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Kurzfassung

Cloud-Dienste ermoglichen Nutzern den flexiblen, bedarfsabhidngigen Einsatz scheinbar
unbegrenzter IT-Ressourcen. Diese Art der Ressourcennutzung verspricht Kostensenkungen,
birgt aber fiir Cloud-Nutzer auch Risiken, etwa im Hinblick auf Sicherheit, Zuverladssigkeit
sowie Einhaltung rechtlicher Vorgaben. Diese Risiken hindern Unternehmen sowie staatliche
Einrichtungen daran, die wirtschaftlichen Vorteile von Cloud-Diensten auszuschopfen. Ein
Ansatz um den Einsatz von Cloud-Diensten zu fordern, besteht in der Zertifizierung dieser
Dienste. Dadurch wird gezeigt, dass ein Cloud-Dienst eine Menge spezieller Anforderungen,
sogenannte Controls, erfiillt. Allerdings eignet sich der traditionelle Ansatz der Zertifizierung
nicht fiir Cloud-Dienste: Traditionellerweise werden die Anforderungen eines Zertifikates zu
einem bestimmten Zeitpunkt gepriift, wobei die Ergebnisse einer erfolgreichen Priifung fiir
einen bestimmten Zeitraum giiltig sind, in der Regel fiir ein bis drei Jahre. Die Eigenschaften
eines Cloud-Dienstes kénnen sich allerdings im Giiltigkeitszeitraum des Zertifikates derart
dndern, so dass der Dienst Anforderungen des Zertifikates nicht mehr erfiillt. Das Zertifikat
ist somit faktisch nicht mehr giiltig. Folglich bedarf die Zertifizierung von Cloud-Diensten
eines neuen Ansatzes, der kontinuierlich die Verianderungen eines Dienstes zur Betriebszeit
detektiert und die Auswirkungen dieser Verdnderungen auf die Erfiillung der Anforderungen
eines Zertifikates bewertet. Aktuelle Forschungsansitze schlagen daher vor, die Zertifizierung
von Cloud-Diensten zu automatisieren. Diesen Anséitzen ist gemein, dass sie strukturelle
Anderungen der Infrastruktur des zu zertifizierenden Cloud-Dienstes voraussetzen. Ferner
beriicksichtigen diese Ansétze nicht die wiederholte und selbst-adaptierende Ausfiihrung
automatisierter Anforderungspriifungen und gehen grundsétzlich davon aus, dass der Anbieter
eines Cloud-Dienstes nicht versucht, Anforderungspriifungen zu manipulieren. Vor diesem
Hintergrund leistet die vorliegende Arbeit folgende Beitrdage: Es wird ein Framework zur
Erstellung minimalinvasiver Tests entwickelt, die die kontinuierliche Zertifizierung von
Cloud-Diensten unterstiitzen. Die Anwendung des Frameworks wird anhand von fiinf
Beispielszenarien demonstriert. Ferner wird die Konfigurationssprache ConTest vorgestellt,
die eine einheitliche, implementierungsunabhéngige Représentation von Tests auf Basis der
Bausteine des Frameworks ermoglicht. ConTest kann genutzt werden, um Konfigurationen fiir
konkrete Testimplementierungen zu generieren. Weiterhin wird in dieser Arbeit ein Vorgehen
vorgestellt, um die Genauigkeit kontinuierlicher Tests experimentell zu untersuchen. Es
wird gezeigt, wie mit diesem Ansatz die Genauigkeit von Testalternativen sowie alternativen
Testkonfigurationen verglichen werden kann. SchlieBlich wird in dieser Arbeit ein Modell fiir
einen betriigerischen Anbieter von Cloud-Diensten vorgestellt, der nur vorgibt, Anforderungen
eines Zertifikates zu erfiillen, tatséchlich aber betriigt, wenn er davon ausgeht, dass dieser
Betrug nicht durch Tests festgestellt wird. Auf Basis dieses Modells wird gezeigt, wie die
zufillige Auswahl von Testparametern den Anreiz dieses Anbieters verringert zu betriigen
und es wird dargelegt, wie das Framework diese Art der Konfiguration von Tests unterstiitzt.






Abstract

What makes cloud services attractive to users is having a contractual framework within
which they have access to seemingly unlimited IT resources provided as a service instead
of being bound to specific resources meticulously negotiated and paid for upfront. Yet,
while cloud services promise cost reductions through flexible, on-demand usage of IT
resources, using cloud services also entails risks related to, e.g., security, reliability and legal
regulations since part of internal business processes are now supported through external
IT resources. These risks hinder wide-spread adoption and inhibit companies and public
institutions to fully embrace the economic benefits that cloud services offer. One approach to
foster adoption of cloud services is certification, that is, demonstrating that a cloud service
complies with a set of particular requirements called controls. However, the traditional
concept of certification cannot be applied to cloud services because, traditionally, controls
of a certificate are evaluated at some point in time and, if successful, a certificate is issued
usually valid in the range from one to three years. A cloud service, however, may change
over time and thus not fulfill one or more certificate’s controls anymore, thereby rendering
the certificate invalid. Therefore, cloud service certification requires a different approach
capable of continuously, i.e., automatically and repeatedly detecting ongoing changes of a
cloud service during operation and assessing their impact on satisfaction of a certificate’s
controls. Recent research proposes automated means supporting cloud service certification.
These approaches have in common that they are invasive by design, that is, they require
structural changes to the infrastructure of the cloud service under certification. Also, they do
not incorporate the notion of repeated and self-adaptive execution of automated checks and
generally assume that the cloud service provider does not attempt to manipulate checks. In
order to address these gaps, this thesis introduces a framework to guide the design of
minimally invasive tests which support continuous cloud service certification. We present
five example scenarios where we implement tests following our framework and show how
these tests support continuous certification. Moreover, we present a configuration language
called ConTest which provides a general, unified representation of a continuous test which is
agnostic to a concrete implementation. ConTest can be used to generate test definitions to
configure any specific test implementation. We also introduce a method to experimentally
evaluate the accuracy and precision of continuous test results. We demonstrate the application
of this method with three example scenarios where we evaluate accuracy and precision of
alternative tests as well as alternative test configurations to select the most suitable one.
Finally, the last contribution of this thesis is a model of an adversarial cloud service provider
who only pretends to comply with a set of controls but cheats if he is sure that he is not
caught through testing. Based on this model, we show that randomization of tests reduces the
willingness of the adversarial provider to cheat and point out how our framework to design
tests supports randomization on different levels.
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Chapter 1

Introduction

The Babbage Principle introduced by Charles Babbage, the inventor of the first special-purpose
computer [4]], states that in order to reduce labor costs to produce a certain artifact, labor has
to be divided according to the skill of the workers: Only difficult tasks should be completed
by highly skilled (and high-paid) workers whereas less difficult tasks are assigned to less
skilled, less paid workers [S]]. The Babbage Principle is one description of the division of
labor, the fundamental principle underlying industrial organization and production [6].

While the division of labor is an abstract concept of economic theory, we can treat
outsourcing as one example observable in the real world: Here, companies or government
agents assign tasks which are part of their business processes to other, external companies
in order to reduce costs [7]. The rationale behind outsourcing employs principles of the
division of labor through trading specialized capabilities. IT outsourcing is a special type
of outsourcing where companies — driven by the intention to refocus on core competencies
and perceiving internal IT departments and services as mere cost centers — contract out IT
services to external vendors [8]]. Cloud service providers are a special type of such IT service
vendors [9] which offer cloud services, that is, IT resources such as virtual machines, platform
services as well as ready-to-use applications as scalable services which are accessible over
the Internet and billed on a pay-per-use basis [[10].

What makes cloud services attractive to customers and superior to traditional IT
outsourcing is having a contractual framework within which the customer has access
to seemingly unlimited IT resources provided as a service instead of being bound to specific
resources meticulously negotiated and paid for upfront [11]. Furthermore, the economic
incentive from a cloud provider’s point of view originates from the economy of scale:
Through constructing and operating large-scale data centers at low-cost locations, cloud
providers can supply IT resources and services below the costs of a medium-sized data center
of traditional IT service vendors while still making sufficient profit [12].

1.1 Motivation and problem statement

While cloud services promise cost reductions through flexible, on-demand usage of IT
resources, using cloud services also entails risks related to, e.g., security, reliability and legal
regulations since part of internal business processes are now supported through external
IT resources and services [[13]]. Studies (e.g., [14][15][16][17][18]]) suggest that these risks
hinder the wide-spread adoption of cloud services and inhibit companies as well as public
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institutions to fully take advantage of the economic benefits that cloud services offer. Thus,
the obvious questions at this point are [[19]:

* How can a customer control these risks, that is, how to unveil and assess potential risks
and ensure that essential requirements are met?

* If a customer may choose among multiple cloud services for a desired purpose, how
can the customer determine which one fits her requirements best?

One answer to the above questions is provided by cloud service certification, an approach
which aims to demonstrate that a cloud service complies with a set of particular requirements
[20] called controls. Controls are descriptions of measures aiming to modify risk [21]] which
can be obtained from, e.g., cloud-specific certificate catalogs such as Cloud Control Matrix
(CCM) [22] upon which the Cloud Security Alliance (CSA) STAR certificate [23] is based or
general standards such as ISO/IEC 27001:2013 [24]. Whether a cloud service meets a set of
controls is determined by evidence which are any facts about an object that can be obtained
through observation, for example, through tests [25]]. If the cloud service satisfies specified
controls, then a certificate is produced, stating compliance.

Leveraging this approach, the European Commission identified cloud service certification
as one integral part of the European Cloud Strategy [[11] which aims to foster adoption
of cloud computing within the European ICT sector. In the course of implementing this
strategy, the Cloud Certification Schemes List ( CCSL[] has been compiled which consists of
certification schemes potentially relevant to cloud customers.

While development of standards for cloud services and certification schemes is well under
way, providing suitable methods to support the peculiarities of cloud service certification
is subject to ongoing research. The core challenge of cloud service certification can be
summarized as follows: When naively applying the concept of traditional certification to
cloud services, a discrepancy surfaces because, traditionally, a certification process produces
a certificate at some point in time and this certificate is then considered valid for some time,
usually in the range from one to three years [26]. A cloud service, however, may change over
time where the changes are hard to predict or detect by a cloud service customer [27]]. These
changes may lead to the cloud service not fulfilling one or more certificate’s controls, thus
rendering the certificate invalid. Therefore, the assumption of stability underlying traditional
certification does not hold in context of cloud services. A popular example of a cloud service
property which may change over time is the location of its components since migrating
virtual components from one geographical location to another is a standard feature which
cloud service providers such as Amazon Web Service (AWS) and Google CloudPlatform
provide. Other examples include configuration changes of, e.g., security groups used to
restrict access to cloud services, as well as changes of a cloud service’s composition, e.g.,
temporarily adding new resources such as virtual machines. Cloud service certification thus
requires a different approach capable of continuously, i.e., automatically and repeatedly
detecting ongoing changes of a cloud service during operation and assessing their impact
on satisfaction of a certificate’s controls [28]][29]. This implies that methods of continuous
cloud service certification are not limited to simply repeating a defined task to assess a cloud
service’s properties over time but have to consider changes the service may undergo and
self-adapt accordingly. Naturally, continuous certification is not to be understood strictly

1h‘ctps ://resilience.enisa.europa.eu/cloud-computing-certification
[Accessed: 2018-12-13]
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mathematically; no matter how sophisticated the method to check whether a cloud services
complies with a set of controls, these results will always be — in a strict mathematical sense —
produced by discrete tasks that occur at some point in time.

Aside from this service centered motivation, continuous certification is also explicitly
required by some certification schemes themselves: For example, the US Federal Risk
and Authorization Management Program (FedRAMP) [30]], a government-wide program
defining standards how to use cloud services, requires continuous monitoring of cloud
services. However, FedRAMP’s usage of the term continuous only refers to repeated but
not necessarily automated checks of controls. Similarly, the Cloud Computing Compliance
Controls Catalogue (C5) [31]] issued by the German Federal Office for Information Security
(BSI) advocates that audits of cloud services shall be renewed at least every 12 months.
Going one step further, the influential guideline Special Publication (SP) 800-37 [32]
published by the National Institute of Technology and Standards (NIST) mandates using
continuous monitoring techniques supported by automated means to enable a near real-time
risk management. Also, the highest level of CSA STAR assessments called CSA STAR
Continuous MonitoringE] requires automated and repeated checks of controls.

Lastly, continuous certification may be implied on the level of an individual control’s
description, i.e., some controls themselves motivate automated and repeated checks. Consider,
for example, IVS-02 Infrastructure & Virtualization Security Change Detection of CSA’s
CCM [22] which states that

"The provider shall ensure the integrity of all virtual machine images at all times

[..]"

Other controls are less explicit but still imply that they can be continuously checked. One
example is the RB-03 Capacity management — data location of BSI C5 [31]] requiring that

"The cloud customer is able to determine the locations (city/country) of the data
processing and storage including data backups.".

Recent research has made important contributions to advance automated means supporting
cloud service certification in the course of the EU-funded research project CUM ULUSEI
which stands for Certification Infrastructure for Multi-Layer Cloud Services. They propose:

* Monitoring-based certification which uses monitoring data produced during productive
operation to check controls (e.g., [28[][33]);

* Test-based certification which checks controls through controlling some input to the
cloud service, and evaluating the output, e.g., calling a cloud service’s RESTful API
and comparing responses with expected results (e.g., [34][35]); and

* TPM-based certification which builds on Trusted Computing in the form of Trusted
Platform Modules (TPMs) [36]] to provide proofs that the hardware layer of a cloud
service’s infrastructure is trustworthy (e.g., [37][38]).

All current approaches to cloud service certification — in particular those proposed within
CUMULUS - have in common that they are invasive by design, that is, they require structural
changes to the infrastructure used to operate the cloud service under certification (e.g.,

2https://cloudsecurityal1iance.org/star/continuous/ [Accessed: 2018-12-13]
3https://cordis.europa.eu/proj ect/rcn/105141_en.html|[Accessed: 2018-12-13]


https://cloudsecurityalliance.org/star/continuous/
https://cordis.europa.eu/project/rcn/105141_en.html

4 1 | Introduction

installing monitoring agents on virtual machines). Furthermore, although current research
presents means to design and implement automatic checks to support validation of controls,
none of the current work incorporates the notion to explicitly execute automated and repeated
checks which are able to self-adapt to changes of cloud-services over time. As a consequence,
current research lacks a comprehensive discussion as well as methods on how to reason about
sequences of results produced by continuous cloud service certification approaches. Lastly,
current research efforts do not consider cloud service certification in presence of a fraudulent
provider who is actively cheating on checks to create the appearance of compliance with a
certificate’s controls when, in fact, he is not.

Addressing these gaps, this thesis proposes a framework to guide the design and
representation of minimally invasive tests to support continuous test-based certification of
cloud services. This includes the introduction of universal metrics which can be computed
on the basis of sequences of test results produced by any continuous tests. These universal
metrics also allow us to evaluate and compare the accuracy and precision of continuous test
results. Also, we introduce a model to reason about the behavior of a cloud service provider
who only pretends to comply with the controls of a certificate. This model permits us to
derive countermeasures through adapting tests provided by our framework.

1.2 Research challenges

This thesis centers around methods which aim to support continuous test-based cloud service
certification. Hereafter, we describe the core research challenges which need to be overcome
in order to develop these methods.

1.2.1 Challenge 1: Design of tests supporting continuous cloud certification

When intending to design tests to continuously produce evidence supporting validation of
a certificate’s controls, then an intuitive top-down approach starts from the perspective of
a control: First, each control is inspected to decide which evidence is needed to check if
this control holds. If necessary evidence has been identified, then one or more tests to
continuously produce this evidence can be designed. This top-down approach has a major
drawback: There are controls which do not manifest on the implementation level of a cloud
service but target organizational processes and legal frameworks, involving, e.g., interviewing
personnel of the cloud service provider or manual review processes [39]. Consider, for
example, control HRS-06 of CSA’s Cloud Control Matrix (CCM) [22]:

"Requirements for non-disclosure or confidentiality agreements reflecting the
organization’s needs for the protection of data and operational details shall be
identified, documented, and reviewed at planned intervals.".

It is obvious that designing tests which supply evidence to check this control is a hard problem
— if possible at all — since these test would have to comprehend the meaning of documents
and assessing these in context of a certain history and needs of an organization.

Therefore, a different and preferable approach is to design tests bottom-up, i.e., starts
from the perspective of the cloud service under test: First, we identify which technical
properties of a cloud service we can evaluate using tests. For example, consider the property
availability: A test can be designed which automatically and repeatedly checks whether the
web server component of a Software-as-a-Service (SaaS) application is correctly and timely
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responding to HTTP requests. Second, we have to identify those controls for which these
test results can serve as evidence. Rigorously applying the latter step, however, has some
fundamental limitations. In order to illustrate these limitations, consider the control /VS-6 of
the CSA’s Cloud Control Matrix (CCM) [22]]:

"Network environments and virtual instances shall be designed and configured
to restrict and monitor traffic between trusted and untrusted connections.
These configurations shall be reviewed at least annually, and supported by a
documented justification for use for all allowed services, protocols, and ports,
and by compensating controls.".

Although the technical properties of a cloud service underlying this control can be easily
derived, a fundamental problem surfaces which we refer to as the semantic gap: This control’s
generic description allows for multiple interpretations leading to various suitable evidence
and corresponding candidate designs for continuous tests. For example, it is ambiguous
what may indicate untrusted connections on implementation level or which are allowed
services, protocols, and ports. Naturally, this level of abstraction further increases when
considering controls of standards and guidelines which are not specific to cloud services,
e.g., [SO-27001:2013 [24].

The reason that these controls are rather generic is that they are to be applied to a wide
range of cloud services, regardless of type, particular service instances or their implementation.
This level of abstraction may be intended by the authors of a certificate’s controls to permit
wide-spread application of the certificate. Yet this level of abstraction removes constraints on
feasible interpretations necessary to derive the underlying cloud service properties. As a
result, the decision which test design produces evidence suitable to validate a control becomes
somewhat arbitrary, allowing for alternative tests. It is important to note that bridging the
semantic gap between controls and tests, i.e., providing a method to rigorously derive tests
from control descriptions is not in scope of this thesis.

To summarize: There is a semantic gap between the results produced by continuous
tests and the controls for which these tests aim to provide evidence for. As of today, what
constitutes suitable evidence to validate a control is left to informal interpretation of the
human auditor. If we want to provide evidence using tests, then these informal interpretations
of controls have to be made explicit. Using the terminology of Maibaum and Wassyng [40],
continuous tests thus should be formulated as an agreed-upon objective function allowing
objective, repeatable as well as predictable production of evidence. To that end, a framework
to rigorously design continuous tests which allow reasoning about technical properties of
cloud services is needed where the results of these tests can serve as evidence produced in an
objective manner. This framework, however, does not solve the problem how to agree upon
the objective function, that is, how to rigorously derive tests from descriptions of controls.

1.2.2 Challenge 2: Definition of continuous tests

A certificate demonstrates that a cloud service satisfies a set of controls. The goal of
that demonstration is to increase a customer’s trust towards a cloud service and enable
comparability between different cloud services [[19]. When using tests to produce evidence
to validate at least part of a certificate’s controls, it is vital to ensure that the definition of
how evidence is produced is unambiguous. Only unambiguously defined tests allow us to
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rigorously compare evidence, that is, the test results produced by different tests. Consider,
for example, the control RB-02 Capacity management — monitoring of the Cloud Computing
Compliance Controls Catalogue [31]] issued by the German Federal Office for Information
Security (BSI). This control states that

"Technical and organisational safeguards for the monitoring and provisioning
and de-provisioning of cloud services are defined. Thus, the cloud provider
ensures that resources are provided and/or services are rendered according to the
contractual agreements and that compliance with the service level agreements
is ensured.".

Lets further assume that we aim to compare the availability of two SaaS applications where
both SaaS providers have defined the identical service level agreement (SLA) regarding
availability (e.g., 99.9999% per year) and both providers claim to fulfill control RB-02
of BSI C5. In order to check whether their claims hold, each application is continuously
tested to detect potential outages, i.e., periods where the service is unavailable. Yet the
continuous test used by each application differ: One service’s availability is tested by simply
pinging its endpoint, i.e., measures the time delta between sending ICMP Echo Request and
receiving ICMP Time Reply packets. Measured round trip times are then compared with
expected ones. The other application is tested by issuing specially crafted calls to its RESTful
API and comparing the returned JSON object with expected object using some proprietary
comparison function. It is obvious that two different continuous tests produce evidence that
differ in semantics. We use this evidence to support evaluation whether the respective SaaS
application complies with the above control. As a consequence, the conclusions drawn based
on the differing evidence produced for the two example SaaS applications cannot be directly
compared.

The above example illustrates that unambiguous definition of evidence production is
needed to provide comparability of results generated by tests. Thus, an approach has to
be developed that lets us define continuous tests in a rigorous way. These continuous
test definitions have to be complete, that is, adhere to the framework’s concepts to design
continuous tests (see Research Challenge I) and contain all information required to configure
specific test implementations. At the same time, these definitions have to be general
representations of continuous tests which are agnostic to specific test implementations,
thereby enabling comparability.

1.2.3 Challenge 3: Accuracy and precision of continuous test results

Inaccurate tests undermine both cloud service provider’s and customer’s trust: On the one
hand, test results that incorrectly indicate satisfaction of a control erode customer’s trust.
On the other hand, cloud service providers will dispute test results that incorrectly suggest
controls are not fulfilled. Therefore, it is essential to evaluate the accuracy and precision of
continuous test results, that is, how close are produced test results to their true values?

Consider the control TVM-02: Threat and Vulnerability Management Vulnerability /
Patch Management of CCM [22] whose first part reads

"Policies and procedures shall be established, and supporting processes and
technical measures implemented, for timely detection of vulnerabilities within
organizationally-owned or managed applications, infrastructure network and
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system components (e.g., network vulnerability assessment, penetration testing)

[..].".

One possibility to produce evidence supporting validation of this control is a test which
executes a vulnerability scanner every ten minutes and checks whether no vulnerability is
found. The question is now whether this test makes mistakes by, e.g., incorrectly indicates
that the cloud service under test has no vulnerabilities while it actually has. In this case, it is
unclear to what extent the produced evidence can be used to check the control. Does, e.g., the
vulnerability scanner always miss detecting a particular vulnerability or merely occasionally?

Let’s now assume that the test for security vulnerabilities only produces correct results.
When inspecting control TVM-02, it becomes apparent that it not only requires to detect
security vulnerabilities but also demands remedy within specific period of time. In context
of such temporal constraints, further errors may occur when — based on the continuous test —
estimating the duration of detected vulnerabilities.

An approach is needed to evaluate the accuracy of test results which are produced
continuously. This approach has to allow for inference of conclusions about the general
accuracy of continuous tests’ results. Furthermore, this method needs to permit comparison
between the accuracy of alternative tests which can be used to produce evidence to validate a
particular control.

A resulting challenge when evaluating the accuracy of continuous tests lies in establishing
the ground truth to which test results are compared. To that end, an approach is needed
which allows manipulating properties of a cloud service under test resulting in violation of
controls which a continuous test aims to detect. For example, a control violation may consists
of starting and stopping virtual machines to violate resource availability, publicly expose
sensitive interfaces to violate secure configurations, or restrict available network bandwidth
to violate quality of service.

1.2.4 Challenge 4: Trustworthy continuous test results

Through demonstrating compliance with a set of controls and thus obtaining a certificate,
cloud service providers hope for competitive advantages, e.g., by increasing customer
retention and attracting new customers [19]. However, measuring customers’ preferences as
well as general effects of cloud service certification are subject to ongoing research (e.g.,
[410[42][43]]), thus making it difficult for cloud providers to predict the expected additional
revenue generated through obtaining a particular certificate.

In contrast, complying with controls of a certificate can lead to an increase in costs
of a cloud service provider which are straightforward to quantify. Consider, for example,
operational efforts involved when guaranteeing high service availability and reliability which
can be directly translated into costs.

The contrast of certification’s uncertain benefits in the mid and long term versus certain
increase in cost of service provisioning in the short term can create an incentive for a cloud
service provider to cheat: A fraudulent provider may only pretend to satisfy the controls
of a certificate in order to reduce his costs. As an example, consider the control UP-02
Jurisdiction and data storage, processing and backup locations of BSI C5 [31]] whose second
part states that

"[...] Data of the cloud customer shall only be processed, stored and backed up
outside the contractually agreed locations only with the prior express written
consent of the cloud customer.".
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Let’s assume that a cloud service customer uses Infrastructure-as-a-Service (IaaS) supplied
by a public cloud provider to host a social network platform where registered users can
connect, chat, share pictures and so forth. The certificate for this IaaS provider states that
all resources are hosted in compliance with control UP-02 of BSI C5. In our example, we
assume that the IaaS provider contractually agreed to only use virtual machines, persistent
storage and related infrastructure services which are hosted within the European Union (EU).

However, our IaaS provider is fraudulent since he only complies with control UP-02
during the day, i.e., from 6am to 11pm (UTC) while — in order to save costs — during the
night, i.e., from 11pm to 6am (UTC), the provider uses resources hosted at data centers
located in geographical regions outside of EU. Naturally, this migration is transparent to the
cloud service customer, that is, the customer cannot discern which geographical location is
used to provide the cloud service. Thus, the provider intentionally violates the control and
only pretends to comply with the certificate’s controls.

If we use tests to continuously produce evidence supporting validation of certificates’
controls, then not trusting the cloud service provider implies that we cannot unconditionally
trust test results. Under these circumstances, it is vital to provide an approach how to adapt
continuous tests to produce trustworthy test results, even when faced with a fraudulent
provider.

1.3 Contributions

In this thesis, we make the following contributions:

* A framework to design continuous tests We introduce a framework to guide the
design of tests to support continuous test-based cloud service certification and describe
an example implementation called Clouditor. Using this framework, minimally invasive
tests can be crafted that produce evidence to validate fulfillment of a certificate’s
controls. The framework also supports self-adaptive testing to be able to react to
changing environment conditions of the test as well as to consider previously produced
test results. Further, we propose four universal test metrics which can be used to reason
about sequences of results produced by any continuous test designed according to the
framework. Lastly, existing approaches to test-based certification can leverage our
framework to execute test repeatedly and reason about sequences of produced test
results.

* Example continuous test scenarios We present five test scenarios to show how
our framework supports continuous test-based cloud service certification according
to controls derived from BSI C5, CSA STAR, and ISO/IEC 27001:2013. Within
these scenarios, we show how to continuously test availability, location, secure
communication configuration, secure interface configuration, and user input validation.
Further, since a scenario-driven approach is limited in demonstrating applicability of
our framework, we identify four general characteristics to describe continuous test
scenarios allowing us to reason about the applicability of our framework beyond the
scope of the scenarios.

* A domain-specific language to define continuous tests We do not mandate a specific
architecture to implement tests according to our framework. Instead, in order to guide
development of tests according to our framework, we make use of formal languages
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to define a domain-specific language called ConTest with which continuous tests can
be rigorously described. ConTest is a descriptive language which, on the one hand,
provides a general representation of continuous tests which is agnostic to a specific
implementation of our framework’s building blocks. On the other hand, ConTest serves
as a starting point to generate concrete configurations for any specific implementation of
a continuous test. As a result, having a developer provide a code generator to translate
from ConTest to an implementation-specific test configuration language ensures that
the configuration of the test implementation adheres to the building blocks of our
framework.

* A method to evaluate accuracy and precision of continuous test results We
introduce a method to experimentally evaluate the accuracy and precision of results
produced by continuous tests. This method allows us to compare alternative tests as
well as alternative test configurations. At the core of this method are accuracy and
precision measures which are based on the universal metrics proposed as part of our
framework to design continuous tests. Thus our method can be used to evaluate the
accuracy and precision of any test which is designed using the building blocks of our
framework.

In order to establish the ground truth required to evaluate the accuracy of a continuous
test, we presented the notion of control violations which manipulate a property of a
cloud service under test such that the service does not fulfill one or more controls of a
certificate. Furthermore, we explain how randomization of control violation events
allow to generalize statements about a continuous test’s accuracy. Based on three
example scenarios, we show how the accuracy and precision measures allow us to
compare alternative tests as well as alternative test configurations to select the most
suited one.

» Test-based certification of adversarial cloud service providers We present a model
of an adversarial cloud service provider who only pretends to comply with a set of
controls. This type of fraudulent provider is referred to as opportunistic cloud service
provider who only cheats if he can be sure with a certain probability that he is not
caught. In order to be able to model and reason about the behavior of an opportunistic
provider, we draw on the idea of covert adversaries introduced by Lindell and Aumann
[44] and combine it with a modeling technique known as Labeled Transition Systems
(LTS). Based on our model, we then show that randomization of tests can reduce
the willingness of the opportunistic provider to cheat. Further, we explain how our
framework to design tests supports randomization of tests on different levels.

1.4 Organization of this thesis
The remainder of this thesis is organized as follows:

* Chapter 2] provides an overview of focal concepts of the three fields relevant to this
thesis: Cloud services, testing as well as certification. Beyond the introduction of
these concepts, we point out how and to what extent these fields relate to this thesis.

* Chapter[3|presents research efforts related to this thesis, points out gaps of the status quo
and explains how this thesis addresses missing parts. To that end, we provide an in-depth



10

1 | Introduction

discussion of current approaches to test-based cloud service certification, including
other frameworks explicitly developed to support cloud certification, specialized
methods aiming at checking specific cloud service properties as well as other approaches
whose primary goal is to compare performance of cloud services but which still can
be used to support test-based certification. Further, we also provide an overview
of monitoring-based and TPM-based cloud service certification since these depict
the major other approaches to cloud service certification. Lastly, we also shed light
on Testing as a Service (TaaS), i.e., using cloud services to execute tests since the
implementation of our continuous test scenarios in Chapter [5|follow the notion of TaaS.

Chapter[d]introduces our framework to design tests which aim at continuously producing
evidence to validate satisfaction of controls of certificates. We start with laying out the
requirements the framework has to meet and then describe its main building blocks,
i.e., test cases, test suites, workflow, test metrics and preconditions. We explain how
these building blocks correspond with the initially defined requirements and, finally,
present an example implementation of the framework called Clouditor.

Chapter [5] presents five example test scenarios designed and implemented using the
framework described in Chapter ] The goal of these test scenarios is to demonstrate
how our framework can support continuous test-based certification of cloud services.
We begin with defining general characteristics of the test scenarios which we then apply
to each selected scenario. Thus we are not limited to the example five test scenarios
but can draw conclusions about the applicability of our framework beyond these test
scenarios. Thereafter, we describe continuous tests of availability, location, secure
communication configuration, secure interface configuration, and user input validation
of cloud services.

Chapter [6] proposes the domain-specific language ConTest which permits rigorous
definition of continuous tests while being agnostic to specific test implementations.
To that end, we first outline basic concepts of formal languages and engineering of
domain-specific languages. Then we present the design as well as implementation of
ConTest and show how ConTest can be used to generate configurations for specific test
implementations which are used to configure Clouditor.

Chapter [7)introduces a method to experimentally evaluate the accuracy and precision
of continuous test results. After having defined the terms accuracy and precision in the
context of continuous test-based cloud certification, we describe how to violate cloud
services’ properties in order for the service not to fulfill controls. Then we introduce
accuracy and precision measures to evaluate continuous test results, including the
inference of conclusions about the general accuracy and precision of test results. Finally,
we present experimental results of applying our method to evaluate and compare results
of tests which aim to support validation of controls related to availability, security and
reliability.

Chapter [8] presents the notion of the opportunistic cloud service provider, a special
type of fraudulent cloud service provider who only pretends to comply with controls
while he is actually not. We begin with introducing covert adversaries and Labeled
Transition Systems (LTS), the two main concepts we use to model and reason about
the behavior of an opportunistic cloud provider. Thereafter, we describe how we use
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LTS to model opportunistic cloud service providers and show how randomization
of tests can reduce the willingness of opportunistic providers to deceive. Finally,
we point out how our framework to design continuous tests presented in Chapter 4]
supports randomization of test parameters as one possible countermeasures against
opportunistic cloud service providers.

Chapter 9] concludes this thesis by summarizing and discussing its main results as well
as pointing out directions for future work.






Chapter 2

Background

This chapter introduces concepts and terminology of three fields — cloud computing, testing
and certification — which are required to understand the remaining chapters of this thesis.
Further, we explain the scope and relevance of these three subjects in context of this thesis.

The next section outlines the notion of cloud computing, including different service and
deployment models. We omit an in-depth historical review of the origins of cloud computing,
considering utility computing, grid computing and the like since such contextualization
is already extensively covered in the literature, e.g., [45][46]. Section [2.2] presents basic
concepts of software testing where particular emphasis lies on security and conformance
testing. Lastly, in Section [2.3] we introduce the basic ideas behind software, service and
cloud service certification.

2.1 Cloud computing and cloud services

In their influential paper Above the Clouds: A Berkely View of Cloud Computing published
in 2010, Armbrust et al. [12] pinpoint three key characteristics of cloud computing:

1. The illusion of infinite resources which are available on demand,
2. absence of an up-front investment for hardware, and
3. pay per use for resource for only as long as they are needed.

While the term cloud computing is heavily overloaded and there are numerous attempts to
define it (e.g., [47][48]][49]), Armbrust’s perspective provides a first distinction between
cloud computing and regular outsourcing of hardware and software: In [12], they argue that

"[...] the construction and operation of extremely large-scale, commodity-computer
datacenters at low-cost locations was the key necessary enabler of Cloud
Computing, for they uncovered the factors of 5 to 7 decrease in cost of electricity,
network bandwidth, operations, software, and hardware available at these
very large economies. These factors, combined with statistical multiplexing to
increase utilization compared a private cloud, meant that cloud computing could
offer services below the costs of a medium-sized datacenter and yet still make a
good profit.".
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Aside from this mainly economic characterization, an important question is: How can cloud
computing and cloud services be described from a technical point of view? Answering this
question, multiple proposals are available which aim at establishing a reference architecture for
cloud services, e.g., [SO][S1N[52][S3][54]. However, as of writing of the thesis, the canonical
answer to this question is provided by the National Institute of Standard and Technology
(NIST) whose definition of cloud computing is published in [10]. While this definition
is still fairly abstract, it nevertheless provides a starting point to define some terminology
which we are going to use extensively within this thesis. The following two sections will
define the terms service model and deployment model on the basis NIST’s understanding,
supplementing it with examples of currently popular cloud service implementations.

2.1.1 Cloud service models

According to Vaquero et al. [55], cloud service providers make cloud services available to
cloud service customers using IP-based protocols. As a result, cloud service customers do not
have to maintain and run the underlying infrastructure necessary to host the service. Further,
Vaquero et al. [53]] introduce three types of services, i.e., Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) which are later adopted by
Mell and Grance [10] proposing the NIST’s definition of Cloud Computing. These service
models are detailed hereafter.

Infrastructure-as-a-Service (IaaS) In this service model, the cloud service customer is
provided basic computing resources such as processing, storage and network. IaaS offers
the highest degree of freedom since any software or application can be assembled and
run on top of IaaS [10]. As already pointed out above, the key technology at this level is
virtualization which allows abstracting from concrete physical computing resources and thus
divide, (re-)allocate and (re-)size basic computing resources in an ad hoc manner according
to service customers’ needs [55]. However, while the service customer controls, e.g., setup
and configuration of virtual machines, attached network interfaces and volumes, the customer
does not have to manage the underlying infrastructure required to provide IaaS [10].
According to the Cloud Security Alliance (CSA) [56], Amazon Web Service (AWSfI is
the leading IaaS provider as of 2017 with Amazon Elastic Compute Cloud (EC2 E] being their
core product, offering virtual machines with various configurations. Other IaaS provider
with relevant market share are Microsoft Azureﬂ Google CloudPlatfro and IBM Clou

Platform-as-a-Service (PaaS) PaaS is considered to deliver services on a level which has
a higher degree of abstraction than IaaS: Instead of providing only fundamental computing
resources as a service, PaaS providers give means to service customers to build and run
applications within their cloud infrastructure [S5]]. In contrast to laaS, service customers are
bound to the tools, languages, libraries and so forth which the PaaS provider supports [10].
The advantage of this service model, however, lies in transparent resource management (for

4https ://aws.amazon.com/ [Accessed: 2018-12-13]
5https://aws.amazon.com/ecZ/ [Accessed: 2018-12-13]
6https://cloud.microsoft.com/ [Accessed: 2018-12-13]
"https://cloud.google.com/ [Accessed: 2018-12-13]

8https ://www.ibm. com/cloud-computing/ [Accessed: 2018-12-13]
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the service customer) which is needed to run applications (e.g., workload distribution, up
and down scaling of resources etc.).

A popular example for a PaaS offering is the Google App Engineﬂ which allows
service customers to develop and deploy application written in Node.js, Java, Ruby, C#,
Go, Python, and PHP. AWS offers a comparable product called Elastic Be(mstalk@] while
Salesforce provides a PaaS named Force.conE-] which is specialized to support development
of applications extending their core product in the form of, e.g., mobile applications.

Software-as-a-Service (SaaS) From aservice customer’s point of view, using Software-as-a-
Service (SaaS) applications can be understood as an alternative to running applications locally,

i.e., at the customer’s site [55]. SaaS applications are deployed on remote infrastructures

which are accessible through interfaces such as browsers or stand-alone clients which are

installed on the local workstation of the service customer. Here, the customers’ control of the

cloud service is confined to configuring user-specific application settings [[10]]. Providing

SaaS applications heavily involves web application technologies, such as JavaScript, JSON,

HTML and CSS.

Popular examples for SaaS applications are Google G Suite Apps{]ZI and Microsoft 365113-],
both providing office applications such as email, docs and calendar as a service. Other
examples include the customer relationship management (CRM) application provided as a
service by SalesforceE-] as well as SAP Business ByDeSiglﬁ offering an enterprise resource
planning (ERP) application as a service.

2.1.2 Deployment models

The NIST definition of cloud computing [10] further distinguishes whether a particular
cloud services is exclusively used by a single organization or shared among more than
one organization. The former case is referred to as private cloud services. Note that the
infrastructure used to implement private cloud services does not necessarily have to be
managed by or deployed in the data center of the organization using them. A popular, free and
open source platform which can be used to provide private laaS is OpenStaCk{E‘l The prime
example of a public cloud service provider is AWS whose services are — with a few exceptions
— accessible for the general public. A public cloud service provider does not necessarily need
to own and maintain the physical infrastructure used to provide the public cloud services
either. Other subcontracted companies can be in charge of housing and facility management
of the data centers. Lastly, NIST distinguishes the deployment models community cloud
services and hybrid cloud services. The former simply refers to services which are shared
among a closed group of organizations which have similar requirements towards the cloud
service. The latter can be perceived as a meta-type as it describes service combinations of
private, public or community cloud services.

9https://cloud.google.com/appengine/ [Accessed: 2018-12-13]
0https://aws.amazon.com/documentation/elastic-beanstalk/ [Accessed: 2018-12-13]
Uhttps://vwww.salesforce.com/products/platform/products/force/ [Accessed: 2018-12-13]
12h‘ctps://gsuite.google.com/ [Accessed: 2018-12-13]
13https://products.office.com/en/business/explore—office—365—for—business [Accessed:

2018-12-13]
14https ://www.salesforce.com/crm/|[Accessed: 2018-12-13]
15https ://www.sap.com/india/products/business-bydesign.html [Accessed: 2018-12-13]
16https://wuw.openstack.org/ [Accessed: 2018-12-13]
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2.1.3 Cloud services in context of this thesis

We consider all three major types of cloud service models in this thesis: For example,
supporting all three cloud service models is one key requirement driving the development of
our framework to support continuous cloud certification (see Section[d.2.4). Also, in Section
we discuss implication of different services models in context of our framework as well
as show through the implementation of selected test scenarios how our framework supports
testing of all three services models.

With regard to deployment models, we focus on public cloud services while private,
community and hybrid cloud services play little to no role in this thesis. For example, one
central requirement of our framework to support continuous tests (see Sectionf.2.3)) consists
of flexible integration with existing cloud services. In this context, public cloud services
are particularly important since we have to assume that the public cloud provider will try to
minimize integration efforts, thus leading to the notion of minimally invasive testing. Further,
public cloud services provided by AWS play a crucial role within the example test scenario
to validate the location of a cloud service component (see Section [5.3). Lastly, public cloud
service providers play a major role in Chapter [§] where we assume the cloud provider to be
opportunistic which is a special type of adversarial behavior.

Note that for budget reasons, we conducted the majority of experiments presented in this
thesis (e.g., Section[5.2.4] [5.4.4] or[5.5.4)) using a cloud environment based on OpenStack.
Although access to this environment is restricted to internal use only, thereby rendering it
strictly speaking a private cloud, any experiment presented in thesis can easily be repeated
using commercial public cloud services, e.g., AWS or Google Cloud Platform. The reason
for this is that none of the experiments presented herein require privileged access to the
underlying infrastructure which is used to operate and provide the cloud service.

2.2 Testing

This section introduces basic concepts of software testing, security testing as well as
conformance testing.

2.2.1 Software testing

A standard definition of testing is provided by the Standard Glossary of Terms used in
Software Testing [57]] published by International Software Testing Qualifications Board
(ISTQB). This glossary states that testing is

“the process consisting of all lifecycle activities, both static and dynamic,
concerned with planning, preparation and evaluation of software products and
related work products to determine that they satisfy specified requirements, to
demonstrate that they are fit for purpose and to detect defects.”.

Yet this definition rather delineates the goal which testing pursues. The IEEE Guide to
the software engineering body of knowledge (SWEBOK) [58]] offers a more descriptive
definition:

"Software testing consists of dynamically verifying a program’s behavior on
a finite set of test cases — suitably selected from the usually infinite domain of
executions — against the specified expected behavior.".
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Utting and Legeard [[1]] decompose this definition by detailing the following key aspects:

* Dynamic testing: Refers to evaluating the behavior of a software or application through
observing it during execution while static testing evaluates the software without
execution by, e.g., manually reviewing the source code.

* Finite set of test cases: Exhaustive testing of software is usually either prohibitively
expensive, takes too long, or is simply not practically feasible. The reason for this is
that the possible input domain for a test function can be very large, possibly infinite.
Thus some constraints on the set of possible test cases, e.g., maximum duration of a
test have to be defined.

* Selected test cases: As we are bound to a finite set of test cases, selecting those test cases
which are most likely to unveil faults of the tested software, e.g., security vulnerabilities,
presents a key challenge. One complementary strategy here is risk-based testing where
test cases are selected such that the risk for the software user is minimized [57]]. This
means that testing focuses on parts of the software which have been identified to most
likely have some defects with considerable impact on, e.g., the data security of the
software user [59].

» Expected behavior: After having executed a test, the observed behavior of the software
under test needs to be interpreted to decide whether the test failed or passed. This
mechanism is also known as the fest oracle. In case of automated testing, automatically
reasoning about the observed behavior is a necessity.

If an undesired behavior is observed, then this is referred to as a failure where the cause of
this failure is called fault [60]. In short, we can summarize that testing is a method to detect
faults [61]]; however, it is crucial to understand that testing cannot show that a software does
not possess any faults [62].

Types of dynamic testing Having understood the general definition of testing, we now
describe different types of dynamic testing according to the three dimensions shown in Figure

2.1} [xhi21:

* Scope delineates at what level the system under test (SUT) is evaluated. Unit testing
aims at testing a single unit of the SUT at a time, e.g., methods implemented as part of
particular class [60]. Component testing focuses on parts within the SUT, e.g., a set of
classes, deliberately neglecting other parts of the SUT which is usually achieved by
manipulating the SUT through specialized, internal code interfaces [63]. Integration
festing aims at discovering faults in interfaces as well as between components interacting
[S7]. Yet integration testing still only considers subsystems of the SUT while with
system testing the entire system is under test, including all components and subsystems,
in order to evaluate its adherence to specified requirements [[60]].

* Accessibility describes the information available to design a test. Black box testing (also
known as specification-based or behavioral testing [157]]) assumes that no information
about the internal structure of the SUT is available to the tester. Thus, the test
design is driven by the inputs the SUT accepts as well as its output, i.e., its expected
behavior as specified by the system requirements [1]]. In white box testing (also known
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as structure-based or structural testing), any required information about the inner
workings of the SUT are available to the tester and thus tests can be designed using this
information [S7]]. Further, the quality of structural testing activities is often evaluated
using measures of code coverage such as branch coverage which describes the ratio
between exercised branches and all branches defined in the code [64]. However, while
measures of code coverage support detection of untested parts of source code, they do
not allow to make statements about the quality of the conducted tests [65].

Objective refers to the characteristics of the SUT we aim to test. Functional testing
checks whether the SUT meets specified functional requirements where internal
structure of the SUT is neglected, thereby rendering it a black box test method
[60l]. Non-functional testing aims at validating non-functional requirements such as
robustness, performance, reliability, and security requirements [[1]].

Objective
A

— non-functional

—+ functional

| | > Accessibility

white box black box
unit

component
integration

system
Scope

Figure 2.1: Dimensions of testing types (based on Figures from [1][2])

Test process Conducting a test requires additional steps to prepare the test and follow up
on the results. According to [S7]], the test process consists of the following steps:

1. Planning includes all activities to create and maintain a test plan, i.e., a document

which describes scope, approach, resources and schedule of planned test activities as
well as when to stop testing, i.e., exit criteria. According to Felderer et al. [2], such
exit criteria can be based on coverage criteria describing the desired test coverage, that
is, the degree to which a set of tests addresses all requirements defined for the software
under test [[60]]. Thus coverage criteria can be understood as characteristics of a test or
a set of tests which specify the extent of testing considered sufficient to demonstrate
the SUT complies with all requirements [S9]].

. Design translates test objectives defined by the test plan into descriptions of executable

tests. Depending on the accessibility of information about the software to be tested,
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tests can either be specification-based (i.e., black box tests) or structure-based (i.e.,
white box).

3. Implementation takes the specification provided by the test design step and creates test
procedures, including needed test data, as well as preparing frameworks supporting
automated test execution (also known as test harnesses).

4. Reporting consists of the collection and analysis of test results.

5. Closure activities finalizes the test process through consolidating all results obtained
after completion of all test activities defined by the test plan.

Continuous testing Continuous tests are tests which are executed automatically and
repeatedly [66]. Naturally, continuously is not meant strictly mathematically since executing
tests are always — in a strict mathematical sense — discrete tasks that occur at some point
time. What the term continuous testing does suggest, however, is that tests are conducted
very frequently, e.g., on every change made to the source code of an application. Continuous
testing implies automated testing, thus not all types of testing can be conducted continuously,
e.g., code reviews (for further information see paragraph Static security testing techniques in
Section [2.2.2)).

Continuous testing can support regression testing (e.g., Saff and Ernst 66 67, |68]]),
that is, retesting a software after is has been modified [57]. In case of continuous white
box testing, changes made to the code base can be observed and thus used as triggers to
retest the modified software. This kind of incremental building and testing of software is
described by the term continuous integration [69]] which works as follows: Every change a
developer makes the code base is committed to a central source code management system
such as SV GIT@ or TFVq-fI which is usually deployed on a different server. On every
commit, the source code management system triggers the build system implemented by tools
such as Jenkin@ Hudsor@ Bamboa@ or Travis CIFEI Those tools control compilation and
packaging of the software and trigger, e.g., unit tests after every build of the software.

In the case of continuous black box testing, per definition, no changes to internal
mechanisms of the software can be observed externally. Therefore, it is not possible to
trigger the execution of a black box test based on changes applied to the code. As a result,
different strategies have to used to identify the point in time when to execute a black box
test. Basic strategies are choosing time of execution randomly or triggering the test based
on static intervals, for example, run vulnerability scans of an application every night. More
advanced strategies may use other externally observable events which indicate that a change
has occurred, e.g., the web server version of a web application changed.

Testing for validation versus testing for verification As already described above, a test
oracle is the mechanism indicating whether the observed behavior of the SUT conforms with

https://subversion.apache.org/ [Accessed: 2018-12-13]
18https://a\bout.gitlab.com/ [Accessed: 2018-12-13]
Yhttps://www.visualstudio.com/team-services/tfve/ [Accessed: 2018-12-13]
2Ohttps://J'enkins.io/ [Accessed: 2018-12-13]

21http://hudsorl—ci .org/ [Accessed: 2018-12-13]
22https://www.atlassian.com/software/bamboo [Accessed: 2018-12-13]
2https://travis-ci.org/ [Accessed: 2018-12-13]
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the expected behavior. Depending on what source is used to derive the expected behavior,
we can distinguish between festing for validation and testing for verification. Based on
ISO/IEC/IEEE 24765:2017 [60]], we can describe the difference between validation and
verification as follows: Validation aims at confirming that requirements defined for an
application are fulfilled based on evidence, thereby assuring that the application meets the
needs of the users. In contrast, verification refers to the process which evaluates if the
outcome of a step of an application’s development process satisfies the conditions defined
at the beginning of that step. Drawing on these descriptions, we can state that festing for
validation means to check whether a SUT conforms with customer’s requirements. Further,
testing for verification delineates testing a system or application against (possibly formalized)
specifications.

2.2.2 Security testing

Security testing refers to dynamic and static testing techniques with the objective to validate
whether security requirements are satisfied; designing security tests can either build on
available information about the internal mechanisms of the SUT (white box) or solely
be derived from externally observable behavior of the SUT (black box) [70]. Security
requirements can be related to security properties of SUT, e.g., availability, confidentiality,
and integrity. Thus we can state that security testing aims at establishing whether the
implementation of the SUT has a set of desired security properties [2].

Alexander [71] introduced the notion of positive and negative security requirements by
proposing misuse cases, i.e., the malicious use of a system driven by an attacker’s intent.
Zech et al. [[72] distinguish these two types of security requirements as follows: Positive
security requirements describe some desired, expected behavior of a system, e.g., a browser
shall only retrieve and interact with SaaS applications via HTTPS, a SaaS application’s
access management component shall always require two factor authentication to grant users
access etc. Negative security requirements define behavior of a system that is not desired,
i.e., actions that the system should not grant or execute, e.g., hostile cloud service customers
should not be able to access, manipulate or disrupt the services of other customers.

The notion of positive and negative security requirements leads to two types of security
testing introduced by Tian et al. [7/3]: Security functional testing and security vulnerability
testing. While the former focus on testing the correctness and completeness of security
mechanisms the SUT implements, the latter attempts to detect unintended side effects which
lead to vulnerabilities. This distinction is also made by Thompson [74] who compares the
intended behavior of a system with its implemented behavior. Thompson’ key insight is that
most vulnerabilities stem from unwanted side effects of a system’s implementation.

Yet, as Felderer et al. [2] point out, security vulnerability testing is a hard problem:
Recall that in the previous section, we stated that testing serves to detect faults. Strictly
applying this definition to security vulnerability testing would mean that security vulnerability
testing had to detect the absence of some additional behavior caused by unwanted side effects
of a system’s implementation. This is a hard problem because it implies to consider all
possible states of the system which in practice is either undesired because it takes too long
or is computationally too expensive (i.e., time and space) or it is not feasible at all. The
obvious workaround is to focus on violating a security property (and thus the related security
requirement), i.e., demonstrate through testing that a security property does not hold. The
most popular security testing techniques following this notion is penetration testing.
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Static security testing techniques These testing techniques do not require execution of
the application. Manual code review is a technique where a security expert inspects the
source code of an application under test by reading it in order to detect faults [75]. Since such
manual code reviews are time-consuming and thus expensive tasks, supporting techniques
have been developed [76]. Tools implementing these techniques are usually referred to as
static application security testing (SAST) tools which reduce the manual effort required for
analysis, thereby allowing to inspect larger code bases within practically relevant time bounds.
SAST tools conduct syntactic checks using regular expressions to detect, e.g., insecure
function calls [[77]] which, for example, could lead to format bugs [78l]. Also, SAST tools
execute semantic checks where program semantics are derived from control flow graphs
which serve as an abstracted model of a program’s state [[79]. Such semantic analysis allows
detecting, e.g., whether user input supplied to a web application is being sanitized before
processed by the application to prevent SQL injection attacks [80].

Dynamic security testing techniques These testing techniques are applied while the SUT
is running. Penetration testing is a technique where the penetration tester usually only has
very little information about the SUT and tries to mimic the actions of real adversary in order
to exploit potential vulnerabilities of the SUT [81]]. In order to identify potentially exploitable
vulnerabilities of the SUT, penetration testers make use of different tools, e.g., vulnerability
scanners which automatically detect vulnerabilities of a target system by executing known
attack patterns [2]. Penetration testing is usually conducted at the end of the software
development lifecycle, i.e., just before the release and deployment of the system or application
[82].

Another dynamic security testing technique is fuzzing which builds on a notion already
introduced by Miller [83]] in 1990. In its basic variant, this technique provides randomized
inputs to the SUT with the objective of detecting vulnerabilities of the SUT, e.g., by disrupting
its execution or forcing it into a vulnerable state. Advanced fuzzing techniques use more
sophisticated means to generate the input to provide to the SUT, e.g., mutation-based and
generation-based fuzzing [84][85][86].

The last technique we will consider in this outline is referred to as dynamic taint analysis
or dynamic information flow analysis. This technique works as follows [87]]: Input data
from an untrusted source is tainted (i.e., marked in a defined way), e.g., form fields of a web
application, and then the propagation of that tainted data within the application is tracked. It
is then tested whether this tainted data is used in a malicious manner, for example, tainted
data is used to format strings which may point to a format string vulnerability. Dynamic taint
analysis can be used to detect vulnerabilities resulting from, e.g., buffer overflows (e.g., [87]]),
use of format strings (e.g., [88]]) as well as SQL injections (e.g., [89]).

2.2.3 Conformance testing

In [90], the National Institute of Standards and Technology (NIST) points out that conformance
testing can be understood as a meta-category of testing which may include tests with functional
as well as non-functional objectives. However, its primary focus lies on validating whether
a software meets a set of requirements of a standard or specification, which are usually
defined in the form a conformance clause as part of a standard or specification. Without
such a conformance clause, no conformance testing can be conducted. Lastly, results of
conformance testing are not suited to compare two alternative software artifacts, they solely
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demonstrate conformance with some standard or specification.

In the same article on conformance testing [90], NIST also outlines how to establish a
conformity assessment program for standards that do not have a conformance clause. Such a
program includes:

* The standard or specification to establish conformance with,
* the conformance clause, i.e., specification of how test conformance,
* tools and other procedures to conduct conformity assessment, and
* an entity to conduct the tests.
Finally, the NIST distinguishes between three different types of conformance testing:

» Exhaustive testing: Validate conformance with a standard by exploring any possible
state of the system through testing. Naturally, for most applications, exhaustive testing
is either prohibitively expensive or not practically feasible at all.

» Thorough testing: Here validation of a software artifact conforming with a standard is
not exhaustive but bound to some range, e.g., not any possible combination of input
values is used for testing but only a few selected ones, usually specified as part of the
conformance clause.

e Identification testing: Compared to exhaustive and thorough testing, this type of
conformance testing is least complete. Only focal properties of the software artifact
are tested, providing only minimal input to the software under test.

2.2.4 Testing in context of this thesis

Testing techniques used within this thesis belong to the class of dynamic testing techniques
since we test cloud services at runtime, that is, during their productive operation. Furthermore,
we do not assume to have any information about the internal mechanisms of the cloud service
under test. Therefore, our test designs follow the black box notion, i.e., the test designs are
driven by the expected behavior which are defined by the controls of a certificate (for more
detail see the next section) and which can be observed through interaction with the service.
Further, our framework executes tests automatically and repeatedly, thereby rendering it
continuous black box tests.

The scope of testing in this thesis focuses on component testing, that is, we test components
of a cloud service such as virtual machines (see Section[5.2]and[5.3), web servers (see Section
[5.4)), firewalls (see Section[5.3)), as well as data bases (see Section [5.6).

The test objective that we pursue with our continuous tests is to check if properties of a
cloud service hold and thus produce evidence that the service fulfills some controls. This
means that we are testing for validation. To that end, we make use of dynamic security testing
techniques such as vulnerability scanners (see Section[5.6). However, aside from security
vulnerability testing, we also make use of security functional testing, e.g., to test whether
deployed security protocols like Transport Layer Security (TLS) are configured correctly
(see Section [5.4).

Lastly, our approach of continuous testing follows goals similar to conformance testing,
that is, to validate that a cloud service adheres to some controls necessary to obtain some
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certificate. While these certificates are usually based on some standards, a construct such a
conformance clause is usually missing. In that regard, our framework to design continuous
tests can be considered one building block to establish a conformity assessment program.

2.3 Certification

Certification refers to the process where an accredited third party validates that a product,
process or service fulfills a finite, predefined set of particular requirements [91]. These
requirements are usually referred to as controls which are understood as descriptions of
measures aiming to modify risk [21] (sometimes certificates’ requirements are termed criteria
[39]) and are defined by a certification scheme. If a system complies with all controls defined
by certification scheme, then a report called certificate is produced, stating compliance of the
system with the scheme’s controls [92].

Certification is a special case of assurance, i.e., the process of establishing justifiable
confidence that a system behaves as expected and satisfies a set of non-functional properties,
e.g., security properties [93]]. This confidence is derived from evidence, that is, observable
information of the system which can be collected and evaluated [94]. Although assurance
is oftentimes used synonymously with security assurance, assurance also includes other
properties of a system like reliability and robustness [57].

The motivation for a software supplier to obtain a certification can be driven by the
expectation to attract new customers as well as to increase customer retention. Furthermore, as
Damiani et al. [S9] point out, software customers may not be willing to fully exclude liability
when purchasing software. In this context, software suppliers may choose certification as
a means to reduce liability in case of, e.g., security breaches resulting from defects of the
supplied software.

Numerous national and international standards, guidelines and frameworks exist according
to which a product, process or service can be certified, e.g., ISO/IEC 27001:2013 [24]], NIST
SP 800-53 [95]], ISO 9001:2015 [96]] or Capability Maturity Model Integration (CMMI) [97]].
Organizations like ISO or NIST are considered certification scheme owners which usually do
not conduct evaluations of, e.g., a software product themselve@ The task of evaluations
leading to issuance of a specific certificate are left to accredited certification bodies, that is,
specialized organizations which are authorized to conduct assessments and issue as well as
revoke certificates [91]].

Model-based versus instance-based certification Model-based certificates are the result
of formal proofs which show that an abstract model, e.g., finite state machines, of a software
satisfies a particular property. This approach necessitates that an abstract model is provided
supplementary to the actual software or has to be extracted from the source code [59].
Instance-based certification relies on evidence, i.e., information which can be observed from
the software under certification, e.g., through testing or monitoring. This evidence can then
be used to make a statement about whether the software under certification possesses a given
property or not. Note that such evidence-based statements may not be binary, i.e., a given
properties holds or not, but contain a level of uncertainty.

24According to Damiani et al. [S9], there are some exceptions to that statement, e.g., The German Federal
Office for Information Security (BSI) acts as scheme owner and as the certification body.
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Damiani et al. [S9] point out that the distinction between model-based and instance-based
certification is arguable since some researchers in the field of model-driven testing such as
Ammann and Offutt [61]] argue that, e.g., deriving black box test designs — which can be used
for test-based certification, one example of instance-based certification — may also make use
of abstract models.

Certificate hierarchy A software under certification may be decomposed into subsystems,
each of which consisting of components where the certificate issued for that system is
hierarchically dependent on the certificates of each subsystem and each component [59].
Such a hierarchy has high practical value in case the system under certification changes since
it permits incremental re-certification, that is, reusing existing evidence while re-certifying
those parts of the system that have changed [28]].

2.3.1 Software certification

The notion of software certification was already explored by Mills et al. [98] in 1987 where
they propose the Cleanroom process which uses testing to demonstrate that an application
fulfills some reliability requirements. Further, software certification can be distinguished into
three complementing approaches (also known as the software quality certification triangle)
[99]:

* Product-based certification: This approach assesses the software product directly
through static and dynamic testing methods [40]]. This certification is usually conducted
by an independent third party [100] but there are proposals which argue that developers
themselves can conduct a form of self-assessment [[101]]. One of the most well-known
certification schemes in context of security certification is the Common Criteria for
Information Technology Security Evaluation (CC) [[102]. Through defining a process
and an evaluation framework, CC aims to provide a standard approach to specify,
design and evaluate the security properties of a target of Evaluation (TOE), that is, the
product or system to be certified [103].

* Process-based certification: This approach is also known as process maturity
assessment which relies on the assumption that a software development process having
a set of properties is likely to produce adequate software [104]. A popular examples for
process-based certification approach is Capability Maturity Model Integration (CMMI)
[97]] which was developed by the Software Engineering Institute (SEI) which resides
at Carnegie Mellon University (CMU). CMMI succeeds the capability maturity model
(CMM) which guides process improvements of organizations through best practice
models. Note that conforming with CMMI requirements is referred to as appraisal
instead of certification. Another example for process-based certification is the Software
Process Improvement and Capability dEtermination (SPICE) approach published in
form of the ISO/IEC 33001:2015 [[105] (formerly known as ISO/IEC 15504).

