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Abstract

The tire hydroplaning phenomenon represents one of the main safety hazards for road users
driving under wet conditions. The improvement of the wet performance is therefore of prime
importance for the automotive industry. In the development loop of new tire designs, the cost
and the limited number of results provided by experimental measurements call for the use of
numerical simulation. In this context, Goodyear as one of the leading tire manufacturers initiated
the present research, which aims at improving the simulation of the tire-water interaction to
enlarge the understanding of the underlying physics and optimize the hydroplaning performance
of tires.

The current application is very challenging in the field of computational fluid-structure inter-
action (FSI) due to the complexity of each sub-domain and their coupling. A partitioned pro-
cedure is used in this work to couple two single-field black-box solvers specifically chosen for
their abilities to compute accurately and efficiently their respective physical sub-domain. Such
a partitioned coupling procedures is particularly demanding in the case of the tire hydroplaning
problem as it suffers from the so-called artificial added-mass effect that can introduce strong
instabilities. More specifically, a loosely-coupled approach has been chosen to fulfill the time
efficiency and robustness requirements imposed by the industrial character of this research. Al-
though strongly-coupled methods are commonly employed for dealing with large added-mass
effects, it is shown in this work that a loosely-coupled procedure can successfully compute the
hydroplaning problem for real full-scale tire designs.

Replacing a basic coupling algorithm embedded in one of the single-field solvers, a new coupling
shell is developed as a standalone flexible development platform, that is used as a workbench to
evaluate alternative advanced coupling strategies. It essentially allows to manage the execution
of the solid and fluid solvers and to extract coupling data required for developing the proposed
improvements.

Depending on the application, several approaches are proposed to obtain the most time efficient
yet accurate solution path. The proposed methods all rely on a rigorous control of the energy
artificially produced at the interface by the partitioning process. On the one hand, an interface
energy-based error is dynamically evaluated and used to choose the largest coupling time step
size depending on the accuracy requirements in each time station. To the best of the author’s
knowledge, it is the first time that such an interface energy-based criterion is used to take cor-
recting actions for improving the coupling procedure, in particular optimize the coupling time
step size along the simulation. On the other hand, a predictor on the solid displacements at the
interface is employed to reduce the partitioning error, which in turn allows for the use of larger
FSI time steps.

The novel coupling strategy and proposed developments are validated with use of a numerical
model considered as a standard benchmark for FSI problems. The hydroplaning application is
then computed for a Grosch wheel, a small size simplified tire model, as well as for a real tire
construction. It is shown that for weakly-coupled problems such as the present Grosch wheel
example, the use of a solid predictor is beneficial as it reduces the overall simulation time by
up to 50 %. As for the real tire design prone to large added-mass instabilities, the application



of the adaptive time stepping procedure substantially reduces the simulation time leading to a
gain of more than 30 %. Ultimately, a robust loosely-coupled procedure is used successfully for
efficiently solving the hydroplaning problem for real tire designs.
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Zusammenfassung

Das Reifen-Aquaplaning-Phénomen stellt eine der groflten Sicherheitsrisiken fiir Verkehrsteil-
nehmer bei nassen Bedingungen dar. Die Verbesserung der Leistung bei Nisse ist daher fiir die
Automobilindustrie von grofter Bedeutung. Die hohen Kosten und begrenzte Anzahl von Exper-
imenten erfordern den Einsatz numerischer Simulationen in der Entwicklung neuer Reifenkon-
struktionen. In diesem Zusammenhang hat Goodyear, als einer der fiihrenden Reifenhersteller,
das vorliegende Forschungsprojekt mit dem Ziel die Simulation der Reifen-Wasser-Interaktion
zu verbessern initiiert, um das Verstindnis der zugrunde liegenden Physik zu erweitern und die
Aquaplaning-Leistung von Reifen zu optimieren.

Die vorliegende Anwendung im Feld der numerischen Fluid-Struktur Interaktion (FSI) ist auf-
grund der Komplexitit jedes Teilgebiets sowie deren Kopplung sehr anspruchsvoll. Zur Losung
dieses numerischen Problems wird in dieser Arbeit ein partitioniertes Verfahren verwendet, um
zwei Einzelfeld-Blackbox-Solver zu koppeln, die speziell aufgrund ihrer Eignung das jeweilige
physikalische Teilgebiet genau und effizient zu berechnen ausgewihlt wurden. Derartige par-
titionierte Losungsverfahren sind bei Reifen-Aquaplaning-Problemen sehr anspruchsvoll, da
sie am sogenannten “artificial added-mass”-Effekt leiden, der zu starken Instabilititen in dem
gekoppelten System fiihren kann. Durch den industriellen Charakter der Problemstellung wird
ein schwach gekoppeltes (loosely-coupled) Verfahren gewdhlt, um die Effizienz- und Robus-
theitsanforderungen zu erfiillen. Obwohl stark gekoppelte (strongly-coupled) Methoden hiufig
fiir den Umgang mit groBen “artificial added-mass”-Effekten verwendet werden, wird in dieser
Arbeit gezeigt, dass das Aquaplaning-Problem fiir reale Vollskala Reifenkonstruktionen mit
schwach gekoppelten Einzelfeldlosern erfolgreich berechnet werden kann.

Eine neue eigenstindige und flexible Entwicklungsumgebung (coupling shell) ersetzt den beste-
henden Kopplungsalgorithmus, der in einen der Loser eingebaut ist. Diese ermoglicht die Ausfiih-
rung der Solid- und Fluidldser zu verwalten sowie die Kopplungsdaten zu extrahieren, die fiir
die Entwicklung und Bewertung neuartiger Kopplungsstrategien benétigt werden.

Zum Erhalt des effizientesten und genauesten Losungspfades werden mehrere problemspezifis-
che Ansitze entwickelt. Die vorgeschlagenen Methoden beruhen auf einer strikten Kontrolle
der Energie, die durch den Partitionierungsprozess kiinstlich am Kopplungsrand erzeugt wird.
Zum einen wird ein dynamisch ausgewertetes Fehlermal3 der Interfaceenergie verwendet, um
abhingig von den Genauigkeitsanforderungen grofStmogliche Zeitschritte wihlen zu konnen.
Nach bestem Wissen ist es das erste Mal, dass ein solches Interfaceenergie Kriterium verwen-
det wird, um korrigierend in den Kopplungsvorgang einzugreifen, insbesondere um die Kop-
plungszeitschrittgroBBe wihrend der Simulation zu optimieren. Zum anderen wird ein Priadiktor
fiir die Strukturverschiebungen am Kopplungsrand verwendet, der den Partitionierungsfehler re-
duziert und wiederum groere FSI-Zeitschritte zu ermoglichen.

Die neue Kopplungsstrategie und die vorgeschlagenen Entwicklungen werden mit Hilfe eines
Standardbenchmarks fiir FSI-Probleme validiert. Als Aquaplaninganwendung werden sowohl
ein sogenanntes Grosch-Rad, ein kleines vereinfachtes Reifenmodell, als auch eine reale Reifen-
konstruktion berechnet. Es zeigt sich, dass fiir schwach gekoppelte Probleme, wie das vor-
liegende Grosch-Rad Beispiel, die Verwendung des Solid-Pradiktors vorteilhaft ist und zu einer
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Reduktion der gesamten Simulationszeit von bis zu 50 % fiihrt. Fiir die Simulation der realen
Reifenkonstruktion, die zu “added-mass”-Instabilitdten neigt, reduziert die Anwendung des dy-
namischen adaptiven FSI-Zeitschrittverfahrens die Simulationszeit um 30 %. Zusammenfassend
lasst sich sagen, dass ein schwach gekoppeltes Verfahren erfolgreich zur effizienten Berech-
nung des Aquaplaningverhaltens realer Reifenkonstruktionen unter Einhaltung eines benutzer-
definierten Genauigkeitsniveaus eingesetzt werden kann.
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1 Introduction

1.1 Motivation

Tire hydroplaning, also known as tire aquaplaning, is familiar to all road users driving under
wet conditions. This physical phenomenon occurs when a water layer builds between the road
surface and the wheel of the vehicle, leading to a loss of contact between the tire and the road. As
a consequence the driver can lose control of its vehicle, which can lead to dramatic consequences.
To tackle this safety hazard the tire and automotive industry have been actively exploring ways
to improve the performance of tires under wet conditions and in various driving configurations
such as braking, accelerating or cornering. This tire performance hence dominates the overall
driving safety in certain critical situations. As a matter of fact, the EU commission regulation on
tire labeling effective since 2012 has retained wet grip as one of the three main tire characteristics
together with the tire rolling resistance and noise [43].

The phenomenon of tire hydroplaning counts to one of many applications in the research area
of fluid-structure interaction (FSI), in which the behavior of fluid and structure is closely inter-
dependent. The deformation of a solid depends on a fluid load applied onto its external surface
and, at the same time, the behavior of the fluid flow depends on the shape and motion of the
solid body. This class of coupled problems requires a simultaneous solution of the governing
equations of both fluid and solid single-fields as they interact and are influenced by each other. It
is therefore very difficult, if not impossible, to solve these equations analytically so that a numer-
ical approach is required in order to compute the inherently nonlinear and time-dependent FSI
problems. One speaks then of computational fluid-structure interaction. In particular, the case
of tire-water interaction can be raised among the most challenging computational FSI problems
due to a large number of constraints. They include, but are not limited to, the nature of the ma-
terials at stake, the high rotating speed of the wheel, the complex geometry of the tire tread, its
large deformations near the road and the contact occurring at the so-called triple region where
the tire meets the road and the water. These constraints are an additional source of nonlinearity
and instability in the coupled system and need to be treated with care.

Typical experimental investigation of hydroplaning performance of tires are expensive and highly
time consuming as an industrial process. Not only are there many different tire designs to be
tested but each of them also comes in a large variety of sizes and constitutive materials. In ad-
dition to that, and more importantly, the results of experimental testing are quite limited with
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respect to the local resolution of relevant physical effects and are therefore not sufficient to un-
derstand the underlying physics. These reasons also call for the use of numerical simulation
while dealing with the tire hydroplaning problem.

Thereupon the aim of this thesis is to improve the numerical simulation of tire hydroplaning as
a computational FSI problem. While the numerical modeling of fluids and solids has advanced
tremendously in the last few decades, the combination of both physics remains a very challenging
subject. This is addressed in this work, while focusing on the coupling techniques that are most
suitable for tire applications. Further investigation in the field is needed as very limited solutions,
usually neglecting very important aspects of the problem, are proposed today to predict properly
the hydroplaning phenomenon of tires.

Aiming at expanding the general understanding of the tire hydroplaning problematic and im-
proving the wet performance of new tire designs, Goodyear' as one of the world’s leading tire
manufacturer, initiated the present research. As a consequence, the proposed findings are also
expected to fit in an industrial framework. Adding to the inherent complexity of the problem,
not only the implemented solution should be robust, it is also required to run in a time efficient
manner.

Based on an academic-private partnership, this project could benefit from Goodyear’s many
years of experience in numerical modeling of tires as well as from the renown expertise in com-
putational methods of the Institute for Computational Mechanics? of the Technical University of
Munich. As a very challenging application of computational FSI, the generated research presents
therein a great interest for the scientific community. Supporting industries and research con-
ducted in Luxembourg where Goodyear is implanted, the FNR? co-funded the present project.

1.2 Tire hydroplaning

The physics of tire hydroplaning is further described in this section. Causes and factors con-
tributing to the phenomenon are given, which opens the door to solutions aiming at tackling this
particular problem. These solutions involve the experimental testing of tires on wet road surfaces
in order to evaluate their wet performance and, in turn, improve the construction and design of
future tires. Experimental techniques used for that purpose are shortly presented. Limitations of
experimental measurements are highlighted, which shows the need of complementary numeri-
cal results in order to properly predict the tire hydroplaning problem. Computational methods
employed to that effect are reviewed in section 1.3.3.

"The Goodyear Tire & Rubber Co., www . goodyear . com.
2Lehrstuhl fiir Numerische Mechanik, www . 1Lnm . mw . tum. de.
3 Fonds National de la Recherche, www . £nr . 1u.
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1.2 Tire hydroplaning

Tire

Figure 1.1: Three zones in the tire hydroplaning process according to Hays and Browne [82]:
hydrodynamic (I), viscous (II) and full contact (III) regions.

1.2.1 Physical process

The hydroplaning phenomenon takes place when a tire loses grip to the road due to the presence
of a water film between the two bodies. A good tire design will ensure that the tire remains
in contact with the road in any foreseeable weather conditions. In wet conditions, the contact
between the tire and the road can be described by the three-zone concept outlined e.g. in [82] as
illustrated in Figure 1.1. In the hydrodynamic region (I), inertial effects are predominant and no
contact between the tire and the road exists. The tire leading edge collides with the water layer,
which leads to a rise in the fluid hydrodynamic pressure as a water wedge forms in front of the
tire footprint. The lift force resulting from the fluid pressure increase deforms the tire, which
detaches from the road surface. The viscous region (II) is a transition zone dominated by viscous
effects of water where some rubber-road contact exists. The contact pressure is large enough to
counteract the fluid pressure, which is not sufficient to lift the tire off the road. As for the third
zone, it is the full contact region (III). From a wet grip point of view, the perfect tire design aims
at evacuating as fast as possible water away from the contact patch area by channeling water
through the groove network of the tire. This limits in turn the rise in fluid pressure and generates
the largest dry contact region (zone III) in the back of the footprint. Ultimately, if p. is the contact
pressure between the tire and the road and p the hydrodynamic pressure, hydroplaning will occur
if

P> Pe (1.1)

By integrating p over the wetted surface area and p. over the contact area between the road and
the tire, the condition can also be expressed as follows: tire hydroplaning occurs if the fluid lift
force (resulting reaction force from the fluid onto the tire) is greater than the vertical load applied
on the tire (weight of the vehicle if dynamic effects are neglected).
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The factors influencing tire hydroplaning are numerous and stem from different origins. Already
in the early 60’s, Horne and Dreher published in [88] some observations about the phenomenon.
They were used as a starting point in order to establish a list of important parameters contributing
to the hydroplaning phenomenon, namely:

— Fluid parameters: fluid layer thickness and density. Surprisingly, the fluid viscosity was
not listed as one of the impacting factors in [88] even though it clearly influences the tire
wet performance, as the fluid viscosity affects the ability of the tire to squeeze through the
water film.

— Tire parameters: inflation pressure (the higher the pressure, the better), tread design (foot-
print shape, groove network), tire construction, tire width (the narrower, the better).

— Vehicle parameters: weight and speed.
— Road surface parameters: pavement shape and texture.

To that, the driver’s behavior plays obviously an enormous role but cannot easily be taken into
account. Altogether, only the tire parameters can be influenced by the tire designer in order to
prevent and predict tire hydroplaning. However, as external environment factors have a huge
impact on the wet performance of tires, they must be taken into account while creating new
tire designs. To that effect, the tire industry commonly uses experimental testing and numerical
simulations which, as shown in the following, are both essential for evaluating properly a tire
performance and for understanding the phenomenon itself.

1.2.2 Experimental testing

Experimental testing is of prime importance as it allows to quantify the hydroplaning perfor-
mance of actual tire designs. The test results obtained in real conditions are very valuable to
the designers during the construction iteration of new tire models. Among the tests commonly
carried out by the tire industry, the most relevant in the present context are:

— Glass plate hydroplaning test (see Figure 1.2 (left)): a straight free-rolling (no acceleration
nor braking) tire is driven over a glass plate flooded with up to 3 mm of water. The shape as
well as the remaining contact area of the tire footprint can be measured by post-processing
pictures taken from below the glass plate by a high speed camera. This test allows to assess
the ability of a tire to evacuate water away from the footprint region.

— Deep straight aquaplaning test (see Figure 1.2 (right)): the tire is tested with a thicker
fluid layer on actual asphalt. This test is a full-throttle acceleration test, for which the
slip rate of the tire on the road is measured by comparing its angular velocity in wet
and dry conditions. In this case, the footprint shape and remaining contact area cannot be
measured.
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Figure 1.2: Snapshot of the footprint in a glass plate hydroplaning test (left) and setting of the
deep straight aquaplaning test in which a vehicle drives over a flooded asphalt surface
(right) [171].

— Curved aquaplaning test: same as the straight aquaplaning test except that the tire is driven
in a curve. Here, the experimental indicator is the lateral acceleration the tire is able to
undergo in a curve.

Not only these experimental tests are very expensive to carry out, especially considering the
fact that each idea for a tire design leads to the construction of the actual tire in multiple sizes,
they are also not sufficient in terms of produced output data due to the complexity of the testing
framework. Very interesting data such as the pressure distribution in the footprint or a precise
measurement of the tire deformation in the contact patch are not provided by experimental mea-
surements under wet conditions. While assessing the dry performance of tires, captors built into
the surface on which the tire rolls allow to measure the contact pressure as well as the shape
of the footprint. It is not possible in the wet case due to the presence of water, which disrupts
the measurements. In order to evaluate such quantities for full-scale tire designs, gain a broader
understanding of the phenomenon and limit the cost of experiments, numerical simulation of the
tire hydroplaning problem is achieved. It consists of a particular example of computational FSI
as described in the following section.

1.3 Computational methods for fluid-structure interaction

Before introducing the techniques used specifically for the numerical investigation of tire hy-
droplaning, the research area of computational FSI to which this application belongs is presented
in this section.

As suggested by its name, the field of computational FSI focuses on modeling and simulating
numerically the interaction of a movable rigid or deformable solid with a fluid flow. It counts
to one of the most challenging multi-field class of problems and represents therefore a research
area of continuously growing interest. The applications of FSI span a broad range of domains
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in engineering and natural science where experimental results are limited or even nonexistent.
The analysis of aircraft wing flutter [51, 147, 177] or wing flapping [100, 185], the deployment
of parachutes [168, 170] or airbags [176], the response of civil engineering structures to aero-
dynamic forces [144, 191], the lung breathing process [182, 193] or the blood flow in vessels
[17, 133], and many more, are all topics of past and on-going research. Each one of these appli-
cations has its own particularity with specific challenges and requirements. The problematic of
tire hydroplaning at hand counts to one of the most complex FSI applications due to the running
conditions as well as the materials and geometries involved. A detailed description of the com-
putational framework for tire hydroplaning is given in chapter 5, while numerical results for a
full-scale tire model are presented.

The solution procedures for computational FSI problems can be classified into different cate-
gories. They are distinguished here by the formulations and the discretization approaches for
each single-field, and by the coupling scheme.

1.3.1 FSI problem formulations and space discretization

The problem formulation takes place at the continuous level before any kind of numerical dis-
cretization. More complicated than single-field problems, FSI problems require the sets of dif-
ferential equations and boundary conditions associated with each physical sub-domain to be
satisfied simultaneously at the shared fluid-structure interface along which both physics are cou-
pled. A correct FSI problem statement consists then of the description of the solid and fluid
single-fields with their boundary conditions and appropriate coupling conditions enforcing dis-
placement and load continuity at the shared interface.

As the solid moves through space, the shape of the fluid sub-domain must change to conform to
every new position of the interface over time. The motion of the fluid sub-domain is therefore
also function of the unknown solid displacement. This makes FSI a three-field problem where
the unknowns are not only the solid and fluid fields but also the motion of the fluid sub-domain.
There are different formulations available to describe the material motion in each participating
single-field: a Lagrangian also called material description, and an Eulerian or spatial descrip-
tion. In a Lagrangian formulation, a material particle is followed and its properties are moni-
tored as it moves through space and time. In an Eulerian formulation, it is the properties of all
particles passing through a fixed location in space that are monitored. These modeling choices
made at a continuous level have direct implications on the space discretization of each single-
field. Indeed, in the discrete setting, a Lagrangian formulation translates into a mesh following
the material motion where the unknowns are the position of each mesh node. Whereas for an
Eulerian-based discretization, the unknowns are evaluated at fixed points in space within a mo-
tionless mesh and the continuum moves with respect to the grid, which corresponds to a so-called
fixed-grid approach as opposed to a moving-grid approach. The modeling of FSI systems under
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large displacements usually involves a combination of several formulations and discretization
techniques.

Solid formulation

The solid field is treated most of the time by a Lagrangian formulation, benefiting from the ability
to track easily free-surfaces and interfaces between different materials. However it deals poorly
with large distortions of the computational mesh without frequent remeshing of the solid sub-
domain. Most of solid dynamics code use this approach in combination with the finite element
method (FEM) for discretizing the domain in space.

Fluid formulation

The description of the fluid motion in a deforming domain is based in general on two formu-
lations, either on an Eulerian formulation or on the so-called Arbitrary Lagrangian Eulerian
(ALE) formulation that combines both Lagrangian and Eulerian descriptions.

Moving-grid approach 1In the first case of an ALE-based formulation [40, 41], the nodes of
the computational fluid dynamics (CFD) mesh can move as in a Lagrangian approach, remain
fixed in an Eulerian manner or move arbitrarily to optimize the quality of the elements. The fluid
field is then discretized and solved on a deforming mesh, which follows the movement of the
fluid-structure interface [50, 126, 166]. As a result, the solid and fluid mesh can match exactly
at the fluid-structure interface. However, if both solvers use different meshes or discretizations,
a mapping between fluid and solid quantities at the interface is required. A review of such cou-
pling methods is done in [30] and recent developments based on a dual mortar formulation
dealing with non-conforming meshes at the interface can be found e.g. in [94]. Although ALE
methods are perfectly suited for particular FSI problems, their use becomes restricted when the
wet surface of the solid undergoes a large displacement as the fluid mesh distorts excessively. A
robust mesh moving technique that also allows periodically regenerating the fluid mesh is then
necessary to preserve the quality of the grid and the accuracy of the computation, which can be
computationally expensive and even fail in some extreme cases of mesh deformation. It is worth
noting here that an analog strategy based on a moving computational domain called space-time
finite element formulation has been proposed by Tezduyar et al. [169], see e.g. [170] for recent
developments.

Fixed-grid approach In the second case of a pure Eulerian description, the fluid field is dis-
cretized on a fixed-grid. Avoiding the aforementioned drawbacks associated with large displace-
ment of the fluid-structure interface by immerging the wet boundary surface of the solid in a fixed
fluid mesh, this approach also handles well contacts [116, 150] of moving bodies or topology
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changes [53, 186] inside the fluid sub-domain. Simplifying greatly the computational mesh gen-
eration, Eulerian-based methods require however computational geometry procedures to capture
the evolution of the position, shape and topology of the dynamic surface representing the fluid-
structure interface [111]. Techniques aiming at reconstructing the discretized interface within
the fixed fluid background mesh and impose the coupling condition are known as immersed
boundary, embedded boundary, fictitious domain or Cartesian methods. For simplicity, all of
these non-body-conforming methods will be referred to here as immersed boundary (IB) meth-
ods. Originally proposed by Peskin more than 40 years ago in [141, 142], IB methods were first
developed for incompressible flows in conjunction with a finite difference method (FDM). Since
then their applications have been expanded with success to different discretization techniques
such as finite volume methods (FVM) [28, 129, 184], FE approaches [7, 91, 175, 194] or with a
extended finite element method (XFEM) [74, 116, 165]. For more information on IB methods,
the interested reader is referred to the review articles [89, 124]. Particular attention must be paid
to viscous FSI problems where these methods generally do not allow to capture boundary lay-
ers around the moving wet interface, requiring in turn a higher CFD mesh resolution in large
parts of the fluid sub-domain. Not feasible for large FSI problems due to obvious computational
efficiency reasons, the resolution of the boundary layer during the numerical simulation can be
maintained by using an adaptive mesh refinement (AMR) method as proposed first by Berger
et al. in [15, 16] and recently in e.g. [110]. Recent developments by Shahmiri et al. in [159]
and Schott et al. in [156] also include the use of an XFEM-based formulation to embed arbi-
trary mesh patches into a fixed background grid. These mesh patches follow the motion of the
solid, allowing in turn to accurately resolve the flow in the boundary layer region. An analo-
gous approach proposed by Farhat et al. in [44, 100] and based on a so-called ALE-embedded
computational framework translates and rotates the underlying fixed-grid in order to effectively
capture the position of the boundary layer. Although easy to implement, this technique is in gen-
eral not as computationally efficient as AMR methods, which are widely used in commercial and
research CFD codes [42].

Consequently, Eulerian fixed-grid approaches together with IB methods are particularly attrac-
tive for dynamic FSI problems characterized by large motions and deformation of the solid as
well as with contacts, topology changes or other geometrical complications, for which ALE
methods are often not feasible. Together with an appropriate treatment of moving boundary lay-
ers with a procedure such as e.g. AMR, viscous fluids can be treated accurately in a coupled
problem, while the solid single-field is in general solved by a FEM on a Lagrangian computa-
tional mesh.

1.3.2 Coupling schemes

In FSI problems both solid and fluid are interdependent such that the equilibrium conditions
between the two sub-domains at the wet interface must be satisfied at all times, making the
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numerical simulation of such strong coupled problems very challenging. The coupling scheme
is the procedure used to couple both sub-systems in time, which can also be seen as the time
discretization of the coupling conditions at the interface. They are commonly sorted into two
distinct categories: monolithic, and partitioned or staggered procedures.

Monolithic coupling procedure

In the monolithic approach the solid and fluid single-fields are solved simultaneously within a
unique coupled system of nonlinear equations. The mutual influence of both physics is taken
directly into account preventing any unbalance of the continuity conditions at the wet interface.
Monolithic procedures have been successfully applied to various problems such as channels with
flexible walls [12, 83], thin-walled structures in the human blood system [69, 99] or the mechan-
ical behavior of human red blood cells [93]. A recent approach allowing free and independent
choice of time integration schemes in the solid and fluid fields has been proposed by Mayr et
al. in [118]. While this ultimate form of strong coupling procedure can be optimized for a spe-
cific problem, it does not recognize the differences between the mathematical properties of the
fluid and the solid sub-systems and requires most of the time a code developed for each partic-
ular combination of physical problems. This can result in an ill-conditioned coupled system for
which existing numerical solution methods are mostly not adapted [147]. Furthermore, the size
of the system and the lack of software modularity in monolithic schemes are proved to be a ma-
jor obstacles in practice when large and complex industrial applications are considered, which
usually directly disqualifies this approach for such problems.

Partitioned coupling procedure

In partitioned coupling strategies solid and fluid equations are solved separately, requiring an
appropriate coupling procedure to establish the interaction and to determine the solution of the
coupled problem. Advantages of such coupling procedures are numerous. In particular, the com-
putational complexity per time step is reduced, sub-cycling* within each single-field problem
is facilitated and software modularity achieved, allowing the solid and fluid flow equations to
be solved by different and possibly more efficient techniques developed specifically for each
sub-system. Within partitioned schemes, two sub-categories of coupling strategies exist: loosely-
coupled or strongly-coupled partitioned procedures.

Loosely-coupled procedure 1In so-called loosely or weakly-coupled strategies, also known as
sequentially staggered methods, a violation of the continuity conditions at the interface is al-
lowed, which results in a coupling that is only weakly enforced between the two sub-domains.

4Sub-cycling refers to a technique allowing each sub-system in a partitioned scheme to be solved with an indepen-
dent time step that is smaller than the synchronizing FSI time step.
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In these coupling procedures, the solid and fluid are solved only once within each time step and
a coupling algorithm establishing the interaction between the fluid flow and the solid motion is
required. Clearly, a sequential treatment of the coupling introduces an explicit flavor into the
solution method even when the individual sub-systems are solved by implicit time marching
schemes. For this reason, loosely-coupled methods are also often designated by explicit cou-
pling procedures. Therefore, restrictions on the time step have to be expected. While too large
time steps lead to a partitioning error corresponding to a too large time lag between the two sub-
systems, observations show that decreasing the time step size causes an increase in instability
when incompressible flows are considered. The problem known as artificial added-mass effect
can be interpreted as though major parts of the fluid act as a supplementary mass on the solid de-
grees of freedom at the fluid-structure interface. It was already described by Mok et al. in [127]
and Le Tallec et al. in [104], and a mathematical background was provided by Causin et al. in
[25] by means of a reduced model problem. They showed that this disruptive effect yields unsta-
ble simulations and is reinforced in the case of a strong interaction between solid and fluid due
to high fluid/solid density ratios and for problems with slender shapes. Consequently, the time
step size is required to lie in a range that can be rather small or in some cases even empty, giv-
ing rise to unconditional numerical instability [66]. Nevertheless, loosely-coupled procedures
can be constructed even in configurations subjected to high added-mass effects as further dis-
cussed in section 3.3.5.2. If the application allows it, loosely-coupled strategies can hence be
recommended due to their computational efficiency, their simple implementation and their com-
patibility with black-box solvers.

Strongly-coupled procedure Strongly-coupled or fully-coupled solution strategies were intro-
duced to overcome the deficiencies of loosely-coupled approaches, see e.g. [104, 114, 125]. In
this case, the interface coupling conditions are enforced by performing sub-iterations between
the fields before advancing to the next time station. This implicit coupling procedure, in contrast
to the previously described explicit approach, is generally more robust and stable than loosely-
coupled schemes but yields a highly nonlinear coupled system to be solved at each time step. As
a matter of fact, as stated by Fernandez in [60], ’in addition to the common nonlinearities of the
fluid and solid equations, implicit coupling induces geometrical nonlinearities within the fluid
equations [...]”, increasing substantially the complexity of the coupled system to solve as well as
the computational cost every coupling time step. Several approaches to resolve the coupling in
an iterative fashion have been proposed and are reviewed in the following.

A common method is the so-called Dirichlet-Neumann partitioning or fixed-point iteration for-
mulation that uses a block Gauss-Seidel scheme as follows: the fluid flow is solved for a given
position of the shared interface then followed by the computation of the deformed solid sub-
domian due to the fluid load on the wet interface and iterations are performed between both
single-fields until sufficient convergence is obtained. Due to the artificial added-mass effect for
flexible solids and incompressible flows, the convergence rate of this scheme is rather slow. The
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instability can even result in a diverging solution leading to the unusual situation where the num-
ber of coupling iterations increases when the time step decreases [32, 66]. The convergence can
however be accelerated by the use of Aitken’s dynamic underrelaxtion [97], transpiration tech-
niques [34], vector extrapolation [98] or reduced-order models [179]. In the recent years, a new
family of partitioned procedures based on Robin transmission conditions, i.e. a linear combi-
nation of Dirichlet and Neumann boundary conditions on the shared interface, were introduced.
While all combinations of boundary conditions do not necessarily make sense, a Robin-Neumann
coupling procedure, that solves the fluid with a Robin boundary condition at the interface and
the solid with a Neumann boundary condition at the interface, shows much better convergence
without relaxation and guarantees added-mass free stability [8, 61, 132].

The coupled problem can also be implicitly solved with methods generically known as Newton
methods. First issued from monolithic applications [83, 154], they are used to solve the solid and
flow equations for the variables in the entire solid and fluid sub-domain with a Newton-Raphson
solution procedure. These methods require knowledge of the exact Jacobian of both solid and
fluid sub-systems to solve the linear system within the Newton-Raphson iteration [36, 59], which
can be time consuming and not practical for the use of black-box solvers [32]. In an attempt to
reduce these limitations, quasi or inexact-Newton methods using only approximate Jacobians
confined only to the interface degrees of freedom were proposed by Gerbeau et al. in [72, 73]
and by van Brummelen et al. in [122, 123]. While altogether more efficient and less restrictive,
they may however lead to inefficient Newton iterations [72]. Also known as interface-quasi
Newton methods [33, 121], these strategies show superior convergence of the coupling iterations
compared to relaxation methods and have the advantage of being compatible with the use of
black-box solvers.

In order to reduce the computational complexity, semi-implicit coupling schemes involving a
simplified coupled problem, where part of it is treated explicitly, were developed e.g. in [6,
60, 152]. It i1s worth noting that these schemes are in essence strongly coupled as coupling
conditions are still treated implicitly. Although they improve the computational efficiency of
implicit coupling and are less sensitive to the added-mass effect, the stability is still sensitive
to changes in the fluid/solid density ratio. In so-called stabilized explicit coupling schemes, a
stability independent of the added-mass effect was achieved, however at the expense of a loss of
accuracy compared to implicit counterparts. They were first proposed in [24] for thin structures
and more recently extended to the case of the coupling with thick-walled structures in [61].
It is important to stress here that these schemes are explicit in the sense that they only make
one iteration within each time step but, in preparation of that iteration, they still necessitate an
implicit treatment of some interface terms. They are hence not directly comparable to loosely-
coupled procedures, which represent truly explicit coupling schemes.

Some of the main implicit, semi-implicit and stabilized explicit strategies briefly introduced here
are very well reviewed in [58], including comparative studies for stability and performance. The
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interested reader is also referred to Kiittler [96] and Mok [125] for a more general presentation
of partitioned coupling procedures.

The intent pursued in this section is merely to give a short historic and a basic overview of
the methods that are currently developed by the scientific community to tackle the coupling
of FSI problems, thus completeness is not claimed in any way. Especially regarding strongly-
coupled procedures on which most of academic research is currently focusing, with the aim of
improving computational efficiency or minimizing the number of sub-iterations to reach sta-
bility while keeping a high level of accuracy. But, as explained in section 1.4.1, the coupling
strategy preferred in this work for the numerical simulation of tire hydroplaning is based on
a loosely-coupled partitioned procedure. A thorough presentation of strongly-coupled schemes
would therefore be out of scope of this thesis. The coupling strategy followed in this work will
be presented in detail in chapters 3 and 4 and will be put in perspective with past and current
developments in the field by means of an exhaustive literature review.

In the following section, an assessment of numerical studies addressing the problem of tire hy-
droplaning with computational FSI by both academia and industry is given.

1.3.3 Computational FSI for tire hydroplaning

As mentioned in section 1.2.2, experimental investigations of the tire hydroplaning phenomenon
deliver limited results, which can be completed by numerical simulations. To that end, a compu-
tational FSI framework is built, in which the tire is the solid sub-domain and the water the fluid
sub-domain. The tire hydroplaning problem is a challenging application in the field of computa-
tional FSI due to, among others, the size of the problem, the complexity of the solid model, the
materials at hand, the free-surface flow as well as the running conditions. More details on the
challenges that need to be considered are given in section 1.4.1.

The creation of the computational model and the solution procedure for computing this partic-
ular application are therefore not straightforward. As of today, there is only limited literature
that covers that subject and the proposed methods usually consider very simplified tire models.
However, a few of these are of interest and are reviewed in the following.

In the late 90’s, Grogger and Weiss proposed in [76, 77] a simplified hydroplaning model for
non-rotating tires. The fluid method solves a free-surface flow on a rather coarse mesh whereas
a very simplified model is used for the tire. These early works compare numerical results to the
experiment and highlight the importance of using deformable tires in order to obtain conclusive
results in terms of pressure distribution in the footprint. In [157], Seta et al. use a computational
framework based on the FVM and the FEM to solve respectively the fluid and solid sub-domains,
which are coupled with the commercial package MSC.Dytran’. The latter is employed as a black-
box tool, in which an explicit coupling procedure simply transferring coupling data through the

Shttp://www.mscsoftware.com/product /dytran.
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interface is used. First results were obtained for a rotating tire with a partial tread pattern, whose
effect on hydroplaning performance is shortly discussed. Okano and Koishi compare in [137]
several tire models with simplified full tread patterns, for which the hydroplaning performance
is for the first time quantified. Both physics are solved using the FVM-FEM combination and are
also coupled with MSC.Dytran. As a further simplification, the water is considered in [137] as
compressible, which renders the procedure independent of the artificial added-mass effect intro-
duced in section 1.3.2. The same coupling tool is used by Cho et al. in [26], where the water flow
is considered this time as incompressible and inviscid. A real tire design with a full tread pattern
is computed successfully for the first time and compared in terms of hydroplaning performance
to a simplified tire with three longitudinal grooves. Another approach consisting in using only
one computational package provided by SIMULIA® to solve the complete FSI problem has been
considered by Donatellis et al. in [38] and by Kumar et al. in [95]. The Abaqus/Explicit solid
solver is employed together with the so-called Coupled Eulerian-Lagrangian (CEL) technique
directly included in the solver. By doing so, the tire hydroplaning problem is computed using
the FE formulation for solving both sub-domains and in a unique software environment, which
simplifies greatly the computational framework as the difficulties of coupling properly external
solvers, especially black-box solvers, are removed. The CEL approach is not based on the res-
olution of the Navier-Stokes governing equations to model the fluid flow. Instead, the material
behavior of water is described using an equations of state (EOS) model [162], for wich mechan-
ical properties of the fluid are to be given. In [180], Vincent et al. focus on the development of a
CFD solver capable of dealing more accurately with unsteady multi-phase flows interacting with
obstacles such as a tire. In that particular case, the effect of the flow on the tire deformation is
not taken into account so that one cannot really speak of a two-way coupled FSI simulation. This
introduces a substantial limitation to the approach since the tire deformation due to the presence
of water is non-negligible and needs to be considered for computing accurately tire hydroplaning
problems.

The research community and industry have only had limited success at tackling the hydroplaning
problem due to the complexity of the computational model and is therefore actively looking at
improving it. In the previous review, many simplifications have been emphasized and are sum-
marized in Table 1.1 with the main features of each approach to facilitate the comparison to the
present research. In particular, some simplifications are not acceptable when the wet performance
of real tires is to be numerically computed, such as by considering non-rotating, non-deformable
tires or unrealistic tread designs. Furthermore, several approaches consider unique commercial
packages to solve the FSI problem. This prevents of making any further developments in either
the single-field solvers or the coupling algorithm. While the use of specifically designed solvers
can be advantageous, relying completely on one black-box computational package does not al-
low to choose the best possible fluid, solid and coupling computational tools available on the
market. As discussed in the next section, the present work considers two separate commercial
solvers, which were specifically chosen for the current application, while a coupling algorithm

Shttps://www.3ds.com/products—-services/simulia/.
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Literature Year Solid & fluid Coupling Simplifications
formulation scheme limitations

Grhogger and | 1996.97 | FEM-FVM Implicit coupling Simplified stationary
Weiss [76, 77] tire model and very
coarse mesh

Seta et al. 2000 FEM-FVM Explicit coupling Partial tread pattern
[157] (MSC.Dytran) and black-box coupling
shell
Ol.can.o and 2001 FEM-FVM Explicit coupling | Compressible fluid and
Koishi [137] (MSC.Dytran) black-box coupling
shell
Cho et al. [26] 2006 FEM-FVM Explicit coupling Black-box
(MSC.Dytran) coupling shell

Donatellis et
al. [38] and | 5009-12 | FEM-FEM Explicit coupling Closed computational

Kumar et al. (CEL) package and
[95] EOS fluid model
Vinﬁrét()(]at al. 2011 | Analytic-FVM - No tire deformation

and no coupling

2018 FEM-FVM Flexible explicit Unique combination of
coupling single-field solvers
(can be replaced)

Present work

Table 1.1: Review of computational FSI approaches for tire hydroplaning.

has been implemented to couple both black-box solvers at hand. In doing so, a flexible ap-
proach is proposed, which implements further developments using single-field outputs in order
to improve the coupling procedure, while controlling the error introduced by the partitioning
process.

1.4 Thesis scope and objectives

Based on the previous presentation of the tire hydroplaning application, the scope of the thesis
is more closely identified. Relying on the requirements of the problem at hand and on the con-
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straints of the computational framework available, a new coupling scheme used for improving
the resolution of the FSI problem is proposed.

