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Abstract Bipedal locomotion is more than dynami-

cally stable walking. The redundant kinematic design

of humanoid robots allows for complex motions in com-

plex scenarios. One challenge of current robotic research

is the exploitation of the capacities of redundant robots

in real-time applications. In this paper, we present and

evaluate methods for real-time motion generation of re-

dundant robots. The proposed methods are based on a

model-predictive approach. We propose and compare

methods for optimization of robot motions defined by

parameterized task-space trajectories and for redun-

dancy resolution. The approaches are successfully com-

bined in a novel algorithm. The methods are introduced

with the help of a minimal model. It shows their ap-

plicability for a wide range of complex robotic systems.

We apply and validate their effectiveness and their real-

time character in several experiments with different en-

vironments with the humanoid robot.Lola.

Keywords Bipedal Walking, Autonomous Naviga-

tion, Kinematic Optimization, Real-Time Motion

Generation, Collision Avoidance

1 Introduction

One focus of current robotic research is creating robots

with more autonomy to deal with the challenges of

real-world environments. The robot’s limited versatility

seems to be one of the major bottleneck to employ them

in real applications. Especially in cluttered environ-

ments, redundant hardware design is one of the possibil-
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Joint DoF
Head 2
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Ankle 2
Toe 1
Total 24

Fig. 1: Photo and kinematic structure of the humanoid

robot Lola. Joint distribution and world coordinate sys-

tem used are shown on the right side.

ities to enlarge the robots’ mobility. One prominent rep-

resentative of redundant mobile robots are humanoids.

Thanks to their redundant kinematic structure, they

are predestined to be employed in diverse and complex

scenarios. Motion generation for humanoid robots usu-

ally follows a hierarchical approach (Kajita et al, 2003;

Nishiwaki et al, 2012; Takenaka et al, 2009; Buschmann

et al, 2010; Englsberger et al, 2011): First, task space

trajectories are generated to enable dynamically fea-

sible motions based on simplified models over a long

time horizon. Second, the robot’s inverse kinematic is

solved locally while exploiting the redundancy for sec-

ondary optimization targets. A drawback of this ap-

proach is that the robot’s motion kinematics are not

taken into account at the trajectory planning stage. The

motion-governing workspace trajectories are calculated

without feedback about the resulting kinematic motion.



2 Arne-Christoph Hildebrandt et al.

In the worst case, this leads to workspace trajectories

which are kinematically infeasible. Furthermore, kine-

matics are only taken into account locally. That way,

the robot’s redundancy, which promises a high opti-

mization potential, cannot be exploited adequately. In

this paper, we present an approach to optimize the pa-

rameterized workspace trajectories and the nullspace

in a model predictive way. The parameter and the

nullspace optimization are not only solved separately

but also in combination. The methods are presented

and analyzed using a minimal model. Furthermore, we

apply them on our humanoid Lola (see Fig. 1). We want

to emphasize, that these methods are not limited to

bipedal locomotion. As shown using a minimal model,

they can be applied to a much wider range of redundant

robots. The paper is organized as follows: In Section 2

we give an overview of current related research projects.

Section 3 discusses an optimization approach for motion

planning of redundant robots. First, Section 4 provides

a system overview of the experimental platform used

in this work — the robot Lola — and the overall soft-

ware framework. Furthermore, we give a detailed review

of our methods for real-time motion generation. Then,

the application of the presented model-predictive plan-

ning method on a humanoid robot is presented. Fur-

thermore, the methods are analyzed in simulation and

validated successfully in conducted experiments. These

results are presented in Section 5. Finally, Section 6 is

devoted to a conclusion and comments on future work.

2 Related Work

Most current humanoid control frameworks follow a hi-

erarchical approach to achieve bipedal walking, which

is responsive to user input or changing scenarios. These

hierarchical approaches allow seperation of the naviga-

tion problem in complex environments from the walking

pattern generation. Typically, the navigation problem

is reduced to a search of foothold sequences to take into

account geometric constraints. In bipedal locomotion,

often an A*–Search is applied to search for valid step

sequences on a height map (Hornung and Bennewitz,

2012; Stumpf et al, 2014; Chestnutt et al, 2009). For

example, Chestnutt et al (2009) propose a navigation

system based on an A*-Search on an accurate height

map. The height map is set up using a laser scanner and

the robot is localized with an external motion capture

system. Fallon et al (2015) and Buschmann et al (2010)

present two methods differing from graph-search-based

approaches: Fallon et al (2015) propose to determine

convex areas in a vision system into which the robot is

able to step. Starting with a fixed number of steps, a

mixed integer optimization is applied to calculate a step

sequence. Instead of using a global map, Buschmann

et al (2010) propose to analyze a set of 2D trajectories

for feasibility in the vision system. The best ranked

trajectory is executed by the robot. This method is

very responsive to changes in the environment but does

not exploit the robot’s ability to step over obstacles.

The navigation systems have in common that they pro-

vide foothold positions, which can be summarized as

a set of parameters. This set and, additionally, user

chosen parameters or parameters explicitly calculated

by the step planner (Hildebrandt et al, 2015; Nishi-

waki et al, 2012), as for example torso height or foot-

step height, describe the robot’s desired motion. It sep-

arates the handling of geometric constraints imposed

by the environment from the motion generation. The

robot’s multi-body-behavior is approximated by simple

point-mass models. Using these models, reference tra-

jectories, which are configured by the parameter set,

are calculated without latencies allowing for dynami-

cally feasible walking. The reference trajectories are set

points to generate the motion on joint level at higher

frequencies. Nishiwaki et al (2012); Kajita et al (2003);

Takenaka et al (2009); Buschmann (2010); Englsberger

et al (2011), among others, are prominent proponents

of this approach for real-time motion generation. By

adapting the desired motion during walking, Wittmann

et al (2014); Urata et al (2011), among others, show re-

sults, taking into account sensor feedback, in rejecting

unknown disturbances even in the presence of obsta-

cles (Hildebrandt et al, 2017). Nishiwaki et al (2012);

Kajita et al (2003); Takenaka et al (2009); Buschmann

(2010); Englsberger et al (2011) and Wittmann et al

(2014); Urata et al (2011) as well apply different meth-

ods for motion generation and different models to ap-

proximate the robot’s dynamic behavior. However, they

all have in common the generation of reference trajec-

tories governing the robot’s overall motion based on

simplified models and heuristically chosen parameters.

Buschmann et al (2005) present an approach for of-

fline optimization of walking pattern parameters. Due

to its offline character, it does not take into account the

environment. Nishiwaki et al (2012) propose planning

collision-free foot trajectories in the workspace connect-

ing the desired foothold. However, the foot trajectories

are calculated taking into account the kinematics of the

robot only via heuristics. Baudouin et al (2011) offer

an RRT-based footstep planner. They propose dividing

the stepping motion into half steps and checking for

collisions at predefined body configurations. The long

calculation time and the sub-optimal solution provided

by the RRT-algorithms makes the application in real-

world environments difficult. Furthermore, the motion

of the robot is defined through key-poses at half-time
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steps that are adapted in a post processing step to ap-

proach fluent movement.

