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Abstract

In this paper, we analyze the trajectory and body attitude data of Felix Baumgartner’s super-

sonic free fall through the atmosphere on October 14, 2012. As one of us (UW) was scien-

tific advisor to the Red Bull Stratos team, the analysis is based on true body data (body

mass, wetted pressure suit surface area) and actual atmospheric data from weather balloon

measurements. We also present a fully developed theoretical analysis and solution of atmo-

spheric free fall. By matching the flight data against this solution, we are able to derive and

track the drag coefficient CD from the subsonic to the transonic and supersonic regime, and

back again. Although the subsonic drag coefficient is the expected CD = 0.60 ± 0.05, surpris-

ingly the transonic compressibility drag coefficient is only 19% of the expected value. We

provide a plausible explanation for this unexpected result.

I. Introduction

On October 14, 2012, and as part of the Red Bull Stratos Mission [1], Felix Baumgartner per-

formed a record-breaking supersonic free fall from the stratosphere. Other than from earlier

jumps, namely by Joe Kittinger in 1960 [2] and a supersonic jump by Alan Eustace on October

24, 2014 [3], only for Felix’ extensive flight data are available. It is the objective of this paper to

understand the physics of the free fall, in particular the aerodynamic behavior in the transonic

regime.

The first analysis of a high-altitude free fall dates back to 1996, when Mohazzabi and Shea

[4] were able to analytically solve the equation of motion for v(h) by power series including the

atmospheric friction term and a standard barometric law. From a linear approximation of an

implicit solution they were able to roughly analyze Kittinger’s jump confirming his key

achievements. However, owing to the linear approximations made, the result becomes less reli-

able for jumps with extensive free fall segments as with Felix Baumgartner’s and Alan Eustace’s

jumps. In addition, the power series approximation works only with a strict barometric law

and a constant aerodynamic friction term.

In 2010 Benacka [5] revised Mohazzabi’s high-altitude free fall analysis by taking into

account a linear temperature gradient as about actual in the troposphere. For a drag coefficient
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that does not depend on the Mach number he was able to solve the equation of motion ana-

lytically by power series, again for v(h). Later in 2011 Vadim et al. [6] and 2014 Rygalov [7]

published two papers. The earlier deals with the theoretical analysis of the maximal drag

deceleration in free fall and the corresponding altitude, whereas the latter shows that an

emergency egress at an altitude around 100 km can be survived and it provides a relation

between the initial altitude and the altitude of the transonic transition. His analysis is based

on a drag coefficient independent on the Mach number and on a temperature-independent

barometric law.

J. M Colino and A. J Barbero in 2013 [8] published a course quantitative data analysis based

on a spreadsheet and intended as an introductory physics course of Felix’ free fall. Although

they use a similar approach as described in our paper, they do not have precise data and use

only a standard atmosphere model to derive v(h) and v(t). Therefore they were not able to

extract the key aerodynamic parameter, the drag coefficient CD, from the computed product

CDA?, with A? being the wetted surface area.

Since the insight into the physics of the supersonic jump is gained only through a well-

defined drag coefficient CD, a full-fledged numerical investigation with exact data is needed,

which is the objective of this paper.

II. Theoretical analysis

Let h be the altitude of the skydiver above ground. We define the downwards velocity v to be

positive, i.e. dh = −v�dt. Then the equation of motion of a body with mass m subject to gravita-

tional and aerodynamic forces is known to be

dv
dt
¼ gðh;φÞ �

1

2
CDðMa; ReÞrðh;TÞ

A?
m

v2 ð1Þ

where CD is the aerodynamic drag coefficient, including the pressure drag, skin friction drag

and interference drag. The coefficient quite generally depends on the type of flow (laminar or

turbulent) and hence on the Mach number Ma and Reynolds number Re. We can safely

neglect a Knudsen number dependency because at stratospheric altitudes we are in the contin-

uum flow regime. The quantity ρ is the atmospheric density depending on altitude and tem-

perature T. A? is the aerodynamically wetted pressure suit area depending on the angle of

attack α as defined later. We assume g to be the gravity of Earth and not Earth’s gravitational

acceleration. This is because Earth’s gravity results jointly from Earth’s gravitational force plus

the centrifugal force due to the rotation of the Earth and therefore is dependent on the altitude

h and geographical latitude φ. Because of Earth’s atmosphere up to roughly 100 km altitude on

average co-rotates with Earth’s surface, we have to take centrifugal forces into account.