1.4.1 Scope

Aiming at improving the FSI computational framework to simulate the tire hydroplaning appli-
cation, the present research focuses on the coupling of a solid and a fluid solver. The two solvers
have been chosen for their abilities at tackling the problem at hand as further detailed in the fol-
lowing. A coupling scheme capable of controlling both single-field solvers and of using relevant
coupling output data is implemented in this work in order to improve the preexisting coupling
strategy already in place at Goodyear. To that end, a partitioned approach is chosen, which allows
to profit at most from the capabilities offered by each solver specifically designed to address the
problem in question. The inherent modularity of partitioned approaches also allows to easily in-
troduce new numerical schemes and models while keeping everything else the same [183]. The
newly implemented procedure is not only required to deliver accurate results, it is also expected
to fit in an industrial framework. Therefore, it must be robust and efficient’ enough to include
the tire FSI computations in the development loop of real tire designs, optimizing the wet per-
formance in parallel with other tire characteristics such as durability, dry grip, noise or rolling
resistance. The applicability of the research findings in a real industrial environment is therefore
of prime importance.

The tire hydroplaning application is a complex computational FSI problem due to various rea-
sons, which are listed in the following:

— First and foremost, the complexity of the solid tire model. The tire is a composite solid
system consisting of multiple constituents with different rubber compounds, steel and syn-
thetic reinforcements. Most of these materials exhibit a nonlinear behavior and must be
described with nonlinear constitutive material models. Moreover, a full-scale tire design
has a complicated geometry and includes different scales so that the solid model is of very
large size.

— The solid problem includes external loading conditions (rim mounting, inflation pressure)
and a transient fluid loading, which lead to a large deformation in the contact patch region
where the tire meets the road and the water. Geometric nonlinearities must thus be taken
into account while modeling the solid field.

— The contact between the tire tread and the road as well as with the rim add to the complex-
ity of the overall solid computation.

"Note that throughout this thesis, the term efficiency denotes the efficiency in time, that is time-to-solution, unless
specified otherwise.
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— The large size of the fluid sub-domain influences substantially the overall computational
time. The detailed geometry of the tire tread in the contact patch region requires a fine
fluid mesh in order to accurately resolve the flow in each groove of the tire. As a result,
the fluid computational system is also of significant size and expensive to solve.

— The fluid sub-domain includes a free-surface flow with large fluid velocity. Not only the
free-surface of the flow needs a special treatment, the interface reconstruction between
the fluid and solid sub-domains has to be properly taken care of. To do so, a fixed-grid
approach together with an immersed boundary method is chosen in the fluid solver, which
is particularly attractive for solving FSI problems with large interface motion as explained
in section 1.3.1. A deforming fluid mesh would be impractical since it could not follow
the motion of the interface as the tire rotates without constant and expensive remeshing.
The situation is even worse in the contact region where the tire squeezes the water layer at
high speed to eventually come in contact with the road.

— While reconciling both sub-domains, FSI problems with incompressible flows and high
fluid/solid density ratios such as for the tire hydroplaning application are subjected to the
artificial added-mass effect. As described in section 1.3.2, the latter limits substantially the
numerical stability of the coupling procedure. For efficiency reasons required by the in-
dustrial aspect of this research and in order to limit the complexity per coupling time step,
a loosely-coupled solution procedure is chosen. It is shown that, even though the present
application is prone to the artificial added-mass instability, a robust loosely-coupled strat-
egy can be used and deliver accurate results. Note that the chosen solver package used for
solving the tire hydroplaning application does not allow for a strongly-coupled strategy.
Indeed, both solvers in their present configuration do not include the possibility of redoing
the same time step, which is needed per definition for achieving an implicit coupling.

— The fast running conditions with a high rotating velocity lead to a rapidly changing free-
surface flow and interface geometry. These impact the size of the time step in both single-
fields as well as the coupling time step size.

— Another limiting factor is that both single-field solvers are black-box software packages.
Their coupling represents a challenging task, which needs proper attention as demon-
strated in this work.

To compute the coupled system, a FE solid solver based on an explicit time integration scheme
is used. The chosen explicit solver runs faster than an implicit one in the case of a rotating tire,
which is characterized by a transient response. An implicit scheme is however used in the event
of a static loading of the tire. The present solid solver is chosen for its ability to compute such
a complex system in a time efficient manner and for its flexibility in defining material laws with
data obtained from the lab. As for the fluid, an implicit solver and a FVM are used to compute
the Navier-Stokes equations, while the resolution of the phase transfer for the free-surface flow
is achieved by an explicit method. The overall fluid approach can hence be described as explicit.
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One of the main advantages of the fluid solver is its ability to reconstruct very efficiently the
interface within the fluid fixed-grid, in particular for complex interface geometries.

As already mentioned, both chosen single-field solvers were already used internally at Goodyear
to compute the tire hydroplaning simulation. In that configuration, the coupling algorithm simply
transfers interface data between both physical sub-domains, while being embedded within one of
the black-box solvers. As a result, no access to the coupling scheme is provided, which prevents
any further developments to improve the coupling procedure. To by-bass this limitation, a new
coupling shell is implemented, which grants more flexibility to optimize the coupling of both
solvers for the present industrial application, as outlined in the next section.

1.4.2 Proposal for a dynamic coupling scheme applied to tire hydroplaning

The proposed research aims at improving the coupling of a specifically chosen pair of solvers in
order to compute the tire hydroplaning application. By optimizing the resolution of the overall
coupled system, the intent is to deliver the most time efficient solution path for a given level
of accuracy. To do so, this thesis proposes a novel approach for computing FSI problems using
black-box solvers based on the following contributions:

1. Implement a coupling shell that synchronizes the actions of both single-field solvers and
allows to manipulate coupling data flowing from one sub-domain to the other.

2. Within the new coupling shell, monitor the level of partitioning error in the coupled system
for the computational package at hand.

3. Control the accuracy of the solution to the coupled problem based on the evaluation of the
energy artificially produced at the interface in each time station during the simulation.

4. Optimize the time efficiency of the solution procedure by using a predictor-corrector ap-
proach and a dynamic process for adapting the FSI time step size.

5. Validate the new coupling procedure with an academic benchmark example and apply it
to a simplified tire hydroplaning model.

6. Improve the hydroplaning application for a real full-scale tire construction using the pro-
posed approach.

The first five above-listed points are also presented by Gillard et al. in [75] as a general method
applicable for any chosen pair of solvers.

In summary, by using the new coupling shell, the energy imbalance is assessed at the interface
in each coupling time step. This quantity is artificially introduced in the coupled system by the
partitioned procedure, which per definition never conserves the interface energy [147]. The latter
therefore represents a very meaningful quantity in order to evaluate the level of error within the
coupled system. Based on that knowledge, the error can be bounded, which in turn allows to
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control the accuracy of the solution procedure. In doing so, two approaches are proposed. On
the one hand, a predicted value for the solid displacement at the interface in the next coupling
time station that allows to reduce the time shift between both sub-domains is used. On the other
hand, a dynamic adaptation of the FSI time stepping procedure is proposed, which considers the
level of the interface energy-based error to increase or decrease the coupling time step size. In
the event of an increasing error, the FSI time step size is decreased in order to reach the required
level of numerical stability. At the same time, if the level of error is under a certain threshold, the
coupling time step size can be increased, which in turn allows to improve the time-to-solution
of the approach. Ultimately, it is shown that the interface energy consists in a very meaningful
criterion in order to build a robust loosely-coupled procedure to compute the problem at hand
in a time efficient manner. Validated on an academic FSI example, a flexible flag in a flow, the
new coupling procedure is then applied to the resolution of a simplified tire hydroplaning model
known as the Grosch wheel example. The new approach is then used to improve the hydroplaning
application for a real sport utility vehicle (SUV) tire construction.

Not only this research allows to quantify the quality of the numerical solution for the tire hy-
droplaning problem, it also leads to the reduction of the overall simulation time, which is a severe
bottleneck of the current application. To the best of the author’s knowledge, it is the first time
that such a dynamic coupling scheme would be applied to the challenging FSI problem of tire
hydroplaning.

1.5 Outline

The current research is presented in this manuscript and organized as follows in the next chapters.
In chapter 2, the physical models of the solid and fluid single-fields as well as the correspond-
ing solution procedure chosen to compute each physics are presented. The coupling of both
sub-domains defining the FSI coupled problem is considered in chapter 3. Partitioned coupling
procedures and in particular loosely-coupled approaches are further detailed as several coupling
schemes are presented based on an exhaustive literature review. At that occasion, the notion of
solid displacement predictor and the concept of artificial interface energy in an explicit coupling
procedure are introduced. It is emphasized that the energy artificially introduced at the interface
by the staggering process can be used to improve the robustness of the solution procedure. The
partitioning error, which can be related to the interface energy imbalance, is presented for the
current choice of single-field solvers. The artificial added-mass effect and the factors impacting
this instability are also further described. In chapter 4, the coupling strategy used for solving the
coupled system is introduced. Details are given on the implementation of the coupling shell and
how it can interact with both solvers, while the coupling scheme used in this work is presented.
The dynamic procedure employed for adapting the FSI time step size based on the level of in-
terface energy-based error is introduced. The developments implemented in the new coupling
scheme are then applied to two benchmark examples. First, a flexible flag in a flow, which is
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considered as a standard benchmark for FSI in the literature, is used to validate the coupling
strategy. Second, a simplified hydroplaning simulation based on the so-called Grosch wheel ex-
ample that includes most of the constraints to be considered while computing real scale tires
is performed. Based on the level of error delivered by the evaluation of the interface energy,
the time-to-solution of the Grosch wheel example is optimized while controlling the level of
accuracy. Chapter 5 is devoted to the presentation of results for a full-scale tire model. After a
brief description of the computational model used for tire hydroplaning simulations, numerical
results typically employed for assessing the wet performance of tires are exposed for an SUV tire
rolling at high speed in a thick water film. The optimization of the tire hydroplaning simulation
is then presented. Finally, chapter 6 gathers the conclusions and outlook of the present work as
main results and achievements are summarized and some ideas for possible improvements are
given.

19






2 Single-field governing equations and
computational models

The numerical simulation of mechanical problems requires the construction of appropriate mod-
els that faithfully describe the physics of interest. In the present multi-field framework, the phys-
ical model and the corresponding sets of governing equations must be established for both solid
and fluid sub-domains. They are presented individually for each single-field starting with the
equations of continuum mechanics before describing their numerical discretization in space and
time. Due to the running conditions and the materials at hand in the present FSI problem, the
systems to solve consist of the equations of nonlinear solid dynamics and the Navier-Stokes
equations for an incompressible flow of a viscous fluid. Specifics regarding the numerical mod-
eling of the tire hydroplaning problem are also given for both sub-domains.

It is worth noting at this point that the mathematical and physical characteristics of each single-
field presented in this chapter have a direct impact on the stability and convergence properties of
the FSI coupled problem. The computational models, including the discretization techniques and
their implementation in appropriate software, must therefore be chosen carefully as they affect
the construction of the coupling scheme presented in chapter 4. The subject matter discussed
in the present chapter is essentially intended to demonstrate the capabilities of both single-field
solvers for the tire hydroplaning application and provide an appropriate theoretical background
for the following chapters.

2.1 Solid mechanics

After a brief introduction on the choice of computational model employed for the application at
hand, the equations governing the motion of a solid body are presented then discretized in space
and time with appropriate approaches. Specific features of the solid solver used in the context
of tire simulations are then given, including the modeling of rubber compounds and the contact
definition of the tire with the road and the rim.
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2.1.1 Choice of computational model

The FSI applications in this work involve large solid deformations so that geometric nonlineari-
ties must be taken into account while modeling the solid field. Moreover, some of the materials
that are considered exhibit a nonlinear behavior and have to be described with use of nonlinear
constitutive material models. An overview of nonlinear solid dynamics covering these topics is
presented in this section. The intent is to describe the modeling of the solid field and, in par-
ticular, show how the coupling variables are computed on the solid side of the interface. For
a more exhaustive and thorough presentation of solid and structural mechanics, the interested
reader is referred to the literature and the textbooks by e.g. Bonet and Wood [20], Holzapfel [87]
or Marsden and Hughes [113].

The solid motion is described by a Lagrangian formulation corresponding, after discretization
in space, to a moving mesh. In combination with the finite element method, this choice is very
common practice and is made by almost all computational solid dynamics code developers.
While many time integration schemes are available and frequently used to discretize the solid
equations, the application of tire hydroplaning of interest limits this choice to an explicit inte-
gration operator, as further discussed in section 2.1.4. The corresponding implementation in the
FE solver employed in this work is presented in the following.

2.1.2 Governing equations in solid mechanics
2.1.2.1 Kinematics

An homogeneous solid body defined by all its material points in a three-dimensional Euclidean
space is considered. These material points initially located at some positions X in space form
the reference configuration QF C R of the solid domain and move to a new position 2, which
corresponds to a current or deformed configuration Q5 C R? at the current time t. Assuming
that no material can appear or disappear, the history of the current position of material points can
always be written as a bijective mapping between x° and X ¢ such that

x® = x5(X% ). 2.1)
The displacement field of the material points can then be expressed by
d°(XS,t) =x5(X5% t) — X°, (2.2)

as illustrated in Figure 2.1 for a material point designated by P. Since in a Lagrangian description
all kinematic quantities are described with respect to material coordinates, the reference positions
X ¢ represent the independent variables in the problem formulation and the solid displacements
d®(X5,t) the primary field of unknowns to be solved.
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Figure 2.1: Reference configuration Qf and deformed configuration Q° in a Lagrangian descrip-
tion of the solid motion.

The velocities d°(X°,t) and accelerations d°(X ¥, t) are then defined in the reference config-
uration by

: Dd°  0d°
dS(XSt) = — = — 2.3
. Dd®  adS 0*dS

(X7.1) Dt ot | xs ot | xs 24

where, in a Lagrangian approach, the material derivative denoted here by (D - / Dt) is simply
the partial derivative with respect to time holding the material coordinate X fixed.

Considering now two neighboring material points located in X and X +d.X¢ in the reference
configuration, the mapping (2.1) can be used to obtain in the deformed configuration

ox°

dz® = —=5 - dX°, (2.5)
in which the tensor
ox°
= X5 (2.6)
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is known as the deformation gradient. Rewriting equations (2.5) as
de® = F-dX9%, (2.7)

shows that the deformation gradient F' can be interpreted as a mapping between an infinitesimal
line element dX® in the reference configuration and its image dx° in the deformed configura-
tion. It is the fundamental measure of deformation in continuum mechanics and is at the basis
of several kinematic quantities as it allows to connect both configurations. For instance, its de-
terminant J = det ', commonly known as the Jacobian of the deformation gradient, relates an
infinitesimal volume element dV' in the deformed configuration to its counterpart in the reference
configuration dV} as

dV = J dVj. (2.8)

The tensor F' can also be expressed as the product of an orthogonal rotation tensor R and a
so-called symmetric positive definite right stretch tensor U to define a polar decomposition, see
e.g. [20] for more details, as

F=R U, (2.9)
which is used to introduce the right Cauchy-Green tensor C' defined by
C=F" F=U""R"-R-U=U"-U=U" (2.10)

by exploiting the orthogonality of R. While F' is non-symmetric, the tensor C' is and does not
contain any rotation contribution of the deformation. Thus it can be used to formulate suitable
strain measures if it is accounted for that C' = I for rigid body translations, where I is the
second-order identity tensor. In that context, a proper strain measure is obtained with the Green-
Lagrange strain tensor E defined, in the reference configuration, as

E:%(FT~F—I):%(C—I), (2.11)

which is also consistent in the sense that it guarantees zero strain in the undeformed configura-
tion.

2.1.2.2 Balance equations

Solid dynamics problems can be described by balance equations of mass, momentum and energy,
which advise on the conservation of these quantities within the mechanical system. The objective
pursued here is to establish a mathematical formulation of the solid dynamics problem, which
can be obtained from the balance equations of linear momentum, as shown in the following.
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2.1 Solid mechanics

Balance of linear momentum

Exploiting Newton’s second law [131], the balance of linear momentum expresses the dynamic
equilibrium of all forces present in the system, i.e. the forces of inertia, the internal forces and the
external forces acting on the solid body. The corresponding nonlinear elastodynamic equations
written in the deformed configuration Q° and in their global form read

/Spsd's v =/ (V-0%+0%) av, (2.12)
Q Q

where p° is the solid density of an infinitesimal volume element dV/, b° an external body force'
acting on a unit volume element of the solid body in the deformed configuration and o the
< is a second-order symmetric® tensor
and characterizes the true internal stress state within a solid body. According to the Cauchy’s

stress theorem, it can be related to the traction vector t° representing a force (per unit area in the

Cauchy stress tensor. Also called “true” stress tensor, o

deformed configuration) acting at any point within the body associated with a plane of normal
unit vector 7 as

t°5=0° n. (2.13)

Starting from the Cauchy stress tensor, other stresses can be defined. The first Piola-Kirchhoff

stress tensor P relates to o as

P=Joc° - FT, (2.14)

by recalling the definition of the Jacobian J from (2.8), and can be seen as a mapping from
a surface element in the deformed configuration onto a force in the reference configuration.
This interpretation suggests the possibility to build a stress tensor not based on variables in the
deformed configuration as for o but in the reference configuration instead. To do so, and also
to avoid the non-symmetry of P, the symmetric second Piola-Kirchhoff stress tensor S defined
in the reference configuration by

S=F'.P=JF'.06%5 F7T (2.15)

is introduced. Unlike the Cauchy stress tensor o°, S cannot be measured experimentally and
does not allow for a clear interpretation. However, it plays an important role in the construction
of material models as discussed in the next section. Furthermore, although several definitions
of stress and strain tensors exist, they cannot all be combined arbitrarily. It is however the case
for the second Piola-Kirchhoff stress tensor S and the Green-Lagrange strain tensor E defined
in the reference configuration by respectively (2.15) and (2.11) as they form a work conjugate

!"The notation (-) denotes prescribed values.
>The symmetry of the Cauchy tensor can be deduced from the conservation of angular momentum.
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pair (see e.g. [20]) and are therefore compatible to establish the FE formulation, which will be
presented in section 2.1.3.

The balance equations (2.12) can now be reformulated with respect to the reference configuration
as

/ psd® dVy = | V- (F-8)+b§dv, (2.16)
of of

where p§ is the reference solid density? of the infinitesimal undeformed volume element dVj, b3
the external body force per unit undeformed volume element and (V -) the divergence operator
with respect to the initial coordinate system or material divergence operator. Given that (2.16)
also holds for any material point within the solid domain, the local form of the balance equations
of linear momentum in the reference configuration 5 and Vt € [0, T then read

pod® =V, (F-S)+b5 inQF x[0,7]. (2.17)

2.1.2.3 Material laws

As shown before, the tensors S and E are commonly used to describe the stress and strain state
of nonlinear solid dynamics problems. The constitutive laws or material models that describe
the material response and relate stress and strain such as S(E) still need to be established. Only
homogeneous solid bodies undergoing elastic deformation without internal dissipation and in
an isotherm configuration are considered here. In particular, the solid models of interest in this
thesis are composed of elastic and hyperelastic materials, for which the constitutive relations are
shortly presented in the following.

Isotropic linear elasticity

If the deformation of the considered solid body is much smaller than its dimensions, it can
be assumed that the geometry and constitutive properties at each material point are not modified
after deformation. Thus deformed and undeformed configurations are presumed identical making
the Cauchy stress tensor o° linearly dependent on the so-called Cauchy strain tensor €. This is
expressed by the famous Hooke’s law, which reads*

o =C:¢e° (2.18)

3The reference solid density can be written in terms of the solid density in the reference configuration as pOS =Jp°
by considering the conservation of mass in the solid domain.

“As opposed to the theory of large deformations presented in this section, the theory of small deformations only in-
cludes one definition of stress and strain as both reference and current configurations coincide, namely the Cauchy

stress o and the Cauchy strain 5.
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with

S

e’ == (Vd® + (Vad®)") (2.19)

| =

where C is the elasticity tensor. It is a fourth-order tensor that, for an isotropic material, is only
function of two constants, as conveniently shown using the index notation by

Cijii = )\Séij(skl + u® (001 + 6adjr) (2.20)

where 4;; is the Kronecker’s delta. The two Lamé constants \° and 1° can be related to the
Young’s modulus E° and the Poisson’s ratio v° respectively as

ES
2(1+v5)

ESvS
(I+ 51 —20v°

2\ = 7 us = (2.21)

Isotropic hyperelasticity

Hyperelastic materials are still elastic but also allow for a nonlinear behavior if larger deforma-
tions are involved. In this case, the constitutive equations are based on a strain energy function
or elastic potential ¥ to derive the stresses, which defines the strain energy stored in the ma-
terial per unit of undeformed volume as a function of the strain at that material point [20]. It
must remain invariant when the current configuration undergoes a rigid body rotation, which
implies that W cannot depend on the rotation tensor R but can only be expressed in terms of
the right stretch tensor U and derived measures such as the right Cauchy-Green tensor C' or the
Green-Lagrange strain tensor E. Stresses and strains are commonly connected in the reference
configuration using the formulation

o 0w

S=256~ 3E

(2.22)

which is in general nonlinear. The elasticity tensor C introduced in (2.18) for small deformations
analysis can be reformulated in the context of hyperelasticity as

_os_ o
 OE OEOE’

C (2.23)

As a matter of fact, the St.-Venant-Kirchhoff hyperelastic and isotropic material model defined
by the quadratic strain energy function

)\S
Wi = 5 (U E) +,°E : E, (2.24)
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where A\ and ;© are the Lamé constants given in (2.21), leads to a linear relationship between
S and F such that

S=C:E, (2.25)

with C as defined in equation (2.20). The St.-Venant-Kirchhoff material model can therefore
be interpreted as a generalization of Hooke’s law given by (2.18) to mechanical problems with
large deformations. Another model very commonly used to describe the behavior of hyperelastic
materials is the compressible Neo-Hookean model. It is defined by the strain energy function

p° A 2
Wi = - (trC —3) — pi°In J + > (InJ) (2.26)

and yields a nonlinear stress-strain relationship between S and E. Simple to use, it delivers a
good approximation for relatively small strains. There exists a multitude of hyperelastic material
models, each one defined by a particular strain energy function that tries to fit at best the mate-
rial response by also including thermal expansion effects or hysteresis behaviors. Some of these
functions are described by an algebraic expression such as W;, or Wy, while others are directly
constructed using experimental test data. Among the most well-known hyperelastic constitutive
laws, the Mooney-Rivin, Ogden or Yeoh material models can be cited. As a thorough presenta-
tion of material models used in nonlinear solid dynamics would be out of scope of this work, the
interested reader is referred to the classical textbooks by e.g. Holzapfel [87], Ogden [136], Simo
and Hughes [161] or de Souza Nito et al. [31] for further details on hyperelasticity but also vis-
coelasticity, elastoplasticity or viscoplasticity. Note that any material model can be used within
the coupling framework proposed in this thesis, as long as its implementation is possible in the
chosen solid solver. Material models used for tire applications are briefly discussed in section
2.1.5.1.

Along with the kinematic equations and the balance equations of linear momentum, the material
laws complete the mathematical formulation of the mechanical system and allow to form the
so-called initial boundary value problem (IBVP), which will be presented in next section.

2.1.2.4 Initial boundary value problem

The expressions presented in the previous sections are gathered to construct the initial boundary
value problem for nonlinear solid mechanics in the reference configuration’. The IBVP is based
on a set of coupled second-order partial differential equations which govern the evolution of the
solid displacement field dS, the stresses and strains in a time interval ¢ € [0, T'], which are further
required to satisfy a set of given initial and boundary conditions. To define the boundary condi-
tions, the solid boundary 9€ is partitioned into two complementary surfaces, not considering

>The IBVP can equivalently be described in the deformed configuration but the reference configuration is chosen
here to simplify the derivation of the FE formulation as shown in section 2.1.3.
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at this point the fluid-structure interface: a Dirichlet boundary T'S where displacements d are
prescribed and a Neumann boundary 'S where surface traction £5 are imposed such that

Q5 =TS UTR, T5NIY =0. (2.27)

Based on equations (2.17), the IBVP in the reference configuration then reads

pod® =V, (F-8)+ b3 in Q5 x [0, 77, (2.28a)
d® =d° on IS x [0, T7, (2.28b)
P.-nS =1 on I'{ x [0, 77, (2.28¢)

where n§ describes the outward normal unit vector in the reference configuration as illustrated
in Figure 2.2. Furthermore, the system of partial differential equations being of second-order,
two suitable initial conditions specifying the initial displacement dj (X ) and velocity d§ (X )
fields must be provided and are given by

= dS(X°) VXS € QS (2.29a)
dS(X%,0) = d5(X5) VXS e QS (2.29b)

Finally, choosing an appropriate material model defined by e.g. (2.25) completes the IBVP for
large deformations in the reference configuration. It is also referred to as strong or local form of
nonlinear solid mechanics, as the system of equations (2.28-2.29) holds for all material points
within the solid domain Qg . However, as shown in next section, a weak formulation is used to
derive the finite element approximation while discretizing the solid domain in space.

2.1.3 Space discretization and finite element method

A general method to discretize the continuum mechanics problem in space consists in using the
finite element method. By doing so, the governing equations describing the nonlinear behavior
of the solid previously derived in the IBVP (2.28-2.29) are recast in a weak integral form using
in this case the principle of virtual work (PVW). In a weak formulation, the balance equations
and the boundary conditions are not required to be satisfied in every material point of the solid
domain but only in an average (or integral) sense over an arbitrary finite number of elements.
This will lead to a finite set of nonlinear algebraic equations in the primary field of unknowns
d®, which is numerically computable. The FEM for solid mechanics is outlined in the following.
For a thorough and detailed presentation of the method applied to various problems as well as
its fundamental theory and implementation, the interested reader can consult, among others, the
textbooks by Bathe [11], Hughes [90], Wriggers [190], Belytschko et al. [14], Larson [101] or
Zienkiewicz et al. [195] .
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X3
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Figure 2.2: Solid body in the reference configuration QF with the boundary surface 9Qg parti-
tioned into a Dirichlet boundary I' and a Neumann boundary I'Y, on which Dirichlet
(2.28b) and Neumann (2.28c) boundary conditions are applied respectively.

Weak form of the balance equations

In order to construct the weak form of the solid mechanics problem, the balance equations
(2.28a) and the Neumann boundary conditions (2.28c) are first rewritten as variational equations.
Applying a method of weighted residuals, the variational formulation is obtained by multiplying
(2.28a) and (2.28¢) by an arbitrary variation or test functions 5d®. Following an integration over
the reference solid volume, they read

J

where 6d° can be interpreted as a virtual displacement field. The latter is required to be kine-
matically admissible [196], i.e. dd°® must have sufficient continuity and cancel out where dis-
placements are imposed:

(p5d® — Vo (F-8)—b3)-6d° dV, + / (P-nj —1t5)-0d°dS; =0, (2.30)

; 00;

6d® =0 onI§ x[0,7]. (2.31)
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Integrating by parts the second term of the first integral in (2.30), inserting (2.15) and applying
(2.31) then yields

J

By expressing the variation of the Green-Lagrange strains due to a virtual displacement 6d® as,
see e.g. [20],

(pSd° — BS) - 6d° vy + /

i
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and, since S is symmetric, the variational formulation (2.32) can simplify into
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which corresponds to the expression in the continuous form of the principle of virtual work in
the reference configuration. It shows that the virtual work done by the external forces subjected
to an arbitrary virtual displacement (0W,y,) is balanced by the virtual work done by the same
virtual displacement field operating on inertial forces (6 Wi,e) and by strain variations (6 Wiy).
The PVW (2.34) is the weak form of the IBVP and is used as a basic equilibrium statement to
formulate an approximate solution using the finite element method. It is a very general concept
in continuum mechanics as equations (2.34) are independent of any constitutive relations, mak-
ing them valid for any material including solid, liquid or gas. Furthermore, equivalency between
both forms can be shown, see e.g. [90], such that all solutions to the strong form satisfy the weak
form. The opposite is however not true. As a result, the weak form proposes an equivalent rep-
resentation of the partial differential equations (2.28) with weaker differentiability requirements
and can be reformulated as follows.

Find d° € D such that for all test functions 5d° € T, equations (2.34) hold, where the solution
and test function spaces are respectively defined by

D= {ds € [S'(Q%)]" |d5(X5 1) = d°(X5,t) on rg}, (2.352)

T = {5d$ e [8'(@%)]" |6dS(XS) = 0 on rg} , (2.35b)

and S'(Q°) denotes the Sobolev space of square-integrable functions equipped with first deriva-
tives [90].
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2 Single-field governing equations and computational models

Finite element formulation

To be able to solve numerically these integral equations, they must first be converted into a
system of algebraic equations. To do so, the solid continuum is spatially discretized into a fi-
nite number of non-overlapping elements, which are connected at discrete points called nodes.
The finite element method is now introduced to find a numerical solution to the unknown dis-
placement field at each node of the partitioned solid domain, introducing for the first time an
approximation of the solid governing equations.

The displacement field d*¢ within an element e is approximated by interpolating discrete nodal
values df’e using so-called interpolation or shape functions Nf(X®) for each node i in the
element e as®’

e
Nnodcs

do° (X% 1)~ dy (X5, 1) = Y N(XO) d7(1), (2.36)

i=1

where N{ .. denotes the number of nodes in the element e. The shape functions are usually
low-order polynomials that are chosen to meet the differentiability requirements of the weak
formulation. In doing so, the solution and test function spaces defined by (2.35) in the continuous
setting are restricted to discrete sub-spaces D;, C D and 7, C T, which respectively contain
a finite number of solution and test functions chosen as C°-continuous piecewise polynomials.
Moreover, the isoparametric concept is used. It consists in employing the same shape functions
to interpolate both the element geometry and displacements allowing to construct a mapping
between the element physical coordinates X € R? and parametric coordinates & = (£,7,() €
R3, which describe a reference element. The finite element solutions over a physical element are

eventually given by

nodes

d3 (X 5°t) Z NE(E(XS°)) d(1), (2.37)

where the parametric shape functions N¢(&( X)) satisfy the properties of partition of unity and
of interpolation, which correspond respectively to

nodc<

ZNe =1 and N;(&) = du, (2.38)

and where ¢,;, designates once again the Kronecker’s delta. Furthermore, a Bubnov-Galerkin ap-
proach is adopted meaning that time derivatives of the displacement field and the test functions
ddS are also approximated using the same shape functions. Depending on the choice of interpola-
tion functions and geometric shape of the element, a multitude of finite elements can be created.

The subscript (-);, denotes spatially discretized values.
"The notations e € N and i € N refer to the element and node indexes, respectively.
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Figure 2.3: Solid isoparametric hexahedral 8-node element with 1% order interpolation shape
functions defined in the parametric coordinates & = (£, 7, ().

For instance, for a 3D 8-node hexahedral solid element, the parametric domain consists of a bi-
unit cube centered at the origin of the parametric coordinate system such as (£, 7,¢) € [—1,1]3
as shown in Figure 2.3. The isoparametric 1*' order shape functions of this tri-linear hexahedron
element are given by

(1= -n1 -9 (1= —n)(1+)

Ni(g) = 3 . Ns(g) = - ,
Ny(€) = (1+90 ;n)(l —0 No(€) = (1+90 ;n)(l +0) -
Mg = LN =0 ey AHOUE(A+O) |
N = L=0UENA=0 ) (1=OUE(+0)

which indeed comply with the properties given in (2.38). Some remarks about the elements used
for tire applications are given in section 2.1.5.1.

Finally, the discretized weak form is integrated over each element using a Gaussian quadrature,
by which the integrands are evaluated at well-chosen integration points called Gauss points, see
e.g. [90]. All element contributions are then assembled to form a global discretized formulation
of the problem. Inserting the discrete approximation of the displacement field (2.37) and other
quantities into the weak formulation (2.34) yields

(d°) —f5,

nt ext

(MSEIS T fS ) odS =0 Wtel[0,T] (2.40)
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2 Single-field governing equations and computational models

or, since 6d® is arbitrary,

.S
MSd” + £ (d°) = £,

vt € [0,77, (2.41)

where MS, S and S

ext nt

are global quantities which correspond respectively to the solid mass
matrix, the vector of external forces and the nonlinear vector of internal forces. The nonlinear
equations (2.41) commonly known as the semi-discretized form of the PVW or the (global) semi-
discretized equations of motion are discretized in space but are still continuous in time. Their
time discretization is presented in the following section.

2.1.4 Time discretization

The time discretization of the semi-discrete equations of motion is performed by approximating
the time derivatives in (2.41) with use of discrete differentials. In doing so, the continuous time
interval ¢ € [0, 7] considered so far is subdivided into a finite number of time steps. The time
step size after n € Ny time steps can be given by

At =t — 1t (2.42)

where ¢$ and ¢, | denote the time stations at the beginning and at the end of the (n + 1)™ time

step respectively.

The integration over a time step AtS_, is carried out by time integration schemes or time inte-
gration operators that can be characterized as explicit or implicit. Explicit operators evaluate the
unknown solutions d = ds (¢S .1) at a time instant 5, based entirely on already computed
quantities. This approach is easy to implement and very efficient as the solution to each time
step is very cheap to compute. It is however at best conditionally stable, which introduces an
upper limit for the choice of time step size requiring usually a very large number of time steps.
To the contrary, implicit schemes are in general unconditionally stable and allow for larger time
steps while solving a fully coupled system of equations. The evaluation of the unknowns dg 4
depends not only on current and previous states of the system but also on variables in t> +1- Con-
sequently, an iterative process is required to advance the solid field making the implementation
of implicit schemes more complex and computationally more expensive in each time step than
explicit approaches. Additionally, the method involves linearizing the entire finite element for-
mulation, which can lead to overall higher simulation time compared to explicit approaches even
though larger time steps are allowed. Ultimately it is the application and running conditions of

interest that determine which time integration scheme should be used.

In the case of a rolling tire, neglecting at this point the interaction with the fluid, the solid model
of a full-treaded tire is of very large size and involves many complex contact occurrences. Fur-
thermore, the pressure loading in the contact patch region constantly varies over time (even more
with additional fluid pressure in tire hydroplaning simulations) leading to a computation that can
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2.1 Solid mechanics

be seen as transient where no steady state solution exists. Due to these reasons, and to avoid
convergence issues or even complete divergence of iterative procedures, an explicit operator is
adopted in this thesis. Note that before being able to simulate a rolling tire, preliminary compu-
tations are needed to build the actual 3D computational tire model, refer to section 5.1 for further
details. These preparation steps are carried out using an implicit scheme, for which a detailed
description is however beyond the scope of this work. Further details on both explicit and im-
plicit time integration in nonlinear FEM can be found in the literature, including the textbooks
by Belytschko et al. [14] and Hughes [90], or in the volumes by Hairer et al. [80, 81] specifically
dedicated to numerical integration methods for ordinary differential equations such as (2.41).

The explicit procedure employed in this thesis is based on the so-called central difference inte-
gration rule given e.g. in [90], where the equations of motion are satisfied at the beginning of
the time step, i.e. in t5. The acceleration field computed at that time instant is used to advance

AtS
the velocities to the time t° | = t; + "* L and the displacements to ¢5 | as
2

S S A+ A s
d, 1 =d, 1+ f d (2.43a)
d., =d° + A, oln+ , (2.43b)
with
d, = (M)~ (Fo — Finn) - (2.43c)

where M?(M®) is a so-called diagonal lumped mass matrix and is constructed based on the
solid mass matrix introduced in (2.41)8. The latter is in general not diagonal and can be difficult
to invert. Therefore a lumped mass matrix Mf that, being diagonal, can be easily inverted and
that needs much less computational storage than M® was introduced. Mass matrix “lumping”
and diagonalization is discussed for the solution of transient problems with explicit analysis in
e.g. Zienkiewicz et al. [195].

The attentive reader will already have noticed that the velocity field cannot be computed by
(2.43a) at the first time step At (n = 0) of the computation as mean velocities dSl are not
defined. At the initialization of the time stepping procedure, (2.43a) is therefore replaced by

.S .S Atl
0

di =d 5 ds . (2.44)

1
2

Overall, the central difference is 2™ order accurate and conditionally stable as further discussed
in the following.

8Note that the lumped mass matrices are actually constructed at a local element level based on element mass matrices
and are then assembled to form the global mass matrix Mf. For the sake of clarity, only global matrices are denoted
here.
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2 Single-field governing equations and computational models

Stability of the explicit operator

While the explicit time integration scheme is fairly simple to implement, it is only conditionally
stable and requires a constraining upper limit on the time step size, which can be related to a
critical time step size At>" such that

At® < At = i, (2.45)
wmax
where wp, denotes the maximum eigenfrequency of the entire solid dynamics system, see e.g.
[90]. In practice, the stable critical time step size is computed for each element of the mesh
individually and the minimum value is kept as upper limit. Taking that into account, the critical
time step size can also be rewritten, see e.g. [11], as

AtS " = min { L—} , (2.46)

e Cd

where L¢ is a characteristic element dimension and c? the current dilatational wave speed of
the material, which both depend on the used element. In nonlinear analysis, i.e. with geometric
and/or material nonlinearities, these wave speeds represented in the finite element system change
during its response so that their values need to be updated in the course of the simulation as the
stability limit continually changes. Therefore the limit on the time step size must be evaluated
for each time step n, which eventually reads
Le
At <SS AT =SS, min {C—g} , (2.47)
n
where a safety factor S5, € [0, 1] was introduced to guarantee a conservative estimation of the
critical time step size. From expression (2.47) it can be deduced that the size of elements in
the computational mesh have a very large influence on the critical time step size. This leads
to a severe limiting factor for solid models that are composed of very small elements as, for
instance, the tread region in a rolling tire simulation. A stability limit in the form of (2.47) is also
commonly called CFL condition named after Courant, Friedrichs and Lewy [27] and is widely
used in the analysis of mechanical systems.

Acceleration technique

As previously discussed, the stability limit for explicit analyses can be quite restrictive and a
large number of time steps is in general necessary. In order to reduce computational cost and
make the time integration operator more efficient, various techniques exist to loosen the con-
straint given in (2.47). The one employed in this work is a so-called local mass scaling factor
and consists in scaling the mass of specific elements in the solid domain. These elements are
either very small (as previously explained) or very stiff compared to the rest of the elements
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2.1 Solid mechanics

in the system and thus control on their own the overall stable time step size. The mass scaling
must however be applied with care as an accurate representation of the physical mass and iner-
tial effects in the model is required to accurately capture the transient response of the system.
In general, as the mass of only a few elements is scaled, the impact on the system is negligible
while the time step size can be increased significantly.

In order to briefly illustrate the influence of the mass scaling factor, a 1D mass-spring system
with a concentrated mass m and a spring of stiffness % is considered. The value of its unique
eigenfrequency is given by w = +/k/m, see e.g. [71]. It is obvious that increasing the mass
will reduce the eigenfrequency, while reducing at the same time the effect of a large stiffness.
Comparing that observation with the expression (2.45) conceptually shows the positive effect of
a local mass increase on the critical time step size. Different forms of mass scaling techniques
for an explicit central difference procedure can also be found e.g. in [138].

The resolution of the solid mechanics system considered in this thesis has been presented. The
semi-discrete equations of motion (2.41) with the explicit time integration operator given by
(2.43) eventually allow to compute the solid displacements d°, including the coupling variables
describing the motion of the solid body within the coupled multi-field system. Before intro-
ducing the solution procedure used to compute the fluid sub-domain, specificities proper to the
simulation of tire problems are proposed in the following.

2.1.5 Tire-specific modeling aspects

This section is intended to present specific features included in the solid computational model
that are used to simulate the problem of tire hydroplaning or more precisely of a rolling tire,
as no coupling with the fluid model is considered at this point. Since a detailed presentation of
the solid model does not represent the core topic of this thesis, only an overview of the main
specificities are introduced here. These include a description of the finite elements and material
models employed for rubber compounds as well as contact definitions of the tire with the road
and the rim. Complementary information concerning the composition of tire models including
reinforcement materials as well as the generation of the full-scale 3D tire model will be given in
section 5.1, while presenting associated results.