* Certification of personnel: This approach aims at assessing the skills of personnel
which is involved in the development of the software. Such assessments can be
dependent on the programming language or platform a developer uses, e.g., Java
Programmer CertiﬁcatiorE] or be bound to non-functional skills such as security, e.g.,

25https ://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=654&
get_params=p_id:357&p_org_id=34&lang=D#tabs-2-1 [Accessed: 2018-12-13]
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Certified Information Systems Security Professional (CISSPE

2.3.2 Service certification

Erl [[106]] defines services as

"[...] individual units of logic to exist autonomously yet not isolated from each
other. Units of logic are still required to conform to a set of principles that
allow them to evolve independently, while still maintaining a sufficient amount
of commonality and standardization.".

What distinguishes service-based system or service-oriented architectures (SOA) from
traditional distributed systems — which may also support message communication and
separating interface from process logic — is adherence to the following design principles
[LO6]]:

» Loose coupling: While dependency between services is kept to a minimum, services
need to be aware of other services.

» Service contract: Services abide by the communication agreement which is specified
by their service descriptions.

* Autonomy: Services control the logic they encapsulate.

* Abstraction: Aside from what is part of the service description, all remaining logic is
hidden by the service.

* Reusability: Logic provided by a service explicitly seeks to be reused in different
contexts.

* Composability: Multiple services can be combined and used as a collection of services.

o Statelessness: Services aim to keep required information specific to invocations over
time to a minimum.

* Discoverability: Services for a desired purpose are to be found with ease.

Due to these principles, it is in some cases — such as large service networks — not trivial to
even determine which software components form a service-based system [107].

Approaches to software certification are not suited to support a service scenario [[108]]
because they assume that the system under certification has a stable structure and is running
within a stable environment [20]]. Further, the methods underlying software certification are
designed to evaluate static and monolithic software at installation time where a certificate’s
representation has to only support human-readable formats [[109]].

The most important implementation platform for service-based systems are web services
[106]. Multiple standards for web services have been proposed and developed, e.g.,
WS-Security [110] or WS-Reliability [111]]; however, these standards describe security
requirements which developers should consider during implementation of a service [112],
leaving certification of (web) services subject to ongoing research [109]]. One example of
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these research efforts is the EU-funded Assert4SO project which developed a framework
to support security certification of services through providing machine-readable certificates
demonstrating which security properties a web service satisfies [[113]].

2.3.3 Cloud service certification

Cloud service certification aims to demonstrate that a cloud service complies with a set of
controls defined by a certification scheme [20]. Cloud services share some of the service
characteristics described in the previous section, e.g., autonomy, abstraction, and reusability.
However, when comparing the definition of cloud services presented in Section [2.1.T| with
Erl’s [106] understanding of services, it is becomes clear that cloud services are rather a
wider, more abstract notion. This means that, on the one hand, some cloud service, e.g., a
PaaS may make heavy use of web services, thereby inheriting all characteristics of SOA. On
the other hand, a virtual machine used remotely via SSH to deploy some application stack —
which is considered a typical use case for IaaS — does not fit Erl’s definition well. As a result,
while cloud service certification may inherit challenges from (web) service certification,
it also poses additional, novel challenges due to also having to consider the deployment
infrastructure and platform services involved in delivery of cloud services [28]. What holds
true for cloud service certification as well, however, is that traditional software certification
approaches (see Section [2.3.1)) are incapable of taking non-stationary properties of cloud
service into account [20].

Standardization activities In 2012, the European Commission in cooperation with the
European Union Agency for Network and Information Security (ENISA) published the
European Cloud Strategy [11]] which includes cloud service certification as one integral part
to foster adoption of cloud computing within the European ICT sector. In the course of
implementing this strategy, the Cloud Certification Schemes List (CCSL E;I has been compiled
which consists of certification schemes potentially relevant to cloud customers. Among
others, the CCSL includes cloud-specific certification schemes such as the Security, Trust &
Assurance Registry (STAR) provided by the Cloud Security Alliance (CSA) [23]], EuroCloud
StarAudit [[114] as well as general standards not specific to cloud services like ISO/IEC
27001:2013 [24)]. Not included by the CCSL but nevertheless an important, cloud-specific
standard was published in 2016 by the German Federal Office for Information Security
(BSI): It is referred to the Cloud Computing Compliance Controls Catalogue (C5) [31] and
primarily aims at assessing security properties of a cloud service provider.

There are numerous standards, guidelines and frameworks available from which controls
to define a cloud certification scheme can be derived, e.g., the Federal Risk and Authorization
Management Program (FedRAMP) [30]], ENISA’s Cloud Computing Information Assurance
Framework (IAF) [[115] or SP 800-53 [95]] published by the National Institute of Standards
and Technology (NIST). An overview of such catalogs of controls from the European and
German point of view is provided by the Federal Ministry of Economics and Technology of
Germany (BMWin]in [116]: According to this study, the NIST was the first standardization
body to draft a road map [117] for the standardization of cloud computing.

2Thttp://www.assert4soa. eu/ [Accessed: 2018-12-13]
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Continuous cloud service certification While development of standards for cloud services
and certification schemes is well under way, conducting certification of cloud services is
subject to ongoing research. The need for cloud service certification has been identified by
numerous scientific publications, e.g., Khan and Malluhi [118], Ko et al. [119]], Sunyaev
and Schneider [19] and Cimato et al. [20]]. Yet when applying traditional certification to
cloud services, the following discrepancy surfaces: Conducting a certification process is
a discrete task, that is, the process produces a certificate at some point in time and this
certificate is then considered valid for some time, usually in the range from one to three
years [26]. Put differently: Traditional certification assumes that during the period where a
certificate is valid, any other evaluation of the cloud service will produce identical results
[120]. However, a cloud service may change over time where the changes are hard to predict
or detect by a cloud service customer [27]]. These changes may lead to the cloud service not
fulfilling one or more certificate’s controls, thus rendering the certificate invalid. Therefore,
the assumption of stability underlying traditional certification does not hold in context of
cloud services. Cloud service certification thus requires a different approach capable of
continuously detecting ongoing changes of a cloud service during operation and assessing
their impact on satisfaction of certificates’ controls [28]][29].

Naturally, continuously checking whether a cloud service conforms with a set of controls
is not to be understood in a strict mathematical sense: No matter how sophisticated the
method to produce evidence, producing evidence will always be — in a strict mathematical
sense — carried out by discrete tasks that occur at some point in time. We use the term
continuous certification to describe automated and repeated evidence production conducted
by a third party which occurs multiple orders of magnitude more frequent compared to
traditional certification (e.g., checking property satisfaction every minutes instead of every
year).

A special type of continuous cloud service certification is incremental certification
which aims at reducing costs of re-certification in case of changes of the cloud service
under certification [121]]. Incremental certification thus adopts the notion of the Assurance
continuity paradigm of the Common Criteria [122]. An important, implicit assumption that
the approach of incremental certification makes is that an event is available which triggers
re-certification by indicating that a change of the cloud service under certification occurred
as well as the scope of the change.

Research activities Important contributions to advance automated means supporting cloud
service certification have been made by the EU-funded research project CUM ULUSPEI which
stands for Certification Infrastructure for Multi-Layer Cloud Services. CUMULUS aims
to provide a framework to supports certification of IaaS, PaaS, as well as SaaS layer [123]].
Another example is the Next Generation Certification ( NGCert project, a research project
funded by the Federal Ministry of Education and Research of Germany (BMBF). NGCert
aims to provide a technical, organizational as well as legal framework to validate that a cloud
service complies with controls at operation time. Furthermore, the EU-funded innovation
action E U—SECP__EI which is short for European Security Certification Framework aims at
increasing the trust in cloud providers, reducing human interaction through the introduction
of mechanisms and tools for continuous auditing, and triggering the adoption of cloud

3Ohttps://cordis.europa.eu/project/rcn/105141_en.html [Accessed: 2018-12-13]
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service certification throughout the EU. Finally, the goal of the European Cloud Service Data
Protection Certification (AUDITOR )| project is to enable certification of cloud services
according to the General Data Protection Regulation (GDPR) of the EU. AUDITOR is funded
by the Federal Ministry for Economic Affairs and Energy of Germany (BMWi).

Concepts of cloud service certification A central result of the CUMULUS project is a
meta-model describing all relevant concepts of cloud service certification introduced in the
CUMULUS deliverable D2.4 Certification models [121]]. We limit our discussion of this
meta-model to a selected set of fundamental classes because a detailed description of all
concepts is not required to understand the content of the remaining chapters of this thesis. A
comprehensive introduction to this meta-model can be found in the deliverable.
Fundamental classes of the CUMULUS meta-model are introduced hereafter:

* Property: The property class is part of the module Property Vocabulary: It captures
the characteristics of a cloud service which is under evaluation. These properties are
derived from the controls of a certificate scheme. Note that the CUMULUS project
focuses solely on security properties of a cloud service.

* Target of Certification (TOC): This class is included in the module called certification
model. Instances of this class identify the type of cloud service under certification, i.e.,
any component involved in delivery of the cloud service. Put differently: The TOC
unambiguously describes the scope of the cloud service under certification.

* Certification model: This class has the same name as the module including it. A
certification model describes which evidence is needed to check whether a cloud
service, that is, the TOC satisfies a given property. Further, it specifies how to produce
the required evidence and how to use the evidence to reason about cloud service
properties using metrics.

 Certificate: The certificate class is part of the Certificates module. A certificate
includes the set of controls which the TOC has to satisfy to obtain a certificate artifact.
In context of the CUMULUS project, the focus solely lies on certification models
which can automatically reason about satisfaction a cloud service’s properties. Hence
a satisfied control is called assertion, i.e., a constraint on a property which is supported
by evidence, to indicate that satisfaction can be automatically evaluated.

* Lifecycle: This class is also contained in the certification model module. Instances of
this class define the possibles states a certificate may assume depending on the results
of evaluating evidence, e.g., issued revoked, renewed, or upgraded.

Evidence production methods Certification models are one of the fundamental concepts
of cloud service certification introduced in the previous paragraph. A certification model can
be classified according to the underlying evidence production method. The following four
evidence production methods can be distinguished [20][124]]:

* Monitoring-based evidence production: These methods use monitoring data as
evidence which is produced during productive operation of a cloud-service [[125]. We
can distinguish between two major types of monitoring-based evidence production
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methods: The first group consists of methods proposed by current research (e.g.,
Krotsiani et al. [28]], Schiffmann et al. [126]]) which are specifically crafted to check
whether particular properties of a cloud service are satisfied, e.g., integrity of cloud
service components [126] and correctness of non-repudiation protocols used by cloud
services [28]. Those methods require to implement additional monitoring services
which are not needed for operational monitoring of the cloud service. The second
group consists of existing monitoring services and tools which are used to operate
the infrastructure of a cloud service, e.g., Nagio@ or Gangliﬂ The data produced
by these monitoring tools can also be used as evidence to check a cloud service’s
properties such as availability [125]. Also data produced by tools which aims to detect
intrusions such as Snor@ Brcﬂ] or OSSECF_g] can serve as evidence [124][125].

* Test-based evidence production: Similar to monitoring-based methods, test-based
evidence production also collects evidence while a cloud-service is productively
operating. Different to monitoring-based methods, however, test-based methods do not
passively monitor operations of a cloud service but actively interact with it through
tests. Thus test-based methods produce evidence by controlling some input to the
cloud service, usually during productive operation, and evaluating the output, e.g.,
calling a cloud service’s RESTful API and comparing responses with expected results
[200[127]]. The results produced by these tests then serve as evidence.

We can distinguish two types of test-based evidence production: The first set of
methods includes approaches presented by recent research (e.g., Anisetti et al. [34],
Anisetti et al. [35]], Ullah et al. [128]) which introduce specialized tests designed
to check whether a cloud service satisfies a particular non-functional property, e.g.,
proper authorization when accessing a cloud service’s configuration files [34]. The
second set of test-based methods does not explicitly aim at evaluating a cloud service’s
non-functional properties but rather to compare to cloud services, e.g., based on their
CPU-speed [129] or scalability [130]. However, results produced by these tests can
serve as evidence to support validation of non-functional requirements related to, e.g.,
performance and reliability.

* TPM-based evidence production: These methods build on trusted computing to provide
proofs that the hardware layer of a cloud service’s infrastructure is trustworthy [20].
At the center of these methods is the Trusted Platform Module (TPM), a security
specification provided by the Trusted Computing Group (TCGE;I which is implemented
as a chip physically integrated with the motherboard of a platform. Since a TPM is
implemented in hardware, it provides hardware-level security guarantees, that is, it is
resistant to software attacks. A TPM supports secure cryptographic operations such as
key generation, encryption, singing, hashing and it can also be used to securely store
small amounts of data, e.g., cryptographic keys [36].

There are two main scenarios for TPM-based evidence production [[123]]: In the first
scenario, the TPM is used to assure that only authorized code is running on hosts which

34https://www.na\gios.org/ [Accessed: 2018-12-13]
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form the infrastructure of the cloud service [131]. In the second scenario, the TPM
itself is not used to directly produce evidence but rather to support monitoring-based
and test-based production methods, thereby increasing trust in monitoring-based and
test-based evidence [[123]]. For example, a TPM can be used to verify that a monitoring
agent deployed on a cloud component has not been modified [38]].

» Expert-based evidence production: The previous classes of evidence production
methods focus on automatic production of observable facts which can be used to
support validation of a certificate scheme’s controls. This, however, neglects the
status quo of how the certification process is currently conducted within the industry:
Production (and analysis) of evidence is left to human experts, that is, accredited auditors
[39]. Naturally, those experts may use tools to support their evidence production, e.g.,
static code analysis tools to conduct code reviews or leverage vulnerability scanners to
conduct penetration tests [124].

Other expert-based methods use specifically crafted questionnaires to permit knowledgeable
personnel of the cloud service provider to self-assess their service. A popular example
for this kind of evidence production is the CSA STAR Self-Assessment: Cloud providers
either opt to complete the Consensus Assessments Initiative Questionnaire (CAIQ)
[[132]] — which consists of 295 questions cloud customers and auditors may have — or
self-assess their compliance with the CSA’s Cloud Control Matrix (CCM) [22] or both.
A similar approach is followed by EuroCloud Europe@] which offers a questionnaire
which allows cloud providers and customer to self-assess their compliance with the
controls of the StarAudit certification scheme [133]]. Also in this case, facts obtained
from monitoring and test tools can be at least helpful — if not required — to the expert
completing these questionnaires.

Note that certification models and their underlying evidence production methods do
not exclude each other. On the contrary, different methods can be combined to produce
complementary evidence needed to check whether a cloud service satisfies a specific property
or not. Such certification models employing multiple, different evidence production methods
are referred to as hybrid certification models [[134]].

2.3.4 Certification in context of this thesis

At the center of this thesis are methods which aim to support continuous test-based cloud
service certification. We show how to design and represent tests supporting continuous
certification (Chapter 4 and [6). Further, we demonstrate the application of our approach
within five example test scenarios (Chapter[5) where we support validation of controls derived
from BSI C5, CSA STAR, and ISO/IEC 27001:2013, the latter two of which are included in
the Cloud Certification Schemes List (CCSL), one result of the European Cloud Strategy of
the European Commission. Moreover, we also investigate the accuracy and precision of test
results produced by continuous tests (see Chapter[7) and investigate how to adapt tests when
faced with an adversarial cloud service provider who only pretends to comply with a set of
controls (Chapter[§).
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Chapter 3

Related Work

This chapter describes research efforts which are related to this thesis, identifies gaps and,
on this basis, points out the contributions of this thesis to the current status. Recall that in
Section[2.3.3]of the previous chapter, we distinguished between monitoring-based, test-based,
TPM-based as well as expert-based cloud certification models. These models define which
and how to produce evidence used to check whether a cloud service possesses a particular
property and thus support validation of one or more controls; these models are driven by the
underlying evidence production methods. At the center of this thesis is a framework to support
continuous test-based cloud service certification where the underlying approach to evidence
production is special type of test-based evidence production. Furthermore, our framework is
designed to support deployment of continuous tests as cloud services themselves.

The next section introduces current approaches to test-based certification while Section
[3.2]presents monitoring-based as well as TPM-based certification models. Thereafter, Section
discusses current work in the area of Testing as a Service (TaaS). Finally, in Section [3.4]
we summarize the status quo of related work, point out the gaps of the status quo and explain
how this thesis contributes to supplement missing parts.

3.1 Test-based cloud service certification models

Test-based certification models use test-based evidence production methods which produce
evidence by actively interacting with a cloud service during its productive operation and
evaluating whether the observed behavior conforms with the expected one, e.g., issue a query
to a cloud service’s database back end and check whether response times do not exceed a
defined maximum [20][127]].

The next section introduces frameworks which have been proposed by current research to
support test-based certification models. These frameworks guide the design of test-based
evidence production methods. Then, Section [3.1.2] provides an overview of approaches
that present specialized evidence production methods which aim at producing evidence to
check particular properties of a cloud service, e.g., security, performance and reliability
properties. This section also includes specialized evidence production methods designed to
be used when faced with an adversarial cloud service provider. Lastly, in section[3.1.3] we
describe approaches which can also produce evidence but whose primary goal is to compare
performance of cloud services.
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3.1.1 Frameworks to support test-based certification

Anisetti et al. [34]] introduce a framework to support testing-based certification of cloud
services. They describe testing of five properties, i.e., confidentiality of authentication data,
storage confidentiality, network isolation, storage performance, and service performance
which are derived from the security guide of OpenStack, developed by the OpenStack Security
Group (OSSGE This work is supplemented and generalized in [35] where Anisetti et
al. describe a test-based security certification framework for cloud services. They outline
requirements such a framework should satisfy and propose generic components to support
implementation of a cloud certification process. They further claim that their framework
can be integrated with any cloud stack, address certification on any layer of the cloud stack
and may accommodate monitoring-based evidence production techniques. This approach
is, again, extended by Anisetti et al. in [135]]: In this work, they argue that steps of the
certification process are not bound to a single, online certification authority which is always
available during the certification process but are conducted by different parties. In order to
establish a chain of trust where each party participating in the certification process holds
some responsibility, they add a formal method to delegate responsibilities and check the
correct execution of steps taken during the certification process at any time. Anisetti et al.
[136]] apply a similar approach as in [135]], however, in this work focusing on autonomic cloud
systems, that is, systems which constantly monitor themselves and thus are able to repair
and optimize themselves as well as adjusting their non-functional properties [137]. Such
autonomic cloud systems are thus able to adapt to changes of their environment over time. It
is claimed that in such a setting having only a single certification authority responsible to
check correctness of the certification process is insufficient. Therefore, they propose that
the certification authority is only responsible for the initial configuration of the certification
process and delegates proving correctness to participants of the certification process.

In a different line of work, Anisetti et al. [138]] present a model-based approach to
re-use existing evidence from existing certificates to limit the amount of new and additional
certification with evolving, i.e., changing services. In [139], Anisetti et al. apply the
methodology developed in [138]] to cloud services: Due to the evolutionary character of
cloud services, their environment and certification processes, requiring certification from
scratch may invalidate the advantages arising from automated certification. To address this
challenge, they introduce a scheme to reduce the amount of testing activities to be executed
on cloud services by re-using evidence that has been produced by previous executions of the
certification process. It is also claimed that the proposed scheme works on every level of the
cloud stack.

Ullah [[128]] propose a framework to automate security compliance assessment processes,
i.e., processes ensuring that a cloud services meets the required level of security. They list
challenges to build an automated security compliance tool (ASCT), consisting of identification
and collection of relevant audit information, i.e., evidence. A system architecture is proposed,
including a cloud audit API to be provided to clients. They propose four ways to collect
audit information, that is, evidence: Via existing APIs of the cloud service, using existing
vulnerability assessment tools (VATSs), log analysis, as well as manual entries, e.g., entered
by system administrators. As an example, checks to support validation of two controls of the
ISO 27002 are implemented: Clock synchronization and port vulnerabilities. The first one
is implemented through adapting OpenStack, the second one uses existing test tools. In a
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similar effort, Gonzales et al. [[140] introduce Cloud-Trust, a model to assess and compare
the security of cloud infrastructures according to a defined set of security controls.

3.1.2 Specialized test-based evidence production methods

In this subsection, we present current research introducing specialized test-based methods
whose evidence aims to check whether a cloud service satisfies particular properties such as
security properties or location properties. Also, we include test-based evidence production
methods which can be used if the cloud provider whose services are to be certified is not
trusted.

Producing evidence to validate security properties Bleikertz et al. [141] propose an
approach to validate the correct configuration of AWS security groups. To that end, they use
graphs to represent and analyze firewall configuration enforced by virtual routers in AWS
EC2 and check if they comply with a defined security policy. Furthermore, they conduct
vulnerability assessment of VMs using OpenVast], a popular open source vulnerability
scanner. They combine their results using weighted attack graphs to assess the vulnerability
of a particular EC2 configuration. Whaiduzzaman and Gani [[142] outline a concept how to
use automated vulnerability assessment of cloud services. Based on the result, they propose
to rank the cloud service, thereby enabling customers to choose the most suitable service.
Zech et al. [143] present an approach how to derive tests of security properties of cloud
services based on negative security requirements. The latter are used to define misuse cases
which then serve as a starting point to define corresponding tests. Zech et al. continue this
line of work in [144]] where they supplement their test generation methodology by generating
needed input data to a test using a generating fuzzer which creates malicious input used to
test the cloud service. Albelooshi et al. [[145] present experiments on data remanence in
virtual machines arguing that the underlying method can be used by auditors to validate that
controls regarding data sanitization are met, thereby preventing so-called harvesting attacks.
Their focus lies on the scenario that VMs of different customers share the same physical
host and when resources of that physical host are re-allocated, then sensitive data is leaked
because of the shared memory is improperly sanitized after a VM is terminated. Supporting
their claims, they conduct experiments, one of which shows that when repeatedly restarting
an AWS instance, memory traces from VMs of other customers can be recovered.

Producing evidence to validate geolocation There is a group of test-based techniques
which aim to validate the geographical location where a cloud service or components of
a cloud service are hosted. Skandari et al. [[146] conduct delay measurements of around
500 websites and use polynomial regression to train a prediction model. Labels required
for this supervised learning approach are obtained from geolP databases while they test
their model using three randomly picked destinations. Jaiswal and Kumar [147]] propose an
application level scheme which combines download times of files and network delay of IP
packets to locate the data center where these files are stored. Fotouhi et al. [148]] create a
set of public landmarks from which geolocation measurements are performed. They use
constraint-based geolocation (CBG), a method that was originally introduced by Gueye
et al. [149] to locate Internet hosts, which is deployed on EC2 instances to estimate the
location of physical hosts within Google data centers. Gondree and Peterson [[150][151]]
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introduce a generic framework to actively validate geographic locations of data in the cloud,
using latency-based techniques. To that end, they propose constraint-based data geolocation
(CBDG) which combines latency-based geolocation techniques with a probabilistic proof of
data possession. Fu et al. [152]] extend this approach by improving the scheme presented
in [[151]] through using Trusted Platform Modules (TPM). Albeshri et al. [[153] present a
similar approach called GeoProof, a protocol that combines proof of storage protocols with
distance-bounding protocols. Proof of storage protocols allow verifying integrity of stored
data without completely downloading it while distance-bounding protocols are authentication
protocols between a verifier and a prover, serving to establish the claimed identity and
physical location of the prover. Ries et al. [[154] build on virtual coordinate systems (VCS)
which are used to predict network latency without having to conduct extensive measurements.
Based on three different VCS, i.e., Vivaldi [155], Pharos [156]], and Phoenix [[157], they show
how to determine the geographic location of virtual machines.

Apart from locating cloud resources as well as data stored in the cloud, there is a set of
general techniques which were developed to determine the geographic location of Internet
hosts (also referred to as IP geolocation). One of the early works on this subject is presented
by Padmanabhan et al. [158]. They propose three distinct techniques to locate Internet hosts:
(1) Geotrack which infers the location using DNS entries and names of nearby network
nodes, (2) GeoPing which uses network delays to estimate the coordinates of an Internet
host, and (3) Geocluster uses Autonomous System (AS) information, that is, their prefixes
to extract geographical clusters (inter-domain routing information which is derived from
Border Gateway Protocol (BGP)). Gueye et al. [[149] introduce constraint-based geolocation
(CBG) which uses a special variant of multilateration to infer the area in which an Internet
host is located. Katz-Bassett et al. [159]] propose fopology-based geolocation (TBG) which
initially makes a conservative estimate of possible Internet host locations using maximum
transmission speed of IP packets. This first estimate is then refined by considering latencies
between routers which are on the path from the landmark to the Internet host. Eriksson et al.
[L60]] take a different approach by framing IP geolocation as a machine-learning classification
problem. They use a Naive Bayes estimation method to classify IP geolocations. Lastly, Arif
etal. [161]] present GeoWeight which extends CBG by also taking into consideration that for a
measured latency to an Internet host, some distances are more probable than others. They use
this insight to formalize an additional constraint and show that under certain circumstances,
their approach outperforms CBG.

Producing evidence for untrusted cloud service providers Huang et al. [162]] present a
method to detect cloud service providers which cheat on agreed service level agreements
(SLA), in particular on CPU speed. They experimentally evaluate their proposal through
testing video conversion time needed for a batch of videos and show that they can detect
non-compliant underprovisioning of CPU resources. Houlihan et al. [163]] propose a similar
approach, also attempting to detect a cloud service provider cheating on promised CPU
speed. Further, Ye et al. [164] present a method to detect cheating on promised memory
size of a VM. Koeppe and Schneider [165] present how to benchmark performance of cloud
service when the cloud service provider is not trusted. They discuss four means of a cloud
provider manipulating performance benchmarks and propose tamper resistant benchmark
based on proof-of-work functions, i.e., functions which are hard to compute but whose results’
correctness can be efficiently verified. Juels and Opera [166] introduce an approach to verify
the integrity of data stored in a cloud using dynamic Proofs of Retrievability (PoR). To that
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end, they built on Iris, an authenticated file system allowing migration of existing internal
enterprise files to the cloud.

Producing evidence to validate performance and reliability properties Banzai et al.
present D-Cloud [167]], a distributed test environment which allows to test the reliability and
availability of distributed systems, e.g., cloud services. At the center of their approach is a
virtual machine called FaultVM which is capable of emulating hardware failures. Depending
on the service under test, D-Cloud can scale the FaultVM as needed. Pham et la. [168]]
propose CloudVal, an approach which uses fault injection to test the reliability of virtualized
environments. They extend the NFTAPE fault injection framework [169] and support fault
models such as delay of I/0O operations, maintenance events etc. It is shown how path-based
and stress-based fault injection can be used to automatically generate and execute fault
injections conducted in a black box manner, i.e., without having any knowledge of the
implementation of the cloud service under test. Le et al. [[170] follow a related approach
by injecting faults to the XEN hypervisor and its guest systems. Lu et al. [[171] present an
approach to remove outliers from noisy data sets which are used to evaluate quality of service
(QoS) properties such as throughput, and execution time. They consider two different types
of QoS measurements: One is conducted by an objective third party and the other one is
obtained by the cloud service provider and cloud service customer. Based on these two types,
a global decision model is derived which outputs the optimal service composition given
the constraints provided by the two types of measurements. Jayasinghe et al. [172] present
Expertus, a code generation framework to support automated testing of performance and
scalability of large scale distributed applications deployed on IaaS clouds. Building on their
previous work on code generation [173]], they aim at reducing human error and supporting
efficient as well as exhaustive testing of cloud-based applications. Sobel et al. [174] propose
a web application which aims to act as a benchmark as well as corresponding load generators
and instrumentation. The goal of this approach is to enable test-based evaluation of costs per
user per month of web applications when deployed on cloud resources.

3.1.3 Comparative benchmark testing of cloud services

In this section, we present current work whose primary goal is to compare cloud services’
performance through benchmarks. Results produced by these benchmark tests can be used as
evidence to validate if a cloud service satisfies defined performance requirements.

Li et al. [129] introduce an approach to systematically compare performance of public
cloud providers. They point out four major challenges: (1) What to measure? Answer:
Performance a customer perceives of a common set of services offered by representative
cloud service providers. (2) How to measure a customer’s perceived performance? Answer:
Select a few important metrics per service, e.g., CPU speed. (3) What use cases to look at
such that benchmarking is not too far from practical appliances? Answer: Consider storage
intensive e-commerce web service, computation-intensive scientific computing application,
and latency-sensitive website serving static objects. Performance measurements of AWS,
Microsoft Azure, Google App Engine, as well as RackSpace are conducted. During their
discussion of open issues, they also include the notion that snapshots, i.e., measuring
and comparing performance based on a single experiment is insufficient and continuous
measurement is preferable.

Binnig et al. [[175]] discuss the challenges and needs of developing benchmarking methods
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suitable to evaluate and compare cloud services. They emphasize the need for new metrics
reflecting that cloud services may adapt to load changes over time, as well as the need to
consider all layers of the cloud service during the benchmark.

Cooper et al. [130] present the Yahoo! Cloud Serving Benchmark (YCSB), a framework
which aims to compare the performance and scalability of cloud-based data bases such as
Microsoft Azure SQL Database@ and AWS SimpleDB@

3.2 Other cloud service certification models

In this section, we present current research on monitoring-based and TPM-based certification
models. Note that we omit a discussion of expert-based certification models, e.g., interviews,
questionnaires and so forth because the focus of this thesis lies on automated evidence
production methods.

3.2.1 Monitoring-based certification models

This section provides an overview of the status quo of monitoring-based cloud certification
models. We distinguish between proposals of frameworks guiding design and implementation
of monitoring-based evidence production, specialized monitoring approaches to evaluate
particular cloud service properties as well as operational monitoring tools which may also be
used as a source for evidence.

Frameworks to support monitoring-based certification Krotsiani et al. [28] propose a
framework to support incremental certification of cloud services, i.e., a continuous monitoring
approach to assess cloud services’ security properties using operational evidence, that is,
operational data. To that end, they present a lifecycle model for incremental certification:
After activation of a certificate type which specifies a certain certification model, a suitable
monitoring infrastructure is configured to obtain operational evidence. Then required
monitoring events and functions are determined, and monitoring is deployed. Evidence is
accumulated until the certificate is satisfied, then the certificate is issued.

Schiffman et al. [126] propose a framework to enable customers to obtain a verifiable
chain of trust that tracks runtime status of their cloud instances. The framework has to be
deployed by the cloud service provider and consists of two main parts: The first one provides
integrity proofs on the platform layer where system images are designed and distributed to
the nodes of a cloud. Whenever such a node wants to join the cloud, it has to undergo remote
attestation. The second part consists of a service running on every compute node monitoring
integrity measures (e.g., load-time and runtime properties) available through interfaces of,
e.g., virtual machine introspection (VMI) and virtualized TPMs (vIPM). It is assumed that a
customer can verify integrity measurements at runtime through suitable protocols.

Wang et al. [176] present a system to collect and evaluate audit log data within a cloud
infrastructure. The system is called CDCAS and comprises four main components: Collector,
controller, analyser, and dashboard. Log collection itself possesses a logical architecture
consisting of a three-layered model: Agent layer which gathers log data, transform layer
which gathers data from agent nodes, and server layer which analyses data and makes backups.
Controller detects changes in the infrastructure and deploys suitable agent configurations for

3https://azure.microsoft.com/en-us/services/sql-database/|[Accessed: 2018-12-13]
“https://aws.amazon.com/de/simpledb/ [Accessed: 2018-12-13]
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them, e.g., if new VM is started. Analysis is supported by mining techniques to generate new
signatures. They use frequent patterns in log data from which security relevant events are
extracted.

Doelitzscher et al. present Security Audit as a Service (SAaaS) [LT7][178]], a framework
which uses autonomous agents deployed within cloud environments that automatically
validate security status and compliance of IT security policies. Agents are placed at selected
points of the cloud infrastructure, e.g., within virtual machines, VM hosts, or network devices.
Each agent possesses a set of rules specifying actions in case a trigger event is observed,
thus an agent implements policy and enforcement functionality. Status reports derived from
events are presented to users as evidence.

Haeberlen [[179]] demands that cloud services have to be accountable, that is, an approach
is needed to detect faults and link them to their source, e.g., a faulty node, in a non-disputable
manner. To that end, he proposes four building blocks: (1) Tamper-evident logs, (2)
virtualization-based replay, i.e record non-deterministic inputs to a VM and replay on
different instance, (3) trusted timestamps as well as (4) sampling. In [180]], Haeberlen et al.
implement their proposition, presenting accountable virtual machines (AVM). Driven by a
similar motivation, Ko et al. [[181]] also propose to use centralized logging of operations of
cloud service components as a means to establish accountability of cloud services.

Accorsi et al. [[182] propose ComCert, a tool which uses petri nets to support auditors to
check whether execution of business processes of a cloud service provider complies with a
set of controls. In a related line of work, Awad and Weske [[183]] build on their previous work
in [[184]] and use BPMN-Q queries to detect violations of compliance rules in respect to the
sequence of executing activities.

The work of Yao et al. [185]] is orthogonal to the above framework proposals: They
assume that admitting to a compliance violation by a participating entity, e.g., the provider of
a cloud service, may cause penalties, thus creating the incentive for the violating party to
deceive. They propose a so-called accountability service which acts as a trusted third party
keeping all the signed logging data, thereby guaranteeing non-repudiation of logging data.
They use BPEL to model business processes and insert a logging invocation after each BPEL
activity.

Specialized monitoring-based evidence production methods Continuing their work in
[28]], Krotsiani and Spanoudakis [[33]] propose to use continuous monitoring to verify the
correctness and robustness of non-repudiation protocols deployed within cloud systems. They
present two main monitoring rules which are represented as EC-Assertions. Aside from
modeling the non-repudiation property itself, three other monitoring rules are introduced
which support the assessment scheme, a part of the monitoring-based certification model.
This model defines conditions regarding the evidence, it consists of: Sufficiency of collected
evidence, expiration period for certificates, and anomalies as well as conflicts to be monitored
during the certification process. Thus, the three complementary monitoring rules aim at
detecting potential DoS attacks, suspicious behavior, and anomalous operating conditions,
e.g., the network delay which may affect the response time measured in the first place and
possibly leading to time outs, i.e., a violation of the non-repudiation property.

Birnbaum et al. [186] propose behavioral modeling on VM and hypervisor level to enable
timely assessment of security incidents of cloud services. To that end, they monitor system
calls at the hypervisor level and extract a benign profile of an application. These benign
profiles are represented using colored petri nets and serve to detect anomalous behavior.
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Park et al. [[187] provide an overview of cloud auditing techniques suitable for real-time
audits of cloud services, outline challenges and needs, and inspect AWS CloudWatcl‘E] to
discuss possible extensions to better support audits. Driven by a similar motivation, Nix et al.
[[L88] propose to use a machine learning approach to support online audits of cloud services.
To that end, they outline an incremental data mining approach using Very Fast Decision Tree
(VFDT). The idea is that through acquiring a model by data mining techniques, it is possible
to save time and space by estimating results of queries instead of actually executing a query
on data streams.

Aside from audit specific approaches, several general approaches to monitor cloud
services and infrastructures have been proposed, attempting to meet cloud characteristics
such as scalability (e.g., Wang et al. [189], Clayman et al. [190]], Anand [191]], Zareian
et al. [192], Kai et al. [193]), finding suitable abstractions from detailed, heterogeneous
monitoring data (e.g., Shao et al. [[194]], Zhao [195]]), providing trusted monitoring data
(e.g., Sundareswaran et al. [[196], Zou et al. [[197]), proposing generic cloud monitoring
architectures (e.g., Chaves et al. [[198]]) as well as detecting security incidents (e.g., Monfared
and Jaatun [199]], Khorshed et al. [200], Krautheim [201]]). Comprehensive surveys on cloud
monitoring in general are provided by, e.g., Aceto et al. [202] and Mohamaddiah et al. [203]].

Most of the above cloud monitoring solutions (e.g., Kai et al. [193]], Clayman et al. [190]))
explicitly suggest that monitoring data can be used to check whether service level agreements
(SLAs) hold. Cloud certification schemes usually contain controls which require that SLA are
defined and satisfied, e.g., CCC-05 of the CSA’s Cloud Control Matrix (CCM) [22]. Starting
from the angle of a SLA, Mahbub and Spanoudakis [204] present a framework which uses
EC-Assertions, a first-order temporal logic language based on Event Calculus, to monitor
and reason about satisfaction of SLAs. Later, Spanoudakis et al. generalize this approach in
[205] by introducing the monitoring framework called EVEREST. They apply their approach
to cloud services in [206]]. In a related line of work, Foster and Spanoudakis also present
an approach how monitoring configurations can be derived from SLA specifications [207]].
Lastly, Foster and Spanoudakis present SMaRT [208]], a discovery and configuration tool
which checks if and to what extent an infrastructure supports monitoring SLA satisfaction,
and, if sufficient, configures the monitoring infrastructure accordingly.

Evidence produced by operational monitoring tools There are various monitoring tools
available which are used to monitor large distributed systems such as cloud infrastructures.
Alhamazani et al. [209] provide an overview of commercial cloud monitoring tools. Popular
tools are Gangliﬂ (developed by Massie et al. [210l 211]] and Sacerdoti et al. [212]),
Nagio@ and MonaLisef’E] (proposed by Newman et al. [213] as well as Legrand et al. [214]).
Also, tools used to detect intrusions such as Snort [215 Brdg_ﬁ] [216] and OSSE can be
used as a source for evidence [124]][125]].

Furthermore, cloud services also provide their own proprietary monitoring APIs. AWS,
for example, offers CloudWatch® to customers and CloudMonixF_ZI (formerly AzureWatch)

Shttps://aws.amazon.com/cloudwatch/?ncl=h_ls|[Accessed: 2018-12-13]
4http://ganglia.sourceforge.net/ [Accessed: 2018-12-13]
47https://www.na\gios.org/ [Accessed: 2018-12-13]
Bhttp://monalisa.caltech.edu/ [Accessed: 2018-12-13]

49https ://www.snort.org/ [Accessed: 2018-12-13]
50https://www.bro.org/ [Accessed: 2018-12-13]
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SZhttp://www.cloudmonix. com/ [Accessed: 2018-12-13]


https://aws.amazon.com/cloudwatch/?nc1=h_ls
http://ganglia.sourceforge.net/
https://www.nagios.org/
http://monalisa.caltech.edu/
https://www.snort.org/
https://www.bro.org/
https://ossec.github.io/
http://www.cloudmonix.com/

3.3 Testing as a service 39

which aims at monitoring Microsoft Azure cloud services. These monitoring tools focus on
providing operational information such as system load, network I/O etc. However, monitoring
data produced by these tools can be used to reason about controls related to availability,
reliability and performance of cloud services [125].

3.2.2 TPM-based certification models

This section presents current approaches to use Trusted Platform Modules (TPM) to produce
evidence. Bertholon et al. [37]] introduce CertiCloud which aims to protect [aaS using
Trusted Computing. Their approach centers around two protocols: The first one is referred
to as TPM-based Certification of a Remote Resource (TCRR). This protocol establishes
that only authorized code is executed by the remote system. The second protocol is called
VerifyMyVM permitting a user to check the integrity of the system at runtime to detect any
unauthorized modification of the system’s configuration. Chuanyi et al. [217]] and Xiang
et al. [218] pursue a similar approach to use remote attestation to assess the integrity of
applications deployed on virtual machines at runtime. Also, Mufioz and Mafia [38]] follow
a similar approach. They propose a method which uses TPMs to combine software with
hardware security certification. Different to the above approaches, Khan et al. [219] propose
a method for cloud customers to verify the integrity of cloud nodes, i.e., hosts on which
virtual machines are deployed, before they start operating on them. Also, Ruan et al. [220]
propose the use of remote attestation as a means to establish integrity of cloud resources.
Their approach differs from those previously described because they do not rely on a single
trusted third party but on decentralized attestation: They treat nodes within the cloud as a
peer-to-peer network where each node remotely attest each other and share this evidence with
all participants, thereby effectively creating a web of trust.

TPM-based evidence to validate geolocation TPM-based evidence production methods
are also explored when the goal is to validate the location of a cloud service or cloud
service components such as underlying servers. In this context, Noman and Adams [221]]
outline a scheme to establish a trustworthy binding between location and a physical server by
combining GPS data with a TPM. A similar approach is described by Yeluri and Castro-Leon
[222], they propose to store a geo tag in any physical server used by a cloud service provider
where the tag is supposed to be kept directly in the TPM for later remote attestation. Vaish et
al. [223]] also propose a TPM which is configured with location data at installation time and
later used to compare these coordinates with secure GPS data obtained at runtime.

3.3 Testing as a service

Gao et al. [224]] give an introduction to cloud testing, defining cloud testing as

"[...] testing and measurement activities on a cloud-based environment and
infrastructure by leveraging cloud technologies and solutions.".

They distinguish the following types of cloud testing: Functional, integration, API and
connectivity, performance and scalability, security, interoperability and compatibility, as
well as regression testing. They also highlight challenges of cloud testing such as testing
security properties of cloud services and integration of testing components with cloud
services. Continuing this line of work, Bai et al. [225] investigate existing cloud testing
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tools where they distinguish between existing test tools deployed as part of cloud services,
academic tools such as D-Cloud [167], CloudSim [226], PreFail [227]][228]] and Cloud9
[229] as well as cloud-specific benchmarks, e.g., CloudStone [174l], MalStone [230] and
YCSB [130]. Although they identify the need for cloud testing to support SLA validation
as well as continuous testing of SaaS applications, Bai et al. do not explicitly consider
using test results as evidence to validate controls. Later, Gao et al. [231]] make a concrete
proposal how to design and implement an infrastructure for TaaS. In this context, they
also point out that — as part of future work — they will extend their architecture to support
continuous testing of SaaS applications. In a related line of work, Gao et al. [232] review
the concept of festing as a service by comparing TaaS with conventional software testing
as well as discussing requirements and challenges. Tsai et al. [233]] build on this work by
discussing and comparing different designs of TaaS architectures while Bai et al. [234]
present Vee @ Cloud, a platform-agnostic test environment that leverages cloud resources to
enable on-demand as well as scalable testing capabilities. They also point out that existing,
continuous monitoring services that are provided by cloud service providers themselves
aiming at, e.g., demonstrating conformance with SLAs, fall short on comparability since
performance indicators defined by different cloud providers may deviate. They argue that their
test environment can alleviate this shortcoming by supporting uniform cloud performance
models which can be continuously tested.

Candea et al. [233]) also outline the notion of automated testing as a service by presenting
three use cases they consider major: (1) Support developers to improve their code through
more comprehensive as well as continuous testing by leveraging cloud resources, (2) allow
users installing a software to validate whether this software meets their requirements and (3)
support certification to independently assess the properties reliability, safety and security of
software products, thereby allowing to compare software vendors. In a similar effort, Yu et al.
[236]] introduce a framework to support testing as a service. They extend this line of work in
[237] where they introduce a tool which uses cloud resources to automatically execute tests.

Ciortea et al. [229] present Cloud9, a cloud-based testing service which employs
symbolic executiorﬁ They point out that the main challenge lies in building a parallel
symbol execution engine because — when naively applied — symbolic execution suffers from
extensive memory and CPU usage. They demonstrate how to parallelize symbolic execution,
thus being able to use cloud resources to execute the tests faster.

Parveen et al. [239] present a distributed execution framework called HadoopUnit which
allows running unit test in parallel and thus increase test completion time. In a related line
of work, Parveen et al. [240] discuss the question which are the determining factors when
considering deploying testing as a cloud service. They consider the specific characteristics
of the application under test as well as the types of testing currently used to evaluate the
application.

Baride and Dutta [241]] outline the concept of using cloud resources to support testing of
mobile applications. Also focusing on a specific type of application, Ganon and Zilbershtein
[242] present an approach to use IaaS resources to conduct test of Network Management
Systems (NMS) which manage a large set of elements, distributed across a network, e.g.,
VolIP clients.

Lastly, Riungu et al. [243]] contribute to research efforts in the field of testing as a service
by taking a different angle: They conduct an empirical study by interviewing professionals to

53Symbolic execution uses symbolic instead of regular inputs to run an application which is more efficient that
exhaustive input testing, yet delivers equally complete results [238].
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determine conditions that influence software testing as a service as well as to identify future
research directions. They found out that domain-specific knowledge required to design tests
might hinder adoption of TaaS and, further, that security and safety of the test service is
vitally important, i.e., keeping test results secure from unauthorized access and being able
to deliver testing as promised. Also, regulatory requirements may prevent companies from
exposing their internal testing process to an online testing service.

3.4 Summary and identification of gaps

In this section, we summarize the related work presented in this chapter and point out the
gaps. We also outline how the remainder of this thesis will address the identified gaps.

Continuous certification Proposed frameworks to support test-based certification of cloud
services ([34][135][135][136][138]][139][128]][140]) presented in Subsection [’fl_j] provide
means to guide design and implementation of automated testing. However, none of those
frameworks incorporate the notion which explicitly allows to control repeated and automated
execution of self-adaptive tests. Furthermore, although specifically crafted to automatically
produce evidence to reason about specific cloud service properties, specialized test-based
evidence production methods introduced in Subsection [3.1.2]also do not explicitly integrate
means to continuously execute tests. Asaconsequence, current research lacks a comprehensive
discussion as well as approaches on how to reason about sequences of test results produced
by continuous tests of cloud services.

It is important to note at this point that monitoring-based and testing-based certification
models are complementary means to check whether a cloud service has a set of properties
[[134]. In the course of the CUMULUS project [121]], the term incremental certification has
been coined which, as already pointed out in Subsection[2.3.3] implies that events are available
which trigger re-certification in case a cloud service changes over time. In fact, according to
the results of the CUMULUS project, any monitoring-based certification model follows the
notion of incremental certification. Thus, all monitoring-based evidence production methods
introduced in Subsection [3.2.T]can be considered supportive of continuous monitoring-based
certification (e.g., [28][33][126][176][178] [ 180185 [182][1830[184][185]]).

This thesis will address these gaps as follows: We propose a framework to guide the
design of tests to support continuous test-based certification of cloud services (Chapter 4.
This framework is orthogonal to specialized test-based evidence production methods, that is,
such methods can leverage our framework to be executed continuously. We do not constraint
the implementation of our framework by presenting a specific, mandatory architecture.
Instead, we make use of formal languages to define a domain-specific language with which
continuous tests can be rigorously described and configured (Chapter|[6). Furthermore, we
introduce universal metrics which can be computed on the basis of sequences of test results
produced by any continuous test (Chapter[d)). These universal metrics allow us to evaluate
and compare the accuracy and precision of continuous test results (Chapter|7)).

Invasiveness of evidence production methods Approaches to monitoring-based certification
presented in Section [3.2.1] are usually inherently invasive, that is, they require to structurally
alter the infrastructure of the cloud service under certification (e.g., [33][126][176][178][180]).
Even in the case where monitoring-based evidence production methods make use of
operational monitoring data ([210, 211][212][213][214}][215][216]), this data has to be
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made available to the evidence production method in a well-defined manner, e.g., through
designated APIs.

Despite test-based evidence production methods having the potential to be deployed in
minimally invasive manner (e.g., [L62][163][164][147][148[154][129]), current proposals
of frameworks to support test-based cloud certification ([34][35][128]][140]) require changes
to the structure and configuration of the infrastructure components involved in delivery of a
cloud service under certification. Furthermore, the idea of incremental test-based certification
has been outlined in the course of the CUMULUS project [121]. Such an approach can be
classified as continuous white box testing (see Subsection [2.2.T)) since some event is needed
to trigger re-execution of tests. This implies that the cloud service under certification has
to be designed or adapted in a way such that required events triggering re-testing can be
supplied to the test-based evidence production method. Using continuous black box testing
as an evidence production method, however, has not been considered by research efforts so
far.

This thesis will address these gaps as follows: Our framework to support continuous
test-based certification is designed to support non-invasive as well as minimally invasive
testing, that is, requires minimal or no changes of the infrastructure of cloud services under
certification (Chapter ] and Chapter [5). Yet our framework also supports designing and
implementing invasive tests; therefore, our approach can be understood as a generalization of
current research on frameworks supporting test-based cloud service certification. Furthermore,
the framework allows designing continuous black box tests which build on expected behavior
as derived from interpretations of a certificate’s controls. Again, having no knowledge about
the internal mechanisms of the components of the cloud service under test is a rather strict
assumption and our framework also permits some form of continuous white box testing
where knowledge about the internal structure is available during test design.

Testing as a service In Subsection[3.3] we presented current research which aims to leverage
cloud resources to provide cloud-based testing services. These approaches focus on optimizing
test execution time as well as supporting testing on a large scale ([234]][229][239]][241]]
[242]11237]]). Although some of these approaches bring forward the notion of continuous
testing as a service (e.g., [231[][234]) as well as point out using testing as a service to check
whether a cloud service complies with reliability and security requirements (e.g., [234][235]),
none of the current research effort present solutions to either of those challenges.

This thesis will address these gaps as follows: The design goal of minimally to non-invasive
testing already implies that an implementation of our framework to support continuous
test-based certification models is not part of the infrastructure of the cloud service under
certification. We deploy continuous tests on a remote host using IaaS (Chapter 3)), thereby
rendering our approach testing as a service by definition. Furthermore, our example
continuous test scenarios aim at validating that a cloud service complies with controls related
to availability, reliability and security properties.

Untrusted cloud service provider Some specialized evidence production methods do not
assume a fully trustworthy cloud service provider and adapt their methods accordingly
([162)[163)[164][165][166)[185]]). However, these approaches only focus on isolated
adversarial strategies a cloud provider may select. As a result, they do not provide a
general approach to model the behavior of an adversarial cloud provider which allows to
reason about adaptations of evidence production methods in general.
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This thesis will address this gap as follows: We introduce a model to reason about the
behavior of a fraudulent provider who only pretends to comply with the controls of a certificate
when, in fact, he is not (Chapter [§). Yet, this provider does not cheat arbitrarily, on the
contrary: He only cheats if he is sure that he will not get caught. We show how this behavior
model allows to derive countermeasures in the form of adaptions of test-based evidence
production methods and describe how our framework integrates these countermeasures.






Chapter 4

A framework to support continuous
test-based cloud service certification

This chapter presents a framework to design continuous, i.e., automated, repeated and
self-adaptive tests of cloud service properties, thereby addressing Research Challenge 1:
Design of tests supporting continuous cloud service certification described in Section [[.2.1]
The primary goal of these tests is to continuously produce results which can be used as
evidence to support continuous certification, that is, support continuously checking if a cloud
services adheres to a set of controls. Parts of this chapter are published in [[127]] and [244].

It is important to note that the proposed framework in this chapter focuses on providing
the technical means to design continuous tests. However, it does not specify a process how to
manually or automatically conceive feasible test designs for a concrete cloud service instance.
Also, as already pointed out in Section[I.2.1] it is outside the scope of this work to bridge the
semantic gap between controls and tests, i.e., provide a method to rigorously derive test from
control descriptions.

In the following section, we describe our overall approach which we follow to develop
the framework. On this basis, Section [4.2]defines the requirements which guide the design
of the framework. Thereafter, Section d.3introduces the framework’s building blocks and
Section .4 outlines one example implementation of the framework which is called Clouditor.
Lastly, Section 4.5 summarizes as well as discusses the contents of this chapter.

4.1 Approach

In order to develop a framework supporting continuous test-based cloud certification, we
define the main objective such a framework pursues as follows:

Support design of tests which permit to continuously evaluate properties of
existing cloud services where test results serve as evidence to validate that the
service satisfies a set of controls.

Based on this main objective, the following section derives requirements the framework has
to fulfill in order to achieve the following subgoals:

¢ Production of evidence,

* extensibility,
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* flexible integration with existing infrastructures of cloud services,
* independence of cloud service model,

* reusability of continuous test components,

* integration of existing test tools, and

* self-adaptivity.

Based on the elicited requirements, Section {.3|defines the building blocks of the framework.
For each building block, we describe how it addresses the requirements defined in Section

@2l

4.2 Requirements

This section describes the requirements which guide the development of our framework’s
building blocks to design continuous tests.

4.2.1 Production of evidence

Producing results which can serve as evidence to check whether a certificate’s control is
satisfied is the most important requirement which our framework has to fulfill. Recall that
evidence is produced when cloud service properties are evaluated, in our case through using
continuous, i.e., automated and repeated testing. Without any further analysis, the test
results themselves may only possess insufficient semantics, thus not allowing to reason about
controls’ satisfaction. Consider, as an example, that a continuous test which aims at testing
the availability of a cloud service produced three successive test results indicating that the
service was not available. These result cannot directly be used to check a control which
demands satisfaction of service level agreements which, e.g., contain the statement that the
service is available for at least 99.9999% per month. Therefore, our framework needs to
provide means to analyze test results observed over time such that they can be used to check
whether controls are met.

4.2.2 Extensibility

The ability to add novel tests to validate new or changed controls or to provide alternative
tests to validate existing controls is at the core of the framework. Further, cloud services
under test may change to an extent which renders deployed tests unsuitable, thus requiring to
design and execute alternative tests.

There may be a common set of tests which can be used with any cloud service to evaluate
a basic set of controls any cloud services should satisfy. However, a cloud service provider
can be a service customer at the same time creating cloud-based applications using another
cloud service provider’s resources. As a result, the framework needs to support adding novel
tests which are specific to a particular, individual cloud-based application.
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4.2.3 Flexible integration with existing infrastructures of cloud services

The design of continuous tests is primarily driven by the controls whose satisfaction they
aim to check. However, a cloud service provider’s willingness to support a particular tests
may vary depending on which and how many changes to the cloud service’s infrastructure
are needed. On the one hand, in a rather restrictive scenario, a test may only have the same
access privileges to a cloud service as are provided to regular service customers. On the other
hand, in a less restrictive scenario, the test may be deployed as part of the cloud service’s
infrastructure and granted the same access level privileges as, e.g., operational personnel
maintaining the service. A framework to design and execute continuous tests of cloud
services has therefore to be able to support the following levels of integration:

* Non-invasive integration: As the name indicates, this type of integration requires no
change of the productive environment which is used to operate the cloud service under
test. This means that a test can produce evidence without requiring any changes to the
cloud service. This type of integration implies that the test’s implementation does not
become part of the cloud service infrastructure but operates on a remote host, external
to the cloud service’s infrastructure.

Consider, as a basic scenario, the endpoint of a SaaS application, i.e., a web site which
is publicly reachable. In order to produce evidence to check if this endpoint only
supports secure communication via HTTPS with its users, no changes to the SaaS
application are needed. As a different example, consider a SaaS application to which
only authorized user have access. In order to test that, for example, any input fields
available to authorized users properly validate user input and thus do not possess some
SQL injection vulnerability, user level access privileges are required. However, none
of these tests require to change the composition or configuration of the production
environment of the cloud service.

* Minimally invasive integration: This type of integration requires to change the
configuration of the production environment of the cloud service under test to permit
production of evidence. Similar to non-invasive integration, minimally invasive tests
are not deployed as part of the infrastructure of the cloud service under test.

As an example, consider changing security groups to allow a remote host sending
TCP segments to a cloud service component, e.g., a virtual machine in order to check
its responsiveness. The genuine security model of the cloud service may not allow
some components to be accessed from external hosts which are not part of the cloud
service’s infrastructure. Therefore, the configuration of the security groups have be
altered so that TCP traffic originating from the remote host where the tests are executed
can reach the service components under test. Another example of minimally invasive
integration consists of allowing tests to call APIs of the cloud service to check, e.g., if
an encryption policy is defined for objects persisted in the object storage of the cloud
service. Such configuration checks on the control plane of the service require adding a
designated role granting the test access rights to issue the desired API calls.

* Invasive integration: This type of integration requires to change the composition of
or the applications used by a cloud service’s productive environment to allow tests
to continuously produce evidence. Contrary to non-invasive and minimally invasive
integration, invasive integration implies that at least part of test’s implementation is
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deployed as part of the production environment which is used to operate the cloud
service under test. The following subtypes of invasive integration can be distinguished:

— Compositional changes: In this case, structural changes to the cloud service
composition are needed such as adding a virtual machine or micro service where
the evidence production technique is deployed and operating on. A classic
example of invasive integration through compositional changes are monitoring
agents, that is, additional applications which are deployed on virtual or physical
components of the cloud service.

— Code-level changes: Here, changes in the form of patches to applications which
constitute components of cloud services are needed in order to produce evidence.
As an example, consider changes of the scheduler of a cloud platform management
system such as OpenStack to be able test if deployments of virtual machines
which ought to be started only on designated hosts indeed do not share the
underlying hardware with other machines.

4.2.4 Independence of cloud service model

As described in Section[2.1.1] cloud services can be of type IaaS, PaaS, SaaS or combinations
thereof. Our framework needs to be able to support test-based certification of components
of any of these types. More specifically, supporting test-based certification according to a
set of controls translates to continuously evaluating properties of cloud services using tests.
Therefore, our framework needs to be capable of testing properties of components of any
cloud service model.

4.2.5 Reusability of continuous test components

Checking satisfaction of similar controls may lead to similar designs of tests. Thus, our
framework has to support reusing parts of an existing test to allow for designing a new, similar
test. Furthermore, validation of a control may require combining parts of existing tests. Also
in this case, our framework has to have a modular structure which permits singling out and
recombining parts of tests.

4.2.6 Integration of existing test tools

Numerous tools exist which can be used to test components and interfaces of cloud services.
As an example, consider leveraging a penetration testing tool such as § QLMapF_I] to detect
SQL injection vulnerabilities as part of a continuous test. The results of such a test can
support certification according to security controls which demand that the web application
components of a SaaS application have to implement state-of-the-art user input validation
mechanisms.

The key insight here is that domain experts, e.g., security experts, have built test tools
and frameworks that we can take advantage of. In order to utilize the expertise used to build
these test tools, our framework has to support integration of such tools when designing tests.
Naturally, these tools are not designed with the focus of detecting whether a cloud service

Shttp://sqlmap.org/ [Accessed: 2018-12-13]
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satisfies some certificate’s controls. This leads us back to the central requirement described
in Section[4.2.1] that is, production of evidence.

4.2.7 Self-adaptivity

A continuous test has to be self-adaptive in two ways: First, it needs to be able to adapt the
frequency of repeatedly executed tests within a particular period of time. This allows us, e.g.,
to accurately evaluate controls with temporal constraints: Once a test has produced evidence
indicating that a control is not satisfied at a time, we increase the frequency of following,
repeatedly executed tests. That way, we achieve higher accuracy when estimating the period
during which a control was not satisfied. Consider, as an example, a test checks every minute
whether a cloud service is reachable via HTTP. At a some point, this test fails, indicating
that the service is not reachable. The following tests are executed every ten seconds in order
to more accurately measure the period of time during which the service was not reachable.
Once a test passes again, the next tests are executed every minute again.

Second, assumptions about the environment of a continuous test can be stationary. Thus,
these assumptions are rendered incorrect if the environment conditions change over time.
If ignored, a test may produce inaccurate results, that is, it may incorrectly fail because
of changes in the test environment. Thus, a continuous test needs to be able to detect and
adapt to changing environment conditions to produce accurate test results. Recall the above
example of testing a cloud service’s reachability via HTTP. Let’s assume that a test failed
because a network failure for which the service provider is not responsible. In this case,
we cannot use the results produced by the test to reason about the cloud service’s property.
Consequently, the test has to detect such changes of the test environment and, e.g., discards
the test results.

4.3 Framework building blocks

This section introduces the five main building blocks of our framework to support continuous
test-based cloud certification. We begin with an overview of the core concepts and lay out
how they can be used to design a continuous test (Section [#.3.1). Thereafter, we explain each
building block in detail (Section[4.3.2]—[4.3.6).

It is important to note that the notation introduced in this chapter to define the building
blocks serves as a convenience to concisely describe each block. Furthermore, we make use
of this notation to describe the test designs underlying each of the example continuous test
scenarios presented in Chapter[5] Lastly, we draw on this notation in Chapter []to derive a
domain-specific language to rigorously define continuous tests.

4.3.1 Overview

Our framework automatically and repeatedly executes self-adaptive tests to support continuous
evaluation of statements about cloud service properties. A continuous test CT consists of five
building blocks: Test suites (T"S) define any single test which is executed repeatedly within a
continuous test. When defining a test suite, one or more test cases (7 C) are associated with
the suite. A fest case forms the primitive of any test, it specifies the concrete steps to test a
cloud service as well as to evaluate whether a test case passed or failed. Test cases do not
depend on specific test suites and can therefore be reused with any suite if needed. The result
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of a test suite — in its simplest form passed or failed — are used in two ways: On the one hand,
test suite results are used to compute test metrics (M) which allows us to evaluate statements
over a cloud service’s property, e.g., a detected security vulnerability of a cloud service is
fixed within 24 hours. On the other hand, test suite results are used by the workflow (‘W)
to decide which test suite to execute next. Lastly, we have to test whether the assumptions
made about the environment of a cloud service under test hold which we refer to as testing
preconditions (T P).

