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ABSTRACT
Controlling physical machinery and processes is at the core
of production automation. However, challenged by inflex-
ibility, automation and control is evaluating to outsource
this control to resourceful cloud environments. While this
enables to derive better control through a plethora of mea-
surements, it challenges the control quality through delay
introduced through networks.

In this paper, we show how to unify control and com-
munication by offloading delay sensitive control tasks from
the cloud to local network elements — a previously unex-
plored area for in-network processing — enabling both, ultra
high quality-of-control while enabling scalable orchestration
through cloud environments. Our implementation demon-
strates how we combine state of the art control with commu-
nication. We achieve this by expressing the control and the
datapath in P4 which we synthesize to BPF programs that
we execute in XDP environments on Netronome SmartNICs.
Further, we highlight the demands of control towards com-
munication to build more involved and complex in-network
controllers.

1 INTRODUCTION
The automation and control of industrial machinery is gov-
erned by carefully designed control processes and algorithms
[17]. Widely known non-industrial control processes range
from the self-stabilizing Segways or drones to vehicular
cruise controls or house heating systems. In industry, these
processes are at the core of robotic automation but they
carry through all aspects of modern production. However,
driven by increased demands in flexibility and manageability
of production sites, control theory is evaluating the soft-
warization of their field, i.e., the outsourcing of highly lo-
calized control processes to general purpose cloud environ-
ments [20, 21, 23, 24]. In that regard, control e.g., hopes to
utilize the elastic computing and storage of cloud environ-
ments to synthesize advanced controllers, e.g., accounting for
wear and tear of machinery through constant collection of
sensory data and the application of machine learning. How-
ever, even though Network Control Systems (NCS) describe
the general combination of networking and controlling, they
are inherently challenged by delay and jitter [2, 25]. These
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Figure 1: To utilize the resources of cloud comput-
ing, process control can offload delay sensitive control
tasks to network elements overcoming unpredictable
and high latencies of Internet communication.

uncertainties are currently tackled by incorporating worst-
case roundtrips times into the control design [10], leading
to reduced control performance, e.g., motors can only be
controlled with lower speeds slowing down production.

To this end, this paper demonstrates the applicability of in-
network processing for control — a previously unexplored
area — by offloading small but critical control tasks into
network elements managed and organized through remote
(cloud) environments. Figure 1 visualizes the orchestration of
a factory network from a distant cloud environment enabling
to utilize the ultra-low latencies of local communication.
Thus, we enable to combine the advantages of localized in-
network processing with the resourceful cloud. Specifically,
we synthesize control algorithms with a P4 [4] dataplane
that we compile to BPF programs and offload to XDP en-
vironments as well as onto Netronome Agilio SmartNICs.
By building upon the flexibility of P4, we enable to express
control demands into the communication path, e.g., we can
create lightweight encapsulating protocols that can meet the
demand of control for guaranteeing correct, duplicate-free,
and fresh data. Further, we can easily control the data flow
from sensors through in-network control elements to actu-
ators by directing the respective packets. Specifically, our
work makes the following contributions:
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Figure 2: A pendulum on a stiff rod is balanced on top
of a cart by moving the cart horizontally. Angle and
position can be sampled periodically through sensors.

• We demonstrate the applicability of in-network control
to a new and yet unexplored problem space — Network
Control Systems.

• Our evaluation uncovers the deep coupling between delay
and quality-of-control showing that in-network processing
can be a solution to combine resourceful computing with
low-latency processing.

• We show that state of the art control can be offloaded to
network elements with today’s technologies.

• Our analyses further highlight the challenges and demands
of control to be applied in a comprehensive manner by
in-network processing.

Structure. Section 2 introduces fundamental concepts of
control that are relevant for this paper. Following, Section 3
describes our approach in unifying low latency control and
cloud computing through in-network processing. We high-
light the feasibility of our approach in Section 4 by showing
the advantages of in-network processing for control prob-
lems. Section 5 discusses future challenges of in-network
processing for control tasks. We shortly review related work
in Section 6 and conclude the paper in Section 7.

