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Preface 

This thesis presents a remote sensing approach to map lake macrophytes and to 

characterise their phenologic development. The development of an in situ data based 

reflectance model is a necessary basis for macrophyte mapping. The investigation and 

knowledge of environmental factors that influence the seasonal variations and the 

phenologic development of lake macrophytes is necessary for a continuous and detailed 

mapping of lake bottom types and the monitoring of freshwater lakes. 

The introduction of this thesis illustrates the ecology of freshwater lakes and presents the 

established methods of lake macrophyte mapping. Future monitoring approaches and 

their advantages for a lake type characterization are presented. Following a description of 

the objectives of this thesis, three distinct research topics dealing with the importance of 

an improvement of the monitoring method and their required basics are presented. Each 

topic has been published or submitted as a research paper in a slightly modified form 

(following the journal requirements).  

The thesis ends with a general discussion on the prospective requirements of monitoring 

methods and the influence of climate change induced environmental variations on the 

future monitoring. The new findings on the key points of mapping lake macrophytes as 

well as new types of remote sensing imagery are finally used to develop a systematic 

monitoring approach for lake macrophytes that may be transferred to many other 

freshwater lakes. 
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Abstract 

Submersed aquatic vegetation (SAV) is an important structural component of freshwater 

lake ecosystems. Sensitive to changes in environmental conditions, SAV serves as long-

term biological indicator for the trophic state of freshwater lakes. Variations in nutrient 

concentrations, water temperature, water level and transparency are stressors for the 

ecological balance. As these effects are related to climate change, they influence the water 

quality of freshwater lakes as well as the growth and species composition of SAV patches. 

Alternative to traditional ground-based SAV monitoring, remote sensing is expected to 

provide fast end effective concepts to map SAV quickly, within large areas and at short 

intervals. 

The main objective of this thesis is the development of species-specific reflectance models 

for several SAV species. Spectral information on seasonal variations, the species-specific 

growth and the phenologic development can be derived from SAV’s spectral signatures. 

Combined with satellite imagery, this detailed information enables a ubiquitous SAV 

monitoring. In field studies, the seasonal variations of littoral bottom coverage and SAV 

species composition were investigated. The detailed information on spectral variations 

within the growing season were obtained from reflectance models. 

In the first case study, the potential of a semi-empirical method to map littoral bottom 

coverage by a multi-seasonal approach was analysed. Depth-invariant indices were used 

to differentiate between SAV and sandy sediments on RapidEye imagery. The increase of 

SAV patches during the growing season was correctly monitored. The comparison of in 

situ data and Google Earth imagery revealed a kappa coefficient of 0.61 and an overall 

accuracy of 72.2%. The influence of water constituents and surface phenomena (e.g. sun 

glint and algal blooms) on the identification success was also demonstrated.  

The following study investigated the interrelation between spectral signature, plant 

physiology and the length of growing season as influenced by the variable water 

temperature. Systematic collected in situ measurements expand and establish spectral 

libraries as basis to create reflectance models. The combination of spectral information 
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and phenologic characteristics allows the development of a phenologic fingerprint for 

each macrophyte species. The developed reflectance models deliver day- and daytime-

specific spectral signatures for each SAV species. In the following classification process, a 

spatial distinction of species-specific SAV growth at different phenologic stages was 

enabled. The analysis of the phenologic development indicated that the invasive species 

Elodea nuttallii is less affected by water temperature oscillations than the indigenous 

species Chara spp. and Potamogeton perfoliatus. 

The key aspect of the third study is the analysis and the comparison of the results of a 

littoral bottom coverage assessment of two different approaches. For the identification of 

vegetated and non-vegetated patches in shallow water regions, a semi-empirical method 

using depth-invariant indices and a physically based, bio-optical method using WASI-2D 

were applied on Sentinel-2A imagery. Under application of the reflectance models, the 

vegetated areas were differentiated in tall- and meadow-growing SAV species. 

In conclusion, the case studies of this thesis revealed that remote sensing methods are 

suited for a water quality assessment. For an identification on species-level, detailed 

information on the phenologic development have to be included. The development of 

species-specific reflectance models is a key element of this process. Based on this findings, 

a continued development of reflectance models by further SAV species is necessary to 

improve a water quality assessment by remote sensing methods. As a support for 

established monitoring methods, remote sensing approaches can be applied ubiquitous 

and fill gaps in the monitoring net to detect changes at an early stage in the future.  
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Zusammenfassung 

Unterwasservegetation ist ein wichtiger Bestandteil des Ökosystems See. Sie reagiert 

empfindlich auf veränderte Umweltbedingungen und spielt somit als Langzeit-

Bioindikator eine wichtige Rolle bei der Bestimmung des trophischen Zustandes eines 

Gewässers. Eine Veränderung der Nährstoffstoffbedingungen und des Lichtklimas sowie 

schwankende Wassertemperaturen und -pegel beeinflussen das ökologische 

Gleichgewicht eines Sees. Der globale Klimawandel hat ebenfalls einen Einfluss auf diese 

Variablen und somit auch auf die Wasserqualität sowie das Wachstum und die 

Artzusammensetzung der Unterwasservegetation. Im Gegensatz zu bisherigen, 

bodengestützten Methoden zum Makrophytenmonitoring, bietet die Fernerkundung 

schnelle und effiziente Lösungsansätze, um Unterwasservegetation großflächig und in 

kurzen zeitlichen Intervallen zu kartieren.  

Das übergeordnete Ziel dieser Arbeit ist die Entwicklung von artspezifischen 

Reflexionsmodellen für mehrere Makrophytenarten. Aus der spektralen Signatur von 

Unterwasservegetation lassen sich Informationen über jahreszeitliche Schwankungen, das 

artspezifische Wachstum und die phänologische Entwicklung der jeweiligen Art ableiten. 

In Kombination mit Satellitenaufnahmen lässt sich so eine großflächige Kartierung von 

Unterwasservegetation durchführen. Die jahreszeitlichen Schwankungen der littoralen 

Seebodenbdeckung und der Artzusammensetzung der Makrophyten wurde mittels 

Feldstudien untersucht. Genaue Informationen über die spektralen Unterschiede, die im 

Laufe einer Vegetationsperiode auftreten, können aus den Reflexionsmodellen ermittelt 

werden. 

Die erste Fallstudie untersucht das Potential einer halb-empirischen Methode die 

Seegrundbedeckung mehrmals im Jahr zu kartieren. Tiefenunabhängige Indices wurden 

dabei eingesetzt, um auf RapidEye-Aufnahmen zwischen Unterwasservegetation und 

sandigem Sediment unterscheiden zu können. Die Zunahme der bewachsenen Fläche 

wurde korrekt aufgezeichnet. Der Vergleich von in situ Daten und Google Earth 

Aufnahmen liefern einen Kappa-Koeffizienten von 0,61 und eine Gesamtgenauigkeit von 
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72,2%. Ebenfalls untersucht wurde der Einfluss von Wasserinhaltsstoffen und 

Wasseroberflächenerscheinungen (z.B. Sun-glint-Effekte und Algenblüten) auf den 

Identifikationserfolg. 

Die nächste Studie untersucht den Zusammenhang zwischen spektraler Signatur, 

Pflanzenphysiologie und Länge der Vegetationsperiode, die allesamt von der Variablen 

Wassertemperatur beeinflusst werden. Systematisch durchgeführte in situ Messungen 

erweitern und etablieren eine Spektralbibliothek, die den artspezifischen 

Reflexionsmodellen zu Grunde liegt. Die Kombination von spektraler Information und 

phenologischen Charakteristika ermöglicht die Entwicklung eines phänologischen 

Fingerabdrucks für jede Makrophytenart. Im nachfolgenden Klassifikationsprozess 

konnten Makrophyten anhand ihrer artspezifischen, spektralen Merkmale unterschieden 

werden. Die Untersuchung der phänologischen Entwicklung zeigt, dass die invasive Art 

Elodea nuttallii durch die Temperaturschwankungen weniger beeinflusst wurde als die 

heimischen Arten Chara spp. und Potamogeton perfoliatus. 

Das Hauptaugenmerk in der letzten Studie lag auf der Analyse und dem Vergleich der 

Ergebnisse der Bewertung der litoralen Seebodenbedeckung mit zwei unterschiedlichen 

Ansätzen. Die die Identifikation von bewachsenen und unbewachsenen Bereichen im 

Flachwasser wurden eine halb-empirische Methode mit tiefenunabhängigen Indices 

sowie eine physikalisch basierte, bio-optische Methode mit WASI-2D auf Sentinel-2A-

Aufnahmen angewandt. Unter Anwendung der Reflexionsmodelle wurden die 

bewachsenen Bereiche weiterführend in hoch- und niedrigwachsende Makrophytenarten 

unterteilt.  

Zusammenfassend zeigen die Fallstudien dieser Arbeit, dass Methoden der 

Fernerkundung sich für die Bewertung der Wasserqualität eignen. Für eine Identifikation 

der Makrophyten auf Artebene müssen genaue Informationen über die phänologische 

Entwicklung mit einbezogen werden. Die Entwicklung von artspezifischen 

Reflexionsmodellen ist dabei das Schlüsselelement. Basierend auf diesen Erkenntnissen ist 

ein kontinuierlicher Ausbau der Reflexionsmodelle um weitere Makrophytenarten 

notwendig, um die Wasserqualitätsbewertung auf Basis der Fernerkundung 

voranzutreiben. Fernerkundungsansätze können als Unterstützung zu herkömmlichen 
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Monitoringmethoden flächendecken angewendet werden. So können so die Lücken im 

Monitoring-Netz geschlossen werden und Veränderungen in Zukunft frühzeitig erkannt 

werden. 
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1 Introduction  

1.1 Ecology of freshwater lakes and aquatic macrophytes  

Freshwater lakes are important ecosystems and have essential functions in the 

environment. They serve as habitat for various species and are significant components for 

hydrological, nutrient and carbon cycles (Moss 2012). Furthermore, freshwater lakes have 

a prominent function as storage for drinking water, energy production and transport way 

as well as for fishery and recreation (Stendera et al. 2012, Carvalho et al. 2013). Stressors 

for the ecological balance in freshwater lakes are eutrophication, inorganic and organic 

contaminations. These stressors influence the water quality and ecology of freshwater 

lakes and are superimposed by climate change effects such as increasing water 

temperatures (Brönmark and Hansson 2002, Dudgeon et al. 2005, Hering et al. 2010, Moss 

2012). The aim of international directives, e.g. the European Water Framework Directive 

(WFD) (European Commission 2000), is to address these problems, to identify the 

stressors and to achieve and conserve a good qualitative and quantitative trophic status of 

freshwater lakes. The WFD recommends a regular monitoring that obtains the ecological 

status of freshwater lakes based on biological components. Currently, the monitoring 

program is field based and linked to time- and cost-intensive in situ sampling and lab 

analysis (Schaeffer et al. 2013).  

One biological indicator for the assessment of the ecological status are aquatic 

macrophytes (Melzer 1999). They serve as long-term indicators of the trophic state of 

freshwater lakes. With their occurrence as emergent, floating or submergent plants in the 

euphotic zone (Silva et al. 2008), they influence the primary production, the oxygen 

production as well as the food and nutrient cycle and provide a habitat for fishes and 

aquatic invertebrates (Pieterse et al. 1990, Wilcox and Meeker 1992, Diehl 1993, Weaver et 

al. 1997, Petr 2000, Marion and Paillisson 2003, Herold et al. 2007, Schultz and Dibble 

2012). Submerged aquatic macrophytes are sensitive to changes of the environmental 

conditions such as nutrient conditions, water temperature, water level and transparency 
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(Skubinna et al. 1995, Penning et al. 2008, Søndergaard et al. 2010, Poikane et al. 2015). The 

occurrence and species composition of submerged aquatic macrophytes reflect the 

environmental conditions and the trophic state of the lake. Therefore, certain lake 

macrophyte species are used as long-term indicators for freshwater lake ecology (Melzer 

1976, Melzer 1999, Melzer and Schneider 2001, Søndergaard et al. 2010). Variations of 

species appearance and composition indicate a shift of the environmental conditions of 

the lake. Due to the spatial stability of lake macrophytes, the shoreline can be subdivided 

in different sections with varying trophic level due to the occurrence and composition of 

macrophyte species. Based on the distribution of indicator species, an individual trophic 

status can be assigned to the freshwater lake and its sections. 

1.2 Established monitoring methods of lake macrophytes 

The WFD requires a regular monitoring of phytoplankton and other aquatic flora in 

freshwater lakes. While phytoplankton needs to be investigated two times a year, the 

remaining aquatic flora is presently monitored in a three-year monitoring cycle (European 

Commission 2000). For lake macrophyte monitoring, a team of divers investigates the 

aquatic flora along the shoreline (Melzer and Schneider 2001). The mapping of submerged 

lake macrophytes is carried out separated in four different depth zones of 0 m – 1 m, 1 m – 

2 m, 2 m – 4 m and > 4 m. The occurring species are assigned to one of five steps of 

frequency (Kohler 1978, Melzer 1999). The abundance categories reach from very rare 

(abundance = 1) and infrequent (abundance = 2) over common (abundance = 3) to frequent 

(abundance = 4) and abundant (abundance = 5). Therefrom, for each indicator species and 

for each depth level result a specific frequency, from which the trophic status of the lake is 

determined. 

For transparency and effectively reasons, the shoreline of freshwater lakes is assessed in 

multiple predefined transects. For each transect, the submerged aquatic vegetation (SAV) 

is monitored by meandering along a defined transect line in right angle to the shoreline in 

the different depth zones down to the euphotic depth, the water depth where only 1% of 



 1 Introduction 

 

3 

 

the radiation of the surface is available (Kirk 2011). Normally, this monitoring is 

conducted one time every three years during the main growing season of lake 

macrophytes in July or August, so that the species-specific characteristics are particularly 

well defined. Constrained to human-, time- and cost resources a closer monitoring net as 

well as an area-wide mapping is not performed yet. Afterwards, the trophic status of the 

lake is determined by calculating the macrophyte index    (Melzer 1999). Based on the 

value of the indicator group and the abundance categories of the lake macrophytes, the 

macrophyte index can be calculated for each transect by applying the formula of Melzer 

(1999) (1). 

    
              

         
 (1) 

      indicator group of the species a-z 

     quantity of the species a-z 

1.3 The importance of frequent mapping of aquatic macrophytes 

using remote sensing methods 

The growing dynamic of lake macrophytes is linked to environmental conditions. In the 

last years, an increasing dynamic of environmental variables could be observed. The 

effects of climate change induced variations might be enforced in the coming years. 

Increasing water temperature, stronger and higher frequent raining events, draughts and 

the influence of invasive species are potential challenges in the future. These changes may 

influence the plant ecology and can cause economic problems. For instance, an increased 

plant growth requires management strategies such as harvesting to avoid propeller 

damage and a disruption of shipping traffic. A massive macrophyte growth near the 

shoreline has also a negative impact on tourism. The ecologic changes are shown in 

macrophyte species composition, growth and distribution.  
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Due to the rapid ecologic changes in macrophyte growth and distribution, more frequent 

and consistent monitoring approaches covering a large area are required to achieve the 

ecological status (Hestir et al. 2015, van Puijenbroek et al. 2015). The conventional 

monitoring methods to map submerse lake macrophytes seem not to be suitable to solve 

these problems. Challenges of a successive mapping of submerged macrophytes are the 

accessibility, the time consuming and cost expensive diving monitoring method and the 

short phenologic life cycle of the plants (Vis et al. 2003, Kutser et al. 2006). To address the 

named problems, remote sensing methods gain more and more importance (Palmer et al. 

2015). Thus, a monitoring approach with remote sensing methods for mapping benthic 

bottom coverage and differentiate SAV is a major task in remote sensing applications on 

coastal and inland waters (Silva et al. 2008). To detect variations in the water body and of 

the littoral bottom coverage at an early stage, continuous monitoring is required (Palmer 

et al. 2015). Remote sensing methods have the advantage to allow frequent and regular 

observations to receive optical information of spots with restricted accessibility. Several 

observations within one growing season are possible and deliver a detailed monitoring by 

continuous time series.  

Remote sensing methods are time-and cost-effective and deliver data sets at high 

temporal frequency for spatially explicit analysis. The temporal and spatial coverage by 

satellite images enable a detection of seasonal and annual changes in water quality and 

macrophyte coverage (George 1997, Malthus and George 1997, Dekker et al. 2002, Pinnel 

et al. 2004, Giardino et al. 2007, Yuan and Zhang 2008, Wolf et al. 2013, Roessler et al. 

2013a, Palmer et al. 2015, Dörnhöfer et al. 2016a). These investigations can complement 

the regularly recommended in situ mappings of the WFD by divers and may close the gap 

between single in situ measurements. The advantage of remote sensing is the spectral 

information of a large-area by every single data take. High revisiting times and broad 

coverage may compensate the reduced information on macrophyte species provided by 

remote sensing methods. To detect changes in macrophyte distribution and water quality 

rapidly, detailed information on macrophytes species-specific phenologic development 

and optical active water constituents in the water column are necessary. 
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To map SAV by satellites, several challenges and obstacles above and below the water 

surface have to be overcome (Figure 1.1). On the way from top of atmosphere towards the 

water body, the solar radiation (1) is influenced by absorption and scattering by particles 

in the atmosphere and the atmosphere itself (2). Arriving at the lake surface level, the 

incoming solar radiation is reflected by emergent (3) and floating (4) vegetation at the 

shoreline. Above the water body, the radiation is affected by reflection effects such as sun 

glint (5) at the transition from air to water. Within the water body, optically active 

constituents (e.g. Chlorophyll-a (Chl-a), colored dissolved organic matter (cDOM) and 

suspended particulate matter (SPM)) influence the pathway by absorption, scattering and 

reflection in the shallow (6) and in the deep (7) water zone. The concentration of optically 

active water constituents varies within the water body and is temporally variable. In 

optically deep water, the water surface, the water body and water constituents are main 

sources of radiation. In shallow water areas, the radiation is additionally influenced by the 

bottom substrate. The investigations on spectral differences of SAV (8) and bare sediment 

patches (9) by submersible spectroradiometers deliver detailed information on the type of 

lake bottom substrate. On the way back towards the satellite, the radiation has to pass the 

same path as on the way down. The radiation arriving at the sensor (10) enables an 

analysis of lake bottom substrate types by remote sensing satellite images.  

In the focus of this thesis are the reflectance processes at the lake bottom (8 & 9) and the 

attenuation processes within the water column (6 & 7). It is analysed how these processes 

change over time and how they affect the analysis of remote sensing images (10) (Figure 

1.1, highlighted in red). Therefore, spectral information of the different lake bottom 

substrate types is measured within one day and at different times within the growing 

season by in situ measurements. Those measurements are performed directly above the 

macrophyte canopy or above the sediment to exclude the water column effects on the 

spectral information of the littoral bottom types. The influence of water constituents on 

the spectral signature is investigated by further measurements in the water column. This 

applied measurement setup provides spectral information for the phenologic 

development for each investigated macrophyte species. All those information on lake 
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bottom type, macrophyte species, phenologic development state and sun height is listed 

in the spectral database and serves as basis for the species-specific reflectance models. 

These models form a basis for an operational freshwater lake analysis by using remote 

sensing methods. 

 

 

Figure 1.1: The pathway of solar radiation from top of atmosphere towards, in the water body and 

back to the sensor. Along the path above the water body, the radiation (1) is influenced by particles 

in the atmosphere (2), by reflection at emergent (3) and floating (4) vegetation and the water 

surface (5). In the water body, water constituents in shallow (6) and deep (7) water zones and the 

characteristic reflectance of SAV species (8) and sediment (9) influence the radiation. The radiation 

arriving at the sensor (10) is the basis for an analysis of lake bottom substrate types by remote 

sensing satellite images. The focus in this study lies on the subsurface processes highlighted in red. 
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1.4 Objectives  

Submerged macrophyte species show a high spatial, spectral and temporal variability. To 

gain information on species level, appropriate monitoring methods with a high spatial, 

spectral and temporal resolution are required. The knowledge of the annual spectral 

variation of macrophyte species is an important prerequisite. The phenologic 

development of each species depends on several environmental factors. For example, 

temperature, light availability and water constituent concentrations affect the lake 

ecosystem and therefore the spectral fingerprint of SAV species. The global climate 

change is expected to intensify this effect with high dynamics.  

In a stepwise approach, this thesis analyses the applicability of several analysis methods 

of lake bottom substrate types on data from different remote sensing systems and variable 

lake types. Daily and seasonal variations of the littoral bottom coverage have been 

investigated, as well as daily and seasonal spectral variations within individual 

macrophyte species. In situ based spectral measurements are assumed to be the most 

appropriated method to record the spectral variations of SAV species.  

