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Shape optimization of a Helmholtz
resonator using an adjoint method

Faisal Caeiro, Carlo Sovardi, Kilian Förner and Wolfgang Polifke

Abstract

This paper proposes a method for shape optimization in aero-acoustics and applies it to a Helmholtz resonator. The

objective is to realize a desired acoustic impedance by optimizing the shape of the neck of the resonator, in due

consideration of the excitation level. The optimization problem is formulated with a suitable objective functional,

where the Navier–Stokes equations act as a partial differential equation (PDE) constraint in a Lagrangian functional.

By exploiting the understanding of the relevant flow physics, it is possible to formulate the objective functional in the time

domain, although the optimization target, i.e. the acoustic impedance, is a quantity defined in the frequency domain. This

optimization problem is solved by a gradient-based optimization. The shape gradient of the objective functional is

determined by an adjoint method, which requires solving two sets of PDEs in time: the so-called forward and backward

problems. The forward problem is represented by the Navier–Stokes equations and is solved in the positive time

direction. The set of equations for the backward problem, which has to be solved in the negative time direction, is

derived in the current study. From the solutions of the forward and backward problems, the shape derivative for the

current optimization step is calculated. Iterative optimization steps then bring the impedance to the target value.
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1. Introduction

Helmholtz resonators, perforated liners, or quarter
wave cavities are different types of acoustic resonators
used in combustion systems such as rocket combustion
chambers, aero-engines, or gas turbines.1 Their purpose
is to increase dissipation of acoustic energy, thus con-
trolling thermo-acoustic combustion instabilities or
reducing emissions of noise. They are usually passive
devices and some tuning for a good performance at the
expected working conditions is required.

In the past decade, algorithm-based shape, topology,
and form optimization have become powerful tools for
expediting the design phase in engineering. A design
boundary whose properties are quite good by engineer-
ing design, but not ideal, can be modified iteratively
through a process called shape optimization. Classical
optimization methods used widely today are the
Hadamard method for geometric optimization,2,3

homogenization methods for topology optimization,4,5

and variational techniques with Sobolev smoothing.6

Shape optimization is applied to structural, vibrational,
aerodynamic, and acoustic problems.

In recent years, acoustic optimization, in particular,
has become a major area of research with applications
in the fields of structural-acoustic optimization and
aero-acoustic optimization. In aero-acoustic optimiza-
tion, the shape of reactive mufflers was optimized using
transmission matrix technique. Bernhard developed a
semi-analytic sensitivity analysis formulation.7 For gra-
dient-based shape optimization of a sound barrier,
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Habbal used a finite element method (FEM) to solve
the linear acoustic problem and an adjoint equation to
compute the shape sensitivity.8 Christensen and Olhoff
applied a boundary element method to optimize the
directivity pattern of a loudspeaker diaphragm by vari-
ation of ring mass distribution and geometry.9

Bängtsson et al. optimized with a gradient scheme the
shape of an acoustic horn in order to minimize reflec-
tions in the waveguide,10 while matching the impedance
of the surrounding fluid.

In the present paper, the shape of the neck of an
acoustic resonator is optimized to match the resonator
impedance with that of the surrounding fluid. A gradi-
ent-based optimization technique (method of steepest
descent) is used, which requires accurate calculation
of shape derivatives. For this purpose, the method
introduced by Céa is adopted,11 which derives an
adjoint equation from a Lagrangian functional com-
prising the objective functional. The partial differential
equation (PDE) of the forward problem is introduced
as a constraint in the Lagrangian functional. Shape
sensitivity is calculated from the solutions of the for-
ward problem and the adjoint equation.

To numerically determine the orifice transfer imped-
ance through the neck, a segregated approach is
adopted.12,13 The unsteady Navier–Stokes equations
are considered to simulate the fluctuating fluid flow
and thus represent the forward problem in the present
case. Using discrete Fourier transform of the velocity
and pressure terms, the impedance is calculated. Since
the main objective of a Helmholtz resonator is to induce
dissipation of acoustic energy, the shape optimization
aims to increase/decrease acoustic dissipation by mod-
ifying the boundary at the neck to match the resistive
impedance with the specific impedance of surrounding
fluid, such that the boundary is fully non-reflecting.

This paper is organized as follows: first working
principles and theoretical description of a Helmholtz
resonator are discussed. Then the procedure for com-
puting the reactance and resistive parts of the resonator
impedance is presented. The unsteady Navier–Stokes
problem is introduced for numerical simulations to cal-
culate the impedance. The ingredients for optimization,
such as the objective functional, the adjoint equations,
and the shape derivative are introduced. Finally, the
results are discussed, where the resistive part of
the acoustic impedance is optimized to match with
the target value of the specific impedance.

2. Acoustic characterization of a
Helmholtz resonator

Resonators are often characterized by their acoustic
impedance Z in the frequency domain. It is defined as
the ratio of the Fourier transforms of the fluctuating

acoustic pressure p̂ and the velocity û normal to the
reference surface

Zð!Þ ¼ z�0c0 ¼
p̂ð!Þ

ûð!Þ
ð1Þ

where ! is the angular frequency. The reference surface
at xref is shown as a dotted line in Figure 1. The imped-
ance, denoted by upper case Z, is often normalized with
the specific impedance �0c0, where �0 and c0 are the
mean density and the speed of sound of the mean
flow field, respectively. The normalized impedance
Z=�0c0 is denoted by lower case z in the following.
The imaginary part of the impedance is referred to as
reactance and its real part as resistance. Assuming one-
dimensional (1D) acoustics in front of the resonator,
the resonator can be characterized in terms of charac-
teristic wave amplitudes f and g, as sketched in Figure
1. Here, f is the right-traveling wave and g is the left-
traveling wave. In the absence of mean flow they are
given as

f ¼ 1
2

p0

�0c0
þ u0

� �
and g ¼ 1

2
p0

�0c0
� u0

� �
ð2Þ

The variables p0 and u0 are fluctuating acoustic pressure
and velocity, respectively. The reflection coefficient R is
defined as the ratio of the reflected wave ĝ to incident
wave f̂ in the frequency domain. Its relation to the
impedance is given as

Rð!Þ ¼
ĝ

f̂
¼

Zð!Þ � �0c0
Zð!Þ þ �0c0

¼
zð!Þ � 1

zð!Þ þ 1
ð3Þ

At the resonator eigenfrequency, the reactance
=ðZÞ ¼ 0 and the optimal resistance equals the specific
impedance �0c0, i.e. z¼ 1. This implies that no reflec-
tions take place (jRj ¼ 0). For a resistance larger than
this optimal value <ðzÞ4 1, the resonator is said to be
over-damped. In this case, the reflection coefficient
grows with a further increase of the resistance.

