biological validity 416 

measures. 417 

 For metabolomics data, an intuitive assumption is that missing data occur when metabolite 418 

concentrations fall below the machine’s LOD. Indeed, we found evidence for systematic patterns of 419 

missing data due to LOD- and batch-effects for a large proportion of the analyzed metabolites. 420 

Missing data were found to be influenced by run day quality, although metabolites varied in their 421 

susceptibility to this effect. Finally, we found a negative correlation between run day mean and 422 

missing data per run day, further confirming LOD-based mechanism within run days. The existence of 423 

multiple run day-dependent LODs possibly accounted for the blurred rather than fixed global LOD 424 

observed in the data. It has been suspected that multiple detection limits arise from factors such as 425 

batch (run day) effects (27). However, to the best of our knowledge, this is the first time that these 426 

effects have been systematically explored so far. 427 

 We evaluated 31 imputation methods in an evaluation framework consisting of three 428 

schemes: (i) unbiased estimation of statistical estimates and hypothesis test results based on 429 

simulated data, (ii) statistical reconstruction of biochemical pathways in metabolic networks, and (iii) 430 

the ability to preserve effects of genetic variants on metabolite levels while allowing for a gain in 431 

statistical power.  432 

MICE-norm was the best performing imputation method for evaluation scheme (i) and (ii), but it 433 

showed only moderate performances in the metabolite-SNP analysis. One major drawback of this 434 

method is that multiple imputations have to be performed, making these approaches statistically and 435 
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computationally challenging. For m imputations, the desired statistical analyses must be performed 436 

on each of the m imputed datasets, and then the resulting m estimates must be combined to one 437 

statistical result. A widely applied alternative is to perform m multiple imputations and then combine 438 

the m complete datasets to one final dataset containing the average of the imputed values (MICE-439 

avg). That is, MICE-avg does not require statistical estimates to be pooled, and therefore, it is much 440 

easier to apply. However, this simplicity is accompanied by an underestimation of metabolites' 441 

variances, resulting in poorer performance of statistical estimation (correlation and regression 442 

coefficients) and reconstruction of biochemical pathways. 443 

 A feasible, but better performing method was KNN-obs-sel(10), which uses KNN-based 444 

imputation on observations with variable pre-selection and K = 10. This method ranked highly in all 445 

evaluation schemes. Other KNN-based imputation schemes, including KNN-based imputation on 446 

variables (KNN-vars) and on observations without variable pre-selection (KNN-obs), consistently 447 

showed poor performance across all evaluation schemes. Our results are in line with observations 448 

from previous studies, where KNN-based imputation performed well (10,11,15,28). However, we also 449 

observed that variations of KNN imputation lead to substantially different results, as in previous 450 

studies (20,28).  451 

 Although we observed LOD- and run day-based effects in real metabolomics data, methods 452 

that explicitly consider this information did not outperform competing approaches in the first two 453 

evaluation schemes. This is likely due to the fact that they perform imputation in a univariate manner 454 

without taking the correlation between the variables into account. Moreover, all of these LOD-based 455 

methods include maximum likelihood estimation in their imputation process, which was found to 456 

perform well only for larger sample sizes in previous studies (27,29). In our study, the number of 457 

observations within run days is limited, resulting in considerable instability of the MLE. LOD-based 458 

run day-dependent methods performed well with respect to gain in statistical power in the analysis 459 

of metabolites–SNP associations.  460 
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 In summary, we have presented a detailed description of patterns of missing data in 461 

untargeted MS-based metabolomics data. In particular, we considered, for the first time, the effects 462 

of run days on systematic patterns of missing data. Our work showed that missing data occur in most 463 

cases due to LOD effects, which are moreover run day-dependent. Nevertheless, MICE and KNN-464 

based imputation, methods that do not explicitly consider LOD-based effects, performed best when 465 

tested in both statistical and biological evaluation schemes. This is most likely because these 466 

methods take into account multivariate dependencies within the data. The two approaches are For 467 

future studies, we recommend KNN-based imputation on observations with K = 10, since it 468 

consistently performed well across all data scenarios and all evaluation schemes, and is 469 

computationally non-demanding for daily data analysis.  470 

  471 
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Material and Methods 472 