2.1.5.1 Incompressibility and finite elements for rubber compounds

Rubber materials used in tires exhibit a nearly incompressible behavior in the sense that their
compressibility is very small compared to their shear flexibility. This particular property of a
material known as relative compressibility can be assessed by the ratio of its bulk modulus K°
to its shear modulus G, which characterize the ability to resist volume change and shear stress
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2 Single-field governing equations and computational models

H Steel ‘ Cured rubber
K° [GPa] || 175 2
GS [GPa] | 80 0.002
vS [-] ~0.3 ~0.4995

Table 2.1: Steel and cured rubber material properties.

respectively. Typical values for these quantities are given in Table 2.1 for steel and cured rubber”,
which shows that only considering the compressibility of a material with K, i.e. its resistance
to volume change, does not allow to asses completely its incompressible behavior: the bulk
modulus for steel is almost two orders of magnitude larger than that of rubber even though steel
is definitely not considered as incompressible. However, the relative compressibility, which can
be expressed by the Poisson’s ratio v° as

s 3KS/GS -2

T 6KSGS 12 (249

v

also listed in Table 2.1 is the right indicator with ° — 0.5 for incompressible materials.

It is common knowledge that conventional finite element formulations often exhibit too stiff
behaviors in their mesh with a (nearly) incompressibility material response. This phenomenon
known as volumetric mesh locking must be treated with care and is often handled by imposing
an incompressibility constraint to the FE system (2.41) with an approach such as the Lagrange
multiplier method. A mixed finite element method that enforces the incompressibility conditions
with the Lagrange multiplier method for a full-scale tire model is presented in [149]. However,
in the explicit procedure presented in section 2.1.4, a strict incompressibility constraint cannot
be imposed in each node of the solid system and some compressibility must be provided. To
describe the volumetric locking mentioned previously, a 3D mesh composed of the hexahedral
solid element introduced in 2.1.3 is used. On average over the whole mesh, one can consider
that there are three degrees of freedom per element. Considering fully-integrated elements, i.e.
all terms in the equations of motion (2.41) are integrated in 8 Gauss points per element, an
incompressibility condition would impose that the volume at each of these points must remain
fixed, while only three degrees of freedom are available. This results in an over-constrained
mesh, which eventually locks and causes a too stiff behavior for deformations that should not
lead to any volume changes. Analogously to the volumetric locking, shear locking appears as
fully-integrated 1*' order elements cannot provide a pure bending solution and create parasitic
shear stresses at the Gauss points, which in turn leads to artificial stiffening and eventually locks
the mesh.

A remedy to these instabilities consists in using reduced-integration finite elements, which do
not suffer from the same over-constraint as fully-integrated elements and can even eliminate

9Cured rubber designates a rubber material in its vulcanized state as opposed to its natural state. After completion
of their construction process, tires are composed of different cured rubber compounds.
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2.1 Solid mechanics

locking. Reduced integration means here that a lower-order integration is carried out to form
the element stiffness [63]. In other words, the vector of internal forces fflt in (2.41) is integrated

in a unique integration point to obtain the strains at the center of the element, while the mass
S

ext

integration point, it is possible for the element to distort in such a way that the strains calcu-
lated at the Gauss point remain all zero. This instability called zero-energy or hourglass mode,

matrix M® and external loads fS, still use a full 8-point integration. However, due to that unique

named after the shape the distorted element can have in that particular configuration, leads to
nodal displacements, which neither produce any strain energy nor define a rigid body motion.
Since elements do not have any stiffness in these modes, they are unable to resist this type of de-
formation. These nonphysical response modes can then propagate through the mesh unless they
are controlled, which is done in this case by adding small hourglass stiffness using the artificial
damping method given in [63].

For these reasons, the rubber parts of the tire are discretized with 3D 8-node reduced-order
hexahedral elements in tire rolling and tire hydroplaning applications. Furthermore, 1% order
elements with appropriate hourglass control are preferred to 2™ order elements as they are more
efficient in terms of computational time and perform well in problems with complex contact
definitions, as their nodal forces are directionally consistent with the stresses in the element. First
order elements also directly use a lumped mass matrix so that the lumping of each element mass
matrix mentioned for (2.43c) is not needed. Finally the neo-Hookean model defined in (2.26),
with an appropriate value of the Poisson’s ratio to allow for little compressibility, is employed to
describe the material response of cured rubber in tires, which corresponds to an approximately
incompressible model that is compatible with the explicit integration scheme given by (2.43).

Note that no viscoelastic material models are used for tire hydroplaning simulations as viscous
and dissipative effects are not predominant while evaluating the resulting vertical reaction force
or the remaining footprint contact area, both introduced in section 5.2. In other fields of tire me-
chanics such as the ones focusing on rolling resistance, viscous and thermal effects can be taken
into account by considering more complex material models. Nevertheless, note that a precise
characterization of the material properties of rubber compounds used in tires remains to this day
a quite challenging task, even at a experimental level in the lab. For futher details on material
models used for rubber materials the interested reader is referred to e.g. [130].

2.1.5.2 Tire-road and tire-rim contact definitions

The tire model includes various contacts, including the contact of the tire with the road and
with the rim. In both these cases, the tire is in contact with a rigid surface and the contact
constraints are enforced using a so-called penalty method briefly described in the following. For
a more extensive review of penalty methods and computational contact mechanics in general, the
interested reader is referred to the textbook e.g. by Laursen [102] and Wriggers [189]. A review
of existing contact formulations is also given by Popp in [150], see also references therein.
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2 Single-field governing equations and computational models

The contact enforcement presents an additional constraint that must be incorporated into the
solid mechanics formulation. In contrast to more complex approaches such as the previously
mentioned Lagrange multiplier method that adds constraint equations to the FE system, the
penalty method simply introduces contact constraints that can be interpreted as a supplementary
set of boundary conditions. In doing so, the penalty contact algorithm generates contact forces
to resist node-into-rigid surface contact penetrations, while guaranteeing conservation of mo-
mentum between the contacting bodies. The nodes on which the constraints are applied form
a so-called slave surface, which belongs in this case to the tire, while the interacting surface
is referred to as the master surface, i.e. the road or the rim. The classical set of conditions for
contact enforcement can be stated as

Gn =0, (2.49a)
pe <0, (2.49b)
P gn = 0, (2.49c¢)
De Gn =0, (2.494d)

where g, denotes the normal gap between a pair of contact entities and p. the normal component
of the contact traction vector t. also known as contact pressure such that p. = t. - n., with
n,. representing the unit normal contact vector (normal to the slave surface). These conditions
can easily be interpreted as (2.49a) corresponds to the constraint of non-penetration of the two
bodies, whereas (2.49b) avoids adhesive forces on the contact interface, (2.49c) sets the contact
pressure to zero when the gap is open and keeps the gap closed when contact occurs, and (2.49d)
is a complement to condition (2.49¢) allowing it to persist in time.

When bodies are in contact, not only normal traction but also tangential traction commonly
known as frictional forces are transmitted across the contact interface. In the case of tire-road
contact, an isotropic Coulomb friction model, see e.g. [189], is used to relate the maximum allow-
able frictional forces to the contact pressure between the two bodies. Both contacting surfaces
can carry frictional forces across their interface up to a certain magnitude known as frictional
capacity before they start sliding relatively to one another, which corresponds to the following
additional conditions to be fulfilled in each point of the contact interface:

it — pe |pe| <0, (2.50a)
Uy rel T O t. =0, (2.50b)
(IIt]] = e [pe|) o =0, (2.50¢)

where . > 0 is the friction coefficient between the tire and the road, o > 0 a scalar parameter
and t, = (I —n.®n.)-t. the tangential contact traction. These constraints can also be physically
interpreted starting with the so-called slip condition given by (2.50a), which states that the two
contacting surfaces will slide as soon as the magnitude of the frictional stress is at least equal to
a fraction of the contact pressure controlled by the friction coefficient, i.e. the frictional capacity
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Figure 2.4: Schematic representation of the iterative process enforcing the contact constraint in
a penalty contact method: a normal contact pressure p. is applied on slave nodes as a
function of the penalty stiffness parameter k, and the normal gap g, in order to close

the latter, leaving a residual penetration gap g;°° after a finite number of increments.

In an exact contact enforcement, no residual penetration remains between slave and
master surfaces.

te |pc|. The second condition (2.50b) allows to introduce the stick condition: when o = 0, both
surfaces stick together so that relative tangential velocity between the two bodies given by v 1
is set to zero. However, when a > 0, the two bodies slide on each other at a relative tangential
velocity proportional to the frictional stress ;. Finally, the last equality (2.50c) simply allows
to separate the solution of the stick and the slip conditions. Note that more advanced tire-road
friction models can be used to better reproduce available laboratory data characterizing a given
rubber compound. As for the tire-rim contact, the tire is not allowed to slide on the rim, so that
the two bodies are enforced to stick together during the entire computation, i.e. « = 0 at all
times.

In practice, the penalty method works in two steps. In a fist step, a search algorithm is used to
look for slave nodes that penetrate the rigid surface. In a second step, a normal contact pressure
p. is applied to oppose penetration to the found slave node, while respecting the conditions
(2.49) and guaranteeing equal and opposite forces on the rigid surface at the penetration point.
At the same time, an eventual frictional slip distance g, is added in the direction of the relative
tangential velocity vector, if permitted by the conditions given by (2.50). Simply speaking, since
the contact pressure p. depends on the gap distance g,, a relation in the form of p. = —k, g,
can be written for each slave node. Consequently the parameter k,, that has the dimensions of
a stiffness, must be properly chosen in order to position the slave node on the master surface.
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The choice of this penalty stiffness parameter represents the largest drawback of the penalty
methods as no universal rule can be established for its determination. In the current approach, a
penalty stiffness based on a representative stiffness of the underlying elements forming the slave
surface is used to approximate the contact enforcement. As an exact value of the penalty stiffness
cannot be predicted, an iterative process is used to enforce the required constraints and obtain
a satisfactory distance between the node and the surface as illustrated in Figure 2.4. Note that
this procedure introduces an additional stiffness behavior into the model, such that the resulting
“spring” stiffness of the concerned elements can influence the stable time increment, as discussed
in section 2.1.4.

2.2 Fluid mechanics

In contrast to the field of solid mechanics where the vast majority uses exclusively the finite
element method for the analysis of deformable bodies, various approaches are commonly em-
ployed to solve numerically the fluid flow. The preferred approaches in the field of computational
fluid dynamics (CFD) used to spatially discretize the fluid field can be separated into two cat-
egories: continuum-based approaches that use a mesh to discretize the fluid domain in space,
and mesh-free or particle approaches for which the approximation of the governing equations
is constructed entirely in terms of nodes without relying on a mesh. The most common contin-
uum methods include the finite volume (FVM), the finite difference (FDM) and the finite element
method (FEM), whereas the smooth particle hydrodynamics (SPH) and the molecular dynamics
(MD) methods are among the most popular mesh-free techniques. The current approach is based
on the FVM and will be described in this section.

The literature offers a great amount of material that presents fluid flow problems and their nu-
merical resolution. Considering first continuum-based approaches, the interested reader is for
instance referred to the textbook by Patankar [140], who is a pioneer of modern CFD and in
particular of the FVM, being among others the co-developer of the famous SIMPLE algorithm
also described in the book. Blazek [18] and Versteeg [178] present more recent advancements
for the FVM, while Ferziger and Peri¢ propose a detailed introduction to the FDM and the FVM
in [62]. The FEM is also a popular choice among the CFD community especially for solving
FSI problems as both fluid and solid sub-domains are discretized using the same formulation,
which allows for instance to construct a monolithic solver as proposed e.g. in the thesis by Mayr
[117]. An extensive analysis of the FEM for fluid flow problems can be found in Donea and
Huerta [39], Zienkiewicz et al. [197] or in the theses of Forster [64] and Wall [181]. Although
these mesh-based methods are dominant in numerical simulations, some difficulties resulting
from the use of a mesh can limit their application, such as in problems with free-surface, ex-
tremely large deformations or crack propagations [109]. In such cases, mesh-free methods can
provide an attractive alternative to solve the fluid system. One of the most widespread approach
is the SPH method in which the system is described by a set of particles, each one representing
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a finite volume in continuum scale and interacting with one another within a range controlled
by a weight function [13]. These particles carry the fluid characteristic properties such as po-
sition, mass, velocity, etc., and since they are explicitly associated with different materials, the
interface between phases is naturally tracked. However, mesh-free methods need a large number
of particles to produce equivalent resolution compared to continuum-based techniques which,
associated to a large computational cost, represents one of their main drawbacks [158]. Another
problem emerges as particles cluster in some region of the flow, which in turn leads to an in-
sufficient particle resolution in some other region so that mesh-free methods can suffer from an
inaccurate representation of the interface comparing to grid-based Lagrangian methods [158].
An overview of the SPH method and recent advances in the field are proposed by e.g. Liu and
Liu in [109] and Monaghan in [128], see also references therein. In the MD method, the par-
ticles are considered at a nano-scale level and represent atoms or molecules, see e.g. [68]. The
MD method is applied in the fields of chemistry, chemical physics or biology, where the dynam-
ics of each molecule or atom is to be resolved. The interested reader is referred to the textbook
by e.g. Li and Liu [108] for more details on mesh-free particle methods such as SPH and MD.
The SPH method can also be used for solving FSI problems as shown e.g. by Stasch et al. in
[163], which have developed a SPH-FEM approach to compute the coupled system. For the sake
of completeness, another CFD approach that has gained interest in the last few decades should
be mentioned: the Lattice Boltzmann method (LBM), see e.g. the textbooks by Succi [164] or
Wolf-Gladrow [188] for a complete introduction. Also in this case, the LBM does not rely on
the Navier-Stokes equations to solve the fluid field but rather describes it by means of fictitious
particles moving and colliding on a regular mesh. Based on the kinetic gas theory, this approach
can also be employed for solving FSI problems, as in [70] where it is coupled to a FE solver to
compute the solid sub-domain. Its use is however to this day quite limited compared to the other
methods.

The choice of computational model used to handle the tire hydroplaning problem is first de-
scribed in this section. The equations governing the fluid flow are then presented together with
appropriate discretization techniques. Finally, a specificity of the fluid solver used for tire hy-
droplaning applications, which treats multi-phase flows and the corresponding free-surface is
briefly introduced.

2.2.1 Choice of computational model and hypotheses

The fluid of interest in the current FSI application is liquid water that flows with a relative veloc-
ity with respect to the tire ranging from O up to 350 km/h, while considering the extreme case of
the wet performance of racing tires. In these conditions, the fluid flow remains immutably incom-
pressible and is thus governed by the incompressible Navier-Stokes equations. Furthermore, the
fluid is considered as Newtonian, viscous and no heat exchanges are taken into account. These
hypotheses are kept in the rest of the thesis.
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2 Single-field governing equations and computational models

As already stated in section 1.4.1, Eulerian fixed-grid approaches are attractive for discretizing
the fluid sub-domain in FSI applications with large motion of the interface, as in tire hydroplan-
ing simulations. A FVM combined with appropriate techniques to capture the motion of any
obstacles and moving boundaries within the fluid field, including a fluid-structure interface, are
therefore adopted in this work. The computational mesh is based on a co-located structured
Cartesian grid with dynamic adaptive mesh refinement (AMR) allowing to deal with the mo-
tion of boundary layers and improve the quality of the mesh where needed. The treatment of
the free-surface is based on a volume of fluid (VOF) method to evaluate the fraction of liquid
water in each cell intersected by the free-surface. Its reconstruction is performed using the same
technique as for the moving boundary. An implicit time integration scheme is implemented in
the fluid solver to solve the Navier-Stokes equations whereas an explicit operator is used for the
VOF method introducing therefore a critical time step size and making the overall fluid solution
procedure eventually explicit.

An overview of the corresponding implementation in the fluid solver employed in this thesis is
given in the following. Particular attention is paid to the computation of fluid quantities along
a moving boundary immersed within the fluid domain, which can be the fluid-structure inter-
face.

2.2.2 Governing equations in fluid mechanics
2.2.2.1 Kinematics

Contrary to solid mechanics where the body motion is described with respect to a reference
configuration in a Lagrangian formulation, the Eulerian approach adopted for the fluid field
describes kinematic quantities based on a unique current configuration Q7 C R3. In this case,
the primary kinematic unknowns correspond to the fluid velocity field u” (7, ¢). Considering
that in an Eulerian formulation velocities are given in terms of the current coordinates =7, the
accelerations are defined using the material derivative as

Du” B ou”

CF(F
£) = _ o
w(@,1) = ot

+u” - Vu”, (2.51)

x5

which, unlike accelerations (2.4) in the solid domain, contain a nonlinear convective term. The
strain-rate tensor is also directly given as the symmetric gradient of u” and reads

1
ef(u”) = 5 (Vu]E + (VUI)T) . (2.52)
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2.2 Fluid mechanics

2.2.2.2 Balance equations

Similarly to the solid domain, fluid dynamics problems can be described with use of balance
equations. In order to derive a mathematical formulation describing completely the fluid flow,
1.e. the Navier-Stokes equations, not only the balance of linear momentum but also the mass
conservation must be established, as shown in the following. The conservation of energy as well
as multiple forms of the balance equations of momentum can be found e.g. in Ferziger and Peri¢
[62].

Conservation of mass

Considering an arbitrary fluid volume V' surrounded by a boundary surface 0V of outward unit
normal n, the rate of mass change within this fixed volume is equal to the rate of inflow through
the boundary surface (without any mass source or sink), which reads

2/,ofdvz—/ pfuf-ndsz—/v-(pfuf) dv, (2.53)
at 14 ov \4

where p” is the fluid mass density and the divergence theorem has been used to write the last
equality. Since V' is arbitrary, the local form of the mass conservation valid everywhere in the
fluid domain Q7 and V¢ € [0, T can be written as

dp” F : F
- TV (PPut) =0 in Q" x[0,7], (2.54)

and, after neglecting compressibility effects, further simplifies into
V-u" =0 in Q7 x[0,7], (2.55)

which is also commonly referred to as the continuity equation.

Balance of linear momentum

The balance of linear momentum accounting for the dynamic equilibrium of all forces in the
fluid domain is given, in its local convective form, by

Du” FLEF i OF
p F:V%T + b7 in Q" x[0,7], (2.56)

which, by inserting (2.51), yields

_F
p” (%+uf.vu7) =V.-o7 +b" in QF x[0,7], (2.57)
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2 Single-field governing equations and computational models

where b/ are prescribed external body forces (per unit volume).
The Cauchy stress tensor denoted by o’ in (2.57) can be decomposed into a normal and shear
component as

ol (u”,p)=—pI+77, (2.58)

where p denotes the fluid thermodynamic pressure and 77 the shear stress tensor. The latter is
function of the strain-rate tensor and can be expressed in the case of a Newtonian fluid as the
linear expression

7 =2u" 7 (uh), (2.59)

where 1 represents the fluid dynamic viscosity.

Inserting (2.58) into (2.57) then yields

f
e (% L u” Vuf) — Vp+ V-7 4 b in QF x[0,7]. (2.60)

The transient Navier-Stokes equations of an incompressible flow can finally be expressed using
the continuity equation (2.55) and the balance of linear momentum (2.60) as

V-u" =0 in Q" x[0,7], (2.61a)
F
i (% +u” - Vuf) =-Vp+u V- (Vu')+b" in Q7 x[0,7], (2.61b)

where constant viscosity was assumed and equations (2.59) with (2.52) were used. It forms a
nonlinear system of partial differential equations for which the primary unknowns are the fields
of fluid velocity u” and of thermodynamic pressure p. For the sake of simplicity, the latter will
simply be referred to as fluid pressure in the rest of the thesis.

2.2.2.3 IBVP for Navier-Stokes equations of incompressible flow

In the same way as for the solid field, the fluid initial boundary value problem is built based on
the Navier-Stokes equations given by (2.61) and appropriate initial and boundary conditions in
a time interval t € [0, 7).

The initial conditions at time ¢ = 0 are given by a divergence free initial velocity field @] (x”)

as

u” (x7,0) = af (x”) with V.-aj =0 va’ € Q”. (2.62)
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For incompressible flows, no initial conditions must be set as such on the pressure field. However,
since pressure appears as a gradient Vp in equations (2.61), it is determined up to a constant.
This pressure constant is imposed either as a mean pressure value or at a specific point in the
fluid domain or even implicitly by fixing a pressure value at a boundary of the fluid domain
[197]. In this work, the first of these three options is employed to impose a far-field pressure
value of reference p> for the whole duration of the simulation.

In order to define boundary conditions on the fluid domain Q7 the fluid boundary surface 9Q”
is partitioned into non-overlapping Dirichlet and a Neumann boundaries denoted respectively
by I}, and T such that

Q" =17 ury, TLnNTL =0, (2.63)

away from the fluid-structure interface. Multiple types of Dirichlet and Neumann boundary con-
ditions exist in order to model the fluid flow at its boundaries. Some of them, which are used in
this work, are described in the following:

— No-slip wall boundary conditions are chosen when viscosity is taken into account in the
Navier-Stokes equations. All fluid particles at this boundary are assumed to stick to the
wall and eventually follow its motion as

u” = on I} x [0,7], (2.64)

F 0 fixed wall
Uy, Mmoving wall

where both the normal and tangential velocity components are prescribed. It typically
causes a so-called boundary layer in a region close to the wall, where the flow features
large velocity gradients and is dominated by internal friction. A fine computational mesh
is required to properly resolve the physics of the flow in this thin region from where phe-
nomena such as separation or laminar-turbulent transition originate. More information on
the boundary layer, its theory and application to fluid mechanics can be found e.g. in the
reference textbook by Schlichting and Gersten [155].

— Slip wall or symmetry boundary conditions only prescribe the normal velocity component
as

u” n = { 0 fixed wall on TZ x [0,7]. (2.65)

Uy - T moving wall

This boundary can be interpreted as a wall with no friction and on which fluid particles
can bounce without loosing momentum in the process.

— Inlet and free-outlet boundary conditions are the most challenging since they do not repre-
sent actual physical boundary conditions. The conceptual domain is truncated to a bounded
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2 Single-field governing equations and computational models

one by introducing artificial boundaries on which appropriate boundary conditions corre-
sponding to far-field values of velocity or pressure must be chosen. These artificial bound-
aries must be set sufficiently far away from eventual obstacles located or moving within
the fluid domain in order to avoid any disturbance of the flow. The ones employed in this
work prescribe a normal mass velocity at the inlet and a pressure at the outlet by imposing
respectively

pmut = p" Ul (1) on IS x [0, 7], (2.66)
P = Pou on Ty x [0, 7], (2.67)

where U7 (t) is a velocity magnitude not necessarily constant in time prescribed at the inlet
and Py, an imposed pressure at the outlet. Note that the latter should be chosen in order to
avoid creating a pressure gradient over the computational domain. In practice, a pressure
value equal to the reference pressure p>° previously introduced is used. These types of
artificial boundary conditions and their mathematical formulation are further discussed
e.g. in the paper by Heywood et al. [84].

For further information on boundary conditions and additional definitions such as rough wall or
periodic boundary conditions, the interested reader is referred to e.g. Versteeg [178].

The Navier-Stokes equations (2.61) with the initial and boundary conditions (2.62-2.67) com-
plete the IBVP and form the strong form of the Navier-Stokes equations of an incompressible
flow valid at all times and for all fluid particles within the fluid domain Q7. It is used as a starting
point to derive the finite volume approximation of the fluid system.

2.2.3 Discretization of the Navier-Stokes equations with moving
boundaries

In order to be solved numerically, the fluid IBVP defined at a continuous level must be trans-
formed into a set of algebraic equations. As previously stated, multiple methods are commonly
used to discretize the governing equations (2.61). In this work, a solver based on the FVM is
employed, which also corresponds to the main trend followed nowadays by the scientific and
industrial software community.

The formulation of the fluid flow problem with the FVM approximates the continuous Navier-
Stokes equations on the fluid domain Q7 by integrating them over a finite number of so-called
control volumes V¢ constituting the entire fluid computational mesh as

Lellx (.ells

~Qf = U Ve, ﬂ Ve = (2.68)
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where ¢ € N is the index related to a fluid cell and N7,

in the discretized fluid domain Q] . When moving boundaries are considered within the fluid

represents the number of fluid cells

domain, the motion of these boundaries, corresponding e.g. to a fluid-structure interface or a
moving rigid body!'°, must be treated appropriately with non-body-conforming approaches such
as immersed boundary methods already reviewed in section 1.3.1. It is achieved by considering
the fluid volume change during one time step At | = ¢7., — ¢ in the Navier-Stokes equations
for each cell intersected by a moving body. In doing so, the discretization (2.68) is used to
integrate equations (2.61) over each control volume V¢ of external surface S¢ during At; | as

1
AT (/ p]:dV—/ch]:dV) +f{c pPu” -ndS =0, (2.69a)

n+1 n+1

1
AT (/C pFuFdV—/VCpFuFdV)—Fj{C pu” u” - ndS
n n+1 3 )

n n+1

= — VpdV + f ' VaoundS+ / b" dv, (2.69b)

c c c
Vn+l n+1 n+1

where the divergence theorem was used and the operator V,,(-) denoting directional derivative
n, 0(+)/0x

defined as V,,(-) = | n,0(-)/0y | was introduced.
n,d(-)/0z

Compared to the strong form (2.61), equations (2.69) lead to the weak form of the Navier-Stokes
equations of an incompressible flow with moving boundaries for which the balance equations
and the boundary conditions are required to be satisfied only in an average (or integral) sense
over an arbitrary number of control volumes. This weak form represents the basis of the FVM
formulation introduced in section 2.2.4.

The two volumes V7 to V7, | in (2.69) are used to describe the fluid volume change in a fluid cell
c intersected by a moving boundary during At | and can be further described as follows:

— V¢ isreferred to as data volume and corresponds to the volume of a fluid cell at the begin-
ning of the time step (t = ¢). At this moment, the volume as well as the distribution of
all fluid quantities (data) are known on the whole fluid mesh.

— V7, 1s referred to as geometrical volume and corresponds to the volume of a fluid cell
intersected by a moving boundary at the end of the time step (¢ = ¢, ). At this point
the volume is still an unknown, which must be estimated by an appropriate method before

being able to advance the fluid field to the next time station ¢, ,.

19Since the fluid is considered in this section as a single-field problem, all moving boundaries are assumed to
belong to a rigid undeformable body. As a matter of fact, in a partitioned coupled FSI problem, the fluid-structure
interface is considered by the fluid solver as a rigid body during each fluid time step.
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/
rMs v

Figure 2.5: Schematic representation of a 2D fluid domain Q7 intersected by a moving boundary
'™B c 9Q7 associated with an immersed rigid body and approximated by a set
[MB of line edges (plane facets of surface S; in 3D) according to (2.70). A better
approximation of the external shape of the boundary obtained with use of a finer
mesh is also highlighted.

To be able to evaluate the geometrical volume V7', | in each intersected cell, the moving boundary
associated with the moving body must be reconstructed within the fluid domain. The related
reconstruction process is covered in the next section.

Moving boundary reconstruction

A moving boundary I'™® C 9Q7 associated with an immersed rigid body of arbitrarily complex
shape is considered, as shown in Figure 2.5 for a 2D example. After the body motion, the moving
boundary must be reconstructed within the fluid domain, which is achieved by approximating
the curvilinear external surface of the considered body by a set of plane facets of surface Sy. The
moving boundary can then be discretized as

tn\cets fdcets

MB o TMB — U Sy, ﬂ Sy =10, (2.70)

where f € N is the facet index and N}e = represents the number of plane facets composing
the discrete moving boundary B, The number of facets must be large enough in order to
accurately describe a curvinilear surface: the finer the mesh, the more accurate the approximation
of the boundary shape will be (see also Figure 2.5). It is important to state here that in the case
the moving boundary is the fluid-structure interface, its shape is already discretized as a set of
plane facets, which correspond to the outputs of the solid FE computation. Hence no further

approximation or geometrical error is introduced in that case by the fluid solver.
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An appropriate IB method is then used to fit the fluid mesh to these facets and describe the
updated shape of the fluid cells as well as their volume after the motion of the moving boundary.
The corresponding algorithm is based on the following four steps [4]:

1.

The fluid cells intersected by the facets of the moving boundary are found by an efficient
search algorithm.

Among these cells, initial so-called “parent” rectangular cells are cut off and the resulting
“children” cells intersected by the moving boundary are detached in some volumes of ar-

bitrary complex shape bounded by these facets and fluid grid cells, as illustrated in Figure
2.6.

. All geometrical information necessary for approximating the governing equations is de-

termined, i.e. the geometrical volume V7, | of all new children cells, the surface of their
faces as well as the distance from the boundaries to the center of mass of the cells and
their neighbors. These quantities are further used in section 2.2.4.2 while approximating
the surface and volume integrals in equations (2.69).

Small children cells referred to as donor cells, i.e. cells whose volume is lower than a
threshold percentage of their parent cells’ initial volume, are removed and their boundaries
are transferred to the neighboring cells called acceptor cells. Acceptor cells receive the
donors’ geometrical information and related fluid data. In this joining process, the fluid
velocity is mass averaged whereas the pressure is volume averaged as'!

Foo_ui VX Hun Ve 2712)
'U,A,joined - Ve a + Ve Va3 ) ./1a
A PA D D
paVX +po Vo
DA joined = —re 10 (2.71b)
joine VA I VD

where the subscripts ()4 and (-)p designate acceptor and donor quantities respectively.
In doing so, the resulting cells are not geometrically simplified and stored in the form of
complex polyhedrons, where all information needed to solve the Navier-Stokes equations
are available.

During the cell cutting process following a boundary motion, five situations can occur in each
cell of the fluid grid. Each one of these five situations illustrated for a 2D example in Figure 2.7a

is treated separately and can be summarized as follows:

1.

The cell is far from the moving boundary and its volume does not change during At),

(blue cells in Figure 2.7a) : V¢, = V. The classic Navier-Stokes equations (with a
constant cell volume) can be solved.

"'The time index (n + 1) is omitted here for the sake of clarity.
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Parent cell Moving

5 boundary
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Child cell 1

Child cell 2

_________

Figure 2.6: Cell cutting process inspired by [4] where a “parent” initial cell (top) is cut off by
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2. The boundary moves inside the cell and its fluid volume changes during At

. The fluid cell disappears during At/ | (red cells in Figure 2.7a) : V¢ # 0 and V¢

the facets of the moving boundary into “children” cells (bottom) on the underlying
fixed-grid of finite volumes.

7.1 (yellow

cells in Figure 2.7a) : V7 | > V7 or V7 | < V7 (see Figure 2.7b). Both volumes and
related data must be considered to solve the fluid dynamics system of equations.

. A new fluid cell is generated during At 41 (green cells in Figure 2.7a) : V7 = 0 and

V¢ 1 # 0. These cells are treated as small or donor cells as defined previously. The donor’s
geometrical volume is shared between the acceptors, which see their geometrical volume
increased by the donor cell’s contribution. The data volume of acceptor cells remains in
this case unchanged.

n+1 n+l =
0. This kind of cell is treated in the same way as in the previous case by considering
a donor and acceptor cells. The solid body sweeps away all the fluid contained in the
considered cell, whose data must be transported to acceptor cells. The velocity of the
moving boundary u{‘ffl is used to determine the direction in which the swept fluid data

needs to be transferred and which cells will be chosen as acceptors. In this case, the donor’s
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’U,MB
n+1 t]_- t]:
e no n+1

A /

Figure 2.7: (a) A boundary immersed within a fluid fixed-grid and moving with a velocity uM?,

during a time step At , = t, — t; can generate up to five types of fluid cells:
cells far away from the moving boundary keep a constant fluid volume (blue), cells
intersected by the boundary have a modified fluid volume (yellow), new cells are
generated (green), old cells disappear (red) and cells remain completely overlapped
by the solid (white). (b) Fluid volume changing from V¢ (data volume) to V7, (ge-
ometrical volume) in a cell ¢ during At;”. | after the motion of the boundary.

data volume is shared between the acceptor cells while the acceptors’ geometrical volume
receives no contribution of the donor cell.

F

5. The cell remains overlapped by the solid body during At; |

Vy = V. = 0. These cells do not need any treatment.

(white cells in Figure 2.7a) :

Now that not only the data volume V, but also the geometrical volume V7, and related geo-
metrical information are known in each cell ¢ of the computational mesh, the not yet discretized
Navier-Stokes equations (2.69) can be computed to evaluate the fluid unknowns at the next time
station ¢;” . Their spatial discretization using the FVM and results from this section is presented
next.
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2.2.4 Space discretization

With an appropriate treatment of the moving boundaries, the Navier-Stokes equations can be
discretized in space to form a system of numerically computable algebraic equations. As already
mentioned, a structured Cartesian mesh is employed to divide the fluid continuum into a finite
number of control volumes due to numerous advantages. Compared to unstructured or curvi-
linear computational meshes, Cartesian grids are easy to construct for any kind of fluid domain
geometry, facilitate the reconstruction of moving fluid boundaries and perform well both in terms
of numerical and hardware efficiency as reported e.g. by Mehl et al. in [120]. A fluid mesh can
also be further described as a so-called co-located or non-staggered grid. In that case, both the
primary fields of unknowns, the velocity u” and the pressure p, are stored and evaluated at the
center of the cells, see e.g. Versteeg [178] for further details. Another approach consists in using
staggered grids where the scalar quantities such as pressure and density are stored in cell cen-
ters whereas the velocity are located at the cell faces. Since a co-located grid is more efficient
and more convenient for body fitted and moving boundaries, it is also adopted here. However,
this grid arrangement requires splitting the evaluation of the pressure and the velocity as well as
interpolating the pressure from the nodes onto the cell faces, which can introduce non-physical
solutions for the pressure and corresponds to the well known ““checker-board” problem. These
spurious oscillations can eventually be suppressed by an appropriate treatment in the fluid pro-
cedure, which will be described in section 2.2.5 while presenting the successive steps for solving
the fluid domain.

Before detailing the space discretization of equations (2.69), a few words are given about the
grid adaptation procedure employed in the fluid solver.

2.2.4.1 Dynamic adaptive mesh refinement

The dynamic adaptivity of the structured Cartesian mesh implemented in the fluid solver is
based on an AMR approach already reviewed in section 1.3.1. The entire mesh is composed
of a collection of rectangular grids of different levels, where each cell can be subdivided into
eight (in 3D) new cells in a lower refinement level. The resulting grid being stored as an octree,
the method is very efficient while accessing computer memory. Compared to non-structured or
structured curvilinear grids, the present method is faster and produces a mesh of good quality
in the sense that all cells have a constant aspect ratio. Furthermore, the adaptive refinement
approach is described as dynamic because it can automatically follow an immersed body within
the fluid domain along its moving boundary or even refine the mesh in challenging regions of
the flow, for instance characterized by a large pressure gradient. The fluid computational mesh
and its adaptive refinement procedure are illustrated in Figure 2.8 for a 2D grid.

54



2.2 Fluid mechanics

Zones of large
pressure gradients

Moving body

uMB l,

Figure 2.8: Refinement levels from O to 3 in the fluid computational mesh (left). Dynamic adap-
tive mesh refinement procedure following the moving boundary associated with a
body traveling with a velocity uM® as well as in regions of the flow featuring large
pressure gradients as in the wake of the body (right).

2.2.4.2 Finite volume formulation

The finite volume approximation of the Navier-Stokes equations is presented in the following by
treating the surface and volume integrals in (2.69) separately, which eventually comes down to
evaluating fluxes through cell faces in the case a co-located mesh is used.

Surface integrals approximation

Starting with the surface integrals, a flux F' of an arbitrary scalar quantity f (e.g. velocity com-
ponent) through a control volume V¢ is considered. It can also be expressed as the flux of this
same quantity through the closed surface S¢ bounding the finite volume V ¢. Accounting for this,
the integrals over the faces of a finite volume can be approximated as follows'?

N faces

gl:CeS N]:
deS:Z/ FdS~Y FS;, (2.72)
Se k=1 7 5% k=1

where S¢ is the surface area of the k™ face, Fy, the discrete averaged value of the flux F over the

cell’s face and N7, .. = 6 in 3D (if no boundary intersects the cell).

12The notation k € N refers to the face index within a fluid cell.
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Two types of fluxes, a convective flux F©°™ and a diffusive flux F& of a quantity f through the
cell faces, corresponding respectively to a convective and diffusive transfer in equations (2.69),

need to be approximated, which can be formulated as
For = fu” - n, FiT = Vf -, (2.73)

where discretized quantities were introduced. These two fluxes and in particular the approxima-
tion of the discrete scalar quantity f in these two cases are presented separately in the follow-
ing.

Convective flux Fe™

To be able to approximate the convective flux F*" during a time step At, ., the profile of the
quantity f must first be reconstructed inside each computational cell'*. To do so, a polynomial
approximation based on averaged values at the center of the considered cell and its neighbors is
carried out. More specifically, the solution of the variable f is reconstructed within the cell using
a monotone upwind scheme, for which monotony is achieved by building a bi-linear profile of
f in each spatial direction. The reconstruction procedure is illustrated in Figure 2.9a for a 1D

example with a regular grid built along the x-axis as
Xi+1/2 = ’iAX, (274)

where the index ¢ € N denotes nodal values at the center of a cell bounded by faces (points in
1D) of coordinate x;_; /> and X; 5.

The bi-linear profile f(x) used to reconstruct the solution inside the cell is defined as fol-
lows!*:

fir +Ofir (X — if > Xi_1/2 + AAX,
£( —{ ’ # (12 =) ! 12 (2.75)

B fi,l + 8xfi,l (i[} — Xz’—l/2> if < Xi—1/2 + )\AX,

where ) is a dimensionless distance to the junction point of the bi-linear profile defined by
A= (fi,—f)/(fir —fi1), fir and f; values reconstructed on the right and left faces of the i cell,
and O,f;  and O.f; the discrete derivations of these quantities given respectively by

1 1
fir = E(fm +f;) — g(fifl —2f; +fin),
1
2

(2.76)

1
fio==(fi+fi1) — g(fi—l —2f; +fin),

I3For the sake of clarity, the superscript (-)” denoting fluid quantities is left out in the rest of this section.
It is assumed that the profile f(x) does not vary while it is advected by the flow during At,, ;.

56



2.2 Fluid mechanics
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Figure 2.9: (a) Representation of the 1D monotone upwind (bi-linear) reconstruction of a quan-
tity f inside a cell denoted by its center 7 (2" order approximation), inspired by [3].
(b) 1D approximation of the convective flux F;™ through the right face of cell ¢ dur-
ing a time step At,,,; achieved by integrating the reconstructed function f(x) over
the backward characteristic of length u, At,, ;.

and
f. —f
ax‘Fi,r - L7
(1 —)\)Ax 2.77)
Of . — f —fi,
LT TN AX

This reconstruction scheme provides a 2™ order approximation in space O(Ax?) and has monotonous
and small artificial dissipating properties [3]. The reconstruction algorithm switches to a 1% order
scheme such that f(z) = f; in the case the following conditions are met: A < 0.01, A > 0.99,
Ifix — fia] < 1073(|fia] + |fi| 4 [fir]) o (fir — ) (Fi — fi1) < 10710(|f; 4| + |f] + |fi])?. The values
reconstructed on the cell faces are then evaluated as follows:

fin="fi_1, fir =1 if u, >0,

, (2.78)
f“ = fi, fz‘,r = Tit1 if Uy, < 0,
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where u, is the velocity component normal to the cell face.