Figure 1. Sketch of a Helmholtz resonator indicating the geo-

metries of neck l0, d0 and cavity lcav,dcav. Incoming and reflected

acoustic waves are indicated by f and g, respectively.
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2.1. Segregation of a resonator into neck and cavity

Ingard and Ising suggested that a Helmholtz resonator
should be considered as an assembly of two compo-
nents:12 the ‘‘neck,’’ i.e. the orifice, and the cavity, i.e.
the backing volume; see Figure 1. The Helmholtz
number He of a Helmholtz resonator, defined as the
ratio of neck length l0 to the acoustic wavelength
� ¼ 2�c0=!, is very small (He � 1) for the configur-
ation considered. It follows that the orifice is acoustic-
ally compact and that the flow through the neck can be
treated as incompressible. Effects of compressibility
must be taken into account only for the cavity.
Tournadre et al. showed that by such segregation,13

the Helmholtz resonator can be correctly characterized
in the nonlinear regime by incompressible computa-
tional fluid dynamics (CFD) simulations of the corres-
ponding orifice.

The orifice transfer impedance Zo may be used
to describe the acoustic characteristics of the reson-
ator neck. It is defined as the ratio of the pressure
drop �p̂ across the orifice (from A to B in Figure 2)
to the fluctuating velocity in the duct in front of the
resonator

Zo ¼
�p̂

û
ð4Þ

The velocity û above refers to the cross-sectional aver-
age velocity fluctuations in the duct. Note that other
authors define the transfer impedance based on the vel-
ocity in the orifice. Both definitions are fundamentally
equivalent, but differ from each other by a the open
area ratio �, defined as

� �
d20
d2cav

ð5Þ

Using 1D analysis, the contribution of the orifice can
be obtained by subtracting the cavity contribution,
such that

Zo ¼
p̂1 � Zcav û2

û1
ð6Þ

where Zcav is the surface impedance of the backing
volume. Since the cross-sectional areas on both sides
of the neck are equal, it is reasonable to assume that
û1 ¼ û2. Thus, the overall surface impedance is given as

Z ¼ Zo þ Zcav ð7Þ

In this paper, an incompressible solver is used for
simulation of oscillating flow within the orifice includ-
ing the flow separation at the edges. In general, only the
orifice contributes to the resistance of the resonator, i.e.
<ðZÞ ¼ <ðZoÞ. The reactance, on the other hand, is
influenced by both the orifice and the backing cavity.
The resistance of the orifice is always strictly positive.
The goal of this paper is to drive the resistance <ðZoÞ of
the resonator to a specific value.

2.2. Linear and nonlinear influences

To understand the relevant flow mechanisms that
govern the resonator behavior, the 1D unsteady
Bernoulli equation with suitable extensions for the
losses is studied.14,15 The fluctuating pressure drop
�p0 through the orifice is given as

�p0 ¼ �0
le
�

@u0

@t|fflfflfflffl{zfflfflfflffl}
inertia

þ
1

2
�0

u0ju0j

C2
d�

2|fflfflfflfflffl{zfflfflfflfflffl}
flow separation

þ Rlu
0|{z}

viscosity
ð8Þ

The first term on the right-hand side (r.h.s.) of
equation (8) accounts for the inertia of the fluid in
the vicinity of the opening and it represents the reactive
part of the orifice transfer impedance. The effective
length le equals the geometrical length of the orifice l0
elongated by a length correction, which accounts for
the fluid in front of the openings that partakes in the
oscillation.14

The second term on the r.h.s. represents the effects of
flow separation at the edges of the orifice. A jet forms,
driven by the acoustic pulsations and eventually dissi-
pated by viscosity, such that it acts as an acoustic loss.
The ratio Cd of the cross-sectional area of the jet to the
area of the opening is known as the vena contracta
factor or as the discharge coefficient.16

The third term on the r.h.s. represents linear thermo-
viscous losses at the walls of the orifice, with a
real-valued constant Rl. The second and third terms
constitute the resistive part of the orifice transfer
impedance.

Note that the inertia and the viscous terms depend in
a linear fashion on the velocity u0. The flow separation
term, on the other hand, behaves nonlinearly with
respect to a change in the velocity u0, such that the
orifice impedance changes with excitation amplitude
(unless excitation levels are small).

Figure 2. Computational domain and reference planes for the

transfer impedance defined in equation (4).

396 International Journal of Spray and Combustion Dynamics 9(4)



By increasing the overall viscous dissipation, the
resistance <ðZoÞ is increased and vice versa.
This connection will be exploited later while formulat-
ing the optimization problem.

3. The computational setup

As explained previously, a segregated approach is used
to model the resonator, meaning that only the reson-
ator neck is considered in the numerical computation,
while the contribution of the backing volume is mod-
eled analytically. The neck is acoustically compact, thus
the numerical computation can be based on the incom-
pressible Navier–Stokes equations. Figure 2 presents
schematically the computational domain, including
the labeling of the boundaries.

At the inlet boundary �in oscillating flow is imposed

uin ¼ Au sinð!tÞn ð9Þ

where ! is the angular frequency of the sinusoidal exci-
tation signal. Here and in the following, the vector n
denotes a surface normal vector. At the boundary �out,
an outflow condition is applied. No-slip wall boundary
conditions are implemented along the walls of the neck
�w and �d, since here viscous dissipation is significant.
At the remaining boundaries �slip marked with a
dashed line in Figure 2, a slip wall boundary condition
is appropriate, because resistive losses in the channel
and the cavity are negligible.

