Pooya Salehi

Dependable

Publish /Subscribe
Systems for Distributed
Application
Development







® Technische Universitat Munchen

Fakultat fur Informatik

Dependable Publish /Subscribe
Systems for Distributed Application

Development

Pooya Salehi

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitat

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Georg Carle
Priifer der Dissertation:

1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. David Bakken

Die Dissertation wurde am 25.06.2018 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fiir Informatik am 16.09.2018 angenommen.






Abstract

The publish /subscribe (pub/sub) communication paradigm provides an asynchronous
many-to-many communication substrate between data producers and data consumers.
Using pub/sub, components of a distributed application can communicate without
direct knowledge of each other which facilitates loose-coupling and scalability.
Therefore, providing a managed pub/sub service can reduce the development and
operational effort of Internet-scaled distributed applications. In this work, we address
four non-functional requirements of distributed content-based pub/sub systems that
can facilitate their adoption as the basis of a dependable pub/sub service suitable

for distributed application development.

Firstly, we address availability of a pub/sub service during broker failure. Broker
failures can cause delivery disruption and therefore, a repair mechanism is required,
along with message retransmission to prevent message loss. During repair and
recovery, the latency of message delivery can temporarily increase. To address this
problem, we present an epidemic protocol to allow a content-based pub/sub system
to keep delivering messages with low latency, while failed brokers are recovering.
Using a broker similarity metric, which takes into account the content space and the
overlay topology, we control and direct gossip messages around failed brokers. Based
on our evaluation, our approach is able to provide a higher message delivery ratio
than the deterministic alternative at high failure rates or when broker failures follow

a non-uniform distribution.

Secondly, we address scalability of the hop-by-hop routing mechanism utilized
in such distributed pub/sub systems. In an Internet-scale pub/sub service, this
routing scheme allows brokers to correctly forward messages without requiring global
knowledge. However, this model causes brokers to forward publications without
knowing the volume and distance of matching subscribers, which can result in
inefficient resource utilization. In order to raise the scalability of the service, we
introduce a popularity-based routing mechanism. We define a utilization metric to
measure the impact of forwarding a publication on the overall delivery of the system.
Furthermore, we propose a new publication routing algorithm that takes into account
broker resources and publication popularity among subscribers. Lastly, we propose

three approaches to handle unpopular publications. Based on our evaluation, using
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real-world workloads and traces, our proposed approach is able to improve resource

efficiency of the brokers and reduce delivery latency under high load.

Thirdly, we address maintainability of the pub/sub overlay which can become
inefficient due to the dynamic communication flows between data producers and
consumers in a pub/sub service. In such cases, the overlay requires adaptation to
the existing load in order to ensure certain quality of service agreements or improve
system efficiency. While there exists algorithms to design overlay topologies optimized
for a given workload, the problem of generating a plan to incrementally transform
the current topology to an optimized one has been largely ignored. To address this
problem, we propose an incremental approach based on integer programming which
given the current topology and a target topology, generates a transformation plan
with a minimal number of steps in order to lessen service disruption. Furthermore,
we introduce a plan execution mechanism which ensures correct routing information
in the overlay throughout the plan execution. Based on our evaluation, our proposed
approach can significantly reduce plan computation time and produce more concise

plans with faster execution time compared to existing approaches.

Lastly, we address usability of the pub/sub paradigm for distributed application
development. In a pub/sub service based on a distributed overlay of brokers, due to
the propagation delay, it takes time for a client’s interests to be received by all brokers
comprising the overlay. Nonetheless, existing overlay-based systems only guarantee
delivery of notifications to subscribers that are already known by all brokers in the
overlay. The message propagation delay and unclear delivery guarantees during this
time increases the complexity of developing distributed applications based on the
pub/sub paradigm. To address this problem, we propose a collection of message
processing and delivery guarantees that allows clients to clearly define the set of
publications they receive. Based on our evaluation, these delivery guarantees can
reduce buffering requirements on clients, prevent missing notifications due to the
propagation delay and provide clients with some primitive building blocks that

simplifies development of distributed applications.
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Zusammenfassung

Das Publish/Subscribe Paradigma stellt ein asynchrones Kommunikationssubstrat
zwischen Komponenten einer verteilten Applikation bereit und ermoglicht eine lose
Kopplung und Skalierbarkeit. Daher kann die Bereitstellung eines Publish/Subscribe-
Services den Entwicklungs- und Betriebsaufwand von verteilten Anwendungen
verringern. In dieser Dissertation befassen wir uns mit vier nicht-funktionalen
Anforderungen von verteilten content-based Publish/Subscribe-Systemen als Basis

fiir solche Services.

Erstens adressieren wir die Availability eines Publish/Subscribe-Service wiahrend eines
Brokerfehlers. Brokerfehler konnen eine Unterbrechung der Nachrichtenzustellung
verursachen, und daher ist ein Reparaturmechanismus erforderlich, zusammen mit
einer Nachrichtenneuiibertragung, um einen Nachrichtenverlust zu verhindern. Um
dieses Problem anzugehen, stellen wir ein epidemisches Protokoll vor, mit dem ein
content-based Publish /Subscribe-System Nachrichten mit geringer Latenz weiterleiten

kann, wéhrend sich ausgefallene Broker erholen.

Zweitens adressieren wir die Skalierbarkeit des Hop-by-Hop-Routing-Mechanismus,
der in solchen verteilten Publish/Subscribe-Systemen verwendet wird. In einem
Internet-Scale-Publish /Subscribe-Service ermoglicht dieses Routing-Schema Brokern,
Nachrichten korrekt weiterzuleiten, ohne globale Kenntnisse zu benotigen. Dieses
Modell kann jedoch zu einer ineffizienten Ressourcenauslastung fithren. Wir fiih-
ren einen popularity-based Routing-Mechanismus ein und schlagen einen neuen
Publication-Routing-Algorithmus vor, der Broker-Ressourcen und Publikations-

Popularitét berticksichtigt.

Drittens befassen wir uns mit der Maintainability des Publish /Subscribe-Overlays,
das aufgrund der dynamischen Kommunikationsverbindungen zwischen Datenprodu-
zenten und Verbrauchern in einem Publish /Subscribe-Service ineffizient werden kann.
In solchen Féllen muss das Overlay an die vorhandene Workload angepasst werden.
Um dieses Problem anzugehen, schlagen wir eine inkrementelle Integer-Programming-
basierte Methode vor, die einen Transformationsplan generiert, um die Zieltopologie
von der aktuellen Topologie in einer minimalen Anzahl von Schritten zu erreichen,

um die Serviceunterbrechung zu verringern.



Schliefllich befassen wir uns mit der Usability des Publish/Subscribe-Paradigmas fiir
die Entwicklung verteilter Anwendungen. Wir bieten eine Sammlung von Nachrichten-
verarbeitungs- und Zustellungsgarantien an, die es den Nutzern ermoglichen, die

Menge der Nachrichten, an denen sie interessiert sind, klar zu definieren.
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CHAPTER 1

Introduction

Over the past few decades with the prevalence of network-connected devices, software
systems have evolved from offline and isolated systems to distributed systems
consisting of independently-written components communicating via local network or
the Internet [1, 2, 3]. Furthermore, recent approaches in software development, such
as micro-services and containerization, have resulted in software systems consisting
of hundreds of small service instances running on a distributed infrastructure [4, 2].
These systems need to handle a large number of requests via horizontal scaling
with each request involving communication among several services. Developing
such distributed systems raises many challenges such as communication, reliability,
performance, scalability and heterogeneity. The communication substrate of such
applications needs to provide one-to-many and many-to-many communication, while
maintaining loose-coupling and asynchrony in order to facilitate scalability for the
application. Over the past few years, due to its match for the aforementioned
requirements, the publish /subscribe (pub/sub) paradigm has been widely adopted as
a communication substrate for Internet-scale distributed applications [3, 5]. Pub/sub
allows data producers (publishers) and data consumers (subscribers) to communicate
in a data-centric manner. Subscribers describe their interests (subscriptions) without
direct knowledge of the publishers. The pub/sub substrate makes sure that data

produced by the publishers is delivered to subscribers with matching interests.



1.1. MOTIVATION

Despite the wide adoption of the Internet Protocol (IP) suite for point-to-point
communication across the Internet, IP multicast has not been successful in providing
global multi-point communication [6, 7]. Consequently, application-layer protocols
have been used to provide middleware systems (more recently also supporting the
pub/sub paradigm) that stand between the distributed heterogeneous infrastructure
and the distributed application and provides a communication layer that can simplify
distributed application development [8, 9]. Nonetheless, deployment and maintenance
of such application-layer solutions can increase the total cost of ownership for software
products. Therefore, cloud service providers have been offering messaging and
pub/sub services in order to simplify development and administrative tasks required

to operate a distributed application [10, 11, 12].

The service provider operates and maintains a pub/sub system that provides applica-
tion developers with a managed communication substrate. One scalable approach to
implement such a pub/sub system is to use a distributed overlay of brokers connected
to each other in a predetermined topology and managed by the service provider
[13, 14, 10]. This approach allows providing an Internet-scale pub/sub service that
offers clients (publishers and subscribers) a pub/sub substrate to communicate across
different regions. In this work, we address some challenges that need to be addressed
in order to adopt an overlay-based pub/sub system as the underlying infrastructure

of a pub/sub service suitable for distributed application development.

1.1 Motivation

Providing a pub/sub service requires addressing many non-functional requirements
that impact both the service provider and the clients of the service. The provider
needs to make sure that the pub/sub service is available to all of its clients globally
with minimal disruption while running efficiently. For the clients that use the pub/sub
service as their communication substrate, the pub/sub service must provide a reliable
and intuitive building block that simplifies development of distributed applications.
In this work, we consider four non-functional requirements of a pub/sub service,

namely, availability, scalability, maintainability and usability which can improve
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dependability of such systems and consequently reduce the operational costs of a
pub/sub service, as well as improve its adoption by application developers. In the
following, we provide the motivation for supporting each of these non-functional

requirements.

Availability: Availability is considered one of the main objectives of the cloud
computing paradigm [15]. A highly-available service can provide its clients with
a correct service for a long period of time despite hardware and software failures
[16]. Due to the increasing reliance of many businesses on cloud services, availability
of such services is an important factor for their success [17]. Over the past years,
there has been incidents where due to datacenter outages, cloud services have been
unavailable and therefore directly impacting businesses relying on these services [18].
In such cases, failure of a pub/sub service can bring down a distributed application
that relies on the service for communication between its components. Therefore, a
pub/sub service provider needs to provide measures to increase availability of the

service in face of software and hardware failures and datacenter outages.

Scalability: Providing a pub/sub service means that, rather than the clients, the
service provider needs to take care of the scalability and resource efficiency of the
service. The service provider needs to manage the resources required to keep the
service in operation at the quality of service (QoS) level offered to the clients. Over-
provisioning resources can lead to high operational costs while under-provisioning
can result in poor service quality, such as high latency or unreliable messaging, which
in turn can lead to violation of service level agreements (SLAs) [15]. Providing a
pub/sub service which is reliable and has low latency requires more resources than a
pub/sub service with no delivery or latency guarantees. For example, SDN-based
approaches can provide low latency notification delivery at the cost of special hardware
[19]. Reliable pub/sub systems use replication and multi-datacenter approaches,

redundant network connections [20] or use fault-resilient protocols such as gossiping
[21].

On the other hand, different applications have different QoS requirements. While
mission critical applications, such as billing services, might require low latency or

reliable messaging, applications such as monitoring dashboards can tolerate some
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delay and missing a few messages. Therefore, a pub/sub service provider can reduce
the resources required to provide the service by combining several approaches to
deliver messages. If a client has not requested guaranteed delivery or latency, the
pub/sub service provider can deliver messages to that client using approaches that

trade reliability or latency for low resource usage.

Maintainability: Maintainability is defined as the ability of the system to undergo
repairs and modifications. This definition goes beyond corrective and preventive
maintenance, and includes forms of maintenance aimed at adapting or perfecting
the system [22]. Maintainability is pivotal to distributed systems since such systems
are typically deployed across heterogeneous machines and networks with varying
degrees of change. For such systems to be able to maintain correct service and
fulfill non-functional requirements, they must react to changes in the workload and
infrastructure [23|. Providing a pub/sub service requires the pub/sub overlay to be
maintained in different ways, for example, to improve service quality or to scale
the system according to the users. Furthermore, a pub/sub service is potentially
shared by many clients with different workloads that can change throughout the day
[24]. Therefore, if the pub/sub service is able to periodically adjust its resources and
topology to the current load, it is possible to provide the service more efficiently and
reduce operational cost and effort, as well as improve the quality of the provided

service.

Usability: Existing pub/sub systems guarantee publication delivery to interested
subscribers in the system. However, this guarantee is provided only for subscribers
whose interests have been fully propagated and processed in the overlay [14, 13, 10].
Due to communication and processing delays, the period of time required for a
subscription to get fully propagated in the overlay is unknown. Therefore, there is
an uncertain period of time between when a subscriber joins the overlay and submits
its subscription until it can be sure that it will receive all data matching its interests
[25, 26]. However, this waiting period is a function of the overlay size and broker
processing power and a client has no way of approximating this time. A pub/sub
service, provided using a distributed overlay of brokers connected via the Internet
can have different propagation and processing time for messages depending on the

existing load and network conditions. Furthermore, if the service provider uses elastic
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scaling of resources to accommodate changing workloads, the propagation time can
vary. This uncertainty period can hinder applicability of distributed pub/sub systems
because applications using pub/sub as their communication substrate need to either
make sure all components are setup and data streams between them are established
or use distributed synchronization services and out-of-band communication to clarify
received data during the initialization of the components. While establishing all
connections beforehand may not be possible in all cases, using the latter approach can
complicated the application logic where each client should account for propagation
times, buffer messages and communicate with other components to make sure the

necessary data paths are established.

Providing a set of delivery guarantees that clarify the message propagation period
and eliminates any ambiguity in the semantics of the provided delivery guarantees
can simplify development of distributed applications, improve usability of a pub/sub
service and increase the domain of applications that can benefit from the pub/sub

paradigm as their communication substrate.

1.2 Problem Statement

In this work, we focus on four problems relating to the following four non-functional
requirements for a managed pub/sub service: availability, scalability (resource effi-
ciency ), maintainability and usability of a pub/sub service for distributed application

development.

Availability of a pub/sub service in face of broker failures: In many pub/sub
systems, the overlay is organized as a tree determining the neighborhood relation of
brokers and the links that connect them [27, 28, 14]. The popularity of a tree-based
overlay topology is due to routing simplicity and message dissemination efficiency
(e.g., there are no issues with routing loops, as shown by Li et al. [29].) The existence
of a single unique path between broker pairs eliminates the need to unnecessarily
manage and detect duplicate messages. On the other hand, tree topologies do

not exhibit path redundancy, as, for example, mesh topologies do; hence, even a
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single broker failure can disrupt message delivery to parts of the tree. Despite this
shortcoming, in scenarios where brokers are more stable and have to handle many

clients (e.g., enterprise IT, cloud), tree topologies are used due to their efficiency
(28, 14].

Maintaining the dissemination tree of a pub/sub system in face of broker failure is
typically assumed to be carried out by human operators [30, 31]. Furthermore, there
exists automatic mechanisms that can detect broker failures, trigger broker replace-
ments and rebuild the routing state of the recovering brokers [20, 32]. Regardless
of the maintenance approach, during the failure and recovery period, delivery to
some subscribers might not be possible if the path between the publisher and the
subscriber contains one or more failed brokers. One possible solution to address
message loss in this case is to buffer messages at parent brokers for retransmission
after recovery [33]. Besides bearing the risk of overwhelming parent brokers under
a high message rate, this approach exhibits an increased notification latency under
failure, effecting the remaining brokers in the tree branch. This increased latency is

a function of the broker failure detection and recovery time in the system.

An alternative to buffering and waiting for broker recovery

is to route messages around failed brokers [20, 34, 35]. P1
This results in lower delivery latency since message
propagation continues even when there are broker failures.

In tree topologies, redundant paths must be created since, B2 || B3
unlike mesh topologies, trees have only one path between 1 910 B
each broker pair. Where to add and how to maintain these

extra links are two important issues to be considered. Si1 -- 820

Figure 1.2.1: Example

of the binary cost
pub/sub systems, in order to avoid centralized routing of model problem

Inefficient publication routing: In overlay-based

publications, reverse path forwarding (RPF) is used to
establish paths between publishers and subscribers [14].
RPF decouples brokers from the knowledge of all end-to-end paths in the overlay since
each broker needs to route messages only to the next hop towards the recipients. This

hop-by-hop routing scheme, while scalable since it limits the knowledge required by
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each broker to operate, conversely hinders their capacity to apply optimizations that
rely on global path knowledge. As a consequence, established pub/sub optimizations

are primarily local in nature, such as subscription covering [36].

Hop-by-hop forwarding therefore does not consider the overall system performance.
Consider the example in Figure 1.2.1. Publisher PI, connected to broker BI, is
sending a publication destined for subscribers S1 to S11, all outlined in red. In order
to reach all matching subscriptions, broker BI must forward the publication to both
broker B2 and B3. We observe that for the same amount of work, forwarding to
B2 is used for 10 deliveries, while forwarding to B3 produces only one delivery. In
addition, sending to B3 does not directly reach S11; another forwarding to B4 is
needed. Therefore, the utility of sending to B2 is 20 times greater than sending to
B3. As pub/sub systems are designed to sustain high publication throughput [37],
prioritizing publication forwarding with high utility improves resource utilization in
the overlay and the efficiency of the system as a whole.

We identify a problem associated with RPF which we call the binary cost model
problem. Given an incoming publication to be routed at a broker, this publication
must be forwarded to every next hop which contains at least one matching subscrip-
tion. In other words, the cost to forward a publication to a next hop is the same, no

matter the actual number of subscribers downstream.

Reconfiguration of the pub/sub overlay: In an overlay-based pub/sub system,
the communication load for each broker is variable, since message flows between
publishers and subscribers vary as subscriptions enter and leave the system. Hence,
it is possible for some publication to be delivered through a long path of brokers in
the current topology, thereby raising the average resource consumption across the
brokers and increasing the end-to-end delivery latency. In a large-scale environment
such as a cloud pub/sub service, the pub/sub system will experience a diverse range
of workloads and thus suffer temporary drops in performance when using a static
topology. Therefore, brokers should be dynamically migrated to a new topology which
provides efficient delivery paths for the current workload. Furthermore, migration to

a new topology might be necessary due to broker and overlay maintenance.

For instance, the Google Pub/Sub System (GooPS), used for the integration of online

7
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services across distributed locations, performs a periodic evaluation of the topology
quality [38]. If the current topology is deemed unsuitable under the current conditions,

a new topology is generated which is optimized given the actual pub/sub workload.

In this work, we focus on the problem of migrating brokers in an online manner.
Modifying the topology while the pub/sub system is still active is a challenging
task since the reconfiguration of the broker routing states can induce a temporary
partitioning of the overlay network, thereby resulting in a loss of messages in transit

during the migration period.

A naive, but reliable approach to migration involves stopping all new operations,
allowing all messages currently in transit to be delivered, before applying migration
updates and resuming the service. While this does guarantee reliable message delivery,
such an approach suffers from high delivery latencies during migration. In a scenario
where the overlay is re-evaluated every few minutes, as in the GooPS case, the above
approach incurs frequent disruptions of the pub/sub service. There is thus a need to
generate an efficient plan which migrates brokers from an initial topology (i.e., the

current topology) into a goal topology (i.e., the optimized topology).

Shortcomings of existing delivery guarantees for distributed application
development: While pub/sub assumes complete asynchrony and decoupling, and
ensures anonymity of clients by providing a data-centric communication paradigm,
developing a distributed application only based on such a model can be challenging. A
component of a distributed application, deployed on top of a pub/sub substrate, has
limited knowledge of other components of the application. Therefore, when any sort
of synchronization is required between these components, they need to find each other
and resort to out-of-band communication. For example, two components may need to
wait and buffer messages until publication streams are established. Note that precise
time synchronization protocols such as PTP [39] or distributed coordination services
like ZooKeeper and Chubby [40, 41] are useful in single-datacenter applications.
However, their application in multi-datacenter scenarios is limited or they suffer from
low throughput due to the impact of high latency cross-datacenter communication
on their quorum-based mechanisms [42]. Furthermore, in overlay-based pub/sub

systems, a message is considered installed in the overlay, when it is fully propagated
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in the overlay and processed completely by all brokers. However, it takes time for
messages to get installed in the overlay. Existing pub/sub systems provide delivery
guarantees for matching publications which reach the overlay after subscriptions are
installed in the overlay [14]. These delivery guarantees leave out the installation
period (i.e. the period of time that the message is being propagated and processed in

the overlay) unclear, which can at best be clarified using a probabilistic model [25].

1.3 Approach

In this section, we shortly describe four approaches we propose to address the four
problems introduced in Section 1.2. In Chapters 4 to 7, we explain these approaches

in detail and present our evaluation results.

Highly available pub/sub via gossiping: Providing redundant paths to be used
in case of broker failure for message propagation requires addressing creating and
maintaining extra links. Link creation can be decided based on the similarity between
brokers’ interests (similarity-based) [43, 44, 30], based on the brokers’ location in
the topology (topology-based) [20, 34] or randomly [35, 45]. The similarity-based
approaches create extra links to connect brokers with similar subscriptions. During a
failure, an affected broker can keep receiving messages from other brokers which also
receive the message due to their similar interests but are not affected by the failure.
In contrast, the topology-based approaches create extra links across all of their
neighbors to bypass a potential neighbor failure. The topology-based approaches do
not need to consider the broker interests and only provide extra links to the closest
non-faulty broker in order to keep the tree connected in case of failure. Random

approaches can be considered a simplification of the similarity-based approaches.

In multicasting trees or topic-based pub/sub systems, due to the limited type of
possible publications and subscriptions (i.e., content space), it is possible to cluster
brokers interested in each topic [43]. Brokers belonging to the same cluster can form
their own dissemination tree or establish redundant links in the cluster [43, 34, 46].

In content-based pub/sub, however, there is no scalable and straightforward way of

9
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establishing such clusters [44]. Yet, similarity metrics can also be used as a way of

grouping brokers based on their set of subscriptions [44, 30].

The second issue is maintaining and updating the extra links in a scalable way
which is required in order to react to brokers leaving or joining the overlay, broker
failures and recoveries, and subscription changes. In order to avoid scalability issues,
link updates must be decentralized and avoid requiring knowledge of all brokers.
Topology-based approaches can limit a broker’s knowledge of the overlay by forcing a
hop-based neighborhood [20, 47|, which limits adding or updating links to the defined
neighborhood. In contrast, similarity-based or random approaches can potentially
choose any two brokers to connect [43, 44]. In such cases, epidemic algorithms provide
a decentralized alternative [48], trading global deterministic knowledge for scalability,
probabilistic knowledge and fault-resilience. Although choosing where to add extra
links is more straightforward for topology-based approaches, our experiments suggest
that the maintenance cost of such approaches can overwhelm some parts of the
overlay. In comparison, epidemic approach can distribute the link maintenance cost

more equally.

Establishing and maintaining redundant links is more challenging in pub/sub systems
with high number of broker failures or when several consecutive brokers can fail since
these links must cover a larger part of the overlay and be able to bypass multiple
broker failures. Therefore, high churn pub/sub systems such as MANETSs [49] and
pub/sub systems that can experience non-uniformly distributed broker failures such
as rack failures or datacenter outages, can benefit from a scalable and low-overhead

approach to establish and maintain redundant links.

In this work, we present Gossip-Enhanced Pub/Sub (GEPS), a similarity-based
epidemic approach to increase availability of a content-based pub/sub system
organized as a tree of brokers in face of multiple broker failures. Our approach
creates redundant paths between brokers based on their interest similarities and
utilizes them only when delivery through the original dissemination tree is not
possible. GEPS provides the same performance and guarantees as its underlying tree
overlay when there is no broker failure. In case of failure, GEPS provides best-effort

delivery. GEPS is able to tolerate high rates of broker failure by employing a scalable
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epidemic-based (a.k.a. gossip) approach that considers broker similarities to update
the extra links. To the best of our knowledge, GEPS is the first epidemic approach for
increasing availability that is tailored to advertisement-based content-based pub/sub

systems with tree topologies.

Popularity-based publication routing: From the point of view of a broker,
forwarding efficiency is dependent upon two factors: distance to reach subscribers
and number of subscribers (i.e., popularity). On each broker, we want to prioritize
forwarding publications with high popularity and nearby subscribers. In contrast,
subscribers which are located far away with unpopular interests, drag down the
efficiency of the whole system by attracting publications down a long path of brokers
with low utility. Because it only takes one outlying subscriber to match a publication,
addressing the binary cost problem will raise the scalability of the system, even under

the presence of a small number of disorderly subscriptions.

The typical solution to raise system efficiency is to construct optimal overlays [50].
While this approach works for topic-based systems, it is not adequate to capture
the complex relationships between content-based subscriptions, nor is it designed to

create tree topologies, which are the focus of our work.

In this work, we present Popularity-Based Publication Routing for Content-based
Pub/Sub (PopSub). PopSub seeks to address the shortcomings of hop-by-hop for-
warding by considering its utility on the end-to-end paths, while retaining the
desired property of knowledge decentralization. PopSub measures the impact of
publication forwarding in terms of the volume and distance of subscriptions that can
be satisfied. Publications are then prioritized based on this popularity-based metric.
Publication popularity estimation is performed in a scalable way which does not
require any change to the RPF, nor global knowledge of all paths. Furthermore, it is
a lightweight mechanism which does not require overlay reconfiguration. We propose
three alternatives to the main dissemination tree, namely Direct Delivery, Batching,

and Gossiping, to deliver less popular publications to improve system performance.

Incremental topology transformation: In order to migrate the overlay brokers
without stopping the pub/sub service, we use an approach called Incremental Topology

Transformation (ITT) [51]. In this approach, a transformation plan is defined as a
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sequence of steps that must be applied to incrementally transform the topology into
the target form, while guaranteeing reliable message delivery during the execution of
the entire plan, and minimizing disruption to the pub/sub service. By leveraging
this incremental approach, a pub/sub system can undergo constant topology changes
while minimizing the impact of transformations as perceived by the clients (i.e., the
publishers and subscribers). Furthermore, execution of an incremental transformation
plan can always be partially halted, since every intermediate topology produced by

the plan is valid and will guarantee reliable delivery.

Existing works address the problem of optimal overlay design for a particular
workload [52, 53], or define primitive operations for reconfiguration of pub/sub
topologies (we simply refer to these primitive reconfiguration operations as operations)
[33, 54, 55]. However, the problem of generating a plan that transforms an initial
topology to a goal topology using these operations has been largely ignored. Yoon
et al. formulate the ITT problem as an automated planning problem|[51]. However,
they only provide heuristics to calculate a plan which may not be optimal. In other
words, the plan is not guaranteed to contain the minimum number of steps needed

to perform the transformation.

In this work, we present IPITT: an integer programming-based (IP) approach to
the ITT problem. IPITT calculates a sequence of steps that transform an initial
topology to a goal topology. Executing each step of the generated plan results in a
valid topology with correct routing information. Furthermore, the plan contains the
minimum number of steps required to perform the transformation. IPITT uses an
integer linear programming formulation of the automated planning problem to solve
the ITT problem. An IP-based approach provides a formulation of the problem that
is easy to extend in order to add new constraints to the solution, leverages existing

highly optimized commercial IP solvers, and generates optimal transformation plans.