We first define the instantaneous terminal velocity

1

v2
t

≔
1

2
CDr

A?
mg

ð2Þ

With this the acceleration from Eq (1) can be written as

dv
dt
¼ g 1 �

v2

v2
t

� �

ð3Þ

If vt would be independent of altitude and velocity, the acceleration would cease at v = vt.
So, vt is the terminal velocity at instantaneous flight conditions.

STRATOS flight analysis
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Analytical solutions for vt = const

Let v0 = v(t0 = 0) and h0 = h(t0 = 0). If vt is considered constant, then Eq (3) can be integrated

directly

Zv

v0

dv
1 � v2=v2

t

¼
1

2
vtln
ðvt þ vÞðvt � v0Þ

ðvt � vÞðvt þ v0Þ
¼ g
Z t

0

dt ¼ gt

We finally get

vt þ v
vt � v

¼
vt þ v0

vt � v0

exp
2gt
vt

� �

or equivalently

vðtÞ ¼ vt
vt þ v0 � ðvt � v0Þexpð� 2gt=vtÞ

vt þ v0 þ ðvt � v0Þexpð� 2gt=vtÞ
for vt ¼ const ð4Þ

We rewrite this equation as

vðtÞ
vt
¼

2ðvt þ v0Þ

vt þ v0 þ ðvt � v0Þexpð� 2gt=vtÞ
� 1

By taking v = −dh/dt into account this equation can directly be integrated to deliver under

the initial precondition 1=v2
t ¼ CDrA?=ð2mgÞ ¼ const

hðtÞ ¼ h0 þ vtt �
v2
t

g
ln

1

2
1 �

v0

vt
þ 1þ

v0

vt

� �

exp
2gt
vt

� �� �� �

ð5Þ

For a small initial time interval, gt� vt, we derive after some lengthy approximation

hðtÞ ¼ h0 � v0t �
1

2
gt2 1 �

v2
0

v2
t

� �

1 �
2

3

v0gt
v2
t

�
1

6
1 � 3

v2
0

v2
t

� �
gt
vt

� �2

� . . .

" #

This simplifies for an initial zero speed v0 = 0 to the convenient expression

hðtÞ ¼ h0�
1

2
gt2

|fflfflffl{zfflfflffl}
gravity

þ
1

12

g3

v2
t

t4

|fflfflfflfflffl{zfflfflfflfflffl}
1st order drag

þ . . .

and

vðtÞ ¼ � gtþ
1

3

g3

v2
t

t3 þ . . .

By the same token we now derive v(h). We first substitute

dv
dt
¼

dv
dh

dh
dt
¼ � v

dv
dh

In the equation of motion (3). We hence get

� v
dv
dh
¼ g 1 �

v2

v2
t

� �
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and

�

Zv

v0

v � dv
1 � v2=v2

t

¼
1

2
v2

t ln
v2
t � v2

v2
t � v2

0

¼ g
Zh

h0

dh ¼ gðh � h0Þ

and finally

vðhÞ ¼ vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 �
v2

0

v2
t

� �

exp
2g
v2
t

ðh � h0Þ

� �s

for vt ¼ const ð6Þ

Eq (6) is a result of Mohazzabi and Shea [4] with generalized initial conditions.