In summary, the strong form of the Navier–Stokes
equations for unsteady, incompressible, viscous flow in
domain � is given by

@u
@t þ ðu � rÞu� ��uþ rp ¼ 0 on �� ð0,TÞ

r � u ¼ 0 on �� ð0,TÞ

u ¼ uin on �in � ð0,TÞ

� @u@n� pn ¼ 0 on �out � ð0,TÞ

u ¼ 0 on �w [ �d � ð0,TÞ

u � n ¼ 0 on �slip � ð0,TÞ

u ¼ 0 on �� f0g

ð10Þ

where u is the velocity vector, � is the kinematic
viscosity of air, and p is the pressure. The
boundaries �in, �out, �slip, �w, and �w are sketched in
Figure 2. The termination time of the simulation is
denoted by T.

As explained in the following, the adjoint method
requires solving two PDEs, one for the state variables
and one for the so-called adjoint variables. The Navier–
Stokes equations presented above are the PDE for the
state variables velocity u and pressure p. In an adjoint

framework, the PDE for the state variables is referred
to as primal or direct problem.

In the simulations, no turbulence model is applied.
Förner et al. showed that for the excitation levels and
the geometry considered in the present study including
such a model influences the results only insignifi-
cantly.17 The strength of acoustic forcing is usually pro-
vided in terms of the sound pressure level (SPL). The
SPL is measured in dB as 20 log10ð prms=20 mPa), where
prms denotes the root mean square of the current pres-
sure fluctuation. The Reynolds number based on the
particle velocity in the resonator opening and the size
of the opening is low (maximum Re� 3000 at
119.7 dB).

The simulations are performed with the FEM using
the open source code FreeFemþþ.18 Linear and quad-
ratic ansatz functions have been used for the velocity
and the pressure, respectively. Solving the optimization
problem requires solving another PDE, the adjoint
problem, as described in the following. In that PDE,
the same ansatz functions are applied for the counter-
part velocity and the pressure (k and q).

4. Shape optimization

In this section, a procedure for shape optimization is
presented. First, a generic shape optimization approach
is introduced, based on the derivative of a Lagrangian
functional with a PDE system as a constraint. In par-
ticular, the approach introduced by Céa is adopted.11

A general formulation is developed and applied to the
unsteady, incompressible Navier–Stokes equations.

The proposed approach addresses acoustic prob-
lems. However, in acoustics, it is often appropriate to
define the optimization objective in the frequency
domain. A frequency domain objective functional
cannot be applied to formulate an unsteady problem
in a straightforward manner. This gap between the
time and frequency domain is closed by exploiting
physical knowledge about the problem under investiga-
tion, i.e. optimization of the neck of a Helmholtz res-
onator. Once the objective functional for the Helmholtz
resonator case is set up, the corresponding adjoint
problem can be formulated. Solving the adjoint
system allows calculating the shape derivative, which
is required to improve the shape of the neck
successively.

4.1. Generic procedure description

The shape optimization problem is introduced in an
abstract manner. This section summarizes overall pro-
cedure of the computation of the shape derivative based
on the Lagrangian method of Céa.11 The equations that
result for the specific resonator case are presented in the

Caeiro et al. 397



subsequent sections. An extensive derivation of the for-
malism is given in the Appendix.

Mathematically, the shape optimization problem can
be expressed as follows:

Problem 1 Let d 2 2, 3f g and Oad � � � R
d
j� is

�
boundedg be a set of admissible domains. Then, the opti-
mization problem is defined as

min
�2Oad

Jð ~p,�Þ with J ¼

Z T

0

j ð ~p,�Þdt ð11Þ

such thatEð ~pðtÞ,�Þ ¼ 0 for all t 2 ½0,T	:
Jð ~p,�Þ is a proper cost function which depends on

both domain � and state variable ~p. The latter is the
variable (or the vector of variables) of an unsteady par-
tial differential system of equations Eð ~pðtÞ,�Þ ¼ 0
defined on the domain �. This system of PDEs is
referred to as state equations and represents a constraint
for the optimization. By a variation of the computa-
tional domain �, the solution of the PDE in the given
domain, at a given instant t, ~pðt,�Þ ¼ ~p� will change.
The value of the objective functional used for the opti-
mization (which depends on ~pðt,�Þ ¼ ~p� will be
affected accordingly.

The goal of a generic unsteady shape optimization is
to find an optimal domain � such that an objective
functional Jð ~p,�Þ is minimized. In the present work, a
gradient-based, iterative method is applied to solve the
problem. At each step of the optimization process, a
deformation h of the current domain �0 is performed,
as sketched schematically in Figure 3. It moves every
point x0 in the domain to another point in space
ðIdþ hÞðx0Þ ¼ x0 þ hðx0Þ. Here, Id denotes the identity
operator and hðx0Þ is the shift vector of the point x0.

The deformation h is computed by means of the so-
called shape derivative. The shape derivative J0ð�Þ
describes how the objective functional Jð�Þ changes
as a result of displacement of any point on the bound-
ary � ¼ @�. The Taylor expansion around the reference
domain �0 with respect to a deformation h can be writ-
ten as follows

JððIdþ hÞð�ÞÞ ¼ Jð�Þ þ J0ð�ÞðhÞ þ oðhÞ ð12Þ

Accordingly, the objective functional decreases (for a
small enough step size) if a deformation h such that
J0ð�ÞðhÞ5 0 is applied.

In this work, the shape derivative is computed
using the Lagrangian method since the cost function
depends on the solution of the system of PDEs repre-
sented by the Navier–Stokes equations. The
Lagrangian functional L is constructed by adding the
variational formulation of the PDE system as a

constraint to the objective functional. Mathematically,
this is written as follows

Lð�; ~q, ~pÞ ¼

Z T

0

l ð�, ~q, ~pÞdt

with l ¼ j ð�; ~pÞ|fflfflffl{zfflfflffl}
Cost function

þ að�; ~q, ~pÞ � f ð�; ~qÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variational form state equations

ð13Þ

where ~q is the Lagrangian multiplier that enforces the
fulfillment of the PDE constraint in weak form.
Equivalently ~q can be interpreted as the test function
of the PDE system of equations in weak form:
að�; ~q, ~pÞ � f ð�; ~qÞ ¼ 0.

