
Technische Universität München

Fakultät für Informatik
Lehrstuhl für Bildverarbeitung und Künstliche Intelligenz

Learning by Association

Strategies for solving computer vision tasks
with less labeled data

Philip Häusser

Vollständiger Abdruck der von der
Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prüfer der Dissertation: 1.

2.

Prof. Dr. Darius Burschka
Prof. Dr. Daniel Cremers
Prof. Dr. Thomas Brox

Die Dissertation wurde am 26.06.2018 bei der
Technischen Universität München

eingereicht und durch die
Fakultät für Informatik am 21.10.2018 angenommen.

L E A R N I N G B Y A S S O C I AT I O N

philip häusser

Strategies for solving computer vision tasks with less labeled data

A B S T R A C T

The world is undergoing a transformation. Self-learning systems and
so-called artificial intelligence facilitate the automation of many tasks
that were thought infeasible for machines. In the field of computer
vision in particular, this revolution was taken to the next step by arti-
ficial neural networks, more precisely convolutional neural networks
(CNNs) which hold state of the art in image and video classification,
segmentation, regression on optical flow, scene flow and many other
tasks.

However, unlike human learners, CNNs require vast amounts of
labeled training data. This is often costly or even impossible to obtain.
In this dissertation, we propose and investigate a new approach to
solve this problem for typical tasks in computer vision: learning by
association.

This training schedule is suitable for any embedding learning task
such as classification, domain adaptation, clustering and multimodal
learning. The key idea is to associate training examples for which la-
bels are known with unlabeled examples. These associations happen
in a neural network’s embedding space where a novel cost function
facilitates state-of-the-art results with significantly less labeled train-
ing data.

Neural networks are a key component to the development of artifi-
cial intelligence. Once we understand how they can be trained effec-
tively, their benefit for humanity will be fully unleashed. Coming a
step closer to this goal is the motivation of this work.

v

Z U S A M M E N FA S S U N G

Die Welt befindet sich im Umbruch. Selbstlernende Systeme und
so genannte künstliche Intelligenzen ermöglichen die Automatisierung
vieler Aufgaben, deren Lösung durch Maschinen lange als unmöglich
galt. Insbesondere im Bereich der Bildverarbeitung und des Compu-
tersehens wurde diese Revolution durch Neuronale Netze ermöglicht,
genauer gesagt durch Neuronale Faltungs-Netze (CNNs). Diese Mo-
delle sind unübertroffen in Bild- und Videoklassifizierung, sowie Seg-
mentierung, Regression des optischen Flusses, des Szenenfluss und
vieler weiterer Aufgaben.

Anders als der lernende Mensch benötigen CNNs beträchtliche
Mengen an annotierten Trainingsdaten. Diese zu erlangen ist oft teuer
oder gar unmöglich. In dieser Dissertation präsentieren und analysie-
ren wir einen Lösungsansatz für typische Aufgaben in der Bildverar-
beitung: Assoziatives Lernen.

Diese Trainingsprozedur ist die für alle Formen des Lernens von
Darstellungen, bzw. Merkmalen geeignet: Klassifizierung, Domänen-
anpassung, Clustering und multimodales Lernen. Die Schlüsselidee
ist es, Trainingsbeispiele mit bekannter Annotierung mit unbeschrif-
teten Beispielen zu assoziieren. Diese Assoziierungen finden im Ein-
bettungsraum eines neuronalen Netzes statt, wo eine neuartige Kos-
tenfunktion erstklassige Ergebnisse bei deutlich reduziertem Bedarf
an annotierten Trainingsdaten ermöglicht.

Neuronale Netze sind eine Schlüsselkomponente für die Entwick-
lung von künstlicher Intelligenz. Sobald wir verstehen, wie neuronale
Netze effektiv trainiert werden können, wird sich ihr Nutzen für die
Menschheit völlig entfalten. Diesem Ziel ein Schritt näher zu kom-
men ist die Motivation dieser Arbeit.

vi

A C K N O W L E D G M E N T S

When I began my studies in 2010, I was not remotely envisaging a
doctoral degree. It is due to a few very special people that I decided to
dare this endeavor and now am holding this document in my hands.

First of all, I would like to thank my advisor, Prof. Daniel Cre-
mers. In 2014, when I was working on my Master’s, I got in touch
with machine learning and neural networks. Searching for opportuni-
ties to deepen my knowledge on these important and exciting topics,
Daniel invited me to his chair at the TUM and generously offered me
a position in his group. I am very thankful for the chance he gave me.
Besides being a brilliant scholar, Daniel is amenable for everyone. His
way of explaining most complicated things in simple words is a great
inspiration for me.

I started my PhD co-supervisedly with Prof. Patrick van der Smagt
whom I would like to thank a lot for the outstanding opportunity
to learn about neural networks. Dr. Justin Bayer and Dr. Christian
Osendorfer deserve my highest praise for their exemplary teaching
skills.

My first project was joint work with the computer vision group at
the University of Freiburg, headed by Prof. Thomas Brox. Together
with a few of his PhD students and other members of my group, I
worked on FlowNet, the first neural network to estimate optical flow.
In particular, I would like to mention Dr. Alexey Dosovitskiy and Dr.
Philipp Fischer who showed me so many tricks and helped me get
ramped up in the field of deep learning. Our joint projects were ex-
tremely insightful and a great personal experience. I would like to
thank Thomas, Alexey and Philipp for amazing hackathons, inspir-
ing conversations and fantastic team work.

In 2016 and 2017, I did internships at Google Brain in Zurich. My
first host at Google was Alexander Mordvintsev, the inventor of deep
dream. Alex has a fascinating intuition for neural nets and a brilliant
mind that allows him to turn all of his amazing ideas into code. Work-
ing with him was very inspiring and I am very proud of the work we
did together. The host of my second internship was Dr. Sylvain Gelly.
He and his colleagues, in particular Dr. Karol Kurach, taught me how
to write code at Google scale. The many discussions on research ques-
tions stimulated many new ideas. It was a great experience to work
at Google Brain and a substantial part of this dissertation is due to

vii

my time there.

Finally, I would like to thank the people who worked with me on
papers and research projects. Thomas Frerix and I spent so many
fruitful hours in front of white boards. Vladimir Golkov excelled in
thinking out of the box and bringing ideas back on paper in the lan-
guage of mathematics. Johannes Plapp designed experiments and im-
plemented our ideas brilliantly. There are many other lab members
who made the past three years an unforgettable experience and I
thank each and every one of them.

Special thanks go to Dr. Silvia Rohr and Leonard Latter for their
excellent suggestions to this document.

And of course, there was a life beyond my PhD studies. Thank you
Thorsten, Silvia, Sarah, Jacob, Neal and all others for the great time!

My dear parents, Ulrike and Tilman, thank you for the way I am. I
love you.

viii

P U B L I C AT I O N P R E FA C E

The contribution of this dissertation is based on the following first-
author publications:

© 2017 IEEE. Reprinted with permission of
Philip Haeusser, Alexander Mordvintsev and Daniel Cremers
Learning by Association — A Versatile Semi-Supervised Training
Method for Neural Networks
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
DOI: 10.1109/CVPR.2017.74

© 2017 IEEE. Reprinted with permission of
Philip Haeusser, Thomas Frerix, Alexander Mordvintsev and Daniel
Cremers
Associative Domain Adaptation
2017 IEEE International Conference on Computer Vision (ICCV)
DOI: 10.1109/ICCV.2017.301

Reprinted with permission of
Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout and
Daniel Cremers
Associative Deep Clustering: Training a Classification Network with
no Labels
Under review at the time of submission1

1 The paper was accepted at Proceedings of the German Conference on Pattern Recognition
(GCPR).

ix

C O N T E N T S

i introduction 1

1 neural networks and deep learning 3

1.1 A brief history of neural networks 4

1.2 Building blocks of a neural network 6

1.3 Properties of neural networks 7

1.4 Additional components 8

1.5 Optimization . 10

1.6 Chances and challenges 11

1.7 Motivation of this thesis 12

2 methods 13

2.1 Data . 13

2.2 Training frameworks . 19

2.3 Training procedure . 20

2.4 Evaluation of training results 23

ii publications 27

3 learning by association 29

4 associative domain adaptation 41

5 associative deep clustering 53

iii conclusion 65

6 discussion and conclusion 67

bibliography 71

xi

L I S T O F F I G U R E S

Figure 1.1 AlexNet . 3

Figure 1.2 McCulloch-Pitts cell 4

Figure 1.3 LeNet . 5

Figure 1.4 Convolution . 7

Figure 2.1 Augmentation examples 17

Figure 2.2 Example for a data input pipeline 18

Figure 2.3 Distributed data training 21

Figure 2.4 Distributed operations training 22

Figure 2.5 Visualizations of a neural network with the method
of Zeiler and Fergus 25

Figure 3.1 Learning by association - overview 29

Figure 4.1 Associative domain adaptation - overview . . 41

Figure 5.1 Associative deep clustering - overview 53

Figure 6.1 Multimodal associations - overview 69

L I S T O F TA B L E S

Table 2.1 Sizes of image classification data sets 13

Table 2.2 Deep learning frameworks 20

xii

Part I

I N T R O D U C T I O N

1
N E U R A L N E T W O R K S A N D D E E P L E A R N I N G

In the field of computer vision, researchers teach computers to make
sense of images and videos. For a human, it is easy to generalize
from the specific to the broad, e.g. from a single photo of a cat to
other instances of cats. Conversely, all a computer sees is an array of
numbers representing colors and intensities that seem unrelated to
the numbers representing a second photo of a cat. It remains unclear
to the machine which pixels are important and which pixels belong
together. Understanding the concept of an image or a video is a sur-
prisingly difficult task for a computer but it is the key to progress in
any vision-related technology such as robotics, autonomous driving
or biomedical engineering.

Researchers have built a plethora of models to tackle the problem
of automated understanding of images and videos. One of the most
powerful sets of models is the family of convolutional neural networks
(CNNs). These models are composed of multiple layers that learn hier-
archical representations of the raw pixel input. Due to this structure,
this field of research is also referred to as deep learning. It is possible
to train CNNs such that structures in the training data are discov-
ered automatically. From the high level representations, a wide range
of outputs can be generated: a classification prediction, a de-blurred
image or a segmentation mask.

CNNs are now applied to many tasks in computer vision and
beyond. They have revolutionized many realms of computer vision
as their predictions are often dramatically more accurate than those
of conventional (non-deep-learning) methods [35, 54, 63], more ro-
bust against noise [87] and faster by orders of magnitude [18] as, in

Figure 1.1: Illustration of the AlexNet architecture (2012) [54], the first deep
convolutional neural network to outperform all competitors on
the Imagenet image classification competition [84] by a large mar-
gin. Image taken from the original publication.

3

4 neural networks and deep learning

many cases, no optimization is necessary once the model is trained.
Although neural networks were first conceived in the 1940s [67], it
was only in the 2000s that they became computationally tractable
and hence very popular. Today, neural networks constitute an entirely
new field of research.

In this chapter, we present an introduction to these models, tricks
of the trade used today and finally, chances and challenges which
arise from deep learning approaches.

1.1 a brief history of neural networks

For a long time, the problem of recognizing patterns in images and
videos has been approached with hand-engineered feature extractors
such as the scale-invariant feature transform (SIFT) [64] or the histogram
of oriented gradients HOG [13]. The idea is to transform the raw in-
put data to representations (features) that are more useful for the ac-
tual task. On a coarse level, this might be already extracting edges in
an image by computing gradients (orientations and magnitudes). For
more high-level tasks, however, manual transformation rules require
precise domain knowledge and do not necessarily result in most effi-
cient representations [21].

The idea of deep neural networks is for the computer to learn hierar-
chical feature representations that extract important information from
a dataset and are able to generalize to unseen data. As compelling as
this sounds, this is a very under-specified problem. In some cases,
even humans struggle to agree on the properties needed to describe
and separate one object from another in pixel space.

In 1943, McCulloch and Pitts developed the first computational
model for the most basic building block of such a network: an ar-
tificial neuron [67]. They constructed an object that receives binary
input signals (cf. Figure 1.2). If the sum of the inputs exceeds a thresh-
old θ ∈ R, a 1 is output, otherwise 0. It was possible to model simple
logic operations such as "AND", "OR" or "NOT" for two binary inputs.
However, the thresholds had to be manually chosen.

Figure 1.2: McCulloch-Pitts cell. One of the first mathematical formulations
of a neuron. Many binary input signals are thresholded. The out-
put signal is binary again. Image source: [56]

In order to model learning in artificial neurons, Donald Hebb took
inspiration from the neural plasticity mechanism, the ability of neu-

1.1 a brief history of neural networks 5

rons to change their connections over time [36]. He proposed connect-
ing multiple neurons together and to multiply their connections with
weights W . The idea was that neurons that fire together should also
be connected with a non-zero weight.

In 1958, Rosenblatt proposed the perceptron [81], an algorithm for
supervised learning of binary classifiers. This can be seen as the arche-
type of a modern neural network. The model consists of only one sin-
gle neuron with adjustable weights for its inputs and a threshold that
could be trained to convergence if the input data is linearly separable.

In order to deal with more entangled input data that is not linearly
separable in the input space and that may contain more than a binary
class, Rumelhart, McClelland and Hinton [83] proposed in 1986 the
combination of multiple layers of such neurons to allow for a non-
linear transformation of the input before the classification. This setup
is sometimes referred to as a feedforward neural network, although some
people consider it to be a subclass thereof. The key factor making
such a model possible was the backpropagation algorithm which was
discovered and developed by multiple researchers in parallel in the
1960’s and 1970’s [5, 6, 20, 50, 94].

The backpropagation algorithm is a rule that allows to "propagate"
the error made by a model back from the output through the model
in order to adjust its parameters for better predictions. This will be
explained in more detail in Section 1.5

The model that is widely recognized as the first convolutional neu-
ral network is LeNet (Figure 1.3), which was invented by Yann LeCun
in 1990 [60] and further developed in the following years [61]. Le-
Cun’s work builds upon Fukushima’s neocognitron from 1979 [22]
where pooling and convolution operations were proposed for hierar-
chical, multi-layer neural networks. A convolution can be seen as the
re-use of weights connecting neurons from one layer to those of the
following. Consequently, less parameters are needed, which makes
the training of larger models possible. At the same time, convolutions
have an intuitive purpose: they filter the input for relevant informa-

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Figure 1.3: Illustration of the LeNet architecture (1998) [62], one if the first
convolutional neural networks to be used for handwritten digit
recognition. Image taken from the original publication.

6 neural networks and deep learning

tion. The mechanism of a convolution is outlined in the following
section.

In 2006, Geoffrey Hinton introduced Deep Belief Networks [38], a
class of neural networks with many layers (hence, deep) that could
be trained layer-wise. Most modern deep learning systems are based
on this seminal approach, for example AlexNet [54] (see Figure 1.1)
which outperformed existing methods on the ImageNet image recog-
nition challenge [84] by a large margin. It is named after the inventor
Alex Krizhevsky. The important original aspect of his work was the
combination of building blocks together with a training scheme that
allowed for a significant improvement over the previous (non-deep-
learning) state of the art. We discuss these and other components in
the next sections.

1.2 building blocks of a neural network

In this section we formally introduce the mathematical framework of
a neural network. Vector quantities are printed in boldface.

The goal is to find a model function fθ : Rd → Rc (parametrized
by the model parameters θ ∈ Rp) that maps input data xi to a de-
sired output yi. In the case of RGB-image classification, for example,
d would be [3 (number of channels) × width × height] and c the
number of classes. The predicted class is then the index of the vector
yi with the highest value. Note that here, θ subsumes all parame-
ters such as the previously-mentioned weights W and biases b. Here,
bias is equivalent to a negative threshold value since the bias will be
added to the weighted sum of inputs to a neuron.

In the case of feedforward networks, which we consider here, the
model function is a nested function: f(x) = f(3)

[
f(2)

(
f(1)(x)

)]
, where

each f(l) corresponds to the l-th layer of the network.
Such a layer could, for example, be formed of neurons as defined

above: f(l)(z) = g(W Tz+ b) with weights W and biases b. Each neu-
ron’s output is usually fed through a piecewise non-linear function
g(z). Examples for such non-linear activation functions are Sigmoid
(g(z) = (1+ e−z)−1) or ReLu (g(z) = max(0, z)).

We now have the most general formulation of a feedforward neural
network, where all neurons of a layer are connected with all neurons
of the following one. This setup is called fully-connected. From a com-
putational point of view, this is not very scalable since the number of
parameters grows exponentially with the number of neurons. One of
the big advantages of convolutional neural networks (CNNs) [59] is that
weights are shared among neurons in a layer, resulting in less param-
eters for the model. Convolutional neural networks have sparser con-
nections compared to fully-connected networks. That is, rather than
multiplying a layer’s output with a weight matrix of size |dl|× |dl+1|

(dl being the number of units in the l-th layer), we now choose smaller

1.3 properties of neural networks 7

Figure 1.4: Schematic of a convolution. A window about a source pixel (red)
is matrix multiplied with a convolution kernel (blue) yielding the
destination pixel value (green). In a deconvolution (Section 1.4.4),
the direction is reversed. The green pixel would be the scalar
source which is multiplied with a kernel, resulting in the values
for the destination window (red).

kernels of size k×k. Matrix multiplications now happen with kernels
shifted over the input resulting in an activation map for this kernel.
Figure 1.4 illustrates such a convolution. Besides sparse interactions
and shared parameters, convolutional networks have a third advan-
tage. Since the same kernel is re-applied multiple times at different
locations in the input, a translation invariance is introduced.

One of the first popularized convolutional neural networks was
LeNet [62] which is depicted in Figure 1.3. Figure 1.1 shows the AlexNet
architecture which won the 2012 ImageNet Large Scale Visual Recog-
nition Competition 2012.

1.3 properties of neural networks

One of the most important properties is that neural networks are
trainable by adjusting the parameters according to an optimization
schedule as will be described in Section 1.5. It is possible to discover
structures in a dataset without the need for manually engineered fea-
tures. Conversely, neural networks are able to extract a hierarchical
representation of data [97].

From this follows the capability to approximate functions as stated
in the universal approximation theorem [12, 40]: Any such network

8 neural networks and deep learning

with a linear output layer and at least one hidden layer with an acti-
vation function can approximate any Borel measurable function from
one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden
units.

ces are technically built in, such as translation invariance due to the
sliding-window nature of convolutions. Moreover, neural networks
are able to generalize so as to become invariant against scale, illumina-
tion changes, color variations or deformations [45, 54]. The system’s
adaptability to these variances highly depends on their presence in
the training data. This is one reason why training deep neural net-
works in general requires large (often annotated) datasets.

1.4 additional components

Since deep learning is a very active field of research, there are many
contributions whose aim is to make the training of neural networks
more efficient and to allow for new applications.

We focus here on some selected contributions, which will play a
major role in the rest of this work.

1.4.1 Dropout

Dropout was proposed in 2012 by Hinton et al. [39] as a form of regu-
larization. The key idea is to randomly set neural activations to zero
with probability p. This results in a different set of connections for
each pass through the network, which can be seen as a form of ensem-
ble learning. The network cannot "rely" on single connections since
they might "drop out", but has to form multiple ways to obtain a use-
ful representation for input data. Dropout is computationally cheap
and was shown to lead to more robust models that are less prone
to overfitting [87]. Recently, Gal and Ghahramani [24] showed that
dropout applied before every weight layer is mathematically equiva-
lent to an approximation to the probabilistic deep Gaussian process [14].
This made it possible to estimate uncertainty by running the same
input through the network with active dropout multiple times and
then considering the variance of the predictions.

1.4.2 Batch normalization

At each layer in a network, input data is non-linearly transformed re-
sulting in output data that potentially has different statistics than the
input. Since the parameters of the transformations θ change over time,
the statistics of the data passing through the network also change. The
output of one layer is the input to the next. Therefore, such changes
can cause this shift to grow. This change in the distribution of a func-

1.4 additional components 9

tion’s domain is called covariate shift and can hinder the convergence
of a training process. The idea of batch normalization [43] is to nor-
malize data before each layer which reduces the covariance shift. A
network equipped with batch normalization is more stable with re-
spect to parameter initialization and can be trained with a higher
learning rate.

1.4.3 Pooling

Pooling is a form of dimensionality reduction. Pooling layers can be
inserted at multiple locations in a neural network. A pooling layer
reduces its input data to a sort of summary. This summary can, for
example, be the maximum activation of a specific window in the in-
put data. This is called max-pooling [61]. The benefit of pooling that
less data is necessary to store relevant information. Depending on
the task, it is sometimes however beneficial to maintain a high level
of spatial information, for example in pixel-wise regression tasks such
as segmentation or optical flow estimation. Other tasks, like classifi-
cation, benefit from strong spatial abstraction.

Pooling is often implemented similarly to the convolution opera-
tion (Figure 1.4): For each window in the input data (red), the pooling
operation is carried out (e.g. choosing the maximum) and the result
is put in the respective location of the destination (green).

The same effect as pooling can be obtained by choosing a stride
s > 1 for the convolutional layers as shown by Springenberg et al.
[86]. The stride s is the number of pixels by which the convolution
kernel is shifted across the input.

