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II. ZUSAMMENFASSUNG 
 
Mutationen im Gen BIRC4 resultieren in einem Verlust des „X-linked inhibitor 

of apoptosis“ Proteins (XIAP) und resultieren damit in der Krankheit „X-linked 

lymphoproliferative disease type 2 (XLP-2)“, eine seltene primäre 

Immundefizienz. XLP-2 Patienten zeigen eine erhöhte Prädisposition für 

hämophagozytische Lymphohistiozytose (HLH) und chronisch-entzündliche 

Darmerkrankung, welche derzeit nur durch eine allogene Stammzelltrans-

plantation aus peripherem Spenderblut geheilt werden kann. Im Hinblick auf 

aktuelle Publikationen, postulieren wir, dass der Verlust von XIAP in Antigen 

präsentierenden Zellen (APCs) in einem RIPK3 abhängigen Zelltod resultiert, 

welcher eine hyperinflammatorische Immunreaktion auslöst und daher für die 

systematische Deregulation des Immunsystems verantwortlich ist. 

Um diese Theorie zu überprüfen wurde ein Kokultursystem mit Toll-like-

Rezeptor (TLR) stimulierten dendritischen Zellen zusammen mit T Zellen 

entwickelt. Dort war es möglich zu beobachten, dass der Zelltod der XIAP 

defizienten dendritischen Zellen in einer hyperinflammatorischen IL-1 

Produktion resultierte und dadurch zu einer starken IL-17 Induktion in CD4+, 

, peripheren doppelt negative (DN) und iNKT17 T Zellen in vitro führte. Diese 

IL-17 Induktion in angeborenen und adaptiven T Zellsubsets hängt stark von 

TNF, RIPK3 und Caspase1/8 Signalwegen in dendritischen Zellen ab.  Wobei 

der Verlust von XIAP in T Zellen keine Auswirkung auf die Differenzierung der 

T Zellen hat. 

Intraperitoneale LPS Injektionen in Mäuse verifizierten die in vitro Ergebnisse, 

indem auch hier erhöhte IL-17 Konzentrationen in XIAP defizienten T Zellen 

gemessen werden konnten welche dann zu einer Rekrutierung von 

Neutrophilen führte. Außerdem hatten XIAP defiziente Mäuse eine schlechtere 

Prognose nach Citrobacter rodentium Infektionen, einem Mausmodell welche 

die Symptome einer chronisch entzündlichen Darmerkrankung von XLP-2 

Patienten nachahmt. Ferner waren Xiap–/– Mäuse stärker belastet, wenn sie 

eine Graft-versus-Host Reaktion (GvHR) entwickelten, eine häufige 

Komplikation von XLP-2 Patienten nach einer Stammzelltransplantation. 
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Es wurde gezeigt, dass es nach dem Verlust von XIAP zu einem RIPK3 

anhängigen Zelltod kommt, welcher in einer erweiterten inflammatorischen 

Immunantwort resultiert und damit das Gesamtsystem betrifft. Dies zeigt auf, 

wie wichtig der Zelltod, seine Regulation und die entsprechenden 

Immunreaktionen für die Balance des Gesamtsystems sind. Ein besseres 

Verständnis der zu Grunde liegenden Zusammenhänge könnte weitreichende 

Folgen für die Behandlung von Krankheiten basierend auf inflammatorischem 

Zelltod haben. 
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III. ABSTRACT 
 
BIRC4 gene mutations cause deficiency of X-linked inhibitor of apoptosis 

protein (XIAP) and are therefore the cause of X-linked lymphoproliferative 

disease type 2 (XLP-2), a rare primary immunodeficiency. XLP-2 patients, who 

are characterized by elevated susceptibility to hemophagocytic 

lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD), can only be 

cured by allogenic peripheral blood stem cell transplantation. Recent findings 

indicate that loss of XIAP in antigen presenting cells (APCs) results in RIPK3 

dependent cell death, which initiates a hyperinflammatory immune response 

and is therefore responsible for the overall deregulation of the immune system. 

To examine the effect of XIAP loss, a coculture system of toll-like receptor 

(TLR) stimulated WT and Xiap-/- dendritic cells and T cells was set up. The 

death of dendritic cells resulted in the hyperinflammatory production of IL-1in 

XIAP deficient DCs and led to a strong IL-17 induction in CD4+ T cells,  T 

cells, double negative T cells and iNKT17 cells in vitro. This IL-17 induction in 

innate and adaptive T cells subsets strongly depended on TNF, RIP3 and 

Caspase 1/8 signaling in dendritic cells. Whereas the loss of XIAP in T cells 

itself had no consequences on their differentiation capability. 

Intraperitoneal LPS injections into mice verified the in vitro results by showing 

increased IL-17 in T cells of Xiap-/- mice which lead to a recruitment of 

neutrophils. Moreover, XIAP deficient mice showed a worse prognosis after 

Citrobacter rodentium infection. The Citrobacter rodentium mouse model 

mimics the symptoms of the chronic gut inflammation of XLP-2 patients. Lastly, 

Xiap–/– mice displayed a stronger graft versus host (GvHD) reaction after being 

transplanted, comparable to strong GvHD reactions in XLP-2 patients after 

allogenic stem cell transplantations. 

Summarized, it could be shown that loss of XIAP resulted in RIPK3 dependent 

inflammatory cell death, followed by an extended inflammatory response 

involving the overall system. These findings depict once more the importance 

of cell death regulation and subsequent immune reactions. A better 

understanding of the underlying correlations might have extensive 
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consequences regarding therapeutic interventions in diseases with an 

inflammatory cell death phenotype. 
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1. Introduction 

1.1. X-linked inhibitor of apoptosis 

1.1.1. XIAP and its functions 

X-chromosome-linked inhibitor of apoptosis (XIAP), encoded by the BIRC4 

gene, belongs to the family of inhibitor of apoptosis (IAP) proteins. IAPs were 

initially identified in baculoviruses (Clem, Fechheimer, and Miller 1991) (Crook, 

Clem, and Miller 1993). In mammals, the IAP family consists of eight members 

including XIAP, cIAP1/2, NAIP, ML-IAP, ILP-2, Survivin and Apollon (Salvesen 

and Duckett 2002).  

Linking all proteins to one family is the expression of the unique baculovirus 

IAP repeat (BIR) domain, which provides the capability for protein interactions 

(Budhidarmo and Day 2015). XIAP displays three of these BIR domains. In 

comparison to BIR domains in other IAP proteins, XIAP´s BIRs are the only 

ones to bind and inhibit caspases -3, -7 and -9. Thereby they have the ability 

to block induction of extrinsic and intrinsic apoptotic pathways (Deveraux, 

Takahashi, and Reed 1997; Shiozaki et al. 2003; Scott et al. 2005; Eckelman, 

Salvesen, and Scott 2006). 

  

Figure 1. 1.: Protein structure of c-IAP1, c-IAP2 and XIAP. 

All three IAPs display three BIR domains, have a ubiquitin binding domain (UBA) and 

a Ring domain for E3 ligase activity. C-IAP1/2 have an additional CARD domain for 

protein interactions. 
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With XIAP´s ability to prevent apoptosis, this protein is often upregulated in 

cancers, amongst others in childhood de novo AML (Tamm et al. 2004) and 

breast cancer (Y. Zhang et al. 2011). Therefore, based on the natural IAP 

antagonist second mitochondrial-derived activator of caspases (Smac) (C. Du 

et al. 2000), many Smac-mimetics were developed for cancer treatment (Fulda 

and Vucic 2012).  

Recently, knowledge about XIAP´s functionality was broadened after 

uncovering that the C-terminal RING domain contains E3 ligase activity 

(Nakatani et al. 2013). With XIAP´s ability to modify proteins with ubiquitin 

chains, it was discovered that XIAP has a regulatory role in signaling 

pathways. Examples are activation of NF-B and MAP kinase (MAPK) 

downstream of NOD2 (Damgaard et al. 2012) or controlling inflammatory cell 

death (Yabal et al. 2014; Lawlor et al. 2015). This role in signaling pathways 

is conveyed through different ubiquitin chains. K11 and K63 linked ubiquitin 

(U)-chains serve as signaling platforms, while K48 linkage activates 

proteasomal degradation (Silke and Vucic 2014). Therefore, XIAP can not only 

build up signaling platforms, but can also specifically block pathways by 

inducing protein degradation, such as Rac1, which is involved in cell migration 

(Oberoi et al. 2011), or even XIAP itself through autoubiquitination. 

 

1.1.2. XIAP deficiency and XLP-2 disease 

While overexpression of XIAP correlates with poor prognosis in various cancer 

types, loss of XIAP also has severe consequences. Mutations in BIRC4 have 

been associated with X-linked lymphoproliferative syndrome type 2 (XLP-2), a 

disease first described in 2006 (Rigaud et al. 2006). Mutations in BIRC4 are 

mainly located within the BIR2 domain, hit the Ring domain or impair 

expression of the protein through nonsense or frameshift deletions (Damgaard 

et al. 2013).  

Due to the fact that XIAP is located on the X chromosome, mutations effect 1-

2 in 106 males (Aguilar and Latour 2015). While heterozygous mothers are 

usually asymptomatic, first symptoms in affected boys are detectable in early 
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infancy and often lead to premature death (Rigaud et al. 2006). Most often 

XLP-2 outbreak correlates with an EBV infection, although other viral infections 

have been reported as a trigger mechanism, too (Aguilar and Latour 2015). 

The most frequent clinical manifestations are hemophagocytic 

lymphohistiocytosis (HLH), splenomegaly and inflammatory bowel disease 

(IBD) (Latour and Aguilar 2015; Aguilar and Latour 2015). All clinical 

manifestations can occur together or independently, as for example Crohn´s 

disease, which has often been reported as the sole clinical manifestation 

(Speckmann et al. 2013; Yvonne Zeissig et al. 2014). Less frequent are 

appearances of inflammatory manifestations like uveitis, periodic fever, skin 

abscesses and Giardia enteritis (Speckmann et al. 2013).  

Up to now the immune pathogenesis of XLP-2 is not understood and only a 

matter of speculations. Though increased T cell death through the Fas 

receptor was reported in vitro (Aguilar and Latour 2015; Rigaud et al. 2006; 

Speckmann et al. 2013), no T cell lymphopenia is seen in patients (Latour 

2007; Veillette, Pérez-Quintero, and Latour 2013). 

           

               

  )  

 

 

 

 

 

 

 

 

Figure 1. 2.: XLP-2 disease overview 

XLP-2 is most often induced by an EBV-infection and results in multiple symptoms 

with HLH, splenomegaly and IBD being the most common ones. Treatment options 

can be divided into treating symptoms with immune suppressants or curing the 

disease with an allogenic peripheral blood stem cell transplantation (allo PBSCT). 
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One more thing impeding comprehension of the XLP-2 pathology is the fact, 

that XIAP-deficient mice do not show any signs of impairment or abnormalities 

without prior stimulation (Harlin et al. 2001; Yabal et al. 2014). Without 

understanding of the immunopathogenesis, treatment options are limited to 

dampen either inflammatory symptoms with immunosuppressive treatments or 

replenish XIAP-deficient stem cells with a peripheral blood stem cell 

transplantation (PBSCT) (Aguilar and Latour 2015). Unfortunately, a study in 

2013 revealed a rather poor prognosis with high lethality after myeloablative 

conditioning (MAC) and reduced intensity conditioning (RIC) (Marsh et al. 

2013). In 2015 this was further confirmed by Latour and Aguilar, who reported 

a death rate over 20% of XLP-2 patients, with more than 50% dying during 

allogenic hematopoietic stem cell transplantation (Latour and Aguilar 2015). 

 

1.2. Inflammation and the immune system 

1.2.1. From innate to adaptive immunity: PRRs, DCs, 

cytokines and T helper cells 

The immune system of vertebrates consists of two functional domains. The 

innate immune system responds within minutes to hours and constitutes the 

first line of defense against invading pathogens. The second domain is the 

adaptive response which takes days to establish but has the advantage of 

being more specific and therefore more efficient (Murphy, Travers, and 

Walport 2008). All cells of the immune system develop from pluripotent 

hematopoietic stem cells, with most innate immune cells evolving from the 

myeloid lineage and the lymphoid lineage giving rise to the lymphocytes of the 

adaptive response (Murphy, Travers, and Walport 2008).  

The initial detection of invading pathogens is carried out by pattern recognition 

receptors (PRRs) of the innate immune response. PRRs can be displayed on 

the plasma membrane or within organelles, as e.g. Toll-like receptors (TLRs) 

and C-type lectins. But there are also cytosolic PRRs, e.g. nucleotide-binding 

domain and leucine-rich repeat containing receptors (NLRs) or retinoic acid 
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inducible gene I (RIG-I) like receptors (RLRs) (Iwasaki and Medzhitov 2010). 

These receptors recognize conserved patterns, so called pathogen-associated 

molecular patterns (PAMPs). These can be for instance, lipopolysaccharide 

(LPS) of gram negative bacteria on TLR4 (Beutler 2009), -glucans of fungal 

cell walls by Dectin-1 (Brown 2005), intracellular infections of viral pathogens, 

like RNA, via RLRs (Yoneyama and Fujita 2010) or bacterial peptidoglycans 

via NOD1 (Franchi et al. 2009). Moreover, PRR can also detect endogenous 

molecules from damaged or necroptotic cells called damage-associated 

molecular patterns (DAMPs) (Matzinger 1994). In case of an infection, DAMP 

and PAMP release correlates. This results in an elevated, self-fueling 

activation cycle, as PAMPs can initiate inflammatory cytokines and necroptosis 

via PRRs, while DAMPs themselves can be recognized by PAMP receptors 

(Kaczmarek, Vandenabeele, and Krysko 2013).  

These PRRs are expressed by nonprofessional immune cells as well as 

immune cells. One crucial PRR expressing subset comprises of antigen 

presenting cells (APCs), more precisely dendritic cells and macrophages 

(Takeuchi and Akira 2010). Within the group of dendritic cells one can 

distinguish between conventional dendritic cells as well as nonclassical DCs, 

such as monocyte-derived dendritic cells and plasmacytoid dendritic cells 

(Mildner and Jung 2014). The classic encounter of a conventional dendritic cell 

with PAMPs results in three outcomes: pathogen uptake and antigen 

processing, upregulation of costimulatory molecules and the production of 

cytokines (Walsh and Mills 2013). 

How critical conventional dendritic cells (cDCs) are for proper CD4+ and CD8+ 

T cell responses, shows the impaired activation of naïve T cells in cDC-lacking 

mice (Birnberg et al. 2008). T cell activation via antigen presentation by DCs 

is followed by the progression of naïve T cells into effector subsets. Depending 

on the encountered cytokines, naïve CD4+ T cells can differentiate into certain 

effector subsets (Swain 1995) and thereby become producers of inflammatory 

cytokines like IFN(Th1), IL-4 (Th2) or IL-17 (Th17) themselves (Zhu, 

Yamane, and Paul 2010). To direct specificity of immune responses against 

pathogen encounters, cDCs produce polarizing cytokines dependent on the 

pathogen they detect. One example is the differentiation of Th17 cells after 
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encounter with extracellular bacteria. cDC produced IL-1, IL-6, TGF- and 

IL-23 stimulate Th17 specific T cell differentiation (Walsh and Mills 2013). 

Differentiated T cell subsets are then capable to mount further immune 

responses, as for example B cell activation (Murphy, Travers, and Walport 

2008). 

Although innate and adaptive immunity are two very distinct arms of the 

immune system, both are crucial for a proper and complete immune response 

following pathogen encounter and through their entangled teamwork secure 

pathogen clearance. 

 

1.2.2. Linking innate and adaptive immunity: Innate-like T 

cells 

As just described, T lymphocytes are an important part of the adaptive immune 

response. Surprisingly, some T lymphocytes cannot be truly counted into the 

group of adaptive immunity. This subset of so called innate-like T lymphocytes 

represents a special class in between innate and adaptive immunity. Innate-

like T cell lineages are defined by some common features. They are quick 

responders, serving as sentinels of the immune system. Moreover, they are 

defined by the expression of semi-invariant  or  TCRs (Constantinides and 

Bendelac 2013) and in some cases the dependence on the transcription factor 

PLZF, in iNKTs, some subsets and mucosal associated invariant T (MAIT) 

cells (A. K. Savage et al. 2008; Kreslavsky et al. 2009; Emmanuel Martin et al. 

2009). According to this description, various T lymphocyte subsets belong to 

this group of innate-like T lymphocytes and in the following passages three 

important subsets will be described. 

 T lymphocytes develop in the thymus from progenitor cells. Most of them 

then leave the thymus with an already acquired effector function, meaning they 

are already preprogrammed in their response (Narayan et al. 2012; Muñoz-

Ruiz et al. 2017). In contrast to  T lymphocytes where somatic 

rearrangement can result in a multitude of different TCRs, somatic 
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rearrangement for  T cells is rather limited in its diversity (Heilig and 

Tonegawa 1986). Literature differentiates mouse  subsets according to their 

V chain with V4 and V 6 being predominantly IL-17  T lymphocytes and 

V1, V5 and V7 producing mostly IFN (Papotto, Ribot, and Silva-Santos 

2017), therefore linking TCR expression and function (O Brien and Born 2010).  

These distinct subsets are not only unique in their expression of cytokines but 

also migrate to their own anatomical sides throughout the body. Average 

percentages of  T lymphocytes in secondary lymphoid organs vary between 

1-5%, but in certain tissues like liver, lung, skin, intestine and reproductive 

tract, they can constitute up to 50% of T cells (Cheng and Hu 2017) (Carding 

and Egan 2002). In these mucosal and epithelial tissues  T cells function as 

sentinels and react to pathogen encounter as a first line of defence. Although 

 T cells can recognize conserved non-peptide antigens (Bonneville, O'Brien, 

and Born 2010; Corpuz et al. 2016), their instant activation is often not bound 

to TCR engagement. It rather depends on exposure to cytokines like IL-1 and 

IL-23, which rapidly trigger IL-17 production (Sutton et al. 2009), or is carried 

out via TLR or Dectin receptor engagement (B. Martin et al. 2009). It was 

reported, that the strong TCR signal which is important for thymic development 

is attenuated to acquire innate-like features in the periphery (Wencker et al. 

2013).  

With their sentinel function  T lymphocytes are key to microbial infections, 

like M. tuberculosis (Lockhart, Green, and Flynn 2006), C. albicans (Conti et 

al. 2014) or B. pertussis (Misiak et al. 2016). There, a robust IL-17 production 

triggers recruitment of neutrophils (Sumaria et al. 2011). Even though  T 

cells are crucial to microbial infections and can also have protective roles in 

cancer (Silva-Santos, Serre, and Norell 2015), their inflammatory response is 

not always welcome, as it can result in damage. Therefore  T lymphocytes 

are often associated with autoimmune diseases such as arthritis, colitis, 

diabetes, psoriasis and EAE (summarized in Papotto, Ribot, and Silva-Santos 

2017). 