In detail, the main objectives of this thesis were: 

- Mapping of seasonal variations of littoral bottom coverage in shallow water areas 

with a semi-empirical method of depth-invariant indices in a eutrophic lake by 

using a RapidEye time series 

- Spectral investigation on seasonal variations and species-specific growth and 

phenologic development of native and invasive submerged macrophytes 

- Development of species-specific reflectance models for several macrophyte 

species, covering the complete growing season 

- Investigation on annual effects of water temperature oscillations on species-

specific growth and phenologic development at the same macrophyte species and 

test sites 
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- Mapping of seasonal variations of littoral bottom coverage, even on species level, 

in shallow water areas in an oligotrophic lake using Sentinel-2 time series. The 

additional information of the species-specific phenologic development status is 

delivered by the reflectance models  



 

9 

 

2 Mapping submerged aquatic vegetation using 

RapidEye satellite data: the example of Lake 

Kummerow (Germany)  

A similar version of this chapter was published: Fritz C., Dörnhöfer K., Schneider T., Geist 

J., Oppelt N. Mapping submerged aquatic vegetation using RapidEye satellite data: the 

example of Lake Kummerow (Germany). Water 2017, 9, 510. Published online DOI: 

10.3390/w9070510 

2.1 Abstract 

Submersed aquatic vegetation (SAV) is sensitive to changes in environmental conditions 

and plays an important role as a long-term indictor for the trophic state of freshwater 

lakes. Variations in water level height, nutrient condition, light availability and water 

temperature affect the growth and species composition of SAV. Detailed information 

about seasonal variations in littoral bottom coverage are still unknown, although these 

effects are expected to mask climate change-related long-term changes, as derived by 

snapshots of standard monitoring methods included in the European Water Framework 

Directive. Remote sensing offers concepts to map SAV quickly, within large areas, and at 

short intervals. This study analyses the potential of a semi-empirical method to map 

littoral bottom coverage by a multi-seasonal approach. Depth-invariant indices were 

calculated for four Atmospheric & Topographic Correction (ATCOR2) atmospheric 

corrected RapidEye data sets acquired at Lake Kummerow, Germany, between June and 

August 2015. RapidEye data evaluation was supported by in situ measurements of the 

diffuse attenuation coefficient of the water column and bottom reflectance. The processing 

chain was able to differentiate between SAV and sandy sediment. The successive increase 

of SAV coverage from June to August was correctly monitored. Comparisons with in situ 

and Google Earth imagery revealed medium accuracies (kappa coefficient = 0.61, overall 

accuracy = 72.2%). The analysed time series further revealed how water constituents and 
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temporary surface phenomena such as sun glint or algal blooms influence the 

identification success of lake bottom substrates. An abundant algal bloom biased the 

interpretability of shallow water substrate such that a differentiation of sediments and 

SAV patches failed completely. Despite the documented limitations, mapping of SAV 

using RapidEye seems possible, even in eutrophic lakes. 

2.2 Introduction 

Monitoring submersed aquatic vegetation (SAV) is important, since occurrence and 

species composition are long-term indicators for the trophic state of freshwater 

ecosystems (Melzer 1999). SAV is sensitive to nutrient conditions, water temperature, 

water level and transparency (Skubinna et al. 1995, Penning et al. 2008, Søndergaard et al. 

2010, Poikane et al. 2015). Changing water temperatures can induce changes in plant 

species composition, expansion, and date of vegetation emergence and senescence (Short 

and Neckles 1999, Rooney and Kalff 2000, Silva et al. 2008). SAV is one of the biological 

quality elements (BQE) used in monitoring the ecological status of surface waters within 

the process recommended by the European Water Framework Directive (WFD). The 

present regulation requires mapping on a species level every third year, preferably by 

divers (European Commission 2000). Global change affects ecological balance in 

freshwater lakes. To detect changes at an early stage, Palmer et al. (2015) recommended 

more frequent observations of freshwater lakes. Remote sensing provides time- and cost-

effective methods to observe seasonal and annual changes in water quality and 

macrophyte coverage (George 1997, Malthus and George 1997, Dekker et al. 2002, Pinnel 

et al. 2004, Giardino et al. 2007, Yuan and Zhang 2008, Wolf et al. 2013, Roessler et al. 

2013a, Dörnhöfer and Oppelt 2016b). Palmer et al. (2015) concluded that changes in SAV 

covered areas can be detected by recently available remote sensing systems that are well 

suited to complement regular in situ sampling, as required by the WFD. The approach is 

expected to bridge observation gaps between snapshots of in situ mappings (Malthus and 

Karpouzli 2003, Palmer et al. 2015). High revisiting time and broad coverage of shallow 
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lakeshore areas of remote sensing data may compensate for the reduced information on 

species compared to mappings. 

The information provided by remote sensing relies on the interpretability of spectral 

signatures delivered by the employed systems. The vegetation/sediment ratio controls the 

spectral response from the lake bottom. At the beginning of the growing season, sediment 

dominates the spectral response. During this period, the organic overlay on the sediment 

such as detritus or epiphytes modifies the spectral response of the pure sediment 

(Armstrong 1993, Fyfe 2003, Williams et al. 2003, Silva et al. 2008, Wolf et al. 2013). SAV 

displays a highly dynamic appearance within the short vegetation period, which lasts 

approximately from mid-June to mid-September. Along with SAV growth, the spectral 

signature of the SAV changes. Varying leaf size, leaf orientation, pigment content and 

ratio within the vegetation period influence signal intensity and shape (Fyfe 2003, Silva et 

al. 2008, Wolf et al. 2013). After bottom coverage and biomass are at a maximum, the 

senescence phase begins. Pigment degradation and canopy structural changes 

characterize this stage (Wolf et al. 2013), especially the degradation of chlorophyll a (Chl 

a) content in ageing leaves affects the spectral signature (Gausman 1984, Gitelson et al. 

2002). The results from Pinnel et al. (2004) and Wolf et al. (2013) indicated that the 

different developmental patterns of competing macrophyte species along the vegetation 

period may be the key for differentiation on a species level.  

Hyperspectral imaging at close intervals along the vegetation period is best suited to 

provide necessary spectral information (Heege et al. 2003, Pinnel et al. 2004, Dekker et al. 

2011, Roessler et al. 2013a, Giardino et al. 2015). Nevertheless, operational monitoring as 

required by the WFD, needs high revisiting frequencies and large area coverage. Costs 

associated with hyperspectral imaging hinder such an approach. Palmer et al. (2015), 

Roessler et al. (2013a) and Dekker et al. (2011) suggested using multi-seasonal imaging by 

high spatial resolution multispectral satellite data in order to compensate for the reduced 

spectral information.  
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Multi-seasonal imaging is inevitably connected to the need to provide comparable data 

sets over time. This means that external factors influencing the spectral signal have to be 

corrected, i.e., changes in the atmosphere, water column and lake surface.  

A freely available, sensor-generic atmospheric correction algorithm for freshwater body 

correction is presently not available. For freshwater, atmospheric algorithms of land 

applications therefore are a trade-off between availability and accuracy of results. A 

widely used software is Atmospheric & Topographic Correction (ATCOR2) (Richter and 

Schläpfer), which proved to be helpful in the case of airborne hyperspectral data 

evaluations for water depth estimation (Gege 2014a), for water constituents and littoral 

bottom mapping (Giardino et al. 2015), but also for mapping SAV (Villa et al. 2015) with 

RapidEye data (Roessler et al. 2013a). 

Water constituents differ among water bodies and may change rapidly in concentration 

and composition within a water body. In combination with varying water depths, they 

strongly affect the signal. Different strategies exist to consider the attenuation by the 

water column, particularly bio-optical and semi-empirical modelling (Lyzenga 1978, 

Lyzenga 1981, Heege et al. 2003, Giardino et al. 2012, Gege 2014b). While bio-optical 

model inversion on the front end of water content and bottom type determination rely on 

sample spectra, semi-empirical modelling may be operated without such ‘a-priori’ 

information. Previous studies revealed that depth-invariant indices provide a possibility 

for the detection and distinguishing of bottom coverage of lakes and shorelines. 

Armstrong (1993) mapped seagrass and estimated its biomass at the shallow water areas 

in the Bahamas using Landsat Thematic Mapper in combination with field surveys and 

plant collection. Manessa et al. (2014) analysed WorldView2 imagery to study the 

distribution of seagrass and corals of shallow water coral reefs in Indonesia. Ciraolo et al. 

(2006) used the airborne Multispectral Infrared Visible Imaging Sensor (MIVIS) to detect 

the distribution of seagrass (Posidonia oceanica) in a coastal lagoon in Italy. To assess the 

littoral bottom coverage of inland waters, Brooks et al. (2015) and Shuchman et al. (2013) 

investigated SAV (notably Cladophora spec.) at the Laurentian Great Lakes. They used a 

depth-invariant SAV mapping algorithm (Shuchman et al. 2013) using Landsat Thematic 
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Mapper and Multispectral Scanner Imagery time series from the mid-1970s to 2012. 

Roessler et al. (2013a) applied depth-invariant indices to detect and distinguish SAV 

(Elodea nuttallii and Najas marina) at Lake Starnberg (Germany) using a time series of 

multispectral RapidEye data.  

Varying expansion behaviour in successive years due to shifts in vegetation periods, 

different water clarity, nutrient loading and lake substrate remobilization processes 

(Dekker et al. 2011) may influence detectability of SAV, all of which are unpredictable 

factors exacerbated by global warming. RapidEye data time series seem well appropriated 

for seasonal SAV mapping. The five-identical-system-constellation promises frequent 

observation opportunities, a prerequisite for phenologic change observations within the 

vegetation period. 

The present study had the core objective of testing the applicability of RapidEye satellite 

systems with their high spatial and low spectral resolution, to map SAV in shallow areas 

of freshwater lakes in a multi-seasonal approach. While in previous studies, oligotrophic 

lakes were investigated (Heege et al. 2003, Pinnel et al. 2004, Roessler et al. 2013a) in this 

case study, Lake Kummerow, a eutrophic lake in Mecklenburg-Western Pomerania (MV), 

North-East Germany, was chosen. A semi-empirical method by Lyzenga (1978, 1981) was 

used to correct the influence of the water column in the RapidEye time series during the 

vegetation period from June to August 2015. 

2.3 Materials and Methods 

2.3.1 Study site 

Lake Kummerow (53.808° N, 12.856° E) is a eutrophic lake, which developed as a 

proglacial lake in Germany’s Northern Lowland during the last ice age. Its wind-exposed 

location and relatively shallow depth (average depth: 8.1 m, maximum depth: 23.3 m) 

determine its polymictic mixing character (Wöbbecke et al. 2003). Sandy or muddy 

sediments dominate the substrate. Wöbbecke et al. (2003) described that macrophytes had 

disappeared in the 1960s. Detailed mappings of lakeshore vegetation and submersed 
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macrophytes were lacking until the 2000s. With the implementation of WFD, in situ 

mappings along transects were conducted in the years 2003, 2007, 2008, 2009, 2011 and 

2013. These inventories revealed the existence of different macrophyte populations in 

Lake Kummerow. In 2013, the growth limit was, on average, down to a depth of 2.5 ± 0.4 

m from the surface at the 15 transects mapped ((LU-MV 2015), Figure 2.1). Potamogeton 

pectinatus predominates macrophyte coverage in the northern part of the lake. The 

southern part shows a wider variety of pondweeds such as Potamogeton pectinatus, 

Potamogeton perfoliatus, Ceratophyllum demersum, Myriophyllum spicatum, and singularly 

occurring species (Elodea canadensis, Myriophyllum alterniflorum, Myriophyllum spicatum, 

Potamogeton obtusifolius und Potamogeton friesii). The overall evaluation of Lake 

Kummerow’s ecological status, performed with the software PHYLIB (version 4.1) 

(Schaumburg et al. 2011) based on the BQE macrophytes, revealed a ‘poor ecological 

status’ for the year 2013 (LU-MV 2015).  

 

Figure 2.1. The study area Lake Kummerow. (a) Share of macrophyte species used in ecological 

status assessment at each transect. The size of circles indicates the number of macrophytes found 

within each transect; (b) Length and ecological status of transects according to PHYLIB; (c) Date 

and position of the in situ measurement sites. Background shows a RapidEye true-colour-

composite (1st August 2015). Contains material © (2015) Planet Labs. All rights reserved. 
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2.3.2 Data collecting and processing 

Between June and August, we conducted several measurement campaigns at Lake 

Kummerow aiming to validate water quality from RapidEye satellite imagery. In situ 

measurements included water sample analyses and radiometric measurements with two 

submersible RAMSES spectroradiometers (TriOS 2016) at three to five sites in optically 

deep water, i.e., where the bottom was not visible (Figure 2.1). A Trimble Juno SB GPS 

device (2–5 m positional accuracy (Trimble 2016)) tracked global positioning system (GPS) 

coordinates of measurement sites during data acquisition. The measurement setup 

consisted of a floating frame in which both sensors were mounted on a depth adjustable 

bar so that the detectors were always at the same water depth ( ). One sensor (ARC-VIS) 

measured upwelling radiance,         [W m−2 nm−1 sr−1], while the other sensor (ACC-VIS) 

measured downwelling hemispherical irradiance         [W m−2 nm−1], at two depths 

below water, i.e., −0.21 m (  ) and −0.67 m (  ). At each measurement point, the ACC-VIS 

sensor was lifted above the water surface for one additional measurement of   
     . The 

sensors collected radiometric data between 325 nm and 900 nm in 3.3 nm intervals. Single 

measurements were linearly interpolated to 1 nm intervals. Remote sensing reflectance 

   
      [sr−1] was calculated according to Equation (2) (Mobley 1999). 

   
       

     

  
     

 (2) 

For determining the water-leaving radiance,      ,         measurements from the two 

depths were linearly extrapolated to just beneath the water surface using the attenuation 

coefficient of upwelling radiance (    ) [m−1] and corrected for air-water interface 

(Mobley 1999); 
 

  
  = constant = 0.54,   = refractive index of water, t = Fresnel reflectance of 

air-water interface; Equation (3). 

                                                      (3) 

Median, 25% and 75% quartiles of    
      were resampled to the RapidEye spectral 

response curves and used for the validation of ATCOR2 atmospheric correction. The 
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vertical attenuation coefficient of        ,       [m−1] was calculated using the equation by 

Maritorena (1996) [Equation (4)]. 

               
   

         
         

 

     
 

(4) 

  (   λ) and   (   λ) in Equation (4) were the median spectra of around 30 measurements. 

Retrieved       spectra were resampled to the RapidEye spectral response curves and 

averaged from all measurement sites for each measurement day. Additional irradiance 

reflectance spectra (       [-]) of bare sediment and vegetation (Potamogeton pectinatus) 

were collected ex situ with an ASD LabSpec4515 (Analytical Spectral Devices Inc.; range: 

350 nm to 2500 nm; interval: 1 nm). Following the method of Giardino et al. (2015) SAV 

was harvested and its spectral response was then being measured at the beach (ex situ). 

Mean and standard deviations of single measurements were computed and resampled to 

RapidEye spectral response curves.  

2.3.3 RapidEye Data and Processing 

RapidEye Science Archive (RESA) provided multispectral L3A RapidEye data (included 

bands: blue 440–510 nm, green 520–590 nm, red 630–690 nm, red-edge 690–730 nm and 

near-infrared 760–880 nm) acquired at Lake Kummerow on 12th June, 1st July, 1st August 

and 7th August 2015. L3A products included a standard geometric correction resampled 

to a 5×5 m² pixel size (coordinate system: WGS 1984, UTM Zone 33 N); units were at-

sensor radiances [W m–2 nm−1]. Atmospheric correction (including atmospheric absorption 

and scattering, sensor and solar geometry) from at-sensor radiances to bottom of 

atmosphere irradiance reflectance [-] was conducted using ATCOR2 (Richter 1997, Richter 

and Schläpfer 2016) for each date. ATCOR2 irradiance reflectance was converted to field 

measurement-comparable    
     , followed a division by pi (Mobley et al. 2015). ATCOR2 

automatically adapted visibility and corrected for adjacency effects with an adjacency 

range of 1 km. This effect was particularly strong at boundaries of surfaces with 

contrasting irradiance reflectance intensities, such as land and water above 700 nm 

wavelength. The aerosol model chosen was maritime mid-latitude summer, since north-
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easterly or north-western wind directions predominated during image acquisition. Thus, 

maritime aerosols from the Baltic Sea strongly influenced the study area. ATCOR2 

estimated aerosol optical thickness at 550 nm (AOT 550 nm) on a per pixel basis applying 

the dense dark vegetation approach (Kaufman et al. 1997). Moderate-resolution Imaging 

Spectroradiometer (MODIS) products served as a basis for evaluating the ATCOR2 

results. Specifically, calculated AOT values were compared with MODIS AOT (Levy et al. 

2015a, Levy et al. 2015b) acquired close to RapidEye image acquisition time. Specific 

settings of atmospheric correction and weather conditions close to image acquisition were 

summarized (Table 2.1). 

Table 2.1. Settings of atmospheric correction, solar and sensor geometry and weather conditions 

close to image acquisition (± 1 hour). 

Acquisition date Acqui

sition 

time 

(UTC) 

Satellite Wind 

direction 

[°] 

Wind 

speed 

[m s-1] 

Solar 

zenith 

[°] 

Viewing 

angle [°] 

Aerosol model Calculated 

visibility 

[km] 

In situ 

data 

12 June 2015 10:53 RE-3 50-80 2-3 30.6 12.9 Maritime mid-

latitude 

summer 

45.6 - 7 

days 

01 July 2015 10:52 RE-3 40-70 2-3 30.7 14.8 Maritime mid-

latitude 

summer 

111.7 + 1 day 

01 August 2015 11:03 RE-5 60 2-5 35.7 2.9 Maritime mid-

latitude 

summer 

88.9 + 3 

hours 

07 August 2015 11:11 RE-1 290-350 1-6 37.2 6.7 Maritime mid-

latitude 

summer 

25.1 ± 2 

hours 

To evaluate the performance of atmospheric correction, atmospherically corrected 

RapidEye data were also compared with in situ measured    
      spectra. Arithmetic 

means and standard deviations were calculated from atmospherically corrected RapidEye 
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data (   
     ) based on a 5×5 pixel window surrounding the pixel which corresponded to 

the GPS coordinate of the respective measurement site. Accuracy indicators were 

calculated for bands 1 to 4, including root-mean-squared error (RMSE), Pearson’s 

correlation coefficient (r), and percentage bias (pbias) using the R package hydroGOF 

(Zambrano-Bigiarini 2014). RMSE gives an indication of the absolute difference between 

in situ and atmospherically corrected spectra, r assesses accordance in shape, and pbias 

provides a relative statement. 

Distinguishing water and land area was conducted by thresholding RapidEye near the 

infrared band (RapidEye band 5; central wavelength 805 nm). Pixels with    
      values 

higher than 0.16 sr−1 were classified as land, masked and not further analysed. Water 

pixels were further processed by applying the deep water corrected Red Index (  ) 

(Spitzer and Dirks 1987) [Equation (5)]. The    value separates shallow water areas from 

optically deep water.  

    
   

            
         

   
       

 (5) 

with    
        representing remote sensing the reflectance value of each pixel in 

the red, and 

   
           representing red remote sensing reflectance over optically deep 

water. 

   depends on the water constituents and was empirically defined for Lake Kummerow 

with a threshold at 0.43. For this, water pixels with a    higher than 0.43 were defined as 

shallow water and included in the further analysis. 

Varying water constituent concentrations and water depths influence the signal received 

by sensors. To retrieve information about littoral bottom types, the influence of the water 

column at different water depths had to be considered. Absorption by water and its 

constituents reduce the availability of radiation with increasing depth, and the fraction of 

scattered radiation superimposes the radiation reflected by the lake bottom surface type. 

Depth-invariant indices (    ) calculated from two spectral bands   and   are an option to 
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reduce the influence of water constituents, and to investigate different littoral bottom 

types. To reduce the influence of the water column in satellite data, we applied the 

method of Lyzenga (1981) considering that the attenuation coefficients        and   (  ) 

accounted for the present water constituent conditions in the water column and the 

absorption of the water column itself. Thus, the spectral features of the littoral bottom 

became visible.    
      was linearized for each band using the natural logarithm of each 

spectral band [Equation (6)]. The logarithm was calculated for shallow water remote 

sensing reflectance [   
      ;   

  (  )] from which deep water remote sensing reflectance 

[   
  (    )    

  (    )] was subtracted. Lyzenga’s equation [Equation (6)] was applied to 

each RapidEye scene and to ex situ measurements of sediment and aquatic vegetation. 

      
  (  )    (   

          
  (    ))           (   

  (  )     
  (    ))

√      
    (  ) 

 (6) 

 : RapidEye band  , 

 : RapidEye band  , where     ,  

      ;  (  ): Diffuse attenuation coefficients of       at band   and  , 

   
          

  (  ): Remote sensing reflectance at band   and   of each pixel, 

   
  (    )    

  (    ): Deep-water remote sensing reflectance at band   and  .  