Analytical solution for vt 6¼ const

Yet, in reality vt is not constant. In particular, and according to the barometric formula

r ¼ r0exp �
h � h0

H

� �

the atmospheric density decreases drastically with altitude and also somewhat with air temper-

ature via the scale height

HðTÞ ¼
TRs

g0

¼ T � 29:28 m K � 1

where Rs = 286.91 J kg−1K−1 is the specific gas constant of standard atmosphere and g0 = 9.798

m s−2. With this we rewrite the equation of motion Eq (3) as

1

g
dv
dt
¼ 1 �

v2

v2
t0

exp �
hðtÞ � h0

H

� �

ð7Þ

where

1

v2
t0

≔
1

2
CDr0

A?
mg

ð8Þ

We note for later purposes that in free fall air drag always counteracts gravitational force

and hence

Dv ¼ g � Dt �
Z

v2

v2
t0

exp �
h � h0

H

� �

� dt < g � Dt ð9Þ

Eq (7) can no longer be integrated fully analytically. However, for flight data analysis we

only need to consider the change in velocity Δv for small time intervals Δt. In this case the ana-

lytical solution is given by the Taylor series

Dv ¼ v0Dt þ v0

Dt2

2!
þ . . ._ __

STRATOS flight analysis
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By Eq (7) we have not only _v, but with the approximation h = h0 − v0t we derive addition-

ally

1

g
v ¼ �

2vv0

v2
t0

þ
v2

v2
t0

v0

H

� �

exp
v0t
H

� �

So, with definitions t0 = 0, v(t0) = v0 we obtain _v0 and v0, which inserted into the Taylor

series delivers

Dv ¼ g 1 �
v2

0

v2
t0

� �

� Dt �
v0g2

v2
t0

1 �
v2

0

v2
t0

þ
v2

0

2gH

� �

� Dt2 þ . . . ð10Þ

Extraction of aerodynamic parameters from flight data

To derive aerodynamic parameters from flight data, we have to define a small-time interval Δt,
then read from the fight data the measured change in velocity Δv in that interval, and with this

finally solve Eq (10) for v2
0
=v2

t0 to derive CDA? from v2
t0 via Eq (8). Because the Δt2-term is

much smaller than the Δt-term, the Banach fixed-point theorem applies and we can solve Eq

(10) for v2
0
=v2

t0 iteratively by contraction mapping. So, in a first step we set the Δt2-term to zero

and find as a first approximation

v2
0

v2
t0

� 1 �
Dv

g � Dt
> 0

The latter follows from Eq (9). This is the trivial finding that attributes any deviation of con-

stant acceleration from g to atmospheric drag. For a second-order approximation, we insert

this result into the Δt2-term of Eq (10), which yields

0 ¼ Dv � g 1 �
v2

0

v2
t0

� �

� Dt þ
g2

v0

1 �
Dv

g � Dt

� �
Dv
gDt
þ

v2
0

2gH

� �

� Dt2

Again, solving for v2
0
=v2

t0 delivers

v2
0

v2
t0

¼ 1 �
Dv

g � Dt

� �

1 �
Dv
v0

�
v0Dt
2H

� �

ð11Þ

This is the second order solution of Eq (9) for a given Δt and a measured Δv. Analysis of the

above derivation reveals that the Δv/v0-term in square brackets accounts any variation of accel-

eration to an adjustment of the aerodynamic parameter vt0 from its trivial determination as

given in the round brackets, and the v0Δt/(2H)-term, which accounts for air density increase

in the interval, makes an exception from this. We insert this advanced solution into Eq (8),

and with the notation that the index 0 indicates values at the beginning of a time interval, we

finally derive CDA? for any small time interval

CDA? ¼
2mg
v2

0
r0

1 �
Dv

g � Dt

� �

1 �
Dv
v0

�
v0Dt

2Hðh0Þ

� �

ð12Þ

with

Hðh0Þ ¼ Tðh0Þ � 29:28 ½m K � 1�

__

__
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Transonic regime

The objective of our work is to understand the aerodynamic behavior of a human body with

pressure suit in the transonic regime by deriving the drag coefficient CD with Stratos’ flight

data from Eq (12). The transonic regime is the velocity range around the speed of sound a or

Mach number Ma = 1 with

Ma≔
v
a
¼

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kairRST

p ð13Þ

Here κair = 1.403 is the adiabatic index and Rs = 286.91 J K−1kg−1 is the specific gas constant

of the standard atmosphere. Since Ma is temperature dependent (but not density-dependent

as one might assume intuitively) an atmospheric temperature profile T(h) is essential to deter-

mine the correct Mach number.