Peripheral DN T lymphocytes got their name from the fact that they do not 

express the co-receptors CD4 and CD8. They are usually described as being 
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CD3+CD4-CD8-+, even though some publications also include  T 

lymphocytes to this group, as  T cells are mainly double negative as well. Up 

to now there is no specific marker for DN T lymphocytes, making detection 

rather circuitous with the inclusion of CD3+ and  TCR+ but the exclusion of 

 T lymphocytes ( TCR), NKT cells (CD1d-Tetramer binding, NK1.1) and of 

course CD4+ and CD8+ T lymphocytes. 

DN T lymphocytes were reported to be present in low numbers in blood and 

lymphnodes. Depicting around 1-5% of peripheral blood and lymphoid tissue 

T lymphocytes in mice and humans (Z. Zhang, Young, and Zhang 2001; 

Fischer 2005), they constitute a larger subsets in non-lymphoid tissues, among 

others in lung, kidney, gut epithelium or genital tract (Cowley et al. 2010; 

Hamad 2010; Johansson and Lycke 2003). 

First mentioned 1976 with the lpr mouse strain for lupus-like disease, it is 

known today that the massive accumulation of DN T lymphocytes in this 

mouse model is due to defective Fas signaling (Martina et al. 2015). Although 

DN T lymphocytes in the periphery of healthy humans have already been 

described 1986 (Lanier, J, and H 1986), the origin of these cells remains 

controversial. The first theory states that DN T cells originate from the thymus, 

circulate and expand in the periphery (Mixter et al. 1999; Priatel, Utting, and 

Teh 2001). This is in contrast to a second theory stating that DN T lymphocytes 

arise from CD4+ or CD8+ T cells after co-receptor downregulation (Dong Zhang 

et al. 2007; Crispin and Tsokos 2009). This was further supported by a 

publication showing DN T cell generation after chronic stimulation of CD4+ 

cells (Grishkan et al. 2013).  

According to the available literature, DN T cells are a rather heterogeneous 

subset with many functions. On the one hand, they have shown important 

regulatory roles in allogenic transplantation models with increased graft 

tolerability (Young 2002). Furthermore there were findings, that high DN T 

lymphocyte counts correlated positively with decreased graft versus host 

disease (GvHD) induction, due to the ability of DN T cells to inhibit CD8+ 

pathogenic responses via cytotoxic killing (Young et al. 2003; Young and 

Zhang 2002). On the other hand, DN T cells are reported to have inflammatory 
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effects supporting protective immunity against infections like L. monocyte-

genes (Kadena et al. 2005), C. leishmenia (Antonelli et al. 2006), F. tularensis 

(Cowley et al. 2010) and T. cruzi (Villani et al. 2010). Moreover DNTs can also 

have influential roles in autoimmune diseases as in autoimmune 

lymphoproliferative syndrome (ALPS) (Sneller et al. 1992), systematic lupus 

erythematosus (SLE) (Crispin et al. 2008), psoriasis (Ueyama et al. 2017) and 

spondylarthropathy (Sherlock et al. 2012) via IL-17 production. 

The last presented innate-like T cell subset are iNKT cells. They constitute the 

smallest subset of the three of them. Comparable to other innate-like T cell 

subsets, iNKTs are also represented in higher densities in specific organs, like 

liver (up to 30% of T cells). Being underrepresented in secondary lymphoid 

organs such as spleen, lymph nodes or blood of mice (0,5-2,5% of T cells), 

they are still approx. 10-fold more than in humans (Bendelac, Savage, and 

Teyton 2007).  

Specific for iNKTs is the T cell antigen receptor combination of the V-chain 

V14-J18 with the V-chain V8.2, V7 or V2 (Bendelac et al. 1994). (Glyco-

) lipid based antigens presented via CD1d, a MHC class I-like molecule, are 

recognized by this semi-invariant TCR (Bendelac 1995) and are sufficient to 

activate iNKT cells (Kohlgruber et al. 2016). Moreover, iNKTs can be activated 

like  T cells via cytokines, for example by IL-1 and IL-23, which trigger IL-

17 production and secretion (Doisne et al. 2011), or via TLR4 (Kim et al. 2012). 

Despite similar antigen specificity, iNKT subsets are highly diverse with 

differences in gene-expression as well as epigenetic controlling, resulting in 

divergent iNKT subsets with specific effector functions and localizations (Engel 

et al. 2016). Analogous to Th1, Th2 and Th17, iNKTs can be split into iNKT1, 

iNKT2 and iNKT17, which produce similar signature cytokines as their 

adaptive kinship (Brennan, Brigl, and Brenner 2013) and might be one 

explanation why iNKT are ascribed inflammatory as well as anti-inflammatory 

attributes. 

Development of iNKT cells takes place in the thymus (Pellicci et al. 2002; 

Watarai et al. 2012) and is controlled through several transcriptional factors, 

with PLZF being a critical regulator of general iNKT development (Kovalovsky 
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et al. 2008; A. K. Savage et al. 2008). Other transcription factors further 

differentiate iNKT subsets into their specific expression profile. One example 

is RoRt expression which constitutes a key component for the development 

of the NKT17 subset (Michel et al. 2008). Its expression consequently results 

in the production of Th17 cytokines such as IL-17 and IL-22 (Brennan, Brigl, 

and Brenner 2013).  

 

Figure 1. 3.: T cell polarization. 

Dependent on the PAMPS and DAMPS an APC encounters, it will produce polarizing 

cytokines. These cytokines drive then the differentiation in Th17, Treg, Th1 or Th2 

cells and activate  T cells, DN T cells or iNKT17 cells. 

 

The diversity of iNKT subsets and cytokines also results in diversity of 

modulating immune responses. This ranges from neutrophil recruitment 

(Michel et al. 2007), to dendritic cell and macrophage activation (Kitamura et 

al. 1999; Fujii et al. 2003; NIEUWENHUIS et al. 2002), or B cell modulation 

(Galli et al. 2007; Hägglöf et al. 2016). Modulating innate as well as adaptive 

immunity explains the importance of iNKTs in various infections, with S. 

pneumonia (Ranson et al. 2005), B. burgdorferi (Kumar et al. 2000) and even 

influenza virus (Paget et al. 2011) being just a small outtake. Nevertheless, 

like DN and  T cells, also iNKTs are correlated with negative effects in 
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deregulated excessive immune responses, such as asthma (Pichavant et al. 

2008), atherosclerosis (Braun, Covarrubias, and Major 2010) or psoriasis 

(Peternel and Kaštelan 2009). 

 

1.3. Necroptotic cell death 

1.3.1. Death pathways: from controlled implosion to 

controlled explosion 

Cellular processes, like the decision of live and death, are tightly regulated 

events and are crucial for many processes including development or removal 

of damaged cells. For the first time, programmed cell death was recognized 

1842 by Karl Vogt studying the replacement of the notochord of amphibians 

(Carl 1842). So, for the longest time of scientific research, the question of cell 

death revolved about regulated cell death termed apoptosis, autophagy and 

accidental cell death termed necrosis (Schweichel and Merker 1973).  

Apoptosis can be initiated via an extrinsic pathway dependent on death 

receptors on the cell surface or can be triggered upon intracellular stress. 

Independent of the triggering mechanism, apoptotic death is always executed 

by a conserved mechanism relying on caspases, which are synthesized as 

inactive proteins and can then be activated via dimerization or cleavage 

(Thornberry and Lazebnik 1998). Apoptosis results in chromatin condensation, 

contraction of the nucleus and cytoplasm, as well as the cell disintegration into 

apoptotic bodies. These vesicles are then taken up by phagocytes and due to 

no membrane rupture, apoptotic cell death does not trigger an immune 

response (Taylor, Cullen, and Martin 2008). 

Only recently other types of cell death were discovered which were initially all 

summarized under the term necrosis. Up to then, necrosis was the third way 

of dying without the involvement of phagocytosis and seemed to be 

“accidental” (Schweichel and Merker 1973). Today it is known that cell death 



 12 

in forms of pyroptosis, ferroptosis or necroptosis are all very well regulated and 

are not accidental at all (Tait, Ichim, and Green 2014; Berghe et al. 2014). 

Necroptosis is the most well understood pathway of programmed necrosis and 

on the next pages the execution and consequences of necroptosis will be 

highlighted. 

 

1.3.2. Prerequisites, induction and execution of necroptosis 

Many stimuli that trigger apoptosis can also trigger necroptosis with the 

premise of caspase inhibition. One critical example for such a caspase would 

be caspase 8. It is usually involved downstream of death receptors and 

mediates apoptotic death and therefore blocks necroptosis at the same time 

(Holler et al. 2000; Yuan, Najafov, and Py 2016). This caspase inhibition can 

either be virally or synthetically. As mentioned before, IAPs were identified in 

baculoviruses to inhibit apoptosis and thereby circumventing death. Viruses 

developed caspase inhibitors to delay cell death allowing to replicate. Thus, 

necroptosis serves as an antiviral control mechanism in case of caspase 

inhibition (Cho et al. 2009; Benedict, Norria, and Ware 2002).  

The most studied inducers of necroptotic death next to TLRs are death 

receptor ligands, which induce death via TNF, Fas or TRAIL receptors. This 

induction is mediated by the “canonical necrosome formation” in contrast to 

the non-canonical necrosome formation due to dsRNA or under certain 

circumstance downstream of TLR3 and TLR4. Independent of the mechanism 

triggering necroptosis, key executioner molecules are RIPK3 and MLKL. The 

activating factor of RIPK3 discriminates the canonical and non-canonical 

pathway, but both depend on the interaction with the RIPK homology 

interaction motif (RHIM) domain expressed by RIPK3 (Oberst 2015). In the 

canonical pathway RIPK1 exhibits this RHIM domain as well and interacts 

through it with RIPK3 in a kinase dependent manner for activation (He et al. 

2009). In the non-canonical context, DAI (in a viral setting) and TRIF 

(downstream of TLR3/4) can activate RIPK3 via their own RHIM domains 

(Upton, Kaiser, and Mocarski 2012; Kaiser et al. 2013). More recently even 
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signaling via interferon receptors was discovered to be an inducer of 

necroptosis (Roshan J Thapaa et al. 2013). Ultimately, whatever the initiating 

mechanism, activation of RIPK3 triggers the translocation of MLKL into the 

plasma membrane and thereby the execution of necroptotic death (H. Wang 

et al. 2014). 

 

1.3.3. Necroptosis downstream of the TNF receptor 

The most well studied necroptotic pathway is downstream of the TNF receptor 

(Figure 1.4). Upon binding of TNF to the TNF receptor the assembly of the 

receptor bound complex I can be detected, which has pro-survival and pro-

inflammatory implications.  

After ligation of TNFR1 by TNF, RIPK1 and the adaptor protein TRADD are 

recruited to the receptor (Zheng et al. 2006). This is followed by binding of 

TRAF2 (Hsu et al. 1996) and the subsequent relocation of the ubiquitin ligases 

cIAP1/2 to the complex (Vince et al. 2009; Mace et al. 2010). Amongst others, 

cIAP1/2 then ubiquitinate RIPK1 and themselves with K11 and K63 linked 

ubiquitin-chains and these chains then serve as scaffolds to recruit further 

proteins (Park, Yoon, and Lee 2004; Varfolomeev et al. 2008). Recruited 

proteins contain the TAB/TAK complex, the IKK complex and LUBAC. 

Additional linear M1 linked ubiquitin chains attached from LUBAC amplify the 

downstream signaling events including MAPK and NF-B signaling for survival 

and inflammation (Dondelinger et al. 2016). 

The stability of complex I depends on deubiquitinating enzymes like CYLD that 

destabilize complex I through the deubiquitination of RIPK1 (Andrew 

Kovalenko et al. 2003). This allows RIPK1 and TRADD to dissociate from the 

TNF receptor and therefore the plasma membrane. In addition, blocked NF-

B signaling or perturbed ubiquitination can lead to the formation of complex 

IIa or IIb respectively. Complex IIa is based on TRADD binding to FADD and 

recruiting Caspase 8, while complex IIb is based on RIPK1 binding to FADD 

and recruitment of Caspase 8 (Dondelinger et al. 2016). Active Caspase 8 

cleaves RIPK1 and RIPK3 preventing necroptosis and initiating apoptosis (Lin 
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et al. 1999; Feng et al. 2007). As mentioned above, in case of caspase 

inhibition necroptosis can be induced, which is also the case downstream of 

TNF receptor signaling. Under caspase inhibiting conditions the necrosome 

assembles including RIPK1, RIPK3 and MLKL. RIPK1 thereby recruits RIPK3 

via their RHIM domains and through oligomerization and phosphorylation 

RIPK3 is activated (Li et al. 2012; Cho et al. 2009; He et al. 2009). Recruitment 

and phosphorylation of MLKL eventually leads to the execution of necroptotic 

death with the translocation and integration of MLKL into the plasma 

membrane causing pore formation (H. Wang et al. 2014). 

 

Figure 1. 4.: Signaling events downstream of the TNF receptor. 

Binding of TNF to its receptor triggers the formation of complex I and results in the 

induction of survival genes via MAPK and NF-B signaling. Under certain 

circumstances RIPK1 can dissociate from the receptor and thereby trigger apoptosis 

via Caspase 8. In case of caspase inhibition assembly of the necrosome results in 

necroptotic death. 
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1.3.4. Necroptosis: its consequences and clinical implications 

As summarized in the chapters before necroptosis is, like apoptosis, a strictly 

regulated form of cell death but nonetheless it shares similarities with necrosis 

in the consensus of being inflammatory. This inflammatory property is due to 

the particular execution of necroptotic cell death. In contrast to apoptosis with 

its packaging of cellular contents into apoptotic bodies, necroptosis is like an 

“ordered cellular explosion” (Vandenabeele et al. 2010). With plasma 

membrane rupturing and spilling of cellular contents into extracellular space, 

necroptosis can be distinguished from apoptotic death by means of 

morphological changes, membrane permeability detected by flow cytometry 

and detection of intracellular contents (Krysko et al. 2008).  

Endogenous cellular contents can be damage associated molecular patterns 

(DAMPs) like DNA, RNA, ATP. Also chromatin associated proteins such as 

HMBG1 (Kaczmarek, Vandenabeele, and Krysko 2013), or inflammatory 

molecules, termed alarmins, such as IL-1 family cytokines can serve as 

DAMPs (S. J. Martin 2016). As described before in chapter 1.2.1 DAMPs can 

be recognized by PRRs and work together with PAMPs to fuel inflammatory 

processes.  

Therefore, necroptotic death is most often not linked to embryonic 

development or the regulation of cell populations, processes clearly regulated 

by apoptosis, but is rather associated with disease (Grootjans, Berghe, and 

Vandenabeele 2017). Involvement of necroptosis could be linked to several 

highly inflammatory conditions, such as systemic inflammatory response 

syndrome (SIRS) (Duprez et al. 2011) and ischemic reperfusion injury 

(Linkermann et al. 2012) as well as chronic and autoimmune diseases like 

inflammatory bowel disease (IBD) (Pierdomenico et al. 2013) or multiple 

sclerosis (Ofengeim et al. 2015). 
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1.4. Research Objective 

XLP-2 disease correlates with high mortality and affects patients at a very 

young age. Patients suffer from various symptoms like HLH, splenomegaly, 

IBD and other inflammatory manifestations. So far, the disease pathology is 

not understood. This limits treatment options to immunosuppressant therapy 

or peripheral stem cell transplantation, which correlates with high mortality 

rates likewise (Marsh et al. 2013). 

XLP-2 disease is caused by a mutation in the XIAP encoding gene BIRC4. 

XIAP was originally discovered for its caspase inhibiting properties. However, 

research in the last years has revealed a function for XIAP and some of its 

family members in signal transduction. This function is dependent on the E3-

ligase Ring domain, which equips proteins with the ability to modify targets 

with ubiquitin chains to allow for signal transduction or degradation. 

A recent lab own publication discovered that in the context of XIAP deficiency, 

or loss of its E3-ligase function, antigen presenting cells are sensitive to a TNF 

driven RIPK3-dependent inflammatory death (Yabal et al. 2014). As XLP-2 

symptoms are in summary described as a hyperinflammatory overreaction of 

the immune system, it is hypothesized that the reason therefore might be lying 

in XIAP driven inflammatory cell death which strongly drives further immune 

reactions and thereby starts a cycle of inflammation. 

Thus, the aim of this thesis was to elucidate the consequences of XIAP driven 

inflammatory cell death on the surrounding environment and how it is 

regulated. Getting a deeper understanding of the signaling events and their 

consequences, will not only help improve treatment options for XLP-2 patients, 

but will also guarantee a better understanding of necroptosis and its 

subsequent immune modulatory functions in other diseases. 
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2. Material 

2.1. Reagents 

If not stated otherwise, all chemicals were purchased from Sigma-Aldrich. 

Additional reagent and kit information is provided in the respective methods 

section. 

 

2.2. Antibodies 

2.2.1. For Western blotting 

Antibodies were used in the dilution recommended by manufacturer.  

Identification Clone Species Company 

αGsdmd (hs)  G7422 rabbit Sigma 

αCaspase 8 (mm) 1G12 rat Gift 

αIL-1 (mm)  AB-401-NA goat R&D Systems 

αACTIN, HRP tagged (mm) 13E5 rabbit  Cell Signaling   

αRabbit IgG, HRP tagged polyclonal goat Jackson IR 

αRat IgG, HRP tagged polyclonal goat  Jackson IR 

αgoat IgG, HRP tagged polyclonal  goat  Jackson IR 
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2.2.2. For FACS analysis and sorting 

All antibodies were used in a 1:400 dilution. 

Identification conjugate clone  Company 

αCD4 PeCy5 RM4-5 eBioscience  

αCD4  APC GK1.5  eBioscience  

αCD8a APC 53.6-7  eBioscience 

αCD3 FITC  145-2C11 eBioscience 

αTCR PE eBioGL3 eBioscience 

αIL-17 Brilliant Violet TC11-
18H10.1 

BioLegend 

αIL-17  PeCy7 eBio17B7 eBioscience 

αIFN PeCy7 XMG1.2 eBioscience 

αIFN PE 4S-B3 eBioscience 

αRoRt PerCPeFluor7
10 

B2D eBioscience 

αPLZF Alexa Fluor488 Mags.21F7 eBioscience 

αFoxP3 FITC FJK-16s eBioscience 

αCD11b PeCy5 M1/70  eBioscience 

αCD11b APC-Cy7 M1/70 eBioscience 

αCD11c APC N418 eBioscience 

αCD11c FITC N418  eBioscience 

αTCR FITC  H57-597 eBioscience 

αNK1.1 FITC PK136 eBioscience 

αMHC 1 (H-2kb) APC AF6-88.5.5.3 eBioscience 

αMHC I (H-2kd) PE SF1-1.1.1 eBioscience  

αCD16/32 purified 93 eBioscience 

αCD25 PE PC61.5 eBioscience  
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αCD80 PE 16-10A1 eBioscience  

αCD86 PE GL1 eBioscience 

αCD103 APC M290 BD Bioscience 

αLy-6B.2 APC 7/4 Bio-Rad 

αMHC II FITC M5/114.15.2 eBioscience 

αF4/80 APC-Cy7 BM8 eBioscience 

αLy-6G (Gr-1) eFluor 450 HK1.4  eBioscience  

αmCD1d 
Tetramer  

APC --- Nat. Inst. Of Health 
Tetramer Core Facility 

 

2.3. Employed primers 

Primers were synthesized at Sigma-Aldrich or MWG-biotech.  