2.3.4 Evaluation of SAV mapping 

To obtain in situ data on macrophyte distribution at the northern end of the lake, we 

conducted lake substrate mappings in shallow water (< 0.8 m water depth) close to the 

shoreline during the summer of 2015. These mappings served to evaluate the calculated 

index values, the size, position, and type of the lake bottom substrate. We mapped 21 

easily accessible patches close to the shoreline with homogenous substrate or SAV 

coverage using a Trimble Juno SB GPS device (Trimble 2016). Mapping homogeneous 

patches in situ at least three times larger than the pixel size as suggested by Dekker et al. 

(2011) was limited to a small extent, particularly for SAV covered areas. Google Earth 
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imagery (acquisition date: 9th August 2015) therefore served as a further evaluation basis. 

By visually comparing the mapped areas with patterns in Google Earth imagery, we 

could digitise larger patches (dense SAV coverage, mixed coverage SAV dominated, 

mixed coverage sediment dominated, pure sediment) better suited for a comparison with 

RapidEye results. We randomly chose five clearly identifiable patches per coverage class. 

The patches of dense SAV/pure sediment were chosen to be smaller (patch size ~500 m²) 

than patches of mixed classes (patch size ~800 m²) to avoid mixing. We calculated an error 

matrix as cross-tabulations between validation data and categorised depth-invariant 

index pixels. Cohen’s kappa and overall accuracy were calculated to assess the accuracy 

of the entire map as well as class specific accuracy measures (producer’s and user’s 

accuracy) (Congalton 1991, Foody 2002).  

2.4 Results 

The spectral signatures of SAV and sediment revealed clear differences of irradiance 

reflectance for each wavelength region. For each acquisition date, several combinations of 

depth-invariant indices indicated a distinct discrimination between the two considered 

littoral bottom substrates. The results further demonstrated that Rapid Eye was able to 

map seasonal changes in SAV coverage. 

2.4.1 Differentiation of littoral bottom coverage 

Mean       for each measurement date, resampled to RapidEye, corresponded well in 

shape and intensity (Figure 2.2). Water constituents derived from in situ taken samples 

[suspended particulate material (SPM), Chl a, absorption by coloured dissolved organic 

matter (cDOM)] and Secchi depths varied for acquisition dates. Between 1st July and 7th 

August, Chl a concentration increased, while Secchi depth and SPM concentration 

decreased (Table 2.2). 
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Table 2.2. Average water constituent concentrations and number of measurement points at in situ 

campaigns close or concurrently to RapidEye data acquisition. 

RapidEye 

Acquisition 

Date 

In situ Data 

Collection 

RAMSES 

Measurement 

Points 

Secchi Depth [m] 
SPM 

[g·m−3] 
Chl-a [mg·m−3] 

acDOM(440) 

[m−1] 

12 June 2015 5 June 2015 3 3.8 ± 0.3 0.7 ± 0.6 1.4 ± 0.3 1.38 ± 0.05 

1 July 2015 2 July 2015 5 2.3 ± 0.7 1.3 ± 1.2 11.6 ± 4.1 1.28 ± 0.06 

1 August 2015 1 August 2015 1 No measurement 0.7 ± 0.3 1.7 ± 1.8 1.28 ± 0.00 

7 August 2015 7 August 2015 4 1.8 ± 0.5 3.6 ± 0.5 16.7 ± 2.9 1.27 ± 0.11 

Mean ex situ irradiance reflectance spectra of bare sediment and dense SAV were 

resampled to RapidEye bands (Figure 2.3a). The spectra clearly differed in intensity and 

shape. Calculating depth-invariant indices revealed a good discrimination between dense 

SAV and bare sediment for several combinations (    ,     ,     ,     ) (Figure 2.3b). For 

each acquisition date, distinct thresholds for bare sediment and dense SAV were 

calculated. Depth-invariant indices      and      revealed a clear differentiation, but these 

band combinations were omitted due to the influence of cDOM. Even though the 

difference between dense SAV and the bare sediment of index      was higher, index      

between RapidEye band 3 (657 nm) and band 4 (710 nm) was chosen for mapping SAV 

coverage. The influence of the atmosphere in the adjacent red (band 3) and red edge (band 

4) region of the spectra was less than between green (band 2) and red edge bands. In 

particular,      covered a characteristic vegetation feature, the red edge, i.e., the passage 

where reflectance strongly increases between visible red and near infrared wavelengths. 

Due to strong attenuation of water in near-infrared wavelengths (Figure 2.2) this feature 

is normally superimposed by water absorption (Armstrong 1993). To minimize the 

influence of water absorption       was included in the index calculation. Thus, the 

influence of the exponential decline of radiation with increasing water depth can be 

omitted (Kirk 1994). Depth-invariant index      revealed clearly different index values for 

the two substrate types. Based on ex-situ measured spectra,      values around 0 indicated 
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dense coverage with SAV and values above 0.8 indicated bare sediment (Figure 2.3b). 

Values in between these thresholds referred to pixels with a mixed coverage of SAV and 

sediment. 

 

Figure 2.2. Mean      , retrieved from         in situ measurements of Lake Kummerow for four 

RapidEye scenes. Error bars indicate standard deviation. 

 

 

Figure 2.3. (a) Irradiance reflectance of submerse aquatic vegetation (SAV) and bare sediment, 

measured ex situ and resampled to RapidEye. Error bars indicate standard deviation; (b) Depth-

invariant indices for sediment and SAV for the different days, calculated according to the equation 

of Lyzenga (1981) (Equation (6)). 
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2.4.2 Seasonal changes of littoral bottom coverage 

Due to its extensive shallow water area, the northern part (Figure 2.4b) of Lake 

Kummerow seemed most suitable for analysing bottom substrate (Figure 2.4a). Different 

bottom colours (bright and dark) and structures (e.g., bright triangle, Figure 2.4b, white 

box) were visible in the true-colour composite and indicated varying bottom coverage. 

The depth-invariant index      (Figure 2.4c - f) illustrated changes in SAV coverage at the 

northern littoral. The SAV coverage was scaled between 0% (equivalent to bare sediment, 

red) and 100% (equivalent to complete macrophyte cover, green). Invalid pixels (black) 

were those upon which the depth-invariant index could not be executed.  

In the RapidEye data set from 5th June (Figure 2.4c), most parts of the shallow area were 

classified as sediment. A few areas displayed mixed pixels with values between the 

thresholds of bare sediment and dense SAV. First, distinct SAV patches appeared in the 

data set from 1st July (Figure 2.4d) close to the shoreline (Figure 2.4, box A). A small strip 

of bare sediment was present at the transition to the deep water region (Figure 2.4d, box 

B). On 1st August, SAV patches spread and formed large SAV-covered areas (Figure 2.4e, 

box A and B); most of the former bare sediment areas changed their index value 

indicating mixed pixels now. Patches predominated by sediment, such as the linear 

structure near deep water (Figure 2.4d, box C), expanded as well. In the northern part, a 

triangular sediment structure (Figure 2.4d, box D) became apparent. On 7th August 

(Figure 2.4f), a separation between deep and shallow water failed. The index classified 

most deep water pixels as sediment. The actual shallow water appeared as a 

heterogeneously mixed area except for the sediment triangle in the north and dense SAV 

patches near the shoreline. 
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Figure 2.4. Seasonal changes in littoral bottom coverage of Lake Kummerow (a) northern littoral; 

(b) illustrated by the depth-invariant index Y3,4; (c) 12th June 2015; (d) 1st July 2015; (e) 1st August 

2015; (f) 7th August 2015. Bare sediment covered areas are displayed in red, dense SAV in green, 

mixed areas in yellow. Land and deep water areas are masked (except for 7th August 2015 where 

only land areas have been masked successfully), invalid pixels are displayed black. Contains 

material © (2015) Planet Labs. All rights reserved. 
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2.4.3 Evaluation of SAV mapping 

To evaluate the depth-invariant index classification, local scale in situ mappings covering 

diverse structures of littoral bottom and Google Earth imagery (acquisition date: 9th 

August) served as a basis (Figure 2.5a). Mapping during summer months revealed that 

SAV started to grow sparsely at the beginning of June. In accordance with the official 

WFD monitoring (conducted in 2013, Figure 2.1a), Potamogeton pectinatus was the 

predominating patch-forming species. Patches mapped as pure sediment corresponded to 

bright areas visible in the Google Earth image. Patches mapped as pure SAV coverage 

(Potamogeton pectinatus) mainly matched with dark areas. In particular, at small patches, 

problems associated with GPS positional accuracy became apparent. Mixed coverages 

with dominating sediment showed patterns similar to ripple marks, i.e., an approximately 

10 m wide sediment strip followed an approximately 5 m wide SAV strip (Figure 2.5a). 

The validation areas were digitised referring to the following categories: dense SAV, 

mixed coverage dominated by SAV, mixed coverage dominated by sediment and pure 

sediment (Figure 2.5b). Figure 2.5c displays the categorized depth-invariant index      of 

1st August. We determined thresholds between classes based on ex situ measured spectra 

and in situ mapped patches similar to Brooks et al. (2015). Table 2.3 lists the tabulated 

error matrix and accuracy measures. SAV mapping in the northern part of the lake 

revealed an overall accuracy of 72.2% and a kappa coefficient of 0.61. 
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Figure 2.5. Evaluation of SAV mapping with (a) In situ observed littoral bottom coverage 

highlighted in Google Earth imagery (acquisition date: 9th August, Image © 2017 TerraMetrics); (b) 

Reference areas based on Google Earth imagery and transferred to RapidEye (acquisition date: 1st 

August); (c) Categorised depth-invariant index Y3,4 of RapidEye data. Contains material © (2015) 

Planet Labs. All rights reserved. 
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Table 2.3. Error matrix and class accuracy measures of categorized     (1st August) based on 

Google Earth imagery (9th August) reference data. The number of reference pixels is about 2.5% of 

the investigated area 

Class 

Reference Data (number of pixels) 
User's 

Accuracy 

[%] Dense SAV 
Mixed SAV 

Dominated 

Mixed Sediment 

Dominated 

Pure 

Sediment 
Sum 

Depth-

invariant 

index data 

[number of 

pixels] 

dense SAV 26 9 0 0 35 74.3 

mixed SAV 

dominated 
19 106 19 1 145 73.1 

mixed Sediment 

dominated 
3 48 113 8 172 65.7 

pure sediment 0 1 25 101 127 79.5 

Sum 48 164 157 110 479 

 

Producer's accuracy [%] 54.2 64.6 72.0 91.8 

  

masked 43 4 0 0 47 

 

2.4.4 Atmospheric correction 

Between the three evaluation dates, comparing in situ and RapidEye    
      spectra 

revealed differences in both shape and intensity (Figure 2.6). Largest discrepancies 

occurred in band 5, which consistently showed higher RapidEye than in situ    
      

values. For most measurement sites, in situ and RapidEye    
      spectra correlated 

reasonably in shape between band 1 and 4 (r > 0.6). ATCOR2 overestimated absolute 

   
      values except for 1st August and 2nd July (measurement site 1). On 2nd July, 

calculated RMSE and percentage bias were low for sites 3–5 on this date, indicating a 

good correspondence in intensities between atmospherically corrected and in situ 

measured data (Table 2.4). On 1st August, in situ measurements were available from one 

site only, over bare sediment in optically shallow water (around 1.5 m water depth). On 
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this day, atmospherically corrected RapidEye    
      spectra showed lower values 

compared to the in situ data, but corresponded well in shape (Figure 2.6b). On 7th 

August, ATCOR2 corrected RapidEye    
      spectra were significantly higher than in situ 

data and showed the highest pbias and RMSE (Table 2.4). Evaluation of this date 

indicated an erroneous atmospheric correction; only measurement site 5, located close to 

shallow water, showed acceptable correspondence in    
      shape and intensity (Figure 

2.6c). The second indicator of atmospheric performance was ATCOR2-calculated AOT 

(550 nm) in comparison to the MODIS AOT product. During the investigation period, 

AOT (550 nm) was highest on 7th August; lowest values occurred on 1st August. AOT 

(550 nm) values from MODIS products showed the same tendency between acquisition 

dates (Table 2.5). Retrieved values slightly differed between MODIS product and 

ATCOR2-RapidEye. 

 

Figure 2.6. Comparison between resampled in situ measured median    
      spectra and RapidEye 

5 × 5 pixel environment mean    
      spectra. Error bars indicate standard deviation (RapidEye) 

and 25% resp. 75% percentile (in situ). (a) In situ data acquisition on 2nd July and RapidEye 

acquisition on 1st July; (b) 1st August; (c) 7th August. 
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Table 2.4. Accuracy measures of each measurement site calculated between corresponding 

RapidEye 5 × 5 pixel environment mean and resampled in situ measured    
      median spectra 

(bands 1- 4). 

RapidEye 

Acquisition Date 

In situ Data 

Acquisition Date 

Measurement 

Site 

RMSE 

[sr−1] 
r [-] 

Percentage Bias 

[%] 

1 July 2015 2 July 2015 1 0.0017 0.82 −32.2 

1 July 2015 2 July 2015 2 0.0013 0.64 59.4 

1 July 2015 2 July 2015 3 0.0006 0.81 3.8 

1 July 2015 2 July 2015 4 0.0007 0.74 4.6 

1 July 2015 2 July 2015 5 0.0007 0.74 0.6 

1 August 2015 1 August 2015 1 0.0023 0.88 −19.8 

7 August 2015 7 August 2015 1 0.0067 0.68 281.1 

7 August 2015 7 August 2015 2 0.0050 0.58 87.7 

7 August 2015 7 August 2015 3 0.0071 0.52 252.2 

7 August 2015 7 August 2015 4 0.0058 0.71 187.3 

7 August 2015 7 August 2015 5 0.0026 0.95 27.7 
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Table 2.5. Mean and standard deviation of AOT at 550 nm values retrieved from RapidEye data 

during ATCOR2 atmospheric correction in comparison to MODIS product AOT at 550 nm values 

(Levy et al. 2015a, Levy et al. 2015b) in a 3 × 3 (30 × 30 km²) pixel environment covering the study 

area. 

Date 

MODIS 

Acquisition 

Time 

(UTC) 

AOT 

MODIS 

RapidEye 

Acquisition 

Time 

(UTC) 

AOT 

ATCOR2 

RMSE 

[-] 

Percentage 

Bias [%] 
r [-] 

12 June 2015 TE 10:25 0.119 ± 0.037 10:53 0.181 ± 0.005 

0.072 −13.5 0.94 

12 June 2015 AQ 12:10 0.174 ± 0.043 10:53 0.181 ± 0.005 

1 July 2015 TE 9:15 0.127 ± 0.019 10:52 0.116 ± 0.009 

1 August 2015 AQ 12:00 0.119 ± 0.048 11:03 0.102 ± 0.002 

7 August 2015 TE 11:15 0.390 ± 0.017 11:11 0.301 ± 0.003 

7 August 2015 AQ 13:00 0.437 ± 0.045 11:11 0.301 ± 0.003 

2.5 Discussion 

The present study tests the applicability of RapidEye satellite data with its high spatial 

resolution and its high revisiting frequency to map SAV in shallow areas of eutrophic 

freshwater lakes. The identification of SAV patches and the monitoring of the phenologic 

development of SAV was successful, even though the atmospheric correction of RapidEye 

satellite data was conducted using ATCOR2. 

2.5.1 Differentiation and seasonal changes of littoral bottom coverage 

The results indicated that multi-seasonal RapidEye data are suitable for monitoring 

changes in littoral bottom coverage as previously proposed by several authors (Shuchman 

et al. 2013, Wolf et al. 2013, Roessler et al. 2013a, Brooks et al. 2015, Giardino et al. 2015). 

Our approach follows several studies which successfully applied depth-invariant indices 
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to discriminate between SAV and sediment (Shuchman et al. 2013, Roessler et al. 2013a, 

Brooks et al. 2015). In our study, the depth-invariant index     , combining RapidEye band 

3 and 4, performed well in mapping the general trend of SAV expansion within the 

observation period (Figure 2.4c-f). In the shallow water zone, SAV favour calm regions 

near the shoreline resulting in dense patches while sediment dominates in areas with high 

disturbance due to wind (Koch 2001), waves and human activities.  

High wind and wave activities influenced the expansion of macrophytes at the beginning 

of the vegetation period. On 12th June, sediment covered most of the lake bottom. 

Vegetation was sparsely distributed; field observation confirmed the growth of SAV at the 

beginning of June. Moreover, detritus, plant residuals, epiphytes, or sparsely growing 

SAV influenced the spectral signal, resulting in an index value of mixed coverage 

(Armstrong 1993, Fyfe 2003, Williams et al. 2003, Silva et al. 2008, Wolf et al. 2013).  

From 1st July to 1st August, the SAV covered area increased, especially at calm regions 

near the shoreline (Figure 2.4d, box A; Figure 2.4e, box A and B), where the spectral 

signature showed a vegetation dominated signal. Sediment dominated highly disturbed 

areas such as the beach (Figure 2.4e, box D). The linear sediment zone near the deep water 

border (Figure 2.4d, box B; Figure 2.4e, box C) may be attributed to wave pounding. 

Limitations of the index method appeared to be related mainly to the concentration of 

optically active water constituents and the       measurement. Within one week (1st 

August–7th August), SPM and Chl-a concentrations in the water column increased 

strongly; the water transparency decreased accordingly (Table 2.2). Low Secchi depths 

indicated high light attenuation in the water column. An algal bloom, as imaged on 7th 

August 2015 (Figure 2.4f and Dörnhöfer et al. (2018)) hampered a successful 

discrimination between deep and shallow water;    failed to separate shallow and deep 

water. Therefore, the depth-invariant index was calculated for the entire water body. 

During the algal bloom, surface-floating algae increased RapidEye    
            values 

over the entire lake. In situ       measurements (Figure 2.2), however, remained at a 

similar intensity. Water samples and measurement setup may have caused this 

discrepancy: water samples were collected close to the water surface. Floating algae 
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therefore may have influenced the water samples and satellite signals. For       

measurements the sensors were installed on a floating device which may have partially 

removed the algae carpet. The resulting       values would therefore have failed to 

represent actual water conditions. Non-representative       values resulted in high 

RapidEye      values, which in turn indicated high sediment coverage (Figure 2.4f). 

Consequently, extreme events such as algal blooms have to be considered, and data 

collected during such events have to be carefully checked for such a bias.  

2.5.2 Evaluation of SAV mapping 

Validating SAV distribution and coverage is a challenging task. The littoral bottom 

coverage is often difficult to access. In situ observations therefore are conducted on 

selective transects by divers or from boat and therefore cover only small areas hardly 

transferable to the satellite level. GPS inaccuracies and a system that is in motion 

introduce positional errors to the observation. Several studies therefore evaluate 

mappings qualitatively (Giardino et al. 2007, Heblinski et al. 2011, Roessler et al. 2013a, 

Giardino et al. 2015). Studies which determined discrete classes (e.g., less dense SAV, bare 

substrate, submerged, floating vegetation) collected field data by boat or ancillary maps to 

tabulate error matrices and associated accuracy measures (Dogan et al. 2009, Hunter et al. 

2010, Shuchman et al. 2013, Bolpagni et al. 2014, Brooks et al. 2015). Dekker et al. (2011) 

recommend a minimum patch size of at least three times the pixel size covering 

homogenous coverage. The limited overview during in situ mapping, however, hampers 

identifying homogenous patches of at least 75 m². We therefore followed an approach 

which recently proved valuable in remote sensing studies on land use/cover (Bey et al. 

2016, Manakos et al. 2017, Wang et al. 2017), i.e., a comparison with Google Earth 

imagery. We verified the visual interpretation of Google Earth imagery with in situ 

mapped patches. The spatial resolution of Google Earth images is higher than RapidEye, 

the information (e.g., species, bottom type) is less detailed than in situ mappings, but 

grants a spatial overview. Upscaling the extent of in situ data by means of very high 

spatial resolution aerial or Google Earth imagery may help to overcome the limitation 

associated with comparing limited in situ and satellite data. 
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Other studies conducting accuracy assessments (Dogan et al. 2009, Hunter et al. 2010, 

Shuchman et al. 2013, Bolpagni et al. 2014, Brooks et al. 2015, Villa et al. 2015) show kappa 

coefficients ranging between 0.57 and 0.92. The result of our study is at the lower end of 

the scale (kappa=0.61). Producer’s and user’s accuracies highlight varying performance of 

the different classes. Bare sediment is easy to detect and performs best (Table 2.3). 

Reference patches of dense SAV often include land-masked pixels; dense SAV that grew 

up to the water surface developing surface floating leaves may have led to erroneous land 

masking. Mixed coverage dominated by SAV partially mixes up with mixed coverage 

dominated by sediment. A clear differentiation between both classes is difficult for both 

Google Earth digitisation and     . The spatial resolution of RapidEye misses the 

structures similar to ripple waves, which are clearly apparent in the Google Earth imagery 

(Figure 2.5).  