2 NETWORK FEEDBACK CONTROL
Before we begin to explain our approach, we briefly intro-
duce the challenges and the typical approach to controlling
physical machinery through networks.

A network control system (NCS) consists of at least three
entities, i.e., the system to be controlled which is typically
called plant, the network, and the controller. The plant is
periodically sampled using sensors which in turn transmit
the samples data over the network to the controller. The
controller then takes these inputs and calculates a control
output with regard to a certain goal that is preprogrammed
in the controller and sends it back to the plant such that
actuators can modify the physical state of the system. As
the control output is subject to inaccuracies, these steps are
repeated over and over again, therefore, these systems are
typically referred to as feedback control systems.

The textbook example of such a system is an inverted pen-
dulum as shown in Figure 2 which we will also referrer to in
our evaluation (Section 4.1). Here a pendulum on a stiff rod is
installed on a cart that can only move in horizontal direction.
The goal of this system is to balance the pendulum in an up-
right position such that it does not fall over or rotate below
the center of the cart. Here one would sample the location
of the cart, as well as the angle of the pendulum. The goal of
control theory is to design optimal controllers that fulfill this
goal. Typically, this is a two-stage process. First, the physical
system is modeled as closely as possible using mathematical
formulas. This system model is then discretized and finally,
a controller is synthesized such that it modifies the system
to the desired state, e.g., the pendulum being upright and the
cart being at a certain position. There are multiple classes of
these controllers, e.g., proportional-integral-derivative (PID)
controllers, linear-quadratic regulator (LQR) controllers, or
even neural networks. The outcome of this process is typi-
cally a set of matrices or vectors that enable to calculate a
control output given the sampled input data, i.e., in contrast
to the control design which can take long time, the second
phase is typically only a matrix multiplication. A challenge
of these controllers is delay and jitter. Control theory typi-
cally regards the network as a black box with a certain delay
and jitter. To account for these, the control design is mod-
ified such that the controller can deal with the delay; this
is typically done by accounting for the maximum of the ex-
pected delay and jitter. Yet, this leads to decreased control
performance, e.g., it takes longer to stabilize the pendulum.

3 IN-NETWORK FEEDBACK CONTROL
Ever growing demands in flexibility challenge classical con-
trol approaches. To this end, control theory evaluates the
feasibility of moving control into cloud environments, a chal-
lenge that introduces delay and jitter in the communication
path. Our approach introduces a middle-ground between
local and cloud-facilitated control by pushing some control
logic back from the cloud into the local network. This way,
we are able to reduce latencies but still utilize the resource-
fulness of the cloud.

We utilize the already existing split in control, i.e., we
leave the control synthesis in the cloud, this way it can utilize
elastic computation power as well as optimize controllers
from a plethora of collected measurements (as e.g., in [6])
of the system that is to be controlled. Yet, we outsource the
actual control to the network, i.e., we calculate the actual
control output directly on-path, e.g., in the switches of the
local network saving on latencies, enabling more aggressive
controllers that increase the quality of control.

Thereby, we pave the way for more flexible production
sites. On the one hand, we can outsource the classic control
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problems into resourceful environments, and on the other
hand, our approach enables new means of reliability for
cloud-facilitated network control. For example, when the
uplink to the Internet fails, causing the cloud not to be reach-
able anymore, the local network can still control machinery.
Further, safety-critical emergency routines can be offloaded
into the network. Imagine a human interacting with one
or more machines. In order to avoid physical injuries, an
emergency stop could then be offloaded into the network
such that machines can be halted with high reliability when
humans are in too close proximity.

We continue by explaining how we implement such a
system that can run on real hardware and the problems that
come when doing so.