2.3.1. Genotyping primers 

Identification   sequence 5´> 3` 

XIAP WT fwd   GTAGGCAGGAGGTTTAGAAG 

XIAP neo fwd   TCCTCGTGCTTTTCGGTATC 

XIAP rev    GATTCCTCAAGTGAATGGGT    

XIAP Ring fwd   TAAAGCCTTTACCTTCTTCTCTATTT  

XIAP Ring rev   TGGGACAGGTAGGATTTAGTGCTTCG 

TNF fwd    TAG CCA GGA GGG AGA ACA GA 

TNF WT rev    AGT GCC TCT TCT GCC AGT TC 

TNF ko rev    CGT TGG CTA CCC GTG ATA TT 

RIPK3 1    CGCTTTAGAAGCCTTCAGGTTGAC 

RIPK3 2    GCCTGCCCATCAGCAACTC 

RIPK3 3    CCAGAGGCCACTTGTGTAGCG 

MLKL 1    TAT GAC CAT GGC AAC TCACG 

MLKL 2    ACC ATC TCC CCA AAC TGT GA 
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MLKL 3    TCC TTC CAG CAC CTC GTAAT 

Caspase 1 WT fwd   GAG ACA TAT AAG GGA GAA GGG 

Caspase 1 ko fwd   TGC TAA AGC GCA TGC TCC AGA CTG 

Caspase 1 rev   ATG GCA CAC CAC AGA TAT CGG  

IL1r1 fwd    CTCGTGCTTTACGGTATCGC 

IL1r1 WT    GGTGCAACTTCATAGAGAGATGA 

IL1r1 rev    TTCTGTGCATGCTGGAAAAC  
  

 

2.3.2. Real time primers 

Identification   sequence 5´> 3` 

Actin fwd    AAGAGCTATGAGCTGCCTGA 

Actin rev    TACGGATGTCAACGTCACAC 

Pro Il-1 fwd    TGTAATGAAAGACGGCACACC 

Pro IL-1 rev    TCTTCTTTGGGTATTGCTTGG 

Tnf fwd    CCACGCTCTTCTGTCTACTGAAC 

Tnf rev    TTGTCACTCGAATTTTGAGAAGATG 

IL-6 fwd    CAGGATACCACTCCCAACAGACC 

IL-6 rev    AAGTGCATCATCGTTGTTCATACA 

IL-23p40 fwd    GGAAGCACGGCAGCAGAATA 

IL-23p40 rev    AACTTGAGGGAGAAGTAGGAATGG 
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3. Methods 

3.1. Work with dendritic cells and macrophages 

3.1.1. BMDC differentiation 

VLE RPMI was supplemented with 10% Sera Plus fetal bovine serum (PAN 

Biotech GmbH), 1% Glutamin (Gibco), 1% PenStrep (Gibco), 0,1% ß-

Mercaptoethanol (Gibco) and with 10ng/ml GM-CSF (Peprotech) for the 

differentiation of BMDCs. Mice were sacrificed and tibia and femur were 

extracted under sterile conditions. The bone marrow was flushed out with 

media and erythrocytes were eliminated with G-DEXTM II RBC lysis buffer 

(iNtRON Biotechnology). Cell numbers were determined in a Neubauer 

Counting Chamber (Omnilab) in 0.2% Trypan Blue (Life Technologies) and 

5x106 bone marrow cells were seeded per 10cm uncoated cell culture dish 

with 10ml GM-CSF supplemented RPMI media as described before. One day 

three additional 10ml media was added. One day six 10ml were retrieved from 

the dish, centrifuged and replaced with fresh GM-CSF media. On day seven 

supernatant containing differentiated and unstimulated BMDCs were collected 

and loosely attached BMDCs were harvested by rinsing with PBS. BMDCs 

were pelleted and resuspended in GM-CSF free RPMI (Gibco) supplemented 

with 10% fetal bovine serum (Capricorn), 1% Glutamin, 1% PenStrep, 0,1% ß-

Mercaptoethanol. 

 

3.1.2. BMDM differentiation 

For BMDM differentiation L929 enriched media is needed. Therefore, L929 

cells were seeded in 20cm coated dishes with 30-40ml media containing RPMI 

(Gibco) supplemented with 10% fetal bovine serum (Capricorn), 1% Glutamin, 

1% PenStrep, 0,1% ß-Mercaptoethanol. After 7-9 days media containing M-

CSF was harvested and filtered sterile before usage. Bone marrow cells from 

femur and tibia of mice with respective genotype were seeded in RPMI media 

containing 20% L929 enriched media. On the following day only the floating 
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non-differentiated cells were harvested and reseeded at a density of 5x106 

cells per 10cm uncoated dish, again in 20% L929 media containing media. By 

day five most cells should have attached so that media can be easily replaced 

with fresh media containing 10% L929 enriched media. On day 7 cells were 

harvested and used for experiments in RPMI media not containing L929 

media. 

 

3.1.3. Analysis of differentiation markers 

For differentiation verification and BMDC characterization, cells were seeded 

in uncoated dishes (Greiner bio one) overnight and treated with 5ng/ml LPS 

(Invivogen, ultrapure). After 24hours cells were harvested with PBS-EDTA 

(2mM) and Fc receptors were blocked on ice in PBS together with a 

LIVE/DEAD Fixable Near-IR Dead Cell stain kit (life technologies). After 10min, 

stains for BMDC surface markers (CD11c, CD11b, Gr-1, 7/4, MHCII, F4/80) 

were added for an additional 20min. Flow cytometric analysis was performed 

on a FACS Canto II (BD) and data was analyzed with FlowJo software. 

 

3.1.4. Protein analysis 

To examine protein expression of BMDCs, cells were seeded in Optimem 

media (Gibco) and treated for 8h with LPS (Invivogen, ultrapure) or for 2h with 

LPS and additional 30min with 5mM ATP (Invivogen) as a control. After 

indicated time points, floating and attached cells were lysed with a cytosolic 

fraction enriching buffer (20mM HEPES, 1% NP40, 5mM NaCl, 140mM KCl, 

1mM DTT, 1x protease inhibitor cocktail). Protein concentration was measured 

by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and 30g per 

sample was loaded on a 12% SDS gel and afterwards transferred on a 

nitrocellulose membrane (Omnilab). Membranes were incubated with 

indicated antibodies over night at 4°C and after secondary antibody exposure, 

protein expression was detected with a Western Blot Imager (Intas). 
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3.1.5. Quantitative real-time PCR 

To examine mRNA expression of dendritic cells, BMDCs were treated with 

LPS 5ng/ml for 24 hours. RNA was obtained from treated cells with 

NucleoSpin® RNA II (Macherey-Nagel) according to manufacturer’s 

instruction and concentrations were quantified with a Nano Drop 2000 (Thermo 

Scientific). 1g per sample was used for cDNA synthesis with Reverse 

Transcriptase II (Invitrogen according to manufacturer’s instruction) and was 

thereafter diluted 1:10 with nuclease-free water (Promega) for real-time PCR 

quantification. According to manufacturer’s instruction quantitative RT-PCR 

was performed with 2,5l cDNA per sample and listed primers (Section 3.3.2) 

using the GoTaq qPCR Mastermix (Promega) and the LightCycler 480 II 

(Roche). 

 

3.1.6. Treatments 

For coculture setups day 7 BMDCs were seeded in U-bottom 96 well plates 

and for cytokine detection and viability assays BMDCs were seeded in F-

bottom plates. Independent of experimental fate 2,5x105 BMDCs per well were 

seeded und treated with the following stimuli: LPS 2ng/ml (Invivogen, 

ultrapure) CpG ODN 10nM (Invivogen), pI:C 10g/ml (Invivogen), Anakinra 

15g/ml (Swedish Orphan Biovitrum AB), recombinant mouse TNF 100ng/ml 

(Biolegend), recombinant mouse IL-1 1ng/ml (Peprotech), Z-IETD-FMK 

10M (BD Biosciences), Necrostatin-1s 30M (R&D Systems), GSK1728A 

10M (GSK). Inhibitor used in combination with a TLR antagonist were added 

45min before TLR stimulation. UVC irradiation was applied in doses of 5,10 or 

20mJ/cm2 with a CL-1000 Ultraviolet Crosslinker (UVP). 
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3.1.7. Viability assays 

After 24 hours of treatments (Section 4.1.6) viability and survival of dendritic 

cells or macrophages was assessed in three ways. First, viability of BMDCs 

and BMDMs was detected by measurement of ATP. This was quantified with 

Cell Titer Glo Luminescent Cell Viability Assay (Promega) according to 

manufacturer´s recommendation.  

To detect lytic cell death of BMDCs, LDH release was quantified with a 

CytoTox 96 Non-Radio. Cytotoxicity Assay (Promega) after the company´s 

instruction. 

To verify increased death rate in BMDCs with a third available option, 5M 

propidium iodide (Sigma-Aldrich) was added to cells for the last 30minutes of 

treatment and transmitted light pictures as well as PE Texas Red fluorescence 

pictures were taken (EVOS FL from life technologies). 

 

3.1.8. Cytokine quantification 

After 24 hours, supernatant of treated cells was collected, diluted if necessary 

and cytokines were measured with a Cytokine Bead Array (for TNF, IL-6 and 

IL-1) (BD Biosciences) or ELISA (for IL-23) (Biolegend) according to 

manufacturer’s instruction.  

 

3.2. Work with T lymphocytes 

3.2.1. Purifications of T lymphocytes 

To purify CD4 and  T lymphocytes for a coculture setup as well as naïve 

CD4 lymphocytes, spleen and superficial cervical, axillary, inguinal and 

mesenteric lymphnodes from WT Bl6, Xiap–/– Bl6 or WT Balb/c mice were 

collected and meshed through a 100μm strainer. After red blood cell lysis (with 

G-DEXTM II RBC lysis buffer (iNtRON Biotechnology)), cells were labeled with 

antibodies and beads according to manufacturer´s description and were 
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subject to purification via MACS bead (Milteny Biotec, negative selection CD4+ 

T cell isolation Kit II for coculture and positive selection for naïve CD4+ T cell 

isolation Kit for differentiation setups). Purity was verified with a simple FACS 

analysis for CD4 and  T cells. 

For purification of either CD4,  or double negative T lymphocytes from WT 

Bl6 mice, single cell suspension of spleen and mentioned lymph nodes was 

prepared as described before. Cells were then subject to staining (CD3, CD4, 

CD8,  TCR) and were sorted into highly pure subsets of CD3+CD4+, CD3+ 

 TCR+ or CD3+  TCR– CD4– CD8– with a FACS Aria III. 

 

3.2.2. Coculture setup and analysis 

For coculture setup MACS purified or sorted T lymphocytes were washed, 

counted and resuspended in RPMI (Gibco) supplemented with 10% fetal 

bovine serum (Capricorn), 1% Glutamin, 1% PenStrep, 0,1% ß-

Mercaptoethanol and seeded onto 24 hours stimulated BMDCs. When 

proliferation assessment was wanted, purified T lymphocytes were subject to 

CFSE (eBioscience) staining according to instructions from manufacturer 

before addition of stained T cells to coculture. Proliferation of T lymphocytes 

was then traceable in the FACS via detection on the FITC channel. Coculture 

was maintained for 5 days in a sterile cell culture incubator (Binder). 

After 5 days of coculture T lymphocytes were restimulated with a mix of PMA 

(0,5nM) / Ionomycin (0,1nM) / Brefeldin A (Biolegend 5ng/ml) for 4 hours and 

were then pipetted out of the 96 well plate, were washed, Fc receptor was 

blocked and cells stained with fluorescent labeled antibodies for viability, CD4, 

 TCR, CD1d-Tetramer, CD3, TCR, CD8a, NK1.1. Intracellular staining of 

IL-17, IFN, RoRt and PLZF was performed with the FoxP3 Staining Buffer 

Set (eBioscience) according to protocol overnight. Moreover, IL-17 

concentrations in the supernatant of coculture was measured by ELISA (R&D 

Systems). 
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3.2.3. In vitro differentiation of T cells 

Naïve CD4+ CD62L T lymphocytes from spleen and lymphnodes of WT, Xiap–

/– and XiapRing mice were purified like described before (Section 4.2.1.) with 

the naïve CD4+ T cell Isolation Kit (Milteny Biotec) and were seeded into 

overnight pre-coated rabbit anti Syrian Hamster Ig (H+L) (10g/ml, Dianova) 

and one hour coated anti mouse CD3 (5g/ml, eBioscience) tissue culture 

plates. T Lymphocytes were seeded into RPMI (Gibco) supplemented with 

10% fetal bovine serum (Capricorn), 1% Glutamin, 1% PenStrep, 0,1% ß-

Mercaptoethanol and supplemented with anti-mouse CD28 (2,5g/ml, 

eBioscience). According to the specific differentiation protocols, additional 

cytokines and antibodies were added: 

- Treg differentiation: 4ng/ml recombinant human TGF (R&D Systems) 

5ng/ml recombinant mouse IL-2 (R&D Systems) 

- Th17 differentiation: 4ng/ml recombinant human TGF (R&D Systems) 

10ng/ml IL-6 (R&D Systems) 

10g/ml anti IFN(eBioscience) 

5g/ml anti IL-4 (eBioscience) 

5g/ml anti IL-2 (eBioscience) 

- Th1 differentiation:  5ng/ml IL-12 (R&D Systems) 

5g/ml anti IL-4 (eBioscience) 

5ng/ml recombinant mouse IL-2 (R&D Systems) 

T lymphocytes were stimulated for three days and were then subject to flow 

cytometric analysis for CD4, CD25 and intracellular expression of either 

FoxP3, IL-17 or IFN.  
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3.3. Work with mice 

3.3.1. Husbandry and breeding 

All animals were housed under standardized, specific pathogen free conditions 

in individually ventilated cages (TechniPlast IVC). Studies were conducted in 

compliance to federal and institutional guidelines. Animal protocols were 

approved by the government of Oberbayern.  

Xiap–/–  (Olayioye et al., 2005) and XiapΔRING/ΔRING (Schile et al., 2008) mice 

have been previously described. Tnftm1Gkl (Tnf–/–) mice (Pasparakis et al., 

1996) were purchased from Jackson Laboratories. Rip3–/– (NeWTon et al., 

2004) mice were obtained under a material transfer agreement from 

Genentech and have been previously described. Caspase 1/11–/– (K. Kuida et 

al., 1995) mice were a kind gift from Olaf Gross. Mlkl–/– mice were described 

before (Murphy et al, 2013). All mice were backcrossed into the C57BL/6 

background. Both male and female mice deficient for the XIAP gene BIRC4 

were denoted Xiap–/–. Interbreeding the Xiap–/– and Tnf–/– generated the 

XIAP and TNF double deficient mice Xiap–/–Tnf–/–, interbreeding the Xiap–/– 

and Rip3–/– generated double deficient Xiap–/–Rip3–/– mice and 

interbreeding Xiap–/–, Caspase1/11–/– generated double deficient Xiap–/–

Caspase1/11–/– mice and interbreeding Xiap–/– and Mlkl–/–  mice generated 

double deficient Xiap–/–Mlkl–/–  mice. All mice were treated and held 

according to the ethics commitee of the Klinikum rechts der Isar and approved 

by the government of Oberbayern.  

 

3.3.2. Genotyping 

For genotyping ear hole punches were used for DNA extraction with the 

Wizard SV Genomic DNA Purification System (Promega) according to protocol 

and PCR setups were performed with 19l of the GoTaq Green Master Mix 
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(Promega) and 1l of purified DNA and run on PCR cyclers (Bio–Rad) 

according to protocol. 

Gene name PCR protocol band size 
Xiap–/– 1: 94°C for 4min; 2: 94°C for 40sec; 3: 55°C for 30sec 

4: 72°C for 60sec; 5: Back to 2/ for 30 cycles 
6: 72°C for 5min; 7: 4°C hold 

 

WT 500bp 
ko 600bp 

Xiap Ring 1: 94°C for 4min; 2: 94°C for 40sec; 3: 55°C for 30sec 
4: 72°C for 60sec; 5: Back to 2/ for 30 cycles 
6: 72°C for 5min; 7: 4°C hold 

 

WT 150bp 
ko 200bp 

Tnf–/– 1: 94°C for 3min; 2: 94°C for 30sec; 3: 62°C for 1min 
4: 72°C for 1min; 5: Back to 2/ for 35 cycles 
6: 72°C for 2min; 7: 4°C hold 
 

WT 183bp 
ko 318bp 

Mlkl–/– 1: 96°C for 2min; 2: 96°C for 30sec; 3: 57°C for 30sec 
4: 72°C for 1min; 5: Back to 2/ for 30 cycles 
6: 72°C for 5min; 7: 4°C hold 

 

WT 498bp 
ko 158bp 

Caspase1–/– 1: 94°C for 2min; 2: 94°C for 20sec; 3: 65°C for 15sec 
(*–0.5°C per cycle decrease); 4: 68°C for 10sec 
5: repeat steps 2-4 for 10 cycles; 6: 94°C for 15sec 
7: 60°C for 15sec; 8: 72°C for 10sec 
9: repeat steps 6-8 for 28 cycles; 10: 72°C for 2min 
11: 4°C hold 
 

WT 500bp 
ko 300bp 

Ripk3–/– 1: 94°C for min; 2: 94°C for 1 min; 3: 60°C for 30sec 
4: 72°C for 1min; 5: Back to 2/ for 30 cycles 
6: 72°C for 10min; 7: 4°C hold 
 

WT 320bp 
ko 485bp 

IL1r1–/– 1: 94°C for 2min; 2: 94°C for 20sec; 3: 65°C for 15sec 
(*-0.5°C per cycle decrease); 4: 68°C for 10sec 
5: repeat steps 2-4 for 10 cycles; 6: 94°C for 15sec 
7: 60°C for 15sec; 8: 72°C for 10sec 
9: repeat steps 6-8 for 28 cycles; 10: 72°C for 2min 
11: 4°C hold 
 

WT 310bp 
ko 150bp 

After PCR reaction, samples were loaded onto a 2% agarose gel and PCR 

products were separated via electrophoresis. 
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3.3.3. Intraperitoneal LPS injections 

For intraperitoneal LPS injections mice (both male and female littermates) of 

8-12 weeks´ age were used. 200g of LPS (ultrapure, Invivogen) in 200l of 

PBS was injected into the peritoneum of each mouse and peritoneal fluid and 

serum were collected either after 4 hours or 24 hours. For cytokine 

measurements, peritoneal fluid was concentrated with 10kDa MWCO Vivaspin 

filters (Vivascience) and then quantified together with serum with the enhanced 

Cytokine Bead Array (BD Bioscience) according to manufacturer´s instruction. 