Bridging the gap between in situ and satellite mapping via Google Earth is only possible 

when near-term imagery is available as for the RapidEye data set from 1st August 2015. 

The evaluation of at least one data set offers a first impression of the applied method’s 

accuracy. To evaluate growth patterns, mapping of pilot sites is necessary close to satellite 

acquisitions. Assessing the plausibility of growth patterns or recurring uniform patches 

(e.g., triangular structure of sediment) may be a further option for a qualitative 

evaluation. 

2.5.3 Atmospheric correction 

To adjust and evaluate the atmospheric correction process of the RapidEye data with 

ATCOR2, two different approaches were employed, i.e., the comparison with in situ 

submersible spectroradiometer data and the MODIS products as delivered by the NASA 

standard processing chain. Both methods are prone to errors and contain uncertainties; 

nevertheless, they allowed for a complementary evaluation of results. 

Simultaneously taken in situ and remote sensing data sets are considered the most reliable 

proof for a successful atmospheric correction. The empirical line approach (Smith and 

Milton 1999), for instance, is based on this assumption. The policy of the RapidEye 
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company (later BlackBridge, now Planet Labs) gave priority to commercial orders and, 

prohibited a precise acquisition planning and field data collection. For this reason, 

evaluation of atmospheric correction was only possible based on a relatively small in situ 

data set. Simultaneous in situ and satellite measurements were available solely on 1st and 

7th August; on 1st July a time gap of one day existed.  

In situ data included measurements of upwelling radiance below water surface, which are 

then extrapolated to above water surface reflectance (   
      . Water surface effects, such 

as sun and sky glint, therefore remained unaddressed in the resulting in situ    
      

spectra. Contrarily, two overlaying phenomena probably contaminated the ATCOR2 

atmospherically corrected    
      spectra: sky/sun glint and insufficiently addressable 

adjacency effects. The latter, in particular, affects bands in wavelength regions above 700 

nm (Santer and Schmechtig 2000, Kay et al. 2009, Sterckx et al. 2011). The spectral 

signature of water is influenced by additional radiation from neighbouring, vegetated 

land surfaces with much higher reflectance in these wavelengths. This effect may 

contribute to water pixels up to 5 km away from the shoreline ((Santer and Schmechtig 

2000, Sterckx et al. 2011), Figure 2.6a and c, i.e. bands 3-5). On 1st August, only one in situ 

data set existed; in this case, however, an almost perfect match in shape indicated a good 

performance of atmospheric correction at least at this site in optically shallow water. 

During the algal bloom (7th August), below-water surface in situ radiometric 

measurements may not have captured the actual conditions at the water surface; surface 

cum algae, however, seem to dominate the RapidEye signal leading to be observed 

differences between in situ and RapidEye    
      spectra. 

Due to the limited match with in situ measurements, MODIS AOT products served as a 

second indicator for evaluating the atmospheric correction. Overall, ATCOR2 AOT of 

RapidEye data was slightly lower compared to MODIS (pbias = − 13.5%) but are highly 

comparable (r = 0.94). Low AOT (550 nm) values (Table 2.4) indicated clear atmospheric 

conditions. On these days, RapidEye data matched fairly well with in situ    
      spectra. 

On 7th August (Figure 2.6c), AOT values at 550 nm were relatively high, i.e., 0.301 for 

corrected ATCOR2-RapidEye data and 0.390 for the MODIS product; both values 
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indicated a hazy, dense atmosphere and a consequently difficult correction of 

atmospheric effects (e.g., absorption and scattering).  

The differences between in situ and atmospherically corrected spectra reflected the 

challenges for this correction procedure, which were further aggravated by an algae 

bloom. The successful differentiation of optically deep and shallow water and subsequent 

delineation of macrophytes/sediment coverage, however, depended on the performance 

of atmospheric correction. Further improvements of strategies and sensor-generic 

software packages for freshwater lake atmospheric correction, therefore, are necessary 

when envisaging a systematic SAV monitoring. Until such algorithms are available 

comparisons with in situ measurements help to consider issues related to atmospheric 

correction when interpreting SAV mapping.  

2.6 Conclusions 

This study used four ATCOR2 corrected RapidEye data sets (June to August 2015) to map 

SAV in the shallow water areas of the eutrophic Lake Kummerow (North-Eastern 

Germany). Radiometric field measurements supported parameterising a depth-invariant 

index, which reduced the influence of the overlaying water on the bottom signal. The 

index enabled mapping the growth and spatial distribution of SAV. Growth patterns 

showed the expected spatio-temporal development of SAV. The index, however, failed 

during a surface scum forming algal bloom. Gathering reference data for quantitative 

evaluations is a challenge; comparisons with field mappings and Google Earth imagery 

revealed realistic and sufficient accuracies (kappa coefficient = 0.61, overall accuracy = 

72.2%) in comparison to other studies. The spectral resolution of RapidEye may be 

insufficient to gain information on species level especially for mono-temporal data 

investigations. Implementing ecologic and physiological characteristics, such as 

phenologic or structural changes of SAV and information on species-specific canopy 

height, may help to identify species. In view of global warming, multi-year time-series 

may obtain information about trends in SAV coverage. Recent data may help to detect 

areas, which undergo changes; targeted diver mappings may reveal specific details. Thus, 
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satellite systems with high spatial resolution and revisiting frequency offer the potential 

to support in situ macrophyte surveys as conducted within the WFD.  
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3 Seasonal variation in spectral response of submerged 

aquatic macrophytes: A case study at Lake Starnberg 

(Germany)  

A similar version of this chapter was published: Fritz C., Schneider T., Geist J. Seasonal 

variation in spectral response of submerged aquatic macrophytes: A case study at Lake 

Starnberg (Germany). Water 2017, 9, 527. Published online DOI: 10.3390/w9070527 

3.1 Abstract 

Submerged macrophytes are important structural components of freshwater ecosystems 

that are widely used as long-term bioindicators for the trophic state of freshwater lakes. 

Climate change and related rising water temperatures are suspected to affect macrophyte 

growth and species composition as well as the length of the growing season. Alternative 

to the traditional ground-based monitoring methods, remote sensing is expected to 

provide fast and effective tools to map submerged macrophytes at short intervals and 

over large areas. This study analyses interrelations between spectral signature, plant 

phenology and the length of growing season as influenced by the variable water 

temperature. During the growing seasons of 2011 and 2015, remote sensing reflectance 

spectra of macrophytes and sediment were collected systematically in situ with 

hyperspectral underwater spectroradiometer at Lake Starnberg, Germany. The 

established spectral libraries were used to develop reflectance models. The combination of 

spectral information and phenologic characteristics allows the development of a 

phenologic fingerprint for each macrophyte species. By inversion, the reflectance models 

deliver day and daytime specific spectral signatures of the macrophyte populations. The 

subsequent classification processing chain allowed distinguishing species-specific 

macrophyte growth at different phenologic stages. The analysis of spectral signatures 

within the phenologic development indicates that the invasive species Elodea nuttallii is 
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less affected by water temperature oscillations than the native species Chara spp. and 

Potamogeton perfoliatus. 

3.2 Introduction 

Macrophytes are important structural components and sensitive bioindicators of the long-

term trophic state of freshwater lakes (Melzer 1999). Occurrence and species composition 

depend on the nutrient conditions, water level, water temperature and transparency 

(Skubinna et al. 1995, Melzer 1999, Penning et al. 2008, Søndergaard et al. 2010, Poikane et 

al. 2015). Changing environmental conditions affect variations in macrophyte species 

composition, distribution, vegetation begin and senescence (Short and Neckles 1999, 

Rooney and Kalff 2000, Silva et al. 2008). A regular update of the macrophyte index 

(Melzer 1999) in freshwater lake ecosystems is recommended by the European Water 

Framework Directive (WFD). The present regulation requires a mapping of macrophytes 

on species level every third year, preferably by divers (European Commission 2000). 

Global change affects the environmental conditions rapidly. Therefore, Palmer et al. (2015) 

recommend more frequent observations of freshwater lakes to detect changes in water 

quality at an early stage. Remote sensing offers a time- and cost-effective method to 

support monitoring approaches including those recommended by the WFD. Due to its 

capability to deliver information at high spatiotemporal resolution, remote sensing 

methods offer the potential to observe detailed seasonal changes in macrophyte 

distribution and water quality (George 1997, Malthus and George 1997, Dekker et al. 2002, 

Pinnel et al. 2004, Giardino et al. 2007, Yuan and Zhang 2008, Wolf et al. 2013, Roessler et 

al. 2013a, Dörnhöfer and Oppelt 2016b). It can complement hitherto in situ data collection 

along transects by divers and is suggested for closing the gap between the snapshots of in 

situ mappings of the WFD (Malthus and Karpouzli 2003, Palmer et al. 2015). It is expected 

that a high revisiting frequency may compensate the information loss compared to in situ 

mapping by divers.  

Annual variations of different environmental parameters such as water clarity, 

temperature, sediment quality and nutrient loading are well known factors controlling the 
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distribution and phenologic development of submersed macrophyte populations (Barko 

and Smart 1986, Barko et al. 1991, Madsen and Brix 1997, Squires and Lesack 2003, Zhu et 

al. 2008, Shuchman et al. 2013, Hoffmann et al. 2014, Singh and Singh 2015). For several 

years, these natural variations have been superimposed by continuously increasing mean 

annual water temperatures, higher frequencies of heavy rain events, and prolongations as 

well as other temporal shifts of growing seasons. These effects are attributed to climate 

change and can be accompanied by the sprawl of some endemic macrophyte species such 

as Najas marina (Hoffmann et al. 2013, Hoffmann and Raeder 2016) and invasions of non-

native species, both of which can potentially change ecosystem functioning. 

For a successful macrophyte monitoring by satellite remote sensing, several challenges 

above and below the water surface have to be overcome to obtain reliable spectral 

information of the littoral bottom coverage (Mertes et al. 1993, Bostater et al. 2004, Morel 

and Belanger 2006). Below the water surface, the received signal is influenced by the 

overlaying water column and refraction. The radiative transfer is affected by suspended 

and dissolved materials in the water column and the water itself (Mumby et al. 1998, 

Mobley 1999, Silva et al. 2008). Littoral bottom coverage with sediment and macrophytes 

differs from lake to lake. In addition, annual as well as seasonal changes strongly affect 

the signal. Malthus and George (1997) used airborne remote sensing systems to 

differentiate between floating-leafed and emergent macrophyte species. Additional in situ 

spectrometer data by Pinnel et al. (2004) suggested a potential differentiation of bottom 

substrates as well as a possible discrimination among high growing macrophytes on 

species level using HyMap data at Lake Constance, Germany. Giardino et al. (2007) 

investigated macrophyte colonization patches and distribution within one growing season 

at Lake Garda, Italy, by combining Multispectral Infrared and Visible Imaging 

Spectrometer (MIVIS) and ex-situ spectral information. Heblinski et al. (2011) documented 

spatial vegetation dynamics of Lake Sevan, Armenia, with algorithms that can 

differentiate bottom coverage types as well as several macrophyte species and sediment 

types. To exclude the influence of the water column and water depth, Roessler et al. 

(2013a) and Fritz et al. (2017a) used a method of depth-invariant indices to differentiate 

between bottom substrates. In situ reflectance spectra of littoral bottom coverage (e.g., 
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macrophytes or sediments) are very helpful to control atmospheric and water column 

corrections of remote sensing data and to distinguish macrophyte signal from water 

column attenuations (Pinnel 2007, Silva et al. 2008, Heblinski et al. 2011).  

The information extraction in water related to remote sensing is primarily based on the 

evaluation of spectral signatures. The vegetation/sediment ratio and the different 

phenologic stages within the growing season control the spectral response. At the 

beginning of the growing season, the spectral response, even of sparsely vegetated areas, 

is sediment-dominated. Organic material on the lake bottom such as epiphytes and 

detritus may alter the spectral response of bare sediment (Armstrong 1993, Fyfe 2003, 

Williams et al. 2003, Silva et al. 2008, Wolf et al. 2013). During the growing season, changes 

in macrophyte/sediment coverage ratio, leaf size and orientation, leaf pigment 

concentrations and cellular structure specifically influence intensity and shape of spectral 

signatures (Fyfe 2003, Silva et al. 2008, Wolf et al. 2013). The maximum in macrophyte 

bottom coverage and biomass content heralds the senescence phase. During this period, 

the spectral signature is affected by degrading Chlorophyll a (Chl-a) content in ageing 

leaves (Gausman 1984, Gitelson et al. 2002) and the change of canopy structure by 

collapsed macrophytes (Silva et al. 2008, Wolf et al. 2013). Knowledge about the 

development pattern of the investigated macrophyte species during the growing season is 

required for the envisaged differentiation on species level by means of remote sensing 

(Pinnel et al. 2004, Wolf et al. 2013). Therefore, detailed information of the species 

composition and canopy structure of the macrophytes at the sampling dates are required 

(Hestir et al. 2008). Pinnel (2007) and Wolf et al. (2013) analysed in situ spectral 

signatures of various submersed macrophyte species (Chara spp., Elodea nuttallii, Najas 

marina, and Potamogeton perfoliatus) in different lakes in the Alpine foreland to detect 

spectral variations during the growing season. From these studies (Pinnel 2007, Wolf et al. 

2013), we learn that the phenologic development within the year and the related spectral 

signatures are species-specific and deliver a phenologic fingerprint, an approach 

successful applied in forestry for forest tree species identification, if recorded 

continuously (Elatawneh et al. 2014, Stoffels et al. 2015). 
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In the long-term concept for a submersed macrophyte monitoring system for freshwater 

lakes, the spectral and temporal information is provided by in situ measurements. This 

information needs to be transferred to high resolution satellite systems such as Sentinel-2 

type systems. For this task two main processing steps are required: first, the calculation of 

the expected spectra for the date and imaging time of the remote sensing system (database 

output of the species specific phenologic model); and, second, the inversion of bio-optical 

models adapted from of the extracted database spectra, delivering water contents and 

littoral bottom substrate distribution, showing macrophyte patches down to the species 

level. When completed, the system allows a trophic status determination of freshwater 

lakes. 

The environmental conditions of the respective growing season cannot be reconstructed 

precisely. As an important variable influencing the growth pattern of submersed 

macrophytes (Madsen and Brix 1997, Zhu et al. 2008, Shuchman et al. 2013, Hoffmann et 

al. 2014, Singh and Singh 2015), water temperature was chosen in this study. The effect of 

sediment quality on macrophyte growth (Barko and Smart 1986, Barko et al. 1991, Squires 

and Lesack 2003) was beyond the scope of this study, mainly because the same patches 

were analysed for both years. A previous study by Wolf et al. (2013) already 

demonstrated the phenologic pattern changes within the growing season. However, that 

study did not link spectral patterns with temperature effects and it did not apply a 

modelling approach for phenologic and seasonal comparisons.  

The primary objectives of this study therefore were to investigate: (1) whether temporal 

patterns of phenologic development phases facilitate species differentiation on base of 

spectral signatures, applying the identical sample design and instrumentation as Wolf et 

al. (2013); (2) whether annual water temperature oscillations affect species-specific growth 

of submersed macrophytes; and (3) if native and invasive species have different tolerance 

to an increase in water temperature. 
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3.3 Materials and Methods 

3.3.1 Study site 

The study site is located in the northern part of Lake Starnberg near the town Starnberg 

(47.9° N, 11.3° E), situated 25 km south of Munich in Southern Germany (Figure 3.1). The 

current state of the lake is oligotrophic Arle et al. (2013). With a surface area of 56.4 km² 

and a maximum depth of about 127 m, Lake Starnberg is Germany’s fifth largest lake 

(Wöbbecke et al. 2003). At this test site, populations of three coexisting macrophyte 

species were measured within the growing seasons of 2011 and 2015. The invasive species 

Elodea nuttallii as well as the two indigenous species Chara spp. and Potamogeton perfoliatus 

were investigated. The test site Chara is covered by Chara aspera (80%), Chara delicatula 

(10%) and Chara intermedia (10%). The 3 test sites are pure stands, one for each species. 

During both growing seasons, all measurements were taken at exactly the same positions. 

The water temperature of Lake Starnberg is continuously monitored by Bavarian 

Environmental Agency (Bavarian Environmental Agency 2016) every hour at the study 

site in the northern part of the lake.  

Monthly water temperatures of Lake Starnberg are displayed for 2011 and 2015 (Figure 

3.2). In 2015, mean monthly water temperatures were higher in January (+0.7 °C), 

February (+0.9 °C), March (+0.9 °C), July (+2.4 °C) and August (+1.5 °C) compared to 2011. 

The remaining 7 months (April (−1.2 °C), May (−1.1 °C), June (−0.9 °C), September (−1.8 °C), 

October (−1.3 °C), November (−0.3 °C) and December (−0.1 °C)) had lower values than in 

2011. In summary, the beginning of 2015 was warmer (January to March), while the 

spring temperatures were lower (April to June). During the main growing season in July 

and August, the temperatures in 2015 were higher. In contrast, 2011 had warmer autumn 

temperatures (September and October). Overall, the mean water temperature in 2015 was 

+0.05 °C higher. 
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Figure 3.1. Study site at Lake Starnberg. Measurement points of macrophyte test sites (red: Chara, 

blue: E. nuttallii, green: P. perfoliatus) and water temperature (yellow) (Google Earth Imagery, 

Image 2017 Landsat/ Copernicus). Landsat 8 true-color composite (acquisition date: 7 April 2014; 

data source: USGS). 
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Figure 3.2. Monthly mean water temperature and standard deviation at Lake Starnberg in 2011 and 

2015. 

3.3.2 In situ measurements 

During the growing seasons of 2011 and 2015, remote sensing reflectance spectra of pure 

stands of three macrophyte species were recorded systematically at the same study site 

and with the same measurement setup to cover different phenologic stages. The setup was 

performed on a jetty (Figure 3.3). With the aid of an extension arm a distance of 3 m 

between sensors and jetty was maintained. This stationary setup avoided drifting as well 

as shading and neighbourhood effects due to an optimal sun-object-sensor geometry. 

The measurement setup consisted of three submersible RAMSES spectroradiometers 

(ACC-VIS and ARC-VIS; spectral range: 320 nm to 950 nm; TriOS Mess- und Datentechnik 

GmbH, Rastede, Germany) (TriOS 2016) and an underwater camera system (Canon 

PowerShot G10, Canon, Tokyo, Japan). The camera was used to monitor the sensor 

position and to document the bottom coverage of the measurement spot by live stream. 

The downwelling and upwelling hemispherical irradiance (   and   ) as well as the 

upwelling radiance    (with a field of view of 7°) were collected simultaneously within a 

range of 320 nm to 950 nm in 3.3 nm intervals. The data collection took place above 

sediment surface (depth b) before appearance of vegetation as well as just beneath the 
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water surface (depth 0). During the plant growing period, the measurements at depth b 

were done above the macrophyte canopy. The distance between sensors and plant canopy 

respectively sediment was always 45 cm. The sensor depth in relation to the water surface 

was documented with a measuring tape fixed to the extension arm.  

In both years, field campaigns were planned approximately every 3 weeks under cloud 

free conditions. The measurements at each single day were designed to start in the 

morning hours and to last until late afternoon. During the main growing season from 

mid-June to mid-September, sun position 1.5 h before and after noon in mid-September 

(Central European Time) was defined as the reference sun-zenith angle which should be 

captured by all daily measurement series. Under optimum conditions, up to 7 datasets per 

day and macrophyte patch were registered. The repetitions were conducted at the same 

places for each species. Each dataset consisted of 20 replicates within 3 min at the same 

fixed place and depths. For stable conditions, measurements in depth b and depth 0 were 

passed in quick succession. 

 

Figure 3.3. Measurement setup of in situ data collection (modified from Wolf et al. (2013)). 

3.3.3 Data processing 

The data processing chain was developed with Python (version 2.7.8, Python Software 

Foundation, Delaware, USA). For each dataset, the remote sensing reflectance spectra 

   (b) and    (0) of the two depths (depth b and 0) were calculated for 20 measurements 
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of    and    (Mumby et al. 1998). Afterwards, the spectra were smoothed by Savitzky–

Golay filter of length 5 (Savitzky and Golay 1964). For each of the 20 measurements of the 

dataset, the median was calculated. In line with Pinnel (2007) and Wolf et al. (2013) the 

spectra were cropped to a range of 400 to 700 nm to exclude strong sensor noise.    (b) 

spectra above the canopy or sediment surface had to be corrected to eliminate the 

influence of the remaining water column of 45 cm between sensors and object. The water 

column correction was according to absorption models for phytoplankton (Bricaud et al. 

1995) and colored dissolved organic matter (Gitelson et al. 2002), to backscattering models 

for phytoplankton (Brando and Dekker 2003) and non-algal particles (Giardino et al. 