1.4.4 Deconvolution and upconvolution

The opposite operation of a convolution is a deconvolution. Input pix-
els are convolved with a kernel. This results in a scaled copy of the
kernel, which is then copied to the output blob [29]. Figure 1.4 il-
lustrates this procedure. An alternative approach to achieve the same
result is presented by Dosovitskiy, Springenberg, and Brox [18] where
the input is first upsampled and then convolved. The latter will be re-
ferred to as upconvolution. Both deconvolution and upconvolution can
be used to upsample data, for example for pixel-wise classification or
regression tasks, e.g. Dosovitskiy et al. [19] or Mayer et al. [66]. Sprin-
genberg et al. [86] and Zeiler and Fergus [97] use deconvolutions to
visualize concepts and patterns learned by neurons in higher layers
by backprojecting activations from the latent space to input (RGB)
space.

10 neural networks and deep learning

1.5 optimization

The modules described in the previous section are the building blocks
of most neural networks. They define the model structure. Once a
model is set up, the goal is to train it for a specific task. The main
principle behind training neural networks is known as empirical risk
minimization1. This means that we want to change the parameters θ of
a model so as to optimize its performance on a defined task such as
classification. This performance is approximated with a cost function
that should be minimized by the network. Usually, a cost function is
a sum over the cost of all N single training examples xi:

J(θ) =
1

N

N∑
i

L(xi,yi,θ) (1)

A popular way to optimize a model fθ in order to minimize J is
gradient descent. It is an iterative procedure where in each step the pa-
rameters θ are changed incrementally in the direction that decreases
the cost J:

θ ← θ− η∇θJ(θ) (2)

= θ− η
1

N

N∑
i

∇θL(xi,yi,θ)

Here, η is the learning rate. Since N might be a very large number,
it is usually more practical to estimate the true gradient by computing
the derivatives over a mini-batch of size N ′, drawn uniformly from
the N training examples [4]. This procedure is also referred to as
stochastic gradient descent since using only a mini-batch of sizeN ′ � N

introduces stochasticity.
Depending on the form of the cost function, it is possible to for-

mulate fully-supervised, semi-supervised and unsupervised training objec-
tives where all, some or no training examples xi have a corresponding
target value yi, respectively. Throughout this work, we will examine
strategies for all three cases.

Once the cost function is set up, gradient descent (Equation 2) is
used to update the weights in order to minimize the cost. Naïvely,
one would compute the gradient for each component of θ individu-
ally. This is computationally intractable. For this reason, it has been
for a long time impossible to successfully train larger models until
an efficient training scheme was discovered: backpropagation (cf. Sec-
tion 1.1). The idea behind backpropagation is to compute the gradient
layer-wise, beginning at the last layer before the cost function. Then,

1 or structural risk minimization when regularization is used

1.6 chances and challenges 11

by the application of the chain rule, the gradient is computed for the
previous layers.

If the mini-batch size N ′ is too small to capture enough statistically
relevant structure of the entire dataset, the optimization will fail since
the gradients will contain too much noise. Even with larger N ′, the
"journey" through parameter space during optimization can become
erratic. A useful method to avoid too many jumps in parameter space
is to introduce a momentum to the gradient [70]. There is a physical in-
tuition behind this formulation. Imagine the cost function landscape
as a physical landscape with hills and valleys. The goal is to get to the
lowest point. Random initialization of the parameters θ is equivalent
to placing a particle at a random spot on this landscape. Gradient
descent now means letting the particle move downhill, in the oppo-
site direction of the gradient ∇θJ(θ). In a physical world, the particle
would gain momentum if the gradient is consistent for a few subse-
quent steps (i.e, the particle is moving down on one side of a large
hill). The idea is to introduce now a variable v that can be interpreted
as the velocity vector of the particle. It is initialized with zero and
gets updated as illustrated in the following formulation:

v ← µv + η∇θJ(θ) (3)

θ ← θ− v (4)

The momentum parameter µ is usually chosen in the interval [0.5, 0.99]
([49]). Technically, µ should rather be called friction since the velocity
vector is effectively damped such that the particle actually comes to
rest in the bottom of a valley while at the same time being less prone
to get stuck on a saddle point. There exist more sophisticated formula-
tions of momentum such as Nesterov momentum, where the correction
to a relatively big jump according to v is anticipated.

Also the learning rate η is a hyper parameter requiring manual
choice. Recent variants of the gradient descent optimization scheme
have attempted to automate the selection of these optimization hyper
parameters and to cope with noisy gradients. One of the most popu-
lar optimizers is Adam [52] which adaptively estimates learning rates
with a concept similar to momentum.

1.6 chances and challenges

Deep neural networks have dramatically improved the state of the art
in many fields of research by discovering hierarchical representations
of data. In the past decade, they have been successfully applied to
tasks like detection [27], segmentation [63] and object recognition [17].
Beyond these classical computer vision problems, new applications
were made possible such as artistic style transfer [25, 82] or image-to-
image translation [44, 98].

12 neural networks and deep learning

With highly efficient implementations for graphics processing units
(GPUs) becoming more and more available, the duration of inference
can often be reduced to a fraction of a second, making many applica-
tions real-time capable.

One of the main criticisms has been that simple gradient descent
can get stuck in poor local minima. However, it was shown that neural
networks nearly always reach solutions of very similar quality [9, 15].
A more serious issue is the saddle point problem [15]: Since the gradient
near saddle points is almost zero, naïve gradient descent optimizers
fail to escape these areas in reasonable time. There are many more
saddle points than local minima. It is subject of current research to
develop strategies for more efficient saddle point avoidance [47].

Another question has been the reliability of neural networks. As
shown in Nguyen, Yosinski, and Clune [73], for example, minimal
perturbation of images can lead to dramatic changes in a model’s
predictions. It is, therefore, the subject of current research to quantify
a model’s uncertainty and to devise ways to make them more robust
against noise or adversarial domain shifts [23, 73].

1.7 motivation of this thesis

As long as there is enough training data to sufficiently represent the
underlying distribution, neural networks are the model of choice for
any machine learning task. Obtaining training data, however, can be
a very costly process, in particular if data has to be manually anno-
tated. Since unlabeled data is often abundantly available, the future
of deep learning highly depends on new methods to leverage unla-
beled data or to reduce the amount of labeled data for training. This
thesis presents a method to tackle this problem. We introduce asso-
ciative learning, an approach that facilitates embedding learning by
associating labeled and unlabeled data in embedding space.

2
M E T H O D S

2.1 data

Deep learning has been extremely data-driven. In conventional se-
tups, deep neural networks are trained on vast amounts of data in
order to learn patterns and rules that allow for the model to be ap-
plied to new data. For image classification, for example, a training
set is required that usually consists of image-label pairs. The more
classes there are, the more training examples are needed. Addition-
ally, more variance within the classes (intra class variance) necessitates
more training data.

Data set name # labeled training exampes # classes

MNIST [57] 60k 10

ILSVRC2012* [84] 1.2M 1,000

CIFAR-10 [53] 50k 10

CIFAR-100 [53] 50k 100

SVHN [71] 73k 10

Table 2.1: Examples for image classification data sets with their sizes
(rounded) and the number of classes. *) Task 1. Sometimes briefly
referred to as the Imagenet data set.

It is generally desirable that the training data set for a given deep
learning task is balanced. That is, each class should contain more or
less the same number of examples [8, 69, 91]. The reason for this is
simple: If the cost function penalizes wrong classification estimates
and 90% of the training examples are from one particular class, the
model will just learn this class prior and always predict that class,
hence achieving a 90% accuracy on the training set without having
learned anything about the actual content of the data and the under-
lying distribution.

If the data set is imbalanced, one strategy is to sample training ex-
amples by their class membership in order to ensure that each class
is represented equally during training. This method was employed in
the works of this thesis for the labeled parts of the data sets [31, 32].
The sampling mechanism is described in detail in Chapter 3. For unla-
beled data, this procedure is obviously not applicable. An alternative
approach for this case is to assign weak labels to unlabeled examples,
e.g. based on the current model estimates [41, 76, 95].

13

14 methods

A machine learning model works best when it is applied to or
tested on data that has the same distribution as the data that it was
trained with [69]. If a neural network is only presented with black cats
at training time, it might fail to correctly classify brown cats at testing
time. The color distribution of training examples is only one of many
aspects to be considered. Others are orientation of objects, deformations
or light conditions. If these variations are not sufficiently present in the
training data set, the model might not generalize well. In other words,
we assume that there is a true data distribution which we do not have
access to but from which we can draw a small subset: the training set.

Depending on what kind of variations are to be expected in the
true data distribution, there are various ways to cope with the prob-
lem that the distribution of the training data set might not be suf-
ficiently representative. One of the most common strategies is data
augmentation which will be discussed below.

A discrepancy can not only arise from the fact that the sample size
used for training is not large enough, as described above, but also
from a situation where training data comes from a different distri-
bution than the data processed at test time. In this case, a domain
adaptation method can be useful to apply the model trained on one
domain or distribution to another one. This is detailed in Chapter 4

where a deep-learning strategy for domain adaptation is presented.
Such discrepancies between data sets can be measured in different

ways. One family of methods looks at the distance between proba-
bility distributions. The Kullback–Leibler (KL) divergence DKL(P||Q)

between the distributions P and Q is such a quantity [69]:

DKL(P||Q) = −
∑
i

P(i) log
Q(i)

P(i)
(5)

The question is, however, how to turn a data set into an object that
can be interpreted as a (probability) distribution. Neural networks
offer an intuitive way for this. They have been shown to produce
useful embeddings for data [74]. The activations of the last few layers
for example can be used as the embeddings of an input image. This
way, a high-dimensional image can be mapped to a low-dimensional
vector. Embeddings of a data set obtained like this can be normalized
so as to fulfill the properties of a probability distribution and then be
used in a metric such as the KL divergence.

Another measure is the maximum mean discrepancy (MMD) [30],
defined as the distance between the mean embeddings of two proba-
bility distributions in a reproducing kernel Hilbert space Hk with a
characteristic kernel k. The detailed formulation is described in Chap-
ter 4 where this metric is used to evaluate a novel domain adaptation
approached proposed within the scope of this thesis.

2.1 data 15

2.1.1 Representation

In computer vision, the most common data modality is the image.
Images are usually represented as objects in RH×W×3 where H and
W are the height and width and 3 is the number of color channels, e.g.
red, green and blue [46]. Image sequences (videos) are represented
analogously, with an additional time axis [72].

Data sets come in various formats. Some are a zipped directory
of JPEG files [84], some are stored as one single binary file [57] and
others are already prepared in a database format such as HDF5 [92].
Here, a trade-off has to be made between convenience and perfor-
mance. Small datasets such as MNIST can be easily loaded into mem-
ory all at once. Other datasets are too large and need to be accessed
in a sequential manner. In particular in the latter case, it is desirable
to have the data stored in a format that minimizes the time required
to make the information accessible for the learning module. Loading
and decompressing single JPEG files, for example, is computationally
more costly than preparing a binary database that may take up more
space on the disk but can serve data faster in a format that does not
need to be decompressed.

2.1.2 Preparation

In deep learning, we usually deal with artificial neurons that have
a non-linearity around 0 (Section 1.2). Therefore, it makes sense to
prepare the data such that the pixel values are centered at 0 and have
approximately unit variance. This procedure is called normalization
[69] and can be achieved in various ways.

A simple approach is to normalize data according to the expected
range. For example, images that are represented with pixel values in
the interval [0, 255] can be normalized like so: x ′ = (x− 127.5)/127.5.
The new pixel range is now [−1, 1]. However, depending on the dis-
tribution of pixel brightnesses and the precision of the data type, one
can lose information here. If most of the pixel values are more or less
distributed around the middle value 127.5, this normalization tech-
nique has the effect that the largest portion of pixels now lies in an
interval [−ε1, ε2] where ε1,2 � 1.

A more sophisticated approach is to use the statistics of the data
set in order to normalize the data. The normalization rule could then
be x ′ = (x− E[x])/var[x] where E is the expectation value and var the
variance of the dataset. Both statistical moments can be taken over all
pixels of all channels or taken per channel or even per pixel location
(i.e. an average image is computed). This approach is also referred to
as standardization [51]. The transformed data will have zero mean and
unit variance.

16 methods

2.1.3 Augmentation

In order to model the variations in a data set, various augmentation
schemes can be applied to the input images [28]. Some examples are
given in Figure 2.1. An augmentation operation usually takes one or
more parameters, e.g. the angle for a rotation. These parameters can
be randomly sampled for each training iteration and technically allow
for an infinite number of unique training examples – at least in terms
of pixel values. Of course, the semantic content of an image and its
slightly rotated copy is quite the same.

Most augmentation methods fall in the following categories.

Affine transformations

The general idea of affine transformations is to model the fact that ob-
jects in the real world can be captured from different perspectives
and/or have different deformations and sizes [68]. A computationally
relatively efficient way to do this is by applying an affine transforma-
tion F(x) = Ax + B with F : R2 → R2. The pixel intensity values
located at position x in an input image are mapped to new coordi-
nates in an output image. A is a matrix in R2×2 and B is a vector in
R2. This allows for the application of translation, rotation, isotropic
scaling and shearing in one step.

Chromatic transformations

When an image is captured, optical phenomena can alter the appear-
ance greatly although the object has not changed. In order to model
these variances, one can algorithmically change the image brightness,
hue and saturation. It is important to carefully choose the ranges from
which parameters for these transformations are sampled. Distortions
that are too strong can cause clipping, where pixels take values larger
or greater than the allowed values and hence local contrast is not
preserved and image information is lost.

Other transformations

To model defocused images or the effects of moving objects, images
can be blurred, for example by convolving with a Gaussian kernel.
Often, images are additionally horizontally flipped (mirrored), which,
of course, only makes sense if the result is still a valid training ex-
ample. In the case of written characters for instance, this is usually
not the case. The more one knows about the data generation process,
the better one can model variances. This can be the simple addition
of noise to random pixels or more sophisticated rendering of virtual
fog.

2.1 data 17

Translation

Rotation

Scaling

Shearing

Brightness

Hue

Saturation

Blurring

Flipping

Noise

Fog

Figure 2.1: Examples for different types of data augmentation. Left: The
"Lena" image [79], middle and right: examples from Imagenet
and SVHN, respectively

18 methods

2.1.4 Ingestion

At some point in the training process, data has to be loaded from the
hard disk. Regardless of the format in which the data is stored, it is
often useful to carefully design data input pipelines in order to avoid
bottlenecks caused by slow data loading processes. Figure 2.2 shows
an example what a typical input pipeline setup could look like.

It is common practice to use prefetching threads [16], processes that
continuously load data from the disk even if the training program
is not requiring new data at the moment. The training examples are
then cached in a queue from which they can be loaded quickly into
the main program without the need for it to pause until data is loaded
from disk.

Since it is usually desirable to shuffle the training data set, it is
useful to set up the prefetching module so that data is randomly
loaded already. For example, if the data set is represented as a list
of paths to image files, this list can be loaded entirely into memory,
shuffled and then the respective image files are continuously loaded
into the input queue.

Most recent deep learning frameworks have existing data input
pipeline modules for data sets represented as lists of paths or databases.
Another task these modules usually take care of is batching. Data
is then loaded into a big queue and popped as batches of a given
size. The dimensionality of a training batch is usually N×H×W×C
where N is the batch size, H and W are the image height and width and
C is the number of channels.

Figure 2.2: Example for a data input pipeline. White blocks stand for data,
either on disk or in queues in memory. Yellow arrows denote op-
erations. Training data is stored on disk in the form of multiple
single files or as one coherent database that can be accessed ran-
domly. A reader selects single examples, potentially in a shuffled
order, and loads the data into the memory. The following mod-
ule decodes the data if necessary, i.e. transforms a list of bytes to
an image tensor. At this point, further preprocessing steps can be
taken such as augmentation or whitening. The preprocessed ex-
amples are now kept in a queue from which batches are formed
to be sent to the actual training process.

2.2 training frameworks 19

2.1.5 GPU usage

Employing graphics processing units (GPUs) has demonstrated tremen-
dous gains in processing speed due to their optimization for matrix
operations compared to pure CPU implementations [53]. Most cur-
rent deep learning frameworks offer GPU implementations of the op-
erations which form the building blocks of a neural network. Cus-
tom operations have to be implemented individually by the user. The
predominant programming language is CUDA which can be used
to program GPUs from NVIDIA. Recently, also other chip manufac-
turers are entering the deep learning hardware market [26]. Google
announced their own tensor processing unit (TPU) hardware [48].

When creating a new model setup, it is recommended to do the
preprocessing in a separate thread on the CPU and to use the GPU
exclusively for training [90]. The reason for this is that preprocessing
usually takes less computational resources and can be done in parallel
to the training. Data is then ready to be fetched as one mini-batch by
the actual training routine. This can save time.

2.2 training frameworks

Today, there is a plethora of different frameworks for deep learning.
One of the earlies that emerged was caffe [46]. Here, a neural network
is described as a computational graph which is defined in a text file.
Each layer and its parameters have to be defined before execution.
Also a solver describing the optimization parameters is defined in
the same way. The main training process uses both configuration files
to instantiate the operations and to run the optimization. Operations
can be implemented in C++ (to be executed on the CPU) or in CUDA
(for execution on the GPU).

One of the drawbacks of this early framework was that the user
could not communicate with the training process while it was run-
ning. If one wanted to change the learning rate, for example, it was
necessary to kill the process, change the configuration file and restart
it again. This is not very elegant nor efficient since only the last snap-
shot of the model parameters is saved, hence a certain number of
iterations is lost. Moreover, reinstantiating the model takes some ex-
tra time.

As a part of this work, we adapted the caffe code to alleviate this
problem. Changes were made such that the solver process monitors
updates in the configuration file while it is running and adapts its
parameters accordingly on the fly. This improvement was used in
Dosovitskiy et al. [19] and Mayer et al. [66] to facilitate training of
state-of-the-art networks.

One more improvement was made to address another shortcoming
of the caffe training framework: the insufficient abilities for the user

20 methods

to monitor training progress beyond values of cost function and test
accuracy values. To this end, we designed the Vizmaster, a visualiza-
tion tool for real-time analysis of loss gradients in the different lay-
ers and current parameters (convolution kernels). A key insight from
this was that it is useful to react when the gradients in specific layers
go towards zero or infinity (vanishing ir exploding gradients). Moni-
toring the aforementioned quantities allows to notice this behavior
sooner than by just watching the overall loss. One strategy that helps
in many cases of vanishing or exploding gradients is to reduce the
learning rate, to decrease the number of layers or to employ batch
normalization.

The other major framework that was used in the scope of this thesis
is TensorFlow [1]. This framework was developed at Google and open-
sourced in 2016. Like in caffe, an acyclic graph of operations is created
to carry out the computations in a neural network. One key difference
to caffe is that the graph is created programatically and can be altered
at runtime. TensorFlow also comes with a visualization suite called
TensorBoard. Specific quantites in the graph can be configured to be
logged for later visualization in TensorBoard.

Both frameworks have an active open-source community and are
continuously improved. This short summary is a snapshot of the time
at which the code was checked out. More improvements are to be
expected.

For completeness, we would like to present an overview of some
of the widely used deep learning frameworks in Table 2.2

Name Initial release Developed at

Torch [11] 2002 IDIAP

Theano [2] 2010 Université de Montréal

Caffe [46] 2014 UC Berkeley

TensorFlow [1] 2016 Google

PyTorch [75] 2016 Facebook, Uber

Caffe2 [80] 2017 Facebook

Table 2.2: Non-comprehensive overview of deep learning frameworks that
are currently widely used.

2.3 training procedure

The goal of every training is to apply an optimization rule such as
Adam in order to minimize the cost function (Section 1.5). At the
same time, a multitude of hyper parameters have to be chosen: the
network architecture (e.g. number and type of layers and their param-

2.3 training procedure 21

eters such as convolution kernel sizes), the learning rate, the type of
optimizer and its parameters or model-specific settings.

itting. One usually tries many different sets of hyper parameters
at the same time in order to find the best one [10]. During training,
it is then interesting to plot the current loss and the performance
on a validation set. It is also useful to visualize the values of the
parameters θ and their gradients in order to find out whether a layer’s
gradients are vanishing or exploding. This can be done automatically
or with human interaction as described above.

In the works presented in this thesis, we did a randomized hyper
parameter search. We define ranges from which to sample each hyper
parameter. They are either linearly spaced (e.g. kernel size) or expo-
nentially (e.g. learning rate). One can now discretize these ranges and
do the cross product of all ranges in order to obtain all possible sets
of hyper parameters. Since this number is usually very large, a poten-
tially better approach is to randomly sample each parameter individ-
ually. This way, more volume in the hyper parameter space is looked
at, compared to a cross-product based grid search with less values for
each hyper parameter. On the other hand, there is no guarantee that
a specific combination of hyper parameters is tested.

2.3.1 Distributed training

The size of available memory, e.g. on the GPU, is one hard limitation.
It limits the size of network architectures and the size of mini-batches.
More complex tasks often require larger architectures and generally,
a larger mini-batch size yields a less noisy estimate of the true gra-
dient. It is therefore desirable to make as much memory available

Figure 2.3: Training with distributed data. The same architecture is repli-
cated on multiple GPUs.

22 methods

as possible. This can be achieved by connecting multiple GPUs and
distributing the training process. There are at least two approaches:
distributing data or distributing operations [16].