For T lymphocyte analysis, cells from spleen, draining lymphnodes and 

peritoneal fluid were collected, processed into single cell suspensions, subject 

to red blood cell lysis (with G-DEXTM II RBC lysis buffer (iNtRON 

Biotechnology)) and restimulation (according to description in Section 3.2.2). 

After Fc blocking, a LIVE/DEAD Fixable Near-IR Dead Cell stain kit (life 

technologies) was used according to protocol for exclusion of dead cells, 

followed by staining for CD3, CD4, CD8,  TCR, Cd1d-Tetramer, Gr-1, Ly6B, 

CD11b and intracellular IL-17 with the FoxP3 Staining Buffer (eBioscience) 

over-night and flow cytometric analysis following the next day. 

 

3.3.4. Citrobacter rodentium 

To induce colitis in WT and Xiap-/- Bl6 mice, male and female littermates of 8-

12 weeks of age were cohoused for at least 5 weeks. Inoculation of mice was 

done by oral gavage of 4-8x109 CFU of Citrobacter rodentium strain ICC 169, 

with bioluminescence, after 8 hours of starvation. Every day, the mice were 

subject to weight control and detection of bacterial burden by bioluminescence 

imaging with an IVIS Lumina II system. To simplify detection of 

bioluminescence, the bellies of the mice were shaved before. After 14 days, 

when bioluminescence was not or almost non-detectable, mice were sacrificed 

and the distal colon was washed and fixed with 4% PFA over night for 

histological analysis (Section 3.3.6.4.). 3μm-thick sections were cut, 

deparaffinized and stained with hematoxylin and eosin (H&E) according to 

standard protocols. 
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To further analyze differences between genotypes, mice were sacrificed at day 

seven, the peak of the Citrobacter rodentium infection and cells in the lamina 

propria and intraepithelial compartment from ileum and colon were purified and 

analyzed as described in Section 3.3.6.3. and FACS analyzed for CD3,  

TCR, CD4, IL-17, IL-22. 

3.3.5. Graft versus host 

3.3.5.1. Induction and engraftment verification 

For GvHD induction in Bl6 mice, male and female littermates of WT and Xiap-

/- mice were cohoused prior to experiments for at least 5 weeks. After 

optimization of GvHD induction protocols, mice were given 0,015% Borgal 

(Virbac) with 150mg Aspartam (Fagron) into their drinking water two days 

before GvHD induction and were kept on antibiotics for the first ten days after 

irradiation. For induction of GvHD in bought, clean Balb/c mice, this was not 

necessary. To induce GvHD, recipient mice were irradiated with a lethal split 

dose of 11Gy for Bl6 or 9Gy for Balb/c mice 4-6 hours apart with a Gulmay 

irradiation unit. After the second round of irradiation, mice were transplanted. 

To induce GvHD in mice, transplantation of bone marrow mixed with CD4 and 

CD8 T lymphocytes is necessary. Therefore, bone marrow and spleen was 

obtained from donors and treated with G-DEXTM II RBC lysis buffer (iNtRON 

Biotechnology). CD4 and CD8 T lymphocytes were purified from spleens 

according to protocol for CD4 (L3T4) and CD8a (Ly-2) MACS bead positive 

selection kits (Milteny Biotec). 5x106 bone marrow cells were transplanted into 

donors. Bl6 mice received additionally 1x106 CD4/CD8 T cells and Balb/c mice 

received varying doses of 0,5, 1,0 and 5,0x106 CD4/CD8 T cells. Cells were 

resuspended in 300l PBS in total and were injected retroorbitally. 

To verify engraftment of bone marrow into donor animals, blood from mice was 

obtained by check bleeding und analyzed by flow cytometric analysis for MHC 

I marker specific for either Balb/c (H2k-d) or Bl6 (H2k-b). 
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3.3.5.2. Scoring 

To examine and evaluate GvHD development in donor mice, animals were 

examined and scored daily for the following criteria: Bl6 weight loss 5-10% 

(5P), Bl6 weight loss 10-19% (10P), Bl6 weight loss >20% (20P), Balb/c weight 

loss 10-20% (5P), Balb/c weight loss 20-29% (10P), Balb/c weight loss >30% 

(20P), pale skin (5P), small hunchback (5P), big or for longer duration 

hunchback (10P), signs of infection (20P), beginning skin GvHD (5P), growing 

skin GvHD (10P), inflamed skin GvHD (20P), beginning diarrhea (5P), diarrhea 

up to 3 days (10P), diarrhea longer then 3 days (20P). 

 

3.3.5.3. Disease induction analysis 

To better compare differences between genotypes during GvHD induction in 

Bl6 mice, GvHD was induced as described before (3.3.6.1.) and mice were 

analyzed at day 8 after induction. Therefore, cell subsets in the lamina propria 

and intraepithelial compartment of colon and ileum were analyzed. 

For isolation of cells from the intestinal intraepithelial compartment, colon and 

ileum were washed with cold PBS and cut into 2 cm pieces. Longitudinally 

opened intestines were incubated with HBSS solution containing 2mM EDTA, 

10mM HEPES, 10% FCS (Capricorn), 1 % L-Glutamine and 1mM DTT 

(Sigma-Aldrich). After incubation on a shaker (225 rpm) at 37°C for 15 min, 

supernatants were filtered through a 100μm strainer. After another incubation 

step, supernatants were filtered, pooled and placed on ice (45 min). Cells in 

suspension were purified on a 40/80% Percoll gradient (Biochrom) and FACS 

analyzed for CD3, CD4, CD8,  TCR, IL-17, IFNand MHC-I H2kb and H2kd 

to distinguish between donor and recipient cells. 

For the assessment of cell subsets in the lamina propria, colon and ileum were 

prepared as just described, but this time remaining tissue pieces after 

incubation with DTT solution were used and further digested for 45min in 

PBS+Ca/+Mg supplemented with FCS (10%), Collagenase II (200 U/ml; 

Worthington), and DNase I (0.05 mg/ml; Roche) on a shaker at 37°C. Cells in 

suspension were filtered through a 100μm strainer and purified on a 40/80% 

Percoll gradient (Biochrom). Cells in the lamina propria were again FACS 
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analyzed for T cell markers (CD3, CD4, CD8,  TCR, IL-17, IFN), and as well 

for MHC-I H2kb and H2kd to distinguish between donor and recipient cells. 

 

3.4.  Statistical analysis 

GraphPad Prism V software was used for generating Kaplan-Meier curves and 

performing statistical analysis (using Mantle-Cox test) to compare the survival 

of mice. For further statistical analysis, p values were determined by applying 

two-tailed t-test for independent samples. All values are expressed as the 

mean ± SEM and p <0.05 (*), p < 0.005 (**) and p < 0.0005 (***). 
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4. Results 

4.1. Inflammatory cell death of Xiap –/– BMDCs 

triggers exaggerated IL-17 production in T 

cells 

4.1.1. Experimental setup to elucidate inflammatory cell death 

on T cell polarization 

In a recent publication, Yabal and colleagues (Yabal et al. 2014) showed that 

dendritic cells (DCs) deficient for XIAP are prone to increased cell death and 

showed a hyperinflammatory phenotype with increased IL-1 production after 

TLR treament. To investigate consequences of inflammatory cell death of 

stimulated dendritic cells on their surroundings, a coculture system with 

dendritic cells and T cells was developed (Fig.4.1). 

 

Figure 4. 1 Ex vivo experimental coculture setup. 

Illustration of the experimental setup for the differentiation of BMDCs from bone 

marrow followed by stimulation of BMDCs with TLR ligands. Purification of T 

lymphocytes from spleen and lymphnodes and addition to stimulated BMDCs after 

24h followed by flow cytometric analysis of T lymphocytes after 5 days of coculture. 



 34 

Therefore, bone marrow (BM) from WT and XIAP deficient mice was 

differentiated with GM-CSF for seven days. Dendritic cells were then 

stimulated with various TLR ligands (LPS for TLR4, pI:C for TLR3 and CpG for 

TLR9) for 24 hours. After 24 hours T cells from WT mice were isolated and 

added to the stimulated DCs and were subsequently cocultured for the 

following 5 days. After coculture, T lymphocytes were subject to flow 

cytometric analysis. 

 

4.1.2. GM-CSF differentiated cells are a heterogeneous group 

of dendritic cells and macrophages 

To enable a better characterization of the dendritic cells used in the following 

experiments, differentiated BMDCs were subject to analysis. After seven days 

of bone marrow cell differentiation, surface markers of dendritic cells were 

analyzed for CD11b and CD11c (Fig.4.1A), which are known to be expressed 

on the surface of different dendritic cell subsets (Merad et al. 2013). 

CD11b/CD11c analysis revealed the existence of two subsets with the main 

population being CD11b+/CD11c+ and a minor subset (CD11bint/CD11c+) that 

increased after stimulation (Fig.4.2.A). This mirrors the populations described 

by Helft et al., who states that GM-CSF differentiated dendritic cells are not a 

uniform population, but rather a mixture of dendritic cells and macrophages 

(Helft et al. 2015). Therefore, further flow cytometric analysis was done to 

verify the macrophage like phenotype of the CD11b+/CD11c+ subset and the 

dendritic like features of the CD11bint/CD11c+ cells. The CD11b+/CD11c+ 

subset showed a high expression of F4/80 and 7/4, characterizing these cells 

as macrophages, while the CD11bint/CD11c+ subset depicted dendritic cells 

with features of high MHC-II and reduced 7/4 expression (Fig.4.2.B and 4.2.C). 

Inflammatory monocytes were not included, as this subset would express Gr-

1 while being negative for CD11c expression (Dunay et al. 2008). Although 

differentiated BM cells include for the better part macrophages, they will still 

be termed dendritic cells, according to the differentiation protocol. 
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Figure 4. 2.: Flow cytometric analysis of dendritic cells. 

Flow cytometric analysis of differentiated BMDCs shows different subsets of dendritic 

cells and macrophage like cells based on CD11b/CD11c expression (A), differences 

in F4/80 and MHC-II (B), as well as Gr-1 and 7/4 expression (C). 

 

4.1.3. TLR triggered loss of viability in XIAP deficient BMDCs  

First, bone marrow progenitors of WT mice were differentiated and compared 

to BMDCs lacking XIAP or expressing a RING-deleted version of XIAP termed 

XiapΔRing/ΔRing. Viability of DCs was assessed after treatment with different toll-

like receptor (TLR) stimuli (LPS for TLR4, pI:C for TLR3 and CpG for TLR9), 

resembling microbial loads after infection. 24 hours after treatment, survival of 

BMDCs was determined by intracellular ATP content. Xiap–/– and XiapΔRing/ΔRing 

BMDCs both showed a significant decrease in viability in comparison to WT 

BMDCs (Fig.4.3.A). Moreover, we detected increased amounts of LDH release 

from Xiap–/– BMDCs (Fig.4.3.B), which correlates with lytic and therefore 

necrotic cell death (Chan, Moriwaki, and De Rosa 2013). Additionally, cell 

death of LPS treated Xiap–/– BMDCs could be clearly distinguished from 
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apoptotic death by propidium iodid (PI) stainings, which can only stain cells 

with ruptured membranes (Fig.4.3.C) (Krysko et al. 2008). 

 

 

Figure 4. 3.: Detection and distinction of cell death after TLR treatment. 

Statistical analysis was done by unpaired t-test and asterisks denote significant 

differences (*p < 0,05, **p < 0,005, ***p < 0,0005; p values valid for all subsequent 

figures). Measurement of cell death by decrease in ATP content (A), LDH release (B) 

and PI staining (C) in WT, Xiap–/– and XiapΔRing/ΔRing BMDCs after 24h of treatment with 

LPS (2ng), pI:C (10mg/ml) or CpG(10nM). PI staining was visualized under the 

transmitted light microscope (left pictures) with Texas Red fluorescence detection 

(middle pictures) and displayed as overlaid pictures (right). 

 

4.1.4. Elevated amounts of proinflammatory cytokines in 

 Xiap –/– BMDCs after TLR stimulation 

In coherence with increased cell death of Xiap–/– and XiapΔRing/ΔRing BMDCs, 

we measured proinflammatory cytokines after 24 hours. Secretion of IL-6 and 

TNF was comparable between WT, Xiap-/– and XiapΔRing/ΔRing BMDCs but there 

was an increased IL-23 secretion visible in XIAP deficient cells (Fig.4.4.A). 

However, most striking was the difference of IL-1, which was absent in WT 
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BMDCs in contrast to Xiap–/– and XiapΔRing/ΔRing BMDCs, independent of the 

given stimulus (Fig.4.4.A). As the death rate as well as the amounts of 

secreted cytokines were comparable between Xiap–/– and XiapΔRing/ΔRing 

BMDCs we conclude that the phenotype is dependent on the E3 ligase activity 

of XIAP. To examine whether increased cytokine production was regulated on 

the transcriptional level, mRNA amounts were detected and showed a similar 

upregulation of inflammatory cytokines after four hours as well as 24 hours 

independent of the genetic background of the dendritic cells (Fig.4.4.B). 

Therefore, it can be deduced, that XIAP does not play a regulating role in the 

transcriptional control of these cytokines. 

  

Figure 4. 4.: Cytokine induction and production of LPS treated BMDCs. 

(A) Detection of secreted cytokines by LPS (2ng), pI:C (10mg/ml) or CpG(10nM) 

stimulated BMDCs after 24h. (B) Determination of the transcriptional induction by the 

same cytokines after 4h and 24h by relative mRNA expression. 
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4.1.5. Successful establishment of a BMDC – T lymphocyte 

coculture system 

With the striking upregulation of inflammatory cytokines, after cell death in 

XIAP deficient cells, the aim was to determine whether inflammatory cell death 

could have an impact on the surrounding tissue including T lymphocytes and 

their polarization. Thus, T lymphocytes from the spleen and lymph nodes of a 

WT mouse were isolated and purified by a MACS bead negative selection kit. 

The kit used was described to enrich for CD4+ T lymphocytes, but due to a 

missing antibody against  T cells,  T cells were also separated in addition 

to CD4+ T lymphocytes (Fig.4.5.A). Purification yielded around 92% CD4+ cells 

and 3-4%  T lymphocytes. These lymphocytes were added to 24 hours TLR 

stimulated WT, Xiap–/– and XiapΔRing/ΔRing BMDCs and were subject to flow 

cytometric analysis after five days of coculture. The gating strategy in Figure 

4.5.B shows that even after coculture a clear CD4+ and CD4– subset remained, 

whereupon the CD4– subset clearly increased in size (from 7-8% up to 30%). 

Although we added no T cell receptor stimulating ligands to our coculture we 

saw only 10-20% of dead T lymphocytes (Amin+) after coculture (Fig.4.5.C). 

Nevertheless, even without the addition of antigens, interaction of T 

lymphocytes with dendritic cells was essential for T cell survival. Culturing 

purified T cells with only the supernatant from stimulated dendritic cells, was 

not sufficient to keep the lymphocytes alive (Fig.4.5.D).  
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Figure 4. 5.: T lymphocyte characterization before and after coculture. 

(A) Flow cytometric analysis shows CD4 and  T lymphocytes before and after 

purification with MACS beads. (B) Gating strategy for flow cytometric analysis after 

coculture. (C) Number of dead lymphocytes (Amin+) after coculture. (D) Flow 

cytometric analysis T lymphocytes of one exemplary coculture with only the 

supernatant of untreated (ctrl) and LPS treated WT and Xiap–/– BMDCs.  
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4.1.6. Inflammatory cell death of Xiap–/– BMDCs triggers minor 

but significant IL–17 production in CD4+ lymphocytes 

According to the gating strategy depicted in Figure 4.5.B, CD4+ and CD4– T 

lymphocytes could be distinguished. Analyzing intracellular cytokine 

expression revealed, that CD4+ lymphocytes which were in coculture with TLR  

  

Figure 4. 6.: IL-17 induction in CD4+ T lymphocytes after coculture. 

(A) Flow cytometric analysis of CD4+ T lymphocytes after coculture with untreated, 

LPS (2ng), pI:C (10mg/ml) or CpG(10nM) treated WT, Xiap-/– and XiapΔRing/ΔRing 

BMDCs (B) Percentage of IL-17 induction in WT CD4+ T lymphocytes after 5 days of 

coculture with treated (as described in A) WT, Xiap–/– and XiapΔRing/ΔRing BMDCs (C) 

Percentage of IFN expression in WT CD4+ T lymphocytes after 5 days of coculture 

with treated (as described in A) WT and Xiap–/– BMDCs. 
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ligand treated Xiap–/– and XiapΔRing/ΔRing BMDCs showed an increased 

expression of IL-17 from 0,5% up to 2% (Fig.4.6.A, 4.6.B). This was not 

detectable in untreated controls and T cells from coculture with WT BMDCs. 

Moreover, coculture did not influence IFN expression (Fig.4.6.C), a prototypic 

CD4+ Th1 cytokine (Nembrini et al. 2006). 

 

4.1.7. Inflammatory cell death of Xiap–/– BMDCs triggers 

excessive IL-17 production in CD4– lymphocytes 

In addition to the CD4+ T cell population, the CD4- counterpart was also 

analyzed with regard to intracellular cytokines. As purification of T cells was 

independent of  TCR expression,  T cells as well as– T cells were part 

of the CD4– subset and showed a similar phenotype as seen with CD4+ cells, 

only much more pronounced (Figure 4.7.A,). After coculture with treated Xiap–

/– and XiapΔRing/ΔRing BMDCs,  T cells and– T cells showed an increased 

expression of IL-17 of up to 35%, which was not detectable in controls and 

with cocultured WT BMDCs (Figure 4.7.B, 4.7.C). Identical to CD4+ cells, no 

IFN expression was triggered neither in  nor in – subsets after coculture 

with WT or Xiap–/–BMDCs (Figure 4.7.D). To verify that the intracellular 

presence of IL-17 also translated into an actively secreted inflammatory 

cytokine, IL-17 was measured in the supernatant of the coculture. The 

intracellular phenotype was confirmed, showing concentrations of up to 

approximately 4ng/ml IL-17 in the supernatant of cocultures with Xiap–/– and 

XiapΔRing/ΔRing BMDCs (Figure 4.7.E). 

In summary, it was show that presence of a microbial encounter in case of 

XIAP deficiency or loss of XIAP´s E3 ligase activity leads to inflammatory cell 

death which induces IL-17 production, but not IFN, in surrounding T 

lymphocytes. 
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Figure 4. 7.: IL-17 induction in CD4– T lymphocytes after coculture. 