3.1 In-Network Processing for Control
To evaluate the feasibility of in-network control, we offload
the control matrix multiplication to network elements. To
this end, we target to utilize the extended Berkeley Packet
Filter (eBPF). eBPF (BPF for the remainder) is the evolution of
the classical Berkeley Packet Filter (cBPF), that is for example
at the core of tcpdump’s packet filter. BPF is a pseudo-virtual
machine instruction set, specifically designed to meet the
requirements for efficient packet processing. It is usually
just-in-time compiled to the executing machine’s instruction
set. BPF programs can be injected into various parts of the
Linux kernel or even onto smart NICs to process packets.
Its applicability has shown tremendous success for variable
firewalls [5] or custom forwarding planes [1, 12, 18]. The
most promising entry point for BPF programs is the express
datapath (XDP) which enables to hook directly into the net-
work card’s driver even before packet control structures are
allocated thus saving on general purpose processing. Utiliz-
ing XDP enables to create custom protocols that are purpose
driven for a certain control problem and it further paves the
way for transparent hardware offloading.

Yet, instead of reinventing the wheel, we make use of P4 [4]
to describe the datapath. P4 offers great flexibility and has
already shown its potential for general purpose switching
applications (e.g., [8, 11, 15, 16]). To this end, we utilize the
XDP-P4 backend [22] to compile a P4 datapath description to
C code that in turn can be compiled using clang and LLVM
to BPF bytecode. Thus, we can profit from the streamlined
P4 dataplane description but are highly flexible in the way
we can deploy using BPF. We continue by describing our
datapath and especially, how we embed an LQR-controller,
a prominent class of optimal controllers, in P4.

3.2 LQR Control in P4
An LQR controller output is rather simple to compute. The
whole controller is described by a vector K which is mul-
tiplied by the current system state vector x (over the reals
or using signed floating-point numbers, respectively). This
yields the output u to apply next to the plant:

u = −KT · x

We implement a switch in P4 that is able to perform this
simple multiplication for a state vector x that is transmitted
in UDP datagrams. To this end, our implementation parses
each incoming packet and looks for UDP datagrams of the
correct length. In case such a header is found, we apply a
P4 table trying to match the source IP and port as well as
the destination IP and port, and look up the control vector K
in the table, similar to looking up destinations in a routing
process. We then calculate the desired LQR output u using
K and x and send a packet with the new output back to the
plant by swapping source and destination IPs and ports and
by replacing the original payload of the packet with u.

As it turns out, this is not necessarily as straight forward
as one would imagine. First of all, P4 and also BPF have no
support for floating point arithmetics which however are
used in many control problems. This is not a real problem as
many real-world sensors only operate on integers in the first
place and other floating point systems can be transformed to
integers using fixed-point arithmetics. Yet, when assuming
fixed-point arithmetics, our LQR-control computation effec-
tively scales the output by the square of the fix-point. K and
x are both scaled by the fix-point, thus the product of both is
scaled by the square of the fix-point. Thus, we are required
to divide the output of the multiplication by the fix-point to
scale the value to the original fix-point again. However, the
most recent P4 standard does not define divisions on signed
numbers requiring to first convert negative numbers to posi-
tive ones, perform divisions and finally negate them again.
Even though BPF would allow signed divisions, we strive for
P4 compatibility. Furthermore, multiplying fix-points further
requires performing the calculations with larger bit-depth
such that integers do not overflow, a requirement that could
also not be met on different platforms according to the P4
documentation.

After having transformed the input to an output value we
fix up checksums and length fields and we apply another
table that looks up destination IPs to Ethernet next hop ad-
dresses and we rewrite the MAC header accordingly. Finally,
P4 de-parses the packet, yet, our UDP payload changed such
that we construct a different header for the UDP payload
than that we previously parsed.
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(a) Local control not subject to delay.
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(b) Control as in (a) when introducing 5ms RTT.
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(c) Control accounting for 20ms RTT at 20ms RTT.
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(d) Control accounting for 20ms RTT and wobbling.

Figure 3: Controlling the pendulum over a network. (a) the control is directly connected to the pendulum. (b)
control breaks down when we introduce only 5ms of RTT. (c) adjusting the controller design to account for delay,
and, (d) adjusting the control design while guaranteeing no wobbling.