The stationarity of Lð�; ~q, ~pÞ which gives the min-
imum of equation (13) is found where its gradient is
null. This implies the computations of the partial
derivatives of the Lagrangian function with respect to
(w.r.t.) each variable. Following Céa at first principles,11

the variables ~q, ~p in the Lagrangian equation (13) do not
depend on � but belong to a proper functional space of
R

d. Consequently, it is possible to compute the partial
derivative of each variable with the usual partial
differentiation.

The partial derivative of Lagrangian functional with
respect to ~q evaluated in the direction of the function w

returns the forward problem/state equation (or primal
problem) in the variational form

@

@ ~q
l ð�; ~q, ~pÞ; w

� �
¼

Z T

0

½að�; w, ~pÞ � f ð�; wÞ	dt ¼ 0

ð14Þ

which is null for ~p ¼ ~p� solution of the state equation in
the domain � (which depends on the shape of the

domain �). Here, :, :h i is the scalar product for vector

valued functions, i.e. f1, f2
� 	

¼
R T
0

R
�
f1ðxÞ � f2ðxÞdVdt or

f1, f2
� 	

¼
Pn

i¼1

R T
0

R
� f1,iðxÞ f2,iðxÞdVdt.

The partial derivative of Lagrangian functional with
respect to ~p evaluated in the direction of the function u

Ω0 (Id + θ)(Ω0)

x0

x0 + θ

Figure 3. Transformation of a generic domain �0 with Idþ 1�.
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and for ~p ¼ ~p� defines the adjoint equation

@

@ ~p
Lð�; ~q, ~p�Þ; u

� �
¼

Z T

0

½ j0ð�, ~p�,uÞ þ að�; ~q,uÞ	dt ¼ 0

ð15Þ

which is null for ~q ¼ ~q� solution of the adjoint equation
in the domain � (which depends on the shape of the
domain �). It can be seen that the adjoint equation
depends on the choice of the object function.
Moreover, it depends also on the solution of the
primal problem equation (14) ~p� in the domain �,
which thus has to be solved first.

For a given domain � at the stationary point
ð ~p�, ~q�Þ at which both partial derivatives w.r.t. the vari-
ables ~p and ~q are null, one can define the shape deriva-
tive as follows

d

d�
Lð�; ~q�, ~p�ÞðhÞ

¼
@

@�
Lð�; ~q�, ~p�ÞðhÞ þ

@

@ ~q
l ð�; ~q�, ~p�Þ; ~q0�ð�ÞðhÞ

� �
þ

@

@ ~p
l ð�; ~q�, ~p�Þ; ~p0�ð�ÞðhÞ

� � ð16Þ

but the second and the third term of equation (16) are
null for equations (14) and (15). Consequently, having
computed once the solutions ~p� and ~q� from equations
(14) and (15), equation (16), the shape sensitivity,
reduces to

J0ð�, ~pÞðhÞ ¼
@

@�
Lð�; ~q, ~pÞðhÞ ð17Þ

The Hadamard shape derivatives give the expression
for h on the boundary to be optimized.
Regularization is applied to the gradient before per-
forming mesh morphing. The reason for that is that
the optimized solutions to fluid mechanics and acoustic
problems often lead to curvy shape solutions. These are
often not admissible in engineering application. Hence,
the shape gradient needs to be regularized in order to
obtained smooth shapes. More details on the shape
derivative and the mesh smoothing are given in the
Appendix.

For the current optimization problem, the objective
functional, the forward, and adjoint problem have to be
set up. This is done in the following sections for the
Helmholtz resonator.

4.2. Objective functional for Helmholtz
resonator problem

The task is to find a resonator neck shape �d that real-
izes a specific target impedance ztarget for a given

excitation level. The first step in the optimization pro-
cedure is to the set the objective functional, which is
done for the resonator in this section. Considering an
unsteady state equation, the objective functional also
has to be defined in in time domain. However, it is
often useful in acoustics to define a criterion in the fre-
quency domain, which cannot be used in a straightfor-
ward manner. An elegant method to overcome this
problem is introduced here.

If the resonator impedance matches the impedance
of the surrounding fluid, no reflections take place at the
resonator for a normally incident acoustic wave; see
equation (3). At the resonator eigenfrequency the react-
ance vanishes, thus only the resistance is considered in
the optimization. However, the reactance is also influ-
enced by the shape of the resonator neck. This results in
a slight shift in the resonator eigenfrequency, which
may be compensated by a variation of the backing
volume; see equation (7). The goal of this study is to
achieve a normalized resistance of unity, i.e.
<ðztargetÞ ¼ 1. The proposed procedure is also capable
of dealing with arbitrary target resistance values
<ðztargetÞ. Note that the optimization is performed for
a specific SPL, because the resistance depends on the
SPL. Overall, the optimization problem can be formu-
lated as follows

min
�2Oad

<ðztargetÞ � <ðzÞ


 



ð18Þ

The criterion above is not directly applicable, since it
is defined in the frequency domain, which makes it
unsuitable as an objective functional with the unsteady
Navier–Stokes equations as state equations. The pro-
posed procedure aims to bridge the gap between the
time and frequency domain perspective to enable
shape optimization with respect to the impedance in
the nonlinear regime.