(A) Flow cytometric analysis of CD4– T lymphocytes after coculture with untreated, 

LPS (2ng), pI:C (10mg/ml) or CpG(10nM) treated WT, Xiap–/– and XiapΔRing/ΔRing 

BMDCs (B) (C) Percentage of IL-17 induction in  and  T lymphocytes after 5 

days of coculture with treated (as described in A) WT, Xiap–/– and XiapΔRing/ΔRing 

BMDCs (D) Percentage of IFN expression in  and  T lymphocytes after 5 days 

of coculture with LPS (2ng/ml) treated WT and Xiap–/– BMDCs. (E) IL-17 measured 

from supernatant after coculture with ELISA. 
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4.1.8. Irradiation induced apoptotic death is not inflammatory  

To compare the phenotype of inflammatory death observed after TLR ligation 

in XIAP deficient cells with the effects of apoptosis, further experiments were 

conducted. WT and Xiap–/– BMDCs were subjected to UV irradiation of 

increasing doses, as UV irradiation is known to be a classical inducer of the 

intrinsic and extrinsic apoptotic pathway (C.-H. Lee et al. 2013; Scoltock and 

Cidlowski 2004). 24 hours after irradiation, increasing rates of death were 

detectable, correlating with the intensity of irradiation, which were comparable 

between WT and Xiap–/– BMDCrs (Fig.4.8.A). Apart from a basal, stimulation 

independent, TNF production, no notable IL-6 or IL-1 could be detected in the 

supernatant of WT and Xiap–/– BMDCs after irradiation (Fig.4.8.B). 

  

Figure 4. 8.: UV induced cell death is not inflammatory and has no effect on T 

lymphocytes. 

(A) Survival of WT and Xiap–/– BMDCs 24h after UV irradiation of increasing dosages 

(5mJ/cm2, 10mJ/cm2, 20mJ/cm2) (B) Secreted IL-1, TNF and IL-6 of WT and Xiap–/– 

BMDCs after 24h of UV irradiation (C) Transmitted light microscopy pictures taken 

after 8h of WT and Xiap–/– BMDCs with either 10mJ/cm2 UV irradiation or LPS (2ng(ml) 

treatment. Black arrows indicate apoptotic bodies. (D) Flow cytometric analysis of 

CD4– T lymphocytes after coculture with untreated or UV irradiated WT and Xiap–/– 

BMDCs. 
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In addition, WT and Xiap–/– BMDCs were compared under the transmitted light 

microscope, where apoptotic bodies after UV irradiation, but not after LPS 

treatment were visible. Consequently, a coculture of irradiated BMDCs with T 

lymphocytes was set up, but no IL-17 induction was detectable in T 

lymphocytes, whether cocultured with irradiated WT or Xiap–/– BMDCS 

(Fig..4.8.D). 

 

4.2. Diverse innate T cell subsets react upon 

inflammatory cell death 

4.2.1. Characterization of IL-17 producing cells reveals 

dominance of innate like T lymphocytes 

To find out which T lymphocyte populations exactly showed IL-17 induction in 

the coculture system, in depth flow cytometric analysis was performed. With 

only 2% IL-17 positivity in CD4+ T lymphocytes (Fig.4.6) in comparison to up 

to 50% IL-17 positivity in CD4– T lymphocytes (Fig.4.7), the focus was to 

understand which non-CD4 cells were responsible for the strong IL-17 

production and additionally showed proliferative capabilities (Fig.4.5.B, 4.5.E). 

Initial flow cytometric analysis showed that the CD4- subset of IL-17 producing 

T lymphocytes consisted of two groups. Despite enrichment for + T 

lymphocytes during MACS bead purification, a bigger sized – subset with 

similar capacities to induce IL-17 was observed (Fig.4.7). Further flow 

cytometric analysis confirmed that this subset consisted of T lymphocytes with 

expression of CD3 and TCR. CD8+ T lymphocytes and NK cells could be 

excluded (Fig.4.9.A), even though they are two known subsets being capable 

of IL-17 production (Srenathan, Steel, and Taams 2016; Passos et al. 2010). 

Although iNKT cells usually display NK1.1 as a surface marker (Makino et al. 

1995), more recent findings describe a NK1.1–, but IL-17 producing subset of 

iNKT lymphocytes, termed iNKT17 (Michel et al. 2007). To identify possible 

contaminations of the T lymphocytes with iNKT cells, a stain for the invariant 

T cell receptor was established and enhanced with intracellular stainings for 
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the IL-17 specific transcription factor RoRt (Ivanov et al. 2006; Michel et al. 

2008) and the iNKT staining for RoRt and (innate like T cell) specific  

 

Figure 4. 9.: IL-17 producing T cells belong to innate like T lymphocytes. 

(A) Flow cytometric analysis of CD4– IL17+ T lymphocytes subsets after coculture with 

LPS (2ng/ml) treated Xiap–/– BMDCs distinguishing between + and – T 

lymphocytes and their expression of CD3, TCRβ, CD8 and NK1.1 (B) Flow cytometric 

analysis of CD4– T lymphocytes to distinguish  T cells and iNKT17 cell after 

coculture with LPS (2ng/ml) treated WT and Xiap–/– BMDCs (C) (D) (E) Intracellular 

PLZF of – iNKT+(C), + iNKT– (D) and – iNKT– (E) found subsets in (B) 
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transcription factor PLZF (Constantinides and Bendelac 2013). Flow 

cytometric analysis confirmed the presence of iNKT cells in the coculture, 

which also showed, like  T cells, an expansion after coculture with stimulated 

Xiap–/– BMDCs (Fig.4.9.B). Further stainings for the two mentioned 

transcription factors, helped to classify the iNKT subset (Engel et al. 2016) and 

to verify the presence of iNKT17 lymphocytes with the expression of PLZF and 

RoRt in correlation with increasing IL-17 following coculture with stimulated 

Xiap-/- BMDCs (Fig.4.9.C). Interestingly, not only iNKT17 cells were positive 

for the transcription factors, but also + showed high RoRt and intermediate 

PLZF expression (Fig.4.9.D) and the remaining –iNKT– lymphocytes were 

likewise double positive (Fig.4.9.E). Given that the iNKT17 lymphocytes were 

only a small fraction of the IL-17 producing subset (only up to 6%), and due to 

the extensive flow cytometric analysis it was concluded that the remaining –

iNKT– lymphocytes were indeed peripheral double negative (DN) lymphocytes. 

Since the iNKT17 presence was so small, it will not be differentiated from the 

DN T lymphocytes for the following in vitro experiments.  

 

4.2.2. Peripheral DN T cells are a distinct IL-17 producing 

subset 

To evaluate IL-17 induction during the proliferation of T lymphocytes, CFSE 

staining was performed. With the membrane intercalating CFSE dye, cell 

division tracking was possible, revealing that IL-17 positivity is already strongly 

induced in CD4- T lymphocytes at day 3 and continues to increase up to day 

5 (Fig.4.10.A). Examining all viable T lymphocytes with the CFSE stain shows 

a small but detectable subset of CD4+ and a larger group of CD4– cells, which 

divided during the course of the five days even in the untreated controls 

(Fig.4.10.B). Specifically, the CD4– subset cocultured with Xiap–/– BMDCs after 

LPS treatment showed an increased number of cell divisions. Addition of 

antiCD3, to trigger the TCR receptor, resulted in a strong proliferation of the 

CD4+ subset, but did not have an impact on the CD4– subpopulation, 

independent of additional LPS stimulation (Fig.4.5.E). Nevertheless, with the 
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CFSE stain it cannot be truly distinguished whether the emerging and growing 

CD4– subset (specifically the DN T cells) is simply a strongly growing group of  

  

Figure 4. 10.: DN IL-17 producing lymphocytes do not originate from CD4 T 

cells. 

(A) Flow cytometric analysis of WT CD4– T cells for CFSE cell proliferation at day 3 

and day 5 in coculture with LPS (2ng/ml) treated WT and Xiap–/– BMDCs (B) CFSE 

staining of T lymphocytes after 5 days of coculture with untreated, LPS, antiCD3 and 

LPS+antiCD3 treated WT and Xiap–/– BMDCs. (C) (D) Flow cytometric analysis and 

percentage of IL-17 induction of WT DN (–CD4–CD8–CD3+) and+ T cells after 

purification via fluorescence–activated cell sorting and 5 days of coculture with LPS 

(2ng/ml) treated WT and Xiap–/– BMDCs. 
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 and DN T lymphocytes, or the increasing DN subpopulation is a result of 

CD4 receptor downregulation. This process has been described before after 

chronic stimulation (Grishkan et al. 2013) and displays one theory how DN T 

lymphocytes originate. To address the question of DN T cell origin in our 

coculture, fluorescence – activated sorting was performed and resulted in 

highly pure cell populations of either  or DN (CD3+,  CD4, CD8) T 

lymphocytes. The purified T cells were then added to the stimulated BMDCs 

and analyzed after 5 days of coculture. Evaluation revealed that purified DN 

lymphocytes and  T cells expanded and produced even higher IL–17 

amounts, independently of CD4+ lymphocytes (Fig.4.10.C) and thus DN T cells 

do not originate from CD4+ T lymphocytes. 

 

4.2.3. XIAP in T lymphocytes is not involved in polarization  

So far, only T lymphocytes purified from WT mice were used. This does not 

reflect the situation in an XLP-2 patient, were not only the dendritic cells, but 

all cells are deficient for XIAP. To test the role of endogenous XIAP in T 

lymphocyte polarization, naïve T cells from WT, Xiap–/– and XiapΔRing/ΔRing mice 

were purified and differentiated into Th17, Th1 and Treg T lymphocytes, using 

cytokines and blocking antibodies. Independent of the genetic background, the 

naïve T lymphocytes differentiated into the specific effector subset 

(Fig.4.11.A). Moreover, the behavior of XIAP deficient T lymphocytes in a 

coculture setup with WT and Xiap–/– BMDCs was examined and induction of 

IL-17 was analyzed. Xiap–/– T cells behaved identical to the WT T cells, 

showing comparable elevated levels of IL-17 in all three T cell subsets after 

coculture with Xiap–/– BMDCs (Fig.4.11.B) . Next, it was examined whether IL-

17 induction was as well possible in an allogenic setting. Thus, T cells from 

WT Balb/c mice were purified as described before and were then scanned for 

IL-17 and IFN production after coculture. The quantity of IL-17+ T cells was 

comparable between the syngenic setup with Bl6 T cells only and the allogenic 

setup of Bl6 BMDCs and Balb/c T cells (Fig.4.11.C). In contrast to the syngenic 

setup, there was an additional increase in IFN+ CD4+ T cells dependent on 

the coculture with treated Xiap–/– BMDCs (Fig.4.11.C). All in all, it can be 
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summarized that especially innate like T cells respond to inflammatory cell 

death in the absence of XIAP and initiate an inflammatory reaction, 

independent of their own genetic background. 

 

Figure 4. 11.: XIAP deficiency does not influence T cell differentiation. 

(A) Flow cytometric analysis showing differentiation of Th17, Th1 and Treg cells via 

their respective intracellular signature cytokines (B) Percentage of IL-17 DN+, + and 

CD4+ T cells with an XIAP deficient background after 5 days of coculture with LPS 

(2ng/ml) treated WT or Xiap–/– BMDCs (C) Percentage of IL-17/IFN DN+, + and 

CD4+ T cells with a Balb/c genetic background after 5 days of coculture with LPS 

(2ng/ml) treated WT or Xiap–/– BMDCs. 
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4.3. TNF and Caspase dependent hyper-

inflammatory IL-1 by Xiap –/– BMDCs 

activates T cells 

4.3.1. IL-1 receptor signaling drives IL-17 induction in innate 

like T cells 

To understand how inflammatory cell death can drive the induction of IL-17 in 

T lymphocytes further experiments were conducted. According to literature, 

polarizing cytokines are decisive for the differentiation status of a T 

lymphocyte. These can either be self-produced or come from antigen 

presenting cells (APCs) (Swain 1995). Several cytokines are known to drive 

Th17 polarization, with the combination of IL-6 and TGF- being most 

important (Bettelli et al. 2006; Veldhoen et al. 2006). Moreover, IL-23 has been 

shown to support maturation and thereby late differentiation (McGeachy et al. 

2009), whereas IL-1 facilitates expansion (Gulen et al. 2010) and early 

differentiation (Chung et al. 2009). On the other hand, innate like T cell subsets 

like  T lymphocytes seem to be able to induce IL-17 irrespective of IL-6, but 

rather depend on IL-1 and IL-23 (Sutton et al. 2009). As increased IL-1 and 

IL-23 are detectable after Xiap-/- BMDC TLR treatment, it was tested whether 

those cytokines were responsible for the IL-17 induction. Addition of Anakinra, 

an IL-1 receptor antagonist, with LPS did neither influence BMDC viability 

(Fig.4.12.A), nor did it have an autocrine effect on cytokine production 

(Fig.4.12.B), as the amount of viability and produced cytokines remained 

constant. In contrast to this, adding Anakinra in the coculture resulted in the 

complete loss of IL-17 induction in CD4– T lymphocytes (Fig.4.12.C, 4.12.D) 

as well as in CD4+ T lymphocytes (Fig.4.12.E). This correlation of IL-1 

signaling in T cells as a necessity for IL-17 induction was further affirmed by 

the fact, that T lymphocytes without a receptor for IL-1 were not able to 

respond to the death driven inflammation of Xiap–/– dendritic cell and did 

therefore not produce IL-17 (Fig.4.12.F). To prove that for the initiation 
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Figure 4. 12.: IL-1 signaling is the driving factor for IL-17 induction. 

(A) Survival of WT, Xiap–/– and XiapΔRing/ΔRing BMDCs after 24h of LPS (2ng/ml) and 

additional IL-1 Receptor Antagonist (IL-1RA) Anakinra (15mg/ml). (B) Cytokines of 

WT, Xiap–/– and XiapΔRing/ΔRing BMDCs after 24h of LPS (2ng/ml) and additional IL-1 

Receptor Antagonist (IL-1RA) Anakinra (15mg/ml). (C) Flow cytometric analysis of 

IL-17 in WT CD4– T cell subset after 5 days of coculture with LPS (2ng/ml), LPS + 

Anakinra (15mg/ml) and recombinant IL-1 (2ng/ml) treated WT, Xiap–/– and 

XiapΔRing/ΔRing BMDCs. (D) and (E) Percentage of intracellular IL-17 induction in WT 

CD4– and CD4+ T cells of flow cytometric analysis depicted in 4.12.C, DN stands for 

DN T lymphocytes in all following figures. (F) Flow cytometric analysis of IL-1R1–/- 

CD4– T lymphocyte subset after 5 days of coculture with LPS (2ng/ml) treated WT, 

Xiap–/– and XiapΔRing/ΔRing BMDCs. 

 

of IL-17 in innate T lymphocyte subsets, IL-1 was the driving factor, 

recombinant IL-1 was added to the coculture system. After addition of 

recombinant IL-1 a strong intracellular IL-17 signal (Fig.4.12.C, 4.12.D) in 

the innate T lymphocytes could be detected. On the contrary, recombinant IL-

1 alone was not sufficient to induce IL-17 in CD4+ T lymphocytes (Fig.4.12.E). 

It can be concluded, that inflammatory cell death which occurs after loss of 

XIAP results in elevated IL-1 which can directly affect T lymphocytes to 

induce IL-17. This IL1 signaling is necessary and sufficient for innate like T 

lymphocytes, while it is necessary but not sufficient for CD4+ T cells.  

 

4.3.2. Coculture with BMDMs mimics results from BMDC 

coculture 

Flow cytometric analysis of differentiated BMDCs revealed a mixed population 

of cells with characteristics of dendritic cells but also macrophage features 

(Figure 4.2). Given that the differentiated BMDCs included macrophage like 

cells, a comparison between the behavior of BMDCs and bone marrow derived 

macrophages (BMDMs) made sense. Thus, BMDMs were differentiated 
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according to their protocol and were then treated like BMDCs. A striking 

difference between BMDMs and BMDCs was uncovered when treatment with 

2ng/ml LPS did not result in detectable cell death in BMDMs and could also 

not be induced with an increased LPS concentration (Fig.4.13.A). 

Nevertheless, 24 hours LPS treatment yielded the production of inflammatory 

cytokines in similar quantities as measured in BMDC supernatant, with the 

same phenotype of strong IL-1 production, seen only by Xiap–/– BMDCs and 

not WT BMDCs (Fig.4.13.B). Again, Anakinra treatment did neither influence 

BMDC viability, nor cytokine production. When BMDMs were used for 

coculture setup, the IL-1 dependent phenotype was verified. Coculture of 

Xiap–/– BMDCs resulted in a similar, although not so strong, induction of IL-17 

production in  and  (DN) T lymphocytes (Fig.4.13.C).  

 

Figure 4. 13.: BMDMs show similar cytokine patterns like BMDCs without death 

and trigger IL-17 in coculture. 

(A) Survival of WT and Xiap-/- BMDCs after 24h of LPS (2ng/ml, 5ng/ml, 10ng/ml)plus 

additional Anakinra (B) Secreted IL-1, TNF and IL-6 of WT and Xiap–/– BMDCs after 

24h of LPS (2ng/ml, 5ng/ml, 10ng/ml) plus additional Anakinra (C) Percentage of 

intracellular IL-17 induction in  and  T lymphocytes. 

 

4.3.3. TNF as an indirect IL-17 regulator 

To examine upstream factors that control inflammatory death and IL-1 

secretion in Xiap–/– BMDCs, further experiments were conducted. As 

necroptosis is a form of highly inflammatory cell death, which results in release 

of DAMPs like IL-1 (S. J. Martin 2016), necroptotic triggers were examined. 
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It is known that necroptotic death can be induced downstream of TLRs as well 

as death receptors, such as TNF (Berghe, Hassannia, and Vandenabeele 

2016), and therefore the initiating signal was investigated. To examine the 

impact of TNF loss on T cell differentiation, TNF-deficient mice were crossed 

with Xiap–/– mice. TLR activation of Tnf–/– and Tnf/Xiap–/– BMDCs revealed a 

complete dependence of inflammatory cell death downstream of the TNF 

receptor, as loss of TNF completely abolished death of BMDCs (Fig.4.14.A).  

 

Figure 4. 14.: XIAP is involved in cell death induction downstream of the TNF 

receptor. 

(A) Survival of WT, Xiap–/–, Tnf–/– and Tnf/Xiap–/– BMDCs after 24h of stimulation with 

LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (B) Cytokines produced by WT, Xiap–/–, 

Tnf–/– and Tnf/Xiap–/– BMDCs after 24h of stimulation with LPS (2ng/ml), pI:C 

(10mg/ml), CpG (10nM). (C) Flow cytometric analysis of IL-17 in WT CD4– T 

lymphocyte subsets after 5 days of coculture with treated (as described in 4.14.A) 

WT, Xiap–/–, Tnf–/– and Tnf/Xiap–/– BMDCs. (D) Percentage of intracellular IL-17 

induction in WT  and DN T cells of flow cytometric analysis depicted in 4.14.C. 

Likewise, loss of death correlated with loss of IL-1 production in Tnf/Xiap–/– 

BMDCs, while IL-6 production remained unaltered (Fig.4.14.B). Using 



 55 

Tnf/Xiap–/– BMDCs in the coculture setup, flow cytometric analysis revealed 

complete loss of IL-17 induction in T lymphocytes (Fig.4.14.C, 4.14.D).  

Consequently, it can be concluded, that XIAP regulates cell death downstream 

of TNF and that induction of cell death does not occur via TLR stimulation, but 

rather is an effect of a positive feedback loop of self-produced TNF by the 

dendritic cells. 