The convective flux of f through the right face of the i cell (Figure 2.9b) during At,,; can now
be written as
tn+t1

Foo = (z) u;, dt. (2.79)

tn

By operating a variable change using the backward characteristics length u; , At , it becomes

Xi+1/2
Feom — / f(x)dr with >0, (2.80)

ir1/2— Ui Al

In the context of the Navier-Stokes equations, the reconstructed function corresponds to the fluid
velocity such that f(x) = u(x). The expression of the convective flux through the k" face of
cell 7 during At,,, thus reads

Xit+1/2
ik (Uik, u;) = / u(xr) dr  with u;, >0, (2.81)

i11/2— Ui,k Abnii

where u; ;. is the velocity component normal to the k'™ face and u(z) the velocity function recon-
structed inside the cell based on neighbor cells’ center values as in (2.75). The 3D reconstruction
scheme is simply built by superposing three 1D reconstruction schemes presented above in each
spatial direction, which keeps the 2™ order approximation in space if the bi-linear reconstruction
is used.

Diffusive flux F4ift

In order to approximate the diffusive flux of a variable f, the value of its gradient Vf must be
evaluated on the cell faces. The approximation of the gradient is presented in the following for
an unadapted as well as a non-uniform adapted grid intersected by a moving boundary. A 2D
grid defined similarly as in (2.74) in two spatial directions @ = (z, y) is considered for clarity
reasons, the generalization to the 3D form being straightforward.

In the case of an unadapted Cartesian grid as illustrated in Figure 2.10a, the discrete derivatives
are evaluated by a two point central difference scheme. The gradient of f on the right and top
faces of a cell designated by the index couple 7,5 is then given respectively by

f. —f.

+17 9,

Vfi,j’r = - ]A = ng,
X

g — fi
Vil = =g

(2.82)
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2.2 Fluid mechanics

whereas the gradient on any other faces of the computational mesh is approximated in the same
way.

For an adapted non-uniform Cartesian grid intersected by a solid boundary, the evaluation of
the gradient corresponding to the diffusive flux is slightly more complex. The grid illustrated in
Figure 2.10b is considered, in which capital letters denote positions with known values (at the
center and boundaries of a cell) whereas small letters designate locations where the fluid quan-
tities must be approximated. To do so, a linear interpolation is performed along a line crossing
the face center and perpendicular to the cell face. Moreover, to remain general, some cells have
been adapted and subdivided into four cells (in 2D) of equal size such that Ax; = 2 Ax;; and
Ay; = 2 Ayy;. The approximation of the gradient on two faces can then be given by:

— Right face of cell B:
1
VfBr - 5 (Vfd + Vfb) y (283)
with
fp — fe fp — fe fo —fa
V= 2= 5 Vi, = .
Xp — X¢ > + TH Xe — Xa

where values f., f. and f, are approximated by a linear interpolation of center values. For
example, the expression of f. is given by

fczfc(yc—yB)JrfB(yC_yC) :fc(%)JrfB(%Jr%)'

yc — YB Ayy

— Lower face of the wall intersecting cell E, whose center is designated by W and where fw
corresponds to a known boundary condition:

fo+ f
Vi, = fmw Nw.1, (2.84)

where fW is the distance between points f and W, and ny; the outward normal to the face.

When cells are deformed due to the presence of a moving boundary (e.g. cells E and F), the
center of mass of the cell moves and the lines along which the linear interpolation is performed
are not perpendicular to the initial cell faces anymore. In that case, intermediate values must be
interpolated in additional locations on the grid (e.g. in e and f). These locations are defined by
the intersection between lines joining cell centers (e.g. line segment EF) and lines perpendicular
to cell faces crossing their center (e.g. line segments be or fW).

A generalization to a 3D approximation of the diffusive fluxes in the Navier-Stokes equations is
carried out similarly by considering an additional spatial direction.
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Figure 2.10: (a) Approximation of the gradient on the right and top faces of cell 7, j in a 2D
unadapted grid. (b) Approximation of the gradient on the right face of cell B (B,)
and on the lower face of the wall intersecting cell E (Ey ;) in a 2D non-uniform and
adapted grid.
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2.2 Fluid mechanics

Volume integrals approximation

The volume integrals for a fluid cell ¢ are approximated as follows
/ fadv = fveaf,ve, (2.85)

where £ is the averaged value of quantity f over the volume V¢ and f; is the discretized quantity
at the center of that cell of finite volume V°. The evaluation of the volume integrals is straight-
forward since it only involves quantities at cell centers and does not require any interpolation.
The approximation is exact if f is constant or varies linearly within the control volume V¢ and
achieves 2" order accuracy.

With the approximation of the surface and volume integrals presented in this section, the Navier-
Stokes equations (2.69) are now fully discretized in space. The final discretized form is given in
the next section while introducing the time discretization of the fluid system.

2.2.5 Time discretization

The time integration scheme implemented in the fluid solver is based on an implicit pressure-
velocity split approach. Considering that the fluid variables at time ¢t = ¢/ as well as both
volumes V;, and V; _ , are known in each cell of the computational grid, the fluid field can now
be advanced to the next time station ¢/, = 7 4+ At} ,. Introducing the spatial discretization
from the previous section, the Navier-Stokes equations of an incompressible flow with moving
boundaries given by (2.69) can be expressed for each cell ¢ of the computational mesh as

NI
Vc VC faces
n+l = Vn F c
—AF T > ul g Mk Sei g =0, (2.86a)
ntl k=1
F
u]—' VC o u]: VC faces
n+l VYn+l1 n 'n ‘I‘ Fconv ( F F )Sc
AL E \Wn o Wni1) dntik
n+1 k=1
‘C7p Né;% E;F
_ n+l \c F F c n \/c
—— Vo v E : Vo U Mt Sy e + =5 Vi (2.86b)
P k1 P
where v7 = p” /p” is the kinematic viscosity and quantities with a subscript k correspond to

values evaluated on cell faces. The reconstruction of the velocity gradients on the cell faces in
the diffusive flux is performed using the 3D form of the operators given in (2.82-2.84) whereas

7 u’ ) is approximated as in (2.81).

: conv
the convective flux Fi™ (u;

In order to solve this fully discretized system of equations, classical pressure-velocity split meth-
ods assume a sequential solution of the momentum and pressure equations. By introducing an
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intermediate velocity field denoted by fif; |» equations (2.86b) can be rewritten as

NI
F ~F ~F c F\/c faces
Unt1 — Vi —u, vV

n+1 n+1 n ¥Yn conv F F c
A Vi + AtF + E F (un,k7 U, 1) Sn+1,kz
n+1 n+1 k=1

1
_ — p— (Vpn+1 + Vpn - Vpn) V$L+l

Nie A
aces bn .
+v7 Z Vnkufﬂ,k Motk Sppie + % o = Voin (2.87)
k=1
which is then split into
N-F aces
U, sz-i—l B U;f VC tz Fconv ) c
Atf+1 n k? n+l n+1,k
N7 _r
Vpn . faces bn .
= \4 n+l1 + v” Z Vnkun+l EMntlk Sn-H kT Vn-H (2.88)
/0 1 /)
and
F ~F
un un C 1 C
= F + Vn+1 = T F (Vpn—l—l - Vpn) Vn+1 (289)
Atn+1 P

In general, the intermediate velocity field in the momentum equation (2.88) does not satisfy the
continuity equation (2.86a). To rectify this, the velocity field is corrected at the cell center and
faces in order to be conservative. Using equations (2.89), it can be done with

N AT
ul, =, — pa L (Vpps1 — Vpn) (2.90a)
- AT

F _
un+1,k - un+1,k

p"“ (VPnitk — VPuk) - (2.90b)

The Poisson’s equation for pressure, used to evaluate the pressure at the next time station, is then
obtained by substituting equations (2.90b) into (2.86a), which reads

taces

”“ o Z U Pk S
NZ
Atn aces .
pr (VPnrik = VPug) Mgk Spyg- (2.91)

k=1
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Following this approach, the momentum equation is solved with use of the pressure field and
the conservative velocity at the cell faces from the previous time station. When solid bodies
move in the fluid sub-domain with respect to the fixed grid, the mesh changes during the new
time step and the velocities on the cell faces are not valid anymore for solving the momentum
equations. In the current method, the pressure equation is computed first, which allows having
the conservative velocity field on cell faces at the current time station for solving the momentum
equations. As a consequence, the intermediate velocity field in equations (2.90) and (2.91) is
replaced by the velocity from the previous time station, which is reconstructed on the cell faces
by a linear interpolation of cell center values.

As mentioned before, with co-located grid arrangements, the velocity and pressure fields are
evaluated at the cell center while the discrete equations for velocity and pressure are decoupled,
which leads to pressure oscillations on the computational grid and is commonly referred to as
checker-board problem. These non-physical pressures can be dealt with by using a higher-order
pressure gradient operator in equations (2.91) as proposed by Rhie and Chow in [153], which
eventually allows to damp the spurious oscillations. In the present context, it implies that the
pressure gradient at the time station ¢ in (2.90b) be approximated with a higher order of accu-
racy. Including the changes mentioned previously as well as a high-order operator V5 (-) that
approximates the pressure gradient, (2.90b) becomes!?

AtT
uimk=u§w—-K#H(Vmwmf—vﬂpmm). (2.92)
However, applying this correction makes even a steady-state solution dependent on the time step.
This dependency can be eliminated by rather using the following expression for the fluid velocity
at the cell faces:

At”
g = s = =5 (Vpuein = (1= 0) Voue =B Vapase) . (293)
where the parameter 5 = min {1, At”;5/At7, |} and
Fer _ ) Lo F
At 5 = min e Ve € &, (2.94)
n+1

is a critical time step size with L | the characteristic dimension of cell ¢ and \ui;cl the ve-
locity magnitude in that same cell. This parameter also introduces a stability condition to the
simulation, which is further discussed in section 2.2.5.1. As for the pressure equation (2.91) it

'5The notation (-),, 1+ is used to designate variables reconstructed on a cell face k at time ¢, with a linear inter-
polation from neighbor cells’ center values at time #;. .
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becomes
taces
n+l + Z U ' n-‘rl,k sz—l—l,k
NZ
Atn+1 faces .
- p]_- (Vpn+1,k - (1 - 6) Vpn,kz+ - BVH pn,k:+) Nk Sn+17k- (2.95)
k=1

Solution algorithm

The solution procedure to solve the Navier-Stokes equations (2.69) at time ¢ | is based on the
previous developments and is finally given by the following algorithm:

1. Mesh update: following a body motion, the new position of the interface is captured and
volumes V7 | are calculated in each fluid cell using the procedure presented in section
2.2.3.

2. In the case of a free-surface flow, the phase transfer equations are solved using a VOF
approach and the position of the free-surface is updated. Free-surface flows and their res-
olution are briefly discussed in section 2.2.6.1.

3. The pressure field p,,.; is found by solving the Poisson’s equation for pressure (2.95).

4. The conservative (satisfying the continuity equation) velocity at cell faces and the mass
flow rates p” u7 | , through these faces are computed with (2.93).

5. Using the conservative velocity face values computed at step 4., the conservative velocity
field u;, at cell centers is finally obtained by solving the momentum equations:

F c F\/c N{:Ces
un lvn 1 Vn conv c
+ A;f + Z ™ (W) g U 1) Sry
n+1 k=1
N§m P F
1 . bn c
k=1

6. Fluid values requested as output anywhere within the fluid sub-domain, including on the
fluid moving boundaries or on the fluid-structure interface, are approximated using a linear
interpolation of cell center values as shown in Figure 2.10b.
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2.2 Fluid mechanics

2.2.5.1 Stability of the time integration scheme and CFL number

Reconsidering the CFL condition introduced in section 2.1.4 for the solid field that sets a stability
limit on the time step size based on a critical time step, an analogous condition can be introduced
for the computation of the fluid flow. The inverse of the parameter 3 in equations (2.93) can be
related to a so-called CFL number C' that acts as a stability limit for the simulation. The time
step size used in practice can then be expressed as

AtF = C ST AT (2.97)

where SY, = 0.5 is a safety factor that guarantees a conservative estimation of the critical time
step size At] " defined in (2.94). This critical time step relates the grid size to a characteristic
velocity, which characterizes the time a perturbation in the flow passes through the mesh. It plays
an important role especially in unsteady flows such as the ones considered in the thesis to set a
stable time step size. As can be seen in (2.94), the smaller the grid size and the larger the fluid
velocity, the more restrictive the critical time step will be. The CFL number allows to control the
impact of the stability limit given by the critical time step and is chosen in practice by making a
compromise between stability and simulation time such that a CFL number C' > 1 can in general
be considered for implicit schemes.

When the fluid domain includes moving boundaries and the overall simulation is driven by the
movement of the moving boundary, as it is the case in FSI problems, another condition based on
a surface CFL number C® and a surface critical time step AtM®*" can be used. The latter can be
expressed as

LC
APBT = min { | Mgc| } Ve e IMP (2.98)
c un ’

MB,c

MB.c| is considered in each cell. The

where the velocity magnitude of the moving boundary |u
corresponding time step is given in this case by

AtMB = CS ST AeMBer (2.99)

with a less restrictive safety factor S¥, = 1 and allows accounting for the effect of the boundary
motion on the stability limit.

This completes the presentation of the fluid mechanics system employed in this thesis for solving
the FSI applications of interest. A detailed description of the space and time discretization of the
fluid domain has shown how the primary fields of unknowns u” and p are computed on the fluid
computational grid, which are in turn used to evaluate the fluid loads applied onto the fluid side
of the fluid-structure interface. This will be presented in the next chapter while the solid and fluid
sub-domains are merged to formulate the FSI problem. Before that, the free-surface included in
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the fluid domain and the corresponding multi-phase flow present in tire hydroplaning simulations
are briefly introduced in the next section.

2.2.6 Hydroplaning-specific modeling aspects
2.2.6.1 Free-surface flow and phase transfer with VOF method

In many engineering applications [167, 180, 192] such as the one of interest in this thesis, the
fluid domain can be split into two or more phases defined by multiple fluids and a so-called
Jfree-surface at their interface. In the case of tire hydroplaning, in addition to liquid water, the
fluid domain is also filled with air in its gas phase. However, the computation of the air flow
around a tire is of no interest while evaluating its hydroplaning performance. Since solving both
phases is computationally very expensive, the two-phase fluid model is simplified in that the
rest of the fluid domain not occupied by water is simply considered as void. In doing so, the
additional physical flow does not need to be computed and the free-surface can still be defined
at the interface between water and the void phase.

The position of this free-surface and its evolution over time must be described appropriately. Var-
ious methods consider this problem, for which a common solution is to use a so-called surface
tracking approach. In that case, the mesh moves to “track” the interface and fit the free-surface as
in front tracking approaches described e.g. in [160, 173] or in [35] where an ALE description is
used to account for the motion of internal and external (i.e. on the free-surface) nodes. The main
disadvantage of these approaches is that the grid generation at each time step is computationally
expensive and that the simulation of very large deformations of the interface is in general not
feasible. An alternative solution consists in using surface capturing approaches, where the posi-
tion of the interface needs to be “captured” within a fixed-grid. These methods include level set
techniques [1, 2, 139] or the volume of fluid (VOF) approach [86, 112, 187], which do not re-
quire any mesh regeneration and can therefore be used with any deformation of the free-surface.
A typical drawback of these approaches is that the interface is captured with the resolution of the
underlying fixed-grid. Following a large displacement of the free-surface, the latter could find
itself in a region of the fluid domain where the mesh is too coarse to describe appropriately the
fluid flow. However, an AMR technique such as the one introduced in section 2.2.4.1 allows to
circumvent this issue by refining automatically the cells close the free-surface and following its
motion.

The method implemented in the fluid solver employed in this work is based on an extension of
the general VOF approach [86] for which the governing equations are solved in all fluid cells, i.e.
not only in the cells completely occupied by one fluid phase but also the ones intersected by the
free-surface. The reconstruction of the free-surface inside the fluid cells in question is achieved
through the use of a VOF variable denoted here by (), which allows to characterize the phase
transfer within the fluid domain. In each cell of the computation grid, () takes values from 0 in
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pure gas (or void) to 1 in pure fluid, so if 0 < @) < 1 the cell contains a free-surface and needs
further treatment. The VOF variable () is transferred through the grid by means of a transport
equation given by

9Q

and fluid properties such as p” or p” denoted here by ¢ are computed in each cell of interest
as

q= QCInq + (1 - Q) Ggas (2101)

where ¢;q and gy, are fluid properties associated to a liquid and a gas phase respectively.

An explicit procedure is used to solve the transport equation (2.100) and compute the transfer of
(2 between cells intersected by a free-surface and their neighbors. Based on the value of (), the
free-surface is then reconstructed within the cells by a set of connected facets as for the moving
boundary presented in the previous section. While precisely capturing the position of the free-
surface is important to accurately describe the fluid-structure interface in an FSI application such
as in the tire hydroplaning problem, a detailed description of the VOF method is out of scope of
this work. More details can however be found e.g. in [5].

The explicit treatment of the phase transfer introduces an additional critical time step in the
time integration procedure, which can be prohibitive in cells occupied by droplets due to their
potential small size, as in the case of tire hydroplaning. In order to avoid a severe restriction on
the time step size for the entire fluid computation, a surface CFL condition of the type of (2.99)
is used, for which the critical time step is calculated based on the velocity magnitude of the free-
surface instead of the moving boundary in each cell. In doing so, the stability limit is evaluated
for cells intersected by the main free-surface and discards the effect of small droplets on the time
step size, for which the solution is of no concern in the current application anyway.
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3 Multi-field problem and coupling
procedures

The numerical modeling of the solid and fluid sub-domains presented in the previous chapter
can be merged together to build a so-called multi-field problem, which in this case is the coupled
FSI problem. To do so, an important prerequisite is the compatibility of the chosen solvers both
in terms of implementation and mathematical formulation of each single-field. The solid model
presented in section 2.1 based on a Lagrangian formulation and the fluid model described in
section 2.2 relying on a Eulerian fixed-grid approach with appropriate moving boundary recon-
struction and mesh refinement techniques is suitable for computing FSI problems involving large
interface motion and complex physics. To be able to couple the two physical models, a coupling
procedure enforcing coupling conditions at the interface shared by both sub-domains must be
constructed. Among the approaches available and reviewed in section 1.3.2, a partitioned cou-
pling strategy has been adopted in this work. In such a case, the coupled problem is split into two
independent single-field systems, more easily solved separately, which then need to be coupled
and synchronized with use of an appropriate coupling scheme that enforces the above mentioned
coupling conditions.

As discussed in section 1.4.1, partitioned coupling strategies are best suited for solving problems
where both physics are very complex, which require specifically designed single-field solvers. In
particular, loosely-coupled partitioned procedures, chosen for their efficiency and compatibility
with the black-box solvers at hand, are applied to the tire hydroplaning problem. The design
of such coupling procedures and related requirements are presented in this chapter along with
an exhaustive review of past and current research in the field. The pursued intent is to provide
sufficient theoretical background on partitioned coupling procedures, and in particular loosely-
coupled schemes, before addressing in chapter 4 the coupling strategy proposed in this thesis for
tire applications.

3.1 Problem formulation and coupling conditions

Considering a generic mechanical system composed of a deformable solid domain Q° interact-
ing with a fluid under motion 7, both evolving in time and finding themselves in their current
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Figure 3.1: (a) The solid QF and fluid Q7 sub-domains are bounded by Dirichlet boundaries I'
and I'Z, Neumann boundaries I'{ and I'; and a common fluid-structure interface T".
(b) Kinematic and dynamic continuity conditions are applied at the fluid-structure
interface I" according to (3.3) and (3.4) respectively.

configuration, the fluid-structure interface can be defined as the intersection of the solid and fluid
boundaries as

= 0Q°NoQ” (3.1)

and corresponds to a shared surface (in 3D) across which both sub-domains interact. In an FSI

I'™B immersed within the fluid sub-domain described

problem statement, the moving boundary
in section 2.2.3 for a rigid body, can be replaced by the fluid-structure interface I'. The dis-
cretization and reconstruction technique of the moving boundary presented at that occasion can
be directly transposed to the fluid-structure interface without any further assumption or simpli-
fication. The coupled problem is eventually composed of both sub-domains QF and Q7 their
Dirichlet and Neumann boundaries I'S, I}, and I, T as well as their shared fluid-structure

interface I as illustrated in Figure 3.1a.

Both single-fields are entirely described by their governing equations together with initial and
boundary conditions presented in chapter 2. To complete the mathematical formulation of the
coupled system, an additional set of physically meaningful conditions must be enforced on the
fluid-structure interface I'. These coupling conditions, also commonly referred to as transmis-
sion conditions or interface continuity conditions, guarantee the compatibility and continuity of
kinematic and dynamic quantities between the two sub-domains.

The kinematic continuity condition imposes a no-slip condition at the interface, which prevents
any fluid flow across I'" and any relative motion between the solid and fluid at I', reads

dd = ul on I x [0,7]. (3.2)
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Integrating expression (3.2) in time then yields
ds = df on I' x [0,T], (3.3)

where df* denotes the displacement of fluid particles at the interface and corresponds, in this
particular setting, to the displacement of the fluid moving boundary within the fluid domain. The
reconstruction of that boundary is performed in the present fluid solver based on the exact dis-
placement field of the fluid-structure interface. This intrinsic feature of the flow solver guarantees
that the kinematic condition (3.3) is automatically fulfilled, at least right after the reconstruction
process, as further discussed in section 3.3.5.1.

The dynamic continuity condition stems from Newton’s third law [131], the action-reaction prin-
ciple, which requires the traction field at the interface to be balanced at all times during the
simulation. Applying the method of sections by separating the two sub-domains at the shared
interface as illustrated in Figure 3.1b, the dynamic condition then reads

td = —tf on I'x [0, 77, (3.4)

where t? is the traction vector (2.13) on the solid side of the interface and tlf the fluid traction
vector at the interface defined by

tl =0’ -nf, (3.5)

in which o is the fluid Cauchy stress tensor given in (2.58) and n{ the outward unit normal to
the fluid side of the interface. The surface traction vector ¢’ contains the loads resulting from the
fluid pressure and viscous stresses at the fluid-structure interface and its evaluation by the fluid
solver used in this work is further detailed in section 3.1.1. The dynamic condition can also be
written in terms of interface force vectors by multiplying both sides of (3.4) by the surface area
of the corresponding side of the interface as

fe=—f on T x [0,77, (3.6)

where f£ and f denote the force vectors applied on the solid and fluid side of the interface
respectively. Note that, in the discrete setting, the transition from expression (3.5) to (3.6) only
holds in the case of a matching mesh at the fluid-structure interface, in particular when the
surface area is equivalent on both fluid and solid sides of the shared interface.

The expressions (3.3) and (3.4) already conclude the mathematical formulation of the coupled
problem, which enforce the continuity of kinematic and dynamic quantities across the fluid-
structure interface and, as shown in section 3.2.2, are sufficient to guarantee the conservation
of mass, momentum and energy at the interface. While these conditions can be respected per
construction in monolithic approaches, partitioned strategies manage at best to fulfill them up to
a certain tolerance in implicit coupling strategies. As for explicit partitioned schemes, they are
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unable to enforce both continuity conditions but still allow to construct robust loosely-coupled
schemes as further discussed in the remaining of this chapter.

3.1.1 Fluid loads on the fluid-structure interface

Once the fluid state is fully computed using the procedure presented in section 2.2.5, the reaction
force from the fluid onto the moving boundary, or in this case the fluid-structure interface, can
be computed. In order to fulfill the dynamic continuity condition (3.4), the traction field at the
fluid-structure interface must be balanced and thus a traction vector £ = —t{- applied onto the
solid external surface at the interface. In practice, the surface traction vector is multiplied by
the surface area of the corresponding interface to obtain the sought reaction force, which is then
transferred to the solid solver.

As discussed in section 2.2.3, the geometry of a moving body is approximated by a collection
of plane facets, which are used to reconstruct the moving boundary within the fluid sub-domain.
When this immersed body corresponds to the solid field of an FSI problem, its external surface
is already represented as a set of plane facets that coincide with the outputs of the solid FE
solver. The situation at the end of a fluid time step can be illustrated for a 2D example as in
Figure 3.2, where the surface traction tﬁ #1 reconstructed on each fluid face & are multiplied by
the associated surface area to obtain the resulting fluid force on the solid facet f as

NTF

T, faces

=2 thy Sh (3.7)
k=1

where Nlj:’ff:ces denotes the number of fluid faces created at the solid facet f of the interface,
whereas Sﬁ is the surface area of each fluid face k. The fluid reaction force for all solid facets
belonging to the fluid-structure interface are computed in the same way before being sent to the
solid solver. The synchronization of the data exchange between two solvers and the application
of the fluid load onto the fluid-structure interface in partitioned coupling schemes are further

discussed in section 3.3.

3.2 Partitioned coupling procedures

Thanks to their flexibility and modularity, partitioned procedures are very often used to solve
multi-field problems, including FSI problems. First introduced in the late 70’s by Felippa and
Park [55, 56], partitioned strategies allow to use specifically designed solvers to compute each
single-field separately, which then need to be coupled together in order to merge the resulting
partitioned problem at its interface. A coupling scheme is employed to that effect by enforc-
ing the continuity conditions (3.3) and (3.4) for the whole duration of the simulation. General
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Figure 3.2: Evaluation of the fluid force f ; on the solid facet f of the fluid-structure interface I
based on the surface traction tf, 71 and the corresponding surface areas S}Tk computed
by the fluid solver for each fluid face k (here k = 1, ..., 3) according to (3.7).

properties and key features of partitioned procedures are described with more detail in the fol-
lowing.

3.2.1 Generalities and properties

Two categories of such partitioned coupling procedures already introduced in section 1.3.2 ex-
ist: a strongly-coupled or implicit coupling strategy, and a loosely-coupled or explicit coupling
strategy. Implicit approaches aim at enforcing the continuity at the interface by sub-iterating
between the two sub-domains until sufficient convergence of one of the coupling conditions is
achieved, approaching in that way the ultimate strongly coupled solution offered by monolithic
schemes. Various methods reviewed in section 1.3.2 are given in the literature to solve the parti-
tioned system but in general at the cost of complex implementation and expensive computations
for guaranteeing numerical stability and reducing the error made on the continuity conditions.
Furthermore, strongly-coupled approaches require in general a minimum of access to the single-
field solvers in order to control their synchronization and reach data used during the iterative
process. For some black-box solvers, such as the ones employed in this work, these require-
ments are not met and such a strategy cannot be implemented. In an explicit coupling strategy,
no sub-iterations are performed so that the solution obtained at the end of an FSI time step is
directly transferred to the other solver without keeping account of the continuity conditions. As a
matter of fact, explicit coupling schemes always violate the continuity conditions and introduce
a partitioning error in the coupled system as discussed in detail in section 3.3.5.1. Nevertheless,
robust and efficient explicit coupling schemes have been developed over the past recent years
and successfully applied to FSI problems as shown in section 3.3, while reviewing loosely-
coupled strategies proposed in the literature. Strongly-coupled and loosely-coupled procedures
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Figure 3.3: Schematic representation of most basic explicit (a) and implicit (b) coupling
schemes. Each single-field is sub-cycled such that RS, | =2 and R, = 4.

are schematically illustrated in their simplest version in Figure 3.3, where each single-field is
computed separately during an FSI time step, which can be defined as

Atn-‘rl =1lnt1 — tn. (3.8)

The solution to each single-field must be computed at least at each time instant ¢,, and ¢,1,
which correspond respectively to the beginning and the end of the (n + 1) FSI time step, since
these correspond to synchronization points in time when both sub-domains are reconciled. The
FSI time step is thus also commonly referred to as coupling or synchronizing time step. In the
explicit variant, coupling quantities are exchanged only once per time step (step 1 and 3 in Figure
3.3a) whereas, in the implicit approach, both single-fields are advanced (step 1 in Figure 3.3b)
before being sub-iterated until sufficient convergence is achieved (step 2 in Figure 3.3b).

An extra advantage of partitioned algorithms resides in the possibility for each single-field to use
its own time step At;, or AtS |, smaller or equal to the FSI time step At,,1, in order to fulfill
the CFL conditions (2.47), and (2.97) or (2.99) for the solid and fluid sub-domains respectively.
In that situation, also illustrated in Figure 3.3, the solid and/or fluid sub-domains are said to be
sub-cycled based on a so-called sub-cycling ratio

Atn+1 Atn+l

R,,=—%-€N and Rl = €N, (3.9)

TN, AT,

for the solid and fluid fields respectively. These ratios can either be constant for the whole dura-
tion of the simulation or an additional variable in each FSI time step.

In the rest of this section, coupled problems are further characterized with help of their balance
equations. It will allow to emphasize specific requirements and criteria to be met while construct-
ing staggered solution procedures as well as corresponding errors arising from the partition of
the coupled problem. A thorough review of partitioned strategies, including an historic of suc-
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cessive developments, can also be found e.g. in the thesis by Mok [125] or in the review article
by Felippa et al. [57].

3.2.2 Balance equations at the fluid-structure interface

Similarly to the solid and fluid single-fields, a coupled problem can be described by its balance
equations of mass, momentum and energy. The connection between these conservation equations
and the coupling conditions introduced in section 3.1 are emphasized and will allow to introduce
a criterion for robustness and accuracy of the coupled numerical procedure.

Following a similar development as the one proposed in the thesis by Mok [125], the conser-
vation equations are written at the fluid-structure interface during one FSI time step A?,,,; in
order to highlight possible creation or destruction of artificial quantities resulting from the time
discretization of the coupled problem.

3.2.2.1 Mass conservation

Assuming that no material can appear or disappear and that both sub-domains can neither overlap
nor separate from one another during one FSI time step, the conservation of mass of the coupled
system is guaranteed if the continuity of displacement at the interface given by (3.3) is respected
and that both single-field solvers are mass conserving. Since both solvers employed in this work
fulfill the latter condition, mass conservation is achieved by simply enforcing the kinematic
continuity condition in each time step.

3.2.2.2 Momentum conservation

A coupled problem formed by the two sub-systems Q and Q” with the interface traction vectors
t2 and t{ previously defined is considered. The conservation of momentum requires the change
of momentum in the coupled system due to the loads at the interface to correspond exactly to
the sum of contributions from each partitioned sub-system during one time step At, ., thus
avoiding any artificial momentum that might result from the partition in time of the coupled
system. Imposing the momentum conservation then yields

tnt1
/ t2 +tf dt =0, (3.10)
tn
which accounts for the dynamic equilibrium in the coupled domain. The expression (3.10) hence
simply requires the dynamic continuity condition (3.4) to be imposed in each coupling time step
of the FSI simulation. Note that, since the geometry of the interface is exactly matching on
the solid and fluid sides, i.e. the reconstruction of the interface within the fluid sub-domain is
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achieved with the exact geometry resulting from the solid solver, interface traction or interface
force vectors can be equivalently used in the equilibrium expression (3.10). As both solvers use
interface forces as primary outputs, the latter are rather used to describe balance formulations in
the following.

3.2.2.3 Energy conservation

An additional expression describing the balance of energy at the fluid-structure interface, which
proves to be very useful for characterizing coupled systems, can be given by following the same
logic. In this case, the coupling procedure should not create or dissipate any energy at the in-
terface compared to the solution resulting from the two partitioned sub-systems. The amount of
energy possibly produced at the interface during one FSI time step At,,,; can be evaluated as

AEr,. = AES, , + AEL, |, (3.11)

where AEﬁ ny1 and AEIZT 41 denote respectively the energy contribution from the solid and fluid
fields at the interface, which should be balanced such that AEr,, 1 = 0 in each time step. These
energy contributions can be related to the work performed by the interface solid and fluid loads
along the motion of the interface [126, 147] respectively given by

tn+l .
AEE, | = f2 - df dt, (3.12)
tn
tn+t1

AEL, . = - ul dt. (3.13)
tn

In other words, it means that the work performed by the fluid loads, i.e. fluid pressure and viscous
stresses, at the interface must be balanced by the work of the interface solid force field along the
motion of the interface and for each FSI time step. Introducing (3.12) and (3.13) into (3.11), the

energy balance then reads

tntl .

ABr 1 = fEde+ fful dt =o0. (3.14)

tn

If the dynamic condition (3.6) is fulfilled, the balance expression (3.14) can be rewritten as

tn+l .
AEr 1 :/ fE (df —uf) dt =0, (3.15)
tn

which can only hold if the kinematic condition (3.2) is simultaneously enforced. Therefore, no
artificial energy is produced during an FSI time step if both kinematic and dynamic continuity
conditions are respected.
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Since both continuity conditions appear in (3.14), the interface energy conservation directly
guarantees mass and momentum conservation at the interface and consists therefore in a very
appropriate tool to evaluate partitioned coupling procedures. As a matter of fact, the interface
energy can be used as a rigorous criterion to assess the accuracy of the coupled solution, by
introducing the time discretization operator employed for each single-field solver and for the
coupled problem into (3.14) [46], as further discussed in the following.

Many research groups have successfully used the interface energy to evaluate partitioned solution
procedures. These include, among others, the work by Mok [126], by Piperno [143] also with
Farhat [145, 146], by Le Tallec with Mouro [104] and Hauret [103], by Bloom [19] or by Van
Brummelen [174], where the last two analyze the interface energy conservation for monolithic
approaches as compared to partitioned methods. The suitability of a given partitioned procedure
can thus be assessed by such a criterion that measures the artificial energy that is numerically
created at the shared interface by the staggering process. Some of these coupling strategies,
which are relevant in the context of this thesis, are described in more detail in the next section,
while reviewing loosely-coupled partitioned procedures proposed in the literature.

3.3 Loosely-coupled partitioned strategies

As already stated in section 1.4.1, the coupling strategy adopted in this work is based on a
loosely-coupled partitioned procedure. While it is the only option that can be considered with
the black-box solvers at hand, this coupling strategy also offers the highest degree of flexibility
and modularity in terms of software coupling for solving FSI problems. Together with the fact
that explicit coupling procedures are the most efficient, avoiding any kind of sub-iterations, they
represent the preferred choice for developing coupling algorithms for large scale problems in an
industrial environment. However, it comes at the price of numerical stability and even accuracy
of the entire coupling scheme if special care is not taken.

3.3.1 CSS algorithm and terminologies

The simplest yet very widespread coupling scheme is the famous conventional serial staggered
(CSS) strategy illustrated in Figure 3.4 in its original form as proposed by Piperno and Farhat
in [47, 148]. The CSS procedure is also commonly known as Z-scheme due to the Z-shaped
pattern formed by the arrows describing the data transfer. The steps undertaken for advancing
the coupled system from ¢,, to ¢,,, | in this classic explicit coupling strategy are given in algorithm
3.1. It is noteworthy that there is no restriction whatsoever on the time integration scheme to be
used in both single-fields. The latter are only required to be reconciled at the end of each time
step, when the data transfer takes place. This confers the high flexibility attached to partitioned
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Algorithm 3.1 CSS

Require: Initial time ¢ = 7§, final time ¢ = 7', time step index n = 0, corresponding time step
size At; and initial solid displacement field d .

1: whilet <7 do

2:  The last known solid displacement field of the interface d‘ﬁn is transferred to the fluid
solver.

3:  The fluid moving boundary is reconstructed within Q7 and the fluid field advanced to
lpi: (u}—vp)n - (ufap)n+l~

4:  The fluid loads fl{r 41 are computed at the interface as in (3.7) then transferred to the solid

solver.

5:  The load is applied on the solid side of the interface and the solid field advanced to ¢,,;:
s — dJ, .

6: Nexttimestep:n =n+ landt, . =1, + At,;.

7: end while

procedures, which allows in turn both single-field solvers to be separately sub-cycled as needed
by their respective stability limits.

A time shift between the evaluation of the primary unknowns in the two single-fields is directly
apparent in the CSS procedure. The solid displacements on the interface used to advance the
fluid field from ¢,, to ¢,,, | remains dﬁn during the whole time step At,, 1, thus introducing a time
lag in the scheme and a temporal partitioning error that can be formulated as

Flnn(dR) # floa(di, ). (3.16)

As a consequence, the time-accuracy of the CSS algorithm is in general at least one order lower
than that of its underlying single-field solvers, and the numerical stability limit of the coupled
problem can be much more restrictive than that of the flow and/or solid solvers [147]. The limited
stability and accuracy in time of the CSS algorithm is described more in detail in the following,
while more evolved explicit coupling procedures are presented.

Before that, some terminologies commonly employed in the analysis of loosely-coupled parti-
tioned procedures are briefly introduced. The term collocated or synchronous is used to designate
algorithms such as the CSS in which the fluid and solid sub-systems are evaluated at the same
time stations, as opposed to non-collocated or asynchronous schemes where both single-fields
are reconciled at different time instants. These schemes are also classified as serial or sequen-
tial in the sense that the solid and the fluid are advanced successively and not simultaneously in
time. In the latter case, the algorithm would be referred to as parallel. Various versions of these
explicit schemes have been analyzed in the literature and are described in the following.
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Figure 3.4: Schematic representation inspired by [47] of the conventional serial staggered (CSS)
and generalized conventional serial staggered (GSS) coupling procedures for which
the predicted displacement dﬁ: .1 1s given by (3.17).

3.3.2 GSS algorithm and artificial interface energy

In a first attempt to limit the above mentioned temporal error, Piperno and Farhat [46, 145] intro-
duced a generalization of the CSS scheme by adding a solid predictor in the so-called generalized
conventional serial staggered (GSS) algorithm. In that case, the solid displacement field at the
interface transferred to the fluid solver in the step 2 of algorithm 3.1 is replaced by a predicted
interface displacement field given by

dir, =dS, +aodd, Aty +ay (dE, —dS, ) Aty (3.17)

where oy € R and a; € R are two parameters characterizing the order of time accuracy of
the predicted displacement field, and the superscript (-)* designates a predicted quantity. The
prediction (3.17) is 1% order time-accurate if oy = 1 and «; = 0 and 2" order time-accurate if
ap = l and oy = 1/2 [145]. The step 4 of algorithm 3.1 can then be interpreted as a correction of
the predicted interface displacement, making the GSS a predictor-corrector approach. Although
the introduction of a predictor allows to reduce the temporal partitioning error during each time
step At,,. 1, the interface kinematic continuity condition is still not fulfilled such that

di, . #dix.. (3.18)

and results in the imbalance of the interface energy, as previously seen in section 3.2.2.3. This
imbalance can also be interpreted as though an artificial energy were introduced by the partition-
ing process in the coupled system.

79



3 Multi-field problem and coupling procedures

Artificial interface energy analysis

Piperno and Farhat analyzed in [147] the production of artificial energy for different loosely-
coupled coupling schemes by comparing the work performed by the fluid pressure and stresses
to that of the solid forces at the fluid-structure interface as a function of the coupling time step.
Based on a similar idea developed in [48] for the data exchange through a non-matching inter-
face, this approach enables to build a criterion that qualifies any kind of partitioned coupling
scheme in terms of accuracy. It allows at the same time to measure the conservation of the work
done by forces transmitted by the fluid to the solid sub-domain through the shared interface and,
in that, corresponds to the energy criterion evoked in section 3.2.2.3. The monitoring of the arti-
ficial energy represents therefore a key component in the development of coupling schemes. The
latter should aim at minimizing the artificial interface energy as it can deteriorate the accuracy of
the coupled solution compared to the order of accuracy expected from both single-field solvers.
Furthermore, such a spurious interface energy leads to unstable coupling schemes which, even
if both single-field solvers are unconditionally stable, can be conditionally stable or even un-
conditionally unstable [52, 66]. Therefore, both the numerical stability and the accuracy of the
coupled system are governed by the creation of interface energy, which can be controlled by the
coupling scheme as shown in the following for different configurations.