Figure .1 shows how the building blocks constitute a continuous test: Initially, the
workflow decides which test suite to run first (Step 1). Executing a test suite translates to
executing any test case contained within the suite. The result of the test suite is then supplied
to one or more test metrics (Step 2a). Furthermore, the test suite result is handed over to the
workflow (Step 2b) which, based on the result, decides which test suite to execute next (Step
3). Upon completion, the results of the test suite are again used to compute test metrics (Step
4a) and supplied to the workflow (Step 4b) deciding which test suite to execute next and so
forth.

Test suite; Test suite;, 4

Test case4 Test case,

<< test suite >> << test result >> << test suite >>

| workflow -

<< testresult >> << test suite >>

workflow [~

Test case, Test case,

workflow

A 4

Test case

<< test result >> << testresult >>
\ Y

Test case

—> data flow

Test metric Test metric

- control flow

<<*>> data

Figure 4.1: Overview of building blocks to support continuous test-based certification of
cloud services

4.3.2 Test cases

Test cases are the primitive of any continuous test. Each test case consists of procedures
which specify any steps that are executed by the test case. For example, a test case may
specify to establish a SSH connection to a virtual machine (VM), then issue a command to
download and install a package on the machine. In order to execute correctly, a procedure
may require input parameters, e.g., successfully connecting to a VM via SSH requires
username, hostname, and the path to the private key file. The arguments which are passed to
a procedure’s input parameters can be selected randomly from a predefined set, e.g., which
application to download and install on the VM is selected randomly from the package list.

Further, each test case has a set of oracles, that is, methods which are used to determine
whether the results of a test case indicates failure or success. In order for a test case to pass,
all defined oracles have to indicate success. Yet besides simply passing or failing, the result
of a test case also includes start and finishing time of the test case, i.e., time elapsed between
starting a test case run and completing reasoning about the test results. Also, the test case
result can provide further information, for example, the maximum average response time of
TCP packets measured to test latency of the connection to a remote host.
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Lastly, a test case possesses an ordering number which serves to specify the priority with
which a test case is executed as part of the test suite (see[d.3.3). Consider, for example, a
test suite which has three test case TC;, TC, and TC3 where TC; and T C, have ordering
numbers 1 and 1, and TC3 has ordering number 2. When this test suite is executed, then
TCy and TC, will be executed firstly and concurrently. As soon as both TC; and TC; have
completed execution, execution of 7C3 is triggered.

More formally, we can describe a test case TC as the 4-tuple (4.1)) which consists of the
following four elements: Procedures E where each procedure e € E requires a tuple of input
parameters P = (py, p2, ... pi) € L. L is the ordered list which contains any input parameter
tuples required for the defined procedures of a test case TC. Furthermore, 7C consists of a
tuple of oracles O where each oracle o € O evaluates if a test case passed or failed, as well as
an ordering number N € N*:

TC =(E,L,O,N). 4.1

Recall the test case example of connecting to a VM and installing a package: This test case may
contain the three procedures E = (connect_via_ssh, install_package, compute_mac) where a
SSH connection requires input parameters Py = (username, hostname, path_to_private_keyfile),
installing a package using apt-get install requires input parameters P, = (package_name),
and, finally, computing a message authentication code (MAC) of the installed package using
openssl dgst -sha256 -hmac requires input parameters P; = (key). Furthermore, the
test case passes if the MAC of the installed package and a MAC which was previously
computed and stored by the oracle match: O = (compare_mac). Finally, the test case executes
immediately when the test suite execution is triggered, that is, its ordering number is N = 1.
In summary, we can describe the trusted package installation (7'PI) test case as follows:

TCcTP! =({connect_via_ssh,install_package, compute_mac),
({username, hostname, path_to_private_key file), (package_name), (key)),
(compare_mac),

1.

As mentioned above, arguments passed to an input parameter can be randomized. As an
example, consider the input parameters py; = package_name and p3; = key where the
package to be installed as well as the key used for computing the MAC can be selected
randomly. We describe a random argument with values in V as a function A : Q — V
where Q is the set of all possible arguments that can be passed to an input parameter p € P.
In our example, Q of py; contains all valid package names while A can evaluate to, e.g.,
mysql-server.

Note that our framework requires executions of test cases to be independent of each
other, that is, whether a test case is executed or not does not depend on other test cases’
results. However, we note that concurrently executing multiple test cases on the same service
naturally can produce side effects, i.e., test case results that affect each other.

Corresponding requirements Test cases are the central building block of the framework
which enables designing novel tests (extensibility). Each procedure of a test case can be
implemented using external tools, e.g., using an existing SSH library to connect to a virtual
machine and test whether the session has been established successfully. Thus, test cases
can be used to integrate with existing tools, that is, execute these tools and use the returned
results to reason about cloud services’ properties. In this context, test cases can be designed
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to evaluate properties of SaaS, PaaS, or IaaS, or combinations thereof, thus rendering our
framework independent of cloud service models. Lastly, execution of test cases can be tightly
integrated with existing cloud service infrastructure, entailing privileged access to, e.g.,
proprietary API of the cloud services. Alternatively, test cases can be designed in a way
that is minimally invasive, only requiring minimal changes to the existing cloud service and
having non-privileged access. Therefore, our framework allows tests to be flexibly integrated
with existing infrastructures of cloud services.

4.3.3 Test suites

A test suite combines test cases where each suite contains at least one test case. Hereafter, we
refer to the execution of a test suite as test suite run (¢s7). Once the test suite run completes,
it returns failure or success. A test suite either passes or fails, it passes if all contained test
cases pass. Furthermore, upon completion, the test suite run returns the start (¢s7°) and end
time (¢sr¢), as well as the results of all bound test cases.

A test suite can be executed successively multiple times which is defined by iterations,
e.g., 100. Triggering execution of a test suite translates to triggering execution of test cases
bound to the test suite. Test cases with the smallest ordering number are executed first and,
having returned, are followed by test cases with next larger ordering number. In order for the
following test suite’s iteration to start, the current iteration of a test suite has to be completed,
that is, any test cases bound to the test suite have to be completed. The number of successive
iterations can be set to infinity. In this case, the workflow can trigger successive executions
of a test suite infinitely often unless the workflow decides — based on previously observed
test suite results — to execute a different test suite next (details of the building block workflow
are described in Section [4.3.4)).

A test suite also defines an inferval which describes the period of time in seconds between
consecutive executions of a test suite. One option to configure the interval is to trigger
execution of a test suite after a fixed interval passed, e.g., 600 seconds after the previous test
suite execution completed. Alternatively, the interval can be defined as a range from which the
start of a test suite’s execution is selected randomly. For example, the interval (0, 60) defines
that execution of the next test suite will be randomly triggered within a time interval of 60
seconds after the previous one completed. Further, an interval can be specified as a sequence
of values where each value maps to the current iteration of the test suite, thus rendering
the waiting time between successive test suite executions iteration dependent. Consider, for
example, the interval (5, 10,30) which defines to wait five seconds until execution of the test
suite if it is executed for the first time, ten seconds if it is executed for the second time and so
forth. This implies that the number of specified iterations for a test suite cannot be greater
than the number of elements of the sequence defined for the interval.

Lastly, if subsequent iterations of a test suite start instantaneously, then they may produce
unwanted side effects. In order to prevent such side-effects, a fixed offset (seconds) can be
defined permitting the service instance under test to clean up after a test suite has completed.

A test suite 7S is described as the 4-tuple (#.2) which consists of the following four
elements: Bound test cases 7C = (TC Lre?, ... .1C ™), the number of iteration / € N*, and
the offset F € N* (seconds) between test suite execution. Further, a test suite consists of a
tuple of interval elements 7 where each ¢ € T specifies the waiting time until the next test
suite execution is triggered which is either fixed (|7| = 1), randomized (|T| = 2) or iteration
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dependent (|T| > I).
TS = (TC,IF,T) (4.2)

To illustrate the usage of a test suite, we build on the trusted package installation test case
TCTP! described in the previous section. As an example, we assume that the execution
of TCTP! is triggered randomly within a time interval of 60 minutes, i.e., T = (0, 3600).
Furthermore, the test suite is consecutively executed for 3000 times, i.e., I = 3000, having an
15 minute offset between every execution, that is, F = 900. Consequently, we can describe
the test suite example containing a single test case TCT ¥/ as follows:

TSP —((TcTPy, 3000, 900, (0, 3600))

Corresponding requirements Through combining test cases in an arbitrary manner, test
suites enables reuse of existing components of continuous tests. This means that existent test
cases can be reused with other test suites.

4.3.4 Workflow

A workflow determines the sequence of test suites which is executed over time. To that end,
a workflow uses the results of the last test suite run to decide which test suite to execute
next. A continuous test has exactly one workflow. The most basic example of a workflow
always executes the same test suite, regardless of the result the last test suite run produced.
Alternatively, a workflow may define to, e.g., execute a different test suite or terminate the
test once a test suite run fails.

Recall that we aim to use continuous tests to reason about properties of a cloud service
over time. A workflow addresses this goal by providing the necessary means for fine-grained
modeling of test sequences. For example, a workflow can be defined which aims to estimate
the downtime of a cloud service most accurately. This is leveraged in the example test in
Section [5.2]to continuously test availability: This test’s workflow initializes test execution
with a test suite called regular which checks the availability of cloud service components
randomly at least every 15 seconds and at most every 215 seconds. In case this regular test
suite fails at some iteration because a cloud service component is not available, the workflow
chooses a different test suite called alert to run next whose interval is smaller, that is, which
is executed every 10 seconds. As long as the alert test suite fails, the workflow always selects
the alert test suite to run next. Once the alert test suite passes, the workflow selects a test
suite called attentive to run next. If the attentive test suite passes for five consecutive times,
the workflow selects the regular test suite to run next, otherwise it runs the alert test suite
again. It is important to note that all three test suites only differ with regard to the interval
definition while test cases bound to these suites are identical.

We describe a workflow as a function W : R — 7S which takes as input the results of
executed test suites R where each r € R is a 2-tuple of a test suite 7S(7C and a sequence
of test suite’s results Y after the i-th iteration, that is, |Y| = i. Recall the test suite example
TSTPI) which contains the test case TCTPL: If TSTPD) fails at the third iteration, i.e.,
I = 3, then the workflow may stop execution of 7STP!) and trigger a different test suite
which checks integrity of packages previously installed on the VM to determine whether
their integrity has also been compromised. The input provided to W for test suite 7.5 P1)
after the third iteration is r = (TSTPD (passed, passed, failed)). W then outputs the test
suite TS € 7S to be executed next, for example, to trigger execution of a different test suite
if the current test suite failed for the last five consecutive iterations.
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Corresponding requirements A workflow can support reusing existing components of a
continuous test because a particular workflow can be used for different tests. Consider, for
example, the workflow to approximate downtimes of cloud service components described
above (see also Section[5.2)): This workflow can also be used to approximate the time a TLS
configuration of a service endpoint has been vulnerable. Naturally, test cases bound to the
regular, alert and attentive test suites have to be changed in order to test for vulnerable TLS
configurations. However, the workflow approximating downtimes is agnostic to the test cases
used and thus supports approximating the time a vulnerable configuration persisted in the
same manner.

Furthermore, a workflow can be used to provide self-adaptivity of a continuous test to
environment conditions which evolve over time. This application of a workflow is detailed in
Precondition as specialized test suites of Section[4.3.6]

4.3.5 Test metrics

Continuous tests automatically and repeatedly produce evidence to support checking whether
a cloud service complies with a set of controls over time. Thus, we need to interpret a
sequence of test results in order to reason about cloud service properties over a period of time.
To that end, we use metrics to compute measurements which are needed to evaluate statements
over cloud services properties such as the availability of a cloud service’s components is
greater than 99.999% per day.

We describe a metric as a function M : R — U which takes as input results of test suite
runs R and outputs measurements U. A metric can leverage any information available from
the result of a test suite run, e.g., at what time the test suite run was triggered, when it finished,
and further information contained in the results of test case runs bound to the test suite run.

Recall that test cases form the primitive of each test which use test oracles to determine
the outcome of a test case, that is, whether a test cases passes or fails (see Section @
Further, test suites combine test cases where each suite contains at least one test case. A test
suite either passes or fails, it passes if all contained test cases pass (see Section[d.3.3). Any
test metric used by a continuous test which strictly follows the building blocks defined in this
chapter can therefore make use of the following two characteristics: First, a single test suite
run (i.e., a single execution of a test suite as part of a continuous test) either passes or fails. As
a consequence and second, a single test suite run passes or fails at some point in time. Based
on these two characteristics, we propose four test metrics which are universally applicable
to any continuous test which aims to support cloud service certification, independent of
particular designs of test cases, test suites or workflow.

Basic-Result-Counter (brC) A basic test result br indicates whether a test failed (f) or
passed (p), i.e., br € {f, p}. The Basic-Result-Counter (brC) metric takes basic test results
as input and counts the number of times a test failed (brC Y or passed (brC Py,

As Figure [.3] shows, a basic test result is only returned after the execution of a test
completed, that is, when a test suite run completed (¢sr;). This metric can be used to evaluate
statements which only require to know if and how often a continuous test failed or passed. As
an example, consider determining if and how often security groups assigned to a newly started
virtual machine unexpectedly allow that these machines are publicly accessible through some
blacklisted ports.
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Failed-Passed-Sequence-Counter (fpsC) A continuous test continuously produces basic
test results. A Failed-Passed-Sequence (fps) is a special type of sequence of basic test
results: As shown in Figure[.2] a fps starts with a failed test at #; provided that the previous
test at ;_ passed. A fps ends with next occurrence of a passed test.

fps
/\
( )|
| | | | | | | | | | | .
| | | | | | | | | | | Vt
t ti—1 ti t. t. t. t. t. t. t. t.

i-2 i+1 i+2 i+3  Ci+4  Ci+5  Ci+6 Ci+7 i+8

Figure 4.2: Failed-Passed-Sequence ( fps) example based on basic test results (br)

Consider, for example, having observed the following sequence of basic test results of a
continuous test: When trying to connect to a VM for eleven times in a row, the first two times
the login succeeds (p). Then, for the next six times, the login fails (f) while for the remaining
three times, the test passes again. The fps in this example is fpsélsH ={f, L s fop).

The Failed-Passed-Sequence-Counter (fpsC) metric draws on this definition of fps.
fpsC counts the number of occurrences of fps within a sequence of basic test results Sp, =
(bry, bry, . . ., br;) which are produced during a continuous test. For example, consider Figure
which shows the following sequence of basic test results S, = (p, p, f. f+ f. f+ - D> P D)-
This sequence contains one fps, that is, fpsC(Sp,) = 1.

Failed-Passed-Sequence-Duration (fpsD) The Failed-Passed-Sequence-Duration (fpsD)
metric builds on the definition of a Failed-Passed-sequence (fps) described in the previous
paragraph. fpsD takes a fps as input and measures the time between the first failed test of a
fps and its last basic test result which — by definition — passes. This metric can be used to
reason about properties over individual periods of time. This allows us to evaluate statements
which contain time constraints. For example: A control derived from, e.g., RB-21: Handling
of vulnerabilities, malfunctions and errors — check of open vulnerabilities of BSI C5 [31]]
may state that an incorrectly configured and thus insecure web server’s TLS setup of a SaaS
application has to be corrected within a certain amount of time, e.g., eight hours.

The definition of fpsD has a subtle but important detail: We aim to measure the time
difference between the first and the last test of a Failed-Passed-Sequence

fps = {fis fi+1s fir2s - - -,Pi+j>-

An important insight at this point is that the first failed test f; as well as the next passed test
pi+j €ach have duration, that is, both tests takes some time to complete and return a basic test
result. Therefore, we have to choose whether a fpsD starts at the start time or the end time
of the first test f;. Also, we have to decide whether a fpsD ends at the start time or the end
time of the last test p;. ;.

In order to properly define the bounds of a fpsD, we have to first understand how the
different options may affect our metric. As an introductory example, consider Figure 4.3|
which illustrates the definition of fpsD using the start time ¢sr;’ of the first failed test sr;
and the end time tsrie+j of the next passed test ¢s7;, ;. The duration of the first failed test and
the last passed test are d; and d;;, respectively.
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-~V

Figure 4.3: Continuously executed tests (zsr) with universal test metric fpsD

Yet the definition of fpsD shown in Figure 4.3 has a severe disadvantage: The more
time it takes to complete the last test zs7;,, the higher the proportion of d;,; within the
fpsD. Thus choosing ¢sr} and tsrf+j as bounds for fpsD creates a dependency between the
duration of tsr;,; and the fpsD. In scenarios where high accuracy of fpsD is required, e.g.,
to evaluate statements which contain relatively narrow time constraints, this dependency can
render the metric fpsD unsuited.

As mentioned in the introduction of this section, the metric fpsD has to be applicable to
any continuous test. Thus, when defining fpsD, we have to avoid dependencies of fpsD
from the duration a specific last test #s7;4 ;. In order to arrive at a definition of fpsD which
is least dependent on tests’ duration, we have to examine how variations in the duration of
the first failed test (d;) and the last passed test (d;4;) affect fpsD.

The four options to define fpsD are shown in Table . 1] Consider, for example, Option
3: Here, we use the end of the first failed test (zsr7) as start of the fpsD and the end of
the next passing test (tsrieﬂ.) as end of the fpsD. When choosing this option, variations of
either the duration of the first test (A d;) or the last test (Ad;, ;) will affect the fpsD,i.e., lead
to AfpsD. Further, when the duration of both tests vary (Ad; A Ad;, ), then this will also
change fpsD, thatis, AfpsD. Note that in the corner case where variations in duration of
both tests cancel each other out, i.e., Ad; = Ad;.;, fpsD remains unaffected.

Table 4.1: Options to define Failed-Passed-Sequence-Duration (fpsD) if | fps| > 2

Option ‘ ‘ Adiyj ‘ Adi AAdiyj,Ad; # Adiyj ‘

Start time End time Ad;
1 tsrf tsrf+j fpsD A fpsD A fpsD
2 tsris tsrlt:_,. fpsD fpsD fpsD
3 tsrf I1sri; A fpsD A fpsD A fpsD
4 tsrf tsrisﬂ- A fpsD fps A fpsD

When inspecting Table it becomes apparent that Option 2 is the only definition of
fpsD which is unaffected by variations of duration of the first and the last test. Therefore,
we choose to define the start of a fpsD to be the start time of the first failed test zsr;’ and for
the end of a fpsD, we select the start time of the next passed test tsrisﬂ..

It is important to note that the reasoning shown in Table[d.T|only applies to Failed-Passed-
Sequences which contains more than two basic test results, that is, | fps| > 2. If a fps only
contains two elements, i.e., fps = (f;, pi+1), then variations of the duration of the failing test
f; will impact on fpsD. Also, if | fps| = 2, then the fpsD will be at least as long as it takes
the failing test to complete. As a result, the time it takes to complete the first failing test also
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constitutes the lower bound on how accurately we can reason about statement containing
time constraints.

Finally, we note that the accuracy of a measurement computed by the test metric fpsD
heavily depends on the concrete implementation of a test. In Chapter[7, we analyze such
timing related measurement errors of continuous test implementations in context of fpsD.

Cumulative-Failed-Passed-Sequence-Duration (cfpsD) This metric draws on the idea of
the Failed-Passed-Sequence-Duration (f psD) introduced in the previous paragraph. cfpsD
takes as input a sequence S 'rpsp Which contains any fpsD observed during a continuous test,
and returns their accumulated value. Naturally, ¢ fpsD may only be applied to S’fps p if the
sequence contains more than one fpsD. Otherwise, if |S rpsp| = 1,then cfpsD = fpsD.

The metric ¢ fpsD permits us to reason about the satisfaction of cloud service properties
within a predefined period of time. Similar to the metric fpsD, we use cfpsD to evaluate
statements containing time constraints. In contrast to fpsD, cfpsD allows us to evaluate
statements whose time constraints refer to multiple property violation events observed within
a particular period of time. As an example, consider control RB-02 Capacity management —
monitoring of the Cloud Computing Compliance Controls Catalogue (BSI C5) [31]] which
requires the cloud providers to comply with promised service level agreements (SLAs). Let’s
consider a SLA which defines that the total yearly downtime of a cloud service must not
surpass five minutes. During the period of a year, the cloud service experiences multiple,
timely separated downtime events which a continuous test detects. The metric fpsD can
evaluate statements which contain a single downtime to, e.g., not last longer than 60 seconds.
In contrast, ¢ f psD considers a period of time, e.g., a year, and summarizes over any fpsD
observed to evaluate statements referring to all downtime events during the defined period.

Similar to fpsD, the accuracy of a measurement computed by the test metric c fpsD is
determined by the concrete implementation of a test. Chapter[7]experimentally investigates
measurement errors of concrete test implementations with regard to ¢ f psD.

Corresponding requirements Test metrics are the means within our framework which
allow us to model the production of evidence which can be used to evaluate whether controls
of a certificate are satisfied. More specifically, test metrics take as input test suite results and
thus allow us to define models how to evaluate cloud service properties over time.

4.3.6 Preconditions

Naively executing tests is prone to produce false negative test results, e.g., testing if the TLS
configuration of a service endpoint is secure from a remote host may fail not because of a
vulnerable configuration but because the component cannot be reached due to a network
error. Computing test metrics based on false negative test results will lead to erroneous
metrics and thus incorrect evaluations of statement over the cloud service. Therefore, the
assumptions made about the environment of the cloud service under test, i.e., preconditions,
need also to be tested. Only with satisfied preconditions can we use test results to compute
test metrics.

Our framework provides two options to model preconditions. These options are explained
in the following two paragraphs.
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Precondition as specialized test suites This option treats preconditions as a special type
of test suite: First, test cases are designed which aim to check whether preconditions hold. A
specialized test suite is then created which only bind these precondition test cases. Finally,
this specialized test suite has to be executed prior to the main test suite, i.e., the test suite
designed to reason about a cloud service’s property. To that end, a workflow is defined which
only executed the main test suite if all preconditions have passed. Therefore, preconditions
can be used to control the workflow of a continuous test, allowing to self-adapt, i.e., select
and execute test suite according to environmental conditions discovered at runtime.

Figure 4.4 shows an extract of an example continuous test that uses a specialized test
suite to test preconditions before executing the main test suite: After having successfully
tested the preconditions (Step 1), the workflow triggers execution of the main test suite (Step
2). After having executed the main test suite, the test result is used to compute test metrics
(Step 3a) and supplied to the workflow (Step 3b) which triggers execution of specialized test
suite to again validate the preconditions (Step 4) and so forth.

Main
test suite

Mam
test case‘

Specialized
test suite

Specialized
test suite:

Precandmon
test case‘

Precondition
test case

workflow | << specializedtest suite >> | (" Precondition | | << test result >> wammw << test suite >>
””””” agl test case,
Precondition Mz in
test case,, test casem
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—* datafiow f
control flow Test metric
<<*>> data

Figure 4.4: Extract of an example continuous test using a specialized test suite to test
preconditions before executing the main test suite
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Consider, as an example, that a test aims to check whether the bandwidth available to a
VM for uploads is at least 50 Mbit per second. To that end, first a connection to the VM via
SSH is established, then a file is uploaded where the duration of that upload is measured.
One example of a precondition for this test to execute correctly is that the VM is reachable
via SSH. In order to evaluate whether this precondition holds, we can probe the VM’s port 22
by sending a SYN TCP segment and check if the host response with a SYN-ACK segment.
Only if the precondition test suite determines that a VM’s port 22 is accessible, then the
bandwidth test is executed.

Using specialized test suites to model preconditions has one important drawback: As
described in Section test suites are executed successively, that is, execution of the next
suite is triggered once the previous suite completed execution. Thus, a test suite containing
preconditions may have passed but during the following main test suite, the preconditions are
not satisfied anymore. Consequently, the main test suite may incorrectly fail, producing an
inaccurate test result.

Preconditions as part of main test suites The second option consists of modeling
preconditions as test cases and binding them to the main test suites. Figure [4.5] shows
that after the workflow triggered execution of the test suite (Step 1), these precondition test
cases are executed concurrently with the main test cases. Since a test suite only passes if
all contained test cases pass (see Section[4.3.3)), a failing precondition test case leads to a
failing test suite. In order not to misinterpret a failed test and thus create a false negative test
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result, a failed test suite result is inspected during test metrics’ computation (Step 2a). If any
precondition test case failed, then test result is ignored during computation of metrics.

Having preconditions as part of main test suite also allows controlling the workflow and
have it self-adapt accordingly. After having provided the test suite result to the workflow
(Step 2b), the workflow inspects the test suite results and selects the next test suite to execute
accordingly (Step 3). However, concurrently executing precondition test cases and main
test cases comes at a price: Regardless of any precondition test case failing, the remaining
precondition test cases as well as the main test cases of the test suite are still executed,
although the result of the test suite will be discarded.

Test suite; Test sute,, 4
Precondition Main Precondition Main
test case, test case, test case, test case,
Precondition Main Precondition Main
workflow | test suite >> test casep test case, << testresult >> | WOrkflow | < test suite >> test casep test case, << test result >>
@ Precondition Main @ Precondition Main
test case,, test casey, test case,, test case,
<< test result >> << test result >>

R —
data flow
Test metric Test metric
#  control flow
<<*>> data

Figure 4.5: Extract of an example continuous test using precondition test cases as part of the
main test suites

Modeling preconditions as part of main test suites has the advantage that we can enforce
that execution of testing preconditions and execution of the main test suite are triggered
concurrently. Moreover, note that the ordering numbers — which are required for definition
test cases (see Section4.3.2)) — allow for fine-grained pairing of precondition test cases and
main test cases within the test suite.

Since we are handling failed preconditions during metric computation, we have to
also investigate how discarding test results impacts on test metrics. Regarding the
Basic-Result-Counter (brC), we will avoid adding failed test to brC* whose preconditions
were not satisfied. Thus preconditions impact on the test metric brC by removing false
negative test results which is the very purpose of precondition testing.

However, the effects of testing preconditions can be detrimental to the accuracy of any
metric which is based on Failed-Passed-Sequence ( f ps). This includes Failed-Passed-Sequence-
Counter (f psC), Failed-Passes-Sequence-Duration ( f psD), as well as Cumulative-Failed-Passed-
Sequence-Duration (cp fsD).

Let’s assume that we have observed the following sequence of basic test results

Sor = (Dis fi+1s fiv2s fis3s fivds Diss).

If all preconditions tested to produce the basic test results of S, succeed, then Sy, contains
one fps with five elements, that is,

fpss = (fists fisas fie3s fivas Diss)-

Lets now consider that the preconditions of basic test result f;.3 are not satisfied. As a result,
fi+3 is therefore discarded during metric computation. After the correction, we get

S'br = <pia ﬁ+1’ ﬁ+27 ﬁ+47 pi+5> Wthh Contains fpss = <ﬁ+1’ ﬁ+2, ﬁ+4’ Pi+5>-
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Now consider applying the metric fpsC which counts the occurrence of fps: The count
of fps remains unaffected by discarding fi,3, that is, fpsC(Sp,) = fpsC(Sy,). However,
removing f;,3 does affect the computation of metric fpsD. The reason is that the duration of
the fps is computed on the time difference between p;;s and f;;; which implicitly includes
fi+3. Consequently, by including the incorrect test result f;43 in the fps, we incorrectly add
time to the fpsD. This error is passed onto the test metric ¢ fpsD since it accumulates any
fpsD observed during a continuous test.

In order to correctly compute the fpsD test metric, we have to deduct the duration during
which we know that the preconditions were not satisfied. To that end, we have to inspect any
fps for test results whose preconditions failed (¢sr~). Note that a fps may contain multiple
tests whose preconditions failed which occur in direct succession. In order to describe failed
preconditions, we define a Preconditions-Failed-Sequence

pfs = (tsr tsr], tsr;,

- +
o IS s - - .,tsrl.+j>

whose first (¢s7;") and last element (tsr;:rj) are test results whose preconditions are satisfied
(tsr™). Any element of a p fs that follows the first (¢s7;") and precedes the last (zsr;, j) isa
test result whose precondition failed (¢s77).

Recall that we aim to find the interval during which preconditions of successive tests
were not satisfied. Figure4.6|shows how we compute the duration of a pfs, thatis, p fsD: It
is the difference between the start of the last test ts"i:j and the end of the first test £sr .

pfsD
N\,
f h]
| | | | | | I | >
I R I N I I o I R I o I R I o "t
tSI’i_1 tsr i-1 tsr tsri ‘tSI’i_‘__I tsri+1 tSI’i_H- tSI’i_H-

Figure 4.6: Bounds of a Preconditions-Failed-Sequence-Duration (p f sD)

A fps can contain multiple pfs, at most k = |fps| div2. For example, fpss =
{fis1> fi+2, fix3s fird Piss) can contain at most 5div2 = 2 pfs. In general, we have to
consider multiple p fsD when correcting fpsD as follows:

k
fpsD = fpsD — prsDi.
i=0

Finally, there is the following corner cases to consider: The precondition of the first failing
test of a Failed-Passed-Sequence (fps) is not satisfied. Considering Figure this means
that preconditions of test result at zsr;_; are not fulfilled. In this case, the definition of the
duration of a p fs has to be changed slightly, it is then the difference between the start of the
last test tsrl.s+j and the start of the first test £sr;" ,.

Corresponding requirements The option Precondition as specialized test suite of the
building block Precondition draws on the workflow in order to adapt to evolving environment
conditions of a continuous test, thereby addressing the requirement self-adaptivity. This
requirement is also addressed when using the option Preconditions as part of main test suites:
In this case, preconditions are used in combination with test metrics where test metrics are
corrected in case precondition testing fails.
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4.4 Example implementation of the framework

Figure 4.7|shows Clouditoz@ a set of tools supporting design and deployment of continuous
assurance techniques. The Clouditor toolbox consists of five main components: Engine,
explorer, simulator, evaluator and dashboard. Hereafter, we outline Clouditor’s engine and
its dashboard. Further details on the remaining components can be found in [245]].

It is important to note that Clouditor’s engine implements the framework described in
Section4.3|and thus depicts a core results of this thesis. However, Clouditor’s dashboard is
not a result of this thesis but has been created by Clouditor’s development team following
the implementation of the engine. The dashboard is included in this Chapter for illustration
purposes only.

Clouditor
Dashboard

Clouditor Clouditor
: Engine : : Simulator
P— )
N P
Clouditor : : Clouditor
Explorer : : Evaluator :
P i
. continuous : i performance
validation i L evaluation

Clouditor Toolbox

Figure 4.7: Components of the Clouditor toolbox

4.4.1 Clouditor’s engine

Clouditor’s engine is a prototype which is developed in Java following the design of the
building blocks described in the previous section. Using the engine, novel continuous tests
can be build by implementing test cases — possibly integrating other existing, external tools
such as Nmapf’|— which are then combined to test suites. Aside from some basic workflow
templates applicable to a wide range of test scenarios (e.g., SimpleRepetitionWorkflow
which always executes the same test suite), the engine supports implementation of custom
workflows deciding which test suite to execute next. Similarly, the engine provides the
set of universal test metrics introduced in Section[4.3.5](i.e., Basic-Result-Counter (brC),
Failed-Passed-Sequence-Counter (f psC), Failed-Passed-Sequence-Duration (fpsD), and
Cumulative-Failed-Passed-Sequence-Duration (c f psD)). However, the engine also supports
implementation of custom metrics, for example, to compute the current strength of TLS
cipher suites supported by a cloud service component’s endpoint based on the last test suite
results.

SShttps://clouditor.io [Accessed: 2018-12-13]
S8https://nmap.org/ [Accessed: 2018-12-13]
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Clouditor’s engine supports concurrent execution of multiple continuous tests. Provided
that all custom classes required for a specific set of continuous tests were added to the engine,
the desired tests can be defined using YAML configuration files (see also Section[6.2.4)) where
a each test is defined by a single configuration file. Results produced by the engine, that is, test
suite run results (which include the results of test cases bound to the test suite), measurements
(i.e., results of the test metric computation) as well as the test definitions used to configure
tests are persisted in a MongoDBE] database. Clouditor’s engine is currently deployed as
a containerized application running on Kuberneteﬂ within the laboratory environment of
Fraunhofer AISEC®Y

4.4.2 Clouditor’s dashboard

Clouditor’s dashboard is a web application which provides a management console as well as
visualizes the results produced by Clouditor’s engine. Depending on the test metrics defined
by the continuous tests which are executed, different visualization components, such as time
series graphs, burn-up charts or maps are supported.

Figure {4.8] shows a screen shot of the dashboard’s landing page. The top three tiles show
three properties which are currently subject to continuous tests: Availability, Geolocation,
and TLS Configuration. The components of the cloud service which are tested are shown in
the tile on the left bottom: Three virtual machines (i.e., VM1, VM2 and VM3), a LoadBalancer
and an OpenStackAccount. Further, the tile on the right bottom of the landing page shows a
summary of the test results produced during the last 24 hours by all continuous tests currently
running. Each box represent one hour and is colored green if all test suite results during that
hour indicate success, otherwise the box is colored red (i.e., at least one test suite run during
that hour failed). Lastly, boxes are colored from left to right as time passes where gray boxes
indicate that no results during that (upcoming) hour have been produced yet.

Selecting one particular test from the right bottom tile shown in Figure [4.8] opens a
detailed view on the results this test produced. Figure[4.9]shows a screen shot of this view for
the continuous test of the availability of VM. On the left top tile, the test results during the
last 24 hours are shown where each box represents one minute. Again, red boxes indicate
failure of at least one test suite run during the respective minute while green ones indicate
passed test suite runs. Further, the bottom right tile shows a burn up chart which illustrates
the cumulative downtime as indicated by the test results. This test metric computation follows
the Cumulative-Failed-Passed-Sequence-Duration (c f psD) definition introduced in Section
Lastly, the right top tile shows the test metric Availability which, in this case, is defined
as the ratio between the cumulative downtime and the period of time since the continuous
test started (more details on this test metric computation can be found in Section[5.2.3.4).

57https : //www.mongodb . com/|[Accessed: 2018-12-13]
S8https://kubernetes.io/ [Accessed: 2018-12-13]
Shttps://www.aisec. fraunhofer.de/en.html [Accessed: 2018-12-13]
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Availability VM1

A test definition to measure the avallability of a service. The test is currently in state WAITING_FOR_EXECUTION. It is scheduled to start at Aug 24, 2016, 3:28:28 PM.

Availability VM1 Test Series Availability

99.7 %

300000 Seconds
250000 Seconds
200000 Seconds -
150000 Seconds -
100000 Seconds

50000 Seconds

0 Seconds

T
2016-08-2311:27

T T T T T
20160823 16:33 2016-08-23 21:38 2016-08-24 02243 2016068-2407:48 2016-08-24 12:53

Figure 4.9: Different visualizations of test suite results and test metrics of example continuous test Availability VM 1
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4.5 Summary and discussion

In this chapter, we introduced a framework to support continuous test-based certification of
cloud services. The main objective of this framework is:

Support design of tests which permit to continuously evaluate properties of
existing cloud services where test results serve as evidence to validate that the
service satisfies a set of controls.

Based on this overall goal, we then elicited the requirements which the framework has to
meet to achieve the following subgoals:

¢ Production of evidence,

* extensibility,

* flexible integration with existing infrastructures of cloud services,
* independence of cloud service model,

* reusability of continuous test components,

* integration of existing test tools, as well as

* self-adaptivity.

Then we presented the building blocks of the framework which are guided by the above
requirements. Those building blocks are:

¢ Test cases,

e test suites,

e workflow,

e test metrics, and
* preconditions.

The design of the framework corresponds adequately with the identified requirements: Test
cases are very flexible primitives allowing to integrate existing tools such as SQLMap, i.e.,
execute this tool and use the returned results. Test cases also support adding novel tests
(extensibility) which can evaluate properties of SaaS, PaaS, or laaS, or combinations thereof
(independence of cloud service model). Also, test cases can be design to flexibly integrate
with existing cloud service infrastructures, either tightly integrated with privileged access
or in a minimally invasive manner, that is, only requiring minimal changes to the existing
service and having non-privileged access. Test suites combine test cases which enables reuse
of existing components of continuous tests, in this context, reusing existent test cases within
different test suites.

Further, the workflow of a continuous test determines which test suite is executed next.
Therefore, a workflow meets two of the identified requirements: First, it allows to reuse
existing continuous test components, i.e., here reusing existent test suites. Second, it allows
a continuous test to adapt based on changing environment conditions during execution
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(precondition testing with specialized test suites, see Section [4.3.6) as well as based on
observed test results (self-adaptivity).

Test metrics take as input the results produced by test suites and permit us to evaluate
cloud service properties over time. Therefore, test metrics are the constructs within our
framework which allow us to model the production of evidence which is needed to check
satisfaction of a certificate’s controls. Further, test metrics may correct produced evidence in
case preconditions are not satisfied (preconditions as part of main test suites, see Section
[4.3.6), thereby also supporting the required self-adaptivity of continuous tests.

Moreover, we propose the following four test metrics which are universally applicable to
any continuous test aiming to support cloud service certification, independent of particular
designs of test cases, test suites or workflow:

¢ Basic-Result-Counter (brC),

* Failed-Passed-Sequence-Counter (fpsC),

Failed-Passed-Sequence-Duration (fpsD), and
* Cumulative-Failed-Passed-Sequence-Duration (c f psD).

Lastly, we outlined one example implementation of the framework’s building blocks. This
prototype constitutes the engine component of Clouditor, a set of tools supporting design
and deployment of continuous assurance techniques.

One drawback of our framework lies in neglecting non-functional requirements which
need to be considered when designing continuous tests which are to be productively deployed.
While continuous tests seek to increase customer’s trust in and transparency of cloud service,
such mechanisms can also leak critical information which can be used by adversaries. For
example, Santos et al. [246]] point out that such information can be used to trace vulnerabilities
of a cloud infrastructure. As an example, consider that a continuous test checks whether a
SaaS application is vulnerable to SQL Injections (SQLI) which can, e.g., support validation
of CCM’s control TVM-02: Vulnerability & Patch Management. 1t is evident that leaking test
results which indicate a SQLI vulnerability — possibly even containing detailed information
on the type of vulnerability found — can simplify the steps an attacker has to take to attack the
service. Therefore, it is essential to ensure that the system which implements continuous
tests in a productive setting is trustworthy as well [[120]].

Aside from proposing a suitable security model for continuous test implementations,
the required performance of productive continuous tests cannot be ignored. After all, a
prevalent attribute of cloud services is scalability of available resources (for further details
see Section [2.T)). However, neither designing and implementing a most efficient continuous
tests nor keeping their memory and storage usage as low as possible is in focus of this work.
Nevertheless, the practical applicability of continuous tests hinges on their capability to
handle the elasticity of cloud services’ resources. Thus discussing potential limitations of
our framework in context of productively deployed continuous tests and proposing possible
remedies is subject to future work.

Finally, as already pointed out in the introduction of this Chapter, our framework’s focus
lies on providing technical building blocks to design continuous tests. Yet it does not specify
a process how to manually or automatically conceive test design candidates for a concrete
cloud service instance. It is thus left to future work to answer the question 'Given a particular
cloud service instance, which continuous tests are feasible?’
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Furthermore, the framework does not aim at providing a method to rigorously derive
test designs from control descriptions. This implies that our framework does not address
questions such as 'Given a particular control, which test designs are most suitable?’, ’How
many controls of a control catalog such as CSA CCM [22] can be continuously evaluated
using tests?’ or "Which additional costs does continuously evaluating controls of CSA CCM
incur?’ since the answers require having established a rigorous link between controls and
test designs.






Chapter 5

Example continuous test scenarios

This chapter presents five example test scenarios which are designed based on the framework
introduced in the previous chapter. The primary goal of these test scenarios is to demonstrate
how our proposed framework can support continuous test-based certification of cloud services.

There are various standards and guidelines available (see Section[2.3.3]) whose controls
we can use to derive example test scenarios. Naturally, our goal is to demonstrate that our
framework can support a wide range of cloud-specific controls. However, it is outside the
scope of this thesis to provide a set of test scenarios which is most complete, that is, covers
as many controls of standards and guidelines possibly relevant to cloud services. This would
imply that ideally any control of any available certification scheme had to be considered
during the selection process. Even though this is a feasible task, it would involve considerable,
ongoing manual effort and is not in focus of this work. Fortunately, organizations such as the
Cloud Security Alliance (CSA) and German Federal Office for Information Security (BSI)
have made it part of their core business to compose lists of controls specific to cloud services
which we can employ. We use controls of the following three control catalogs as a basis for
each of our example test scenarios:

* Cloud Computing Compliance Controls Catalogue (BSI C5) [31] of the German
Federal Office for Information Security (BSI),

* Cloud Control Matrix (CCM) [22] provided by the Cloud Security Alliance (CSA),
and

* ISO/IEC 27001:2013 [24] published by the International Organization for Standardization
(IS0).

We select BSI C5 because only shortly after its publication in the middle of 2016, the IaaS
market leader Amazon Web Services (AWS) already adopted this standarﬂ Furthermore,
CSA’s CCM and the ISO/IEC 27001:2013 are on the Cloud Certification Schemes List
( CCSLF_T] which was compiled during the implementation of the European Cloud Strategy
[L1]], an initiative of the European Commission. While ISO/IEC 27001:2013 is not specific
to cloud services, it is a very popular standard which finds wide application within various

60https://aws.amazon.com/compliance/bsi—cS/ [Accessed: 2018-12-13]
61https ://resilience.enisa.europa.eu/cloud-computing-certification
[Accessed: 2018-12-13]
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industrie@ including companies providing cloud services such as AWS [248]].

The focus of this chapter — as already pointed out above — lies on demonstrating how
our framework supports continuous cloud service certification. This requires deriving
conclusions about our framework which go beyond the scope of merely demonstrating the
feasibility of the five example test scenarios presented in Sections[5.2]—[5.6] Therefore, we
define general characteristics of continuous test scenarios (Section which we then apply
to each selected scenario. This allows us to reason about the general applicability of our
framework. The design of the continuous test of each test scenario follows the notation
introduced in Section[4.3] Also, each scenario includes a description of the implementation
as well as experimental results of deploying the respective continuous test.

Note that test designs, configurations as well as experimentally induced states of the
service under test which are presented in this chapter are examples demonstrating test-based
evidence production using our framework. Since — as already pointed out in the previous
chapter — there is no rigorous approach available to derive the most suited test designs on
the basis of a control’s description, these tests may be designed and configured differently,
depending on their concrete use cases and the interpretations of the respective controls.
Lastly, it is important to point out that we assume the cloud service providers within our
example scenarios to not behave maliciously. This means that a provider does not attempt to
cheat on the tests in order to manipulate the results in his favor. We investigate test-based
certification of an adversarial cloud provider in Chapter[§] Note that parts of this chapter
have been published in [[127], [244], [249] and [250].

5.1 General characteristics of continuous test scenarios

In this section, we identify four general characteristics of continuous test scenarios. We use
these characteristics to describe each of the following test scenarios (Sections[5.2]-[5.6). As a
result, we are not limited to our five example test scenarios but can draw further conclusions
about the applicability of our framework to support continuous test-based cloud service
certification. The characteristics of continuous test scenarios are introduced hereafter.

1. Plausible link to cloud-specific controls: The evidence which is produced by testing
a cloud service property has to be suited to establish a plausible link to one or more
cloud-specific controls according to which a cloud service is to be certified. If there is
no plausible link between the property and a cloud-specific control, then we cannot
derive an example test scenario from that property because testing the property will
not support certification of the cloud service. Naturally, what constitutes a plausible
link is the result of subjective assessment and may be disputed.

Describing this characteristic entails to first identify cloud-specific controls. To that
end, ideally any control of any certificate should be considered during the selection
process to identify those which are cloud-specific. Even though this is a feasible task,
it involves considerable, ongoing manual effort. Fortunately, there are organizations
such as the Cloud Security Alliance (CSA) who have made it part of their core business
to compose lists of controls specific to cloud services which we can employ.

Once potential cloud-specific controls have been identified, we have to provide a
plausible argument which links these controls to the continuous test of a cloud service

%2The ISO Survey of Management System Standard Certifications states that — as of 31st December 2015 —
27536 certificates according to the ISO/IEC 27001:2013 standard have been issued [247].
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property. As mentioned above, this part may give room for debate, however, through
explicitly describing the presumed plausible link, we make the underlying reasoning
transparent, comprehensible and replicable.

2. Supported cloud service models: As pointed out in the previous paragraph, a continuous
test scenario aims at demonstrating how our framework tests a cloud service property
and thus supports cloud service certification. Therefore, it has to be possible to describe
the relation between the property which is tested and one or more cloud service models
to which a cloud service under test possessing this property belongs to.

As introduced in Section[2.1.1] there are three different cloud service models, namely
SaaS, Paa$, and laaS. The relation between a property and cloud service model
indicates that the property is actually cloud-specific. Further, this relation maps the
property to one or more cloud service models. This, in turn, allows us to describe
that our framework supports continuous test-based certification of each cloud service
model.

3. Implementation independence: While it has to be possible to relate a property to
service models of the cloud service under test, the property ideally is not specific to a
cloud service implementation. If a cloud service uses, for example, some proprietary
technology to encrypt data in transit, then a test which continuously checks if this
communication channel is secure does not necessarily apply to other cloud services.
Therefore: If a cloud service property of a test scenario is implementation-specific,
then the conclusions which we can draw from the scenario are limited to only a few
instances of cloud services.

4. Minimally invasive integration: Recall the integration levels of tests introduced
in Section #.2.3} Some cloud service properties can be tested without changing
configuration or composition of the service (non-invasive integration), while others
require configuration alterations (minimally invasive integration) or even adding
components or changing code of the service to be tested (invasive integration).

The obvious advantage of invasive tests lies in the privileged access this integration
level provides which may translate to more comprehensive and expressive evidence
produced by invasive tests: Installing an agent on any virtual machine of a particular
service, for example, allows to test if only authorized personnel can access these
machines via SSH. However, adding new applications to cloud service components
or applying code changes increases the probability of introducing vulnerabilities and
other flaws which lead to increased risks of the cloud service not operating securely
and reliably. Furthermore, it is reasonable to expect that invasive integration of tests
with existing cloud services incurs higher costs of integration and operation (since
at least parts of the test have to be deployed as part of the service’s infrastructure)
than non-invasive and minimally invasive integration. Lastly, when neglecting tests
that use platform specific API bindings to conduct checks on the service’s control
plane (i.e., platform level), then most non-invasive and minimally invasive tests will be
applicable to cloud services’ components regardless of the underlying platform of the
cloud service provider. For example, testing the strength of TLS cipher suites provided
by a cloud service’s public endpoint is agnostic to the underlying infrastructure.

With regard to characterizing continuous test scenarios to reason about the general
applicability of our framework, the above comparison of integration levels leads to the
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conclusion that integration of tests within the scenarios should ideally be non-invasive
or at last minimally invasive. The reason for this is that invasive integration would
implicitly assume that cloud service providers are willing to tolerate increased risk and
costs which, in turn, restricts reasoning about the framework’s general applicability
to this set of providers. Furthermore, in most cases, invasive tests will be specific
to the platform of the provider whose service components are under test. Such
platform dependencies would, again, restrict conclusions about the framework’s
general applicability.

5.2 Continuously testing availability

In this section, we present a test which aims at continuously checking whether a cloud service
is available. We begin with defining the property availability in the context of a cloud service
and outline the test scenario. Then we explain the general characteristics of the test scenario
(Section[5.2.2)) and present the test design (Section[5.2.3). Finally, we present experimental
results of using our test to evaluate the availability of IaaS provided by OpenStack (Section
[5.2.4). Parts of this section have been published in [244].

5.2.1 Property description and overview of test scenario

First, we have to define what the property availability of a cloud services means. Tanenbaum
and Steen [251]] describe availability of a system as the probability that it is operating
correctly and as expected by its users at any time. Therefore, a highly available cloud service
is one which is highly likely to be working as expected by its users at any moment.

From a customer perspective, using cloud services is a form of outsourcing resources
and applications, that is, not deploying and maintaining these resources since this is the
responsibility of the cloud service provider. However, usually customers are not willing
to tolerate downtimes of these provided resources because outages can lead to immediate,
detrimental effects on their business model, e.g., loss of productivity. This constitutes the
reason why availability is frequently included as a service level objective as part of a service
level agreement (SLA). As we will see in Section[5.2.2.1] SLA satisfaction, in turn, is part of
controls defined by standards such as BSI C5.

Unavailable cloud services can, for example, be caused by specific types of attacks,
so-called Denial-of-Service (DoS) attacks or by human error. The latter case could be observed
on February 28th of 2017: The Simple Storage Service (S3) of AWS was disrupted as a
result of an incorrectly issued command by one of the administrative personnel, also affecting
other services such as AWS EC2 (IaaS) and AWS Lambda (serverless computation, PaaS)
[252]. This example illustrates two important issues: First, due to intrinsic characteristic of a
cloud service to facilitate scalability through quick provisioning of resources, even small
operational errors can have major impacts. Second, considering a large cloud service provider
such as AWS having a large number of customers, such outages may directly affect a whole
range of cloud services and thus negatively impact on the respective service customers.

In order to continuously test the availability of a cloud service, we propose to test the
availability of its composing resources. We refer to this test as CT4Y which repeatedly
measures round trip times on the Internet Layer using ICMP packets and on the Transport
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Layer using TCP segments to determine whether a cloud service component, e.g., a virtual
machine, is available. Therefore, our interpretation of the availability of cloud service
components is driven by the reachability and responsiveness of its interfaces using ICMP
and TCP. Note that our framework can also be used to design application-specific availability
tests, e.g., calling the RESTful API of a PaaS and checking if returned objects are correct
and provided in time.

In summary, the continuous test works as follows (a detailed description of the test will
be provided in Section : In regular mode, CT*V randomly waits between 15 and 215
seconds and then tests if a cloud service component is reachable via ICMP and TCP. In
case this test fails, then CTAY switches to the alert mode in which it tests statically every 10
seconds to more accurately approximate the downtime. Once a cloud service component
is reachable again, it slowly returns to regular mode. Finally, CTAY uses the produced test
results to calculate a test metric which aims at estimating the total downtime of the cloud
service within a specified period of time, e.g., within one year.

5.2.2 General characteristics of the test scenario

This section describes the general characteristics of the scenario to test the availability of
cloud service components.

5.2.2.1 Supported cloud-specific controls

This sections aims at presenting examples of cloud-specific controls which are related to
the availability of cloud service components. We begin with the control RB-02 Capacity
management — monitoring of the Cloud Computing Compliance Controls Catalogue (BSI
C5) [31]]. This control states that

"Technical and organisational safeguards for the monitoring and provisioning
and de-provisioning of cloud services are defined. Thus, the cloud provider
ensures that resources are provided and/or services are rendered according to the
contractual agreements and that compliance with the service level agreements
is ensured."”.

The continuous test CTAY can support the certification of a cloud service according to this
control since it repeatedly tests whether cloud service components are available. In order
to ensure that contractual agreements and SLAs are satisfied, CT4Y computes a test metric
quantifying the downtime within a specified period of time.

Further, the BSI provide a complementary document [253]] in which they map the controls
of BSI CS5 to existing international standards which, among others, include CSA’s Cloud
Control Matrix (CCM) [22] upon which the CSA certificate is based [23]]. In this document,
the BSI maps the control RB-02 of BSI C5 to IVS-04 of the CSA’s CCM:

"The availability, quality, and adequate capacity and resources shall be
planned, prepared, and measured to deliver the required system performance
in accordance with legal, statutory, and regulatory compliance obligations.
Projections of future capacity requirements shall be made to mitigate the risk of
system overload.".
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As we can see, this control describes that availability of a cloud service shall be measured to
be compliant. Thus, the mere operation of our test CTY would already support a certification
where this control has to be satisfied.

CSA’s CCM provides a mapping of their controls to those of other guidelines and
certification schemes which are not necessarily specific to cloud services. The above
introduced control /VS-04, for example, links to the control A.12.1.3 Capacity management
of ISO/IEC 27001:2013 [24]]. Note that — as already mentioned above — the standard ISO/IEC
27001:2013 is not cloud-specific. However, control /VS-04 which is part of the CCM’s
control domain Application & Interface Security as well as RB-02 of BSI C5 link to A.12.1.3
of ISO/IEC 27001:2013, thus we can treat it as applicable to cloud services.

5.2.2.2 Supported cloud service models

The continuous test CT4Y uses round trip times which are repeatedly measured on the

Internet Layer using ICMP packets and on the Transport Layer using TCP segments to check
if a cloud service components such as virtual machine are available. Therefore, we interpret
the availability of cloud service component based on whether its interfaces are reachable as
well as responsive using ICMP and TCP.

This test can be used with any of the three cloud service models or combinations thereof:
Consider, as an example, a virtual machine as one instance of IaaS. In order to determine
whether this [aaS is available, we can use its publicly exposed IP address or hostname and
repeatedly evaluate the round trip time on the Internet Layer. Further, as connections to
virtual machines are usually established via SSH on port 22, we can evaluate the response
time on the Transport Layer. As an example for PaaS, consider a platform service such as
CLOUD SQI@ a database service provided by the Google Cloud Platform. Similar to the
case of [aaS, we can use the publicly exposed IP address or hostname and the TCP port of
the database service to repeatedly measure and evaluate network delay on the Internet and
Transport Layer, thus determining whether it is available.

Lastly, this continuous test can also be used to check whether a SaaS application is
available. Since SaaS applications are typically accessed through browsers, we can use the
hostname which points to web site offering the SaaS application and port 80 (HTTP) or
port 443 (SSL/TLS) to check if is available, that is, if it can be reached on the Internet and
Transport Layer.

We note that our test tells us whether an end point is reachable and responding as expected.
Application-specific availability measurement, that is, determining whether a particular
application operates correctly at a certain point in time requires some protocol adaptions to
add application-specific semantics, e.g., calling a RESTful API and checking whether the
returned object is correct and provided in time. Our framework can be used to design test
which conduct application-specific availability measurements. To that end, test cases have to
be implemented which check the availability on the application level.

5.2.2.3 Implementation independence

Since we use delay measurements on the Internet Layer and on the Transport Layer, our
continuous test does not depend on the specific implementation of a SaaS, PaaS, or IaaS
instance. For example, the test is applicable regardless of the operating system a virtual

%3https://cloud.google.com/sql/ [Accessed: 2018-12-13]
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machine uses (IaaS) or what kind of web server is used by a SaaS application. Naturally, the
only indispensable prerequisite for CT4V is that the cloud service components under test can
be reached over an IP network and that they use some Application Layer protocol such as
HTTP or SSH which use TCP on the Transport Layer.

5.2.2.4 Minimally invasive integration

Although it is possible to deploy our continuous test CT4Y as part of the cloud service

under test, that is, adding the implementation of the test as component to the service,
such an invasive change in composition of the service is not required. Also, testing the
availability of components from a host which is part of the cloud service’s infrastructure
would only provide limited information if the service is working as a user remotely accessing
service’s components expects. However, it depends on the cloud service model what kind of
configuration alterations may be required in order to allow for CT4Y to function properly.
These ramifications are explained hereafter.

If the continuous test is executed on a remote host and the cloud service component is
publicly reachable, e.g., a web server of a SaaS application, then no change to configuration
or composition of the cloud service is needed. Yet if the component whose availability we
aim to check is a virtual machine (IaaS) to which access is restricted by a firewall, then
changing firewall rules in order to permit the test to reach the instance is required.

5.2.3 Test design

In this section, we describe the test CTY according to the framework introduced in the

Chapter @ Note that the configuration of CT4V serves as an example and it may vary
depending on the use case of the test as well as on the interpretation of the respective controls
whose validation it supports.

5.2.3.1 Test cases

The availability test consists of two test cases TC!“MP and TCTCP. The former one is
defined as follows:

TC'MP —(E L,0,N)
=((measure_delta_ICMP_Echo_Request_to_ICMP_Echo_Reply_packets),
((host, packet_count)),

$ICMP oosert it sd < $§§MP>, 1)

(assert_rtt_avg < $,, 2

The test case TC'CMP ygses one procedure (E), i.e., it measures the time delta between
sending ICMP Echo Request and receiving ICMP Time Reply packets. To that end, the
input parameters (L) host and packet_count are required, specifying either IP address or
hostname of the cloud service component’s endpoint and number of packets to send for one
test, respectively. Since a single test case execution obtains multiple successive probes at a
time ( we assume that packet_count > 1), each test case result is actually a distribution.
We define two oracles (O) to evaluate the average and standard deviation of the test case
result using the assertions assert_rtt_avg < $4,, and assert_rtt_sd < $54. Thus an instance
of TC!CMP passes if the returned round trip time (rrt) satisfies both of the assertions. Note

that the placeholder $é€é’,"’ P and $£ SM P have to be assigned the desired expected values
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in milliseconds, e.g., 20ms and 10ms, respectively. These expected values depend on the
environment where CT4Y is deployed and have to either be based on previously observed, i.e.,
historic values or educated guesses what constitutes an expected delay. Lastly, the ordering
number (N) of TC!'“MP js 1 which means that the test case is executed first once execution
of the test suite is triggered.

Furthermore, the test case TCTCP is defined as follows:

TCTCP =(E,L,0,N)
=((measure_delta_SYN_to_SYN-ACK_TCP_segment),

({host, probe_count, port)),

TCP

- TCP
avg » assert_max_response_time < $,,..'), 1)

(assert_average_response_time < $ o

Similar to TCTMP this test case has also only one procedure (E) which measures the time

delta between sending a SYN TCP segment to and receiving a SYN-ACK TCP segment from
the endpoint of the cloud service component. The required input parameters (L) are either
IP address or hostname (host), a TCP port (port) and the number of probes (probe_count).
Analogous to TC!'CMP 3 single execution of TCT ¥ results in a distribution of measured
delays. In order to evaluate the results produced by the test case, we define two oracles (O)
assert_average_response_time < $£ng and assert_max_response_time < $1CP which assert
average and maximum of the measured response times of the cloud service component’s
endpoint. That means that an instance of TCT € ® fails if either or both the assertions do not
hold. The placeholders $£€gp and $deP are assigned the expected desired values, e.g., 75ms
and 100ms, respectively. Similar to the test case TC!“M ¥ described above, these expected
values depend on the deployment of CTV and can be based on, e.g., historic values. Finally,
the ordering number of TCTC? is also 1 which means that TC!M* and TCTC? will be

executed concurrently.

5.2.3.2 Test suites
The continuous availability test consists of three test suites. The first one is defined as follows:

TSICMPTCE) (7C, 1, F,T)

regular
=((TC'MP T7CTCPY 100, 15,(0,200)).
The test suite TSrggfx P-TCP) binds both test cases (7C) TCICMP and TCTCP . Further,

the number of successive iterations of TSrggfx PTCP) s set to infinity which is indicated

by setting iterations (/) to +oco. This means that successive executions of this test suite can
potentially be triggered infinitely often unless the workflow decides — based on produced test
results — to execute a different suite. Further, each execution of each test suite run is triggered
randomly in the interval (T') (0,200) seconds after the last test suite run completed. Lastly,
there is a 15 seconds offset added to the interval between successive test suite executions (F).
Furthermore, the second test suite is defined as follows:
TS{SMPTCR) (7C, 1 F, T)

alert

TSUCMP’TCP> :<<TCICMP, TCTCP>, +090,0, (10)).

alert

This test suite binds the test cases TC!M P and TCTC? as well. Its number of successive
execution (/) is also set to +o00, i.e., it has no maximal number of successive iterations and
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thus may be triggered infinitely often. Furthermore, the execution of this test suite is triggered
statically every 10 seconds (T') after the previous test suite run completed, having no fixed
offset (F).

The definition of the third test suite is:

TSUSMPTCR) —(7C, 1, F, T)

attentive

TSUCMPICE) _pICMP 7cTCPy 55 (25 35 45,55,65)).

attentive

Also, this test suite binds both test cases TC'MP and TCTCP. Yet its number of
successive executions (/) is limited to five, each of which having its individual waiting time
between successive executions (7'). That is the reason why the number of iterations holds
exactly five elements, i.e., I = |T'| = 5. Thus, for example, before running the first instance of
this test suite, we wait 25 seconds, before running the second, we wait 35 seconds and so
forth. Finally, there is a fixed offset of 5 seconds between each test suite run (F').

5.2.3.3 Workflow

The workflow we use aims at estimating the downtime of the cloud service component starting
from the first point of detection. Figure shows how this workflow executes the three
test suites which we introduced in the previous paragraph: The test starts with the test suite
T Sregular- If this test suite fails at some iteration, then the next test suite which is executed
is T'Saert- This test suite is executed repeatedly as long as it fails. If TSyt passes at some
point, then the test suite executed next is T Sagentive- If T'Sattentive Passes for five consecutive
times, then T'Sagencive is stopped and T'Siegylar is started. If one of T'Syentive five iterations fail,
then T Sytentive i stopped and T Syert is started. Once T Syiere passes again, T Sagentive 1S TUN
next and so forth.