2.1 Kinematic Planning for Bipedal Locomotion

Most of the previous approaches take the robot’s kine-

matics into account only for a short time horizon of

one control cycle. Thus, a large optimization space of

the robot’s redundancy is neglected. Furthermore, the

robot’s ability to step over or onto obstacles is only ex-

ploited by using heuristic approaches to respect kine-

matic limitations. Work on kinematic planning for hu-

manoid robots that considers motion of a complete

walking step focus mainly on narrow tasks such as step-

ping over (Guan et al, 2005, 2006; Verrelst et al, 2006;

Stasse et al, 2009; Arbulu et al, 2010) or onto obstacles.

Guan et al (2005, 2006) investigate the feasibility of hu-

manoid stepping-over-motions. They propose a quasi-

static trajectory planner for the task of stepping over a

rectangular obstacle. Stasse et al (2009); Verrelst et al

(2006); Arbulu et al (2010) take into account the Zero

Moment Point (ZMP) feasibility criteria via the preview

control (Kajita et al, 2003). This allows them to shift

the result for stepping over an obstacle from quasi-static

to dynamic robot motions. Stasse et al (2009); Verrelst

et al (2006) extend the step planning process. First,

they calculate the required step length and waist height

to obtain a collision-free double support phase. Second,

smooth swing foot trajectories are generated taking into

account collision checks only in key configurations. Dur-

ing step execution, they propose to adapt the horizontal

foot trajectory on-line. Nevertheless, to the best of our

knowledge, this has not yet been validated experimen-

tally. As opposed to Stasse et al (2009) and Verrelst

et al (2006), Arbulu et al (2010) use more sophisticated

body approximations for collision checks. Instead of line

segments, the obstacle and the lower part of the swing

leg are modeled as boxes. Arbulu et al (2010) propose,

similar to Stasse et al (2009); Verrelst et al (2006), that

collisions between robot and obstacle be checked only

for several key configurations. Smooth swing foot tra-

jectories are generated using clamped splines by inter-

polating the key configurations. The robot’s full motion

is generated based on the methods presented by Kajita

et al (2003). The desired motions are checked for feasi-

bility by calculating the inverse dynamics of the multi-

body model. The presented methods allow humanoid

robots to step over one large obstacle at a time. How-

ever, they have the following disadvantages:

– They all use very simplified geometric models, so

complex 3D geometries of the robot or the environ-

ment cannot be represented adequately.

– They only consider collisions between the lower legs

and one obstacle. Neither potential self-collisions,

nor simultaneous collisions with several obstacles

are taken into account.

– They limit the foot movements to a plane. More gen-

eral movements which exploit all the robot’s DoFs

are not considered.

– The methods are presented as stand-alone: They

are not integrated in frameworks involving percep-

tion and navigation. Thus, their compatibility with

a whole motion-generation framework has to be

proven.

– They concentrate on the stepping motion over one

obstacle. The robot’s whole kinematic is not opti-

mized and it is not considered in more general walk-

ing.

The method presented by Koch et al (2014) is a more

general approach. They generate the stepping-over-

motion from a whole-body-motion-optimization. The

method is applied to the test case of a stepping-over mo-

tion over one obstacle. However, it is an off-line method

and not applicable to real-time applications. In con-

trast to these work, Nishiwaki (2011) propose a method

to design torso trajectories to take into account future

kinematic limits, but the environment is neglected.

2.2 Motion Planning for Redundant Robots

Considering the stepping motion of humanoid robots in

cluttered environments from a point of view of whole-

body-motion optimization seems important. Whole-

body-motion optimization allows for a more complete
and more general exploitation of the robot’s capabili-

ties, not limiting the applicability of the algorithm to

specific tasks. In recent years, many frameworks for mo-

tion planning were developed (Zucker et al, 2013; Schul-

man et al, 2013; Chitta et al, 2012). In their objective

to develop a motion planning framework for any kind

of robotic system lies the difficulty to apply it to our

application: they neither exploit nor take into account

the characteristics of humanoid walking. This makes it

difficult to satisfy the hard constraints of dynamic hu-

manoid walking. Motion planning for humanoid robots

has to satisfy hard real-time constraints, it has to take

the dynamics of bipedal walking into account and it has

to react to unknown perturbations. Zucker et al (2013);

Schulman et al (2013), among others, present powerful

gradient-based frameworks: Zucker et al (2013) intro-

duces the algorithm CHOMP. It minimizes a cost func-

tion by covariant gradient descent taking into account

the path smoothness and penalizing collisions. Distance

gradients are calculated based on pre-computed dis-
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tance fields to accelerate the computations. Schulman

et al (2013) name the presented algorithm TRAJOPT.

It is an approach based on sequential convex optimiza-

tion, which takes the system’s boundary conditions into

account as cost functions. Both algorithms have been

applied to legged locomotion: Schulman et al (2013)

present results for planning foot placements while main-

taining static stability under environmental constraints

for the humanoid ATLAS. Zucker et al (2013) apply

CHOMP on the four-legged robot LittleDog walking

on uneven terrain. Gienger et al (2008) followed an ap-

proach similar to the one presented in this work. Trajec-

tories were found using linear attractor dynamics with

control points. The control points were optimized by a

gradient-based optimization algorithm. Depending on

the number of control points and the search space, the

computation time could be adapted depending on the

problem. Since the methods were developed for grasp-

ing motions, they do no respect the hard timing and ge-

ometric constraints of humanoid locomotion, e.g. foot-

ground contact. This is critical in order to maintain bal-

ance. An optimization method, which is similar to our

approach introduced in Schuetz et al (2014) and used

in Subsection 3.5, was presented by Tassa et al (2012).

The presented extensions to the Differential Dynamic

Programming approach allows for almost real-time use.

Schuetz (2017) discusses the differences and similarities

between Schuetz et al (2014) and Tassa et al (2012).

3 Predictive Kinematics

In the following, the proposed methods are introduced

with an illustrative example. We review and compare
our methods presented in Hildebrandt et al (2016) and

Schuetz et al (2014). While we propose in Hildebrandt

et al (2016) a parameter optimization to optimize the

motion of a bipedal robot, we present in Schuetz et al

(2014) a model-predictive approach to exploit the re-

dundancy of an agricultural manipulator. The illustra-

tive example emphasizes the common characteristics of

kinematic optimization of redundant robots and our

method’s applicability to a wide range of problems. Fur-

thermore, we combine parameter optimization and con-

tinuous nullspace optimization for motion planning of

redundant robots.

3.1 Problem Statement

A task often posed for serial robots is the motion of

their end-effector from a point A to a point B in space.