 

4.3.4. Shared Caspase 1 and Caspase 8 driven IL-1 

processing 

Since not only death was blocked after loss of TNF signaling but also IL-1 

production, the source of IL-1was further elucidate. Given that IL-1 is 

usually produced as an inactive pro-form, which can be cleaved into an active 

molecule by Caspase 1 (Thornberry et al. 1992), the regulation of this process 

during inflammatory cell death was assessed. Therefore, Caspase 1/11 

knockout mice were crossed with Xiap–/– mice. Treatment of Casp-

ase1/11/Xiap–/– BMDCs with TLR ligands exhibited slightly less death then 

Xiap–/– BMDCs (Fig.4.15.A), while showing a significant reduction in IL-1 

secretion (Fig.4.15.B). Although IL-1 was only detectable in reduced 

amounts, TNF and IL-6 production was unaltered (Fig.4.15.B). 

Surprisingly, when the treated Caspase1/11/Xiap–/– BMDCs were used for a 

coculture setup, a similar IL-17 production, like with Xiap–/– BMDCs, could be 

seen (Fig.4.15.C, 4.15.D). Having a comparable amount of IL-17+ T cells after 

coculture, despite the reduced amounts of processed IL-1 shows how 

sensitive innate T lymphocytes are to smallest changes in the cytokine 

environment around them. 
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Figure 4. 15.: Loss of Caspase 1 does not influence IL-17 induction. 

(A) Survival of WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs after 

24h of stimulation with LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (B) Cytokines 

produced by WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs after 24h 

of stimulation with LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (C) Flow cytometric 

analysis of IL–17 in WT CD4– T lymphocyte subsets after 5 days of coculture with 

treated (as described in 4.15.A) WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–

/– BMDCs. (D) Percentage of intracellular IL-17 induction in WT  and DN T cells of 

flow cytometric analysis depicted in 4.15.C. 

 

Due to the circumstance that after Caspase 1/11 loss distinct levels of 

processed IL-1 were still sufficient to drive IL-17 induction in T lymphocytes, 

further experiments were conducted. According to recent publications not only 

the protease Caspase 1 can be involved in IL-1 processing, but also Caspase 

8 (Moriwaki et al. 2015).  

Therefore, BMDCs with a Caspase1/11 and XIAP double deficient background 

were treated with TNF and the Caspase 8 specific inhibitor Z-IETD-FMK 

(IETD). Identical to TLR treatment one could observe, that TNF treatment 
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resulted in more survival of Caspase1/11/Xiap–/– BMDCs in comparison to 

XIAP single knockouts (Fig.4.16.A). In contrast to TLR ligand induced cell 

death, TNF induced death was more pronounced. Additional treatment of 

dendritic cells with IETD did not influence viability. While loss of Caspase 1/11 

already reduced IL-1 production around 60%, additional Caspase 8 inhibition 

further lowered IL-1 another 60%, leaving Caspase1/11/Xiap–/– BMDCs with 

almost no expression (Fig.4.16.B). TNF treatment barely induced IL-6 and this 

was independent of Caspase 8 (Fig.4.16.B). TNF treated Xiap–/– BMDCs were 

able to induce IL-17 comparable to TLR treatments (Fig.4.16.C, 4.16.D). This 

is further evidence that the induction of IL-17 in innate T lymphocytes is only 

dependent on IL-1 and not on other effects like TLR signaling. Even though 

IL-1 secretion was drastically reduced after genetic deletion of Caspase 1/11 

in combination with chemical inhibition of Caspase 8, IL-17 induction in T cells 

was comparable (Fig.4.16.C, 4.16.D). This further emphasizes the sensitivity 

of innate-like T lymphocytes. 

Inflammatory death accompanied by IL-1 processing can either be 

necroptosis or pyroptosis (Vasconcelos, Opdenbosch, and Lamkanfi 2016). As 

pyroptosis is dependent on Caspase 11 (Kayagaki et al. 2015), the next step 

was to investigate involvement of pyroptotic death, as viability increased after 

co-deletion of Caspase 1/11 and XIAP. Hence, WT, Xiap–/–, Ripk3/Xiap–/– and 

Caspase1/11/Xiap–/– BMDCs after 8 and 24 hours of LPS treatment were 

immunoblotted and checked for Gasdermin D expression, which was recently 

described as the executioner of pyroptosis by forming membrane pores (Liu et 

al. 2016). Indeed, cleaved and thereby active Gasdermin D was visible after 8 

hours in Xiap–/– BMDCs and was lost after co-deletion of RIPK3 and Caspase 

1/11 (Fig.4.16.E). Moreover, co-deletion of RIPK3 and XIAP also abolished 

Caspase 8 activity. 

In summary, XIAP inhibits inflammatory cell death downstream of the TNF 

receptor and negatively regulates IL-1 processing via Caspase 1 and 

Caspase 8 which results in IL-17 induction in T lymphocytes. 
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Figure 4. 16.: Caspase 1 and 8 together process IL-1 to facilitate IL-17. 

(A) Survival of WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs after 

24h of stimulation with TNF (100ng/ml) and additional IETD (10mM). (B) Cytokines 

produced by WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs after 24h 

of stimulation with TNF (100ng/ml) and additional IETD (10mM). (C) Flow cytometric 

analysis of IL–17 in WT CD4– T lymphocyte subsets after 5 days of coculture with 

treated (as described in 4.15.A) WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–

/– BMDCs. (D) Percentage of intracellular IL-17 induction in WT  and DN T cells of 

flow cytometric analysis depicted in 4.15.C (E) Immunoblots of WT, Xiap–/–, 

Ripk3/Xiap–/– and Caspase1/11/Xiap–/– BMDCs after LPS (5ng/ml) treatment for 8h 

and 24h. Last lane shows positive control with WT BMDC + LPS (2h) and ATP (30 

min). * depicts cleaved Gasdermin D and Caspase 8 
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4.4. XIAP regulates inflammatory cell death 

dependent on RIPK3 but not in a MLKL 

dependent necroptotic setting 

4.4.1. Inflammatory cell death execution is independent of 

RIPK1 kinase function 

As mentioned before, inflammatory cell death can be accompanied by IL-1 

processing either during pyroptosis or necroptosis. In the previous results 

section (4.3.4) a minor involvement of pyroptosis could be confirmed. 

Therefore, it was investigated whether the most studied form of programmed 

necrosis, called necroptosis occurred in the experimental setting. Necroptosis 

is described as being driven by RIPK1 and/or RIPK3 and MLKL. Consequently, 

the involvement of all three proteins during XIAP deficient signaling were 

investigated. 

So far, the data indicates that XIAP restricts death induction and 

inflammasome activation downstream of the TNF receptor. Since the kinase 

RIPK1 is a critical signaling molecule downstream of the TNF receptor 

(Ofengeim and Yuan 2013), RIPK1 kinase activity has been reported to be 

essential for induction of necroptosis downstream of TNFR (He et al. 2011) 

and the fact that our work group has previously shown that RIPK1 

ubiquitination is regulated by XIAP (Yabal et al. 2014), RIPK1 was a logical 

target. Thus, further investigations into the role of RIPK1 in inflammatory cell 

death and its consequences for T cell polarization were conducted.  

Again WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs were 

treated with TNF in addition to Nec1s and GSK1728A, two RIPK1 kinase 

inhibitors. Inhibition of RIPK1 kinase activity with either of the chemicals, did 

not change the death rate in Xiap–/– and Caspase1/11/Xiap–/– BMDCs 

(Fig.4.17.A). 
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Figure 4. 17.: RIPK1 kinase influences Caspase 1 driven IL-1b processing but 

not execution of cell death. 

(A) Survival of WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs after 24h 

of stimulation with TNF (100ng/ml) and additional Nec1s (30M) or GSK1728A 

(10M). (B) IL–1 and IL-6 in the supernatant of WT, Xiap–/–, Caspase1/11–/– and 

Caspase1/11/Xiap–/– BMDCs after 24h of stimulation with TNF (100ng/ml) and 

additional Nec1s (30M) or GSK1728A (10M). (C) Flow cytometric analysis of IL-17 

in WT CD4– T lymphocyte subsets after 5 days of coculture with treated (as described 

in 4.17.A) WT, Xiap–/–, Caspase1/11–/– and Caspase1/11/Xiap–/– BMDCs. (D) 

Percentage of intracellular IL-17 induction in WT  and DN T cells of flow cytometric 

analysis depicted in 4.17.C). 

 

On the contrary, the inhibition of RIPK1 kinase activity seemed to have an 

effect on IL-1 processing instead. In Xiap–/– BMDCs IL-1 processing was 

lowered when RIPK1 kinase was inhibited and therefore IL-1 amounts were 

reduced to the levels usually processed by Caspase 8 (Fig.4.17.B). In contrast, 
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IL-1 magnitude was unaltered after kinase inhibition in Caspase1/11/Xiap–/– 

BMDCs, suggesting that Caspase 8 dependent IL-1 processing was 

independent of RIPK1 kinase activity. Again, TNF treatment barely induced IL-

6 and this was not altered after RIPK1 kinase inhibition (Fig.4.17.B). As a 

consequence of incomplete IL-1 loss, T lymphocytes showed similar IL-17 

induction after coculture with Xiap–/– and Caspase1/11/Xiap–/– BMDCs even 

after RIPK1 kinase inhibitor treatment (Fig.4.17.C, 4.17.D).  

It can be concluded that in a context of XIAP loss driven inflammatory cell 

death, RIPK1 kinase function is not needed. Whether RIPK1 may instead work 

as a scaffold protein similar to its function in complex I downstream of the 

TNFR needs further evaluation. Moreover, RIPK1 kinase seems to have a 

critical role in transmitting signals form the TNF receptor to the Caspase 1 

inflammasome. 

 

4.4.2. XIAP regulates inflammatory cell death dependent on 

RIPK3  

Previous experiments showed no involvement of RIPK1 kinase activity. Still 

the downstream effector molecule RIPK3 was examined, as RIPK3 has been 

described to be able to induce necroptosis downstream of the TNF receptor 

even in the absence of RIPK1 (Moujalled et al. 2013).  

Therefore RIPK3 deficient mice were crossed with XIAP deficient mice and 

BMDCs were differentiated. After 24 hours of treatment Ripk3–/–Xiap–/– BMDCs 

showed unaltered viability, identical to WT and Ripk3–/– BMDCs (Fig.4.18.A). 

With the loss of cell death in double deficient cells the expression of IL-1 was 

also completely abolished, while TNF and IL-6 remained unaltered 

(Fig.4.18.B). Moreover, induction of DN and  IL17+ T cells was completely 

abolished after coculture with Ripk3–/–Xiap–/– BMDCs (Fig.4.18.C, 4.18.D). 



 62 

 

Figure 4. 18.: Co-deletion of RIPK3 and XIAP abolishes inflammatory cell death. 

(A) Survival of WT, Xiap–/–, Ripk3–/– and Ripk3/Xiap–/– BMDCs after 24h of stimulation 

with LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (B) (A) IL–1, TNF and IL-6 from the 

supernatant of WT, Xiap–/–, Ripk3–/– and Ripk3/Xiap–/– BMDCs after 24h of stimulation 

with LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (C) & (D) Flow cytometric analysis 

and percentage of IL-17 in WT CD4– T lymphocyte subset after 5 days of coculture 

with treated (as described in 4.18.A) WT, Xiap–/–, Ripk3–/– and Ripk3/Xiap–/– BMDCs. 

 

4.4.3. MLKL is dispensable for XIAP driven inflammatory 

death 

Since RIPK3-dependent necroptosis results in phosphorylation of MLKL and 

subsequent pore formation (H. Wang et al. 2014), the dependence of XIAP 

driven cell death on MLKL was investigated. Hence, MLKL deficient mice were 

crossed with Xiap–/– mice, BMDCs differentiated and the impact of MLKL loss 

on T cell differentiation was determined. 
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TLR activation of Mlkl/Xiap–/– BMDCs revealed that loss of MLKL did not alter 

the viability of Xiap–/– BMDCs (Fig.4.19.A). Likewise, cytokine production was 

identical among Mlkl/Xiap–/– BMDCs and Xiap–/– BMDCs (Fig.4.19.B). Thus, T 

cell polarization was equal between T cells in coculture with activated 

Mlkl/Xiap–/– BMDCs and Xiap–/– BMDCs (Fig.4.19.C, 4.19.D), showing a strong 

increase in DN and  IL-17+ T cells. 

 

Figure 4. 19.: Loss of MLKL does not prevent induction of inflammation. 

(A) Survival of WT, Xiap–/–, Mlkl–/– and Mlkl/Xiap–/– BMDCs after 24h of stimulation 

with LPS (2ng/ml), pI:C (10mg/ml), CpG (10nM). (B) Cytokines produced by WT, 

Xiap–/–, Mlkl–/– and Mlkl/Xiap–/– BMDCs after 24h of stimulation with LPS (2ng/ml), pI:C 

(10mg/ml), CpG (10nM). (C) & (D) Flow cytometric analysis and percentage of IL-17 

in WT CD4– T lymphocyte subset after 5 days of co–culture with treated (as described 

in 4.19.A) WT, Xiap–/–, Mlkl–/– and Mlkl/Xiap–/– BMDCs. 
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4.5. Loss of XIAP in vivo results in a heightened 

immune response to innate immunity 

triggers 

To translate the described in vitro results into an in vivo context and therefore 

give them a more clinical relevance, three different experimental approaches 

were conducted. These include the intraperitoneal injections of LPS, infections 

with Citrobacter rodentium and two different settings of Graft versus Host 

disease (GvHD). All of these experimental setups include triggers for innate 

immunity, similar to the TLR ligands used in the coculture setup and reactions 

of the immune system, especially the T lymphocytes were monitored. 

 

4.5.1. Intraperitoneal LPS triggers XIAP driven 

hyperinflammatory responses 

XLP-2 disease is associated with up to 90% hemophagocytic 

lymphohistiocytosis (HLH) (Rigaud et al. 2006) which is often linked to a viral 

infection as a trigger for disease outbreak. Anyhow viral infections are not the 

only type of infection documented to occur during XIAP deficiency. Apart from 

others, also bacterial burdens like H. influenzae have been documented in 

XLP-2 patients (Schmid et al. 2011). 

To transfer the in vitro data into an in vivo setting, intraperitoneal LPS injections 

(200g per mouse) were performed as a basic model of infection. After 4 

hours, immune responses in WT and Xiap–/– mice were analyzed by flow 

cytometry. Thus, amounts of , iNKT17, DN and CD4+ T lymphocytes in the 

mesenteric lymphnodes (ms LN) and the spleen, as well as their respective 

intracellular IL-17 expression were measured. FACS analysis showed a 

significant increase of IL-17 expression after 4 hours in  T lymphocytes 

located in the mesenteric lymphnodes of Xiap–/– mice, while IL-17 was only 

slightly increased in the spleen with unaltered + amounts in both organs 

(Fig.4.20.A). Moreover, an elevated recruitment of iNKT cells in both organs 

with an increased IL-17 production was detected (Fig.4.20.B). There were no 
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changes measurable in the recruitment or the IL-17 expression of CD4+ or DN 

T lymphocytes (Fig.4.20.C, 4.20.D). It is known from the literature, that an  

  

Figure 4. 20.: Intraperitoneal LPS induces recruitment of innate cell subsets and 

IL-17 expression in Xiap–/– mice. 

Each dot represents a mouse and error bars represent mean (±SEM). Percentage of 

T lymphocyte influx into the mesenteric lymphnodes (ms LN) and spleen as well as 

their respective intracellular IL-17 expression after 4h of intraperitoneal injection of 

LPS (200g/mouse). (A)  T cells (B) iNKT17 T cells (C) DN T cells (D) CD4+ T cells 

(E) Percentage of neutrophil influx into the peritoneum und mesenteric lymphnodes 

after 4h and 24h of intraperitoneal injection of LPS (200g per mouse). 
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inflammation driving cell subset to be recruited by IL-17 are neutrophils 

(Witowski et al. 2000). Hence, it was tested if elevated IL-17 levels in the 

experimental mice were sufficient to recruit neutrophils. FACS analysis 

revealed a significant increase of neutrophils after 24 hours in the peritoneum 

of Xiap–/– mice and additionally a minor increase in the mesenteric lymphnodes 

after 4 hours in Xiap–/– mice (Fig.4.20.E). 

In addition to flow cytometric analysis, cytokines locally in the peritoneum and 

systemically in the serum were measured. After 4 hours IL-1as well as other 

inflammatory cytokines like IL-17, TNF and IFN were significantly increased 

in the peritoneum of Xiap–/– mice (Fig.4.21.A). This translated also in a 

systemic setting, showing significantly elevated IL-1 and IL-17, as well as 

increased TNF and IFN in the serum of Xiap–/– mice 4 hours after being 

challenged (Fig.4.21.B). This effect was only visible shortly after LPS 

challenge and vanished after 24 hours in the peritoneum as well as in the 

serum (data not shown), indicating that disease initiating or supporting 

inflammatory flares may only be visible in a defined short time window in XLP-

2 patients. 

 

Figure 4. 21.: Loss of XIAP triggers local and systemic inflammation after LPS 

challenge. 

T cell intracellular cytokines (A) and (B) Cytokines in peritoneal fluid and the serum of 

WT and Xiap–/–  mice after intraperitoneal injection of LPS (200g/mouse) after 4h, 

Each dot represents a mouse and error bars represent mean (±SEM).  
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In summary, the data shows that the phenotype of TLR ligand triggered IL-17 

induction in vitro is transferable into an in vivo setting. This indicates that 

evaluation of IL-17 in XLP-2 patients may be a clinical parameter to be tested. 

 

4.5.2. XIAP deficiency drives Citrobacter rodentium 

susceptibility 

Scientific literature reports that around 25-30% of XLP-2 patients can suffer 

from IBD symptoms (Aguilar and Latour 2015; Latour and Aguilar 2015). IBD 

can also occur before any other indication or be the only manifestation at all 

(Yvonne Zeissig et al. 2014). Up to now, IBD symptoms in XIAP deficient 

patients were associated with the defect in NOD2 signaling due to the absence 

of XIAP (Damgaard et al. 2013). IBD disease progression might be further 

enhanced by deregulated inflammatory cell death disrupting the epithelial 

barrier and inflammation being fueled by IL-17, a cytokine closely connected 

to IBD pathogenesis (Catana et al. 2015). Therefore, a mouse model system 

with Citrobacter rodentium infection was used, which is known to mimic IBD 

symptoms (J. W. Collins et al. 2014). Besides, C. rodentium infections are 

known to be tightly regulated by IL-1, which keeps the balance between 

fighting the infection and overshooting immune reactions with barrier 

disruption as a consequence (Alipour et al. 2013). Experimental procedures 

were executed in a collaboration by Vera Kitowski from AG Hildner at the first 

medical department in the medical clinic Erlangen. Experimental setup, data 

analysis, histology and interpretation were performed by the doctoral 

candidate. 