Distributing data

In this approach, the same network is replicated multiple times on
multiple GPUs as shown in Figure 2.3. Each replica receives an in-
dividual mini-batch and computes the gradients for the parameter
update. These gradients are then sent to a parameter server that aver-
ages all incoming gradients and broadcasts the update to be applied
in each replica. If the bottleneck is that mini-batches did not fit on the
GPU, this is a useful approach as the effective mini-batch size scales
with the number of replicas. As the mini-batch occupies less mem-
ory, the model architecture can be larger. On the other hand, one has
to introduce additional infrastructure to communicate the gradients
between the various replicas. The network bandwidth could be one
limitation. Another problem to be aware of is that the learning rate
has to be adapted when this type of distributed training is employed.
A rule of thumb is to divide the learning rate that lead to convergence
on a single GPU by the number of replicas.

Distributing operations

The alternative approach to distribute training is to split the graph
across multiple GPUs. This concept is illustrated in Figure 2.4. The
first few layers are computed on GPU1, the following layers on GPU2

et cetera. The same mini-bath is then passed from one GPU to the
next. The gradients are back-propagated accordingly and the param-
eter updates take place on the respective GPUs. While this approach
is theoretically very straight-forward, the user still has to make the

Figure 2.4: Training with distributed operations. The architecture is split
across multiple GPUs.

2.4 evaluation of training results 23

decision where to place which operations. In a sophisticated setup,
the (processed) mini-batches are passed from queues to queues so
that each GPU is kept busy. Otherwise, only one GPU is being used
while the others are waiting for new data.

2.4 evaluation of training results

Quantitative analysis

The evaluation of a trained model highly depends on the task. For
classification, for example, the average accuracy on a test set is usu-
ally reported. The test set contains images that were not used for
training. It is good practice to entirely hold out this set until the end
in order not to leak information from the test set at training time
[7]. If, for example, one keeps evaluating a model on a test set and
changes hyper-parameters until the test error improves, one has im-
plicitly used the test set at training time.

The average accuracy [53] is usually computed as the expectation
value Ex∼DT

[1(f(x) == y)] where a test example x from the test set
DT with ground truth label y is compared against the network’s pre-
diction f(x). The indicator function 1 is 1 if the argument is true and
0 otherwise.

For the problem of classification, it may also make sense to report
the confusion matrix [88], which gives more detailed insights into the
performance of the machine learning model on the respective classes.
An element of a confusion matrix Mij tells how often an example
from class i was classified as class j or vice versa.

Other metrics such as ROC curves or precision-recall are rather
rarely reported in recent deep learning papers.

Other tasks may have other metrics. For example, in optical flow
estimation, the average end-point error is reported [19]. This is the
average over the pixel-wise L1 distance between the prediction and
the ground truth for non-occluded pixels.

In order to prove the efficiency of a newly proposed model empiri-
cally, researchers usually report these quantitative results on different
data sets that are made for the same task. A model that performs well
on structurally different data sets can be assumed to generalize well.
The other extreme would be a model that is specifically designed for
one data set and that fails when it is applied to another data set with
a different data distribution.

Qualitative analysis

Qualitative analyses are as various as human creativity. Here are just
a few examples which are partially also employed in the scope of this
work.

24 methods

Visualizations of the network parameters

One way to argue that a neural network has learned useful convo-
lution kernels was proposed by Zeiler and Fergus [97]. They visual-
ize features using a multi-layered deconvolutional network to project
the feature activations back to the input pixel space. An example is
shown in Figure 2.5. This works well for some layers and less for
others. It can be useful to understand which concepts in the dataset
the network has learned, e.g. that there is a prevalence of dogs in the
Imagenet dataset. The hierarchical nature of deep neural networks
become evident through visualizations like this since. Kernels from
lower layers are shown to be activated by more rudimentary patterns
than kernels from higher layers. However, when a network can not
be visualized well with this method, it is impossible to trace back
the problem so as to optimize training or to draw conclusions on the
network’s performance on a specific task.

Visualizations of nearest neighbors

Whenever a neural network is trained, it is possible to identify a spe-
cific layer’s activations with the embedding of the input. Often, this is
done with the last or second to last layer as they typically have the
smallest dimensionality, at least in classification networks. In this em-
bedding space one can look for embeddings of other inputs and select
the nearest neighbors, e.g. by computing the pairwise Euclidean dis-
tances. This method allows to explore patterns that a network found
in the data. Manual inspection can reveal structure of the data set
which was used to optimize the cost function. For example, if the
task is classification, one would expect nearest neighbors to belong to
the same class. If there are wrongly classified examples, it might be
possible to figure out which shapes confused the network and, for ex-
ample, think of data augmentation strategies that resolve the problem.
Examples for this method are given in Section 4.2 of Chapter 3.

t-SNE embeddings

The notion of embeddings described in the previous paragraph can
be visualized directly with dimensionality reduction methods such
as t-SNE [65]. The key idea is to project high-dimensional vectors
in 2 or 3 dimensions with the constraint that pairwise distances in
the high-dimensional space should be preserved relatively in the low-
dimensional embedding. A reasonable sample of the data set should
be used but it is not necessary (nor efficient) to use the entire set for
this visualization technique. t-SNE is a useful method to visualize the
structure of the embedding space. However, it requires a few hyper-
parameters to be set such as the perplexity. Depending on the choice
of these parameters, completely different projections can be obtained.
Therefore, the user has to carefully analyze the plots and tune the hy-

2.4 evaluation of training results 25

Figure 2.5: Visualizations of a neural network with the method of Zeiler and
Fergus Zeiler and Fergus [97]. Shown are back-projected activa-
tions of kernels of layers 1 (top left), 2 (top right) and 4 (bottom)
of AlexNet [54] after training on Imagenet.

26 methods

perparameters before jumping to interpretations [93]. Examples for
t-SNE plots are given in Section 3.4 of Chapter 4.

Part II

P U B L I C AT I O N S

The task of classification is an example for the versatility
of deep neural networks. These powerful models learn to
generalize to a multitude of varieties present in real im-
ages, such as different perspectives, light conditions, de-
formations, color, scale and position to name just a few. In
the past, a big challenge has been the acquisition of appro-
priate training data that sufficiently expresses these vari-
ances. Frequently, these datasets become very large. The
imagenet dataset [84] contains 1.2 million training images
from 1,000 classes. These images had to be manually la-
beled which is a costly task. In many cases, human an-
notation is intractable. It is therefore desirable to reduce
the number of labeled examples dramatically. This part
presents a novel approach to solve this problem: learning
by association. The key idea is to "associate" data in embed-
ding space. The implementation is described in detail in
the first chapter along with the application of associative
learning to the task of semi-supervised training, where
only a small subset of the full dataset is labeled. Then, we
apply this approach to domain adaptation. Here, knowl-
edge about labels from one image domain is used to in-
fer labels on a second domain. The following chapter in-
troduces a training scheme where associative learning is
used to train a neural network without any labels. In the
last chapter, associations are made between two different
modalities: images and text.

3
L E A R N I N G B Y A S S O C I AT I O N

This chapter is based on Haeusser, Mordvintsev, and Cremers [31]. In
many real-world scenarios, labeled data for a specific machine learn-
ing task is costly to obtain. Semi-supervised training methods make
use of abundantly available unlabeled data and a smaller number
of labeled examples. We propose associative learning, a new frame-
work for semi-supervised training of deep neural networks inspired
by learning in humans. "Associations" are made from embeddings of
labeled samples to those of unlabeled ones and back. The optimiza-
tion schedule encourages correct association cycles that end up at
the same class from which the association was started and penalizes
wrong associations ending at a different class. The implementation
is easy to use and can be added to any existing end-to-end training
setup. We demonstrate the capabilities of learning by association on
several datasets and show that it can improve performance on classi-
fication tasks tremendously by making use of additionally available
unlabeled data. In particular, for cases with few labeled data, our
training scheme outperforms the current state of the art on SVHN.

Figure 3.1: Learning by association - overview

contributions of the author

The author of this dissertation was fully in charge of

• planning and carrying out the experiments

• evaluating the experiments

• writing the paper

29

Learning by Association
A versatile semi-supervised training method for neural networks

Philip Haeusser1,2 Alexander Mordvintsev2 Daniel Cremers1

1Dept. of Informatics, TU Munich
{haeusser, cremers}@in.tum.de

2Google, Inc.
moralex@google.com

Abstract

In many real-world scenarios, labeled data for a specific
machine learning task is costly to obtain. Semi-supervised
training methods make use of abundantly available unla-
beled data and a smaller number of labeled examples. We
propose a new framework for semi-supervised training of
deep neural networks inspired by learning in humans. “As-
sociations” are made from embeddings of labeled sam-
ples to those of unlabeled ones and back. The optimiza-
tion schedule encourages correct association cycles that
end up at the same class from which the association was
started and penalizes wrong associations ending at a dif-
ferent class. The implementation is easy to use and can be
added to any existing end-to-end training setup. We demon-
strate the capabilities of learning by association on several
data sets and show that it can improve performance on clas-
sification tasks tremendously by making use of additionally
available unlabeled data. In particular, for cases with few
labeled data, our training scheme outperforms the current
state of the art on SVHN.

1. Introduction
A child is able to learn new concepts quickly and without

the need for millions examples that are pointed out individ-
ually. Once a child has seen one dog, she or he will be able
to recognize other dogs and becomes better at recognition
with subsequent exposure to more variety.

In terms of training computers to perform similar tasks,
deep neural networks have demonstrated superior perfor-
mance among machine learning models ([20, 18, 10]).
However, these networks have been trained dramatically
differently from a learning child, requiring labels for ev-
ery training example, following a purely supervised training
scheme. Neural networks are defined by huge amounts of
parameters to be optimized. Therefore, a plethora of labeled
training data is required, which might be costly and time

Figure 1. Learning by association. A network (green) is trained to
produce embeddings (blue) that have high similarities if belonging
to the same class. A differentiable association cycle (red) from
embeddings of labeled (A) to unlabeled (B) data and back is used
to evaluate the association.

consuming to obtain. It is desirable to train machine learn-
ing models without labels (unsupervisedly) or with only
some fraction of the data labeled (semi-supervisedly).

Recently, efforts have been made to train neural net-
works in an unsupervised or semi-supervised manner yield-
ing promising results. However, most of these methods
require a trick to generate training data, such as sampling
patches from an image for context prediction [6] or gen-
erating surrogate classes [7, 22, 13]. In other cases, semi-
supervised training schemes require non trivial additional
architectures such as generative adversarial networks [9] or
a decoder part [39].

We propose a novel training method that follows an intu-
itive approach: learning by association (Figure 1). We feed
a batch of labeled and a batch of unlabeled data through a
network, producing embeddings for both batches. Then, an
imaginary walker is sent from samples in the labeled batch
to samples in the unlabeled batch. The transition follows a
probability distribution obtained from the similarity of the
respective embeddings which we refer to as an association.
In order to evaluate whether the association makes sense, a
second step is taken back to the labeled batch - again guided
by the similarity between the embeddings. It is now easy to

2017 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/17 $31.00 © 2017 IEEE

DOI 10.1109/CVPR.2017.74

626

30

check if the cycle ended at the same class from which it was
started. We want to maximize the probability of consistent
cycles, i.e., walks that return to the same class. Hence, the
network is trained to produce embeddings that capture the
essence of the different classes, leveraging unlabeled data.
In addition, a classification loss can be specified, encourag-
ing embeddings to generalize to the actual target task.

The association operations are fully differentiable, fa-
cilitating end-to-end training of arbitrary network architec-
tures. Any existing classification network can be extended
by our customized loss function.

In summary, our key contributions are:

• A novel yet simple training method that allows for
semi-supervised end-to-end training of arbitrary net-
work architectures. We name the method “associative
learning”.

• An open-source TensorFlow implementation1 of our
method that can be used to train arbitrary network ar-
chitectures.

• Extensive experiments demonstrating that the pro-
posed method improves performance by up to 64%
compared to the purely supervised case.

• Competitive results on MNIST and SVHN, surpassing
state of the art for the latter when only a few labeled
samples are available.

2. Related Work
The challenge of harnessing unlabeled data for training

of neural networks has been tackled using a variety of differ-
ent methods. Although this work follows a semi-supervised
approach, it is in its motivation also related to purely un-
supervised methods. A third category of related work is
constituted by generative approaches.

2.1. Semi-supervised training

The semi-supervised training paradigm has not been
among the most popular methods for neural networks in the
past. It has been successfully applied to SVMs [14] where
unlabeled samples serve as additional regularizers in that
decision boundaries are required to have a broad margin
also to unlabeled samples.

One training scheme applicable to neural nets is to boot-
strap the model with additional labeled data obtained from
the model’s own predictions. [22] introduce pseudo-labels
for unlabeled samples which are simply the class with the
maximum predicted probability. Labeled and unlabeled
samples are then trained on simultaneously. In combination
with a denoising auto-encoder and dropout, this approach
yields competitive results on MNIST.

1https://git.io/vyzrl

Other methods add an auto-encoder part to an existing
network with the goal of enforcing efficient representations
([27] [37] [39]).

Recently, [30] introduced a regularization term that uses
unlabeled data to push decision boundaries of neural net-
works to less dense areas of decision space and enforces
mutual exclusivity of classes in a classification task. When
combined with a cost function that enforces invariance to
random transformations as in [31], state-of-the-art results
on various classification tasks can be obtained.

2.2. Purely unsupervised training

Unsupervised training is obviously more general than
semi-supervised approaches. It is, however, important to
differentiate the exact purpose. While semi-supervised
training allows for a certain degree of guidance as to what
the network learns, the usefulness of unsupervised methods
highly depends on the design of an appropriate cost func-
tion and balanced data sets. For exploratory purposes, it
might be desirable that representations become more fine
grained for different suptypes of one class in the data set.
Conversely, if the ultimate goal is classification, invariance
to this very phenomenon might be more preferable.

[12] propose to use Restricted Boltzmann Machines
([33]) to pre-train a network layer-wise with unlabeled data
in an auto-encoder fashion.

[11][19][39] build a neural network upon an auto-
encoder that acts as a regularizer and encourages represen-
tations that capture the essence of the input.

A whole new category of unsupervised training is to gen-
erate surrogate labels from data. [13] employ clustering
methods that produce weak labels.

[7] generate surrogate classes from transformed samples
from the data set. These transformations have hand-tuned
parameters making it non-trivial to ensure they are capable
of representing the variations in an arbitrary data set.

In the work of [6], context prediction is used as a sur-
rogate task. The objective for the network is to predict the
relative position of two randomly sampled patches of an im-
age. The size of the patches needs to be manually tuned
such that parts of objects in the image are not over- or un-
dersampled.

[34] employ a multi-layer LSTM for unsupervised image
sequence prediction/reconstruction, leveraging the temporal
dimension of videos as the context for individual frames.

2.3. Generative Adversarial Nets (GANs)

The introduction of generative adversarial nets (GANs)
[9] enabled a new discipline in unsupervised training. A
generator network (G) and a discriminator network (D) are
trained jointly where the G tries to generate images that
look as if drawn from an unlabeled data set, whereas D is
supposed to identify the difference between real samples

627

31

and generated ones. Apart from providing compelling vi-
sual results, these networks have been shown to learn useful
hierarchical representations [26].

[32] presents improvements in designing and training
GANs, in particular, these authors achieve state-of-the-
art results in semi-supervised classification on MNIST,
CIFAR-10 and SVHN.

3. Learning by association
A general assumption behind our work is that good em-

beddings will have a high similarity if they belong to the
same class. We want to optimize the parameters of a CNN
in order to produce good embeddings, making use of both
labeled and unlabeled data. A batch of labeled and unla-
beled images (Aimg and Bimg, respectively) is fed through
the CNN, resulting in embedding vectors (A and B). We
then imagine a walker going from A to B according to the
mutual similarities, and back. If the walker ended up at the
same class as he started from, the walk is correct. The gen-
eral scheme is depicted in Figure 1.

3.1. Mathematical formulation

The goal is to maximize the probability for correct walks
from A to B and back to A, ending up at the same class. A
and B are matrices whose rows index the samples in the
batches. Let’s define the similarity between embeddings
A and B as

Mij
..= Ai ·Bj (1)

Note that the dot product could in general be replaced by
any other similarity metric such as Euclidean distance. In
our experiments, the dot product worked best in terms of
convergence. Now, we transform these similarities into
transition probabilities from A to B by softmaxing M
over columns:

P ab
ij = P (Bj |Ai) ..=(softmaxcols(M))ij (2)

=exp(Mij)/
∑

j′

exp(Mij′)

Conversely, we get the transition probabilities in the other
direction, P ba, by replacing M with MT . We can now de-
fine the round trip probability of starting at Ai and ending
up at Aj :

P aba
ij

..=(P abP ba)ij (3)

=
∑

k

P ab
ik P

ba
kj

Finally, the probability for correct walks becomes

P (correct walk) =
1

|A|
∑

i∼j

P aba
ij (4)

where i ∼ j ⇔ class(Ai) = class(Aj).
We define multiple losses that encourage intuitive goals.

These losses can be combined, as discussed in Section 4.

Ltotal = Lwalker + Lvisit + Lclassification (5)

Walker loss. The goal of our association cycles is con-
sistency. A walk is consistent when it ends at a sample with
the same class as the starting sample. This loss penalizes
incorrect walks and encourages a uniform probability dis-
tribution of walks to the correct class. The uniform distri-
bution models the idea that it is permitted to end the walk
at a different sample than the starting one, as long as both
belong to the same class. The walker loss is defined as the
cross-entropy H between the uniform target distribution of
correct round-trips T and the round-trip probabilities P aba.

Lwalker
..=H(T, P aba) (6)

with the uniform target distribution

Tij
..=

{
1/#class(Ai) class(Ai) = class(Aj)
0 else

(7)

where#class(Ai) is the number of occurrences of class(Ai)
in A.

Visit loss. There might be samples in the unlabeled batch
that are difficult, such as a badly drawn digit in MNIST. In
order to make best use of all unlabeled samples, it should
be beneficial to “visit” all of them, rather than just making
associations among “easy” samples. This encourages em-
beddings that generalize better. The visit loss is defined as
the cross-entropy H between the uniform target distribution
V and the visit probabilities P visit. If the unsupervised batch
contains many classes that are not present in the supervised
one, this regularization can be detrimental and needs to be
weighted accordingly.

Lvisit
..=H

(
V, P visit) (8)

where the visit probability for examples in B and the uni-
form target distribution are defined as follows:

P visit
j

..=〈P ab
ij 〉i (9)

Vj
..=1/|B| (10)

Classification loss. So far, only the creation of embed-
dings has been addressed. These embeddings can easily be
mapped to classes by adding an additional fully connected

628

32

layer with softmax and a cross-entropy loss on top of the
network. We call this loss classification loss. This mapping
to classes is necessary to evaluate a network’s performance
on a test set. However, convergence can also be reached
without it.

3.2. Implementation

The total loss Ltotal is minimized using Adam [16] with
the suggested default settings. We applied random data aug-
mentation where mentioned in Section 4. The training pro-
cedure is implemented end-to-end in TensorFlow [1] and
the code is publicly available.

4. Experiments

In order to demonstrate the capabilities of our proposed
training paradigm, we performed different experiments on
various data sets. Unless stated otherwise, we used the fol-
lowing network architecture with batch size 100 for both
labeled batch A (10 samples per class) and unlabeled batch
B:

C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Here, C(n, k) stands for a convolutional layer with n ker-
nels of size k×k and stride 1. P (k) denotes a max-pooling
layer with window size k× k and stride 1. FC(n) is a fully
connected layer with n output units.

Convolutional and fully connected layers have exponen-
tial linear units (elu) activation functions [3] and an addi-
tional L2 weight regularizer with weight 10−4 applied.

There is an additional FC layer, mapping the embedding
to the logits for classification after the last FC layer that
produces the embedding, i.e., FC(10) for 10 classes.

4.1. MNIST

The MNIST data set [21] is a benchmark containing
handwritten digits for supervised classification. Mutual
exclusivity regularization with transformations ([31]) have
previously set the state of the art among semi-supervised
deep learning methods on this benchmark. We trained
the simple architecture mentioned above with our approach
with all three losses from Section 3.1 and achieved competi-
tive results as shown in Table 1. We have not even started to
explore sophisticated additional regularization schemes that
might further improve our results. The main point of these
first experiments was to test how quickly one can achieve
competitive results with a vanilla architecture, purely by
adding our proposed training scheme. In the following, we
explore some interesting, easily reproducible properties.

4.1.1 Evolution of associations

The untrained network is already able to make some first
associations based on the produced embeddings. However,
many wrong associations are made and only a few samples
in the unsupervised batch (B) are visited: those most sim-
ilar to the examples in the supervised batch (A). As train-
ing progresses, these associations get better. The visit loss
ensures that all samples in B are visited with equal prob-
ability. Figure 2 shows this evolution. The original sam-
ples for a setup with 2 labeled samples per class are shown
where A is green and B is red. Associations are made top-
down. Note that the second set of green digits is equal to
the first (“round-trip”). The top graphic in Figure 2 shows
visit probabilities at the beginning of training. Darker lines
denote a higher probability (softmaxed dotproduct). The
bottom graphic in Figure 2 shows associations after train-
ing has converged. This took 10k iterations during which
only the same 20 labeled samples were used for A and sam-
ples for B were drawn randomly from the rest of the data
set, ignoring labels.