[test result == true] [test result == false] [test result == true && Iteration < I]

p [test result == false] _/ . \ [test result == true]
' TS«\ICMP,TCP> TS(ICMP,TCP; TS(ICMP,TCP)

regular / \ alert / attentive

(iteration >= 1] T

®

[test result == false]

[test result == true && Iteration >=I]

Figure 5.1: Workflow of continuously testing resource availability (CT4Y)

As mentioned above, the goal of this workflow is to approximate the downtime of the
cloud service component. Figure [5.2]illustrates how the different configurations of the three
test suites support this goal: While the test suite 7'Syegular randomly waits [15,215] seconds
after the previous completed, the test suite 7'Syer¢ statically executes ten seconds after the
previous one completed. Thus, once an instance of T'Siegu1ar failed, we repeatedly test with
shorter intervals which allows to more accurately approximate the downtime of the cloud
service component. Once the cloud service component is available again, the test suite
T Sattentive s executed which has to pass exactly five times where the interval between each
execution increases by ten seconds. The idea here is that if a downtime event just occurred,
then it is more likely that another downtime event follows shortly afterwards.
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Tsregular TSalert Tsattentive Tsregular
A A A A....
( )1 \ 1
t
& > [ & SO0 & O [LACH &
& test suite passed start of e end of
@ test suite failed outage outage

Figure 5.2: Extract of a test sequence to estimate downtime of a cloud service component

5.2.3.4 Test metric

The resource availability test aims at determining the total downtime of a cloud service
component within a specified period of time, e.g., a year. Within that period, multiple
downtimes may be detected by the continuous test which have to be accumulated to provide a
global value.

In order to define the test metrics of the resource availability test, we draw on the universal
test metrics Failed-Passed-Sequence-Duration (f ps D) and Cumulative-Failed-Passed-Sequence-
Duration (cpfsD) introduced in Section We use fpsD to determine the duration
of any singular downtime event of a cloud service component. Recall that a fpsD is the
duration of a Failed-Passed-Sequence (fps) which is defined by the difference between the
start of the first failed test suite run and the start of the next test suite run that passes. In
context of the resource availability test, this translates to successive failure of any of the three
test suites described in the previous paragraph. More specifically, the first element of a fps
is either produced by a failed T'Siegular Or by a failed 7 Syentive. Moreover, the last element of
a fps is always produced by a passing T Syjert-

Having observed multiple singular downtimes, we sum over the corresponding fpsD
to obtain cp fsD which holds the total downtime within the specific period where CT4V is
operating. Since we are not aiming at checking the downtime but the availability of a cloud
service component, two last steps are required to compute final test metric: First, we simply
compute the ratio between the total downtime and the period of time CT D during which
CTAV was deployed:
cf psDCTAV

CTD )

This gives us the percentage of downtime which when deducted from 1, leads us to the
final test metric which indicates the availability of a cloud service component:

cfpsDU%TAv =

M%TAV =1- cfpsDO%TAV

Recall that in the introduction of this section, we adopted the definition of availability
provided by Tanenbaum and Van Steen [251]], thus treating availability as the probability of a
cloud service’s component to work correctly at any given time. In order to conform with this
definition, we regard values calculated for MC% TRA as estimates, that is, as expected values
for the availability of a cloud service’s component. We note that this estimation method is
basic and more advanced methods exist which, for example, are capable of considering the
sequence of observed test results. Yet it is not the focus of this work to propose a novel

method to estimate the availability of cloud service’s components. However, our framework
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may accommodate other, more sophisticated test metrics which is, after all, exactly what this
test scenario aims to demonstrate.

5.2.4 Implementation and experiment

This section describes the implementation of the continuous test CT4Y

experimental results.

as well as present

5.2.4.1 Environment and setup

Hereafter, the main components of the experiment are outlined.

Cloud service component under test As an example for a cloud service component under
test, we choose an instance of a virtual machine provided by OpenStack Mitakﬂ This
instance is running a Ubuntu 15.10 Server and is equipped with 2 VCPUs and 4 GB RAM
and 40 GB volume (disk). Furthermore, the instance is associated with a publicly reachable
IP address and its security group are configured to allow for traffic via ICMP, via TCP on port
22 and via SSH from and to the host where the continuous test is deployed (see paragraph
Deployment of continuous test below).

Implementation of test cases The test case TC!“M” is implemented using Pindg_gl, a
common network diagnostic tool which can be used to measure response times on the IP
Layer. Furthermore, the test case TCT ¥ is implemented using Npingg_gl This tool can be
used to measure response times on the TCP Layer. Recall that both test cases are bound to
test suite 7S/CMPTCP) and are executed concurrently. Once both test cases complete, the
output of either tool is parsed and it is evaluated if the test cases passed. Since the assertions
depend on the environment of the deployment, we have to define them at this point:

. $£¢€§4P = 100ms and $£0C,MP = 75ms, as well as

o $7CF =75ms and $7CF = 100ms.

Deployment of continuous test The test CT4Y is deployed on a different host than the
cloud service component under test. This host is attached to a different network than cloud
service component under test. However, both hosts are located inside the same building
which leads to relatively low delays on the IP and TCP Layer (< 3 ms) observed previous to
conducting the experiment.

Inducing downtime events We trigger 1000 temporary downtime events of our cloud
service component under test. To that end, we use OpenStack4 aJava library which permits
controlling OpenStack, including the management of virtual machines. Each downtime event
starts with pausing the cloud service component, i.e., the virtual machine, and ends with
unpausing it. Furthermore, each downtime event lasts at least 60 seconds plus selecting

64https ://www.openstack.org/software/mitaka/ [Accessed: 2018-12-13]
65https://1inux.die.net/man/S/ping [Accessed: 2018-12-13]
%https://nmap.org/nping/ [Accessed: 2018-12-13]
%Thttp://openstack4j.com/ [Accessed: 2018-12-13]
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another [0,60] seconds at random. The interval between consecutive downtime events is set
to last at least 120 seconds plus an additional [0,60] seconds which are selected randomly.

The accumulated duration of all downtime events observed during the experiment is
91438.67 seconds (= 25 hours 23 minutes 59 seconds). Further, the mean duration of each
downtime event is 91.49 seconds with a standard deviation of 17.87 seconds.

5.2.4.2 Experimental results

In total, the whole experiment took ~67.5 hours, i.e., starting from the start of the first test
until the end of the last test. Table 5.1l shows test statistics and test results which continuous
test CTAY produced: The total number of tests, i.e., the total number of test suite executions
is 6118. The execution of a test suite of CT4Y took 12.76 seconds on average with a standard
deviation of 4.73 seconds.

Out of the 1000 downtime events, CT4Y correctly detected 989 or 98.9% (fpsC).
Furthermore, each fpsD on average estimates that the duration of a correctly detected
downtime event is 70.73 seconds. Since each downtime event actually lasted 91.49 seconds on
average, CT4Y on average underestimates a downtime event by 20.76 seconds. Consequently,
when considering the accumulated duration of detected events (c fpsD), then CTAY only
detects 69956.6 seconds of the accumulated duration of downtime events (91438.67 seconds)
which equals ~76.51%.

Finally, when considering the interval between the start of the first test and end of the last
test as the period of time during which CT4Y was deployed, then we can compute the test
metric which indicates the availability of our cloud service component:

crra  cfpsDETY 69956.6
Dg, = =

=T CTD 22299835 0287

cfps
leading to
MET™ =1~ cfpsDST" = 1-0.2879 = 0.7121.

Thus we can state that the availability measured by the continuous test CT4Y was 71.21%.
Note that — since CT4Y underestimates detected the downtime events — the actual availability
as provided by the accumulated duration of downtime events is lower, i.e., = 62.37%.

5.3 Continuously testing location

In this scenario, we propose a test which continuously validates the geographical location
of cloud service components. We start with defining what the property location means in
context of cloud services and outline the test scenario. Then we investigate the general
characteristics of the test scenario (Section[5.3.2)) and describe the test design (Section[5.3.3).
Lastly, we present implementation as well as experimental results of using our continuous
test to validate the locations of IaaS instances provided by Amazon Web Services (AWS)
(Section[5.3.4). Parts of this section have been published in [250].

5.3.1 Property description and overview of test scenario

The location of a cloud service component is valid if it is in agreement with the expected
location of that component. The first question at this point is why cloud service components
are likely to change the location at which they are hosted. As described in Subsection
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Table 5.1: Test statistics and results of continuous test CT4Y

number of tests 6118
Test mean duration test (sec) 12.76
statistics sd duration test (sec) 473
min duration test (sec) 9.04
max duration test (sec) 19.24
fpsC correctly detected events 989
correctly detected events (%) 98.9
mean duration detected events (sec) 70.73
fpsD sd duration detected events (sec) 27.29
min duration of detected events (sec) 19.08
max duration of detected events (sec) 136.41
cfpsD accumulated duration detected events 69956.6
accumulated duration detected events (%) | 76.51

2.1.1} components of a cloud service are usually virtualized, including virtualization of
networks, physical servers, and storage. Migrating these virtual components from one
geographical location to another is a standard feature which most cloud service provider offer
their customers. As an example, consider migrating IaaS, i.e., virtual machines from one
geographic location to another one. Amazon Web Service (AWS) and Google CloudPlatform
provide standard features to make images of custom virtual machines and copy them to
another geographical region where they then can be launchem Yet migrating cloud
services is not confined to migrating virtual machines: AWS, for example, also supports
migration of PaaS applications such as its Relational Database Service (AWS RDS) where
— also as a standard feature — customers may migrate entire database clusters from one
geographical location to anothem

Naturally, when testing from a remote host, we can only reach the cloud service
component’s endpoint. In the example of laaS, this is usually a publicly reachable IP address
or public hostname which we can connect to using SSH. Similarly, in the example of PaaS,
this endpoint can be some publicly reachable hostname which is part of the base URL
of a HTTP-based RESTful API. Thus, a central question at this point is: Assuming that
cloud service components are provided by remote hosts, what means do we have at hand to
determine their location?

Various geolocation techniques aiming at determining unknown locations of Internet hosts
use network delay measured on different layers of the TCP/IP protocol suite and topology
information, i.e., the path taken to a specific host (e.g., [158[][149][159][160] [[161]]). One
fundamental limitation of these approaches is that they may only be able to determine the
location of a proxy server but not the actual location of the Internet host [[158]][254][154][147].
In our case, this translates to locating the physical servers running the proxy instead of the

68https ://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
[Accessed: 2018-12-13]

69https ://cloud.google.com/compute/docs/instances/moving-instance-across-zones
[Accessed: 2018-12-13]

70https ://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
[Accessed: 2018-12-13]
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physical server on which the cloud service components are deployed, e.g., virtual machines.

Yet even if we were to neglect this limitation, the conclusions drawn about a cloud service
component’s location are confined to locating the physical server on which the component
is running. A natural extension to locating Internet hosts — which is outside of the scope
of our continuous test — is to determine the geographical location of data stored by a cloud.
Determining that a cloud provider is storing data at some expected geographical location is
referred to as data sovereignty which requires simultaneously establishing the geographical
location of the server on a network and proving that the data is actually stored at that location
[L50][151]. Still, this approach does not cover locating any other copies of the data stored on
a different server. Without having full control of the network, tracking any such copies is a
different (and hard) problem [150]].

Our continuous test CTLY uses location classification which treats potential locations,

i.e., geographical areas where cloud service components can be hosted as classes. A classifier
is a supervised learning algorithm [255]] which — in our continuous test scenario — uses some
characteristics of a cloud service component to predict to which class it belongs, that is, at
which location the component is hosted. An important difference to the above discussed
geolocation techniques is that our approach requires any potential location to be known.

We use network delay and topology information to predict, i.e., classify the location of a
cloud service component. Furthermore, our test shares one other important assumption with
the above mentioned geolocation techniques: They require that there are trusted landmarks,
that is, geographical locations which are known and from which network delay and topology
information are measured.

Recall that we are aiming at continuously validating the location of cloud service
components using classifiers. This entails a challenge which — although recognized by several
approaches, e.g., [159][146] — remains unaddressed: Network delay as well as topology
information are subject to changes over time as described in, e.g., [256]][257]]. Therefore, we
have to take network changes over time into account as otherwise these changes can render
our location predictions inaccurate. Such time-dependent learning problems are referred to
as learning under concept drift [258]][259].

In order to continuously validate the location of cloud service components, our continuous
test CTLY implements a process which continuously collects, predicts and updates a classifier.
Note that not every deviation from previous observations necessarily indicates a concept drift,
some may result from momentary or short-termed anomalies. Distinguishing anomalies from
permanent network changes is crucial as we otherwise update our classifier with flawed data.

The workings of this continuous test can be summarized as follows (a detailed description
of the test will be provided in Section[5.3.3)): Given a set of targets, i.e., hostnames of cloud
service components, CT™Y initially collects delay measurements on the IP and TCP Layer as
well as topology information. Using these data points, a classifier is trained. Thereafter, new
measurements using the targets are conducted which are then used to predict the locations of
the cloud service components. Before locations are predicted, however, potential outliers are
filtered and only those newly collected probes are fed to the classifier which are considered
normal. Thereafter, the initial data set is augmented using the newly collected probes and
the classifier is updated, i.e., retrained. Then, again, delay measurements and topology
information using the targets are collected, outliers are filtered, their location is predicted and
so forth. The result which is produced by CT™V indicates whether a cloud service component
is located at its expected location by comparing the expected location with the predicted one.
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5.3.2 General characteristics of the test scenario

This section describes the general characteristics of the scenario to continuously test the
location of cloud service components.

5.3.2.1 Supported cloud-specific controls

The control UP-02 Jurisdiction and data storage, processing and backup locations of BSI
C5 [31]] requires that

"[...] Data of the cloud customer shall only be processed, stored and backed up
outside the contractually agreed locations only with the prior express written
consent of the cloud customer.".

This control demands that customer’s data shall only be processed within contractually agreed
location which, in our terminology, are valid locations. Thus, our continuous test CT%Y
can support certification of a cloud service according to UP-02 by continuously checking
whether cloud service components still reside at contractually agreed location. The control
RB-03 management — data location of BSI C5 is even more specific, stating that

"The cloud customer is able to determine the locations (city/country) of the data
processing and storage including data backups.".

BSI C5 explicitly links this control to the before presented UP-02, considering it supplemental.
In order to fully understand how CT™Y can support certification of a cloud service according
to this control, we have to shed light on a subtle detail which stems from this control’s
ambiguous use of the term determine: Either it refers to determining a previously unknown
location or it requires determining known location of a cloud service’s components where
data is processed. As already mentioned above, the continuous test CTLY uses a supervised
learning algorithm, a classifier, to predict the location of IaaS which requires any potential
location to be known.

The BSI also provides a complementary document [253]] in which they map the controls
of C5 to existing international standards which, among others, include CSA’s CCM [22] and
ISO/IEC 27001:2013 [24]. It turns out that — according to the BSI cross-referencing — neither
of them contains a control which explicitly addresses the geographical location of a cloud
service’s components. However, both the CCM and ISO/IEC 27001:2013 do contain controls
which demand compliance of a cloud service with regulatory obligations. For example,
AIS-01 Application & Interface Security Application Security of the CCM requires that

"Applications and programming interfaces (APIs) shall be designed, developed,
deployed, and tested in accordance with leading industry standards (e.g., OWASP
for web applications) and adhere to applicable legal, statutory, or regulatory
compliance obligations.".

Further, control A.18.1.4 Privacy and protection of personally identifiable information of the
ISO/IEC 27001:2013 can be considered relevant in this context. The European Union (EU)
Data Protection Directive[7_T]is one example of a set of regulations where the location of cloud
services’ components can become important. It restricts personal information from flowing

7INote that in the course of preparing this thesis, the General Data Protection Regulation (GDPR) [260]
superseded the Data Protection Directive.
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from EU member states to any other country whose laws do not have an adequate level of
protection [261]]. Another example are the Australian Privacy Principles (APP) [262] which
do not permit personal information flowing to a foreign country unless those country’s laws
are substantially similar to APP. Therefore, continuously validating the location of a cloud
service’s components using CT™Y can support certification of a cloud service according to
controls which demand compliance with regulatory obligations.

5.3.2.2 Supported cloud service models

The continuous test CTY uses network delay measured on the Internet and Transport Layer
as well as topology information to classify the location of a cloud service component. More
specifically, on the Internet layer, we use the public IP address of the target host to ping
it, i.e., measure the time delta between sending ICMP Echo Request and receiving ICMP
Echo Reply packets. Also, we measure the time delta between sending ICMP Echo Request
packets and receiving ICMP Time Exceeded packets for every hop until the target host is
reached. In order to characterize the route taken to a target, we count the number of known
and unknown intermediate routers. Furthermore, on the Transport layer, we measure the
time delta between sending a SYN and receiving a SYN-ACK TCP segment from the target
host on a particular port.

CT™V can be used to validate the geographical location of Iaa$S, i.e., virtual machines
hosted on remote servers. Similar to continuously testing the availability of a cloud service
component (see Section [5.2), we can make use of a VM’s publicly exposed IP address or
hostname to collect measurements on the Internet Layer. Further, in order to measure delay
on the Transport Layer, we can send SYN TCP segments to port 22 of the VM, the standard
SSH port. Naturally, this implies that any virtual machines which constitutes a component of
a cloud service is reachable from the landmark from which network delays are measured and
topology information is gathered.

Using CT™V to validate the location of SaaS and Paa$S applications’ components is only
possible to a limited extent. The reason for this is that customers interact with SaaS and
PaaS applications on a different level of abstraction. Although it is still feasible to use the
public hostnames which are part of URLSs used by of a SaaS or PaaS application to collect
network delay and topology information, the conclusions which can be drawn based on
these measurements are limited to endpoint, e.g., the location of the SaaS application’s web
server or load balancer. Other components of the application are intentionally hidden from
the customer’s point of view which also renders their location transparent. Naturally, the
underlying components of a SaaS or PaaS application could be made accessible, thereby
removing the abstraction and allowing to validate their location. However, breaking the
abstraction in such a way leads to a scenario which is equivalent to continuously testing IaaS
as discussed above because we would then validate the infrastructure components of the SaaS
or PaaS application.

5.3.2.3 Implementation independence

Analogous to continuously testing availability of a cloud service’s components (see Section
[5.2), through measuring delay and topology information on the Internet and Transport
Layer, our continuous test CTV is agnostic to the operating system of a virtual machine or
applications running on that VM. The only requirement is that the VM can be reached over
an IP network and uses some TCP-based protocol.
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5.3.2.4 Minimally invasive integration

The design of the test CT™Y does not require to add the implementation of the test as a
component to the cloud service. Hence, no change to the composition of the infrastructure
of the cloud service components we seek to validate is needed. However, similar to the
availability test CT4Y, repeatedly measuring the network delay on the Internet and Transport
Layer as well as topology information requires that the IaaS, i.e., the virtual machines can
be reached by and respond to ICMP packets and TCP segments. Therefore, in order for
CT"™V to be able to work, potential access restrictions to the VMs have to be adapted to allow
measurement from the landmark.

5.3.3 Test design

In this section, we describe the test CT™Y according to the framework introduced in the

Chapter Note that configured parameters of CTLV (e.g., test suite iterations) are example
values which may differ depending on the use case the test is used within.

5.3.3.1 Test cases

The first test case of CTLY is defined as follows:

TC!PP =(E L, 0, N)
={(measure_delta_ICMP_Echo_Request_to_ICMP_Time_Reply_packets,
measure_delta_ICMP_Echo_Request_to_ICMP_Time_Exceeded_packets,
count_hops),
((host, packet_count), {host, packet_count), )),
(assert_successful_ICMP_probe), 1).

The test case TC! PP has three procedures (E): The first one uses the IP address or hostname
(host) of the cloud service component’s endpoint as input parameter (L) to ping it, i.e.,
measure the time delta between sending ICMP Echo Request and receiving ICMP Time
Reply packets. The second procedure also uses the host address as input to measure the time
delta between sending ICMP Echo Request packets and receiving ICMP Time Exceeded
packets for every hop until the target host is reached. A single data point is obtained by
executing multiple successive delay measurements at a time (packet_count), e.g., 20. Thus,
each delay measurement is actually a distribution which we describe by its max'?, min'?
average (avg!?), standard deviation (sd’?), and last'” packet’s delay. The third procedure
counts the number of known and unknown intermediate routers, thereby characterizing a
route’s topology taken to a target. An instance of TC'PP successfully passes (O) if no error
occurred during measurement, i.e., all four statistics are correctly returned and can be used
for further processing. Lastly, the ordering number (V) of the test case is 1.
The next test case is defined as follows:

>

TCTCPP —(E L,0,N)
=((measure_delta_SYN_to_SYN-ACK_TCP_segment),
({host, probe_count, port)),
(assert_successful_TCP_probe), 1)
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TCTCEPD yses a single procedure (E) to measure the time delta between sending a SYN and

receiving a SYN-ACK TCP segment from the target host on a particular port. To that end,
it requires the host address (host), port, as well as the number of probes per test case run
(probe_count) as input parameters (L). Analogous to TC'PP | a single execution of TCTCFP
results in multiple successive probes whose distribution is described by max? P minT €,
and average (avgT€P). Similar to TC'PP, an instance of TCTCPP passes (O) if all three
statistics are returned correctly, ready to be further processed.

The third test case of CTLV is responsible for training a classifier. It is defined as follows:

TCTRN =(E, L, 0,N)
={(train_classifier),
{{classification_algorithm, training_data)),

(assert_trainingError < &), 1).

TCTRN consists of one procedure (E) which uses a set of labeled training data to train a
classifier. To that end, we have to select a supervised learning algorithm, e.g., K-nearest
neighbor [263] [264], support vector machines (SVM) [265], decision tree [266] or random
forest [267], and provide suitable training data as input (L). The training data consists of
delay measurements on the Internet and Transport Layer as well as topology information
which are provided by the test case results of 7C'PP and TCT PP respectively.

At this point, it is important to note that these delay and topology measurements have to
be represented by a suitable data structure, i.e., a feature vector in order to be processed by
the classifier as input. Therefore, we transform the measurements into a ten-dimensional
feature vector which is shown in Figure[5.3} It includes the average over any descriptive
statistic obtained from the delay measurements on the Internet layer, the known and unknown
hop count, and the descriptive statistics of the delay measurements of the Transport layer.

feature vector

)

r src hop, hop, 272 222 dest f
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Figure 5.3: Feature vector derived from measurements on Internet and Transport layer
provided by TC'PP and TCTCPP

Now the remaining question is on what condition an instance of TCTRN passes. The
oracle (O) which we define ties the answer to this question to the required performance of
the classifier: We choose the training error €, that is, the proportion of overall incorrectly
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classified locations observed when using the trained mode to classify locations of training
set to describe the performance of the classifier. We define the expected performance & as an
upper bound of the observed training error: If the observed training error € is lower than &,
then TCTRN passes.

The fourth test case TCOTL aims at identifying outliers of newly collected data points,
i.e., delay and topology measurements:

TCOTL :<E, L, 0, N>
=((detect_outliers),
((test_data)),

(assert_no_outliers), 1)

TCOTL consists of one procedure which aims at detecting outliers present in the newly
collected probes. Detecting outliers in the probes is necessary for two reasons: First, we do
not want to classify outliers because the result of such predictions may be erroneous. Second,
we want to incrementally add new data points to the data collection which are used to update
the classifier (see workflow for further details). To that end, various unsupervised outlier
detection algorithms are available, e.g., based on K-nearest neighbor graph (e.g., [268]]) or
one-class (or single-class) SVM (e.g., [269]). Detected anomal data points are marked as
outliers and are removed from the data set. Finally, an instance of TCPT L passes (0) if no
outliers are detected.
The fifth test case of CTY predicts the location of newly observed probes:

TCPRP =(E L, 0, N)
=({classify_new_probes),
{{test_data, trained_classifier, expected_location)),

{assert_correct_location), 1).

TCPRP has one procedure (E) which classifies, i.e., predict the location of newly collected
probes for a particular location. To that end, it takes as input (L) the newly collected probes
having the data structure shown in Figure [5.3] a trained model of the classifier and the
expected location of the probes. An instance of TCPRP passes (0) if the predicted location
matches the expected location.

Lastly, the sixth test case of CTLY updates the classifier based on the newly collected
probes:

TCYPP =(E,L,0,N)
=({train_classifier),
({classification_algorithm, augmented_training_data)),

(assert_trainingError < 6.), 1).

As we can see, this test case is almost identical to the initial training which is conducted
by test case TCTRN: The first difference is that TCYPP takes the augmented data set as
input and retrains a new classifier based on this data (L). Further, T7C UPD passes (O) if the
training error observed after updating the classifier is lower than d,.

72Note that cross-validation can be used to find the model that fits the training data best.
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5.3.3.2 Test suites

The continuous test CT™Y consists of six test suites which are explained hereafter. The first
test suite is responsible for the initial conduct of delay and topology measurements of a cloud
service’s components locations:

(IPD|,TCPD,,...IPD,,TCPD;) _
collect _<TC’ LF, T>

=(TC{PP,TcTCPP ... TC/PP, TCTCPP), 10005, (30)).

The test suite binds all test cases which are available for any location /,i.e., TC 11 PD TC ITCP D

TC II PD TCZTCP D Execution of this test suite can be triggered 1000 times successively (I)
where each run executes 30 seconds after the previous one completed (7), with an additional
offset of 5 seconds (F).

The second test suite uses the collected data points to train a classifier:

TSEN) —(7C, I F, T)
=((TCTRN), 1,0, (0)).

This test suite binds the test case TCT RV and is executed once (7). Its execution is triggered
instantly, i.e., it has an offset (F)) and interval (1) of 0.
The third test suite controls collection of probes for each location /:

TSI(jlrl(jZl?)el,TCPDl,-~~sIPD1’TCPDl> =(7C,LFT)

=(TC{PP,TCTCPP ... TC[PP, TC[CFP), 10,5,(0)).

Similar to T'S¢coi1ect, this test suite binds all test cases which collect delay and topology
measurements for any location /. It can execute ten successive times, without any waiting
time (7') but with an offset (F') of five seconds. This means that 7'S),,,p. collects a batch of
ten new probes for any location /.

The fourth test suite controls detection of outliers in the newly collected probes:

78OTL) _(7C, I, F,T)

outlier
=((TC9T"),1,0,(0)).

This test suite only binds the test case TCPT L. It is executed once, without any waiting time
(T) or offset (F).

The fifth test suite is responsible for controlling the prediction of the location of collected
measurements:

(PRD|,PRD;,...,PRD;) _
TS,y Y =(TC,IF.T)
=(TCIRP, TCyRP ... TCPRP), 1,0,(0)).

This test suite binds all test cases which predict locations using delay and topology
measurements for any location /. It only executes one single time, not having any waiting
time (T') or offset (F).

Finally, the sixth test suite uses the augmented data set to update, i.e., retrain a new
classifier:

(UPD) _
TSupdme =(T7C,LFT)
=((TCYPPY,1,0,(0)).

This test suite binds the test case TCY PP and is executed once (I). Its execution is triggered
instantly, i.e., it has an offset (F)) and interval (1) of 0.
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5.3.3.3 Workflow

Figure |5.4| shows the workflow of the continuous test CT™V: It starts with the test suite
T'Sco11ec: to collect the initial data points which are then used by the following test suite
T'S;rqin to train the initial classifier. Recall that the test suite 7S, 4;;, only uses the test case
TCTRN which passes if the misclassification error observed during training (&) is less than &.
Thus, test suite 7'S;4i, only passes if training accuracy is sufficiently high, otherwise the
continuous test CT™Y terminates because we assume that only having an initial classifier
with a training error larger than & will not lead to meaningful predictions. In the latter case,
CT™V terminates and has to be restarted from scratch. Possible adjustments to increase the
performance of the initial classifier include increasing the number of delay and topology
measurements per location, i.e., the iteration of test suite T Scoi7¢cr, as well as selecting
different parameter used for cross-validation, e.g., increasing 3-fold to 5-fold cross-validation.

If TS;rain passes, T'Syrope is the next test suite which is executed. It conducts new
measurements of the cloud service’s components presumed locations. These newly collected
samples are used by the later following test suite 7'S,,cqics to predict and validate their
locations. To that end, test cases bound to 7'S,,,,,. measure network latency and topology
information in the same way as T'S¢o7ec¢ did for initial data collection. Thereafter, obtained
delay and topology measurements are transformed into feature vector shown in Figure
If all probes on the IP and TCP Layer have been collected successfully, T'S,,,ope passes,
otherwise iterations of T'S,,,ope restart.

If T'Sprobe passes, the test suite TS,,1:¢r is executed next. It inspects the newly collected
data points provided by T'S,,,p. and identifies as well as filters out outliers. Regardless
of T'S,us1ier passing or failing, the remaining samples are provided to the next test suite
T'Spreaict which predicts the location for the supplied samples and compares the predictions
with the expected values. If the predictions for the newly supplied data points match the
expected locations, then 7'Sy,,cqicr passes.

Independent of T'S),,cqic: passing or failing, the next test suite to be executed is TS, pgare
which uses the augmented data set to retrain the classifier. At this point, it is important to
note that the increasing size of the data set may become too large for some classifier, e.g., for
SVM. Therefore, we use a process parameter which allows controlling the upper bound of
the training set size. If this bound is reached, then we apply a sliding window approach, that
is, each time newly collected probes are added to the data set for retraining, the same amount
of the oldest data points in the training set are discarded. Recall that the test suite 7'S, pgare
only binds the test case TCY PP which passes if the training error (¢) observed after updating
is less than 6. If T'S,,pgaze fails, then CT™V terminates and has to be restarted from scratch.

If test suite 'S, paare passes, the workflow now again triggers execution of 7S, o Which
collects new probes for each cloud service component whose location we aim to validate,
continuing with TSy iier» T'Spredic: and so forth.

5.3.3.4 Test metric

The goal of the test CTLV is to repeatedly validate the locations of cloud service components.
To that end, we can compute a test metric which uses the results of test suite 7SPRP as
input. At this point, it is crucial to note that naively treating results produced by TSPRP to
compute, e.g., the universal test metric Basic-Result-Counter (brC) can lead to erroneous
conclusions about whether a cloud service’s component is hosted at a valid location. The
reason for this is as follows: Recall that during training of the initial classifier, we defined
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Figure 5.4: Workflow of continuously validating the locations of cloud service components
(crtv)

the upper bound for the training error &, i.e., the overall error we allow the classifier to
make when predicting a location during training. Thus, we cannot exclude the possibility
that a classifier’s prediction which is made by test suite TSPRP is erroneous. Such errors
can lead to incorrectly invalidating (false negatives) a cloud service component’s location.
Consequently, we may not want to invalidate a component’s location based on a single test
result of TSFRP

Note that false positive classifications, that is, incorrectly validating a component’s
location are neglected at this point since those imply that the cloud service provider is actively
cheating on the measurement: In this case, the expected location of a component matches the
predicted one but the measured data point actually stems from a different location.

Invalidation window In order to minimize the probability to incorrectly invalidate the
location a cloud service’s components, an obvious approach is to consider a sequence of
predictions for a location / within a particular time interval. Consider, for example, having
observed a sequence of predictions for location / where the first three agree with the expected
component’s location (+) while the last two predictions indicate disagreement (—), i.e.,
(+, +, +, —, —). This raises the question whether this sequence indicates that location / is
valid or not? A basic solution is a simple vote, that is, rely on highest frequency and thus,
in this example, validate the location. This naive approach has many drawbacks since it,
for example, requires to arbitrarily define an uneven number of successive predictions to be
considered when voting.

In order to address the above issue, we propose to explicitly control the probability of
incorrectly invalidating a location. To that end, we introduce the invalidation window w;
which is the sequence of successive predictions disagreeing with the expected location which
is required to decide that a location is indeed invalid. The invalidation window can be
obtained from the observed training error £ as follows: We assume that € is independent,
that is, any prediction indicating an invalid location has the probability € to be incorrect. On
this basis, we define the invalidation error v, € [0, 1] which describes the probability that the
number of |w; | successive predictions for location [ disagreeing with the expected location
are incorrect: B

v = e xerx e e = 110 o = e, 5.
The key idea here is to use v;” as a parameter which we configure to define the maximum
probability of making an error when invalidating a location /. In order to formulate this
notion, we reformulate and adapt equation 5.1]to create the following inequation:

_ log(v;)
Wi | 2 oy - (5.2)
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We can use Inequation[5.2]to calculate the minimum number of successive predictions which
are required to be observed in order to invalidate a location / for given v, and &. Naturally, if
we are willing to accept an invalidation error equal or higher than the training error, that is,
v, > ¢, then the invalidation window size is |w; | = 1.

Consider, as an example, that we are willing to accept a maximum probability of making
an error when invalidating location / of 0.0001%, i.e., v; = 0.000001. Let’s further assume
that the observed training error of the classifier is 2%, i.e., £ = 0.02. The minimum number

of successive predictions to observe indicating disagreement is

10g(0.000001) _

- > ~ 3.53.
il 2 = g0.02)

Thus, in this example, the minimum number of successive predictions disagreeing with the
expected location which are needed to conclude that a location / of cloud service component
is invalid — i.e., not hosted at its presumed location — is four.

Note that there is a subtle detail to this definition of the invalidation window size: The
observed training error ¢ is calculated based on all incorrectly classified locations observed
when applying the classifier to the training set while the invalidation error v, is defined for
an individual location [. From the perspective of the classifier’s performance, the formulation
of Inequation[5.2] can thus be interpreted as the worst case expectation: Incorrectly classified
samples of a single location [ may be responsible for the entire observed training error &
while any other location contained in the training set actually performing perfect is assumed
to possess the same error.

Finally, the invalidation window size is adjusted after each successful completion of
test suite 7S, pqare Using the current training error observed after updating. Therefore, the
invalidation window size dynamically adapts to the varying performance of the classifier
observed during retraining.

To summarize: Since a result produced by T' is expected to be erroneous with
probability &, we consider a sequence of successive negative test results to invalidate a
location which we refer to as invalidation window w;". The size of w; is derived from the
invalidation error v;, i.e the maximum probability of incorrectly invalidating a location
we are willing to tolerate, and the observed training error £. The invalidation window size
dynamically adapts according to the training error observed after updating the classifier.

SPRD

Configuring the invalidation window Applying the concept of the invalidation window to
the test metric brC requires the following final considerations: Each time a prediction made
by TSPRP for a location [ disagrees with the expected location, this constitutes a negative test
result for that location which is added to the invalidation window Wy Assuming, for example,
w; has a size of three, then observing three negative test results produced by TSPRP for
location / completes the invalidation window, that is, the test metric produces a negative test
result brl’,\i. Any brl’}\lf observed during the continuous test CT™" is counted using brCZ,\lf. If

TSPRD only indicates that two predictions do not agree with expectation for /, then these

two negative test results are ignored because we assume that they are prediction errors.

The above paragraph leads to the question what maximum invalidation window size is
required? It is obvious that the upper bound for the invalidation window size is the number
of predictions supplied by test suite 7S, ¢qic:: Consider, as an example, each execution of
TS eaicr makes ten new predictions for a location /. Consequently, the maximum number of
predictions which may incorrectly indicate disagreement with the expected location is also ten.
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This, in turn, implies that ten newly collected probes for a location [ are provided to T'Sp, e dicr
by ten iterations of test suite 7S, ope. Therefore, neglecting potentially filtered outliers
by T'Syutiier, the maximum invalidation window size directly depends on the iterations of
TSprobe .

In order to configure the maximum invalidation window size — and thus define minimum
number of iterations of 7'S,,,p. — in a non-arbitrary way, we can draw on the notion
formulated by Equation [5.1] which relates the invalidation error to the training error and the
invalidation window size. The idea here is to derive the maximum invalidation window size
based on the maximum training error 6. which is observed after having retrained on the
augmented data set during test suite 7'S,, pqare- Recall that TS, q4:e has only one test case
TCYPP which updates the current classifier and uses the manually configured performance
constraint d, as test oracle.

Consider the following example of obtaining the maximum invalidation window size:
Assuming that the desired invalidation error for a location / is 0.003%, that is, v, = 0.00003,
and that we are willing to tolerate a maximum training error observed after updating of
8¢ = 20%. Through adapting Equation[5.1] we can determine the maximum invalidation
window size as follows:

log() _ 10g(0.00003)
oee) S “togny S 0-47. (5.3)

wim| <
Thus the maximum invalidation window size is six which means that iterations of 7S, ope
have to be configured to be (at least) six. A maximum invalidation window size of 6, in turn,

corresponds to a maximum training error observed after updating of

1
Og = 0.00003(5) ~ 0.1763.

To summarize: Configuring the number of iteration of 'S, ,p. to I = 6 implies that the
invalidation window size |wl_| can grow to a maximum size of six. An invalidation window
size larger than six, in turn, implies that the observed training error after updating (6.) may
exceed the tolerance of 20%.

Finally, our test metric bears the risk of taking a prediction error for what is actually
a cloud service component hosted at an invalid location. In our above example, the two
failed instances of 7S”RP may not be caused by an error of the classifier but may actually
result from an invalid location. To counter this misinterpretation of results produced by
TSPRD | two parameters are crucial: First, the time between successive probes taken by
TSy obe has to be chosen suitably short such that relocating the cloud service component
while CTLY executes TS, robe becomes rather unlikely. Second, the smaller we define the
error of incorrectly invalidating a cloud service component’s location, the more successive
failed test results produced by TSPRP are needed to invalidate a location. Thus, the desired
size of validation error v; should be configured carefully.

5.3.4 Implementation and experiment

In this section, we describe implementation as well as experimental evaluation of our approach
to test the locations of cloud service components.

5.3.4.1 Environment and setup

Hereafter, the main components of the experiment are outlined.
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Cloud service components under test Figure[5.5]shows the distribution of AWS global
infrastructure: In AWS terminology, there are 16 geographical regions (orange circles) each
of which having multiple availability zones (indicated by the number in the orange circles)
as well as planned regions (green circles These regions include [3]]: Oregon, Northern
California, Northern Virginia, Ohio, Central Canada, Sao Paulo, Ireland, Frankfurt, London,
Singapore, Sydney, Tokyo, Seoul, Mumbai, Beijing, as well as AWS Gov Clou

Figure 5.5: AWS Global Infrastructure (Figure based on [3])

Within our experiment, we deployed 14 Amazon EC2 instances, i.e., [aaS instances in
total, each hosted in one of the above regions, excluding Beijin and AWS Gov Cloud.
Each instance had identical configurations, that is, running Ubuntu Server 16.04 LTS with 1
vCPU, 0.5 GB main storage and 8 GB persist storage. Further, each instance was associated
with a publicly reachable IP address and its security group is configured to allow for traffic
via ICMP, via TCP on port 22 and via SSH from and to the landmark. Lastly, the landmark
from which delay and topology measurements were conducted was also hosted on AWS, at
region Frankfurt.

Implementation of test cases Delay and topology measurements are conducted by the
test cases TC! PP and TCTCPP: The first one uses MT a common network diagnostic
tool which allows determining if a remote host is reachable over an IP network as well as
to identify the path packets took to the remote host. The second one uses Nping[7_7] which
offers the possibility to measure response times on the TCP Layer. Recall that test suites

gZeDL’,ZTCPm as well as TS;Irife’TCPm (see Section |5.3.3.2) always trigger execution of

TCIPP and TCTCPP per target location. Once both TCTFP and TCTC PP have successfully
completed, their output is parsed and a data point following the data structure shown in Figure
[5.3]is stored. Finally, it is important to note that — as already mentioned in the previous

73These planned regions include Paris, Stockholm and Ningxia. For further information see [3].

74 AWS GovCloud allows US government agencies to use cloud resources in compliance with US-specific
regulatory requirements. According to AWS, the GovCloud is located in the Northwestern region of the United
States. For further information seehttps://aws.amazon.com/govcloud-us/faqgs/|[Accessed: 2018-12-13]

75 As of the time when conducting the experiment to continuously validate cloud service component’s location,
the AWS region Beijing was not available.

"Shttps://linux.die.net/man/8/mtr|[Accessed: 2018-12-13]

TThttps://nmap.org/nping/ [Accessed: 2018-12-13]
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section — the delay and topology measurements are all conducted from an EC2 instance
hosted in the region Frankfurt.

Training and updating the classifier is the responsibility of test case TCTRN and
TCYFP: Both test case instances use the same implementation based on scikit-lear to
(re-)train a classifier based on Linear Support Vector Classification (LinearSVCB with
5-fold cross-validation. This classifier takes as input the measurements provided by the test
cases TC!'PP and TCTCPP where each class label is given by the target location for which
the measurements have been conducted. The complete set of parameter passed to train the
instance of LinearSVC can be found in Appendix A.

The test case TCOTL aims at detecting outliers in newly collected probes, that is, data
points provided by the test cases TC! P and TCT € PP for each target location bound to the

test suite TSII) f ODb’eTCP P To that end, we also use scikit-learn to conduct unsupervised outlier

detection using OneClassS VMF‘EL The complete set of parameter passed to the instance of
OneClassSVM can be found in Appendix A.

Finally, the test case TCPRP predicts class labels of newly collected data points which
are provided by the test case TC'PP and TCTCPP (bound to test suite TS; PDITCED) We
use scikit-learn and the LinearSVC which we trained beforehand to predict the location of an

EC2 instance.

5.3.4.2 Experiment results

Hereafter, we present the experimental results obtained when executing CTLV

Data set For the 14 EC2 instances described above, we collect a total of 139699 data points.
The collection is split up into two periods, the first started at 17th December 2016, 12:04:40
(UTC) and ended at December 23rd 2016, 10:29:52 (UTC) while the second period started
at 25th December 2016, 12:20:27 (UTC) and ended at 3rd January 2017, 10:34:46 (UTC).
Each single data point contains the information described by the data structure specification
shown in Figure[5.3]

Experiment and evaluation In order to initialize CT™Y, we define an upper bound for the

misclassification error observed during training of the initial classifier of & = 3.27% which is
achieved by initially collecting 13979 records or using the first ~10% of the data set to train
the initial classifier.

Furthermore, for each of the 14 locations, we chose the identical invalidation error
of v, = 0.001% as an example value. Recall that v;” defines the maximum error we are
willing to tolerate when incorrectly invalidating a location. Also, we are willing to tolerate a
maximum training error observed after updating the classifier of 5. = 35%. The resulting
maximum invalidation windows size therefore is (following Equation [5.3)

log(;) _ 10g(0.00001) <1097

W17 < B S “og035)

78http://scikit—learn.org/
[Accessed: 2018-12-13]

79http ://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
[Accessed: 2018-12-13]

80h‘ctp ://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
[Accessed: 2018-12-13]
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A maximum invalidation window size of ten means that iterations of 7'S,,,,p. have to be (at
least) I = 10 and corresponds to maximum tolerated training error observed after updating of

1
5. = 0.00001(16) ~ 0.3162.

Applying the results described in the previous paragraph, we split the remaining 90% or
125720 up into 898 successive batches where each batch contains ten probes per location,
that is, 140 probes per batch. Starting with the oldest one, each batch simulates the execution
of test suite TSI()Ir?;e,TCPm by supplying 140 newly collected probes to test suite TSSSZ;‘];Z’
thereby triggering the workflow shown in Figure [5.4] of Section[5.3.3.3} Having completed
outlier detection, locations of all non-outliers are predicted and the predictions are compared
with the expected locations to compute the proportion of the correctly classified samples
per batch, i.e., the test accuracy per batch (Figure [5.6). Thereafter, the initial data set is
augmented and the classifier is updated, that is, retrained. Since there are 898 batches each of
which supplying 140 newly collected probes, we update the classifier during our experiment
for 898 times. After each update, we observe the training error &. Figure [5.8]shows how the
training error evolves over time while Figure shows the number of outliers filtered per
batch.

1.00 o

0.95 4

0.90 4

Accuracy

0.80 -

0.75 A

Batch

Figure 5.6: Evolving test accuracy per batch over time of CT*Y

Since we use the LinearSVC, the required storage and compute resources increase quickly
with increasing size of the training se@ As a result, we cannot increase the size of the
training set arbitrarily but have to define an upper bound, in our case 30000 data points. Once
our process reaches this upper bound, we use a sliding window to augment the training set,
i.e., for each newly collected batch of 140 probes (minus those filtered by outlier detection),
we remove the same amount of the oldest data points in the training set.

For each batch, we observe the correctly classified locations per batch, that is, the fest
accuracy per batch, as well as the correctly classified locations during training, i.e., training

81 http://scikit-learn.org/stable/modules/svm.html#complexity|[Accessed: 2018-12-13]
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Figure 5.7: Filtered outliers per batch of CTY

accuracy. We make use of these statistics to summarize the outcome of the experiment (Table
[5.2) by computing mean (), median (£) standard deviation sd, min, and max. Additionally,
Figure [5.6] shows how the test accuracy evolves over time, that is, with increasing number of
batches consumed by the workflow of CTY. It is important to note at this point that we
assume that all 14 instance reside at their claimed location at the time of the experiment, that
is, the observed deviations from expected locations result from errors the classifier makes.

The experimental results can be summarized as follows (see Table[5.2)): The mean test
accuracy per batch is 92.96% which translates to a mean misclassification rate of 7.04% per
batch. At batch number 621, the accuracy drops below 75%, with a minimum at 73.57%.
Further, the mean training accuracy is 94.13% with a minimum of 90.07%.

Furthermore, through inspection of how the training error shown in Figure [5.8]evolves
over time, a sharp increase at batch 455 can be observed. In this context, Figure[5.9]illustrates
how the invalidation windows size compensates for this increase in training error: After
having consumed batch number 455, the increased training error after updating the classifier
is used to adapt the invalidation window size from |w;’| =4 to |w/ | = 5.

It is important to note that the invalidation window size adaption observed during the
course of the experiment ranged from three to five. However, the invalidation window was
never completed for any location for any batch, i.e., the test metric never produced a negative
test result brllj\lf invalidating a location. Put differently: Since we are assuming that all 14
instances are hosted at their claimed location during the experiment, we can conclude that
no location of the cloud service components under validation was incorrectly invalidated.
This is, after all, the expected and desired result of this experiment because it shows that the
design of the continuous test CT™V is capable of compensating prediction errors a classifier
may make, thus avoiding to incorrectly invalidate a location of a cloud service component.
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Table 5.2: Results of continuous location validation of 14 AWS EC2 instances using 10% of
total data set as initial training data and 898 successive batches with each 140 newly collected
probes

Parameter X (%) x (%) sd (%) max (%) min (%)
ngtbi‘zﬁracy 92.96 94.28 435 100 73.57
:z:l‘?a‘li 94.13 95.41 247 97.91 90.07
0.10
0.09
0.08
5 %
0.04 -
0.03 -
0.02 - i
0 200 w 600 800
Figure 5.8: Evolving training error & observed per batch over time of CT-Y

Validation windows size
B

Batch

Figure 5.9: Adaption of invalidation window size per batch over time of CT*V
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5.4 Continuously testing secure communication configuration

In this test scenario, we continuously test whether the configuration of a cloud service allows
to securely communicate with its endpoints. We begin with defining what the property
secure communication configuration means in context of cloud services and outline the test
scenario. Thereafter, we describe the general characteristics of the test scenario (Section
[5.4.2) and describe the test design (Section[5.4.3)). Lastly, we present implementation as well
as experimental results of using our test to check the secure communication configuration of
Saa$ instances which are provided on top of IaaS delivered by OpenStack (Section [5.4.4).
Parts of this section have been published in [[127]].

5.4.1 Property description and overview of test scenario

As the name suggests, secure communication configuration is a type of security property
of a cloud service which holds if communication with the cloud service is secure against
disclosure and manipulation by unauthorized parties. Since customers usually accesses
cloud services remotely using insecure networks, securing communication end-to-end, that
is, between the service and the customer is an indispensable necessity.

Protocols used to securely communicate with cloud service endpoints vary depending on
the type of cloud service, i.e., the cloud service model. While securely communicating with
TaaS translates to, e.g., using SSH to connect to a virtual machine, secure communication
with PaaS and SaaS applications may use HTTPS. In the latter case, HTTP uses Transport
Layer Security (TLS) where TLS is a widespread cryptographic protocol aiming to secure
communication over untrusted networks. However, configuring TLS properly is not trivial
because it supports various methods for key exchange, encryption, and authentication [270].
A concrete set of such methods used to secure communication is referred to as a cipher suite
where some cipher suites are considered insufficient to provide secure communication, e.g.,
if they use the stream cipher RC4 as an encryption algorithm [271]].

We propose the test CT5C which continuously checks whether we can securely

communicate with the endpoint of a cloud service. For this purpose, we continuously
evaluate if the SSL/TLS configuration of a cloud service’s web server allows to securely
communicate with the service.

The workings of the test can be summarized as follows (a detailed description of the test
will be provided in Section : Every ten seconds, CT5€ first executes a precondition test
where it establishes that the endpoint of the cloud services is reachable via ICMP and TCP.
In case these preconditions are satisfied, following the precondition test, CTSC then tests
the SSL/TLS configuration of the endpoint. It fails if the cloud service endpoint exhibits,
e.g., a known SSL/TLS vulnerability, uses self-signed certificates or supports vulnerable
cipher suites. Further, we are using Precondition as specialized test suites introduced in
Section[5.4.3.2] This means that if one or both precondition test cases fail, then testing of
the SSL/TLS configuration is not executed. In this case, precondition are tested again in the
following iteration, i.e., ten seconds after the previous precondition tests have completed.
Finally, the results produced by CT5¢ will tell us how often the SSL/TLS configuration of
the cloud service under test is insecure and how long it takes to fix these misconfigurations.
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5.4.2 General characteristics of the test scenario

This section describes the general characteristics of the scenario to continuously test the
secure communication configuration of cloud service components.

5.4.2.1 Supported cloud-specific controls

The control KRY-02 Encryption of data for transmission (transport encryption) of BSI C5
[31]] demands that

"Procedures and technical safeguards for strong encryption and authentication
for the transmission of data of the cloud customers (e. g. electronic messages
transported via public networks) are established.".

The continuous test CTS€ can support certification of a cloud service according to this control
because it analyses if a cloud service’s web server supports weak cipher suites, possesses
known vulnerabilities or uses self-signed certificates. Furthermore, in [253]] the BSI maps
the control KRY-02 to the control EKM-03: Encryption & Key Management Sensitive Data
Protection of CSA’s Cloud Control Matrix (CCM) [22]] which requires that

"Policies and procedures shall be established, and supporting business processes
and technical measures implemented, for the use of encryption protocols for
protection of sensitive data in storage (e.g., file servers, databases, and end-user
workstations), data in use (memory), and data in transmission (e.g., system
interfaces, over public networks, and electronic messaging) as per applicable
legal, statutory, and regulatory compliance obligations.".

This control is less specific than KRY-02 of BSI C5 as it broadly requires implementing
technical measures to protect sensitive data in transmission over public network. Thus, CTS€
can also be used to produce evidence to support the certification of a cloud service according
to this control.

Finally, both BST and the CCM map KRY-02 and EKM-03 to the control A.14.1.2 Securing
application services on public networks of ISO/IEC 27001:2013. Thus, CTS€ can also be
employed to support the certification of a cloud service according to A.74.1.2.

5.4.2.2 Supported cloud service models

The test CTSC repeatedly checks whether the SSL/TLS configuration of a web server of a
cloud service possesses some known security vulnerability, e.g., OpenSSL Heartbleed Bug
[2772], uses self-signed certificates, or supports weak cipher suites.

As already mentioned in the introduction, SaaS applications use HTTPS for secure
communication between a cloud service customer who accesses the SaaS application via
browsers. Thus, we can use the hostname which points to the website of the SaaS application
to conduct our test. Similarly, a PaaS application such as a database service may expose a
RESTful API to, e.g., allow for administration and querying. Using TLS to secure data in
transit to and from a RESTful APISs is the best practice [273]]. Thus, we can use the hostname
of a RESTful API’s base URL to continuously check whether the web server of the PaaS
application is securely configured.

Usually SSH is used to securely communicate with virtual machines, i.e., IaaS provided
by a remote host. Since CTS focuses on testing the security of SSL/TLS configurations, it
cannot be applied to IaaS.
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5.4.2.3 Implementation independence

Nginx{gﬂ Apache HTTP Server[g_gl and Hﬂgzl are today’s dominant web server implementation@
which Saa$ applications may use. All of them support TLS and thus the test CTS€ can be
used to repeatedly check whether their configurations are secure.

5.4.2.4 Minimally invasive integration

If the firewall rules of the cloud service under test allow communication with its endpoints,
that is, if the web server component of a SaaS or PaaS application can be reached from the
host where the continuous test CT5€ is deployed, then no change of the composition or
configuration of the cloud service is needed. While we can expect this to be the case for
most SaaS applications, access to endpoints of a PaaS application such as a database service
may be restricted to some IP addresses. Thus, in the latter case, firewall rules will have to
be changed accordingly in order for CTS€ to function properly and deliver meaningful test
results.

5.4.3 Test design

In this section, we describe the test CTSC according to the framework introduced in the

Chapter@ Note that values used to configure CTS€ (e.g., length of test suite intervals) are to
be understood as examples. These values may differ depending on the test’s use case and the
interpretation of the controls it aims to provide evidence for.

5.4.3.1 Test case

The continuous test CTSC consists of the following single test case:

TC3t =(E,L,0,N)
=(analyze_SSL_TLS_configuration),
=((host, port)),
=(assert_no_known_SSL_TLS_vulnerability, assert_no_blacklisted_cipher_suites,

assert_SCSV_support, assert_no_self_signed_certificate), 1).

The test case TCSS has a single procedure (E) to analyze the SSL/TLS configuration of
a web server. To that end, the test case takes as input parameters (L) the IP address or the
hostname of the cloud service’s web server as well as its port. In order to evaluate the results
produced by the test case (0O), we validate that the web server does not possess a known
SSL/TLS vulnerability including the OpenSSL Heartbleed Bug [272], CRIME [274] and
OpenSSL CCS Injection [275]]. Furthermore, the test case results must not indicate a web
server supporting blacklisted cipher suites. Also, the web server has to support TLS fallback
signaling cipher suite value (scsv) which aims at preventing protocol downgrading attacks
[276] as well as secure session renegotiation [277]. Finally, a web server must not allow

82https://nginx.org/|[Accessed: 2018-12-13]

83https://httpd.apache.org/ [Accessed: 2018-12-13]

84https://www.iis.net/ [Accessed: 2018-12-13]

85h‘ctps ://news.netcraft.com/archives/2017/01/12/january-2017-web-server-survey.
html [Accessed: 2018-12-13]
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self-signed certificates. If all of these assertions hold, then an instance of TCSSL

Lastly, the ordering number of the test case is 1.

passes.

5.4.3.2 Preconditions

The test CTSC may fail not because of, e.g., an insecure cipher suite but because the web
server of the cloud service cannot be reached at all. In order to avoid test suite run results
incorrectly indicating (false negative test results) that the configuration of a cloud service’s
web server is insecure, we define the following two preconditions:

TC'MP —(E L, O,N)
=((measure_delta_ICMP_Echo_Request_to_ICMP_Time_Reply_packets),
{{host, packet_count)),

$ICMP  osert rtt_sd < $£SMP>, 1)

(assert_rtt_avg < $,, 2

and

T7CTCP —(E, L, 0, N)
=((measure_delta_SYN_to_SYN-ACK_TCP_segment),

({host, probe_count, port)),

$TCP

. TCP
avg » 4ssert_max_response_time < $ ), 1).

(assert_average_response_time < e

As described in Section{.3.6] preconditions are a type of test case which aims to determine
whether the assumptions about the test environment are satisfied. In the above case, we
define two precondition test cases which tests if we can reach the target host on the Internet
Layer and on the Transport Layer. Note that the definition of both precondition test cases are
identical to the test cases we defined for the test of availability CT4Y (Section |5.2)). This
illustrates how test case definitions can be efficiently reused, in this case to test preconditions.

5.4.3.3 Test suites

The continuous test CTSC defines the following two test suites:

TSUCMPICP) _(qC [ F.T)
=((TCIEMP TCTCPy 1000, (10))
and

T7SSSL) =(7°C, 1, F,T)
=((TC5%"), +00,0,(0)).

As we can see, the precondition test cases TC!MP and TCTCP are bound to the first test
suite. This indicates that we are using the option Precondition as specialized test suites of
our framework which was introduced in Section[#.3.6] A specialized test suite’s execution is
triggered (T) every 10 seconds after the previous one completed and the number of possible
successive executions is set to infinity, i.e., I = (+o00). The following paragraph on the
workflow of CTS€ will explain how we use this specialized test suite to test preconditions.
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The second test suite binds the main test case 7S SSL) . It does not possess any waiting
time between successive test suite runs, that is, execution of this test suite is always triggered
instantaneously (i.e., F = 0 and T = 0). Further, it does not have a maximum number of
iteration but can be executed successively for an infinite number of times (i.e., I = +00).

5.4.3.4 Workflow

As described in Section [4.3.6] there is a base execution strategy which can be used with
specialized test suites that test preconditions: As shown in Figure[5.10] the specialized test

suite TS{/CMP.TCP) i executed prior to the main test suite 7S SS1). Thus, the workflow of
CTS€ only executes the main test suite if the preconditions passed. If the specialized test
suite fails, it is executed again after waiting 30 seconds. If it passes, the execution of the main
test suite to check the SSL/TLS configuration is triggered immediately after the successful
specialized test suite completed. This illustrates how preconditions can be used to control
the workflow of a continuous test, allowing selecting and executing test suites according to
environmental conditions discovered at runtime.

[test result == false]

AN AN
TS(ICMP,TCF‘>

[test result == true] _ / T75(SSL) \ [lteration >= I] Q

[test result == true |l test result == false]

Figure 5.10: Workflow of continuously testing secure communication configuration (CTS¢)

5.4.3.5 Test metric

The test CTSC aims to obtain two types of measurement results: First, we want to know how
often a cloud service’s web server is not configured to securely communicate. To that end, we
use the universal test metric fpsC which counts the occurrences of Failed-Passed-Sequences
(fps) (For a detailed explanation of fps see Section[4.3.5). Within our test scenario, a single
fps is the period of time where the main test suite 7S *SL) failed at least once and passed
some time later, that is, the analysis of the SSL/TLS configuration identified some insecure
configuration which was fixed thereafter.

Furthermore, the goal of CTS€ is to determine how long it takes to fix an incorrectly
configured cloud service’s web server. For this purpose, we can use the universal test metric
fpsD which tells us the duration of a fps.

Finally, since we are using the option preconditions as specialized test suites of our
framework, we have to neglect the result of the specialized test suites during metric
computation. This means that in order to calculate test metrics fpsC and fpsD, we only
consider test results which are produced by the main test suite 75 S and ignore any results

of the specialized test suite 7S/CMPTCP)

5.4.4 Implementation and experiment

This section describes implementation as well as experimental evaluation of our approach to
continuously test the secure communication configuration of cloud service components.
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5.4.4.1 Environment and setup

Hereafter, the main components of the experiment are outlined.

Cloud service component under test As an example for a cloud service component under
test, we choose an Apache HTTP Server which is deployed on an instance of OpenStack
Mitaka with 2 vCPUs and 4 GB RAM and 40 GB volume (disk) running Ubuntu 15.10
Server. The instance is associated with a publicly reachable IP address and its security groups
are configured to allow for traffic via ICMP, via TCP on port 22 and via SSH from and to the
host where the test is deployed (see also paragraph Deployment of continuous test below). As
already pointed out in Section [5.4.2.2] it depends on the service provided through this web
server whether this cloud service component is used as part of a service of type PaaS or SaaS.

Test case implementation We use sslyzd>| to implement test case TCS5L, a tool which
connects to a web server and analyzes its TLS configuration. It supports detection of
self-signed certificates, weak cipher suites, and also identifies known vulnerabilities such as
OpenSSL Heartbleed Bug, insecure session renegotiation, and CRIME.

Sslyze is used by providing the hostname of the endpoint whose TLS configuration should
be analyzed and the application specific port, e.g., www.google.com:443. Once the analysis
is completed, sslyze returns the results, e.g., using a XML format. Usually, these results are
then inspected by a human to determine whether the supported TLS configuration is secure.
However, the test case TCSST parses the results of sslyze and checks whether it satisfies the
specification provided in Section If so, the test cases passes, otherwise it fails.

Implementation of preconditions In order to implement the preconditions T7C/¢™P and
TCTCP, we reuse the implementation of the test case TC!CM ¥ and TCTCP of the test CTAY

which are described in Section |5.2.4.1] The specialized test suite TS CMP-TCP) triggers
execution of both precondition tests concurrently. Once both precondition test cases have

completed, the output of each tool, that is, Ping and Nping within TC!“M? and TCT¢P,
respectively, is evaluated. To that end, we have to specify the assertions for each precondition:

 $ISMP = 100ms and $SMF = 75ms, as well as

. $£§gp = 75ms and $7CF = 100ms.

Deployment of continuous test We deploy the continuous test CTS€ on a host different
to the one where the cloud service component under test is running. Further, the host
where CTS€ is running is attached to a different network than the host of the cloud service
component under test. Yet both hosts reside in the identical building which is the reason why
delays on the IP and TCP Layer measured previous to the experiment are relatively low, i.e.,
usually below 3 ms.

Inducing vulnerable TLS configurations We trigger temporary insecure communication
configurations of our cloud service component under test by editing the configuration file
of the Apache HTTP server such that it supports TLS communication using the weak

86https://github.com/nabla-c0d3/sslyze [Accessed: 2018-12-13]
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cipher suite TLS_RSA_WITH_DES_CBC_SHA. We refer to the time during which the TLS
configuration of the cloud service under test is insecure as a vulnerability event. Overall,
we trigger 998 sequential events where TLS configuration is vulnerable. Each vulnerability
event last at least 180 seconds plus randomly adding [0,60] seconds.