Using equation (3.13), the energy transfer during At,,; from the fluid to the solid field through
the fluid-structure interface I', as viewed by the fluid, can be evaluated in the case of the GSS
scheme as

AEL, = [y (Al —df ), (3.19)

which, by introducing the predictor (3.17) yields
F F S* S*
AEr,nH = fr,(n+1) ’ <dr,n+1 - dr,n> . (3.20)

The fluid force term! flf (n+1) depends on the choice of time discretization scheme for the fluid
solver and does not necessarily correspond to the fluid loads computed at the interface at time
t,n+1. More precisely, it depends on the value of the fluid load that is used by the solver to compute
the fluxes across the interface I', when it is advanced from time station ¢,, to ¢,,; [147]. Different
fluid time integration schemes are considered in [147] to compare loosely-coupled procedures,
for which the fluid force term is given as follows:

— 1*" order forward Euler explicit scheme:

ey = 1L, (3.21a)

IThe notations with parentheses around the time step index as in frfT (n+1) designate quantities used in the expression
of the interface energy transfer during the time step At,, | but are not necessarily computed at the time station ¢, ;.
All choices considered here for fg (n+1) are given by (3.21).
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— 1* order backward Euler implicit scheme:

ey = (3.21b)

— 2" order scheme: a good approximation consists in using

fn+ I
f¥1n+])23 L 2 L +17 (3‘21C)

— In the event of fluid sub-cycling, the fluid load term can be approximated as

tn+1

1
Atn+l tn

i) dt, (3.21d)

Fnany ®

assuming that the fluid interface velocity is constant over At,, ..

The fluid procedure presented in section 2.2.5 and used in this thesis is 1% order time-accurate
and computes the fluxes across the interface with the most recent fluid pressure and stresses such
that the fluid force vector at the interface is given by (3.21b). In that case, equation (3.20) then
reads

AEL o = Fr - (A2 —di)). (3.22)

Moving on with the solid side, the explicit central difference 2" order time-accurate scheme
used in this work and presented in section 2.1.4 is considered. In that case, the variation of
energy during At,,,; due to fluid forces on the shared interface as viewed by the solid can be
written using equation (3.12) as

P + Foin

AE‘EHH = — 5

(df, —di,). (3.23)

where the terms fl‘_s,(n) and fl‘_s,(n 41y represent the flow-induced solid load applied by the solid
solver on I' at time instants ¢,, and ¢, respectively. They are constructed based on the fluid
pressure and stresses computed by the flow solver at the interface and represent in (3.23) the load
applied by the 2™ order time-accurate solid solver during At,,, ;. The way the solid load ffs’ (n 1)
(or fl‘?: (n) At the previous coupling time step) is built can hence define different instances of
loosely-coupled procedures and has a large influence on the numerical stability and the interface
energy conservation of the coupled FSI system. In that context, the solid load fg (n+1) applied at
the interface does not necessarily correspond to the most recent computed fluid load fg - It
can rather be interpreted as the time discretization of the load transfer from the fluid to the solid
during At,,,, [146]. In [52], the solid load is even depicted as a load corrector that is supposed

to rectify the displacement prediction given by (3.17). This terminology is used in the following
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to describe the solid force term, which can be constructed using the following choices proposed
in [147]:

£ = FL.(d20), (3.24a)

Foen = Fon (dh ), (3.24b)

Ry = 5 (FEdE0) + Fn (@) (3.24¢)

Fleny =20 (A0 ) — 2., (3.24d)
2 tn+i

fRinen) = FE@) dt— 5,0, (3.24e)
Atn-i—l

tn

where (3.24b) represents the natural choice for the classic GSS procedure and (3.24a) would
allow the coupling scheme to work in parallel by solving both sub-problems concurrently as
proposed e.g. in [45, 46]. This last option often leads to large errors at the interface and does not
reduce substantially the simulation time if one solver needs much more time than the other to
advance its system from ¢, to ¢,,.;. In the framework of tire hydroplaning simulations, the solid
solver is considerably faster than the flow solver to compute one coupling time step making such
parallel coupling schemes irrelevant. They will therefore not be further discussed in this thesis.

Energy-accuracy of GSS procedures

Based on a load f{ (1) given by (3.21) that depends on the fluid solver at hand, various coupling
schemes can be built with the aim of reaching the least energy imbalance at the interface. To do
so, multiple combinations of predictor d?: 41 (3.17) and solid load corrector ffs, (n+1) (3.24) can
be chosen. Piperno and Farhat did so in [147] by estimating the energy error produced at the
interface in each time step for all aforementioned choices by means of a parameter ) £. In that
context, a specific procedure is said to be p™ order energy-accurate as long as the coupling time
steps At,,,; are assumed sufficiently small and if

At,
— —ontl when h — 0, (3.25)

OF ~ D hP ith h
wi T

where D is a constant and 7 is a characteristic time associated with the FSI problem at hand.
Applied on each prediction case given by (3.17), this analysis allows to define the following level
of energy-accuracy:

— Trivial predictor (oy = a; = 0), which corresponds to the CSS procedure: irrespective
of the flow solver, the coupling scheme will always be 1% order energy-accurate except if
the fluid sub-domain is integrated by an explicit 1*' order scheme, i.e. (3.21a), and that the
solid force term is given by (3.24b). In that particular case, the CSS algorithm is at least
4™ order energy-accurate. However, this scheme does not conserve the momentum (3.10)
at the interface and degrades accuracy in the event of fluid sub-cycling.
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— I*" order prediction (cy = 1 and oy = 0) : the coupling scheme is proved to be 2" order
energy-accurate for most of the single-field time discretization schemes. In particular, the
combination of a fluid solver that computes the fluid forces as (3.21¢) and a solid corrector
chosen as (3.24e) provides the minimum error on the interface energy such that

5
0E =—=Dat3 h? + O(h?), (3.26)
where Dy is a scalar parameter depending on added damping effects that result from the
coupling of the treated FSI problem.

— 2" order prediction (ocy = 1 and o = 1/2) : 3" order energy-accuracy can be achieved
with a fluid solver that computes the loads at the interface as (3.21b) and a solid corrector
(3.24d), in which case the error on the interface energy is given by

1
§E = —Dj, 3 h? 4+ O(h%), (3.27)
where Dy, is a scalar parameter that depends on added mass and stiffness that result from
the coupling of the treated FSI problem. Note that this configuration enforces the conser-
vation of momentum at the interface.

The mathematical framework based on the estimation of artificial energy created at the interface
provides a very good tool to evaluate partitioned coupling procedures as well as their numerical
stability and accuracy. As a matter of fact, it is shown in [147] for 2D and 3D examples that
the higher the order of energy-accuracy, the more time-accurate and the more stable a coupling
procedure is, in the sense that a higher time step can be employed for a given level of accuracy.

GSS procedures with current computational framework

Based on the present computational framework, a GSS coupling procedure complying with the
analysis of energy-accuracy can be constructed. The non-conservation of the interface energy
transfer during a time step At, | leads to the violation of equation (3.11) which, by considering
the solid and fluid solvers presented in section 2 and expressions (3.22) and (3.23), can be written
as

oo +
L S I CE"

* *
AEF,TLJFI = .flz_,—n+l ’ (dlg,nﬂ - d1§n>
£ 0.
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Figure 3.5: Schematic representation of the improved serial staggered (ISS) coupling procedure
inspired by [46].

3.3.3 ISS algorithm and geometric conservation law

In many cases, FSI problems are tackled with moving mesh approaches such as the ALE formu-
lation briefly presented in section 1.3.1. In order to be consistent, the computational modeling of
the fluid sub-system must be able to predict exactly a uniform flow on a moving grid, which is
achieved by computing the mesh velocity as?

F F
u]-‘ . dF,n—H - dF,n
bt JAY7

(3.29)

The expression (3.29) is commonly referred to as geometric conservation law (GCL) and was
first introduced by Lesoinne and Farhat in [105]. It was shown in [50] and [79] that the violation
of the GCL substantially deteriorates the numerical stability of the coupling procedure in the
case of moving mesh approaches. In [105], Lesoinne and Farhat also showed that the kinematic
continuity condition in terms of displacement (3.3) and velocity (3.2) cannot be simultaneously
satisfied on the interface, while conserving the GCL. Given that both these kinematic conditions
are desirable in order to avoid any discontinuities at the shared interface and that a violation of
the GCL would severely limit the size of the coupling time step, Lesoinne and Farhat first intro-
duced in [106] a non-collocated scheme named improved serial staggered (ISS). In this improved
algorithm, the fluid sub-system is always computed at half discrete time stations (¢, /2, tny1/2)s
while the solid is still evaluated at instants (¢,,_1, t,, t,.1) as illustrated in Figure 3.5. The suc-
cessive steps of the ISS can be summarized as in algorithm 3.2. In [46, 106] the ISS procedure
is proved to satisfy both continuity equations (3.2-3.3) without violating the GCL.

2The velocity and displacement fields in equation (3.29) are written here at the interface I" to emphasize that they
correspond to a mesh motion as, in this framework, ulf ny1 and df-': n1 indeed describe the motion of the moving
interface. In ALE approaches, not only the mesh motion at the interface but also in the rest of the fluid moving
domain must fulfill expression (3.29).
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Algorithm 3.2 ISS

Require: Initial time ¢ = 7§, final time ¢ = 7', time step index n = 0, corresponding time step
size At; and initial solid displacements d§ and velocities d .
1: whilet < T do
2: A predicted interface displacement field computed as

Atn+l

dS* :dS
nt Ty

F,n—i—%

ds,, (3.30)

is transferred to the fluid solver.
3:  The fluid moving boundary is reconstructed within Q” to the position is would have if

the solid were advanced by dl‘f :+ , and the fluid field is advanced from ¢, 1tot, 1=
)

tn—% + Athrl: (’U,J:, p)n—% — (u]'—?p)nJr%'
4:  The fluid loads flf 1 are computed at the interface as in (3.7) then transferred to the solid
)

solver.

5:  The load is applied on the solid side of the interface and the solid field advanced to ?,,,:
ds — ds. .

6: Nexttimestep:n =n-+landt, | =t, + At,.1.

7: end while

Energy-accuracy of ISS procedures

Analogously to the interface energy analysis for the CSS and GSS procedures, the energy-
accuracy for different instances of the ISS algorithm can be assessed. In this case, the fluid
quantities are computed (at least) at half time stations, which requires adapting the expression
(3.20) for the energy transfer during a coupling time step At,;; as viewed by the fluid with
[147]

1 1
AEIZ_:n+1 = B ff(n+%) ) (dﬁ;% - dﬁ:_%> + D) fg(mg) ' <d1§,:+g o d?,:%) ’ (3.31)

The energy transfer, as viewed by the solid, remains unchanged as in (3.23). In this case, the
interface energy imbalance for each time step At,,; then reads

1
_ F S* 48 * F S*  _ S*
ABrni1 = 2 fr,m% (dl",n-&-% dl",n—%) + fr,n+% <dr,n+§ dr,n+l

2
fw + K
. T,(n) 5 T,(n+1) X (dlg,n+l _ dﬁn)ﬁ (332)

£0

which also shows that the ISS procedure, same as the GSS, creates artificial energy at the inter-
face.
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Piperno and Farhat have shown in [147] that the ISS algorithm can be 2" or 3" order energy-
accurate in the following cases:

— 2" order energy-accuracy is achieved by using a fluid time integration operator where the

fluid load is computed as ff( ) = J“T o ff( = Ath ﬁmz fZ(t) dt and by

applying a solid force corrector at the 1nterface as

*
Py = 2 Ff 1 (e ) = F (3.33)

— 3" order energy-accuracy is achieved by using a second-order fluid time integration scheme
FEONNE S
such that flf ntd) = % in combination with the same solid corrector as in
Atz

(3.33).

By applying the same energy analysis as defined in (3.25), the order of energy-accuracy delivered
by the ISS scheme equipped with the current fluid solver can only be of 1 order, irrespective
of the choice of solid corrector fﬁ (nt1)" This points out a limitation of the current approach if
used with an ISS procedure. Yet, as further discussed in chapter 4, the coupling procedure of
both solvers at hand does not allow to implement non-collocated coupling schemes as the ISS
procedure, which makes this approach obsolete in this work anyway.

In general, ISS coupling procedures are definitely desirable for moving mesh approaches due to
their potential high-order of energy-accuracy and the fulfillment of the GCL. However, as long
as fixed-grid methods are considered for the resolution of the fluid sub-domain, GSS coupling
schemes can achieve the same order of energy-accuracy as ISS schemes by appropriately choos-
ing the prediction (3.17) and the solid corrector (3.24). As far as the order of energy-accuracy
is concerned, no clear advantage of the ISS over the GSS can be deduced. Concerning the CSS
procedure, its use proved to be quite restrictive as it can only be 1% order energy-accurate. It is
noteworthy to mention that these conclusions were drawn for aeroelastic problems, where the
solid to fluid mass density ratio is large or where the fluid flow is compressible. If it is not the
case, other effects commonly known as artificial added-mass effects must be taken into account
in order to construct explicit coupling schemes, as further discussed in section 3.3.5.2.

3.3.4 Recent advances and time-accuracy of coupling procedures

The interface energy has proved to be a very meaningful criterion in order to build partitioned
coupling schemes and monitor their partitioning error as the simulation advances. Based on the
classic staggered strategies discussed in the previous section, that is CSS, GSS and ISS cou-
pling schemes, further research has been conducted in order to propose more advanced loosely-
coupled procedures. Some of the most relevant works are reviewed in the following.
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Time-accuracy of explicit partitioned procedures

Even though the order of time-accuracy can be related to the order of energy-accuracy, see [147],
the time-accuracy of particular explicit coupling scheme had not yet been proven. It was even-
tually achieved by considering particular instances of single-field solvers chosen for their time
integration schemes which, when coupled in a specific manner, could lead to a coupling scheme
providing a provably order of time-accuracy. Contrary to Piperno and Farhat in [147], who
proposed a generic way of analyzing coupling procedures for any combination of single-field
solvers, these approaches are restricted to the use of specific single-field solvers. As a conse-
quence, these coupling procedures are less easily transferable to the resolution of FSI problems
in an industrial environment, which are in general based on black-box or even commercial single-
field solvers with a given time integration scheme, as it is the case in this thesis. Nevertheless,
for the sake of completeness, some of these coupling procedures proposed in the literature are
briefly reviewed in the following.

Following up on their work in [147], Farhat et al. prove for the first time in [52] that 2" order
time-accurate and yet loosely-coupled solution algorithms can be designed to tackle aeroelas-
tic FSI problems. In particular, it is shown that, as far as time-accuracy is concerned, loosely-
coupled strategies can be successfully constructed for solving compressible flows and aeroelas-
tic problems avoiding the complex implementation and computational cost of strongly-coupled
procedures. Based on an implicit/implicit coupling approach (a three-point backward difference
scheme for the flow and a trapezoidal rule for the solid), a GSS and an ISS algorithm are proved
to achieve 2™ order time-accuracy by choosing a 2" order predictor for the solid displacement
and a 2" order solid load corrector. The CSS procedure is also shown to be only 1% order
time-accurate, which could be expected from the order of energy-accuracy of such algorithms
presented in section 3.3.2. Applied successfully to the simulation of the aeroelastic response of a
full 3D F-16 fighter aircraft, these two coupling procedures also deliver good numerical stability,
even though the latter is not formally proved in the study.

In [54], Farhat et al. extend the applicability of loosely-coupled procedures to explicit/explicit
and explicit/implicit time integration schemes used for solving compressible FSI problems. The
two proposed coupling schemes are proved to be 2™ order time-accurate and exhibit good nu-
merical stability properties. The requirements on the single-field solvers are however higher than
in [52] to achieve the wanted order of accuracy of the coupling algorithm, which is furthermore
required to implement a 3" order solid displacement predictor.

A coupling procedure with higher-order time-accuracy is proposed in [177] by van Zuijlen et al.
with the IMEX (implicit/explicit) scheme. In this particular case, the fluid and solid sub-domains
are integrated with an implicit multi-stage Runge-Kutta scheme, while only the solid load applied
on the fluid-structure interface is computed with an explicit Runge-Kutta scheme. Applied to the
flutter problem of a 3D wing model, a 3™ order accuracy was achieved by IMEX. Although
very attractive for problems requiring a high temporal accuracy, e.g. to discriminate between
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physical and numerical divergence, this specific combination of single-field solvers is in practice
not feasible with the use of independent black-box solvers.

All previously mentioned studies consider either compressible flows or large solid to fluid mass
density ratios, such as in aeroelastic applications. For many, these are the only configurations in
which an explicit coupling procedure can be used without leading to restrictive numerical insta-
bilities and inaccuracies. In [37], Dettmer and Peri¢ however proposed an unconditionally stable
and 2" order loosely-coupled procedure with use of implicit/implicit solvers, both based on a
2" order generalized-o time integration scheme. Contrary to the GSS or ISS strategies, the solid
is here evaluated before the fluid in each FSI time step. This particular coupling scheme is based
on an interface load predictor that is corrected with the fluid forces computed by the flow solver
and a user-defined scalar parameter. The latter is compared by the authors to the relaxation factor
used in strongly-coupled Dirichlet-Neumann partitioned procedures introduced in section 1.3.2,
which allows to control the added-mass effect. With help of a convergence study, it is shown that
with an appropriate choice of the control parameter, this explicit coupling procedure can provide
stable solutions in the presence of added-mass effects, while being computationally much more
efficient than implicit solution strategies. A coupling algorithm with the same sequence of steps
was proposed by Monasse et al. in [129] for computing 2D compressible flows and rigid solids
with explicit/explicit approaches. In this case, pre-computed fluid fluxes evaluated together with
predicted fluid loads before the solid steps are corrected in such a way that fluid mass conserva-
tion and balance of momentum and energy at the interface are enforced in each time step. The
results were extended with success to the 3D case in [151].

The goal pursued in the works presented in this section consists in creating the most suitable
coupling scheme for an FSI problem using any kind of single-field solvers. In this thesis that
logic is inverted in the sense that the coupling scheme that is most suitable with the single-field
solvers available must be implemented for solving numerically the tire hydroplaning problem.
As already stated, these coupling schemes achieving 2" or higher order of time-accuracy hence
cannot be directly employed as they are in this work. Nevertheless, they provide a broader un-
derstanding of loosely-coupled partitioned procedures, which have been proposed so far in the
literature and could represent a basis for future research.

3.3.5 Present computational framework

Before introducing in the next chapter the coupling procedure proposed in this thesis for solving
industrial FSI problems, the previous review of loosely-coupled procedures is put into perspec-
tive with the current computational framework. This will allow to emphasize the requirements
the coupling scheme should fulfill in order to couple in the best possible way the single-field
solvers at hand. At this point, many observations were made that can be useful for constructing
an appropriate coupling scheme. They are summarized in the following, while presenting more
in detail the different sources of errors that originate from the partitioning of the coupled FSI
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problem. Important remarks on the artificial added-mass effect that affects FSI problems with an
incompressible flow and small solid to fluid mass density ratios such as in the tire hydroplaning
problem are then given to conclude this chapter.

3.3.5.1 Partitioning errors

While looking at creating partitioned coupling procedures, two main types of errors must be
considered and minimized by the coupling scheme. These partitioning errors can either be geo-
metric or temporal.

Geometric error

A geometric partitioning error is made through the approximation of the geometry of the fluid-
structure interface. In the current approach, the external solid surface of the interface is approxi-
mated by the solid solver by a set of plane facets resulting from the use of 1% order elements, as
discussed in sections 2.1.3 and 2.1.5.1. In the fluid sub-domain, an approximation is in general
made due to non-matching meshes at the interface, which require the interpolation of interface
values from one sub-domain onto the other. As already stated in section 2.2.3, the geometry of
an immersed boundary, which corresponds in this case to the shared interface, is exactly recon-
structed within the fluid fixed-grid without any further approximation. This in turn allows the
fluid solver to compute the fluid forces on each facet of the interface without any further interpo-
lation, i.e. approximation. Consequently, the fluid approach, due to its reconstruction technique,
creates a matching grid at the interface thus minimizing the overall geometrical error and enforc-
ing automatically the kinematic coupling condition (3.3).

Since the only approximation in space is made exclusively at the level of the solid single-field
solver and is in fact independent of the coupling procedure, the geometrical partitioning error
can be considered nonexistent in the present approach.

Temporal error

As continuously discussed throughout the present chapter, loosely-coupled partitioned proce-
dures introduce a temporal partitioning error due to the time shift between the two sub-domains
which, as they cannot be simultaneously computed, leads to a violation of the continuity con-
ditions (3.3) and (3.6). This inherent characteristic of explicit coupling schemes is the principal
source of error that needs to be tackled in this thesis, while aiming at minimizing it.

Although this temporal error cannot be avoided without sub-iterations, it was shown that explicit
coupling procedures can be constructed in order to achieve a level of accuracy that matches or
even sometimes surpasses strongly-coupled strategies. Many of the approaches previously re-
viewed cannot be transferred to this work due to the specific combination of black-box solvers
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employed here. Nevertheless, it was shown that the numerical stability and the accuracy of the
coupling procedure can be directly linked to its order of energy-accuracy, which hence consists
of arigorous criterion to control the temporal error due to the partitioning process. Ultimately, the
goal consists in constructing a coupling scheme producing the least energy imbalance at the in-
terface with both solvers at hand, while at the same time fulfilling efficiency requirements. Based
on the quantitative estimation of that artificial quantity introduced by the staggering process into
the coupled system, active actions can be taken in order to reduce the energy imbalance in subse-
quent time steps or speed up the simulation. The approaches used to address these topics, which
represent the core subject of this thesis, are described in the next chapter where the coupling
procedure proposed for the analysis of tire hydroplaning problems in an industrial framework is
presented.

3.3.5.2 Artificial added-mass effect

Fluid-structure interaction problems with close solid and fluid mass densities (p°/p” getting
closer to 1) and involving incompressible flows, such as in the current application, suffer from
the so-called artificial added-mass effect. It was already briefly introduced in section 1.3.2, while
reviewing solutions proposed in the literature to address this limiting factor with help of strongly-
coupled partitioned procedures. More recently, explicit approaches dealing successfully with
problems affected by added-mass effects were introduced and are briefly reviewed in this section.
Its impact on the current computational model is then discussed, which finally concludes the
characterization of loosely-coupled procedures in this chapter.

The artificial added-mass effect is a numerical instability that was already noticed by Felippa et
al. [56] in the early days of partitioned algorithms and was further described by Mok et al. in
[127] and Le Tallec et al. in [104]. A mathematical foundation of the instability was provided by
Causin et al. in [25], which was studied in a more general manner by Forster in [65, 66]. Its name
originates from the fact that major parts of the fluid acts as an extra mass moving with the solid.
In [56], a limit on the time step size was assumed to depend, among other things, on the speed of
sound in the fluid medium. It is clear that, in the case of incompressible flows where an infinite
wave speed exists, this observation predicts the instability irrespective of the chosen coupling
time step. In [54], Farhat et al. clarified that the added-mass instability is definitely limited to
FSI problems with incompressible flows, arguing that no difficulty associated to the instability
is encountered while considering compressible flows.

Main factors affecting the added-mass effect have been established and the most relevant for the
current work can be listed as follows:

— Solid to fluid mass density ratio: the smaller the ratio p°/p”, the earlier the instability
occurs.

— Coupling time step size: the smaller At, the earlier the instability occurs.

90



3.3 Loosely-coupled partitioned strategies

Solid displacement predictor order: the higher the order of d2 * given in (3.17), the earlier
the instability occurs.

— Non-collocated coupling strategies: non-collocated coupling algorithms such as the ISS
presented in section 3.3.3 are more subjected to the instability.

Fluid velocity: higher u” have shown to increase the instability.

— Solid stiffness: stiff solid materials have shown to deliver better numerical stability.

While some parameters, such as the first and the last two items listed above, depend on the
considered FSI problem and cannot be avoided, the coupling procedure can however have an
influence on the numerical stability properties of the coupled system. In particular, the rather
unusual situation that smaller time step sizes deteriorate the numerical stability, already warns
about the use of too small time steps. A range for the time step size in which the added-mass
instability is considered acceptable is thus expected. Furthermore, it can also be seen that the
use of a solid predictor may be disadvantageous in terms of stability for problems facing the
added-mass effect. These aspects will be investigated by means of numerical examples in the
following chapters.

Many have argued in the past that loosely-coupled partitioned procedures applied to incom-
pressible FSI problems are not feasible due to their lack of numerical stability. A first counter
example already presented in section 3.3.4 is the explicit coupling algorithm by Dettmer and
Peri¢ in [37] that achieves unconditional numerical stability. Other groups working mainly on
FSI problems with blood flows, characterized by high added-mass effects, have proposed ex-
plicit coupling procedures based on special interface conditions that confer improved numerical
stability by modifying the single-field solvers. Among these, a stable explicit scheme for incom-
pressible flows coupled to thin structures was first proposed by Guidoboni et al. in [78], where a
kinematically coupled scheme using an operator splitting of the kinematic interface condition is
employed. In this approach, the solid equations are split into a fluid load part, which is used as a
boundary condition in the fluid sub-problem, and an elastodynamic part that is solved separately.
This scheme was further developed e.g. in [23], which proved to be comparable to monolithic
schemes in terms of accuracy while keeping the advantages of loosely-coupled schemes. An-
other noteworthy stable explicit coupling procedure is the so-called added-mass partition algo-
rithm by Banks et al. proposed in two parts for elastic solid and shells elements in [9, 10]. This
approach based on the construction of particular Robin interface conditions is shown to be stable
without sub-iterations and to reach 2™ or even higher order of accuracy in time. In [107], the
scheme is extended to the case of large interface motion for more general geometries. Although
these coupling schemes are explicit in the sense that they only require one iteration per coupling
time step, a full access to the single-field solvers is needed, which have to be, if not completely
written from scratch, substantially modified. They are therefore not conceivable in an industrial
framework and with the use of black-box solvers but once again highlight the fact that powerful
explicit coupling schemes can be constructed even with high artificial added-mass effects.
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To conclude, it can be asserted that the limited access to the pre-established single-field solvers
represents a further challenge, while comparing the current computational model to many re-
search studies reviewed herein. However, some ingredients to face the challenges and fulfill the
requirements enumerated in this chapter have been exposed in order to obtain the most robust
and yet time efficient coupling strategy for solving an FSI industrial application such as the tire
hydroplaning problem. In particular, being aware of the added-mass instability and of the con-
tributing factors listed above, an explicit coupling procedure fitted for the current application
will be proposed in the next chapter.
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The coupling strategy implemented for solving the FSI problem of tire hydroplaning is presented
in this chapter. A loosely-coupled procedure is used to couple both single-field solvers with help
from a separate program specifically dedicated to manage the data exchange between the two
black-box solvers for which only limited output data is available. This coupling platform is then
used for developing new features intended to improve the coupled solution procedure based on
the solver package at hand. Ultimately, the goal pursued is to construct a robust coupling scheme,
which will produce the least energy imbalance at the interface, while remaining time efficient.
Furthermore, it is shown here that the assessment of the produced temporal error through the
estimation of the interface energy-based error provides a meaningful tool to monitor the level of
inaccuracy resulting from the partitioning of the coupled system. This interface energy is also
used as a criterion in order to take correcting actions in subsequent time steps by adapting the
coupling time step size. These topics represent the core subject of this thesis and are described
in this chapter.

After a presentation of the coupling scheme and corresponding implementation, the interface en-
ergy criterion used to control the accuracy and improve the efficiency of the solution procedure
is described. These developments are then applied on two benchmark examples, which are used
to validate the proposed coupling strategy and assess the feasibility of the proposed improve-
ments to the coupling procedure. An academic problem commonly referred to in the literature
and a simplified tire model rolling on a water layer are employed to that effect. The problem of
hydroplaning with a full-scale real tire model will eventually be discussed in the next chapter.

4.1 From simple data exchange algorithm to flexible coupling
scheme

Initially, in order to simulate the tire hydroplaning problem, the simplest strategy was used to
exchange coupling data between the two single-field solvers presented in chapter 2. Similarly

to the CSS procedure introduced in section 3.3.1, a set of subroutines embedded in the fluid
solver was responsible for synchronizing the data exchange between the two black-box solvers
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by performing a single exchange per coupling time step, corresponding ultimately to the most
basic two-way loosely-coupled partitioned procedure. These embedded coupling sub-routines
are first to be replaced by a separate program that will take complete control over the coupling
procedure between the solid and fluid simulation tools, allowing in turn to reach the overall
objective of this thesis: implementing coupling strategies aiming at improving the simulation of
the coupled problem of tire hydroplaning.

Fundamentally, the task of a coupling procedure is to transfer appropriate single-field outputs
between both solvers at the right time during the FSI simulation. Even though it appears straight-
forward at first sight, the complexity can quickly increase in some particular situations. A first
difficulty appears when the mesh at the fluid-structure interface is non-matching. In that case
a so-called transfer algorithm [29] is used to map/interpolate coupling data onto both meshes
at the interface prior to the actual data transfer. As a matching mesh is guaranteed at all times
at the fluid-structure interface by the present computational framework, this particular situation
is not further discussed here. The interested reader is however referred to section 1.3.1 where
such transfer techniques are briefly reviewed for fluid moving-grid approaches. A second chal-
lenging situation can emerge while using black-box solvers for computing the solid and fluid
sub-domains, due to the fact that they provide at best a limited access to the codes and even
to their outputs. The synchronization of the data exchange requiring full-control to some of the
most basic operations performed by the solvers can thus become difficult or even impossible.

The coupling of black-box solvers therefore remains a challenging task and requires the whole
computational package to fulfill some requirements in order to solve multi-field problems. Gen-
eral requirements and recommendations valid for any solver with restricted access are given in
the following. On this basis, the coupling shell implemented in the framework of this thesis to
replace the initial coupling procedure is then presented.

4.1.1 Requirements for coupling black-box solvers

One of the main advantages in partitioned coupling approaches resides in the possibility of
reusing existing solvers that have been developed to meet specific requirements. It is of par-
ticular interest when both physics are very complex to compute such as in the tire hydroplaning
application that involves, naming just a few, nonlinear constitutive materials, a transient loading
leading to large solid deformation in the contact patch region where the tire meets the road and
the water, a rapidly changing free-surface flow due to fast running conditions or complex contact
occurrences between the tire, the road and the rim. The solvers are chosen for their capabilities
to handle the requirements and constraints from the problem at hand. While implementing a new
solver for each application would represent the best scenario, it is in general not conceivable
in practice, especially in an industrial environment. The favored alternative generally consists
in carefully choosing the most appropriate solver among the large number of commercial tools
available today on the market. In doing so, the single-field solvers presented in chapter 2 were
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chosen for computing the tire hydroplaning application. In particular, what ruled in favor of the
solid solver is its ability to deal efficiently with large computational models featuring complex
contact definitions and constitutive models with material properties obtained e.g. from lab mea-
surements. Whereas the choice of fluid solver was primarily guided by its capabilities in terms of
interface reconstruction with arbitrarily complex geometries and for its treatment of free-surface
flows.

Not only must the solvers meet single-field requirements, they also need to be compatible for
coupled computations. While the use of black-box solvers can represent a great advantage (if
not the only possible choice) when complex physics are involved, an appropriate coupling of the
solver package can be a real challenge. The communication and coordination of actions between
the two solvers must therefore be properly handled, which is achieved by a so-called coupling
shell. Most of the coupling shells are embedded subroutines designed to couple two specific
solvers, see e.g. [49, 97], which often prevents the replacement of one solver by another. This
is particularly true in the case of commercial black-box solvers for which the coupling shell
is specifically designed to couple a well-defined combination of software. The other approach
consists in using a separate program as coupling shell, which takes control of both solvers to
synchronize their execution and manage the data exchange between them. The most prominent
is the Mesh-based parallel Code Coupling Interface (MpCCI) software [67], developed at the
Fraunhofer Institute for Algorithms and Scientific Computing SCAI and that allows to compute
various multi-physics applications by coupling different simulation tools, including a limited
number of commercial solvers. Even though it provides many advanced features that are con-
tinuously improved over the years, MpCCI remains a commercial product for which the source
code is inaccessible. It is therefore not suitable for research and the development of new cou-
pling techniques for a particular choice of black-box solvers. In the last few years, open-source
coupling shells primarily used for research purposes have emerged, which provide a platform to
implement new coupling strategies while taking care of the communication between the single-
field solvers. One of these coupling shells is the so-called F'SI coupling environment (FSI%ce)
[21, 22] developed at the TU Munich. Proposing several standard partitioned coupling schemes,
it solely focuses on the coupling between Cartesian meshes. Another example is the FLExible
Coupling Shell (FLECS) [134, 135] from TU Delft, which can be described as a generic and
flexible coupling shell in the sense that it can be used to couple almost any kind of solvers
written in different programming languages and essentially allows the user to only focus on the
implementation of coupling schemes and, if needed, transfer algorithms. Due to its flexibility,
the FLECS has been used in this work for replacing the coupling shell initially embedded in the
fluid solver. Its operation and utilization in the framework of this thesis is further discussed in
the next section.

It now remains that the chosen solvers must be compatible with the use of a separate coupling
shell. As far as black-box solvers are concerned, the coupling shell is required to take control of
the execution of both programs. The operations that the coupling shell must be able to perform
in a loosely-coupled partitioned procedure can be summarized as follows:
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— Starting the execution of the solvers with appropriate conditions to initiate their coupling.

— Forcing the solvers to hold until further notice before restarting for a subsequent simulation
time step: while solver A is computing the solution on its sub-domain, solver B must be
put on hold. Once the solution step carried out by solver A is finished, the execution of
solver B must be restarted with updated coupling data resulting from solver A, which is in
turn put on hold, and so on until the end of the coupled simulation.

— Extracting outputs from each single-field solver that take part in the data exchange of the
coupled simulation, making them incidentally available in the coupling shell for further
use.

— Transferring previously extracted outputs as well as eventual further coupling variables
(e.g. coupling time step) to the solvers. Note that before being transferred, these data can
be modified by the coupling shell.

— Terminating the execution of the solvers in a clean way.

By using the FLECS, the sequencing of these operations are carried out by simply adding a few
subroutine calls to the code of each single-field solver. Although easy to apply, this approach is
in general not practicable when truly black-box solvers are used, i.e. solvers for which the code is
not at all accessible such as most of the commercial simulation tools'. The only remaining possi-
bility for a separate coupling shell to interact with such black-box solvers is if the latter provide
a communication channel to which the coupling shell can connect. This kind of communication
channel generally takes the form of a socket connection that must be established between the
solver and the coupling shell, and through which data is exchanged in a well-defined manner ac-
cording to a predefined protocol. The solvers employed in this work are coupled using a socket
connection, which will be further described in the next section.

If none of the aforementioned requirements are met for a chosen combination of black-box
solvers, their connection through a separate coupling shell cannot be achieved. It is also im-
portant to add here that the coupling of commercial solvers through socket connection is not a
straightforward task. As a matter of fact, it usually requires assistance from the code develop-
ers since the realization of the data exchange depends on a protocol that is in general not made
available to the user. Furthermore, following a predefined protocol inexorably introduces limita-
tions as to what kind of coupling variables can be exchanged and to what extent the execution
of the solvers can be controlled. These aspects must be carefully considered before choosing the
solvers best suited for computing a given multi-field problem. To close the subject, it can also
be asserted that the creation of a universal coupling shell capable of connecting any simulation

'Nowadays, several software provide a so-called application programming interface (API) allowing the user to
implement personalized applications by using a predefined set of subroutines and protocols defined within the
code itself. Always more black-box codes provide an API, which could eventually be used to implement a coupling
algorithm and communicate with an external solver. Note that, at this point, no API is provided in the solvers used
in this work.
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tool remains unfortunately an empty wish, at least as long as all commercial software developers
do not allow for a minimum of access to their code or follow a common norm regulating the
connection/communication between codes.

4.1.2 Coupling shell implementation

The separate coupling shell meant to replace the coupling procedure embedded in the fluid solver
has been implemented based on the previously introduced platform called FLECS. Due to the
black-box character of both single-field solvers, many FLECS operations cannot be used as
intended, as they require adding subroutines calls directly to the codes. However, as shown here,
the low-end communication features provided by FLECS can be used to build a separate coupling
shell and synchronize the execution of both employed solvers.

FLECS is based on a client-server architecture in which a provider named server produces ser-
vices for requesters also known as clients. In that context, the general design of FLECS can be
decomposed into a client library that is called by each client, i.e. the single-field solvers, and
a coupling server that coordinates the executions of the solvers and synchronizes the exchange
of coupling data between them [134]. On the one side, the client library provides functions al-
lowing for each client to connect to the coupling server as well as to exchange data with it. The
latter is achieved by two standard operations: the first operation is responsible for sending data
to the coupling server whereas the second receives data back from it. These two operations play
a key role in controlling the sequence in which both solvers interact since the receive operation
is blocking. In other words, the execution of client A is put on hold once it reaches a point where
the receive operation is executed. It will not be restarted until client B completes the send opera-
tion and transfers data to client A. On the other side, the coupling server is responsible for setting
up the connection with the clients, performing the actual data exchange and managing the struc-
ture of exchanged data. In the traditional way of using FLECS, functions provided by the client
library to interact with the coupling server are directly included in the code of the single-field
solvers. Since these are inaccessible with the computational package at hand, the client library
can only been used within two separate programs, one for each solver, which act as intermedi-
aries between the coupling server and the black-box solvers. The resulting coupling shell is then
finally composed of these two programs, called here clientSolid and clientFluid, and
of a coupling server, server, as illustrated in Figure 4.1. Both client programs are responsi-
ble for establishing a connection with their corresponding solver, exchanging data with it and
controlling its execution (represented by white arrows in Figure 4.1). By using communication
and coordination operations from FLECS, they can also interact with the coupling server (black
arrows in Figure 4.1) in order to manage the execution sequence between both solvers. The cou-
pling strategy employed within the coupling shell and the connection of the client programs with
the black-box solvers is detailed separately in the next two sections.
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Coupling shell

Solid <+ clientSolid [  server [« clientFluid [<H—> Fluid

solver solver

Figure 4.1: General architecture of the coupling shell coordinating the execution of the solid and
fluid black-box solvers. Black arrows represent the communication channel within
the coupling shell using FLECS operations. White arrows depict the connection be-
tween the coupling shell and separate solvers, which handles the data transfer and
controls both simulation tools.

The presentation of FLECS given here is obviously far from complete and in no way representa-
tive of all its capabilities. The intent was merely to give a broad overview since essentially basic
communication procedures provided by FLECS has in fact been used to build the proposed cou-
pling framework. More details can however be found in e.g. [29, 135] as well as in the user-guide
[172].

4.1.2.1 Coupling algorithm within the coupling shell

The general coupling algorithm implemented in the coupling shell for solving the FSI coupled
system is based on three main phases as shown in Figure 4.2, where each box corresponds to
a task performed either by the server or the clients. Boxes with dashed borders represent tasks
involving FLECS operations, whereas double-border boxes require a communication between
the coupling shell and the separate black-box solvers.