One way to generate the robot’s motion is to describe

the path of the end-effector from A to B via trajectory

primitives in workspace. The trajectories w = w(p) are

configurable with parameters p, which can be adapted

with respect to the overall desired motion. For redun-

dant robots the configuration space’s dimension n is

larger than the workspace dimension m (n > m). This

kinematic characteristic needs to be resolved during

motion generation. Common approaches such as the

Resolved Motion Rate Control (Whitney (1969)) or Au-

tomatic Supervisory Control (A. Liegeois (1977)) can

be used to solve the redundancy on velocity level at

each time step ti. Using these approaches, the inverse

kinematics results in

q̇(ti+1) = f(q(ti),u(ti),p, ti) (1)

= J#
w ẇ(p, ti)− αNu(ti) (2)

q(t0) = q0 t ∈ [t0, tend] (3)

with the Moore-Penrose-Inverse of the Jacobian matrix

J#
w of q̇ with respect to ẇ and the nullspace projec-

tion matrix N = I − J#
w Jw. For the sake of simplic-

ity, we omit the time dependency in the following. The

vectors q, q̇ denote the joint angles resp. angular veloc-

ities of the robot. α is a weighting factor and u is the

nullspace input which can be freely chosen. The advan-

tage of this approach compared to a complete genera-

tion of motion directly in configuration space is a reduc-

tion of complexity. First, the parameterized motion of

an end-effector can be generated in a more simple way

in task space and second, redundancy can be exploited

for optimality without interfering with the end-effector

motion. That way, the computational complexity can

also be reduced, which makes this approach applicable

in real-time application such as, for example, dynamic
bipedal walking of humanoids with their high number

of DOF design or redundant serial manipulators. In the

following, we discuss several methods to determine the

free variables u and p.

3.2 Application Scenario

We introduce a 5-DOF manipulator, performing a pre-

defined planar motion of two straight trajectories which

connect three points w1, w2 and w3 in an environ-

ment with two obstacles (see Fig. 2). w2 can be under-

stood as a path point whose horizontal coordinate can

be configured by a parameter p. In this case, the de-

sired workspace trajectory wd(t), defined by w1, w2(p)

and w3, is supposed to be collision free, but the robot’s

links may collide with the obstacle. The timing of wd(t)

is defined via the fixed time points at w1, w2(p) and

w3.
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w1

w2(p)

w3

p

Fig. 2: Model: redundant robot in blue, parameterized

workspace trajectory in grey, obstacles in orange.

3.3 Local Kinematics

A. Liegeois (1977) proposed to choose the input u as

the gradient of a cost function to exploit the robot’s

redundancy. The inverse kinematics of (1) lead to

q̇ = f(q,u) = J#
w ẇ − αN(

∂L

∂q
)T (4)

q(t0) = q0, t ∈ [t0, tend] . (5)

The vector ∂L
∂q is the gradient of a cost function, which

we defined as

L =ccoll,selfLcoll,self + ccoll,distLcoll,dist + . . .

+ cvelLvel + ccmfLcmf .
(6)

L is the sum of cost functions which penalizes collisions

of the robot links with themselves (ccoll,selfLcoll,self )

and obstacles (ccoll,distLcoll,dist) as well as high angu-

lar velocities (cvelLvel). The cost function ccmfLcmf

is used to define a comfort pose (Schwienbacher et al,

2011). This formulation also applies to the inverse kine-

matic module of the walking control system of hu-

manoid robots. In the following, we will refer to (4)

and (5) as local control.

3.4 Taskspace Optimization

In many robotic applications, it is not important that

the end-effector exactly follows a pre-defined workspace

trajectory, but that the end-effector moves from A to

Fig. 3: Task space trajectory before (gray) and after

parameter optimization (green)

B. In Hildebrandt et al (2016) we propose a trajectory

representation based on splines which are configurable

using parameters. Since the optimization space consists

of only a few parameters the workspace trajectory de-

scribing a bipedal stepping motion can be optimized in

real-time taking into account the robot’s whole kine-

matic model. This method is applied as follows to our

model introduced in Subsection 3.2: we define the hor-

izontal coordinate of the second point w2,x(p) to be

dependent on a single parameter p (see Fig. 2). Note

that any parametric movement representation w(t, p)

could be applied to the presented method, but we con-

sider this to be one of the most illustrative ones. The

optimization problem is formulated as follows

min
p
φ(q) = g(q)|te +

te∫
t0

L(q)dt (7)

q̇ = f(q, p) = J#
w ẇ(p)− αN ∂L

∂q
(8)

q(t0) = q0 (9)

with g(q)|te denoting a cost term at t = te. As described

in Hildebrandt et al (2016) the optimization problem

can be solved using a gradient method for the parame-

ter p. Fig. 3 shows three snapshots of the resulting task

space trajectory. p is optimized such that it is shifted

away from the obstacle to avoid collision costs.

3.5 Redundancy Exploitation

In Schuetz et al (2014), we presented a model-predictive

approach to solve the inverse kinematics and to exploit

the nullspace of redundant manipulators. Instead of us-

ing a discrete parameter as optimization variable, we

search for a continuous input uopt as proposed in Naka-

mura and Hanafusa (1987). It replaces the local-acting
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Fig. 4: Motion with global exploitation of redundancy

gradient ∂L
∂q . We get

min
u
φ(q,u) = g(q,u)|te +

te∫
t0

L(q,u)dt (10)

q̇ = f(q,u, p) = J#ẇ(p) + αNu (11)

q(t0) = q0 (12)

As proposed in Schuetz et al (2014) the optimization

problem can be solved applying Pontryagin’s Minimum

Principle. It leads to an unconstrained optimization

problem for u which is solvable with gradient methods.

Furthermore, we extended the formulation from veloc-

ity to acceleration level in Schuetz et al (2014) avoiding

discontinuous angular velocities. Fig. 4 illustrates the

resulting motion. Treating the nullspace control as a

global optimization problem leads to a more predictive

motion, which is superior in avoiding the obstacle lo-

cated near the kinematic links of the robot.