Prior to infection WT and Xiap–/– Bl6 mice were cohoused for at least 5 weeks 

to ensure microbial assimilation, as differences in the microbial flora may result 

in different experimental outcomes (JW Collins 2014 Nat Rev). To induce 

colitis, mice were subject to oral gavage with a Citrobacter rodentium strain 

capable of bioluminescence. Severity of infection was tracked daily by 

luminescence monitoring (Fig.4.22.A). Bioluminescence tracing revealed an 

increased bacterial burden in Xiap–/– mice, with a peak in infection between 

day 5 and day 8 (Fig.4.22.B). The increased severity of the course of infection 
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was further reinforced by the worse weight recovery in XIAP deficient mice, 

which started to differ from WT mice after the peak of infection (Fig.4.22.C). 

Although bacterial burden was aligned between WT and Xiap–/– mice at the 

end of infection, histological evaluation of the colon revealed still major 

differences at day 14. 7,5x magnification of histological slides after H&E 

staining, shows hyperplasia with denser packing of the colonic mucosa and 

crypt elongation in Xiap–/– mice (Fig.4.22.D). 20x magnifications additionally 

reveals a loss of goblets cells and an increased lymphocyte infiltration in XIAP 

deficient mice (Fig.4.22.D). To further analyze differences between genotypes, 

mice were sacrificed at day 8, the peak of the Citrobacter rodentium infection 

and cells of the lamina propria and intraepithelial compartment from ileum and 

colon were purified.  
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Figure 4. 22.: Loss of XIAP leads to increased Citrobacter rodentium 

susceptibility. 

(A) Exemplary picture taken of narcotized mice for bioluminescence imaging and 

measurement (B) Course of Citrobacter rodentium infection of WT and Xiap–/– mice 

diagrammed as a graph of mean (+/– SEM) photons/sec per day of infection (C) 

Weight curve of WT and Xiap–/– mice during infection (D) H&E stainings of WT and 

Xiap–/– mice (3 each) at day 14 with 7,5x and 20x magnification. Black bars indicate 

300m (7,5x magnification) and 400m (20x magnification) (E) Flow cytometric 

analysis of intraepithelial lymphocytes of WT and Xiap–/– mice at day 8 of Citrobacter 

rodentium infection with represented CD4+ and  T cells and their individual 

intracellular expression of IL-22 and IL-17. 

Flow cytometric analysis showed no differences in between genotypes with 

regards to lamina propria of colon and ileum or the colonic intraepithelial 

lymphocytes (data not shown). However, in the intraepithelial lymphocyte 

compartment of the ileum, a significant increase in CD4+ and  T cells was 

detectable in comparison to WT mice (Fig.4.22.E). Though no change in 

CD4+IL-17+ or +IL-17+ was traceable, a significant increase in IL-22 

expression in both CD4+ and  T cells was registered. 

Summarized, XIAP deficient mice clearly are more susceptible to Citrobacter 

rodentium infections including increased bacterial burden, poor weight 

recovery and heightened inflammation in the colon and ileum. Although this 

affected phenotype did not seem to correlate with increased IL-17, an elevated 

IL-22 paralleled the burden of Xiap–/– mice.  



 70 

4.5.3. Loss of XIAP in donor cells does not influence GvHD 

induction or progression in recipient mice 

The only curative treatment option for XLP-2 disease is a hematopoietic stem 

cell transplantation (HSCT), a procedure that is often associated with high 

mortality rates (Marsh et al. 2013). Moreover, a common complication after 

transplantation is the development of a sever graft versus host disease (GvHD) 

(Marsh et al. 2013). GvHD results from conditioning initiating a cytokine storm 

and an inflammatory reaction in APCs, which activate donor derived T 

lymphocytes and thus an alloreactive graft (donor) versus host reaction 

(Ferrara et al. 2009). With regard to the collective in vitro data, it was 

postulated, that conditioning of recipients results in increased necroptosis, 

hyperinflammation and therefore a stronger development of GvHD in case of 

XIAP deficiency. On these grounds, the third experimental setup was a mouse 

model system for GvHD.  

In the first setup, the goal was to determine whether XIAP or RIPK3 dependent 

signaling pathways in donor cells played a role after the transplantation into 

the host for GvHD induction. In the experimental procedure bone marrow (BM) 

and CD4+/CD8+ T cells from the spleen were isolated from donors with a WT, 

Xiap–/–, Rip3–/–, Rip3/Xiap–/– genetic background. (Fig.4.23).  

 

Figure 4. 23.: Experimental setup with Bl6 donors and Balb/c recipients. 

After isolation of bone marrow (BM) and T cells from donors with different genetic 

backgrounds, conditioned Balb/c mice were transplanted and examined daily for signs 

of GvHD including weight tracking, skin GvHD. 
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After conditioning of Balb/c mice with a split dose irradiation, the mixture of BM 

and T cells was transplanted in a blinded manner and from thereon recipients 

were examined daily. 

To ensure an equal premise, the contents of Treg cells within the transplanted 

CD4+ subset was determined. Treg cells are described to be able to dampen 

GvHD severity (Edinger et al. 2003), but all four different donors had 

comparable amounts of Treg lymphocytes (Fig.4.24.A). Flow cytometric 

analysis differentiated H2kb and H2kd, Bl6 and Balb/c specific MHC-I-like cell 

surface markers, and verified successful engraftment at day 14 after transplan- 

  

Figure 4. 24.: XIAP and RIPK3 driven pathways in donor cells do not influence 

GvHD induction and progression. 

(A) Exemplary flow cytometric analysis of purified donor CD4+ cells for FoxP3 and 

CD4. (B) Exemplary flow cytometric analysis of blood cells of recipients at day 14 for 

Bl6 (H2kb) and Balb/c (H2kd) specific markers. (C) Relative weight curves over time 

after transplantation of two WT and two Xiap–/– BM transplanted recipients.                    

(D) Kaplan–Meier survival curve after transplantation of WT (n=18), Xiap–/–(n=17), 

Rip3–/– (n=17) or Rip3/Xiap–/– (n=10) BM + T cells transplanted recipients. 
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tation (Fig.4.24.B). Transplantation of bone marrow cells alone resulted in no 

induction of GvHD, indicated by the successful weight recovery and increase 

over the observation period (Fig.4.24.C). Tracking GvHD induced mortality 

over time displayed no difference in the survival of Balb/c mice reconstituted 

either with Bl6 WT, Xiap–/–, Rip3–/– or Rip3/Xiap–/– cells. This indicates that 

neither XIAP nor RIPK3 play a role in donor derived cells. 

 

4.5.4.  XIAP deficiency in recipients results in worse GvHD 

prognosis and is dependent on myeloid cells 

For quite some time after conditioning, a chimerism of donor-derived and 

conditioning resistant recipient APCs can be found in recipients (Shlomchik 

2007). Although donor APCs are required for a full blown GvHD, also recipient 

APCs are necessary and sufficient for GvHD (Shlomchik 2007). It was also 

shown, that early IL-1 production was recipient APCs derived, whereas only 

later donor derived IL-1 production supported GvHD induction (Jankovic et 

al. 2013). As it was shown in previous experiments that loss of XIAP in donor 

derived cells had no impact on GvHD induction or development (Fig.4.24.D), 

it was tested whether XIAP deficiency in recipient cells had any influence on 

GvHD. 

Prior to transplantation WT and Xiap–/– mice were cohoused to ensure 

microbial assimilation. Bl6 mice were irradiated with increased intensity (split 

dose of 2x5,5Gy), as Balb/c mice are more susceptible to myeloablative 

conditioning (Schroeder and DiPersio 2011). After conditioning, BM and T cells 

from Balb/c donors were transplanted blinded into WT and Xiap–/– mice and 

recipients were controlled daily for signs of GvHD (Fig.4.25). 
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Figure 4. 25.: Experimental setup with Balb/c donors and Bl6 recipients. 

After isolation of bone marrow (BM) and T cells from Balb/c donors, conditioned and 

cohoused Bl/6 mice were transplanted and examined daily for signs of GvHD 

including weight tracking, skin GvHD. 

 

One sign of GvHD induction is diarrhea resulting in weight loss. Therefore, 

weight of recipient mice was controlled daily. The initial setup for GvHD 

induction was based on personal experience from a supporting lab, having 

used 5x106 T cells for GvHD induction in the same mismatch model before. 

Relative weight curves of the mice show a strong induction of GvHD between 

day 13 and 18 and all mice had to be sacrificed due to severe weight loss 

before day 30 (Fig.4.26.A). As the severity of GvHD induction depends on 

dose and type of T cells, intensity of conditioning, the degree of mismatch and 

environmental pathogens (Schroeder and DiPersio 2011), a second attempt 

with reduced T cells of only 0,5x106 was started. Identical to the first attempt a 

few mice died before day 10. Two Xiap–/– mice died of anemia around day 30 

and only one Xiap–/– mouse had to be sacrificed due to GvHD (Fig.4.26.B). 

Due to this low induction of GvHD rate a third attempt was done. This third 

experiment included 1,0x106 transplanted T lymphocytes. Excluding early 

deaths, GvHD induction of 50% was considered a successful induction rate 

(Fig.4.26.C). But like in both previous experiments, independent of T cells dose 

and genotype of recipient a high mortality before day 10 was recorded. Flow 

cytometric analysis could exclude graft failure as the reason for death, showing 
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Figure 4. 26.: Adjustment of GvHD inducing conditions with Bl6 recipients. 

(A) Relative weight curves of WT (n=9) and Xiap–/– (n=10) mice post transplantation 

with 5,0x106 T cells. (B) Relative weight curves of WT (n=4) and Xiap–/– (n=7) mice 

post transplantation with 0,5x106 T cells. (C) Relative weight curves of WT (n=8) and 

Xiap–/– (n=8) mice post transplantation with 1,0x106 T cells. (D) Flow cytometric 

analysis of bone marrow cells for Bl6 (H2kb) and Balb/c (H2kd) markers at time of 

death. (E) Examination of marked facial swelling. (F) Relative weight curves of WT 

(n=8) and Xiap–/– (n=8) mice post transplantation with 1,0x106 T cells after reduced 

irradiation of 9Gy. (G) Flow cytometric analysis of bone marrow cells for Bl6 (H2kb) 

and Balb/c (H2kd) markers at time of death after 9Gy irradiation.           

 indicates early death unrelated to GvHD induction       

 indicates graft failure and anemia as reason for death 

a mixed chimerism of donor and recipient cells in the bone marrow at time 

point of death (Fig.4.26.D). After adjusting the right T cell dose, the phenotype 

of early, GvHD unrelated, death was examined. Close surveillance of mice 

after transplantation revealed, that mice which succumbed to “early death 

phenomenon” within hours, just showed symptoms shortly before death. 

These included a sudden weight drop in affected mice (Fig.4.26.A/B/C), 
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lethargy, hunched postures and around 50% of mice exhibited facial swelling 

(Fig.4.26.E). In 2008, Duran-Struuck and colleagues described differences 

between mouse strains and their susceptibility towards irradiation (Duran-

Struuck et al. 2008). They observed that strain dependent radiation sensitivity 

lead to increased gastrointestinal damage, being so severe that overwhelming 

bacteremia was the main cause of death. Due to comparable symptoms, 

bacteremia was postulated to be the reason for death in the early phase after 

transplantation. To circumvent the “early death “phenotype, irradiation was 

reduced to a split dose of 4,5Gy, similar to Balb/c recipients. Radiation 

reduction completely eliminated early deaths, but unfortunately lead to high 

mortality after day 10 (Fig.4.26.F) and  almost 100% graft failures (fig.4.26.G). 

As reduced radiation did result in a high incidence of graft failures, the second 

option was to reduce bacterial load in the gut to avoid sepsis. Administration 

of antibiotics is a common pretreatment also done in human patients to tackle 

infections, especially in the neutropenic period after transplantation 

(LAROCCO and BURGERT 1997). Therefore, antibiotics were administered 

via drinking water two days prior to transplantation and were continued on till 

day 10. As environmental pathogens are one influencing factor for the severity 

of GvHD, it was not surprising that reduction of bacterial load resulted in a 

strongly diminished phenotype in WT mice. After initial weight loss WT mice 

recovered, while Xiap–/–  mice started losing weight at around day 30 with a 

steady decline (Fig.4.27.A). 

 

Figure 4. 27.: Xiap–/– mice are more prone to develop GvHD. 

(A) Mean weight curve of WT (n=11) and Xiap–/– (n=16) mice after transplantation. (B) 

Kaplan–Meier survival curve of WT (n=11) and Xiap–/– (n=16) mice after 

transplantation. (C) Mean clinical score of WT (n=11) and Xiap–/– (n=16) mice after 

transplantation. 



 76 

 

This translated into a significant difference in survival, where only Xiap–/– mice 

died due to GvHD (Fig.4.27.B). Moreover, a clinical score of pooled GvHD 

symptoms verified how burdened Xiap–/– mice were (Fig.4.27.C). 

To get a better understanding of the mechanisms behind the differences in 

GvHD severity between WT and Xiap–/– mice, a time point analysis was 

conducted. Day 8 was chosen for analysis, due to the influence of Xiap–/–

recipient cells early on in GvHD induction. The gastrointestinal tract has been 

shown to play a major role in amplification of systemic disease, where gut 

damage triggers the cytokine storm initiating GvHD (Hill and Ferrara 2000). 

Consequently, cellular composition in the colon and ileum was investigated. 

Flow cytometric analysis of the lamina propria (LP) as well as the intraepithelial 

compartment (IEC) revealed an increase of donor CD4+ and CD8+ in Xiap–/– 

guts (Fig.4.28.A). A similar pattern of donor T cell accumulation in Xiap–/– mice 

was true for the ileum (Fig.4.28.B). A more specific stain, including cytokine 

detection, exhibited that donor and recipient CD4+ T cells expressed significant 

less IL-17, while at the same time producing significant more IFN in the lamina 

propria of the colon (Fig.4.28.C). Evaluation of recipient  T lymphocytes in 

the LP and IEC of the ileum mirrored the phenotype of increased IFN 

(Fig.4.28.D). That the observed cytokine pattern translated into a systemic 

context, was proven by cytokine detection in the serum at time of death. While 

increased amounts of IL-1, IFN and TNF were detectable, IL-17 was 

significantly reduced in Xiap–/– mice (Fig.4.28.E). 
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Figure 4. 28.: GvHD induction in Xiap–/– mice shows increased donor T cell 

accumulation and IFN production. 

Each dot represents one mouse. All data obtained at day 8 past GvHD induction. (A) 

Flow cytometric analysis of WT and Xiap–/– mice colon, distinguishing between lamina 

propria lymphocytes (LPL) and intraepithelial lymphocytes (IEL) infiltrated CD4+ and 

CD8+ donor cells. (B) Flow cytometric analysis of WT and Xiap–/– mice ileum, 

distinguishing between lamina propria lymphocytes (LPL) and intraepithelial 

lymphocytes (IEL) infiltrated CD4+ and CD8+ donor cells. (C) Recipient and donor 

CD4+ T cells and their intracellular expression of IFN and IL-17 in the lamina propria 

of the colon. (D) Recipient  T cells and their intracellular expression of IFN and IL-

17 in LP and IEC of the ileum. (E) Cytokine levels in the serum of mice. 
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To examine which XIAP deficient cells drive increased GvHD, an experimental 

setup involving bone marrow chimeras was established. As in vitro 

experiments showed a strong phenotype dependence on dendritic cells and 

their inflammatory death, it was postulated that this might likewise be a driving 

factor in XIAP deficient GvHD induction. Therefore, WT Bl6 mice were 

irradiated and then transplanted with bone marrow from either WT Bl6 mice or 

Xiap–/– Bl6 mice (Fig.4.29.A). This resulted in chimeras where WT Bl6 mice 

had an exchanged hematopoietic compartment derived from donor bone 

marrow, either WT hematopoietic cells (WTBL6 WT) or Xiap–/– (WTBL6 XIAP–/–) 

hematopoietic cells. After 60 days, when the complete hematopoietic 

compartment was exchanged, mice were again subject to irradiation and 

transplantation, this time with bone marrow and T cells from allogenic Balb/c 

mice.  

  

Figure 4. 29.: Increased GvHD incidence is dependent on XIAP loss in the 

hematopoietic compartment. 

(A) Experimental setup for bone marrow chimeras. (B) Kaplan-Meier survival curve of 

WTBL6 WT (n=9) and WTBL6 XIAP–/– (n=8) mice after Balb/c transplantation. (C) Mean 

clinical score of WTBL6 WT (n=9) and WTBL6 XIAP–/– (n=8) mice after Balb/c transplan-

tation. (D) Mean weight curve of WTBL6 WT (n=9) and WTBL6 XIAP–/– (n=8) mice after 

Balb/c transplantation. 



 79 

This second transplantation resulted in GvHD induction in both WTBL6 WT and 

WTBL6 XIAP–/– mice but showed more Xiap loss related GvHD deaths in WTBL6 

XIAP–/– chimeras (Fig.4.29.B). The increased death rate also correlated with a 

higher mean clinical score (fig.4.29.C) and significantly increased weight loss 

in WTBL6 XIAP–/– chimeras (Fig.4.29.D). 

Summarized it can be said, that loss of XIAP increases GvHD induction and 

severity, based on a Th1 driven response, which is initiated by XIAP deficient 

hematopoietic cells. 
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5. Discussion 
 

5.1. Loss of XIAP E3 ligase function triggers a 

cascade of inflammatory reactions  

The family of IAP proteins was initially discovered for their ability to block 

caspases and thereby circumvent death (Clem, Fechheimer, and Miller 1991). 

Only later it was uncovered that the only true caspase inhibitor is XIAP and 

that other IAPs, like cIAP1/2 can prevent death via their role downstream of 

the TNF receptor. By modifying RIPK1 with ubiquitin chains, cIAP1/2 prevents 

death by retaining RIPK1 in complex I and therefor preventing engagement in 

complex II for apoptosis induction (Bertrand et al. 2008). Due to the fact that 

XIAP was associated only with caspase inhibition via XIAP´s BIR domains, 

XIAP E3 ligase function was neglected for quite some time. Within the last ten 

years, the Ring domain of XIAP and its function became the focus of several 

research fields. It was discovered that XIAP can modify, just as cIAP1/2, many 

interacting proteins by adding various ubiquitin chains. Examples for this 

control are XIAP self-regulation (Y. Yang et al. 2000) but also death unrelated 

signaling events including cell motility or NOD2 innate immune signaling 

(Damgaard et al. 2012). 

In a recent, lab own publication, it was shown that loss of XIAP, or loss of its 

Ring functionality, and stimulation with TLR ligands resulted in inflammatory 

death of dendritic cells. To evaluate the consequences of this inflammatory cell 

death on the surrounding environment, a coculture system was developed. It 

could be shown that T cells cocultured with treated Xiap-/– BMDCs were 

specifically polarized to produce IL–17, but no IFN. This was true for the 

majority of innate like T cells, including , DN T cells and iNKTs, all subsets 

known to be inducible without T cell receptor engagement and only via 

cytokines like IL–1, IL–23 or a combination of both (Sutton et al. 2009; Doisne 

et al. 2011; Ueyama et al. 2017). Nonetheless it has to be stated, that the 

survival of innate like and CD4+ T lymphocytes was dependent on the dendritic 

cells, as the coculture with only cytokine enriched supernatant resulted in more 
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than 90% dead T cells and no induction of IL-17. Which may hint to a probable 

self-antigen presentation, or presentation of antigens from media and FCS. 