For that purpose, the link between the resistance<ðzÞ
and viscous dissipation is exploited. The dissipation of
energy is given as 2�S : S, where S denotes the strain rate
tensor S ¼ 1=2ðruþ ruTÞ. An objective functional J to
minimize the dissipation can be given as follows

Jð�, uÞ ¼

Z T

0

Z
�

�

2
jruj2dVdt ð19Þ

Note that this objective functional is not totally
equivalent to the integrated viscous dissipation but
works well in many practical applications.19 The
deformation h obtained by using the objective functional
in equation (19) is successively scaled by the gradient of
objective functional for <ðZÞ defined in equation (18)

eh ¼ �ð<ðztargetÞ � <ðzÞÞh ð20Þ
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where � is a positive number which acts as scaling
factor. The mesh extension problem is solved with
this scaled deformation vector eh and the mesh is
morphed finally. Applying this scaling, the viscous dis-
sipation is increased if the current resistance is below
the target resistance <ðztargetÞ, and vice versa.
Moreover, it acts as an adaptive step size control: If
the current resistance is far off the target resistance
<ðztargetÞ a large step is performed, while the step size
is reduced when the current resistance is in the vicinity
of the target value.

4.3. Adjoint equation for Helmholtz resonator
problem

Now, a Lagrangian functional is introduced for the
minimization problem of the objective functional with
the Navier–Stokes equations as constraints. The vel-
ocity u and the pressure form the state variable
~p ¼ ðu, pÞT. Here, k is the Lagrangian multiplier (or
the test function) for the momentum equations and q
is the Lagrangian multiplier (or the test function) for
the continuity equation, i.e. ~q ¼ ðk, qÞT

Lð�; k, q, u, pÞ ¼

Z T

0

Z
�

�

2
jruj2dVdt

þ

Z T

0

Z
�

�
�
@u

@t
� k� ðu � rÞu � k� �ru : rk

þ pðr � kÞ þ ðr � uÞq

�
dVdt ð21Þ

Given the solution of the forward problem, the state
variables u, p in the domain � are known. Here the
subscript � used in equation (14) to indicate the solu-
tion of the primal problem in the domain � is omitted
to simplify the notation. From the solutions of the state
equations u, p, the adjoint equation can be derived as
presented in the Appendix. The strong form of the
adjoint equation is given as

�
@k

@t
� ðu � rÞk

þ ðruÞ � k� ��kþ rq ¼ ���u

on �� ð0,TÞ

r � k ¼ 0 on �� ð0,TÞ
k ¼ 0 on �w [ �d � ð0,TÞ
k ¼ 0 on �in � ð0,TÞ

� @k@n� q � n ¼ � @u@n on �out � ð0,TÞ
k � n ¼ 0 on �slip � ð0,TÞ

k ¼ 0 on �� fTg

ð22Þ

Since there are no initial conditions for t¼ 0 given but
only terminal conditions for t¼T, this equation has to
be solved in reversed time from T to 0 by the so-called

backward stepping. Correspondingly, the primal and the
adjoint equations are also referred to as forward and
backward problem, since they are solved forward and
backward in time, respectively. This backward stepping
requires that the entire solution trajectory of forward
problem has to be available during the backward step-
ping of the adjoint. Specifically, for backward iteration
0, 1, . . . , n the state variable un, un�1, . . . , u0 are
required, likewise p. This presents an algorithmic chal-
lenge during implementation of the unsteady adjoint.
There are mainly two approaches towards backwards
stepping adjoint algorithms, i.e. the storage method and
the check-pointing algorithm.20–24 Check-pointing algo-
rithm attempts to strike a balance between the spatial/
memory requirements and the temporal requirements for
re-computation. Since here only two-dimensional (2D)
grids are considered for the optimization for a moderate
amount of time steps, the storage method is an obvious
choice because of its simplicity.

There has been considerable work on backward time
stepping over the last decade including commercial
optimization codes such as the doln-adjoint. The
properties of the adjoint mainly the reverse propagation
and backward stepping are well explained in the soft-
ware documentation.20,25,26

Since the backward problem starts from time T, a
terminal boundary condition is needed for k, which is
zero in our case. A more detailed description on the
derivation of the adjoint equation is available in the
Appendix.

4.4. Shape derivative for Helmholtz resonator
problem

The shape derivative for the Lagrangian formulation
can be formulated using the standard Hadamard
shape derivatives.27 To evaluate it, first the primal
and adjoint problem have to be solved for the
state and adjoint variables, respectively. For the
unsteady Navier–Stokes equations with the objective
functional from equation (19), the shape derivative is
given as

@L

@�
, h

� �
¼ J0ð�; u, pÞðhÞ ¼

Z T

0

Z
�d

�
�

2
jruj2

þ
@u

@t
� kþ ðu � rÞu � kþ �ru : rk

� pðr � kÞ þ ðr � uÞq

�
ðh � nÞdSdt

ð23Þ

By using the boundary conditions on �d, u ¼ 0
and k ¼ 0, and by canceling out the terms repre-
senting continuity equation, the final expression for
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shape derivative for the considered problem can be
written as

J0ð�; u, pÞðhÞ ¼

Z T

0

Z
�d

�

2
jruj2 þ �ru : rk

h i
ðh � nÞdSdt

ð24Þ

With the expression above, the sensitivity of the object-
ive functional to the displacement of any point on the
boundary can be evaluated. Following the theorem of
Hadamard (see Appendix), the deformation for all x on
the free boundary �d can be set as

hðxÞ ¼ �
�

2
jruðxÞj2 þ �ruðxÞ : rkðxÞ

� �
nðxÞ ð25Þ

As described in the Appendix, the deformation on the
boundary is regularized in order to smoothen it.
Successively, the deformation for the entire mesh is
calculated.

4.5. Optimization algorithm

Having all ingredients required for the optimization
process, the overall algorithm is summarized in this
section. A flowchart is shown in Figure 4. The proced-
ure starts with an initial shape �0, which is iteratively
improved. This iteration terminates when the difference

of the normalized resistance to the target value
j<ðztargetÞ � <ðzÞj is below a tolerance threshold 10�5.
If the procedure does not converge, it is stopped when
the maximal number of iterations kmax is reached.
In each iteration step, the primal problem is solved
first. This means that the unsteady Navier–Stokes
equation (10) is solved for an excitation with angular
frequency ! over three periods 6�=!. From the time
series, the resistance is calculated via discrete Fourier
transform. The adjoint problem of equation (22)
is solved successively. The shape derivative on the
boundary is evaluated using the state and the adjoint
variables. The derivative is regularized (see equation
(32) in the Appendix). Based on the current impedance
z, the deformation is scaled, see equation (20). The total
computational mesh is deformed accordingly, see equa-
tion (33). Details on this mesh extension are given in the
Appendix. This procedure is repeated until the termin-
ation criterion described above applies.