The accumulated duration of all vulnerability events observed during the experiment is
208867.41 seconds (= 58 hours 1 minute 7 seconds). Moreover, the mean duration of each
vulnerability events was 209.29 seconds with a standard deviation of 17.43 seconds.

5.4.4.2 Experimental results

The entire experiment took ~109.3 hours, i.e., ranging from the start of the first test event
until the end of the last test. Table[5.3|shows the test statistics and test results produced by
the test CTSC: In total, CTS€ triggered 19514 tests of the TLS configuration of our cloud
service component under test. When also including the precondition tests — recall that we are
using preconditions as a specialized test suite — the total number of executed tests amounts to
39021. Producing evidence, i.e., executing a test of the TLS configuration plus evaluating
the returned result took on average ~5 seconds with a standard deviation of ~4 seconds.

Out of the 998 vulnerable TLS configurations, CTS¢ correctly detected 959 or 96.09%
(fpsC). Furthermore, each fpsD on average estimates that the duration of a correctly
detected vulnerability event is 208.34 seconds (fpsD). Since a vulnerable TLS event lasted
209.29 seconds on average, we can conclude that CTS¢ underestimates a vulnerability event
on average by ~1 second.

Table 5.3: Test statistics and results of continuous test CT5¢
number of tests 19514
(39021)
Test mean duration test (sec) 5.02
statistics sd duration test (sec) 4.06
min duration test (sec) 0.1
max duration test (sec) 18.43
fpsC correctly detected events 959
correctly detected events (%) 96.09
mean duration detected events (sec) 208.34
fpsD sd duration detected events (sec) 19.64
min duration of detected events (sec) 40.4
max duration of detected events (sec) 244.33

5.5 Continuously testing secure interface configuration

In this test scenario, we continuously test whether cloud services components possesses a
secure interface configuration. We begin with defining what the property secure interface
configuration means in context of cloud services and outline the test scenario. Then we
investigate the general characteristics of the test scenario (Section[5.5.2) and describe the test
design (Section [5.5.3)). Lastly, we present implementation as well as experimental results
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of using our test to check the secure interface configuration of PaaS instances providing a
Database-as-a-Service interface on top of IaaS delivered by OpenStack (Section[5.5.4). Parts
of this section have been published in [[127].

5.5.1 Property description and overview of test scenario

Secure interface configuration is another security properties of a cloud service which is
satisfied if a cloud service only exposes those interfaces publicly which are actually intended
to be publicly reachable. Common configuration flaws can render a cloud service vulnerable
which, in case an attacker manages to exploit this vulnerability, can lead to, e.g., disclosure
or manipulation of valuable data stored and processed by the cloud service.

Consider, for example, the Amazon Relational Database Service (AWS RDS@ a PaaS
application which provides industry-standard relational database as a web service. This
application uses a special type of security groups, called Amazon RDS Security Groups{g_gl
These security groups are used to control what IP addresses or other Amazon resources such
as EC2 instances have access to the database service instance. Erroneous configurations of
these security groups may expose the database service to unauthorized access.

In order to determine whether a cloud service temporarily exposes interface due to
insecure configurations, we propose the test CTS!. CTS! continuously probes the endpoints
of a cloud service, either by hostname or IP address, for open ports which should not be
publicly accessible.

The workings of this test can be summarized as follows (a detailed description of the test
will be provided in Section : CTS! tests every 30 seconds if the endpoint of the cloud
service under test can be reached via ICMP and, at the same time, probes the endpoint for
open ports. Testing the reachability of the target host on the Internet Layer is a precondition
test case whose execution is triggered concurrently with the test for open ports. Thus, CTS!
makes use of the preconditions as part of main test suites option of our framework described
in Section[4.3.6] As a result, the result of the port scan is only considered if the precondition
holds, i.e., if the target host can be reached via ICMP. The results produced by CT>! show
how long it takes the cloud service provider to fix insecure interface configurations of the
cloud service under test.

5.5.2 General characteristics of the test scenario
This section describes the general characteristics of the scenario to continuously test the
secure interface configuration of cloud service components.

5.5.2.1 Supported cloud-specific controls

The control 1VS-06: Infrastructure & Virtualization Security Network Security of CSA’s
CCM [22]] requires that

"Network environments and virtual instances shall be designed and configured
to restrict and monitor traffic between trusted and untrusted connections.
These configurations shall be reviewed at least annually, and supported by a

87https ://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
[Accessed: 2018-12-13]
88h‘ctps ://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.
RDSSecurityGroups.html [Accessed: 2018-12-13]
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documented justification for use for all allowed services, protocols, ports, and
by compensating controls.".

The test CTST can support certification of cloud services according to this control because it
helps to detect whether virtual instances are configured to restrict traffic between untrusted
connections. Note that this control itself demands to be checked at least every year. The
CCM links to the control A.9.1.2 Access to networks and network services of ISO 27001:2013
[24] which can also be checked using C 75!, Furthermore, the control IVS-07: Infrastructure
& Virtualization Security OS Hardening and Base Controls of CCM [22] requires that

"Each operating system shall be hardened to provide only necessary ports,
protocols, and services to meet business needs |[...].".

This control is partly very similar to the previous one since it also requires that only necessary
ports, protocols, and services are exposed by the operating system of a dedicated server or
virtual machine. It is evident that, through continuously testing for blacklisted ports, CTS!
can provide evidence to support checking if this control is satisfied.

In [253], the BSI links the control /VS-07 of the CCM to the control RB-22 Handling
of vulnerabilities, malfunctions and errors — system hardening of the BSI C5 [31] which
demands that

"System components which are used for the rendering of the cloud service are
hardened according to generally established and accepted industry standards.
The hardening instructions used are documented as well as the implementation
status.".

This control is less specific than the previous two examples from the CCM, thus it includes
those two controls. Therefore, we can state that the certification of a cloud service according
to RB-22 of BSI C5 can be supported by CTS!.

5.5.2.2 Supported cloud service models

As already mentioned in Section CTST can be used to continuously check whether
interfaces of PaaS applications such as Amazon RDS are correctly configured, that is, are
only accessible from authorized IP addresses. Naturally, continuously probing for open ports
is also suited to check if the security groups, i.e., firewall rules which are set for virtual
machine instances (IaaS) are correctly configured.

5.5.2.3 Implementation independence

The continuous test CTS! repeatedly probes a host or IP address for open ports. Therefore, it
operates independent of the specific composition of the cloud service under test such as the
operating system and other applications used to provide a particular cloud service.

5.5.2.4 Minimally invasive integration

CTS! does not require any change to the composition of the cloud service under test. As
with previously presented continuous tests, however, one prerequisite of CTS/ is that it has
permission to reach the target host. Otherwise, it cannot conduct an analysis of the exposed
interfaces of the cloud service’s endpoint.
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5.5.3 Test design

In this section, we describe the test CT®! according to the framework introduced in the
Chapter Note that the configuration of CTS, that is, concrete values such as test suite
iterations serve as examples and can vary with differing use cases of the test as well as the
interpretation of the controls whose validation it seeks to support.

5.5.3.1 Test case

The test CTS! consists of the following single test case:

TCPor =(E, L, 0, N)
=(scan_ports),
=(({host, port_range, whitelisted_ports)),
=(assert_whitelisted_ports_only), 1).

Having a single procedure (E), the test case TCP°" probes a target host of the cloud
service for open ports. To do this, the test case requires as input parameters (L) the IP
address or hostname (host), the port range to scan (port_range), and list of permitted ports
(whitelisted_ports). In order to evaluate the results produced by the test case (O), we check
whether any other open ports than the whitelisted ones are detected. Thus, an instance of
TCPor" passes if only ports are detected which are on the whitelist. Finally, the ordering
number of the test case is 1.

5.5.3.2 Preconditions

In order to avoid false negatives, that is, test suite run results which incorrectly indicate that
other than whitelisted ports are publicly available, we define the following precondition:

TC'CMP —(E L, O,N)
={(measure_delta_ICMP_Echo_Request_to_ICMP_Time_Reply_packets),
((host, packet_count)),

{assert_rtt_avg < $é€é‘4 P assert_rtt_sd < $£ SM P ), 1).

Similar to the testing the secure communication configuration described in the previous
section, the test CTS! defines a precondition which tests if it can reach the target host on
the Internet Layer. Also for this test, we re-use the test case definition TC'¢MP specified

to continuously test resource availability as described in Section[5.2] However, in this test
—ICMP
scenario we use 7TC to ensure that we can reach the host whose open ports we aim to

identify with the main test suite. Since this precondition possesses ordering number 1, it will
be executed first once the test suite it is bound to executes.

5.5.3.3 Test suite
The test CTS! consists of the following, single test suite:
T§PortICMP) _ (¢ [ F.T)
—((TCP TCTCMPY 4000, (30)).
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The test case TCT°"* and the precondition TC'M™ P are bound to the test suite 7.5 (ForH-ICMP)
This means we are using the option preconditions as part of main test suites of our framework
(for further details see Section [4.3.6) to establish that the test environment meets our
expectations. The number of successive executions (/) is set to +oco which means that
successive execution of the test suite can be triggered infinitely often. The interval (T')
between each test suite run is set to 30 seconds, i.e., the next test suite execution is triggered
30 seconds after the previous one completed. Lastly, no offset (F) is defined for this test suite.

5.5.3.4 Workflow

The workflow of CTS! is shown in Figure It triggers execution of T.§(PortICMP)
after the specified interval between test suites has elapsed. As indicated by the heavy bar,
execution of the test suite translates to triggering execution of the test cases TCP°"" and
TC!CMP concurrently and joining them afterwards, i.e., the test suite completes if both test
cases complete. The workflow is basic, i.e., the result of the test suite does not affect the

repeated execution of test suite 7S(Port-ICMP),

4 N\

N
TS<Pon,ICMP>

o
TCICMF’ |
[lteration >= 1] @
—>]
TCPOI't

- /

[test result == true Il test result == false]

Figure 5.11: Workflow of continuously testing secure interface configuration (CTS')

5.5.3.5 Test metric

The goal of the test CTS! is to measure how long it takes to fix a temporarily incorrectly
configured interface, that is, how long does it take to close supposedly blacklisted ports which
were identified as publicly reachable. An ideal choice for this task is the universal test metric
fpsD which was introduced in Section[4.3.5] Through determining the duration of a fps,
the test metric fpsD tells us for how long the configuration of a cloud service component
was insecure.

Since we are using a precondition as part of the main test suites, we have to consider the
result of the precondition test results during computation of test metrics. Within this test

—ICMP
scenario, execution of the precondition test case TC is triggered concurrently with the
main test case TCT°", Thus, the result produced by a test suite run will only be considered
if the precondition test case passed.

5.5.4 Implementation and experiment

This section describes implementation as well as experimental evaluation of our approach to
continuously test the secure interface configuration of cloud service components.
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5.54.1 Environment and setup

Hereafter, the main components of the experiment are outlined.

Cloud service component under test As an example of a cloud service component under
test, we choose an instance of MongoDB@ which is one example of a NoSQL database. This
database is deployed on an instance provided by OpenStack Mitaka with 2 vCPUs, 4 GB
RAM and 40 GB volume (disk) running Ubuntu 15.10 Server. The instance is bound to a
publicly reachable IP address while its security group is set to allow for traffic via ICMP, via
TCP on port 22 and via SSH from and to the host where the test is deployed (see paragraph
Deployment of continuous test below). This cloud service component is considered to be
part of a cloud service of type PaaS.

Test case implementation In order to implement the test case 7C Port e use Nmaﬂ a
popular tool which allows discovering hosts in a network as well as services provided by
these hosts. The basic use of Nmap only requires to specify the hostname or IP address of
one or more scan targets, e.g., scanme.nmap.org or 10.244.250.123 or both. Once the scan
is completed, Nmap returns the results, e.g., as a XML-formatted document. A common
use case of analyzing these results consists of manual inspection, for example, by a human
security analyst. Yet, the test case TCF°™" parses the results returned by Nmap to determine
whether only whitelisted ports of the scan target can be reached. If other than the whitelisted
ports can be reached, then the TCF?"" fails, otherwise it passes.

—ICMP
Precondition implementation In order to implement the precondition 7C , We reuse
the implementation of the test case TC/CMP of the test CT4Y described in Section|5.2.4.1

—IC
The right-hand side of the assertions of the oracle of TCI me are specified as follows:
* $ISMP = 100ms, and

o ¢ICMP _
$.57 " =T75ms.

Deployment of continuous test The test CT! is deployed on a different host, attached to
a different network than the host of the cloud service component under test. Yet both hosts
are located in the same building. As a result, delays on the IP Layer observed prior to the
experiment are relatively low, i.e., usually lower than 3ms.

Inducing insecure interface configurations In order to trigger temporary insecure
interface configuration of our cloud service component under test, we edit the configuration
file of the MongoDB server making port 27018 publicly reachable. 27018 is the default
port for shardecﬂ] instances of MongoDB that should not be publicly reachable. In total, we
triggered 1000 vulnerable interface configuration events where each event lasted at least 180
seconds plus selecting [0,60] seconds at random. Further, the interval between consecutive

89%https://www.mongodb. com/|[Accessed: 2018-12-13]

Yhttps://nmap.org/ [Accessed: 2018-12-13]

91 Sharding is a technique which horizontal splits a data base into partitions each called a shard and kept on an
individual instance of the database server [278]. MongoDB uses sharding to handle very large data sets as well as
high throughput operations. For further information see https://docs.mongodb.com/manual/sharding/.
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vulnerable interface configuration events was at least 200 seconds plus selecting [0,100]
seconds at random.

The accumulated duration of all vulnerable interface configuration events observed during
the experiment is 209747.99 seconds (= 58 hours 15 minutes 48 seconds). Further, the
mean duration of each downtime event is 209.75 seconds with a standard deviation of 17.67
seconds.

5.5.4.2 Experimental results

The entire experiment lasting from the start of the first test until the end of the last test took
~127,9 hours. Table shows the test statistics and test results produced by the test E]f’ .
The total number of tests, i.e., the total number of executions of the test suite 7.S{Por-1CMP)
is 32589. On average, each execution of a test suite of C 757 took ~9 seconds, with a standard

deviation of 0.04 seconds.

Table 5.4: Test statistics and results of continuous test CTS!

number of tests 32589
Test mean duration test (sec) 9.06
statistics sd duration test (sec) 0.04
min duration test (sec) 9.01
max duration test (sec) 10.13
fpsC correctly detected events 986
correctly detected events (%) 98.6%
mean duration detected events (sec) 209.28
fpsD sd duration detected events (sec) 18.52
min duration of detected events (sec) 141.89
max duration of detected events (sec) 252.99

CTS! correctly detected 986 vulnerable interface events out of 1000 events, that is, 98.6%
(fpsC). Moreover, CTS! estimates that a vulnerable interface configuration lasts on average
209.28 seconds (fpsD) which means that CTS! underestimates a vulnerability event on
average by 0.47 seconds.

5.6 Continuously testing user input validation

In this section, we present the test CTY! which aims at continuously checking whether a
cloud service always validates user input. After having described the property user input
validation in context of a cloud service and outlining the test scenario, we discuss the general
characteristics of the test scenario (Section. Then we detail the design of CTY! (Section
[5.6.3) and, finally, describe its implementation as well as experimental results (Section [5.6.4)).
Parts of this section have been published in [249]].

5.6.1 Property description and overview of test scenario

As already described as part of the background on cloud services (see Section [2.1.1)),
Software-as-a-Service (SaaS) are applications which are deployed on remote infrastructures
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and which are usually accessible through interfaces such as browsers or standalone program
interfaces. The control of the customer over the application is usually confined to
configurations of user-specific application settings [10]. Providing as well as using SaaS
or SaaS-based applications thus requires comprehensively employing web application
technologies, e.g., JavaScript, JSON, HTML and CSS. As a result, SaaS inherits potential
web application vulnerabilities, for example, they can be vulnerable to SQL injections or
session hijacking [279].

The Open Web Application Security Project (OWASP) defines a list of ten categories
of web application vulnerabilities which are supposed to contain the most frequently found
vulnerabilities in the wild [280]]. The category Al - Injection leads that list, thus making
it the most prevalent type of web application vulnerability. While Injection covers various
types of vulnerabilities, e.g., SQL, OS commands and LDAP injection, SQL injection (SQLI)
is among the most common type of vulnerabilities which web applications possess. If a web
application is vulnerable to SQLI, then malicious code can be inserted into query strings
which are parsed and executed by the SQL server, potentially leading to, e.g., disclosure of
confidential data stored in SQL database or bypassing user authentication [281]].

Consider, as an example, that at some point in time auditing a SaaS application reveals that
it possesses SQL injection vulnerabilities. Let’s assume that, as a reaction, data sanitization
is implemented at the database layer using stored procedures which depicts one possible
countermeasure. However, if this SaaS application makes use of frameworks such as Ruby
on Rails{g_fl, then changing the database used by the application’s controller is achieved
through simple configuration changes. In case the newly deployed database does not use
the previously introduced stored procedures to sanitize user input, then previously fixed
SQLI vulnerabilities are reintroduced. Further, a SaaS provider does not need to possess
the resources which are used to create and deploy the web application components but may
leverage a Platform-as-a-Service (PaaS) provider such as Google App Engine{g_ﬂ As aresult,
another layer of abstraction is added to the architecture of the SaaS application where changes
in the back end rendering the SaaS application vulnerable are hard to detect, even for the
SaaS provider herself.

Checking SQLI vulnerabilities of SaaS applications thus requires an approach capable of
continuously, i.e., automatically and repeatedly check whether the cloud service validates
user input. To that end, we propose the test CTY! which continuously tests web application
components of a SaaS application for SQLI vulnerabilities.

In summary, this test work as follows (a detailed description of the test will be provided
in Section[5.6.3)): Every 30 seconds, it uses a URL of the cloud service under test to scan this
endpoint for SQLI vulnerabilities. If any vulnerabilities are indicated by the scan, then the
test fails, otherwise it passes. The test results produced by CTY! aim at counting the times
during which the cloud service is vulnerable to SQLI within a particular period of time.

5.6.2 General characteristics of the test scenario

This section describes the general characteristics of the scenario to continuously test user
input validation of SaaS application components.

Zhttp://rubyonrails.org/ [Accessed: 2018-12-13]
93https ://cloud.google.com/appengine/ [Accessed: 2018-12-13]
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5.6.2.1 Cloud-specific controls

The control RB-21: Handling of vulnerabilities, malfunctions and errors — check of open
vulnerabilities of BSI C5 [31]] requires that

"The IT systems which the cloud provider uses for the development and rendering
of the cloud service are checked automatically for known vulnerabilities at least
once a month.

In the event of deviations from the expected configurations (for example, the
expected patch level), the reasons for this are analyzed in a timely manner and
the deviations remedied or documented according to the exception process (see

SA-03).".

The test CTY! can support the certification of a cloud service according to this control
because it automatically checks if a cloud service has known SQLI vulnerabilities. Note that
RB-21 itself demands that testing for vulnerabilities should be at least conducted monthly.

Another control whose evaluation can be supported by CTY! is TVM-02: Threat and
Vulnerability Management Vulnerability / Patch Management of CSA’s CCM [22]. The BSI
maps its own control RB-21 to TVM-02. One part of the latter one requires that

"Policies and procedures shall be established, and supporting processes and
technical measures implemented, for timely detection of vulnerabilities within
organizationally-owned or managed applications, infrastructure network and
system components (e.g., network vulnerability assessment, penetration testing)
to ensure the efficiency of implemented security controls. A risk-based model for
prioritizing remediation of identified vulnerabilities shall be used |[...].".

Finally, both TVM-02 of CCM and RB-21 of BSI C5 map themselves to the control
A.12.6.1 Management of technical vulnerabilities of ISO/IEC 27001:2013 [24]. The last
two controls, i.e., TVM-02 of CCM and A.12.6.1 of ISO/IEC 27001:2013 go beyond mere
testing for vulnerabilities of an information system or cloud service by also requiring
risk-driven remediation of detected vulnerabilities. However, both include timely detection
of vulnerabilities a cloud service may have which can be supported by the test CTY7.

5.6.2.2 Supported cloud service models

As already pointed out in the introduction of this test scenario, the test CTY/ can be used to
continuously check if SaaS applications are vulnerable to SQLI, that is, if a SaaS application
validates user input. It cannot be used with PaaS applications or IaaS because neither of
these provide their services through a web browser.

We note that providers of IaaS and PaaS applications may offer to manage their services
through browsers, e.g., Amazon’s AWS Management Console. Such administration interfaces
are web application which can be considered SaaS applications. However, the actual cloud
service provided by IaaS and PaaS providers is not used by customers through a browser.

5.6.2.3 Implementation independence

The test CTY! can be used with any SaaS application, that is, the part which uses
web application technology and has some means to accept user input, e.g., text fields.
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Further, CTY! is agnostic to specific database back ends such as PostgreSQI@ MySQ[El,
MariaSQIE] or SQLit which process user input provided to a SaaS application. All of
these SQL database implementations may possess some known SQLI vulnerability which
CTY! aims to detect.

5.6.2.4 Minimally invasive integration

Although it is a possibility to deploy the implementation CTY! as an additional component
of the Saa$S application, this is not required in order for CTY! to produce test results. If the
SaaS application’s web server can be reached from any remote host, then no change of the
SaaS application’s configuration or composition is required in order for a remotely deployed
CTY! to work correctly. However, if the access to the application is somehow restricted,
for example, if it is only accessible within an internal network, then the host on which the
implementation CTY! is deployed has to be granted access to that network as well. Similarly,
if firewall rules limit access to an IP address range, then traffic from the IP from which CTY!
sends requests to the SaaS application has to be permitted by the firewall.

5.6.3 Test design

In this section, we describe the test CTY! according to the framework introduced in the
Chapter Note that configurations of CTY! described hereafter are example values (e.g.,
the value configured for test suite offset) which can vary with the concrete test’s use case and
the interpretation of the controls whose validation it aims to support.

5.6.3.1 Test case

The test CTY! consists of only one test case which is defined as follows:

TCSCL =(E,L,O,N)
=(scan_target_url),
=((target_url, session_cookie, target_data)),

=(assert_empty_scan_results), 1).

The test case TCS2L uses only a single procedure (E) which scans a target URL for
SQLI vulnerabilities. To that end, the test case needs the input parameters (L) target_url,
session_cookie, and target_data. The cookie serves to provide some valid session information
if required, thus allowing the scan for SQLI vulnerabilities to be executed within a particular
user session which potentially has access to other fields than a user who is not logged
in. Further, the parameter target_data specifies which information a scan should retrieve
in case a SQLI is found, e.g., list of database users or list of tables. In order to evaluate
the results produced by the test case, we define a single oracle (O) using the assertion
assert_empty_scan_results. Therefore, an instance of TCS2L passes if a scan does not return
any results, that is, does not retrieve any specified target data. Lastly, the ordering number
(N) of TC59% is 1.

Mhttps://www.postgresql.org/ [Accessed: 2018-12-13]
95https ://vww.mysql.com/ [Accessed: 2018-12-13]
9https://mariadb.org/ [Accessed: 2018-12-13]
9https://www.sqlite.org/ [Accessed: 2018-12-13]
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5.6.3.2 Test suite

The user input validation test consists of the following single test suite:

TSSCL) —(TC,I,F,T)
=((TCSCLY, +00,2, (30)).

The single test case TCS2L of CTY! is bound to the test suite TSS2L) . Its number of
successive execution (/) is set to +oo indicating that test suite’s execution can be triggered
infinitely unless interrupted by the workflow. Further, execution of this test suite is triggered
statically every 30 seconds (7') after the previous test suite run completed. Lastly, there is an
additional two seconds offset (F) between successive test suite runs.

5.6.3.3 Workflow

Since CTY! only consists of one test suite, the workflow we use to control the execution of
test suite runs is the most basic one (Figure . It simply triggers execution of TS¢S@L)
after the specified interval between test suite runs has elapsed. This means that the result of
the test suite does not affect the repeated execution of test suite 7.5 (SCL),

[Iteration >= 1]
o — T5(SaL @

[test result == true Il test result == false]

Figure 5.12: Workflow of continuously testing user input validation (CTY7)

5.6.3.4 Test metric

The continuous test CTY! aims at determining the number of times a cloud service of type
SaaS was vulnerable to SQLI within a particular period of time. To that end, we draw on the
universal metric fpsC which counts the occurrences of Failed-Passed-Sequences (fps). In
context of our test CTU!, a single fps is the time where execution of TCS@L failed at least
once and then passed, that is, the scanning of the target URL revealed SQLI vulnerabilities
at some point in time which were fixed later on. Now these vulnerabilities may persist for
some time which, in turn, leads to multiple, successive failed test suite runs. Once the test
suite run passes, i.e., the SQLI vulnerabilities were fixed, a single instance of test metric
fps is produced. Counting any observed fps thus gives us the times during which the SaaS
application was vulnerable to SQLIL.

5.6.4 Implementation and experiment

This section describes implementation as well as experimental evaluation of our approach to
continuously test user input validation of SaaS application components.

5.6.4.1 Environment and setup

Hereafter, the main components of the experiment are outlined.
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Cloud service component under test We select an instance of the Damn Vulnerable Web
Application (DVWA which is deployed on an instance of OpenStack Mitaka with 2 vCPUs
and 4 GB RAM and 40 GB volume (disk) running Ubuntu 15.10 Server as an example of a
SaaS application component. Moreover, the instance is associated with a publicly reachable
IP address and its security groups are configured to permit traffic via HTTP and via SSH
from and to the host where the continuous test is deployed (see paragraph Deployment of
continuous test below).

Furthermore, DVWA is a PHP-based web application which is intentionally set up to be
vulnerable to different types of attacks, including SQLI. It is usually used for educational
purposes, giving students the opportunity to learn how vulnerabilities of web applications
can be exploited. To that end, vulnerabilities of the DVWA are configurable, i.e., can be set
according to the required sophistication needed to be successfully exploited.

Test case implementation We use SQLMap’| to implement the test case TCSCL, a
popular tool specifically and solely targeting SQLI discovery. It supports various attack
method@ including UNION query-based, stacked queries, out-of-bound, boolean-based
blind, time-based blind and error-based attacks.

SQLMap works as follows: It is provided a URL which serves as the attack target,
in our case a URL where the SaaS application can be reached. SQLMap then tries to
guess which back end database management system (DBMS) the SaaS application uses.
Based on this guess, SQLMap attempts to attack the DBMS using attack vectors specific
to the presumed DBMS. In case of a successful attack, SQLMap can fetch data from the
compromised database, for example, users, the name of current database in action, or the
schema of database.

SQLMap is usually used interactively by a human user, e.g., a penetration tester, who
operates the tool and evaluates its output. However, it also exposes most of its features
through a RESTful API which we use to implement the test case TCS2L. More specifically,
we developed a library which is used by TCS2Z to call the SQLMap RESTful endpoints
and parse as well as evaluate the output returned by SQLMap. The following API calls are
required to execute a vulnerability scan: First, a new SQLMap scan task is initiated, then
the options for that task are set, and thereafter the scan execution is triggered. While the
scan is running, we periodically check whether the scan is finished and, if so, fetch the result
produced by SQLMap. Finally, the scan task is deleted to free system resources bound to
the scan task by SQLMap. Lastly, scanning multiple endpoints of a SaaS application is also
supported by TCS2L through assigning each scan a unique ID.

In case of successful exploitation of the SaaS application, then SQLMap returns the
current DBMS user, a list of tables and a list of database users. This means that the SaaS
application is vulnerable to SQLI and thus the test fails. Otherwise, if SQLMap does
not return any of the above information, then we consider the SaaS application not to be
vulnerable and the test passes.

Deployment of continuous test The test CTY! is deployed on a different host which is
attached to a different network than the host of the service component under test. However,
both hosts are located in the same building.

Bhttp://www.dvwa. co.uk/|[Accessed: 2018-12-13]
https://www.sqlmap.org [Accessed: 2018-12-13]
100For a comprehensive introduction into different SQLI attack types see, e.g., Halfond et al. [281]).
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Inducing SQLI vulnerability events In order to trigger temporary vulnerabilities of the
DVWA which our test CTY! aims to detect, we edit the configuration file of DVWA, thereby
rendering it vulnerable for some predefined period of time. Then, we change the configuration
file of the DVWA again, this time making it secure against SQLI. In total, we trigger 500
sequential events during which the DVWA is vulnerable to SQLI. Each of these vulnerability
events lasts at least 60 seconds and an additional [0, 10] seconds selected randomly per event.
Further, the interval between consecutive vulnerability events is at least 60 seconds plus
selected another [0, 30] seconds at random. The accumulated duration of all vulnerability
events was 32474.68 seconds (= 9 hours 1 minute 14 seconds), mean duration of each
vulnerability events was 64.95 seconds with a standard deviation of 3.11 seconds.

5.6.4.2 Experimental results

Table shows the results which CTY! produced: The total number of times the test suite
TS(SCL) was executed is 1337. Each execution of a test suite or a test took 20.25 seconds on
average with a standard deviation of 19.54 seconds. Out of the 500 temporary vulnerability
events of the DVWA, the test CTY! correctly detected 395 or 79%.

Table 5.5: Test statistics and results of continuous test CTY/

number of tests 1337
mean duration test (sec) 20.25
sd duration test (sec) 19.54
min duration test (sec) 6.02
max duration test (sec) 101.14
number of induced events 500
number of detected events 395
detected events (%) 79

5.7 Summary and discussion

In this chapter, we presented five example test scenarios to show how the framework introduced
in Section 4.3|supports continuous certification of cloud services. These scenarios exemplify
how to design and implement continuous tests of the following cloud service properties:

* Availability,

* location,

* secure communication configuration,

* secure interface configuration, as well as
* user input validation.

We explained how testing these cloud service properties can support continuously certification
according to example controls selected from

* the Cloud Computing Compliance Controls Catalogue (BSI C5),
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¢ the Cloud Control Matrix (CCM) of the Cloud Security Alliance (CSA), and

* ISO/IEC 27001:2013 published by the International Organization for Standardization
(IS0O).

At this point, a legitimate criticism of such a scenario-driven approach is if it may fall short
with regard to completeness and thus may be insufficient to demonstrate the applicability
of our framework in general. In order to counter this argument, we identified four general
characteristics to describe continuous test scenarios. These characteristics allowed us to
reason about the applicability of our framework beyond the scope of the example scenarios.
These characteristics include:

Plausible link to cloud-specific controls,
* supported cloud service models,

* implementation independence, and

* minimally invasive integration.

We described each of the five example test scenarios according to these characteristics.
That way, we are able to compensate for potential shortcomings of using a scenario-driven
approach to demonstrate the applicability of our framework.

We note that our approach does not guide the selection of those cloud service properties
which are most relevant in context of a particular scenario. Having such a method would
allow designing and implementing test scenarios which are bound to real-world use cases and,
therefore, further support demonstration of our framework’s applicability. In this context, the
possibility to design scenario-specific metrics using our framework could be shown, e.g., by
implementing a metric which quantifies the security level of a TLS configuration within the
secure communication configuration scenario.

Furthermore, we note that only considering minimally invasive test designs has limitations
as to which data, that is, which evidence can be produced and analyzed. As a result, the
quality of statements and possibly also the scope of controls which can be evaluated using
minimally invasive tests is limited as well. However, we do not provide a method to formalize
these restrictions which would help reasoning about the applicability of minimally invasive
continuous tests in general, independent of concrete test scenarios. Developing such an
approach is not in scope of this thesis and thus subject to future work.






Chapter 6

Definition of continuous tests

In the previous chapters, we described a framework to design tests which supports continuous
test-based certification of cloud services (Chapter[d)) and demonstrated its application (Chapter
). This framework does not mandate a particular architecture prescribing how to implement
continuous tests. Yet when using tests to automatically and repeatedly produce evidence, it is
vital to unambiguously define how evidence is produced to check one or more controls at a
certain point in time; only then can we rigorously compare the evidence produced by different
test implementations. In order to guide development of tests according to our framework,
this chapter introduces an approach to rigorously define such tests. This addresses Research
challenge 2: Definition of continuous tests described in Section [[.2.2]

A method to ensure rigorous definition of continuous tests can make use of formal
languages because these languages are based on precise mathematical definitions [282].
Drawing on that notion, this chapter presents a domain-specific language (DSL) called
ConTest. ConTest is a descriptive language which, on the one hand, is agnostic to a specific
implementation of the framework’s building blocks introduced in the Section #.3] One
example implementation of the framework is Clouditor’s engine which is described in Section
.4] On the other hand, ConTest serves as a starting point to generate concrete configurations
for any specific implementation of a continuous test, for example, test configurations for
Clouditor’s engine. That way, ConTest serves as a unified configuration language ensuring
that the configuration of a continuous test implementation adheres to the building blocks
defined in Section 4.3

The next section outlines concepts needed to develop domain-specific languages.
Thereafter, in Section[6.2] the DSL engineering process described by Mernik et al. [283]]
is followed to develop ConTest (an outline of this process is described in Section [6.1)):
First, the decision why to develop a DSL is explained (Section followed by the
analysis of the required constructs (Section [6.2.2) which draws on the build blocks defined
in Section 4.3 On this basis, Section[6.2.3|formally defines the grammar of ConTest using
Extended Backus-Naur Form (EBNF). Using this formal definition, Section [6.2.4] describes
the implementation of ConTest using the language development tool XTex@ and shows how
to use code generators to translate from a test definition written in ConTest to a Clouditor test
configuration, one example of a concrete test configuration language. Finally, Section[6.3|
summarizes the contents of this chapter and discusses the approach.

101https://eclipse.org/Xtext/ [Accessed: 2018-12-13]
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6.1 Developing domain-specific languages

As the name indicates, domain-specific languages (DSLs) are specialized languages which
are tailored to a particular application domain [283]]. This specialization comes at a price:
A DSL trades flexibility of general purpose languages (GPLs) to express any program for
productivity and conciseness to construct programs which solve a domain-specific set of
problems. To that end, DSLs provide features that are optimized to solve such domain-specific
problems [284].

Yet a clear distinction between DSLs and GPLs is not trivial. Some attempts to measure
the specificity of a language have been made [2835]], providing intuitive results such as
Backus-Naur Form (BNF) and C++ each are rather at the end of the spectrum where Cobol
would be closer to C++ than to BNF. Other approaches argue that domain-specificity of
languages is rather gradual and rely on a qualitative distinction based on criteria such as
language size or Turing Completeness [284].

The motivation why to use a DSL varies. Usually, the aim is to improve productivity and
reduced maintenance compared to using GPLs. This has been shown to be true in some cases,
e.g., by [286] and [287]]. Another driver is that a DSL can reduce the amount of domain
and programming expertise required, thereby making the application domain accessible to a
larger group of developers [283]].

The question at this point is what advantages does a DSL provide to define continuous
tests? The answer is that it permits us to choose a level of abstraction which allows us to
specify all important parts of a test while — at the same time — it is agnostic to a particular
implementation of the building blocks of the framework described in Section Thus, a
DSL provides strict rules to define a continuous test in general while a developer seeking
to implement a continuous test can use the DSL as a starting point to identify constructs
necessary to configure the specific continuous test.

But how do we define a suitable DSL? We will address this question in the following
two sections: First, we will describe the DSL engineering process as proposed by Mernik et
al. [283]] (Section[6.1.1)). Thereafter, we will outline the core concepts of formal languages,
explain context-free grammars and introduce EBNF as a syntax specification formalism

(Section[6.1.2).

6.1.1 DSL engineering

There are multiple steps involved when developing a domain-specific language. In the
following, we describe the steps involved in DSL engineering which were proposed by Mernik
et al. [283]]:

1. Decision: First, developing a new DSL or identifying an existing DSL to reuse has
to be properly motivated because it initially incurs additional effort. Such motivating
factors can be driven by cost saving, e.g., a DSL helps eliminating repetitive and thus
time-consuming tasks, or by correctness, e.g., facilitate the correct configuration of an
application.

2. Analysis: In this step, the domain for the which the DSL should be developed is
identified, scoped, and described. To that end, inspection of existing GPL code,
technical documentation, and interview with domain experts can provide the needed
input for analysis. The result of this analysis is a description of the domain-specific
terminology and semantics.
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3. Design: When designing the DSL, there are two major approaches which can be
followed: The first one is to base the DSL on an existing language where we can either
use some features of the existing language (piggyback), restrict the existing language
(specialization) or extend the existing language (extension). The second option to
design a DSL is to build it from scratch, i.e., the design does not relate to any existing
language.

Having decided whether to invent a new language or to build on an existing one, the
next step consists of defining the language. This can be done formally or informally.
In the latter case, natural language can be used to describe the features of the DSL to
be developed. However, this approach will not suffice if the goal is to build a DSL that
can actually be consumed by an application. Thus we need to formally describe the
syntax of the DSL which can be achieved using, e.g., EBNF, which we will describe in
Section

4. Implementation: Having designed a DSL, the question in this step is how to implement
the DSL. According to Mernik et al. [283]], this include, for example, selecting one of
the following approaches:

* Compilers which translate the DSL constructs to an existing language’s constructs
and library calls (also known as application generators),

* interpreters which recognize DSL constructs and interpret them,

* embedding where DSL constructs, i.e., data types and operators are defined using
constructs of an existing GPL, or

* compiler or interpreter extensions where the compiler or interpreter of an existing
GPL is extended with code generation required for the DSL.

Note that the implementation type embedding is also referred to as internal DSL
whereas an external DSL is represented in a language different to main programming
language it is interacting with [288]].

Finally, implementing a DSL using a compiler or interpreter has many advantages,
e.g., the syntax can be close to notations used by domain experts. Yet it also bears
disadvantages such as a complex language processor may have to be implemented.
However, these disadvantages can be limited or eliminated if language development
tools are used which automate most of the language processor construction [283]].
Examples for such tools are XText@ Spoofax@ or MPSPT_m-l

Now that we outlined the main steps of the DSL engineering process, the next section
introduces the necessary concepts of formal languages which are required to formally define
a DSL.

6.1.2 Formal languages

A formal language L is defined by an alphabet £ and a grammar G. The alphabet X is a set
whose elements are called symbols. A finite sequence of symbols from X are called word.

102https ://eclipse.org/Xtext/ [Accessed: 2018-12-13]
103t tps: //www.metaborg.org/|[Accessed: 2018-12-13]
104h ¢ tps: //www. jetbrains. com/mps/ [Accessed: 2018-12-13]
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The grammar G specifies which sequences of symbols are well-formed, that is, which word
belongs to the language L.
A grammar G is defined by the 4-tuple (N, T, R, S) where

* N is the set of nonterminals, i.e., variables that represent language constructs,

* T is the set of terminals which is identical with the alphabet X of the language L (note
that the set of nonterminals and terminals must not intersect, i.e., N N T = (),

* R is the set of productions which follow the form / — r. Both / and r are sequences of
nonterminals and terminals with / containing at least one nonterminal, and

e S is anonterminal, i.e., S € N which constitutes the start variable.

6.1.2.1 Extended Backus-Naur Form

The Backus-Naur Form (BNF) is a technique to define context-free grammars [289]]. The
BNF can be viewed as a domain-specific language itself which was developed to ease syntax
specification [283]]. Building on the BNF, the extended Backus-Naur Form (EBNF) [290]
has been developed and standardized in ISO/IEC 14977:1996 [291]. As an example, consider
the following context-free grammar G of the language L = {a*b*|k > 1}:

* N=S§
e T ={a b}
* R={(S — aSh),(S — ab)}
e §=S
Thus deriving the word w = aaabbb works as follows:

S = aSb = aaSbb = aaabbb.

When using BNF to represent the grammar of this language, we first have to lay out some
syntactic conventions: Usually, the symbol *::=" is used for productions instead of *—’.
Furthermore, the symbol ’|” is used to represent alternative derivations in a more efficient way
than stating alternative productions separately. Other variations include enclosing terminals
in quotes to distinguish them from nonterminals which are enclosed with angle brackets, i.e

’()’. Using BNF, the context-free grammar to generate L can be described as
(8) ::="a’SD'|'a"b’.

The EBNF further improves efficiency of defining context-free grammars. It should be noted
that — despite the standardization effort in ISO/IEC 14977:1996 — there is no universally
accepted variant of EBNF. We choose a version whose syntax is very similar to the one used
by xTexm an open source framework to implement domain-specific languages, which we
will use later to implement our test definition language (see Section[6.2.4). Also, this EBNF
version is used to define the formal grammar of XML [292]]. The most important extensions
to syntactic conventions of BNF are the following:

105https://eclipse.org/Xtext/ [Accessed: 2018-12-13]
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* Nonterminal symbols are not enclosed with angle brackets (as indicating terminal by
single or double quotes is unambiguous),

* the ’?’ operator indicates that the symbol to the left is optional,
* the **’ operator defines that the symbol to the left can occur zero or multiple times, and
¢ the ’+ operator defines that the symbol to the left occurs one or multiple times.

Using this variant of EBNF, we can define the grammar of language L as follows:

Su=aS=b.

6.2 Continuous test definition language

This section describes the development of a domain-specific language called ConTest. This
language aims at supporting the rigorous, unified definition of continuous tests. The structure
of this section follows the DSL engineering process described in Section[6.1.1]

6.2.1 Decision

As already pointed out in the beginning of Chapter [6] the motivation to develop a DSL to
define continuous tests lies in having an approach at hand to specify all required parts of
such a test in general. This not only paves the way for comparability of evidence produced by
different test implementations but also guides the development of test implementations: If a
developer decides to design and implement a continuous test, then she uses ConTest to make
sure that the configuration of the test implementation indeed adheres to the building blocks
introduced in Section 4.3l

Since the DSL is defined by a formal grammar, the guarantee of a test implementation
conforming with the framework is not merely informal but is enforced through code generators:
The developer has to provide a code generator which translates the constructs of ConTest
into the target language constructs, that is, the language the specific implementation uses
to configure a continuous test. Put differently: Any specific test implementation has to be
configurable using a test definition written in ConTest. This implies that a suitable application
generator exists which translates the constructs of ConTest into the language constructs which
a particular test implementation uses.

6.2.2 Analysis

In order to identify the required constructs which ConTest should provide, we draw on the
description of the building blocks of our framework to support continuous test-based cloud
service certification described in Section 4.3

e Test case: Recall that a test case T'C consists of four elements: Procedures (E), an
ordered list of input parameters (L), an oracle (O) and an ordering number (N):

TC = (E,L, O, N).

As the name implies, procedures describe the actual steps taken during a test case.
Including such procedural details in a descriptive test definition language is unnecessary
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because the implementation of the procedures is left the developer implementing the
test. Rather, we summarize all procedures of a test case by a construct named
TestCaseModule which points to a particular component of the test which implements
the necessary procedures.

Regarding the list of input parameters which are used as input to the procedures, we
include those in the test definition language. A test implementation can then pass the
values specified for input parameter to the TestCaseModule.

Test oracles are mechanisms to decide whether a test passes or fails. Similar to the
case of procedures, we do not include a procedural description of the oracle in the test
definition language since the actual evaluation of test case results is left to the concrete
implementation. Yet defining parameters which the oracle uses to reason about test
results, e.g., in form of Boolean expressions, is needed. To that end, we include a list
of assert parameters which a test implementation passes to the test oracle.

The ordering number is used to prioritize test cases’ execution as part of a test suite.
The ordering number is included in the test definition language.

Finally, each instance of a test case that is specified as part of a continuous test
definition has to be addressable through a unique ID (unique in scope of the test
definition instance).

Test suite: One or more test cases (7 C) are combined to a test suite which also consists
of the number of iterations (/), an offset (V) and the interval (T):

TS =(TC,IF,T).

Test cases which are part of a test suite have to be included in the test definition. We
described which part of a test case has to be represented by the test definition above.
In order to bind a test case to a test suite within a continuous test definition, the unique
ID of a test case is used.

The iterations of a test suite, that is, how many times the test suite can be successively
executed during a continuous test as well as the offset, i.e., the fixed waiting time
between two test suite executions are included in the test definition. Also the inferval
between two text suite executions is specified as part of the test definition where it is
important to support either specifying a fixed interval, the range from which a random
value for the interval is selected or individually fixed intervals depending on the current
iteration.

Finally and similarly to the test case definition, each instance of a test suite requires a
unique ID in scope of the test definition.

Workflow: Deciding what test suite to execute next is the responsibility of the workflow.
A continuous test uses exactly one workflow.

A test definition does not include the procedural elements of a workflow but only a
pointer to the WorkflowModule which a specific test implementation uses. Furthermore,
a test definition includes the test suites which a workflow may use. To that end, defined
test suites are bound to the workflow using their unique ID.

Test metrics: Test metrics allow us to reason about a sequence of test results produced by
a continuous test. A continuous test may compute one or more test metrics. The actual
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procedures which a test metric may use are not included in the continuous test definition
because those are specific to a test implementation. Similar to a workflow definition
and test case definitions, defining test metrics includes a pointer to TestMetricModule,
i.e., the part of the test implementation where the test metrics are actually computed.

* Precondition: In order to test assumptions made about the environment of the cloud
service under test, preconditions are used. Since preconditions can be either be
designed as a specialized test suite or as precondition test cases (for further details see
Section[4.3.6)), no additional constructs for a continuous test definition are needed.

6.2.3 Design

The context-free grammar which generates ConTest is shown in Listing[6.1] Terminal symbols
are bold to improve readability of the grammar. Hereafter, the grammar is explained line
by line, thereby relating the designed constructs to the analysis conducted in the previous
section.

The start symbol of ConTest’s grammar is ConT est from which the first rule derives the
variable Test. The rest of the grammar of ConT est is built as follows:

e Lines 3t09: Test is defined by the ‘T estI D’ which is followed by the variable /D which
assigns a unique Id to a continuous test. Further, 'Test Name’ and ‘TestDescription’
each are followed by the variable String providing a descriptive name and a brief
description of the test, respectively. Further, Test is defined by exactly one Work flow
and by one or more TestMetric. Definitions of these two variable are provided in the
following two paragraphs.

e Lines 11 to 16: TestMetric is defined by a unique 'TestMetricI D’ which is followed
by the variable ID. Also, TestMetric is defined by the terminals 'TestMetricName’,
"TestMetricModule’, and ’'Description’ each of which — while grouped with
curly braces ’{’ and '}’ for better comprehensibility — is followed by the variable
String. Whereas 'TestMetricName’ and 'Description’ are self-explanatory, the
String following 'TestMetricModule’ specifies the component of a concrete test
implementation which implements the desired test metric, e.g., a particular Java class.

* Lines 18 to 22: Similar to TestMetric, the variable Work flow is defined by
the terminals "Work flowID’ followed by ID, as well as 'Work flowName’, and
"Work flowModule’ which are each followed by the variable String. Similar to
"TestMetricModule’, the "Work flowModule’ defines the component of a specific
test implementation. Further, Work flow is defined by one or more TestSuite —
following the terminal 'BoundT estSuites’ — which are enclosed by curly brackets for
better readability.

e Lines 24 to 37: TestSuite is defined by the terminals ‘TestSuitel D’ followed by ID
and 'TestSuiteName’ followed by the variable String. Also, TestSuite is specified
through’NumberO f MaxIteration’ followed by either the variable Int which specifies
the upper bound of successive iterations a particular test suite can be executed during
a continuous test or by the terminal ‘in finite’ indicating that a testsuite’s successive
iterations are to set to (positive) infinity.
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Next, there is the terminal 'Interval BetweenT ests’ which is followed by either the
terminal ’ fixedInterval’ with variable Int, by ‘'randomizedInterval’ with Range or
by ‘sequenceFixedInterval’ with variable ListInt. These alternatives conform with
the interval settings of a test suite described in Section[d.3.3} If the interval is fixed,
then the interval until the next test suite is executed after the previous one completed
is static and defined in seconds by Int. If the time to trigger execution of a test suite
is chosen randomly from a range of possible values (also seconds), then this range is
defined by Range. A special case occurs if each iteration has its own fixed interval,
e.g., a test suite which is set to three successive executions where each interval prior to
each execution is still fixed, i.e., not chosen randomly, but each interval assumes an
individual value depending on the current iteration of the test suite. Covering this case
in ConTest, we use the terminal 'sequenceFixedInterval’ with variable ListInt.

Further, TestSuite is defined by the terminals 'O f f set” and "Timeout’ each of which is
followed by the variable Int. As described in Section[4.3.3] offset is a fixed time added
to the interval between successive test suite runs to avoid successive tests affecting each
other. The timeout is the time a test suite run has to successfully complete, otherwise it
is interrupted by the workflow. This is particularly important if external tools such as
Nmap'%|are used by the continuous test which may have errors that lead to test cases —
and thus test suites — not completing.

Finally, Testsuite is defined by the terminal ' BoundTestCases’ which is followed by
one or more TestCase. The definition of TestCase is provided in the next paragraph.

Lines 39 - 46: TestCase is defined by a unique 'TestCaselD’ followed by ID as
well as 'TestCaseName’ and ‘TestCaseModule’ each of which is followed by the
variable String. Also, TestCase is defined by 'Order’ followed by Int and the optional
"Input Parameters’ followed by the variable Parameter. This means that specifying
input parameter for a test case are not required by any implementation of a test case.
Further, the pointer to a particular test case implementation is assigned to the variable
String following the terminal ‘TestCaseModule’.

Finally, TestCase is defined by the terminal ’Assert Parameters’ which is followed
by at least one Parameter or more. Having at least one assert parameter is required
since we need the assert parameter to be able to decide whether a test case passed or
failed. Parameter is defined one or more KeyValue whose key is the variable String
and whose value is either defined by the variable ListString or ListInt. Parameter is
defined by one or more KeyValue whose key is the variable String and whose value is
either defined by the variable Int, String, ListString or ListInt. This corresponds to
our definition of test cases provided in Section f.3.2] where we introduced the concept
of oracles, that is, methods determining whether a test case failed or passed. Thus
"AssertParameters’ specify the input values which are provided to test oracles.

Lines 48 - 71: The variables Digit, Letter, and Symbol are only defined by terminal
symbols (Lines 64 - 71). They are used to construct String, Int, ID, KeyValue,
ListString, ListInt, Range and Parameter (Lines 48 - 62) which are primitive and
composite data types of ConTest.

106Kt tps://nmap.org/ [Accessed: 2018-12-13]
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Listing 6.1: Context-free grammar of ConTest using Extended Backus-Naur Form (EBNF)

| ListInt) *>°

1 | ConTest = Test

2

3 | Test = *TestID’ 1D

4 >TestName’ String

5 ’Description’ String

6 *Testmetrics’

7 > TestMetric+ ’}

8 *Workflow’

9 ' Workflow ’§

10

11 | TestMetric::= *TestMetricID’ 1D

12 ’{’

13 *TestMetricName’ String

14 *TestMetricModule’ String

15 ’Description’” String

16 9}v

17

18 | Workflow ::= *WorkflowID’ 1D

19 ’WorkflowName’ String
20 ’WorkflowModule’ String
21 ’BoundTestSuites’
22 * TestSuite+ )
23
24 | TestSuite ::= TestSuiteID’ ID
25 9{’
26 *TestSuiteName’ String
27 ’NumberOfMaxIteration’ Int | ’infinite’
28 ’IntervalBetweenTests’
29 ’{’
30 (’fixedInterval’ Int
31 | ’randomizedInterval’ Range
32 | ’sequenceFixedInterval’ ListInt)
33 ’}5

34 *Offset’ Int

35 ’Timeout’ Int

36 ’BoundTestCases’ ’{° TestCase+ ’}

37 v}’

38

39 | TestCase ::= *TestCaseID’ 1D
40 ’{5
41 *TestCaseName’ String
42 *TestCaseModule’ String
43 ’Order’ Int
44 (’InputParameters’ ’{° Parameter+ ’}’)?
45 ’AssertParameters’ ’{” Parameter+ ’}
46 9}’
47
48 | Parameter ::= KeyValue (’’ KeyValue)x
49
50 | KeyValue ::= ’<’ String 2 ( Int | String | ListString
51
52 | ListString::= ’[° String (’’ String)* ']
53
54 | ListInt o=’ Int (°) Int)x °]
55

56 | Range := P Int % Int °)

57

58 | String i:= "’ (Letter|Int)(Letter|Int|Symbol)x’""
59

60 | ID ::= (Letter| Digit) (Letter|’="| Digit)+
61

62 | Int ::= Digit | Int Digit

63

64 Digit s ’0’|,1’|’2’|’3’|’4’|’5,|’6’|’7’|’8’|’9’
65

66 Symbol s ’(9|s)’|,<$|s>9|399|9’3|3=’|9|s|3_3|’:s|3’5|s;’|9\75
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67

68 Letter ci= ’A’l’B’l’C’l’D,l’E’l,F,l’G’l,H’l’I’l’J’l’K’l’L’l’M’l’N,
69 I’O’I’P’I’Q’I’R’I’S’I’T’I’U’I’V’I’W’I’X’I’Y’I’Z’I’a’l’b’
70 |’c’|’d’|’e’|’f’|’g’|’h’|’i’|’j’|’k’|’l’|’m’|’n’|’0’|’p’
71 |’q’|’r’|’s’|’t’l’u’I’V’I’W’I’X’I’y’l’z’

Listing [6.2] shows an example test definition of a continuous test which aims to test the
availability of the load balancing component of a cloud service.

Listing 6.2: Example of a continuous test definition using ConTest

1

2 | TestID d9ecdea3 -e9da—-4f78-b041-69b7509¢3462

3 | TestName " AvailabilityTestOfLoadBalancer"

4 | Description "Continuously tests the availability of the load balancing
5 component of a cloud service"

6 | Testmetrics{

7 TestMetricID YearlyAvailability {

8 TestMetricName "YearlyAvailabilityMetric"

9 TestMetricModule "de.fraunhofer.aisec.clouditor.metrics. YearlyAvailabilityMetric"
10 Description "Calculates the ratio between measured

11 downtime since test start and 31557600 seconds in a year

12 of 365.25 days"

13 }

14 TestMetricID DailyAvailability {

15 TestMetricName "DailyAvailabilityMetric"

16 TestMetricModule "de.fraunhofer.aisec.clouditor.metrics.DailyAvailabilityMetric"
17 Description "Calculates the daily availability starting

18 from 00:00 am to 23:59 (UTC)"

19 }

20 |}

21

22 | Workflow {

23 WorkflowID PingTCPAvailabilityWorkflow

24 WorkflowName "BasiclterationWorkflow"

25 WorkflowModule "de.fraunhofer.aisec.clouditor.workflow.BasiclterationWorkflow"
26 BoundTestSuites {

27 TestSuiteID PingTCPAvailabilityTestSuite {

28 TestSuiteName "AvailabilityTestSuite"

29 NumberOfMaxIteration 1000000

30 IntervalBetweenTests {

31 randomizedInterval [30,60]

32 }

33 Offset 15

34 Timeout 600

35 BoundTestCases {

36 TestCaseID PingTest {

37 TestCaseName "PingTest"

38 TestCaseModule "de.fraunhofer.aisec.clouditor.testcases.PingTestCase"
39 Order 1

40 InputParameters {

41 <"count": 10>,

42 <"host": "10.244.250.9">

43 }

44 AssertParameters {

45 <"round—trip —avg—$lte ":"50 ms">,

46 <"round—trip —sd—$Ite ":"25 ms">

47 }

48 }

49

50 TestCaseID TCPTest {

51 TestCaseName "TCPTestCase"

52 TestCaseModule "de.fraunhofer.aisec.clouditor.testcases.TCPTestCase"
53 Order 1

54 InputParameters {

55 <"probe":10>,

56 <"host" :"10.244.250.9" >,
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57 <"port" :22>

58 }

59 AssertParameters {

60 <"response —time —avg—$lte ":"75 ms">,
61 <"response —time —max—$1te ":"100 ms">

6.2.4 Implementation

In order to implement our DSL ConTest, we use the language development tool XTex@
This tool is an open source framework which supports the development and implementation
of domain-specific languages. XText provides various features such as parser generation,
code generator or interpreter. Having provided a sound grammar, it generates Eclipse plugins,
thus integrating with the Eclipse IDE and providing editor features such as syntax coloring,
code completion and source code navigation.

XText uses a proprietary language to specify the grammar of a DSL. However, the
notation of this language is very similar to EBNF. Hereafter, we outline the characteristics of
the language which XText uses to specify a grammarm

» Each rule consists of a name, a colon, the syntactic form accepted by that rule, and is
terminated by a semicolon.

* The semantics of the operators are identical to those the EBNF notation (see paragraph
on EBNF in Section[6.1.2).

* The first rule is similar to the start symbol of a grammar in EBNF and defines where
the parser starts.

» Keywords of a DSL are defined using terminal string literals which are enclosed with
single or double quotes.

Xtext uses a class model to describe the structure of abstract syntax trees (AST). More
specifically, using the Eclipse Modeling Framework (EMF XText stores parsed programs
as in-memory object graphs. These graphs are instances of EMF Ecore models and represent
the AST. Through using these structured data models, XText allows associating semantics of
a meta-model which is accessible through the following additional notation:

* XText uses assignment operators to assign consumed information to a feature of the
currently produced object. Consider the following example:

TestSuite :
"TestSuitelD’ tsrld = ID

bl

10Thttps://eclipse.org/Xtext/ [Accessed: 2018-12-13]

103https ://eclipse.org/Xtext/documentation/301_grammarlanguage.html
[Accessed: 2018-12-13]

1091t tps://eclipse.org/modeling/emf/ [Accessed: 2018-12-13]
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The syntactic declaration for test suites starts with a keyword ‘TestSuiteI D’ followed
by the assignment tsrid = ID. The left-hand side points to a feature ¢srid of the
current object. The right hand side /D in this case is a rule. It can also be a keyword, a
cross-reference (which will be explained in the following paragraph) or an alternative
which consists of any of these options. An assignment is only valid if the return type
of the expression on the right is compatible with the type of the feature. In our above
example, ID returns an EString, therefore the feature ¢sr/d needs to be also of type
EString.

Further, there are different types of assignment operators: The assignment operator
=" means that the feature takes exactly one object, "+=" indicates that a feature can be
assigned a collection of objects, and "?=" expects a boolean feature, that is, the feature
is true if the right-hand side of the assignment was consumed.

* Rules that are enclosed with square brackets "[]" indicate a cross-reference. Cross-referencing

means that instead of assigning an object or a collection of objects to a feature, only a
reference to one ore more objects of the same type written with the square brackets in
the grammar is assigned to a feature. Consider the following example:

TestCase :
'TestCaselD’ name = ID
'TestCaseName’ desc = STRING
TestSuite :
"BoundTestCases’ boundTestCases+ = [TestCase]+

’

As we can see, the feature boundT estCases is assigned one or more TestCase objects
using a cross-reference. Note that, as a default, XText expects the referred object to
have a feature called name which is used for reference.

Implementing ConTest with XText Listing [6.3] shows the XText grammar for ConTest.
Note that definitions of STRING, and INT are not included in this grammar since these rules
are provided by the grammar org.eclipse.xtext.common.Terminals, a standard set of
terminal rules supplied by XText.

When comparing this grammar with the EBNF representation of ConTest (Listing|[6.I)),
then we can see that they are slightly different: In the case of the xText grammar, the variable
Test is also defined by at least one TestSuite and by at least one TestCase (Lines 15 to 19
of Listing whereas in the EBNF representation, TestSuite is part of the definition of
the variable Work flow (Line 22 of Listing [6.1)) and TestCase is part of the definition of
TestSuite (Line 36 of Listing [6.1).

Adapting the EBNF representation of ConTest in the shown manner is only feasible
because XText supports cross-referencing of objects. The advantage of this design is that if
a developer defines a continuous test, then she has to first specify any test metrics and test
cases. Only thereafter can she define the test suites and assign already defined test cases to
them. Now, since the developer cannot define a test suite without having defined a test case
and bound it to the test suite, the grammar enforces that at least one test suite with one bound
test case can be bound to the workflow.
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Listing 6.3: XText grammar definition for ConTest

1 | grammar de.fraunhofer.aisec.conTestDSL.ConTestDSL with

2 |org.eclipse.xtext.common. Terminals

3

4 | ConTest:

5 test=Test

6 |;

7

8 | Test:

9 TestID’ name=ID

10 TestName’ testName=STRING

11 Description’ testDescription=STRING

12 >Testmetrics ’

13 {’(testMetrics+=TestMetric)+’}’

14

15 >Testcases’

16 {’(testCases+=TestCase)+ "}’

17

18 >TestSuites’

19 {’(testSuite+=TestSuite)+ "}’

20

21 >Workflow’

22 {’workflow = Workflow ’}’

23 |

24

25 | TestMetric:

26 >TestMetricID > name=ID

27 ’{9

28 >TestMetricName’ testMetricName=STRING

29 TestMetricModule’ testMetricModule=STRING

30 ’Description’ testMetricDescription=STRING

31 9}’

32 |

33

34 | TestSuite:

35 >TestSuiteID > name=ID

36 ’{’

37 *TestSuiteName’> testSuiteName= STRING

38 ’NumberOfMaxIteration’ iteration = Iteration

39 IntervalBetweenTests > ’{’ (’fixedInterval’ fixedInterval=INT

40 | ’randomizedInterval’ randInterval=Range

41 | ’sequenceFixedInterval’ seqFixedInterval=ListInt)’}’

42 >Offset > off=INT

43 Timeout’ timeout = INT

44 ’BoundTestCases’ ’{’ boundTestCases+=[TestCase]+ ’}’

45 9}’

46 | ;

47

48 | Workflow :

49 >WorkflowID’ name=ID

50 ’WorkflowName’ workflowName = STRING

51 ’WorkflowModule’ workflowModule = STRING

52 >BoundTestSuites ’

53 7{7

54 boundTestSuites+=[TestSuite |+

55 9}9

56 | ;

57

58 | TestCase:

59 >TestCaseID’ name=ID ’{’

60 *TestCaseName’ testCaseName=STRING

61 TestCaseModule’ testCaseModule=STRING

62 ’Order’ order=INT

63 (’InputParameters’ ’{’ inputParams+=Parameter ’}’ )?