Pub/sub delivery guarantees for distributed application development: In
order to reduce the complexity of developing distributed applications based on a
pub/sub substrate, we introduce a set of delivery guarantees which addresses the
message propagation delay in an overlay-based pub/sub system and simplifies the

logic of a distributed application by reducing the need for out-of-band communication
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and synchronization between different components.

Figure 1.3.1 shows an example inspired by an application based on an industrial
workflow management system [56]. Here, a distributed application has one dispatcher
component, several workers and clients producing jobs to be executed. Clients
advertise about the jobs they will be submitting for execution. Upon receiving this
notification, the dispatcher decides to create a new worker or assign the client’s
jobs to an existing worker. Upon creating a new worker, the dispatcher sends a
subscription to the worker in order to for the new worker to subscribe to the jobs.
Using existing delivery guarantees, the client and the dispatcher must wait and
check until the worker has submitted its subscription and the subscription has been
propagated in the overlay. If it were possible for the dispatcher to clearly specify in
the newly generated subscription the starting point of receiving jobs by the worker,
regardless of overlay size and propagation time, there would be no need to resort to

direct out-of-band communication with the worker.

Figure 1.3.1: Example of a distributed application

client

Existing approaches either study the impact of the message propagation delay in a
distributed pub/sub system or extend the pub/sub paradigm to facilitate distributed
application development [25, 57, 58]. The latter group of approaches propose a reply
message in order to maintain a weak coupling between clients. While the ambiguity
of delivery guarantees during message propagation and lack of some form of weak
coupling or synchronization have been identified by the existing approaches, there is

no comprehensive approach that addresses this issue.

In this work, we propose a set of Pub/Sub Delivery Guarantees (PSDG) which isolates
clients from the propagation time of messages in the overlay. By introducing these
new delivery guarantees, clients can express weak coupling and synchronization

requirements that simplify application development using the pub/sub model.
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1.4 Contributions

In this section, we describe the contributions of this work with regard to each of the

described problems. In order to address availability of a pub/sub service we provide:

1. A similarity metric to measure content similarity between two brokers.

2. A low-overhead, low-latency and scalable, epidemic protocol that complements
content-based pub/sub message dissemination by providing improved message

delivery during broker failures.

In order to improve resource efficiency of publication routing is a pub/sub service,

we provide:

3. A metric which measures the gain of forwarding a publication based on
distance and popularity of downstream subscribers. Additionally, we propose
a lightweight and scalable way to estimate the popularity of publications
among subscribers at each broker without requiring global knowledge and by

piggybacking on existing pub/sub traffic.

4. Three alternative dissemination mechanisms for handling low priority publica-

tions: Direct Delivery, Batching, and Gossiping.

In order to improve maintainability of the pub/sub service via incremental topology

transformation, we provide:

5. An IP-based formulation of the I'TT problem, which facilitates integration of
custom plan constraints and enables existing IP solvers to generate optimal
ITT plans. Additionally, we provide an I'TT planner that calculates transfor-
mation plans using different operations while minimizing disruptions to the

pub/sub system.

6. A mechanism to perform and coordinate plan execution in order to prevent an

incorrect routing state or invalid topology.
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In order to improve the usability of the pub/sub paradigm for distributed application

development, we provide:

7.

A clearly defined message installation mechanism that allows client to be notified
of when their messages are fully propagated in the overlay. Furthermore, we
introduce three delivery guarantees for subscriptions that clarify the set of

publications delivered during the subscription propagation period.

. New routing algorithms for distributed pub/sub systems which realizes the

proposed delivery guarantees in a decentralized and scalable fashion.

Parts of the content and contributions of this work have been published in or are

submitted to the following venues:

P. Salehi, C. Doblander, and H.-A. Jacobsen, “Highly-available content-based
publish /subscribe via gossiping,” in Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems, DEBS ’16, (New York,
NY, USA), pp. 93-104, ACM, 2016 [59]

P. Salehi, K. Zhang, and H.-A. Jacobsen, “Popsub: Improving resource utiliza-
tion in distributed content-based publish/subscribe systems,” in Proceedings
of the 11th ACM International Conference on Distributed and Fvent-based
Systems, DEBS ’17, (New York, NY, USA), pp. 88-99, ACM, 2017 [60]

P. Salehi, K. Zhang, and H. A. Jacobsen, “Incremental topology transformation
for publish/subscribe systems using integer programming,” in 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS),
pp. 80-91, June 2017 [61]

P. Salehi, K. Zhang, and H. A. Jacobsen, “On delivery guarantees in dis-
tributed content-based publish/subscribe systems.” Submitted to the 19th
ACM/IFIP/USENIX Middleware Conference, 2018 [62]
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1.5 Organization

The remainder of this document is organized as follows. In Chapter 2, we provide
a short introduction to distributed pub/sub systems and gossip protocols (a.k.a.
epidemic algorithms). Chapter 3 discusses the related works regarding the four
problems introduced in Section 1.2. In Chapter 4, we describe our proposed similarity
metric, epidemic protocol for a highly available pub /sub service and present a detailed
experimental analysis. Chapter 5 defines the binary cost model for routing and
describes our solution, which includes metric collection, publication prioritization,
alternative dissemination mechanisms, and traffic handover, and presents the results
of our evaluation. Chapter 6 explains the I'TT problem, its IP formulation and
our proposed approach and evaluation results. In Chapter 7, we clearly define the
problem of existing delivery guarantees, introduce our new delivery guarantees, the
new routing algorithms to provide these guarantees and their evaluation results.

Finally, we draw conclusion in Chapter 8.
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CHAPTER 2

Background

In this chapter, we shortly explain the background information necessary to under-
stand our proposed approaches. First, in Section 2.1, we explain the distributed
pub/sub system and its variations. Next, in Section 2.2, we explain gossip protocols
since we use them to provide a highly available pub/sub service and briefly introduce
the Lightweight Probabilistic Broadcast protocol which we use in our popularity-based
routing approach. Lastly, in Section 2.3, we explain automated planning which is

how we formulate our broker migration problem.

2.1 Distributed Pub/Sub

Pub/sub provides a loosely coupled, asynchronous, and selective communication
substrate for the dissemination of data between data producers and consumers
[13, 28, 14]. The pub/sub system is in charge of matching and forwarding incoming
data against registered subscriptions in order to deliver data to interested subscribers.
In practice, pub/sub is widely employed for high throughput and low latency data
dissemination [38, 63, 64, 65].

There exists three entities in a pub/sub system. A publisher is a process producing
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and disseminating data, a subscriber is a process that is interested in and consumes
the data produces by publishers, and a broker which is responsible for receiving,
matching and forwarding data. Note that, a pub/sub system can be brokerless
whereby publishers and subscribers connect to each other in an unmanaged peer-
to-peer overlay network. In this work, we focus on pub/sub systems with dedicated

and managed brokers.

To raise scalability, pub/sub systems are often distributed, where the task of matching
and forwarding publications to interested subscribers are divided among a network
of pub/sub brokers, collectively called the pub/sub overlay network. In such an
overlay-based pub/sub system, brokers are connected together in a topology that
determines the neighborhood relationship between brokers. In many systems, the
topology of the overlay is organized as a connected tree of brokers [13, 28, 14, 66].
Clients (publishers and subscribers) connect to the brokers in order to publish data
or subscribe to data. The broker connecting the client to the overlay is called the
edge broker (EB) of that client. A routing protocol dictates how subscriptions are
routed through the overlay and how publications traverse the overlay to reach the
intended subscribers. Each broker knows only of its direct neighbors in the overlay
and can route subscriptions and publications using its local routing information to

the next hops.

There exists three variations of the pub/sub systems depending on how publishers
and subscribers describe the data they publish or are interested in: topic-based,

typed-based and content-based pub/sub.

In topic-based systems, each publication is associated with a topic name. This
topic name simply serves as an ID to identify the set of all publications published
under that topic. Each client can subscribe to one or more topics and receive all
publications published on these topics. As an example, consider a set of machines
that each serve as a sink to collect different measurements such as temperature
and humidity from deployed sensors. Each server is responsible for collecting and
publishing data for a specific area. The set of all of these servers, the back-end
in charge of data management and the rest of the system using this data are all

connected using a pub/sub system. In a topic-based system, each measurement is
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published under a topic name such as temperature or one topic per area such as

munich.

In type-based systems, publications are categorized depending on their types. There-
fore, a publication might publish temperature values of type TemperatureType or
PerLocationMeasurements. Subscribers can then express what types of publications
they are interested in. The main difference between topic-based and type-based
pub/sub systems is that, the later can enforce type safety, making sure only messages

of a specific type or its subtypes are sent to interested subscribers.

In content-based systems, in addition to a type or topic, clients can specify filters
defined over the publication contents. For example, a subscriber with the subscription
s = {class=temp, value > 20} receives only temperature publications that have
a value higher than 20. In this example, class is just another attribute of a message
and depending on the content-based pub/sub system, temp can be a topic, namely

merely a tag or ID, or it can be an actual type enforced by the pub/sub system.

In a topic-based or type-based system, subscribers can only express their interest by
specifying the type of events or using predetermined topics. However, content-based
pub/sub allows more fine-grained subscriptions using additional attributes and filter
on the content of the messages, which reduce bandwidth usage. The content-based
pub/sub system can be considered a generalization of topic-based and type-based
systems which offers clients a higher degree of expressiveness.

s = { [class = 'temp'],

[area = 'munich'],
[value < 0]}

s' = { [class = 'temp'],
p = { [class = 'temp'], 51 [area = 'munich'],

[area = 'munich'] } /\ [value < 20] }
&) @ >

Figure 2.1.1: Content-based Pub/sub

In order to able to forward publications to matching subscribers, brokers need to
know all matching subscribers for a publication. There exists two approaches for

propagating subscriptions in a content-based pub/sub system: subscription flooding
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and advertisement-based routing.

In a system that uses subscription flooding, any subscription received by a broker is
simply flooded in the overlay. Upon receiving a subscription, the broker forwards it
to other brokers in the overlay. Each broker stores the subscription and the address
of the broker sending the subscription in a table called the publication routing table
(PRT). Upon receiving a publication, a broker matches the publication against existing
subscriptions to determine the next hops that should receive these subscriptions.
Table 2.1.1 shows the PRT of Broker A in Figure 2.1.1. For example, upon receiving
the publication p = {[class = ’temp’], [area = ’munich’], [value = 10]},

Broker A forwards p only to Broker B.

Subscription ‘ NextHop
[class = ’temp’], [area = ’munich’], [value < 0] | SI
[class = ’temp’], [area = ’munich’], [value < 20] | B

Table 2.1.1: PRT of Broker A

In a subscription flooding approach, all brokers record all subscriptions in their
routing tables. In scenarios with high number of subscriptions, subscription flooding
can result in large PRTs on the overlay brokers. Large PRTs can in turn result in
higher memory usage and higher latency as matching incoming publications with
a higher number of subscriptions can take longer. Furthermore, in larger overlays,

flooding subscriptions can also result in high message overhead.

Note that not all brokers need to know all subscriptions. Only brokers which
know of publishers matching a subscription need this information. Advertisement-
based routing introduces an advertisement message in order to limit subscription
propagation only to matching publishers. In this approach, publishers must first
publish an advertisement to notify all other brokers about the data they will publish.
Similar to a subscription, an advertisement has a class and zero or more filters that
must be true about all publications send to the overlay by the publisher. In Figure
2.1.1, P1 sends the advertisement a = {[class = ’temp’], [area = ’munich’]}
to the overlay and any publication published by P71 must be of class temp and the
value of the attribute temp must be munich. Upon receiving an advertisement, brokers

store the advertisement and the address of the broker sending the advertisement in a
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table called the subscription routing table (SRT). Tables 2.1.2 and 2.1.3 show the
SRTs of Broker A and B after flooding the advertisement of P1.

Advertisement ‘ NextHop
[class = ’temp’], [area = ’munich’] ‘ P1

Table 2.1.2: SRT of Broker A

Advertisement ‘ NextHop
[class = ’temp’], [area = ’munich’] ‘A

Table 2.1.3: SRT of Broker B

Upon receiving a subscription, brokers match the subscription against existing
advertisements recorded in the SRT and determine the next hops that should receive
the subscription. Similar to the subscription flooding approach, received subscriptions
are recorded in the PRT of the receiving broker. However, since only brokers with
matching advertisements receive the subscription, subscriptions are recorded only on
the path connecting the subscriber and matching publishers. Therefore, as shown in
Table 2.1.4, only S§2’s subscription is recorded in the PRT of Broker B.

Subscription ‘ NextHop
[class = ’temp’], [area = ’munich’], [value < 20] ‘ S2

Table 2.1.4: PRT of Broker B

The rationale behind advertisement-based pub/sub is that usually the number of
subscribers in a system is much larger than the number of publishers. Therefore
flooding advertisements results in lower message overhead and smaller PRTs which
can improve matching time of publications. In this work, we use advertisement-based

content-based pub/sub systems due to their efficiency and high expressiveness.

Another optimization that is applied in pub/sub systems is subscription covering.
Subscription covering [36] is an optimization technique used in distributed pub/sub
systems in order to reduce the size of the PRTs on brokers and consequently reduce
memory usage and improve publication matching time. In this approach, upon
receiving a subscription s on Broker B, if there already exists a subscription s’
in the PRT of Broker B such that s C s, Broker B does not forward s onward
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since the set of publications that matches s is a subset of the set publications that
matches §’. For example, in Figure 2.1.1, if before receiving s’, there already exists a
subscription s" = { [class = ’temp’], [value < 40] } on Broker B, s’ would
not be propagated because Broker B receives a superset of publications matching s’

due to s”.

2.2 Gossip Protocols

Gossip protocols were first introduced for maintenance of replicated databases [67]
and provide a simple approach for disseminating information among distributed
processes. In contrast to overlay-based approaches, gossip protocols do not rely on
an underlying topology or routing protocol and do not require all the processes to
know each other and provide some inherent fault resiliency [68]. Gossip protocols
are scalable with the network size and the number of gossiping rounds required to
spread a message through out a network is O(log(n)), where n is the size of the
network [69]. Simplicity and inherent fault-tolerance of gossip protocols have made
them a popular choice for event-dissemination [70, 71], overlay construction and
maintenance [72, 73], monitoring and resource allocation [74, 75] and aggregation in
distributed systems [76].

Gossip is defined as repeated probabilistic exchange of information between two
members [69]. This definition emphasizes two main characteristics of gossip protocols.
First, processes exchanging information choose each other randomly. Second,
spreading information using gossiping is continuous which can result in large message
overhead if not controlled [69, 77, 48].

Gossip-based protocols follow the same general set of steps [69] and are only different

from each other in the substeps taken for each of the following main steps:

1. Peer selection determines the set of processes each process selects from the

network to exchange information with.

2. Data exchange determines what information is exchanged between the two
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communicating processes depending on the application and the context of the
problem.

3. Data processing determines what a process does with the received information

and how spreading the information impacts the process and system state.

A peer sampling service is an important basic building block of gossiping protocols.
The aim of this service is to provide every process with other processes to exchange
information with [78]. It has been shown [79] that a partial random uniform view of
the whole network can replace the full knowledge of all the processes in the system.
Therefore, gossiping processes are able to update their partial view of the system using
the peer sampling service without knowing about all existing processes. The peer
sampling service uses a membership protocol to keep track of all existing processes.
This membership protocol can be centralized where all processes register themselves
with a server or it can be decentralized [48]. An important issue in distributed
membership protocols is network partitioning. If the membership protocol does not
consider the dynamicity of the overlay, the processes in the network can partition
into isolated parts. A consequence of this is incorrect behavior of the peer sampling
service since it is no longer possible to provide a uniformly random subset of processes
from the whole network.

In the following, we mention some important factors that impact the trade-off between

message overhead and efficiency of information dissemination using gossiping [67]:

e Fanout determines the number of gossip partners each process contacts in each
round. A higher fanout results in a faster dissemination at the cost of a higher

message overhead.

e Cache size determines how many times each message is gossiped before it
is removed from the list of messages that the process is disseminating using
gossiping. The longer a message stays in the gossip list, the larger the part
of the network receiving it and the more copies of that message exists in the
system which results in higher message overhead. Demers, et al. provide several
methods to decide when to stop gossiping a message and remove it from the

cache [67]. A blind approach stops gossiping a message based on a fixed counter
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value or a 1/k probability. A feedback-based approach relies on the response
of the receiving processes to decide whether the message should be gossiped
which means a message is gossiped repeatedly as far as each round of gossiping

results in some positive feedback.

Data exchange model determines how information is exchanged between the
processes once they have chosen each other. In a pull method, on each gossiping
round, a process queries selected processes for new information. Pull has a
low overhead since a message is sent only if it is new and the pulling process
is interested, however, it results in a slow dissemination speed. In a push
method, the gossiping process sends its latest gossips to the selected processes.
A message disseminated using this approach reaches the network quickly but at
the cost of a large number of redundant messages. Push-pull performs both of
the previous methods at each gossiping step and lazy-push first checks weather

a chosen process is interested before sending the information [67, 69].

Lightweight Probabilistic Broadcast (Ipbcast) is a gossip-based broadcast protocol

which provides a scalable approach for large-scale data dissemination [79]. Ipb-

cast uses partial views to perform message routing and membership management in a

decentralized and scalable fashion. Therefore, processes can avoid global knowledge

and rely only on a partial view of the system. This partial view consists of a subset

of the processes in the system with a fixed maximum size. On each process b, besides

the partial view (V,), each process maintains the following four sets:

M,: set of messages to be gossiped by b
Dy: a digest of messages gossiped and seen by b
Sp: set of subscribers (process IDs) that b is aware of

Up: set of unsubscribers that b is aware of

Periodically, b creates a gossip message g = (M, Dy, Sy, U,) and sends it to a random

subset of processes in V,. A receiving process, V', uses Sy, and U, to update its

partial view. This allows gradual removal of processes not interested in receiving
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messages anymore and gradual integration of new processes. Any message in M, not
previously seen by b’ is eligible for delivery and gossiping in the next round. The
digest received from b is used to update the knowledge of b’ of published messages
and retrieval of missing messages. [pbcast also supports periodical retrieval of missing

messages.

2.3 Automated Planning

Automated planning is a branch of artificial intelligence studying computation of
a finite sequence of steps, chosen from a limited set of basic actions, to realize a
complex task. A planning problem II is defined as a tuple <P, 3, O, sg, g> where:
P is a set of predicates used to describe the problem state, > is a set of objects,
O is a set of operations, sq is an initial state and ¢ is a goal state. Each predicate
p € P and each operation o € O takes one or more objects o € ¥ as parameters. A
proposition is a predicate p € P applied to a subset of objects X' C X. A state s
is a set of true propositions that uniquely defines a problem state. An action a is
an operation o € O applied to a subset of objects ¥’ C . Applying an action on a

state (s, a) transitions the state s to a new state s'.

Each operation o € O is defined using three sets of predicates pre(o), add(o), del(o).
pre(o) is the set of preconditions of operation o. For an action a to be applicable
to a state s, s must satisfy all preconditions of a. add(o) and del(o) are the sets
of predicates which are added to or removed from the state as a result of applying
an action to s. Therefore, each action a changes the state s by changing the set of

propositions defining s.

A solution to the planning problem II is a sequence of actions (ay, as, . .., ax) that cor-
responds to a set of state transitions (sg, $1, . . ., Sk) such that s; = y(sg, a1), ..., s, =
~v(sk_1,ar), where s is a goal state [80]. The synthesized sequence of actions that

transitions the initial state to the goal state is called a plan.
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CHAPTER 3

Related Work

In this chapter, we discuss existing approaches related to availability, maintainability,
resource efficiency and usability of pub/sub systems. As these requirements are
not entirely orthogonal to each other, many studies target two or more of them at
the same time. As an example, approaches improving maintainability of a pub/sub
overlay can be applied to improve availability, as well as resource efficiency of the
system. Therefore, we categorize the related work based on topics that are related

to one or more of these requirements.

3.1 Highly-Available Group Communication

Many tree-based multicasting and broadcasting approaches have been proposed that
address high availability [47, 45, 34]. GoCast [47], for example, is a protocol for
building and maintaining resilient multicast overlays. GoCast first builds a mesh
to connect all brokers where roughly each node has the same number of neighbors.
An efficient dissemination tree connecting all brokers is constructed and embedded
in the overlay mesh. The remaining links of the mesh are used to optimize and
maintain the dissemination tree in case of broker failure. Streamline [45] follows a

similar approach for media streaming in overlay networks.
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In these scenarios, either all brokers are interested in all messages (broadcast) or
there are few different publishers with many similar subscribers. Therefore, the
cost of matching interests and routing messages is non-existent or very inexpensive.
Consequently, approaches like GoCast or Streamline aim at providing a dissemination
tree that can reach as many brokers in the overlay as possible with lowest latency.
Although these assumptions fit in the context of group communication, applying
them to pub/sub systems where brokers have to manage fine-grained interests can
lead to high message overhead. In other words, considering all brokers of the overlay
to have the same or similar interests is often not a correct assumption in pub/sub

systems.

3.2 Highly-Available Pub/Sub

In topic-based pub/sub systems, each message has a type (or topic ID) and is
routed based on this information. Hence, it is feasible to build and maintain one
dissemination structure per topic [46, 43, 81]. Providing redundancy inside each of
these per-topic-structures can increase availability of the pub/sub system. Vitis [43]
and Poldercast [46] are examples of enhancing topic-based pub/sub with epidemic

approaches.

Vitis [43] clusters peers with similar topics. The clusters have a maximum size
resulting in multiple clusters for the same topic which are connected through
intermediary peers. Gossip is used to keep the clusters connected with a minimum
number of intermediary peers. Poldercast [46] pursues goals similar to our work such
as 100% delivery without node churn and high delivery in presence of node churn.
Poldercast uses deterministic dissemination over a DHT-based ring. Besides DHT
successors and predecessors, peers use gossip to connect to additional peers with the

same topics.

While both of these approaches enhance pub/sub using epidemic protocols and
address scalability and peer failure, they exclusively target topic-based pub/sub

where the concept of grouping brokers based on topics is applicable. Furthermore,
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these approaches are meant to support peer-to-peer systems where typically there
is a high churn rate and no administrated infrastructure. With GEPS however, we
are not targeting self-organizing peer-to-peer systems but a pub/sub system with a
managed overlay, where it might not always be possible to arbitrarily change the

overlay topology.

Although, not as simple to realize as for topic-based pub/sub, similarity-based
clustering in content-based pub/sub systems have been studied in the context of
self-organizing overlays [44, 30]. Here, brokers with similar interests are clustered
to lower delivery latency and improve message dissemination efficiency. In Sub-2-
Sub [44], for example, the ring structure used per cluster also provides fault-tolerance
against broker failure. While we also use a similarity measure, we do not target
self-organizing peer-to-peer overlays and aim to provide an approach that does
not require change to the underlying dissemination tree. There are scenarios in
which the dissemination tree is designed based on an application workload or certain
infrastructure constraint [82, 83]. In such cases it is desirable to maintain the
original topology since self-organization can be costly. Furthermore, in contrast to
self-organizing pub/sub systems [44, 30] where each broker only considers its local
interests, we use similarity metrics to measure similarity between two brokers in

terms of pub/sub messages that they forward and not just their local interests.

Costa et al. [84] study the use of gossiping to improve reliability of content-based
pub/sub systems. In their approach, each broker periodically samples its subscription
routing table and propagates a digest along the dissemination tree. Any broker
receiving the digest and noticing a missing publication can request a retransmission.
In contrast, GEPS addresses the intervals when the dissemination tree is disconnected
and minimizes the average delivery latency and retransmissions required after recovery.
Such retransmission mechanisms can complement GEPS to deliver publications that

could not bypass failures.

Two approaches that pursue goals very similar to ours are semi-probabilistic [35] and
d-fault-tolerant [20] pub/sub (§FT). Semi-probabilistic pub/sub targets MANETs
where peers have limited resources and high churn rates. Subscription propagation is

limited to n hops away to limit memory usage, where n is a configuration parameter.
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To further propagate messages when no subscription information is available as
a result of limiting subscription propagation, messages are gossiped by randomly
selecting neighbors. Although, this approach matches the requirements of MANETs
well, in low churn rates and large overlays, random next hop selection can result in
high message overhead and low delivery. The reason is that publishers located more
than n hops away from the subscribers can only rely on random next hop selection
instead of routing based on subscriptions to reach the subscribers. The routing
scheme described in this approach does not propagate subscriptions throughout the
whole overlay. Since the same routing scheme is used when there are no failures in
the overlay, the lack of 100% delivery and high message overhead is present even

when there is no churn in the system.

SFT pub/sub targets more stable and managed
environments, such as enterprise systems or a
pub/sub service providers, and provides a reliable
pub/sub service with 100% delivery and per-publisher
ordering guarantees. 6FT follows a topology-based

approach to augment the tree topology using extra

links. Extended subscription messages are used to

Figure 3.2.1: 6FT
Overlay example

keep track of brokers up to d + 1 hops along each
branch of the dissemination tree. Additional directed
links are established and maintained using this information. The established links
are used to tolerate up to 0 concurrent and consecutive failures should broker failures
occur. The reliability of the approach depends on the value of §, which should
not be too high as otherwise scalability issues may ensue and requires that each
node maintains more links to cover a bigger neighborhood. Low values of § make
the overlay vulnerable to broker failure, especially when these failures are in close
proximity and there is a higher probability for 6 + 1 concurrent and consecutive
failures. For example, in Figure 3.2.1, with § = 1, the neighborhood of Broker 2 (B2)
consists of B4, B5, B8, B9, B10, B11, Bl and B3. The size of the neighborhood
grows quickly with the value of . An advantage of this approach is that establishing

extra links based on the tree branches maintains per-publisher ordering guarantees.

Compared to the previous two approaches [35, 20], with GEPS, we aim to enhance
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content-based pub/sub by using epidemic dissemination controlled by the content-
space and tree overlay. Our approach takes advantage of the scalability of epidemic
algorithms similar to semi-probabilistic pub/sub, while increasing the publication
delivery and lowering the delivery latency during broker failure similar to §FT. In
contrast to purely gossip-based pub/sub systems where gossiping is used as the main
publication dissemination mechanism [79], GEPS resorts to gossiping only during
broker failures. Consequently, GEPS guarantees 100% delivery in case of no broker
failure and high delivery in case of failure. GEPS aims to increase delivery and lower
latency during broker failure of a content-based pub/sub system but does not directly
aim at enhancing reliability of pub/sub. This is different from §FT which provides
per-publisher ordering and delivery guarantees which imposes higher overhead and
does not target high overlay failure rates. Compared to the deterministic approach
of 6FT, GEPS aims at providing a probabilistic alternative with low message overhead
while maintaining scalability and fault-tolerance inherent to epidemic approaches.
Furthermore, our approach does not change the underlying pub/sub routing but
rather complements it with a low-overhead protocol to reduce latency and message

loss during broker failure.

3.3 Self-Organizing Overlays and Overlay Recon-

figuration

In managed overlays, the topology is designed for efficient publication routing and
high throughput. In contrast, self-organizing overlays rely on gradually constructing
and periodically reconfiguring the overlay to achieve these properties. Several
existing works use self-organizing overlays to avoid costly publication forwarding by
identifying middle steps which are pure forwarders (brokers with no local interest)
[85, 86, 87]. Scribe is a DHT-based peer-to-peer multicasting system which can
route publications via interested peers and thereby avoid unnecessary publication
forwards. Spidercast [86] relies on its own protocol to construct an efficient overlay for
topic-based dissemination. These works only target multicast or topic-based systems
with self-organizing overlays, whereas PopSub addresses content-based pub/sub using

managed overlays.
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Some studies suggest overlay reconfiguration to improve publication delivery efficiency
in content-based systems with managed overlays [55, 88, 89]. In these approaches,
brokers monitor and compare their subscriptions; brokers with similar interests are
then connected together to reduce number of publication forwarding operations

required to deliver the publications.