5. Simulation results

In this section, the results obtained from the numerical
simulations are discussed. First, the code solving the
unsteady Navier–Stokes equations is validated for a
three-dimensional (3D) case against numerical results
of Tournadre et al. and analytical results.13 Then, an
optimization for a target resistance of unity is performed
for two scenarios with different SPLs on a 2D mesh.

Figure 4. Flowchart describing the algorithm for backward stepping Navier–Stokes equations. In this work, 	 ¼ 10�5.
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5.1. Validation case geometry and mesh generation

The dimensions of the resonator considered, which are
listed in Table 1, are taken from Tournadre et al. to
have access to validation data.13 In the simulations, the
orifice is placed in between two duct segments of length
lch ¼ 50 mm. The 3D computational domain is discre-
tized with approximately 300,000 unstructured tetrahe-
dral elements using msh3 and tetgen in FreeFemþþ.
The mesh has a higher resolution close to the neck and
especially at the walls. Small cell sizes are required close
to the walls to resolve the high velocity gradients in the
Stokes layer.

The input velocity signal u0 is directly imposed at the
inlet boundary. The pressure p0 is monitored on the
inlet and the outlet boundary in order to compute
�p0 and thereby the transfer impedance. Appropriate
reactance corrections have to be applied since the pres-
sure is not monitored near the mouth of the orifice.
From equation (8), the correction for acoustic imped-
ance can be written as

�p0

û


 �
correction

¼ i�02lch! ð26Þ

Equation (26) has only an imaginary part and thus
accounts for reactive corrections. To check the validity
of this correction, a simple channel flow with a sine
wave input signal was considered. The length of the
channel was 0.1m and the input signal had a frequency
of 300 Hz. From the numerical simulation, the
normalized transfer impedance was calculated as
0:0141þ 0:4571i. According to the correction formula
equation (26), the normalized transfer impedance
should be equal to 0:0þ 0:4586i. The inertia parts
agree nicely. The non-zero resistance determined by
numerical simulation is quite small and originates
from numerical dissipation.

5.2. Validation of the simulation results for the
forward problem

Simulations on the mesh presented in the previous sec-
tion are performed and their results are compared
against results of Tournadre et al. obtained with
the CFD software Fluent,13 as well as against semi-
analytical expressions given by Keller and Zauner.28

For validation in the linear regime, the nonlinear

terms in the original equation can be dropped.
Moreover, since the contribution of the resonator is
disassembled into orifice contributions and backing
cavity contributions, the reactance contributions due
to backing volume can also be dropped. These simpli-
fications give a semi-analytical expression for imped-
ance in the linear regime

Zoð!Þ ¼ �0 1þ

 � 1ffiffiffiffiffi

Pr
p


 �
1þ

lo
do


 � ffiffiffiffiffiffiffiffi
2�!
p

þ ile�0!ð1þ sÞ

ð27Þ

The variables Pr and 
 denote the Prandtl number and
the heat capacity ratio, respectively. For small Stokes
number, the boundary layer parameter can be esti-
mated as

s ¼
1

d0
1þ


 � 1ffiffiffiffiffi
Pr
p


 � ffiffiffiffiffiffiffiffi
2�!
p

ð28Þ

For the validation case, an SPL of 89.3 dB is con-
sidered, as shown in Table 2. The amplitudes for the
velocity perturbation are set as in Tournadre et al.13

In Figure 5, the simulation results are compared with
the simulation results of Tournadre et al.13 The values
that result from equation (27) are also included.
Reasonable agreement between all three results is
observed.

5.3. Impedance matching with specific impedance

In this section, the aptitude of the proposed procedure
is demonstrated for two test cases. As explained above,
the aim is to determine a resonator neck shape that
exhibits a normalized target resistance ztarget ¼ 1 for a
given frequency and SPL. The convergence behavior
and the flow physics of the initial as well as of the
resulting geometries are discussed. Only 2D geometries
are used here to minimize the computational cost.
Hence, slit resonators are studied. Due to the symmetry
of the problem, only the upper half of the geometry is
considered in the simulations. The target frequency is
chosen as 300 Hz for all cases. The velocity amplitude
is set such that the target SPL is reached at the reson-
ator opening for z¼ 113

Au ¼ 10SPL=20
ffiffiffi
2
p 20�Pa

�0c0
ð29Þ

Table 1. Geometric dimensions considered for simulating the

Helmholtz resonator.

lo (mm) do (mm) lcav(mm) dcav(mm) lch (mm)

4.0 4.2 50 50 50

Table 2. Amplitudes Au for SPL 89.3 dB around the resonator

eigenfrequency.13

f (Hz) 340 360 380 400 420

Au (m/s) 0.0021 0.0043 0.0024 0.0014 0.0009
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The initial slit has the same dimensions l0 and d0
as in Table 1. The open area ratio is set to
�0 ¼ d0=dcav ¼ 2%. This initial geometry is denoted
by Neck0 in the following. In the first case, a SPL of
115 dB is selected. The resulting optimized geometry is
referred to as Neck1. In the second test case, the SPL is
increased to 120 dB and Neck1 is used as starting neck
geometry. The resulting geometry of the optimization
in the second test case is named as Neck2. Figure 6
shows the geometries Neck1 (left column), Neck2
(middle), and Neck3 (right) and depicts important
flow features of these cases, which will be described
and discussed in the following.

The first optimization case is initialized with the
geometry Neck0 and a SPL of 115 dB is considered.
This mesh consists of 22757 cells. For the forward
problem, it exhibits mesh independence with respect
to the impedance for both SPLs consider 115 dB and
120 dB. Snapshots during the in- and outflow phases
are shown on the left column of Figure 6. In these
plots, the respective upper half depicts the flow field
with streamlines. The background is colored with
respect to the particle velocity amplitude, with red
and blue corresponding to high and low velocities,
respectively. Each lower half shows the dissipation
term �=2jruj2 in a logarithmic scale, as it is used for
the definition of the objective functional in equation
(19). The same color scheme is applied for all plots. It
can be observed that an excitation amplitude of 115 dB
already triggers flow separation at the edges of the
neck, i.e. it is operated in the nonlinear regime. Here,
the flow separates at both the leading and the trailing
edge. Dissipation takes mainly place close to the wall,
but also in the separation bubbles as shown in the lower
halves of the plots.