3.6 Taskspace Optimization & Redundancy

Exploitation

In Subsection 3.4 and Subsection 3.5, we presented

methods for parameter optimization of workspace tra-

jectories and for optimization of a continuous input vec-

tor to exploit the robot’s nullspace. Having a parame-

terized workspace trajectory and the continuous input

vector u the combined optimization problem results in

min
u, p

φ(q,u) = g(q,u)|te +

te∫
t0

L(q,u)dt (13)

q̇ = f(q,u, p) = J#ẇ(p) + αNu (14)

q(t0) = q0 (15)

Bocek (1980) presented an optimization formulation to

simultaneously optimize a discrete parameter describ-

ing the system and a continuous system input. We suc-

cessfully applied the method in Wittmann et al (2016)

for optimizing foothold positions and continuous CoM

motions to stabilize a bipedal robot under external dis-

turbances. We apply this formulation as follows to com-

bine the previously presented methods: by approaching

the computation of the inverse kinematics as the com-

bined optimization problem stated in equation (13) -

(15), we define the Hamilton function as:

H(q,λ,u, p) = L(q,u) + λTf(q,u, p) (16)

with the Lagrange multiplier λ. In the application of

the optimal kinematic planning approach, the nullspace

control vector as well as the task space parametrization

are constrained variables. Therefore, we apply Pontrya-

gin’s Minimum Principle to the combined optimization

problem. We obtain the following optimization condi-

tions:

q̇ =
∂H

∂λ
= f(q,u) (17)

λ̇ = −∂H
∂q

= −∂L
∂q
−
(
∂f

∂q

)T

λ (18)

q(t0) = q0 (19)

λ(tend) = 0 (20)

uopt = arg min
u

H(qopt,λopt,u, popt) (21)[(
∂g

∂p

)
te

+

∫ te

t0

∂H

∂p
dt

]T
δp ≥ 0 (22)

The boundary condition (19) comes from the given ini-

tial position of the robot and those in (20) stem from

its free final form regarding the nullspace and the pa-

rameter. With the conditions (17) - (22) we calculate λ

and q for any given nullspace control u and parameter

p. This allows us to solve the problem by applying a

projected conjugate gradient algorithm.

3.7 Conjugate Gradient Method

It is well known that the descent gradient algorithm

shows slow convergence, therefore we apply a non-

linear conjugate gradient method, described in Bocek

(1980), for the constrained nonlinear optimal control

with parametrization. This algorithm provides a com-

putationally efficient solution of the optimal control

problem. Furthermore, it has the advantage for real-

time applications that the optimization can be aborted

at any given time. Thus, the robot can execute an inter-

mediate, but current best, solution. To speed up con-

vergence, we can also use the solution of u(t) calculated
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by the local control as a good initial solution u0 for the

algorithm. The basic algorithm integrates the differen-

tial equation of the inverse kinematics (14) forward and

the adjoint variable (18) backward in time. The input

u(t) and the parameter p will be modified according

to the gradients with a stepsize β. The correction step-

size may be chosen as either fixed or adaptable by line-

search algorithms. A detailed description is shown in

Algorithm 1.

Algorithm 1 Conjugate Gradient method for

combined optimization

i← 0
p0 ← pinitial

Converged ← false

q0(t)←
te∫
t0

q̇(u0(t), p0)dt (using local control and (19))

J0 ←
te∫
t0

L(q0(t),u0(t))dt

while Converged 6= true do

λi(t)←
t0∫
te

λ̇(qi(t),ui(t), pi)dt

(from (18) with (20), backward in time: te → t0)

giu ← ∂H
∂u

i

gip ←
∂g
∂p
|ite +

∫ te
t0

∂H
∂p

i
dt

if i 6= 0 then

βi ←
∫ te
t0

gi
ugi

udt∫ te
t0

gi−1
u gi−1

u dt

γ ←
gi
pg

i
p

gi−1
p gi−1

p

si ← −giu + βisi−1

ci ← −gip + γici−1

else

si ← −giu
ci ← −gip

end if

ui+1(t)← ui(t) + αisi(t)
pi+1 ← pi + αici

i← i+ 1

qi(t)←
te∫
t0

q̇(ui(t), pi)dt

Ji ←
te∫
t0

L(qi(t),ui(t))dt

Converged ← |J
i−Ji−1

Ji−1 | < tol

end while

3.8 Results

We analyzed the presented methods in a test case with

the model presented before and two obstacles. The

workspace trajectories are collision-free. Fig. 5 shows

snapshots of the resulting motion using the local control

and the combined optimization method. The influence

of the methods on the parameter and the nullspace is

clearly visible. We can observe that the local character

Table 1: Detailed results of optimization process show-

ing integrated cost parts over time. For total cost over

time, see Fig. 6. Reference parameter p = 60.0

p Lvel Lcmf Lcoll,self Lcoll,obs

loc const. 6.1 9.0 84.7 146.24

par 53.72 6.3 9.3 85.4 136.88

nul const. 6.5 9.4 84.5 126.27

com 37.49 14.2 12.9 85.2 42.38

of the local control leads to a disadvantageous situation

during the second half of the motion. It almost leads

to a collision. Contrary to that, the global optimization

of both, task space parameter and nullspace control,

shows a more predictive character as expected. Fig. 6

shows the resulting costs over time for all four methods.

Tab. 1 shows the resultant parameter and values of the

cost functions. Although parameter and nullspace op-

timization show separately impressive results, the com-

bined optimization is able to further reduce the costs.

4 Application to Humanoids

This section presents the application of the methods

introduced in Section 3 to the humanoid robot Lola:

first, we give a hardware and software overview. Then,

we present in Subsection 4.2 the kinematic planing in

more detail and show the similarities to the model used

in Section 3. Finally, we integrate the kinematic planing

in our current control architecture.

4.1 System Overview

4.1.1 Hardware Overview

Our humanoid robot Lola (see Fig. 1) weighs approxi-

mately 60 kg and is 180 cm tall. It has n = 24 position-

controlled joints, which are electrically actuated. A de-

tailed view of the kinematic configuration is shown in

Fig. 1. Note the kinematically redundant structure of

the legs with 7 DoFs and of the pelvis with 2 DoFs.

For the robot’s stabilization, we use an Inertial Mea-

surement Unit (IMU) and two 6-axis force-torque sen-

sors (FTS). The IMU is located in the upper body and

the FTS in both ankles. For environment perception,

we set up an Asus Xtion PRO LIVE RGB-D camera1.

It is mounted on the robot’s head and can be actu-

ated by a pan/tilt unit. The robot is equipped with two

on-board computers. One is used for vision processing

1 ASUS Xtion PRO LIVE, see http://www.asus.com/

Multimedia/Xtion_PRO_LIVE/



8 Arne-Christoph Hildebrandt et al.

Fig. 5: Comparison of initial motion calculated with the local control (grey) and motion with combined optimization

(blue)
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Fig. 6: Total cost L over time for local (loc), nullspace (nul), parameter (par) and combined optimization (com).

and the other is used for walking control. The com-

puter used for vision processing runs under a Linux OS

and the other under a QNX-RTOS. Both have an Intel

Core i7-4770S@3.1GHz (4x) processor and 8GB RAM.

They comunicate via Ethernet using TCP. Lohmeier

et al (2009); Buschmann et al (2011) give more detailed

informations.

4.1.2 Control Overview

An overview of the control architecture is depicted in

Fig. 7. The vision system (Wahrmann et al, 2016)2 ap-

proximates the environment in our collision world rep-

resentation as 3D swept-sphere-volumes (SSV-objects)

or surfaces the robot is able to step onto. The environ-

ment representation is used in the global control and

the feedback control for collision avoidance. Before each

step, the global control generates the ideal walking pat-

tern for the next nSteps steps. The walking pattern in-

cludes the center of pressure (CoP) reference trajecto-

ries and the ideal workspace trajectories wid(t) ∈ Rm.