PopSub differs from self-organizing and reconfiguration works in three ways. First,
performing these reconfigurations is costly as they require to buffer publications
and stop routing while paths are updated [51]. Therefore, overlay reconfiguration
temporarily increases publication delivery latency [55] which may not be tolerable in
all use cases. Furthermore, overlay construction and transformation may also not be
achievable when the network is geographically-aware [90], or when the subscription
churn is high [91].

Secondly, overlay reconfiguration is opti-
mized for the benefits of large clusters of
similar subscriptions without considering
isolated subscriptions. For example, in
Figure 3.3.1, since majority of subscriptions
on BY are black, clustering brokers and
reconfiguring the overlay accordingly is more
likely to benefit black subscriptions. Conse-

quently, assuming a uniform distribution of

subscriptions on brokers, there will always
PopSub on the Figure 3.3.1: Reconfigura-

be isolated subscriptions.
tion example

other hand, can break down subscriptions
on each broker and use different dissemination mechanisms for a subset of a broker’s
subscriptions. In other words, while self-organization and reconfiguration can benefit
subscribers of popular contents, PopSub is still applicable in such systems to identify

unpopular content and improve the overall publication routing cost even more.

Lastly, existing works can only improve routing efficiency by avoiding pure forwarding
brokers. In scenarios where middle forwarding brokers have only one subscription

matching the routing publication, they cannot improve the routing efficiency and
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therefore suffer from the binary cost model problem (Section 5.1).

In comparison to IPITT which focuses on topology transformation of managed
overlays, overlay reconfiguration techniques focus on reducing delivery latency and
minimize the routing cost in self-organizing overlays which are more common in
peer-to-peer systems. Furthermore, the combination of different overlay design
algorithms and IPITT provides a general framework that allows topology maintenance

of pub/sub systems subject to a wide range of constraints.

Changing the overlay topology of a running system requires clearly defined reconfigu-
ration operations in order to prevent message loss, invalid routing state, and service
disruption. Yoon et al. propose a set of operations used to transform an overlay
while maintaining delivery guarantees [33]. Nitto et al. also propose operations for
self-adaptive overlays [54]. While the proposed set of operations between these two
works are similar, they provide different delivery guarantees and can handle different
failure models. IPITT can produce plans using any operation (including those in
the above sets) that can be defined in terms of preconditions and effects on the
overlay. For example, the swapLink[54] and shift[33] operations are equivalent but
with different delivery guarantees. Therefore, depending on the delivery guarantees
that the plan must maintain, the corresponding operations can be used in the IPITT

planner.

3.4 Overlay Topology Design

A minimum cost topology minimizes the overall cost of routing messages in the overlay.
Minimum cost topology construction is a NP-hard problem [92, 93]. Nonetheless,
there exists many algorithms which construct overlay topologies given different
constraints while minimizing routing cost [92, 52, 94, 93]. Elshqeirat et al. provide
different heuristics to design minimum cost overlay topologies subject to reliability
constraints [92]. Chen et al. present algorithms for designing topic-connected overlays
with fast implementations [52]. Weighted overlay design incorporates underlay

information and is used to design overlay topologies that maintain their performance
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in the presence of underlay changes [94]. These works are orthogonal to IPITT and can
be used to generate goal topologies which are then provided to IPITT for generating

efficient transformation plans while minimizing disruptions.

3.5 Overlay Topology Transformation

Several approaches address performing overlay reconfiguration on an online system
using a continuous and incremental approach. ZUpdate provides a plan-based
approach to migrate the topology of SDN-based datacenter networks (DCN) [95].
Similar to IPITT, ZUpdate uses integer programming to find a transition plan,
consisting of zUpdate operations, to migrate the topology of DCNs. However,
the proposed operations and plans are specific to OpenFlow switches in DCNs.
Furthermore, rather than migrating to a new topology, the focus of the work is
updating the switches without overloading existing links when specific switches are

down.

Yoon et al. address incremental topology transformation in pub/sub systems [51].
They formulate the ITT problem as an automated planning problem [80] and use
existing planners [96, 97] to find a solution. However, as existing planners are not
scalable, the authors propose heuristics for the I'TT problem. Similarly, IPITT uses
an automated planning formulation, but uses integer programming to solve the
automated planning problem. The IP-based approach of IPITT leverages commercial
solvers such as Gurobi [98] and CPLEX [99] to solve the problem. These solvers
are heavily optimized and can efficiently exploit multicore and cluster architectures
[100]. Furthermore, IPITT can customize the plan search by changing the objective
function of the IP model or adding constraints to the plan search. Section 6.5 presents
experiments which compares our solution (IPITT) to the state of the art heuristic

proposed by the aforementioned approach.

GooPS [38] is an internal pub/sub system used for online service integration at
Google. GooPS uses a controller that periodically recomputes a cost-minimal tree

based on the existing workload, network underlay, and utilization information that

34



CHAPTER 3. RELATED WORK

it collects. GooPS uses a central routing approach which relies on Chubby to
maintain all the subscriptions and routing information. Routing updates resulting
from overlay changes are addressed with versioning of the routing information on
Chubby. Unlike GooPS, IPITT focuses on overlay-based pub/sub systems where the

routing information is distributed across brokers.

3.6 Efficient Publication Routing in Pub/Sub

Opportunistic multipath forwarding (OMF) [101] improves publication routing
efficiency in content-based pub/sub systems by building and maintaining extra
links on top of the managed overlay topology. These links are used to bypass pure
forwarding brokers and improve delivery latency and throughput. For example, in
Figure 3.3.1, using OMF, BI should forward publications directly to brokers B4, BS
and B9, since B2, B3 and B7 have no local black, red or blue subscriptions. However,
this increases number of publication forwards that BI needs to perform in order for
all subscribers to receive their matching publications. In topologies with a higher
fanout degree and for more popular publications, this can result in a high number
of forwarders for BI. To avoid overwhelming forwarding brokers, OMF performs
these opportunistic bypasses considering the free capacity available at the forwarding
broker. For brokers which are utilized more than a certain threshold, OMF reverts
back to forwarding publications only via the tree, assuming the managed overlay
topology is designed to tolerate such loads. In comparison, PopSub considers the
overall performance using the publication gain metric and can improve publication

delivery even under high loads.

Atmosphere [102] identifies situations where clients suffer from several intermediate
forwarding hops due to the present overlay topology. For each publisher, Atmosphere
identifies the most relevant subscribers to be directly served by the publisher, forming
tiberlays. Therefore, Atmosphere allows faster publication delivery to subscriptions
served by direct links. In contrast, PopSub does not involve changing client connections
and does not rely on client resources to improve delivery latency. While Atmosphere

provides faster than overlay deliveries, PopSub prevents delayed publications due to
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congestion and improves overall resource utilization.

Despite the different scenarios addressed by OMF and Atmosphere, the idea of directly
delivering publications to improve resource utilization and publication delivery latency
is applicable in our popularity-based routing approach as well. Therefore, one of the
proposed methods to handle unpopular publications, Direct Delivery, is based on
these two works. We evaluate and compare the performance of such a bypassing

mechanism on our proposed popularity-based routing scheme.

QoS-aware pub/sub systems, similar to PopSub, aim to augment the knowledge of
brokers about existing subscribers without relying on global knowledge and without
degrading scalability [103, 104]. Nonetheless, the aim in these systems is to satisfy
precise requirements received from clients (QoS guarantees) by estimating and
provisioning the resources required. PopSub on the other hand, aims to improve the

overall resource utilization of the pub/sub system without involving clients.

There exists a number of works which handle overload situations in highly congested
pub/sub systems. These works either throttle the publication rate [105] or use
admission control to accept incoming subscriptions [106]. In contrast, PopSub does
not assume control over the publisher and subscriber clients. Our work processes all
incoming publications and subscriptions. In overload situations, PopSub employs a

novel popularity metric to prioritize the appropriate data flows.

3.7 Pub/Sub for Distributed Application Devel-

opment

The complete decoupling of clients in pub/sub and consequently its limitation on
distributed application development has been pointed out in some studies [58, 57].
These works argue that while pub/sub provides a more flexible and scalable alternative
to the traditional request/reply paradigm, the reply mechanism is a natural and
useful component missing in pub/sub. Furthermore, adding a reply mechanism

increases the domain of applications that can benefit from the pub/sub paradigm.
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Existing works on pub/sub-with-reply propose a reply to publication messages and
evaluate the alternative algorithms that can be used to provide such a mechanism
[58, 57]. Reply management in a scalable fashion and without requiring global
knowledge of the overlay has been studied in works addressing pub/sub-with-reply
and aggregation in pub/sub [57, 58, 107]. Cugola et al. propose two out-of-band
and two in-band protocols to collect and deliver reply messages [57]. In one of these
protocols, KER, upon receiving a publication p, a forwarding broker B looks up
the neighbors that lead to a subscriber matching p and waits for one reply from
each neighbor before aggregating these replies into one reply and sending it to the
last hop that p came from. However, these works only address reply to publication
messages and do not address the propagation time for subscriptions and its impact

on the provided delivery guarantees.

Baldoni et al. identify the message installation problem in distributed pub/sub
systems and provide a probabilistic model that can be used to approximate the
percentage of notifications that are guaranteed to be delivered during the propagation
phase [25]. Nonetheless, they do not provide a solution to clarify the provided delivery

guarantees in a distributed pub/sub system.

Kazemzadeh et al. also identify the subscription stabilization delay in distributed
pub/sub systems and propose a clear definition for when the processing of a new
subscription is finished [26]. This point of registration is defined as the time that
all confirmations regarding processing of the new subscription is received by the
subscriber. However, this confirmation-based approach is used to ensure that a
subscription is successfully installed in the overlay and does not clarify the set of

publications delivered to the subscriber while it is propagating in the overlay.

Transactional message processing in pub/sub is required in some use cases such
as workflow management [108, 56]. A transaction in pub/sub is a demarcated
group of pub/sub messages that provides an all-or-nothing execution semantic and
guarantees a consistent routing table at all brokers. Some studies have formulated
transactions in pub/sub, define a consistency model and provide ACID properties for
such transactions [108, 109]. In comparison, in this work, we address the propagation

delay and installation time for single massages in distributed pub/sub systems. In
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this context, brokers located on the path between a publisher and a subscriber, do
not have inconsistent routing tables but rather it takes some time until they all
converge to the same state. Therefore, we suggest providing clients with delivery

guarantees that decouples them from the propagation delay in the overlay.

To address scenarios where a publisher needs to buffer messages and forward them
to late-joining subscribers, the Data Dissemination Service (DDS) standard provides
a durability QoS policy [110] based on a publisher-side history cache which can
temporarily hold produced publications. In a distributed pub/sub, such late-joins
can happen as a result of the propagation delay. In these cases, before publishing,
a component might have to wait for all subscriptions (other components of the
system) to get installed in the overlay. However, in DDS, buffering publications
and forwarding them to subscriptions that join the overlay later is provided as a

client-side functionality which can overload the publishers.

View-oriented group communication systems (VGCS) provide a building block for
distributed application development and facilitate many-to-many communication
by allowing processes to be organized in logical groups [111]. However, these
systems provide a basic multicasting service and lack the selectivity and fine-grained
communication that is provided by content-based pub/sub systems. Furthermore,
the logical groups defined in the system, are used for routing purposes as well. In
contrast, in our content-based pub/sub system, this information is used to simply
provide some weak coupling between different processes and the routing is still

performed based on filters installed by clients on the brokers.

Lastly, while relying on clock synchronization in Internet-scale distributed systems
has been considered unreliable (e.g. NTP) or not cost-efficient (e.g. GPS clock
synchronization), more recently cloud providers offer highly accurate reference clocks
(using atomic clocks and satellite-based synchronization in each region) as a free

service to their users which can facilitate distributed application development [112,
113].
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Gossip-Enhanced
Publish /Subscribe

In this chapter, we present our Gossip-Enhanced Pub/Sub (GEPS) approach to provide
a highly-available content-based pub/sub service. We first explain a similarity metric
that GEPS uses for establishing extra links in the topology. Next, in Sections 4.2 to
4.4 we describe the gossip protocol that is used to maintain the established links
and how GEPS uses it to bypass broker failures. In Section 4.5, we explain how
the presented gossip protocol can be extended to bypass consecutive broker failures.

Lastly, we present the result of out experimental evaluation in Section 4.6.

4.1 Broker Similarity

GEPS complements the advertisement-based content-based pub/sub protocol [14]
described in Chapter 2. Figure 4.1.1 gives an example of such an advertisement-
based pub/sub overlay. Client 1 (C7) intends to publish temperature values about
two cities and sends advertisements about them to the overlay. As a result of
advertisement flooding, the SRT of all brokers is built. Clients C2, C'3 and CJ issue

their subscriptions which are propagated towards C7 and create PRT entries on
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brokers located on the path between the subscriber and the advertiser. GEPS requires
each broker to maintain a counter for each advertisement. This counter represents the
number of subscriptions the broker has successfully matched with that advertisement.
For example, after C'2 sends subscription Sy, the subscription reaches C1 via BS, B/,
B2, and B1. As a result, the counter for A; (the advertisement matching S;) at these
brokers is incremented. In Figure 4.1.1, the number to the left of each advertisement
in the SRT represents this counter. The figure represents the routing tables of each
broker after all advertisements and subscriptions are propagated.

Al:{class=temp, city=munich, value>19}
A2:{class=temp, city=toronto, value<=0}

fA112 s2|10

fA12 s1]8
il A2l 2

® A2[2

[fAa1)17 S3|C4
il A2l 7

flal 4 s1|C2
§ A2l4

§A15 S2|C3 QA1) 5 E]A1|7
A azls @ A2ls A2l7
3 S2:{class=temp, S3:{class=temp,

city=toronto, value<10} city=toronto, value<0}

S1:{class=temp,
city=munich, value>20}

Figure 4.1.1: Similarity metric among brokers of a content-based pub/sub system

GEPS augments the dissemination overlay tree by establishing additional directed
links between brokers. These links are created based on two factors: similarity

between brokers and their position in the tree.

The similarity between two brokers quantifies the commonality of the content that
two brokers route. We define the similarity function as S : (V3, Viy) — N. It takes
as input two vectors of the same size and its output is a positive integer. V,, is
called the similarity vector and represents the counter values associated with the
advertisements at Broker n (B,). Since advertisements are flooded, all brokers have
the same advertisement set. In order to address situations where an advertisement is
not yet received by all brokers or an unadvertisement has been issued, this vector
can be extended to include the advertisement ID and its associated counter. V,,[i] is
initially 0 and is incremented every time B, forwards a subscription matching A;.
The greater the output of S(V}, Vi), the more similar the two brokers b and b are
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in terms of the subscriptions they have routed. S creates a new vector V, where
Ve[i] = min{V,[i], Viy[i]} to calculate the similarity. V. represents the commonality
between the two input vectors. The output of S is the sum of the elements of V..
For example, consider brokers B/, B5, and B7 in Figure 4.1.1, where V; = {1,0},
Vs = {0,1} and V7 = {0,1}. With S(V5,V4) = 0 and S(V;s,V7) = 1, B7 is more
similar to B5 than to B4.

4.2 Broker Partial View

In this section, we explain how the position of the broker in the tree impacts
the creation of the directed links. The subset of the overlay that the broker is
aware of through the dissemination tree and established extra links is called the
broker’s partial view of the overlay. While partial view is a concept used mostly
in epidemic approaches [79, 48], topology-based approaches like §FT use a similar
concept. For example in §FT, the §-neighborhood is the broker’s partial view of the
overlay comprising knowledge of the next d hops across each neighbor. Although
the concepts are similar, how a partial view is created, updated and used is the
main difference. Besides broker similarity, the creation of additional links in GEPS is
determined by the position of a broker in the primary dissemination tree. We divide

brokers into sibling groups based on their depth in the tree.

Figure 4.2.1 illustrates the four different sibling groups extracted from Figure 4.1.1.
Brokers having the same depth in the dissemination tree belong to the same group.
Therefore, the four sibling groups are {1}, {2, 3}, {4, 5, 6, 7} and {8, 9, 10, 11,
12, 13}. GEPS requires each broker to gather information about other members in
its sibling group. This information includes the similarity between the broker and
other members of the sibling group and whether they are available or have failed.
The similarity is measured by exchanging similarity vectors and using the defined
similarity metric. The availability among siblings is determined by exchanging

heartbeat messages.

Although in small sibling groups brokers can maintain the view of their group by
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PV(2) PV(5)
sibling| 3 sibling| 7,6
parent| - parent| 3
child 16, 7 child 113, 9

PV(7) PV(10)
sibling| 5, 4 sibling| 13,9
parent| 2 parent| 6,7
child 110, 11 child |-

Figure 4.2.1: Broker partial view in GEPS

interacting with all other siblings, this approach is not scalable to large groups. In
order to overcome this problem, each broker gathers and maintains information only
about a subset of its siblings providing each broker with a partial view of its sibling
group. Partial views are used extensively in epidemic protocols [79, 48] as a way
of providing a decentralized and scalable method to gather and update a process’s
knowledge of a large group. The information included in these partial views, how they
are maintained and what global state they converge to, is application-specific. One of
the contributions of this work is a similarity-based overlay partial view construction
and maintenance protocol tailored to an advertisement-based content-based pub/sub

system with a tree topology.

We define B,,’s partial view of sibling group d as PV,.(n)g, where r is the configurable
maximum size of the view. Each member of PV,.(n); contains the ID of a broker,
a timestamp indicating its last received heartbeat, and a similarity vector. The
size of the partial view can be between 0 and r. Each B,, located at depth d in
the tree, keeps three partial views of the overlay, which are PV, (n)sipiing = PVr(n)q,
PV, (n)parent = PVi(n)a—1, and PV,.(n)cpia = PV.(n)441. Initially, all three partial
views contain up to r random brokers which have the same depth in the topology
tree as B,. We assume there exists a topology manager entity that can initialize
the partial views of each new broker. A broker can ask the topology manager for
r brokers on depth d of the topology. The child partial view of brokers located on
depth d,,. and the parent partial view of the tree root remain empty. Each broker

maintains directed links to the brokers located in its parent and child partial views.
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4.3 Partial View Maintenance

In this section, we explain our gossiping algorithm utilized by each GEPS broker
to maintains its partial view of the overlay. Among the three partial views that
each broker maintains, only the sibling view is updated by the broker. Partial view
updates are performed in order to check availability of view members and discover
more similar siblings. The view maintenance is done periodically by each broker
every T seconds, during which brokers send their sibling views to each other. The

value of T" is configurable and is the same for all brokers in the overlay.

In order to keep track of broker failures and recoveries, each broker maintains two
sets, F' is the set of sibling failures and R the set of sibling recoveries the broker
knows about. Each member of these sets is a tuple (n,t) and represents a failure or
recovery incident of Broker n discovered in view maintenance cycle t. We refer to

the maintenance cycle number as timestamp of the failure or recovery incident.

In each view maintenance cycle, Broker n heartbeats the siblings in its sibling partial
view. Brokers that do not respond to heartbeat messages are perceived as failed,
removed from the partial view and added to the set of failed siblings, along with
the current maintenance cycle number. The broker then sends its sibling view and
set of recovered and failed siblings it is aware of to each member of its sibling view.
The ID of the receiver is excluded from the copy of the sibling view that is sent to it
in order to prevent the receiver from recording itself as a sibling. The failures set
(F) helps brokers identify recently failed siblings and remove them from their view,
even if the failure is observed by another broker. The recoveries set (R) serves the
purpose of keeping the failures set updated by removing newly recovered brokers

from the failures set.

The regular heartbeat and exchange of failures and recoveries provide a distributed
fault detection mechanism inside each sibling group. Along with the similarity metric,
this fault detection mechanism affects which brokers should be replaced in a partial
view. Due to the presence of asynchronous links, this fault detection mechanism may
provide false positive or false negative results. While these false detections do not

impact the main dissemination tree, we argue that the accuracy and completeness of
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the fault detection can only have short-term and local impact on the sibling views.
A Broker b perceived falsely as failed, for example, as a result of a slow link or
process, is removed from the partial view of siblings that have b as a sibling view
member. However, b can invalidate this failure report in the next view exchange
round by sending view exchange requests to its sibling members. Due to the similarity
metric, b’s view includes all or part of the brokers that acted according to the false
failure detection. The new view exchange request of b propagates in the sibling
group the same way as the false failure report. However, the more recent timestamp
(maintenance cycle) of the view exchange invalidates the false failure report. Existing
false negatives can only impact gossip propagation by reducing the number of effective
members of the parent or child view. Nonetheless, more accurate failure detection

approaches can be utilized to improve partial view maintenance [114, 75].

Along with each view member, the timestamp of its last heartbeat and similar-
ity vector is sent. The timestamp here refers to the maintenance cycle number
that the heartbeat was checked. The timestamp only provides a way to check
whether a failure/recovery report precedes another report and does not require clock

synchronization across brokers.

The received view is processed using Algorithm 1. Broker b first merges the received
failures set with its own. In Lines 2 to 6, for each failure (n’,t) received from ¥, if
Broker b does not have any failure record for n’, the new failure is added to F. If
there is already a failure record for n’ with timestamp ¢ at b, the timestamp of the
existing failure record is updated to maz(t,t'). Lines 7 to 9 check if the sender of
the view, Broker ¢', is in the failures set of b. If so, b’ is removed from the failures

set of b and a recovery incident for & is recorded with the current timestamp.

Next, Broker b uses the received recovery set to update its failures set. Lines 10 to
12 remove failure records for any broker that has a recovery incident in the received
recoveries set with a more recent timestamp. In order to propagate this recovery
information, it is added to the recoveries set of Broker b. Since b’ heartbeats its view
members and sends to b only available brokers, Broker b uses this list to update
its recoveries set. Lines 13 to 16 check if there is a failure incident recorded for

any broker in the received sibling view that is older than the heartbeat value of
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Algorithm 1: Processing received sibling view at Broker b
1 Function ProcessSibling View( PV, (0)sibiing, ¥, R’)

2 for (n',t') € F' do // merge fail lists

3 if 3 (n,t) € F such that n =n' and t >t then
4 t < t' // update to latest failure report for n

5 else if # (n,t) € F such that n = n’ then

6 | F« F U (n/,t) // add new entry for n

7 if & € F then // check if sender recovered

8 F < F\{V¥(n,t) € F such that n =V}

9 R+ RU{(V,curCycle)}

10 for (n',t") € R’ do // process received recovery list

11 F « F\A{V¥(n,t) € F such that n=n' and t <t'}
12 R+ RU{(n',t)}

13 for (n',t") € PV,.(V)sibiing do

14 if 3(n,t) € F such that n=n' and t' >t then
15 F < F\{¥(n,t) € F such that n =n'}

16 R+ RU{(n',t)}

17 all < PV, (V) sivting U PV;(b) siviing U { (U, curCycle)}
18 all < all\ F

19 for n € all do

20 n.similarity <— S(Vy, V)

21 sort(all) // sort by decreasing similarity

22 PV,.(b)sibting < all[1...r] // trim list

the received view member. If so, a recovery record is added and a failure record is

removed.

The difference between the two loops at Lines 10 and 13 is that the received recovery
set is always reflected in the receiver’s recovery set. However, the received partial
view updates this set only if there is a previously recorded failure for any member of

the received view.

Broker b merges its sibling view, received sibling view and the sender of the sibling
view after updating and merging its information about sibling failures and recoveries.
After removing any broker in this set that is not available based on the current
failures set, the resulting set represents the available siblings that b knows about. In

order to choose the most similar brokers among this subset of siblings, the similarity
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function is applied to the similarity vector of b and all other brokers in the sibling

subset. The top r similar brokers are selected as the new sibling partial view of b.

In Algorithm 1, the size of F' and R depends on the failure and recovery rates in the
overlay. However, since a broker only keeps this information about its siblings and
only one entry is kept per sibling, the maximum size of these sets is the size of the
sibling group that the broker belongs to and therefore the size of both sets is limited.
In each maintenance cycle, the similarity function is calculated for at most 2r pair
of brokers (existing 7 members plus r members of the received view), where r is the

partial view size. Therefore, the complexity of the view maintenance algorithm is

O(n).

So far, we have only explained the sibling view maintenance. However, each broker
also holds a parent and child partial view which are not maintained by the broker
itself. Each broker asks for the sibling view of its parent and children and uses these
views as its parent and child view. Therefore, the parent partial view of Broker b
is: PV;(b)parent = PVy(b)sipiing, where b’ is the parent of b in the dissemination tree.
The child partial view of Broker b is: PV;.(b)chia = UPV,(b])sibiing, Where b is a child
of b in the dissemination tree. The calculated partial view, PV,.(b)niq, is truncated
to the r most similar members. In other words, each broker maintains a partial
view of the available and most similar siblings and provides them to its parent and

children as its temporary replacement in case of failure.

Updating parent and child partial view can be disrupted in three cases: (1) unbalanced
tree topologies where leaf brokers can be located not on on the last sibling group
(e.g., BO in Figure 4.2.1), parent failure and failure of all of the broker’s children. In
these cases, the broker can directly contact its child/parent partial view and request
their sibling partial views to update its own child/parent partial views. Note that
these partial views start up containing up to r» random brokers and are not empty.
This means the highest view maintenance cost is r + 2r’ where r is the sibling view

size and 7’ is the parent/child view size.

A joining (or recovered) broker only requires to receive some random siblings and
the current maintenance cycle number to start its partial view. Similar to overlay

initialization, we assume there exists a topology manager entity that can be used for
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this purpose. Using the partial view maintenance algorithm and sharing information
about siblings, the joining broker is able to find more similar brokers. In order
to address unadvertisements and new advertisements, the similarity vector can be
extended to include the advertisement IDs along with each counter. This makes
it possible to calculate the similarity between two brokers which do not have the
exact same set of advertisement. Unsubscriptions can be accommodated by simply

decrementing the counter of their matching advertisement.

While we address service availability during broker failure and recovery, in our
evaluation, we assume that the failure period of a broker has an upper bound and
the failed broker is replaced or recovered. Topology repair and broker recovery
are orthogonal to this work and there exist different approaches that address these
problems [20, 33, 32].

4.4 Publication Propagation

The protocol presented in the previous section helps brokers discover a set of additional
brokers which are available and, based on the similarity metric, have a better chance
to act as a temporary replacement for a broker’s failed parent or children. While
the views are maintained regardless of failures in the system, view members are only
used for propagating publications as a fail-over mechanism in case of parent or child

failures.

Publications are propagated using the primary dissemination tree whenever the next
broker that is selected based on the message routing is available. Whenever a broker
cannot send a publication to its next hop, it resorts to employing its partial view of
the overlay to further propagate the publication. Therefore, the forwarding broker
gossips the publication to all members of its child view when the unavailable next
hop is from among its children. In case of parent failure, the gossip messages are
sent to all members of the parent partial view. We call the publication messages
that are forwarded using the additional directed links in the overlay, gossip messages.

Therefore, GEPS provides the same delivery guarantees as its underlying pub/sub
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system when there is no broker failure and best-effort delivery in case of broker

failure.