2012), as well as absorption and backscattering coefficients of water and to the radiative 

transfer model of Albert and Mobley (2003). For calculating the required water constituent 

concentrations (Chl-a), colored dissolved organic matter (cDOM) and suspended 

particulate matter (SPM) were derived by an inversion of the diffuse vertical attenuation 

coefficient for downwelling irradiance    as implemented in the water colour simulator 

WASI (Gege 2004, Gege 2014b). The attenuation coefficient    was calculated with the 

method of Maritorena (1996) by using    measurements in two different depths (b and 0) 

at the same spot. 

3.3.4 Reflectance model 

The corrected in situ    (b) spectra were used to create a model of remote sensing 

reflectance intensities. The reflectance model was a database model calculated in R 

(version 3.0.3, R Core Team, Vienna, Austria.) (R Core Team 2014). To cover the complete 

vegetation season as well as the differing sun heights, the collected remote sensing 

reflectance data had to be interpolated. A method for linear interpolation of irregular 

gridded data was applied (R package akima (Akima et al. 2013), R package stats (R Core 

Team 2014)). The interpolation was carried out in two consecutive steps. First, a linear 

interpolation of the reflectance along the sun zenith angles for each measurement day was 

performed in steps of 1°. In the second step, reflectance intensities of the measurement 

days along the year were interpolated for each sun zenith angle separately. The model is 

limited to wavelengths from 400 nm to 700 nm and to sun zenith angles from 25° to 65°. 
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Due to strong absorption of water in the near-infrared wavelengths the characteristic 

spectral features normally are superimposed by water absorption (Armstrong 1993). 

Hence, several surface models of reflectance intensities could be processed for each sun 

zenith angle. For each of the species sampled in the database, a spectrum can be produced 

together with confidence intervals. 

3.3.5 Species-specific     spectra 

Out of the species-specific reflectance models, time series with an interval of 2 weeks and 

the same sun zenith angles were extracted for each species. The spectral responses on the 

appropriate dates of the investigated years were compared within the complete 

wavelength range. For the comparison of phenologic development of the different species, 

the 1st derivation of the     spectra were calculated within the wavelengths 550 nm and 

650 nm. The species were analysed for August because for this month the vegetation 

maximum and the greatest temperature effects were expected. 

3.3.6 Classification process 

The classification was based on the spectral libraries and was conducted with simulated 

spectra as derived from the reflectance model and followed a stepwise classification 

process chain (Wolf 2014) (Figure 3.4). For each classification level, a linear discriminant 

analysis was conducted and the spectrum was assigned to the best matching class. This 

procedure was conducted and repeated consecutively for each classification step. In the 

process, input spectra were adjusted to     spectra in the spectral database with 

systematic measurements of 2010, 2011 and 2015 at Lake Starnberg. To facilitate the 

classification process, a pre-selection was conducted based on the date of the input 

spectra. The classification process was divided in four steps. Classification Step 1 was a 

separation in one of the categories: plant, sediment, plant/sediment, plant/water and 

water. Water and sediment were already final classes. Step 2 was assigning plant spectra 

of Step 1 to one of the macrophyte classes (Chara spp., E. nuttallii and P. perfoliatus). In 

Step 3 the species spectra were assigned to a phenologic stage. Step 4 was independent of 

Steps 2 and 3. In this step, input spectra classified as plant/sediment in Step 1 were 
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attributed to defined species and phenologic stage. If the input spectrum was classified as 

plant/water in Step 1, this was assigned to tall growing species P. perfoliatus. Spectra with 

ambiguous phenologic stages were assigned to “no stage classifiable”. The validation of 

this classification method was performed with data from 2010 and 2011; the overall 

accuracies were calculated for each single classification step separately.  

 

Figure 3.4. Schematic diagram of the stepwise classification after Wolf (2014). 

With this classification process chain, four main phenologic stages were distinguished. 

Stage 0 declares pure sediment, and Stage 1 sparsely vegetated sediment. Stage 2 

describes a fully grown and upright standing vegetation. If the vegetation is already 

degrading and collapsing, it is classified as Stage 3. Differing subdivisions within one 

classification stage are attributed to varying bottom coverage and height of the 

macrophyte canopy.  

3.4 Results 

3.4.1 Reflectance model 

The reflectance models and the species-specific spectral response revealed clear 

differences between seasonal dates and phenologic stages. Spectral properties could be 

linked with diverse phenologic stages. A classification on species level and phenologic 

information revealed differences in accuracy for the different species. The highest 
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accuracy was obtained for the test sites Chara (no misclassification on species level) and P. 

perfoliatus (two misclassifications on species level). 

Reflectance models for 2011 and 2015 were simulated with linear interpolation method for 

the three macrophyte species Chara spp., E. nuttallii and P. perfoliatus separately (Figure 

3.5). Depending on the first and last measurement day of the season, the models covered 

different time periods. For each species, the sun zenith angles were the same in both 

years. Variations of     within a year could be observed. Overall,     showed higher 

intensities at the beginning of the year. The intensities in the blue wavelength region (400 

nm to 490 nm) were lower, the ones in green (490 nm to 560 nm) higher. A local 

reflectance minimum at around 680 nm could be observed for all sites and species. A 

difference in shape and intensity between both years and between the different species 

was obvious. However, a general trend could be observed for all species. The reflectance 

intensities decreased from May to August, followed by an increase towards the end of the 

growing season in September. 

3.4.2 Species-specific     spectra 

    spectra of different dates within the growing season of three macrophyte species were 

displayed side by side with top of view photographs of the test sites (Figure 3.6 - Figure 

3.8). The spectra were simulated with the linear interpolation model. For 2011 and 2015, 

    was plotted for same dates with in an interval of 10 days for the same sun zenith angle 

of each species.     spectra covered wavelengths from 400 nm to 700 nm. The photos for 

documentation were recorded at the sampling days and do not show the situation at the 

day and daytime for which the spectra were simulated. 

3.4.2.1 Test site Chara 

The simulated     spectra of Chara spp. revealed the situation at a sun zenith angle of 35° 

in the afternoon from May (Figure 3.6a) to September (Figure 3.6e). In May (Figure 3.6a), 

the spectra of both years revealed a similar shape for the simulated days, differing in     

intensity. The     intensity increased from 400 nm to 550 nm, followed by a plateau until 

650 nm. Afterwards,     intensity deceased, resulting in a local minimum at 680 nm. 
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Within the year, the shape formed a maximum at about 570 nm, the minimum at 680 nm 

was more distinct (Figure 3.6b - Figure 3.6d). Throughout August (Figure 3.6d), a 

difference in the phenologic development could be observed. Both shape and bottom 

coverage varied in the investigated years. The shape of 2015 clearly flattened in yellow 

and orange wavelength regions between 560 nm and 650 nm. This trend could be 

observed in September (Figure 3.6e) for both years.  

3.4.2.2 Test site P. perfoliatus 

The simulated     spectra of P. perfoliatus were modelled with linear interpolation method 

and represented the situation from May (Figure 3.7a) to September (Figure 3.7e) at a sun 

zenith angle of 27° in the afternoon. In May (Figure 3.7a), the shapes of both years 

increased from 400 nm to 600 nm and a distinct local minimum at 680 nm was evident. In 

June (Figure 3.7b) and July (Figure 3.7c), a maximum at 570 nm was observed. In August 

(Figure 3.7d) and September (Figure 3.7e) differences in the species-specific development 

could be detected. In the investigated years, shape, bottom coverage and canopy structure 

varied. In August (Figure 3.7d), the maximum was evident in 2015. The shape of 2011 was 

flattened without a clear maximum. Flattened and compressed spectra in yellow and 

orange wavelengths (560 to 650 nm) were shown in 2015 in September (Figure 3.7e). The 

spectra of 2011 still revealed a distinct maximum in the green region. 
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Figure 3.5. Reflectance models of three macrophyte species for 2011 and 2015. Chara spp. for sun 

zenith angle 35° in: (a) 2011; and (b) 2015; P. perfoliatus for sun zenith angle 27° in: (c) 2011; and (d) 

2015; and E. nuttallii for sun zenith angle 31° in: (e) 2011; and (f) 2015. 
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Figure 3.6. Simulated     intensities of Chara spp. modeled with a linear interpolation method of 

2011 (blue) and 2015 (red). Top view photos of the investigated test sites of the sampling days: (a) 

May; (b) June; (c) July; (d) August; and (e) September. 
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Figure 3.7. Simulated     intensities of P. perfoliatus modelled with a linear interpolation method of 

the years 2011 (blue) and 2015 (red). Top view photos of the investigated test sites of the sampling 

days. (a) May, (b) June, (c) July, (d) August, (e) September. 
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3.4.2.3 Test site E. nuttallii 

The simulated     spectra of E. nuttallii from May (Figure 3.8a) to September (Figure 3.8e) 

were calculated with linear interpolation method for a sun zenith angle of 31° in the 

afternoon. In May (Figure 3.8a) completely different shapes were evident for both years. 

The shape of the spectral curve in 2011 increased continuously. In June (Figure 3.8b) the 

spectra of 2011 displayed a continuous increase up to 560 nm followed by a plateau. Local 

minima were at 620 nm and 680 nm. In contrast, the simulated     intensity of 2015 had a 

distinct maximum in the green region. In July (Figure 3.8c) the shapes in July were similar 

in both years, with a distinct maximum in the green wavelengths. Similar results were 

observed for August (Figure 3.8d), with a trend to flatten in the yellow and orange 

wavelength regions. In September (Figure 3.8e) the shapes were quite similar in both 

years with a distinct maximum in the green and lower intensity values in the blue and red 

regions, representing a vital and upright standing vegetation as confirmed by the photos. 

3.4.2.4 Water temperature effect on species-specific growth 

The first derivation of in situ     spectra reflected the variations of the gradient between 

the investigated species within August (Figure 3.9). The species-specific variations 

differed in the different years. E. nuttallii showed slight variations of the gradient within 

months and between both years in this wavelength range. Clear differences between both 

years were observed for the indigenous species Chara spp. and P. perfoliatus. Overall, the 

gradient in 2011 was lower. The monthly variations of the gradient were higher in 2015, 

especially in the wavelength range between 570 nm and 610 nm. In this year, the mean 

water temperatures were higher during main growing season in July and August (Figure 

3.2).  

3.4.3 Spectral classification on species level 

The classification results revealed a continuous succession of phenologic stages for the test 

site Chara (Table 1). The overall accuracy of Step 1 was 70%, and of Step 2 82%. The 
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accuracy of the assignment to a phenologic stage was between 79% (E. nuttallii) and 91% 

(Chara spp.). 

The growing season is starting with sediment (2011) and plant/sediment (2015) spectra in 

May, followed by plant/sediment (2011) and plant (2015) spectra in June and July. In 2011, 

an interruption of the phenologic succession could be observed on 14 July, 24 July and 3 

August. For the test site P. perfoliatus, a continuous succession of phenologic stages could 

be observed for both years. In 2011, the succession was interrupted on 3 and 13 August. 

The test site E. nuttallii showed several irregularities in both years. In 2011, one 

misclassification took place on 4 June. The other spectra were classified as plant/sediment 

or sediment consistently. Due to the small spectral differences, no classification on species 

level was possible at the test site E. nuttallii. In 2015, irregularities in the phenologic 

succession could be located on 4 June, 14 June and 24 July. 
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Figure 3.8. Simulated     intensities of E. nuttallii modelled with a linear interpolation method of 

2011 (blue) and 2015 (red). Top view photos of the investigated test sites of the sampling days: (a) 

May; (b) June; (c) July; (d) August; and (e) September. 
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Figure 3.9. 1st Derivation of in situ     spectra of: August 2011 (a); and August 2015 (b), in a 

wavelength range between 550 nm and 650 nm. 
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Table 3.1. Results of the stepwise classification after Wolf (2014) for Chara spp., E. nuttallii and P. 

perfoliatus. 
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3.5 Discussion 

The main research question, whether in situ measured spectral variations within the 

growing season can be linked to phenologic stages of macrophyte populations, was 

confirmed by our results. An interrelation between macrophyte growth and water 

temperature was also demonstrated for the indigenous species Chara spp. and P. 

perfoliatus, but not for the invasive species E. nuttallii. The reflectance models developed 

based on the spectral signatures taken within the growing season and over the course of 

the day, proved to be able to mitigate gaps in in situ data collection (e.g., due to cloud 

coverage). The models deliver simulated spectra for each day and all sun positions of 

possible optical satellite data takes (approximate ±2 h around noon). The inversion of the 

models for Chara spp. and P. perfoliatus with the aim of macrophyte classification on 

species level is successful. Restricting the search period based on external information 

about the weather history of that season and giving an estimate of the phenologic 

development stage additionally improve the classification success. Especially in that 

direction, we expect further advances by linking the modelling runs for species 

identification with external information on extreme events such as drought or rainy 

periods. 

3.5.1 Phenologic development in     spectra and water temperature  

The general phenologic development scheme we observed is similar for the investigated 

species in both investigated years. Phenologic development stages control the changes in 

spectral response within the growing season (Rooney and Kalff 2000, Wolf et al. 2013). 

Differing bottom coverage and species-specific structure elements like biomass, 

chlorophyll content, canopy height and alignment explain the variations of the shape of 

the spectra within the growing season. The species-specific phenologic development 

depends on the environmental conditions such as water temperature, water clarity, 

morphology and nutrient load (Blindow 1992, Rooney and Kalff 2000, Shuchman et al. 

2013). To characterize the response of different macrophyte species to different 
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environmental conditions, the species-specific spectral signatures within two growing 

seasons within two growing seasons is most informative. Water temperature was the only 

relevant variable available for both years. It is well-known that freshwater lakes buffer air 

temperature changes very well, which is explained by their thermal properties. The effects 

are smoothed and result in delayed water temperature effects. Nevertheless, these 

temperature fluctuations affect the biologic activities in the lake, affecting growth 

processes of submersed macrophytes as well.  

In our discussion, we concentrate on August because the maximum of vegetation 

development is expected and greatest temperature effects (both acutely and accumulated) 

are expected at this time point. The most significant changes were observed in the green 

to red wavelength region, on which we concentrate in our analysis.  

For the test sites Chara (Figure 3.6d; Figure 3.6e) and P. perfoliatus (Figure 3.7d; Figure 

3.7e) the flattened shape of the spectral signature in the yellow and orange wavelength 

region is interpreted as a variation in leaf pigment ratio (Sims and Gamon 2002, Wolf et al. 

2013). The intraspecific variations are illustrated by the derivation of the spectra for 

August (Figure 3.9). Especially, a lower Chl-a content in ageing leaves induces such a shift 

in yellow and orange wavelengths (Gitelson and Merzlyak 1994, Sims and Gamon 2002). 

Higher water temperatures during the main growing season in July and August 2015 

(Figure 3.2) may have resulted in a shortened growing season with earlier senescence 

(Barko and Smart 1981, Rooney and Kalff 2000). The earlier senescence is demonstrated by 

a flattened shape (550 nm and 650 nm) with a slight gradient (Figure 3.9). The change in 

bottom coverage ratio (Figure 3.6e) and macrophyte structure (Figure 3.7d) confirms the 

assumption that water temperature influences the length of growing season. The pictures 

clearly show the decrease of plant covered area as well as collapsed and degraded 

macrophytes, with both phenomena being connected to macrophyte degradation. 

In contrast to the indigenous species, the species-specific development of the invasive 

species E. nuttallii reveals spectral differences at the beginning of the growing season 

(Figure 3.8a and Figure 3.8b). Higher water temperatures in the first quarter of 2015 

(Figure 3.2) might explain induction of an earlier vegetation begin. During the main 
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vegetation time in July and August, neither the spectral shape nor the bottom coverage 

are affected by higher water temperatures (Figure 3.9). This might be attributed to the 

better adaption to higher water temperatures of E. nuttallii (McKee et al. 2002). 

The interpretation of the measurements of the indigenous species Chara spp. and P. 

perfoliatus indicate a shortened growing season at warmer temperatures in 2015. For the 

test site Chara, the shape of the spectra on 13 August 2015 (Figure 3.6d) and 2 September 

2011 (Figure 3.6e) are almost the same. Consequently, the growing season and phenologic 

stage in 2015 was about 20 days shorter for Chara spp. than in 2011. This result coincides 

with higher water temperature during the main growing season in July and August 2015. 

The observations for P. perfoliatus in 2015 are similar. The spectral signature reflects the 

beginning of macrophyte degradation already at the end of August, visible by a flattened 

signature curve especially in the yellow to red region of the spectra. Such a phenologic 

shift at the end of the growing season was not found in E. nuttallii. A shortened growing 

season for indigenous species might be linked to higher water temperatures. E. nuttallii is 

probably not affected due to a higher temperature tolerance compared to the investigated 

indigenous species (McKee et al. 2002).  

3.5.2 Reflectance model 

The developed reflectance models (Figure 3.5) provide species-specific spectral signatures 

throughout the complete growing season for every required sun position during a defined 

day. These protracted and detailed spectral pieces of information can strongly improve 

the knowledge of the seasonal variation of macrophyte species. The output spectra of 

these models provide a useful and necessary basis for bio-optical models such as 

BOMBER (Giardino et al. 2012) or WASI (Gege 2004, Gege 2014a). 

The prediction limits are directly related to two variable groups: the daily and seasonal 

distribution of in situ measurements and the specific environmental frame conditions of 

the respective year. In case of the distribution of in situ measurements within the 

vegetation season there is a clear rule: the shorter the time-gaps between the in situ 

measurements, the more detailed are the reflectance models. With high probability, the 
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date of the vegetation maximum (e.g., maximum vegetation height and extension; highest 

biomass content) (Rooney and Kalff 2000) is between two sampling days and cannot be 

expected to be represented by the model. In addition, for the applied linear interpolation 

method, an extrapolation for situations before and after the beginning and end of the 

measurements series is not possible.  

Environmental parameters such as water clarity, water temperature and nutrient load 

affect macrophyte expansion and phenologic development (Blindow 1992, Shuchman et 

al. 2013). Environmental parameters vary from year to year, affecting the prediction 

accuracy of the model outputs. The examined variable in this study, the water 

temperature, seems to trigger a variation in reflectance intensity and shape between the 

two investigated years (Figure 3.5a, Figure 3.5c, Figure 3.5e in contrast to Figure 3.5b, 

Figure 3.5d, Figure 3.5f). Further studies on the influence of light availability on the 

spectral variation might improve the accuracy of these reflectance models and the output 

spectra. In contrast, short-term events like draughts, floods or turbidity after an intense 

rainfall cannot directly be represented by the models. Such short-term and partial effects 

are highly different in different years. Due to the inertness and buffer action of freshwater 

lakes, these short-term events are attenuated and influence the models indirectly. We 

expect that this type of effects might be buffered and constrained by integration of 

external information into the inversion processes. 

3.5.3 Model inversion for species level classification  

The inversion of the reflection models with the aim of classifying macrophyte species and 

their phenologic stage for predefined daytimes and dates is successful. The inversion 

procedure delivers reliable spectra which we used for the comparison of phenologic 

development stages in 2011 and 2015. The analysis of the investigated macrophytes on 

species level (classification Step 2) based on phenologic development stages (Table 1) 

reveals an overall logic succession for the test sites Chara and P. perfoliatus for both 

investigated years.  
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The phenologic succession of Chara spp. was not accurately predicted for three dates in 

July and August 2011. The phenologic stage Chara spp. 1.1 induces a sediment proportion 

of 0.5 (Wolf 2014). One explanation is a temporary sediment deposition masking the plant 

canopy. Sediment cover inevitably will result in an apparently higher sediment fraction 

and accordingly higher signal intensity (Wolter et al. 2005).  

In August 2011, a misclassification due to an interruption of the logic succession, on 

species level occurred for the test site P. perfoliatus. The in situ measurement and 

classification of single growing plants without a closed plant canopy is more difficult and 

error-prone than for dense populations (Sawaya et al. 2003). With the applied 

measurement setup, meadowy canopies such as Chara spp. allow a more stable spectral 

data collection resulting in a good to excellent classification success.  

For the test site E. nuttallii, misclassification on species level occurred for 4 June in both 

years. A classification based on phenologic stages was not successful at all with the 

dataset for 2011. In 2015, the logic succession was interrupted. Slight water depth, 

shipping traffic, shading and a plant canopy up to the water surface hindered the in situ 

data collection which might explain the misclassifications at this test site.  

The accuracy of the classification results depends on the number of spectra of the spectral 

database. To obtain more detailed information about species composition and canopy 

structure, several in situ measurements at different phenologic stages are required (Hestir 

et al. 2008). Spectral databases are able to provide day and daytime specific reference 

spectra of the lake bottom substrates. The knowledge of phenologic development related 

spectral response seems necessary when trying to improve the simulation and analysis of 

optical properties and light field parameters of deep and shallow waters in satellite 

datasets. This detailed information for the diverse phenologic stages of macrophytes are 

expected to improve the inversion success of bio-optical models such as BOMBER 

(Giardino et al. 2012) and WASI (Gege 2004, Gege 2014b). Such models presently are the 

most sophisticated methods for deriving optical properties and light field parameters of 

deep and shallow waters from satellite data. Such information is required for the 

monitoring of freshwater lakes and large water bodies in general as e.g., included in the 
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WFD. A further improvement of the prognosis accuracy of this evaluation chain is 

expected by steering the selection of the appropriated spectral signatures by e.g., detailed 

information about weather history of the respective growing season or the expected 

phenologic stage during data take.  