The ideal workspace trajectories are composed of the

center of mass (CoM) position, torso rotations, and po-

sition and orientation of the feet. The robot’s walking

pattern is configurable by a parameter set pwp, which

2 Available under https://github.com/am-lola/lepp3.

contains the robot’s foothold for each step, parameters

describing the robot’s movements (e.g. CoM or swing-

foot height) and the step time TStep. Based on user

input and the perceived environment the A*-based step

planner & parameter optimization calculates a sequence

of steps and determines Tstep. Furthermore, it evalu-

ates and optimizes pwp using a full kinematic model.

Subsection 4.2 gives more details. The walking pattern

generation uses a simplified multi-body model and pwp

to calculate wid(t). The simplified multi-body model

is a three-mass-model to account for dynamic effects

caused by fast leg movements. This is especially im-

portant during fast-walking as well as when dynami-

cally walking in cluttered environments3. Details are

presented in Buschmann et al (2010). During step exe-

cution, the methods presented in Wittmann et al (2016)

reject external perturbations by modifying the desired

foot trajectories. The feedback control uses wid(t) as

set points to calculate the desired joint target data

qd ∈ Rn and q̇d ∈ Rn. The desired motion at time tk,

wid,k = wid(tk) is modified locally to take sensor input

into account. The reactive collision avoidance optimizes

wid,k to reactively prevent collisions with obstacles and

self-collisions. The walking stabilization modifies wid,k

3 Compare the videos of the experiments in https://youtu.

be/6diLLVv41Vw or in https://youtu.be/rKsx8HKvBkg.
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Fig. 7: Lola’s real-time walking control system.

to stabilize the robot. More details can be found in

Buschmann et al (2011). The modified workspace tra-

jectories wd,k resp. ẇd,k are input to the inverse kine-

matics on velocity-level (Whitney, 1969; A. Liegeois,

1977), to solve for the joint space velocities q̇d,k ∈ Rn

from ẇd,k. The robot’s redundancies (m < n) are ex-

ploited at each control cycle to minimize a cost func-

tion Ly. The motion in the nullspace of the robot is

used for minimization of angular momentum consider-

ing constraints as self-collision avoidance and joint lim-

its (Schwienbacher et al, 2011; Schwienbacher, 2012).

The calculated qd,k, q̇d,k are then processed by the dis-

tributed joint controllers. The decentralized concept of

the joint controller allows for high sampling rates (50 µs

current, 100 µs velocity and position) for the cascaded

feedback loops. This way joint tracking errors of less

than 2 mrad can be achieved in all joints.

4.2 Model-Predictive Kinematic Planning

In the hierarchical approach as described in Subsec-

tion 4.1, once before each walking step of the robot

the workspace trajectories wid(t) are planned. First,

foot trajectories and the vertical CoM trajectory are

planned. These trajectories consist of splines as de-

scribed in Hildebrandt et al (2016). They depend fully

on the parameter pwp. The foot trajectories, the verti-

cal CoM trajectory and the desired CoP trajectory are

the input to the method presented in (Buschmann et al,

2007). The method uses a three-mass-model to calcu-

late the horizontal CoM movement over a time horizon

of three steps to allow for dynamically feasible bipedal

walking. Thus, the robot’s kinematics are described in

workspace by:

– the trajectories of six DoFs for each foot;

– two trajectories for toe rotations;

– three trajectories describing the CoM movement;

– an upright torso (imposed in our work).

At each control cycle tk the robot’s joint speeds are cal-

culated by combining the nullspace optimization with

an additional gradient descent in a subspace of the task

space w:

q̇k = J#
w ẇk − (I − J#

w Jw)u (23)

Sẇk = Sẇid,k − ẋRCA (24)

with the modification term for collision avoidance and

the local inputs u

ẋRCA = [(S∗Jw)#]T∇q̇LRCA, (25)

u = ∇q̇Ly. (26)

Jw, J
#
w are the Jacobian of ẇk with respect to q̇k

and its pseudoinverse. ∇q̇Ly is the gradient to Ly (cf.

Subsection 4.1.2) and ∇q̇LRCA is a gradient devoted

to avoid collisions and joint limits. S, S∗ are selection
matrices for the relative and absolute swing foot co-

ordinates. More detailed informations can be found in

Hildebrandt et al (2014). This hierachical approach al-

lows for real-time bipedal walking control. A drawback

of the approach is that the full kinematic movement

of the robot is not considered before execution of each

step. Previously, pwp, which configure the workspace

trajectories, were set heuristically without predictive

feedback about the kinematic movement. Since also the

reactive collision avoidance is a local method, complex

motions in cluttered environments could be kinemat-

ically not feasible. The problem as described for our

framework is true for most of the current frameworks for

real-time control of bipedal walking. Kajita et al (2003);

Englsberger et al (2011); Nishiwaki et al (2012), among

others, are using simple models to allow for dynamically

feasible movement. They do not take the kinematic mo-

tion over a long time horizon into account. For this

reason, we proposed in Hildebrandt et al (2016) to ex-

tend the global control by a model-predictive kinematic
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evaluation and optimization. In the following, we review

our model predictive approach for parameter evaluation

and optimization. Furthermore, we present the integra-

tion of the methods presented in Section 3.

4.2.1 Model

Our model-predictive approach uses the robot’s kine-

matic model as depicted in Fig. 1. It takes the feedback

control without external influences or sensor feedback

into account. The equations describing the robot’s kine-

matics (23)-(25) can be summarized as a first order dif-

ferential equation of the form(
q̇

ẇ

)
= f(q,w,u,wid, ẇid). (27)

Due to real-time constraints, we use a time horizon of

one physical step of the robot for time integration. The

method could be extended to take multiple steps into

account just by integrating over a longer time horizon.

The initial conditions are determined by the state of

the model at the end of the previous step. The differ-

ences to Section 3 are justified by the different kine-

matic structure and the dynamic constraints of bipedal

locomotion: xRCA adapts wid locally. It depends only

on the robot’s direct kinematics. The local adaption of

the ideal planned foot trajectories is necessary due to

the geometric extension of the robot’s end effector, its

foot, and the limited number of control points. Without

local adaptation, collision-free end effector movements

would be only realizable using a high number of control

points. The resulting search space could not be handled

in the limited calculation time. Additionally, xRCA is

used to react to local changes during execution of the

ideal planned motion in real-world environments. Con-

trary to the model described in Section 3, workspace

trajectories are also used to meet the dynamic con-

straints of bipedal locomotion. Thus, the trajectories

describing the horizontal CoM movements are deter-

mined by the method presented in Buschmann et al

(2007) and cannot be changed without influencing the

stability.