The change of the normalized resistance with the
iteration steps of the optimization k is plotted in
Figure 7(a). Here, curves for different scaling factors
for the step size � (cf. equation (20)) are included, for
� 2 ½1, 2:5, 5, 10	. The initial geometry Neck0 exhibits a

normalized resistance 0.343 for the 115 dB excitation.
The procedure converges for all values of � to the
desired target resistance. However, it can be seen that
a larger step, corresponding to a larger value of the
scaling factor �, speeds up the convergence signifi-
cantly. An optimal geometry is detected for �¼ 10
within 22 iterations, while for �¼ 1 the procedure
does not reach the target resistance within 400 iter-
ations, which has been set as the maximal number of
iterations. The corresponding change in the objective
functional J defined in equation (19) is presented in
Figure 7(b). Since the initial resistance is too low, the
procedure increases the dissipation, which results in the
desired increase in the resistance. The flow through
the optimized geometry Neck1 is also visualized in
Figure 6(a) and (b) in the middle column. It is evident
that Neck1 has round edges, which are an outcome of
the regularization applied during mesh extension.
Round edges tend to reduce the separation effect and
thus the nonlinear resistance.29 Indeed, for Neck1 the
flow separates only at a position in the middle of the
neck, where the cross-section is narrowest.
Simultaneously, the open area ratio is reduced signifi-
cantly to �1 ¼ 0:59%. This leads to a considerably
higher particle velocity in the neck and thus to more
losses. Due to continuity, the average velocity in the
neck is increased by a factor of more than three in
comparison to the initial configuration. Despite the
smooth contour, the velocity is high enough to trigger
flow separation. Moreover, the thermo-viscous losses in
the boundary layer scale linearly with the velocity and
are thus increased considerably. Overall, the in- and
decrease of viscous and flow separation losses are
balanced in the end in such a way that the desired
target impedance is reached.

In the second optimization case, Neck1 is selected as
initial geometry but now a higher SPL of 120 dB is
considered. As expected, the higher SPL leads to
higher particle velocities in the neck; see the center
column, Figure 6(c) and (d). The separation bubble is

(a) (b)

Im

Figure 5. Normalized impedance curves for SPL 89.3 dB obtained from 3D incompressible simulations , Fluent results [13]

,13 and from equation (27) . (a) Normalized resistance. (b) Normalized reactance.
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enlarged in comparison to the 115 dB case (cf.
Figure 6(a) and (b)). The lower halves of these plots
indicate that in the separation zones the dissipation is
also increased. This is a nonlinear effect, which leads to
a higher resistance in comparison to the 115 dB case.
The initial normalized resistance <ðzÞ is 1.77 here; see
Figure 8(a). The optimization procedure now reduces

the viscous losses, as the impedance is too high.
Figure 8(b) presents the course of the objective func-
tional defined in equation (19) against the number of
iterations k. In Figure 8, only the curves for scaling
factors � 2 ½1, 2:5	 are reported, since for higher
values � 2 ½5, 10	 the algorithm does not converge.
For smaller scaling factors �, the procedure manages

Figure 6. Flow visualization for meshes 1, 2, and 3 at 115 dB and 120 dB during the in- and outflow, respectively. Top: streamlines

with background color representing the magnitude of the particle velocity. Bottom: dissipation term �=2jr1uj2. (a) Inflow for 115 dB;

(b) outflow for 115 dB; (c) inflow for 120 dB; (d) outflow for 120 dB.
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to reduce the losses in such a fashion that the target
resistance in reached. However, the algorithm also has
difficulties for �¼ 1 within the first nine iteration steps
but converges finally. The open area ratio of the opti-
mized geometry Neck2 is given as �2 ¼ 0:76%. This
wider open area lowers the velocity in the neck in com-
parison to Neck1. Thus, the thermo-viscous losses in
the boundary layer are reduced. Moreover, the separ-
ation bubble shrinks, leading to reduced nonlinear
losses.

It can be concluded that the proposed procedure
with the coupling of a criterion in the frequency
domain and an objective functional in time domain
works satisfactorily. The algorithm is capable of chan-
ging the geometry such that either a reduction or an
increase in the impedance is achieved. The resulting
geometries show smooth contours due to the smooth-
ing applied in the mesh extension step. If this is not
desired, parametrized geometries could be used instead.
Moreover, it can be seen that the convergence behavior
is strongly influenced by the scaling factor �. A large
factor � can speed up the convergence noticeably, but
increases the risk of divergence. Fortunately, this issue
can be overcome by using an adaptive step size control.

6. Summary and outlook

An adjoint based method for aero-acoustic shape opti-
mization is introduced. It is applied to optimize a
Helmholtz resonator neck, such that a target imped-
ance is reached. The optimization procedure deforms
the domain iteratively, making use of the shape deriva-
tive, which measures the sensitivity of the objective
functional to a local deformation of the domain bound-
ary. For the calculation of the shape derivative, an
adjoint approach is used. This requires solving the
so-called adjoint equation in addition to the state
equation, which describes the physics. The unsteady
Navier–Stokes equation serves as state equation, such
that nonlinear acoustic effects can also be captured.
The impedance is defined in the frequency space and
thus cannot serve as an objective functional for a tran-
sient problem straightforwardly. This is overcome by
choosing the integrated viscous dissipation as objective
functional in combination with a step size control. This
control ensures that the dissipation is increased when
the current impedance is too low and vice versa. The
adjoint equation for this setup is derived and the shape
derivative is given.

(a) (b)

Figure 8. Optimization case 2 with 120 dB. Scaling factor �¼ 1 and � ¼ 2:5 . (a) Normalized resistance. (b) Objective

functional.