3.6 Conclusions 

Remote sensing methods offer a great potential to build up a monitoring system of 

submersed aquatic plants. A key requirement is the automatic discrimination of 

submersed macrophyte species. A spectral library with phenologic features as base for 

coupled growth and reflectance models seems essential for monitoring lake bottom 

substrates, especially for macrophytes. In the present study, the seasonal phenologic and 

spectral variability of aquatic plants at a test site at Lake Starnberg was investigated for 

2011 and 2015. Water temperature was identified as one of the environmental driver 

explaining the phenologic shift by spectral signature analysis. 

Investigations into the influence of the effects of small-scaled extreme weather conditions 

(e.g., light availability and turbidity) are highly recommended topics of future work. To 

improve the accuracy of the classification results, a large database is needed. Test sites are 

recommended in several lakes of diverse trophic states and on other macrophyte species, 

especially on potentially invasive species, to identify site-specific and species-specific 

variations of remote sensing reflectance. Further influences of the reflectance signal are 

related to periphyton coverage on macrophyte leaves.  
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4 Mapping development of submerged aquatic 

vegetation by using a Sentinel-2A time series at Lake 

Starnberg (Germany) 

A similar version of this chapter was submitted: Fritz C., Dörnhöfer K., Schneider T., Geist 

J., Oppelt N. Mapping development of submerged aquatic vegetation by using a Sentinel-

2A time series at Lake Starnberg (Germany).  

4.1 Abstract 

Submerged aquatic vegetation (SAV) plays an important role in freshwater lake 

ecosystems. Due to its sensitivity to environmental changes, several SAV species serve as 

bioindicators for the trophic state of freshwater lakes. Variations in water temperature, 

light availability and nutrient concentration affect SAV growth and species composition. 

To monitor the trophic state as regulated by the European Water Framework Directive 

(WFD), SAV needs to be monitored regularly. This study analyses and compares the 

results of littoral bottom coverage assessment using two different remote sensing based 

approaches, i.e. a semi-empirical method using depth-invariant indices and a physically 

based, bio-optical method using WASI-2D. For this, we analysed four Sentinel-2A scenes 

of Lake Starnberg acquired within the main growing season in August and September 

2015. For a precise Sentinel-2 imaging by date and hour, satellite measurements were 

supported by lake bottom spectra delivered by in situ data based reflectance models. Both 

methods identified vegetated and non-vegetated patches in shallow water areas. 

Furthermore, tall- and meadow-growing SAV species can be differentiated. Both methods 

revealed similar results when focusing on the identification of sediment and SAV patches 

(R² from 0.5603 to 0.8137), but not for a differentiation on species level. 
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4.2 Introduction 

Submerged aquatic vegetation (SAV) provides detailed information about the ecology of 

freshwater lakes (Melzer 1999). For instance, SAV is a highly suitable and often used 

bioindicator for trophic state assessments since it mirrors varying nutrient concentrations, 

water temperature, water level and water transparency (Skubinna et al. 1995, Melzer 1999, 

Penning et al. 2008, Søndergaard et al. 2010, Poikane et al. 2015). Changes in the trophic 

state induce variations in plant species composition, spatial distribution and extent, onset 

of SAV growth and senescence (Short and Neckles 1999, Rooney and Kalff 2000, Silva et 

al. 2008). According to the European Water Framework Directive (WFD) SAV should be 

mapped every three years (European Commission 2000). In consideration of the observed 

strong dynamics in SAV distribution and species composition, Palmer et al. (2015) even 

recommended more frequent observations. In contrast to conventional SAV monitoring 

by scientific divers, remote sensing offers a time- and cost-effective alternative to observe 

seasonal and annual changes in SAV coverage as an indicator of water quality (e.g. 

George 1997, Malthus and George 1997, Dekker et al. 2002, Pinnel et al. 2004, Giardino et 

al. 2007, Yuan and Zhang 2008, Wolf et al. 2013, Roessler et al. 2013a).  

Using remote sensing data, the spectral signature is the primary information source for 

analysis of lake bottom surface types. The contributions of SAV and bare sediment for 

each pixel control the intensity of the spectral response. Organic overlay, such as detritus 

and epiphytes, additionally influences the spectral signature of sediment and SAV 

(Armstrong 1993, Fyfe 2003, Williams et al. 2003, Silva et al. 2008, Wolf et al. 2013). 

Furthermore, the spectral signature of SAV varies within the growing season. Variations 

in leaf size and orientation as well as pigment content and ratio lead to changes in shape 

and intensity of the spectral signature (Fyfe 2003, Silva et al. 2008, Wolf et al. 2013). 

Pigment degradation, especially of Chlorophyll-a, indicate leaf senescence (Gausman 

1984, Gitelson et al. 2002, Wolf et al. 2013, Fritz et al. 2017b). Especially in case of tall-

growing species, pigment decomposition processes are accompanied by structural 

changes such as the collapse of the canopy. These physiological plant characteristics, 

however, differ among SAV species. Therefore, Pinnel et al. (2004), Wolf et al. (2013), Fritz 
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et al. (2017b) and others suggested that a method capable of the different phenologic 

development stages of SAV may provide a valuable key for a refined taxonomic 

differentiation.  

For identifying specific phenology-related characteristics in shallow water areas with 

remote sensing systems, high spatial, spectral and radiometric resolution data registered 

at high temporal frequency are mandatory. Analysing remote sensing data in a field-

monitoring context additionally requires comparable data sets over time. Therefore, 

control and correction of external factors influencing the spectral signature of lake bottom 

types is necessary, i.e. changes in the atmosphere, within the water body and at the 

atmosphere/water interface. Different strategies exist to consider the attenuation by the 

water column. The most common approaches belong either to the semi-empirical 

(Lyzenga, 1978; 1981) or to the bio-optical model categories (e.g. Heege and Fischer 2004, 

Giardino et al. 2012, Gege 2014b).  

Semi-empirical methods rely on in situ data for littoral bottom type discrimination. 

Lyzenga (1978; 1981) developed a semi-empirical method based on depth-invariant 

indices for detecting and distinguishing littoral bottom coverage. Armstrong (1993) used 

Landsat Thematic Mapper imagery to map seagrass and to estimate its biomass in the 

shallow water areas at the Bahamas. Brooks et al. (2015) and Shuchman et al. (2013) also 

used Landsat Thematic Mapper in combination with Multispectral Scanner Imagery time 

series to investigate SAV patterns at the Laurentian Great Lakes. Manessa et al. (2014) 

studied the distribution of seagrass and corals of shallow water coral reefs in Indonesia 

using WorldView2 imagery. Ciraolo et al. (2006) investigated the distribution of seagrass 

in a coastal lagoon in Italy using the hyperspectral sensor MIVIS (Multispectral Infrared 

Visible Imaging Sensor). A time series of RapidEye imagery was used to detect seasonal 

changes of SAV in two freshwater lakes of different trophic state (Lake Starnberg 

(Roessler et al. 2013a) and Lake Kummerow (Fritz et al. 2017a) in Germany. 

Bio-optical model inversion requires information on the scattering and the absorption 

characteristics of water constituents. The bottom type and coverage determination relies 

on sample spectra from existing spectral libraries. Several studies have explored different 
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remote sensing data types by using bio-optical models. The changes of SAV patterns at 

Lake Garda, Italy, was investigated by Giardino et al. (2007) using the hyperspectral 

sensor MIVIS. Heblinski et al. (2011) used a bio-optical model to investigate the effects of 

water level changes on SAV structure at Lake Sevan, Armenia, using multi-spectral 

QuickBird imagery. To monitor invasive SAV, Roessler et al. (2013b) applied the bio-

optical model BOMBER (Giardino et al. 2012) on hyperspectral Airborne Prism 

Experiment (APEX) imagery at Lake Starnberg, Germany. Giardino et al. (2015) used the 

same model to detect the interaction of suspended particulate matter, SAV and water 

depth using MIVIS sensor at Lake Trasimeno, Italy. 

SAV expansion varies in successive years due to shifts in growing seasons, different water 

constituents, nutrient load and lake substrate remobilization processes, which all 

influence the detectability of SAV (Dekker et al. 2011). To detect expansion changes in the 

area vegetated by SAV, however, a short revisiting time and a high spatial and spectral 

resolution are key requirements for sensors to be applied for lake monitoring. Nowadays, 

hyperspectral, airborne sensor systems with their high spectral resolution (e.g. APEX, 

MIVIS) are still unsuitable for a continuous monitoring due to their high costs. 

Due to the absence of operational hyperspectral satellites, a continuous and operational 

monitoring within close time intervals along the growing season with hyperspectral 

systems also seems unfeasible at present (Hunter et al. 2010). Several authors therefore 

suggested multi-seasonal images of high spatial resolution multispectral satellite data to 

compensate the reduced spectral information (e.g. Dekker et al. 2011, Roessler et al. 2013a, 

Palmer et al. 2015, Fritz et al. 2017a). Especially remote sensing systems with high 

revisiting frequencies in combination with a large area coverage seem to ideally 

complement laborious in situ observations of WFD by diver mappings. The expected 

synergies are the analysis of the expansion and shift in SAV species composition within 

the growing season in addition with information on the spatio-temporal SAV growth 

dynamics (Palmer et al. 2015, Fritz et al. 2017a, Dörnhöfer et al. 2018). Especially the 

multi-spectral Sentinel-2A, available since mid of 2015, provides good preconditions for 

mapping freshwater lakes and littoral bottom coverage types.  
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The key aim of this study was to test whether the multi-seasonal observation capability of 

Sentinel-2A provides sufficient information to support currently employed in situ 

mappings according to the WFD. Therefore, four Sentinel-2A data sets from August and 

September 2015 were analysed with the following objectives: 

 To compare the performance of two methods for mapping littoral bottom coverage 

in shallow water areas of freshwater lakes, i.e. using a depth-invariant index and 

bio-optical modelling with WASI-2D. 

 To investigate whether the spectral variations in the phenologic development of 

SAV species allows a differentiation of SAV on species level and whether the two 

used methods deliver comparable results. 

4.3 Methods 

4.3.1 Study site  

Lake Starnberg (49.9°N, 11.3°E) is an oligotrophic lake, located in the alpine foreland 

about 25 km south of Munich. With an area of 56.4 km² and a maximum depth of 127.8 m, 

Lake Starnberg is the fifth largest lake in Germany (Wöbbecke et al. 2003). Low, 

groundwater-dominated inflows (3.6 m³·s-1) of small tributaries as well as low outflow 

rates (4.5 m³·s-1) (Melzer et al. 2003) result in a long residence time of water (21 years) 

(Wöbbecke et al. 2003). 

In the shallow water regions, a variety of SAV species colonize the littoral bottom (Figure 

4.1), making this an ideal study case for comparing alternative mapping approaches. 

Divers conducted a detailed mapping of SAV on species level on 30 and 31 July 2014 for 

the western part of Lake Starnberg (WWA Weilheim 2015) using the five-step scale of 

frequency after Kohler (1978). The composition of SAV varied in different water depths. 

At each transect, Characeae, such as Chara contraria and Chara aspera mainly in water 

depths down to 2 m. In the deeper zones, from 4 m downwards, several species of 
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Characeae (Chara contraria, Chara virgata, Nitellopsis obtusa and Nitella opaca) predominated. 

Several pondweed species such as Potamogeton perfoliatus, Potamogeton filiformis and 

Potamogeton pusillus) were present in all water depths. In our study, Chara spp., Nitellopsis 

obtusa and Nitella opaca were combined as meadow-growing species, Potamogeton spp. as 

tall-growing species. 

 

Figure 4.1: Distribution of SAV species in different water depths ((a) 0-1m; (b) 1-2m; (c) 2-4m; (d) > 

4m) as result of the WFD mapping at the western shoreline of Lake Starnberg in 2014; frequency 

distribution of the species in a five-step scale after Kohler (1978) (background: Sentinel-2A true-

colour composite R-G-B: 655 nm - 560 nm - 490 nm, acquisition date: 3 August 2015). 

4.3.2 Data collection and processing 

4.3.2.1 Spectral signature of SAV and sediment 

Both applied approaches, i.e. unmixing bottom coverage based on a depth-invariant index 

and bio-optical modelling, require the spectral signature of bottom types as an input 

information, i.e. different SAV species and sediment. Spectro-radiometric in situ 

measurements with submersible instruments served as basis for the reflectance models of 

SAV as developed by Fritz et al. (2017b). A detailed description of the measurement setup, 

data processing and technical specifications is available in Wolf et al. (2013) and Fritz et al. 



4 Mapping development of SAV using a Sentinel-2A time series 

 

72 

 

(2017a). Fritz et al. (2017a) already highlighted spectral variations between different SAV 

species and demonstrated a species-specific seasonal phenologic development. Using 

these reflectance models, the spectral signatures for this study were calculated for the date 

and time of Sentinel-2 imagery. The sediment spectrum originated from a reference 

measurement before the growing season started. Afterwards, the simulated reflectance 

spectra have been resampled to Sentinel-2A response curves as described in Dörnhöfer et 

al. (2016a). Figure 4.2 schematically illustrates the pathway of data processing. 

 

Figure 4.2: The pathway of in situ and satellite data processing. 

4.3.2.2 Data processing of in situ data 

For the Sentinel-2A data set, depth-invariant indices      of the different bottom types were 

calculated from spectral bands   and  . These indices, depending on the wavelength range 

( ) covered by the employed bands, offer the potential to reduce the influence of water 

constituents and to investigate the lake bottom types. Ten index combinations 
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(                                                          ) of Sentinel-2A bands 1 to 5 (band 1 = 443 

nm; band 2 = 490 nm; band 3 = 560nm; band 4 = 665 nm; band 5 = 705 nm) were used. The 

method of Lyzenga (1978, 1981) was applied on in situ data assuming that the attenuation 

coefficients        and        (Maritorena 1996) account for the influence of present water 

constituent conditions and the water column itself (7). 

     
  (  )    (            )           (        (  ))

√      
    (  ) 

 (7) 

 ;     band  ; band  , where      

      ;   (  )  diffuse attenuation coefficients of       at band   and   

            ;         (  ) shallow water reflectance at band   and    

The remote sensing reflectance of shallow water areas (        ) varied for different water 

depths ( ), the remote sensing reflectance of the different bottom types (       ) and the 

remote sensing reflectance of the water column (          ) (8). 

        (    )                       (    )                             (    )   (8) 

    water depth 

               littoral bottom reflectance at band  ,   

                 reflectance over optical deep water at band  ,   

4.3.2.3 Data processing of satellite data  

Sentinel-2A satellite data (processing baseline: 2.04, Tile: UPU) acquired on 3 August 2015, 

13 August 2015, 23 August 2015 and 12 September 2015 were atmospherically corrected to 

remote sensing reflectance (   
   

      

      
) by EoMAP GmbH & Co. KG using MIP 

(Modular Inversion and Processing System (Heege and Fischer 2004, Heege et al. 2014). 

MIP is a physically based, coupled atmospheric-water algorithm correcting the effects of 

atmosphere and water surfaces (sky glint). Recently, it turned out to perform well with 
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Sentinel-2A data at Lake Starnberg (Dörnhöfer et al. 2016a). To distinguish between deep 

water and shallow water areas the deep water Red Index (  ) (Spitzer and Dirks 1987) 

was applied on    
      data (9). Water areas with    higher than 0.15 sr-1 were classified as 

shallow water and were further investigated. To reduce computation time, the areas with 

more than 8 m water depths (official bathymetric chart (Bavarian Environmental Agency 

2000)) were excluded from further processing.  

    
   

          
       

   
     

 (9) 

   
       remote sensing reflectance value of each pixel in the red  

   
         mean red remote sensing reflectance over optically deep water 

4.3.2.4 Spectral unmixing using depth-invariant indices 

To transfer Sentinel-2A    
   data to the same level as in situ measured data, we applied 

the equation of Lee et al. (1998) (10). 

   
       

          
  

  
  

   
     

          
     

  (10) 

The equation of Lee et al. (1999) can be used to approximate the reflectance from above to 

beyond the water surface (
          

  

  
                   ; (11)). 

   
      

   
     

                 
     

 (11) 

The ten different depth-invariant indices      

(                                                          ) were calculated for the subsurface 

reflectance (   
  ) of shallow water regions in the satellite data sets (12). Here, the 

subsurface reflectances of neighbouring bands were related to the diffuse vertical 

attenuation of the downwelling irradiance (  ).    in combination with the deep water 

reflectance (   
  (    )) of the respective Seninel-2A data set account for the influence of 
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water column attenuation;    
  (    ) originated from a homogenous deep water area and 

was extracted for each acquisition date separately. 

      
  (  )    (   

          
  (    ))           (   

  (  )     
  (    ))

√      
    (  ) 

 (12) 

 ;     band  ; band  , where      

      ;   (  )  Diffuse attenuation coefficients of       at band   and   

   
           

  (  )  remote sensing reflectance at band   and   of each pixel 

   
  (    )    

  (    ) mean deep-water remote sensing reflectance at band   and    

The calculated      data set was the input for a linear spectral unmixing process performed 

with Sentinel Application Platform SNAP (version 4.0). The      index values of the 

different littoral bottom types represented the spectral endmembers. Linear spectral 

unmixing varies the share of the considered spectral endmembers at a pixel’s signature 

assuming a linear contribution. Here, we assume that the unmixed share of an 

endmember (      represents the relative abundance (bottom coverage) of a littoral bottom 

type. To distinguish between areas of sediment and SAV, we used two bottom types 

(sediment and SAV). To differentiate the vegetated areas into tall- and meadow-growing 

species, we used three bottom types (sediment, tall-growing species and meadow-

growing species). The input spectra with different sun elevations were simulated with the 

reflectance model (Fritz et al. 2017b) according to the respective overpass time of the 

satellite.  

4.3.2.5 Spectral unmixing using WASI-2D 

WASI-2D is a freely available software tool, which enables the retrieval of water 

constituents, bottom characteristics and water depths by inversely modelling 

atmospherically corrected multispectral or hyperspectral imagery (Gege 2014b). WASI-2D 

models the    
  using physically based equations, measured or modeled constants and 

parameters. Some parameters, i.e. fit parameters, can be varied during modelling. In 
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shallow water, WASI-2D considers the spectral influence of the water depth, fractional 

contribution from bottom reflectance (e.g. different shares of pure reflectance from 

sediment and SAV) and light absorbing (Chlorophyll-a (CHL), coloured dissolved organic 

matter (CDOM) and backscattering (TSM) water constituents (technical details and 

specific equations in Gege (2014b). For this study, fit criterions were the water depth, 

bottom types and fractions of bottom coverage. 

To avoid overfitting of the model, concentrations of CHL, TSM and CDOM were set 

constant. To obtain reasonable values for the model parameters we first retrieved water 

constituent concentrations (CHL, CDOM, TSM and the CDOM slope factor SCDOM) in deep 

water of each acquisition date with a setting as described in Dörnhöfer et al. (2016a) 

(Table 4.1).  

Table 4.1: Water constituent concentrations over optically deep water for Sentinel-2A acquisition 

dates, retrieved with a setting as described in Dörnhöfer et al. (2016a). 

Parameter 3 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

CHL [mg·m-3] 0.97 3.45 2.86 0.5 

TSM [g·m-3] 1.25 3.56 2.38 2.18 

CDOM [m-1] 0.183 0.182 0.227 0.398 

SCDOM [nm-1] 0.0163 0.0163 0.0093 0.0065 

We used the arithmetic mean of deep water results as constant parameter values for 

shallow water inversion. Water depth was considered as a fit parameter, which could 

vary between 0.1 and 8.0 m. WASI-2D calculates the reflectance from the bottom (     ) 

as the sum of linearly mixing reflectance from different bottom types (13). 
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      ∑        

    

 

   

 (13) 

  number of bottom types 

   fractional share of the bottom type within the pixel 

   proportion of bottom reflectance towards the sensor 

  
      irradiance reflectance of the bottom type, originated from SAV reflectance 

model (Fritz et al. 2017b) 

After resampling the spectral database of WASI-2D to the Sentinel-2A spectral response 

curves as described in Dörnhöfer et al. (2016a), WASI-2D inversely models the    
   and 

compares modeled and Sentinel-2A    
   spectra for each pixel. The model then varies the 

fit parameters in a predefined range until modelled and satellite    
   match a similarity 

criterion or, when no perfect match is feasible, a predefined maximum number of 

iterations is achieved. 