The first phase, INITIALIZATION, corresponds to the connection of the clients with the server
and to the preparation of the FSI simulation. Once both clients are connected to the server using
FLECS functions, a preliminary data exchange between both clients is executed with information
that is needed on both sides of the interface. They include the initial coupling time step size At,
which each solver will have to use for their first coupling iteration, the initial time of the FSI
simulation 7, the FSI simulation duration 7" as well as any information that must be shared by
both solvers, for instance the path to the project files or specific solver options. Both solvers are
then started on the cluster with the number of CPU’s required by the user. If needed, an initial
computation can be carried out for one or both sub-domains. In the case of the tire hydroplaning
simulation, the solid tire model is built in multiple steps requiring preliminary computations
before being able to solve the coupled problem where both tire and water interact. Each step of
the solid model generation for a full-scale tire model is further discussed in section 5.1.
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The actual FSI simulation is carried out in the second phase, during the so-called COUPLING
LOOP, for each coupling time station ¢,, as defined in (3.8). The simulation will only stop once
the simulation time 7' is reached or if an error occurred along the way. In each coupling iter-
ation, the simulation time in both solvers is checked in order to avoid any time shift between
both sub-domains at the beginning of a new coupling time step. The fluid sub-domain is then
first computed for At,,, which can vary during the FSI simulation. Note that, in this configura-
tion, both the solid and fluid fields can be freely sub-cycled according to (3.9) depending on
their CFL requirements, guaranteeing already a certain level of numerical stability in both sub-
domains. At that point, clientSolid is blocked on a FLECS receive operation and waits for
the fluid solver to send updated coupling data. As soon as the fluid solver has finished solving
the n™ coupling time step, coupling data (updated fluid forces at the interface) as well as any
eventual outputs at the interface further required by the coupling shell for subsequent operations
are extracted from the fluid solver and the updated coupling data is eventually sent to the other
client. At this point, it is now clientF1luid that blocks on the receive operation. The coupling
data resulting from the fluid computation is then imported into the solid solver, which carries on
with solving the n'" coupling time step. Same as on the fluid side, needed outputs are extracted
from the solid solver and coupling data (updated position of the interface) transferred to the other
client, which can then restart. Before importing updated solid coupling data into the fluid solver
and starting the next coupling time step, eventual modifications are performed on coupling data
before jumping to the next coupling time step. These modifications, which are made possible
by the proposed coupling approach, include for example the use of a predictor-corrector tech-
nique as in the GSS algorithm presented in section 3.3.2 or a varying coupling time step size as
discussed in section 4.2.

The last phase, denoted by END in Figure 4.2, consists in terminating the FSI simulation if the
end time is reached or if an error occurred in one of the two single-field solvers. In that event,
the coupling server informs both clients to kill their respective solver (if still running) in a clean
way and then disconnects from both clients before shutting itself down.

4.1.2.2 Connection and data exchange with black-box solvers

Now that a solution has been found to coordinate the execution of both solvers through a sep-
arate coupling shell, a communication channel must still be established between the black-box
solvers and the intermediary client programs clientSolid and clientFluid (white ar-
rows in Figure 4.1). To do so, two approaches were used, each one with their advantages and
disadvantages. The first approach achieves the communication between the client programs and
the solvers through a flat file exchange. The second technique is based on a socket connection
established by the coupling shell between both solvers. While the first approach is much easier
to implement and provides more flexibility in controlling both solvers, the second is much faster
and represents the only option that can realistically be implemented in an industrial environment.
Both approaches are described in the following.
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Figure 4.2: Schematic representation of the coupling strategy within the coupling shell, where
boxes with dashed borders represent tasks involving FLECS operations and double-
border boxes require a communication between the coupling shell and the separate
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4.1 From simple data exchange algorithm to flexible coupling scheme

Flat file exchange

The first way of controlling the black-box solvers from the separate coupling shell and of trans-
ferring data is achieved by a flat file exchange. In this case, the solvers are completely controlled
by the coupling shell by being shut down and restarted for each coupling time step. There is
indeed no other way of proceeding if the black-box software do not allow the user to introduce
subroutines within its code. At the end of each coupling time step, the outputs on the interface
are written by one of the solvers in a flat file, which can then be imported into the other solver
and restart for the next step with updated data. That way, if any modification is to be performed
on the coupling data, it can simply be achieved by properly replacing values in the appropriate
flat files. The coupling shell might also need to adapt the format of the flat file in order to be
readable by the solver into which it is imported. This method is very easy to implement and
was first used in order to check the feasibility of the project. Since both solvers must be shut
down and restarted in each step of the coupling loop, all solver parameters can be modified by
the coupling shell providing the highest level of flexibility for controlling black-box solvers. In
that scenario, an implicit coupling is even conceivable, in which case the solver would simply
need to rerun for the same coupling time step instead of advancing to the next FSI time station.
The largest issue with this approach is that the process of restarting any kind of software can be
very long since the entire project must be reloaded and the solvers are usually not designed to
do it in an efficient manner. As a result, this first approach was considered insufficient and not
appropriate for coupling both solvers.

Socket connection

The second approach, which is eventually adopted in this work, consists in using an existing
communication channel that initially operated the data exchange between the two single-field
solvers and was controlled by a program embedded in the fluid solver. This communication
channel takes the form of a socket connection, which is very commonly used by programs to
communicate with one another on a network. A socket is the endpoint of such a two-way com-
munication channel, which is also based on a client-server model: a socket server listens for
requests made by clients on the other end of the socket connection. Each single-field solver is
associated to one of these sockets at one node of the network, which is identified by a unique
combination of IP address and port number. In the present case, the solid solver provides the
socket server, while the fluid solver that controls the connection acts as the client as illustrated
in Figure 4.3(a). Once the connection is established between the socket server and the client,
both solvers can communicate by writing to or reading from their sockets. In order to guarantee
a proper data exchange, both solvers are bound to follow a shared protocol that dictates in which
sequence each transfer operation must be performed on the socket. In short, after a handshake
between the two solvers, the protocol is built such that in each iteration of the coupling loop
the following operations are performed: first the coupling time step size is exchanged between
both solvers; then, as soon as the fluid step is completed, the fluid forces at the interface are

101



4 A coupling scheme using black-box solvers for industrial applications

1
%
21 8
5 Socket El :
o % | - : — | @ .
Solid 5 §<4 connection h>3 g g : Fluid
5 4 el < | &
solver gle =|%| & 1 solver
= =l 21
3 21 B 1
1%} il
(a)
Coupling shell
, T
g g g e an I
g e 9| g E.
Solid - | JHE HHE =51 81 Fluid
= | 5 @ —1 2|5 2z
% é<j—£>§ ET a <> | server [« E E é<]—£>§ é = | i
solver 2 le £1g|e 8|2 | S|3] 2 1 solver
=\~ o | e el - Tla| B
=4 = e S| = o 1
) g & 21 B 1
N jaa} = g

(b)

Figure 4.3: (a) Initial coupling procedure based on a socket connection to exchange data between
both single-field solvers and managed by the fluid solver. (b) New coupling proce-
dure achieved by inserting the separate coupling shell on the communication channel
between both solvers, which provides more flexibility in handling the data transfer
and controlling both solvers.

sent on the socket in the form of a data array to the solid solver; finally the solid solver sends
the coordinates of the new position of the interface once the solid run is finished; and so on for
each step of the coupling loop until the simulation ends. In this initial version of the coupling
procedure, there is unfortunately no possibility for an external user to access the data traveling
along the socket connection, which makes this approach, as it is, not suitable for implementing
new developments.

To be able to control the solvers and modify coupling data, the proposed idea consists in inserting
the coupling shell introduced in 4.1.2.1 between the two solvers by connecting it to sockets made
available by the two single-field solvers. It has been realized in practice by implementing a code
named bridge that provides a socket server (bridge socket server) and a client (bridge socket
client), and which is placed on the communication channel between both solvers as represented
in Figure 4.3(b). While both the solid and fluid solvers think they communicate with one another,
they actually exchange data with the bridge, which is now able to modify the data transferred
on the sockets. The synchronization of each exchange operation is achieved within the coupling
shell by reproducing exactly the aforementioned protocol. In doing so, the coupling shell can
have full control on the data exchange, while being only limited by the sequence foreseen in the
protocol. This limitation for example excludes the use of an ISS algorithm described in 3.3.3 or
any kind of implicit coupling procedures.
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Ultimately, a generic coupling framework for computing FSI problems with the current com-
bination of black-box solvers has been built. Even though many limitations persist in terms of
coupling scheme that can be implemented, the proposed coupling shell allows to fully operate
a loosely-coupled partitioned procedure. Among the new features offered by the new coupling
shell are the possibility of using a solid predictor as in (3.17), a fluid corrector as in (3.24) as well
as a dynamic adaptation of the coupling time step size At,,. It is important to stress that a socket
connection can only be realistically considered if the employed software provide the capability.
Furthermore, the implementation of the socket connection is not an easy task and necessitates in-
formation usually not made available to every commercial code users. For instance, the sequence
of actions included in the protocol had to be reproduced within the bridge, which could only be
achieved by knowing exactly how the protocol was implemented. Thanks to a great collabora-
tion with the fluid solver developers’ team, the connection through the bridge could be achieved
successfully. It should also be mentioned here that a large support has been provided by Romain
Pennec, Goodyear researcher also doing a PhD at the Technical University of Munich, in order
to achieve the implementation of the coupling procedure based on socket connections.

4.2 An interface energy-based criterion for the accuracy and
efficiency of coupling procedures

Using the coupling shell introduced in the previous section, the most appropriate coupling
scheme for solving industrial FSI applications, and in particular the tire hydroplaning problem,
is to be implemented with the solver package at hand. Although limited to a loosely-coupled
partitioned procedure, the new coupling framework allows to use and modify the coupling data
in order to improve the preexisting coupling scheme and in turn the solution to the coupled prob-
lem. In doing so, a quantity advising on the level of error artificially introduced by the coupling
scheme in the coupled system is used as a criterion to control the level of accuracy and improve
the robustness of the coupled solution procedure. This quantity is based on the concept of in-
terface energy already introduced in section 3.3.2. As shown in the rest of this chapter, such an
interface energy criterion has a twofold advantage: it can be used to guarantee a certain level of
accuracy but also to improve the time efficiency of the solution procedure. As the proposed work
is supposed to be applied in an industrial framework, where the simulation time for long lasting
jobs is of significant importance, the objective will ultimately consist in finding the most time
efficient approach while keeping a sufficient level of accuracy. In the remaining of this section,
the formulation of the interface energy for the current combination of solvers is described. It is
then followed by the presentation of the criterion employed to optimize the time efficiency of
the procedure, which is achieved by dynamically adapting the coupling time step size.
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4.2.1 Formulation of energy imbalance at the fluid-structure interface

As discussed in chapter 3, the evaluation of the energy artificially introduced at the interface
by the coupling procedure represents a rigorous criterion to assess the accuracy and numerical
stability of the employed approach and in turn allows to control the related temporal error. As
exposed in section 3.3.5.1, the only partitioning error that is of concern in this thesis is the tem-
poral error, whereas the geometric error is minimized by the present computational framework.
Among the loosely-coupled procedures presented at that occasion, it was already made clear
that the ISS algorithm as well as all techniques requiring an access to the solvers’ code could not
be used with the current coupling strategy and combination of solvers. The remaining approach
that can be considered is the CSS procedure (algorithm 3.1). It can be generalized to the GSS
procedure described in 3.3.2 by considering a predictor on the solid displacement at the interface
and a corrector on the fluid force transmitted to the solid. The pursued goal eventually consists
in constructing a GSS coupling scheme, which will produce the least energy imbalance at the
interface or at least keep it within a certain range before the simulation diverges.

In that context, the energy imbalance corresponding to the non-conservation of the interface
energy transfer during a time step At is reminded here as given in equation (3.28) for the pair
of solvers at hand:

e + i
I',(n) 5 T,(n+1) . (dﬁnJrl . dﬁn)? (41)

_ pF S* S *
AEF,HH - f n+1 -’ (dl",n+1 - dr,n> -

for which different possibilities can be considered for the solid predictor (3.17) and the fluid
corrector given by (3.24). If not specified otherwise, a O™ order predictor given by (3.17) with
ap = a; = 0 and the corrector (3.24b) are used. With AEr,,; # 0 for any loosely-coupled
procedure, an estimator-based indicator is obtained that instructs on the level of error introduced
in the system by the coupling scheme. Since the contribution of both sub-domains is included in
the formulation of the energy imbalance (4.1), the latter represents indeed a very meaningful tool
to characterize the overall coupled problem and to quantitatively measure the produced temporal
error.

Equation (4.1) delivers a measure of the energy artificially introduced along the entire interface in
each time step n. A local version of the energy imbalance advising on the level of error produced
at each node ¢ of the interface at the time station ¢,,.; can also be written, which then reads

B ffs,i,(n) + ffﬁ@(n“) .
2

* *
AElr,i,nJrl = f{i,nﬁ . (dg,i,n—&-l - d1§zn> (dis,z‘,nﬂ —d7 ) 4.2)

Tin

104



4.2 An interface energy-based criterion for the accuracy and efficiency of coupling procedures

and can be stored into a vector as

1
AEP, 1,n+1

1
AEr,z,n+1

AEL, ., = , (4.3)

AE!
TN eoontl

where the superscript (-)! denotes the local form and N!_, . is the number of nodes shared by

both sub-domains on the fluid-structure interface. As discussed in the following, this quantity
will be used in this work to characterize the error made by the coupling scheme.

Not only can the energy at the interface be used to control that error, it can also be taken advan-
tage of in order to take corrective actions in subsequent FSI time steps. On the one hand, a high
energy imbalance highlights a deficit in accuracy and numerical stability at a certain time instant
in the coupling procedure. It can be corrected by advancing more cautiously in time by reducing
the FSI time step size. On the other hand, a low energy imbalance indicates that the simulation is
currently evolving within a safe stability window, which can be taken advantage of by increasing
the FSI time step size and in turn speed up the computation. An automated procedure to reach
an optimized efficiency level by dynamically adapting the FSI time step size while controlling
the error level has been implemented in the coupling shell described in 4.1.2 and is presented in
the next section.

4.2.2 Dynamic adaptation of the time stepping procedure

The assessment of the interface energy in each coupling time step from equations (4.1) or (4.3)
provides a quantitative measurement of the temporal error in the coupled system at a given
time during the simulation. It can therefore be appropriately used to control the course of the
simulation and, in particular, optimize the FSI time step size. The procedure presented in the
following is said to be dynamic in the sense that the time step size will be automatically modified
over the course of the simulation.

4.2.2.1 An error-based approach

For computations with a transient response, as all applications considered in this thesis, the
choice of the FSI time step size At,,,; used to discretize in time the coupled problem is not an
easy task. If the coupling time step size is chosen too large, it can be detrimental in terms of
accuracy and numerical stability of the solution procedure. If chosen too small, not only will
that lead to evident efficiency problems but it can also deteriorate the numerical stability of the
coupling scheme due to an increased artificial added-mass effect as discussed in section 3.3.5.2.
A compromise must therefore be found to obtain the optimum FSI time step size. The latter
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can be directly linked to an error, which describes the deviation of the numerical solution from
the exact solution. For problems with a transient response, that level of error can fluctuate over
the course of the simulation such that a variable size of the coupling time step At,,; can be
desirable.

The still unanswered question is how some error estimation can be correlated to the time step
size in each iteration of the coupling loop. To do so, a similar idea as the one proposed by Mayr
in [119] for monolithic solvers is followed but in a different context. In [119], the estimation of
the error is carried out for the solid and the fluid fields separately, depending on their respective
accuracy requirements. The optimum time step size retained for advancing the system to the next
time station is chosen as the smallest value obtained between both single-fields, as sub-cycling is
not permitted by monolithic approaches. In the present case, the error estimation is based on the
assessment of the interface energy, which is a quantity measured for the whole coupled problem
and eventually leads to a unique coupling time step size. While Mayr’s approach considers the
requirements for each single-field separately, the current procedure considers the partitioning
error introduced by the coupling scheme to find an optimum time step size for each coupling
iteration. Even though the adaptive time stepping procedure was initially designed for a mono-
lithic scheme, the general concept can be transferred to the current loosely-coupled partitioned
approach and is outlined in the following. The intent is not in any way to cover the very broad
subject of error estimation. For that subject matter, the interested reader is encouraged to consult
the thesis by Mayr [117] and references therein.

4.2.2.2 Optimum time step size

When the temporal error is estimated for each single-field as in [119], the expression of the
sought-for optimum time step size depends on the employed time integration scheme and, in
particular, on the order of convergence of that scheme. In the present case, since the error esti-
mation is based on some quantity that merges both sub-domains, such a criterion cannot strictly
be used. Moreover, while Mayr’s adaptive time stepping algorithm can repeat the current FSI
time step if the error estimate is not fulfilled, the present scheme checks the level of error at
the end of every time step and modifies the subsequent coupling time step size if needed. The
adaptation procedure allows to take preventive actions based on the current level of error in the
coupled system, thus improving the robustness of the solution procedure. The optimum coupling
time step size to advance to the next time station can be approximated by

Atniy ~ K Aly, (4.4)

where the superscript (-)© designates optimized values and < is an optimized scaling factor that
is used to increase or decrease the time step size. The latter can then be linked to the interface
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energy imbalance AEIM evaluated in each time step as in (4.3) as

® €
P L 4.5
R AB ()

where € is a user-defined rolerance with energy dimensions representing the wanted level of ac-
curacy and ky a safety factor keeping the error away from the tolerance limit. The denominator in
(4.5) represents the estimate on the temporal error made by the coupling scheme. This interface
energy-based error is built around a scaled discrete L, norm of the vector (4.3), which is defined
as

SN (AEL, )
PJF

nodes

|AEL, ||, = (4.6)

for which the scaling by the number of nodes shared by both sub-domains on the FSI interface
NI . provides a quantity independent of the mesh resolution. It is commonly used in computer

programs for evaluating errors and is employed here for measuring the energy imbalance.

In practice, a well-established strategy is employed to find the optimum time step size for the
subsequent coupling iteration At, ., which is kept within a user-defined range such that it is
eventually computed as

Aty = min{ At pax, max{ min{ Kpax, Max{ fmin, Ko +}Alp, Abmpin }}- 4.7)

This expression simply provides boundaries for the FSI time step size, which can be described as
follows. The optimized scaling factor k. modifying the time step size is bounded by minimum
and maximum values such that ki, < K2 < Kmax, Whereas the resulting time step size is further
limited by a user-defined lower and upper bounds, At.;, and At,,.x respectively.

Smoothing of time step size adaptation

In order to avoid an erratic change of the time step size over the course of the simulation, which
can deteriorate the numerical stability, a filter that allows to smooth the evolution of the time
step size is applied. A simple filter consisting of an averaging procedure is used here: the next
optimum time step size is not directly computed as in (4.7) but a finite number of lastly computed
values are averaged. In the case of a time step size increase, the last M, € N time steps are
taken into account whereas, when it decreases, the last Mgy, € N time steps are considered
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such that

Myp
Mlup Z Atn%»lfm if Atn+1 > At?m
=0 (4.8)

Mdown
Mdl(,Wn > Atniim if At < At,.
m=0

Aty =

As a general rule, M, can be chosen as high as needed by the coupled problem of interest in
order to smooth the process of time step size increase. However, while decreasing the time step
size, Mgown must be chosen small and close to 1. Indeed, the time step size decrease is provoked
by a violation of the wanted level of accuracy and should therefore be applied without too much
delay.

Adaptive time stepping procedure and algorithm parameters

To summarize, the adaptive time stepping procedure is ultimately included in the coupling loop
presented in Figure 4.2 in the end of each coupling iteration n, when all needed data is available
to evaluate the error corresponding to the energy imbalance AEIRH. The optimum time step size
applied in the next coupling iteration (n + 1) is then found by computing (4.7) using expres-
sion (4.5) and the smoothing (4.8), which requires establishing the following set of algorithm
parameters:

{Atmin; Atma)w €, Ks; Kmin, Fmax, Mupa Mdown } (49)

In the first coupling iteration, the time step size is chosen as the minimum such that At; =
At min, Which must be chosen in order to fulfill accuracy requirements. The time step size is then
expected to increase in the subsequent coupling iterations and eventually reach an optimum. The
choice of parameters is illustrated in the next section, where numerical examples are presented.

4.3 Numerical examples

The developments previously introduced to improve the preexisting coupling strategy with the
coupling shell presented in section 4.1 and the solver package described in chapter 2 are il-
lustrated by means of two benchmark examples. In the first example, the coupling strategy is
validated based on a numerical model that is commonly used in the literature and can be con-
sidered as a standard benchmark for FSI problems. The second example consists in a simplified
wheel rolling on a wetted rigid surface. It includes most of the constraints that need to be con-
sidered in order to compute full-scale tires, while requiring limited computational resources and
time.
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4.3.1 Flexible flag in a flow
4.3.1.1 Problem statement

The first numerical example is a semi-2D problem in which a thin flexible body attached to a rigid
square is immersed in an incompressible fluid flow as described in Wall’s thesis [181], t. The so-
called flag example has been widely used to validate FSI procedures as e.g. in [36, 92, 115] and
remains a classic in the literature. It exemplifies very well the coupling of an instationary flow
with a solid that undergoes large deformation and represents in that an appropriate numerical
model in order to assess the quality of the present coupling scheme.

The problem statement of the flag is illustrated in Figure 4.4. The solid body is positioned far
enough from the inlet of the fluid domain, which guarantees a uniform inflow whose velocity
is prescribed in the z-direction at U = 51.3 m/s. The fluid properties and geometry given in
Figure 4.4 lead to a Reynolds number? of Re = 330, at which the flow exhibits a vortex street.
The material properties of the solid domain and the geometry of the tail also given in Figure 4.4
were chosen such that the first eigenfrequency of the body approaches the vortex frequency. As a
result, the flexible tail oscillates at a frequency close to its natural frequency equal to 3.03 Hz.

The fluid domain is discretized in space into 144 x 77 x 1 (1 cell in the z-direction) cells
ensuring a sufficient mesh refinement level in the wake of the rigid square of the body. The time
integration scheme presented in section 2.2.5 to solve the discretized Navier-Stokes equations
uses a time step size following the FSI time step size such that At] = At,, for each time step
n. The solid body is discretized with 20 twenty-node reduced-order hexahedral solid elements
along the x-direction (1 element in the y-direction) and a hyperelastic neo-Hookean material
model as defined in (2.26) is used to deal with the large deformation of the tail. In this example,
and only in this one, an implicit solver is employed to solve the solid equations of motion (2.41).
Instead of using the procedure given in (2.43), a Hilbert-Hughes-Taylor (HHT) time integration
scheme [85] is employed, which can be summarized as follows:

d,, =dS + A5, & + (0.5 — BT AL dS 4+ BT AL D (4.11a)
@ =d + (1= A A+ AT A dD (4.11b)
.S

dn+] = (MS)_I (fs - ffn,n

ext,n

(dy ) (4.11c)

>The dynamic behavior of a flow in a particular configuration can be predicted by a dimensionless quantity called
the Reynolds number Re. It is the ratio between inertial forces to viscous forces within a fluid, which can be
formulated as

LU”
v

where L is characteristic length, U7 the flow velocity with respect to the obstacle and v the fluid kinematic
viscosity. For a certain range of Reynolds numbers, the flow around a bluff body separates leading to the vortex
shedding also known as von Kdrmdn vortex street.
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Figure 4.4: Problem statement of a flexible flag in a flow.
with
dS,, e = (1 — o1y dS 4 TS (4.11d)
where the algorithm parameters for the HHT time integrator are chosen as offiT = —0.05,

BHHT — (.28 and 41T = (.55 in this particular instance. The nonlinear dynamic equilibrium
equations resulting from the implicit operator are then solved by a Newton’s method. The HHT
procedure was chosen due to the choice of elements available in the implicit version of the solid
single-field solver, which are more suitable for computing the deformation of a beam-like solid
body such as the tail of the flag.

4.3.1.2 Validation of the FSI computational framework

The results obtained with different combinations of algorithm parameters for the flexible flag are
discussed in this section. All test cases are associated to an ID and the corresponding parameters
are summarized in Table 4.1.

The typical flow induced vibration of the flexible flag is illustrated in Figure 4.5 for the FO test
case with a constant FSI time step size of At = 1.0 1073 s. The fluid velocity magnitude and
the pressure fields at several time stations show the development of vortices around the bluff

body that trigger the vibration of the flexible body. The vertical tip displacement d;fw of the flag

110



4.3 Numerical examples

Flag ID Atmin [S] Atmax [S] € [J] Mup [']

FO 1.01073 (cst) - - -
FO1 5.01073 (cst) - -
FO2 1.0 1072 (cst) - -
F1 1.0103 50107° | 1.01077

3
F2 1.01073 5.0107% | 5.0107’ 3
F3 1.01073 501073 | 1.0107° 3
F4 1.01073 501072 | 5.010°° 3
F5 1.01073 1.01072 | 1.010°¢ 3
F6 1.01073 1.01072 | 1.010°¢ 5

Table 4.1: Flexible flag: test case ID with corresponding algorithm parameters. Cases named FO*
are run with a constant FSI time step size, while an adaptive time stepping procedure
is applied to all other cases.

is plotted in Figure 4.6 (black dotted line), where an harmonic response dominated by the first
eigenmode of the solid body is apparent after approximately 6 s.

To validate the current coupling approach, the tip displacement is compared to the maximum
amplitude obtained for the same setup by various authors in the literature. In [92], Kassiotis et al.
also consider finite volumes for discretizing the fluid domain and an implicit couling procedure.
It can be seen in Figure 4.6 that the extrema of the amplitude obtained by Kassiotis et al. is
very close to the ones achieved with the test case FO. The flag response is also compared to the
results published by Matthies & Steindorf [115], Dettmer & Peri¢ [36] and Wall [181], which
all use a FE approach to discretize the fluid domain. Although these works use various coupling
schemes as well as an ALE formulation of the Navier-Stokes equations, a good agreement is
found with the results obtained by the current approach, which is based on an explicit coupling
procedure and a fluid fixed-grid combined with an interface reconstruction technique to solve
the fluid sub-domain.

4.3.1.3 Coupling time step size optimization

The FSI time step size and its adaptation using the procedure introduced in section 4.2.2 is now
considered. In Figure 4.7, the results obtained for the reference test case FO with At = 1.0 1073
s is compared to two other cases, namely FO1 with At = 5.0 107> s and FO2 with At = 1.0 1072
s. The plot of the vertical tip displacement d;?p’y shows that both coupling time step sizes chosen
higher than 1.0 1073 s lead to an inaccurate response. In the case F02, the coupled simulation
even crashes after t = 5.51 s as highlighted by the green cross in Figure 4.7. As expected,
the interface energy-based error ||AEYL, ||, given by (4.6) also shows that the smallest error is
obtained for the FO test case. The error increases as soon as the body starts moving around ¢ ~

0.7 s. It then oscillates following the movement of the flag and evolves in an harmonic manner
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Velocity Pressure

t=0.20s
t=2.50s
t="7.09s
t="7.16s

‘ —

u| [m/s] p [Pa]

Figure 4.5: Flexible flag: snapshots of fluid velocity magnitude |u”| and pressure p fields at
several time instants (flag test case FO).
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—— Present explicit coupling scheme (FO)

—— Implicit coupling by Kassiotis et al. [92]
Implicit coupling by Dettmer & Perié [36]

—— Implicit coupling by Matthies & Steindorf [115]
Explicit coupling by Wall [181]
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Figure 4.6: Flexible flag: comparison of the maximum amplitude of the vertical tip displacement

dfpvy from the current explicit coupling approach (flag test case FO) with standard

results from the literature using various coupling schemes. The black dotted line
shows the evolution over time of the response obtained with the current approach for
the example FO.

for FO. Peaks are however observed in the two other cases, which correspond to an increased
temporal error in the couple system. The larger the time step size, the higher the error, which
complies with the previous observation on the accuracy of the response. The interface energy
already shows to be an appropriate criterion to foresee inaccuracies in the coupled solution and
to quantify the temporal error resulting from the coupling scheme.

So far, an upper limit on the time step size has been established for the flag example when At is
considered as a constant. Due to the transient character of the response and the variation of the
;?p,y over the simulation time (the amplitude remains small at the beginning of the
simulation and gradually increases before oscillating harmonically), an adaptive coupling time
step can be envisaged as advantageous. The simplicity of the current example provides a good
opportunity to test the adaptive time stepping procedure and to identify appropriate values for the
algorithm parameters given in (4.9). It became quickly clear that some parameters had a larger
impact on the change of FSI time step size. The lower and upper limits on the scaling factors Ky,
and Km,x do not influence much the computed time step size in (4.7) and were chosen in order
to allow for a maximum variation of the optimized scaling factor k2 of 25%, that is Ky, = 0.75
and knax = 1.25. The safety factor has been chosen as «; = 0.95 in order to keep the error away

amplitude of d
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Interface energy-based error Vertical tip displacement

.107°

IAEL I, [J]

— FO: At=1.010"3s — FOl: At =5.010"3 s F02: At =1.010"2s

Figure 4.7: Flexible flag: interface energy-based error ||AEY. ||, and vertical tip displacement

d;?p’y for three different FSI time step sizes. The cross indicates the point at which the

simulation crashes.

from the tolerance limit and the smoothing parameter Mg, = 2 so that a decrease is quickly
reflected in the time step size. Larger values for Myow, lead to an early crash of the simulation
due to the fact that the accuracy requirements dictated by the interface energy-based error are
not met quickly enough.

The other parameters proved to influence far more the evaluation of the optimum time step size.
In particular, the tolerance factor € has the largest effect as shown in Figure 4.8 for the test cases
FO-F43. An increase of € allows for a larger time step size, which in turn leads to an increased
error. At the beginning of the simulation, as the flag remains still, the time step size increases
rapidly regardless of €. The increase is only limited by the parameters xm.x and M, before the
time step reaches At,.x. A small tolerance, as for the F1 test case, leads to a rapid decrease of the
time step size, which then sticks to the minimum value of At,;,. For a larger €, the time step size
decreases more gradually and can still reach larger values until the end of the simulation, which
in turn leads to a higher time efficiency of the solution procedure. The best compromise between
time-to-solution and accuracy is achieved here for the example F3 as shown in Table 4.2, where
a decrease of the total simulation time of approximately 48% is observed for a difference of only
0.3% in the maximum amplitude compared to the case FO. The limit is reached here for the test
case F4 and a tolerance of ¢ = 5.0 1079 J, for which the time step size never leaves its maximum

3A backward moving average with 100 intervals has been applied to the interface energy-based error plots pre-
sented in the Figures 4.8-4.9 to be able to compare more easily the results from the different flag examples. As
already apparent in Figure 4.7, this particular quantity has the tendency to show large oscillations so that the curves
corresponding to raw data are usually hard to compare.
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Interface energy-based error FSI time step Vertical tip displacement
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— F3:e=1.010%7J F4: ¢ =5.01076 J

Figure 4.8: Flexible flag: interface energy-based error ||AEy., ||, (moving average with 100 in-
tervals), FSI time step size At,, and vertical tip displacement d;?p,y for different values
of the tolerance parameter € in the adaptive time stepping procedure. The cross indi-

cates the point at which the simulation crashes.

Avs.FO[%] || F1 | F2 | F3 | F5 | F6
max{|d$ [} | 02|03 ] 03| 1.6 | 04

tip,y

Simulation time || -23 | -40 | -48 | -54 | - 52

Table 4.2: Flexible flag: difference between the test cases FO versus F1-F3, F5 and F6 in terms
of the maximum amplitude of the vertical tip displacement and the overall simulation
time.

allowed value until the error suddenly increases and leads to a simulation crash after t ~ 5.87 s,
1.e. at a time where the vertical tip displacement starts reaching its maximum amplitude.

In Figure 4.9, the case F3 is kept as a reference for evaluating other algorithm parameters, namely
the maximum time step size Aty and the smoothing upper limit M. In a further attempt to
improve the time efficiency of the simulation, At¢,,x has been set to 1.0 1072 s in the case F5.
The resulting time step size increase is only taken advantage of at the beginning of the simulation
when the flag remains still and falls down at the same level as for F3 as soon as the body starts
moving. The drop of the time step size around ¢ = 2 s is actually faster for F5 than for F3, which
can be explained by the higher level of error that the F5 case suffers from as the time step size
decreases. In order to delay that drop of At, the case F6 was constructed with M, = 5 in order
to lower the level of error while approaching ¢t = 2 s, which also resulted in a more gradual time
step size increase at the simulation start. If the level of accuracy is acceptable for a lower value
of My, as for F5, the corresponding solution procedure delivers the best time efficiency. If not,
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Interface energy-based error FSI time step Vertical tip displacement
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Figure 4.9: Flexible flag: interface energy-based error ||AE1Fn| |L, (moving average with 100 in-

tervals), FSI time step size At,, and vertical tip displacement dfm for different values

of the algorithm parameters A, and M,, optimizing the adaptive time stepping
procedure (¢ = 1.01079).

the upper limit for the smoothing parameter can be increased, which in turn limits the error while
producing an acceptable overall simulation time as shown in Table 4.2.

The flag example has been used to evaluate the influence of the algorithm parameters. It appeared
that the tolerance ¢ has the largest effect on the time efficiency, while At and M, can be used
for a finer tuning. It is important to note that the flag test case is particular as the body motion
comprises multiple phases for which the FSI time step size requirements are very different. As
a result, a decrease of up to 54% of the overall simulation time could be obtained, while the first
results from Figure 4.7 indicated that a constant FSI time step size larger than At = 1.0107° s
was not applicable. The situation is different in the case of the Grosch wheel example in which
the body motion includes only one regular phase as discussed in the next section.

4.3.2 Grosch wheel rolling on a thick water layer
4.3.2.1 Problem statement

The Grosch wheel example is a small scale wheel composed of a unique rubber compound
rolling on a wetted rigid surface. Contrary to full scale tire models, no reinforcement nor cavity
are included in the model so that the wheel is not inflated by air. This simplified tire model is
much easier to run and can be simulated one order of magnitude faster than a tire hydroplaning
simulation. Since the Grosch wheel hydroplaning simulation includes the main computational
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requirements as for a real tire, it represents a suitable example to test the coupling procedure and
package used in this work.

The hydroplaning performance of the Grosch wheel is computed here for a straight free-rolling
test, reproducing the test conditions of the glass plate experiment described in section 1.2.2. As
can be seen in Figure 4.10 (a), the tire is mounted on a rigid rim and rotates around an axis in
the y-direction, which is only free to move along the z-direction. The road is translated in the
x-direction with a prescribed constant velocity of U™ = 48.3 km/h. As a result, the wheel
remains in a bounded spatial domain and does not actually travel down the road, which avoids
having a fluid domain of large size. The wheel rotates with an angular velocity of

Frroad
QGW . Ux
y RGW”
dyn

(4.12)

where RG) is the wheel’s dynamic radius that is equal to R®Y = 0.04 m at the beginning of
the simulation and is subjected to change as the tire spins and deforms. Furthermore, a vertical
load £V = —500 N is prescribed at the center of the rim and the contact between the wheel
and the road is modeled by an isotropic Coulomb friction model as described in section 2.1.5.2
with a coefficient of friction ;. = 0.9. The material properties as well as the dimensions of the
wheel are given in Figure 4.10 (a), where WY and HSV denote the width of the wheel (in the
y-direction) and the height of the tire side wall respectively. The fluid domain is split into two
parts as illustrated in Figure 4.10 (b): a fluid layer of 3 mm covering the road and a region filled
with void on top describe a free-surface flow. A fluid velocity U = U™ is prescribed at the
inlet in both the fluid and void regions. As initial condition, the VOF variable () is set to 1 in the
fluid layer and O in the void region. The fluid properties and the boundary conditions used for
the fluid model are also given in Figure 4.10 (b).

The Grosch wheel solid model is discretized with ~29000 3D 8-node reduced-order hexahedral
elements as described in section 2.1.5.1. The hyperelastic neo-Hookean material model is used
for describing the behavior of the rubber compound, whereas the contact definition between
the road and the tire as well as between the rim and the tire are dealt with the penalty method
described in section 2.1.5.2. The explicit time integration scheme presented in section 2.1.4 is
employed to solve the solid system (2.41). The fluid domain is discretized in space into ~95000
cells which are the smallest at the level of road and along the wetted surface of the tire, where the
highest mesh density is needed. The cell size gradually increases as one moves away from the
road and from the tire. The fluid method presented in section 2.2 is used to solve the fluid system
with a fluid time step size following the FSI time step such that At? = At,, for each time step 7.
In this case, both single-fields have different requirements in terms of time step size so that the
solid sub-domain is sub-cycled to reach an acceptable level of numerical stability as described in
section 2.1.4. If the FSI time step remains constant during the simulation, a sub-cycling ratio as
defined by (3.9) with RS, = 46 for all n is adopted. In the event of an adaptive FSI time step,
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Figure 4.10: Problem statement of the Grosch wheel benchmark: solid (a) and fluid (b) model
description.
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Grosch wheel Atmin [8] Atmax [S] e [J] My, [-] Order of
ID predictor
(3.17)

GWO01 3.0107 (cst) - - - 0
GWO02 1.5107 (cst) - - - 0
GWO03 7.5107° (cst) - - - 0
GW04 5.0107° (cst) - - - 0
GWO02P1 1.5107 (cst) - - - 1
GWO02P2 1.5107 (cst) - - - 2
GWI1P1 1.010°° 1.01072 1.01072 10 1
GW1P2 1.010°¢ 1.01072 1.01072 10 2
GW2P2 1.51073 1.01072 1.01072 5 2
GW3P2 1.51073 1.01072 501073 5 2

Table 4.3: Grosch wheel: test case ID with corresponding algorithm parameters. Cases named
GWO* are run with a constant FSI time step size, while an adaptive time stepping
procedure is applied to all other cases. The P indicates that a predictor (1% or 2™
order) on the solid displacement has been applied.

the ratio at the beginning of the simulation is also given by R = 46 (n = 0) and is then free to
change as At,, and AtS fluctuate over time.

In the end, the Grosch wheel example represents a complex free-surface flow problem due to the
complicated solid geometry, the contact definition between the tire and the road as well as the
relatively large fluid and angular velocity compared to the size of the wheel. Not only does this
example allow to test the new coupling approach with a free-surface flow, it also gathers some
of the main challenging features of a tire hydroplaning simulation and consists, in that, in a very
meaningful test case.

Multiple instances of the Grosch wheel example are considered in this section depending on
the algorithm parameters and the order of the solid predictor (3.17) employed. Each example is
associated to an ID, for which the parameters are summarized in Table 4.3.

4.3.2.2 Typical results for tires wet performance

Prior to the actual FSI computation, a so-called dry rolling run is performed for the Grosch
wheel. In this first step, no water is present in the computational model and the wheel rotates at
an angular velocity (25" with a vertical load F'7" applied to the center of the rim. Once the tire
has reached a stabilized deformed state the solution is saved and then used as an initial step for
the FSI computation. Only the results obtained during this FSI simulation, which consists of one
revolution of the wheel and lasts 7" ~ 0.0183 s, are discussed in the following.
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Some of the typical results obtained for evaluating the wet performance of a tire are presented
here for the Grosch wheel. A constant FSI time step size At = 7.5107° s corresponding to
the example GWO03 has been used, which showed to deliver stabilized results as discussed in
the following. Figure 4.11 (a) shows the fluid relative velocity u?; at the end of the simulation
(t = T, which is defined as the difference between the fluid velocity vector u” and the road
velocity vector given by (U road () O)T. By subtracting the road velocity component, this rela-
tive velocity quantity allows to visualize the “true” fluid velocity field, which would be obtained
if the wheel instead of the road was moving in the z-direction. It can be observed that an im-
portant water splash occurs in front of the tire, which ejects the water away from the contact
patch region. Moreover, the water trapped within the grooves is swept away as the wheel spins
and eventually rejected in the wake of the tire. The pressure field p is shown in Figure 4.11 (b)
highlighting that, at ¢ = 7', most of the fluid in the wake of the tire has been ejected away from
the wheel’s trajectory for which no fluid data is available. A high pressure region is observed in
front of the tire, which is responsible for ejecting the water away form the contact patch region.
Figure 4.11 (c) exhibits the free-surface of the flow at the end of the simulation by showing the
distribution of the VOF variable () within the fluid sub-domain, which highlights once again
the strength of the water splash. It is also clearly visible here that the mesh resolution quickly
reduces once one moves away from the road, leading to an uneven free-surface on the top of the
fluid sub-domain. While having a fine mesh in the entire fluid sub-domain would lead to much
better results visualization, the high number of cells that would result from that would be im-
practical for such simulations. Especially considering the fact that there is absolutely no interest
from a hydroplaning performance point of view of having precise results in that region of the
flow where water particles only exit the fluid sub-domain. In Figure 4.11 (d), the tire footprint
on the road is compared at the beginning and at the end of the simulation. It is clearly visible
that, in this configuration, the tire does not lose contact with the road and does not enter in hy-
droplaning. Due to the size of the grooves that can easily penetrate the water layer and that the
tire deformation is almost negligible for a non-inflated tire, the shape of the footprint is almost
not altered by the presence of water. These observations are corroborated in the following, while
looking at the lift force resulting from the action of the water on the rotating tire.