4.2.2 Parameter Set

The robot’s kinematic motion is governed by wid as ex-

plained in Subsection 4.2. The trajectories are splines

which are fully described by pwp except for the hori-

zontal CoM trajectories which are calculated to meet

dynamic constraints. In this work, we focus on the sub-

set popt of pwp for online application. popt consist of

the parameter hCoM and the set of control points pSF

describing the height of the CoM resp. the swing-foot’s

sagital and lateral movement. The CoM height is deter-

mined via piecewise 5th order polynomials connecting

start and finishing height of each step. The finishing

height is chosen by hCoM . In Hildebrandt et al (2016),

we introduced a trajectory representation for the swing-

foot’s sagital and lateral movement. It is based on cubic

splines connecting supporting points. This representa-

tion allows for smooth foot-ground touchdown on ac-

celeration level, which is crucial for stable walking. The

shape of the trajectory can be determined based on pSF

representing the supporting point positions. The dimen-

sion of pSF is not fixed, but can be chosen depending

on the problem.

4.2.3 Optimization

The methods introduced in Section 3 on the example

of a 5-DOF manipulator can be applied directly to the

prediction model (see Subsection 4.2.1). It represents a

redundant robot with m < n as explained in Subsec-

tion 4.1.2. The system’s equation depends on workspace

trajectories (wid), which are fully described by a set of

parameters (pwp) and which are calculated before each

step. The redundancy of the system is exploited to min-

imize a cost function. The input vector u governing the

nullspace motion is a continous input to the system.

The input u is currently calculated for each control cy-

cle step using the local control as the gradient to Ly.

Applying the methods introduced in Section 3, it is part

of the global optimization over a longer time horizon as,

for example, one walking step of the robot.

4.2.4 Cost Functions

The cost function design is explained in more detail in

Schwienbacher et al (2011); Hildebrandt et al (2014). It

is a weighted sum of costs which can be summarized as

Ly =cjlLjl + ccollLcoll+

ccmfLcmf + cvelLvel + cangLang

(28)

The costs cjlLjl and ccollLcoll are devoted to penal-

izing violations of boundary conditions such as joint-

limits resp. self-collision and collisions with the environ-

ment. ccmfLcmf is a cost to penalize the deviation of

the robot’s motion from a desired comfort pose. While

cjlLjl contributes only to Ly when joint angles reach

a joint-limit, ccmfLcmf keeps the joint angles close to

desired positions. cvelLvel is devoted to reduce angu-

lar velocities. We choose the weights ci taking physi-

cal dimensions of the costs into account to ensure that

the boundary conditions are met. The kinematic struc-

ture of humanoid robots represents a particularity com-

pared to conventional manipulators: its arms are open
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kinematic chains without defined workspace motions

of their end effectors. Schwienbacher et al (2011) pre-

sented a method to use the arms DoF to compensate

for angular momentum. cangLang represents the corre-

sponding cost.

4.3 Integration

Fig. 8 gives an overview of the integration of the model-

predictive kinematic planning in the global control. The
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Fig. 8: Schematic of predictive planning for combined

parameter and nullspace optimization.

output of the model-predictive kinematic planning is de-

pendent on the method applied - either an optimized

parameter set poptwp or an optimized continous input vec-

tor uopt or both (similar to the different methods tested

for the simple manipulator in Section 3). The poptwp is

directly used to calculate the desired walking pattern,

which is the input as w, ẇ to the feedback control. uopt

is used as a feed-forward term to (23). Since the model

used in the model-predictive kinematic planning and the

real robot do not perfectly correspond, we add a drift

compensation similar to the drift compensation used in

the inverse kinematics for the end effector position to

account for numeric drift. The resultant input vector is

calculated as

u = uopt +Ku(qM − qR) (29)

with the vector qM and qR representing the joint po-

sition of the model resp. the real robot and the ma-

trix Ku, which is positive-definite. We call this con-

trol architecture model-predictive planning in contrast

to model-predictive control. The basic idea of our hier-

archical control framework is that we plan the desired

motion in advance. Underlying control layers modify

the desired motion to account for disturbances. Since

each control layer takes into account and improves the

result of the previous one, the whole system becomes

very robust.

4.3.1 Initial Solution - Kinematic Evaluation

The Model-Predictive Kinematic Planning depends on

an initial kinematic movement which is executable. The

initial parameter set pwp is set heuristically by the A*-

based Step Planner or by the user. It only approximates

the full motion kinematics. For this reason, initially cho-

sen pwp,init may lead to kinematically infeasible move-

ments. In Hildebrandt et al (2016) we introduced the

Kinematic Evaluation. By integrating the kinematic

model parametrized by pwp and analyzing the result-

ing kinematics, the values of pwp that would lead to

kinematically non-feasible movements can be identified.

Additionally, we proposed establishing an advanced er-

ror handling. Using another set of initial parameters

including different footholds, the robot’s movement is

analyzed again and can be corrected. We get

pwp,k+1 = re-init(pwp) (30)

with the re-initialisation of pwp. The re-initialisation of

pwp is chosen based on xRCA. xRCA denotes the pro-

jection of the local collision and kinematic limits avoid-

ance on the workspace and is therefore an indicator of

which parameter is limiting the movement. In this con-

text, the challenge is to establish an interaction of the

planning modules, step planning and trajectory plan-

ing which works reliably and fast enough to meet the

real-time requirements.4

4.3.2 Gradients

A main difficulty in solving the combined optimal con-

trol problem is the computation of the derivatives of

the Hamilton function. In general, the gradients could

be computed by deriving an analytical expression of the

gradients which is solved in each time step or, alterna-

tively, applying a finite-difference scheme. As a third

option, the Efficient Gradient Computation was pre-

sented by Toussaint et al (2007), which is particulary

suitable to parameter-dependent derivatives and which

4 The whole planning process has to be done in less than
TStep.
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has been used in Hildebrandt et al (2016). In this ap-

proach, the gradients are re-formulated by the chain

rule and then computed by forward integration from

a known initial value. In our case, gradients with re-

spect to the nullspace control input u(t) can be derived

analytically, as shown in Schuetz et al (2014). Further-

more, a finite-difference scheme for a continuous trajec-

tory would fail in real-time application due to its high

computational expense. The formulas are presented in

App. B.1. Further, derivatives with respect to step pa-

rameters pwp can be computed by either the application

of a finite-difference scheme or the Efficient Gradient

Computation. The latter comes with very low computa-

tional expense since we have a limited set of parameters

which are constant over the time of the motion.

4.3.3 Implementation Details

Fig. 9 shows the multi-process and multi-thread soft-

ware architecture of Lola’s real-time walking con-

trol system. Each stepping motion is analyzed and

optimized before it is executed. In consequence, the

planning time for the whole planning process of step

k, including the calculation of the footholds and the

planning of the desired walking pattern, must be ac-

complished during the step time of the previous step

TStep,k−1 in the real-time application (see Fig. 9).