To unmix the spectra to bottom constituents, the proportion of bottom reflectance towards 

the sensor was assumed to be angle-independent, i.e. Lambertian surfaces (Bi = 0.318 sr-1). 

For each acquisition date, we fitted fi to linearly unmix bottom types while considering 

variable water depths and a constant contribution of water constituents to the reflectance. 

Similar to the unmixing approach based on the depth-invariant index, we conducted 

model runs with two (n = 2: sediment and SAV) and three (n = 3: sediment, tall-growing 

species, meadow-growing species) bottom types. To reduce the influence of sun glint (not 

corrected by MIP) we additionally varied the share of directly reflected radiance (see 

Dörnhöfer et al. (2016a)).  

4.3.2.6 Comparison between depth-invariant index and WASI-2D unmixing results 

To compare the littoral bottom coverages retrieved with both methods, the results of 

depth-invariant indices (    ) and WASI-2D         ) were normalized to a range between 

0 and 1. We conducted a linear regression analyses between the obtained and normalised 
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endmember shares,      and        , using the software R (Version 3.4.2, R Core Team). For 

each Sentinel-2A data set, both parameters were compared in scatterplots based on the 

complete shoreline. Calculated correlation parameters (coefficient of determination,  ) 

supported assessing the similarities and differences between the resulting littoral bottom 

coverage of both approaches. 

4.4 Results 

4.4.1 Seasonal spectral variation within the growing season 

The spectra of the three investigated littoral bottom types (sediment, meadow-growing 

species and tall-growing species) were consistently different, following bimonthly 

modelling with the SAV reflectance models (Fritz et al. 2017b) for the 1st and 15th of June, 

July, August and September (Figure 4.3). Resampled to Sentinel-2A bands, the spectral 

response of the surface types also differed clearly in spectral shape and intensity at each of 

the observed dates within the growing season. Overall, while the intensity of the remote 

sensing reflectance remained low in the visible wavelength regions (400 nm to 700 nm), 

the intensity increased strongly towards the near infrared region (> 700 nm, Figure 4.3). In 

the visible wavelength region, the reflectance of sediment was the highest. Reflectance of 

meadow- and tall-growing species was similar in spectral shape, but differed in intensity. 

The reflectance intensity of meadow-growing species was slightly higher than the 

intensity of tall-growing species. 
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Figure 4.3: Remote sensing reflectance of meadow- and tall-growing species, simulated 

with the reflectance model and resampled on Sentinel-2A bands, for the 1st and 15th of a) 

June, b) July, c) August, d) September. The sediment spectrum was constant for each day. 

4.4.2 Spectral unmixing of shallow water areas using depth-invariant indices  

Depth-invariant index analysis of the littoral bottom types of the three test sites at Lake 

Starnberg (test sites ‘Roseninsel’, ‘Karpfenwinkel’ and ‘Seeshaupt’) based on the pre-

processed Sentinel-2A data sets revealed a different spatial extension of SAV (green) and 

sediment (red) patches (Figure 4.4) and a different SAV species composition (sediment 

(red), meadow-growing (green) and tall-growing (blue) SAV species, Figure 4.5) for the 

investigated dates. The spatial distribution of sediment and SAV species changed during 

the growing season. The spatial extension of shallow water areas depended on the    

index, which may differ for each Sentinel-2A data set. 

At the test site ‘Roseninsel’, the first index run classified large sediment and mixed 

sediment dominated patches (Figure 4.4, Table 4.2). Mixed SAV dominated patches were 

identified at the western shoreline of Lake Starnberg and at the south-eastern part of the 

island ‘Roseninsel’. For all Sentinel-2A acquisition dates, the sediment dominated patches 
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were similarly large (up to 100%) and clearly zoned from vegetated areas. For the test site 

‘Karpfenwinkel’, large sediment dominated patches were classified in the centre at the 

beginning of August. This clear spatial distinction between sediment and SAV areas 

decreased during August, resulting in a large mixed area. On 12 September, only a small 

band at the shoreline was classified as SAV dominated (32.25%). At the test site 

‘Seeshaupt’, the classified littoral bottom coverages changed solely in mid-September. The 

first index run further identified large sediment dominated areas in the south-western 

part of this test site (up to 45.59%), while SAV patches were tagged in the south-eastern 

part near the shoreline. On 12 September, the former sediment area at the eastern 

shoreline was classified as mixed area (75.70%). 

The results of the second run revealed more details on the distribution of SAV types in the 

mixed and dense SAV patches (Figure 4.5, Table 4.3). On 3, 13 and 23 August, the 

majority of the shallow water area at the test site ‘Roseninsel’ was tagged as sediment, 

while small patches of tall- (up to 7.68%) and meadow-growing (up to 4.99%) species 

were located at the south-eastern part of the island and a narrow stripe along the 

shoreline was classified as meadow-growing species. On 12 September, the situation 

changed and nearly the entire shallow water area was classified as a mixture of sediment 

and tall-growing species (99.45%) . On 3, 13 and 23 August, a large sediment mixed area 

patch dominated the centre of the test ‘Karpfenwinkel’. Meadow-growing species 

populated the shallow areas in the south (up to 14.57%), while tall-growing species 

predominated in deeper areas in the north (up to 37.10%). During August, the patches of 

tall-growing species increased (from 21.27% to 37.10%). On 12 September, only a narrow 

stripe along the shoreline was detected as shallow water, dominated by a mixture of 

sediment and tall-growing species. On 3, 13 and 23 August, meadow-growing species 

were situated in the south-eastern near the shore line part and sediment patches in the 

south-western part of test site ‘Seeshaupt’. Tall-growing species were located in deeper 

zones, the eastern shoreline was classified as a mixture of sediment and meadow-growing 

species. On 12 September, the entire shallow water area was classified as a mixture of 

sediment, tall- and meadow-growing vegetation dominating the entire shallow water 

area. 
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Figure 4.4: Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg 

illustrated after the linear spectral unmixing using the depth-invariant indices on 3 August 2015, 13 

August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour composite R-G-B: 

665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated 

shallow water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and 

‘Seeshaupt’ (red box). The linear spectral unmixing of 2 bottom types displays 100% bare sediment 

areas in red and 100% dense vegetated areas in green, mixed areas in yellow. Land and deep water 

areas are masked. 
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Figure 4.5: Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg 

illustrated after the linear spectral unmixing using the depth-invariant indices on 3 August 2015, 13 

August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour composite R-G-B: 

665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated 

shallow water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and 

‘Seeshaupt’ (red box). The result of 3 bottom types displays areas of bare sediment (red), meadow-

growing plant species (green) and tall-growing plant species (blue). Land and deep water areas are 

masked. 
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Table 4.2: Areas classified for each littoral bottom type using depth-invariant index and the two-

bottom-type approach (sediment < 0.3, mixed sediment dominated: 0.3-0.5; mixed SAV dominated: 

0.5-0.7; dense SAV > 0.7). 

Two-bottom-type approach Depth-invariant index data (%) 

Test site Littoral bottom type 3 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

‘Roseninsel’ Sediment 0.73 64.07 76.43 77.46 

Mixed sediment 

dominated 

56.69 35.93 23.06 21.20 

mixed SAV dominated 42.43 0 0.51 1.34 

dense SAV 0.15 0 0 0 

‘Karpfenwinkel’ Sediment 0 14.69 25.34 2.50 

Mixed sediment 

dominated 

13.23 81.95 63.43 65.25 

mixed SAV dominated 74.16 3.36 10.95 32.00 

dense SAV 12.61 0 0.28 0.25 

‘Seeshaupt’ Sediment 0 32.34 45.59 20.55 

Mixed sediment 

dominated 

14.95 60.36 48.99 61.68 

mixed SAV dominated 77.86 5.89 4.67 14.02 

dense SAV 7.19 1.42 0.76 3.75 
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Table 4.3: Areas classified for each littoral bottom type using depth-invariant index and the three-

bottom-type approach. 

Three-bottom-type approach Depth-invariant index data (%) 

Test site Littoral bottom type 3 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

‘Roseninsel’ Sediment 56.79 4.36 10.67 0.95 

meadow-growing 

species 

4.99 1.22 1.13 0.55 

tall-growing species 7.68 5.14 4.66 12.27 

mixed area 30.54 89.29 83.54 86.22 

‘Karpfenwinkel’ Sediment 22.14 3.77 2.18 0.50 

meadow-growing 

species 

14.57 6.94 2.12 9.00 

tall-growing species 21.27 35.99 37.10 21.25 

mixed area 42.02 53.30 58.60 69.25 

‘Seeshaupt’ Sediment 37.91 9.34 7.30 0.05 

meadow-growing 

species 

10.11 5.10 2.33 6.33 

tall-growing species 20.85 25.47 16.43 15.46 

mixed area 31.13 60.08 73.95 78.16 
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4.4.3 Spectral unmixing of shallow water areas using WASI-2D 

WASI-2D based unmixing was also carried out for the test sites ‘Roseninsel’, 

‘Karpfenwinkel’ and ‘Seeshaupt’. Again, two unmixing runs were conducted, i.e. one to 

differ between sediment (red) and SAV (green) (Figure 4.6) and one to distinguish 

between sediment (red), meadow-growing (green) and tall-growing (blue) SAV species 

(Figure 4.7). 

At the test site ‘Roseninsel’, the first run revealed large sediment patches around the 

island Roseninsel for all Sentinel-2A acquisition dates (Figure 4.6, Table 4.4). On 3 and 13 

August, towards deeper water mixed areas dominate, followed by patches classified as 

dense SAV. On 23 August and 12 September, the area classified as sediment increased 

(80.28%) and SAV patches disappeared (2.82%). At the test site ’Karpfenwinkel’, SAV 

dominated patches were dominating almost the complete shallow water area on 3, 13 and 

23 August (up to 76.89%); sediment and patches of mixed bottom types were located in 

the north and in the south-east. The sediment dominated patches increased noticeably on 

23 August (60.93%). On 12 September, only a narrow stripe at the shoreline was classified 

as shallow water, which was dominated by sediment and mixed areas. At the test site 

‘Seeshaupt’, sediment patches and mixed areas appeared at the western part and at the 

eastern shoreline for all Sentinel-2A acquisition dates. On 3 August, the majority of the 

shallow water area in the south was classified as dense SAV (17.22%). This SAV patch 

decreased on 23 August (3.96%) and 12 September (0.90%), resulting in an increase of 

sediment dominated patches (90.75%). The pattern was similar on 12 September, although 

the shallow water area was considerably smaller. 

The results of the second run (Figure 4.7, Table 4.5) revealed large sediment areas around 

the island (up to 69.42%), followed by patches of tall-growing species in deeper water at 

the test site ‘Roseninsel’ on 3, 13 and 23 August. Small isolated patches of meadow-

growing species (up to 6.29%) occurred between tall-growing areas (up to 23.31%). On 23 

August, however, the area classified as sediment increased strongly (69.42%), while tall- 

(8.33%) and meadow-growing (2.45%) patches decreased. At the beginning of August, 

large patches of tall-growing species were classified in the centre and meadow-growing 
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species and sediment patches in the south of the test site ‘Karpfenwinkel’. On 13 August, 

a mixture of sediment and meadow-growing species with isolated patches of tall-growing 

species (7.43%) covers the shallow water area. These sediment patches (23.73%) increased 

on 23 August, framed by tall-growing species. Meadow-growing species were located in 

the south of the test site. In September, sediment dominated the narrow stripe along the 

shoreline classified as shallow water. At the test site ‘Seeshaupt’, large sediment areas 

were classified in the south-western part and at the eastern shoreline for all Sentinel-2A 

acquisition dates. At the beginning of August, large areas of tall-growing species (22.58%) 

with isolated small patches of meadow-growing species dominated the centre of this test 

site. On 13 and 23 August, the areas tall-growing species strongly decreased; sediment 

dominated the shoreline, meadow-growing species the deeper water. In September most 

of the shallow water area was tagged as sediment (68.83%). 
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Figure 4.6: Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg 

illustrated after linear spectral unmixing using the bio-optical model WASI-2D on 3 August 2015, 

13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour composite R-G-B: 

665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated 

shallow water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and 

‘Seeshaupt’ (red box). The result of 2 bottom types displays 100% bare sediment areas in red and 

100% dense vegetated areas in green, mixed areas in yellow. Land and deep water areas are 

masked. 
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Figure 4.7: Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg 

illustrated after linear spectral unmixing using the bio-optical model WASI-2D on 3 August 2015, 

13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour composite R-G-B: 

665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated 

shallow water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and 

‘Seeshaupt’ (red box). The result of 3 bottom types displays areas of bare sediment (red), meadow-

growing plant species (green) and tall-growing plant species (blue). Land and deep water areas are 

masked. 
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Table 4.4: Areas classified for each littoral bottom type using bio-optical modelling and the two-

bottom-type approach (sediment < 0.3, mixed sediment dominated: 0.3-0.5; mixed SAV dominated: 

0.5-0.7; dense SAV > 0.7). 

Two-bottom-type approach Bio-optical modelling data (%) 

Test site Littoral bottom type 3 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

‘Roseninsel’ Sediment  51.24  50.73  80.28  68.07 

Mixed sediment 

dominated 

18.27 34.74 12.25 26.05 

mixed SAV dominated 23.95 14.53  4.65 

 
 
 2.82

 5.04 

dense SAV  6.54 0.00 0.84 

‘Karpfenwinkel’ Sediment 3.79 7.09 30.66  45.31 

Mixed sediment 

dominated 

19.32 48.57 30.27  37.32 

mixed SAV dominated  49.72 44.25 33.11 17.37 

dense SAV 27.18 0.08  5.96 0.00 

‘Seeshaupt’ Sediment 21.61 30.97 55.64  74.64 

Mixed sediment 

dominated 

22.06 34.28 29.38 16.10 

mixed SAV dominated 39.11 31.30 11.02  8.35

dense SAV 17.22 3.45 3.96 0.90 
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Table 4.5: Areas classified for each littoral bottom type using bio-optical modelling and the three-

bottom-type approach. 

Three-bottom-type approach Bio-optical modelling data (%) 

Test site Littoral bottom type 3 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

‘Roseninsel’ Sediment 42.22 43.65 69.42 90.96 

meadow-growing 

species 

6.29 2.52 2.45 0.15 

tall-growing species 23.31 8.73 8.33 2.38 

mixed area 28.18 45.10 19.80 6.51 

‘Karpfenwinkel’ Sediment 3.64 6.02 23.73 38.50 

meadow-growing 

species 

3.02 4.90 4.90 3.29 

tall-growing species 32.17 7.43 7.47 15.02 

mixed area 61.17 81.65 63.90 43.19 

‘Seeshaupt’ Sediment 19.07 28.50 48.66 68.83 

meadow-growing 

species 

0.87 12.30 11.83 1.04 

tall-growing species 22.58 2.00 1.90 0.35 

mixed area 57.48 57.20 37.61 29.78 
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4.4.4 Analysing the results of the spectral unmixing of both methods 

To compare the results both methods, a scatterplot with linear regression lines was 

performed for both methods for each bottom type and acquisition date. Figure 4.8 shows 

a comparison of the two-bottom-type approach (grey) and of the three-bottom-type 

approach (red). Both approaches showed a correlation, though the results of two-bottom-

types approach were less scattered. The results of both approaches differentiating 

between two littoral bottom types (Figure 4.4 and Figure 4.6) also emphasised visually a 

similar spatial distribution of sediment and dense SAV patches. For example, at the test 

site ‘Roseninsel’, both approaches showed predominating sediment (red) areas for all 

acquisition dates. When using the depth-invariant index (Figure 4.4), the remaining 

patches were mixed areas (yellow and orange), while at the same test site those patches 

were classified as mixed (yellow) and dense SAV areas (green) when using WASI-2D 

(Figure 4.6). 

The results for meadow-growing species (green) and tall-growing species (blue) indicated 

widely scattered values (Figure 4.9), with low coefficients of determination (R², see Table 

4.6). The highest coefficients of determination were achieved for two-bottom-type 

approach (R² up to 0.8137). The R² values of the results of the three-bottom-type approach 

were consistently lower (R² up to 0.4194). Meadow- and tall-growing species correlations 

obtained the lowest R² values (R² = 0.006996 and R² = 0.002654). The results of the three-

bottom-type approach (Figure 4.5 and Figure 4.7) demonstrated a similar spatial 

distribution of sediment and SAV patches, but showed no comparable spatial distribution 

for SAV on species level. For example, for the test site ‘Karpfenwinkel’, the results of both 

methods completely differed on 3 and 13 August: WASI-2D derived a large patch of tall-

growing species whereas the depth-invariant index detected sediment and mixed areas of 

sediment and meadow-growing species. 
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Figure 4.8: Scatterplot with regression line of sediment for the acquisition dates 03 August 2015 (a), 

13 August 2015 (b), 23 August 2015 (c) and 12 September 2015 (d). Results of spectral unmixing of 2 

bottom types for sediment (grey) and results of the spectral unmixing of 3 bottom types for 

sediment (red). 
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Figure 4.9: Scatterplot with regression line of the different bottom types for the acquisition dates 03 

August 2015 (a), 13 August 2015 (b), 23 August 2015 (c) and 12 September 2015 (d). Results of the 

spectral unmixing of 3 bottom types for meadow-growing species (green) and tall-growing species 

(blue). 

Table 4.6: R² values for the different littoral bottom types for each acquisition date. 

Littoral bottom type  03 Aug 2015 13 Aug 2015 23 Aug 2015 12 Sep 2015 

Sediment (2 bottom types) 0.5603 0.6621 0.8137 0.7948 

Sediment (3 bottom types) 0.4194 0.2664 0.3073 0.2352 

Meadow-growing species 0.06476 0.006996 0.05015 0.1091 

Tall-growing species 0.03649 0.002654 0.1821 0.3858 
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4.5 Discussion 

One aim of this study was to compare the performance of two methods for mapping 

littoral bottom coverage in shallow water areas by using Sentinel-2A data. Both methods, 

i.e. depth-invariant index and bio-optical modelling with WASI-2D, can be applied on the 

shallow water areas at Lake Starnberg. When differentiating between sediment and SAV, 

both methods identify a similar spatial distribution of the patches. The second aim of this 

study was to investigate whether spectral variations in the phenologic development of 

SAV species allow a differentiation on species level. The modelled spectra used for 

initializing the two approaches indicate that a differentiation should be possible, but the 

used methods revealed different results in SAV species patch distribution. 

4.5.1 Seasonal spectral variation within the growing season 

In our study, we focused on a period in late summer for the investigation of the 

phenologic SAV development. Within these time period, SAV is expected to change 

significantly with maximal plant height and patch extension in August (main vegetation 

time) to degrading and dying SAV patches in September. The modelled and resampled 

SAV reflectance spectra showed differences in the spectral shape at the investigated 

littoral bottom types within the growing season (Figure 4.3). Moreover, variation in these 

spectra were sufficiently high to track the species-specific development during the 

monitoring period; Sentinel-2A therefore seems to be suitable for the differentiation 

between SAV species, especially in the range of bands 4 and 5, which are sensitive to 

Chlorophyll-a variations. 

At the end of the growing season in September, the spectral shape of meadow-growing 

species is flattened in the yellow and orange wavelength region (560 nm – 630 nm); 

moreover the Chlorophyll-a absorption maximum is less spectral distinct. This is due to 

variations in leaf pigment ratio (Sims and Gamon 2002, Wolf et al. 2013), when lower 

Chlorophyll-a contents in ageing leaves cause such a spectral shift (Gitelson and Merzlyak 

1994, Sims and Gamon 2002). 
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We expect that access to spectral information of sensors such as Sentinel-2A within the 

complete growing season may significantly improve the accuracy of SAV mappings, even 

on species level. Knowledge of species-specific variations within a growing season, 

however, is essential for identifying and monitoring SAV on species level by using remote 

sensing approaches. To avoid classification errors we therefore recommend a phenologic 

adaption of the implemented spectra. 

4.5.2 Analysing the results of the spectral unmixing of shallow water areas 

using depth-invariant indices and WASI-2D 

Both approaches were able to retrieve bottom substrate maps, which indicate the potential 

suitability of Sentinel-2A for monitoring littoral bottom coverage. Both methods provided 

noticeable differences in SAV extent and distribution (Figure 4.4 and Figure 4.6, Table 4.2 

and Table 4.3). Sediment dominates shallow water zones exposed to wind and waves 

(e.g. the test site ‘Roseninsel’) and shipping traffic (e.g. the western part of test site 

‘Seeshaupt‘) due to a high level of disturbances (Koch 2001). Calm and protected areas 

with a broad reed belt (e.g. the test site ‘Karpfenwinkel‘ and the south-eastern part of test 

site ‘Seeshaupt‘) allow the development of a dense SAV patch. Areas with mixed coverage 

are characteristical for detritus overlay on sediment, plant residuals, epiphytes or sparsely 

growing SAV with sediment influence (Armstrong 1993, Fyfe 2003, Williams et al. 2003, 

Silva et al. 2008, Wolf et al. 2013).  