The lift force that acts on the tire is one of the few results available that allows to quantitatively
estimate the hydroplaning performance of a tire. Therefore it also represents a meaningful quan-
tity for testing various configurations of the coupling scheme. In Figure 4.12, the lift force F’, is
plotted for different FSI time step sizes, which have been kept constant during the whole dura-
tion of the simulation. While At > 7.5107% s does not lead to accurate results, a time step size
of At = 7.5107% s corresponding to the case GWO03 is small enough for capturing the so-called
pitch, that is each peak in the plot of the lift force that coincides with the entry of a lug of the tire
tread into the water. Due to a relatively large noise signal in the lift force response, the results
proposed in Figure 4.12 are averaged using a backward moving average with 30 intervals, which
showed to deliver the clearest results while keeping the pitch apparent. The Grosch wheel case
GWO3 is therefore chosen as a reference for the rest of this section. Note that with a resulting

120



4.3 Numerical examples
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Figure 4.11: Grosch wheel: snapshots of fluid relative velocity u?; (the color of the arrows indi-
cates the fluid relative velocity magnitude |uZ,|) (a), pressure p (b), VOF variable
@ (c) at the end of the simulation (¢ = T') as well as the tire footprint on the road

(d) at the start and end of the simulation (Grosch wheel GWO03). 121
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Figure 4.12: Grosch wheel: lift force F, (moving average with 30 intervals) for different FSI
time step sizes.

lift force oscillating around 40 N, the wheel is far from entering in hydroplaning as the vertical
force OV pushing the wheel against the road is more than one order of magnitude higher. This
also explains the small difference between the shape of the footprint at the beginning and the
end of the simulation in Figure 4.11 (d). As will be discussed in the next chapter, the situation is
way different in the case of a real tire model, where the tire is inflated with air and the size of the
grooves is much smaller compared to the size of the wheel.

4.3.2.3 Effect of solid predictor

The solid predictor introduced in section 3.3.2 that replaces the displacement field at the inter-
face computed by the solid solver by expression (3.17) is considered in this section. A 1% order
(ap = 1and a; = 0in (3.17)) and a 2" order (op = 1 and o; = 1/2in (3.17)) time-accurate pre-
dictor are used and applied to the Grosch wheel example GW02, resulting in the cases GW02P1
and GWO02P2 respectively. The lift force F’, and the corresponding temporal error given by the
interface energy-based error ||AEy., ||, given by (4.6) are plotted in Figure 4.13. Note that, in
the case of a free-surface flow, the total number of nodes on the FSI interface N!_,., in expres-
sion (4.6) is replaced by the number of active nodes on the interface, that is the number of nodes
shared by the solid sub-domain (tire) and the fluid sub-domain where the VOF variable () = 1
(water). In doing so, the interface energy-based error is scaled appropriately with the number of

nodes taking part to the coupling data exchange.

As already mentioned, the example GWO02 produced an inaccurate response with an FSI time
step size of At = 1.5107° s that was too large to converge towards the lift force obtained for
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Figure 4.13: Grosch wheel: interface energy-based error [|AEYL, ||, and lift force F. (moving
average with 30 intervals) showing the beneficial impact of the 1% and 2" order
solid predictors applied on the test case GW02 compared to the reference test case
GWO03.

the reference case GWO03. The application of a 1** and 2" order solid predictor for GW02P1
and GWO02P2 shows to bring the lift force at the same level as for GW03, while using an FSI
time step size twice as large. Looking now at the produced error in Figure 4.13, both cases with a
predictor improve the level of accuracy of the response but still cannot reach the level of accuracy
delivered by the GWO03 reference example. At this point, no clear difference can be identified
between both predictors in terms of produced error or resulting lift force.

These examples show that the use of a solid predictor in the coupling scheme tends to improve
the level of accuracy of the coupled procedure, which corroborates the observations made by
Piperno and Farhat in [147] as discussed in section 3.3.2. From an time efficiency point of view,
the use of the predictor allows to use a larger FSI time step size in order to compute the coupled
problem while keeping a sufficient level of accuracy. Both GW02P1 and GW02P2 jobs reduced
the overall simulation time by ~48 % compared to the GWO03 reference test case that ran with an
FSI time step size twice as large. In order to keep a good compromise between time-to-solution
and accuracy, the application of a solid predictor either of 1% and 2" order is therefore highly
recommended in this case.

123



4 A coupling scheme using black-box solvers for industrial applications

4.3.2.4 Coupling time step size optimization

In an attempt to optimize further the time efficiency of the solution procedure, the previously
discussed test cases are compared to examples run with the adaptive coupling time stepping
procedure introduced in section 4.2.2. The test case GW 1P1 was built with the algorithm param-
eters given in Table 4.3 and a 1* order solid predictor. Moreover, the following values for the
less significant algorithm parameters as discussed in section 4.3.1.3 are considered: x; = 0.95,
Mgown = 2, while ki, = 0.5 and Ky = 2 allowing for a variation of the optimized scaling
factor £ by a factor 2. Note that these parameters will be kept as such for all the following cases
discussed in this section.

As shown in Figure 4.14, the FSI time step size of the GW1P1 case converges rapidly to a value
oscillating around 1.5 107> s, which corresponds to the constant FSI time step size delivering an
efficient and accurate response with a 1% order solid predictor in the example GWO02P1. It shows
that the dynamic adaptive procedure employed for optimizing the FSI time step size, when used
with proper algorithm parameters, can automatically converge to an appropriate At,,. This can
be quite useful especially knowing how challenging the choice of the FSI time step size can
be for problems with a transient response. Also apparent in Figure 4.14, the introduction of an
adaptive time stepping process leads to a degradation of the solution as shown by the evolution
of the interface energy-based error for GW1P1 compared to the analogous Grosch wheel test
case using a constant FSI time step size and the same predictor order, namely GWO2P1. The
variation of the FSI time step size introduces a slight instability, which results in this temporal
error increase. The resulting lift force is accordingly impacted by that effect and converges at a
value further away from the reference solution delivered by GWO03, while comparing the green
and orange curves with the black curve. As a matter of fact, the overall simulation time obtained
with the adaptive procedure in GW1P1 is less than 1 % faster compared to the case GW02P1 with
a fixed FSI time step. Similar observations can be made for the cases with a 2" order predictor,
that is by comparing the example GW1P2 with GWO02P2. In this case however, the resulting
lift force converges closer to the reference solution so that a 2" order predictor is kept in the
following in order to find appropriate algorithm parameters and improve the overall simulation
time.

The results obtained for the case GW1P2 implied that the minimum value of the FSI time step
size Atpin, Was too conservative as the FSI time step size increases rapidly to 1.5107° s, value
around which it oscillates during the rest of the simulation. This led to the construction of the
test case GW2P2 for which At is set directly to 1.5 1073 s and with a lower value of My,
guaranteeing a smoother evolution of the FSI time step size over the course of the simulation.
As can be seen in Figure 4.15, the ramp up of the FSI time step size at the beginning of the
simulation is much smaller, which accelerates the simulation. This is at the cost of accuracy as
can be seen by the higher level of error and the peak at the beginning of the curve of the interface
energy-based error. As a result, the case GW2P2 runs ~ 13 % faster than GW1P2 but with a lift
force that converges further apart from the reference solution. In order to reduce the level of error,
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Figure 4.14: Grosch wheel: interface energy-based error ||AE1Fn| |L, (moving average with 30
intervals), FSI time step size At,, and lift force F, (moving average with 30 inter-
vals) for two examples considered with an adaptive FSI time stepping procedure
and solid predictors (GW1P1 and GW1P2) compared to test cases with a constant
FSI time step with and without solid predictors.

the test case GW3P2 using half the value of the tolerance € has been built. While the resulting
lift force is more accurate, the simulation with an adaptive time stepping procedure is not more
efficient than the example with a constant time step size fixed at 1.5 107 s (GWO02P2).

To summarize, it can be stated that the only way of improving the overall simulation time of the
Grosch wheel example is at the cost of a non negligible accuracy loss. Any attempt to reduce the
temporal error with an adaptive time stepping procedure leads to a simulation time that is of the
same order as when a constant FSI time step size is used. Due to the loss of numerical stability
introduced by the FSI time step adaptation, the use of a constant FSI time step is preferred in
this case.

4.3.3 Concluding remarks

The coupling shell introduced in section 4.1 for coupling the single-field solvers described in
chapter 2 have been used successfully to compute FSI problems as sophisticated as the Grosch
wheel example featuring a complex free-surface flow problem and contact occurrences.

The dynamic adaptation procedure of the FSI time step introduced in section 4.2.2 showed to
be very time efficient in the case of the flag example where the total simulation time could
be reduced by more than 50 % while keeping a totally satisfying level of accuracy. For the
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Figure 4.15: Grosch wheel: interface energy-based error ||AEY. , ||, (moving average with 30 in-
tervals), FSI time step size At,, and lift force F, (moving average with 30 intervals)
obtained for different adaptive FSI time stepping procedures and a 2" order solid
predictor compared to the reference test case GWO03.

Grosch wheel, the adaptation of the FSI time step size did not prove to speed up the computation
without affecting the accuracy of the solution. As a result, a constant FSI time step size showed
to perform better while leading to an overall simulation time similar to the adaptive time step
counterpart. The reason for that can be explained as follows. Since the prescribed vertical load is
high compared to the resulting lift force (FZ JESY ~ 10%) and since the tire of the Grosch wheel
is not inflated, it does not deform much under the action of water. Contrary to the flag example,
the computation of the solid sub-domain is therefore not much affected by the presence of water
in the system and the problem can be considered as weakly-coupled, where only the fluid sub-
domain is impacted by the solid sub-domain. This means that if an appropriate FSI time step size
is found that meets the stability requirements for solving the fluid sub-system, the temporal error
in the coupled system will not fluctuate much leaving in turn only very little room for optimizing
further the FSI time step size. However, the adaptive time stepping procedure proved to be quite
useful by allowing to automatically find the optimum time step size associated to the Grosch
wheel problem as shown in section 4.3.2.4 for a chosen level of accuracy.

Furthermore, the application of a solid predictor to the Grosch wheel example led to a substantial
reduction of the interface energy-based error, which in turn allowed using a larger coupling time
step size. Note that the trivial fluid corrector (3.24b) has been used here. Other instances of
(3.24) were also tested and delivered an unstable pressure distribution in the tire footprint, which
led to a rapid increase of numerical instabilities in the coupled system and a early crash of
the computation. The application of other forms of the fluid corrector was therefore deemed
unpractical for the current application.
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4.3 Numerical examples

In the end, an explicit coupling procedure has been implemented which allows to successfully
compute various FSI problems in an time efficient manner, while controlling the level of tem-
poral error in the coupled system. In the next chapter, the coupling strategy will be used for
computing the tire hydroplaning problem, which is achieved without any further modifications
to the proposed coupling shell.
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5 Numerical results for full-scale tire
model

In the previous chapter, the computational package including the two single-field solvers pre-
sented in chapter 2 and the newly proposed coupling shell has been successfully applied to FSI
computations ranging from an academic example to a simplified tire model rolling on a wet road
surface. The overall solution procedure is now used to compute the hydroplaning performance
of a full-scale tire.

The computational model of a real tire is first presented. In doing so, the complexity of a full-
scale tire construction is highlighted and the simplifications necessary to obtain the computa-
tional model starting from the physical model are exposed. The preliminary steps carried out to
build the 3D solid model used in the subsequent FSI computation is presented and the modeling
of the many constituents that form a real tire is briefly commented. Numerical results obtained
for a sport utility vehicle (SUV) tire construction are then presented. The areas for improve-
ment for the computation of tire hydroplaning applications based on the preexisting coupling
scheme are emphasized, while the limitations of the loosely-coupled approach for solving such
FSI examples are discussed.

5.1 Tire computational model

Tires are complex and composite solid systems that are made of multiple constituent materials
including rubber compounds, steel and synthetic reinforcements. Figure 5.1 shows the main
components, which fulfill various roles such as:

— Tread: the tire part in direct contact with the road and made of rubber. Its design impacts
the traction and the handling in dry and wet conditions as well as the noise and the rolling
resistance of a tire.

— Plies: usually made of nylon, the plies hold the shape of the tire due to the inflation pres-
sure.

— Bead: steel wire that carries the ply loads and locks the tire onto the rim.
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Figure 5.1: Principal constituents of a tire construction. A tire is a composite solid system that
includes multiple rubber compounds as well as synthetic and metallic materials.

— Belts: also made of steel, belts stiffen the footprint area and guarantee lateral and torsional
stability as well as puncture resistance.

— Inner line: another rubber part responsible for ensuring air impermeability.

— Sidewall: made of rubber, the outer flank of the tire protects from outside agents and
influences the damping characteristics of the tire, which can have an impact on handling
and noise.

— Apex: rubber parts responsible for stiffening the sidewall.
— Toeguard: protects from tire damages during mounting/dismounting, also made of rubber.
— Chafer: rubber part guaranteeing fitment between the tire and the rim.

The material properties of all constituents vary much, in particular the reinforcement compo-
nents such as the belts, plies and beads are much stiffer than the surrounding rubber compounds.
The broad variation in the stiffness of the constitutive materials add to the difficulties arising
from the nearly-incompressibility of rubber compounds and the multiple contact definitions dis-
cussed in section 2.1.5 that need to be considered while computing a rolling tire. As a detailed
description of a full-scale tire model generation is out of scope of this thesis, a few aspects of
the 3D computational model are shortly tackled in the following.
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5.1 Tire computational model

Wheel-water-road physical model Computational model

,::7—)-""" =
‘)l "D 4

rrroad __ Frcar
Uz - Uz

Figure 5.2: Simplifications from the physical to the computational wheel model, where the
brakes and the suspensions are removed. Instead of translating the rotating wheel
in the x-direction with the velocity magnitude U as in the physical model, a pre-
scribed velocity of the same amplitude and opposite direction is applied to the road
and the water in the computational model.

Physical to computational tire model

To be able to compute the deformation of a rolling tire, the corresponding computational model
is simplified compared to its physical counterpart, as schematically represented in Figure 5.2. In
the approximated solid sub-domain, the car suspension as well as the braking systems attached to
the rim are removed, which results in a fixed hub only free to move in the z-direction. Moreover,
the weight of the moving vehicle applied on each wheel is replaced by a static vertical load
Flire — — e where g, is the vertical component of the gravitational acceleration vector
and mg, the mass of the considered vehicle. In order to keep the rotating wheel in a bounded
fluid sub-domain, the car translation motion is split into a water-road translation with the same
uniform prescribed velocity such that U7 = U™ = —{U, Similarly to the Grosch wheel
example described in section 4.3.2.1, the fluid sub-domain consists of a water layer and another
region filled with void, which describes a free-surface flow. A more detailed description of the

coupled problem statement for the tire hydroplaning application will be given in section 5.2.1.

3D tire model generation

Only considering the solid sub-domain at this point, the numerical analysis of a rolling tire based
on the previously introduced computational model involves first constructing the 3D tire model.
It is not a straightforward task due to the multiple contact occurrences and the large number of
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Rotation
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Figure 5.3: Stages of a 3D tire model generation: a 2D tire section is mounted on a rim (rigid
body) and an inflation pressure is applied on the inside of the section; the resulting
deformed tire wedge is revolved around the rim to build the 3D tire model; external
loads are applied as the tire comes into contact with the road; the tire is rotated on
the road to perform a footprint analysis.

constituents involved. The latter have very different material properties and shapes, which can
be very complex to model. This includes the reinforcement components that need to be included
in the rubber matrix composed of the tire tread and the rest of the rubber components.

As shown in Figure 5.3, to be able to perform a tire analysis, the tire must first be inflated and
mounted on the rim, then deflected on the road and finally rotated. During inflation, a uniformly
distributed inflation pressure pi,q is applied on the inner line of the 2D tire section so that the tire
comes into contact with the rigid rim. The rim mounting results thus in enforcing the contact of
the tire with the rim, which involves a frictional sliding of the chafer over the rim. Once the 2D
tire section has reached a stable deformed state, the resulting wedge is revolved by 360° around
the rim and mirrored along the longitudinal direction to obtain the 3D tire model'. After inflation,
the tire is loaded with the vertical force F*" and the contact of the tire with the road is enforced.
At this point and during the rest of the analysis, the inflation pressure p;,q remains engaged.
Finally, the tire is rotated on the road around the y-direction and a camber angle (rotation around
the z-direction) can be added if required. In the end, the tire is rotated and free to move along
the z-direction to perform the footprint analysis. These steps represent the preliminary stage
prior to the actual FSI computation, for which the deformed tire resulting from the dry rolling
computation is used as an initial condition.

Tire reinforcement modeling

As previously mentioned, the tire computational model is subdivided into multiple parts, each
one having different material properties and composed of different finite elements. It goes from

'Note that in the event of an non-axisymmetric tire tread design, the latter is glued onto the tire carcass after it has
been revolved around the rim.
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2D membrane elements with anisotropic material properties for the tire belts and plies to 3D
solid elements for the tread. While the tire tread and all rubber compounds are modeled with
solid isoparametric hexahedral 8-node elements as described in section 2.1.5.1, the belts and
plies are modeled with rebar layers in membrane elements, which are embedded in the rubber
solid elements.

Materials such as nylon cords used for the tire plies are embedded in a rubber matrix and do
not possess compressible stiffness. In order to model these types of components, membrane
elements including rebar layers are embedded in the 3D solid elements employed for the rub-
ber constituents. These rebar layers have their stiffness defined in an uniaxial direction, which
depends on the cords orientation within the tire and confers the anisotropic behavior to these con-
stituents. An elastic material model is used to characterize the behavior of these reinforcements.
As for the bead, 1D beam elements providing axial reinforcement are employed.

The resulting solid model of a tire is therefore very complex with a large number of components
and elaborate shapes. A considerable number of degrees of freedom is thus required to satisfy
the accuracy requirements and simulate the rolling tire, as presented in the next section.

5.2 Numerical results for SUV tire Dunlop SP Quattromaxx
225/55 R19

In order to illustrate the tire hydroplaning problem, a SUV tire is employed, namely the Dunlop
SP Quattromaxx 225/50 R19. Due to its relatively large size, this tire is expected to move a large
amount of water and is therefore well indicated for demonstrating the wet performance of tires
using the proposed solver package. The developments proposed in the previous chapter in order
to improve the preexisting coupling scheme are applied to the present industrial example. The
effect of the solid predictor as well as the adaptation of the FSI time step size for optimizing the
accuracy and time efficiency of the solution procedure are tested for the this tire model.

5.2.1 Problem statement

Similarly to the Grosch wheel example presented in section 4.3.2.1, the computational setup
consists in a tire rolling on a rigid surface covered by a water film. In this case, the tire accelerates
in a straight line with a constant torque T;re = —500 Nm as shown in Figure 5.4 (a) and is
subjected to a vertical load of "™ = —5000 N, representing the quarter of the weight of a
typical SUV. The inflation pressure is set at pj,s = 2.2 bar. The road as well as the water are
translated along the moving direction with a constant velocity of U = U™ = 80 km/h. The
contact between the road and the tire tread is described by the isotropic Coulomb friction model
presented in section 2.1.5.2. The fluid sub-domain is split into a water and a void part, describing
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5 Numerical results for full-scale tire model

Full-scale tire Atmin [8] Atmax [S] e [J] My, [-] Order of
ID predictor
(3.17)
TO1 2.0107 (cst) - - - 0
TO1P1 2.0 1073 (cst) - - - 1
TO1P2 2.0 1073 (cst) - - - 2
TO1P1/2 2.01073 (cst) - - - 172
T1 201073 20107 501073 10 0
T2 2.0107° 2.0107% 20.01073 10 0
T3 2.0107° 2.0107* 25.01073 10 0

Table 5.1: Full-scale tire: test case ID with corresponding algorithm parameters. Cases named
TO* are run with a constant FSI time step size, while an adaptive time stepping pro-
cedure is applied to all other cases. The P indicates that a predictor on the solid dis-
placement has been applied.

a free-surface flow with an initial water layer thickness of 5 mm. The boundary conditions and
other dimensions for both the solid and fluid sub-domains are given in Figure 5.4.

The solid tire model is discretized altogether with ~ 485000 elements. All rubber compounds
are modeled with the hyperelastic neo-Hookean law and the contact occurrences are dealt with
the penalty method, both described in section 2.1.5. The explicit time integration from section
2.1.4 is used to solve the solid sub-system. As for the fluid sub-domain, it is discretized into
~ 2.510° fluid cells, in which the fluid sub-system is computed by the method presented in
section 2.2. In the same way as for the Grosch wheel example, the fluid time step size follows the
FSI coupling time step (At] = At,). Due to the different numerical stability requirements from
both sub-domains, the solid system is sub-cycled such that the sub-cycling ratio (3.9) is given
by RS, = 100 in the event of a constant FSI time step or in the beginning of the simulation
(n = 0) if an adaptive time stepping procedure is chosen.

All tire hydroplaning test cases are summarized in Table 5.1, which gathers the algorithm pa-
rameters considered in this chapter.

5.2.2 Typical results for tires wet performance

Once the preliminary dry rolling simulation described in section 5.1 is over, the coupled simula-
tion starts and runs for 7" ~ 0.085 s, which corresponds to a 300° tire rotation. Due to the size
and complexity of the problem, the overall simulation time needed for computing the coupled
system is substantial. Therefore only a 300° rotation is computed, which is however sufficient
for reaching a stabilized state and converged results, as shown in the following.
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Figure 5.4: Problem statement of the tire Dunlop SP Quattromaxx 225/50 R19: solid (a) and
fluid (b) model description.
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A constant FSI time step size of At = 2.0 107 s is used in the test case TO1, which is considered
as the reference example in the remaining of this chapter. The distribution of the VOF variable
( at different time instants is illustrated in Figure 5.5 (a). It shows that a water splash builds
up over the duration of the simulation and reaches a large size at t = 7', even though the water
film thickness is relatively small compared to the tire dimensions. The fluid relative velocity u;,
already introduced in section 4.3.2.2 also highlights in Figure 5.5 (b) the strength of the splash,
which ejects the water away from the tire trajectory and in particular in front of the tire where a
water wedge is created. The impact of the tread with the water leads to a rise in fluid pressure
in the contact patch region, which causes the tire footprint to lift off the road surface. This fluid
pressure rise can be observed in the front of the contact patch in Figure 5.5 (c). A good tire
design aims at evacuating as much water as possible away from the front wedge area in order to
keep that fluid pressure as low as possible and generate a dry contact in the back of the footprint
as mentioned in section 1.2.1. Figure 5.5 (c) also highlights that there is almost no water left in
the wake of the tire at ¢ = T', while the tire remains however in contact with the road. This is
apparent in Figure 5.6, where the evolution of the contact pressure p., the fluid pressure p and
the VOF variable () in the tire footprint is shown at different time instants. The snapshots of the
contact pressure distribution in the footprint show that the remaining contact area between the
tire tread and the road rapidly decreases as the tire rotates but does not disappear at t = T, i.e.
no hydroplaning occurs. The distribution of the fluid pressure is relatively uniform in the front
of the contact patch region and does not vary much over the course of the simulation. Integrating
this fluid pressure over the wetted surface area delivers the hydrodynamic force that must be
counteracted by the tire vertical stress in order to avoid hydroplaning, which proves to be the
case in the current example.

Typical quantitative results for assessing the hydroplaning performance of a tire in an accelerated
test consist in the lift force F’,, the remaining contact area RCA and the slip rate SR, both defined
in the following. They are all plotted in Figure 5.7 for the reference test case TO1. The lift force
reaches a converged value around 4200 N after about ¢ ~ 0.05 s, which is indeed below the
vertical load £ applied to the tire so that there is no hydroplaning. This is in accordance with
the above mentioned observations made in terms of pressure distribution in the tire footprint.
With the RCA, the remaining contact area between the tire and the road is compared to that at
the beginning of the simulation. It tends also to a constant value of RCA ~ 25 % after around
t =~ 0.05 s, which means that the tire loses about 3/4 of its contact area at 80 km/h due to the
presence of the 5 mm water layer. One of the most important quantities for assessing the wet
performance of a tire in an accelerated wet traction test is the slip rate SR, which compares the
angular velocity of the tire in wet and dry conditions such as

wet __ ()dry
— Qy Qy

SR 0 Sry

(5.1)

The SR is an important quantity as it can be easily compared to experimental data (the deep
straight aquaplaning test described in section 1.2.2) and is very sensitive to the tire design and
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Figure 5.5: Snapshots of fluid results: VOF variable () at different time instants (a) as well as

fluid relative velocity u?; (b) and fluid pressure p on the road (arrows indicate the

direction of fluid particles) (c) at the end of the simulation at ¢ = 7' (tire TO1).

the computational method used for solving the problem at hand. In the present example, the SR
reaches ~ 11 % aftert =T

Based on the reference model TO1, various test cases of the Dunlop SP Quattromaxx tire were
constructed in order to improve the overall coupled simulation with the proposed coupling
scheme. In the same manner as for the Grosch wheel example, the effect of the solid predic-
tor as well as the optimization of the FSI time step size based on the control of the interface
energy criterion are considered for the full-scale tire model in the remaining of this chapter.
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Figure 5.6: Snapshots of the contact pressure p., the fluid pressure p and the VOF variable () in
the tire footprint at different time stations (tire TO1).
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Figure 5.7: Full-scale tire: lift force F, (moving average with 100 intervals), remaining contact
area RCA and slip rate SR for the reference configuration TO1.

5.2.3 Effect of solid predictor

The predictor given by expression (3.17) is applied at the FSI interface of the solid sub-domain
of the tire example. Three test cases based on the reference example TO1 with an FSI time step
size At = 2.0107° s are considered, namely TO1P1, TO1P2 and TO1P1/2. TOIP1 and TO1P2
correspond to a 1% order (ap = 1 and o; = 0) and a 2" order (oy = 1 and a; = 1/2) time-
accurate predictor, whereas TO1P1/2 is constructed with «y = 1/2 and «; = 0 to determine the
predicted value dl‘gz .1 in equation (3.17). The interface energy-based error ||AEy ||, defined
in (4.6) advising on the level of temporal error in the coupled system is plotted in Figure 5.8
together with the resulting lift force F, exerted by the fluid on the tire for these three cases.
Contrary to the Grosch wheel example, it can be observed that the higher the predictor order
the higher the error, which leads for both TO1P1 and TO1P2 cases to an overestimated lift force
compared to the reference example TO1 and does not even converge after ¢ = 7. In an attempt
to find an appropriate predictor the example TO1P1/2 was built. In this case, the level of error is
lower than for the 1*' and 2" order examples but remains higher than for the reference test case.
Although the resulting lift force tends to converge, it is also overestimated compared to TO1.

The situation is much different compared to that of the Grosch wheel example presented in
section 4.3.2.3, where the use of a solid predictor improved the accuracy of the solution and
allowed to use a larger coupling time step size. The discrepancy between these two models could
be explained by the effect of the artificial added-mass effect instability summarized in section
3.3.5.2 that affects FSI problems with incompressible flows, small solid to fluid mass density
ratios and which are solved with a loosely-coupled partitioned procedure. Although the tire and
Grosch wheel models both possess these characteristics, the current Grosch wheel example can
be considered as a weakly-coupled problem where the solid sub-domain is not impacted by the
fluid flow, i.e. the deformation of the Grosch wheel due to the water layer is negligible. It is not
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Figure 5.8: Full-scale tire: interface energy-based error ||AEYL, ||, and lift force F. (moving
average with 100 intervals) obtained for various solid predictors and a constant FSI
time step size At = 2.0 1073 s compared to the reference test cases TO1.

the case of the inflated tire, which is therefore much more sensible to the artificial added-mass
effect instability. As a matter of fact, the tire hydroplaning problem is a very good example of
FSI applications prone to the added-mass effect instability, which not only limits the choice of
FSI time step size but is also triggered by the use of a solid displacement predictor as stated
in section 3.3.5.2. The higher the predictor order, the earlier the instability occurs, which is in
accordance with the above mentioned observations.

Ultimately, it can be stated that the use of a solid predictor within the present explicit coupling
scheme is not indicated for computing the tire hydroplaning problem, due to its sensitivity to the
artificial added-mass instability. Instead of improving the coupled solution procedure the solid
displacement predictor rather deteriorates the overall solution.

5.2.4 Coupling time step size optimization

In order to improve the time efficiency of the tire hydroplaning problem while guaranteeing
a given level of accuracy, the adaptive time stepping procedure introduced in section 4.2.2 is
applied to the reference example TO1. Since the solid predictor did not prove to be appropriate for
the problem at hand, it is not further used in the test cases considered in this section, namely T1,
T2 and T3. These three jobs were constructed with the algorithm parameters given in Table 5.1,
which are completed with the following values to obtain the full set (4.9): kg = 0.95, Mgown = 2,
FEmn = 0.9 and km,x = 2. The optimized scaling factor « is thus allowed to decrease by
maximum 10 % and to double in size at most.
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Figure 5.9: Full-scale tire: interface energy-based error ||AE},||L,, FSI time step size At,, lift
force I, (moving average with 100 intervals), remaining contact area RCA and slip
rate SR obtained for different adaptive FSI time stepping procedures compared to the
reference test cases TO1.
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The temporal error resulting from the partitioning of the coupled problem is plotted along the
obtained FSI time step size over the course of the simulation in Figure 5.9. All three cases using
an adaptive coupling time step lead to a specific level of error, which is evidently higher for
a decreasing level of expected accuracy (corresponding to an increasing value of the tolerance
factor €). The meaningful output results for computing the tire wet performance are also plotted
in Figure 5.9 and show that both T1 and T2 lead to a level of accuracy that is similar to the
reference test case. Indeed, the converged lift force, the RCA and the SR vary of only ~ 1 %,
~ 2 %, ~ 4 % respectively, compared to the reference TO1. The overall simulation time is
accordingly reduced by ~ 13 % in T1 and by ~ 33 % in T2. The level of accuracy wished
for the test case T1 is too restrictive in comparison to T2 and leads to a coupling time step
size that eventually oscillates around that of the reference test TO1 (At = 2.0107 s). It can
be added that the error for T1 undergoes larger variations, which leads to an unstable time step
size after t ~ 0.04 s. This instability also participates in keeping the time step size low. As for
the case T3, the tolerance € is too loose and leads to larger deviations for the outputs compared
to the reference model. In T3, the overall simulation time is decreased by about 50 % but the
model fails in delivering a sufficient level of accuracy and is therefore rejected. As was already
observed in section 4.3 for simplified examples, these results once again show that the current
procedure allows to automatically derive an optimum FSI time step size for a given level of
wanted accuracy. In the current case, the optimum is hence obtained by T2, which reduces the
simulation time of about 1/3 compared to the reference example TO1, while keeping a level of
accuracy that is totally acceptable.

In doing so, the objective of optimizing the time efficiency of the tire hydroplaning simulation
by controlling the level of accuracy through a rigorous quantification of the partitioning error
within the system has been reached for the current industrial application. Furthermore, the pro-
posed method only requires little effort in terms of implementation and is not intrusive in that
no modifications are needed in the single-field solvers. It is therefore also expected to be easily
transferable to other FSI applications in an industrial environment. The only requirement con-
sists in having a suitable platform where the proposed method can be implemented, which was
achieved by the elaboration of the coupling shell presented in section 4.1.2. It can also be stated
that an example of a loosely-coupled solution procedure has been presented in this thesis that
can be used to solve FSI problems, which are per design strongly-coupled such as the tire hy-
droplaning problem. Even though the artificial added-mass effect introduces serious limitations
one should remain aware of, the proposed method based on the interface energy criterion has
proved to work successfully for solving such problems.
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6 Conclusions and outlook

In this thesis, the tire hydroplaning problem is numerically simulated in order to assess the wet
performance of real tire designs in an industrial environment. Due to the cost and the limited
number of data that can be retrieved from experimental measurements, computational results are
needed in order to better understand the underlying physical phenomenon and evaluate the wet
performance for new tire designs. The simulation of the tire hydroplaning problem is a compli-
cated application in the field of computational fluid-structure interaction due to the complexity
of each sub-domain and their coupling. Therefore, particular attention is required to create the
computational model and build an appropriate solution procedure. To do so, a loosely-coupled
partitioned approach is used to couple both the solid and fluid sub-domains, which are computed
by a pair of solvers specifically chosen to tackle the tire hydroplaning problem at hand. The goal
of this thesis relies on optimizing the coupling strategy based on the software package available
in order to improve the solution to the overall FSI problem in terms of robustness and time ef-
ficiency, while monitoring the accuracy in the coupled system. The choice for the solid solver
is guided by its ability to accurately compute a composite solid system with large deformations,
which includes a large variety of materials, complex contact occurrences and transient loading
conditions. The discretization in space of the solid sub-domain is achieved by the FEM and an
explicit procedure is used to advance the system in time. The fluid solver is based on a fixed-
grid approach to compute the flow using the FVM together with the VOF method to treat the
free-surface. The efficiency of the fluid-structure interface reconstruction within the fluid mesh,
especially in the case of complex interface geometries as it is the case here, has played in favor
of the fluid solver employed in this work.

The starting point is a coupling algorithm embedded in one of the single-field software used
as a black-box for coupling this particular pair of solvers. Limiting strongly the possibilities for
improving the coupling strategy by preventing any access to it, the preexisting coupling platform
is replaced by a new coupling shell. The latter has been implemented to grant flexibility in order
to control the execution of both solvers, extract single-field outputs and use coupling data for
further developments. In particular, interface variables can now be manipulated, which allows
for the use of a predictor for the solid displacement and a corrector for the fluid load at the
interface, while the coupling time step size can also be freely adapted. However, due to the
black-box character of each single-field solver, a full control of the coupling procedure cannot
be achieved. The largest limitation stems from the fact that, in their current configuration, the
solvers can only be advanced in time without redoing an already computed time step. Even
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though the proposed coupling framework would allow it, this restriction excludes any possibility
of implementing an implicit coupling approach. In the end, a flexible platform is implemented
that is generic and non-intrusive in the sense that it does not require any modification to the
solvers. In that, it is appropriate for industrial applications usually using trusted commercial and
black-box tools specifically designed for computing the considered problem.

By focusing on improving the coupling scheme, the current approach uses the energy artificially
introduced at the fluid-structure interface by the staggering process in order to control the level of
accuracy the coupled solution. An interface energy criterion is successfully employed to improve
the robustness and optimize the time efficiency of the solution procedure, while monitoring the
level of accuracy. To do so, a dynamic adaptation of the FSI time stepping procedure is intro-
duced, which uses an interface energy-based error to modify the FSI time step size depending
on the accuracy requirements in each time station of the simulation.

First, the coupling strategy within the newly implemented coupling shell is validated with help
from a numerical model commonly used in the literature and considered as a standard benchmark
for FSI problems, namely the flexible flag example. The same level of accuracy is reached by the
current explicit coupling approach compared to implicit coupling procedures applied to the same
problem in the literature. Furthermore, the application of the adaptive time stepping procedure
has proved to reduce the overall simulation time by more than a factor 2. Second, the Grosch
wheel example consisting in a simplified tire model rolling on a wet road surface is considered. It
is shown that the application of a solid predictor for the interface displacements is advantageous
in that it leads to a substantial reduction of the interface energy-based error, which in turn allows
for the use of a coupling time step size as much as twice as large to solve the problem. Only the
trivial corrector for the fluid loads at the interface can be employed, while other forms prove to
introduce instabilities in the pressure distribution in the tire footprint making it unpractical for
the current application. In this case, the adaptation of the FSI time step size does not speed-up
the computation without affecting the accuracy of the solution. The reason for that relies on the
fact that the deformation of the tire due the presence of fluid is negligible. As a consequence,
the Grosch wheel problem can be seen as weakly-coupled, which limits the room for improving
further the FSI time step size if an appropriate constant time step size can be found. The adaptive
time stepping procedure can however be used to automatically find the optimum coupling time
step size associated to the problem at hand. Third, the hydroplaning problem for a full-scale
SUV tire is successfully computed with the proposed method. In this case, the solid predictor
introduces instabilities, which can be associated to the artificial added-mass effect, and is there-
fore deemed unpractical. In accordance with observations made in the literature, this behavior is
witnessed for the tire-water coupled problem, which by construction fulfills the conditions for a
strong added-mass instability. The dynamic adaptive time stepping procedure applied to the real
tire model proves to speed-up the overall simulation time by more than 30 %, while keeping a
comparable level of accuracy.
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Ultimately, depending on the application, various solutions are proposed to improve the robust-
ness and time efficiency of the coupled simulation for a given level of accuracy. For weakly-
coupled problems, a solid predictor shows to be beneficial, while the adaptive time stepping
procedure proves to dramatically reduce the simulation time even for problems prone to the
added-mass instability. As a matter of fact, it is shown that a loosely-coupled procedure, which
represents the preferred solution from an industrial point of view for clear efficiency reasons,
can be used even in the case of strong added-mass effect. Additionally, the proposed coupling
shell, being non-intrusive and independent of any single-field solver, can be used for any cou-
pled problem and transferred to other industrial applications. These include the evaluation of the
noise (vibro-acoustic simulation) or of the aerodynamic performance of a tire. The latter aims
at minimizing the air drag produced by the tire and only requires modifying the setup for the
fluid sub-system. Also consisting in a weakly-coupled problem with a large density ratio p°/
p”, some of the solutions proposed here can be directly used for this application. Nevertheless,
the present coupling strategy can be further improved. In that context, an outlook on possible

research directions for the future is given in the following.

The present coupling shell is flexible in the sense that multiple correcting features, as previously
exposed, can be activated to improve the coupling procedure. Another feature, which is foreseen
in the coupling shell but cannot be applied with the pair of solvers in their current configuration,
is the use of implicit coupling schemes. In the latter, sub-iterations are performed between both
fields in order to reduce the artificial added-mass effect. Some of these approaches, which could
be implemented for the tire hydroplaning application are reviewed in section 1.3.2. In order to
keep an efficient procedure, the idea consists in optimizing the coupling time step by switching
automatically from a loose to a strong coupling strategy only at times of large interface error
during the simulation. A limited number of sub-iterations should thus allow reducing locally the
interface energy-based error and lead to the most stable yet efficient solution path. In the case
of the tire, it could for example allow for the use of a solid predictor, which showed to deliver
very promising results in the case of the Grosch wheel example. Having more control on the
energy creation at the interface might also allow for the use of other forms of the fluid corrector,
which showed inconclusive for all examples tested in the present work. Another possible im-
provement consists in implementing the non-collocated ISS coupling strategy, which shifts the
resolution of both sub-domains by half an FSI time step size and tends to reduce the creation of
artificial energy at the interface as explained in section 3.3.3. Its application is prevented by the
coupling protocol followed by both solvers. More access to both black-box codes would allow
exchanging interface data at time instants different for each sub-domain, which is required by
the ISS strategy. The latter is however more subjected to the added-mass effect and must there-
fore be considered with care. In general, more flexibility in the control of both solvers and in the
coupling protocol would permit implementing different coupling strategies such as some of the
promising approaches reviewed in section 3.3.4.