TStep,k−1 varies between 0.7...1.2s, since it is user de-

. . . Step k Step k+1

Proc. 1:

Opt. Step (k + 1) to (k + nstep)

Ideal

Proc.2:

Feedback. 	 1 ms

Fig. 9: Multi-process and multi-thread software archi-

tecture of Lola’s real-time walking control system.

Process 1 corresponds to the Global Control ; process

2 corresponds to the local control.

pendent. Additionally, the step planner adapts TStep ac-

cording to the desired velocity of the robot and the envi-

ronment. To handle the varying hard time constraints,

we introduce an advanced time management. Based on

TStep,k−1 each step a maximal number of iterations can

be estimated. It takes the time which is needed for one

integration of the model into account depending on the

current number of obstacles and on the necessity of the

gradient calculation. The processing time for one inte-

gration with and without gradient calculation is sum-

marized in Tab. 2. Since only a limited number of iter-

Table 2: Summary of maximal computation time for in-

tegration of kinematic model over one physically step.

Comparison of gradient computation for the different

methods and the integration of kinematic model with-

out gradient computation. Runtimes are obtained from

the real-time QNX computer.

method max. [µs]

without gradient calculations 75

Numeric Gradient 75 nparam

Gradient of Nullspace 500

ations is possible, in most cases it is sufficient to calcu-

late the descent of the cost function once and apply a

line search or a interval nesting method. That way, the

time-consuming integration including gradient calcula-

tion has to be done only once. The real-time application

of our algorithm heavily depends on the possibility of

aborting the optimization process at any given time. In

the worst case, the optimization process is not able to

converge to a solution superior to the initial one. In this

case, only the kinematic feasibility is checked. Further-

more, we analyzed different integration step sizees. The

analysis showed that an integration step size which is

six times higher than the control cycle time still seems

to be an adequate trade-off between accuracy of the

kinematic movement of the robot and speed of the in-

tegration. Adaptable step lengths depending on the col-

lision gradients showed bad results, which is in line with

Betts (1998). A larger integration step size results in a

coarse input vector u. To be applicable to the feedback

control we interpolate between the discrete set points

uk at time step tk using third order polynomials. That

way, the input u to the feedback control is no longer op-

timal, but the methods become applicable to the real

system. This is represented as interpolation in Fig. 8.

5 Results

We analyzed the proposed methods in simulation and

experiments with the robot Lola. A video showing

the simulations and the experiments can be found at

https://youtu.be/twfDcsQvNBY.
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5.1 Simulation

The multi-body simulation used to verifiy the imple-

mented methods includes unilateral and compliant con-

tacts, motor dynamics as well as the joint control loops.

For details see Buschmann (2010). We chose two differ-

ent test cases to analyze the methods in this article -

walking a step sequence and stepping over a complex

obstacle.

5.1.1 Step Sequence

In the first test case, Lola executes a simple straight-

forward step sequence in an obstacle-free environment.

The step lengths vary between Lx = 0.3...0.4m. We val-

idate this test case in experiments as well (see Subsec-

tion 5.2.1). The resulting total costs of the combined

optimization and of the local method are depicted in

Fig. 10. We observe a strong cost reduction. Since the

walking movement is a periodic and symmetric motion,

results are very similar in each step. Fig. 11 shows the

costs Ljl and Lself,coll over the iterations of the gradi-

ent method. The optimization converges after two itera-

tions for both Ljl and Lself,coll. Since possible collisions

may lead to a failure of the whole system, collision costs

are strongly weighted in the total costs. For this reason

the reduction in the total costs stems mainly from the

reduction of Lself,coll resulting from the activation dis-

tance between arms and hip of the robot. Nevertheless,

the other cost functions show moderate reductions as

well. Only the comfort costs are slightly increased, since

the arm motions have to be intensified to avoid the self-

collision activation distance.

5.1.2 Stepping Over a Complex Obstacle

In the second test case we adapted a scenario from

Hildebrandt et al (2016). It includes stepping over a

complex shaped obstacle as depicted in Fig. 13 in the

collision world representation. This test case forces the

robot to perform a kinematically complex stepping-over

motion. It has been shown in Hildebrandt et al (2016)

that a model-predictive kinematic parameter evaluation

& optimization significantly improves the chance of suc-

cess for the biped motion planning. Similar to the first

test case, the combined optimization reduces the costs

of Lself,coll through nullspace optimization. That way,

the chance of collisions between arms and hip of the

robot is reduced. Using only the local control approach

collisions are likely to occur as seen in Fig. 13a. Fig. 14

shows the cost reduction during the three relevant steps

of the overstepping motion over the iterations. Almost
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Fig. 11: Optimization of joint limit & self-collision costs

full cost reduction can be achieved with the first itera-

tion of the gradient method, which includes backtrack-

ing line-search. Tab. 3 shows the resulting parameters.

The modifications show that the heuristic of the A*-

based step planner provides good initial values, but not

optimal ones. In such complex scenarios, the predictive

approach is superior to the heuristic approach.

Table 3: Opimized parameters for stepping over a com-

plex obstacle.

Initial Optimized

Step Hcog dzstep Hcog dzstep

4 0.880m 0.112m 0.885m 0.112m

5 0.880m 0.112m 0.882m 0.120m

6 0.880m 0.112m 0.885m 0.120m

5.2 Experiment

To validate the promising simulation results we vali-

dated the methods in experiments. Again, we present

different scenarios to measure the performance and the

real-time ability of our software framework. First, the

results of a step sequence similar to the sequence in
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complex obstacle.

Subsection 5.1.1 are presented. Then, the real-time ca-

pability is validated in experiments in a cluttered envi-

ronment with a vision system.

5.2.1 Step Sequence

The first experiment includes a simple step sequence

in an environment without any obstacles (see Subsec-

tion 5.1.1). Lola executing the sequence is depicted in

Fig. 15. The robot walks a distance lexp = 5m with

a step length Lx = 0.3 . . . 0.4m and a step height of

dzclear = 0.04m. The real-time requirement forces us

to limit the optimized parameters to nopt = 2. Due to

recent work presented in Hildebrandt et al (2016), we

chose the parameters dzstep and dy, since they seem to

(a) Local Method. (b) Combined Optimization.

Fig. 13: Collision world representation of complex sce-

nario. Lola’s collision model (blue), while stepping-over

obstacle (orange) for local method and for combined

optimization.

be relevant in kinematically challenging situations. We

directly measure joint positions and velocities to com-

pute the cost functions. The measured costs in Fig. 17

show a comparison of the local and the combined opti-

mization. The results resemble the simulated case (for

example the strong reduction of Lcoll,self ), yet it is

not of the same quantity. The reason for this is the

smaller number of iterations in the gradient optimiza-

tion given by the real-time requirements of the walking

control and the difference due to sensor feedback in the

Feedback Control. Fig. 16 shows a frontal view on Lola

walking with and without combined optimization. It

clearly shows the effect of the reduced Lcoll,self by the

arm motions. As expected, in this step sequence exper-

iment the lateral swing parameter dy is not changed
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Fig. 14: Cost over iterations for combined optimization.