Study cohort, metabolomics and genotype measurements 473 

Data from 1768 fasting serum samples of the German Cooperative Health Research in the Region of 474 

Augsburg (KORA F4) population cohort (30) was used, comprising 910 females and 858 males. Age 475 

distribution was 60.53 ± 8.79 years for females and 61.20 ± 8.78 years for males. Body mass index 476 

(BMI) distribution was 27.88 ± 5.24 kg/m² for females and 28.46 ± 4.29 kg/m² for males. 477 

 Serum metabolomics measurements were performed on three platforms, LC/MS− (negative 478 

mode), LC/MS+ (positive mode), and GC/MS by Metabolon, Inc. (Durham, NC, USA). The 1768 serum 479 

samples were measured on 53 different run days, with 34 samples on average per run day. A total of 480 

516 metabolites were quantified, of which 303 had an identified chemical structure. A more detailed 481 

description of sample acquisition, experimental procedures, and metabolite identification can be 482 

found in File S10.  483 

Each known metabolite was annotated with one of 68 pathways by Metabolon, Inc. A full list 484 

of all measured metabolites, including pathway annotations, can be found in Table S9. For correlation 485 

analysis, data were normalized for run day-effects by dividing each metabolite by run day median. 486 

Since metabolite measurements were assumed to follow a log-normal distribution, the data were 487 

log-transformed for all statistical analyses. The run day-corrected and log-transformed data were 488 

used to determine outlier samples. Eleven individuals with a Mahalanobis distance (calculated across 489 

the complete dataset) greater than four SD from the mean were considered outliers and excluded 490 

from the dataset. For the biological evaluation schemes, age, sex, and BMI were used as standard 491 

covariates. Seven samples were excluded due to incomplete information in these phenotypes, 492 

resulting in 1750 individuals in total.  493 
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 The KORA F4 cohort was genotyped using the Affymetrix Axiom platform. After quality 494 

control, genotype data (measured or imputed according to data from the 1000 genomes project, 495 

phase 1 version 3) were available for 1685 of the 1750 individuals.  496 

Missing data in KORA F4 497 

To explore the mechanism for the missing data of a given metabolite 𝑚, a second (auxiliary) 498 

metabolite 𝑚𝑎𝑢𝑥 was used. 𝑚𝑎𝑢𝑥 was defined as the metabolite with the strongest Pearson 499 

correlation to 𝑚 (at least 0.3). An LOD-tendency was assumed if the average value of 𝑚𝑎𝑢𝑥 in 500 

samples with missing values in 𝑚 was significantly lower than the average of 𝑚𝑎𝑢𝑥 in samples with 501 

measured values in 𝑚. Significance was assessed using Wilcoxon–Mann–Whitney tests with 𝛼 = 0.05 502 

after Bonferroni correction for multiple testing. 503 

 For all correlation analyses, only metabolites with more than 10% and less than 70% overall 504 

missing values were considered. 505 

 In order to explore whether missing values varied among run days, the normalized 506 

proportions of missing values among the 53 run days were compared within each platform. For a 507 

metabolite 𝑚 and a run day 𝑑, the normalized amount of run day-specific missing values was 508 

calculated as the number of missing values for 𝑚 in 𝑑 divided by the total number of samples 509 

measured in 𝑑, divided by the median value of missing data of 𝑚 over all run days. 510 

Simulation study 511 

Insights gained from the analyses of missing values in real MS-based metabolomics data were used to 512 

create artificial data that best mirror reflected patterns of missing data. A brief overview of the 513 

simulation framework is provided below, and a detailed description can be found in File S3. For each 514 

set of parameters corresponding to a certain data situation, 250 random datasets were generated. 515 