145






Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

J. E. Akin, T. E. Tezduyar, and M. Ungor. Computation of flow problems with the mixed
interface-tracking/interface-capturing technique (MITICT). Computers & Fluids, 36:2—
11, 2007.

I. Akkerman, Y. Bazilevs, C. Kees, and M. Farthing. [sogeometric analysis of free-surface
flow. Journal of Computational Physics, 230:4137-4152, 2011.

A. Aksenov, A. Dyadkin, and A. Gudzovsky. Numerical simulation of car tire aquaplan-
ing. In ECCOMAS Conference on Computational Fluid Dynamics, pages 815-820, Paris,
France, 1996.

A. Aksenov, A. Dyadkin, and V. Pokhilko. Overcoming of barrier between CAD and
CFD by modified finite volume method. In ASME Pressure Vessels and Piping Division
Conference, San Diego, USA, 1998.

A. Aksenov, V. Pokhilko, and A. Dyadkin. Numerical simulation of water flow around
ship with screw propeller. In ASME Pressure Vessels and Piping Division Conference,

Atlanta, USA, 2001.

M. Astorino, F. Chouly, and M. A. Ferndndez. Robin based semi-implicit coupling in
fluid-structure interaction: stability analysis and numerics. SIAM Journal on Scientific
Computing, 31:4041-4065, 2010.

F. P. T. Baaijens. A fictitious domain/mortar element method for fluid-structure interac-
tion. International Journal for Numerical Methods in Fluids, 35:743-761, 2001.

S. Badia, F. Nobile, and C. Vergara. Fluid-structure partitioned procedures based on Robin
transmission conditions. Journal of Computational Physics, 227:7027-7051, 2008.

J. W. Banks, W. D. Henshaw, and D. W. Schwendeman. An analysis of a new stable
partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells.
Journal of Computational Physics, 268:399-416, 2014.

J. W. Banks, W. D. Henshaw, and D. W. Schwendeman. An analysis of a new stable
partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids.
Journal of Computational Physics, 269:108—-137, 2014.

147



Bibliography

[11] K.-J. Bathe. Finite element procedures. Prentice-Hall, 1996.

[12] K.-J. Bathe and H. Zhang. Finite element developments for general fluid flows with
structural interactions. International Journal for Numerical Methods in Engineering, 60:
213-232, 2004.

[13] T. Belytschko, T. Rabczuk, A. Huerta, and S. Ferndndez-Méndez. Meshfree Methods. In
Encyclopedia of Computational Mechanics. John Wiley & Sons, 2004.

[14] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary. Nonlinear finite elements for
continua and structures. Wiley, 2013.

[15] M. J. Berger and P. Colella. Local adaptative mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 84:64-84, 1989.

[16] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53:484-512, 1984.

[17] C. Bertoglio, P. Moireau, and J.-F. Gerbeau. Sequential parameter estimation for fluid-
structure problems: Application to hemodynamics. International Journal for Numerical
Methods in Biomedical Engineering, 28:434-455, 2012.

[18] J. Blazek. Computational fluid dynamics: principles and applications. Butterworth-
Heinemann, 3rd edition, 2015.

[19] E. J. Blom. A monolithical fluid-structure interaction algorithm applied to the piston
problem. Computer Methods in Applied Mechanics and Engineering, 167:369-391, 1998.

[20] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge University Press, 1997.

[21] M. Brenk, H.-J. Bungartz, M. Mehl, R.-P. Mundani, D. Scholz, A. Diister, and D. Scholz.
Efficient interface treatment for fluid-structure interaction on Cartesian grids. In ECCO-
MAS Coupled Problems, Barcelona, 2005. CIMNE.

[22] M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid-structure interaction on Carte-
sian grids: flow simulation and coupling environment. In Fluid-Structure Interaction,
pages 233-269. Springer Berlin Heidelberg, 2006.

[23] M. Bukac, S. Canié, R. Glowinski, J. Tambaca, and A. Quaini. Fluid-structure interaction
in blood flow capturing non-zero longitudinal structure displacement. Journal of Compu-
tational Physics, 235:515-541, 2013.

[24] E. Burman and M. A. Ferndndez. Stabilization of explicit coupling in fluid-structure
interaction involving fluid incompressibility. Computer Methods in Applied Mechanics
and Engineering, 198:766-784, 2009.

148



Bibliography

[25] P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned
algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and
Engineering, 194:4506-4527, 2005.

[26] J. Cho, H. Lee, J. Sohn, G. Kim, and J. Woo. Numerical investigation of hydroplan-

ing characteristics of three-dimensional patterned tire. European Journal of Mechanics -
A/Solids, 25:914-926, 2006.

[27] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathemat-
ical physics. IBM Journal of Research and Development, 11:215-234, 1967.

[28] S. De, S. Das, J. Kuipers, E. Peters, and J. Padding. A coupled finite volume immersed
boundary method for simulating 3D viscoelastic flows in complex geometries. Journal of
Non-Newtonian Fluid Mechanics, 232:67-76, 2016.

[29] A. de Boer. Computational fluid-structure interaction. Spatial coupling, coupling shell
and mesh deformation. Phd thesis, Delft University of Technology, 2008.

[30] A.de Boer, A. H. van Zuijlen, and H. Bijl. Review of coupling methods for non-matching
meshes. Computer Methods in Applied Mechanics and Engineering, 196:1515-1525,
2007.

[31] E. A. de Souza Neto, D. Peri¢, and D. R. J. Owen. Computational methods for plasticity:
theory and applications. Wiley, 2008.

[32] J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels. Stability of a coupling
technique for partitioned solvers in FSI applications. Computers & Structures, 86:2224—
2234, 2008.

[33] J. Degroote, K.-J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure
versus a monolithic procedure in fluid-structure interaction. Computers & Structures, 87:
793-801, 2009.

[34] S. Deparis, M. A. Fernandez, and L. Formaggia. Acceleration of a fixed point algorithm
for fluid-structure interaction using transpiration conditions. ESAIM: Mathematical Mod-
elling and Numerical Analysis, 37:601-616, 2003.

[35] W. G. Dettmer and D. Peri¢. A computational framework for free surface fluid flows ac-

counting for surface tension. Computer Methods in Applied Mechanics and Engineering,
195:3038-3071, 2006.

[36] W. G. Dettmer and D. Peri¢. A fully implicit computational strategy for strongly coupled
fluid-solid interaction. Archives of Computational Methods in Engineering, 14:205-247,
2007.

149



Bibliography

[37]

[38]

[39]

[40]

[43]

[44]

[45]

[46]

[47]

150

W. G. Dettmer and D. Peri¢. A new staggered scheme for fluid-structure interaction.
International Journal for Numerical Methods in Engineering, 93:1-22, 2013.

M. Donatellis, E. Gelosa, and R. Sangalli. Virtual treaded tire simulation as a design pre-
dictive tool : Application to tire hydroplaning. In Simulia Customer Conference, London,
2009.

J. Donea and A. Huerta. Finite element methods for flow problems. Wiley, 2003.

J. Donea, S. Giuliani, and J. Halleux. An arbitrary lagrangian-eulerian finite element
method for transient dynamic fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33:689-723, 1982.

J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-
Eulerian methods. In Encyclopedia of Computational Mechanics, chapter 14. Wiley, 2004.

A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves,
M. Lijewski, F. Loffler, B. O’Shea, E. Schnetter, B. Van Straalen, and K. Weide. A survey

of high level frameworks in block-structured adaptive mesh refinement packages. Journal
of Parallel and Distributed Computing, 74:3217-3227, 2014.

European Commission. Commission regulation (EU) No 1235/2011 amending Regulation
(EC) No 1222/2009 of the European Parliament and of the Council. Official Journal of
the European Union, L 317:17-23, 2011.

C. Farhat and V. K. Lakshminarayan. An ALE formulation of embedded boundary meth-
ods for tracking boundary layers in turbulent fluid-structure interaction problems. Journal
of Computational Physics, 263:53-70, 2014.

C. Farhat and M. Lesoinne. On the accuracy, stability, and performance of the solution
of three-dimensional nonlinear transient aeroelastic problems by partitioned procedures.
37th Structural Dynamics Meeting, pages 629-641, 1996.

C. Farhat and M. Lesoinne. Two efficient staggered algorithms for the serial and par-
allel solution of three-dimensional nonlinear transient aeroelastic problems. Computer
Methods in Applied Mechanics and Engineering, 182:499-515, 2000.

C. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration of cou-
pled aeroelastic problems: three-field formulation, geometric conservation and distributed
solution. International Journal for Numerical Methods in Fluids, 21:807-835, 1995.

C. Farhat, M. Lesoinne, and P. Le Tallec. Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces: momentum
and energy conservation, optimal discretization and application to aeroelasticity. Com-
puter Methods in Applied Mechanics and Engineering, 157:95-114, 1998.



Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. Farhat, C. Harris, and D. Rixen. Expanding a flutter envelope using accelerated flight
data - Application to an F16 fighter configuration. In 41st Structures, Structural Dynam-
ics, and Materials Conference and Exhibit, Reston, Virigina, 2000. AIAA 2000-1702.

C. Farhat, P. Geuzaine, and C. Grandmont. The discrete geometric conservation law and
the nonlinear stability of ALE schemes for the solution of flow problems on moving grids.
Journal of Computational Physics, 174:669-694, 2001.

C. Farhat, P. Geuzaine, and G. Brown. Application of a three-field nonlinear fluid-
structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter.
Computers and Fluids, 32:3-29, 2003.

C. Farhat, K. G. van der Zee, and P. Geuzaine. Provably second-order time-accurate
loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity.
Computer Methods in Applied Mechanics and Engineering, 195:1973-2001, 2006.

C. Farhat, K. Maute, B. Argrow, and M. Nikbay. Shape optimization methodology for
reducing the sonic boom initial pressure rise. AIAA Journal, 45:1007-1018, 2007.

C. Farhat, A. Rallu, K. Wang, and T. Belytschko. Robust and provably second-order
explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear
compressible fluid-structure interaction problems. International Journal for Numerical
Methods in Engineering, 84:73-107, 2010.

C. A. Felippa and K. C. Park. Staggered transient analysis procedures for coupled me-
chanical systems: formulation. Computer Methods in Applied Mechanics and Engineer-
ing, 24:61-111, 1980.

C. A. Felippa, K. C. Park, and J. A. DeRuntz. Stabilization of staggered solution proce-
dures for fluid-structure interaction analysis. Computational methods for fluid-structure
interaction problems, 26:95-124, 1977.

C. A. Felippa, K. C. Park, and C. Farhat. Partitioned analysis of coupled mechanical
systems. Computer Methods in Applied Mechanics and Engineering, 190:3247-3270,
2001.

M. A. Fernandez. Coupling schemes for incompressible fluid-structure interaction: im-
plicit, semi-implicit and explicit. SeMA Journal, 55:59-108, 2011.

M. A. Ferndndez and M. Moubachir. A Newton method using exact jacobians for solving
fluid-structure coupling. Computers & Structures, 83:127-142, 2005.

M. A. Fernandez, J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme
for the coupling of an elastic structure with an incompressible fluid. International Journal
Jfor Numerical Methods in Engineering, 69:794-821, 2007.

151



Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

152

M. A. Fernandez, J. Mullaert, and M. Vidrascu. Generalized Robin-Neumann explicit
coupling schemes for incompressible interaction: stability analysis and numerics. Infer-
national Journal for Numerical Methods in Engineering, 101:199-229, 2015.

J. H. Ferziger and M. Peri¢. Computational methods for fluid dynamics. Springer Berlin
Heidelberg, 2002.

D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadrilateral with or-

thogonal hourglass control. International Journal for Numerical Methods in Engineering,
17:679-706, 1981.

C. Forster. Robust methods for fluid-structure interaction with stabilised finite elements.
Phd thesis, Universitit Stuttgart, 2007.

C. Forster, W. A. Wall, and E. Ramm. On the geometric conservation law in transient
flow calculations on deforming domains. International Journal for Numerical Methods
in Fluids, 50:1369-1379, 2006.

C. Forster, W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential
staggered coupling of nonlinear structures and incompressible viscous flows. Computer
Methods in Applied Mechanics and Engineering, 196:1278-1293, 2007.

Fraunhofer Institut for Algorithms and Scientific Computing SCAI. MpCCI 4.5 Coupling
environment documentation, 2017.

D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to appli-
cations. Academic Press, New York, 2nd edition, 2011.

M. W. Gee, U. Kiittler, and W. A. Wall. Truly monolithic algebraic multigrid for fluid-
structure interaction. International Journal for Numerical Methods in Engineering, 85:

987-1016, 2011.

S. Geller, C. Janssen, and M. Krafczyk. A Lattice Boltzmann approach for distributed
three-dimensional fluid-structure interaction. In Progress in Computational Physics:
Novel Trends in Lattice-Boltzmann Methods, volume 3, chapter 8, pages 199-216. Ben-
tham Books, 2013.

M. Geradin and D. J. Rixen. Mechanical vibrations: theory and application to structural
dynamics. Wiley, 3rd edition, 2015.

J.-F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model for
fluid-structure interaction problems in blood flows. ESAIM: Mathematical Modelling and
Numerical Analysis, 37:631-647, 2003.

J.-F. Gerbeau, M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on
geometries based on medical imaging. Computers & Structures, 83:155-165, 2005.



Bibliography

[74] A. Gerstenberger. An XFEM based fixed-grid approach to fluid-structure interaction. Phd
thesis, Technische Universitat Miinchen, 2010.

[75] J. Gillard, V. Decouvreur, and W. Wall. An explicit coupling scheme using an interface
energy-based criterion for industrial fluid-structure interaction applications including tire
hydroplaning. In preparation.

[76] H. Grogger and M. Weiss. Calculation of the three-dimensional free surface flow around
an automobile tire. Tire Science and Technology, 24:39-49, 1996.

[77] H. Grogger and M. Weiss. Calculation of the hydroplaning of a deformable smooth shaped
and longitudinally grooved tire. Tire Science and Technology, 25:265-287, 1997.

[78] G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic. Stable loosely-coupled-type
algorithm for fluid-structure interaction in blood flow. Journal of Computational Physics,
228:6916-6937, 2009.

[79] H. Guillard and C. Farhat. On the significance of the geometric conservation law for
flow computations on moving meshes. Computer Methods in Applied Mechanics and
Engineering, 190:1467-1482, 2000.

[80] E. Hairer and G. Wanner. Solving ordinary differential equations II: stiff and differential-
algebraic problems. Springer Berlin Heidelberg, 2nd edition, 1996.

[81] E. Hairer, S. P. Ngrsett, and G. Wanner. Solving ordinary differential equations I: nonstiff
problems. Springer Berlin Heidelberg, 2nd edition, 1993.

[82] D.F. Haysand A. L. Browne. The physics of tire traction - theory and experiment. Plenum
Press, 1974.

[83] M. Heil. An efficient solver for the fully coupled solution of large-displacement fluid-
structure interaction problems. Computer Methods in Applied Mechanics and Engineer-
ing, 193:1-23, 2004.

[84] J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure
conditions for the incompressible Navier-Stokes equations. International Journal for Nu-
merical Methods in Fluids, 22:325-352, 1996.

[85] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for
time integration algorithms in structural dynamics. Earthquake Engineering & Structural
Dynamics, 5:283-292, 1977.

[86] C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free
boundaries. Journal of Computational Physics, 39:201-225, 1981.

153



Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

154

G. A. Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering.
Wiley, 2000.

W. B. Horne and R. C. Dreher. Phenomena of pneumatic tire hydroplaning. Technical
report, Nasa TN D-2056, 1963.

G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure interaction - A
review. Communications in Computational Physics, 12:337-377, 2012.

T. J. R. Hughes. The finite element method: linear static and dynamic finite element
analysis. Dover, 2000.

C. Kadapa, W. G. Dettmer, and D. Peri¢. A stabilised immersed boundary method on hier-
archical b-spline grids for fluid-rigid body interaction with solid-solid contact. Computer
Methods in Applied Mechanics and Engineering, 318:242-269, 2017.

C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. G. Matthies. Nonlinear fluid-
structure interaction problem. Part I: Implicit partitioned algorithm, nonlinear stability
proof and validation examples. Computational Mechanics, 47:305-323, 2011.

T. Kloppel and W. A. Wall. A novel two-layer, coupled finite element approach for mod-
eling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomechanics
and Modeling in Mechanobiology, 10:445-459, 2011.

T. Kloppel, A. Popp, U. Kiittler, and W. A. Wall. Fluid-structure interaction for non-
conforming interfaces based on a dual mortar formulation. Computer Methods in Applied
Mechanics and Engineering, 200:3111-3126, 2011.

S. S. Kumar, K. Anupam, T. Scarpas, and C. Kasbergen. Study of hydroplaning risk on
rolling and sliding passenger car. In Procedia - Social and Behavioral Sciences, vol-
ume 53, pages 1020-1028. Elsevier Ltd., 2012.

U. Kiittler. Effiziente Losungsverfahren fiir Fluid-Struktur-Interaktions-Probleme. Phd
thesis, Technische Universitit Miinchen, 2009.

U. Kiittler and W. A. Wall. Fixed-point fluid-structure interaction solvers with dynamic
relaxation. Computational Mechanics, 43:61-72, 2008.

U. Kiittler and W. A. Wall. Vector extrapolation for strong coupling fluid-structure inter-
action solvers. Journal of Applied Mechanics, 76:021205-1-021205-7, 2009.

U. Kiittler, M. W. Gee, C. Forster, A. Comerford, and W. A. Wall. Coupling strategies
for biomedical fluid-structure interaction problems. International Journal for Numerical
Methods in Biomedical Engineering, 26:305-321, 2010.



Bibliography

[100] V. K. Lakshminarayan and C. Farhat. Nonlinear aeroelastic analysis of highly flexi-
ble flapping wings using an ALE formulation of embedded boundary method. In 52nd
Aerospace Sciences Meeting, National Harbor, Maryland, 2014. ATAA.

[101] M. G. Larson and F. Bengzon. The finite element method: theory, implementation, and
applications. Springer Berlin Heidelberg, 2013.

[102] T. A. Laursen. Computational contact and impact mechanics: fundamentals of modeling
interfacial phenomena in nonlinear finite element analysis. Springer Berlin Heidelberg,
2003.

[103] P. Le Tallec and P. Hauret. Energy conservation in fluid-structure interactions. In Numer-

ical methods for scientific computing. Variational problems and applications, Barcelona,
Spain, 2003. CIMNE.

[104] P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displacements.
Computer Methods in Applied Mechanics and Engineering, 190:3039-3067, 2001.

[105] M. Lesoinne and C. Farhat. Geometric conservation laws for flow problems with moving
boundaries and deformable meshes, and their impact on aeroelastic computations. Com-
puter Methods in Applied Mechanics and Engineering, 134:71-90, 1996.

[106] M. Lesoinne and C. Farhat. Higher-order subiteration-free staggered algorithm for non-
linear transient aeroelastic problems. AIAA Journal, 36:1754-1757, 1998.

[107] L. Li, W. D. Henshaw, J. W. Banks, D. W. Schwendeman, and A. Main. A stable parti-
tioned FSI algorithm for incompressible flow and deforming beams. Journal of Compu-
tational Physics, 312:272-306, 2016.

[108] S.Liand W. K. Liu. Meshfree particle methods. Springer Berlin Heidelberg, 2004.

[109] M. B. Liu and G. R. Liu. Smoothed particle hydrodynamics (SPH): an overview and recent
developments. Archives of Computational Methods in Engineering, 17:25-76, 2010.

[110] F Loffler, Z. Cao, S. R. Brandt, and Z. Du. A new parallelization scheme for adaptive
mesh refinement. Journal of Computational Science, 16:79-88, 2016.

[111] R. Lohner. Applied computational fluid dynamics techniques: an introduction based on
finite element methods. Wiley, 2nd edition, 2008.

[112] R. Lohner, C. Yang, and E. Ofiate. Simulation of flows with violent free surface mo-

tion and moving objects using unstructured grids. International Journal for Numerical
Methods in Fluids, 53:1315-1338, 2007.

[113] J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity. Dover, 1994.

155



Bibliography

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

156

H. G. Matthies and J. Steindorf. Partitioned but strongly coupled iteration schemes for
nonlinear fluid-structure interaction. Computers and Structures, 80:1991-1999, 2002.

H. G. Matthies and J. Steindorf. Partitioned strong coupling algorithms for fluid-structure
interaction. Computers & Structures, 81:805-812, 2003.

U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. Wall. 3D fluid-structure-contact inter-
action based on a combined XFEM FSI and dual mortar contact approach. Computational
Mechanics, 46:53-67, 2010.

M. Mayr. A monolithic solver for fluid-structure interaction with adaptive time stepping
and a hybrid preconditioner. Phd thesis, Technische Universitit Miinchen, 2016.

M. Mayr, T. Kloppel, W. A. Wall, and M. W. Gee. A temporal consistent monolithic
approach to fluid-structure interaction enabling single field predictors. SIAM Journal on
Scientific Computing, 37:B30-B59, 2015.

M. Mayr, W. Wall, and M. Gee. Adaptive time stepping for fluid-structure interaction
solvers. Finite Elements in Analysis and Design, 141:55-69, 2018.

M. Mehl, M. Brenk, I. L. Muntean, T. Neckel, and T. Weinzierl. Benefits of structured
cartesian grids for the simulation of fluid-structure interactions. In Third Asian-Pacific
Congress on Computational Mechanics, Kyoto, 2007.

M. Mehl, B. Uekermann, H. Bijl, D. Blom, B. Gatzhammer, and A. H. van Zuijlen. Par-
allel coupling numerics for partitioned fluid-structure interaction simulations. Computers
& Mathematics with Applications, 71:869-891, 2016.

C. Michler, E. H. van Brummelen, and R. de Borst. An interface Newton-Krylov solver
for fluid-structure interaction. International Journal for Numerical Methods in Fluids, 47:
1189-1195, 2005.

C. Michler, E. H. van Brummelen, and R. de Borst. Error-amplification analysis of
subiteration-preconditioned GMRES for fluid-structure interaction. Computer Methods
in Applied Mechanics and Engineering, 195:2124-2148, 2006.

R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Me-
chanics, 37:239-261, 2005.

D. P. Mok. Partitionierte Losungsansditze in der Strukturdynamik und der Fluid-Struktur-
Interaktion. Phd thesis, Universitét Stuttgart, 2001.

D. P. Mok and W. A. Wall. Partitioned analysis schemes for the transient interaction
of incompressible flows and nonlinear flexible structures. In Trends in Computational
Structural Mechanics, Barcelona, 2001. CIMNE.



Bibliography

[127] D. P. Mok, W. A. Wall, and E. Ramm. Accelerated iterative substructuring schemes for

instationary fluid-structure interaction. Computational Fluid and Solid Mechanics, 2:
1325-1328, 2001.

[128] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68:
1703-1759, 2005.

[129] L. Monasse, V. Daru, C. Mariotti, S. Piperno, and C. Tenaud. A conservative coupling
algorithm between a compressible flow and a rigid body using an embedded boundary
method. Journal of Computational Physics, 231:2977-2994, 2012.

[130] A. H. Muhr. Modeling the stress-strain behavior of rubber. Rubber Chemistry and Tech-
nology, 78:391-425, 2005.

[131] I. Newton. Philosophice naturalis principia mathematica. Londini : Jussu Societatis
Regiae ac Typis Josephi Streater. Prostat apud plures bibliopolas, 1687.

[132] F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular
dynamics by generalized Robin conditions. SIAM Journal on Scientific Computing, 30:
731-763, 2008.

[133] F. Nobile and C. Vergara. Partitioned algorithms for fluid-structure interaction problems
in haemodynamics. Milan Journal of Mathematics, 80:443-467, 2012.

[134] M. Nool, E.J. Lingen, A. de Boer, and H. Bijl. Flecs, a flexible coupling shell application
to fluid-structure interaction. In Applied Parallel Computing. State of the Art in Scientific
Computing., volume 4699, pages 1016—1025. Springer Berlin Heidelberg, 2007.

[135] M. Nool, E. J. Lingen, S. van Zuijlen, M. Stroeven, and H. Bijl. Flecs, a flexible coupling
shell - Parallel application to fluid-structure interaction. In International Conference of
Computational Methods in Sciences and Engineering, Rhodes, Greece, 2012. AIP confer-
ence proceedings 1504.

[136] R. Ogden. Non-linear elastic deformations. Dover, 1997.

[137] T. Okano and M. Koishi. A new computational procedure to predict transient hydroplan-
ing performance of a tire. Tire Science and Technology, 29:2-22, 2001.

[138] L. Olovsson, K. Simonsson, and M. Unosson. Selective mass scaling for explicit finite
element analyses. International Journal for Numerical Methods in Engineering, pages

1436-1445, 2005.

[139] S. Osher and F. Ronald. Level set methods and dynamic implicit surfaces, volume 153.
Springer New York, 2003.

157



Bibliography

[140] S. V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill New York, 3rd
edition, 1980.

[141] C. S. Peskin. Flow patterns around heart valves: A numerical method. Journal of Com-
putational Physics, 10:252-271, 1972.

[142] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational
Physics, 25:220-252, 1977.

[143] S. Piperno. Explicit/implicit fluid/structure staggered procedures with a structural predic-
tor and fluid subcycling for 2D inviscid aeroelastic simulations. International Journal for
Numerical Methods in Fluids, 25:1207-1226, 1997.

[144] S. Piperno and P.-E. Bournet. Numerical simulations of wind effects on flexible civil
engineering structures. Revue Européenne des Eléments Finis, 8:659-687, 1999.

[145] S. Piperno and C. Farhat. Design of efficient partitioned procedures for the transient
solution of aeroelastic problems. Revue Européenne des Eléments Finis, 9:655-680, 2000.

[146] S. Piperno and C. Farhat. Energy based design and analysis of staggered solvers for
nonlinear transient aeroelastic problems. In 41st Structures, Structural Dynamics, and
Materials Conference and Exhibit, Reston, Virigina, 2000. AIAA.

[147] S. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled
aeroelastic problems — Part II: energy transfer analysis and three-dimensional applica-
tions. Computer Methods in Applied Mechanics and Engineering, 190:3147-3170, 2001.

[148] S.Piperno, C. Farhat, and B. Larrouturou. Partitioned procedures for the transient solution
of coupled aroelastic problems Part I: Model problem, theory and two-dimensional appli-
cation. Computer Methods in Applied Mechanics and Engineering, 124:79-112, 1995.

[149] M. J. Poldneff and M. W. Heinstein. Computational mechanics of rubber and tires. In
Modeling and Simulation in Polymers, chapter 8, pages 385—403. Wiley, 2010.

[150] A. Popp. Mortar methods for computational contact mechanics and general interface
problems. Phd thesis, Technische Universitdat Miinchen, 2012.

[151] M. A. Puscas and L. Monasse. A three-dimensional conservative coupling method be-
tween an inviscid compressible flow and a moving rigid solid. 2014.

[152] A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-structure interaction
based on an algebraic fractional step method. Mathematical Models and Methods in
Applied Sciences, 17:957-983, 2007.

[153] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow past an airfoil with
trailing edge separation. AIAA Journal, 21:1525-1532, 1983.

158



Bibliography

[154] S. Rugonyi and K.-J. Bathe. On finite element analysis of fluid flows fully coupled with
structural interactions. Computer Modelling in Engineering & Science, 2:195-212, 2001.

[155] H. Schlichting and G. Klaus. Boundary layer theroy. Springer Berlin Heidelberg, 8th
edition, 2000.

[156] B. Schott, S. Shahmiri, R. Kruse, and W. A. Wall. A stabilized Nitsche-type extended
embedding mesh approach for 3D low- and high-Reynolds-number flows. International
Journal for Numerical Methods in Fluids, 82:289-315, 2016.

[157] E. Seta, Y. Nakajima, T. Kamegawa, and H. Ogawa. Hydroplaning analysis by FEM and
FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Science and Technology,
28:140-156, 2000.

[158] M. Shadloo, G. Oger, and D. Le Touzé. Smoothed particle hydrodynamics method for
fluid flows, towards industrial applications: Motivations, current state, and challenges.
Computers & Fluids, 136:11-34, 2016.

[159] S. Shahmiri, A. Gerstenberger, and W. A. Wall. An XFEM-based embedding mesh tech-
nique for incompressible viscous flows. International Journal for Numerical Methods in
Fluids, 65:166-190, 2011.

[160] S. Shin and D. Juric. Modeling three-dimensional multiphase flow using a level contour
reconstruction method for front tracking without connectivity. Journal of Computational
Physics, 180:427-470, 2002.

[161] J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer New York, 1998.
[162] SIMULIA. Abaqus, v6.12.13, User Guide. 2012.

[163] J. Stasch, B. Avci, and P. Wriggers. Numerical simulation of fluid-structure interaction
problems by a coupled SPH-FEM approach. Proceedings in Applied Mathematics and
Mechanics, 16:491-492, 2016.

[164] S. Succi. The Lattice Boltzmann equation: for fluid dynamics and beyond. Oxford Uni-
versity Press, 2001.

[165] Y. Sudhakar, J. Moitinho de Almeida, and W. A. Wall. An accurate, robust, and easy-
to-implement method for integration over arbitrary polyhedra: Application to embedded
interface methods. Journal of Computational Physics, 273:393-415, 2014.

[166] N. Takashi and T. J. R. Hughes. An arbitrary lagrangian-eulerian finite element method
for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and
Engineering, 95:115-138, 1992.

159



Bibliography

[167] K. Takizawa, K. Tanizawa, T. Yabe, and T. E. Tezduyar. Ship hydrodynamics computa-
tions with the CIP method based on adaptive Soroban grids. International Journal for
Numerical Methods in Fluids, 54:1011-1019, 2007.

[168] K. Takizawa, T. E. Tezduyar, and R. Kolesar. FSI modeling of the Orion spacecraft drogue
parachutes. Computational Mechanics, 55:1167-1179, 2015.

[169] T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations
involving moving boundaries and interfaces. The deforming-spatial-domain/space-time
procedure: 1. The concept and the preliminary numerical tests. Computer Methods in
Applied Mechanics and Engineering, 94:339-351, 1992.

[170] T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space-time
finite element computation of complex fluid-structure interactions. International Journal
for Numerical Methods in Fluids, 64:1201-1218, 2010.

[171] The Goodyear Tire & Rubber Company. Internal documentation.
[172] TU Delft. The Flexible Coupling Shell. User guide, 2009.

[173] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible,
multi-fluid flows. Journal of Computational Physics, 100:25-37, 1992.

[174] E. H. van Brummelen, S. J. Hulshoff, and R. de Borst. Energy conservation under incom-
patibility for fluid-structure interaction problems. Computer Methods in Applied Mechan-
ics and Engineering, 192:2727-2748, 2003.

[175] R.van Loon, P. D. Anderson, and F. N. van de Vosse. A fluid-structure interaction method
with solid-rigid contact for heart valve dynamics. Journal of Computational Physics, 217:
806-823, 2006.

[176] T. M. van Opstal and E. H. van Brummelen. A finite-element/boundary-element method
for large-displacement fluid—structure interaction with potential flow. Computer Methods
in Applied Mechanics and Engineering, 266:57-69, 2013.

[177] A.H. van Zuijlen, A. de Boer, and H. Bijl. Higher-order time integration through smooth
mesh deformation for 3D fluid—structure interaction simulations. Journal of Computa-
tional Physics, 224:414—-430, 2007.

[178] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics:
the finite volume method. Pearson Education Limited, 2nd edition, 2007.

[179] J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit coupling of partitioned
fluid-structure interaction problems with reduced order models. Computers & Structures,
85:970-976, 2007.

160



Bibliography

[180] S. Vincent, A. Sarthou, J.-P. Caltagirone, F. Sonilhac, P. Février, C. Mignot, and G. Pi-
anet. Augmented Lagrangian and penalty methods for the simulation of two-phase flows
interacting with moving solids. Application to hydroplaning flows interacting with real
tire tread patterns. Journal of Computational Physics, 230:956-983, 2011.

[181] W. A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Phd thesis,
Universitit Stuttgart, 1999.

[182] W. A. Wall and T. Rabczuk. Fluid-structure interaction in lower airways of CT-based lung
geometries. International Journal for Numerical Methods in Fluids, 57:653-675, 2008.

[183] W. A. Wall, S. Genkinger, and E. Ramm. A strong coupling partitioned approach for
fluid-structure interaction with free surfaces. Computers and Fluids, 36:169—-183, 2007.

[184] K. Wang, A. Rallu, J.-F. Gerbeau, and C. Farhat. Algorithms for interface treatment and
load computation in embedded boundary methods for fluid and fluid-structure interaction
problems. International Journal for Numerical Methods in Fluids, 67:1175-1206, 2011.

[185] K. Wang, J. Grétarsson, A. Main, and C. Farhat. Computational algorithms for tracking
dynamic fluid-structure interfaces in embedded boundary methods. International Journal
for Numerical Methods in Fluids, 70:515-535, 2012.

[186] K. G. Wang, P. Lea, and C. Farhat. A computational framework for the simulation of
high-speed multi-material fluid-structure interaction problems with dynamic fracture. In-
ternational Journal for Numerical Methods in Engineering, 104:585-623, 2015.

[187] S. W. Welch and J. Wilson. A volume of fluid based method for fluid flows with phase
change. Journal of Computational Physics, 160:662-682, 2000.

[188] D. A. Wolf-Gladrow. Lattice gas cellular automata and Lattice Boltzmann models.
Springer Berlin Heidelberg, 2000.

[189] P. Wriggers. Computational contact mechanics. Springer Berlin Heidelberg, 2006.
[190] P. Wriggers. Nonlinear finite element methods. Springer Berlin Heidelberg, 2008.

[191] R. Wiichner, A. Kupzok, and K.-U. Bletzinger. A framework for stabilized partitioned
analysis of thin membrane-wind interaction. International Journal for Numerical Meth-
ods in Fluids, 54:945-963, 2007.

[192] J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs. Computational free-surface fluid-
structure interaction with application to floating offshore wind turbines. Computers &
Fluids, 141:155-174, 2016.

161



Bibliography

[193] L. Yoshihara, C.J. Roth, and W. A. Wall. Fluid-structure interaction including volumetric
coupling with homogenised subdomains for modeling respiratory mechanics. Interna-
tional Journal for Numerical Methods in Biomedical Engineering, 26:807-827, 2016.

[194] L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite element method.
Computer Methods in Applied Mechanics and Engineering, 193:2051-2067, 2004.

[195] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method.: its basis and
fundamentals. Butterworth-Heinemann, 7th edition, 2013.

[196] O. C. Zienkiewicz, R. L. Taylor, and D. Fox. The finite element method for solid and
structural mechanics. Butterworth-Heinemann, 7th edition, 2014.

[197] O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu. The finite element method for fluid
dynamics. Butterworth-Heinemann, 7th edition, 2014.

162






	1 Introduction
	1.1 Motivation
	1.2 Tire hydroplaning
	1.2.1 Physical process
	1.2.2 Experimental testing

	1.3 Computational methods for fluid-structure interaction
	1.3.1 FSI problem formulations and space discretization
	1.3.2 Coupling schemes
	1.3.3 Computational FSI for tire hydroplaning

	1.4 Thesis scope and objectives
	1.4.1 Scope
	1.4.2 Proposal for a dynamic coupling scheme applied to tire hydroplaning

	1.5 Outline

	2 Single-field governing equations and computational models
	2.1 Solid mechanics
	2.1.1 Choice of computational model
	2.1.2 Governing equations in solid mechanics
	2.1.2.1 Kinematics
	2.1.2.2 Balance equations
	2.1.2.3 Material laws
	2.1.2.4 Initial boundary value problem

	2.1.3 Space discretization and finite element method
	2.1.4 Time discretization
	2.1.5 Tire-specific modeling aspects
	2.1.5.1 Incompressibility and finite elements for rubber compounds
	2.1.5.2 Tire-road and tire-rim contact definitions


	2.2 Fluid mechanics
	2.2.1 Choice of computational model and hypotheses
	2.2.2 Governing equations in fluid mechanics
	2.2.2.1 Kinematics
	2.2.2.2 Balance equations
	2.2.2.3 IBVP for Navier-Stokes equations of incompressible flow

	2.2.3 Discretization of the Navier-Stokes equations with moving boundaries
	2.2.4 Space discretization
	2.2.4.1 Dynamic adaptive mesh refinement
	2.2.4.2 Finite volume formulation

	2.2.5 Time discretization
	2.2.5.1 Stability of the time integration scheme and CFL number

	2.2.6 Hydroplaning-specific modeling aspects
	2.2.6.1 Free-surface flow and phase transfer with VOF method



	3 Multi-field problem and coupling procedures
	3.1 Problem formulation and coupling conditions
	3.1.1 Fluid loads on the fluid-structure interface

	3.2 Partitioned coupling procedures
	3.2.1 Generalities and properties
	3.2.2 Balance equations at the fluid-structure interface
	3.2.2.1 Mass conservation
	3.2.2.2 Momentum conservation
	3.2.2.3 Energy conservation


	3.3 Loosely-coupled partitioned strategies
	3.3.1 CSS algorithm and terminologies
	3.3.2 GSS algorithm and artificial interface energy
	3.3.3 ISS algorithm and geometric conservation law
	3.3.4 Recent advances and time-accuracy of coupling procedures
	3.3.5 Present computational framework
	3.3.5.1 Partitioning errors
	3.3.5.2 Artificial added-mass effect



	4 A coupling scheme using black-box solvers for industrial applications
	4.1 From simple data exchange algorithm to flexible coupling scheme
	4.1.1 Requirements for coupling black-box solvers
	4.1.2 Coupling shell implementation
	4.1.2.1 Coupling algorithm within the coupling shell
	4.1.2.2 Connection and data exchange with black-box solvers


	4.2 An interface energy-based criterion for the accuracy and efficiency of coupling procedures
	4.2.1 Formulation of energy imbalance at the fluid-structure interface
	4.2.2 Dynamic adaptation of the time stepping procedure
	4.2.2.1 An error-based approach
	4.2.2.2 Optimum time step size


	4.3 Numerical examples
	4.3.1 Flexible flag in a flow
	4.3.1.1 Problem statement
	4.3.1.2 Validation of the FSI computational framework
	4.3.1.3 Coupling time step size optimization

	4.3.2 Grosch wheel rolling on a thick water layer
	4.3.2.1 Problem statement
	4.3.2.2 Typical results for tires wet performance
	4.3.2.3 Effect of solid predictor
	4.3.2.4 Coupling time step size optimization

	4.3.3 Concluding remarks


	5 Numerical results for full-scale tire model
	5.1 Tire computational model
	5.2 Numerical results for SUV tire Dunlop SP Quattromaxx 225/55 R19
	5.2.1 Problem statement
	5.2.2 Typical results for tires wet performance
	5.2.3 Effect of solid predictor
	5.2.4 Coupling time step size optimization


	6 Conclusions and outlook
	Bibliography