Gradient method includes backtracking line-search.

Fig. 15: Experimental results: Lola executing step se-

quence with combined optimization.

by the optimization while the step height is decreased.

This reduces the joint velocities. Fig. 18 shows a com-

parison of Ltotal for the periodic walking motion of

all presented methods - local method, parameter op-

timization, nullspace optimization and combined opti-

mization. It is clearly visible, that the combined op-

timization method outperforms the others. The com-

parison between nullspace optimization and combined

optimization illustrates that for kinematically simple

motion the cost reduction can be mainly attributed to

an optimized nullspace exploitation.

5.2.2 Cluttered and Unknown Environment

In addition to the experimental setups with obstacle-

free environment we present the results for an experi-

ment in an unknown and cluttered envrionment. The

experimental setup and its approximation for the robot

control is depicted in Fig. 19. Due to the complexity

of the perception and planning modules of LOLA, it is

hard to conduct experiments in cluttered environments

which can be reproduced identically for all methods.

Little changes in the environment setup lead to major

with without
combined optimization

/

Fig. 16: Nullspace exploitation: Lola walking with and

without combined optimization. Increased distance be-

tween arms and hip for Lcoll,self reduction.

changes in step planning and subsequently in motion

planning. The main objective of this experiment is not

to compare the results of all methods but to show their

real-time capacities. Although we tested all methods in

cluttered environment, we show here only the results

of the combined optimization method. The experiment

is highly demanding in terms of the real-time capabil-

ity. Since Lola’s field of view is limited, the vision sys-

tem perceives with a frame rate of 30 ms new obstacles

which are taken into account in the motion planning

algorithms. The motion planning adapts the step time

of each step and the kinematic motion. Furthermore,

the integration time of the model-predicitve methods

is obstacle-dependent. Therefore, it has to be possible

to adapt planning time according to the current walk-

ing scenarios and to abort the optimization methods at

any given time. Fig. 20 shows Ltotal for each step for

the combined optimization and the local method. For

most steps, the combined optimization method could

reduce the total costs. In steps 14, 15, 18, 22 and 23 the

optimization had to be aborted because of the limited

planning time. A picture of Lola navigating among the

previously unknown obstacles is shown in Fig. 21.

6 Conclusion and Outlook

In this paper, we present methods for real-time motion

generation of redundant robots. We validate their per-

formance in various experiments in unknown environ-

ments with our bipedal robot Lola. The methods based

on a predicitve model approach are introduced using a

minimal model of a redundant robot. Our methods pre-

sented in Hildebrandt et al (2016); Schuetz et al (2014)

for different applications are applied and compared to
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Fig. 17: Data of step sequence experiment: costs

(Lvel, Lang, Lcoll,self ) over time.

a reference motion calculated by the well-known Au-

tomatic Supervisory Control. Furthermore, we present

a novel method to combine optimization of parameter-

ized workspace trajectories and the continuous input

to the redundancy resolution. The methods are inte-

grated in our control framework for bipedal locomotion

and adapted to the characteristics of humanoid walking.

We analyze them in simulations and successfully con-

ducted experiments. The methods significantly improve

Lola’s performance and allow for complex motions in

real-time.
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Fig. 18: Data of step sequence experiment: total costs

for local method, parameter optimization, nullspace op-

timization and combined optimization.

Fig. 19: Experimental results: Lola executing step se-

quence with combined optimization in environment

with obstacles. Figure shows Lola stepping over an ob-

stacle.
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Fig. 20: Experimental results for cluttered environment:

comparison between total costs resulting from com-

bined optimization and from local control.
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Lola’s Collision Model

Step Sequence

Obstacles &
Obstacle
Approximations

Lola

with Vision System

Fig. 21: Experimental setup for experiments in clut-

tered environment.

Limitations and Outlook

The presented methods separately or combined allow

for kinematic motions in complex walking scenarios,

while having dynamically feasible movements. The cal-

culated motions are optimal in respect to our defined

cost functions. But bipedal locomotion is also more

than kinematically optimal motions. Although com-

plex motions are feasible when applying the presented

method, we can not answer the question ”What is op-

timal bipedal locomotion?”. In our simulations and ex-

periments the cost function design plays a crucial role

for the performance of the optimization methods. In

the current implementation, the influence of the colli-
sion avoidance is rather high. Zucker et al (2013) pro-

pose an approach of cost weight scheduling to dynam-

ically adapt the cost weighting. The influence of the

collision avoidance on the total costs is increased near

obstacles. This results in better behavior of the gradi-

ent method and could also improve the results in our

application. Another possibility would be to introduce

a strict task hierarchy as described in Ott et al (2015).

In experiments, the real-time restriction severely limits

the performance of the optimization methods for re-

dundancy resolution and the combined method. In the

current implementation, only few iterations are possible

due to the time-consuming gradient calculations. The

performance of the optimization methods in real ap-

plications can be improved by using more threads for

cost evaluations due to the method’s real-time charac-

ter. We intend to exploit this software-related possibil-

ity in future work. In the current implementation, the

CoM trajectory is parameterized with one parameter

per step. A more sophisticated trajectory representa-

tion may help to improve the interaction between the

workspace trajectories determining the kinematic mo-

tions of Lola. In the future, we are planning to apply

our methods also on our redundant manipulator (see

Schuetz et al (2014)) and analyze its performance for

agricultural applications in cluttered environments.
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B Appendix

B.1 Gradients for Optimization of Redundancy

Considering the function f = f(q,u, p) = q̇ as shown in (10)
and the Moore-Penrose pseudoinverse J# = JT (JJT )−1, the
analytical gradients necessary for redundancy optimization
can be formulated as follows:

∂f

∂q
=
∂q̇

∂q
=
∂J#

∂q
ẇ − (

∂J#

∂q
J − J# ∂J

∂q
)u (31)

∂f

∂u
= I − J#J (32)

∂J#

∂q
=
∂JT

∂q

(
JJT

)−1
+ JT

[
−
(
JJT

)−1
. . .(

∂J

∂q
JT + J

∂JT

∂q

)(
JJT

)−1
] (33)

(
∂Lcmf

∂q
)T = 2 (q − qcmf ) (34)

(
∂Lvel

∂q
)T = 2

(
∂f

∂q

)T

q̇ (35)

(
∂Lvel

∂u
)T = 2

(
∂f

∂u

)T

q̇ (36)

with qcmf a user defined comfort pose. For cost gradients
regarding collision avoidance and joint limits, we refer to
Buschmann et al (2009) and Schuetz et al (2014) respectively.
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