4 INVERTED PENDULUM IN-NETWORK
CONTROL

To investigate the effectiveness of in-network control, we
implement a real-time simulation of the inverted pendu-
lum problem (cf. Figure 2). The system state (cart position,
first derivative of the cart’s position, pendulum angle, first
derivative of pendulum angle) is periodically sampled and
transmitted using UDP to a controller that is attached to a
mininet. We extend mininet such that XDP programs can be
attached to the virtual interfaces of a mininet switch. This
way, we can easily test our implementation fully virtualized
or we only use it to emulate delay and attach the XDP pro-
gram to a PC equipped with a Netronome Agilio CX to which
we can also offload the BPF program1. In the end, this results
in a simple linear topology, with the XDP-enabled switch
connected to the real-time simulation and to the mininet
hosting the controller that would normally be executed in
the cloud. The XDP-enabled switch provides interfaces to
populate the P4 tables, thus by inserting a control vector K
with a corresponding flow four-tuple we can activate and
deactivate the switch performing LQR-control for certain
flows.

1Netronome supplied us with an alpha version of their upcoming BPF-
capable firmware.

4.1 Evaluation
To investigate the effectiveness of our approach, we must
evaluate the control performance when offloading control
to in-network elements. Control performance can be evalu-
ated under various aspects. At the example of the pendulum,
typical evaluation metrics are: how fast does the controller
reach its goal, what is the amplitude of the pendulum when
it is moved, does the pendulum oscillate around the equi-
librium? To answer these questions, we setup the real-time
simulation such that the cart is positioned left to the center
(x = −0.5) and the pendulum is tilted to the right (θ = 20◦)
of the upright position (θ = 0◦). Thus, when control does
not apply a force to the cart moving it to the right, the pen-
dulum will fall over (and will continue rotating below the
cart). We setup the LQR controller such that its goal is to
balance the pendulum at the center (x = 0) in the upright
position (θ = 0◦). To measure the quality of control that we
can achieve, i.e., answering the previous questions, we in-
vestigate the distance from the system’s state to the desired
equilibrium at (x = 0, θ = 0◦).
Baseline. To set a baseline, we first evaluate the classic sce-
nario, i.e., the control is local to the pendulum and is not
outsourced to a cloud environment. Figure 3a depicts the
achievable quality of control. The upper subplot depicts the
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absolute difference to the equilibrium for the cart’s posi-
tion (left axis, blue line) and the pendulum’s angle (right
axis, red line). Below, we show the relative error given the
horizontal bound of -1.0 . . . 1.0 and at most 180° distance
from the upright position. We observe that the controller is
swift in correcting the angle: After roughly 4 s, controller
has reached the equilibrium. Furthermore, we observe no
oscillations in the pendulum’s angle or the cart’s position
attesting a smooth control.
Introducing Delay. When we start to outsource the control
to a distant controller, e.g., located in some factory cloud or
in a datacenter, delay is introduced into the communication
path. Even when assuming low latencies on an Internet scale,
i.e., through an IXP, with an RTT of 5 ms, the same control
starts to break as shown in Figure 3b. When looking at the
first second of the control, we can see that the controller
is able to move the system towards the equilibrium. Yet,
we can already observe that the system starts to oscillate.
Continuing, the oscillations—caused by measurements as
well as control signals arriving too late—become to severe
such that the system becomes completely unstable. Indicated
by the angle of the pendulum, the pendulum starts to rotate
by 360° applying force (and thereby movement) onto the cart
that the controller is unable to manage.

In summary, these first results show the high correlation
of delay and control quality.

As stated earlier, control is of course able to account for
delays. We incorporate up to 20 ms RTT into the controller
design allowing for jitter and delay. As shown in Figure 3c
this re-enables control to finally stabilize the pendulum in the
upright position. However, we observe that the pendulum is
now subject to severe wobbling as indicated by the angle of
the pendulum swinging back and forth in the first second.
The feedback control is able to stabilize the pendulum by
adjusting the force on the cart as indicated by the change in
the cart’s position. Yet finally, control is again able to reach
the equilibrium after roughly 4 s.