64 >AssertParameters’ ’{’ (assertParams+=Parameter)+ ’}’

65 9}5

66 | ;
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68 | Iteration :
69 (count=INT | infinite="infinite ’)
70 | ;

72 | Parameter :
73 params += KeyValue (’,
74 |

> params+=KeyValue )

76 | KeyValue:

77 ’<” key = STRING ’:’(intValue = INT

78 | stringVal = STRING

79 | listString = ListString
80 | listInt = ListInt) ’>’
81 | ;

83 | ListString:
84 [’ elements+=STRING ( ’,’ elements+=STRING)* ’]’
85 | ;

87 | ListInt:
88 [’ elements+=INT ( ’,” elements+=INT)x °’]’
89 | ;

91 | Range:
92 ’[> leftBound=INT ( ’,” rightBound=INT) ’]’
93 | ;

95 | @Override
96 | terminal ID:
97 ’A’?(’a’~~’z’|’A’..’Z’l’_’)(’a’..’Z’l’A’..’Z’l’_’l’O’..’9’)*

Listing[6.4]shows a test definition example using the XText grammar definition of ConTest.
Note that this example contains the identical information than Listing [6.2] which shows an
example of a test definition using the EBNF grammar definition of ConTest. When comparing
Listing[6.2]and [6.4] we can observe that the representation differs. The main reason for this
is that the XText grammar supports cross-references which allows defining, e.g., test cases as
separate blocks and later reference them using an ID.

Listing 6.4: Example of a continuous test definition using ConTest build with XText grammar

1

2 | TestID d9ecdea3 —e9da—-4f78-b041-69b7509e3462

3 | TestName "AvailabilityTestOfLoadBalancer"

4 | Description "Continuously tests the availability of the load balancing

5 component of a cloud service"

6 | Testmetrics {

7 TestMetricID YearlyAvailability {

8 TestMetricName "YearlyAvailabilityMetric"

9 TestMetricModule "de.fraunhofer.aisec.clouditor.metrics. YearlyAvailabilityMetric"
10 Description "Calculates the ratio between measured downtime since test
11 start and 31557600 seconds in a year of 365.25 days"

12 }

13

14 TestMetricID DailyAvailability {

15 TestMetricName "DailyAvailabilityMetric"

16 TestMetricModule "de.fraunhofer.aisec.clouditor.metrics.DailyAvailabilityMetric"
17 Description "Calculates the daily availability starting from

18 00:00 am to 23:59 (UTC)"

19 }

20 |}

21

22 | Testcases {

23 TestCaseID PingTest {
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24 TestCaseName "PingTestCase"

25 TestCaseModule "de.fraunhofer.aisec.clouditor.testcases.PingTestCase"
26 Order 1

27 InputParameters {

28 <"count":10>,

29 <"host":"10.244.250.9">

30 }

31 AssertParameters {

32 <"round-trip —avg—$1lte ":"50 ms">,

33 <"round—trip —sd—$1te ":"25 ms">

34 }

35 }

36 TestCaseID TCPTest {

37 TestCaseName "TCPTestCase"

38 TestCaseModule "de.fraunhofer.aisec.clouditor.testcases.TCPTestCase"
39 Order 1

40 InputParameters {

41 <"probe":10>,

42 <"host":"10.244.250.9">,

43 <"port":22>

44 }

45 AssertParameters {

46 <"response —time—avg—$1lte ":"75 ms">,

47 <"response —time —max—$1te ":"100 ms">

48 }

49 }

50 |}

51

52 | TestSuites {

53 TestSuiteID PingTCPAvailabilityTestSuite {

54 TestSuiteName "AvailabilityTestSuite"
55 BoundTestCases {

56 PingTest

57 TCPTest

58 }

59 NumberOfMaxIteration 1000000
60 IntervalBetweenTests {

61 randomizedInterval [30,60]
62 }

63 Offset 15
64 Timeout 600
65 }

66 |}

68 | Workflow {
69 WorkflowID PingTCPAvailabilityWorkflow

70 WorkflowName "BasiclterationWorkflow"

71 WorkflowModule "de.fraunhofer.aisec.clouditor.workflow.BasicIlterationWorkflow"
72 BoundTestSuites {

73 PingTCPAvailabilityTestSuite

74 }

75 |}

Generating Clouditor configurations from ConTest As a unified configuration language,
the implementation of ConTest only becomes meaningful if we can use this language
to generate configurations for specific continuous test implementations. One example
implementation of the framework introduced in Section4.3|is called Clouditor’s engine and
is described in Chapter .4 Clouditor’s engine was used to implement all of the example test
scenarios presented in Chapter[5] Test configurations used by Clouditor’s engine are written
in YAML@ Thus we have to implement a code generator which translates the constructs of

HOhttp://yaml.org/spec/1.2/spec.html [Accessed: 2018-12-13]
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ConTest to YAML constructs used by Clouditor.

In order to generate application code, XText uses XTend which is a dialect of Java.
Xtend provides multi-line template expressions which a developer can use to write strings
representing parts of the code to be generated. Syntactically, these template expressions are
defined by enclosing triple single quotes.

Upon generating language artifacts with XText for a particular grammar, the code
generator stub is automatically supplied. As mentioned above, XText uses EMF Ecore models
to store parsed programs as object graphs. These models serve as input to the code generator
where the object graph is contained in an Ecore Resource Object. In order to generate the
desired code, the compile method of the code generator has to be implemented.

Listing shows an extract of the code generator’s compile methocf__rrl that we
implemented to generate YAML files which are used to configure Clouditor’s engine,
the example implementation of our framework described in Section 4.4, The complete
documentation of that implementation can be found in Appendix B. Listing [6.6] shows the
YAML representation of the test definition which is generated from the test definition written
in ConTest (see Listing [6.4).

Listing 6.5: Compile method of XText code generator to translate ConTest to YAML

1 | def compile(Test ct) 7’

2 «var length2 =" "»

3 «var length4 = length2 + " "»

4

5 name: «ct.testName»

6 id: «ct.name»

7 description: «ct.testDescription»

8

9 metrics :

10 «FOR m : ct.testMetrics»

11 «length2»— class: « m.testMetricModule»

12 «length4»name: « m.testMetricName»

13 «length4»description: « m.testMetricDescription»
14 «ENDFOR»

15

16 testCases :

17 «FOR tc : ct.testCases»

18 «length2»«tc.testCaseName»:

19 «length4»’@id’: «tc.name»

20 «length4»’class ’: «tc.testCaseModule»

21 «length4»order: «tc.order»

22 «IF tc.inputParams !==null»

23 «FOR ip : tc.inputParams»

24 «FOR kv : ip.params»

25 «length4»«kv.key»: «identifyParams (kv)»
26 «ENDFOR»

27 <(ENDFDR))

28 «ENDIF»

29 «FOR ap : tc.assertParams»

30 «FOR kv : ap.params»

31 «length4»«kv.key»: «identifyParams (kv)»
32 «ENDFOR»

33 «ENDFOR»

34

35 «ENDFOR»

36 workflow :

37 «length2»class: «ct.workflow.workflowModule»

Note that line breaks from lines 46 to 49 of Listing are added for enhanced readability and have to
be removed to correctly generate the YAML file shown in Listing[6.6] i.e., the code in line 47 — 49 has to be
appended to line 46.
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35
36
37
38
39
40

42
43
44
45
46
47

«length2»name: «ct.workflow.workflowName»
«length2»testSuites:

«FOR ts : ct.testSuites»

«length4»«ts .name»:

«length4»name: «ts.name»

«length4»label: «ts.testSuiteName»

«length4»randomized: «IF ts.randInterval !== null»true «ELSE»false «ENDIF»
«length4»iteration: «IF ts.iteration.infinite!==null»—1«ELSE»«ts.iteration.(

«length4»interval: «IF ts.randInterval !== null»
[«ts.randInterval.leftBound»,«ts.randInterval.rightBound»]«ELSE»

«IF ts.seqFixedInterval !==null»«ts.seqFixedInterval.elements»<«ELSE»
[«ts.fixedInterval»] «ENDIF» «ENDIF»

«length4»offset: «ts.off»

«length4»timeout: «ts.timeout»

«length4»testCases: [«FOR tc:ct.testCases SEPARATOR ’,’»’ @ref’: «tc.name»<«EN

«ENDFOR»

ount» «ENDIF»

[DFOR>» ]

Listing 6.6: YAML file generated from ConTest

name: AvailabilityTestOfLoadBalancer

id: d9ecdea3 -e9da—4f78-b041-69b7509e3462

description: Continuously tests the availability of the load balancing
component of a cloud service

metrics :
— class: de.fraunhofer.aisec.clouditor.metrics. YearlyAvailabilityMetric
name: YearlyAvailabilityMetric
description: Calculates the ratio between measured downtime since test
start and 31557600 seconds in a year of 365.25 days

— class: de.fraunhofer.aisec.clouditor.metrics.DailyAvailabilityMetric
name: DailyAvailabilityMetric
description: Calculates the daily availability starting from
00:00 am to 23:59

testCases:
PingTestCase:

’@id’: PingTest
class: de.fraunhofer.aisec.clouditor.testcases.PingTestCase
order: 1
count: 10
host: 10.244.250.9
round—trip —avg—$lte: 50 ms
round—trip —sd—$1te: 25 ms

TCPTestCase:
’@id’: TCPTest
class: de.fraunhofer.aisec.clouditor.testcases.TCPTestCase
order: 1
probe: 10
host: 10.244.250.9
port: 22
response —time—avg—$lte :75 ms
response —time-sd-$lte:100 ms

workflow :

class: de.fraunhofer.aisec.clouditor.workflow.BasiclterationWorkflow

name: BasiclterationWorkflow

testSuites :

PingTCPAvailabilityTestSuite:

name: PingTCPAvailabilityTestSuite
label: AvailabilityTestSuite
randomized: true
iteration: 1000000
interval: [30,60]
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48 offset: 15
49 timeout: 600
50 testCases: [’ @ref’: PingTest, ’@ref’: TCPTest |

6.3 Summary and discussion

In this chapter, we introduced a domain-specific language (DSL) called ConTest to rigorously
define continuous tests. To that end, we first presented an approach how to develop a DSL
which was proposed by Mernik et al. [283]]. Following this approach, we went through the
following steps:

* Motivate the necessity to build a DSL: The purpose of ConTest is to provide a general,
unified representation of tests which is agnostic to concrete implementations but adheres
to the building blocks of our framework to support continuous test-based certification
introduced in Chapter[d] This not only allows us to rigorously compare the evidence
produced by different test implementations but also ensures conformance with our
framework by having a developer provide a code generator with which test definitions
written in ConTest can be translated into the target configuration language used by
a specific test implementation. That way, ConTest serves as a unified configuration
language for tests supporting continuous cloud certification.

* Analysis of domain-specific constructs: We investigated which parts of the building
blocks of our framework are suitable to be used for a general representation of
a continuous test, including test cases, test suites, workflow, test metrics and
preconditions.

* Design ConTest: We defined ConTest using Extended Backus-Naur-Form (EBNF), a
language to describe context-free grammars.

* Implement ConTest: In order to implement ConTest, we used the language development
tool XText which uses a variant of EBNF. Furthermore, we implemented a code
generator which translates the constructs of ConTest to YAML configuration files
which are used to configure tests for Clouditor’s engine, one example implementation
of our framework (see Sectiond.3) described in Sectiond.4}

Our approach has the following limitations: Having a developer provide a code generator
to translate from ConTest to an implementation-specific configuration language of a test only
guarantees that the configuration of the test implementation adheres to the building blocks
of our framework. A test which has been implemented by the developer may substantially
deviate from our framework, for example, a test suite may also succeed even if not all test
cases bound to the suite pass. Furthermore, the code generator provided by the developer
may not utilize all constructs of ConTest to generate implementation-specific test definitions,
thus rendering the generated configuration incomplete. Naturally, in these cases, rigorously
comparing evidence produced by test implementations is not feasible because the tests’
implementations deviate from the specification of our framework’s building blocks. However,
through using a formally defined DSL, tests can be defined rigorously where translation into
a target configuration language using code generators has a crucial advantage: It makes the
relationship between the building blocks of our framework and the implementation-specific
configuration of a test implementation explicit, discernible and comprehensible.
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Evaluation of continuous test results

In the previous chapters, we introduced a framework to design and represent tests supporting
continuous cloud services certification (Chapter[d]and[6) and demonstrated how this framework
can be applied in example scenarios (Chapter [5). However, as pointed out in Research
Challenge 3: Accuracy and precision of continuous test results described in Section|1.2.3]
erroneous test results can decrease customers’ trust in test results and can lead to providers
disputing results of a continuous test. It is therefore vital to evaluate how accurate and precise
produced tests’ results are, that is, we have to answer the question: How close are particular
test results to their true values?

Systematic errors are the reason why measured values, i.e., test results may not agree
with true values. These errors can be induced by implementation and configuration errors of
the measuring device, that is, any component used to implement a continuous test. Without
comparing a test’s results to the ground truth, it is hard to make a statement on how well
a specific test works in producing evidence indicating a control’s satisfaction or violation.
Recall the example test scenarios presented in Chapter [5} The test designs implementing
these scenarios leveraged external, existing tools such as Nmap, SQLMap or sslyze. It is
obvious that any erroneous behavior these external tools may exhibit are inherited by the test
using them which, in turn, can lead to systematic errors in the test results produced. Further
inaccuracy may be caused by errors in the test environment or in the implementation of the
test framework introduced in Chapter 4

Addressing this challenge, this chapter presents a method which consists of intentionally
manipulating cloud service properties to violate control satisfaction — thereby establishing
the ground truth — and, on this basis, experimentally evaluate accuracy and precision of
continuous test results. This method allows us to compare alternative test designs as well as
alternative test configurations. Furthermore, it permits us to infer general conclusions about
the accuracy of a specific continuous test. Parts of the contents of this chapter were published
in [[127]] and [249].

First, we define the terms accuracy and precision in context of continuous tests of cloud
services. Thereafter, we give a high-level overview of how our method works (Section
and describe how to intentionally violate cloud service properties leading to non-compliance
of the service with a certificate’s controls (Section[7.3). Then we introduce novel accuracy
and precision measures to evaluate continuous tests (Section[7.4), including the inference of
conclusions about the general accuracy of a test. Finally, we present experimental results
of applying our method to evaluate and compare tests which aim to support certification of
controls related to the properties availability and security (Section[7.5).
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7.1 Accuracy and precision of continuous test results

In Section [4.3.3] we introduced test metrics which allow us to evaluate statements over
cloud services properties. Test metrics reason about sequences of test results produced
through repeatedly testing a cloud service’s properties, thereby generating measurements.
The question at this point is what errors these measurements may possess and how do these
errors affect our conclusion about whether a cloud service satisfies a control or not.

In this section, we will define what accuracy (Section[7.1.1)) and precision (Section[7.1.2))
mean in the context of continuous test results. To that end, we draw on standard measurement
theory and statistical methods which are used throughout various fields of experimental
science. The basic definitions of concepts such as accuracy and precision used within this
section are based on [293]], [294] and [295]. Further, statistical methods described within
this section are comprehensively covered in the literature, e.g., [296][297][298]].

Note that we derive our definitions of accuracy and precision of continuous test results
from the set of universal test metrics introduced as part of the framework in Chapter[d] These
definitions are therefore only applicable to test designs implementing these test metrics. It
is important to note that there exist numerous other possible test metric definitions which
can be used to define accuracy and precision. Yet current research does not offer definitions
of accuracy and precision in the context of test-based evidence production techniques (see
Chapter [3] for a comprehensive overview of related work). Thus future work may propose
accuracy and precision definitions derived from other test metrics and thus complement those
presented hereafter.

7.1.1 Accuracy

When analyzing experimental data, the accuracy of the measurement describes whether
the measured value agrees with the accepted value. This accepted or true value can be
determined by previous observations or theoretical calculations. Therefore, the concept
of accuracy may only be used to analyze experimental data if the goal is to compare the
experimental results with known values.

Evaluating the accuracy of continuous test results depends on the test metrics which
the continuous test employs. Recall the four universal test metrics brC, fpsC, fpsD and
cpfsD introduced in Sectiond.3.5] Accuracy in context of these test metrics can be outlined
as follows:

* Basic-Result-Counter (brC): Counts the number of passed and failed tests. A basic
test result is accurate if it indicates that a control is not satisfied by the cloud services at
a time where the cloud service indeed does not comply with the control. Analogously,
a basic test result is also accurate if it indicates satisfaction of a control by a cloud
service at a time where the service indeed complies with the control.

* Failed-Passed-Sequence-Counter ( f psC): Counts the number of observed Failed-Passed-
Sequences (fps). A fps is accurate if the cloud service actually does not comply with
a control during the time indicated by the fps.

* Failed-Passed-Sequence-Duration ( fpsD): Describes the time elapsed between the
first failed test and the last passed test of a fps. Thus, the measured value of a fpsD
is accurate if it agrees with the actual duration of the temporary non-compliance of a
cloud service.
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* Cumulative-Failed-Passed-Sequence-Duration (c f psD): Describes the accumulated
time during which a control is not satisfied. The measured value of ¢ fpsD is accurate
if it matches the actual duration of the temporary non-compliance of cloud service
within a specified interval.

Systematic errors are the reason why measured values may not agree with accepted
values. These errors may occur because of, e.g., erroneous implementation and configuration
of the measuring device. Identifying the causes of systematic errors is usually non-trivial. In
our case, this measuring device consists of any component used to implement the framework
to design tests to support continuous cloud services certification described in Chapter [4]

Systematic errors of continuous tests vary depending on the test metric. In Section|7.4]
we will explore accuracy measures for each of the above test metrics which allow us to
quantify the disagreement between measured values and true values. Furthermore, as we
will detail in Section [7.3] we establish the true values through intentionally manipulating
cloud services to not comply with controls which a test aims to validate. Thus, we know the
true values and can compare them with the measured ones produced by the continuous test
under evaluation, thereby allowing us to determine the accuracy of the test. However, the
remaining problem is that the systematic error a test makes can vary due to random errors.
This brings us to the concept of precision which we will explain in the next section.

7.1.2 Precision

Precision refers to the closeness of agreement between successively measured values which
were carried out under identical conditions [294]. If we neglect systematic errors, then those
repeatedly executed measurements result in a range of values which spread about the true
value. The reason for this spread are random errors. These errors are caused by unknown
and unforeseeable changes in the experiment, e.g., fluctuation in the network delay to due
electronic noise. The smaller the random errors, the smaller the range of values, and thus the
more precise the measurement [293]]. Hence, we can say that the level of precision which
experimental measurements can reach is constrained by random errors.

7.1.2.1 Arithmetic mean

Let’s assume that we have observed some repeated measurements X = (xy, xp, . . ., X;;) Which
only have random errors. The question now is: What is true value of these measurements?
The answer — in statistical terms — is that we can use the values of sample distribution X to
estimate the expected value u of the parent distribution Y. The best estimate for u which can
be derived from these measurements is the arithmetic mean. Using the values of X, we then
compute the sample mean

1 n

)En = - Z Xi
=

which serves as our estimate of u. The intuition behind averaging is that random errors are
equally likely to be above as well as below the true value. Thus, through averaging, we evenly
divide the random error among all observations.

A special case arises if the values of X and Y can only assume one of two values, e.g., 0
or 1. In this case, computing the arithmetic mean give us the fraction of values with 1’s of X
which is referred to as the sample proportion p which estimates the population proportion p.
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At this point, it is of central importance to note that the assumption of our measurements
in X only having random errors is purely theoretical. In a real experiment, each x € X will
not only possess random errors but also systematic errors. Therefore, X or p are not estimates
for their true value: They are estimates for their true values plus their systematic errors.

The reason why estimating the population mean u and population proportion p based on
X and p works is provided by the laws of large numbers: The weak law of large numbers
states that if the number of samples n that we generate from the distribution ¥ goes to infinity,
then the probability of making a random error larger than e goes to zero:

lim P(|x, — u| > ¢€)=0.
n—oo

Furthermore, the strong law of large numbers indicates that the probability of the sample
mean X, converging to the expected value is 1:

P(lim &, = u) = 1.
n—oo

This leads us to the following key insight: Both laws of large numbers suggest that if we
generate a sufficiently large number of samples — i.e., take a sufficient large number of
measurements — then we can produce an estimate X with a random error € = |X,, — u| which is
as small as we desire. Put differently: With a sufficiently large number of measurements, our
estimate converges to the true value plus systematic error. However, neither law tells us how
many measurements we have to conduct in order to reduce € below a particular threshold.

7.1.2.2 Standard deviation

The sample mean X estimates the true value plus systematic errors but it does not provide us
with any information on the range of measured values. In order to describe the width of the
sample distribution X, we can use the standard deviation

sd = \/|17|((x1 — X2+ (- X+ (- X)),

The standard deviation takes all values of X into account and provides the average distance
of a measurement value to the mean. Now, if we observe another measurement and want to
know whether it is a common or exceptional value, then we can use sd. First, we standardize
the newly observed value x by computing so-called z-scores:

_(x-X)
T osd

Whether a z value is low or high depends on the distribution of X: In case of a normal
distribution, 99% of the values lie within z-scores of [-3, 3]. Thus, any value outside this
range may be considered exceptional.

The sd has one important drawback: Adding more measurement values to X increases
the precision with which we estimate the population mean u because it decreases the random
error. However, when conducting more measurements, the standard deviation of X remains
relatively stable. Therefore, the standard deviation is not a good measure to describe the error
of the sample mean, that is, how close the sample mean is to the population mean.
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7.1.2.3 Standard error

Having estimated the population mean y with X, the standard error se is the suitable choice
when reasoning about the precision of x. In short, the se is the standard deviation of the
so-called sampling distribution. At this point, it is important to note that we have already
seen two distributions, that is, the parent distribution ¥ whose expected value we aim to
estimate using sample distribution X which contains the samples drawn from Y. Now, the
sampling distribution is a theoretical distribution which we would obtain if we were to draw
all possible samples X from Y and compute a statistic, e.g., the mean of each of these samples,
which, in practice, is usually impossible or not desired. The resulting distribution of all these
sample means is referred to as the sampling distribution of the mean.

The calculation of the standard error depends on the selected statistic. The se for the
sample mean X is computed as follows:

de
a
It is obvious that an increase of the standard deviation sd of the sample distribution X leads
to a higher standard error. Yet the standard error decreases if the number of samples in X,
that is, n increases.

Further, the standard error for a sample proportion p is calculated as follows:
(I-p

se; = D X .
p p 1

Séx =

7.1.2.4 Confidence intervals

We now combine the notion of the standard error with the assumption that the sampling
distribution approximately follows a normal distribution. This allows us to estimate the
precision of the sample mean and the sample proportion by constructing confidence intervals
for the sample mean and for the sample proportion. Confidence intervals are a special type
of interval estimates which — in contrast to point estimation like X and p — give a range of
probable values of an unknown parent’s distribution parameter.

In order to construct a confidence interval, we need decide on a confidence level and then
compute the desired statistic, e.g., sample mean X, as well as the margin of error (E).

* Confidence level (CL): The fraction of all possible samples which are expected
to include the true parameter of the unknown parent distribution. As an example,
consider all possible samples X are drawn from the distribution of ¥ and for each
a 99% confidence interval for the sample mean is computed. In this case, 99% of
the computed confidence intervals include the population mean, i.e., the mean of the
distribution of Y.

o Statistic: The property of a sample that is used to estimate population parameter’s
value. For our purposes, we use the sample mean () and the sample proportion (p).

* Margin of error (E): This constitutes the interval estimation by defining the range
above and below the sample statistic. The calculation of E depends on the standard
error which, in turn, depends on the selected statistic (see previous paragraph). For the
sample mean X, the margin of error is

Ez =tcp X sex
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where ¢y is the value that separates the middle the area of the ¢-Distribution according
to the chosen confidence level CL, e.g., 95%, and the standard error of the mean sex.

For the sample proportion p, the margin of error is
EI; =ZcL X sep

where zcp is the z-value that separates the middle area of the standard normal
distribution according to the selected confidence level CL, e.g., 99%, and the standard
error for the proportion sej;.

7.1.2.5 Calibrating precision

Recall that at the end of the section[7.1.2.T|on the arithmetic mean, we pointed out that the
laws of large numbers justify making a point estimate of a parent’s distribution parameter,
e.g., using the sample mean X, to estimate the mean u of the distribution of Y. However, we
do not know how close this estimate is to the true value (plus systematic error), that is, how
large is the error € for a given sample size n?

Having introduced how to construct confidence intervals for sample means and proportions,
the sample size n can be used as a parameter to determine the number of samples which are
needed for a desired margin of error £. Thus, we can calibrate our experiment according to
the desired precision. To that end, E; and Ej are solved for the sample size n which gives us

_zeLXpX(1-p)
I’lﬁ— =

and

In practice, one apparent problem of solving these formulas is that they have to be solved
prior to executing the experiment to evaluate a continuous test. Thus, we may not have
observed values to plug in for p and sdx. In this case, we have to make an educated guess,
otherwise we can use historical values previously observed.

7.2 Overview of the evaluation process

The accuracy and precision of results produced by a specific continuous test depend on
various factors, such as implementation of the test, test environment and usage of external
tools. Without experimental evaluation, it is thus hard to make a statement on how well a
specific test works in producing evidence indicating whether a control is satisfied or violated.
The evaluation process presented hereafter aims to support such experimental evaluation of
test results and thus provides comparability between alternative test designs.

Our approach treats the continuous test under evaluation as a black box. Therefore, no
information about the internal composition and implementation of the test is needed, e.g.,
if and which external tools are used. We only observe results produced by the test during
an experiment where we trigger violations of the control whose validation the tests seeks to
support. Put differently: Correct results as well as errors of the test under evaluation follow
some unknown distributions. We take samples from these unknown distributions by running
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experiments during which we intentionally violate controls. Based on these experiment
results, we infer conclusions about the general accuracy of the test.

Figure[/.1| provides a high-level overview of our method. As part of configuring control
violations, we randomize duration of and time between each control violation event within
some specified limits (Step 1). Then the test is configured according to the framework
described in Chapter ] (Step 2): Selecting test cases, setting test suites parameters and
choosing a workflow. Thereafter, we start executing the control violation sequence and the
continuous test at the same time (Step 3) and observe whether violations are detected by
the test (Step 4). Provided our sample size is sufficiently large, i.e., the test has produced
enough results, we infer parameters of the unknown parent distribution, that is, we draw
conclusions about the general accuracy of the test under evaluation (Step 5). These inferences
are considered valid with regard to the test and control violation configuration parameters.

valid within limits used for randomization

Control Test % valid with respect to specific configuration
violation N .
y N configuration
configuration

v v

A

execute

continuous test
& control
violation
sequence

infer
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about accuracy
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prepare
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continuous test
results
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Figure 7.1: Experimental evaluation of the accuracy and precision of continuous test results

7.3 Control violations

A control violation has the purpose to manipulate one or more properties of a cloud service
under test to mock violations of controls which a specific continuous test aims to validate.
Therefore, control violations establish the ground truth, that is, the accepted values to which
results produced by a test are compared.

7.3.1 Control violation sequence

We are aiming at evaluating the accuracy and precision of test results produced by a continuous
test. Recall that one of the key drivers for continuously testing cloud services is founded on
the assumption that a cloud service’s property may change over time where these changes can
lead to control violations. As a consequence, the properties of a cloud service may comply
with controls at some time while at other times, they do not.

In order to mimic this non-stationary behavior of cloud services’ properties, control
violations have to repeatedly create control violation events (cve) over time. During a cve,
a cloud service’s properties are manipulated so that the service does not comply with the
control. Between two successive cve, the cloud service’s properties satisfy the control. We
describe a control violation as the sequence

V ={cvey, cven, ..., cve;).
As Figure|7.2| shows, each cve starts at cve® and ends cve®, thus having a duration of

cveD = cve® — cve®
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where the service does not comply with the control. Furthermore, the time between two
successive control violation events cve;_jand cve; is

cveW = cvel | —cve;.

cveW1 cveW2 cveWi
| | | | [ I | | >
' ! S ! e ! s ! e ! e ! S ! e t
0 cvey cvey cvey cve, cvey 4 CVe; Ccve;
cveD1 cveD2 cveDi

Figure 7.2: Sequence of control violation events cve

7.3.2 Control violation design

The design of a control violation is driven by the specific control which the continuous test
under evaluation aims to validate. Thus, the question at this point is: Which properties of a
cloud service have to be modified in order to violate a particular control?

A key insight at this point is that we do not aim to design a particular control violation
which is complete, that is, which manipulate a cloud service in any possible way such that
a particular control would be dissatisfied. Naturally, having a complete control violation
design would be helpful to evaluate the completeness of the corresponding continuous test.
Yet, if we were to design a complete control violation, then we would face a challenge similar
to deriving executable tests from high-level, ambiguous control descriptions: We would have
to interpret what it means for the control to be satisfied or dissatisfied on the implementation
level of a cloud service instance. The difference to deriving executable tests is, however,
that we were to design mechanisms which intentionally alter a cloud service’s properties to
violate the control.

However, the goal of our evaluation is correctness of a continuous test, that is, we want
to evaluate how accurate and precise the results of the test under evaluation are. Therefore,
we use the definition of the test under evaluation as a starting point to derive the design of the
control violation. The two main steps in the control violation design process are:

1. Inspect assert parameters: The first step when designing a control violation consists
of inspecting the definition of the test under evaluation. Recall that a single test result
of a continuous test is produced by executing a test suite which fails if any test case
bound the test suite fail. Thus, we have to inspect the assert parameters which are used
to configure the expected outcome of each test case. Based on the assert parameters
and on their configured value, we then derive which property of the cloud service has
to be manipulated in order for these asserts to be dissatisfied.

Consider, as an example, that a continuous test probes a set of ports to check whether
the cloud service exposes sensitive interfaces. The assert parameters of the test
definition will give us the ports which are considered sensitive, that is, should not be
reachable. Manipulating the service such that is exposes some blacklisted ports depicts
one example of designing control violation events.
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2. Specify control violation events: The second step consists of deciding on the lower
(cveWT) and upper (cveWR) limit of the duration between two successive control
violation events cveW. Furthermore, the lower (cveD™) and upper (cveDX) limit of the
time during which a cloud service’s property is manipulated rendering it non-compliant
have to be defined. In the following section, we will explain the purpose of randomizing
duration of and interval between control violation events. Note that deciding on how
many control violation events to trigger is driven by the selected precision measures
which will be explained in detail in Section|/.4

7.3.3 Standardizing control violation events

Control violations establish the ground truth against which we evaluate a specific test. To
infer conclusions about the general accuracy of a test, ideally any possible sequence of
any possible control violation event has to be experimentally evaluated. Naturally, this is
infeasible in practice and we have to select a sequence of control violation events V which
meets our time and space constraints. But how do we select a sequence V still allowing us to
draw conclusions about the general correctness of a continuous test?

The answer consists of two parts: At first, we need to standardize the control violation
event: For each cve we use to construct V, the duration of the control violation cveD and the
waiting time before start cveW are selected randomly from intervals [cve D, cveDR] and
[cveWE, cveWR], respectively. Choosing these intervals’ limits lets us configure a control
violation sequence according to our space and time limitations. Secondly, we need to decide
how many cve, i.e., |V| are required to infer conclusions about the general accuracy of the
continuous test under evaluation. This depends on the statistical inference method which, in
turn, depends on the precision measure. We will address this question for each precision
measure in Section[7.4l

7.4 Accuracy and precision measures

After having discussed how to intentionally violate controls for experimental purposes, this
section describes models to estimate the accuracy and precision of continuous tests under
evaluation. Hereafter, we refer to these models as accuracy measures and precision measures.
These measures are based on the universal test metrics brC, fpsC, fpsD, and c f psD which
were introduced in Section4.3.5] In order to derive the accuracy and precision measures,
each of the next four sections (7.4.1]—[7.4.4) follows these three steps:

1. Evaluate test results: We use the results produced by a continuous test during a control
violation sequence and evaluate whether they are correct or erroneous. In the latter
case, we specify the type of observed error which depends on the test metric, e.g.,
a false negative basic test result incorrectly suggests that a cloud service does not
satisfies a control.

2. Derive accuracy measures: Using the evaluation of the test results as input, the accuracy
measures then estimate if and how the measured values of test under evaluation deviate
from the accepted, i.e., true values as established by the control violation sequence.

3. Derive precision measures: Based on the evaluation measures, the precision measures
estimate how the measured values spread about the accepted value.
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Note the set of accuracy and precision measures proposed in this section is not complete.
Since current research has not yet proposed other approaches permitting to evaluate accuracy
and precision of test-based evidence production techniques (a comprehensive overview of
related work can be found in Chapter [3), it is therefore left to future work to build on the set
of evaluation measures proposed hereafter and extend this set as needed.

7.4.1 Basic-Result-Counter

In this section, we describe how to estimate accuracy and precision of a continuous test
using the Basic-Result-Counter test metric (brC). To that end, the next section describes the
evaluation of test results using six evaluation measures. Thereafter, we detail how to use
these evaluation measures to compute accuracy and precision measures (Section and

[7.4.1.3).

7.4.1.1 Evaluation of test results

Hereafter, we explain how to use the Basic-Result-Counter metric (brC) to evaluate a
continuous test. To that end, we check whether test results correctly indicated absence or
presence of a control violation. Recall that brC* and brCT count failed b and passed test
results br’, respectively. Furthermore, each test #sr producing a basic test result br starts at
tsr® and ends at ¢sr¢, having a test duration of tsrD.

True negative basic test result counter (brCTV) A test produces a true negative result if
the test fails at a time when a control is violated. More specifically, as shown in Figure[7.3] a
brTN is produced if a failing test starts (¢sr*) after a control violation event starts (cve®) and
the test ends (¢s7¢) before the event ends (cve®):

brTN = cve® < tsr® Atsr€ < cve®.

We count any true negative test results observed during the control violation sequence. As a
result, we obtain brCTN .

tsrD

Figure 7.3: True negative basic test result (br’ )

True positive basic test result counter (brCT?) A true positive test result is produced if
the test passes at a time when no control is violated. As shown in Figure a passing test
producing a true positive result starts after the previous control violation event ends and ends
before the next control violation event starts:

N

brTP = cvei <tsr® Atsr® <cvej,,.



7.4 Accuracy and precision measures 147

There are two special cases: First, a test that passes prior to any control violation event is a
true positive. Therefore, any passing test which ends (¢sr¢) before the first violation event
starts (cvey) is a true positive:

bri? =tsr¢ < cvey.
Second, a test that passes after the last control violation event is a true positive test result.
This means that any passing test which starts (¢sr°) after the last control violation event j
ends (cveje. ) is a true positive:

br? = cvel <tsr’.
Any true positive basic test result observed during a control violation sequence is counted
using brCTF.

cveDi @ cveDi +1
| | | | I [
ws 1 xs I [ I ot
e s
cve; cve; tsr tsr cvep 1 Ve
tsrD

Figure 7.4: True positive basic test result (br! F)

False negative basic test result counter (brCFN)  If a test fails at a time when no control
is violated, then the test produces a false negative test result. When comparing Figure|7.4|and
Figure it becomes evident that the definition of a false negative test result is analogous
to the definition of a true positive test result. The only difference being that the test result
incorrectly fails, indicating a control violation:

brfN

N

_ e s e
—cvei < tsr° Ntsr <CV€H_1.

Furthermore, similar to true positive results, two special cases have to be considered: First, a
test that incorrectly fails prior to any control violation event is a false negative. Therefore, any
failing test which ends (7sr¢) before the first violation event starts (cvey) is a false negative:

brfN =tsr¢ < cvey.
Second, a test that incorrectly fails after the last control violation event is a false negative test
result. Thus, any failing test which starts (¢s7*) after the last control violation event j ends

(cveje.) is a false negative:

briN = cve; < tsre.

Any false negative basic test result observed during a control violation sequence is counted
using brCFN .

False positive basic test result counter (brCFP) If a test passes at a time when a control
is violated, then the incorrectly passing test produces a false positive result (brf'?). The
definition of brf? is similar to a true negative result (see Figure , only that the test
incorrectly passes, that is,

brEP = cve® < tsr® Atsr€ < cve®.
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Figure 7.5: False negative basic test result (brf)

tsrD

Figure 7.6: False positive basic test result (brf'?)

Moreover, there is one special case: As shown in Figure[7.7] a passing test may cover
one or more control violation events completely, that is,

e

FP _ e s N s e e e
bro " =cve; <tsr’ Ntsr® <cve; | A Cve,; <ISr™ NISr™ < cvep .
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Figure 7.7: False positive basic test result (br P) covering multiple cve

Counting all false positive results is described by brCFF.

Pseudo true negative basic test result counter (brC PTN)  Similar to a true negative test
result, a test produces a pseudo true negative result if it fails at a time when a control is
violated. However, unlike a br"N, a brPTN is produced by a test which only partially
overlaps with the control violation event. There are two cases of partial overlapping to
consider:

1. Failing test ends during control violation event: A brfTN is produced by a failing test
which starts (zsr°) before the control violation event starts (cve®). Further, the test
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ends (tsr°) after the violation events starts (cve®) and before the control violation ends
(cve®):

brPTN = t5r% < cvel Acvei <tsr€ Atsr¢ < cvef

As an example, consider the following scenario: A test starts measuring available
bandwidth of a virtual machine. Only after the test started, the bandwidth of the
virtual machine is limited. Therefore, while at the beginning of the test no control was
violated, later during the test it was. If the test in total determines that the available

bandwidth was insufficient, then the test fails, producing a pseudo true negative result
brPTN,

2. Failing test starts during control violation event: A brPTVN is produced by a failing
test which starts (¢sr*) after a control violation event starts (cve®) and starts before the
control violation event ends (cve®). Further, the test only ends (zsr¢) after the violation
events ends (cve®):

prPTN = cve! <tsr’ Ntsr® < cvel < tsr¢

While Figure (7.8 shows a brfTN where a correctly failing test ends during a control
violation event, Figure depicts the case where a correctly failing test starts during a
control violation event. In Figure note the dotted line between the start of the test (zs7°)
and the start of the violation event (cve®). It indicates that a test can cover multiple control
violation events. Similarly, in Figure the dotted line between the end of the control
violation event (cve®) and the end of the test (¢sr¢) illustrates that the test may cover multiple
control violation events.

If a test covers multiple cve, then this implies that a test takes longer to complete (zs7 D)
than the duration of the control violation event (cveD;), that is, tsrD > cveD;. This leads
to a more general insight: A correctly failing test which completes at [cve?, cve?] and for
which tsrD > cveD; holds, will always produce a pseudo true negative test result.

cveDi

Figure 7.8: Pseudo true negative basic test result (brP7") where the test ends during cve

Lastly, we use brCFTN to count any occurrence of pseudo true negative test results.

Pseudo false positive basic test result counter (brCPFPy) A test produces a pseudo false
positive result if the test partially overlaps with a control violation event but incorrectly passes.
Thus, the definition of brPF P is similar to brPT™ presented in the previous paragraph, the
only difference being that the test result is positive. As in the case of a brfTN a brPFP can
either end during a control violation event or it can start during a control violation event.
Furthermore, a br*? may cover multiple control violation events. We count the occurrence
of pseudo false positive results using brCP¥?,
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Figure 7.9: Pseudo true negative basic test result (brF7™) where the test starts during cve

7.4.1.2 Accuracy measures based on brC

The previous paragraph introduced six evaluation measures which are based on the
Basic-Result-Counter (brC) and serve to analyze the test results produced by a continuous
test under evaluation during a control violation sequence. To summarize:

« True positive basic test result counter (brCT ),

* true negative basic test result counter (brCTN),

« false negative basic test result counter (brCFN),

» false positive basic test result counter (brCF'F).

« pseudo true negative basic test result counter (brCFTN), and

» pseudo false positive basic test result counter (brCFFF).

As a next step, we use these evaluation measures as input to compute accuracy measures.
To that end, we draw on standard accuracy measures used in binary classification described
by, e.g., [299], [300] and [301]. Hereafter, we describe which specific measures we selected
and how to interpret them to evaluate the accuracy of a test under evaluation.

* Overall accuracy (oac): The measure delineates the ratio between all correctly
passed or failed tests (brC™N + brCPTN 4+ brCTP) and all observed test results
(brCTN + brCPTN 4 brCtN + brCTP + brCctP + brCcPFP). The overall accuracy
permits us to evaluate out of all observed test results of a continuous test under
evaluation, how many are correct results:

brC (brCTN + brCPTN + prCT?)
"~ (brCTN + brCPTN 4+ prCFN + brCTP + brCFP + brCPFP)’

oac

» True negative rate (tnr): This measure describes the proportion of correctly failed
tests (brCTN + brCPTN) out of any test that should actually have failed (brCTN +
brCPTN 4 brCFP + prCcPFP). Using tnr, we can analyze the ability of a continuous
test to correctly detect whether a cloud service complies with a control or not:

brC (brCTN 4+ prcPTN)

t = .
" (brCTN + brCPTN 1 brCFP 1 brCPFP)
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» True positive rate (tpr): This measure describes the ratio between correctly passed
tests (brCT ) and all tests that were expected to pass (brCT ¥ + brCTN). It allows us
to evaluate how well a continuous test correctly indicates that a cloud service satisfies
the control the test aims to check:

brC _ brCT”
~ (brCTP + prCFNY

tpr

* False negative rate ( fnr): This measure captures the ratio between incorrectly failed
tests (brCFN) and all tests that were expected to pass (brCTP + prCcFN). Based on
this measure, we can evaluate how often a continuous test incorrectly suggests that a
control is not fulfilled by a cloud service:

FN
brC _ brC brC

= =1-1t
fnr (brCTP + brCFN) pr

* False positive rate ( f pr): This measure captures the ratio between incorrectly passed
tests (brCFP + brCPFP) and all observed tests that actually should have failed
(brCTN + brCcPTN + prCt? + brCPFP), 1t allows us to describe the proportion of a
continuous test’s results which incorrectly suggest that a control of a cloud service is
fulfilled:

1 — tnrr€.

FprtrC (brC*P + brCPr'P) _
(brCTN + brCPTN 4 prCFP + prCPFP)

* False discovery rate (fdr): This measure describes the ratio between incorrectly passed
tests (brCFP + brCPF ) and all test which passed (brCF? + brCTF + brCPFP). This
permits us to reason about how often — out of all observed positive test results — a
continuous test should have failed, that is, test results incorrectly indicated that a cloud
service satisfies a control:

Fartr = Bret +brCTTT) e
~ (brCFP 4 brCTP + brCPFP) bp )

* Positive predictive value (ppv): This measure describes the ratio between correctly
passed tests (brCTP) and all test that passed (brCTP + brCFP + brCcPFP), Using this
measure, we can quantify the proportion of a continuous test results’ within all positive
test results which correctly suggest that a cloud service meets a control:

TP
brC brC

= =1- fdr”c.
(brCTP + brCFP + prCPFP) fdr

ppv

* False omission rate ( for): This measure calculates the ratio between incorrectly failed
tests (brCFN) and all tests which failed (brCTN + brCPTN + brCFN). Thus we can
describe the proportion of test results produced by a continuous test that should have
passed within all produced test results that failed:

brC _ brCFN =1- anbrC
(brCTN + brCPTN + prCFN)

for
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* Negative predictive value (npv): This measure captures the ratio between correctly
failed tests (brCT™ + brCPTN) and all tests that failed (brCTN + brCPTN + prCctN),
This allows us to describe the proportion of results produced by a continuous test
which correctly indicate that a cloud service does not meet a control:

npvP"C = (brC" ™ + b ) =1- for”c.
(brCTN + brCPTN 4 prCFN)

7.4.1.3 Precision measures based on brC

All the accuracy measures which are based on evaluating basic test results (br), e.g., true
negative rate (tnr), false positive rate (fpr), and negative predictive value (npv) have in
common that they are proportions, that is, they give us the fraction of, e.g., correct test results
out of any observed test results. This leads to the key idea at this point which is to construct
confidence intervals for these proportions, that is, estimate the precision of these accuracy
measures using interval estimates.

Consider, as an example, computing a confidence interval of 95% for npv?"C. This
interval estimate allows us to state that we are 95% confident that the npv?"€ of a continuous
test under evaluation is contained in the interval. This inference is valid with respect to the
definition of the test and the control violation configuration.

Continuing our example for npv?”C, we compute this interval estimate with

brC
npv "+ 2959, X S€npv

where z95¢, is the value that separates the middle 95% of the area under the standard normal
(or z) distribution, and se is the standard error which can be estimated with

——brC
AT?C % A —npy”™)
S€npv =

n .

@Vbrc is an educated guess of npv proportion in the parent distribution. If no historical

information on npv?"C of the parent distribution is available to make an educated guess,
then we choose ﬁpT/brC = 0.5 which is the conservative option. Further, n is the sample size
which in our example for npv?"C consists of any basic failed test result used to compute
npvbrc, that is,

n=brCT™N + brCPT™N 4 prctN.

As stated above, we want to use the standard normal distribution to look up the value for zg5q,.
This requires the sampling distribution of the proportion to be Gaussian. In order to find the

required sample size 7i, we solve the margin of error Erglf,of = Z9s59, X se for the sample size 7i:
. 2959% X npv b€ x (1- brc)
i = (7.1)

E2
where E is the desired margin of error.

Recall that in Section and we posed the question of how many control
violation events |V| are needed in order to allow for inferring conclusions about the general
accuracy of the continuous test under evaluation. Continuing our example for npv?"C finding
the required size of V can be formulated as an optimization problem:

minimize |V|

7.2
subject to i < brCTN + brcPTN 4 prctN 7:2)
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We have to trigger at least as many control violation events cve as are required to observe
7i test results. Following the above steps, interval estimates for the remaining accuracy
measures, that is, oac?” €, tnr?"C  tprt™C | fnrP €, fprt7C, fdrP €, ppv?T€, and fort”€
introduced in Section [7.4.1can be computed analogously.

7.4.2 Failed-Passed-Sequence-Counter

This section describes how to estimate the accuracy and precision of a continuous test under
evaluation using the Failed-Passed-Sequence-Counter metric (fpsC). To that end, the next
section describes the evaluation of test results using three evaluation measures. Thereafter,
we detail how to use these evaluation measures to compute accuracy and precision measures

(Section[7.4.2.2]and [7.4.2.3).

7.4.2.1 Evaluation of test results

In this section, we explain how we evaluate a continuous test based on the Failed-Passed-Sequence-
Counter metric (fpsC). Recall that fpsC counts the occurrence of Failed-Passed-Sequences
(fps) which is a special sequence of test results, starting with a failed test and ending with
the next passing test (see Section[4.3.5). A fps aims at detecting temporal violations of a
control, that is, control violation events that persist for some time. In order to evaluate the
results of a continuous test, we check if and how any fps overlaps with control violation
events cve.

True negative fps (fpsTN) A fps which consists of only correct basic test results, that is,
true negative test results (br’ V), pseudo true negative test results (br*7™) and one final true
positive test result (br” P). A fpsTN starts (fps®) after the previous control violation event
ends (cve?_,) and starts before the next control violation event ends (cvey). Furthermore, the
fpsTN ends (fps®) only after the next control violation ends (cve?). Thus, we define a true
negative fps as follows:

ps™ =cve | < fps® A fps® < cvef Acvel < fps©.

Note that a fpsT™ can cover multiple cve. Figure shows an example of a true negative
fps whose first failed test produced a pseudo true negative result (br*7™) which starts at
tsrf. This f psTN covers two control violation events, that is, cve; and cve;,;. We use
fpsCTN to count the number of fpsT™ which were observed during a control violation

sequence.

fpsTN
A\
r ]
fps® @ @ fps® @
| | | | | | | | | | | |
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; s s e e s e
CVeiL1  CVey s clvei tsrj C\j/ei C\:ei+1 tsr]._'_1 tsrj+1 cvjei+1 tsrio tsfjo
Vv Vv
cveD; 4 cveD; cveD;, 4

Figure 7.10: True negative Failed-Passed-Sequence (fps’ ™)

Furthermore, note that a true negative fps which detects the first control violation event
during experimental evaluation is a special case: If no previous cve exists, then the following,
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simplified definition of fps’™ is applied:

fps™ = fps* < cvel Acvel < fps©.

False negative fps (fpsfN) A fps which consists of at least one incorrect basic test result,
i.e., false negative test results (br" V) or false positive test result (b ¥) or both. The simplest
variant of a fpsfN is observed if any failed basic test results are false negatives and only the
last test passes correctly. In this case, the fps starts after the last cve ends (cvey) and ends
\)

(fps®) before the next cve starts (cve;, |):

N

fpstN = cvef < fps* A fps© <cvey, .

Figurem shows this basic version of a fps™™. fpsCFN counts all occurrence of fpst'N
observed during a control violation sequence. Yet false negative fps can also contain true

fps™™N
A\

r N

fpsS @ fpse @
| | | | | | | |
I s I o I I I I T | t
ove®  ove; tsrjS tsr]e tsrjs+1 tsr?” cvePiq cve?
cveD; cveD;, 4

Figure 7.11: False negative fps

negative basic test results. This is the case if after a cve ended and before the next cve starts,
that is, no control is violated, basic results still incorrectly indicate a control violation. Figure
shows an example of this error: After the control violation event cve; ended at cve?
and before the next cve starts at cve? ., the test zs7;,| produces a false negative test result at

i+1°
e
fSI"j_'_1 .
osFN
e
r N
fps® @ @ fps® @
I I | I I | I I I |
‘S NS Ye Ne ‘S Ye ‘S Ne ‘S Yet
C\llei tsr] ter] C\J/ei tsrj+1 tSfj+1 cverq oveiy1 tstfyp tsrip
Vv
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Figure 7.12: False negative Failed-Passed-Sequence (fpst™) with true negative and false
negative basic test result (br’N & brf'V)

Complementary indicators of the presence of fps™™ are the false omission rate (for?"€)
and negative predictive value (npv?"©). These accuracy measures are calculated based on
basic test results (see Section [7.4.1.2). The more incorrect negative basic test results are
observed during evaluation of a continuous test, the higher for?”C and the lower npv?"C.

Lastly, the last test of a fps™™ can be a false positive, i.e., the last test result incorrectly
suggests that the cloud service satisfies a control. Figure shows one example of this error:
After a test correctly failed at tsrf |- the next test incorrectly passes while the control is still
violated, thereby producing a false positive test result (brf'F) at tsrj? _,- As a complementary
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Figure 7.13: False negative Failed-Passed-Sequence (fps’) with false positive basic test
result (brf'F)

means to analyze this type of error, we can make use of the positive predictive value (ppv?"©)
and false discovery rate (fdr”"©) introduced in Section [7.4.1.2f The more incorrect positive
basic test results are observed, the higher fdr?”C and the lower ppv?C.

False positive fps (fpsFP) A fps indicates that a cloud service does not satisfy a control
over time. Therefore, if a control violation event is not detected by a continuous test, then
this is considered a false positive fps. Figure[7.14]illustrates a cve that starts after the last
fps ended (f psj‘i) and ends before the next fps starts (f psjs. )

fpstP = fps]e- < cve® Acve® < fps;.H.

We use fpsCH? to count occurrences of fps”? during a control violation sequence.

FP
f[;\sj f;jf fpsj+1
f ) f \

| | | | | | | | | |
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cveD; cveD; 4 cveD;,»

Figure 7.14: False positive fps

7.4.2.2 Accuracy measures based on fpsC

The previous paragraphs introduced three evaluation measures which are derived from the
Failed-Passed-Sequence-Counter (fpsC):

+ True negative Failed-Passed-Sequence-Counter ( fpsCTV),
« false negative Failed-Passed-Sequence-Counter (fpsCFN) and

* false positive Failed-Passed-Sequence-Counter (fpsCFP).

Next, we are going to use these evaluation measures to calculate accuracy measures.
Analogous to the accuracy measures based on brC introduced in Section(7.4.1.2] we draw on
standard measures used in binary classification. The following paragraphs explain which
measures we selected and how these measures can be used to interpret the accuracy of a
continuous test under evaluation to identify temporal violations of controls.
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» True negative rate (tnr): This measure describes the ratio between correctly detected
control violation events (fpsC? ™) and all control violation events that were triggered,
that is, which could have been detected (fpsCT™N + fpsCFF):

CTN

tnrfpsC _ fps

= =1= fpsC.
(fpsCTN + fpsCEP) fpr

tnr/PSC allows us to evaluate how well a continuous test works in detecting intervals
when a control is not satisfied by a cloud service.

* False positive rate ( f pr): This measure captures how many control violation events
were not detected (fpsCFP) out of all control violation events that could have been
detected (fpsCTN + fpsCFP):

fprfpsC _ fpSCFP

- = 1 —t fpSC'
(fpsCTN + fpsCEP) "

Based on fpr/PSC we can describe the proportion of how many control violation
events were missed by the continuous test under evaluation. It is the percentage of
how many times the continuous test failed to indicate that a control is not satisfied by a
cloud service.

* False omission rate (for): This measure describes the ratio of incorrectly detected
control violation events (fpsCF™) and all control violation events that a continuous
test indicated (fpsCTN + fpsCFN):

CFN

fOrfpSC — fPS

=1 -np/PsC,
(fpsCTN + fpsCFNy — """

Using for/PSC, we can make statements about how often a continuous test incorrectly
suggested that a cloud service did not comply with a control for some time out of all
detected control violation events.

* Negative predictive value (npv): This measure describes the ratio between any correctly
detected control violation event (fpsCT™V) and all detected control violation events
(fpsCTN + fpsCEN):

fpSCTN

SpsC _ =1-= fpsC.
" (fpsCTN + fpsCFN) for

On the basis of npy/P5C | we can evaluate how many times a continuous test correctly
indicated a control violation event out of all control violation events that the continuous
test’s results suggested.

7.4.2.3 Precision measures based on fpsC

Analogous to the accuracy measures derived from basic test results, the accuracy measures
tnrfPSC | fprfPsC forfPsC and npv/PSC are proportions. Therefore, we can apply the same
idea proposed in the previous section to calculate interval estimates for tnr/PSC | fpr/PsC,
for’PSC and npv/PSC to infer statements about the general accuracy of a continuous test
based on fpsC.
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There is one important difference: When determining the required number of control
violation events |V|, we now have to trigger at least as many control violation events |V| as
are needed to observe 7i fps. As an example, consider we want to construct a confidence
interval for tnr/P5C . The sample size n for tnr/PSC consists of any control violation event
that should have been detected, that is,

n=fpsCtN + fpsCct?.

The corresponding optimization problem to find the required sample size 7i for tnr/P5¢
thus can be formulated like this:

minimize |V|

(7.3)

CTN CFP

subjectto 7 < fps + fps

Following the approach described above, the precision estimates for the remaining three
accuracy measures fpr/P5C, for/PsC and npy/PC introduced in the previous paragraph
can be computed analogously.

7.4.3 Failed-Passed-Sequence-Duration

This section describes how to estimate the accuracy and precision of a continuous test based
on results produced by the Failed-Passed-Sequence-Duration test metric (fpsD). We begin
with describing different types of errors that an f psD can make when attempting to determine
the duration, start and end of a control violation event. Thereafter, we explain how we use
these evaluation measures to estimate the accuracy and precision based on fpsD (Section

[7.4.3.2]and [7.4.3.3).

7.4.3.1 Evaluation of test results

The following paragraphs describe how to evaluate a continuous test based on results produced
by the Failed-Passed-Sequence-Duration test metric (fpsD). Recall that fpsD captures the
time (e.g., in milliseconds) between the start of the first failed test (fps®), i.e., first element
of a fps, and the start of the next subsequent passed test (fps®), i.e., last element of a fps

(see Section4.3.3).

Duration error of true negative fpsD (e fpsDTN) Having observed a true negative fps,
we compute the difference between the duration of the fps,i.e., fpsD = fps® — fps® and
the duration cveD of any control violation events which is covered by the fps. Figure
shows that a fps”™ can cover multiple cve. Yet it can, at most, cover all cve contained in
the control violation sequence V:

\4
efpsD™ = fpsD™N — cheDi.

i=1

Note that we do not calculate the absolute difference between fpsD and covered cveD.
This allows us to evaluate whether a fpsD overestimates or underestimates the duration of
a control violation event: If e fpsDT™V > 0, then the fpsD overestimates the duration of
covered control violation events (Figure . Furthermore, if e fpsDTN < 0, the fpsD
underestimates the duration of covered control violation events (Figure[7.16). Naturally, if
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Figure 7.15: True negative Failed-Passed-Sequence-Duration (£ psD?™V) which overestimates
total duration of cve; and cve;,q

efpsDTN =0, the fpsD and the duration of the covered control violation events coincide
perfectly.

Furthermore, we calculate the relative error that a fps makes when estimating the
duration of i covered control violation events. To that end, we compute

TN
efpsD™N = lefpsD" ™|
pPsb,. = V] .
. cveD;
i=1
fpsDTN
A
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Figure 7.16: True negative Failed-Passed-Sequence-Duration (fpsDT™) which
underestimates duration of cve;

Pre-duration error of true negative fpsD (ef psDIT,A’,) Up to this point, our error definition

focused on the estimated duration of control violation events which is provided by a true
negative fpsD. However, as Figure illustrates, the start of a fpsD”™ which estimates
the start of the control violation event can be inaccurate, that is, cve® < fps®. Capturing this
error, we compute the difference between the start of a fps, i.e., the start of the first failed
test which detected a control violation event (fps®), and the start of the control violation
event (cve®):
TN _ s s
efpsD,.. = fps” —cve.

Ifef psD;rAé > 0, then the fps starts only after the cve starts. Note that this implies that

the first failed test of the fpsD’"™ produced a true negative test result (br’ V). Furthermore,
if ef psDIT,VI\é < 0, then the fps starts before the cve starts. This implies that the first test

produced a pseudo true negative test result (br°7V),

Post-duration error on true negative fpsD (efpsD) ) Recall that the last basic test

result of a true negative fps is always a true positive basic test result. Therefore, a fps’ N by
definition only ends after the control violation event ends. Figure shows e f psDZN

ost?
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Figure 7.17: True negative Failed-Passed-Sequence-Duration (fpsD"N) with e f psD;rAé >0
and efpsDITN >0

post

that is, the resulting error which the last test result of a fpsD’ ™ makes when determining

the end of a control violation event. In order to describe this error, we compute the difference
between the end of a control violation event (cve®) and the end of the fps, that is, the start of
the last test which passed:

efpsDz(])\gt = fps® —cve.

Duration error of false negative fpsD (efpsDFN) If a false negative fps is observed,
then we consider the entire duration of that fps to be erroneous since it incorrectly indicates
a duration of a control violation event. Figure shows a fpsDF N it is defined as follows:

efpsD™ = fps® — fps°.

fpsDFN
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Figure 7.18: False negative Failed-Passed-Sequence-Duration ( fpsDFN)

Duration error of false positive fpsD (efpsDFP) If we observe that a control violation
event is not detected by a fps at all, then we treat this missed cve as a false positive fps.
Consequently, the duration of a false positive fps is simply the duration of the missed control
violation event (see Figure[7.19):

efpsDFY = cve® — cve®.

7.4.3.2 Accuracy measures based on efpsD

In the previous section, we introduced five error types which are derived from the
Failed-Passed-Sequence-Duration (fpsD) test metric:
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Figure 7.19: False positive Failed-Passed-Sequence-Duration (fpsDF)

* Duration error of true negative Failed-Passed-Sequence-Duration (e fpsDTV),

* pre-duration error of true negative Failed-Passed-Sequence-Duration (e f psD;rI\é),

* post-duration error of true negative Failed-Passed-Sequence-Duration (e f psDIT,(’)Vst),
» duration error of false negative Failed-Passed-Sequence-Duration (e fpsD*™V), and
« duration error of false positive Failed-Passed-Sequence-Duration (e fpsDF ).