In order to be able to forward the publication towards the brokers that might be
affected by the failed broker, brokers that receive a gossip message, forward it one
more time to their partial view members. For example, say B in Figure 4.2.1 crashes,
and, then, if B2 needs to send a message towards B10), it resorts to its partial view to
gossip the publication, since dissemination through the primary tree is not possible.
B2 gossips the publication to its child partial view, B6 and B7, respectively, each
one of them further gossiping the publication one more hop using their child partial
view. In order to take advantage of the possibility of shortcutting through the tree,

gossip recipients route the publication received through gossip as well.

The two-hop propagation of gossip messages is done to allow the similarity-based
partial views to propagate the publications towards children or parent of the failed
broker. In the example, the content similarity that causes B7 to be in the partial
view of BJ, is likely to cause the children of B7 to know about the children of
B5. This is a consequence of basing the similarity on the pub/sub traffic that goes

through each broker and not just their local interests.

Small sibling groups can disrupt gossip propagation when all of the group members
fail. For example, in Figure 4.2.1, if B2 and B3 both fail, B1 cannot use its partial
view to propagate messages and B4, B5, B6 and B7 cannot reach B1. To address
such cases, a minimal group size can be used to merge small sibling groups. As an
example, by merging the first two sibling groups, we have three sibling groups which
are {1, 2, 3}, {4, 5, 6, 7} and {8, 9, 10, 11, 12, 13}. Establishing a minimum size
for the sibling groups is merely to prevent gossip disruption under low failure rates
which is inevitable under high failure rates. As in the previous example, the number
of siblings that should fail in order to disrupt gossiping is now twice as much. In all

of our experiments, we consider the first three levels as one sibling group.

In order to prevent duplicate publication delivery and gossip messages looping in the
overlay, brokers need to keep track of seen publications and gossip messages. Since
gossip messages carry publications, it suffices to keep track of seen publication IDs.

However, brokers do not need to remember all seen publications and only have to keep
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track of recently received publications. The period of time that should be covered by
this recent publication list in practice is not unlimited. This period does not need to
cover the failure period of neighboring brokers since we do not buffer publications
and do not wait for broker recovery. However, this period should be long enough to
prevent gossip messages from looping in the overlay. This can happen when gossip
messages are routed back using the tree towards their original sender. The upper
bound of this time depends on the overlay size and link latencies. Therefore the
minimum period required for publication ID retention is the maximum time required
for a publication to reach from one edge broker to another (the diameter of the

overlay).

GEPS is also compatible with subscription covering [14] with the only requirement
that subscriptions should get fully propagated to update the counters. Although
there is no subscription saving in this case, the main benefit of subscription covering,

namely reduction of routing table size, can be preserved.

4.5 Multi-Level Partial View

The two-hop propagation explained in the previous sections can bypass a broker
failure when the child of the failed broker is available (for example Figure 4.2.1). This
allows the publication to reach the sub-tree of the failed broker. Nonetheless, in case
of two consecutive failures, the sub-tree cannot receive the publication through gossip.
In Figure 4.2.1 let’s assume B10 has children and they have subscriptions matching
B1’s advertisements. When B5 and B10 are both down, even if the similarity metric
allows the publication to bypass B5, B10’s sub-tree does not receive the publication
since B10 is down. To address such cases, we make some modifications to the view
maintenance protocol. In each maintenance cycle, each broker sends along with
its sibling partial view, its own ID and the set of failed siblings (F') discovered in
that cycle. Furthermore, a broker also sends the IDs, the merged sibling partial
views and failure set of its children level in the same message to its parent. This
multi-level partial view contains information about the last N levels. For example, in

the previous example, BS receives sibling partial views and failure set of its children,
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merges them and uses them as its own children partial view. Merging of the received
partial views is done by sorting based on similarity and keeping the top r (maximum
children view size) members. Received failure sets are merged by taking their union
and keeping the most recent record if there are duplicates. In turn, B5 sends its own
sibling partial view, failure set and its merged children partial view and failure set
to B2. Consequently, B2 can periodically update its partial view, which covers the

next N levels, without any extra view maintenance cost.

In order to use this multi-level partial view to propagate publications, a broker
includes the intended recipient sub-tree in the gossip. Each broker knows the
members of its sub-tree via the propagated partial views. The maximum depth of
this sub-tree is N — 1. For example, B2 includes the sub-tree of B5 as intended
recipients of its gossip, namely {(10, 11), (children of 10 and 11)}. This means B2
gossips this publication to bypass a failed child (B5) and reach the sub-tree of BJ.
B6 and B7 are members of B2’s child partial view and receive this gossip. Next,
BT (and similarly B6) starts from the first entry of the recipient sub-tree and if it
does not find a matching failure for the ids recorded in the first entry of the recipient
sub-tree, in the first entry of its multi-level partial view, it forwards the gossip to
the sibling list of that entry. Otherwise, it moves to the next level. If all levels have
a matching failure record, the first level is used. Each broker keeps one multi-level
partial view for upstream propagation and one for downstream propagation. The

sibling partial view is the same as explained in Section 4.2.
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4.6 Experimental Evaluation

In this section, we evaluate our approach using simulation. We implemented GEPS
and the related approaches as part of a content-based pub/sub system simulator

written in Java.

We compare our work with three other approaches, d-fault-tolerant pub/sub (§FT)
[20], a simplified version of GEPS which does not use any similarity metric and
instead uses random gossip (RGEPS), and a content-based pub/sub system without
any feature to increase availability as baseline. We include the baseline to show
the improved publication delivery ratio and introduced message overhead of each
approach. Semi-probabilistic pub/sub [35] performs based on a subscription-flooding
pub/sub scheme and cyclic topologies. In the subscription-flooding scheme, there is
no advertisement. Subscriptions are flooded in order to build publication routing
tables. Nonetheless, we have implemented Semi-probabilistic pub/sub using the
simulator. Due to the very low performance results in an advertisement-based

pub/sub with acyclic topology, we have not included its results.

OFT is targeted at enterprise systems and therefore not designed to tolerate high
failure rates but to provide 100% delivery and per-publisher ordering guarantees.
Nevertheless, we include it in our evaluation to study the effectiveness of its broker
bypassing mechanism in high failure rates as a deterministic alternative to our

epidemic approach. In our experiments 6FT is configured with § = 3.

In order to study the effectiveness of our similarity metric, we have also implemented
another version of GEPS, where partial view members are chosen randomly from all
brokers of the overlay. This view is updated periodically by random members and
all brokers have an equal chance of being in another broker’s partial view. Similar to
GEPS, the view is used for gossip when propagation through the tree is not possible.
However, RGEPS uses a three-hop propagation in order to provide results comparable
to GEPS. GEPS uses a sibling view size of 10 and a multi-level parent and children
partial view size of 6. The number of levels covered by the multi-level partial views
is also 6. RGEPS has a view size of 6. In all three approaches the partial view

maintenance is performed every 2 seconds.
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4.6.1 Workload

The generated tree topologies used for the evaluation have a maximum node degree
of 4, 5, 6 or 7 and each have two balanced and unbalanced variations. The degree of
each broker is selected based on a random uniform distribution and the maximum
degree of the tree. Each topology has four variations generated with different seeds.
Overall we run our experiments using 32 topologies covering a wide variety of tree

topologies.

The workload used for evaluation is automatically generated based on a Zipf
distribution among 100 different publication classes each having one to four attributes.
Each edge broker (tree leaf) has one client with one advertisement and 2 subscriptions
and publishes 4 publications per second. The sibling groups are determined once,
based on the generated tree topology with an arbitrary broker as root and is the
same for all. The dissemination trees, however, is an induced dissemination tree
per publisher rooted at the publisher edge broker. The publication period is one
minute. Increasing the number of advertisements, publications and subscriptions
only increases the overall message overhead of all approaches and does not change
the results. The experiments are conducted using generated broker failures and
traces from a Google production cluster [115]. In the synthesized failure set, Each
broker failure has a limited length since we assume a system with a centralized or
decentralized failure detection and recovery mechanism. Unless stated otherwise, all

following experiments use the same workload.

The generated broker failures follow a uniform random distribution. The overall
number of failed brokers in the overlay is measured as the maximum total percentage
of the overlay brokers that are simultaneously down. Therefore, an overlay with 20%
broker failure has at some point of the simulation time 20% of its overlay brokers
down at the same time. Each simulation starts without any broker failure, between
the 20th and 40th seconds of the publication time, F% of the overlay becomes
unavailable, followed by the final 20 seconds, where all failed brokers have recovered.
In the simulations that use the Google cluster data, however, broker failures can
happen at any time during the simulation. We also run the experiments using

generated broker failures that follow a non-uniform distribution to study the effect
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of clustered broker failures. These failures are clustered in sub-trees of size 4 to 5.
Each experiment has been run with 32 different topologies and 4 seeds (128 runs)

and the values are averaged.

4.6.2 Metrics

The metrics we study in our evaluation are the following:

Message overhead is defined as the total number of publication and gossip messages
in the system during the experiment. In other words, the total number of messages

that an approach requires to result in maximum publication delivery.

Delivery ratio is defined as the total number of successful publication deliveries
divided by the total number of publications that should be delivered to achieve 100%
delivery. Therefore, if the total number of matching subscribers for publication p; is
|Sp; |, then the total number of publications to be delivered is X|S,,| for all published
publications. For example, assume in an overlay, publication p; has two subscribers
and ps has three subscriber. If after publishing p; and p,, two subscribers receive p;

and one subscriber receives ps, the delivery ratio is 60%.

Delivery latency is defined as the number of hops that it takes to deliver a publication.
The 99" percentile of delivery latency of all successfully delivered publications is

defined as the delivery latency of an approach.

The measurements are done on an overlay where brokers have already propagated
their advertisements and subscriptions, and therefore does not include advertisement
and subscription propagation overhead. This overhead is equal in all approaches

since they all use the same tree topology.

4.6.3 Experiments

Effect of partial view size: In this experiment, we study the impact of the partial
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view size on our metrics. We measure delivery ratio, message overhead and delivery
latency in an overlay of size 400, with an overlay failure rate of 10%, variable parent

and children partial view size between 1 and 10, and a fixed sibling view size of 10.

Figure 4.6.1a shows the increasing message overhead as a result of growing view size.
The message overhead grows linearly with the partial view size. As it can be seen in
Figure 4.6.1b and 4.6.1d, increasing the partial view size improves the delivery ratio
without impacting delivery latency. The reason is that each time a broker uses its
partial view to bypass failed brokers, larger number of brokers receive the gossiped
publication. Each of these recipients route this publication using their publication
routing table. Higher number of these recipients results in more branches of the
tree receiving the publication. Consequently this means higher overhead and higher
delivery ratio. Since all gossiped publication follow the same two-hop propagation,

the delivery latency is not affected.

The increase in the delivery ratio is not linear and in larger partial views a small
improvement in delivery ratio has a big impact on message overhead. Nonetheless,
due to the linear growth of message overhead, larger partial views can still be used to
achieve higher delivery ratios. Hence, the partial view size provides a configuration
mechanism to tune the trade-off between message overhead and delivery ratio without
degrading delivery latency. Another important parameter impacting the delivery
ratio, is the effectiveness of the similarity metric in terms of identifying brokers that
can increase delivery ratio. Although in this paper we use a simple similarity metric,
we believe more complicated similarity metrics can possibly improve the delivery

ratio with lower increase in message overhead.

Figure 4.6.1c shows the impact of an increasing sibling view size when the parent
and children view size are fixed. Increasing sibling partial view size can improve
the delivery ratio, since a larger partial view can collect more information about
its sibling group. The sibling view size can also impact the time required for a
broker’s partial view to stabilize. Figure 4.6.2 shows the number of view maintenance
cycles required to achieve a stable sibling partial view in an overlay with 800 brokers
and 10% failure rate. We compute the convergence of the sibling partial view by

comparing it with a view calculated based on total knowledge of all siblings. The
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Figure 4.6.1: Impact of view size on GEPS metrics

number of siblings discovered using partial knowledge of the sibling group that
are part of the optimal partial view divided by the size of the optimal view is the

convergence ratio of the partial

The convergence ratio is essentially the fraction of the optimal view that exists in
the partial view. The optimal view of Broker b is the set of brokers & such that
S(Vi, Viy) > 0. Such an optimal view can potentially be as large as the sibling group.
Therefore, the convergence ratio depends also on the size difference of the optimal
and partial view. Figure 4.6.2 suggests that increasing the sibling view size improves
the convergence of the partial view to the optimal view. Furthermore, regardless of
the convergence ratio achievable by the sibling partial view, a broker’s partial view
starting with random members can quickly stabilize after two maintenance cycles

with a sibling view size of 20. A sibling partial view with 10 members takes twice as
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Figure 4.6.2: Partial view convergence time in GEPS

long to stabilize.

An important difference between GEPS and JFT is the possibility of dynamically
changing the size of the partial views in GEPS by monitoring the rate of failure
records added to a broker’s failure set. This can be perceived as an indication of
increasing failure rate in the overlay, and the broker can increase its sibling view
size to gather more information on its sibling group or increase its parent/children
view size. In 6FT, changing the value of § requires retransmission of subscriptions
that were not covered by the smaller value of §. Choosing large § values from the

beginning can cause scalability issues (Figure 4.6.3a).
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Figure 4.6.3: Impact of neighborhood size (0) on effective view size

Figure 4.6.3a shows the effect of § on the view size of brokers in an overlay of 400
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brokers with 10% failure rate. Increasing 0 from 3 to 4 requires more than 90%
of the brokers to manage an overlay partial view between 22 and 153 brokers. To
maintain the topology-based partial view, brokers do not need to check all of their
neighborhood members in each maintenance cycle since finding the first non-faulty
broker across each sub-tree will suffice. Nonetheless, the view maintenance overhead
grows quickly for a large portion of the overlay with higher §. Figure 4.6.3b shows
the number of brokers that need to be monitored for view maintenance. Similar to
the previous figure, a 0 value of 4 can results in 72% of brokers contacting 22 to
138 brokers on each maintenance cycle in order to correctly update the topology
partial view. Furthermore, this overhead increases with the average broker degree of
the topology and failure rate of the overlay since in higher failure rates, the broker
must check larger portions of each sub-tree in order to find a non-faulty next hop.
In comparison, the average view maintenance cost of GEPS is 10 messages per cycle
with an upper bound of 22 messages. In an overlay of 400 brokers, éFT results in
41% higher view maintenance cost compared to GEPS. Furthermore, GEPS’s view
maintenance protocol exhibits a linear increase by increasing the view size and
distributes the view maintenance overhead equally across all brokers. Figures 4.6.3a
and 4.6.3b suggest that it is not feasible to start the topology with large values
of & due to the excessive overhead of view maintenance and requires some brokers
to keep a close to global view of the topology. It has been shown that centralized
fault-detection mechanisms suffer from increasing false positive rates or scalability
issues with an increase of the set of nodes to monitor [75]. Furthermore, dynamically

adjusting the value of ¢ requires retransmissions of the subscriptions.

This experiment confirms that GEPS provides a lightweight and scalable view

maintenance protocol in comparison to topo-logy-based approaches such as 6FT.

Effect of overlay size: In this experiment, we study the effect of the overlay size on
the defined metrics in order to evaluate and compare the scalability of GEPS against
the other approaches. We run the experiment using an availability trace from a
Google production cluster [115]. The trace covers a period of 29 days for a cluster of
11k machines and includes information about machine availability and failure events.
We have extracted the machine failures from this trace and scaled it to the overlay

sizes. Therefore, broker failures can happen at any time during the simulation and
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the distribution of the failures or any correlations between them follows the cluster

trace.
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Figure 4.6.4: Impact of overlay size on GEPS metrics

Since all edge brokers have publications and subscriptions and each of them can
potentially fail, the delivery ratio cannot be 100%. The reason is that we calculate the
total number of subscriptions to be satisfied in order to achieve 100% delivery based
on the generated workload. Therefore, failed publishers and subscribers prevent the
delivery ratio from reaching 100%. A publication might be correctly routed to the
subscriber but can not be delivered since the subscriber broker failed, or a publication
might not be published in the first place due to failure of the publishing broker.
This effects all approaches equally since they use the same workload, topology and

failures.

Figure 4.6.4a shows the message overhead of each approach as the overlay size
increases. Figure 4.6.4b shows the ratio of gossip and publication messages that
make up the overhead of GEPS and RGEPS. While RGEPS results in up to 320%
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higher overhead than §FT, the message overhead of GEPS is at most 62% higher
than §FT. GEPS reduces the gossiping overhead of RGEPS by 65% while providing the
same delivery ratio. Figure 4.6.4b shows that a large portion of RGEPS’s overhead
comes from gossip messages. This is due to the three-hop publication propagation of
RGEPS which also increases its delivery ratio. Nonetheless, random target selection
reduces effectiveness of gossiping in RGEPS. The random gossip recipients most likely
do not have matching subscriptions in their PRT to route the gossiped publication
in the tree. The baseline approach incurs the least overhead, since all publications

that have a failed next hop are simply dropped.

The higher message overhead of GEPS and RGEPS in comparison to dFT is inherent to
epidemic approaches which trade off message overhead for a more equally distributed
load on all brokers (the view maintenance cost) and inherent fault tolerance. As we
see later, this inherent message redundancy also contributes to resiliency of epidemic

approaches in higher failure rates.

Figure 4.6.4c shows the percentage of successful deliveries. Here, §FT is able to
provide a constant 95% delivery ratio in all overlay sizes. GEPS on the other hand,
provides a delivery ratio of 90% for overlays up to 600 brokers and 87% and 86% for
overlays of 800 and 100 brokers, respectively. The slightly decreasing delivery ratio
of GEPS in larger overlays can be related to the fixed sibling view size. Although
the specified view size can result in quicker convergence of the sibling view in smaller
overlays, larger overlays may require an increased view size to cope with the larger
sibling groups. Nonetheless, GEPS provides up to 22% improvement to the delivery
ratio of the baseline with a comparable overhead to a deterministic approach such as
OFT. Providing the same delivery ratio as RGEPS despite the much lower message
overhead, suggests the effectiveness of the similarity metric in propagating messages
past broker failures using gossiping. As shown in Figure 4.6.4d, since gossiping in
GEPS is directed upstream or downstream and gossip messages do not randomly loop
in the overlay to propagate publications, there is no increase in delivery latency. In
all approaches, the 99" percentile of delivery hop count increases as a result of a
larger overlay. While the delivery latency of all approaches are the same in overlays
up to 800, the increase in JFT’s latency can be attributed to its higher delivery

ratio in larger overlays. More deliveries in larger overlays means higher number of
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deliveries over longer distances which can increase the 99*" percentile.

This experiment shows the scalability of GEPS in terms of providing high delivery
ratio with low message overhead. GEPS improves the delivery ratio of its underlying
pub/sub tree up to 22% with no impact on publication delivery latency. Compared
to random gossiping, the similarity metric utilized in GEPS significantly decreases

the message overhead.

Effect of broker failure rate: In this experiment, we study the impact of the
number of simultaneous broker failures on our metrics. Here, we use an overlay of
400 brokers and increase the broker failures from 1% to 40%. The generated broker

failures follow a random uniform distribution.
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Figure 4.6.5: Impact of failure rate on GEPS metrics

first

shows an increase in the message overhead, the message overhead is decreasing for

Figure 4.6.5a shows the message overhead of each approach. While GEPS

10% or higher failure rates. This is because, due to the larger number of failures,
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a higher number of publications are dropped, as next hops are unavailable and
bypassing these failures becomes unfeasible. RGEPS exhibits a similar trend for the
same reason. Eventually, the message overhead, delivery ratio and delivery latency
of all approaches converge to the same value in very high failure rates. This is
caused by decreasing number of deliveries over longer paths. GEPS, however, reacts
to increasing failure rate by higher gossip ratio in its message overhead. As depicted
in Figure 4.6.5b, when the failure rate is 20% or more, gossip messages decrease.
The reason for this is that brokers cannot find enough similar and available siblings
at high failure rates and as a result the number of effective gossip partners that they

can resort to decreases.

Figure 4.6.5¢ shows the effect of an increasing number of broker failures on publication
delivery ratio. Similar to the previous experiment, GEPS provides almost the same
delivery ratio as RGEPS (with 2 to 3% difference) despite the much lower message
overhead. While §FT is able to tolerate up to 10% failure rate in the overlay, after
that the delivery ratio declines at a faster pace than GEPS and RGEPS, which is
an indication of the graceful performance degradation of epidemic approaches, an
important inherent property of such approaches [116]. Here, GEPS is able to provide
a higher delivery ratio in an overlay with 30% or more failed brokers compared to a

topology-based approach like 6FT.

Figure 4.6.5d shows that all three approaches result in a very similar delivery latency
to the baseline. This means the increased number of deliveries experience no change
in delivery latency. At smaller failure rates, slight differences of each approach can
be seen. 6FT bypasses failures by directly sending to next available brokers. Hence,
it can result is lower latency. RGEPS, on the other hand, might gossip a publication
up to 3 times to bypass a failure which can increase the latency. This means that
although higher number of gossiping hops can result in higher delivery and message
overhead, they can also increase the delivery latency. In contrast, GEPS uses a
two-hop propagation which stands in between §FT and RGEPS. At higher failure rates
this difference does not exists because at higher failure rates, the effectiveness of
the failure bypassing approach decreases. Consequently, delivery over longer paths,
meaning bypassing multiple failures, happens less and the overlay is partitioned.

A partitioned overlay limits the upper bound of the 99" percentile of the delivery
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latency.

This experiment shows that GEPS is able to retain the fault-resilience and graceful
degradation properties of epidemic algorithms. These characteristics, while inherent
to these approaches, introduce redundancy and latency. GEPS is able to successfully
avoid high latency in publication delivery and reduce the message overhead of
gossiping up to 65% compared to random gossiping while improving the delivery
ratio of the underlying pub/sub tree up to 29%. This overhead reduction is done
without affecting the inherent fault tolerance of gossiping which can trade off message

redundancy for higher failure tolerance.

Effect of non-uniform failure: As shown above, maintaining a partial view
based on the topology is practical when using small values of § to limit the view
maintenance overhead. Such small values of  can make the overlay vulnerable to
specific non-uniform failure patterns, for example, rack failures, datacenter outages
or other correlated outages. The reason is that if more than 0 consecutive brokers
fail, the rest of that branch will not be reachable. Figure 4.6.6a and 4.6.6b show
the effect of variable overlay size and fault rate on publication delivery rate when
broker failures are non-uniform. In these experiments, all broker failures happen
in cluster sizes of 4 or 5 which can not be covered by §. In comparison to Figure
4.6.4c and 4.6.5¢, 0FT experiences a larger decrease in delivery ratio even with a 2%
failure rate. RGEPS is able to provide a better delivery ratio than all approaches since
its random target selection is least affected by non-uniform failures. However, this
is achieved at the cost of very high message overhead. The message overhead and
delivery latency of the approaches are very similar to the previous two experiments

with GEPS reducing the gossiping overhead by up to 70%.

RGEPS is able to provide a high delivery ratio due to the fact that it can use any
broker in the overlay as a partial view member and there is a smaller chance that
a broker cannot find any view member. GEPS on the other hand, can bypass non-
uniform failures using multi-level partial views which allow knowledge of broker
failures to propagate to further brokers. Note that this is different from 6FT, since
increasing the number of levels in a multi-level partial view does not increase the

view maintenance cost. GEPS maintains the same delivery ratio with a difference of
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Figure 4.6.6: Evaluation of GEPS using non-uniform failures

up to 6% regardless of the distribution of the failures while §FT is not able to bypass

non-uniform failures. As a result, the delivery ratio of §FT decreases up to 26%.

Our experiments confirm that GEPS can combine epidemic similarity-based and
topology-based approaches. By controlling the overhead of gossiping, GEPS maintains
the distributed nature of epidemic approaches while providing a high delivery ratio.
Furthermore, GEPS is able to tolerate clustered broker failures without any additional

view maintenance cost.
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CHAPTER 5

Popularity-Based Routing for
Publish /Subscribe

In this chapter, we present our Popularity-Based Publication Routing for Content-
based Pub/Sub (PopSub) approach to improve resource efficiency of publication routing
in content-based pub/sub systems. In Section 5.1, we first explain the binary cost
model for publication routing and the associated weakness inherent to existing
distributed pub/sub systems. After that we present the various aspects which
compose PopSub. This includes a metric to measure publication popularity in a
pub/sub system, along with a popularity-based cost model for publication routing
(Section 5.2) and how PopSub evaluates publication popularity (Section 5.3). In
Section 5.4 we discuss different alternatives to handle unpopular publications. Lastly,

we present the result of our experimental evaluation in Section 5.5.

In this chapter, we use publisher and subscriber to refer to edge brokers which are
responsible for processing and propagating publications and subscriptions of their
clients. Therefore, the source and destination of all messages are brokers that are
connected to clients which are the actual publishers and subscribers. If necessary,
clients are explicitly refereed to as publisher client or subscriber client. Furthermore,
we refer to the data dissemination acyclic graph connecting all brokers in the overlay

as tree.
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5.1 Binary Cost Model Problem

The goal of publication routing in a pub/sub system is to correctly deliver publications
while minimizing routing cost and avoiding unnecessary communication [117]. In an
overlay-based pub/sub system, a publisher P and a subscriber § are connected by
a tree Tp,,s = < B, L> consisting of brokers B and overlay links IL.. At each hop,
the cost of routing a publication from P to S consists of two parts: matching the
publication on Broker B; € B to find the next hop leading to S, and forwarding the
publication across the link L; € L to the next hop. Therefore, the cost of delivering
a publication from P to S is Cpns = > M(B;) + X F(L;) where M (B;) is the cost
of matching publication P against existing subscriptions on Broker B; and F(L;) is

the cost of forwarding the publication on link L; towards S.

This cost model can be generalized to scenarios where a set of subscribers S are
interested in publisher P. The cost of routing a publication via Tp. s is Cpos =
> M(B;) + > F(L;), where B; is the set of brokers receiving the publication ¢ hops
away from the publisher and L; is the set of links that the publication traverses in

step ¢ of delivery to S.

Since publication routing is performed in a hop-by-hop fashion, the cost of routing a

publication from P to S is the sum of the costs on each hop. Therefore:

Cpos = C713<—>S +.t C%(—)S

where Ch, .« = M(B;) + F(L;) and n is the maximum distance between P and any
S € S. In existing routing algorithms, in step ¢ of routing a publication, Broker B;’s
decision to incur the cost Cisig solely depends on whether there exists at least one
subscriber in S,,_;, the subset of S reachable from BrokerB; in the next n — i hops.

Therefore:

0, ifS,;=0.

1, otherwise.
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This cost model is oblivious to the cardinality of S, which results in all publications
being considered equal and incurring the same cost regardless of the number of
subscriptions that they match. We call this cost model the binary cost model for

publication routing.

The binary cost model is essential for guaranteeing correct publication delivery.
However, routing publications based on this cost model can result in inefficient use
of resources and consequently increasing delivery latency or reducing the overall
publication delivery of a pub/sub system. Furthermore, under high load, publications
that have many subscribers can experience the same high latency as publications
with lower popularity. Therefore, it is beneficial to prioritize publications based
on their impact on the overall publication delivery in order to improve resource
utilization and to mitigate the impact of delayed or dropped publications when the
system is under high load. In the next section, we propose a metric to estimate the

impact that routing a publication can have on the total publication delivery.

5.2 Popularity-Based Cost Model

In order to address the routing problem associated with the binary cost model, we
need to estimate the resources required by a publication and its impact on the
overall publication delivery. Using these two factors, we can extend the binary cost
model and give priority to publications that result in the highest publication delivery

with the lowest resource requirement.