4.1.2 Confusion analysis

Even after training has converged, the network still makes
mistakes. These mistakes can, however, be explained. Fig-
ure 3 shows a confusion matrix for the classification task.
On the left side, all samples from the labeled set (A) are
shown (10 per class). Those samples that are classified in-
correctly express features that are not present in the super-
vised training set, e.g. “7” with a bar in the middle (mis-
taken for “2”) or “4” with a closed loop (mistaken for “9”).
Obviously, A needs to be somewhat representative for the
data set, as is usually the case for machine learning tasks.

4.2. STL-10

STL-10 is a data set of RGB images from 10 classes [4].
There are 5k labeled training samples and 100k unlabeled
training images from the same 10 classes and additional
classes not present in the labeled set. For this task we mod-
ified the network architecture slightly as follows:

C(32, 3)→ C(64, 3, stride=2)→ P (3)

→ C(64, 3)→ C(128, 3)→ P (2)

→ C(128, 3)→ C(256, 3)→ P (2)→ FC(128)

As a preprocessing step, we apply various forms of data
augmentation to all samples fed though the net. In particu-
lar, random cropping, changes in brightness, saturation, hue
and small rotations.

We ran training using 100 randomly chosen samples per
class from the labeled training set for A (i.e. we used only
20% of the labeled training images) and achieved an accu-
racy on the test set of 81%. As this is not exactly following

629

33

labeled samples
Method 100 1000 All

Ladder, conv small Γ [28] 0.89 (0.50) - -
Improved GAN † [32] 0.93 (0.07) - -

Mutual Exclusivity + Transform. [31] 0.55 (0.16) - 0.27 (0.02)
Ours 0.89 (0.08) 0.74 (0.03) 0.36 (0.03)

Table 1. Results on MNIST. Error (%) on the test set (lower is better). Standard deviations in parentheses. †: Results on permutation-
invariant MNIST.

Figure 2. Evolution of associations. Top: in the beginning of training, after a few iterations. Bottom: after convergence. Green digits are
the supervised set (A) and red digits are samples from the unsupervised set (B).

the testing protocol suggested by the data set creators, we
do not want to claim state of the art for this experiment but
do consider it a promising result. [13] achieved 76.3% fol-
lowing the proposed protocol.

The unlabeled training set contains many other classes
and it is interesting to examine the trained net’s associa-
tions with them. Figure 4 shows the 5 nearest neighbors
(cosine distance) for samples from the unlabeled training
set. The cosine similarity is shown in the top left corner
of each association. Note that these numbers are not soft-

maxed. Known classes (top two rows) are mostly associated
correctly, whereas new classes (bottom two rows) are asso-
ciated with other classes, yet exposing interesting connec-
tions: The fin of a dolphin reminds the net of triangularly
shaped objects such as the winglet of an airplane wing. A
meerkat looking to the right is associated with a dog look-
ing in the same direction or with a racoon with dark spots
around the eyes. Unfortunately, embeddings of classes not
present in the labeled training set do not seem to group to-
gether well; rather, they tend to be close to known class

630

34

Figure 3. MNIST classification. Top left: All labeled samples that
were used for training. Right: Confusion matrix with mistakes
that were made. Test error: 0.96%. Bottom left: Misclassified
examples from the test.

representations.

Figure 4. Nearest neighbors for samples from the unlabeled train-
ing set. The far left column shows the samples, the 5 other
columns are the nearest neighbors in terms of cosine distance
(which is shown in the top left corners of the pictures).

4.3. SVHN

The Street View House Numbers (SVHN) data set [25]
contains digits extracted from house numbers in Google
Street View images. We use the format 2 variant where
digits are cropped to 32x32 pixels. This variant is simi-
lar to MNIST in structure, yet the statistics are a lot more
complex and richer in variation. The train and test subsets
contain 73,257 and 26,032 digits, respectively.

We performed the same experiments as for MNIST with
the following architecture:

C(32, 3)→ C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Data augmentation is achieved by applying random
affine transformations and Gaussian blurring to model the
variations evident in SVHN.

4.4. Effect of adding unlabeled data

In order to quantify how useful it is to add unlabeled data
to the training process with our approach, we trained the
same network architecture with different amounts of labeled
and unlabeled data. For the case of no unlabeled data, only
Lclassification is active. In the other cases where labeled data is
present, we optimize Ltotal. We ran the nets on 10 randomly
chosen subsets of the data and report median and standard
deviation.

Table 3 shows results on SVHN. We used the (labeled)
SVHN training set as data corpus from which we drew ran-
domly chosen subsets as labeled and unlabeled sets. There
might be overlaps between both of these sets, which would
mean that the reported error rates can be seen as upper
bounds.

Let’s consider the case of fully supervised training. This
corresponds to the far left column in Table 3. Not surpris-
ingly, the more labeled samples are used, the lower the error
on the test set gets.

We now add unlabeled data. For a setup with only 20
labeled samples (2 per class), the baseline is an error rate
of 81.00% for 0 additional unlabeled samples. Performance
deteriorates as more unlabeled samples are added. This set-
ting seems to be pathological: depending on the data set,
there is a minimum number of samples required for suc-
cessful generalization.

In all other scenarios with a greater number of labeled
samples, the general pattern we observed is that perfor-
mance improves with greater amounts of unlabeled data.
This indicates that it is indeed possible to boost a network’s
performance just by adding unlabeled data using the pro-
posed associative learning scheme. For example, in the case
of 500 labeled samples, it was possible to decrease the test
error by 64.8% (from 17.75% to 6.25%).

A particular case occurs when all data is used in the la-
beled batch (last row in Table 3): Here, all samples in the
unlabeled set are also in the labeled set. This means that
the unlabeled set does not contain new information. Never-
theless, employing associative learning with unlabeled data
improves the network’s performance. Lwalker and Lvisit act
as a beneficial regularizer that enforces similarity of em-
beddings belonging to the same class. This means that as-
sociative learning can also help in situations where a purely
supervised training scheme has been used, without the need
for additional unlabeled data.

4.5. Effect of visit loss

Section 3.1 introduces different losses. We wanted to in-
vestigate the effects of our proposed visit loss. To this end,

631

35

labeled samples
Method 500 1000 2000

DGN [17] 36.02 (0.10)
Virtual Adversarial [24] 24.63

Auxiliary Deep Generative Model [23] 22.86
Skip Deep Generative Model [23] 16.61 (0.24)

Imporoved GAN [32] 18.44 (4.8) 8.11 (1.3) 6.16 (0.58)
Imporoved GAN (Ensemble) [32] 5.88 (1.0)

Mutual Exclusivity + Transform.* [31] 9.62 (1.37) 4.52 (0.40) 3.66 (0.14)
Ours 6.25 (0.32) 5.14 (0.17) 4.60 (0.21)

Table 2. Results of comparable methods on SVHN. Error (%) on the test set (lower is better). Standard deviations in parentheses.
*) Results provided by authors.

labeled # unlabeled samples
samples 0 1000 20000 all

20 81.00 (3.01) 81.98 (2.58) 82.15 (1.35) 82.10 (1.91)
100 55.64 (6.54) 39.85 (7.19) 24.31 (7.19) 23.18 (7.41)
500 17.75 (0.65) 12.78 (0.99) 6.61 (0.32) 6.25 (0.32)

1000 10.92 (0.24) 9.10 (0.37) 5.48 (0.34) 5.14 (0.17)
2000 8.25 (0.32) 7.27 (0.43) 4.83 (0.15) 4.60 (0.21)

all 3.09 (0.06) 2.79 (0.02) 2.80 (0.03) 2.69 (0.05)

Table 3. Results on SVHN with different amounts of (total) labeled/unlabeled training data. Error (%) on the test set (lower is better).
Standard deviations in parentheses.

we trained networks on different data sets and varied the
loss weights for Lvisit keeping the loss weight for Lclassification
and Lwalker constant. Table 4 shows the results. Worst per-
formance was obtained with no visit loss. For MNIST, visit
loss is crucial for successful training. For SVHN, a mod-
erate loss weight of about 0.25 leads to best performance.
If the visit loss weight is too high, the effect seems to be
over regularization of the network.. This suggests that the
visit loss weight needs to be adapted according to the vari-
ance within a data set. If the distributions of samples in the
(finitely sized) labeled and unlabeled batches are less simi-
lar, the visit loss weight should be lower.

4.6. Domain adaptation

A test for the efficiency of representations is to apply a
model to the task of domain adaptation (DA) [29]. The gen-
eral idea is to train a model on data from a source domain
and then adapt it to similar but different data from a target
domain.

In the context of neural networks, DA has mostly been
achieved by either fine-tuning a network on the target do-
main after training it on the source domain ([36, 15]), or by
designing a network with multiple outputs for the respective

domains ([5, 38]), sometimes referred to as dual outputs.
As a first attempt at DA with associative learning, we

tried the following procedure that is a mix of both fine-
tuning and dual outputs: We first train a network on the
source domain as described in Section 4. Then, we only ex-
change the unsupervised data set to the target domain data
and continue training. Note that here, no labels from the
target class are used at all at train time.

As a baseline example, we chose a network trained on
SVHN. We fed labeled samples from SVHN (source do-
main) and unlabeled samples from MNIST (target domain)
in the network with the architecture originally used for
training on the source domain and fine-tuned it with our
association based approach. No data augmentation was ap-
plied.

Initially, the network achieved an error of 18.56% on the
MNIST test set which we found surprisingly low, consid-
ering that the network had not previously seen an MNIST
digit. Some SVHN examples have enough similarity to
MNIST that the network recognized a considerable amount
of handwritten digits.

We then trained the network with both data sources as
described above with 0.5 as weight for the visit loss. After

632

36

Visit loss weight
Data set 0 0.25 0.5 1

MNIST 5.68 (0.53) 1.17 (0.15) 0.82 (0.12) 0.85 (0.04)
SVHN 7.91 (0.40) 6.31 (0.20) 6.32 (0.07) 6.43 (0.26)

Table 4. Effect of visit loss. Error (%) on the resp. test sets (lower is better) for different values of visit loss weight. Reported are the
medians of the minimum error rates throughout training with standard deviation in parentheses. Experiments were run with 1,000 randomly
chosen labeled samples as supervised data set.

Data Method
Domain (source → target)

SVHN → MNIST

Source
only

DA [8] 45.10
DS [2] 40.8
Ours 18.56

Adapted
DA [8] 26.15 (42.6%)
DS [2] 17.3 (58.3%)
Ours 0.51 (99.3%)

Target
only

DA [8] 0.58
DS [2] 0.5
Ours 0.38

Table 5. Domain adaptation. Errors (%) on the target test sets
(lower is better). “Source only” and “target only” refers to train-
ing only on the respective data set without domain adaptation.
“DA” and “DS” stand for Domain-Adversarial Training and Do-
main Separation Networks, resp. The numbers in parentheses in-
dicate how much of the gap between lower and upper bounds was
covered.

9k iterations the network reached an accuracy of 0.51% on
the MNIST test set, which is a higher accuracy than what we
reached when training a network with 100 or 1000 labeled
samples from MNIST (cf. Section 4.1).

For comparison, [2] has been holding state of the art for
domain adaptation employing domain separation networks.
Table 5 contrasts their results with ours. Our first tentative
training method for DA outperforms traditional methods by
a large margin. We therefore conclude that learning by as-
sociation is a promising training scheme that encourages
efficient embeddings. A thorough analysis of the effects
of associative learning on domain adaptation could reveal
methods to successfully apply our approach to this problem
setting at scale.

5. Conclusion

We have proposed a novel semi-supervised training
scheme that is fully differentiable and easy to add to ex-
isting end-to-end settings. The key idea is to encourage
cycle-consistent association chains from embeddings of la-

beled data to those of unlabeled ones and back. The code
is publicly available. Although we have not employed so-
phisticated network architectures such as ResNet [10] or
Inception [35], we achieve competitive results with sim-
ple networks trained with the proposed approach. We have
demonstrated how adding unlabeled data improves results
dramatically, in particular when the number of labeled sam-
ples is small, surpassing state of the art for SVHN with 500
labeled samples. In future work, we plan to systematically
study the applicability of Associative Learning to the prob-
lem of domain adaptation. Investigating the scalability to
thousands of classes or maybe even completely different
problems such as segmentation will be the subject of future
research.

633

37

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.
4

[2] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan,
and D. Erhan. Domain separation networks. arXiv preprint
arXiv:1608.06019, 2016. 8

[3] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015. 4

[4] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-
layer networks in unsupervised feature learning. Ann Arbor,
1001(48109):2, 2010. 4

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493–2537, 2011. 7

[6] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1422–1430, 2015. 1, 2

[7] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and
T. Brox. Discriminative unsupervised feature learning with
convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems, pages 766–774, 2014. 1, 2

[8] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine
Learning Research, 17(59):1–35, 2016. 8

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680, 2014. 1, 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015. 1, 8

[11] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blun-
dell, S. Mohamed, and A. Lerchner. Early visual concept
learning with unsupervised deep learning. arXiv preprint
arXiv:1606.05579, 2016. 2

[12] G. Hinton. A practical guide to training restricted boltzmann
machines. Momentum, 9(1):926, 2010. 2

[13] C. Huang, C. Change Loy, and X. Tang. Unsupervised learn-
ing of discriminative attributes and visual representations.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5175–5184, 2016. 1, 2, 5

[14] T. Joachims. Transductive inference for text classification
using support vector machines. In ICML, volume 99, pages
200–209, 1999. 2

[15] Y. Kim. Convolutional neural networks for sentence classifi-
cation. arXiv preprint arXiv:1408.5882, 2014. 7

[16] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 4

[17] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and
M. Welling. Semi-supervised learning with deep generative

models. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 3581–3589.
Curran Associates, Inc., 2014. 7

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012. 1

[19] Q. V. Le. Building high-level features using large scale unsu-
pervised learning. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 8595–8598.
IEEE, 2013. 2

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 1

[21] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998. 4

[22] D.-H. Lee. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
Workshop on Challenges in Representation Learning, ICML,
volume 3, page 2, 2013. 1, 2

[23] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and
O. Winther. Auxiliary deep generative models. arXiv
preprint arXiv:1602.05473, 2016. 7

[24] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii.
Distributional smoothing by virtual adversarial examples.
arXiv preprint arXiv:1507.00677, 2015. 7

[25] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and un-
supervised feature learning, volume 2011, page 4. Granada,
Spain, 2011. 6

[26] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015. 3

[27] M. Ranzato and M. Szummer. Semi-supervised learning of
compact document representations with deep networks. In
Proceedings of the 25th international conference on Machine
learning, pages 792–799. ACM, 2008. 2

[28] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and
T. Raiko. Semi-supervised learning with ladder networks. In
Advances in Neural Information Processing Systems, pages
3546–3554, 2015. 5

[29] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. In European confer-
ence on computer vision, pages 213–226. Springer, 2010. 7

[30] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Mutual exclu-
sivity loss for semi-supervised deep learning. In 2016 IEEE
International Conference on Image Processing (ICIP), pages
1908–1912. IEEE, 2016. 2

[31] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization
with stochastic transformations and perturbations for deep
semi-supervised learning. arXiv preprint arXiv:1606.04586,
2016. 2, 4, 5, 7

[32] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans.
arXiv preprint arXiv:1606.03498, 2016. 3, 5, 7

634

38

[33] P. Smolensky. Information processing in dynamical systems:
Foundations of harmony theory. Technical report, DTIC
Document, 1986. 2

[34] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsuper-
vised learning of video representations using lstms. CoRR,
abs/1502.04681, 2, 2015. 2

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015. 8

[36] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,
R. Mooney, and K. Saenko. Translating videos to natural lan-
guage using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729, 2014. 7

[37] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep learn-
ing via semi-supervised embedding. In Neural Networks:
Tricks of the Trade, pages 639–655. Springer, 2012. 2

[38] Z. Yang, R. Salakhutdinov, and W. Cohen. Multi-task
cross-lingual sequence tagging from scratch. arXiv preprint
arXiv:1603.06270, 2016. 7

[39] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun.
Stacked what-where auto-encoders. arXiv preprint
arXiv:1506.02351, 2015. 1, 2

635

39

17.4.2018 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Learning by Association — A

Versatile Semi­Supervised
Training Method for Neural
Networks

Conference
Proceedings:

2017 IEEE Conference on
Computer Vision and Pattern
Recognition (CVPR)

Author: Philip Haeusser; Alexander
Mordvintsev; Daniel Cremers

Publisher: IEEE
Date: 21­26 July 2017
Copyright © 2017, IEEE

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line ©
2011 IEEE.

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
on­line.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E­mail us at customercare@copyright.com

40

4
A S S O C I AT I V E D O M A I N A D A P TAT I O N

In Chapter 3 we introduced associative learning, a novel training sched-
ule for semi-supervised training of a classification network. In this
chapter, which is based on Haeusser, Frerix, Mordvintsev, and Cre-
mers [32], we propose associative domain adaptation, an extension that
allows for end-to-end domain adaptation with neural networks, the
task of inferring class labels for an unlabeled target domain based
on the statistical properties of a labeled source domain. Our training
scheme follows the paradigm that in order to effectively derive class
labels for the target domain, a network should produce statistically
domain invariant embeddings, while minimizing the classification er-
ror on the labeled source domain. We accomplish this by reinforcing
associations between source and target data directly in embedding
space. Our method can easily be added to any existing classifica-
tion network with no structural and almost no computational over-
head. We demonstrate the effectiveness of our approach on various
benchmarks and achieve state-of-the-art results across the board with
a generic convolutional neural network architecture not specifically
tuned to the respective tasks. Finally, we show that the proposed as-
sociation loss produces embeddings that are more effective for do-
main adaptation compared to methods employing maximum mean
discrepancy as a similarity measure in embedding space.

Figure 4.1: Associative domain adaptation - overview

contributions of the author

The author of this dissertation was fully in charge of

• developing the key idea

• planning and carrying out the experiments

• evaluating experiments

• writing substantial parts of the paper

41

Associative Domain Adaptation

Philip Haeusser1,2

haeusser@in.tum.de

Thomas Frerix1

thomas.frerix@tum.de

Alexander Mordvintsev2

moralex@google.com

Daniel Cremers1

cremers@tum.de

1Dept. of Informatics, TU Munich 2Google, Inc.

Abstract

We propose associative domain adaptation, a novel tech-
nique for end-to-end domain adaptation with neural net-
works, the task of inferring class labels for an unlabeled tar-
get domain based on the statistical properties of a labeled
source domain. Our training scheme follows the paradigm
that in order to effectively derive class labels for the tar-
get domain, a network should produce statistically domain
invariant embeddings, while minimizing the classification
error on the labeled source domain. We accomplish this
by reinforcing associations between source and target data
directly in embedding space. Our method can easily be
added to any existing classification network with no struc-
tural and almost no computational overhead. We demon-
strate the effectiveness of our approach on various bench-
marks and achieve state-of-the-art results across the board
with a generic convolutional neural network architecture
not specifically tuned to the respective tasks. Finally, we
show that the proposed association loss produces embed-
dings that are more effective for domain adaptation com-
pared to methods employing maximum mean discrepancy
as a similarity measure in embedding space.

1. Introduction

Since the publication of LeNet [14] and AlexNet [13],
a methodological shift has been observable in the field of
computer vision. Deep convolutional neural networks have
proved to solve a growing number of problems [28, 7, 29,
27, 6, 17]. On the downside, due to a large amount of model
parameters, an equally rapidly growing amount of labeled
data is needed for training, such as ImageNet [21], compris-
ing millions of labeled training examples. This data may be
costly to obtain or even nonexistent.

In this paper, we focus on an approach to train neural net-
works with a minimum of labeled data: domain adaptation.
We refer to domain adaptation as the task to train a model
on labeled data from a source domain while minimizing test
error on a target domain, for which no labels are available
at training time.

Figure 1: Associative domain adaptation. In order to max-
imize classification accuracy on an unlabeled target do-
main, the discrepancy between neural network embeddings
of source and target samples (red and blue, respectively)
is reduced by an associative loss (→), while minimizing a
classification error on the labeled source domain.

1.1. Domain adaptation

In more formal terms, we consider a source do-
main Ds = {xs

i , y
s
i }i=1,...,ns

and a target domain
Dt = {xt

i, y
t
i}i=1,...,nt . Here, xs

i ∈ RNs ,xt
i ∈ RNt

are the data vectors and ysi ∈ C, yti ∈ C the respective la-
bels, where the target labels {yti}i=1,...,nt

are not available
for training. Note that for domain adaption it is assumed
that source and target domains are associated with the same
label space, while Ds and Dt are drawn from distributions
Ps and Pt, which are assumed to be different, i.e. the source
and target distribution have different joint distributions of
data X and labels Y , Ps(X,Y) �= Pt(X,Y).

The value of domain adaptation has even more increased
with generative tools producing synthetic datasets. The idea
is compelling: rather than labeling vast amounts of real-
world data, one renders a similar but synthetic dataset that is
automatically labeled. With an effective method for domain
adaptation it becomes possible to train models without the
need for one single labeled target example at training time.

2017 IEEE International Conference on Computer Vision

2380-7504/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCV.2017.301

2784

42

In order to combine labeled and unlabeled data for a pre-
dictive task, a variety of notions has emerged. To be clear,
we explicitly distinguish domain adaptation from related
approaches. For semi-supervised learning, labeled source
data is leveraged by unlabeled target data drawn from the
same distribution, i.e. Ps = Pt. In transfer learning, not
only source and target domain are drawn from different dis-
tributions, also their label spaces are generally different. An
example of supervised transfer learning is training a neural
network on a source domain and subsequently fine-tuning
the model on a labeled target domain for a different task
[33, 5].