When evaluating a continuous test, we may observe instances of any of the above errors.
We treat observations of each type of error on fpsD as separate distributions. Therefore, after
having run a control violation sequence and the continuous test under evaluation, we expect
to obtain at most five distributions. Note that, in practice, a continuous test may not produce
any incorrect test results, i.e., neither brN nor brf'P . In these cases, we will not observe any
instances of e fpsD* N . Further, a continuous test may not miss any control violation events,
thus no e fpsD? is produced either. However, a continuous test not making any error on
estimating the total duration, the start and the end of any control violation event is rather
unlikely. The reason for this is that not observing any instance of e fpsD'N, e f psDIT,rl\é, or
ef png(I)\gt requires the continuous test to always perfectly estimate duration, start and end
of any control violation event. Therefore, we can expect to observe at least three distributions
after having evaluated a continuous test’s results based on fpsD, i.e., ef psD™N, efpsDLN
and efpsD[T,(I,\gl.

In order to estimate the accuracy of a continuous test when measuring temporal violations
of controls (e.g., in milliseconds), we compute the arithmetic mean (k) for each of the
observed distributions. X sums the values of a type of error and divides the result by the
number of instances of that error type observed during evaluation of the continuous test. For
example, in order to calculate the arithmetic mean for e fpsD’ ™, we add any instances i of
efpsDTVN contained in the sequence EFPSD”"N and divide by the number of elements in

EFPSDTN:

(efpleTN + efpngN +ot efpsDiTN)
B |[EFPSDTN|
DTN

.fTN

Using X7, we can describe the average error a fps makes when estimating the duration
of a control violation event. Calculation and interpretation of the remaining four error types
is analogous.

As a complementary measure to the arithmetic mean, we also compute the median (%)
which is the middle value of an ordered list, that is, the middle values of the ordered list of
measured values. The median is helpful when values of, e.g., EF PSDIT,% do not increase
arithmetically, that is, if the difference between consecutive values of the sequence is not
constant. Consider, as an example, having observed EF PSD]IY = (~8,-5,10). The mean

TN _ TN _

is X}, = —1 while median tells us %,,., = —5.
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7.4.3.3 Precision measures based on e fpsD

Describing the precision of a continuous test under evaluation, we compute the following
statistics:

* Standard deviation (sd): Measures the dispersion of values within a distribution.
Continuing our example from the previous paragraph, the standard deviation of the
values in EFPSD™N tells us how far values spread around its mean:

1
SdrN = || emgarm ((ef psDIN = Xrn)? + -+ + (efpsDI'N — %rn)?)
|[EFPSDTN|

Using sd, we can describe the variation of the different types of error which a continuous
test makes when measuring the duration of control violation events. Furthermore, we
will also use sd to compute the standard error of the mean which is needed to calculate
confidence intervals which is explained in the following paragraph.

» Confidence Interval for the sample mean: We presented five types of errors a fpsD
may make when measuring the duration of a control violation event, e.g., e f psDT™N
and e f psD¥ P, For each of these error types, we compute the mean ¥ of the observed
distribution as an accuracy measure. In order to make a statement about the precision
of a continuous test, the core idea here is to construct a confidence interval for each
mean.

As an example, consider e fpsD” "N, i.e., the mean error that a continuous test makes

when determining the duration of a control violation event: A confidence interval on
this mean allows statements such as we are 99% confident that the average error of a
continuous test — with respect to the test defined and control violation configuration —
makes when estimating the duration of a control violation event is contained in the
interval. We compute this estimate with

XN % f99q, X sex

where fg9q, is the value that separates the middle 99% of the area under the z-Distribution
and se is the standard error which can be estimated with

SdTN

se .
o

In our example, the sample size n is the number of observed true negative fps and sd
is the standard deviation. In order to determine the required sample size 7i, the desired
margin of error E is solved for the sample size 7, that is,

2y 42
g~ X,
i = —— 2k (7.4)
E2
where o2 is an educated guess of the population variance based on initial samples of
efpsDTVN or historical values.

Inferring statements about the general accuracy of a continuous test based on the mean
of, e.g., Xrn requires triggering a minimum number of control violation events. In
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our example for e fpsDT™ | we find the minimum size of V by solving the following
optimization problem:

minimize |V]| 7.5)
subjectto 7 < fpsD'N. '
We need to trigger at least as many control violation events as are needed to observe 7i
JpsD"N . Using these steps, interval estimates for the means of e fpsD} %, e fpsDI Y.,
efpsDFN and efpsDFP can be computed analogously.

As a complementary measure, we also compute the minimum and maximum (min &
max), that is, the smallest and largest value for any type of error that was observed during
evaluation of a continuous test. Using these statistics, we can describe the most extreme
errors that a continuous test makes when measuring duration of control violation events.
Furthermore, comparing min and max to the standard deviation can help to identify whether
the test results produced during evaluation contain outliers.

7.4.4 Cumulative-Failed-Passed-Sequence-Duration

This section describes how to determine the accuracy of a continuous test based on
the Cumulative-Failed-Passed-Sequence-Duration test metric (¢ fpsD). Hereafter, we
first introduce three evaluation measures ¢ fpsD'N, cfpsDF "N, and ¢ fpsDF* which are
computed based on fpsDTN, fpsDFN and fpsDFP, respectively. Thereafter, we explain
how these evaluation measures are used to estimate the accuracy of a continuous test under
evaluation.

7.4.4.1 Evaluation of test results

This section describes how, based on the Cumulative-Failed-Passed-Sequence-Duration test
metric (¢ fpsD), a continuous test can be evaluated. Recall that this metric accumulates the
value of any fpsD (e.g., in milliseconds) observed within a specified period of time, thus
allowing to determine whether a cloud service satisfies a control with temporal constraints
within that period (see Section 4.3.5).

True negative cfpsD (cfpsDTN) Each value of a true negative fpsD observed during
evaluation of the continuous test is added, i.e.,

cfpsDTN = fpleTN +fpsD§N +---+fpsDiTN.

This measure tells us the total measured duration of correctly detected control violation
events.

False negative cfpsD (cfpsDFN) This evaluation measure holds the sum of any false
negative fpsD which was produced by the continuous test under evaluation:

cfpsDFN =fpstN+fpsD5N+---+fpsDiFN.

We can use ¢ fpsDFN to capture the total measured duration of control violation events
which the continuous test incorrectly indicated.
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False positive cfpsD (cfpsDFP) The sum of any false positive fpsD which was produced
by the continuous test under evaluation is computed by this measure, that is,

cfpsDFF :fpstP+fpsD§P+-~-+fpleFP.

Using ¢ fpsDY?, we can describe the total duration of control violation events that were not

detected by the continuous test under evaluation.

7.4.4.2 Accuracy measures based on cfpsD

The previous three paragraphs introduced three evaluation measures:

* True negative Cumulative-Failed-Passed-Sequence-Duration (c fpsDT™)
» false negative Cumulative-Failed-Passed-Sequence-Duration (c f psDFN), and

« false positive Cumulative-Failed-Passed-Sequence-Duration (c f psDFP).

In order to determine the overall accuracy of a continuous test within a predefined period
of time, that is, from start to end of the control violation sequence, we introduce the following
three accuracy measures:

* Duration error of true negative cfpsD (ecfpsDTV): We compute the difference
between the cumulative duration of true negative fpsD and the total duration of any
control violation event cve € V:

\4
ecfpsD™N = cfpsD™N — Z cveD;.

i=1

The accuracy measure ec fpsDT™V allows us to describe whether a continuous test

overestimates or underestimate the accumulated duration of control violations within
a specified period of time. If the continuous test overestimates the duration of the
control violation events, then ec fpsDTN > 0. Otherwise, if the continuous test
underestimates the duration of the control violation events, then ec fpsDTV < 0.
Lastly, if ec fpsDT™ = 0, then the duration measured by the continuous test perfectly
corresponds to the total duration of control violation events.

Furthermore, we compute the ratio between ec f psDT™ and the total duration of all i
control violation events contained in V/, that is,

TN

N _ lecfpsD™ ™|

ECfpSDrel = ﬁ
2. cveD;

Using ec f psDZel;’ , we can describe the relative measurement error that a continuous
test makes when estimating the accumulated time during which a cloud service does
not comply with a control.

* Duration error of false negative cfpsD (ec fpsDFN): The total duration of false
negative fpsD that a continuous test suggested is identical to the duration error of
false negative c fpsD, that is, c fpsDFN = ec fpsDFN . However, the absolute total
duration of a continuous test incorrectly indicating temporary control violation provides
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only limited information because it lacks context. Therefore, we also calculate the ratio
between ec f psDFNand the total amount of time during which the continuous test
indicated that the cloud service does not satisfy a control (ec f psDFN + ec fpsDTN):

ecfpsDFN = cfpsD""
rel (CfpSDFN +CfpSDTN).

Based on ecf pst eN , we can make statements about the proportion of detected
temporary control violation events which — out of the total duration of control violation
events — was incorrect.

* Duration error of false positive cfpsD (ec f psDF ) The total duration of false positive
fpsD is the same as the duration error of false positive ¢ fpsD, i.e., cfpsDFF =
ecfpsDFP . Yet ec fpsDFP as an absolute value only tells us the total amount of time
where we expected the continuous test to detect temporary control violation events but
it did not. In order to be able to assess the meaning of ec f psDF ¥, we have to relate it
to the total duration of control violation events:

cfpsDFP
ecfpstj Rl —
-1 cveD;

We can use ec f pste l; to describe the proportion of the duration of control violation
events which remained undetected in total.

7.4.4.3 Precision measures based on ¢ fpsD

According to our definition of precision in Section precision refers to closeness of
agreement between successively measured values which implies that precision measures
need at least two measured values as input. Since ec fpsDTN, ec fpsD*N, and ec fpsDFP
are exactly calculated once after experimental evaluation of a continuous test, we cannot
apply the concept of precision using ¢ fpsD.

7.5 Example evaluation of continuous test results

In this section, we present three scenarios in which we apply our method introduced in the
previous sections to evaluate and compare continuous test results. In the next section, we
describe the components of our experimental setup. Thereafter, we present three scenarios in
which cloud service providers seek to evaluate tests to support continuous certification of
cloud services according to controls related to the properties availability and security.

7.5.1 Setup and environment

In this section, we describe the experimental setup which we use to evaluate results produced
by the continuous tests. We begin with the cloud services which are subject to testing. Then
we outline the control violation framework which is used to manipulate properties of the
cloud services under test so that they violate one or more controls (Section|[/.5.1.2)) as well as
the continuous tests’ implementations (Section[7.5.1.3). Finally, we introduce the evaluation
engine (Section which computes the accuracy and precision measures presented in
Section [7.4]
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7.5.1.1 Cloud services under test

We test instances of IaaS which are provided by OpenStack Mitakm (IaaS°S). Each
test presented in Section [7.5.2] [7.5.3| and [7.5.4] is executed on an individual instance of
IaaS%S. In total, three virtual machines are used each of equipped with 2 VCPUs and 4 GB
RAM and running Ubuntu 16.04 server. Furthermore, all three instances are attached to
the same tenant network. The two instances which are used to continuously test security
communication configuration (Section [7.5.3)) and secure interface configuration (Section
are additionally running an Apacheb server and a MongoDBE] database which
we refer to as SaaS?S and PaaS®S, respectively.

7.5.1.2 Control violation framework

In order to trigger control violation events, we developed a lightweight framework in Java
which allows to continuously manipulate properties of a cloud service under test as described
in Section[7.3.1} The framework is extensible, that is, novel control violations can be added.
Furthermore, multiple control violation sequences can be executed concurrently.

The framework persists each control violation event including start and end time of each
event, event duration and current iteration. This data establishes the ground truth which is
later used by the evaluation engine (see Section[7.5.1.4) to evaluate the accuracy and precision
of continuous test results. The control violation framework is deployed on a designated
virtual machine. This machine is attached to the identical tenant network as laaS%S, PaaS®S,
and SaaS®S.

7.5.1.3 Continuous testing framework

Tests are implemented following the framework introduced in Chapter ] The tests are
deployed on an external host, attached to a different network than the cloud services under
test.

7.5.1.4 Evaluation engine

This component is responsible for computation of accuracy and precision measures described
in Section as well as test and control violation statistics. To that end, we employ the
Apache Commons Math library. The evaluation engine is implemented in Java and is hosted
locally on a personal computer and uses the control violation sequence’s data and produced
test results as input.

7.5.2 Continuously testing availability

In this scenario, we consider a cloud service provider who seeks to certify controls related to
the property availability. As already described in Section[5.2.2.1] examples of cloud-specific
controls which can be related to the availability of cloud service components are RB-02
Capacity management — monitoring of the Cloud Computing Compliance Controls Catalogue
(BSI C5) [31]], 1VS-04 of the Cloud Control Matrix (CCM) [22]] as well as A.12.1.3 Capacity
management of ISO/IEC 27001:2013 [124]].

112https ://www.openstack.org/software/mitaka/ [Accessed: 2018-12-13]
3nttps://httpd.apache.org/|[Accessed: 2018-12-13]
H4https://www.mongodb . com/ [Accessed: 2018-12-13]
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The provider wants to select a continuous test which overestimates the duration of
detected violations of the availability of cloud service components as little as possible. As
a consequence, the number of false negative test results which a test produces incorrectly
indicating an availability related control violation should be kept to a minimum.

7.5.2.1 Alternative continuous tests
The cloud provider has the following three candidates of continuous tests to choose from:

* PingTest: Pings IaaS?S where each tests sends ten ECHO_REQUEST packets, thereby
repeatedly measures round trip times on the Internet Layer using ICMP packets. A
test passes if the returned round trip time (rrt) satisfies the following two assertions:
assert_rtt_avg < 20ms and assert_rtt_sd < 10ms.

» TCPTest: Sends TCP segments to determine whether IaaS®S is available. We use
NpingE] to implement this test which sends five probes per test. A single test passes if
the average response time and the maximum response time of probes are not greater
than 75 and 100 ms, respectively.

* SSHTest: Connects to IaaS®S via SSH and then test the session using an
SSH_MSG_CHANNEL_REQUEST. We uses the Trilead SSHZ[T_E‘] library to establish
a SSH connection. A single test passes if no I/O exception is thrown during connection
establishment and session testing.

The interval of PingTest, TCPTest and SSHTest is configured to 60 seconds, that is, the
next test started 60 seconds after the previous one completed. Further, there is no additional
offset between test executions and the number of successive iterations is set to infinity. Note
that only test results produced during the control violation sequence are considered for the
evaluation.

7.5.2.2 Control violation configuration

We trigger 1000 downtimes of IaaS?S for each of the three candidate tests. Each downtime
event lasted at least 60 seconds plus selecting [0, 30] seconds at random (cveD). Furthermore,
the interval between two downtime events is at least 120 seconds plus selecting [0, 60] seconds
at random (cveW).

Table[7.1] provides an overview of the three different control violation sequences used
to evaluate PingTest, TCPTest, and SSHTest. To that end, the total downtime (ccveD), the
mean duration of each downtime (X.,.p) and standard deviation (sd.,.p) for each control
violation sequence V is shown.

7.5.2.3 Test statistics

The results of PingTest, TCPTest, and SSHTest are summarized in Table These include
the results observed for each of the universal test metrics brC, fpsC, fpsD and cfpsD
which were introduced in Section[4.3.5] Furthermore, we also include the total number of
executed tests (rsrC) as well as the mean (X,4,-), standard deviation (sd;s, ), min (min,g,) and
max (max;g,) duration of tests.

HShttps://nmap.org/nping/ [Accessed: 2018-12-13]
HShttps://github.com/jenkinsci/trilead-ssh2 [Accessed: 2018-12-13]
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Table 7.1: Summary of control violation statistics for PingTest, TCPTest, and SSHTest

Sequence statistic (sec) | VPinglest | yTCPTest | y/SSHTest
ccveD 75102.11 | 75544.07 | 75706.71
XeveD 75.11 75.54 75.71
SdeveD 8.97 8.70 8.82
MilcyeD 60.17 60.38 60.39
MAXeveD 90.33 90.6 92.58

7.5.2.4 Accuracy and precision of PingTest, TCPTest and SSHTest

This section presents the accuracy and precision of PingTest, TCPTest as well as SSHTest
observed during evaluation.

Accuracy and precision based on Basic-Result-Counter (brC) Table shows the
results of evaluating PingTest, TCPTest and SSHTest based on the Basic-Result-Counter
(brC) test metric. Recall that in our scenario, the cloud service provider desires a continuous
test which produces as little as possible false negative results. Therefore, we select those
accuracy and precision measures to evaluate PingTest, TCPTest, and SSHTest which take false
negative basic results (brCFV) into account. These include (for definition of the measures see
Section[7.4.1.2|and[7.4.1.3): Overall accuracy (oac?”€), false negative rate (fnr?”C), false
omission rate (for?”€) and negative predictive value (npv?"©). For improved readability,
these measures are highlight in Table

TCPTest has the highest overall accuracy (97.52%) while SSHTest has the lowest
(80.13%). Yet SSHTest has a perfect false negative rate (fnr), a perfect false omission rate
(for) and a perfect negative predictive value (npv). The reason for this is that SSHTest did
not produce any false negative basic test results during the evaluation (Table[7.2). Thus, if
the cloud provider was only to rely on the accuracy and precision derived from the brC test
metric, then the provider would select SSHTest.

Accuracy and precision based on Failed-Passed-Sequence-Counter (fpsC) The results
of evaluating PingTest, TCPTest, and SSHTest based on the Failed-Passed-Sequence-Counter
(fpsC) are presented in Table As already mentioned above, in our scenario, the cloud
provider is interested in the continuous test which produces the lowest number of false
negative results. In context of accuracy and precision measures derived from fpsC, we thus
select false omission rate (for/P5€) and negative predictive value (npv/P$€) — introduced in
Section [7.4.2.2]and [7.4.2.3| - because both consider false negative fps.

PingTest has the best evaluation results since it has the highest negative predictive value
(99.69%) and the lowest false omission rate (0.31%). Furthermore, SSHTest has the worst
results since it has the lowest npv (97.9%) and the highest for (2.1%). The reason for this
evaluation result of SSHTest can easily be observed in Table[7.2} SSHTest produced the
highest number of false negative fps during evaluation. Therefore, if the cloud provider was
to only rely on accuracy and precision derived from the fpsC test metric, then the provider
would select PingTest.
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Table 7.2: Summary of test statistics of PingTest, TCPTest, and SSHTest

Test statistic PingTest | TCPTest | SSHTest
tsrC 3153 3546 2491
tsr Trsr 12.04 438 30.91
(sec) sszr 4.51 0.47 44.90
MiNsgy 9.01 4.01 0.54
maxqsy 20.03 5.22 127.34
brcTP 2024 2316 1488
brct? 2 3 11
prc | rC™Y 795 1067 0
brCcFN 2 6 0
brcPTN 207 74 508
brCcPEP 122 79 484
fpsCTN 965 978 466
fpsC | fpscFN 3 9 10
fpsCFP 33 13 524
TN 81.22 75.13 176.74
sdypspry 13.54 23.51 61.04
mediany s prn 79.10 65.08 187.24
ming,spry 69.02 64.06 123.09
Maxs,spry 158.27 130.29 561.76
XFN 98.79 122.17 187.29
fpsD | sdrn 43.02 50.31 0.04
(se¢) | medians,prn | 79.10 129.18 | 187.30
mins s pFN 69.12 65.03 187.20
Max;,spFN 148.13 194.35 187.34
XFp 63.74 62.98 73.13
sdpp 2.63 4.13 8.35
mediany s pre 63.40 61.43 72.48
ming,spre 60.37 60.04 60.38
Maxg,spr e 69.66 75.43 92.58
TN 78378.36 | 73481.13 | 82362.03
cfpsD
(sec) | FN 296.37 1099.50 | 1872.90
FP 2103.27 | 818.69 38319.32
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Accuracy and precision based on Failed-Passed-Sequence-Duration (fpsD) When
evaluating PingTest, TCPTest, and SSHTest based on Failed-Passed-Sequence-Duration
(fpsD) test metric, we obtain the results shown in Table On average, PingTest produces
true negative fps with the lowest relative error (e f psDrTg ) when estimating the duration
of a downtime event (13.22%), followed by TCPTest (19.77%) and SSHTest (126.27%).
Therefore, if we were to focus solely on the accuracy of the continuous test, then PingTest
would be the preferable choice.

However, recall that the assumptions of our scenario state that the cloud provider seeks
for a continuous test that overestimates downtime events as little as possible. To that end,
we have to consider the duration error of true negative fps, that is, e fpsDT™V. As pointed
out in Section efpsDTYN is not based on the absolute difference between a control
violation event and a corresponding fpsDT™. Consequently, it allows us to observe whether
a true negative fps overestimates or underestimates a control violation event.

Comparing e f psDTN of PingTest, TCPTest and SSHTest (Table[7.5) reveals that TCPTest
underestimates the downtime events on average by 569 ms while PingTest and SSHTest
overestimate downtime events by 5749 ms and 98050 ms, respectively. From the perspective
of the cloud provider within our scenario, TCPTest thus is preferable. This choice is further
supported by Figure which allows for a more detailed analysis of e fpsDT™: It shows
three box plot each of which describes the variation of duration error of true negative
fps. Itis evident that duration error of true negative fps produced by SSHTest is not only
higher on average but also has a higher variability. Furthermore, although PingTest and
TCPTest have produced distributions of e fpsDT™ with similar variability, it is evident that
the average and median of TCPTest indicate that TCPTest underestimates downtime events
while PingTest overestimates them.

Accuracy and precision based on Cumulative-Failed-Passed-Sequence-Duration (c f ps D)
Table shows the results of evaluating PingTest, TCPTest and SSHTest based on the
Cumulative-Failed-Passed-Sequence-Duration (c fpsD) test metric. In our scenario, the
cloud provider wants to select the test which overestimates the total downtime (cveD) as
little as possible. To that end, we will consider the total duration error of true negative fps,
that is, ecp fsDTN and the total duration error of false negative fps, i.e., ecfpsDFV.

Figure illustrates the results of ecp fsDTN and ecp fsD" "V : TCPTest underestimates
the total downtime by 2062.93 seconds while PingTest and SSHTest both overestimate the
accumulated duration of downtime event by 3276.25 and 6655.32 seconds, respectively.
Furthermore, SSHTest has the highest total duration of false negative fps (1872.89 seconds),
followed by TCPTest (1099.5 seconds) and PingTest (296.37 seconds).

Conclusion In conclusion, we argue that our cloud service provider will not select SSHTest
because in comparison with PingTest and TCPTest, its inaccuracy leads to the highest
overestimates regarding both individual and total duration of downtime events. This leaves
us with the question of whether to choose PingTest or TCPTest. The cloud provider will
select TCPTest since it on average (e fpsDT™) and in total (ecp fsDT™) underestimates the
duration of downtime events. Although PingTest produces the lowest total false negative
duration (ecp fsDF™N), it cannot compensate for overestimating the total duration of true

7Each box shows the interquartile range (/QR) of the distribution and the whiskers display lowest and highest
data points within 1.5 X IQR in the lower and upper quartile, respectively. Furthermore, outliers are indicated by
small circles while the average and median are displayed by a dashed green line and a solid red line, respectively.
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Table 7.3: Evaluation of PingTest, TCPTest and SSHTest to test availability of JaaSPS based
on the Basic-Result-Counter (brC) test metric

Accuracy & precision measure | PingTest | TCPTest | SSHTest
oac 96.0 97.52 80.13
E)>% 0.68 0.51 1.57
tnr 88.99 93.30 50.65
E}ST 1.83 1.40 3.09
tpr 99.90 99.74 100
Ep 0.14 0.21 0
fnr 0.20 0.53 0
ED¥ 0.26 0.41 0

ebrC

) LLPr 11.01 6.70 49.35
ED¥ 1.82 1.40 3.09
fdr 5.77 3.42 24.96
E}Y 0.99 0.73 1.90
ppv 94.23 96.58 75.04
ES 0.99 0.73 1.90
for 0.20 0.52 0
EDK 0.28 0.42 0
npv 99.8 99.48 100
Ep 0.28 0.42 0

negatives: If we add ecpfsDFN to ecpfsDT™N which gives us the total duration of all
observed negative fps, for PingTest we obtain

ecpfsDTN + ecpfsDFN =3276.25sec + 296.37sec = 3572.62sec
and for TCPTest we compute
ecpfsDTN + ecpfsDFN = —2062.93sec + 1099.5sec = —963.43sec.

It is evident that TCPTest still dominates PingTest in context of our scenario since it
underestimates downtime events rather than overestimating them. Consequently, the cloud
provider will select TCPTest to determine the availability of her cloud service components.

7.5.2.5 Calibrating precision

oac> “tnr °> “tpr ppv*
of error to construct interval estimates describing the precision of a continuous test based

on the brC test metric. As described in Section[7.1.2.5] we can treat the sample size n as a
parameter to calibrate our evaluation according to the desired precision, that is, a desired
margin of error £. Within the following two paragraphs, we exemplify how to calibrate the
experimental evaluation according to a desired precision for PingTest and TCPTest.

Tableincludes margins of error, e.g., Eoo, EX% EX?% and E?% . We use these margins
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Table 7.4: Evaluation of PingTest, TCPTest and SSHTest to test availability of laaS®S based
on the Failed-Passed-Sequence-Counter (fpsC) test metric

Accuracy & precision measure | PingTest | TCPTest | SSHTest
tnr 96.69 98.69 47.07
E}3% 1.11 0.71 3.11
fpr 3.31 1.31 52.93
f 95%
fqp)sC EXY 1.11 0.71 3.11
€ for 0.31 0.91 2.10
EDY 0.35 0.59 1.29
npyv 99.69 99.09 97.90
Ep 0.35 0.59 1.29
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Figure 7.20: Duration error of true negative fps (efpsDT™) of PingTest, TCPTest, and
SSHTest
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Table 7.5: Evaluation of PingTest, TCPTest and SSHTest to test availability of JaaSPS based
on the Failed-Passed-Sequence-Duration (fpsD) test metric

Accuracy & Precision measure PingTest | TCPTest | SSHTest
3 5749 -569 98050
3 3643 -6386.5 | 100754
efpsD™ | ¢4 14143 21996 61586
(ms) min 11586 | 25467 | 32372
max 75692 61613 498360
E%% 895 1378 5606
3 13.22 19.77 126.27
3 9.22 14.94 116.49
efpsDlY | sa 14.74 18.41 83.69
() min 0.26 0.32 35.66
max 11937 | 91.26 786.01
E»% 0.93 1.16 7.62
3 33102 32364 6026
3 32087 32103.5 | 15035.5
efpsDL) | sa 19634 18293 54703
(ms) min -8342 132 -368338
max 69584 65098 59740
E»% 1240 1148 4980
3 38852 31795 104077
3 38223 31250.5 | 110652
efpsDLY, | sa 19777 18584 | 23052
(ms) min 153 48 60442
max 70141 64082 161631
E»% 1249 1166 2098
5 98789 122166 | 187289
3 79110 129178 | 187296
efpsDFN | ¢4 43023 50306 42
(ms) min 69124 | 65030 | 187196
max 148132 | 194353 | 187336
E95% 106876 | 38668 30
5 63736 62976 73128
3 63400 61430 72481.5
efpsDFF | 54 2626 4131 8345
(ms) min 60368 | 60404 | 60380
max 69657 75430 92584
E»% 931 2496 716
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Table 7.6: Evaluation of PingTest, TCPTest and SSHTest to test availability of laaS®® based
on the Cumulative-Failed-Passed-Sequence-Duration (c f psD) test metric

ecfpsDTN TN(ms) 3276253 | -2062934 | 6655321
T'N(%) 4.36 2.73 8.79
ecfpsDFN FN(ms) 296366 | 1099497 | 1872887
FN(%) 0.38 1.47 2.22
ecfpsDFP FP(ms) 2103272 | 818685 | 38319324
FP(%) 2.80 1.08 50.62
8000000
Bl PingTest
6655321 B TCPTest
6000000 SSHTest
5 4000000 -
& 3276253
O
&
E 20000001 1872887
1099497
0 -2062934 296366
2000000
ecfplsDT"’ ecfplspFN

Figure 7.21: Total duration error of true negative fps (ecfpsd’ ™) and false negative fps
(ecfpsd™™) of PingTest, TCPTest, and SSHTest
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Considering TCPTest, the sum of observed brCTN | prcPTN  prCFP and brcPFP
equals 1223 brC (Table[7.2). On this basis, we compute the 95% confidence level for the
true negative rate tnr, that is, 93.3% + 1.4. Assuming that this observed value of E;,, is
our desired one, then we compute the required sample size n for confidence intervals for
proportions using formula[7.1] that is,

295 Xtnrx(1=tnr) _ 1.96x0.933x(1-0.933) _ 626
E? - 0.0142 ~ :

n=

This means that we have to trigger as many control violation events — here downtime
events — to observe brCT™N + brCPTN + brCF? + brCPFP = 626 brC. Since we observed
the sum of 1223 brC, we can state that we are 95% confident that TCPTest — with respect to
the selected test and control violation configurations — has a true negative rate between 91.9
and 94.7%. Calibrating the precision of evaluations of continuous tests based on the fpsC
test metric works analogously.

Let’s now consider PingTest to calibrate the precision of a continuous test based on the
fpsD test metric: We observed 965 true negative fps (Table[7.2) which are used to compute
a95% confidence level for the mean () of the duration error of true negative fps (e fpsd’ ™).
The margin of error (E®>*) is 895 ms leading to following confidence interval (Table :
5749 ms+895.

In Section[7.1.2.5| we pointed out that we can determine the required minimum sample
size for a desired margin of error using formula[7.4] Let us first consider that the observed
value for the margin of error coincides with our desired value for E*%. In this case, we
simply plug in the observed value for E%\O;“ and the standard deviation from Ping7est as an
estimate for the population variance (-2). As a result, we obtain

_ 14143%x1.96%
- 8952 ~ 960

required true negative fps. This means that we have to trigger as many downtime events
as are necessary to observe at least 960 fps’™. As an alternative case, consider that our
desired margin of error is 1000 ms. In order to achieve this precision, ~ 769 fps’" are
required to be observed during evaluation. Having observed 965 true negative fps, we can
state that we are 95% confident that the duration error (e fpsd’ ™) which PingTest makes on
average when estimating the duration of a downtime event — with respect to the chosen test
and control violation configuration — is between 4854 and 6644 m:s.

7.5.3 Continuously testing secure communication configuration

In this scenario, we consider a cloud service provider who is at the same time a cloud
service customer: The provider offers a SaaS application for which he makes use of another
provider offering platform services (PaaS). As a result, components such as web sever, data
bases, and load balancer are supplied and maintained by the PaaS provider, that is, the SaaS
provider only has access to the necessary APIs but cannot directly access the underlying
applications and components. As a result, the PaaS provider is responsible for providing
secure communication configurations, including secure configuration of Transport Layer
Security (TLS) used by the web server component to deliver websites via HTTPS.

The SaaS provider seeks certification of his SaaS application according to controls which
are related to property secure communication configuration. As already discussed in Section
[5.4.2.1] examples for cloud-specific controls which are related to the secure communication
configuration of cloud services are KRY-02 Encryption of data for transmission (transport
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encryption) of the Cloud Computing Compliance Controls Catalogue (BSI C5) [31]], EKM-03:
Encryption & Key Management Sensitive Data Protection of CSA’s Cloud Control Matrix
(CCM) [22], and A.14.1.2 Securing application services on public networks of ISO/IEC
27001:2013 [24]].

To support certification of his SaaS application, the SaaS provider want to utilize a
continuous test and configure it in such a manner that it most accurately indicates if the secure
communication configuration property of his SaaS application does not hold. This implies
that the test should ideally detect any violation of the secure communication configuration
property while the number of false positive results produced by the test should be as low as
possible. Furthermore, if an insecure communication configuration has been detected, then
the SaaS provider seeks a test configuration which as accurately as possible detects how long
it takes the PaaS provider to fix vulnerable communication configurations.

7.5.3.1 Alternative test configurations

We make use of the tool sslyz to analyze the TLS configuration of SaaS?S. The output
of sslyze is inspected to discover whether the web server offers to communicate via known
vulnerable cipher suites. In case the web server does offer support for vulnerable cipher
suites, the secure communication configuration property of SaaS?® does not hold, leading to
a violation of certificates’ controls relating to this property.

The SaaS provider within our scenario can choose between the following three different
candidate configurations for the test TLS7est:

o TLSTest!*%: Each execution of TLSTest is triggered randomly in the interval [0, 10]
after the last test completed.

o TLSTest!*3!: Each execution of TLSTest is triggered randomly in the interval [0, 30]
after the last test completed.

o TLSTest!*%!: Each execution of TLSTest is triggered randomly in the interval [0, 60]
after the last test completed.

Furthermore, no additional offset between test executions is configured and the number of
successive iterations for all three TLSTest variants is set to infinity. Note that only test results
produced during the control violation sequence are considered for evaluation.

7.5.3.2 Control violation configuration

In order to evaluate the three candidate configurations of TLSTest, we triggered 1000
vulnerable TLS configurations of SaaS?S for each TLSTest variants. These vulnerable TLS
configurations consist of manipulating the web server configuration of SaaS?S such that it
supports TLS communication using the weak cipher suite TLS_RSA_WITH_DES_CBC_SHA.
Each event where the TLS configuration is not secure lasted at least 60 seconds plus selecting
[0,30] seconds at random. The interval between consecutive vulnerable configuration events
was at least 120 seconds plus selecting [0, 60] seconds at random. Table provides an
overview of the control violation sequence statistics observed during experimental evaluation
of TLSTest!%1%1, TLSTest(*3% and TLSTest!*60],

U8https://github.com/nabla-c0d3/sslyze|[Accessed: 2018-12-13]
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Table 7.7: Summary of control violation sequence statistics for TLSTest!%-1%] TLSTest[*-301,
and TLSTest[0-¢0]

Sequence Y TLSTest

statistic (sec) [0,10] [0,30] [0,60]
ccveD 75050.77 | 74817.15 | 75477.49
XcveD 75.10 74.82 75.48
SdeveD 8.90 8.97 9.06
MilcveD 60.01 60.02 60.02
MaXeyeD 90.04 90.10 90.03

7.5.3.3 Test statistics

The results produced by TLSTest are shown in Table[/.8| consisting of the values observed
for each of the universal test metrics introduced in Section 4.3.5] Moreover, the total
number of executed tests (zs7C) as well as the mean (X;s; ), standard deviation (sd;, ), min
(min;g,) and max (max;g,) duration of tests are included. Note that for each TLSTest variant,
we only observed a single value for false positive fpsD (i.e., fpsCFP = 1) and thus we
cannot compute average (X p), median (mediang,,prr), and standard deviation (sdr p) for
TLSTest!%19 TLSTest!%3%!, and TLSTest*6%1. The corresponding fields of Table are
marked as na which is short for not applicable.

7.5.3.4 Accuracy and precision of TLSTest!*1%, TLSTest!*3"! and TLSTest!%-¢0]

This section presents the accuracy and precision of TLSTest!%!1%], TLSTest!%-3%! and TLS Test!*-6"]
observed during evaluation.

Accuracy and precision based on Basic-Result-Counter (brC) Table shows the
results of evaluating TLSTest!*!9 TLSTest!%-3%) and TLSTest(*?! based on the Basic-Result-
Counter (brC) test metric. Recall that according to the constraints of our scenario, the SaaS
provider wants to select a configuration of TLSTest which produces the minimum number of
false positive basic test results (brCF'F). Through inspecting Table we can easily observe
that TLSTest!%!%! produced the highest number of brCF P, followed by TLSTest!*3% and
TLSTest!®01, However, only relying on these absolute counts of brCF ¥ is misleading since
TLSTest%19 executed more than twice as many tests as TLSTest!%3% which is not reflected
by the mere absolute number of brCFF. Consequently, we have to make use of the accuracy
and precision measures introduced in Section 7.4.1.2|and [7.4.1.3| which relate brCF'F to the
remaining results of the continuous test evaluation. These are: Overall accuracy (oac?"©),
true negative rate (tnr?C), false positive rate (fpr?”©), false discovery rate (fdr’"€) and
positive predictive value (ppv?"©). These measures are highlighted in Table for improved
readability.

TLSTest!%191 has the lowest overall accuracy (98.24%) and the lowest true negative rate
(97.06%). Further, TLSTest!%!%! has the highest false discovery rate (1.55%), followed by
TLSTest!%091 (1.46%) and TLSTest%3% (1.34%). However, we argue that the most suitable
accuracy measure in context of our scenario is the false positive rate since it captures the
ratio between incorrectly passed tests and all test that were expected to fail: TLSTest!%-1%]
has the highest fpr (2.94%), followed by TLSTest!*6%! (2.84%) and TLSTest>*°! (2.64%).
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Table 7.8: Summary of test statistics of TLSTest!%! TLSTest!?31, and TLSTest!*-60]

Test TLSTest
statistic [0,10] [0,30] [0,60]
tsrC 34801 13771 7332
s Kisr 1.50 1.40 1.38
(sec) | Sdisr 0.59 0.62 0.46
Mingg, 0.10 0.10 0.10
maxgy 19.73 19.39 19.18
brCcT? 22484 9024 4793
brct? 8 5 3
prc | brC™N 11585 4504 2410
brcFN 260 83 39
brCcPTN 106 33 18
brCcPEP 346 118 68
fpsCTN 871 893 969
fpsC | rpscEN 184 110 30
fpsct? 1 1 1
xrn 74.78 75.41 75.59
sdypspTN 9.94 13.93 22.96
mediany,prN 74.55 75.43 75.30
ming,s pTn 41.75 39.64 18.20
Maxg,sprN 97.99 114.76 138.10
XEN 52.32 73.46 69.66
fpsD | sdrn 32.52 19.29 29.55
(s€¢) | medians,spry 66.17 73.54 65.87
ming,spFn 0.40 13.09 24.27
Maxg,spry 96.23 114.18 143.17
XFp na na na
sdrp na na na
mediang,prp na na na
ming,pr e 87.02 73.02 84.02
Maxy,sprr 87.02 73.02 84.02
TN 65136.55 | 67340.92 | 73245.40
cfpsD
sec) | FN 9627.13 | 8080.22 | 2089.73
FP 87.02 73.02 84.02
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As a consequence, the SaaS provider will favor TLSTest!?3%! if he was only to draw on the
accuracy derived from the brC test metric.

Accuracy and precision based on Failed-Passed-Sequence-Counter (fpsC) The results
of evaluating TLSTest%10] TLSTestl%3%! and TLSTest!%%%! based on the Failed-Passed-Sequence-
Counter (fpsC) are presented in Table[7.10] As already pointed out in the previous paragraph,
the SaaS provider within our scenario seeks to configure TLSTest such that it produces
the lowest number of false positive results possible. In context of accuracy and precision
measures which are based on the fpsC test metric, we therefore select the false positive rate
(fprfPs€) and the true negative rate (rnr/P5€) — defined in Section [7.4.2.2|and[7.4.2.3|- to
evaluate the variants of TLSTest since they tell us — out of all events that should have been
detected — how many control violation events were correctly detected (tnr/?*C) and how
many control violation events were not detected (fpr/P5C).

Although each of the TLSTest variants only produces a single false positive fps (Table
[7.8), TLSTest“%! has the lowest fpr (0.1%) and the highest tnr (99.9%). The reason for
this is that TLSTest!%%l produced a higher number of true negative fps (969) than both
TLSTest!*1%1 (871) and TLSTest!*3% (893). Hence, if the SaaS provider in our scenario only
relies on the accuracy derived from the fpsC test metric, then he will choose TLSTest!*-69],

Accuracy and precision based on Failed-Passed-Sequence-Duration (fpsD) Evaluating
TLSTest!%1%] TLSTest!*3% and TLSTest!%?! based on the Failed-Passed-Sequence-Duration
(fpsD) produces the results shown in Table Note that since we only observed a single
false positive fpsD (i.e., fpsCF'? =1, see Table for each TLSTest variant, we cannot
compute average (x), median (%), standard deviation (sd) and margin of error (E 9%y of
efpsDFF for TLSTest!%!101, TLSTest!*3%, and TLSTest!*6%. The corresponding fields of
Table are marked as not applicable (na).

Aside from choosing a configuration for TLSTest which produces the lowest false positive
results, the SaaS provider in our scenario prefers the TLSTest variant which as accurately
as possible estimates how long it took the PaaS provider to fix a detected, vulnerable
communication configuration. Put differently: The SaaS provider favors a configuration of
TLSTest which most accurately estimates the duration of a control violation event.

Figure[7.22]shows three box plots which describe the variation of relative duration error of
true negative fps (efpsDT): It is apparent that the relative error each test of TLSTest!%%°]
makes when estimating the duration of a vulnerable communication configuration event has
the greatest mean (dashed green line, 22.96%), greatest median (solid red line, 20.56%) as
well as the greatest variability. Moreover, on average, TLSTest!>!%! produces true negative
fps with the lowest relative error (e f psdrTeI;’ ) when estimating the duration of a vulnerable
communication configuration event (4.56%), followed by TLSTest!%3% (11.33%). Hence, in
context of our scenario, the SaaS provider will select TLSTest!*!%! because it provides the
most accurate estimate of how long it takes the PaaS provider to fix a vulnerable TLS setup.

Accuracy and precision based on Cumulative-Failed-Passed-Sequence-Duration (¢ f ps D)
Table shows the results of evaluating TLSTest*10] TLSTest!%-3% and TLSTest%-60! based
on the Cumulative-Failed-Passed-Sequence-Duration (¢ f psD) test metric. The results of the
total duration error of true negative fps (ec fpsDT™) indicate that each variant of TLSTest
underestimates the accumulated duration of vulnerable TLS configuration events. Based
on ecfpsDTN, the most accurate result is produced by TLSTest!*6%! (-2232.09 seconds),
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followed by TLSTest!%3%1 (-7476.24 seconds) and TLSTest!%1%1 (:9974.22 seconds). However,
in context of our scenario, the accumulated duration of true negative fps is not to be
considered since the SaaS provider’s focus lies on correctly detecting temporary vulnerable
TLS configurations and estimating their individual duration. Hence, the accumulated duration
of fps and thus accumulated error of fps does not affect the decision of the SaaS provider.

Conclusion We argue that the SaaS provider in our example scenario will select TLS Test!%-6%)

because the accuracy and precision measures e f psC indicate that it has the highest number
of correctly detected control violations, that is, TLSTest!*%% produced the highest number
of true negative fps. One counterargument to this conclusion is that TLSTest!>!?! is more
accurate in estimating the duration of a vulnerable TLS configuration event (see accuracy
and precision measures e f psD). However, we assume that it is more important to the SaaS
provider in our scenario that the continuous test detects the number of occurrences of control
violations most accurately than it is to most accurately estimate the duration of correctly
detected violations. Note that — opposed to our scenario constraints — if we were to also
compare the accuracy based on the cumulative error of true negative fps (ecfpsD'™), then
this would further foster our conclusion because TLSTest!*%%! produces the lowest value for
ecfpsDTV.

Table 7.9: Evaluation of TLSTest to test secure communication configuration of SaaS%S
based on the Basic-Result-Counter (brC) test metric

Test TLSTest
statistic [0,10] [0,30] [0,60]
oac 98.24 98.50 98.50
E)>% 0.14 0.20 0.28
tnr 97.06 97.36 97.16
E}>% 0.30 0.46 0.65
tpr 98.86 99.09 99.19
EE 0.14 0.20 0.25
fnr 2.22 1.83 1.61
EPY 0.26 0.38 0.49
ebrC
(o) LLPT 2.94 2.64 2.84
EDY 0.30 0.46 0.65
fdr 1.55 1.34 1.46
ED 0.16 0.24 0.34
ppv 98.45 98.66 98.54
Ejn 0.16 0.24 0.34
for 2.18 1.80 1.58
EDK 0.26 0.38 0.49
npyv 97.82 98.20 98.42
EDY 0.26 0.38 0.49
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Table 7.10: Evaluation of TLSTest to test secure communication configuration of SaaS%S
based on the Failed-Passed-Sequence-Counter (fpsC) test metric

Test TLSTest
statistic [0,10] [0,30] [0,60]
tnr 99.89 99.89 99.9
E)>% 0.22 0.22 0.20
efpsC | fpr 0.11 0.11 0.10
(o) | E35% 0.22 0.22 0.20
for 17.44 10.97 3.0
EQF 2.29 1.93 1.06
npv 82.56 89.03 97.0
E)Y 2.29 1.93 1.06

7.5.4 Continuously testing secure interface configuration

Similar to the previous scenario, in this scenario we consider a SaaS provider who uses
database services provided by a PaaS provider. The SaaS provider has no access to the
components used to provide the database other than the APIs that allows to persist and
retrieve data as well as managing access to the database. Different to the scenario described
in the previous section, the SaaS provider in this scenario is responsible for configuring who
can access the database.

The SaaS provider wants to certify his SaaS application according to controls related
to the property secure interface configuration. As already described in Section [5.5.2.1]
examples of cloud-specific controls related to secure interface configuration are /VS-06:
Infrastructure & Virtualization Security Network Security and IVS-07: Infrastructure &
Virtualization Security OS Hardening and Base Controls of CSA’s Cloud Control Matrix
(CCM) [22] as well as RB-22 Handling of vulnerabilities, malfunctions and errors — system
hardening of the BSI C5 [31]].

Similar to the previous scenario, the SaaS provider seeks to configure a continuous
test which most accurately indicates if and how many temporary, vulnerable interface
configuration event have occurred. However, different to the previous scenario, this SaaS
provider is looking to find a test configuration which has the highest number of true results,
i.e., true positive or true negative results. Furthermore, since in this scenario it is upon
the SaaS provider to fix a vulnerable interface configuration of the used database service,
the SaaS provider neglects how long it takes to fix a vulnerable interface configuration.
This means that accuracy and precision of estimating individual and cumulative duration of
vulnerable interface configuration events do not impact on the decision of the provider as to
which test configuration to select.

7.5.4.1 Alternative continuous test configurations

In order to detect vulnerable interfaces, we make use of the tool Nma to discover reachable
ports of PaaS? in the range 1-65535 (PortTest). The output of Nmap is parsed and compared

9https://nmap.org/ [Accessed: 2018-12-13]
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Table 7.11: Evaluation of TLSTest to test secure communication configuration of SaaS%S
based on the Failed-Passed-Sequence-Duration (fpsD) test metric

Test TLSTest

statistic [0,10] [0,30] [0,60]

3 .52 644 151

T 254 603 442

efpsD™ | ¢4 4508 10465 20991
(ms) min 22201 | -40073 | -51054
max 11552 25906 51510

3% 300 687 1323

3 4.56 11.33 22.96

T 3.54 9.62 20.56

efpsDIY | sa 4.15 8.68 16.45
() min 0.01 0.01 0.01
max 31.58 48.86 80.83

E% 0.28 0.57 1.04

3 4677 10587 21490

T 4030 9308 19383
efpsDL) | sa 3759 7682 14688

(ms) min -1582 774 44
max 25739 45251 61204

E95% 250 505 925

3 4624 11230 21641

T 4217 10154 19407
efpsDp0, | sd 2502 6999 14098

(ms) min 18 31 18
max 15350 29288 58807

E95% 166 460 889

b 52321 73457 69658
T 66173 73536.5 | 65874.5
efpsDN | ¢4 32517 19295 29548
(ms) min 396 13087 | 24270
max 96231 114183 | 143168

E95% 4730 3646 11033

X na na na

x na na na

efPSDFP sd na na na
(ms) min 87024 | 73022 | 84022
max 87024 73022 84022

E95% na na na
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Figure 7.22: Relative duration error of true negative fps (efpsD!Y) of TLSTest!%1°],
TLSTest>*l and TLSTest!%-0!

Table 7.12: Evaluation of TLSTest to test secure communication configuration of SaaS%S
based on the Cumulative-Failed-Passed-Sequence-Duration (c f psD) test metric

Test TLSTest
statistic [0,10] [0,30] [0,60]
ecfpsDTN TN(ms) -9914223 | -7476238 | -2232089
TN (%) 13.21 9.99 2.96
ecfpsDFN FN(ms) 9627129 | 8080222 | 2089733
FN(%) 12.88 10.71 2.77
ecfpsDFP F P(ms) 87024 73022 84022
FP(%) 0.12 0.10 0.11

against a list of ports which should be publicly reachable. In case one or more ports are
reachable which are not whitelisted, then the property secure interface configuration is not
satisfied. This, in turn, leads to a violation of a certificate’s controls relating to this property.

In context with our scenario, the SaaS provider can choose one of the following candidate
configurations for the continuous test PortTest:

* PortTest'’: Each execution of PortTest is triggered statically 10 seconds after the last
test execution completed.

s PortTest’”: Each execution of PortTest is triggered statically 30 seconds after the last
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test execution completed.

o PortTest’’: Each execution of PortTest is triggered statically 60 seconds after the last
test execution completed.

Analogous to the previous two example evaluations presented in Section and
no additional offset between repeated test executions is configured while the number of
successive iterations all three PortTest variants is set to infinity. Also, only test results
produced during the start of the first and end of the last vulnerable interface configuration
event (see following section for detail) are considered for evaluation.

7.5.4.2 Control violation configuration

In order to evaluate the three candidate configurations of PortTest, we triggered 1000
vulnerable interface configuration events by temporarily opening port 27018 on PaaS®S.
27018 is the default port for sharded instances of MongoDB that should not be publicly
reachable. Each vulnerable interface configuration event is set to last at least 60 seconds plus
selecting [0, 30] seconds at random. Further, the interval between consecutive vulnerable
interface configuration events was at least 120 seconds plus selecting [0, 60] seconds at
random. Table [7.13] summarizes the control violation sequence statistics observed for each
PortTest variant during experimental evaluation.

Table 7.13: Summary of control violation sequence statistics for PortTest!?, PortTest*’, and
PortTest®

Sequence yPortTest

statistic (sec) 10 30 60
ccveD 76020.15 | 75418.79 | 75070352
XeveD 76.02 75.42 75.07
sdeveD 8.78 9.30 8.82
MiNcyeD 60.17 60.17 60.24
maXcyeD 90.33 90.66 90.73

7.5.4.3 Test statistics

Table m shows the results produced by PortTest'?, PortTest®* and PortTest®®. These
include the values observed for the universal test metrics introduced in Section {.3.5|during
evaluation of the three PortTest variants. Table also contains total number of executed
tests (zsrC) as well as the mean (x4, ), standard deviation (sd;s,), min (min;g,) and max
(max,s,) duration of tests. Note that for PortTest!? and PortTest>?, we only observed a single
value for false positive fpsD (i.e., fpsCFF = 1) and thus we cannot compute average (Xrp),
median (medianfps pFP), and standard deviation (sdgp) for these PortTest variants. The
corresponding fields of Table[7.14are marked as not applicable (na).

7.5.4.4 Accuracy and precision of PortTest

This section presents the accuracy and precision of PortTest!?, PortTest*°, and PortTest®
observed during evaluation.
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Table 7.14: Summary of test statistics of PortTest'?, PortTest’?, and PortTest®

Test PortTest
statistic 10 30 60
tsrC 22039 7501 3767
s Kisr 0.20 0.19 0.16
(sec) sd;, 0.17 0.13 0.17
Mingg, 0.10 0.10 0.10
maxys, 2.48 2.16 2.86
brCTP 14630 4995 2515
brct? 86 20 12
brc | brC™N 7265 2475 1229
brctN 11 5 3
brcPTN 26 0 2
brcPrP 15 4 5
fpsCTN 988 994 995
fpsC | rpscEN 15 5 3
fpsct? 1 1 2
XN 75.43 75.09 74.28
sdypspTN 10.43 15.38 25.49
mediany,prN 72.99 60.97 60.17
ming,s pTn 10.22 30.12 60.11
Maxg,sprN 96.39 92.24 121.79
XEN 67.03 90.82 120.39
fpsD | sdrn 24.37 0.22 0.24
(s€¢) | medians,sprn 72.67 90.91 120.27
ming,spFn 10.25 90.43 120.22
Maxg,spry 94.48 90.94 120.66
XFp na na 66.25
sdrp na na 5.66
mediang,prp na na 66.25
ming,pr e 61.17 76.26 62.25
Maxy,sprr 61.17 76.26 70.25
cfpsD TN 74526.25 | 74637.64 | 73907.46
sec) | FN 1005.4 454.09 361.16
FP 61167 76.26 132.5
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Accuracy and precision based on Basic-Result-Counter (brC) Table shows the
results of evaluating PortTest!?, PortTest?, and PortTest® based on the Basic-Result-Counter
(brC) test metric. Recall that in this scenario, the SaaS provider seeks to select a configuration
of PortTest which has the highest number of true results. Thus we have to select those
accuracy and precision measures — introduced in Section[7.4.1.2] and [7.4.1.3| - which either
take true positive or true negative basic test results or both into account. To that end, we
select overall accuracy (oac?”©), true negative rate (tnr?") and true positive rate (1pr®”€).

As shown in Figure when considering the true negative rate, then PortTest*"
produces the best result (99.04%), followed by PortTest®? (98.64%) and PortTest'? (98.63%).
However, PortTest!? has a higher true positive rate than PortTest>’. Thus only taking tpr?"¢
and tnr?"C into account without preference for either one leaves the SaaS provider in our
scenario undecided and we have to consider further accuracy and precision measures to allow
for a substantiated decision. To that end, we also consider the overall accuracy because it
relates both correctly passed and failed tests to all observed test results. Here, PortTest’’
achieves the highest rate (99.61%) and PortTest'? (99.49%) is only second. Consequently,
we argue that SaaS provider — if only relying on accuracy and precision derived from brC —
favors PortTest*® over PortTest!?.

Accuracy and precision based on Failed-Passed-Sequence-Counter (fpsC) The results
of evaluating PortTest!?, PortTest** and PortTest® based on the Failed-Passed-Sequence-Counter
(fpsC) are presented in Table In light of our scenario’s assumption that the SaaS
provider seeks the variant of PortTest which produces highest number of true results, we use
the true negative rate (tnrfP5C) and the negative predictive value (npv/PsC),

Figure shows that PortTest® has the lowest true negative rate (99.8%) while both
PortTest'” and PortTest’® have a better result (99.9%). Yet PortTest®” produces the best
negative predictive value (99.7%) and PortTest!? has the worst result (98.5%). Similar to
evaluating the PortTest variants based on brC, also in this case their is no consensus among
the chosen accuracy and precision measures as to which PortTest configuration is most
preferable with regards to the SaaS provider in our example scenario.

In order to be able to make a decision, we have to add another assumption about our SaaS
provider: Lets assume that this provider is rather willing to tolerate errors of incorrectly
indicating a vulnerable interface configuration (false negatives) then incorrect test results
suggesting the interface configuration is secure. When inspecting the definition of tnr/Ps€
and ppv/PSC€ (see Section , then it can easily been observed that an increase in false
positive fpsC will lead to an decrease in the true negative rate while the negative predictive
value remains unaffected. This implies that the true negative rate will drive the provider’s
decision which PortTest variant to use. As a consequence, the SaaS provider will either
choose PortTest!? or PortTest*° since both have the same and highest rnrfPsC.

Accuracy and precision based on Failed-Passed-Sequence-Duration (fpsD) Table
shows the evaluation results for PortTest!?, PortTest’® and PortTest®” based on the
Failed-Passed-Sequence-Duration (f psD). Note that since we only observed a single value
for false positive fpsD (i.e., fpsCFP =1, see Table for PortTest'” and PortTest*’, we
cannot compute their average (x), median (X), standard deviation (sd) and margin of error
(E®%). The corresponding fields of Table are marked as not applicable (na).

As pointed out in the scenario description, we assume that our example SaaS provider
does not consider the accuracy and precision of the PortTest variants when estimating the
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duration of a vulnerable interface configuration event. Therefore, the discussion of evaluation
results based on fpsD is omitted here.

Accuracy and precision based on Cumulative-Failed-Passed-Sequence-Duration (c f psD)
Evaluation results for PortTest'?, PortTest** and PortTest%” based on ¢ fpsD are shown in
Table [7.18] However, similar to evaluating PortTest variants based on fpsD, the example
SaaS provider does not factor in the cumulative error when estimating the cumulative duration
of vulnerable interface configuration events triggered during experimental evaluation of the
PortTest variants.

Conclusion We argue that the SaaS provider within our scenario will select PortTest*”
since the accuracy measures and precision measures ebrC and e fpsC indicate that this
configuration of PortTest best satisfies our scenario’s requirements. However, note that in
order to arrive at this conclusion, we needed to add further assumptions to our scenario as
otherwise choosing which PortTest configuration is best suited is ambiguous, i.e., there exist
more than one correct solution. This reveals an important characteristic of our evaluation
method: Depending on the preferences of the cloud provider, there may exist more than one
optimal choice how to configure a continuous test. Through adding further constraints to
our assumptions about the provider’s preferences, we may be able to decrease the number of
optimal solutions, possibly to a single one. Yet there are other properties of a test which can
be considered in order to guide selection of the most suitable one, e.g., taking into account
the overhead incurred by the cloud service under test.

mmm PortTest'®©  mmm PortTest3° PortTest®®
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99.92 99.90 09.88
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Figure 7.23: Selected accuracy measures for PortTest!?, PortTest>* and PortTest®® based on
the Basic-Result-Counter (brC) test metric
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Table 7.15: Evaluation of PortTest to test secure interface configuration of PaaS?® based on
the Basic-Result-Counter (brC) test metric

Accuracy & precision PortTest
measures 10 30 60
oac 99.49 99.61 99.47
E} 0.09 0.14 0.23
tnr 98.63 99.04 98.64
ET 0.26 0.38 0.64
tpr 99.92 99.90 99.88
EQT 0.04 0.09 0.13
fnr 0.15 0.20 0.24
EpY 0.09 0.18 0.27
ebrC
for 1.37 0.96 1.36
(%e) 957
ED¥ 0.26 0.38 0.64
far 0.69 0.48 0.67
95%
E}) 0.13 0.19 0.32
ppv 99.31 99.52 99.33
95%
ESY 0.13 0.19 0.32
for 0.15 0.20 0.24
95%
npv 99.85 99.80 99.76
E5 0.09 0.18 0.27

Table 7.16: Evaluation of PortTest to test secure interface configuration of PaaS®® based on
the Failed-Passed-Sequence-Counter (fpsC) test metric

Accuracy & precision PortTest
measures 10 30 60

tnr 99.9 99.9 99.8
Epn’ 0.20 0.20 0.28

efpsC | fpr 0.10 0.10 0.20

(o) | 5% 0.20 0.20 0.28
for 1.50 0.50 0.30
E}Y 0.75 0.44 0.34
npv 98.50 99.50 99.70
Ek 0.75 0.44 0.34
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Table 7.17: Evaluation of PortTest to test secure interface configuration of PaaS?® based on
the Failed-Passed-Sequence-Duration (fpsD) test metric

Accuracy & precision PortTest
measures 10 30 60
3 -628 2330 -804
T 3575 | 308 -9051
efpsD™ | ¢4 5149 11681 24102
(ms) min 64026 | 37171 | -30158
max 9625 27583 59143
E»% 321 727 1499
3 4.87 12.27 24.96
T 3.97 10.48 22.1
efpsDIY | sa 4.95 9.66 18.11
() min 0.006 0.003 0.009
max 86.23 55.24 96.58
3% 0.31 0.60 1.13
3 6020 15517 31097
T 5883 15419 30726
efpsDL) | sa 4293 8895 17431
(ms) min 280 660 731
max 73046 | 49769 60888
E% 268 554 1084
3 5391 15187 30294
T 5407 153745 | 30052
efpsDp0, | sd 2954 8547 17381
(ms) min 110 147 314
max 11072 30120 60698
E% 184 532 1081
3 67026 90818 120385
T 72673 90906 120272
efpsDN | ¢4 24370 219 241
(ms) min 10247 | 90428 | 120221
max 94479 90935 120662
E»% 13496 272 599
X na na 66252
x na na 66252
efPSDFP sd na na 5657
(ms) min 61167 | 76256 | 62252
max 61167 76256 | 70252
E95% na na 50825
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Figure 7.24: Selected accuracy measures for PortTest'?, PortTest>® and PortTest®® based on
the Failed-Passed-Sequence-Counter (f psC) test metric

Table 7.18: Evaluation of PortTest to test secure interface configuration of PaaS®S based on
the Cumulative-Failed-Passed-Sequence-Duration (¢ f psD) test metric

Accuracy & precision PortTest
measures 10 30 60
ecfpsDTN TN(ms) -1493904 | -781150 | -1162889
TN (%) 1.97 1.04 1.55
ecfpsDFN FN(ms) 1005404 | 454092 361155
FN(%) 1.33 0.6 0.49
ecfpsDFP FP(ms) 61167 76256 132504
F P(%) 0.08 0.10 0.18

7.6 Summary and discussion

In this chapter, we presented a method to experimentally evaluate the accuracy and precision
of tests supporting continuous test-based cloud certification. To that end, we used the
universal test metrics brC, fpsC, fpsD and cfpsD introduced in Section f.3.3]to define
what accuracy and precision mean in context with continuous test-based certification. Then
we introduced a process which consists of all steps necessary to experimentally evaluate
the results produced by a continuous test. At this point, we presented the notion of control
violation sequences consisting of control violation events during which a property of a cloud
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service under test is manipulated such that one or more controls of a certificate are violated.
Thus control violation sequences establish the ground truth which we then use to evaluate the
accuracy and precision of a continuous test. Further, we explained how randomizing duration
of as well as interval between control violation events allow for general statements — in the
limits of the range from which random values are selected — about a test’s accuracy.