III. Data analysis procedure

For deriving the drag coefficient CD from Eq (12) we need to have the following data

1. Flight trajectory data v(t) and h(t)

2. Atmospheric data, i.e. air density ρ(h) and air temperature data T(h).

3. Pressure suit data, i.e. the total mass m, incl. body weight, and the effective surfaces along

his bodies symmetry axes Ax,Ay,Az

4. Flight attitude data, i.e. angle of attack α(t) of his body against flight direction, to derive the

wetted area A?(t)

Flight trajectory data

Felix jumped from the capsule at an altitude of 38969.4 m. At 50.0 s into flight and at an alti-

tude of 28833 m he obtained his maximum vertical velocity of 377.1 ms−1 equaling Mach 1.25.

His free fall lasted down to an altitude of 2566.8 m where he pulled the drag chute. The detailed

flight trajectory data v(t) and h(t) were extracted from the graphical plots as given in the Sum-

mary Report of the Red Bull Stratos Team [9] by digitalization (see Fig 1). Velocity and time

were measured by an on-body GPS system.

Atmospheric data. On October 12, at 4h 51min GMT, a radiosonde was launched from

the airfield measuring the profile data p(h), T(h), wind direction, and wind speed. Based on

this measurement a FIM forecast for flight day October 14 was generated. From this and with

the ideal gas law, the atmospheric density profile was derived as

rðhÞ ¼
pðhÞ

RsTðhÞ
ð14Þ

with Rs = 286.91 J K−1kg−1. Both profiles, ρ(h) and T(h), are depictured in Fig 1 with errors of

about 0.1%.

Flight attitude data and wetted area

The angle of attack (AOA), α(t), is defined (see Fig 2) such that α = 0 is a regular “belly down”

attitude for skydivers. We derived α(t) (depicted in Fig 1) from the full story video published

by GoPro [1]. The error of the AOA such determined is estimated to be 15–20%.

STRATOS flight analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0187798 December 7, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0187798


The wetted pressure suit surface area is determined from the AOA and roll angle ϕ (angle

around the body z-axis) quite generally as

A? ¼ ðAxcosð�Þ þ Aysinð�ÞÞcosðaÞ þ AzsinðaÞ

Because Felix’ attitude after 17 seconds of free fall did not show any significant roll, i.e. ϕ =

0, we have

A? ¼ Axcosaþ Azsina ð15Þ

This confirms the expected result that for a belly-down attitude A?(α = 0) = Ax.

Pressure suit data

In order to determine the pressure suit data, on September 17, 2012, during a test run, pictures

of the pressurized suit were taken (see Fig 3) along the three body frame axes as defined in Fig

2, always together with a sheet of paper of size 17@ × 11@ = 0.1206 m2 for area reference. From

these the following effective suit cross sections were derived

Ax ¼ 12:8 ft2 ¼ 1:19 m2

Ay ¼ 8:6 ft2 ¼ 0:804 m2

Az ¼ 5:6 ft2 ¼ 0:525 m2

ð16Þ

Fig 1. Summary of flight trajectory and atmospheric data. The gray area on the left indicates that for t < 17 s, owing to

insignificant drag, no drag coefficient can be derived. The gray area on the right indicates times when Felix experienced a

dangerous flat spin at a reduced AOA.

https://doi.org/10.1371/journal.pone.0187798.g001
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The total mass of Felix and the fully dress-up suit was determined to be

m ¼ 267:1 lbs ¼ 121:2 kg ð17Þ

Gravity of earth

For the gravity of Earth, we apply the WGS 84 ellipsoidal gravity formula in combination with

a FAC altitude correction factor

gðh;φÞ ¼ 9:780
1þ 0:00193 � sin2φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:00669 � sin2φ

p � 3:086� 10� 6 ½s� 2� � h

with altitude h and geographical latitude φ. For φ = 33.39˚ at the jump site this reduces to

gðhÞ ¼ 9:796 ½m s� 2� � 3:086� 10� 6 ½s� 2� � h ð18Þ

Hence, the altitude-dependent gravity introduces a relative g error of only 0.01%.