The problem of domain adaptation was theoretically
studied in [2], relating source and target error with a statis-
tical similarity measure of the respective domains. Their re-
sults suggest that a good domain adaptation method should
be based on features that are as similar as possible for source
and target domain (assimilation), while reducing the pre-
diction error in the source domain as much as possible (dis-
crimination). These effects are opposing each other since
source and target domains are drawn from different distri-
butions. This can be formulated as a cost function that con-
sists of two terms:

L = Lclassification + Lsim , (1)

Here, the classification loss, Lclassification encourages
discrimination between different classes, maximizing the
margin between clusters of embeddings that belong to the
same class. We define the second term as a generic simi-
larity loss Lsim, which enforces statistically similar latent
representations.

Intuitively, for similar latent representations of the
source and target domain, the target class labels can be more
accurately inferred from the labeled source samples.

In the following, we show how previous methods ap-
proached this optimization and then propose a new loss for
Lsim.

1.2. Related work

Several works have approached the problem of domain
adaptation. Here, we mainly focus on methods that are
based on deep learning, as these have proved to be powerful
learning systems and are closest to our scheme.

The CORAL method [24] explicitly forces the covari-
ance of the target data onto the source data (assimilation).
The authors then apply supervised training to this trans-
formed source domain with original labels (discrimination).
This idea is extended to second order statistics of features
in deep neural networks in [25].

Building on the idea of adversarial training [10], the au-
thors of [9] propose an architecture in which a class label
and a domain label predictor are built on top of a general
feature extractor. While the class label predictor is supposed

to correctly classify the labeled training examples (discrim-
ination), the domain label predictor for all training samples
is used in a way to make the feature distributions similar
(assimilation). The authors of [3] use an adversarial ap-
proach to train for similarity in data space instead of feature
space. Their training scheme is closer to standard gener-
ative adversarial networks [10], however, it does not only
condition on noise, but also on an image from the source
domain.

Within the paradigm of training for domain invariant fea-
tures, one popular metric is the maximum mean discrep-
ancy (MMD) [11]. This measure is the distance between
the mean embeddings of two probability distributions in
a reproducing kernel Hilbert space Hk with a character-
istic kernel k. More precisely, the mean embedding of a
distribution P in Hk is the unique element μk(P) ∈ Hk

such that Ex∼P[f(x)] = 〈f(x), μk(P)〉Hk
, ∀f ∈ Hk.

The MMD distance between source and target domain then
reads dMMD(Ps,Pt) = ||μk(Ps)−μk(Pt)||Hk

. In practice,
this distance is computed via the kernel trick [31], which
leads to an algorithm with quadratic runtime in the number
of samples. Linear time estimators have previously been
proposed [15].

Most works, which explicitly minimize latent feature
discrepancy, use MMD in some variant. That is, they use
MMD as Lsim in order to achieve assimilation as defined
above. The authors of [15] propose the Deep Adaptation
Network architecture. Exploiting that learned features tran-
sition from general to specific within the network, they train
the first layers of a CNN commonly for source and target
domain, then train individual task-specific layers while min-
imizing the multiple kernel maximum mean discrepancies
between these layers.

The technique of task-specific but coupled layers is fur-
ther explored in [20] and [4]. The authors of [20] propose to
individually train source and target domains while the net-
work parameters of each layer are regularized to be linear
transformations of each other. In order to train for domain
invariant features, they minimize the MMD of the embed-
ding layer. On the other hand, the authors of [4] maintain
a shared representation of both domains and private repre-
sentations of each individual domain in their Domain Sepa-
ration architecture.

As becomes evident in these works, the MMD minimizes
domain discrepancy in some abstract space and requires a
choice of kernels with appropriate hyperparameters, such
as the standard deviation of the Gaussian kernel. In this
work, we propose a different loss for Lsim which is more
intuitive in embedding space, less computationally complex
and better suitable to obtain effective embeddings.

2785

43

1.3. Contribution

We propose the association loss Lassoc as an alternative
discrepancy measure (Lsim) within the domain adaptation
paradigm described in Section 1.1. The reasoning behind
our approach is the following: Ultimately, we want to min-
imize the classification error on the target domain Dt. This
is not directly possible since no labels are available at train-
ing time. Therefore, we minimize the classification error
on the source domain Ds as a proxy while enforcing repre-
sentations of Dt to have similar statistics to those of Ds.
This is accomplished by enforcing associations [12] be-
tween feature representations of Dt with those of Ds that
are in the same class. Therefore, in contrast to MMD as
Lsim, this approach also leverages knowledge about labels
of the source domain and hence avoids unwanted assimi-
lation across class clusters. The implementation is sim-
ple yet powerful as we show in Section 2. It works with
any existing architecture and, unlike most deep learning ap-
proaches for domain adaptation, does not introduce a struc-
tural and almost no computational overhead. In fact, we
used the same generic and simple architecture for all our ex-
periments, each of which achieved state-of-the-art results.

In summary, our contributions are:

• A straightforward training schedule for domain adap-
tation with neural networks.

• An integration of our approach into the prevailing do-
main adaptation formalism and a detailed comparison
with the most commonly used explicit Lsim: the max-
imum mean discrepancy (MMD).

• A simple implementation that works with arbitrary ar-
chitectures1.

• Extensive experiments on various benchmarks for do-
main adaptation that outperform related deep learning
methods.

• A detailed analysis demonstrating that associative do-
main adaptation results in effective embeddings in
terms of classifying target domain samples.

2. Associative domain adaptation
We start from the approach of learning by association

[12] which is geared towards semi-supervised training. La-
beled and unlabeled data are related by associating their em-
beddings, i.e. features of a neural network’s last layer be-
fore the softmax layer. Our work generalizes this approach
for domain adaptation. For the new task, we identify la-
beled data with the source domain and unlabeled data with
the target domain. Specifically, for xs

i ∈ Ds,x
t
i ∈ Dt and

the embedding map φ : RN0 → RNL−1 of an L-layer neural
1https://git.io/vyzrl

network, denote by Ai
..= φ(xs

i), Bj
..= φ(xt

j) the respec-
tive embeddings of source and target domain. Then, simi-
larity is measured by the embedding vectors’ dot product as
Mij = 〈Ai, Bj〉.

If one considers transitions between the parts
({Ai}, {Bj}) of a bipartite graph, the intuition is that
transitions are more probable if embeddings are more
similar. This is formalized by the transition probability
from embedding Ai to embedding Bj :

P ab
ij = P(Bj |Ai) ..=

exp(Mij)∑
j′ exp(Mij′)

. (2)

The basis of associative similarity is the two-step round-
trip probability of an imaginary random walker starting
from an embedding Ai of the labeled source domain and
returning to another embedding Aj via the (unlabeled) tar-
get domain embeddings B,

P aba
ij

..=
(
P abP ba

)
ij

. (3)

The authors of [12] observed that higher order round
trips do not improve performance. The two-step proba-
bilities are forced to be similar to the uniform distribution
over the class labels via a cross-entropy loss term called the
walker loss,

Lwalker
..= H

(
T, P aba

)
, (4)

where

Tij
..=

{
1/|Ai| class(Ai) = class(Aj)

0 else
(5)

This means that all association cycles within the same
class are forced to have equal probability. The walker loss
by itself could be minimized by only visiting target sam-
ples that are easily associated, skipping difficult examples.
This would lead to poor generalization to the target domain.
Therefore, a regularizer is necessary such that each target
sample is visited with equal probability. This is the function
of the visit loss. It is defined by the cross entropy between
the uniform distribution over target samples and the proba-
bility of visiting some target sample starting in any source
sample,

Lvisit
..= H(V, P visit) , (6)

where
P visit
j

..=
∑

xi∈Ds

P ab
ij , Vj

..=
1

|B| . (7)

Note that this formulation assumes that the class distri-
bution is the same for source and target domain. If this is
not the case, using a low weight for Lvisit may yield better
results.

2786

44

Together, these terms form a loss that enforces associa-
tions between similar embeddings of both domains,

Lassoc = β1Lwalker + β2Lvisit , (8)

where βi is a weight factor. At the same time, the net-
work is trained to minimize the prediction error on the la-
beled source data via a softmax cross-entropy loss term,
Lclassification.

The overall neural network loss for our training scheme
is given by

L = Lclassification + αLassoc . (9)

We want to emphasize once more the essential motiva-
tion for our approach: The association loss enforces similar
embeddings (assimilation) for the source and target sam-
ples, while the classification loss minimizes the prediction
error of the source data (discrimination). Without Lassoc,
we have the case of a neural network that is trained conven-
tionally [13] on the source domain only. As we show in this
work, the (scheduled) addition of Lassoc during training al-
lows to incorporate unlabeled data from a different domain
improving the effectiveness of embeddings for classifica-
tion. Adding Lassoc enables an arbitrary neural network to
be trained for domain adaptation. The neural network learn-
ing algorithm is then able to model the shift in distribution
between source and target domain. More formally, if Lassoc

is minimized, associated embeddings from both source and
target domain become more similar in terms of their dot
product.

In contrast to MMD, Lassoc incorporates knowledge
about source domain classes and hence prevents the case
that source and target domain embeddings are statistically
similar, but not class discriminative. We demonstrate this
experimentally in Section 3.4.

We emphasize that not every semi-supervised training
method can be adapted for domain adaptation in this man-
ner. It is necessary that the method explicitly models the
shift between the source and target distributions, in order
to reduce the discrepancy between both domains, which is
accomplished by Lassoc.

In this respect, associative domain adaptation parallels
the approaches mentioned in Section 1.2. As we demon-
strate experimentally in the next section, Lassoc is em-
ployed as a compact, intuitive and effective training signal
for assimilation yielding superior performance on all tested
benchmarks.

3. Experiments
3.1. Domain adaptation benchmarks

In order to evaluate and compare our method, we chose
common domain adaptation tasks, for which previous re-
sults are reported. Examples for the respective datasets are
shown in Table 1.

MNIST��
MNIST-M
(10 classes)

SYNTH��
SVHN

(10 classes)

SVHN��
MNIST

(10 classes)

SYNTH SIGNS��
GTSRB

(43 classes)

Table 1: Dataset samples for our domain adaptation tasks.
For three randomly chosen classes, the first row depicts a
source sample, the second row a target sample. The datasets
vary in difficulty due to differences in color space, variance
of transformation or number of classes.

MNIST → MNIST-M We used the MNIST [14] dataset
as labeled source and generated the unlabeled MNIST-M
target as described in [9]. Background patches from the
color photo BSDS500 dataset [1] were randomly extracted.
Then the absolute value of the difference of each color chan-
nel with the MNIST image was taken. This yields a color
image, which can be easily identified by a human, but is sig-
nificantly more difficult for a machine compared to MNIST
due to two additional color channels and more nuanced
noise. The single channel of the MNIST images was repli-
cated three times to match those of the MNIST-M images
(RGB). The image size is 28 × 28 pixels. This is the only
setting where we used data augmentation: We randomly in-
verted MNIST images since they are always white on black,
unlike MNIST-M.

Synth → SVHN The Street View House Numbers
(SVHN) dataset [19] contains house number signs extracted
from Google Street View. We used the variant Format 2
where images (32 × 32 pixels) are already cropped. Still,
multiple digits can appear in one image. As a labeled source
domain we use the Synthetic Digits dataset provided by the
authors of [9], which expresses a varying number of fonts

2787

45

and properties (background, orientation, position, stroke
color, blur) that aim to mimic the distribution in SVHN.

SVHN → MNIST MNIST images were resized with bi-
linear interpolation to 32× 32 pixels and extended to three
channels in order to match the shape of SVHN.

Synthetic Signs → GTSRB The Synthetic Signs dataset
was provided by the authors of [18] and consists of 100,000
images that were generated by taking common street signs
from Wikipedia and applying various artificial transforma-
tions. The German Traffic Signs Recognition Benchmark
(GTSRB) [23] provides 39,209 (training set) and 12,630
(test set) cropped images of German traffic signs. The im-
ages vary in size and were resized with bilinear interpola-
tion to match the Synthetic Signs images’ size of 40 × 40
pixels. Both datasets contain images from 43 different
classes.

3.2. Training setup

3.2.1 Associative domain adaptation

Our formulation of associative domain adaptation is im-
plemented2 as a custom loss function that can be added to
any existing neural network architecture. Results obtained
by neural network learning algorithms often highly depend

2https://git.io/vyzrl

on the complexity of a specifically tuned architecture. Since
we wanted to make the effect of our approach as transparent
as possible, we chose the following generic convolutional
neural network architecture for all our experiments:

C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Here, C(n, k) stands for a convolutional layer with n ker-
nels of size k×k and stride 1. P (k) denotes a max-pooling
layer with window size k× k and stride 1. FC(n) is a fully
connected layer with n output units. The size of the em-
beddings is 128. An additional fully connected layer maps
these embeddings to logits, which are the input to a softmax
cross-entropy loss for classification, Lclassification.

The detailed hyperparameters for each experiment can
be found in the supplementary material. The most important
hyperparameters are the following:

Learning rate We chose the same initial learning rate
(τ = 1e−4) for all experiments, which was reduced by a
factor of 0.33 in the last third of the training time. All train-
ings converged in less than 20k iterations.

Mini-batch sizes It is important to ensure that a mini-
batch represents all classes sufficiently, in order not to in-
troduce a bias. For the labeled mini-batch, we explicitly

Method Domains (source→ target)
MNIST→MNIST-M Syn. Digits→ SVHN SVHN→MNIST Syn. Signs→ GTSRB

Transf. Repr. [22] 13.30 - 21.20 -
SA [8] 43.10 13.56 40.68 18.35

CORAL [24] 42.30 14.80 36.90 13.10
ADDA [30] - - 24.00 -
DANN [9] 23.33 (55.87 %) 8.91 (79.67 %) 26.15 (42.57 %) 11.35 (46.39 %)

DSN w/ DANN [3] 16.80 (63.18 %) 8.80 (78.95 %) 17.30 (58.31 %) 6.90 (54.42 %)
DSN w/ MMD [3] 19.50 (56.77 %) 11.50 (31.58 %) 27.80 (32.26 %) 7.40 (51.02 %)

MMD [15] 23.10 12.00 28.90 8.90
DAMMD 22.90 19.14 28.48 10.69

Ours (DAassoc fixed params†) 10.47 ± 0.28 8.70 ± 0.2 4.32 ± 1.54 17.20 ± 1.32
Ours (DAassoc) 10.53 (85.94 %) 8.14 (87.78 %) 2.40 (93.71 %) 2.34 (81.23)

Source only 35.96 15.68 30.71 4.59
Target only 6.37 7.09 0.50 1.82

Table 2: Domain adaptation. Errors (%) on the target test sets (lower is better). Source only and target only refer to training
only on the respective dataset (supervisedly [12], without domain adaptation) and evaluating on the target dataset. In the
DAMMD setting, we replaced Lassoc with MMD. The metric coverage is reported in parentheses, where available (cf. Sec-
tion 3.3). We used the same network architecture for all our experiments and achieve state of the art results on all benchmarks.
The row “DAassoc fixed params†” reports results from 10 runs (± standard deviation) with an arbitrary choice of fixed hyper
parameters (β2 = 0.5, delay = 500 steps and batch size = 100) for all four domain pairs. The row below shows our results
after individual hyper parameter optimization. No labels of the target domain were used at training time.

2788

46

sample a number of examples per class. For the unlabeled
mini-batch we chose the same overall size as for the labeled
one, usually around 10-100 times the number of classes.

Loss weights The only loss weight that we actively chose
is the one for Lvisit, β2. As was shown in [12], this loss
acts as a regularizer. Since it assumes the same class distri-
bution on both domains, the weight needs to be lowered if
the assumption does not hold. We experimentally chose a
suitable weight.

Delay of Lassoc We observed that convergence is faster if
we first train the network only with the classification loss,
Lclassification, and then add the association loss, Lassoc, af-
ter a number of iterations. This is implemented by defining
α (Equation 8) as a step function. This procedure is in-
tuitive, as the transfer of label information from source to
target domain is most effective when the network has al-
ready learned some class structure and the embeddings are
not random anymore.

Hyper parameter tuning We are aware that hyper pa-
rameter tuning can sometimes obscure the actual effect of
a proposed method. In particular, we want to discuss the
effect of small batch sizes on our algorithm. For the associ-
ation loss to work properly, all classes must be represented
in a mini-batch, which places a restriction on small batch
sizes, when the number of classes is large. To further inves-
tigate this hyperparameter we ran the same architecture with
an arbitrary choice of fixed hyper parameters and smaller
batch size (β2 = 0.5, delay = 500 steps and batch size = 100)
for all four domain pairs and report the mean and standard
deviation of 10 runs in the row “DAassoc fixed params†”. In
all cases except for the traffic signs, these runs outperform
previous methods. The traffic sign setup is special because
there are 4.3× more classes and with larger batches more
classes are expected to be present in the unlabeled batch.
When we removed the batch size constraint, we achieved a
test error of 6.55 ± 0.59, which outperforms state of the art
for the traffic signs.

Hardware All experiments were carried out on an
NVIDIA Titan X (Pascal). Each experiment took less than
120 minutes until convergence.

3.2.2 Domain adaptation with MMD

In order to compare our setup and the proposed Lassoc,
we additionally ran all experiments described above with
MMD instead of Lassoc. We performed the same hyperpa-
rameter search for α and report the respectively best test

errors. We used the open source implementation includ-
ing hyperparameters from [26]. This setup is referred to as
DAMMD.

3.3. Evaluation

All reported test errors are evaluated on the target do-
main. To assess the quality of domain adaptation, we pro-
vide results trained on source and target only (SO and TO,
respectively) as in [12], for associative domain adaptation
(DAassoc) and for the same architecture with MMD instead
of Lassoc. Besides the absolute accuracy, an informative
metric is coverage of the gap between TO and SO by DA,

DA− SO

TO − SO
,

as it is a measure of how much label information is success-
fully transferred from the source to the target domain. In
order to assess a method’s performance on domain adapta-
tion, one should always consider both coverage and abso-
lute error on the target test set since a high coverage could
also stem from poor performance in the SO or TO setting.

Where available, we report the coverage of other meth-
ods (with respect to their own performance on SO and TO).

Table 2 shows the results of our experiments. In all four
popular domain adaptation settings our method performs
best. On average, our approach improves the performance
by 87.17 % compared to training on source only (coverage).
In order to make our results as comparable as possible, we
used a generic architecture that was not handcrafted for the
respective tasks (cf. Section 3.2).

3.4. Analysis of the embedding quality

As described in Section 1, a good intuition for the for-
malism of domain adaptation is the following. On the one
hand, the latent features should cluster in embedding space,
if they belong to the same class (assimilation). On the other
hand, these clusters should separate well in order to facili-
tate classification (discrimination).

We claim that our proposed Lassoc is well suited for this
task compared with maximum mean discrepancy. We use
four points to support this claim:

• t-SNE visualizations show that employing Lassoc pro-
duces embeddings that cluster better compared to
MMD.

• Lassoc simultaneously reduces the maximum mean
discrepancy (MMD) in most cases.

• Lower MMD values do not imply lower target test er-
rors in these settings.

• In all cases, the target domain test error of our ap-
proach is lower compared to training with an MMD
loss.

2789

47

Figure 2: t-SNE embeddings with perplexity 35 of 1,000 test samples for Synthetic Digits (source, red) and SVHN (target,
blue). Left: After training on source only. Middle: after training with associative domain adaptation (DAassoc). Right:
after training with MMD loss (DAMMD). While the target samples are diffuse when embedded with the source only trained
network, the class label information is successfully inferred after associative domain adaptation. When the network is trained
with an MMD loss, the resulting distributions are similar, but less visibly class discriminative.

Domains (source→ target)
MNIST→MNIST-M Syn. Digits→ SVHN SVHN→MNIST Syn. Signs→ GTSRB

Source only 0.1234 (35.96) 0.1010 (15.68) 0.0739 (30.71) 0.0466 (4.59)
DAassoc 0.0504 (10.53) 0.0415 (8.14) 0.2112 (2.40) 0.0459 (2.34)
DAMMD 0.0233 (22.90) 0.0166 (19.29) 0.0404 (34.06) 0.0145 (12.85)

Table 3: Maximum mean discrepancy (MMD) between embeddings of source and target domain, obtained with a network
trained supervisedly on source only (SO), for the domain adaptation setting with Lassoc (DAassoc) and with an MMD loss
(DAMMD). Numbers in parentheses are test errors on the target domain from Table 2. Associative domain adaptation also
reduces the MMD in some cases. Lower MMD values do not correlate with lower test errors. In fact, even though the MMD
for training with the associative loss is higher compared with training with the MMD loss, our approach achieves lower test
errors.

3.4.1 Qualitative evaluation: t-SNE embeddings

A popular method to visualize high-dimensional data in 2D
is t-SNE [16]. We are interested in the distribution of em-
beddings for source and target domain when we employ our
training scheme. Figure 2 shows such visualizations. We
always plotted embeddings of the target domain test set.
The embeddings are obtained with networks trained semi-
supervisedly [12] on the source domain only (SO), with our
proposed associative domain adaptation (DAassoc) and with
MMD instead of Lassoc (DAMMD, cf. Section 3.2).