For each dataset, two variables were simulated by drawing from a multivariate normal distribution, 516 

with sample sizes ranging from 100 to 1000, and with means equal to zero and covariance chosen 517 

such that variances were equal to one (representing scaled variables). The Pearson correlation 518 
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between the two variables was ranged from 0 to 0.4. In addition, for the multivariate analyses and to 519 

evaluate imputation methods that apply to a multivariate strategy, auxiliary variables correlated with 520 

the two main variables were introduced. Their number and correlation strength were chosen to 521 

match the real data (for details, see File S3). 522 

 Simulated observations were randomly assigned to “run days” with the number of run days 523 

chosen such that each run day comprised 34 observations, according to the average number found 524 

for the real KORA F4 measurements. 525 

 A proportion of missing values (10%, 30%, 50%, and 70%) was introduced into the main 526 

variable pair according to different mechanisms derived from our observations in the KORA F4 527 

Metabolon data (Figure 5, File S3).  528 

We used the following parameter settings for the results in the main manuscript: moderate 529 

variability of missing data across run days (see File S3), uncorrelated run day-specific missing patterns 530 

of the metabolite pair, and varying association of the inverse relation between metabolite 531 

concentration and missing values, at 𝑛 = 250 and in the presence of informative auxiliary 532 

metabolites. For Pearson and partial correlation analysis, both main variables had the same degree of 533 

missing data. For logistic regression analysis, the predictor variable had a mixture of 50% run day-534 

dependent probabilistic LOD-based missing data and 50% non-systematic missing data. Results for 535 

more parameter settings can be found in File S5. 536 

Imputation approaches 537 

A variety of imputation methods (Figure 5Figure 5) were selected because they were reported in the 538 

context of metabolomics data or were developed and adopted to address characteristics in the 539 

current dataset.  540 

Mean imputation (mean): All missing values of each incomplete variable are replaced by the average 541 

of the observed values of that metabolite. Minimum imputation (min): All missing values of each 542 
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incomplete variable are replaced by the smallest observed value of that metabolite (5,13,16). 543 

Richardson & Ciampi (RC): Assuming that missing values occur due to LOD and the observed 544 

metabolite values follow a left-truncated normal distribution, maximum likelihood is used to 545 

estimate this distribution. A missing value 𝑥 is then replaced by the expected value of 𝑥 conditional 546 

on 𝑥 being below the LOD, 𝐸(𝑥|𝑥 ≤ 𝐿𝑂𝐷) (17). Imputation by truncated sampling (ITS): This is an 547 

extension of the RC method, where the missing values are replaced by randomly drawn values from 548 

the censored part of the estimated truncated normal distribution. Multiple imputation by truncated 549 

sampling (MITS): ITS is applied as described above, but multiple imputation is performed according 550 

to Rubin’s rules (31) using the R package mice, version 2.25. These rules include: (i) the datasets are 551 

imputed 𝑚 times, (ii) each of the 𝑚 completed datasets is analyzed separately, and (iii) the 𝑚 552 

resulting estimates are combined using established procedures (31–33). The number of imputations 553 

was set to 𝑚 = 20 for all methods. Runday-specific LOD-based methods (RC-R/ITS-R/MITS-R): The 554 

previously described methods RC, ITS, and MITS are applied within run days where at least 17 555 

observations are available. In RC-R, the remaining missing values are set to the mean of all available 556 

expected values. For ITS-R and MITS-R, the remaining missing values are replaced using ICE-norm (see 557 

below). Imputation by chained equations (ICE-norm/-pmm/-adjR) was performed using the R 558 

package mice, version 2.25. It uses a repeated chain of equations through the incomplete variables, 559 

where in each imputation model, the respective incomplete variable is modeled as a function of the 560 

remaining variables (34–36). In ICE-norm, a Bayesian linear regression is used as the imputation 561 

model, whereas in ICE-pmm (predictive mean matching as imputation model), missing values are 562 

replaced by a random draw of measured values from other observations with the closest predicted 563 

values. In ICE-adjR, a model is specified with random intercept per run day, which aims to better 564 

utilize run day information. This model assumes that variable values (i.e., metabolite concentrations) 565 

have a run day-specific component, which varies randomly following a normal distribution. Multiple 566 

imputation by chained equations (MICE-norm/-pmm/-adjR) was performed using the R package 567 