However, depending on the actual control goal such a
back and forth might be undesired, e.g., imagine a controller
governing the transport of liquids without causing distur-
bance or sloshing. We can however adjust control further
to also incorporate this as indicated by Figure 3d. Now, we
have eliminated a wobbling, however, as indicated by the
relative error to the equilibrium, control had to slow down
the cart movement to achieve the desired goal. Thus, from
another perspective the quality of control is still suboptimal,
e.g., leading to increased production times. While this shows
that delay can be incorporated to a certain degree, this in-
corporation often leads to some sort of control degradation.
Using In-Network Control. However, when we utilize our
approach of in-network control, we can restore the original
control quality. Figure 4 shows the quality-of-control using
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Figure 4: Outsourcing control to the network enables
to restore the original quality of control while main-
taining central management in the distance.

our XDP-offloaded LQR control. We observe that in-network
processing enables to utilize the ultra-low latencies of local
communication as the pendulum can be moved into stable
position as if we were using a controller directly attached
to the pendulum as in Figure 3a. This also highlights that
the latencies of locally connected devices that are typically
order of magnitude lower than the sampling rates of sensors
do not influence the control.

5 FUTURE CHALLENGES
While this work highlights that a common class of control
problems can be offloaded to network elements, there are still
technical and conceptual challenges. First, we assume that it
is rarely required to account for delay when control is out-
sourced to the local network, yet, it raises some conceptual
questions if it is still required. When accounting for delay
during the controller design, one has to bloat the state-space
to include past control outputs and keep them local to the
control process. One has to keep the last n control outputs
to account for n times the sampling rate of the sensor data,
i.e., to account for 20ms of delay when sampling with 500 Hz,
one has to keep the last ten computed values. Currently, P4 is
not able to store such values computed on the datapath even
though the P416 standard acknowledges that future versions
might support this. In contrast, BPF programs can store these
values, even though when offloaded to our SmartNIC, stor-
ing values from the datapath is also currently not possible,
future version are planned to include atomic add operations
to store statistics, yet these would not be enough.

When looking at other control problems, P4 and BPF can
be further limiting: P4 first completely parses a packet to
memory, in case of BPF, this is challenging as the BPF stack
is limited to 512 byte which is also shared with other local
variables. Assuming, e.g., audio data capturing machine vi-
brations on which signal detection and subsequent actuation
should be performed, 1 ms of 16-bit PCM audio is already
88 byte, several milliseconds of audio can easily overflow
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BPF’s stack. Visual processing, e.g., tracking or detecting
objects, even in ultra-low resolution images might require
both, per flow storage that outlives a single packet, as well
as being able to process larger packets.

6 RELATEDWORK
Utilizing cloud computing in industrial automation has been
proposed before, e.g., [20, 21, 23, 24]. Most works target
higher level functionality such as monitoring, configuration
and maintenance, not the latency-critical control- and field
level [9]. Jitter and delay in cloud controller settings have
gained further attention [7, 13], with the [13] suggesting an
adaption of the controllers or state prediction techniques
for mitigation. We, in contrast, analyze and partially offload
existing controllers into network hardware. By utilizing SDN-
and packet processing-specific languages (P4 and BPF), our
approach reduces jitter and delay to a minimum by design.

Our approach relates to the edge computing paradigm
in which computations are also offloaded [14, 19]. In line
with aforementioned works, the large-scale survey [3] re-
veals only little concrete work regarding edge computing
for industrial control. Hence, to the best of our knowledge,
our work is among the first to adapt the concept of SDN
and in-network processing and apply them to challenges in
automation and control.

7 CONCLUSION
This paper introduces networked control as a new applica-
tion domain for in-network processing. By combining con-
trol and communication, a new flexibility for automation and
control is introduced that enables to outsource and thereby
optimize control to distant, resourceful environments. Our
implementation of control and communication in P4 high-
lights the applicability of today’s technologies. However, we
also show its limitations for more involved problems that
demand more than is currently offered. Further, by synthe-
sizing P4 to BPF running in XDP on SmartNICs or general
purpose hardware we further gain flexibility in deployment.
Our evaluation highlights how control is challenged by even
small amounts of delay and that in-network processing is a
solution worth exploring.
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