Fig 2. The body reference frame and definition of α(AOA).

https://doi.org/10.1371/journal.pone.0187798.g002
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Initial interval considerations

Eq (12) is applicable to flight data only if in the equation

Dv ¼ g � Dt �
1

2
Cr

A?
m

v2 � Dt

the aerodynamic term is significantly larger than the velocity data error δv, i.e.

1

2
CDr

A?
m

v2 � Dt � dv

For our digitalization technique δv� 0.05 � v and hence

1

2
CDr

A?
m

v � Dt � 0:05

This is particularly important for the initial free fall segment, where ρv � Δt is extremely

small. In this regime where Δt = t and v� g � t we get as the condition of the beginning t0 of

the first relevant time interval

1

2
CDrðt0Þ

A?
m

gt2

0
¼ 0:05

With the given pressure suit data and assuming an initial CD = 0.65 and belly-down flight

attitude, i.e. A? = Ax, we get

rðt0Þ t
2

0
¼ 1:6 kg s2m� 3

Fig 3. View of the pressure suit along the −z-axis (left) and −x-axis (right). The ledge is of size 17”x11” to

determine its cross-section. (Credit: Art Thompson / Stratos team).

https://doi.org/10.1371/journal.pone.0187798.g003
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Assuming h0 �
1

2
gt2

0
and from the atmospheric density profile ρ(h), we finally get for the

first data analysis interval

t0 ¼ 17 s

Sampling interval estimator

Because the contribution of the drag term to the velocity is strongly varying over altitude and

hence time, we need to adapt the sampling interval width. It needs to be chosen such that the

drag deceleration δv shall be minimum 3 times as much as the data imprecision equaling 1 m/s

dv � � 3 m=s ð19Þ

We chose Eq (10) for interval estimation. For that we assume v2
0
=v2

t0 as given and specify Δv =

δv. With this, and Δh� v0 � Δt, and discarding at high drag the gravitational term we obtain

dv ¼ � g
v2

0

v2
t0

� Dt �
v0g2

v2
t0

1 �
v2

0

v2
t0

þ
v2

0

2gH

� �

� Dt2 þ . . .

¼ � g � Dt
v2

0

v2
t0

þ
gv0

v2
t0

1 �
v2

0

v2
t0

þ
v2

0

2gH

� �

Dt
� �

In first-order approximation this yields

Dt ¼ �
dv
g

v2
t0

v2
0

In second-order approximation we have

dv ¼ � g � Dt
v2

0

v2
t0

� 1 �
v2

0

v2
t0

þ
v2

0

2gH

� �
dv
v0

� �

And hence for time interval estimation

Dt ¼ �
dv
g

,
v2

0

v2
t0

� 1 �
v2

0

v2
t0

þ
v2

0

2gH

� �
dv
v

0

� �

ð20Þ

with v2
t0 given by Eq (8). If the time interval becomes so short that Δh< 200 m we set Δh = 200 m.

IV. Results

Analysis methods

To extract the aerodynamic parameter CDA? from the data, we applied three different

methods.

Method A is straightforward in that starting with a measured initial vertical speed it solves

the equation of motion (1) and CDA? is adjusted such that the vertical speed at the end of each

time interval fits the measured value.

Method B makes use of the equation preceding Eq (6)

1

2
v2

t ln
v2
t � v2

v2
t � v2

0

¼ gðh � h0Þ

For a given set of measured interval data h0,v0;h,v this equation is solved for vt by the trust-

region method with dogleg step strategy. We recall that this method B assumes that vt and

hence the atmospheric density ρ is constant over each interval.