In the SO setting, samples from the source domain fall
into clusters as expected. Samples from the target domain
are more scattered. For DAassoc, samples from both do-
mains cluster well and become separable. For DAMMD, the
resulting distributions are similar, but not visibly class dis-
criminative.

For completeness, however, we explicitly mention that

t-SNE embeddings are obtained via a non-linear, stochastic
optimization procedure that depends on the choice of pa-
rameters like the perplexity ([16, 32]). We therefore inter-
pret these plots only qualitatively and infer that associative
domain adaptation learns consistent embeddings for source
and target domain that cluster well with observable margins.

3.4.2 Quantitative evaluation: MMD values

While t-SNE plots provide qualitative insights into the la-
tent feature representation of a learning algorithm, we want
to complement this with a quantitative evaluation and com-
pute the discrepancy in embedding space for target and
source domains. We estimated the MMD with a Gaussian
RBF kernel using the TensorFlow implementation provided
by the authors of [26].

The results are shown in Table 3. In parentheses we
copied the test accuracies on the respective target domains

2790

48

from Table 2.
We observe that DAMMD yields the lowest maximum

mean discrepancy, as expected, since this training setup ex-
plicitly minimizes this quantity. At the same time, DAassoc

also reduces this metric in most cases. Interestingly though,
for the setup SVHN → MNIST, we actually obtain a par-
ticularly high MMD. Nevertheless, the test error of the net-
work trained with DAassoc is one of the best results. We
ascribe this to the fact that MMD enforces domain invari-
ant feature representations regardless of the source labels,
whereas Lassoc takes into account the labels of associated
source samples, resulting in better separation of the clus-
ters and higher similarity within the same class. Conse-
quently, DAassoc achieves lower test error on the target do-
main, which is the actual goal of domain adaptation.

4. Conclusion
We have introduced a novel, intuitive domain adapta-

tion scheme for neural networks termed associative domain
adaptation that generalizes a recent approach for semi-
supervised learning[12] to the domain adaptation setting.
The key idea is to optimize a joint loss function combining
the classification loss on the source domain with an associ-
ation loss that imposes consistency of source and target em-
beddings. The implementation is simple, works with arbi-
trary architectures in an end-to-end manner and introduces
no significant additional computational and structural com-
plexity. We have demonstrated the capabilities of associa-
tive domain adaptation on various benchmarks and achieved
state-of-the-art results for all our experiments. Finally, we
quantitatively and qualitatively examined how well our ap-
proach reduces the discrepancy between network embed-
dings from the source and target domain. We have observed
that, compared to explicitly modelling the maximum mean
discrepancy as a cost function, the proposed association loss
results in embeddings that are more effective for classifica-
tion in the target domain, the actual goal of domain adapta-
tion.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(5):898–916, 2011. 4

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. W. Vaughan. A theory of learning from different do-
mains. Machine Learning, 79(1-2):151–175, 2010. 2

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. arXiv:1612.05424, 2016.
2, 5

[4] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and
D. Erhan. Domain separation networks. In Advances in

Neural Information Processing Systems 29, pages 343–351.
2016. 2

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
vation feature for generic visual recognition. In International
Conference in Machine Learning (ICML), 2014. 2

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 2758–2766, 2015. 1

[7] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
Advances in neural information processing systems, pages
2366–2374, 2014. 1

[8] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Un-
supervised visual domain adaptation using subspace align-
ment. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2960–2967, 2013. 5

[9] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine
Learning Research, 17(1):2096–2030, 2016. 2, 4, 5

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. Advances in Neural Information
Processing Systems 27, pages 2672–2680, 2014. 2

[11] A. Gretton. A kernel two-sample test. Journal of Machine
Learning Research, 13:723–773, 2012. 2

[12] P. Haeusser, A. Mordvintsev, and D. Cremers. Learning by
association - a versatile semi-supervised training method for
neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 3, 5, 6, 7, 8

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Proceedings of the 25th International Conference of Neural
Information Processing Systems, 2012. 1, 4

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2323, 1998. 1, 4

[15] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning trans-
ferable features with deep adaptation networks. In Proceed-
ings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, pages 97–
105, 2015. 2, 5

[16] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008.
7

[17] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train con-
volutional networks for disparity, optical flow, and scene
flow estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4040–
4048, 2016. 1

[18] B. Moiseev, A. Konev, A. Chigorin, and A. Konushin. Eval-
uation of traffic sign recognition methods trained on synthet-
ically generated data. In International Conference on Ad-

2791

49

vanced Concepts for Intelligent Vision Systems, pages 576–
583. Springer, 2013. 5

[19] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and unsu-
pervised feature learning, volume 2011, page 5, 2011. 4

[20] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing
weights for deep domain adaptation. arXiv:1603.06432,
2016. 2

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. 1

[22] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning
transferrable representations for unsupervised domain adap-
tation. In Advances in Neural Information Processing Sys-
tems, pages 2110–2118, 2016. 5

[23] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The
German Traffic Sign Recognition Benchmark: A multi-class
classification competition. In IEEE International Joint Con-
ference on Neural Networks, pages 1453–1460, 2011. 5

[24] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy
domain adaptation. In Proceedings of the 30th AAAI Con-
ference on Artificial Intelligence, pages 2058–2065, 2016. 2,
5

[25] B. Sun and K. Saenko. Deep coral: Correlation alignment for
deep domain adaptation. In Computer Vision–ECCV 2016
Workshops, pages 443–450, 2016. 2

[26] D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ram-
das, A. Smola, and A. Gretton. Generative models and
model criticism via optimized maximum mean discrepancy.
arXiv:1611.04488, 2016. 6, 7

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015. 1

[28] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks
for object detection. In Advances in Neural Information Pro-
cessing Systems, pages 2553–2561, 2013. 1

[29] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1653–1660, 2014. 1

[30] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial
discriminative domain adaptation. Nips, 2016. 5

[31] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc., 1995. 2

[32] M. Wattenberg, F. Vigas, and I. Johnson. How to use t-sne ef-
fectively. Distill, 2016. http://distill.pub/2016/misread-tsne.
7

[33] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? Advances in
Neural Information Processing Systems 27, 27:1–9, 2014. 2

2792

50

17.4.2018 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Associative Domain Adaptation
Conference
Proceedings:

2017 IEEE International
Conference on Computer Vision
(ICCV)

Author: Philip Haeusser; Thomas
Frerix; Alexander Mordvintsev;
Daniel Cremers

Publisher: IEEE
Date: 22­29 Oct. 2017
Copyright © 2017, IEEE

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line ©
2011 IEEE.

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
on­line.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E­mail us at customercare@copyright.com

51

5
A S S O C I AT I V E D E E P C L U S T E R I N G

In the previous chapters we have investigated associative learning for
cases where labels are present. This chapter, which is based on Haeusser,
Plapp, Golkov, Aljalbout, and Cremers [33], introduces an extension
to the previous training scheme where no labels are used at all.

Humans are able to look at a large number of images, find similar-
ities and group images together by an abstract understanding of the
content. Researchers have been trying to implement such unsuper-
vised learning schemes for a long time: Given a dataset, find a rule to
assign each example to one of k clusters. We propose a novel training
schedule for neural networks that facilitates fully unsupervised end-
to-end clustering that is direct, i.e. outputs a probability distribution
over cluster memberships.

A neural network maps images to embeddings. We introduce cen-
troid variables with the same shape as image embeddings. These
variables are jointly trained with the network’s parameters. This is
achieved by a cost function associating the centroid variables with
the embeddings of input images. Finally, an additional layer maps
embeddings to logits allowing for the direct estimation of the respec-
tive cluster membership. Unlike other methods, this does not require
any additional classifier to be trained on the embeddings separately.

The proposed approach achieves state-of-the-art results in unsu-
pervised classification and we provide an extensive ablation study to
demonstrate its capabilities.

Figure 5.1: Associative deep clustering - overview

contributions of the author

The author of this dissertation was fully in charge of

• developing the key idea

• planning the experiments

• partially evaluating experiments

• writing substantial parts of the paper

53

Associative Deep Clustering:
Training a Classification Network with no Labels

Philip Haeusser 1 Johannes Plapp 1 Vladimir Golkov 1 Elie Aljalbout 1 Daniel Cremers 1

Abstract
Humans are able to look at a large number of
images, find similarities and group images to-
gether by an abstract understanding of the content.
Researchers have been trying to implement such
unsupervised learning schemes for a long time:
Given a dataset, e.g. images, find a rule to assign
each example to one of k clusters. We propose a
novel training schedule for neural networks that
facilitates fully unsupervised end-to-end cluster-
ing that is direct, i.e. outputs a probability distri-
bution over cluster memberships.

A neural network maps images to embeddings.
We introduce centroid variables that have the
same shape as image embeddings. These vari-
ables are jointly trained with the network’s pa-
rameters. This is achieved by a cost function that
associates the centroid variables with the embed-
dings of input images. Finally, an additional layer
maps embeddings to logits allowing for the direct
estimation of the respective cluster membership.
Unlike other methods, this does not require any
additional classifier to be trained on the embed-
dings in a separate step.

The proposed approach achieves state-of-the-art
results in unsupervised classification and we pro-
vide an extensive ablation study to demonstrate
its capabilities.

1. Introduction
1.1. Towards direct deep clustering

Deep neural networks have shown impressive potential on
a multitude of computer vision challenges (Szegedy et al.,
2013; Eigen et al., 2014; Toshev & Szegedy, 2014; Szegedy
et al., 2015; Dosovitskiy et al., 2015; Mayer et al., 2016). A
fundamental limitation in many applications is that they tra-

1Department of Informatics, TU Munich, Germany. Correspon-
dence to: Philip Haeusser <haeusser@in.tum.de>.

Under review for ECCV 2018

Figure 1. Associative deep clustering. Images (xi) and transforma-
tions of them (τ(xj)) are sent through a CNN in order to obtain
embeddings z. We introduce k centroid variables µk that have
the same dimensionality as the embeddings. Our proposed loss
function simultaneously trains these centroids and the network’s
parameters along with a mapping from embedding space to a clus-
ter membership distribution.

ditionally require huge amounts of labeled training data. To
circumvent this problem, a plethora of semi-supervised and
unsupervised training schemes have been proposed (Doer-
sch et al., 2015; Dosovitskiy et al., 2014; Lee, 2013; Huang
et al., 2016). They all aim at reducing the number of labeled
data while leveraging large quantities of unlabeled data.

It is an intriguing idea to train a neural network without any
labeled data at all by automatically discovering structure
in data given as minimal prior knowledge the number of
classes. In many real-world applications beyond the scope
of academic research, it is desired to discover structures in
large unlabeled data sets. When the goal is to separate date
into groups, this maneuver is called clustering. Deep neural
networks are the model of choice when it comes to image
understanding. In the past, however, deep neural networks
have rarely been trained for clustering directly. A more
common approach is feature learning. Here, a proxy task is
designed to generate a loss signal that can be used to update
the model parameters in an entirely unsupervised manner.
An exhaustive comparison of previous works is collected
in Section 1.2. All these approaches aim at transforming
an input image xi to a representation or embedding zi that
allows for clustering the data. In order to perform this
last step, a mapping from embedding space to clusters is
necessary, e.g. by training an additional classifier on the
features, such as k-means (MacQueen et al., 1967) or an
SVM (Suykens & Vandewalle, 1999) in a separate step.

A common problem in unsupervised learning is that there

54

Associative Deep Clustering

is no signal that tells the network to cluster different exam-
ples from the same class together although they look very
different in pixel space. We call this the blue sky problem
with the pictures of a flying bird and a flying airplane in
mind, both of which will contain many blue pixels but just
a few others that make the actual distinction. In particular
auto-encoder approaches suffer from the blue sky problem
as their cost function usually penalizes reconstruction in
pixel space and hence favors the encoding of potentially
unnecessary information such as the color of the sky.

1.2. Related work

Classical clustering approaches are limited to the origi-
nal data space and are thus not very effective in high-
dimensional spaces with complicated data distributions,
such as images. Early deep-learning-based clustering meth-
ods first train a feature extractor, and in a separate step apply
a clustering algorithm to the features (Goodfellow et al.,
2014; Radford et al., 2015; Salimans et al., 2016).

Well-clusterable deep representations are characterized by
high within-cluster similarities of points compared to low
across-cluster similarities. Some loss functions optimize
only one of these two aspects. Particularly, methods that
do not encourage across-cluster dissimilarities are at risk of
producing worse (or theoretically even trivial) representa-
tions/results (Yang et al., 2016a), but some of them nonethe-
less work well in practice. Other methods avoid trivial
representations by using additional techniques unrelated to
clustering, such as autoencoder reconstruction loss during
pre-training or entire training (Huang et al., 2014; Xie et al.,
2016; Yang et al., 2016a; Li et al., 2017).

Deep Embedded Clustering (DEC) (Xie et al., 2016) model
simultaneously learns feature representations and cluster
assignments. To get a good initialization, DEC needs auto-
encoder pre-training. Also, the approach has some issues
scaling to larger datasets such as STL-10.

Variational Deep Embedding (VaDE) (Zheng et al., 2016) is
a generative clustering approach based on variational autoen-
coders. It achieves significantly more accurate results on
small datasets, but does not scale to larger, higher-resolution
datasets. For STL-10, it uses a network pre-trained on the
dramatically larger Imagenet dataset.

Joint Unsupervised Learning (JULE) of representations and
clusters (Yang et al., 2016b) is based on agglomerative clus-
tering. In contrast to our method, JULE’s network train-
ing procedure alternates between cluster updates and net-
work training. JULE achieves very good results on several
datasets. However, its computational and memory require-
ments are relatively high as indicated by (Hsu & Lin, 2017).

Clustering convolutional neural networks (CCNN) (Hsu &
Lin, 2017) predict clustering assignments at the last layer,

and a clustering-friendly representation at an intermediate
layer. The training loss is the difference between the clus-
tering predictions and the results of k-means applied to the
learned representation. Interestingly, CCNN yields good
results in practice, despite both the clustering features and
the cluster predictions being initialized in random and con-
tradictory ways. CCNN requires running k-means in each
iteration.

Deep Embedded Regularized Clustering (DEPICT) (Dizaji
et al., 2017) is similar to DEC in that feature representations
and cluster assignments are simultaneously learned using a
deep network. An additional regularization term is used to
balance the cluster assignment probabilities allowing to get
rid of the pre-training step. This method achieved a perfor-
mance comparable to ours on MNIST and FGRC. However,
it requires pre-training using the autoencoder reconstruction
loss.

In Categorical Generative Adversarial Networks (Cat-
GANs) (Springenberg, 2015), unlike standard GANs, the
discriminator learns to separate the data into k categories
instead of learning a binary discriminative function. Results
on large datasets are not reported. Another approach based
on GANs is (Premachandran & Yuille, 2016).

Information-Maximizing Self-Augmented Training (IM-
SAT) (Hu et al., 2017) is based on Regularized Information
Maximization (RIM) (Krause et al., 2010), which learns
a probabilistic classifier that maximizes the mutual infor-
mation between the input and the class assignment. In
IMSAT this mutual information is represented by the differ-
ence between the marginal and conditional distribution of
those values. IMSAT also introduces regularization via self-
augmentation. This is achieved via an additional term to the
cost function which assures that the generated data point
and the original are similarly assigned. For large datasets,
IMSAT uses fixed pre-trained network layers.

Several other methods with various quality of results ex-
ist (Chen, 2015; Lukic et al., 2016; Wang et al., 2016; Chen
et al., 2017; Saito & Tan, 2017; Harchaoui et al., 2017).

In summary, previous methods either do not scale well to
large datasets (Xie et al., 2016; Zheng et al., 2016; Sprin-
genberg, 2015), have high computational and/or memory
cost (Yang et al., 2016b), require a clustering algorithm to
be run during or after the training (most methods, e.g. (Yang
et al., 2016b; Hsu & Lin, 2017)), are at risk of producing
trivial representations, and/or require some labeled data (Hu
et al., 2017) or clustering-unrelated losses (for example ad-
ditional autoencoder loss (Huang et al., 2014; Xie et al.,
2016; Yang et al., 2016a; Li et al., 2017; Zheng et al., 2016;
Dizaji et al., 2017)) to (pre-)train (parts of) the network.
In particular reconstruction losses tend to overestimate the
importance of low level features such as colors.

55

Associative Deep Clustering

In order to solve these problems, it is desirable to develop
new training schemes that tackle the clustering problem as
a direct end-to-end training of a neural network.

1.3. Contribution

In this paper, we propose Associative Deep Clustering as an
end-to-end framework that allows to train a neural network
directly for clustering. In particular, we introduce centroid
embeddings: variables that look like embeddings of images
but are actually part of the model. They can be optimized
and they are used to learn a projection from embedding
space to the desired dimensionality, e.g. logits ∈ Rk where
k is the number of classes. The intuition is that the centroid
variables carry over high-level information about the data
structure (i.e. cluster centroid embeddings) from iteration to
iteration. It makes sense to train a neural network directly
for a clustering task, rather than a proxy task (such as re-
construction from embeddings) since the ultimate goal is
actually clustering.

To facilitate this, we introduce a cost function consisting of
multiple terms which cause clusters to separate while associ-
ating similar images. Associations (Haeusser et al., 2017b)
are made between centroids and image embeddings, and
between embeddings of images and their transformations.
Unlike previous methods, we use clustering-specific loss
terms that allow to directly learn the assignment of an im-
age to a cluster. There is no need for a subsequent training
procedure on the embeddings. The output of the network is
a cluster membership distribution for a given input image.
We demonstrate that this approach is useful for clustering
images without any prior knowledge other than the number
of classes.

The resulting learned cluster assignments are so good
that subsequently re-running a clustering algorithm on the
learned embeddings does not further improve the results
(unlike e.g. (Yang et al., 2016b)).

To the best of our knowledge, we are the first to introduce
a training scheme for direct clustering jointly with network
training, as opposed to feature learning approaches where
the obtained features need to be clustered by a second algo-
rithm such as k-means (as in most methods), or to methods
where the clustering is directly learned but parts of the net-
work are pre-trained and fixed (Hu et al., 2017).

Moreover, unlike most methods, we use only clustering-
specific and invariance-imposing losses and no clustering-
unrelated losses such as autoencoder reconstruction or
classification-based pre-training.

In summary, our contributions are:

• We introduce centroid variables that are jointly trained
with the network’s weights.

• This is facilitated by our clustering cost function that
makes associations between cluster centroids and im-
age embeddings. No labels are needed at any time.
In particular, there is no subsequent clustering step
necessary such as k-means.

• We conducted an extensive ablation study demonstrat-
ing the effects of our proposed training schedule.

• Our method outperforms the current state of the art on
a number of datasets.

• All code is available as an open-source implementation
in TensorFlow1.

2. Associative Deep Clustering
In this section, we describe our setup and the cost func-
tion. Figure 2 depicts an overall schematic which will be
referenced in the following.

2.1. Associative learning

Recent works have shown that associations in embedding
space can be used for semi-supervised training and domain
adaptation (Haeusser et al., 2017b;a). Both applications
require an amount of labeled training data which is fed
through a neural network along with unlabeled data. Then,
an imaginary walker is sent from embeddings of labeled
examples to embeddings of unlabeled examples and back.
From this idea, a cost function is constructed that encour-
ages consistent association cycles, meaning that two labeled
examples are associated via an unlabeled example with a
high probability if the labels match and with a low probabil-
ity otherwise. More formally: LetAi andBj be embeddings
of labeled and unlabeled data, respectively. Then a similar-
ity matrix Mij

..= Ai ·Bj can be defined. These similarities
can now be transformed into a transition probability matrix
by softmaxing M over columns:

P ab
ij = P (Bj |Ai) ..=(softmaxcols(M))ij (1)

=exp(Mij)/
∑

j′

exp(Mij′)

Analogously, the transition probabilities in the other direc-
tion (P ba) are obtained by replacing M with MT . Finally,
the metric of interest is the probability of an association

1The code will be made available upon publication of this
paper.

56

Associative Deep Clustering

cycle from A to B to A:

P aba
ij

..=(P abP ba)ij (2)

=
∑

k

P ab
ik P

ba
kj

Since the labels of A are known, it is possible to define
a target distribution where inconsistent association cycles
(where labels mismatch) have zero probability:

Tij ..=

{
1/#class(Ai) class(Ai) = class(Aj)
0 else

(3)

Now, the associative loss function becomesLassoc(A,B) ..=
crossentropy(Tij ;P

ab
ij). For more details, the reader is

kindly referred to (Haeusser et al., 2017b).

2.2. Clustering loss function

In this work, we further develop this setup since there is no
labeled batchA. In its stead, we introduce centroid variables
µk that have the same dimensionality as the embeddings
and that have surrogate labels 0, 1, . . . , k − 1. With them
and embeddings of (augmented) images, we can define
clustering associations.

We define two associative loss terms:

• Lassoc,c
..= Lassoc(µk; zi) where associations are

made between (labeled) centroid variables µk (instead
of A) and (unlabeled) image embeddings zi

• Lassoc,aug
..= Lassoc(zi; f(τ(xj))) where we apply 4

random transformations τ to each image xj resulting
in 4 “augmented” embeddings zj that share the same
surrogate label. The “labeled” batch A then consists
of all augmented images, the “unlabeled” batch B of
embeddings of the unaugmented images xi.

For simplicity, we imply a sum over all examples xi and
xj in the batch. The loss is then divided by the number of
summands.