mice, version 2.25: MICE-norm, MICE-pmm, and MICE-adjR consisted of 𝑚 = 20 parallel imputation 568 
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runs of ICE-norm, ICE-pmm, and ICE-adjR, respectively. Subsequently, the estimates are combined 569 

using Rubin’s rules as described above for MITS. MICE average version (MICE-avg-norm/-pmm): ICE-570 

norm or ICE-pmm is applied multiple (𝑚 = 20) times in parallel, followed by combining the 𝑚 571 

imputed datasets to one final dataset as the average of the imputed values. K-nearest neighbor 572 

imputation (KNN-var(K)/KNN-obs(K)/KNN-obs-sel(K)): In KNN-var and KNN-obs, missing values of 573 

each variable are replaced by the weighted average of pre-specified K nearest variables and 574 

observations, respectively. Distances to neighbors were defined as Euclidean distance and weights 575 

were chosen as 𝑒−𝑑, where 𝑑 defines the distances between two variables or observations. In KNN-576 

obs-sel, KNN-obs is performed by selecting the strongest correlated variables with |𝜌|  ≥ 0.2, but it 577 

was constrained to a minimum of 5 and a maximum of 10 variables. The number of neighbors for K 578 

was set to 3, 5, 10, and 20. 579 

More detailed descriptions of RC, RC-R, ITS, MITS, ICE, and KNN-based methods can be found in File 580 

S4. The two best performing methods, KNN-obs-sel(K) and MICE are available as R code in File S11. 581 

Statistical evaluation of missing data handling strategies in the simulation study 582 

Pearson correlation, partial correlation, linear regression, and logistic regression analysis were 583 

performed, and the ability of imputation methods to reconstruct true associations and unbiased 584 

hypothesis test results was evaluated. For logistic regression, a dichotomized variable was simulated 585 

by discretizing one of the simulated continuous variables: all values above the median were set to 1 586 

and all values below the median were set to 0. This dichotomized variable was used as response and 587 

the remaining continuous variable as predictor. For MI strategies, the resulting (correlation or 588 

regression coefficient) estimates and their variances were combined using Rubin’s rules. The 589 

obtained point estimates were then compared with the true underlying values by assessing the 590 

validity of hypothesis tests. To this end, type 1 error was calculated as the proportion of significant 591 

estimates (at α= 0.05) after imputation when there was no true effect. Power was calculated as the 592 
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proportion of significant estimates (at α= 0.05) after imputation in the presence of a true effect. 593 

Detailed results can be found in File S5.  594 

Evaluation based on pathway modularity 595 

This analysis was based on pathway annotations from Metabolon Inc. (see Supporting Information 596 

S9). Each imputation strategy was applied to the KORA F4 metabolomics data, resulting in different 597 

imputed datasets. All unknown metabolites were excluded since these compounds were not assigned 598 

to a pathway. For each imputed dataset, a Gaussian graphical model (GGM) was estimated to infer a 599 

network using the R package GeneNet, version 1.2.12. In previous studies, we have demonstrated 600 

that these models correctly reconstruct biochemical pathways from the data (22,25,37). In the case 601 

of MIs, a GGM was estimated for each imputed dataset, followed by combining partial correlations 602 

using Rubin’s rules after a Fisher Z-transformation. The network was constructed using partial 603 

correlations that are significantly different from zero after Bonferroni correction for 𝑛 ∗ (𝑛 − 1)/2, 604 

where 𝑛 is the number of metabolites.  605 

The pathway-based network modularity measure 𝑄 (22,24) was calculated for each network as 606 

𝑄 =  ∑ [
𝐴(𝑉𝑖,𝑉𝑖)

𝐴(𝑉,𝑉)
− (

𝐴(𝑉𝑖,𝑉)

𝐴(𝑉,𝑉)
)