STRATOS flight analysis
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Method C makes use of Eq (12), which is explicit in CDA? and in addition takes into

account also linear variations of air density and scale height variations over each interval.

Overall, the results of all three methods did not show any grave qualitative differences.

However, because method A and method B featured some numerical instabilities in particular

at high altitudes while method C was not only stable throughout the data range, but is also

physically more elaborated, we discuss here only the results derived by method C. For a

detailed comparison of the three methods see section Sensitivity Analysis–Different Methods
below.

Method C is based on the approximation v�Δt = Δh� 2H� 14 km. A lower Δh-limit arises

from increasing relative velocity gain errors with decreasing Δh. We hence settled at an interval

width of Δh = 200 m. According to the above section Initial Interval Considerations, the first

interval started at t0 = 17 s into flight corresponding to an altitude of h0 = 37 640 m. Thereafter

we used for the time interval estimator, Eq (20), with δv = −10 m/s down to hend = 13040 m.

Fig 4 displays the resulting aerodynamic drag coefficient as a function of Mach number.

We note that the absolute inaccuracy of the data is mainly driven by the inaccuracy of the area

A(AOA). Therefore, we performed a sensitivity analysis described in Section V.

There are two distinct phases (cf. full line in Fig 1): A velocity increase phase for 17s<
t< 50s (red circles) and a velocity decrease phase 50 s< t< 120 s (blue crosses). In addition, a

green line is shown, which according to Hoerner [11] is the transonic drag coefficient for a

rotating cube, namely

CD ¼ 0:65 for Ma � 0:6

CD ¼ 0:50þ 1:23ðMa � 0:25Þ
2 for 0:6 � Ma � 1:1

CD ¼ 1:38 � 0:30ðMa � 1:1Þ for 1:1 � Ma

ð21Þ

This empirical dependency was used by the Red Bull team to predict the maximum velocity

at a given exit altitude, or the required altitude to ensure that his maximum speed would

achieve Mach 1.15 vice versa and hence achieve supersonic speed of a free falling human body

for the first time.

Fig 4. Drag coefficient as a function of Mach number. Red circles for increasing and blue crosses for decreasing velocities.

The dashed line is the final result as given by Eq (26) and the gray region the total uncertainty as given by Eq (25). The green line

is the theoretical transonic drag coefficient for a rotating cube according to Hoerner [11] and as given by Eq (21).

https://doi.org/10.1371/journal.pone.0187798.g004
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The scatter of data point and equivalently the data error obviously is much bigger for the

increasing velocity data points than for the decreasing velocity data points. This is because the

drag D/ ρv2 affects the measured speed with decreasing altitude and increasing speed. Never-

theless, the Mach dependency of the up-velocity and down-velocity data points coincide. We

therefore now focus on the more accurate down-velocity data (blue crosses).

To derive an empirical drag coefficient dependence on the Mach number, we use the same

intervals and dependencies as Eq (21), but with the three variable fit parameters A, B, and C:

CD ¼ A for Ma � 0:6

CD ¼ Aþ BðMa � 0:6Þ
2 for 0:6 � Ma � 1:1

CD ¼ Aþ B � 0:25 � CðMa � 1:1Þ for 1:1 � Ma � 1:25

ð22Þ

From fitting the downstream data, we derive the fit parameter as

A ¼ 0:60� 0:05

B ¼ 0:55� 0:10

C ¼ 0:32� 0:10

ð23Þ

V. Sensitivity analysis

Different methods

In Fig 5 the drag coefficients are provided as derived from the three different methods A, B, C

(see Section Results –Analysis Methods above). In all three cases, the dashed line is the data

function as given by Eqs (22) with (23), i.e. as derived from method C. The data shows that

although all three methods provide qualitatively the same results, method C obviously delivers

the best result.

Initial interval width

Next, we study the effect of the width of the omitted initial interval (see section Data Analysis

Procedure –Initial Interval Considerations) on the results. As shown in Fig 6 we have varied

the initial interval in a reasonable range. Besides minor differences, the data points are qualita-

tively the same (particularly the downstream data point, to which Eq (22) was fitted).