The amount of resources required to route a publication from P to all matching
subscribers S is proportional to the number of hops that it takes to reach all
S € S. Consequently, longer paths result in more brokers and overlay links involved
in publication routing. However, two publications traversing the same path and
incurring the same routing cost can have a different impact on the total publication
delivery. For example, in Figure 5.2.1, delivering the blue and gray publications from
B1 to B9 result in the same routing cost. Nonetheless, in this case, routing the gray

publication can result in four times more publication delivery.
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Figure 5.2.1: Publication gain ratio

In order to prioritize publications with the highest number of matching subscribers
and lowest resources required for routing, we introduce a gain ratio that determines
for each publication p the benefit of routing that publication one hop on the overall
publication delivery of the system. We define the gain ratio of routing publication p

as:

|sub(S)|

|TP<—>S|

gp:

where |sub(S)] is the number of matching subscriptions in S and [Tp..s] is the average
path length from publisher of p to S. G, estimates the maximum number of deliveries
that can result from routing publication p one hop further. Since G, depends on
the number of matching subscriptions and average path length from the current
broker, each routing broker on the path from publisher to subscribers has a different
estimate for G,. Therefore, on Broker B;, G, is the local estimate of B; for routing p

one hop further.

For example, in Figure 5.2.1, BI publishes 3 different sets of publication, blue (As),
red (Ay) and gray (A;). On B/ there are two matching subscriptions, Sjp and Sy,
matching A;. On B8 there are three subscriptions, S7 and Sg matching A,, and Sy
matching As. Therefore, on B1:

4 4 1
Golred) = ooy saya a5 0 Gl =3
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This means on B1 routing a red and blue publication one hop towards B2 results
in increasing the overall publication delivery by % and %, respectively. Note that
these numbers are just local estimates calculated by the broker and only provide a
normalized metric to compare the gain of routing different publications, as fraction
of a delivery does not exist and in this example routing both publications one hop
would not result in any delivery. Furthermore, only distant subscriptions are taken
into account for calculating publication gain. For example, while routing a red
2

publication on B4, G,(red) = 2 rather than 2, as the local subscriptions can be
P 1 1

delivered to, without any further forwarding.

The estimated G, depends on the location of the broker routing p and popularity of p,
i.e., the number of matching subscriptions reachable from that broker. Therefore, a
broker might have different popularity estimates for a publication across each outgoing
overlay link since each link leads to a different subset of subscribers. Furthermore,
popularity of publications belonging to different advertisements are unrelated to
each other and must be estimated separately. On each broker, PopSub estimates the
publication gain ratio per advertisement per link. For example, in Figure 5.2.1, B1
maintains a list of publication gain estimates for each overlay link going to B2 and
B3. The list of publication gain estimates for each link includes one estimate per

advertisement.

Each broker B; maintains a table of publication gain estimates, Gp, where Gg,[¢, q]
records the gain of routing a publication p across link ¢ for each p matching
advertisement a. Since advertisements are flooded in the overlay and all brokers
know about all advertisements, the number of publication gain estimates Broker B;
needs to maintain is |Lp,| x |A| where Lp, is the set of overlay links of B; and A is

the set of all advertisements in the system.

PopSub estimates publication gains on each broker during subscription propagation.
Initially, all entries of Gp, are set to %. A subscription s traversing towards its
matching advertisement a is required to record the number of hops it has passed.
While going from Broker B; to Broker B;, Gp,[{;;,a] is updated by incrementing
the number of matching subscriptions and updating the average path length using

s.hopcount. Consequently, all brokers on the path between the publisher and the
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subscriber update their publication gain estimate. Figure 5.2.1 shows the updated
publication gain tables of all brokers after propagation of all subscriptions. The
missing tables all have three entries, each initialized to %, and are omitted to improve
readability. Unsubscriptions are processed similarly and are also required to record

the number of hops they traverse.

Performing the publication gain estimation during subscription propagation has the
benefit of not requiring global knowledge about all subscribers and not hindering
scalability of the routing algorithm since the only additional requirement is recording

hop count of subscriptions.

The binary cost model can be extended to use the local estimation of G, to reflect the
publication gain in the cost. Therefore, the cost of routing publication p on Broker
B; to the next hop is ging;l)S. In other words, the cost of routing p to the next hop

is inversely proportional to the estimated gain of p.

PopSub is also compatible with subscription covering [14] with the only requirement
that subscriptions should get fully propagated to update the publication gain
tables. Although there is no communication saving in this case, the main benefit of
subscription covering, namely reduction of routing table size, can be preserved. In the
next section, we explain how PopSub routes publications based on the popularity-based

cost model.

5.3 Publication Popularity Evaluation

On each broker B;, publications are categorized into popular and unpopular publica-
tions. Similar to the publication gain table, this categorization is performed for each
outgoing link of B;. Therefore, for each entry Gg.[¢, a] in the publication gain table,
a flag pop is stored indicating whether publications matching advertisement a are
popular or not in the subset of the overlay reachable via link ¢. Initially all entries
have their pop flags set to true. Furthermore, each broker calculates and updates the
message rate for each advertisement on each link. This message rate is also stored

for each entry of the publication gain table in a rate field. Gp,[¢, a].rate records the
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average number of publications matching advertisement a that has been forwarded
via link ¢ per second. Initially, all rate fields are set to 0. Broker B; updates this

message rate periodically based on the publications that it routes.

Periodically, Broker B; evaluates the popularity of all table entries (¢, a). This is
achieved by filling the broker capacity with the publications that have the highest
gain ratio. We consider the broker’s capacity as its throughput in terms of number
of publications it can forward per second (7;). Therefore, regardless of whether 7; is
limited by broker’s CPU, memory or network resources, the aim is to achieve the
highest number of deliveries using the available capacity. This problem is similar to
the knapsack problem where the weight of each item is equal to its message rate and
the value of each item is equal to its gain ratio. Table entries that are chosen to fill
up the broker capacity are deemed popular, the rest of the entries are considered
unpopular. Algorithm 2 is the algorithm performed by each broker periodically to
re-evaluate publication popularity.

Algorithm 2: Evaluating publication popularity on B;

1 Function FvaluatePopularity(Gp,)

sort Gp, // by descending gain ratio

filled +— 0

for g € G, do

if filled <1, x p then // ¢ € (0,1]
g.pop < true
filled += g.rate

else

‘ g.pop < false

© 0 N OO Gk W N

In Algorithm 2, the entries of the Gp, table are first sorted by decreasing order of
their gain ratio. Next, starting from the entry with the highest G,, entries are marked
as popular until we find an entry g such that the sum of the message rates so far plus
g’s message rate exceeds the broker capacity to be filled. All entries with a G, equal
to or lower than ¢’s publication gain is marked as unpopular. Since the average
number of links per each broker is bounded and usually small, the complexity of
Algorithm 2 on each broker is O(n), where n is the number of advertisements in the

system.
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Algorithm 2 solves a simplified version of the knapsack problem since we do not
require to minimize the remaining capacity. Parameter ¢ allows changing the
threshold for popularity evaluation. Higher values of ¢ means that more entries in
Up, are marked as popular since a higher share of the broker capacity is dedicated
to popular publications. The value of ¢ must be chosen in such a way that reflects
the popularity distribution of the workload. For example, in a Zipfian workload,
typically most subscribers are interested in only 20% of the publishers [118, 119].
Therefore, the value of ¢ should correspond to 0.2 or less. ¢ should be chosen
using the average system utilization and the CDF of the workload distribution. For
example, in a workload with a normal distribution and average system utilization of
50%, ¢ ~ 0.5 x 0.3 = 0.15, as in a normal distribution more than 68% of values lie
within the first standard deviation (o) and almost all values lie within 30. While
workloads with uniform distribution are very rare [120, 118, 119], in these cases, ¢
simply defines the percentage of table entries that are considered popular. Lastly, In
order to avoid overloading the broker, it is preferred to always leave some headroom

during capacity planning (¢ < 0.8).

While in this work we assume that all publications are of equal priority, in some
scenarios there can be single publications with few subscribers that have a high
priority. To accommodate these cases, the capacity filing algorithm can be modified
to first fill up the broker capacity with high priority messages, and after that, divide

the remaining capacity among popular and unpopular content.

Any publication that is not planned to be routed through the tree is considered
unpopular. In the next three sections, we discuss three alternative approaches
to disseminate unpopular publications, namely, Direct Delivery, Batching and,

Gossiping.

5.4 Handling Unpopular Publications

In this section, we present three alternative approaches to disseminate unpopular

publications.

72



CHAPTER 5. POPULARITY-BASED ROUTING FOR PUB/SUB

5.4.1 Direct Delivery

In this approach, inspired by Atmosphere [102] and OMF [101], a publisher delivers
unpopular publications directly to the subscribers without forwarding the publication
through the overlay. For example, in Figure 5.2.1, if blue publications are unpopular
on the link between BI and B2, B1 directly delivers blue publications to BS. This
requires subscriptions to record the broker they originated from. Therefore, each
subscriber records its own address in the subscription before propagating it in the
overlay. Note that, since the identity of the actual client is not used and the broker

ID is only used within the overlay brokers, the anonymity of the client is preserved.

Direct delivery, while effective and simple, is susceptible to scalability issues. The
reason is that, in the worst case, a publisher must forward a publication to all other
brokers in the overlay. OMF and Atmosphere address this problem by limiting number
of out-of-overlay forwards considering available resources on the publishing broker.
In PopSub, however, direct delivery is performed only for unpopular publications. In
a skewed workload, typical for real-world scenarios, unpopularity of a publication
results in limited number of interested subscribers. This prevents Direct Delivery to

encounter scalability issues. We evaluate scalability of Direct Delivery in Section 5.5.

5.4.2 Batching

Batching messages to improve resource utilization is a common practice and supported
in many existing message passing and pub/sub systems [64, 121]. Next, we explain
a batching approach to handle unpopular publications in a content-based pub/sub

system.

In this approach, upon receiving a publication p to publish (Algorithm 3), the broker
checks the popularity of p’s advertisement, a, on each outgoing link ¢. If the entry
(¢, a) is marked unpopular, the publication gets buffered rather than forwarded. The
set of buffered publications B, are batched in one publication and forwarded via the

tree whenever one of the following conditions is satisfied:
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o B| > [ Gs,-Gmin / G |, where G = {gain(p)|Vp € B} and G is the average
gain of buffered publications and Gp,.¢pmy, is the minimum gain among popular
entries.

e T seconds has passed since the first publication was buffered.

The first condition ensures that enough publications are batched to maintain the
minimum publication gain on the broker and the timeout condition provides an option
to prevent starvation of subscribers to unpopular content. Note that, publications
are only buffered at the publisher and once published as a batch publication, they
are not buffered again by any forwarding broker downstream.

Algorithm 3: Publishing publications on B; (Batching)

1 Function Publish(p)

2 a < MatchAdvs(p) // find matching advertisement
3 L. < MatchSubs(p) // find links to forward p
4 | for (¢ cll do

5 if Gp,[¢, a].pop = true then

6 | send(p, ()

7 else // p is unpopular

8 B, «)-add(p) // add to buffer for (¢, a)
9 if |B(g’ a)‘ =1 then

10 | timer.run (T, SendBatch(B, () )
11 else if [B| > [ Gp,.gmin / G ] then

12 timer.cancel()

13 SendBatch(B, ()

Algorithm 4: Receiving publications on B; (Batching)

1 Function ReceiveBatchPub(bp)

2 a<— MatchAdvs( bp) // find advertisement (same for all)
3 find matching local subscriptions and deliver

4 for p € bp do

5 L% < MatchSubs( p)

6

7

8

for ¢ €L do
‘ add p to the batch publication created for ¢
send created batch publications across each ¢
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Publications are buffered separately for each (¢, a). In order to avoid buffering
multiple copies of the same publications, the buffer can be implemented as a list
of pointers to a pool of buffered publications. Upon receiving a batch publication
(Algorithm 4), a forwarding broker goes through the publications in B and creates
new batch publications for each of its outgoing link and sends them across the link

to the next hop.

Alternatively, publications can be batched per link. However, after forwarding
and rebatching B in the next hop or next few hops, this can result in batch
publications containing only one or few unpopular publications, which does not
improve the publication gain compared to per entry buffering. In other words,
buffering publications per each table entry can result in batch publications with

larger sizes to reach downstream.

Unlike Direct Delivery, which can be used without scalability concerns only in
workloads with a skewed interest, Batching can be used in all types of workloads.
Batching trades off publication delivery latency for efficiency of batch processing and
forwarding of publications. However, due to the popularity-based prioritization, the

increased latency, only affects unpopular publications.

5.4.3 Gossiping

Gossiping (a.k.a. epidemic protocols) provides a scalable dissemination mechanism
without requiring building and maintaining an overlay. PopSub utilizes an existing
gossiping protocol, namely Ipbcast [79] introduced in Section 2.2, to disseminate

unpopular publications via gossiping.

A straightforward approach to use Ipbcast for dissemination of unpopular publications
is to run one Ipbcast instance on each broker. Each broker B; maintains a partial
view of all brokers in the system and participates in gossiping publications of all
types. Upon routing a publication, popular publications are routed through the tree
based on the matching results and unpopular publications are added to Mp, to be

gossiped along with other pending unpopular publication in the next gossip round.
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Utilizing Ipbcast in this way can result in unnecessary gossip overhead on brokers.
Since [pbcast is a broadcast protocol, all brokers receive all unpopular publications,
even if a broker is not a publisher, subscriber or forwarding broker (located on the

path between a publisher and subscriber).

In order to reduce the gossip overhead, PopSub creates broadcast gossip groups
for each advertisement on demand. Furthermore, each group includes as members
only brokers that send or receive publications belonging to that advertisement.
Therefore, Gossiping provides an alternative which combines Direct Delivery and
Batching. Similar to Direct Delivery, unpopular publications are not processed by
uninterested middle brokers. Furthermore, batching publications in one gossip and
periodically disseminating them allows brokers to benefit from batch processing and
forwarding. Furthermore, any received gossip only needs to be matched against
local interests of the broker and unlike Batching, Gossiping does not require the
forwarding broker to match the publications with all subscriptions known to the
broker. Lastly, Gossiping provides a tunable dissemination mechanism. For example,
by limiting history of events to gossip, it prevents overloading and drops messages
if necessary. Gossiping provides a probabilistic delivery guarantee and increased
delivery latency of unpopular publications. These are tradeoffs to achieve higher

scalability and performance.

Next, we explain our proposed on demand gossip group creation, and, routing and
propagation of unpopular publications.

Upon receiving publication p, publisher B; uses Algorithm 5 to route p. B; first finds
the matching advertisement (a) and the set of links (IL; ) leading to the next hop.
Next, if p is popular on ¢ (Line 5), B; forwards p to ¢ (Line 8). If not, p needs to be
routed via gossip.

In order to inform subscribers that this publication is unpopular, B; sets a
switchToGossip flag in p to allow subscribers to prepare for receiving the rest of the
unpopular publications belonging to the same advertisement via gossip. Therefore,
if such a flagged publication has not been sent on ¢ for an unpopular advertisement
a (Line 9), B; sets this flag (Lines 10-11) and starts a new gossip group for a if

necessary (Line 13). Next, the broker includes itself as a partial view of the gossip
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Algorithm 5: Publishing publications on B; (Gossiping)

1 Function Publish(p, groupsg_, flagsp. )

2 a < MatchAdvs(p) // find matching advertisement
3 | L% < MatchSubs(p) // find links to forward p
4 | for (e L do

5 if G, ¢, a-pop is true then

6 if flagsp,[¢, a] is true then

7 p.swithToTree < true

8 send(p ,l)

9 else if flagsg,[¢, a] is false then

10 flagsg; ¢, a] < true

11 p.switchToGossip < true

12 if group, ¢ groupsp, then

13 group, = new Ipbcast(a)

14 p.view « {B;} U group,.V

15 send(p, {)
16 else // p is unpopular and flagsg. [/, a] is set
17 | group, M = { p } U group, M

group in p (Line 14) and forwards p on ¢. This ensures that the receiving subscriber
knows of at least one member of the gossip group for a in case group, was just
created and is empty. This is crucial to make sure that no gossip group experiences
partitioning, since, in the worst case, all members at least know the publisher. Note
that group, can already exist if for example, a was already unpopular on another

link ¢ € I . In that case instead of the publisher, its partial view is included.

An unpopular advertisement can become popular due to the periodical re-evaluation
of publication popularity (Algorithm 2). B; controls this by checking for publications
that are popular but B; has already sent a flagged publication indicating their
unpopularity. In this case a flag indicating switching delivery to the tree is set in p
before sending it on /.

After sending the first flagged publications, future unpopular publications belonging to
advertisement a on link ¢ are simply added to the set of messages of the Ipbcast process
to be gossiped on the next round (Line 17). Using the gossip broadcast, unpopular

publications are batched together and sent as one message representing the new

7



5.4. HANDLING UNPOPULAR PUBLICATIONS

unpopular publications since the last gossip round. All subscribers with a subscription
matching a, receive all unpopular publications without any filtering since the group
uses a broadcast protocol.

Subscribers process publications based on Algorithm 6. If p includes a flag to
switch to gossip dissemination and a gossip group for a does not exist, B; starts
an [pbcast process and joins the broadcast group via the partial view included in p.
Processing a publication with a flag to switch back to the tree is simply gossiping
an unsubscription and stopping the Ipbcast instance on B;. A subscriber receiving a

publication p via gossip has to match p against its local subscriptions before delivery.

Any broker B; receiving publication p for routing, which is not a publisher or
subscriber of p, simply forwards p on all £ € Ly without considering the popularity

of p. This means that gossip groups consist only of publisher and subscriber brokers.

Algorithm 6: Receiving publications on B; (Gossiping)

Function Receive(p, groupsp,)
a < MatchAdvs(p) // find matching advertisement
if p.swithToGossip is true then
if group, &€ groupsp, then
group, < new Ipbcast(a)
group,.V < p.view
Ise if p.swithToTree is true then
U = {B;} UU // Unsubscribe from gossip group
send gossip // Required to propagate unsubscription
remove group,

© 0 VN o oA ® N
o

-
o

[y
-

find matching local subscriptions and deliver

The frequency of switching a stream of publications between gossiping and the
tree is a function of the frequency of running Algorithm 2. For publications which
are the last few popular ones, it is possible to switch between gossip and overlay
upon every re-evaluation, for example due to changes in message rate of a more
popular publication. We avoid this thrashing effect by allowing a 10% threshold
while planning broker capacity. When there is no change in the gain ratio table,
PopSub maintains the same capacity planning as the last round, as long as the

current filled capacity is within 10% of the capacity to fill. Changes in subscriptions

78



CHAPTER 5. POPULARITY-BASED ROUTING FOR PUB/SUB

and gain ratios are effected in the next re-evaluation.

While switching the dissemination mechanism, it is possible for a subscriber to miss
some publications or receive duplicates. In order to guarantee complete delivery, each
B; needs to maintain a cache of the publications it publishes and ID of publications
it has seen. These two sets are used for retransmitting missing publications and
detecting duplicates. The size of these caches must be large enough to cover the
period of time it takes for a flagged publication to reach its subscribers. For example,
in Figure 5.2.1, after BI sends a flagged publication to B2, it does not forward any
more publication over link ¢15 but rather keeps them for gossiping. Therefore, a
broker must cache publications published from the time the flagged publication is
sent until the subscriber receives the publication and subsequently creates and joins
the gossip group. This time period can be assumed in the worst case as long as
the longest path from a publisher to a subscriber (i.e., the diameter of the overlay).
Furthermore, publication sets that have a subset of them delivered via gossip might
not maintain the publisher order. This is also the case for Direct Delivery. Therefore,
PopSub provides per-publisher ordering if a publication set is all delivered via the
main dissemination tree (i.e., is popular or uses Batching). Per-publisher unique 1Ds
for publications and reordering buffers can be used to provide per-publisher ordering

guarantees for unpopular publications as well.

5.5 Experimental Evaluation

In this section, we evaluate our approach via simulation using real-world workloads,
latency values, and traces. We implemented our approach and a baseline, as part
of a content-based pub/sub system simulator written in Java. We evaluate PopSub
using the three proposed dissemination mechanisms for unpopular publications,
namely Direct Delivery (based on Atmosphere and OMF), Batching, and Gossiping.
Furthermore, our baseline is a popularity-agnostic pub/sub system which handles all

publications using the tree.
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5.5.1 Workload

We evaluate PopSub using hierarchical topologies which are used for high-throughput
pub/sub systems[14, 3]. We use real-world traces which provide latency values across
1715 machines, connected via the Internet and estimated using the King method
[122, 123]. We generate overlay topologies of different sizes from this graph as follows.
We select one random node in the graph and perform a BFS traversal on the graph,
with the selected node as root, until we have collected a subgraph with the same
size as the desired topology size. Next, we calculate the shortest-path tree from
the selected root to all other nodes in the subgraph and use this tree as the overlay
topology. Furthermore, any out-of-overlay connection uses the latencies provided
in the subgraph. Using this process, we create five different sets of topologies using

different seeds.

Since the popularity of publishers is an important factor that PopSub can take
advantage of, we use a workload based on Twitter traces [124]. These traces provide
the follower relationship among 81306 users where each user has at least one follower
(subscriber). We generate our workload based on the popularity distribution extracted
from this trace. We sort users based on the number of followers they have and calculate
each user’s normalized popularity as the percentage of followers from the total user
count. In each experiment, there are 200 publisher clients and /N subscriptions. The
number of subscriptions per publisher client is selected based on the Twitter follower

distribution.

Publisher clients are connected to the top of the tree (root and its children) and
each publish for one minute at a rate of 10 pub/sec. Subscriber clients each have
one subscription and are distributed among all brokers of the tree topology based
on a random uniform distribution. The number of advertisements is 200 (one per
publisher client) and in total there are 20 different classes of advertisements. The
number of advertisements per class is based on a random uniform distribution. Each
message has two attributes and the range of each attribute is 0 to 1000. Publication
and subscription attribute values are chosen based on a random uniform distribution
over the content space. Each experiment is run with 5 different topologies and 5

different workloads (25 runs per results) and the values are averaged. In order to
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study the impact of publication popularity on our metrics, we also use a synthesized
workload where the popularity of the advertisement classes among the subscribers

follows a Zipf distribution with different Zipf exponent values.

Another important factor for our evaluation is broker throughput and performance
gains achieved by batch processing and forwarding publications (batch gain). Rather
than using random values, we use an existing content-based pub/sub system to run
benchmarks, collect throughput values and measure batch gains. We use two brokers
on a Dell Powerkdge R430 server. Each broker runs in a VM with 4 CPU cores and
10GB RAM. The publishing broker publishes 3000 publications. On each run the
publisher batches publications in different sizes from 1 to 256. Each benchmark is
repeated 5 times with different seeds, and the results are averaged. The publication
throughput per second for each publisher is calculated, and throughput values of
different batch sizes is normalized with respect to batch size 1. The collected set
of throughput measurements for batch size 1, is used as the throughput value of
brokers in the simulation. In the simulations, each time a broker forwards a batch
publication, bp, of size n, the number of throughput units required to forward bp is
looked up in the batch factor table.

Each PopSub broker re-evaluates its publication popularity metrics every 2 seconds
based on the message rates collected in the last interval. Ipbcast is configured with a
view size of 10 and a fanout of 2. This means in each gossip round, each gossip is sent
to 2 brokers randomly selected from the 10 members of the partial view. The gossip

interval is every 10 seconds. Furthermore, Batching timeout is set to 3 seconds.

5.5.2 Metrics

Publication Gain ratio is the average gain ratio of publications that are routed
through the tree. This measures the resource efficiency of the pub/sub system. A
higher gain ratio means a higher number of successful deliveries to resource utilization.
Each broker that evaluates the publication popularity metrics, records the gain ratio
of publications that the broker decides to route via the overlay. The values collected

by all brokers is averaged. While for baseline, Batching, and Direct Delivery all
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publications are routed via the overlay, for Gossiping this metric only represents

popular publications.

Pure forwards is the total number of publications forwarded by the overlay brokers
where the forwarding broker has no local subscriber matching the publication.

Reducing number of pure forwards improves the routing efficiency.

Unpopular deliveries is the total number of publications delivered via Direct Delivery,
Batching, or Gossiping. This metric is always zero in the baseline. Publication delivery
latency (PDL) is the time that it takes to deliver a publication to a subscriber. The
99 percentile of delivery latency of all successfully delivered publications is defined
as the PDL. We report PDL values for popular and unpopular publications separately.
popular PDL represents latency of publications delivered via the tree and unpopular

PDL represents latency of deliveries via Direct Delivery, Batching, or Gossiping.

Gossip false positive ratio represents the percentage of publications that were received
via gossip but did not match any local subscription and therefore did not result
in a publication delivery. Furthermore, Match per gossip is the average number
of publications delivered per each received gossip. These two metrics show the

effectiveness of gossiping.

In order to study the scalability of Direct Delivery, we count number of forwards per
publication on each publisher, each time an unpopular publication is published. This
represents the number of direct publication forwards required to deliver unpopular
publications. The presented value is the 99" percentile of all the collected values.
Number of gossip groups shows the number of publishers that have unpopular

publications in all or a subset of the overlay.

Lastly, average queue size is the average length of the queue of publications buffered
due to overloaded brokers. The size of this queue directly influences the publication
delivery latency. The measurement is performed as follows: each time there is a
publication arriving at a broker to be forwarded, and due to overload the publication
has to be queued, the length of the queue is recorded. All collected queue lengths

are averaged to represent the average queue size of an approach.
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5.5.3 Experiments

In this section, we evaluate and discuss the impact of four variables namely, filled
broker capacity (¢), overlay size, subscription size and workload skewness on the

metrics defined in Section 5.5.2.

Impact of ¢: In this experiment, we study the impact of ¢ on our metrics. ¢
determines the percentage of broker capacity allocated to handling publications via
the tree. Increasing ¢ results in more publications being considered popular. The

overlay consists of 200 brokers and the number of subscriptions (clients) is 22 000.

Figure 5.5.1a shows that for our Twitter-based workload, determining popularity
threshold by filling 5-10% of publisher broker capacity, results in 29-62% higher
gain ratio compared to baseline. This means that for Batching and Gossiping, each
publication forward in the overlay, results in up to 4.3 deliveries on average. This

value is 2.65 for the baseline.

Direct Delivery results in gain ratios similar to the baseline because all unpopular
deliveries have a gain ratio of 1, 7.e. one forward results in one delivery, and this
brings down the total average. While the total average gain ratio of the three
approaches is different, the average gain ratio of popular publications is similar in
all three approaches and is the same as Gossiping. By increasing the threshold
for popularity evaluation, all approaches result in a similar gain ratio since all
publications are considered popular. This is also evident from Figure 5.5.1b, where
increasing ( decreases number of publications delivered via Direct Delivery, Batching,

or (Gossiping.

While Direct Delivery shows a gain ratio similar to the baseline, all three approaches
benefit from the popularity evaluation algorithm as shown in Figure 5.5.1c. Here,
identifying unpopular publications and delivering them via one of the three proposed
approaches, can reduce number of pure forwards by up to 59% compared to the
baseline. As mentioned previously, ¢ can be used to tune the popularity evaluation
algorithm to match the popularity of the workload. Since the Twitter-based workload

has a Zipfian distribution, smaller values of ¢ result in better performance. The local
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gain ratio estimation and relaxed capacity filling threshold (to prevent thrashing)
results in different number of unpopular deliveries and consequently different pure

forward counts for the three approaches.