2

]
|𝑆|
𝑖=1 , 607 

where |𝑆| is the total number of pathways, 𝑉 is the set of all metabolites, and 𝑉𝑖 describes the subset 608 

of metabolites annotated with pathway 𝑖. 𝐴(𝑉𝑖, 𝑉𝑗) is the number of edges between any two node 609 

sets 𝑉𝑖 and 𝑉𝑗. The variance of 𝑄 was estimated non-parametrically using bootstrapping of the 610 

original dataset (R package boot, version 1.3-15) with 1000 runs. 611 

Evaluation based on metabolite-SNP associations 612 

Linear regression was performed using KORA F4 CCA and the results were compared with each other. 613 

For this analysis, we selected metabolite-SNP pairs for which (i) a genome-wide significant 614 

association could be identified in the meta-analysis of KORA F4 and TwinsUK cohorts in a previous 615 

GWAS (25) (summary statistics retrieved from http://www.gwas.eu); (ii) the proportion of each 616 
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metabolite’s missing values in KORA F4 was between 10% and 70%; (iii) the metabolite was 617 

measured in the EPIC-Norfolk cohort, which we used to further benchmark the preservation of effect 618 

sizes; and (iv) a functional connection between the genetic locus of the SNP and the metabolite (e.g., 619 

metabolite is a known substrate of the transporter) was evident according to manual curation of the 620 

GWAS results (Table S8). For each imputed dataset, 18 metabolite-SNP pairs were tested for genetic 621 

association using age- and sex-corrected linear regression models under the assumption of an 622 

additive genetic model (metabolite ~ 𝛽0 + 𝛽1 × SNP + 𝛽2 × age + 𝛽3 × sex). To avoid spurious 623 

associations, metabolic data points greater than four SDs from the mean were removed prior to 624 

computing linear models. For MI approaches, the regression coefficients were pooled using Rubin’s 625 

rules as provided by the R package mice, version 2.25. For each metabolite-SNP pair, the variance of 626 

the regression coefficients and p-values were estimated using bootstrapping.  627 

 To explore which imputation approaches increased statistical power, p-values obtained for 628 

the effect sizes based on imputed data were compared with p-values obtained from CCA by 629 

calculating their ratio as 𝑟𝑝 =  
− log10(

𝑝𝑖𝑚𝑝

𝑝𝐶𝐶𝐴
)

− log10(𝑝𝐶𝐶𝐴)
, where 𝑝𝑖𝑚𝑝 was the p-value obtained for imputed data 630 

and 𝑝𝐶𝐶𝐴 was the p-value derived from CCA. A ratio less than or equal to zero indicated either no 631 

power gain or a power loss, whereas a ratio greater than zero indicated a drop in p-value, which 632 

suggested that statistical power increased when imputation was performed.  633 

 In addition to statistical power gain, the imputation approaches should be able to preserve 634 

effect sizes compared to CCA. Standardized effect sizes obtained from the imputed data (𝛽𝑖𝑚𝑝) were 635 

compared with standardized effect sizes estimated for CCA (𝛽𝐶𝐶𝐴) based on the KORA F4 data (n = 636 

1750) and the EPIC-Norfolk data (n = 10 634), assuming estimates from the EPIC-Norfolk data to be 637 

close to true effects. We calculated the ratio 𝑟𝛽 = log2(|
𝛽𝑖𝑚𝑝

𝛽𝐶𝐶𝐴
|), with a low ratio indicating a similar 638 

effect size between the imputed data and CCA. A highly negative or positive 𝑟𝛽 indicates an 639 
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underestimation or overestimation of the effect sizes in imputed data, respectively. A well 640 

performing imputation method is assumed to obtain high 𝑟𝑝 and low absolute 𝑟𝛽. 641 

  642 
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Figures and Tables 643 

 644 

Figure 1. Flow chart of the study design. Pre-processed KORA F4 metabolomics data were 645 

used to analyze patterns of missing values in the dataset. Possible underlying mechanisms 646 

were inferred and implemented in a simulation framework to generate data resembling the 647 

observed patterns. Based on these simulated data, imputation methods with different 648 

characteristics were applied and evaluated. Finally, the same imputation approaches were 649 

evaluated using KORA F4 metabolomics and genomics data. 650 

Figure 2. Overall amounts of missing data and LOD effects. (A,B) The overall fraction of 651 

missing values across metabolites and observations, respectively. (C,D) Scatter plots and 652 

boxplots of selected metabolite pairs to illustrate missing data due to LOD and non-LOD 653 

effects, respectively. Blue - observed concentrations. Red - observed values of the auxiliary 654 

metabolite in observations with missing values of the investigated metabolite. Note that red 655 

data points are not part of the x-axis but were plotted in the same scatterplot for clarity. corr 656 