Sampling interval width

The sampling interval is expected to have more effect on the results than all the other parame-

ters. Fig 7 shows the data points for three different velocity increase intervals δv. According to

Eq (20) a changing δv results in different time intervals. Obviously, the choice δv = −10m/s
from theoretical considerations seems optimal.

AOA uncertainty

To study the impact of the relatively high AOA uncertainty on the resulting drag coefficient as

given by Eq (22) with Eq (23), we performed a sensitivity analysis by randomly varying the

AOA for each time step by up to 20% around its value shown by in Fig 1 (AOA limited to 0˚

and 90˚). We ran 1000 samples and calculated for each value the fitting parameters A, B, and

C. A histogram of them is shown in Fig 8 with the standard variation σ. The value of the fitting

parameter is depicted on the abscissae and their quantity on the ordinate. The gray area in Fig

4 shows the ±σ uncertainty of the distribution function. It can be seen from the error in Eqs

(24) that for increasing Mach numbers the error due to the AOA uncertainty increases, in
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particular for the slope C of the line for Ma > 1.1, because it shows with σ = 0.26 the highest

variation. For the derived ±σ the corresponding error of the fitting parameters are

A ¼ 0:60� 0:003

B ¼ 0:55� 0:03

C ¼ 0:32� 0:26

ð24Þ

Note, that the mean of the sensitivity analysis matches our calculated fitting parameters for

A and B. For the slope C they do not match exactly. This is due to the limitation of the AOA to

0˚ and 90˚ and the high sensitivity of this fitting parameter.

Fig 5. The drag coefficient as derived from the three different methods A, B, and C.

https://doi.org/10.1371/journal.pone.0187798.g005
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The combined error of the data statistics Eq (23) and the AOA sensitivity analysis Eq (24) is

A ¼ 0:60� 0:05

B ¼ 0:55� 0:11

C ¼ 0:32� 0:28

ð25Þ

The final result reads

CD ¼ 0:60 for Ma � 0:6

CD ¼ 0:60þ 0:55ðMa � 0:6Þ
2 for 0:6 � Ma � 1:1

CD ¼ 0:74 � 0:32ðMa � 1:1Þ for 1:1 � Ma � 1:25

ð26Þ

Fig 6. The drag coefficient as derived with different initial interval widths. t0 = 17.1 s was finally chosen

from theoretical considerations.

https://doi.org/10.1371/journal.pone.0187798.g006
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This continuous function together with the total error as given by Eq (25) is displayed in

Fig 4 as a dashed line and the gray region.

Compared to theoretical expectations for subsonic speeds as given by Eq (21) we have with

CD = 0.60 ± 0.05 a perfect match between our data and theoretical expectations. In addition,

our overall pattern, is compliant with an increase of CD below the sonic speed and a decrease

above it. However, for transonic speeds we see an increase of the drag coefficient of just ΔCD =

0.14, which is only 19% of the theoretically expected ΔCD = 0.74.

VI. Discussion

In order to grasp this unexpected result, we apply fluid dynamics theory (Standard literature

for further information on aerodynamics can be found in reference [10] and [11].). The key

elements are the overall shape of the body and the relevant Reynold numbers. Relative to the

Fig 7. The drag coefficient as derived from different sampling time intervals. Intervals are given by the

different speed changes δv within the interval (see Eq (20)).

https://doi.org/10.1371/journal.pone.0187798.g007
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wind flow, Baumgartner’s body is quite blunt, where the pressure suit with its folds adds

roughness, while the technical equipment and cameras cause an unevenness of the surface (see

Fig 9). Moreover, the backpack and Baumgartner’s limbs form even a quite complex body

shape. We therefore identify Baumgartner’s irregular blunt body very approximately by a cyl-

inder with surface roughness on all length scales.

The Reynolds number Re (see Fig 10) describes the proportion between the inertial and vis-

cous forces and hence the type of flow, laminar or turbulent. It is between 2.3 � 105 − 12.2 � 105

for the considered time zone 29 s< t < 68 s.