(a) (b)

Figure 7. Optimization case 1 with 115 dB. Scaling factor �¼ 1 , � ¼ 2:5 , �¼ 5 , and �¼ 10 . (a) Normalized

resistance. (b)Objective functional.
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The proposed procedure is applied to two resonator
test case with two different excitation levels. In the first
case, the initial impedance is below the desired target
impedance of unity. The algorithm realizes the target
impedance by producing a rounded neck shape with a
narrower cross-sectional area which increases the vis-
cous losses at the walls. In the second case, the excita-
tion level is higher. Also here, the algorithm finds a
shape with the desired impedance values.

It is expected that the method can be applied to
other aero-acoustical applications. It is set up such
that it can be used for nonlinear problems for reaching
an objective defined in the frequency domain. For
larger 3D problems, the memory requirements for the
backward stepping represent a bottleneck, which may
be overcome by a check-pointing algorithm.
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Appendix

Shape derivatives

The shape derivative is obtained by the Hadamard
structure theorem. From this, the shape derivative is
expressed only on the boundary of the shape � ¼ @�

J0ð�Þ, h
� 	

¼

Z
�

Gð�Þðh � nÞdS ð30Þ

where

Jð�Þ ¼

Z
�

Gð�ÞdV ð31Þ

Thus, the deformation can be set as ðh � nÞ ¼ �Gð�Þ.
Details of the shape derivative are beyond the scope of
this paper and can be found in Allaire and Allaire and
Pantz.4,31

Gradient smoothing and mesh extension

The regularization of the gradient is written as
~G ¼ �ð�Þ�1G, where G is the defined as in equation
(31). The descent direction is then set by the problem

�� ~G ¼ G on �

~G ¼ 0 at end points of �

(
ð32Þ

For the mesh-morphing of the entire domain and
not just the border, the following extension problem is

introduced

��h ¼ 0 in �
@h
@n ¼ �

~Gn on �

(
ð33Þ

The equation above represents a Neumann-
to-Dirichlet map to �Gn, which has the effect of
increasing one order of regularity of h on �. For further
reading refer to Almgren and Taylor,32 Burger,33 or
Chapter 5 of Mohammadi and Pironneau.34

Bängtsson et al. suggest a technique similar to
Tikhonov regularization,10 which includes adding a peri-
meter penalization of the reference boundary �ref to the
objective functional J. In this paper, gradient regular-
ization refers to the solution of the equation (32).

Adjoint equation

In this section, some details on the derivation of the
adjoint equation (22) are shown. The starting point is
the Lagrangian defined in equation (21).

The partial derivative of the Lagrangian functional
with respect to the adjoint variables reproduces the
primal problem equation (10). The partial derivative
with respect to k evaluated with the function w yields
the momentum equation in weak from with w as test
function

@

@k
Lð�; k, q, u, pÞ; w

� �
¼

Z T

0

Z
�

�
@u

@t
� wþ ðu � rÞu � w

þ �ru : rw� pðr � wÞ

�
dVdt ¼ 0

ð34Þ

Similarly, the partial derivative with respect to q gives
the continuity equation in integrated weak form with r
as the test function

@

@q
Lð�; k, q, u, pÞ; r

� �
¼

Z T

0

Z
�

ðr � uÞr dVdt ¼ 0 ð35Þ

The adjoint equations are derived from the partial deri-
vatives of the Lagrangian functional with respect to the
state variables. First, consider the partial derivative
with respect to state variable u with the function u

which gives

@

@u
Lð�;k, q, u,pÞ;u

� �
¼

Z T

0

Z
�

�
�ru : ru�

@u

@t
� k� ðu � rÞu � k� ðu � rÞu � k

� �ru : rkþ ðr �uÞq

�
dVdt ¼ 0 ð36Þ
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The two terms arising from partial derivative of the
nonlinear operator have to be written in a slightly dif-
ferent form. Using Gauss theorem yieldsZ T

0

Z
�

ðu � rÞu � kdVdt ¼ �

Z T

0

Z
�

u � ðu � rÞkdVdt

�

Z T

0

Z
�

u � kðr � uÞdVdt ð37Þ

Due to the continuity equation r � u ¼ 0, the second
term in the equation above vanishes. Consider
the second term of the nonlinear operatorR T
0

R
� ðu � rÞu� kdVdt. It can be rewritten asR T

0

R
� u � ðruÞkdVdt. Applying Green’s first identity

and integration over the unsteady term over time gives

�

Z T

0

Z
�

�
��u � u�

@u

@n
� u

�
dVdt

þ

Z
�

h
uð0Þ � kð0Þ � uðTÞ � kðTÞ

i
dV

þ

Z T

0

Z
�

@k

@t
� u� u � ðruÞkþ u � ðu � rÞk

� �
dVdt

þ

Z T

0

Z
�

��k � udVdt�

Z T

0

Z
�

�
@k

@n
� udSdt

�

Z T

0

Z
�

ðrqÞ � udVdtþ

Z T

0

Z
�

ðqnÞ � udSdt ¼ 0

ð38Þ

From the above equation, the terminal boundary con-
dition can be obtained for the unsteady adjoint equa-
tion, where u is a suitable test functionZ

�

uðTÞ � kðTÞdVdt ¼ 0 ð39Þ

This yields

k ¼ 0 on �� fTg ð40Þ

The velocity u is zero on boundaries �w [ �d, while u � n
is zero on the slip boundary. On the borders, the test
functions are defined such that they vanish on the
Dirichlet boundaries, i.e. u ¼ 0. The boundary condi-
tions can hence be expressed as

k ¼ 0 on �in [ �w [ �d � ð0,TÞ

� @k@n� qn ¼ � @u@n on �out � ð0,TÞ
ð41Þ

The partial derivative of L with respect to p evalu-
ated with the function � is given as

@

@p
Lð�; k, q, u, pÞ;�

� �
¼

Z T

0

Z
�

�ðr � kÞdVdt ¼ 0 ð42Þ

From equations (38)–(42), the strong form of the
adjoint equation (22) can be derived.
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