This experiment shows that choosing ¢ according to the popularity of the workload
can result in up to 62% improvement in gain ratio and up to 59% lower number of

pure forwards.
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Figure 5.5.1: Impact of filled capacity on PopSub metrics

Impact of overlay size: In this experiment, we study the impact of the overlay
size on our metrics while the number of subscriptions is fixed at 22000 and ¢ = 0.05.
Figure 5.5.2a shows that increasing number of brokers while the number of clients

is the same, reduces the gain ratio. This is inevitable since larger overlays result
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in longer paths. As number of subscriptions is the same, the gain ratio decreases.
Consequently, increasing number of brokers with the same number of clients, decreases
resource utilization of the system. The increasing number of pure forwards (Figure
5.5.2b) in all approaches also confirms longer paths between publisher and subscribers

with no interested forwarding brokers.
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Figure 5.5.2: Impact of overlay size on PopSub metrics

The three proposed approaches to handle unpopular publications, provide different
tradeoffs. While Direct Delivery does not improve the average gain ratio, it reduces
number of pure forwards (Figure 5.5.2b) and provides an unpopular PDL similar
to that of the popular publications (The popular PDL of all approaches is around
135ms). On the other hand, Batching and Gossiping improve the average gain ratio
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and reduce pure forwards at the cost of higher unpopular PDL.

Figure 5.5.2c shows that, compared to Direct Delivery, unpopular deliveries via
Batching and Gossiping result in PDL of up to 10 times and 200 times slower,
respectively. The large difference however only applies to a small portion of deliveries

since compared to the 99" percentile, the 90" percentile of PDL is much smaller.

Figure 5.5.2d shows that 90" percentile of unpopular PDL for Batching and Gossiping
is up to 2 times and 70 times higher, respectively. Gossiping trades off the increased
latency for higher scalability in comparison to Batching. This tradeoff is studied in
the last experiment with an overloaded pub/sub system. Note that, upopular PDL
of Direct Delivery and Gossiping does not increase despite larger overlay sizes and

longer paths, since these approaches do not use the tree.

This experiment shows that PopSub provides better performance in systems which
are not underutilized. Furthermore, we showed the tradeoffs provided by the three

proposed approaches.

Impact of number of subscriptions: In this experiment, we study the impact of
number of subscriptions on our metrics. We use an overlay of size 200, ¢ = 0.05 and

change number of subscriptions from 20000 to 25 000.

Figure 5.5.3a shows that increasing subscriptions increases gain ratio in all approaches.
The reason is that higher number of subscriptions means a higher number of matching
subscriptions on each forwarding broker on average. Since the overlay size and hence

the average path length is fixed, the gain ratio increases.

Similar to previous experiments, Figure 5.5.3a shows that Batching and Gossiping
can improve average gain ratio by up to 62% compared to the baseline. Note that
Gossiping can slightly outperform Batching, because batched publications still have
to go through the tree and potentially pass through uninterested brokers. This
reduces the average gain ratio compared to Gossiping which gossips unpopular
publications only among brokers with a matching local subscription. The lower
number of pure forwards for Gossiping compared to Batching in Figure 5.5.3b,

confirms this. Compared to the baseline, Gossiping, Batching and Direct Delivery
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Figure 5.5.3: Impact of subscription size on PopSub metrics

reduce pure forwards by up to 56%, 37%, and 42%, respectively.

As shown in Figure 5.5.3c, increasing number of subscriptions does not impact
unpopular PDL. The reason is that since the overlay size and hence number of
subscribing brokers is the same, only number of subscriptions per broker changes.
Consequently, number of unpopular deliveries increases. However, as the system is
not overloaded, all approaches are able to scale to larger number of subscriptions.

The impact of increasing subscriptions on an overloaded system is studied in the last

experiment.

As discussed previously, Direct Delivery is scalable in skewed workloads since it only
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forwards unpopular publications. Figure 5.5.3d shows the 99" percentile of number
of publication forwards required to deliver unpopular publications. Direct Delivery
requires up to 29 to 36 publication forwards to deliver unpopular publications since a
publisher must send the publication directly to subscribers with one or more matching
subscriptions. Since this number is much higher for popular publications, using Direct
Delivery for popular publications is not scalable. Furthermore, increasing number
of subscriptions results in a sub-linear increase in number of direct forwards per
publisher. The reason is that increasing number of subscriptions increases the number
of matching subscribers for all publishers. Consequently, unpopular publications
also have a higher number of subscribers and the publisher needs to forward each
unpopular publication to a larger number of subscribers. In contrast, number of
groups in Gossiping is not affected by number of subscribers since the number
of publishers with unpopular publications is related to the workload and client
distribution. Furthermore, unlike Direct Delivery, a publisher publishes unpopular
publications by only gossiping the publication to two members of the gossip groups,

regardless of its number of subscribers.

This experiment shows that while PopSub can improve the gain ratio of the pub/sub
system, the three proposed approaches greatly reduce number of pure forwards in
the overlay. Furthermore, we showed that Direct Delivery is scalable for scenarios
where the workload is skewed and subscribers do not follow publishers based on a

uniform distribution.

Impact of workload skewness: In this experiment, we study the impact of
workload skewness on our metrics using a synthetic workload that follows a Zipf
distribution. We change workload skewness by increasing the Zipf exponent (s) which
results in more subscriptions to popular advertisements and reduction of the number
of subscriptions to unpopular advertisements. While s = 1 results in a skewed
workload, were almost 80% of subscriptions are interested in a small set of popular
advertisements, an exponent value of 0.05 results in a uniform-like distribution of
subscriptions among advertisements. The overlay size and number of subscriptions
are fixed at 200 and 22000, respectively and ¢ = 0.05.

Figure 5.5.4a shows the impact of workload skewness on each approach’s gain ratio.
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Figure 5.5.4: Impact of workload skewness on PopSub metrics

All approaches result in a higher gain ratio for workloads where distribution of
subscriptions matching publishers is more skewed (increasing s). The reason is that
in such non-uniform workloads, there actually are popular and unpopular publications
and PopSub is able to take advantage of this to improve gain ratio. This is also
evident from Figure 5.5.4b where the higher popularity of some publications in more

skewed workloads, results in reduced pure forwards for all approaches.

Two important observations in Figure 5.5.4a are the following. First, Batching can
improve gain ratio by up to 40% regardless of the workload skewness. The reason is
that while Direct Delivery and Gossiping move unpopular publications out of the

tree to improve gain ratio of the tree, Batching always uses the tree. Therefore, by
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combining several unpopular publications, Batching can always improve the gain
ratio. This is the inherent performance gain of batching. However, prioritizing based
on the introduced metric allows identifying slightly more popular publications and
limiting batching latency to a predictable subset of the publications which are slightly
less popular. Therefore, the more skewed the workload, the less number of clients

are affected by this batching latency.

Secondly, Gossiping improves gain ratio in skewed workloads (s > 0.5). The reason
is that in such workloads, the popularity evaluation algorithm can identify popular
publications and by keeping unpopular publications out of the tree, improve the gain
ratio. In uniform workloads, the popularity evaluation algorithm merely chooses
a subset of the publishers which may only slightly be more popular, since there is
no real popular publisher in a uniform workload. While Direct Delivery shows gain
ratios similar to baseline due to direct deliveries with a gain ratio of 1, the gain ratio

of Direct Delivery for only popular publications is similar to Gossiping.

Figure 5.5.4c shows that besides a gain ratio improvement in skewed workloads,
Gossiping performance also improves. Gossip false positives decrease by up to 19%
and publication match per gossip improves by up to 18%. The reason is that in
a skewed workload, number of subscription to unpopular publishers decreases as
majority of subscribers are interested in popular publishers. Therefore, in a smaller
gossip group the likelihood of receiving publications that do not match the local
interest of the broker decreases. This is also evident from the increasing publication
match per each received gossip. Figure 5.5.4d shows that due to the decreased
number of subscriptions to unpopular advertisements, the number of gossip groups
slightly decreases in skewed workloads. Furthermore, the decrease in the number
of publication forwards required for direct delivery shows that in skewed workloads

Direct Delivery is scalable and does not overwhelm publishers.

This experiment shows that PopSub improves gain ratio and reduces pure forwards
regardless of the distribution of the subscriptions among publishers. While Direct
Delivery should be used only in skewed workloads to avoid scalability issues, Batching
and Gossiping do not have this limitation. Furthermore, Batching can improve gain

ratio even in uniform workloads.
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PopSub in an overloaded system: In this experiment, we study the performance
of PopSub in an overloaded pub/sub system. Here, in an overlay of 300 brokers, 200
publishers publish at a rate of 15 pub/sec and we increase number of subscriptions
from 30000 to 50 000.

Figure 5.5.5a shows that similar to previous experiments, PopSub can improve gain
ratio and increasing number of subscriptions increases the gain ratio. Figure 5.5.5b
shows the average queue size of the overlay brokers. As evident from the baseline, the
pub/sub system is overloaded which results in high number of messages queued to
be processed. However, Batching, Direct Delivery and Gossiping reduce the average
queue size by up to 33%, 60% and 98%, respectively. Direct Delivery results in
smaller queue sizes because unpopular publications do not go through the overlay. In
contrast, Batching routes all publications through the overlay and therefore results
in a higher load on forwarding brokers. In comparison to Direct Delivery which
puts higher load on already overloaded publishing brokers, Gossiping avoids this by
distributing the dissemination of unpopular publications evenly among all interested

subscribers, an inherent property of gossip protocols.

Figure 5.5.5¢ and 5.5.5d show the 99" percentile of PDL for popular and unpopular
publications. Direct Delivery and Gossiping reduce popular PDL by up to 40% and
57%, respectively. Similar to Figure 5.5.5b, Gossiping outperforms Direct Delivery
by avoiding overloading publishing brokers. Note that, while due to the overloaded
brokers, in all approaches, popular and unpopular publications are affected, using
Gossiping, popular publications have 17% to 33% lower PDLs compared to unpopular
publications. This is due to the fact that by involving only subscribers to unpopular
advertisements and avoiding overwhelming publishers, Gossiping can reduce the
impact of unpopular publications on the deliveries made through the overlay. Lastly,
The higher PDL of Batching is due to routing all publications through the overlay,
which in comparison to the other two approaches results in a higher load on the
brokers. This experiment shows that prioritizing publications based on their gain ratio
can reduce load on overlay brokers. Furthermore, handling unpopular publications

via Direct Delivery and Gossiping improves publication delivery latency.

Based on our experiments, Direct Delivery is suitable for systems which are not
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Figure 5.5.5: Evaluation of PopSub in an overloaded scenario

over-utilized and cannot tolerate PDLs higher than the overlay average. Although
Batching and Gossiping can always improve scalability and resource utilization,
Batching is more suitable for scenarios where the subscription distribution among
publishers is not skewed and Gossiping can be used in scenarios where the system

may be overloaded.
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CHAPTER 6

Incremental Topology
Transformation using Integer

Programming

In this chapter, we present our Integer-Programming-based Incremental Topology
Transformation (IPITT) approach to update the overlay topology of a pub/sub system
without stopping the pub/sub service. In sections 6.1 and 6.2, we first explain how
the ITT problem can be formulated as an automated planning problem and how
integer programming can be used to solve automated planning problems. Next, in
sections 6.3 and 6.4, we explain the different components of our approach and how
IPITT can be used as a framework for incremental topology transformation that
can be further customized depending on available overlay operations and broker
migration requirements. Lastly, we present and discuss the result of our experimental

evaluation in Section 6.5.
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6.1 ITT as Automated Planning

In order to define the ITT problem as a planning problem, we need to define the set
of predicates, objects, and operations of an I'TT problem. In this work, we adopt the

same ITT formulation as presented by Yoon et al. [51].

ONONNONMONNONO
sO I:>sl I:>g

Figure 6.1.1: Initial and goal topology

The set of objects, ¥, is the set of brokers comprising the overlay (e.g., in Fig-
ure 6.1.1, X = {1,2,3,4}). We use the following predicates to uniquely describe
any ITT problem state: P = {conn(i, j),rem(i, j),eq(i,5)}. conn(i, j) is a predicate
indicating whether there is a direct link between brokers ¢ and j in the topology.
In order to define all existing links in the topology, we use conn propositions. In
Figure 6.1.1, C' = {conn(1,2), conn(1, 3),conn(2,4)}. In an overlay with undirected
links, conn(i,j) = T=conn(j,i) =T.

rem(i,j) indicates whether the link between i and j can be removed (i.e., (i,7)
is a removable link). During the topology transformation, any link which is not
part of the goal topology is removable. In Figure 6.1.1, the link (2,4) is not
part of the goal topology, therefore rem(2,4) = T. Lastly, eq(i,j) indicates
whether brokers ¢ and j are identical. There exists one eq(i,j) proposition for
each broker in the overlay. Therefore, using the defined P and 3, we can describe
the initial and goal state of Figure 6.1.1 as the following set of true propositions:
so = {conn(1,2),conn(1,3),conn(2,4),rem(2,4),eq(1,1),eq(2,2),eq(3,3),eq(4,4)}
and g = {conn(1,2),conn(1,3),conn(3,4),eq(1,1),eq(2,2),eq(3,3),eq(4,4)}.

In order to transform any initial topology to any given goal topology, we require the
following operations: append(i, j), detach(i, j), and shift(i, j, k). These operations
have been shown to safely enable any arbitrary transformation [33, 125]. append
creates a new broker ¢ and attaches it to the broker j. detach removes broker ¢ from

the overlay by disconnecting it from its neighbor j. shift(i, j, k) removes the link
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between ¢ and j and establishes a link between ¢ and k. These three operations are
defined as follows [51]:

pre(0) = {—eq(i, j), ~conn(i, j) }
append(i, j) :  add(O) = {eq(i, i), conn(i, )}
del(O) = {}

pre(0) = {=eq(i, j), conn(i, j), rem(i, j) }
detach(i,j) : | add(O) = {}

del(O) = {eq(i, 1), conn(i,j), rem(i, j)}

pre(O) = {conn(i, j), conn(j, k), rem(i, j),
—eq(i, j), —eq(j, k) }

shift(i, j, k) : { add(O) = {conn(i, k),
rem(i, k) if (i,k) & g}

del(O) = {conn(i,j),rem(i, )}

For example, in Figure 6.1.1, shift(4, 2, 1) is applicable to the initial topology because
there is a link between (4,2) (conn(4,2)) and (2,1) (conn(2,1)) and the link (4, 2) is
removable (rem(4,2)). Applying this action results in:

s1. = {conn(1,2), conn(1,3), conn(1, 4), rem(1,4), eq(1, 1), eq(2. 2), eq(3, 3), cq(4,4)}

The link (1,4) is required, because only after transitioning the overlay to the state

s1, can we apply shift(4, 1, 3) to reach the goal topology.

Note that shift requires three distinct brokers. Therefore, we need eq(7, j) in order
to represent the existence of a broker in the overlay and prevent the generation of
invalid shift actions such as shift(1, 1, 2).

In order to prevent message loss, we use the synchronous shift protocol [33]. In this

protocol, 7, 7 and k first start buffering publications and then perform changes on
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their routing tables. Once all participants of a shift have finished updating their
routing tables, processing of publications (including buffered publications) is then

resumed.

6.2 Integer Programming for Automated Planning

There exists general planners that can be used to solve any planning problem
encoded using the Planning Domain Definition Language (PDDL) [96, 97, 126].
Yoon et al. have studied the applicability of such general planners to the ITT
problem [51]. However, these planners fail to scale to overlays of 50 or more brokers.
This is due to the fact that, given the PDDL encoding of the I'TT problem, the
general planners consider all possible actions. This can result in a search space of
O(n?) for all combinations of shift(i, j, k).

In this work, we adopt an integer programming approach to planning for the following

reasons:

e An IP-based approach specifies the set of actions (A) that the planner should
consider. Consequently, we can reduce the search space by providing a smaller

set of actions to the planner rather than all possible actions.

e [t has been shown that IP is more general than propositional logic and allows
for a more concise representation of constraints [127]. This results in a rich

modeling formalism which enables customization of the plan search [128].

e An IP-based approach lends itself to being used with existing commercial
solvers. Due the wide applicability of IP, such solvers are highly optimized and

can even be easily configured to utilize computer clusters [100, 129].

We use the general IP approach for solving planning problems as presented in
OptiPlan, and customize it by defining I'TT-specific predicates and operations to

create an I'TT planner [130, 128]. To formulate the planning problem of transforming
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an initial state to a goal state in 7" steps, we define the binary variable z,, = 1 if

action a is executed in step t and 0 otherwise.

Using the following objective function, the IP formulation finds a plan that minimizes

the number of actions required to perform the transformation:

minz Z Tay

acAte{l,..,T}

Furthermore, the formulation defines other binary variables and constraints that link
actions and propositions in each planning step, guaranteeing mutual exclusion of the

chosen actions, restricting parallel state changes, and ensuring backward chaining.

In the following, we present a more detailed explanation of the IP-based planning

formulation.

The IP formulation of automated planning defines the following sets for each
proposition f € F"

e prey: set of actions that have f as precondition

e addy: set of actions that have f as add effect

o dely: set of actions that have f as delete effect

Furthermore, five more binary variables besides z,; are defined. These state change

variables are used to model transitions between different states.

. y??mmm = 1 if the value of proposition f (true/false) is propagated to step t.
y?:f“dd = 1 if an action is executed in step ¢ that requires proposition f and

does not delete it.

° y?j;edel = 1 if an action is executed in step ¢ that requires proposition f and

deletes it.
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° yjﬁfid = 1 if an action is executed in step ¢ that does not require proposition f

but adds it to the state.
° y%l = 1 if an action is executed in step ¢ that does not require proposition f

but removes it from the state.

The complete formulation is as follows:

winY" Y

acAte{l,..,T}

yitt=1 Vv fel (1)
a maintain readd
yf,%d T Yro tan 4 Yo =0 Vfégl (2)
y%dj(j + y??%intain + y?;add 2 1 % f c G (3)
Yooz >y (4)
aeaddf\pref
Tap < y?ffl V a € adds\pre; (5)
> Tar 2 Vg (6)
aedelf\pref
Tar < yjfil V a € delf\pres (7)
S wag >y (8)
aEpref\delf
Tar < y%eadd V a € pres\del; (9)
Z Tor = y;;edel (1())
a€preyNdely
a maintain e redel
i e g e <1 (11)
readd maintain e redel
yl;,t + Yrt g y?,tl + yl;,t <1 (12)
readd maintain redel readd add maintain
y?,t + Yri o y?,t < y?,t—l T Y1+ yf,t—lt (13)
VfieFte{l,. . T}
readd redel  a e maintain
Layt, y?t ) y?,t ’ yfida y?,tla yf,t ‘ € {07 1} (14)
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Constraints 1 and 2 add the initial state propositions. Constraint 3 ensures that
any proposition comprising the goal state is either propagated to the last step or
added in the last step. Constraints 4 to 10 link state change variables to actions
ensuring propositions are added to the state or removed from it only as a result
of action execution. Constraints 11 and 12 act as mutexes between state change
variables, preventing parallel changes that can result in an inconsistent state. This
means that during each step of the transformation, a proposition f can be either
added, propagated, or removed from the state. Constraint 13 ensures backward
chaining requirements, which means that if in step t — 1 a proposition f is added or
maintained, then f can be added or removed in step ¢, or it can be propagated to
step t. Finally, the last constraint ensures that all defined decision variables have a

valid value in each step.

6.3 ITT using Integer Programming

In this section, we first introduce the different components of the IPITT system. Next,
we explain how our I'TT planner functions and describe its IP model. Lastly, we

explain how plans are deployed and executed.

6.3.1 System Overview

Figure 6.3.1 presents the different components of IPITT. We assume there exists
a topology manager which knows the identity of all brokers in the overlay. The
topology manager does not need to know the routing table nor subscriptions located
on each broker, only the overlay topology. The four main components of IPITT are

the overlay evaluator, ITT planner, plan deployer, and I'T'T agent.

The overlay evaluator is responsible for periodically evaluating the overlay perfor-
mance and designing a new topology if necessary. The topology manager periodically
provides the overlay evaluator with the current topology and performance metrics. If

the current topology is deemed inefficient by the overlay evaluator, it calculates a new
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Topology Manager
ITT Agent :3
Evaluator
0 <=> ZooKeeper <=>
ITT Planner server

Plan Deployer

Figure 6.3.1: IPITT components

topology. Note that the focus of this paper is on the generation of a transformation
plan given initial and goal topologies. The strategy taken to evaluate the current
topology and design a new one is considered out of the scope of this work. Works
on designing the overlay and evaluating the efficiency of pub/sub and overlay-based
systems are orthogonal to our work, and their techniques can be integrated in our
system [53, 94, 38, 131].

If a new topology is returned by the overlay evaluator, IPITT calls the ITT planner
with the current topology and the new topology. The ITT planner is responsible
for finding a plan to perform the transformation. The plan calculation takes into
consideration time requirements. In other words, a new plan must be returned before
the next topology evaluation. The calculated plan is passed to the plan deployer
which is responsible for executing the transformation on the overlay. The deployer
ensures each step of the plan is performed successfully before moving to the next
step, since each step may depend on intermediate links previously established in
the plan. Furthermore, in order to prevent any message loss or an invalid topology,
the steps and operations within each step need to be synchronized. To do so, the

deployer communicates with the I'T'T agent located on each broker.

6.3.2 ITT Planner

The planner is responsible for finding a plan that transforms the initial topology

to the goal topology using a minimum number of steps. Algorithm 7 shows the
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operation of the ITT planner. First, it generates the set of all actions to be considered
for the plan. The generated set A does not describe any order between the actions
but simply provides a superset of actions that can form a viable plan. In order to
create the IP model of the ITT problem, the planner needs to determine the length
T of the plan. This is required because the IP formulation of the planning problem
requires the plan length to create a decision variable for each action in each step
(24t). In order to ensure a plan with a minimum number of steps, the planner starts
with T"= 1. In our implementation, we speed up the calculation of the algorithm by

starting with a higher value of T'.

The minimum number of steps required to transform a topology is proportional to
the topology size and the number of brokers facing a link change. Therefore, the
result of previous plan calculations can be stored in a table where each entry records
the starting value of T for a given topology size and percentage of overlay links that
are changed in the goal topology.

Algorithm 7: I'TT planner

1 Function Planner(sg, g)

2 A < GenerateActions(so, g)

3 T+ 1

4 do

5 M <« CreateModel( sy, g, A, T')
6 M .optimize() // Pass to solver
7 if M s infeasible then

8 ‘ T+T+1

9 while M is infeasible

10 plan < ExtractSteps(M )

11 return plan

Given the initial and goal topologies, the action set, and plan length, the planner
creates the IP model of the ITT problem instance. This is done by first creating
the set of all propositions F' = {f € pre(a) | a € A} U{f € add(a) | a € A}U
{f € del(a) | a € A}. The IP model consists of a set of binary variables and
constraints. Besides creating a variable for each action on each step, we create five
variables for each proposition for each step. These variables link the propositions to

the actions in each step of the plan.
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After adding constraints over the defined variables, the IP model is given to the IP
solver. If it is not possible to find a plan with the input 7', the solver determines that
the model is infeasible. In this case, we increment 7T, create a new model, and pass
it to the solver. Once the solver returns the optimized model, the planner extracts
the plan based on the values of the z,; variables. The result is a sequence of steps,
where each step contains one or more actions. For example, the plan for the I'TT
problem in Figure 6.1.1 is the following:

1:[shift(4,2,1)], 2:[shift(4,1,3)]

In this case, a plan in one step is not possible since an intermediate state with the

link (1,4) is required to achieve the goal topology.

The size of the IP model, and consequently the time required to solve it, is related
to the number of variables and constraints defined in the model. Since the defined
number of variables and constraints for each proposition and action is fixed, decreasing
the number of actions is the only way to reduce the total number of variables and

shorten the time required to find a plan.

Since append and detach can only add or remove leaf brokers [54, 55, 33], finding the
set of appends and detaches is trivial. First, all brokers which will be removed from
the overlay are added as leaf brokers to the goal topology. Next, any broker which
will be added to the overlay, are added as leaves to the initial topology. Consequently,
both the initial and goal topologies have the same set of brokers. Once a plan is
calculated, the set of appends is added to the beginning of the plan and the set of
detaches are added to the end of the plan.

We separate calculation of the set of append and detach operations in order to reduce
the IP model size which does not impact the correctness of the planner. Therefore,
we consider only initial and goal topologies which have the same set of brokers and
focus on generating a set of shift actions. Due to this property, there is no need
to use the eq(i,7) predicate, since we consider only valid shift actions (where i, j,
and k are distinct brokers). Excluding append and detach from the IP formulation

reduces the model size and hence the time required to find the plan. Note that
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migrating clients connected to a removed broker is out of the scope of this paper
and is addressed in client mobility studies [132, 133].

A naive approach to generate the set A is to consider all possible subsets of size 3
of the brokers. This results in P, 3 = n!/(n — 3)! = O(n*) actions, where n is the
overlay size. In medium to large overlay sizes (e.g., more than 40 brokers), this results
in a very large action set. Although generating all possible actions guarantees that
the optimal solution can be found, the resulting set can include shift actions which
involve brokers facing no change in the transformation. Based on this observation,
we propose two heuristics which can considerably reduce the size of the generated

action set.

The first heuristic, shown in Algorithm 8, starts by identifying links that must be
established in the goal topology. For example, in Figure 6.3.2, (1,3) and (6,9) are
removable links and (4,7) and (8,9) are goal links. Next, for each goal link, the path
between its source and destination in the initial topology is calculated. We call these
transformation paths, highlighted in red in Figure 6.3.2. The intuition behind this
heuristic is that any shift action that can contribute to the transformation of the
initial topology to the goal topology must involve brokers located on these paths.
Finally, at Line 7, we generate all possible actions that can happen among the set of

brokers located on a transformation path.

Figure 6.3.2: Transformation path

The size of the action set generated by this heuristic (Algorithm 8) is no longer a
function of the overlay size, but rather a function of the number of brokers located
on a transformation path. Therefore, this algorithm takes into account the size of
the set of brokers which are affected by the transformation. Furthermore, in an
ITT problem where brokers affected by the transformation are located close to each
other, the generated set of actions is smaller. Algorithm 9 further reduces the search
space by considering each transformation path separately. Therefore, rather than

first collecting all affected brokers, the algorithm computes all possible shift actions
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Algorithm 8: Generate actions for all paths

Function GenerateActionsForAllPaths(sg, g)

goallinks <— { L€ g | & 5o }

brokers < {}

for ¢ € goalLinks do
path < GetPath(ls.c, Caest; So)
brokers <— brokers U path

actions < perm(brokers, 3)

return actions

@ N o ok W N =

for each path.

The main difference between Algorithm 8 and 9 is that the former considers any
shift action that can happen among different transformation paths. For example,
in Figure 6.3.2, the set of actions generated by Algorithm 9 does not include any
shift among brokers 4, 6 and 7 because these three brokers are located on two
different transformation paths. In contrast, Algorithm 8 generates the shifts among
these three brokers as well. This may result in shorter sequence of actions, if
they exist. Nonetheless, in scenarios where two different parts of the overlay
undergo transformation (e.g., Figure 6.3.2), this can generate unnecessary actions.
Algorithm 9 ensures that only shift actions among brokers located on at least one
transformation path are considered. Since there exists always at least one sequence
of shift actions to transform a removable link located on the transformation path of
a goal link, Algorithm 9 generates an action set which contains enough actions to

create at least one viable plan.