Moreover, a small fraction of CD4+ cells also reacted with IL-17 production 

after coculture with Xiap–/– BMDCs. Sutton and colleagues described that IL-

17 producing  T cells were able to induce IL-17 production in CD4+ cells in 

an amplification loop (Sutton et al. 2009). Although CD4+ cells were not further 

specified, they might be innate memory-phenotype CD4+ cells, a subset 

described to react to cytokines without TCR engagement (J. Hu and Avery 

August 2008; Takeshi Kawabe et al. 2017).  

With the help of XiapΔRing/ΔRing BMDCs it was verified, that the induction of IL-

17 was dependent on the E3 ligase activity of XIAP. Loss of the Ring domain 

functionality resulted in identical inflammatory cell death and a strong IL-1 

induction and secretion, as seen after complete loss of XIAP. Experiments with 

recombinant IL-1 treatment and IL1R1 knockout T cells proved that innate 

like T cell subsets were exclusively dependent on IL-1 for their IL-17 

induction, while CD4+ cells were also dependent on IL-1, but this cytokine 

alone was not sufficient to induce IL-17. This correlates with literature, stating 

that CD4 cells require the combination of IL-6 and TGF-for a proper Th17 

development (Bettelli et al. 2006; Veldhoen et al. 2006). Moreover, IL-23 has 

been shown to support maturation and thereby late differentiation (McGeachy 

et al. 2009), whereas IL-1 facilitates expansion (Gulen et al. 2010) and is 

needed for early differentiation (Chung et al. 2009).  

The implications for human patients of this in vitro data is underlined by a 

recent publication. Segura and colleagues were able to detect inflammatory 

dendritic cells from patients with chronic inflammatory diseases, capable of IL-

17 induction (Segura et al. 2013). Furthermore, in vivo experiments with mice 

have shown a critical link between exaggerated IL-1 produced by dendritic 

cells leading to IL-17 induction in innate and adaptive T cell subsets and 

thereby promoting autoinflammatory reactions (SJ Lalor, J.Immunol 2011).  

It can be concluded that loss of XIAP results in inflammatory death 

accompanied by secretion of IL-1. This is followed by an activation of innate 

like and adaptive T lymphocytes as a result of the IL-1 signaling and 
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culminates in further inflammatory cytokine production, namely IL-17. These 

data, showing that aberrant IL-1 production can lead to highly inflammatory 

IL-17 induction, indicate that XLP-2 disease might at least in part be driven by 

hyperinflammatory responses downstream of IL-1 and IL-17. 

 

5.2. Deductions from in vitro data for XLP-2 

pathogenesis 

XLP-2 symptoms can in summary be described as a hyperinflammatory 

overreaction of the immune system, with manifestations like HLH and IBD 

being the most prominent ones (Latour and Aguilar 2015; Aguilar and Latour 

2015). Therefore, it can be hypothesized that the cause for this disease lies in 

the downstream effects of XIAP loss, which trigger inflammatory death which 

strongly drives further immune reactions and thereby starts a viscous cycle of 

inflammation. 

Up to now the pathogenesis of XLP-2 disease is not understood at all. In 2015 

S. Latour and C.Aguilar summarized the current knowledge, stating that the 

pathogenesis is probably based on three different aspects (Latour and Aguilar 

2015). First, loss of XIAP results in a defective innate immune response with 

persistence of bacteria, as XIAP has been described to be necessary for 

NOD2 (Damgaard et al. 2012) and Dectin-1 signaling (Wan-Chen Hsieh et al. 

2014).  

Second, XIAP-deficiency triggers inflammatory death accompanied by IL-1 

production (Yabal et al. 2014; James E Vince et al. 2012). This 

hyperinflammatory situation is exactly what is seen in the experimental 

coculture system, implicating, that results derived from this in vitro data, might 

well play a role in XLP-2 patients. Moreover, the additional induction of IL-17 

as a proinflammatory cytokine might drive and enhance the inflammation 

induced by IL-1. Interestingly, a publication from Taizo Wada reported 

significantly increased IL-18 in the serum of XLP-2 patients (Wada et al. 2014). 

Although this increase could not be allocated to spontaneous activation of 

PBMCs, this finding is of particular interest because of two reasons. IL-18 is, 
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like IL-1 produced as a cytosolic precursor and needs processing by 

Caspase 1 in the inflammasome to be secreted as an active molecule (Gu et 

al. 1997). Moreover, there is evidence, that IL-18 may be able to substitute for 

IL-1 in the induction of IL-17 in innate T lymphocytes as well as in CD4+ cells 

(Lalor et al. 2011). So, although the source of increased IL-18 in XLP-2 

patients is unknown it might have downstream effects similar to what was seen 

in the experimental coculture setup. 

The third aspect potentially involved in XLP-2 pathogenesis is a disrupted 

adaptive immune response by T cells, which leads to a persistence of virally 

infected cells. This assumption is based on observations that XIAP deficient T 

lymphocytes are more susceptible to activation-induced cell death after FAS, 

TRAIL-R or TCR stimulation (Rigaud et al. 2006; Marsh et al. 2010; 

Speckmann et al. 2013). These in vitro acquired data sets stand in contrast to 

reported symptoms. Especially hemophagocytic lymphohistiocytosis (HLH), 

which results from overwhelming macrophage and T lymphocyte activation, 

proliferation and accumulation, seems not to fit into this theory (Henter et al. 

2007; Filipovich et al. 2010). Unfortunately, data concerning T lymphocytes in 

XLP-2 disease is not well defined. XLP-2 patients were initially included in XLP 

(SAP deficiency) patient groups, due to their closely related symptoms. With 

the discovery of XLP-2 being a distinct disease, many research groups 

investigated T lymphocytes, but did not report any aberrations in T cell counts, 

including CD3+, CD4+ and CD8+ T cells (Rigaud et al. 2006; Speckmann et al. 

2013). Specific focus however was given to iNKT cells by several groups, as 

this subset is absent in XLP-1 patients. Although no differences were reported 

for iNKT cell counts for XIAP deficient mice (Harlin et al. 2001; Rigaud et al. 

2006; Bauler, Duckett, and O'Riordan 2008) several papers stated reduced 

numbers in XLP-2 patients (Rigaud et al. 2006; X. Yang, Miyawaki, and 

Kanegane 2012). In contrast, other papers state unaltered iNKT cell counts 

(Marsh et al. 2009; Speckmann et al. 2013). Conflicting data might well depend 

on the fact that iNKT cells are known for their capability to quickly 

downregulate TCR expression after TCR-mediated activation (Wilson et al. 

2003), although a recent publication might explain reduced iNKT numbers by 

the discovery that PLZF induces a pro-apoptotic process that is 

counterbalanced by XIAP (Stephane Gerart et al. 2013). Up to now, no data 
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was published concerning  or double-negative T lymphocytes in XLP-2 

patients, but following personal communication with H. Kanegane, no 

abnormalities in preliminary cell counts concerning these two subsets could be 

reported. This is of particular interest, because high PLZF expression was 

detected not only in iNKT cells, but also in  or DN T lymphocytes. 

Concluding from the experimental data, it is likely, that XLP-2 pathogenesis is 

based not on three, but rather two aspects. Loss of XIAP results in deregulated 

innate signaling of Dectin-1 and NOD2 and secondly inflammatory death 

triggers a cascade of inflammatory cytokine induction as well as T cell 

activation and proliferation. Still, to understand the specific T cell subsets 

involved, their specific activation and their deregulation needs further 

evaluation. 

 

5.3. RIPK3 at the crossroads of death and 

inflammation  

Signaling downstream of death receptors like TNF, Fas or TRAIL has been of 

longstanding interest to researchers. With possibilities of survival, 

inflammation and various ways to die downstream of death receptors, several 

lines of research are crossing paths. At this point in time it seems like although 

so much knowledge is already gathered, still more questions arise then are 

solved. This is often due to the fact, that it is in most cases not clear which 

process comes first, with inflammation being a consequence of cell death or 

vice versa (Vince and Silke 2016). 

RIPK3 and MLKL have been described as the two main critical regulators of 

necroptotic death independent of the activating stimulus. Through 

oligomerization and phosphorylation RIPK3 is activated (Li et al. 2012; Cho et 

al. 2009; He et al. 2009), recruits and activates MLKL through phosphorylation 

and thereby initiates necroptosis (Sun et al. 2012) (H. Wang et al. 2014). When 

experiments after XIAP loss showed a RIPK3-dependent induction of death 

and IL-1 processing, everything pointed towards necroptosis. In contrast to 

this, additional experiments could not verify an anticipated MLKL dependence. 
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MLKL and XIAP double deficient BMDCs showed an identical phenotype as 

Xiap–/– BMDCs, indicating no involvement of MLKL in death and IL–1 

induction and therefore no role in IL–17 production. But at the same time 

Caspase 8 inhibition (Section 4.3.4 ) could not prevent death of BMDCs. 

There might be two explanations why MLKL did not imitate the effects of RIPK3 

loss. The first one suggests other effectors of RIPK3 being able to induce 

necroptosis. The concept of MLKL being the sole necroptosis inducing protein 

was already challenged one year ago by Zhang and his coworkers. They were 

capable to show that CAMKII, a calcium-dependent protein kinase, is also a 

target of RIPK3 phosphorylation. This modification leads to CAMKII activating 

ion channels in the plasma membrane and results in necroptosis (T. Zhang et 

al. 2016). So the concept of other RIPK3 targets with the ability to execute 

necroptosis is a valid option.  

The second explanation is called the “switch theory”. The idea behind this 

theory is based on the concept that when death is triggered, it will be executed 

one way or another. Therefore, a cell who´s death fate is settled, will induce 

the signaling cascade available. One example for this was reported by 

Remijsen et al, where a switch from necroptosis to apoptosis occurred when 

RIPK3 or MLKL were depleted in L929 cells (Remijsen et al. 2014). In the 

same year Cook and his lab also stated that once RIPK3 is activated the mode 

of cell death was determined by the availability of downstream molecules 

(Cook et al. 2014). Moreover, the possibility of a switch between pathways was 

further reinforced only a year later. This third publication showed that in 

absence of IAPs, LPS triggered caspase 8 driven apoptosis independently of 

RIPK3 kinase or MLKL. When caspase 8 was additionally blocked an instant 

switch to necroptosis via RIPK3 and MLKL occurred (Lawlor et al. 2015). This 

situation is comparable to what is seen after loss of XIAP alone. Thus, XIAP 

might control induction of death in dependence of the available molecules, but 

with RIPK3 as a critical downstream effector. This would mean induction of 

apoptosis when MLKL is deleted and occurrence of necroptosis when 

Caspase 8 is blocked. 

Moreover, RIPK1 kinase activity suppression did not change the loss of 

viability witnessed after TNF treatment (Section 4.4.1). Thus, it can be 
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concluded that the kinase function of RIPK1 is not needed for death induction 

after loss of XIAP. This is particular interesting, as so far RIPK1 kinase activity 

has been described as being essential for induction of necroptosis 

downstream of the TNF receptor (Holler et al. 2000), while being necessary 

for apoptosis under certain circumstances (L. Wang, Du, and Wang 2008; 

Dondelinger et al. 2013). Although one report states induction of necroptosis 

without RIPK1 is possible, this data is based on an artificial RIPK3 

overexpression (Moujalled et al. 2013). Consequently, this data cannot be 

considered for the processes after loss of XIAP, especially because RIPK3 

was shown not to be upregulated upon XIAP-deficiency (Yabal et al. 2014). 

Moreover, it was surprising to see that RIPK1 kinase activity was necessary 

for Caspase 1 dependent IL-1 processing, in comparison to Caspase 8 

dependent processing (Section 4.4.1). Moreover Yabal et al. reported an 

increased ubiquitination status of RIPK1 after loss of XIAP (Yabal et al. 2014). 

Hence, the role of RIPK1 in XIAP dependent signaling will need further 

investigation. 

With the idea of XIAP being able to regulate apoptosis as well as necroptosis 

in a RIPK3 dependent manner, a critical question arises. If after MLKL 

knockout a caspase 8 driven apoptotic death occurs, how can it be that 

features of programmed necrosis are still detectable? That, at least in some 

part, lytic cell death occurred was proven by LDH detection (Section 4.1.3), but 

this might well be derived from the minor fraction of pyroptosis proven by 

cleaved Gasdermin D (Section 4.3.4). This still does not explain the significant 

increase of proinflammatory IL-1 measured even after combined loss of XIAP 

and MLKL (Section 4.4.3). An explanation therefor might be found in recent 

discoveries. Within the last few years several publications revealed that RIPK1 

and RIPK3 have several functions apart from necroptosis and have a broader 

range of responsibilities independent of necroptotic death, mostly with the 

involvement of inflammasome activation (Wong et al. 2014; Moriwaki et al. 

2015) (Najjar et al. 2016). Of special interest is the work of Kim Newton, which 

showed, that MLKL was often not involved in autoinflammatory settings 

controlled by RIPK3 (K Newton et al. 2016). 

The data from Caspase1/11/Xiap-/– BMDCs indicates that cell death and 
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inflammasome activation are two mostly separated processes. This is shown 

by the fact that cell death in double deficient mice or after Caspase 8 inhibition 

is comparable to XIAP deficient cells (except for the minor fraction of 

pyroptosis), while IL-1 processing is significantly dampened (Section 4.3.4). 

At this point it cannot be distinguished whether IL-1 secretion is an active 

process, or is passively released after membrane rupture. This leaves 

unresolved, whether inflammation induces cell death or inflammation is a 

consequence of cell death. Most likely this question is so hard to answer 

because RIPK3 can regulate both of these processes. Therefore, it can only 

be concluded, that in the context of XIAP deficiency, RIPK3 is the key molecule 

driving T cell polarization through inflammation. 

 

5.4. Applicability from in vitro to in vivo 

situations 

To translate acquired data from in vitro experiments to an animal model has 

always been a subject of discussion. The transfer is often flawed, as in vitro 

setups can never fully imitate the complicated system and represent therefore 

a simplified version of the in vivo situation. 

Nevertheless, an attempt was made, to see whether in vitro coculture results 

could be translated into different in vivo settings to test the effect of XIAP loss. 

With the intraperitoneal LPS injection the XLP-2 patient situation was 

mimicked, where bacterial burdens have been described next to viral infections 

(Schmid et al. 2011). The results from this experiment correlated with the 

results obtained from coculture, with locally and systemically increased IL-1 

and IL-17 leading to a neutrophil influx (Section 4.5.1). Although no abnormal 

neutrophil counts in the blood of XLP-2 patients were observed (Aguilar, 

Lenoir, et al. 2014), a localized recruitment of neutrophils through IL-17 in the 

gut may well play a role in IBD observed symptoms of XLP-2 patients. 

Neutrophil involvement in IBD is a debated topic, but the common perception 

is that in Crohn´s disease neutrophil function is impaired, while in Colitis 

neutrophils drive hyperinflammation (summarized by (Wéra, Lancellotti, and 
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Oury 2016)). While XLP-2 IBD symptoms are nowadays more associated with 

Crohn´s disease (Aguilar, MS, et al. 2014; Yvonne Zeissig et al. 2014), initial 

correlation was with Colitis (Rigaud et al. 2006; Schmid et al. 2011; 

Speckmann et al. 2013).  

The concept that deregulated IL-1 levels contribute to disease pathology in 

XLP-2 patients might well be dependent on IL-17 in local tissues and not in a 

systemic manner. This could be important for instance in coherence with IBD 

symptoms detected in 25-30% of XLP-2 patients  (Aguilar and Latour 2015), 

which can even occur before any other indication or be the only manifestation 

at all  (Aguilar, MS, et al. 2014; Yvonne Zeissig et al. 2014). Up to now, IBD 

symptoms in XIAP deficient patients were associated by the defect in NOD2 

signaling in the absence of XIAP (Damgaard et al. 2013). IBD disease 

progression might be further enhanced be deregulated inflammatory cell death 

disrupting the epithelial barrier and inflammation being fueled by IL-17, a 

cytokine closely connected to IBD pathogenesis (Catana et al. 2015). IBD-like 

symptoms can be mimicked by the Citrobacter rodentium mouse model (J. W. 

Collins et al. 2014). Results showed a heightened susceptibility to Citrobacter 

rodentium infection, with increased bacterial burden, weight loss and 

inflammation in histological section of the colon (Section 5.4.2). Analysis of the 

intraepithelial compartment showed a marked increase in CD4+ and  T cells, 

which correlated with increased IL-22 expression but no IL-17 upregulation. 

This is of particular interest, as IL-22 is frequently produced by the same T cell 

subsets as IL-17. But IL-22 induces production of antimicrobial peptides and 

tissue repair factors and is therefore associated with a protective role in IBD 

(Kilian, Valentina, and Andrea 2017). 

In the third animal model, it was shown that loss of XIAP in recipient cells, 

leads to a more severe progression of GvHD after transplantation and this 

effect could be attributed to the hematopoietic compartment (Section 4.5.4). 

Interestingly, also IBD in XLP-2 patients was linked to abnormalities in the 

hematopoietic compartment, as successful HSCT cured all symptoms of IBD 

(Aguilar, MS, et al. 2014; Ono et al. 2016). Similar to the Citrobacter rodentium 

mouse model, no increase in IL-17+ T cells was detectable, but instead a 
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significant upregulation of IFN as well as high proliferation of disease driving 

donor T cells was registered.  

In summary it seems, that IL-17 does not play a role in XIAP loss driven IBD 

or GvHD, but this cannot be fully excluded, as IL-17 may play a role in an even 

earlier time point then analyzed. 

How important inflammatory death and its regulation of immune responses is 

in diseases, is shown by the accumulating evidence from publications. 

Upregulation of RIPK3 and associated necroptosis was reported in several 

cases of tissue injury and inflammation. Examples can be found in the retinal 

epithelium (Trichonas et al. 2010), ischemia reperfusion injury (Linkermann et 

al. 2013), as well as in children with IBD (Pierdomenico et al. 2013). 

Additionally, there is also proof that necroptosis and TNF dependent signaling 

can play a role in hyper inflammatory syndromes like SIRS (Duprez et al. 

2011). A study from Takahashi et al. even showed that TNF-driven shock is 

mediated by IL-17, linking it to the in vitro results detected in this work (N. 

Takahashi et al. 2008). Another link between the presented in vitro data and 

the in vivo situation is a publication where it was shown that murine and human 

 T lymphocytes can be activated by dendritic cells dying in a necroptotic 

fashion (C. C. Collins et al. 2016).  

All in all, increasing evidence stresses the importance of inflammatory death 

and is further supported by findings presented in this thesis. A thoroughly 

understanding of the underlying correlations will be a critical task for the next 

years to come for optimal therapeutic interventions in inflammatory death 

driven diseases and specifically XLP-2. 
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