= correlation, p = p-value of correlation, 𝒑𝑾𝒔𝒕 = p-value of Wilcoxon–Mann–Whitney test. 657 

Figure 3. Run day-dependent effects on missing data. (A) Normalized amount of missing 658 

values per run day in each platform (LC/MS+, LC/MS−, GC/MS). For a given metabolite and 659 

run day, the normalized amount of missing data per run day was calculated as the number of 660 

missing values for the respective metabolite on the respective run day divided by the total 661 

number of observations for that run day, divided by the median amount of missing data of 662 

that metabolite over all run days. Thus, a normalized run day-missingness of 1 is the average 663 

run day-missingness for a given metabolite. Pearson correlation coefficients were calculated 664 

across all pairs of platforms. (B) Standard deviation of missing values across run days, 665 

depending on the total amount of missing data for each platform. Each dot in the plot shows 666 

the total proportion of missing values and the run day variation for one metabolite. (C)–(D) 667 

The distribution of the total amount of missing values is shown for a metabolite with 668 

moderate (ursodeoxycholate) and high (gamma-glutamylisoleucine) standard deviation. 669 

Figure 4. Run day-dependent LOD. (A) Histogram of Pearson correlation coefficients of the 670 

percent of missing values and run day means. (B) Scatterplot of run day mean versus percent 671 

missing values, with 7-methylxanthine as an example of a negative correlation. (C) Run day 672 

distributions of 7-methylxanthine before run day normalization. 673 

Figure 5. Mechanisms of missing data and imputation approaches used in the simulation 674 

study. (A)–(E) Mechanisms of missing values used in the simulation study, based on evidence 675 

from real metabolomics data. (F) Venn diagram of imputation methods showing different 676 

characteristics. Note that the figure contains complete case analysis (CCA), which is not an 677 

imputation method, and is noted in brackets. CCA and mean were placed outside the Venn 678 

diagram, as they do not comprise any of the four characteristics. LOD: limit of detection. 679 
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Figure 6. Simulation results for Pearson, partial correlation, and logistic regression analysis. 680 

Performance of imputation approaches in data scenarios where (A) both variables followed a 681 

run day-specific probabilistic LOD mechanism, (B) both variables showed non-systematic 682 

patterns of missing data, and (C) one variable with run day-specific probabilistic LOD-based 683 

missing data and the other variable showed non-systematic patterns of missing data. Type 1 684 

error and power reflect the false positive and true positive rate of hypothesis testing, 685 

respectively. Note that power = 1 - type 2 error rate. Note further that due to readability 686 

issues, only KNN-based imputation methods with K = 3, 10, and 20 were included, whereas 687 

KNN imputation with K = 1 and 5 can be found in File S5. 688 

Figure 7. Evaluation of imputation approaches on real data. (A) Pathway-based modularity 689 

for each imputation strategy. Modularity 𝑄 was calculated based on pathways. Vertical lines 690 

represent bootstrap-based confidence intervals (1000 times resampling). (B) The ability to 691 

gain statistical power and to preserve real metabolite-SNP associations after imputation. 692 

Circle color represents the ability of imputation methods to preserve effect sizes, with red 693 

and blue indicating possible overestimation and underestimation, respectively, and yellow 694 

corresponding to cases with good preservation of the association. Circle size depicts the gain 695 

in statistical power after imputation. The bigger the circle the higher the statistical power 696 

gain after imputation compared to CCA. Squares correspond to cases where no statistical 697 

power was gained. Note that due to readability issues, only KNN-based imputation methods 698 

with K = 3, 10, and 20 were included, whereas KNN imputation with K = 1 and 5 can be found 699 

in File S6 and Table S8. 700 
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