Algorithm 9: Generate actions for each path

Function GenerateActionsForEachPath( sy, g)
goallinks <— { L € g | & 50 }
actions < {}
for ¢ € goalLinks do
path < GetPath(ls.c, Laest; So)
actions < actions U perm(path, 3)

N o oA Wy o=

return actions
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6.3.3 Plan Deployment

The task of the plan deployer is to execute a given plan on the topology. Furthermore,
the plan deployment must be synchronized and performed step-by-step, in order to
prevent invalid routing states and an incorrect topology. Each broker has an I'TT
agent which is listening for shift actions, performing them on its host broker, and
reporting back. The plan deployer uses ZooKeeper to communicate with the I[TT
agents, to deploy a plan, and to coordinate its execution [40]. ZooKeeper allows
complete decoupling of the plan deployer from the pub/sub system and is scalable
to large overlays. Furthermore, it facilitates reactions to plan execution failures.
Figure 6.3.3 shows the ZooKeeper tree used by IPITT.

[ b-1 ] [ b-i ) [status] [ steps |
/ |
([ op | [ status]-- (step-1) [ step-n]
Z N\

[status | [ ops )

op-1

Figure 6.3.3: IPITT ZooKeeper tree

Upon receiving a plan to execute, the deployer writes the plan to /itt/plan/steps.
Each step in the plan is mapped to a node in ZooKeeper and each action is mapped
to a child node of its step. Furthermore, each broker is mapped to a node. Upon
broker start, each ITT agent establishes a watcher on /itt/brokers/brokerID, waiting
for shift actions to be issued by the deployer. In order to execute a plan step, for each
step action, the deployer writes the shift action to the data node of each involved
broker and creates watchers on the status node of each broker. Upon receiving a
shift command, the I'TT agents trigger a shift by directly contacting other involved
brokers and exchanging routing table entries if necessary and changing overlay links.
After successful completion of the shift command, each ITT agent updates the status

of the received shift action on ZooKeeper as successful.

In case of failure or timeout on any broker, the shift action is aborted and the status

of the corresponding broker is set to error. Once all I'TT agents have updated the
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status of the assigned action, the deployer updates the status of the shift action in
the ZooKeeper tree. The status of a step is updated to successful only if all actions
for that step have completed successfully. The deployer moves on to the next step for
execution only if the previous step is successful. If a step fails and cannot be finished
within a timeout, the plan execution is aborted. Aborting the plan is necessary in
order to prevent invalid routing information or an invalid topology from occurring if
further steps are taken. However, since shift actions of each step are independent
from each other, a step can be partially successful without resulting in an incorrect
state. Furthermore, by keeping the plan state on ZooKeeper, plan execution can
recover from the failures of the deployer or the topology manager. Using ZooKeeper
allows the I'TT agents to use the ZooKeeper tree to send back statistics about the
broker. This information can be used as input to evaluate whether it is necessary
to create a new topology. This allows IPITT to create a feedback loop between the

overlay and the topology manager.

While the deployer ensures fault tolerance during plan execution, it relies on the
reliability of the operations to ensure fault tolerance during the execution of each
action. IPITT requires each action to either succeed or fail without leaving the local
routing table and links invalid. Consequently, any intermediate state of the topology
during plan execution is valid and capable of correct routing of publications. Existing
operations assume different fault models [54, 33, 55] which are applicable in different

scenarios.

6.4 IPITT as a Framework

IPITT can be used as a framework for the incremental topology transformation of
pub/sub systems. The ITT planner is able to find a plan consisting of operations that
can be defined in terms of precondition, add, and delete effects on the overlay state.
The choice of transformation operations to use in the plan depends on the guarantees
that the transformation must maintain. While SwapLink [54] (or shift) performs
small changes which only involve three brokers, there exists composite operations

that perform larger transformations in one step. Move [33] and LinkExchange [55]
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are two examples of operations which directly replace a removable link with a goal
link. Compared to shift, these operations require synchronization among a larger
number of brokers. Thus, they require a longer time to execute and have a larger
impact on the clients. Nonetheless, in scenarios where the larger delay is tolerable,

they can be used for building a plan.

The IP formulation of I'TT allows changing the objective function to define a new
cost model for planning. In this paper, we assume all actions have an equal cost.
Therefore, we minimize the number of actions to improve plan quality. However, it
is possible to assign each action a cost depending on the involved brokers and find a
plan which minimizes the total cost of the plan. If each action a has a cost C,, the

objective function minimizing planning cost is:

min » > Co X x4

acA te{1,..,T}

It is also possible to define new constraints for the plan. For example, if we want to
limit the maximum number of links of each broker during the transformation, we
can define a variable D, ; which is the degree of Broker b in step ¢ of the plan. The
maximum degree can be defined using the set of constraints Dy; < Dyer , Vb € B,
where B is the set of overlay brokers. Furthermore, the add and delete effect of the
operations must be extended to consider Dy ;. Lastly, the ITT planner and deployer
can be used in combination with any overlay-based pub/sub system, as long as each
broker implements an I'TT agent which can access the ZooKeeper tree of IPITT and

can execute actions on the host broker.

6.5 Evaluation

In this section, we evaluate IPITT operating on an existing pub/sub system. We
implemented our ITT planner using Python and the Gurobi Optimizer[98], and imple-
mented the shift operation[33] and ITT agent in Java on the PADRES pub/sub system[13].
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We use a cluster of 20 Dell PowerEdge R430 servers for our evaluation.

Note that PADRES uses the content-based subscription model, which allows fine-
grained filters to be expressed. Although IPITT is not tied to any subscription model,
we choose to evaluate our approach using a content-based system since it generates
larger routing tables. Consequently, broker migration incurs more overhead and is

therefore more challenging for I'TT, which performs frequent routing table updates.

Furthermore, we compare our approach with the best-first search (BFS) heuristic
to solve ITT, presented by Yoon et al.[51]. BFS uses an algorithm similar to those
underlying state of the art planners, utilizes domain specific heuristics, and avoids
generating all actions upfront. BFS models the planning problem as a graph with
each node representing a different state of the problem (i.e., a set of propositions) and
each edge representing an action. Given a time limit and depth limit, BFS searches
for a plan and returns the best result (lowest number of actions). The depth limit
stops the heuristic from following a branch of the graph for an excessive period of
time. Upon reaching the depth limit, BFS starts a new search on a different part of
the graph. This is repeated until the time limit is reached.

6.5.1 Workload

We evaluate IPITT using acyclic hierarchical topologies which are common in high-
throughput pub/sub systems[14, 3]. The generated tree topologies used for the
evaluation have a maximum node degree of 5, 6 or 7 and each have two balanced
and unbalanced variations. The degree of each broker is selected based on a random
uniform distribution and the maximum degree of the tree. Each topology has
two variations generated with different seeds. The link latencies are between 10
milliseconds and 50 milliseconds and selected based on an uniform distribution. We

run our experiments using 12 topologies covering a wide variety of trees.

We evaluate IPITT and BFES using a synthesized workload with the following
parameters: We use 20 publishers all connected to the root of the tree topology each

publishing 5 publications per second. The content space has 10 different class of
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publications with two attributes each between 0 and 1000. Each publisher generates
publications based on an uniform distribution from the content space. Fach subscriber
subscribes to one class of publication with the popularity of classes based on a Zipf
distribution with @ = 1.1 [119] and the attribute range of each subscription based
on a random uniform distribution. Subscribers choose their edge brokers based on
a random uniform distribution among the leaf brokers of the overlay. Clients are
located on different VMs than the brokers, in groups of at most 80 clients per VM.
Publishers publish messages for 10 minutes. Starting from the 120" second of each
experiment, an incremental topology transformation is performed on the overlay.
Each experiment is run with 12 different topologies and 2 different workloads (24

runs) and the metric values are averaged.

We evaluate the impact of three variables on our metrics. Overlay size is the number
of brokers in the overlay and change ratio is the percentage of links changed in
the goal topology. These variables influence the IP model size and the size of the
generated plan in terms of number of actions and steps. Furthermore, we change the
number of subscribers to study the scalability of plan execution in terms of client

size.

In order to be able to control the change ratio between the goal and initial topologies,
we do not employ an overlay design algorithm. The goal topology is calculated
by changing N% of the links in the initial topology. While a randomly generated
topology may degrade the performance of the overlay after the transformation, our
purpose is to study the transformation period itself. Optimal overlay construction is

orthogonal to our work and is not evaluated here.

6.5.2 Metrics

Planning time is the time required for the I'TT planner to find a plan to transform
the initial topology to the goal topology. This includes the time it takes to generate
the model and solve it. It is important that the planning time is limited, as the
objective is to perform transformations periodically. Systems such as GooPS perform

re-evaluation and transformations frequently, requiring a planning time in order of
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minutes [38].

Plan quality is defined in terms of the number of steps and number of actions in the
plan. A high quality plan minimizes disruption to the pub/sub system. Since the
number of link changes directly influences service disruption in the overlay[131], we
consider a plan with a minimal number of actions as high quality. Furthermore, a
higher number of steps can result in a longer plan execution time which can impact

service disruption.

Publication delivery latency is the time it takes to deliver a publication to a matching
subscriber. We collect all delivery latencies from subscribers and calculate the 99t
percentile of publication delivery latencies (PDL) of all publications which are in
transit during the topology transformation and are therefore affected by it. This

metric represents the effect of the transformation on the clients of the pub/sub system.

Broker queue size is the growth of the message queue size of brokers during trans-
formation. Performing each shift action requires the buffering of messages until the
shift is finished. This metric represents the buffering load and therefore the impact
of the transformation on the overlay brokers. We measure queue size of each broker
at the beginning and end of each shift, calculate the difference and take the 99

percentile of the collected values.

Plan ezecution time is the time it takes to completely execute a transformation plan
computed by the planner on the overlay. This metric represents the duration of

service disruption and its effect on the clients.

6.5.3 Experiments

Impact of overlay size on planning: In this experiment, we study the impact of
overlay size on the planning time and plan quality. We change the overlay size from
20 to 150 brokers, which is in line with the overlay size of systems such as GooPS
[38], with a change ratio of 20%. This means each goal topology is generated by
randomly changing 20% of the links in the initial topology. We evaluate IPITT using
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the first heuristic which generates actions for all paths (IPITT 4), the second heuristic
which generates actions for each path separately (IPITTg), naive IPITT (IPITTy)

which generates all possible actions, and BFS with a time limit of 10 minutes.
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Figure 6.5.1: Impact of overlay size on IPITT planner

Figure 6.5.1a shows that increasing the number of brokers in the overlay results in
a longer planning time. This is inevitable as a larger number of brokers results in
a larger IP model for IPITT and a larger state space graph for BES. Nonetheless,
IPITT g results in the lowest planning time for all overlay sizes. IPITTy is able to
find a plan only for overlays of size 50 or less and it cannot find a plan for overlays
with more than 60 brokers. The reason is that the model size and consequently the
planning time exhibits a polynomial growth (n?). IPITT 4 shows a similar result but
with a slower growth rate. However, since increasing the overlay size results in a
larger number of brokers located on a transformation path and IPITT 4 generates all

actions for all such brokers, the planning time increases polynomially. IPITT 4 can
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find a valid plan for overlays of size 60 or smaller in less than 10 minutes and is not

able to find a plan for overlays of size larger than 80.

BFS performs similarly to IPITT4 and outperforms IPITT, for overlay sizes of 60
or more. Furthermore, BFS can find a plan for overlays of up to 90 brokers but
not beyond that. The reason can be attributed to how it searches the state space
graph. BFS identifies the next action based on the estimated cost and follows this
branch until it reaches the specified limit. Upon reaching the end, it starts over from
the second best option. In larger overlays, the probability that multiple candidates
for the next action have the same cost estimate increases, with such ties broken
randomly. Therefore, in larger overlays, despite a larger state space size, BFS still
relies on random selection of the next best option which results in a decreasing

chance of success.

IPITTg is the only approach that is able find a plan for overlays of 100 or more
brokers and is able to find such a plan in under 45 seconds for overlays of 70 or less,
and under 400 seconds for overlays of size 150. The reason for the scalability of
IPITTg is that the action set generation does not grow polynomially with the overlay
size since IPITTg generates actions for each path separately. Therefore, compared
to BFS, IPITTg reduces the planning time for overlays of size 50 or less by a factor
of 61 and for overlays of size 60 or more by a factor of 10. Compared to IPITT y,
IPITT g reduces the planning time by a factor of up to 82 times. However, our current
heuristic is not able to find a plan for overlays of size 200 or more in under 10
minutes. While we have not performed any optimization for our evaluation, there
exists techniques such as warm starting of the IP solver that can improve the overall
performance of the IP solver [134]. Furthermore, IPITTg uses a simple heuristic to

limit the search space which can be further extended to provide a smaller action set.

Table 6.5.1 shows the memory footprint and IP model size of the different approaches
for an overlay size of 60 and change ratio of 20%. Since the IP formulation creates
several variables and constraints for each action, reducing the number of shift actions
greatly reduces the IP model size. Consequently, the solver can find a solution faster

and requires less memory.

Figure 6.5.1b and 6.5.1c show the quality of the plan calculated by each approach
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Approach | Mem. (MB) | Actions | Variables | Constraints
IPITT 11352 205320 | 1355820 3810515
IPITT 4 2750 35904 392928 919799
IPITTg 405 1860 154620 211973

BFS 230 - - -

Table 6.5.1: IPITT planner memory footprint and model size

in terms of number of actions and number of steps. For overlays of size 40 or more,
IPITTg can find a plan with up to 45% fewer actions compared to BFS. Furthermore,
compared to IPITTy and IPITT 4 which can find an optimal or near optimal plan due
to their larger search space, IPITTy calculates a plan with only up to 5% and 12%
more actions, respectively. BFS does not parallelize the plan actions: Therefore,
the number of steps is equal to the number of actions in the plan. In contrast, the
IP approach produces a plan with the lowest possible number of steps. However,
due to the use of heuristics to reduce the search space size, only IPITTy guarantees
that no plan with a lower number of steps is possible. In comparison to the optimal
plan, IPITTg produces plans with up to 32% higher number of steps. The increase
in IPITT 4 is at most 11%. This means that generating an action set which includes

shifts across different transformation paths can result in more efficient plans.

Impact of change ratio on planning: In this experiment, we study the impact
of the change ratio on planning time and plan quality. We increase the change ratio
from 5% to 30% in an overlay of 60 brokers. With frequent evaluation of the overlay,
high change ratios are in practice unlikely. Figure 6.5.2a shows the planning time
of each approach. In all cases, the planning time increases because a higher change
ratio results in a larger IP model or space state graph. A higher change ratio requires
a higher number of actions and a larger plan, which increases T in the IP model
and graph depth in BFS. Due to the larger problem size, IPITTy and IPITT 4 are
not able to find a plan for change ratios of 25% or higher. BFS can find a plan for
30% change ratio in 546 seconds and IPITTg in 117 seconds. Although BFS does not
return a plan until the time limit is reached, in this experiment, we have recorded the
time that BFS finds the best plan. Nonetheless, IPITTg can reduce planning time
by up to 95% compared to that of BFS. Regarding plan quality, similar to previous
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planning time (s)

experiment, IP-based approaches can outperform BFS. While for change ratios of 5%
and 10%, IPITTg and BFS produce plans with the same number of actions, in larger
change ratios, IPITT g results in plans with up to 42% less actions. In comparison to

the optimal plans calculated by IPITTy, IPITTg produces plans with up to 5% more
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Figure 6.5.2: Impact of overlay change ratio on IPITT planner

actions and up to 32% more steps.

These two experiments confirm the effectiveness of our two proposed heuristics in
reducing the search space size of the I'TT problem and scaling the I'TT planner to

overlays of up to 150 brokers. Furthermore, we have shown the different levels of

trade-off that the three IP-based approaches can provide.

In the next two experiments, we use the calculated plans by BFS and IPITTg which

we simply refer to as IPITT.
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Impact of ITT on clients: In this experiment, we study the impact of ITT on the
subscribers of the pub/sub system. Figure 6.5.3a shows the impact of increasing the
overlay size on the PDL with 1000 subscribers and a change ratio of 20%. Since each
action forces temporary publication buffering by the involved brokers, subscribers
receiving publications which traverse brokers involved in a shift operation experience
a higher delivery latency. IPITT and BF'S show similar affected latencies which are up
to 2 seconds more than the PDL for publications not affected by the transformation.
The impact of transformation on latency is similar in both approaches since it
primarily depends on the type of operation used, which is the same (shift). In all
cases, increasing the overlay size results in a higher latency since larger overlays have

a longer path between publishers and subscribers.
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Figure 6.5.3: Impact of overlay size on IPITT plan execution metrics

Figure 6.5.3b shows the average plan execution time (Mpgr) of each approach. Since

IPITT produces plans with fewer steps, and actions in each step are executed in
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parallel, the Mpgr of IPITT is up to 55% shorter than that of BFS. While the
execution time does not affect the PDL (this is affected by how long the operation
buffers publications), it does influence the number of messages that have a higher
delivery latency. Figure 6.5.3c shows the delivery latency of delivered publications
to the same client in two different scenarios. In the lower section, the transformation
uses the plan generated by IPITT and the upper section is the delivery latencies
during the execution of a BFS plan. The red dots on top of each plot show the
time taken by shift actions executed on the overlay. While in both approaches the
plan execution period results in an increase in delivery latency, higher number of
publications face this increase in BF'S. The difference in the number of affected
messages is proportional to the plan execution time (Figure 6.5.3b). This experiment
confirms that IPITT is able to minimize disruption to publication delivery by finding

a plan with a minimal number of steps.
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Figure 6.5.4: Impact of overlay change ratio on IPITT plan execution metrics
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Figure 6.5.4a shows the impact of increasing the change ratio on the PDL in an
overlay of 60 brokers with 1000 subscribers. A higher change ratio requires a plan
with a larger number of actions and steps. Consequently, publications affected by
the transformation are more likely to encounter more than one action execution and
be buffered more than once while being routed. Therefore, both approaches show an
increase in PDL of up to 2.2 seconds. However, similar to the previous experiment,
since the Mpgr of IPITT is up to 60% shorter than that of BF'S (Figure 6.5.4b), a

smaller number of publications are affected by this disruption.

Figure 6.5.5a shows that increasing the number of subscribers in an overlay of 60
brokers with 20% change ratio results in a higher PDL. The reason is that a larger
volume of subscriptions in the system leads to a larger routing table size at the
brokers. Since shift actions perform changes on the routing table of each involved
broker, greater table sizes result in longer latencies. For the same reason, the Mpgr
of each approach grows with an increase in subscribers. However, both PDL and
Mpgr grow sublinearly and therefore the incremental transformation is scalable
with respect to the number of subscribers. This increase depends on the type and

implementation of the operation. In this case, it affects both approaches similarly.

These experiments confirm that IPITT provides a scalable approach to incremental

topology transformation while minimizing disruption to clients.

Impact of ITT on brokers: In this experiment, we study the impact of ITT and
plan quality on the overlay brokers. Since transformations without message loss
require temporary publication buffering, it is important that the generated plans
do not result in buffering requirements that are beyond the capacity of individual
brokers. An incremental transformation approach requires less buffering since each
action involves only a small group of brokers and finishes quickly. Figure 6.5.3d and
6.5.4c show the growth of the queue size of brokers during topology transformation.
Increasing the overlay size and change ratio does not impact any of the approaches.
This is due to the inherently low buffering requirement of incremental transformation.
However, IPITT is able to execute plans faster without any increase in queue size. The
reason is that the plan calculation and execution of IPITT parallelize actions which

are independent from each other and do not involve the same broker. Therefore, a
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Figure 6.5.5: Impact of number of subscribers on IPITT plan execution metrics

higher number of actions per step does not influence the queue size of individual

brokers.

Figure 6.5.5¢c shows that increasing subscribers results in a sublinear growth of
the queue size of brokers by up to 110% when the number of subscribers increases
by a factor of 5. The reason is that for the same workload, a higher number of
subscribers downstream (at leaf brokers) results in a higher number of publications
routed downstream. Therefore, the number of publications in transit is higher at any
given time when compared to measurements using the same overlay and workload
but with a lower number of subscriptions. In fact, any parameter that increases the
number of publications in the overlay, such as publication rate and match ratio, will
have the same effect on the brokers during topology transformation. This experiment
shows that plans generated by IPITT can perform incremental transformations on

the overlay with minimal load increase on brokers.
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CHAPTER 7

Delivery Guarantees in
Distributed Content-Based
Pub/Sub

In this chapter, we present a set of Pub/Sub Delivery Guarantees (PSDG) which
addresses the shortcoming of existing delivery guarantees and simplifies development
of distributed applications based on a pub/sub service. We explain the shortcomings
of the delivery guarantees which do not consider the message installation period
in Section 7.2. In Section 7.3 and 7.4, we introduce a set of delivery guarantees
for overlay-based pub/sub systems and corresponding routing algorithms to provide
these guarantees. Lastly, we present and discuss the result of our experimental

evaluation in Section 7.5.

7.1 Message Installation in Distributed Pub/Sub

Figure 7.1.1 shows an example of a content-based pub/sub system. The overlay
consists of five brokers and brokers BI, B3, B} and B5 are the EBs of S1, P1,

S2 and P2, respectively. Clients can submit different types of messages to their
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EBs, where a message m € {a,s,p, ua, us}, namely, advertisement, subscription,
publication, unadvertisement and unsubscription. In such a pub/sub system, message
m is considered installed on a broker B, when m is received and processed by B.
Processing m on B includes updating the routing tables if necessary and sending out
new messages in order to route m. Message m is considered installed in the overlay
when it has been installed on all brokers receiving m.

s1= {clais=temp, val < 0} a1 ={class=temp, city=tor,Aval>-40}

.51 @ @ @ P1
S'2 @ @ P'2

v v
s2 = {class=temp, val<20} a2 = {class=temp, city=muc, val<50}

Figure 7.1.1: Content-based publish/subscribe

In the life cycle of each pub/sub message m, we consider three stages identified by
timestamps m,, m, and m, (Table 7.1.1). For example, in Figure 7.1.1, s1, is the
time that B1I receives s1. Since s1 matches both al and a2, s1, is the time that s1 is
processed by the brokers on Trp(s1)-EB(PI) (the path connecting EBs of S1 and P1)
and T'rp(s1)oEB(P2), namely, B, B2, B3 and B5. Note that due to link latency and
message processing time the following is always true: my < m, < m,. Furthermore,

we define the installation time of message m as m; = m, — m, (Figure 7.1.2).
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Figure 7.1.2: Installation time for subscription s

For the remainder of this chapter, we make the following assumptions on the
underlying pub/sub system:

1. Brokers are connected to each other in an acyclic topology. Messages between
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two neighboring brokers are transmitted without message loss or reordering.

This can be provided using reliable TCP connections.

. Brokers process messages in the same order that they are received. In

combination with the previous assumption, this means publication delivery in

the overlay maintains per publisher ordering.

Overlay brokers have clocks synchronized up to an error bound. The clock
synchronization can be NTP or more accurate methods such as GPS-based

clock synchronization.

. Lastly, each client publishes publications with unique increasing IDs. This can

be achieved by giving publishers a unique ID and making sure each publication

contains the publisher ID and an incrementing publication ID.

A, UA set of all advertisements and unadvertisements in the system
S, US set of all subscriptions and unsubscriptions in the system
P set of all publications in the system

IT set of all publishers in the system

)y set of all subscribers in the overlay

B set of all brokers in the system

m = m/ message m matches message m’

Tsop CB subtree connecting brokers B and B’

C(m) client generating message m

EB(m) edge broker of C(m)

my the time that message m is generated on C(m)

m, the time that message m is received by EB(m)

my, the time that message m is installed in the overlay

mf the time that message m is installed in Trp(m)e B

m; = my, —m,  the installation time of m in the overlay

mbP = mf —m, the installation time of m in Trp(m)wn

S(p) set of subscriptions matching p € P

P(s) set of publications received by C(s),s € S

P, set of publications published by publisher 7 € II

P.(s) set of publications published by 7 and received by C'(s)
P(s) set of publications received by C(s) during s;

P (s) set of publications published by 7, received by C(s) during s;

Table 7.1.1: PSDG Notations
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7.2 Shortcomings of Existing Delivery Guarantees

Existing pub/sub systems guarantee publication delivery to all matching subscriptions
in the system. However, this guarantee is only provided for subscriptions that
are installed in the overlay [14, 26]. This means that the subscription has been
forwarded according to the SRT on each broker and has updated the PRT of each
broker. Therefore, based on existing guarantees, the set of publications received by
subscription s is P(s) = {UP,(s) | Vr € II}. For each publisher 7, P.(s) = {p €
P. | p > sf Ap E s}, where B is the EB of w. For example, in Figure 7.1.2, where
susbceriber o matches publishers w1 and 72, the set of publications guaranteed to be

delivered to o is any publication in {p6, p7,p'6, p’7} that matches s.

The installation time of message m, m;, is a function of the overlay size, link latency
and processing power of the overlay brokers. During the installation time, the delivery
guarantees of the distributed pub/sub system is non-deterministic [25] as the overlay
routing state takes some time to stabilize after a new message is submitted to the
overlay [26]. Furthermore, m; can change if for example the overlay is elastic and
adapts to the existing load. In the following, we explain the consequences of an

unknown m; in a distributed pub/sub system.

Unknown s; — For a subscription s, s; = maz({s”””|Va € A, s = a}) , i.e. when
s has reached the EB of all matching advertisements. For each publisher with
advertisement a, m = C'(a), the set of publications that C(s) should receive from

during s;, P(s) = {p € Pr | s, < p, < s Ap |= s}, i.e. publications published while
s is propagating towards the publisher, where B is the EB of publisher w. Therefore,
P'(s) = UPL(s), i.e. any publication that arrives at its EB after its matching
subscription s is received by its EB but before s is installed on Tgp(s)Epp). The
set of publications received by s from publisher 7 consists of publications published
during s; and publications published after s,. Furthermore, P}(s) C P,(s). For
example, in Figure 7.1.2, P} (s) = {p3,p4,p5} and P, (s) = {p'3,p'4,p'5}. However,
for two identical subscriptions s and s’, submitted at the same time to the overlay
(s, = s.), connected to different edge brokers, EB(s) # EB(s'), Pi(s) and P(s') can
be different and consequently P, (s) # P.(s’). The reason is that there exists no

delivery guarantees clarifying P*(s) and this set depends on the overlay and existing
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subscriptions.

Let Tepp)eeB(s) be the subtree that connects publisher 7 = C' (p) and subscriber
o = C(s). For each p € P'(s), p is delivered to s if one of the following two cases

occur.

1.3 ¢ € S such that TEB(p)HEB(s) g TEB(p)HEB(s’) and P ): S/, 1.€. an existing

subscription s’ results in p being propagated towards s even though s is not

fully propagated.

2.3 ¢ S S such that TEB(p)HEB(S) §Z TEB(p)<—>EB(s’) and
TuBp)EBs) NV TEBp) - EBs) 7 D, i.e. a existing subscription s’ covers part of
the path that p must traverse towards s, and s reaches the broker that disjoints

the two paths before p.

Otherwise, s does not receive p. As an example of case 2, let’s assume in Figure
7.1.1, s1, > s2,, namely, sl arrives at B1 after s2 is installed in the overlay. Since
s1 C s2 and the two paths connecting S1 and S2 to P1 have overlaps but are not
exactly the same, during s1;, any p that matches both sl and s2, is delivered to sl
only if p arrives at B2 after sl is installed on B2.