Drag crisis

Fluid dynamic tells us that blunt bodies, i.e. bodies which are not streamlined, are subject

dominantly to pressure drag and only little to skin friction drag. Because they are blunt they

undergo a so-called drag crisis (see Fig 11) for Re� 105. Drag crisis is a drop of drag by up to a

factor of 10 for smooth surfaces like a table tennis ball. The drop is due to the fact that the lami-

nar flow from the stagnation point to the separation point, located at maximum body cross-

section) becomes turbulent, which moves the separation point of the flow backward (delayed

separation). This reduces recirculation behind the blunt body and hence lowers drag. How-

ever, if the surface is rough (sand-grain size k increases), turbulence in the upstream flow is

induced already at lower Reynolds number, causing a less pronounced drag drop (see Fig 11).

If the surface is very rough, uneven, and the body’s shape is even not well defined, as in our

case, we do not expect any drag crisis because we have turbulence all over the surface at any

Reynolds numbers Re> 104. We therefore do not expect, and in fact do not see, any depen-

dency of CD from the Reynolds number below the critical Mach number. In our analysis, the

constant A in Eq (22) models this constant pressure drag.

Fig 8. AOA sensitivity analysis for fit parameters A, B, and C. For each trajectory time step the AOA was randomly sampled 1000 times with variations

up to 20%. The abscissae show the value of a fitting parameter binned in seven value ranges. The vertical bar to each range measures the number of

values obtained from the variations that fall into this range. From the resulting histogram, the standard variation σ for each of the fitting parameters A, B, and

C is derived.

https://doi.org/10.1371/journal.pone.0187798.g008
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Fig 9. The complex suit shape evoking an equally complex aerodynamics. (Credit: Art Thompson / Stratos

team).

https://doi.org/10.1371/journal.pone.0187798.g009
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Wave drag

At the critical Mach number local supersonic flow and hence shock waves start to emerge

from major surface discontinuities (edges) where the flow is forced to accelerate. This erratic

shock formation and general flow instabilities correspond to pressure discontinuities, which

transform a considerable part of the impinging flow energy into heat. This loss in energy cor-

responds to a counteracting force, the so-called wave drag (a.k.a. transonic compressibility

drag). However, for Mach number up to 0.7 or 0.8 compressibility effects have only minor

effects on the flow pattern and drag. For increasing Mach numbers the surface extent that gen-

erates shock wave increases and the shock waves intensify. They now interact with the bound-

ary layer so that a separation of the boundary layer occurs immediately behind the shock. This

condition accounts for a large increase in drag, which is known as shock-induced (boundary-

layer) separation. This separation empirically causes a roughly quadratic increase of the wave-

drag coefficient with Mach number. Generally, the term B(Ma − 0.6)2 in Eq (22) models the

wave drag.

Fig 10. Reynolds number as a function of time into flight. The representative physical length scale of 1 m and a constant dynamic viscosity of 15×10−6

kg s−1 m−1.

https://doi.org/10.1371/journal.pone.0187798.g010
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Once a supersonic flow has been established, however, the flow stabilizes and the drag coef-

ficient is reduced. We then essentially have a shock wave that builds up at the upstream front

of the body and another one at the unsteady geometry at the downstream tail of the body. It is

usually modeled by the term – C(Ma − 1.1) in Eq (22). The shock waves generate the character-

istic double boom of a supersonic body flying past, which was indeed captured for Baumgart-

ner’s supersonic free fall in this video recording provided here http://www.youtube.com/

watch?v=yZFz6y4UCuo.

Given this fluid dynamics effects it becomes clear why drag crisis and the wave-drag coeffi-

cient is so insignificant: Because the body is quite blunt, the pressure drag seems to be domi-

nant all the way up to sonic speed. The surface roughness and the complex body shape at all

speeds seem to induce a highly turbulent flow even close to the surface. This destroys any

boundary layer, thus strongly suppressing a delayed flow separation effect and shock-induced

boundary-layer separation.
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