At the core of our method are accuracy and precision measures which are based on the set
of universal test metrics, i.e., brC, fpsC, fpsD and c fpsD (see Section[4.3.5)). We derive
these measures by combining the notion of control violation sequences with our definition of
continuous test’s accuracy in context of the universal test metrics. These measures allow us
to make statements about, e.g., the average error a particular test makes when estimating the
duration of a control violation event.

Finally, we presented three example scenarios to show how the accuracy and precision
measures allow us to compare alternative tests as well as alternative test configurations
to select the one most suited. In this context, we highlight an important limitation of our
approach: Our method only reveals but does not solve disagreement between results of
accuracy and precision measures. Consequently, it depends on the details of the use case
which test or test configuration is the preferable one. However, developing a scenario
driven approach which allows to select the accuracy and precision measure most suited for a
particular use case is outside the scope of this work.

As already pointed out above, the evaluation approach presented in this chapter is based
on the set of universal test metrics which, in turn, are conceived as part of the framework
in Chapter ] This implies that evaluations are only applicable to such test designs which
implement these test metrics. It is important to note that the set of evaluation measures
proposed in this chapter is not complete and, furthermore, there are numerous other feasible
test metric definitions from which accuracy and precision measures can be derived. However,
as of writing this thesis, no other approaches have been published which allow to evaluate
accuracy and precision of test-based evidence production techniques. It is therefore left
to future work to build on the set of evaluation measures proposed herein and extend this
set as required, e.g., by introducing scenario specific test metrics and derive corresponding
evaluation measures.

Another deficit of our approach consists of the somewhat arbitrary selection of duration
and frequency of control violation events. Naturally, the most desired distributions to use
when triggering control violation events are those observed in the wild, e.g., a historic
sequence of downtimes AWS had during the past year. However, obtaining such fine-grained
documentation about count and duration of events where a cloud provider does not comply
with certificate’s controls — if even existent — is obviously hard or impossible. Naturally,
continuous tests themselves are a means to collect such data. Yet this implies that we would
then accept this data to establish the ground truth. Since our method to evaluate the accuracy
and precision of continuous test aims at reasoning about these continuous test results, the
results produced may be erroneous, leading to incorrect assumptions about the observed
distributions of control violation events. A more promising approach appears to be to define
different types of probability distributions for control violation events and conduct separate
evaluations of a continuous test. That way, statements about the accuracy and precision of a
test in context with a particular type of control violation sequence can be made, e.g., how
well does a particular test work when trying to detect rare, short-lived control violations?

Finally, the accuracy and precision of a continuous test may not be the only two
characteristics which are needed to determine the most suitable test in a real world scenario.
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Another important property of a continuous test is the overhead which it imposes on the service
under test, especially when facing multiple, possibly concurrent tests. An interesting idea
here is to measure the overhead caused by tests and then select those tests and configurations
which incur minimal overhead while retaining required accuracy and precision of results.






Chapter 8

Test-based certification of
opportunistic cloud service providers

In the previous chapters, we introduced a framework to design tests supporting continuous
cloud service certification (Chapter ), presented example test scenarios (Chapter [5]), showed
how to rigorously define continuous tests (Chapter [6) and proposed a method to evaluate
the accuracy and precision of continuous test results (Chapter [7). Up to this point, we
implicitly assumed that we can trust the cloud service provider, that is, we presumed that
our produced test results are trustworthy. In this section, we address Research Challenge 4:
Trustworthy continuous test results described in Section[I.2.4] by relaxing this assumption
through introducing the notion of opportunistic cloud service providers.

Recall that through certifying their cloud services, cloud providers aim to demonstrate
compliance with standards and guidelines such as CSA’s Cloud Control Matrix [22], BSI
C5 [31]] or ISO/IEC 27001:2013 [24]. The cloud provider’s expectations which motivate
certification are competitive advantages in the form of, e.g., increased customer retention
and attraction of new service customers. While such competitive advantages may be hard
to quantity, satisfaction of controls necessary to obtain a particular certificate can increase
costs of the provider. In order to reduce costs of certification, the opportunistic provider
only pretends to satisfy controls. However, although fraudulent, opportunistic providers
do not cheat arbitrarily, on the contrary: They only cheat if they can assume with (some)
certainty that they are not caught. The intuitive reason behind that is that getting caught when
deceiving, the provider incurs some kind of intolerable penalty, e.g., loss of cloud service
customers and damage to the provider’s reputation.

Yet not trusting the cloud service provider means that we can no longer unconditionally
trust test results. Therefore, we have to adapt our tests in order to produce trustworthy
results. To that end, in this chapter, we introduce an approach to model the behavior of
an opportunistic cloud service provider which combines the notion of covert adversaries
introduced by Aumann and Lindell [44] in the context of secure multiparty computation with
labeled transition systems (LTS), a formal method to describe the behavior of systems. Using
this model, we can reason about the behavior of opportunistic cloud providers and show how
randomization of tests can reduce their willingness to cheat.

The next section outlines the main concepts of covert adversaries and labeled transition
systems. Thereafter, we describe how we use LTS to model opportunistic cloud service
providers (Section @]} Finally, we show how randomization of tests can reduce the
willingness of opportunistic providers to deceive and point out how our framework to design
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tests presented in Chapter ] supports randomization (Section [8.3.2). Parts of this chapter
have been published in [244]).

8.1 Background

This section outlines the main ideas behind covert adversaries and labeled transition systems.

8.1.1 Covert adversaries

Covert adversaries are a special type of adversaries which were introduced by Aumann and
Lindell [44] in the context of secure multiparty computation. Those adversaries are willing
to actively cheat during execution of a multiparty computation protocol but only if they do
not get caught when deceiving.

As early as 1982, Yao [302] first described the problem of multiparty computation using
an introductory example which is now referred to as the Yao’s Millionaires’ Problem: Two
millionaires seek to find out who is richer without revealing to each other their actual wealth.
Yoa proved that a set of n parties can efficiently compute the output of a n-input function
where every party obtains the correct output but no further information which the participating
parties did not possess prior to the computation. In context of Yao’s Millionaires’ Problem,
this means that there exists a function to which the two millionaires provide their secret
amount of wealth as input and the function outputs who is indeed richer (but not more).

Informally, multiparty party computation problems have to satisfy the following two
requirements [303]:

1. A participating party only learns the results of the computation, and
2. the output of the computation is correct.

An obvious question at this point is what happens if one or more parties are adversarial.
In order to analyze security properties of multiparty computation, Aumann and Lindell
distinguish three types of adversaries [44]:

1. Malicious adversaries: This type of adversary behaves arbitrarily, that is, malicious
adversaries are not constrained by the protocol specified to conduct multiparty
computation. Therefore, if a multiparty computation protocol is secure against
malicious adversaries, then these protocols provide honest participating parties with
the guarantee that no information other than the computation’s result can be obtained
by the parties.

2. Semi-honest adversaries: In contrast to malicious adversaries, semi-honest adversaries
are bound by the protocol which is specified for multiparty computation. However,
these adversaries try to infer additional information from any steps taken during the
execution of the computation. Therefore, a multiparty computation protocol which is
secure against semi-honest adversaries guarantees honest parties that no information
is inadvertently leaked during protocol execution. Compared to being secure against
malicious adversaries, this security guarantee is rather weak because it implies that
participating parties trust each other.
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3. Covert adversaries: This type of adversary lies between the malicious and the
semi-honest adversaries: They are willing to actively cheat and thus are not semi-honest
while, at the same time, they will only do so if they are not caught, thereby rendering
them non-arbitrary. Covert adversaries do not necessarily avoid being caught deceiving
at any price, that is, the presumed advantage from cheating may outweigh the penalty
of getting caught. Therefore, if a multiparty computation protocol is secure against
covert adversaries, then it guarantees the honest participating parties that there is only
negligible incentive for a covert adversary to cheat.

Aumann and Lindell build on the ideal/real simulation paradigm to define covert
adversarial behavior [44]]. The basic notion of this paradigm is to define an ideal model of the
protocol which is secure by definition and then compare this ideal model to an adversaries’
real capabilities. The ideal model uses the fiction that a trusted third party exists to whom
the participating parties send their inputs and which then — after having computed the result —
provides the output to the parties. Based on this idea, a real protocol is considered secure if
it satisfies the ideal model’s properties, that is, if an adversary’s capabilities in the real model
are identical with those in the ideal model. In context of defining covert adversarial behavior,
one possibility is to treat successfully deceiving as a kind of behavior which is not possible
within the ideal model of the protocol.

Any attempt of a covert adversary to cheat is detected with a probability of at least
€ € (0, 1] to which Aumann and Lindell refer as the deterrence factor. Therefore, if an
adversary has identified a deceptive behavior which is expected to be successful with a
probability of p, then the honest participating parties will catch the cheating adversary with
at least p X €. The greater the value of ¢, the greater the probability that a covert adversary
gets caught cheating. Hence the security of the protocol is described with security in the
presence of covert adversaries with e-deterrent. It is important to note that a covert adversary
getting caught cheating does not necessarily mean that his deception is not successful.

Covert adversaries can have different characteristics. Hereafter, the main three variants
present by Aumann and Lindell [44] are outlined.

1. Failed-simulation formulation: If an adversary cannot successfully cheat, then the
execution of the ideal model and the real model of the protocol are indistinguishable. In
contrast, the failed-simulation definition of a covert adversary assumes that comparing
the ideal model of the protocol with the real execution can sometimes be distinguishable,
i.e., the ideal model of the protocol execution fails. Such cases are simply events of
successful cheating. Put differently: There is only a probability A that the output
distributions of the ideal and of the real protocol execution are distinguishable. This
means that there is a probability of at least A X € that honest participating parties catch
a covert adversary when deceiving.

2. Explicit-cheat formulation: In this formulation, the covert adversary is given explicit
means to cheat. To that end, the adversary can instruct the trusted third party —
which is part of the ideal model definition — to supply it all secret inputs which the
other participating parties have provided. Then the trusted third party decides with
a probability € whether it informs the honest participating parties that cheating has
occurred. Thus the covert adversary can always decide to cheat but has to expect to get
caught with a probability of €. However, since the ideal model of the protocol has been
extended through the notion of the explicit cheat instruction, the output distribution of
the ideal model is indistinguishable from the real execution of the protocol.
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3. Strong explicit-cheat formulation: This third definition modifies the explicit-cheat
formulation in the following way: The covert adversary only obtains the secret input of
any other participating party if the trusted third party does not disclose that cheating
has taken place. The formulation is stronger than the previous one because a covert
adversary who gets caught cheating gains no information about the inputs of the others.

In order to model an opportunistic cloud provider, we will build on the notion of the
explicit-cheat formulation. This will be explained in detail in Section [8.2.1.3

8.1.2 Labeled Transition Systems

Labeled transition systems (LTS) are a class of models which are used to describe the behavior
of a system. A comprehensive introduction to LTS can be found in, e.g., Baier and Katoen
[304] which depicts the primary source we use to describe the basic concepts of LTS in this
section.

LTS are applied within model checking, an approach which uses formal methods to
establish the correctness of a system in a mathematically precise and unambiguous manner.
The mathematical structure which is used to define LTS are directed graphs. The nodes of
the graph correspond to the states of the LTS while the edges model transitions between the
states. A state captures information at a chosen level of abstraction of the system which is
described by the LTS. Thus, a sequence of states describes how the system evolves where
changes from one state to another are specified by transitions.

Before formally defining a LTS, there are two further concepts which need to be introduced.
The first one are referred to as actions which are simply names for the transitions. Actions
are needed to model communication mechanisms between processes which is not required
for our purposes. In cases where action names are not relevant because they only refer to
internal processes, the special symbol 7 is used to indicate a placeholder. The second one are
atomic propositions which express some known facts about a state at some point in time.

Definition Based on the above concepts, we can define a labeled transition system (LTS)
as a 6-tuple (S, Act,—, I, AP, L):

« the set of states S,

* the set of Actions Act assigning names to transactions of the LTS,

* the transition relation — C S X A X §

e the set of initial states / where the LTS can start from,

* the set of atomic propositions AP representing a state’s temporal properties, and

+ alabeling function L : § — 24P assigning each state a subset of atomic propositions.

Behavior An LTS starts at an initial state sy € / and evolves as specified by the transition
relation —, that is, (so, @, §) € —. More generally, if a LTS is at some state s, then a
transition to a next state § is selected nondeterministically and the action « is performed.
This selection repeats until the LTS has evolved to a state which has no outgoing transition.
At each state the labeling function is evaluated. To that end, L takes a state s € S as input
and outputs the atomic propositions for that state, i.e., L(s) € 247,
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Note that, loosely speaking, nondeterministic selection of outgoing transitions means
that there is no information which outgoing transition is selected if a state has more than one.
This nondeterminism comes in handy when a certain level of abstraction on the model is
needed, e.g., when modeling interfaces with unknown environments, such as user interfaces
where no information about a user’s choice is available.

Yet this notion of nondeterminism becomes somewhat difficult if it is required to observe
the behavior of a LTS. To that end, observable behavior of a LTS has to be defined for which
two general approaches exist: The first one is referred to as action-based and defines that
only executed actions can be observed. Such LTS are called action-deterministic and have at
most one outgoing transition @ € A per state. The second approach is called state-based and
defines that only satisfied atomic propositions AP of a state can be observed, neglecting the
actions’ labels. Such LTS are referred to as AP-deterministic and have at most one outgoing
transition which leads to a state with label / € AP.

A LTS formalizes the behavior of a system which it describes using executions or runs.
Executions resolve the nondeterminism which was discussed above by explicitly describing
one possible behavior of the LTS. Neglecting the actions of a LTS, one possible behavior of
an LTS is captured by a sequence of states

P = (50,81, . ..5p)-

Note that the above execution is finite since it contains n elements. We omit the discussion of
infinite execution of a LTS because it is not required to model opportunistic cloud service
providers. The following section will explain in detail how we use LTS to describe the
behavior of an opportunistic provider.

8.2 Opportunistic provider as a labeled transition system

In this section, we describe how we use a labeled transition system (LTS) as a tool to describe
the behavior of an opportunistic cloud provider. It is important to note that we focus on
describing a provider who intentionally does not satisfy controls of a certificate. The case
that a provider incidentally does not comply with the controls, e.g., as a result of safety issues,
is outside of the scope of this thesis.

We define the opportunistic provider as the labeled transition system OCP which is
a 6-tuple consisting of the set of states S, the set of actions A, the transition relation
— C S X A X S, the set of initial states /, the set of atomic propositions AP, and a labeling
function L : § — 24F:

OCP = (S,A,—>, I, AP, L).

As pointed out in Section[8.1.2] the selection of transition in OCP is nondeterministic, that
is, if a state has multiple outgoing transitions, then it is not known beforehand which of
the available transitions will be selected. In order to be able to observe the behavior of an
opportunistic cloud provider, we adopt the state-based approach. This means that we assume
that we can observe atomic propositions of a state of OC P which hold. Put differently: We
assume that we can observe states’ labels through testing. Lastly, this AP-deterministic view
of OCP implies that we ignore the actions which lead to state changes.

In the following sections, we explain the states, actions, atomic propositions and the
labeling function of OCP. Note that we omit the definition of transition relation — as well
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as the initial states /. In the case of the transition relation, knowing internal actions of OCP
would be required to provide a meaningful description of — because each element of — is
a 3-tuple (s, , §). However, as we will explain in Section[8.2.3] we do not assume to be able
to observe actions of OCP.

8.2.1 States

A state s € S of the labeled transition system OCP is defined by evaluating the three variables:
Unique identity of a state (u), cost of a state (c), and deception of a provider at a state (d).
These three variables are explained hereafter.

8.2.1.1 Unique identity

As the name suggests, the variable u is used to assign a unique identity to a particular state of
the OCP. Although this variable is not essential to describe the behavior of an opportunistic
cloud provider, it serves as a convenience to describe specific states of an OCP. Examples
for such identities are names which describe the current state of a cloud service, e.g., u =
vml_is_running or u = network3_is_disconnected.

8.2.1.2 Cost

In order to provide a cloud service customer with a cloud service, a cloud provider has to
allocate some resource. This allocation of resources is usually expressed as a quantitative
value, i.e., costs. Consider, for example, a cloud service customer has triggered the start of a
virtual machine. The provider will then identify and select a host with sufficient resources,
then initialize boot of the image selected by the customer and configure the required network
services and so forth. Other costs which the provider incurs are caused by operating the cloud
service, for example, running diagnostics of the underlying network and host infrastructure
as well as reserving hot spares in case some components involved in delivery of the cloud
service fail.

In order to model the costs which a cloud provider incurs through service provisioning,
we have to distinguish between two types of cost: The first one are so-called local costs
which are costs ¢ € Q* that are assigned to each state s € S. Note that we assume that the
cloud provider always incurs costs when supplying a service to a customer, that is, ¢ > 0.
Further, we omit defining a cost function which evaluates the costs of a specific state of an
OCP because such costs are obviously highly dependent on the specific scenario, e.g., the
cloud service which is provided.

The second type of cost are referred to as accumulated costs which are costs that a
cloud provider incurs through his behavior. The behavior of a cloud service provider is the
sequence of states

Vik = Sis Si+1s---»5k) € Yik

where ;i delineates the set of all possible sequences that exist starting from state s; and
ending at state si.

We can now combine the idea of local and accumulated costs to describe the costs of a
cloud service provider’s behavior. To that end, we define the function B : T — Q* which
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takes as input sequence of states v € T and outputs the costs of that sequence by summing
over all costs c of s € v; :

k

B(vix) = ) cy.

s=i

8.2.1.3 Deception

The state of a cloud provider satisfies the controls of a certificate if all controls hold at that
state. Yet if a cloud service provider cheats at any state, then at least one of the certificate’s
controls is dissatisfied at that state. If a cloud provider does not satisfy all the controls of the
certificate, then the cloud service is not compliant.

At this point, it is important to note that this is a technical detail because the satisfaction of
a certificate’s controls are not restricted to a single state of OCP. Rather, we want to describe
that a certificate’s controls are satisfied by the behavior of a cloud provider, i.e., by a sequence
of states v; ¢. In this context, controls of a certificate may even tolerate some non-compliant
states within the sequence. Consider, as an example, the cloud provider guarantees that the
cloud service is available at least 95% per year. Such a guarantee depicts one possible
operationalization of, e.g., control /VS-04 of the CSA’s CCM [22] (see Section[5.2.2.1|for
further detail); therefore, violating this service level agreement leads to violation of control
1VS-04. However, the agreement — and thus the control — has a 5% limit of tolerance up
to which the behavior of the cloud provider, that is, making the cloud service available is
allowed not be satisfied.

The variable d € {0, 1} indicates whether the cloud provider is cheating at state s. It is
important to point out that we assume that testing the cloud provider always returns correct
results. This means that if we test a cloud provider at a state s where he is not compliant
because he is cheating, i.e., dg = 1, then our tests will indicate that a control is not satisfied.
The implications and analysis of inaccurate test results have been thoroughly studied in
Chapter

Since certification of cloud services is a voluntary act, we assume that the cloud provider
knows that he is subject to test-based certification. In order to denote whether a cloud
provider’s compliance with certificate’s controls is tested at a state s, we define € {0, 1}. If
n = 1, then the provider is tested, and if 7 = 0, then the provider is not tested. Now we have
to describe the knowledge a cloud provider has about whether he is tested at a state s. To that
end, we use the probability P(n): If the cloud provider is tested at state s and he knows that
he is tested at that state, then Py(n = 1) = 1. If, in turn, the provider is not tested at state s
and knows this, then Py( = 0) = 1.

This probabilistic approach to describe a cloud provider’s knowledge about whether
he is tested at a state draws on the notion of the explicit-cheat formulation of a covert
adversary introduced in Section [8.1.1] Recall that the covert adversary which explicitly
cheats depends on a trusted third party to disclose his deceit with a probability of €. Similarly,
if an opportunistic cloud provider decides to cheat at state s, then there is a probability of
Py(n = 1) that he is caught cheating.

Now we can combine the ideas presented above to derive the probability of detecting a
provider’s deceptive behavior. Recall that a provider cheating at a state s is described by the
variable d. Furthermore, the probability that a provider’s compliance is tested at state s is
defined by Ps(n = 1). We define the function D : T — [0, 1] to describe the probability of
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detecting a cloud provider when deceiving. This function takes as input the behavior of the
cloud provider, i.e., a sequence of states v; x € Y and maps it to the interval [0, 1]:

Z];:i Ps(n = 1) X dg

D(vix) = il
i,

with i, k € N (8.1)

This function can interpreted as follows: The probability of detecting deceptive behavior of
the cloud provider OCP increases the more states the cloud provider deceives at, i.e., dy = 1,
and also presumes that these states are subject to testing, i.e., Ps(np = 1) > 0.

From the opportunistic cloud provider’s point of view, deceptive behavior is successful
if one or more states s of his behavior, that is, v; x do not comply with the controls of the
certificate, i.e., d = 1, while the probability D of getting caught while deceiving is less than
or equal to his opportunistic limit ¢ € [0, 1). The opportunistic limit delineates the maximum
probability of getting caught when cheating that an opportunistic cloud provider is willing to
accept. Observe that the bounds of ¢ exclude 1, that is, 0 < ¢ < 1 because otherwise a cloud
provider may not be opportunistic but accepts certain detection when deceiving.

8.2.2 Atomic propositions and labeling function

As mentioned above, we choose the state-based approach (or AP-deterministic LTS) to be
able to observe the behavior of OCP. Therefore, when testing, we are only able to observe
whether the atomic propositions of a state of OCP hold. Furthermore, we assume that we
cannot observe the evaluation of the costs ¢ and the unique id u through testing. These
assumptions appear to be reasonable because evaluating the costs at some state s involves a
multitude of other variables such as labor costs of administrators which are hardly observable
through testing the cloud service of the cloud provider.

What we can observe through testing, however, is whether a cloud provider complies with
the controls of a certificate at a state s. This is captured by a state’s variable d. Therefore, we
define the labeling function L which takes d of a state s as an input and outputs a label for s
indicating whether a provider’s state is {compliant} or {not_compliant} with controls of
the certificate:

{compliant} ifd=0

{not_compliant} ifd=1. 8.2)

u@:{

8.2.3 Actions

As pointed out in the previous section, we adopt the state-based approach to observe the
behavior of the opportunistic cloud provider OCP. This implies that we cannot observe
the actions of OCP through testing. Therefore, we use T to label a provider’s actions
A € OCP. These actions consist of any action a cloud provider needs to take in order to
provide cloud services to cloud service customers. This includes launching new services
instances, managing resource allocation, and enforcing security settings.

In this context, it is important to note that we do not restrict the capabilities of a cloud
provider within his domain, that is, the provider may access and modify any component
which is involved in delivery of his cloud services. These capabilities allow the provider to
read, insert, modify or delete any application data and network traffic with his infrastructure.
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8.2.4 Choice of behavior

After having defined the opportunistic cloud service provider as the labeled transition system
OCP, this section describes how the costs of a provider’s behavior and the probability of
detecting deceptive behavior are related. We can use this relationship to reason about the
behavior an opportunistic cloud provider prefers.

8.2.4.1 Optimal behavior

Recall that the behavior of a cloud provider is modeled as the sequence of states v; x which
starts at state s; and ends at state s. Thus, alternative behavior of the cloud provider translates
to additional or alternative states, thereby altering the sequence of states v; x to U;x. As a
result, the alternative behavior may change accumulated costs from z; x to Z; .

The opportunistic provider prefers to deceive, that is, not to comply with a certificate’s
controls if accumulated costs z; x of successfully deceiving, i.e., D(U; x) < ¢ are lower than
behaving to the satisfaction of a certificate’s controls. More formally, if the opportunistic
provider has to choose between behavior alternatives, then this choice can be formulated as
the following optimization problem:

minimize B(v; k)
v k€T k (83)
subjectto  D(vix) < ¢

The selection process can be described as follows: First, the opportunistic provider discovers
all available behavior alternatives which start at state s; and end at state si, that is, v; x =
(Sis Si+1 - - - Sk) € Yi. Thereafter, he calculates the costs B as well as the probability of
detection D for all behavior alternatives v; x € Y;x. As the final step, the provider then
chooses the behavior, that is, the sequence of states v;  where the costs B are minimal under
the constraint that the probability of deception D is lower or equal to the opportunistic limit
®.

Note that there exist a corner case where the chosen behavior may satisfy the opportunistic
limit but is prohibitively expensive. In this case, the provider will prefer to cheat even though
the probability of getting caught exceeds his tolerance. Put differently: It is cheaper to get
caught when cheating than it is to comply with a certificate’s controls. In order to capture
this case, we introduce an upper bound w € Q* to the cost of a chosen behavior. A behavior
is prohibitively expensive if B(v; x) > w.

An important question at this point is how to define this upper bound w in a concrete
scenario. This implies having a robust method at hand to quantify the cost of non-compliance
for the cloud provider, e.g., through loosing service customers or damages to the provider’s
reputation. We note that — although a justified question — it is outside the scope of this
thesis to examine the effects of non-compliance in a specific setting and the resulting loss of
certification of cloud services on the cloud provider.

8.2.4.2 Example of an opportunistic cloud provider

The following example illustrates how an opportunistic cloud provider OCP chooses to
behave. In our example, this provider offers IaaS to service customers, that is, virtual machines
(VM). According to the certificate which these IaaS possesses, the provider is required to
ensure that each VM is available 99% per year which translates to 0.01 x 365 x 24 ~ 87
hours of downtime in a year of 365 days.
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Figure shows an instance of this OC P which we refer to as OCPYM consisting of the
three following states:

S= {{u=u =start'M,c=2,d =0},
{u=ur=run"™,c =10,d =0},
{u=u3 =stop™, c=5,d=1}}.

In order to keep this example simple, we assume that through running the VM, the cloud
provider incurs a cost of 10 per hour. The hourly reoccurring cost is modeled by OCPY™
traversing from u, to u every hour. Analogous to incurring costs by running a VM, stopping
a VM also incurs an hourly cost, i.e., remaining in state u3 incurs a cost of 5 every hour.
Complying with the certificate’s availability control means that the provider has to keep the

Figure 8.1: Example LTS OCP"M consisting of three states

VM in state u; for at least 365 x24 —87 = 8673 hours per year. Therefore, one behavior, that is,
a sequence of states which complies with the certificate’s control is v; = {uy, 8673 xuy, 87 xu3).
Behaving according to v; means that the provider starts the VM (u7), runs it for a total of
8673 hours in a row (8673 * u) and then stops it for the remaining hours of the year (87 * u3).
The accumulated costs of this behavior is

B(v1) =1x2+8673x 10+ 87 x5 = 87167.
Lets now assume that the provider knows that he is test at each state, that is,
Vsevig:Ps(n=1)=1.

Recall the above scenario where the provider stops the VM for a total of 87 hours. The
detection probability of this behavior v, is therefore

D) = yhel Plszz(?I:])de _ (1><0+87§<716J18673><0) ~001.
It is important to note that this behavior of the cloud provider actually satisfies the certificate’s
control related to availability although some states s € v; do not comply. This example can
be interpreted as a case where the opportunistic cloud provider configures his opportunistic
limit according to the tolerance permitted by the control of the certificate.

In the following two examples, we will consider two behavior alternatives which do not
comply with the availability control of the certificate. In the first example, the cloud provider
starts the VM, runs it for a total of 8000 successive hours and stopping it for 760 hours, that
is, vy = (uy, 8000 = uy, 760 * u3). This incurs a total cost of

B(v) = 1 x 2 + 8000 x 10 + 760 x 5 = 83802.
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and has a detection probability of

_ IV Py(m=1)xds _ (1x0+760x1+8000x0)

In the second example, we assume that the cloud provider only runs the VM for 6000 hours,
leaving 2760 hours where the VM is stopped. This incurs a cost of

B(v3) = 1 X 2+ 6000 x 10 + 2760 x 5 = 73802

with a detection probability of

_ ¥ Pm=D)xdy _ (1x0+2760x1+6000%0)

Let’s assume that OCPYM has an opportunistic limit of ¢ocp = 0.1 and can choose either
behavior vy, v, or v3. In this scenario, the provider will prefer v, because it is less expensive
than v; and detection probability is lower than his opportunistic limit @,),.

8.3 Randomization of tests as a countermeasure

In this section, we start with showing how randomization can reduce the willingness of an
opportunistic cloud service provider to cheat. Thereafter, we describe how our framework
to design tests supporting continuous cloud service certification (see Chapter ) supports
randomization (Section [8.3.2).

8.3.1 Effect of randomization on opportunistic behavior

Lets first consider an opportunistic cloud provider who has complete knowledge about tests,
that is, knows for certain which states are tested and which are not. If this provider does
not want to get caught cheating at all, i.e., his opportunistic limit is 0, then he will select a
behavior v; x which minimizes his accumulated costs while only deceiving at states at which
he knows he is not tested.

Having described this intuition about an opportunistic cloud provider with complete
knowledge, we will now formalize this notion. Recall that a behavior of the opportunistic
provider is described by the sequence v; x. This sequence holds in total |v; x| elements. Let
a be the number of states in v; x at which the provider deceives and let b be the number of
states where he satisfies a certificate’s controls. The sum of a and b equal the number of
elements of v;, i.e., a + b = |v; x|. We can now use a and b to rewrite our definition of
the probability of detecting a provider’s deceptive behavior D which we introduced with
Equation [8.T]in Section [8.2.]as follows:

Zf:i Ps(n = 1) X dj

D(vix) = o]
L,
4 Psp=1)xd;, X’ Pi(n=1)xd,
= + . (8.4)
(a+b) (a+b)
=0if Ps(y=1)=0 and dg=1  =0if Ps(n=1)=1 and ds=0

Lets first consider the first term on the right of Equation[8.4} As already described above, the
provider cheats at a states, that is, he cheats at any states (ds = 1) where he knows that he is
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not tested (Ps(n7 = 1) = 0). Thus, the first term on the right of Equation is zero, provided
that the cloud provider has accurate knowledge about which states are not tested.

Now consider the second term on the right of Equation[8.4} The provider is compliant
with certificate’s controls at b states, i.e., he complies at any state (dy = 0) where he knows
that he is tested (Pg(n = 1) = 1). As aresult, if the provider has complete knowledge about
which states are tested, also the second term on the right of Equation [8.4]is zero.

At this point, we can summarize that our model OCP allows to show that the following
intuition is true: If an opportunistic cloud provider has complete knowledge about which
states are tested and the opportunistic limit of this provider is ¢ = 0, then the probability of
detecting deceptive behavior of this provider is zero, that is, D(v; x) = 0.

The question at this point is how can we adopt our testing strategy in order to reduce the
willingness for the cloud provider to cheat. A naive approach is to test the provider at every
state. In this case, the provider knows that he is tested at every state and thus will not cheat.
While theoretically a sound idea, it hardly provides any guidance for an approach applicable
in practice because it implies that we can design tests which are capable of testing a cloud
provider at every state when providing a cloud service. Also, Li et al. [129] points out that
executing tests at every state is hard to apply in practice because it can incur significant
overhead on the cloud service under test.

A feasible approach, however, to reduce the willingness of an opportunistic provider to
deceive lies in randomization of tests. The key idea here is that the provider does not know
whether he is tested at a certain state. More specifically, at any state the provider is either
tested or not, that is,

Vsevir: P(n=1)=0.5.

We can now use Equation [8.4]to show the effect of randomly choosing at which states to
test the provider. Let’s start with considering the first term on the right of Equation [8.4}
An opportunistic cloud provider cheating at least at one state means that @ > 0. Since the
provider can only guess with a probability of 0.5 that he is tested at a state at which he is
deceiving, the first term on the right of Equation [8.4]is always greater than zero:

1 < 1 <
P(n=1)xds = —— 0.5x1>0.
(a+b); (=1 (a+b);

If the first term on the right of Equation[8.4]is always greater than zero, then probability of
detecting deceptive behavior of the provider is always greater than zero, i.e., D(v; ) > 0.

Based on the above argument, we can draw the following conclusion: If the opportunistic
limit of the provider is ¢ = 0, that is, he does not tolerate any probability of getting caught
when cheating (D(v; )), then the provider will not deceive at all when states at which he is
tested are chosen randomly. However, an opportunistic limit of ¢ = 0 is a special case and an
opportunistic cloud provider may be willing to tolerate some probability of detection, that is,
¢ > 0. In these cases, the provider deceive at as many states a such that D(v; ) < ¢.

We can conclude that based on our model OCP, randomization of tests reduces the
number of states at which an opportunistic provider is willing to deceive. If the provider does
not want to get caught cheating at all, then, with randomization of tests, he will not cheat at
all.



8.3 Randomization of tests as a countermeasure 205

8.3.2 Framework support of randomized tests

This section describes how our framework to design tests (see Section [4.3)) supports
randomization of tests on the level of test cases as well as on the level of test suites.

8.3.2.1 Test cases

Section explained the role of fest cases as one building bock of our framework to
support continuous test-based cloud service certification. Among others, a test case is defined
by its input parameters which, as laid out in Section[4.3.2] can be randomized.

As an example, consider a cloud provider supplying IaaS, i.e., virtual machines to
customers having specified resources and performance, that is, providing minimum compute,
memory, and storage capabilities. Amazon AWS, for example, offers specialized instances
which are referred to as compute optimized instances>°|and which can be used for media
transcoding, high-traffic web servers and other computationally-intensive applications.

Let’s assume that some [aaS possesses a certificate which includes the control that The
promised minimum performance of virtual resources — usually defined as part of a SLA — has
to always be satisfied. In this context, consider a scenario where a customer’s application
uses the above IaaS to adapt to fluctuating daily workload by starting and stopping VMs as
needed. Using our framework, we can design a continuous test which aims to check whether
the allocated resource meet the minimum objective as specified in the SLA which, in turn,
determines if the certificate’s control is satisfied. To keep this example simple, we assume
that test only consists of a single test case TCF7 takes as input parameter the list of newly
started VMs, randomly selects one to conduct an application-specific performance test and
compares the results with the expected performance which was previously established for
the selected instance types. Furthermore, the test suite to which TC*7 is bound executes
statically every 30 minutes.

In order to save costs, an opportunistic cloud provider may consider to deliberately
not provide VMs in accordance with these SLA terms by, e.g., dedicating fewer than the
minimum promised CPU resources of the host to a VM. Hence cost savings result from
utilizing fewer physical resources required to satisfy the SLA terms and thus the certificate’s
control. The provider may use the remaining resources of a physical host to provide further
TaaS to other customers. Continuing the above example, an opportunistic provider may
consider to sometimes allocate fewer resource than promised to some instances which are
temporarily added due to workload peaks of the customers’ application.

Recall that the provider knows that he is subject to testing according to the certificate’s
performance control. Thus, if the provider does not want get caught when cheating on the
promised resources for newly added VMs, he has to choose those VMs for which he assumes
deceptive resource limitations are least likely to be detected. In case the cloud provider does
not want to be caught cheating at all, that is, his opportunistic limit is ¢ = 0, then he will not
cheat on the performance control at all. The reason for this is that — due to the randomization
of the test case input parameter — he can only guess which of the newly started VM is selected
for performance testing and thus cannot with certainty exclude the possibility that an instance
is tested which does not comply with the performance control.

120h‘ctps ://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.
html [Accessed: 2018-12-13]
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8.3.2.2 Test suites

In Section {.3.3] of Chapter 4] we introduced fest suites which are another building block of
our framework to support continuous test-based certification of cloud services. One element
of a test suite definition is the interval, that is, the period of time (in seconds) between two
successive executions of test suites. As already pointed out in Section[4.3.3] this interval can
either be static or serve as range from which the start of a test suite’s execution is selected
randomly.

Consider, as an example, that we use the continuous test CT™Y (see Section of
Chapter [5)) to validate the location of a VM. An opportunistic provider may decide to migrate
this VM to another location in order to save costs. However, the provider knows that he is
subject to testing by CTLV.

Let’s assume that we seek to repeatedly validate the location of the VM at least once
every six hours, that is, every 60 X 60 x 6 = 21600 seconds. To that end, we can set the
interval of the test suite 7Sy, ope Which collects new delay measurements on the Internet and
Transport Layer to randomly select a value in the range of [0, 21600] seconds. TS, ope Will
wait for this randomly selected time and then collect new probes.

If we assume that the delay measurement is trustworthy, that is, the cloud provider does
not manipulate the measured delay, then VM will have to reside at our expected location at
the time when the probes are collected. Otherwise the validation will fail, indicating that
the provider does not satisfy a control of a guideline such as BSI C5 [31]]. Therefore, if the
provider does not want to get caught when deceitfully migrating and running the VM to an
invalid location, then he has to choose a period in time during which he runs the VM at an
invalid location where it least likely to get caught. Let’s assume for the sake of our example
that the provider does not want to get caught cheating at all, i.e., his opportunistic limit is
¢ = 0. In this case, since the execution of probes is randomly chosen within the six hours
after the previous probing completed, the provider will refrain from running the VM at an
invalid location at all but always host it at the expected location.

8.4 Summary and discussion

In this chapter, we presented a model of an adversarial cloud service provider who only
pretends to comply with a set of controls. This opportunistic cloud provider only cheats,
however, if he can be sure that he is not caught with a probability greater that his opportunistic
limit. Our approach builds on the idea of the explicit cheat formulation, a variant of the
covert adversaries which were introduced by Lindell and Aumann [44]). In order to be able to
reason about the behavior of an opportunistic provider, we then combined the idea of covert
adversaries with a modeling technique known as labeled transition systems (LTS).

Based on our model of an opportunistic provider’s behavior, we then showed that
randomization of tests can reduce the willingness of the provider to cheat. Furthermore, we
explained how our framework to support continuous test-based cloud service certification
introduced in Chapter @] supports randomization of tests on the level of test cases as well as
on the level of test suites.

One drawback of our approach is that it does not accurately reflect changing conditions
over time. Assuming that in a real world setting, the majority of cases where a cloud service
does not satisfy a certificate’s controls, e.g., through outages and downtimes, occur rather
unintended, that is, are the result of operational problems and are not intended, i.e., are
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deliberately chosen by the provider. This means that the cloud service provider has to also
factor in a certain percentage of non-compliance that will most likely occur over time, e.g.,
that there is a percentage of expected but unintended outages. On the one hand, this reduce the
freedom of the cloud provider to intentionally not comply with a control. On the other hand,
the provider will refrain from intentionally not complying at the beginning of an evaluation
period because he does not know what events of unintended non-compliance may occur. Yet,
towards the end of the interval, depending on the events of unintended non-compliance which
actually did occur, he may choose to intentionally comply or not comply. Put differently:
The choice of behavior of an opportunistic cloud provider is intrinsically time-sensitive.
Extending our approach accordingly is subject to future work.

Another limitation of our approach is the strong assumption that a test is available which
always correctly indicates whether a cloud provider complies with a control or just pretends
to do so. Relaxing this assumption would require accounting for the cloud provider having
cost-efficient means to deliberately manipulate test results, e.g., always respond to pings
through a proxy instead of the actual cloud components endpoint, thereby hiding intentional
outages. Thus, as part of future work, it is required to extend our approach with methods
capable of establishing a trustworthy binding between a particular cloud service component
under test and the measurement conducted by a test, for example, through remote attestation
using Trusted Platform Modules (TPMs) as proposed by, e.g., Bertholon et al. [37].






Chapter 9

Conclusion

This chapter concludes this thesis by summarizing its contributions to the research challenges
laid out in the introduction of this thesis (Section [0.1)). Furthermore, we draw on the
discussions provided at the end of Chapters [] [5] [6] [7] and [§] and use identified drawbacks
therein to point out directions of future research (Section[9.2)).

9.1 Contributions to research challenges

In Section @] of the introduction of this thesis, we described the main research challenges
to overcome in order to develop methods to support continuous test-based cloud service
certification. Hereafter, we revisit these challenges and explain how they are addressed by
the contributions of this thesis.

Challenge 1: Design of tests supporting continuous cloud certification This challenge
consists of developing a framework to design tests whose test results can serve as evidence
to support continuous cloud service certification. Although there is no rigorous method
available to bridge the semantic gap, i.e., rigorously derive evidence most suitable to check a
specific control in an objective manner, using a framework to formulate tests as an objective
function permits objective, repeatable and predictable production of evidence [40].

In this thesis, we addressed this challenge by introducing a framework which guides the
design of tests, thereby supporting continuous cloud certification (Chapterd). Our framework
consists of the building blocks test cases, test suites, workflow, test metrics and preconditions;
it allows designing tests to support validation of controls of cloud-specific as well as general
standards and guidelines. It is independent of cloud service models and aims to flexibly
integrate with existing cloud service infrastructures, preferably in a non-invasive or minimally
invasive manner, that is, requiring only minimal to no changes to the infrastructure used
to provide the cloud service under certification. The framework is built to reuse existing
tools such as Nmap, SQLMap, or Ping in order to design tests. Also, existing approaches to
test-based evidence production methods can leverage our framework to execute test repeatedly
and reason about sequences of produced test results. Using our framework, self-adaptive
tests can be designed which makes it possible to, e.g., react to changes of the environmental
conditions within which a test operates and adapting it accordingly at runtime. Furthermore,
our framework includes the proposition of four test metrics which are universally applicable to
any continuous test supporting cloud service certification, independent of particular designs



210 9 | Conclusion

of test cases, test suites or workflow. Also, we outlined one example implementation of our
framework called Clouditor.

We demonstrated how our framework supports cloud service certification according to
controls derived from BSI C5 [31]], CSA STAR [23]], and ISO/IEC 27001:2013 [24] based
on five example test scenarios (Chapter [5). These example scenarios included testing the
cloud service properties availability, location, secure communication configuration, secure
interface configuration, and user input validation. However, a scenario-driven approach
is limited in demonstrating the applicability of our framework in general. Therefore, we
identified four general characteristics which we used to describe the test scenarios, thereby
permitting us to draw conclusions about our framework’s applicability that go beyond the
scope of the example scenarios (Chapter [5).

Challenge 2: Definition of continuous tests This challenge lies in providing comparability
of test results through the definition of continuous tests in a rigorous way. These definitions
have to be complete, that is, contain all information required to configure tests while, at the
same time, these definitions have to be agnostic to specific test implementations.

This thesis addressed this challenge through defining a domain specific language called
ConTest (Chapter[6). This descriptive language allows to rigorously describe tests, providing
a general representation of a test which is agnostic to a concrete implementation but abides
to the building blocks of our framework presented in Chapter ] Further, ConTest also
serves a starting point to generate representations of test definitions which can be used to
configure any specific test implementation. Thus, having a developer provide a code generator
translating from ConTest to an implementation-specific configuration language ensures that
the configuration of the test implementation follows the building blocks of our framework.
We implemented ConTest and showed how it can be used to generate YAML configuration
files which are used to configure tests within Clouditor’s engine, one example implementation
of our framework.

Challenge 3: Accuracy and precision of continuous test results This challenge consists
of evaluating the accuracy and precision of continuous test results. This method has to allow
us to compare alternative tests as well as to compare alternative test configurations.

In this thesis, we addressed this challenge by presenting a method to experimentally
evaluate the accuracy and precision of continuous test results (Chapter[7). To that end, we
built on the four universal test metrics introduced in Chapter ] and defined what accuracy and
precision mean in the context of continuous tests. Thereafter, we presented control violations,
that is, sequences of events where each event manipulates a property of a cloud service under
test such that the service does not fulfill one or more controls of a certificate. Thus, a control
violation sequence establishes the ground truth which we then use to evaluate the accuracy
and precision of a continuous test. Further, we explained how randomizing duration of as
well as interval between control violation events allow for generalizing statements -— in the
bounds of the range from which random values are selected — about a continuous test’s
accuracy and precision.

At the heart of our method are accuracy and precision measures which are based on
the universal test metrics. We derived these measures by combining the notion of control
violation sequences with our definition of continuous test’s accuracy based on the universal
test metrics. These measures allow us to make statements about, e.g., the average error a
particular test makes when estimating the duration of a control violation event. Lastly, in



9.2 Directions for future research 211

order to demonstrate the application of our method, we presented three example scenarios to
show how the accuracy and precision measures allow us to compare alternative tests as well
as alternative test configurations to select the one most suited.

Challenge 4: Trustworthy continuous test results If we use tests to produce evidence
supporting continuous cloud certification, then not trusting the cloud service provider whose
service is under test implies that we cannot unconditionally trust results of tests. Thus, this
challenge lies in providing an approach how to adapt tests to produce trustworthy test results
when faced with a fraudulent provider.

This thesis addressed this challenge by presenting a model of an adversarial cloud service
provider who only pretends to comply with a set of controls (Chapter([§). This opportunistic
cloud provider only cheats, however, if he can be sure that he is not caught with a certain
probability above his so-called opportunistic limit. Our approach builds on the idea of the
explicit cheat formulation, a variant of the covert adversaries which were introduced by
Lindell and Aumann [44]. In order to be able to reason about the behavior of an opportunistic
provider, we then combined the idea of covert adversaries with a modeling technique known
as Labeled Transition Systems (LTS).

Based on our model of an opportunistic provider’s behavior, we were able to show that
randomization of tests can reduce the willingness of the opportunistic provider to cheat. Also,
we explained how our framework to support continuous test-based cloud service certification
introduced in Chapter ] supports randomization of tests on the level of test cases as well as
on the level of test suites.

9.2 Directions for future research

In this section, we point out directions of future research in the field of continuous test-based
cloud service certification.

A security model for cloud certification systems Continuous tests seek to support
continuous cloud certification which, in turn, aims at increasing customer’s trust in and
transparency of cloud services. However, if not properly secured, such mechanisms can
also leak critical information which can be used by adversaries. As Santos et al. [246]
point out, information primarily produced to increase transparency can be also used to
trace vulnerabilities of a cloud infrastructure. As an example, consider the test scenario
to continuously check user input validation which we introduced as part of Chapter [5] to
demonstrate applicability of our framework. In this scenario, we check whether a SaaS
application is vulnerable to SQL Injections (SQLI). It is obvious that leaking test results
indicating a SQLI vulnerability can simplify the steps an attacker has to take to successfully
attack the service. Therefore, it is vital to secure the system which implements continuous
tests of cloud services. The underlying research question here is:

How to assess and mitigate the risk of using continuous test-based certification
to validate that a cloud service complies with a set of controls?

This risk analysis has to guide derivation of a suitable security model, that is, a set of security
measures to be integrated into the certification system’s architecture which aim at preventing
or mitigating identified risks. Since our framework to design tests does not mandate a specific
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architecture, it does not impose any restrictions on a certification system’s security model.
At the same time, the building blocks of our framework serves as a starting point to identify
assets worth protecting, e.g., produced evidence in form of measurements computed by test
metrics.

Risk-based integration of continuous tests One important requirement of our framework
to design tests presented in Chapter [d]is that tests should flexibly integrate with existing cloud
infrastructures. Here, we brought forward the notion of minimally invasive testing, that is,
continuous tests which only require minimal to no changes to the infrastructure of the cloud
service under test. Although our framework also supports invasive testing, we followed this
notion of minimally invasive testing throughout all of our example test scenarios presented in
Chapter 3]

However, only considering minimally invasive test designs has limitations as to which
evidence can be collected. As a result, the quality of statements and possibly also the scope of
controls which can be evaluated using minimally invasive continuous tests is limited as well.
Yet designing invasive continuous tests which, e.g., require deploying and operate additional
components within the infrastructure of the cloud service also increase the probability of
vulnerabilities introduced by these structural changes. Therefore, as part of future research,
an approach is needed to describe the restrictions inherent to minimally invasive testing and
investigate how removing these restrictions through invasive testing increases the overall risk
exposure of the cloud service. The underlying research question here is:

What extent of invasive continuous testing is required to check a maximum
number of controls while retaining a predefined threshold of risk exposure of the
cloud service under certification?

This approach would be orthogonal to the work of this thesis since our framework can also
be used to design different degrees of invasive tests as needed.

Conformance clauses for cloud service certificates Recall that as part of Research
Challenge 1: Design of tests to support continuous cloud certification, we highlighted that
there is no method available to objectively derive evidence best suited to check a specific
control. What is suitable evidence to check a control is thus left to consensus among domain
experts which Maibaum and Wassyng [40]] refer to as an agreed-upon objective function to
measure a certain property of a software under certification. Yet, as of today, no standard
set of agreed-upon objective functions is available which can be used to check if a cloud
service satisfies a certificate’s controls. The decisions whether suitable evidence exists and
if this evidence indicates that a control is satisfied is left to the possibly well-informed but
subjective opinion of a human auditor. However, subjectivity per se is not the problem, the
problem is that the auditors decisions is implicit, that is, not formulated in an objectively
conceivable manner, thereby preventing repeated and predictable evidence production and
interpretation. Thus, the underlying research question here is:

How can we formulate production and interpretation of evidence to standardize
the evaluation of a specific control in an objective, repeatable and predictable
manner?

A starting point to answer this question are conformance clauses which we described in
Section [2.2.3] of the background chapter of this thesis. These clauses define how to test
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conformance of a software product with a standard or specification. This includes to define,
on a technical level, how to test conformance, including, e.g., what tools to use. Our
domain-specific language ConTest presented in Chapter [ can support the construction of
conformance clause templates where conformance of a cloud service is evaluated using
continuous tests.

Analysis of side-effects of continuous tests As already pointed out in the introduction as
well as in the background chapter of this thesis, continuously testing whether a cloud service
conforms with a set of controls is not to be understood in a strict mathematical sense: No
matter how sophisticated the method to produce evidence, producing evidence will always be
— in a strict mathematical sense — discrete tasks that occur at some point in time.

In Chapter [/| we showed that, in some cases, the accuracy of continuous tests results
increases if the interval between repeated tests decreases. Naturally, this is expected since
if the frequency of executed tests increases, so does the probability to detect a property
violation leading to non-compliance with a certificate’s control. Yet accuracy and precision
of a continuous test may not be the only two characteristics needed to select the most
suitable continuous test in a real world scenario. Another important property of a test is the
overhead which it imposes on the service under test, especially when facing multiple, possibly
concurrent tests. As pointed out by Li et al. [129], uninterruptedly testing cloud service
providers can incur intolerable overhead on the cloud service under test. An interesting idea
here is to measure the overhead caused by tests and then select those tests and configurations
which incur minimal overhead while retaining required accuracy and precision of results.

Aside from performance overhead incurred through continuous tests, there are other
side-effects which need to be considered. For example, security tools such as SQLMap actually
exploit a detected SQLI vulnerability which may lead to exposure of sensitive information,
e.g., personal data. Further, consider continuously testing the available bandwidth of a cloud
service component which may significantly increase operational costs. As a last example,
continuous tests aiming to evaluate the robustness of a cloud service may unintentionally
disrupt regular service operation, thereby creating a financial loss through service downtime.
In summary, this leads to the following research question which is subject to future work:

What side-effects can continuous tests cause and how can these side-effects be
mitigated to not exceed a predefined threshold of risk exposure of a cloud service
under test?
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Appendix A

External tool configurations

Parameters used with sklearn.svm.LinearSVC Listing [A.T|shows the values passed to
parameters of LinearSVC within the implementation of the example test scenario Continuously
testing location presented in Section LinearSVC is a method of the Scikit-learn 1ibrary{]zl

Listing A.1: Configuration of LinearSVC

1

2 LinearSVC(C=1.0,

3 class_weight=None,

4 dual=True ,

5 fit_intercept=True,
6 intercept_scaling=1,
7 loss="squared_hinge ’,
8 max_iter=1000,

9 multi_class="ovr’,
10 penalty="12",

11 random_state=None,
12 tol=0.0001,

13 verbose=0)

Parameters used with sklearn.svm.OneClassSVM Listing shows the values passed
to parameters of OneClassSVM within the implementation of the example test scenario
Continuously testing location presented in Section[5.3] OneClassSVM is a method of the
Scikit-learn library{]zl

Listing A.2: Configuration of OneClassSVM

OneClassSVM (cache_size =200,
coef0=0.0,
degree=3,
gamma="auto ’,
kernel="linear ’,
max_iter=—1,
nu=0.01,
random_state=None,
shrinking=True ,
tol=0.001,
verbose=False)
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121 http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
[Accessed: 2018-12-13]

122http ://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
[Accessed: 2018-12-13]


http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html




Appendix B

Code snippets

XTend Code generator to translate ConTest to YAML Listing|B.1|contains the code of
the XTend class ConTestDSLGenerator whose compile method translates ConTest to YAML.
Note that line breaks from lines 71 to 72 of Listing are added for enhanced readability
and have to be removed to correctly generate the YAML file shown in Listing[6.6] i.e., the
code in line 72 has to be appended to line 71.

Listing B.1: ConTestDSLGenerator class

1

2 package de.fraunhofer.aisec.conTestDSL. generator

3

4 import com.google.inject.Inject

5 import de.fraunhofer.aisec.conTestDSL.conTestDSL.KeyValue
6 import de.fraunhofer.aisec.conTestDSL.conTestDSL. Test
7 import org.eclipse.emf.ecore.resource.Resource

8 | import org.eclipse.xtext.generator.AbstractGenerator
9 import org.eclipse.xtext.generator.IFileSystemAccess2
10 import org.eclipse.xtext.generator.IGeneratorContext
11 import org.eclipse.xtext.naming.IQualifiedNameProvider
12

13 class ConTestDSLGenerator extends AbstractGenerator
14

15 @Inject extension IQualifiedNameProvider

16

17 override void doGenerate(Resource resource, IFileSystemAccess2 fsa, IGeneratorContext context) {
18 for (e : resource.allContents.tolterable. filter (Test)) {
19 fsa.generateFile (e.fullyQualifiedName.toString ("/") + ".yaml",
20 e.compile

21 )

22 }

23

24 }

25

26 def compile(Test ct)

27 «var length2 = " "»

28 «var length4 = length2 + " "»

29

30 name: «ct.testName»

31 id: «ct.name»

32 description: «ct.testDescription»

33

34 metrics :

35 «FOR m : ct.testMetrics»

36 «length2»— class: « m.testMetricModule»

37 «length4»name: « m.testMetricName»

38 «length4»description: « m.testMetricDescription»
39 «ENDFOR»

40

41 testCases:

42 «FOR tc : ct.testCases»

43 «length2»«tc.testCaseName»:

44 «length4»’@id’: «tc.name»

45 «length4»’class ': «tc.testCaseModule»

46 «length4»order: «tc.order»

47 «IF tc.inputParams !==null»

48 «FOR ip : tc.inputParams»

49 «FOR kv : ip.params»

50 «length4»«kv.key»: «identifyParams (kv)»

51 «ENDFOR»

52 «ENDFOR»
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74
75
76
71
78
79
80
81
82
83
84
85
86 |}

«ENDIF»

«FOR ap : tc.assertParams»

«FOR kv : ap.params»
«length4»«kv.key»: «iden

«ENDFOR»

«ENDFOR»

«ENDFOR»
workflow :

tifyParams (kv)»

«length2»class: «ct.workflow.workflowModule»
«length2»name: «ct.workflow.workflowName»

«length2»testSuites :
«FOR ts : ct.testSuites»
«length4»«ts .name»:
«length4»name: «ts.name»

«length4»label: «ts.testSuiteName»

«length4»randomized: «IF ts.randInterval

null»true «ELSE»false «ENDIF»

«length4»iteration: «IF ts.iteration.infinite!==null»—1«ELSE»«ts.iteration .count»«ENDIF»
«length4»interval: «IF ts.randInterval !== null»[«ts.randInterval.leftBound»,«ts.randInterval.rightB
«ELSE»«IF ts.seqFixedInterval !==null»«ts.seqFixedInterval.elements»«ELSE»[«ts.fixedInterval»]<«ENDIK

«lengthd»offset: «ts.off»

«length4»timeout: «ts.timeout»

«length4»testCases: [«FOR
«ENDFOR»

tc:ct.testCases SEPARATOR ’,’»’ @ref’: «tc.name»«ENDFOR» ]

def identifyParams (KeyValue kv){

switch kv{
case kv.listInt !
case kv.listString
case kv.stringVal !
default : kv.intValue

}

null: kv.listInt.elements

null: kv.listString .elements
null: kv.stringVal

und»]
» «ENDIF»



Appendix C

Publications in the context of this thesis

Hereafter, we list all peer-reviewed publications which have been published in the course of
this thesis. The contents of these publications either present intermediate results of this thesis
or are related to the research in context of continuous test-based cloud service certification.
We outline how these publications are related to this thesis.

 Philipp Stephanow and Mark Gall. Language Classes for Cloud Service Certification
Systems. Proceedings of the 11th IEEE World Congress on Services (SERVICES), pp.
127-134, New York, 2015.

Relation to thesis This paper introduces language classes for cloud service certification
systems to facilitate research in design and implementation of these systems. This work
is a preliminary effort for the domain-specific language ConTest which is presented in
Chapter [0 of this thesis. The purpose of ConTest is to rigorously define continuous
tests.

Philipp Stephanow and Niels Fallenbeck. Towards Continuous Certification of
Infrastructure-as-a-Service Using Low-Level Metrics. Proceedings of the 12th
IEEE International Conference on Ubiquitous Intelligence and Computing, 12th
IEEE International Conference on Autonomic and Trusted Computing and 15th
IEEE International Conference on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), pp. 1485-1492, Beijing, 2015.

Relation to thesis This paper investigates low-level metrics which are provided by
widely deployed implementations of components involved in delivery of Infrastructure-
as-a-Service (IaaS). This work is mainly a complementary effort to this thesis since it
analyses evidence available to monitoring-based certification models. The insights
obtained within this publication contribute to the background (Chapter [2)) as well as to
the related work (Chapter [3)) of this thesis.

Philipp Stephanow, Christian Banse, Julian Schiitte. Generating Threat Profiles
Jor Cloud Service Certification Systems. Proceedings of the 17th IEEE High
Assurance Systems Engineering Symposium (HASE), pp. 260-267, Orlando, 2016.

Relation to thesis This paper proposes an approach to model architecture variants of
cloud service certification systems and analyzes corresponding threats these systems
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face. This work contributes to the discussion of our framework to design continuous
tests presented in Chapter[d] of this thesis. Furthermore, we use the results of this paper
to identify future research directions in the conclusion of this thesis (Chapter [9).

* Philipp Stephanow, Gaurav Srivastava, and Julian Schiitte. Test-based Cloud
Service Certification of Opportunistic Providers. Proceedings of the 9th IEEE
International Conference on Cloud Computing (CLOUD), pp. 843-848, San Francisco,
2016.

Relation to thesis This paper present an approach to support test-based cloud service
certification of opportunistic cloud service providers. The contents of this paper can
be understood as a summary of Chapter [§ which introduces a method to model and
reason about the behavior of an opportunistic cloud service provider and points out
countermeasures through randomization which are also integrated into our framework
to design continuous tests. This paper also includes an outline of the building blocks of
our framework to design tests presented in Chapter [ of this thesis. Further, we reuse
parts of the implementation section of this paper within Chapter [5| which contains the
example continuous test scenarios.

¢ Immanuel Kunz and Philipp Stephanow. A Process Model to Support Continuous
Certification of Cloud Services. Proceedings of the 31th IEEE International Conference
on Advanced Information Networking and Applications (AINA), pp. 986-993, Taipei,
2017.

Relation to thesis This paper analyzes and generalizes the traditional certification
processes and, on this basis, develops a novel, executable process model to support
continuous cloud service certification. The results presented in this paper are mainly
complementary to this thesis since they provide means to integrate continuous tests
into existing certification processes as well as update continuous tests during operation.

 Philipp Stephanow and Koosha Khajehmoogahi. Towards Continuous Security
Certification of Software-as-a-Service Applications Using Web Application Testing
Techniques. Proceedings of the 31th IEEE International Conference on Advanced
Information Networking and Applications (AINA), pp. 931-938, Taipei, 2017.

Relation to thesis This paper reports on intermediate results of developing methods as
well as tools to support continuous test-based security certification of Software-as-a-Service
(SaaS) applications. This work is partly reused in thesis as one of the example continuous
test scenarios presented in Chapter[5] Furthermore, we generalize some of the research
challenges brought forward within this paper and used them in the Introduction of this
thesis (Chapter [)).

¢ Philipp Stephanow and Christian Banse. Evaluating the Performance of Continuous
Test-based Cloud Service Certification. Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 1117-1126, Madrid,
2017.

Relation to thesis This paper evaluates the performance of test-based cloud service
certification techniques when they are executed continuously. This paper introduces
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the universal test metrics which are described in Chapter [ of this thesis. Also, the
contents of this paper can be understood as a summary of Chapter[7]of this thesis which
introduces a method to evaluate the accuracy and precision of tests which support
continuous cloud service certification.

Philipp Stephanow, Mohammad Moein and Christian Banse. Continuous Location
Validation of Cloud Service Components. Proceedings of the 9th IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pp. 255-262,

Hong Kong, 2017.

Relation to thesis This paper presents adaptive location classification, an approach
to continuously validate the location of cloud service components. The underlying
method of this work is used to describe the example test scenario Continuously testing
location which is presented in Section[5.3]of Chapter[5] Furthermore, the experimental
results delineated in the paper can be understood as an extract of the results discussed

in Section[5.3.4
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