The transformation τ randomly applies cropping and flip-
ping, Gaussian noise, small rotations and changes in bright-
ness, saturation and hue.

All embeddings and centroids are regularized with an L2
loss Lnorm to have norm 1. We chose this value empiri-
cally to avoid too small numbers in the 128-dimensional
embedding vectors.

A fully-connected layer W projects embeddings (µk, zi
and zj) to logits ok,i,j ∈ Rk. After a softmax operation,
each logit vector entry can be interpreted as the probabil-
ity of membership in the respective cluster. W is opti-
mized through a standard cross-entropy classification loss
Lclassification where the inputs are µk and the desired out-
puts are the surrogate labels of the centroids.

Finally, we define a transformation loss

Ltrafo
..= |1− f(xi)T f(τ(xj))− crossentropy(oi, oj)|

(4)

Here, we apply τ once and set it once to the identity such
that the “augmented” batch contains each image and a trans-
formed version of it. This formulation can be interpreted
as a trick to obtain weak labels for examples since the log-
its yield an estimate for the class membership “to the best
knowledge of the network so far”. Particularly, this loss
serves multiple purposes:

• The logit oi of an image xi and the logit oj of the
transformed version τ(xj) should be similar for i = j.

• Images that the network thinks belong to the same clus-
ter (i.e. their centroid distribution o is similar) should
also have similar embeddings, regardless of whether τ
was applied.

Figure 2. Schematic of the framework and the losses. Green boxes are trainable variables. Yellow boxes are representations of the input.
Red lines connect the losses with their inputs. Please find the definitions in Section 2.2

57

Associative Deep Clustering

MNIST FRGC SVHN CIFAR-10 STL-10
k-means on pixels 53.49 24.3 12.5 20.8 22.0
DEC (Xie et al., 2016) 84.30 37.8 - - 35.9‡†

pre-train+DEC (Hu et al., 2017) - - 11.9 (0.4)† 46.9 (0.9)† 78.1 (0.1)†

VaDE (Zheng et al., 2016) 94.46 - - - 84.5†

CatGAN (Springenberg, 2015) 95.73 - - - -
JULE (Yang et al., 2016b) 96.4 46.1 - 63.5‡‡ -
DEPICT (Dizaji et al., 2017) 96.5 47.0 - - -
DEPICT unsupervised∗ - - 18.6 (1.1) 12.4 (0.5) 22.8 (1.5)
IMSAT (Hu et al., 2017) 98.4 (0.4) - 57.3 (3.9) ‡ 45.6 (2.9)† 94.1†

IMSAT unsupervised∗ - - 23.2 (0.4) 19.9 (0.2) 24.3 (0.9)
CCNN (Hsu & Lin, 2017) 91.6 - - - -
ours (VCNN): Mean 98.7 (0.6) 43.7 (1.9) 37.2 (4.6) 26.7 (2.0) 38.9 (5.9)
ours (VCNN): Best 99.2 46.0 43.4 28.7 41.5
ours (ResNet): Mean 95.4 (2.9) 21.9 (4.9) 38.6 (4.1) 29.3 (1.5) 47.8 (2.7)
ours (ResNet): Best 97.3 29.0 45.3 32.5 53.0
ours (ResNet): K-Means 93.8 (4.5) 24.0 (3.0) 35.4 (3.8) 30.0 (1.8) 47.1 (3.2)

Table 1. Clustering. Accuracy (%) on the test sets (higher is better). Standard deviation in parentheses where available. We report the mean
and best of 20 runs for two architectures. For ResNet, we also report the accuracy when k-means is run on top of the obtained embeddings
after convergence. †: Using features after pre-training on Imagenet. ‡: Using GIST features. ‡†: Using Histogram-of-oriented-gradients
(HOG) features. ‡‡: Using 5k labels to train a classifier on top of the features from clustering. ∗: For DEPICT and IMSAT, we carried out
additional experiments without pre-training, i.e. unsupervisedly and from scratch. We report mean and standard deviation from 10 runs.

• Embeddings of one image and a different image are
allowed to be similar if the centroid membership is
similar.

• Embeddings are forced to be dissimilar if they do not
belong to the same cluster.

The final cost function now becomes

L = αLassoc,c (5)
+ βLassoc,aug (6)
+ γLnorm (7)
+ δLtrafo (8)
+ Lclassification (9)

with the loss weights α, β, γ, δ.

In the remainder of this paper, we present an ablation study
to demonstrate that the loss terms do in fact support the
clustering performance. From this study, we conclude on
a set of hyper parameters to be held fixed for all datasets.
With these fixed parameters, we finally report clustering
scores on various datasets along with a qualitative analysis
of the clustering results.

3. Experiments
3.1. Training procedure

For all experiments, we start with a warm-up phase where
we set all loss weights to zero except β = 0.9 and γ = 10−5.

Lassoc,aug is used to initialize the weights of the network.
After 5,000 steps, we find an initialization for µk by running
k-means on the training embeddings. Then, we activate the
other loss weights.

We use the Adam optimizer (Kingma & Ba, 2014) with
(beta1=0.8, beta2=0.9) and a learning rate of 0.0008. This
learning rate is divided by 3 every 10,000 iterations. Fol-
lowing (Goyal et al., 2017) we also adopt a warmup-phase
of 2,000 steps for the learning rate.

We report results on two architectures: A vanilla convo-
lutional neural net from (Haeusser et al., 2017b) (in the
following referred to as VCNN) and the commonly used
ResNet architecture (He et al., 2016). For VCNN, we adopt
the hyper-parameters used in the original work, specifically
a mini-batch size of 100 and embedding size 128. For
ResNet, we use the architecture specified for CIFAR-10 by
(He et al., 2016) for all datasets except STL-10. Due to
the larger resolution of this dataset, we adopt the ImageNet
variant, and modify it in the following way:

• The kernel size for the first convolutional layer be-
comes 3, with a stride of 1.

• The subsequent max-pooling layer is set to 2x2

• We reduce the number of filters by a factor of 2.

We use a mini-batch size of 128 images. For ResNet, we use
64-dimensional embedding vectors, as the CIFAR10-variant

58

Associative Deep Clustering

only has 64 filters in the last layer. We use a block size
of 3 for MNIST, FRGC and STL-10, and 5 for SVHN and
CIFAR-10.

The visit weight for both association losses is set to 0.3.

In order to find reasonable loss weights and investigate
the importance, we conducted an ablation study which is
described in the following section.

3.2. Ablation study

We randomly sampled the loss weights for all previously
introduced losses in the range [0; 1] except for the normal-
ization loss weight γ and ran 1,061 experiments on MNIST.
Then, we used this clustering model to assign classes to the
MNIST test set. Following (Xie et al., 2016), we picked the
permutation of class labels that reflects the true class labels
best and summarized the respective accuracies in Figure 5.
For each point in a plot, we held only the one parameter
fixed and averaged all according runs. This explains the er-
ror bars which arise from variance of all other parameters. It
can still be seen very clearly that each loss has an important
contribution to the test accuracy indicating the importance
of the respective terms in our cost function.

We carried out similar experiments for other datasets which
allowed to choose one set of hyper parameters for all subse-
quent experiments, which is described in the next section.

In Table 2, we report the results of an ablation study of the
different loss terms. It becomes evident that the contribution
of each individual loss term is crucial.

3.3. Clustering performance

From the previous section, we chose the following hyper
parameters to hold fixed for all datasets:

α = 1;β = 0.9; γ = 10−5; δ = 2× 10−5

3.4. Evaluation protocol

Following (Xie et al., 2016), we set k to be the number
of ground-truth classes in each dataset, and evaluate the
clustering performance using the unsupervised clustering
accuracy (ACC) metric. For every dataset, we run our pro-
posed algorithm 10 times, and report multiple statistics:

• Mean and standard deviation of all clustering accura-
cies.

• The maximum clustering accuracy of all runs.

3.5. Datasets

We evaluate our algorithm on the following, widely-used
image datasets:

Figure 3. Clustering examples from MNIST. Each row contains the
examples with the highest probability to belong to the respective
cluster.

MNIST (LeCun, 1998) is a benchmark containing 70,000
handwritten digits. We use all images from the training set
without their labels. Following (Haeusser et al., 2017b), we
set the visit weight to 0.8. We also use 1,000 warm-up steps.

For FRGC, we follow the protocol introduced in (Yang
et al., 2016b), and use the 20 selected subsets, providing
a total of 2,462 face images. They have been cropped to
32×32px images. We use a visit weight of 0.1 and 1,000
warm-up steps.

SVHN (Netzer et al., 2011) contains digits extracted from
house numbers in Google Street View images. We use
the training set combined with 150,000 images from the
additional, unlabeled set for training.

CIFAR-10 (Krizhevsky & Hinton, 2009) contains tiny im-
ages of ten different object classes. Here, we use all images
of the training set.

STL-10 (Coates et al., 2011) is similar to CIFAR-10 in that
it also has 10 object classes, but at a significantly higher res-
olution (96×96px). We use all 5,000 images of the training
set for our algorithm. We do not use the unlabeled set, as it
contains images of objects of other classes that are not in the
training set. We randomly crop images to 64×64px during
training, and use a center crop of this size for evaluation.

Table 1 summarizes the results. We achieve state-of-the-art
results on MNIST, SVHN, CIFAR-10 and STL-10.

59

Associative Deep Clustering

Figure 4. Clustering examples from STL-10. Each row contains the examples with the highest probability to belong to the respective
cluster.

Figure 5. Ablation study for different hyper-parameters on MNIST.

Active loss terms: Lassoc,aug Lassoc,c + Lnorm Lassoc,c + Lnorm+ Lassoc,aug all (cf. Table 1)
MNIST VCNN 27.6 (3.8) / 85.3 (6.4) 66.7 (8.7) 97.0 (3.8) 98.7 (0.6)
CIFAR-10 ResNet 19.4 (0.5) / 30.2 (1.2) 17.8 (0.8) 27.1 (0.9) 29.3 (1.5)
STL-10 ResNet 19.5 (2.7) / 42.0 (1.3) 16.2 (1.1) 45.6 (3.1) 47.8 (2.7)

Table 2. Ablation study for different loss terms. We report the mean classification test error mean and standard deviation of 10 runs. In the
first column, as no centroids are trained, we report scores using direct classification (left), and using k-means on embeddings after the
warm-up phase (right). In general, all loss terms contribute to the final results. Also, especially on more complex datasets such as STL-10,
associations with augmented samples are important.

60

Associative Deep Clustering

3.6. Qualitative analysis

Figure 3 and Figure 4 show images from the MNIST and
STL-10 test set, respectively. The examples shown have the
highest probability to belong to the respective clusters (logit
argmax). The MNIST examples reveal that the network has
learned to cluster hand-written digits well while generalizing
to different ways how digits can be written. For example,
2 can be written with a little loop. Some examples of 8
have a closed loop, some don’t. The network does not make
a difference here which shows that the proposed training
scheme does learn a high-level abstraction.

Analogously, for STL-10, nearly all images are clustered
correctly, despite a broad variance in colors and shapes. It is
interesting to see that there is no bird among the top-scoring
samples of the airplane-cluster, and all birds are correctly
clustered even if they are in front of a blue background. This
demonstrates that our proposed algorithm does not solely
rely on low-level features such as color (cf. the blue sky
problem) but actually finds common patterns based on more
complex similarities.

4. Conclusion
We have introduced Associative Deep Clustering as a novel,
direct clustering algorithm for deep neural networks. The
central idea is to jointly train centroid variables with the
network’s weights by using a clustering cost function. No
labels are needed at any time and our approach does not
require subsequent clustering such as many feature learning
schemes. The importance of the loss terms were demon-
strated in an ablation study and the effectiveness of the
training schedule is reflected in state-of-the-art results in
classification. A qualitative investigation suggests that our
method is able to successfully discover structure in image
data even when there is high intra-class variation. In cluster-
ing, there is no absolute right or wrong - multiple solutions
can be valid, depending on the categories that a human
introduces. We believe, however, that our formulation is
applicable to many real world problems and that the simple
implementation will hopefully inspire many future works.

References
Chen, Dongdong, Lv, Jiancheng, and Yi, Zhang. Unsuper-

vised multi-manifold clustering by learning deep repre-
sentation. In Workshops at the 31th AAAI conference on
artificial intelligence (AAAI), pp. 385–391, 2017. 2

Chen, Gang. Deep learning with nonparametric clustering.
arXiv preprint arXiv:1501.03084, 2015. 2

Coates, Adam, Ng, Andrew, and Lee, Honglak. An analysis
of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pp. 215–223, 2011.
6

Dizaji, Kamran Ghasedi, Herandi, Amirhossein, and Huang,
Heng. Deep clustering via joint convolutional autoen-
coder embedding and relative entropy minimization.
arXiv preprint arXiv:1704.06327, 2017. 2, 5

Doersch, Carl, Gupta, Abhinav, and Efros, Alexei A. Un-
supervised visual representation learning by context pre-
diction. In Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 1422–1430, 2015. 1

Dosovitskiy, Alexey, Springenberg, Jost Tobias, Riedmiller,
Martin, and Brox, Thomas. Discriminative unsupervised
feature learning with convolutional neural networks. In
Advances in Neural Information Processing Systems, pp.
766–774, 2014. 1

Dosovitskiy, Alexey, Fischer, Philipp, Ilg, Eddy, Hausser,
Philip, Hazirbas, Caner, Golkov, Vladimir, van der Smagt,
Patrick, Cremers, Daniel, and Brox, Thomas. Flownet:
Learning optical flow with convolutional networks. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 2758–2766, 2015. 1

Eigen, David, Puhrsch, Christian, and Fergus, Rob. Depth
map prediction from a single image using a multi-scale
deep network. In Advances in neural information pro-
cessing systems, pp. 2366–2374, 2014. 1

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in Neural Information Processing Systems,
pp. 2672–2680, 2014. 2

Goyal, Priya, Dollár, Piotr, Girshick, Ross, Noordhuis,
Pieter, Wesolowski, Lukasz, Kyrola, Aapo, Tulloch, An-
drew, Jia, Yangqing, and He, Kaiming. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017. 5

Haeusser, P., Frerix, T., Mordvintsev, A., and Cremers, D.
Associative domain adaptation. In IEEE International
Conference on Computer Vision (ICCV), 2017a. 3

Haeusser, P., Mordvintsev, A., and Cremers, D. Learning by
association - a versatile semi-supervised training method
for neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017b. 3, 4, 5, 6

Harchaoui, Warith, Mattei, Pierre-Alexandre, and Bouvey-
ron, Charles. Deep adversarial gaussian mixture auto-
encoder for clustering. 2017. 2

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In

61

Associative Deep Clustering

Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016. 5

Hsu, Chih-Chung and Lin, Chia-Wen. CNN-based joint
clustering and representation learning with feature drift
compensation for large-scale image data. arXiv preprint
arXiv:1705.07091, 2017. 2, 5

Hu, Weihua, Miyato, Takeru, Tokui, Seiya, Matsumoto,
Eiichi, and Sugiyama, Masashi. Learning discrete rep-
resentations via information maximizing self augmented
training. arXiv preprint arXiv:1702.08720, 2017. 2, 3, 5

Huang, Chen, Change Loy, Chen, and Tang, Xiaoou. Unsu-
pervised learning of discriminative attributes and visual
representations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5175–
5184, 2016. 1

Huang, Peihao, Huang, Yan, Wang, Wei, and Wang, Liang.
Deep embedding network for clustering. In Pattern
Recognition (ICPR), 2014 22nd International Conference
on, pp. 1532–1537. IEEE, 2014. 2

Kingma, Diederik and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Krause, Andreas, Perona, Pietro, and Gomes, Ryan G. Dis-
criminative clustering by regularized information maxi-
mization. In Advances in neural information processing
systems, pp. 775–783, 2010. 2

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images. 2009. 6

LeCun, Yann. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 6

Lee, Dong-Hyun. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In Workshop on Challenges in Representation
Learning, ICML, volume 3, pp. 2, 2013. 1

Li, Fengfu, Qiao, Hong, Zhang, Bo, and Xi, Xuanyang. Dis-
criminatively boosted image clustering with fully convo-
lutional auto-encoders. arXiv preprint arXiv:1703.07980,
2017. 2

Lukic, Yanick, Vogt, Carlo, Dürr, Oliver, and Stadelmann,
Thilo. Speaker identification and clustering using con-
volutional neural networks. In Machine Learning for
Signal Processing (MLSP), 2016 IEEE 26th International
Workshop on, pp. 1–6. IEEE, 2016. 2

MacQueen, James et al. Some methods for classification
and analysis of multivariate observations. In Proceedings
of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, pp. 281–297. Oakland, CA,
USA., 1967. 1

Mayer, Nikolaus, Ilg, Eddy, Hausser, Philip, Fischer,
Philipp, Cremers, Daniel, Dosovitskiy, Alexey, and Brox,
Thomas. A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4040–4048, 2016. 1

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessan-
dro, Wu, Bo, and Ng, Andrew Y. Reading digits in natural
images with unsupervised feature learning. In NIPS work-
shop on deep learning and unsupervised feature learning,
volume 2011, pp. 5, 2011. 6

Premachandran, Vittal and Yuille, Alan L. Unsupervised
learning using generative adversarial training and cluster-
ing. 2016. 2

Radford, Alec, Metz, Luke, and Chintala, Soumith. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 2

Saito, Sean and Tan, Robby T. Neural clustering: Concate-
nating layers for better projections. 2017. 2

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech,
Cheung, Vicki, Radford, Alec, and Chen, Xi. Im-
proved techniques for training gans. arXiv preprint
arXiv:1606.03498, 2016. 2

Springenberg, Jost Tobias. Unsupervised and semi-
supervised learning with categorical generative adver-
sarial networks. arXiv preprint arXiv:1511.06390, 2015.
2, 5

Suykens, Johan AK and Vandewalle, Joos. Least squares
support vector machine classifiers. Neural processing
letters, 9(3):293–300, 1999. 1

Szegedy, Christian, Toshev, Alexander, and Erhan, Dumitru.
Deep neural networks for object detection. In Advances in
Neural Information Processing Systems, pp. 2553–2561,
2013. 1

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru,
Vanhoucke, Vincent, and Rabinovich, Andrew. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1–9, 2015. 1

Toshev, Alexander and Szegedy, Christian. Deeppose: Hu-
man pose estimation via deep neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1653–1660, 2014. 1

62

Associative Deep Clustering

Wang, Zhangyang, Chang, Shiyu, Zhou, Jiayu, Wang, Meng,
and Huang, Thomas S. Learning a task-specific deep
architecture for clustering. In Proceedings of the 2016
SIAM International Conference on Data Mining, pp. 369–
377. SIAM, 2016. 2

Xie, Junyuan, Girshick, Ross, and Farhadi, Ali. Unsuper-
vised deep embedding for clustering analysis. In Inter-
national Conference on Machine Learning, pp. 478–487,
2016. 2, 5, 6

Yang, Bo, Fu, Xiao, Sidiropoulos, Nicholas D, and Hong,
Mingyi. Towards k-means-friendly spaces: Simulta-
neous deep learning and clustering. arXiv preprint
arXiv:1610.04794, 2016a. 2

Yang, Jianwei, Parikh, Devi, and Batra, Dhruv. Joint un-
supervised learning of deep representations and image
clusters. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 5147–5156,
2016b. 2, 3, 5, 6

Zheng, Yin, Tan, Huachun, Tang, Bangsheng, Zhou, Han-
ning, et al. Variational deep embedding: A generative
approach to clustering. arXiv preprint arXiv:1611.05148,
2016. 2, 5

63

Part III

C O N C L U S I O N

6
D I S C U S S I O N A N D C O N C L U S I O N

Deep learning models are extremely powerful tools that have revo-
lutionized not only computer vision research [58]. One of the main
problems has been the necessity of large amounts of training data.

In this thesis, we have proposed an approach to cope with this
problem: learning by association. This framework is generally applica-
ble for all types of categorical learning problems such as classification
or clustering. The capabilities of the proposed method were assessed
for semi-supervised, domain adaptation and unsupervised setups.

The key idea is to construct a cost function that "associates" train-
ing examples in embedding space. Associations can be made between
labeled and unlabeled data (semi-supervised setup) or data from dif-
ferent domains (domain adaptation setup). In a third scenario, we
investigated how associative learning can be applied in an unsuper-
vised setup where new model variables ("centroids") are defined and
optimized with associations.

With the associative training scheme, it is possible to obtain embed-
dings that are close if they belong to examples from the same class
and distant otherwise. We have demonstrated that this novel training
schedule allows to leverage unlabeled data in all four setups.

One of the key advantages of associative learning is the lean formu-
lation which allows to add it to any existing classification network
architecture at almost no performance cost. Modifications that have
to be made to such an existing network so as to to integrate this
method are of the order of ten lines of code. The training scheme is
very intuitive and interpretable. It is easily possible to obtain graphs
such as Figure 2 in Chapter 3 where walker probabilities from class
examples to others are shown. This can be used to interpret which
connections between classes the network has learned.

This work serves as a starting point for further research in inter-
pretable deep learning that requires less annotated training data. It is
possible to scale the associative training scheme up to problems with
a large number of classes. However, a few optimizations would have
to be made which was beyond the scope of this work.

Currently, the implementation of associative learning is optimized
for maximum versatility and performance. The process is broken
down to matrix multiplications and nonlinearities which can be car-
ried out fast on a GPU. In particular, the current formulation requires

67

68 discussion and conclusion

mini-batches to be large enough such that all classes are sufficiently
represented in the unlabeled batch.