The results of the linear spectral unmixing of three littoral bottom types display a spatial 

distinct differentiation between sediment areas and areas of tall- and meadow-growing 

SAV species (Figure 4.5 and Figure 4.7, Table 4.4 and Table 4.5). The shallow water area 

near the harbour ‘Seeshaupt‘ is highly disturbed and therefore classified as sediment. 

Clam water regions and deeper water zones allow a dense SAV coverage (e.g. test site 

‘Karpfenwinkel‘ and south-eastern part of test site ‘Seeshaupt‘). The distribution of 

different SAV species seemed to depend on the water depth. While tall-growing species 

predominate in deeper water regions, meadow-growing species populate shallower areas 

close to the shoreline. Differing growth height and plant structure may explain this 
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distribution detected by remote sensing data. The characteristic spectral response of tall-

growing species dominates the reflectance signal in the deeper zones. In the satellite data 

only the canopy of the tall-growing species is visible, because they cover the meadow-

growing species and therefore superimpose their characteristic reflectance signal. This 

behaviour may explain existing differences in classification results of remote sensing data 

and diver mappings (Figure 4.1). In the shallow water regions, meadow-growing species 

dominate the remote sensing signal, because low water levels aggravate growth of tall-

growing species, which therefore are unable to develop a dense canopy. This modifies the 

characteristic spectral signature and hinders a mapping based on remote sensing. 

12 September has to be considered separately, because large parts of the shallow water 

area are masked wrongly as deep water. The performance of    highly depends on a 

homogenous deep water reflectance in red wavelengths (630 nm - 700 nm). Differing 

water constituent concentrations at this acquisition date (see Table 4.1) therefore may 

have affected the    calculation. Improving automatic shallow water delineation may 

avoid such misinterpretation of its spatial extent. Nevertheless, the linear spectral 

unmixing of three bottom types using depth-invariant indices also shows some 

irregularities for this acquisition date. The unmixing results are fundamentally different to 

those of pervious acquisition dates, which is probably also due to an insufficient 

consideration of the water constituent concentration in the depth-invariant index 

calculation. 

Comparing the results of both investigated methods showed similarities as well as 

differences between the spectral unmixing of two or three littoral bottom types (Figure 4.8 

and Figure 4.9). In general, for both methods the results for sediment (Figure 4.8) scatter 

less than the results for SAV species (Figure 4.9); sediment further showed higher R² 

values (Table 4.6). This can be attributed to the spectral differences that are more distinct 

between sediment and SAV than between SAV species. For both methods, low coefficients 

of determination demonstrate that an unmixing at SAV species level seems infeasible so 

far. For this, further research on SAV species differentiation is required. We therefore 

recommend detailed in situ investigation to understand how the spectral signal of SAV 
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species changes with their phenologic development in freshwater lakes with different 

trophic states. 

A major shortcoming of our study is the lack of validation data. For a meaningful 

validation, however, large-scale in situ measurements on SAV species level are 

mandatory. Our study showed, that the currently available information based on transect 

mappings is insufficient for a solid validation of remote sensing data. We expect that 

large-scale mappings would be more promising to record extend and coverage of SAV 

patches.  

4.6 Conclusions 

This study used four Sentinel-2A scenes of August and September 2015 to map the spatio-

temporal development of SAV in shallow water areas of the oligotrophic Lake Starnberg 

(Southern Germany). To map sediment and SAV distribution as well as growth and 

distribution on species level, we applied the semi-empirical method of depth-invariant 

indices and the bio-optical model WASI-2D. To provide endmember spectra for the 

monitoring period, we applied spectral reflectance models of different SAV types for 

different phenologic stages. The results confirm other studies demonstrating that the 

spatial and spectral resolution of Sentinel-2A data is suitable for SAV monitoring. Both 

applied methods provide similar spatial distributions of sediment and SAV. None of the 

methods, however, was able to show a clear distinction between meadow- and tall-

growing SAV species. To improve a proper validation of unmixing results, large-scale in 

situ mappings carried out simultaneously to the satellite overpasses are needed. We 

further recommend setting up a spectral database of SAV species at different phenologic 

stages, because an integration of SAV endmember spectra at the proper growth stage may 

enhance discrimination of SAV at species level. In view of global warming, a multi-year 

time-series may obtain information about trends in SAV coverage and species 

distribution. Satellite systems with high spatial resolution and a frequent revisit time such 

as Sentinel-2 offer the potential to support in situ SAV mappings as required by the WFD. 
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5 General discussion 

The studies presented in this thesis provide a novel approach on the mapping of 

submerged aquatic macrophytes using remote sensing methods on freshwater lakes. The 

results show that currently practiced monitoring methods of SAV have gaps in spatial and 

temporal coverage. As presented here, the use of remote sensing methods and satellite 

data can close these deficits by providing detailed information on the littoral bottom 

texture of shallow water areas several times a year. The knowledge of detailed species-

specific spectral information at different moments within the phenologic development is 

the basis of this approach. The embedding of the macrophyte phenology variations in the 

mapping process can increase the classification accuracy of satellite data. Based on these 

new findings, the previous monitoring methods are critically questioned and novel 

monitoring approaches are presented (Chapter 5.2), especially regarding to the impact of 

climate change induced effects (Chapter 5.3).  

5.1 Water quality assessment by remote sensing methods 

As submerged aquatic macrophytes are sensitive to changes of the environmental 

conditions such as nutrient conditions, water temperature, water level and transparency 

(Skubinna et al. 1995, Penning et al. 2008, Søndergaard et al. 2010, Poikane et al. 2015), 

they serve as biological indicator for the assessment of the ecological status and the water 

quality of freshwater lakes (Melzer 1999). So far, the water quality assessment is based on 

the results of in situ investigations conducted by a team of divers along the shoreline.  

To improve the water quality assessment, remote sensing methods offer great 

possibilities. As defined by O’Neill et al. (2011), the requirements for detecting submerged 

aquatic macrophytes using remote sensing methods are the following:  

- The spectral characteristics of macrophytes can be separated from the influence of 

the water column and the atmosphere.  

- The spectral properties differ from the surrounding littoral bottom coverage. 
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- The spectral resolution of the sensor is adequate for resolving these unique 

spectral characteristics. 

- The spatial resolution of the sensor is adequate for recording the spatial patterns of 

the SAV of interest.  

As shown in Figure 5.1, several challenges below the water surface (6 – 10) concerning the 

radiation transfer in the water column and the interaction at the littoral bottom have been 

investigated, developed and improved in this thesis. The applicability of RapidEye 

satellite data to map SAV patches in shallow areas of eutrophic freshwater lakes (6 & 7) 

has been successful (Chapter 2). The spatial distribution and the spatio-temporal 

development of SAV could be illustrated. Reflectance models of several SAV species and 

sediment (Chapter 3) provide insight into the spectral variations (8 & 9) within the 

growing season. Those variations can be linked to the phenologic stages of SAV 

populations. The inversion of this reflectance models is an important step towards the 

SAV classification on species level. The simulated SAV spectra have been used to map 

SAV patches on species level (Chapter 4) by using a Sentinel-2A time series (10).  

As suggested by O’Neill et al. (2011), the influence of the water column on the spectral 

response has to be investigated and separated from the spectral characteristics of the SAV. 

Therefore, an automated implementation of the concentration of optically active water 

constituents of shallow (6) and deep water areas (7) in the process of water quality 

assessment was investigated and tested. To avoid transmission errors, the detailed 

knowledge of water constituent concentrations should be independent to punctual in situ 

measurement (Chapter 2). The freely available software tool WASI-2D (Gege 2014b) 

retrieves the concentrations of the optically active water constituents (Chlorophyll-a, 

cDOM and TSM) over optically deep water areas by inverse modelling of atmospherically 

corrected Sentinel-2A imagery (Chapter 4). Dörnhöfer et al. (2016a) described the settings 

to assign the concentrations of water constituents from optically deep water to shallow 

water areas. For this transfer, a constant value is needed to avoid overfitting in shallow 

water modelling. 
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Figure 5.1: The pathway of solar radiation from top of atmosphere towards, in the water body and 

back to the sensor. The pathway of solar radiation from top of atmosphere towards, in the water 

body and back to the sensor. Along the path above the water body, the radiation (1) is influenced 

by particles in the atmosphere (2), by reflection at emergent (3) and floating (4) vegetation and the 

water surface (5). In the water body, water constituents in shallow (6) and deep (7) water zones and 

the characteristic reflectance of SAV species (8) and sediment (9) influence the radiation. The 

radiation arriving at the sensor (10) is the basis for an analysis of lake bottom substrate types by 

remote sensing satellite images.  

The spectral distinction of SAV from the surrounding area is important (O’Neill et al. 

2011). Here, the species-specific characterization of the spectral signature of SAV (8) as 

well as the spectral information of sediment (9) serves as basis of the phenologic 

fingerprint approach (Wolf et al. 2013). As reported in literature, the spatial and temporal 

changes in littoral bottom reflectance within one growing period are caused by the 

development of the coverage level from non-vegetated to fully grown patches (Wolf et al. 

2013), by the changes in pigment composition (Peñuelas et al. 1993) and structural 

changes of the plants (Dierssen et al. 2003) and by the accumulation of periphyton (Drake 



5 General discussion 

 

101 

 

et al. 2003). Even bare sediment without visible macrophyte coverage is covered by algae 

(Stephens et al. 2003) and biotic microfilms (Decho et al. 2003).  

The in situ collected spectral signatures are combined with the particular phenologic stage 

and environmental variables such as the temperature and the water constituent 

concentrations. They are stored in a spectral database (Wolf et al. 2013) and serve as basis 

for the reflectance models (Chapter 3). These models provide a day and daytime adjusted 

selection of reflectance spectra. Based on this information, specific images can be taken 

several times within the growing season. The results of this research (Chapter 3) show 

that the spectral database and the reflectance models need to be expanded to other SAV 

species and other lake types. For the expansion, the influence of environmental variables 

on the phenologic development such as the water temperature needs to be further 

investigated (Chapter 3). The influence of other environmental variables e.g. turbidity, 

bottom slope, bottom orientation and periphyton are still research gaps that need to be 

investigated in the future. A permanent expansion of the spectral library and the 

continuous development of the reflectance model are necessary to improve the 

classification of littoral bottom types of shallow water areas.  

The spectral and spatial resolution of the applied sensor has to be sufficient to resolve and 

record the species-specific spectral characteristics and the spatial patterns of SAV. The 

investigation of freshwater lakes with novel satellite system types with high spatial and 

temporal resolution (e.g. RapidEye and Sentinel-2) (10) provides more profound 

information on the littoral bottom types (Chapter 2 and 4) several times within the 

growing season than common satellite constellations (e.g. Landsat 8). The higher the 

temporal, spectral and spatial resolution of the used satellite systems, the more precisely 

shallow water areas can be investigated and the more detailed information on the littoral 

bottom coverage can be obtained. A continuous adaptation and integration of prospective 

satellite systems, e.g. hyperspectral sensor types, remains a task in the future. 

An accurate water quality assessment and the knowledge of a lakes trophic state is 

regulated by the WFD (European Commission 2000). The broad coverage of the earth 

surface by satellites and their high revisiting times constitute an excellent basis for a 
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monitoring system. In combination with in situ mappings by divers, remote sensing 

allows a close monitoring cycle and spatial-wide information. The knowledge of seasonal 

variations within the growing season of SAV ensures a precise insert of human resources 

for in situ mappings at places with abnormalities. Due to time series within the growing 

season, the temporal resolution is clearly improved. The simultaneously recording of a 

variety of lakes determines a clearly improvement in the monitoring of freshwater lakes 

as demanded by Palmer et al. (2015).  

5.2 Prospective requirements of monitoring methods 

According to the requirements of the WFD (European Commission 2000), the established 

monitoring of SAV is performed in a three-year monitoring cycle by punctual in situ 

investigations of divers. The regular monitoring of SAV provides an overview on the 

trophic state of freshwater lakes. In order to cover the temporal and spatial gaps and to be 

able to conduct a continuous and gapless SAV monitoring, further monitoring methods 

are additionally necessary. This is the only way to identify changes at an early stage, to 

investigate their cause and to solve feasible problems in time (Palmer et al. 2015).  

Remote sensing offers the possibility of improvement of the previous monitoring method. 

With their high spatial resolution and temporal coverage, multispectral satellite systems 

(e.g. RapidEye, Sentinel-2A) are prerequisite for an investigation of shallow water areas. 

Conventional satellite systems (e.g. Landsat 8) have a revisit time of more than 2 weeks 

under optimal, cloud-free conditions. This means that often only a few data takes can be 

recorded within the growing season. A continuous data acquisition and analysis is not 

possible in this way. In contrast to punctual transect mappings, remote sensing 

approaches deliver spatial-wide information on SAV at short time intervals several times 

a year. In addition to the mentioned advantages, remote sensing approaches for water 

bodies also have their vulnerabilities. The greatest restriction of optimal remote sensing 

approaches is their weather-dependence. A free view from sensor to object and as few 

cloud coverage as possible are the best preconditions for successful satellite image. The 

absorption properties of water in the wavelength region above 700 nm complicate the 
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approach. In this region almost all incoming radiation is absorbed and spectral SAV 

characteristics cannot be integrated in a further monitoring process. 

The presented approaches (Chapter 2 & 4) already deliver reliable results for mapping 

littoral bottom types and give a first overview of the littoral bottom coverage. As long as 

the mapping is limited to a differentiation between SAV and sediment, the monitoring 

approaches offer the possibility to detect variations of the littoral bottom coverage within 

one growing season. Both, the expansion of SAV patches while plant growing and the 

decrease of planted areas are displayed on the retrieved satellite data. Bare sediment areas 

that are exposed to wind and waves (Koch 2001) and that are highly frequented by 

humans can be clearly separated from vegetated patches. With the presented approaches, 

an identification of SAV on base of growth height or species level is currently not 

sufficiently feasible (Chapter 4). However, the studies show that there are noticeable 

spectral differences between the individual SAV species and between the phenologic 

stages within one species (Pinnel et al. 2004, Pinnel 2007, Wolf et al. 2013, Roessler et al. 

2013a, Chapter 3). For an identification on species level, further systematic investigations 

of SAV and its phenologic development are highly recommended (Chapter 4). 

Nevertheless, together with the regular diving observations recommended by the WFD 

(European Commission 2000), the presented methods can be used for preliminary 

classification and may help to upscale punctual observations. 

According to the presented results (Chapter 4), a SAV monitoring on species level as 

demanded by the WFD (European Commission 2000) cannot be performed yet with the 

presented methods, but they may support the in situ mappings carried out so far. As the 

mapping of SAV patches performs well with current methods and sensor techniques 

(Chapter 2 & 4), the improvement of a remote sensing based monitoring system needs 

further information on the level of SAV species. As presented in the results (Chapter 2), a 

differentiation of littoral bottom types in vegetated and non-vegetated areas can be 

applied all over the shallow water areas in freshwater lakes. The key element for a SAV 

monitoring on species level with remote sensing approaches is the detailed knowledge of 

the specific spectral phenologic development of SAV indicator species (Pinnel 2007, Wolf 
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et al. 2013). The spectral characteristics have to be included in the SAV mapping process 

to differentiate between the SAV indicator species (Chapter 3 & 4). These features are not 

only species-specific. Dependent on patch location, varying environmental parameters 

influence the SAV patches, their seasonal development and therefore their characteristic 

spectral signature (Barko and Smart 1986, Barko et al. 1991, Blindow 1992, Madsen and 

Brix 1997, Rooney and Kalff 2000, Squires and Lesack 2003, Zhu et al. 2008, Shuchman et 

al. 2013, Hoffmann et al. 2014, Singh and Singh 2015, Chapter 3). For embedding in the 

SAV monitoring process, detailed information on the water temperature, the lake’s 

trophic state, nutrient load, periphyton growth on leaves, the lake morphology and the 

shading effects of the plant canopy is required.  

A general weakness is the validation of SAV species detected by remote sensing. 

Especially, the validation of spatial-wide shallow water areas poses a problem. To 

improve the SAV monitoring process, a suitable validation is prerequisite. Pointed data 

takes with large-scales in situ mapping by divers where the SAV patches are precise 

documented in species and position are essential for spatial-wide validated data. 

Anyway, a further development of the present monitoring methods is essential. An 

improvement of the monitoring methods allows a broad coverage of the investigation 

area (e.g. observation by remote sensing methods and satellite systems), a better use of 

human resources and a target-orientated and specified analysis of the investigation object 

(e.g. monitoring of the occurrence of target species on molecular level such as 

environmental DNA). The advantage of spatial-wide, continuous monitoring approaches 

is the early recognition of changes (e.g. SAV growth structure changes, changes of the 

lake’s trophic state, desertification, changes in the shoreline). Spatial-wide monitoring 

methods with a possible loss of detailed information can be supported and improved by 

punctual measurements at particularly prominent points to save time, money and human 

resources. Without this transfer from punctual to spatially explicit monitoring a gapless 

data take of freshwater lakes will not be realizable.  
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5.3 The influence of climate change induced changes on the water 

quality  

Aquatic ecosystems are expected to change noticeably in the future. Beside eutrophication 

and inorganic and organic contaminations, the effects of climate change (e.g. an increasing 

air and water temperature) are stressors for the ecological balance in freshwater lakes 

(Brönmark and Hansson 2002, Dudgeon et al. 2005, Hering et al. 2010, Moss 2012). 

Nevertheless, extreme events (e.g. heavy rainfall events, prolonged drought periods, mild 

winters and rainy summers) are expected to occur more frequently in the future. Both, the 

water quality as well as the ecology of freshwater lakes is influenced by those changes 

(Moss 2012). Consequences are for example variations in the length of growing season 

and a shift of vegetation growing within the year, a variation in the length of the growing 

season or changes in the shoreline (e.g. changing water level line and dry areas). Chapter 

3 illustrates the influence of temperature on the spectral response of a SAV population 

and on the length of growing season. In the summer 2015, the air temperature was 

comparatively high. Differences between indigenous and invasive species have been 

observed. For example, the indigenous species Chara spp. shows changes in the 

phenologic development and the length of growing season. Their senescence phase 

started earlier and the degradation processes faster. 

However, a changing of environmental conditions also may offer better habitat conditions 

for new, non-native species. Invasive species, originated from climate zones with higher 

temperatures, use the rising water temperatures to spread and to establish populations in 

new lakes. It is assumed that non-native, invasive species (e.g. Elodea nuttalllii) as well as 

indigenous, thermophile species (e.g. Najas marina) spread better and more extensively 

and thus push back or even replace indigenous species (e.g. Chara spp.) (McKee et al. 

2002, Meerhoff et al. 2007, Hussner et al. 2010, Wolf et al. 2013). In warmer water bodies in 

northern and north-western Germany, 16 out of 21 aquatic neophyte species have 

established stable populations; in Southern Germany 11 neophyte species have been 

discovered so far (Hussner et al. 2010, Hussner 2012). 
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In order to be able to detect changes in the species composition and the distribution at an 

early stage, it seems advisable to take close monitoring recordings with simultaneously 

broad spatial coverage. This close monitoring grid enables a spatial-wide survey at close 

intervals. In this way, changes in littoral bottom coverage and species composition can be 

detected at an early stage. This seems to be the only way to counteract the displacement of 

indigenous SAV species and the loss of natural biodiversity in time.  

5.4 Outlook 

The continuously rising air temperature and the increasing likelihood of extreme events in 

the future underpin the importance of a targeted monitoring of changes in aquatic 

ecosystems. As shown in this thesis and in the cited literature, SAV plays an important 

role in the monitoring of freshwater lakes. The integration of more SAV species, targeted 

studies of climate change-related environmental impacts and a further development of 

monitoring procedures are recommended for prospective research.  

In this thesis, the SAV species Chara spp., P. perfoliatus and E. nuttallii were investigated. 

The integration of other SAV species and other water quality types into the spectral 

database will improve the presented macrophyte models. Special attention should be 

given to indicator species (e.g. according to the WFD) and to invasive species. The 

investigation of one species at different lakes and lake types also improves the model.  

Furthermore, targeted studies of climate change-related environmental impacts on SAV 

are recommended. For example, a continuously recording of air and water temperatures 

at several prominent points near the study areas allows an unambiguous link between the 

environmental parameters and the phenologic development of SAV. This additional 

information also flows into the spectral database and thus improves the SAV modelling. 

A further development of monitoring procedures is to be expected in the future. The 

standardised monitoring needs to be adapted to novel options. In this way, remote 

sensing methods can already be used as support and help to detect changes of the littoral 

bottom coverage at an early stage. In order to further expand satellite-based monitoring, 
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the spectral resolution of the available sensors is of central importance. A further 

development in the direction of satellite-based hyperspectral sensors, which can also be 

used operationally, offers a significant improvement of the presented methods. 
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