If the unlabeled training set is balanced, this can easily be achieved
by sampling a large enough number of examples. The main limitation
is how much memory is available for mini-batches of a particular size.
With a hierarchical class representation [77, 78, 96] or caching mech-
anisms [89], it could be possible to scale this scheme up to an arbi-
trary number of classes. Another approach to tackle this problem is to
make more use of heavily parallelized training such as described in
Chapter 2: the same network is instantiated on multiple machines and
gradients are handled centrally. This effectively increases the batch
size.

If the unlabeled training set is unbalanced, one strategy could be to
pre-sample the unlabeled subset by assigning weak labels [41, 76, 95].
These labels could come from predictions of the current network or
from another model. The former case would have the disadvantage
that if the model has already learned misconceptions, it could become
more difficult to overcome them because of this feedback loop. One
might have to weigh the classification loss higher in the beginning to
avoid this. The unlabeled batch should also contain completely ran-
domly samples examples in addition to the "smartly" sampled exam-
ples so that potentially wrongly pre-sampled examples do not domi-
nate.

So far, associative learning has only been applied to tasks where an
image as a whole was classified or clustered. Pixel-wise tasks such
as image segmentation [63] could also be integrated in the associative
framework. Rather than giving the entire image one label, seman-
tically coherent subparts of the image are detected and labeled. by
breaking down the image in patches whose embeddings are then as-
sociated. As long as a mapping from an input (patch or superpixel) to
an embedding can be achieved, an associative training scheme can be
applied. A naive approach could be to split the image in rectangular
patches and then classify them. A more elaborate one could be the
application of hypercolums [34] where an embedding for single pix-
els is obtained by considering activations of all CNN units above that
pixel. Integrating such a method in the associative learning framework
could be used for semi-supervised segmentation for example.

In this thesis we have introduced associative learning for semi- super-
vised classification, domain adaptation and clustering. The general
scheme was to obtain useful embeddings for images. A new line of
work is to obtain embeddings for images and text. Generic text em-
beddings are successfully used in a variety of tasks. However, they
are often learned by capturing the co-occurrence structure from pure
text corpora, resulting in limitations of their ability to generalize. In a
follow-up work, we explored models that incorporate visual informa-
tion into the text representation. This was published in the preprint

discussion and conclusion 69

Figure 6.1: An overview of the multimodal association model [55]. Images
are fed into a pre-trained CNN (Eimg). Their representation is
then transformed via W to match the dimension of the sentence
embeddings. The sentences are encoded via a text embedding
model (Etxt). Finally, the embeddings are paired in two ways:
matching pairs and incorrect pairs. For each set of pairs, we com-
pute the similarity. The loss signal comes from the Pearson corre-
lation, which should be 1 for matching pairs and −1 for incorrect
pairs. Only green shaded modules are trained.

Kurach, Gelly, Jastrzebski, Haeusser, Teytaud, Vincent, and Bousquet
[55]. Figure 6.1 shows a high-level summary of the approach. Text
and image data is encoded by two separate networks. The associa-
tion step again happens in embedding space where text and imagery
that belongs together, is associated. Based on comprehensive ablation
studies, we proposed a conceptually simple, yet well performing ar-
chitecture. It outperforms previous multimodal approaches on a set
of well established benchmarks. We also improved the state-of-the-
art results for image-related text datasets, using less data by orders of
magnitude.

In summary, learning by association is promising for future deep
learning research and industrial applications.

In particular in the field of self-driving cars where vast amounts
of data from different sensoric modalities need to be processed [42],
new methods to reduce the number of labeled training examples will
pave the way for technological advancement. Recently, efforts have
been made to solve the task of self-driving cars purely based on deep
learning [3]. This case particularly requires smart strategies to transfer
knowledge acquired under certain geographical or seasonal circum-
stances to others. Landscapes or traffic signs look differently in differ-
ent parts of the world and winter scenery has different features than
the outside world in summer. Profound domain adaptation methods
will be very useful to overcome this problem.

In the domain of automated medical image analysis, manual expert
annotation is prohibitively expensive. With the proposed methods,
neural networks can be better used in this important area.

The idea of rendering synthetic data to (pre-)train neural networks
has become popular recently [19, 66]. Synthetic training data has sev-
eral benefits: It is possible to generate theoretically infinitely many
training examples. Researchers can quantify variances and ensure

70 discussion and conclusion

that sufficient variety is present in the training datasets. One can ex-
plicitly model the real world and implement knowledge about phys-
ical principles in the data rendering engine. Then, a domain adapta-
tion setup such as described in Chapter 4 can be used to combine con-
cepts learned in the controlled, synthetic environment to data from
the real world. Although, in general, it is tremendously less expensive
to build synthetic models than to manually annotate large quantities
of data, it would be beneficial to reduce the overall amount of manual
work necessary.

With recent advancements in the field of generative adversarial net-
works (GANs) [29], an interesting approach would be to learn the un-
derlying generative distribution of the dataset, rather than explicitly
modeling it manually. It shall be the subject of further research to de-
termine whether the formulation of associative learning can be useful,
for example, as part of a cost function for the discriminator of a GAN.

It will be interesting to quantify how realistic data for pre-training
needs to be. There are several measures for the similarity of image
statistics such as maximum mean discrepancy (MMD) [30], the Inception
Score [85] or the Fréchet distance Distance [37]. These metrics have been
mostly used for the training of GANs in the past but they might be
applicable for benchmarking how much effort needs to be put into
the generation of realistic synthetic training data.

A big topic in deep learning is the quantification of uncertainty. It
will be crucial for industrial and scientific applications to develop a
unified scheme to estimate how trustworthy a network’s prediction
is. Gal and Ghahramani [24] propose to use dropout to estimate the
model uncertainty. The "dropout method" could easily be integrated
in associative learning since this training scheme is independent of the
network architecture.

With improvements like these, the presented method will hopefully
be even more useful for both academic and industrial applications
where manually labeled training data is costly or even impossible to
obtain. It might get us one step closer to understanding how humans
actually learn. Modeling the complex processes in the brain of a learn-
ing baby exploring the world, however, will still remain a challenge
for a long time.

B I B L I O G R A P H Y

[1] Martın Abadi et al. “Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems.” In: arXiv preprint
arXiv:1603.04467 (2016).

[2] James Bergstra et al. “Theano: A CPU and GPU math compiler
in Python.” In: Proc. 9th Python in Science Conf. Vol. 1. 2010.

[3] Mariusz Bojarski et al. “End to end learning for self-driving
cars.” In: arXiv preprint arXiv:1604.07316 (2016).

[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization
methods for large-scale machine learning.” In: arXiv preprint
arXiv:1606.04838 (2016).

[5] Arthur E Bryson. “A gradient method for optimizing multi-
stage allocation processes.” In: Proc. Harvard Univ. Symposium
on digital computers and their applications. 1961, p. 72.

[6] Arthur Earl Bryson. Applied optimal control: optimization, estima-
tion and control. CRC Press, 1975.

[7] Gavin C Cawley and Nicola LC Talbot. “On over-fitting in model
selection and subsequent selection bias in performance eval-
uation.” In: Journal of Machine Learning Research 11.Jul (2010),
pp. 2079–2107.

[8] Nitesh V Chawla. “Data mining for imbalanced datasets: An
overview.” In: Data mining and knowledge discovery handbook. Springer,
2009, pp. 875–886.

[9] Anna Choromanska et al. “The loss surfaces of multilayer net-
works.” In: Artificial Intelligence and Statistics. 2015, pp. 192–204.

[10] Marc Claesen and Bart De Moor. “Hyperparameter search in
machine learning.” In: arXiv preprint arXiv:1502.02127 (2015).

[11] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a
modular machine learning software library. Tech. rep. Idiap, 2002.

[12] George Cybenko. “Approximation by superpositions of a sig-
moidal function.” In: Mathematics of Control, Signals, and Systems
(MCSS) 2.4 (1989), pp. 303–314.

[13] Navneet Dalal and Bill Triggs. “Histograms of oriented gradi-
ents for human detection.” In: Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on.
Vol. 1. IEEE. 2005, pp. 886–893.

[14] Andreas Damianou and Neil Lawrence. “Deep gaussian pro-
cesses.” In: Artificial Intelligence and Statistics. 2013, pp. 207–215.

71

72 Bibliography

[15] Yann N Dauphin et al. “Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization.”
In: Advances in neural information processing systems. 2014, pp. 2933–
2941.

[16] Jeffrey Dean et al. “Large scale distributed deep networks.” In:
Advances in neural information processing systems. 2012, pp. 1223–
1231.

[17] Jeff Donahue et al. “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition.” In: International Confer-
ence in Machine Learning (ICML). 2014.

[18] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox.
“Learning to Generate Chairs with Convolutional Neural Net-
works.” In: CVPR. 2015.

[19] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with
convolutional networks.” In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 2758–2766.

[20] Stuart Dreyfus. “The numerical solution of variational prob-
lems.” In: Journal of Mathematical Analysis and Applications 5.1
(1962), pp. 30–45.

[21] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. “De-
scriptor Matching with Convolutional Neural Networks: a Com-
parison to SIFT.” In: (2014). pre-print, arXiv:1405.5769v1 [cs.CV].

[22] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-
organizing neural network model for a mechanism of visual
pattern recognition.” In: Competition and cooperation in neural
nets. Springer, 1982, pp. 267–285.

[23] Yarin Gal and Zoubin Ghahramani. “Bayesian convolutional
neural networks with Bernoulli approximate variational infer-
ence.” In: arXiv preprint arXiv:1506.02158 (2015).

[24] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian
approximation: Representing model uncertainty in deep learn-
ing.” In: international conference on machine learning. 2016, pp. 1050–
1059.

[25] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “A neu-
ral algorithm of artistic style.” In: arXiv preprint arXiv:1508.06576
(2015).

[26] Dave Gershgorn. Despite the hype, nobody is beating Nvidia in AI.
2017.

[27] Ross Girshick et al. “Rich feature hierarchies for accurate object
detection and semantic segmentation.” In: CVPR. 2014.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016.

http://www.deeplearningbook.org

Bibliography 73

[29] Ian Goodfellow et al. “Generative Adversarial Nets.” In: Ad-
vances in Neural Information Processing Systems 27 (2014), pp. 2672–
2680.

[30] Arthur Gretton. “A Kernel Two-Sample Test.” In: Journal of Ma-
chine Learning Research 13 (2012), pp. 723–773.

[31] Philip Haeusser, Alexander Mordvintsev, and Daniel Cremers.
“Learning by Association - A Versatile Semi-Supervised Train-
ing Method for Neural Networks.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. © 2017

IEEE. Reprinted, with permission from the authors. 2017, pp. 89–
98.

[32] Philip Haeusser et al. “Associative Domain Adaptation.” In: In-
ternational Conference on Computer Vision (ICCV). Vol. 2. 5. © 2017

IEEE. Reprinted, with permission from the authors. 2017, p. 6.

[33] Philip Haeusser et al. “Associative Deep Clustering - Train-
ing a Classification Network with no Labels.” In: Proceedings of
the German Conference on Pattern Recognition (GCPR). Reprinted,
with permission from the authors. 2018.

[34] Bharath Hariharan et al. “Hypercolumns for Object Segmenta-
tion and Fine-grained Localization.” In: CVPR (2015).

[35] Kaiming He et al. “Deep residual learning for image recogni-
tion.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[36] Donald Olding Hebb. The organization of behavior: A neuropsycho-
logical theory. Psychology Press, 2005.

[37] Martin Heusel et al. “GANs Trained by a Two Time-Scale Up-
date Rule Converge to a Local Nash Equilibrium.” In: Advances
in Neural Information Processing Systems. 2017, pp. 6629–6640.

[38] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast
learning algorithm for deep belief nets.” In: Neural computation
18.7 (2006), pp. 1527–1554.

[39] Geoffrey E Hinton et al. “Improving neural networks by pre-
venting co-adaptation of feature detectors.” In: arXiv preprint
arXiv:1207.0580 (2012).

[40] Kurt Hornik. “Approximation capabilities of multilayer feedfor-
ward networks.” In: Neural networks 4.2 (1991), pp. 251–257.

[41] Chen Huang, Chen Change Loy, and Xiaoou Tang. “Unsuper-
vised Learning of Discriminative Attributes and Visual Repre-
sentations.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 5175–5184.

[42] Brody Huval et al. “An empirical evaluation of deep learning
on highway driving.” In: arXiv preprint arXiv:1504.01716 (2015).

74 Bibliography

[43] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift.” In: International Conference on Machine Learning. 2015,
pp. 448–456.

[44] Phillip Isola et al. “Image-to-Image Translation with Conditional
Adversarial Networks.” In: CVPR (2017).

[45] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spa-
tial transformer networks.” In: Advances in Neural Information
Processing Systems. 2015, pp. 2017–2025.

[46] Yangqing Jia et al. “Caffe: Convolutional architecture for fast
feature embedding.” In: Proceedings of the 22nd ACM interna-
tional conference on Multimedia. ACM. 2014, pp. 675–678.

[47] Chi Jin et al. “How to Escape Saddle Points Efficiently.” In:
arXiv preprint arXiv:1703.00887 (2017).

[48] Norm Jouppi. Google supercharges machine learning tasks with TPU
custom chip. 2016.

[49] Andrej Karpathy. “Stanford cs231n.” In: http://cs231n.github.
io/neural-networks-3 (2018).

[50] Henry J Kelley. “Gradient theory of optimal flight paths.” In:
Ars Journal 30.10 (1960), pp. 947–954.

[51] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. “Optimal
whitening and decorrelation.” In: The American Statistician (2018),
pp. 1–6.

[52] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: ICLR. 2015.

[53] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple lay-
ers of features from tiny images.” In: (2009).

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks.”
In: Proceedings of the 25th International Conference of Neural Infor-
mation Processing Systems. 2012.

[55] Karol Kurach et al. “Better Text Understanding Through Image-
To-Text Transfer.” In: arXiv (2017).

[56] Adrian Lange. “Diagram of a McCulloch-Pitts-Cell.” In: Wiki-
media Commons (2011).

[57] Yann LeCun. “The MNIST database of handwritten digits.” In:
http://yann. lecun. com/exdb/mnist/ (1998).

[58] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: nature 521.7553 (2015), p. 436.

[59] Yann LeCun et al. “Backpropagation applied to handwritten
zip code recognition.” In: Neural computation 1.4 (1989), pp. 541–
551.

http://cs231n.github.io/neural-networks-3
http://cs231n.github.io/neural-networks-3

Bibliography 75

[60] Yann LeCun et al. “Handwritten digit recognition with a back-
propagation network.” In: Advances in neural information process-
ing systems. 1990, pp. 396–404.

[61] Yann LeCun et al. “Efficient backprop.” In: Neural networks:
Tricks of the trade. Springer, 1998, pp. 9–50.

[62] Yann LeCun et al. “Gradient-based learning applied to docu-
ment recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–
2324.

[63] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Con-
volutional Networks for Semantic Segmentation.” In: CVPR. 2015.

[64] David G Lowe. “Distinctive image features from scale-invariant
keypoints.” In: International journal of computer vision 60.2 (2004),
pp. 91–110.

[65] Laurens van der Maaten and Geoffrey Hinton. “Visualizing
data using t-SNE.” In: Journal of Machine Learning Research 9

(2008), pp. 2579–2605.

[66] Nikolaus Mayer et al. “A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation.”
In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2016, pp. 4040–4048.

[67] Warren S McCulloch and Walter Pitts. “A logical calculus of the
ideas immanent in nervous activity.” In: The bulletin of mathemat-
ical biophysics 5.4 (1943), pp. 115–133.

[68] Joseph L Mundy, Andrew Zisserman, et al. Geometric invariance
in computer vision. Vol. 92. MIT press Cambridge, MA, 1992.

[69] Nasser M Nasrabadi. “Pattern recognition and machine learn-
ing.” In: Journal of electronic imaging 16.4 (2007), p. 049901.

[70] Yurii Nesterov. “A method for unconstrained convex minimiza-
tion problem with the rate of convergence O (1/kˆ 2).” In: Dok-
lady AN USSR. Vol. 269. 1983, pp. 543–547.

[71] Yuval Netzer et al. “Reading digits in natural images with un-
supervised feature learning.” In: NIPS workshop on deep learning
and unsupervised feature learning. Vol. 2011. Granada, Spain. 2011,
p. 4.

[72] Jiquan Ngiam et al. “Multimodal deep learning.” In: Proceedings
of the 28th international conference on machine learning (ICML-11).
2011, pp. 689–696.

[73] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural net-
works are easily fooled: High confidence predictions for unrec-
ognizable images.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2015, pp. 427–436.

76 Bibliography

[74] Maxime Oquab et al. “Learning and transferring mid-level im-
age representations using convolutional neural networks.” In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014, pp. 1717–1724.

[75] Adam Paszke et al. Pytorch. 2017.

[76] Deepak Pathak et al. “Fully convolutional multi-class multiple
instance learning.” In: arXiv preprint arXiv:1412.7144 (2014).

[77] Ravinder Prajapati, Arnav Bhavsar, and Anil Sao. “A hierarchi-
cal class-grouping approach, and a study of classification strate-
gies for leaf classification.” In: Computer Vision, Pattern Recogni-
tion, Image Processing and Graphics (NCVPRIPG), 2015 Fifth Na-
tional Conference on. IEEE. 2015, pp. 1–4.

[78] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster,
Stronger.” In: Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on. IEEE. 2017, pp. 6517–6525.

[79] Lawrence Roberts. “Picture coding using pseudo-random noise.”
In: IRE Transactions on Information Theory 8.2 (1962), pp. 145–154.

[80] A Rodriguez and N Sundaram. Intel and Facebook collaborate to
boost Caffe2 performance on Intel CPUs. 2017.

[81] Frank Rosenblatt. “The perceptron: A probabilistic model for
information storage and organization in the brain.” In: Psycho-
logical review 65.6 (1958), p. 386.

[82] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. “Artis-
tic style transfer for videos.” In: German Conference on Pattern
Recognition. Springer. 2016, pp. 26–36.

[83] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: na-
ture 323.6088 (1986), p. 533.

[84] Olga Russakovsky et al. “ImageNet Large Scale Visual Recog-
nition Challenge.” In: International Journal of Computer Vision
(IJCV) 115.3 (2015), pp. 211–252.

[85] Tim Salimans et al. “Improved techniques for training gans.” In:
Advances in Neural Information Processing Systems. 2016, pp. 2234–
2242.

[86] Jost Tobias Springenberg et al. “Striving for simplicity: The all
convolutional net.” In: arXiv preprint arXiv:1412.6806 (2014).

[87] Nitish Srivastava et al. “Dropout: a simple way to prevent neu-
ral networks from overfitting.” In: Journal of machine learning
research 15.1 (2014), pp. 1929–1958.

[88] Stephen V Stehman. “Selecting and interpreting measures of
thematic classification accuracy.” In: Remote sensing of Environ-
ment 62.1 (1997), pp. 77–89.

Bibliography 77

[89] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. “End-to-
end memory networks.” In: Advances in neural information pro-
cessing systems. 2015, pp. 2440–2448.

[90] TensorFlow. Input Pipeline Performance Guide. 2018.

[91] Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano.
“Experimental perspectives on learning from imbalanced data.”
In: Proceedings of the 24th international conference on Machine learn-
ing. ACM. 2007, pp. 935–942.

[92] Sven Wanner, Stephan Meister, and Bastian Goldluecke. “Datasets
and benchmarks for densely sampled 4d light fields.” In: VMV.
Citeseer. 2013, pp. 225–226.

[93] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. “How
to Use t-SNE Effectively.” In: Distill (2016). http://distill.pub/2016/misread-
tsne.

[94] Paul John Werbos. “Beyond regression: New tools for predic-
tion and analysis in the behavioral sciences.” In: Doctoral Disser-
tation, Applied Mathematics, Harvard University, MA (1974).

[95] Jiajun Wu et al. “Deep multiple instance learning for image
classification and auto-annotation.” In: Computer Vision and Pat-
tern Recognition (CVPR), 2015 IEEE Conference on. IEEE. 2015,
pp. 3460–3469.

[96] Zhicheng Yan et al. “HD-CNN: hierarchical deep convolutional
neural networks for large scale visual recognition.” In: Proceed-
ings of the IEEE international conference on computer vision. 2015,
pp. 2740–2748.

[97] Matthew D. Zeiler and Rob Fergus. “Visualizing and Under-
standing Convolutional Networks.” In: ECCV. 2014.

[98] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation us-
ing Cycle-Consistent Adversarial Networks.” In: arXiv preprint
arXiv:1703.10593 (2017).

	Abstract
	Zusammenfassung
	Acknowledgments
	Publication Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Neural Networks and Deep Learning
	1.1 A brief history of neural networks
	1.2 Building blocks of a neural network
	1.3 Properties of neural networks
	1.4 Additional components
	1.5 Optimization
	1.6 Chances and challenges
	1.7 Motivation of this thesis

	2 Methods
	2.1 Data
	2.2 Training frameworks
	2.3 Training procedure
	2.4 Evaluation of training results

	Publications
	3 Learning by Association
	4 Associative Domain Adaptation
	5 Associative Deep Clustering

	Conclusion
	6 Discussion and conclusion
	Bibliography