Unknown p; —An unknown installation time for publication p means that a publisher
does not know when its publication p has reached the EB of all matching subscribers.
If for example, a publisher wants to wait for the delivery of a publication before
leaving the overlay, it has to resort to estimating p; or use distributed coordination
services. Similarly, as a result of an unknown us; and ua;, clients do not know when

an unsubscription or unadvertisement has been completely processed by the overlay.

The unknown installation time of a message, as described above, applies to distributed
overlay-based pub/sub systems that utilize a multi-hop message forwarding scheme.
SIENA addresses the message installation time by providing guaranteed delivery
only to subscription that are installed in the overlay [14]. Google Pub/Sub provides
a similar guarantee, however publishers and subscribers are connected via only

two brokers and the system makes sure that the path between each publisher and
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subscriber EB is the shortest path via the Google datacenters [10], thereby minimizing

the installation time.

DC1 replication DC2

B1 protocol B2
TNS2

P1 P2

Sip-

ny

Figure 7.2.1: Cross Datacenter pub/sub

Some pub/sub systems, such as Kafka [64], Pulsar [63] and BlueDove [135], use
a one-hop communication in the overlay whereby a publisher and subscriber are
connected via only one broker. This one-hop message forwarding scheme (a.k.a.
rendezvous-based routing), while limiting the propagation time of a message, can
still suffer from unknown installation time. These systems partition the publication
space and assign each topic (or attribute space in case of content-based pub/sub) to
a specific broker. While in single-datacenter scenarios, these systems can perform
well, in multi-datacenter scenarios, the unknown installation time of a message can
become an issue. In multi-datacenter scenarios, these systems resort to one cluster
(overlay) per DC and use replication to address cross datacenter partitioning of
the publication space. For example, in Figure 7.2.1, P1 and S1 are located in one
datacenter (DC1) and P2 and S2 are located in DC2. Since both subscribers are
interested in both publishers, due to the potentially high-latency connection between
B2 and BlI, s, is unknown and P}, (s’) can be different than Pg,(s). Even if all
publications of PI published via BI are replicated to B2, without clearly specifying
P'(s) and P'(s’), P(s) can be different from P(s’). Topic-based pub/sub systems that
use a log (a.k.a. ledger) abstraction, such as Kafka and Pulsar, provide the concept
of cursors (i.e. a log offset) which can be used to refer to a specific message in the log.
While log offsets are specific to log-based systems, we use a generalization of this
idea as the basis for one of the delivery guarantees that we propose. Some pub/sub
systems such as Wormhole [65], omit the broker and have publishers directly serve
subscribers. While reducing message installation to possible minimum, these systems
have very limited scalability in terms of number of subscribers that a publisher can

serve.

The unknown installation time of messages in the overlay also affects the brokers. For

example, Listing 7.2.1 shows a snippet from an existing pub/sub system resorting
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to estimating the time required for queued messages to get installed in the overlay,
before the broker can shutdown. Allowing the broker to receive a notification when
the last queued message is installed in the overlay, would provide a more reliable

alternative.

public void shutdownBroker() {

// prepare broker for shutdown and update neighbors

// Allow some time for the message to get through

// using some statistical data

long t = //estimated installation time for queued messages
sleep(t);

inQueue.add(new ShutdownMessage());

brokerCore.shutdown() ;

Listing 7.2.1: Estimating message installation time

7.3 Message Installation and Delivery Guarantees

In this section, we present acknowledgment-based (ack-based) message installation
for pub/sub and three new delivery guarantees that can be utilized by subscribers

to clearly specify P!(s) and consequently P(s).

Ack-based message installation: Any client C' can request an acknowledgment
(ack) for any message m that it sends to its EB. C receives the ack, ack,,, when m

is installed in the overlay and ack,, is propagated back to EB(m).

Using the ack-based installation, a publisher can make sure that its advertisement a
is installed in the overlay by waiting for ack,. Similarly, to make sure a publication
p has been received by the EB of all existing subscribers, a publisher can request
an ack and wait for ack,. This ack-based installation is a generalization of the reply
message in pub/sub-with-reply [57, 58], where a reply message is proposed only for

publications.
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Due to the decentralized routing information and limited overlay knowledge of each
broker, a broker is not aware of all the other brokers that need to process m in order
for ack,, to be sent to the client. Therefore, in order to maintain the scalability
and anonymity provided by the pub/sub paradigm, ack messages should also be
forwarded in a hop-by-hop fashion.

In order to collect and aggregate ack messages, we use a generalization of the KER
approach proposed by Cugola et al. [57]. We generalize this approach by determining
the number of ack messages to collect for advertisements (and unadvertisements)
based on Np (the set of neighboring brokers of B) and for subscriptions (and
unsubscriptions) based on matching advertisements in SRT. In case of advertisements,

each broker B waits for [Np| — 1 acks.

In this work, we distinguish between two states that a subscription can have: installed
and active. Upon processing s at broker B and adding s to its PRT, s is considered
installed at B. However, an installed subscription is initially inactive and is not
considered for matching upon processing a publication. In order for s to become
active and be matched with arriving publications, s must be explicitly activated.
Note that in existing pub/sub systems, a subscription is active upon being installed
in the PRT.

Next, we explain three delivery guarantees that a subscriber can specify, ack-based,
time-based and ID-based.

Ack-based delivery guarantee: This guarantee is based on ack-based message
installation for subscriptions. A subscriber requesting an acknowledgment upon
submitting its subscription s to its EB is notified when s is installed in the overlay.
Furthermore, no publication is delivered to s before it is installed in the overlay. The

set of publications received by s is P(s) ={p € P | p = sAp, > sp}.

Note that a subscription might receive publications before it is completely installed in
the overlay, depending on which broker it is connected to and existing subscriptions

in the overlay, as described in Section 7.2.

While the ack-based delivery guarantee defines P?(s) based on the condition that s is
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installed in the overlay, the next two delivery guarantees, which we collectively refer
to as ref-based delivery guarantees, allow a subscriber to define P*(s) with regards to

a given timestamp or publication ID.

Time-based delivery guarantee: A subscriber requesting a time-based delivery
guarantee for subscription s can specify P*(s) by providing a timestamp that serves as
s, on all matching publishers. The set of publications received by s is P(s) = {p € P|
p E s Ap. > s.timestamp}. In other words, a subscriber can specify a point in time

where s is considered active in the overlay.

When a time-based delivery guarantee is requested without specifying a timestamp, a
subscriber is considered active as soon as it is received by its EB (s.timestamp = s,.).
Therefore, regardless of overlay size and propagation time the subscriber receives
any matching publication that enters the overlay at the same time or after s. By
explicitly defining s.timestamp, the time-based delivery guarantee allows a subscriber

to receive publications published in the past or to subscribe to future publications.

As the time-based guarantee relies on timestamps generated on EB of publisher
and subscribers, the accuracy of the provided guarantee depends on the clock

synchronization accuracy and has an error range of 26 where ¢ is the accuracy of the
clocks on EBs.

The time-based guarantee can be used by a group of subscribers located on different
parts of the overlay to receive the same set of publications. However, since sub-
scriptions timestamped by different £Bs will not have the exact same s,, for each
subscription s, P(s) can be different. In order to resolve this problem, we introduce
the notion of subscription groups (sgroup) into our pub/sub model. An sgroup is a
set of subscriptions identified with the same group ID. The timestamp of the first
subscription group member that is received by the publisher’s EB is considered as
the s, for all group members on that EB. This is necessary to make sure that other
group members arriving after s, receive the same set of publications that was sent to
C(s). Therefore, for a subscription s which is a member of the sgroup G, the set of
publications received from publisher 7 is P.(s) ={p € P:p = s Ap. > G,} where
G, is s, of the first subscription belonging to G that reaches the EB of publisher

7. Note that sgroup is a different concept than consumer group in Kafka [136].
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Consumer groups provide a way to distribute publications on a topic among the

group members, for example, in a round robin fashion.

As an example, consider an application consisting of a data producer and several
workers that subscribe to the producer and are required to receive the same set of
publications once they join the overlay. Even if all workers submit their subscriptions
at the same time to the overlay, they might see a different publication set for Pi(s).
In order for the subscribers (i.e. workers) to see the same set of publications, they

can all be assigned the same group ID with s.timestamp = s,.

ID-based delivery guarantee: A subscriber requesting an ID-based delivery
guarantee for subscription s specifies P?(s) by providing a publication ID pidp, for
each matching publisher 7. The set of publications received from 7 is P,(s) =
{p € Pr : p = sApld > pidp}. Therefore, the subscriber includes a map M
which maps a publisher 7 to pidp. If M does not specify pidp for a publisher P,
Pr(s) ={p € Pr:p = sAp, > s]} where B is the EB of publisher 7. Alternatively,
we can use a time-based guarantee as default and consider s, as the activation time

of s w.r.t. a publisher that has no entry in the map.

The ID-based guarantee provides a similar mechanism to the log offsets in Kafka
[136], where any topic is considered an append-only sequence of publications ordered
by time. As an example, in Figure 1.3.1, if the dispatcher decides to create a new
worker in order to handle some part of the tasks published from the client, the new
worker can submit a subscription to receive tasks from a client starting with a specific

number.

Some pub/sub systems support advertisement covering in order to reduce the size of
the SRT, a similar approach to subscription covering [36]. In this work, we do not
support advertisement covering. We require each advertisement to be known by all
brokers in the overlay and each advertisement can be identified by a unique ID on
each broker. Furthermore, in order to be able to distinguish among two publication
streams coming from two publishers with covering advertisements, each publication
must include its matching advertisement ID. Alternatively, we can use advertisement
covering and assume all matching publishers of a superset advertisement as one

stream of publications.

128



CHAPTER 7. DELIVERY GUARANTEES IN PUB/SUB

7.4 Routing Algorithms

In this section, we present algorithms for routing messages in a distributed content-
based pub/sub system that supports ack-based message installation and the delivery
guarantees presented in Section 7.3. These algorithms are an extension of the reverse-
path-forwarding-based routing algorithms for content-based pub/sub [14]. In our

routing algorithms, we also provide support for subscription covering.

SRT subscription routing table

PRT publication routing table

Np overlay neighbors of B

ACKS table of received acks per msg and link

Groups groups known to B

IsActive subscription activation status per advertisement

StoredPubs stored publications per publisher

Table 7.4.1: Data structures on broker B

Table 7.4.1 shows the data structures that each broker
B must maintain. Besides the routing tables PRT and
SRT, and the neighborhood Np, brokers maintain
four additional data structures. ACKS is the table
of received acknowledgments per link for each message.

For example, in Figure 7.4.1, while an advertisement a

with a requested ack coming from P1I is being flooded

in the overlay, B2 maintains an entry for a in the
v Y Figure 7.4.1: Subscrip-

tion installation paths
outgoing link, i.e., B2-B/ and B2-Bj. In order to keep  with subscription cover-

ACKS table with two pending ack entries, one per each

track of the existing subscriber groups in the overlay, ing

brokers gather group information from subscriptions

they process. For each group g € Groups, broker B keeps one timestamp. Therefore,
each publisher EB knows of only one timestamp (i.e. the first one to reach the broker)

and uses that for all subscriptions of the same group.

While subscriptions are being installed in the overlay, we must prevent unwanted

publication deliveries that can happen due to overlapping paths of two similar
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subscriptions. Therefore, for each subscription s, the EB of s, maintains a flag
whether s is installed in the overlay. An ack-based subscription s is considered active
when it is installed with respect to all of its matching advertisements. However, a ref-
based subscription s’ is activated independently for each matching advertisement. The
reason is that an ack-based delivery guarantee delivers publications to a subscription
s (i.e. considers s active) only when it is installed in the overlay w.r.t. all matching
advertisements. Therefore, IsActive contains one flag for each ack-based subscription
and a list of flags (one per matching advertisement) for each ref-based subscription.
In the latter case, each flag indicates whether s is installed w.r.t. a specific publisher
identified by its advertisement a. IsActive is maintained only on EB of s. In order to
improve readability of the algorithms, reading subscription status at broker B # EB(s)
always returns true and updating the subscription status of s at B # EB(s) is ignored.

Furthermore, EB of publisher m maintains a buffer of the recent publications of 7.

7.4.1 Handling Advertisements

In Algorithm 10, upon receiving advertisement a, after updating SRT and forwarding
a, if an ack is requested for a, broker B sets up a timer waiting for acknowledgments.
If B is an edge broker receiving a, Line 5, it sends back an acknowledgment. In order
to reduce the number of ack messages in the overlay, rather than sending all acknowl-
edgments for a message m back to EB(m), we aggregate acknowledgments on each
intermediate broker, as shown in Algorithm 11. Upon receiving all acknowledgments
for an ack-based subscription s, EB(s) marks s as active. In case an acknowledgment
does not arrive on time, a timeout occurs and a negative acknowledgment is sent
back to inform the subscriber. As an acknowledgment is routed similar to other
message types in the pub/sub system according to Ng, SRT or PRT, failure can be
addressed using existing works on reliable message delivery [20, 59] which is not in

the scope of this work.
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Algorithm 10: Handling advertisements on Broker B

Function ReceiveAdv(a)

SRT [a] < a.lastHop

nextHops < Np — a.lastHop

if a has ack request then

if nextHops = @ then // reached an edge broker

| send(ack,, a.lastHop)

else
ACKS [a][V | € nextHops| = false
StartAckTimer(a)

send(a, nextHops) // flood to next hops

© 000 N o Gk W N -
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Algorithm 11: Handling ACKs on Broker B

1 Function ReceiveAck(ack)

if waiting for ack has not timed out then

ACKS [ack.msg|[ack.lastHop| < true

if received all pending acks for ACKS [ack.msg] then
if ack is for an ack-based s and B = EB(s) then
| IsActive [s] < true
send( ack, ack.msg.lastHop)

N o oA W N

7.4.2 Handling Subscriptions

Subscriptions are routed based on Algorithm 12. Upon receiving subscription s, EB(s)
timestamps s in order to record the time that s entered the overlay. This timestamp
is used for time-based subscriptions which do not explicitly define s.timestamp. Next,
after updating the PRT and finding next hops to route s to, Broker B searches
for a covering subscription s’ for s. If subscription s is ack-based, it is marked not
active until s is installed in the overlay and an ack message is received. On any
given subtree T rooted at Broker B, the number of acks that B must wait for before
aggregating the acks for the subtree T is determined based on the SRT. Similar
to Algorithm 10, starting with Line 14, Broker B sets up pending ack flags and
timers and forwards s. On the subtree T, s is considered installed when either of the

following two conditions are true (Line 10):
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Algorithm 12: Handling subscriptions on Broker B
Function ReceiveSub('s)

1
2 timestamp s // only if B = EB(s)
3 advs <— SRT .findMatch(s)
4 nextHops < {a.lastHop : ¥V a € advs}
5 coverSub <— s’ € PRT : s C s // find covering sub
6 update PRT with s
7 switch guarantee type of s do
8 case ack-based do
9 IsActive [s] <— false // only if B = EB(s)
10 if found active coverSub or nextHops = @ then
11 IsActive [s] <— true // only if B = EB(s)
12 send(acks, s.lastHop)
13 else
14 ACKS [s]|[V s € nextHops| < false
15 StartAckTimer(s)
16 send(s, nextHops)
17 case ID-based or time-based do
18 UpdateGroups(s) // see Algorithm 13
19 groupTS < getTimestamp( s)
20 IsActive [s][a € advs] < false // only if B = EB(s)
21 for a € advs do
22 if B =EB(a) then
23 pubs <— GetMatchingPubs( s, groupTS, a)
24 bp = new BatchPub(pubs, a, )
25 send( bp, s.lastHop) /] ReceiveBatchPub(bp) if B = EB(s)
26 send(s, nextHops)

1. There are no more brokers left in T to install s.

2. There exists a covering subscription s’ on B which is active.

In the second case, when s reaches B, existence of an active s’ on B guarantees
delivery of any matching publication published in the subtree T" to B and therefore
s can be safely considered active on 7T'. For example, in Figure 7.4.1, upon receiving

S2, B3 can issue ackgs without further forwarding S2.

If s is ref-based, after updating group information known to B, the subscription is
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Algorithm 13: Handling buffered publications and groups

1 Function GetMatchingPubs(s, timestamp, a)
// return set of matching publications for s from
// StoredPubs [a.publisherId], filtering based on

// reference or timestamp if necessary

Function UpdateGroups(s)
3 if s.groupld is set and s.groupld ¢ Groups then
| Groups [s.groupld] <— new Group(s.timestamp)

N

'

Function getTimestamp('s)
if s has no groupld then
return s.timestamp
return Groups [s.groupld].timestamp

o 94 o wm

marked inactive with respect to each matching advertisement a. This is only done
on the FB of s. Subscription s is considered active w.r.t. a when EB of s receives an
acknowledgment from EB of a. This acknowledgment is of type BatchPub, a special
publication addressed only to s. BatchPub.pubs contains IP}(s), a subset of matching
publications that EB(a) has received during s;, filtered based on s.timestamp or

publication IDs recorded in M|x|, where 7 = C(a).

Unlike ack-based subscriptions, ref-based subscriptions must be routed towards EB
of any matching publisher, even if there exists an active covering subscription on the
subtree leading to the publisher. This is necessary in order to fetch any matching
publications that was published before the subscription arrives at the EB of the
publisher. Without complete propagation of the subscriptions, in order to serve
any subscription s arriving at broker B where a covering subscription s’ already
exists, B must buffer any publications matching s’. While this leads to lower cost for
delivering P(s), all brokers in the overlay must provide the same buffering capacity
as the EB of the publisher, in order to be able to serve any potential subscription
that might be covered by an existing active subscription on the broker. Therefore,
in order to buffer publications only on EB of the publisher, we require subscriptions
to be fully propagated in the overlay even in subtrees where there already exists
a covering subscription. Although this prevents the covering relation to save the
message overhead of subscription forwarding, it does not hinder the main advantage

of subscription covering, namely smaller PRTs on brokers. The reason is that when
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Algorithm 14: Handling batch publications on broker B

Function ReceiveBatchPub(bp)
if B = EB(bp.s) then
IsActive [bp.s][bp.a] < true
for p € bp.pubs do
‘ send(p, PRT [bp.s].lastHop)
else if found coverSub then // s’ € PRT :sC ¢
‘ send(bp, coverSub.lastHop)
else
| send(bp, PRT [bp.s].lastHop)

© 0 & ook W N

a covering subscription exists on the broker, a new PRT entry is not created.

BatchPub messages are processed according to Algorithm 14. The BatchPub message
bp is routed back towards the subscription s that resulted in bp. Upon receiving bp
by the EB(s) (Line 3), s is marked as active w.r.t. the advertisement a matching bp.

Furthermore, the included publications in bp are sent one by one to the subscriber.

While it is possible for EB of a matching publisher to directly send bp to the EB of
s, doing so can violate the per publisher ordering guarantee. Therefore, we simply
forward bp back to s through the overlay. Only in cases where bp.pubs is empty, it is
safe to send bp directly to the EB of s. Note that, in any case, bp must be received
and processed by EB of s in order for s to be activated w.r.t. a. Furthermore, unlike

ack-based subscriptions, we do not aggregate BatchPub messages.

7.4.3 Handling Publications

Publications are routed according to Algorithm 15. Since the EB of each publisher
keeps a buffer of the recent publications published by the publisher, upon receiving
a publication p by EB of publisher 7, p is added to this buffer. Next, matching
subscriptions are looked up from the PRT. For each matching subscription s, if s is
ack-based, B forwards p to s if s is active. Since this status is maintained only on
EB(s), on other brokers, Line 9 is always true and therefore, p is forwarded towards s

regardless of whether s is active or not. Similarly, if s is ref-based, only EB of s checks
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Algorithm 15: Handling publications on broker B
1 Function ReceivePub(p)

2 if B =EB(p) then

3 ‘ update StoredPubs [p.publisherId] with p

4 subs <— PRT .findMatch(p)

5 nextHops < {}

6 for s € subs do

7 switch guarantee type of s do

8 case ack-based do

9 if IsActive [s] = true then

10 ‘ nextHops < nextHops U {s.lastHop}
11 case time-based or ID-based do

12 if IsActive [s][p.a]

13 and p satisfies timestamp /pidp of s then
14 ‘ nextHops < nextHops U {s.lastHop}
15 send(p, nextHops)
16 if ack requested for p then

17 if nextHops "Np = & then // reached an edge broker
18 ‘ send(ack,, p.lastHop)

19 else

20 ACKS [p][V | € nextHops : | € Np | + false

21 StartAckTimer(p)

whether s is active w.r.t. a and whether p satisfies s.timestamp or the publication

ID mentioned in M. If so, p gets forwarded towards s.

As a consequence of maintaining subscription status only on the EB of the sub-
scription, matching publications for a subscription s are received by the EB of s
and dropped if IsActive [s| or IsActive [s][a] is false. While this can increase the
message overhead, it simplifies the approach as otherwise each broker located on the
path between s and any matching publisher must maintain the status of s. These
dropped messages are incurred only when s is covered by another subscription s’
which attracts publications while s is being propagated towards the publisher, as
otherwise, s has no PRT entry on the publisher’s EB. For example, in Figure 7.4.1,
after S2 is processed by B3, until bpg, activates S2, all matching publications that are
sent to B6 because of S8 (which covers S52), are also sent to B6 and dropped there.

Therefore, for a pub/sub system with reasonable subscriber churn, this message
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overhead is small and can be ignored. Alternatively, we can maintain status of s on

each broker on the path and prevent forwarding of messages at the covering broker.

The number of publications that gets buffered on EB of the publishers is a con-
figuration parameter. This publication history size parameter defines how long a
publication p is buffered in StoredPubs on EB(p). While providing an ack-based
delivery guarantee does not require buffering publications, in order to provide ref-
based guarantees where s.timestamp = s,, the publication history size must be large
enough to buffer a publication for at least 27, where 7 is the time that it takes for a
message m to traverse the diameter of the overlay. Publication history size is similar
to the log size of systems such as Kafka and can be configured depending on the

application deployed on top of the pub/sub system.

Unadvertisement and unsubscription messages which have an ack requested are
handled similar to the previous algorithms by maintaining and aggregating acknowl-
edgment flags. Furthermore, any unadvertisement ua and unsubscription us is
effective as soon as it reached the EB of the issuing client. For an unsubscription us,
this means any publication arriving at EB(us) after us, is not delivered to C'(us).
For an unadvertisement ua, any publication p arriving at EB(p), such that p, > ua,
and C(p) = C(ua), is ignored.

7.4.4 Avoiding Duplicate/Missed Publications

In the ack-based delivery guarantee, the EB of the subscriber s makes sure that no
publication is delivered to s before receiving acks. After receiving ack,, s is installed
and active and the pub/sub system delivers any publication that reaches EB(s) after
the acks to C(s). However, for ref-based subscriptions, there can be scenarios which
leads to duplicate or missing publications. For example, in Figure 7.4.2, there are
three publishers matching s (ref-based) on B. The highlighted publications of each
publisher, are the ones already processed and buffered on B. The first publication not
highlighted, is the next publication to be processed from the publisher, namely p1.3,
p2.2 and p3.3 for P1, P2 and P3 respectively. If B processes messages it receives

without any specific order, one of the following two cases can happen:
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S p1.1,p1.2)p1.3, ...
" p2.1,p2.2,p2.3, ...

S \ P31 p312)p3.3, ...

Figure 7.4.2: Processing order on broker B1

While s is being processed on BI and before bp, is sent back, it is possible that a
publication is sent on ¢ after adding s to the PRT but before bp, is sent. Since bp, is

not sent back and s is not active, this can lead to missing publications on C(s).

Alternatively, to avoid missing publications, we can mark publications received by B
while s is processed and sent them to s after bp,. However, if meanwhile they have
been forwarded to another matching subscription s’ that covers s (similar to the

example in Figure 7.4.2), resending them can result in duplicate delivery to C'(s').

In order to guarantee that none of the above happens, each broker must provide
the following processing order guarantee regarding the order according to which

incoming messages are processed on the broker:

Processing Order Guarantee — Upon receiving subscription s from link ¢ on
Broker B, B guarantees that for each matching publisher m connected to B, no

publication matching s is sent out on ¢ before bp, is sent out on /.

Providing the proposed processing order guarantee on each broker B in the overlay
guarantees that for each subscriprion s and matching publisher 7, P, (s) has no miss

or duplicate publications.

Proof. The proof relies on the per publisher ordering guarantee provided by the
pub/sub system. Upon receiving s, Broker B guarantees sending out bp, to C(s)
before processing any publication from publisher 7 (with advertisement a) matching

s. Any publication p where p, < sf and p = s is included in bps. Furthermore,

B
Do

sent. Therefore, B sends first bps (containing matching publications received by B

any publication p’ such that p’ = s and p/ > s, is not processed before bp; is

before s) and then any publication arriving at B after s. Due to the per publisher
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ordering guarantee provided by the system, all brokers first receive bp, and following
publications from 7 in the same order sent by B. On each broker, bp, activates s
w.r.t. a and therefore following publications are routed towards C(s). EB(s) forwards
the publications in bps.pubs and the publications following bps to C(s) and therefore,

C'(s) receives the matching publications from 7 without any misses or duplicates. [J

Relying on the processing order guarantee simplifies the algorithms and makes it
unnecessary to keep publication IDs on brokers in order to prevent duplicates. One
simple approach to provide the processing order guarantee is to provide mutual
exclusion between Algorithm 12 and Algorithm 15. Alternatively, in order to reduce

contention, more fine-grained locks (e.g. lock per entry in SRT) can be used.

7.5 Evaluation

In this section, we evaluate our approach (PSDG) which we have implemented in
Java on the PADRES pub/sub system [13]. We use a cluster of 20 Dell PowerEdge
R430 servers for our evaluation where each broker is located on one VM and the
latency between brokers is enforced using the Linux ¢¢ command to configure the

Linux kernel packet scheduler.

As a baseline, we use an existing pub/sub system that does not specify the delivery
guarantees during message installation. Instead, clients (i.e. publishers and sub-
scribers) are themselves responsible for specifying what happens while their messages
are propagated. Therefore, in the baseline, the ack-based installation and delivery

guarantees provided by PSDG are approximated by clients as follows:

e Ack-based installation and ack-based guarantee for subscriptions are emulated
on clients by using timeouts. As an example, after advertising, a publisher
waits for ¢ seconds and after this time it assumes the advertisement has been
completely installed in the overlay. However, there is on guarantee that the

installation has been completed successfully.
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e Time-based and ID-based guarantees for subscriptions are achieved on clients
by simply discarding publications that do not satisfy the ID or timestamp
constraints of the subscription.

Note that the baseline cannot guarantee publication delivery if subscription s
requests a ref-based delivery guarantee that matches publication p such that p, < s,.
Therefore, in these cases the baseline provides only the publications that are available

in the overlay.

7.5.1 Workload

Figure 7.5.1 shows the topologies that we use in the evaluation. Each topology is
represented with a dashed rectangle. The three overlays, ovi1, ov2, ov3 consist of 3,
6 and 10 brokers, respectively. Furthermore, the round-trip latencies between each
two neighboring brokers are given in milliseconds. We have selected the nodes based
on the available regions in Microsoft Azure [137] and the latencies are based on ping
results available from WonderNetwork [138].

Figure 7.5.1: Evaluation topologies

We evaluate PSDG and the baseline using a workload with the following parameters:
We use 10 publishers connected to one of the three brokers us-e, de-c and ch-e. In
other words, publishers can publish from one of these three regions. Each publisher
publishes 10 publications per second for 5 minutes. The content space consists of 5
different classes of publications, each with two attributes. Each attribute can have a

value between 0 and 1000. Each publisher generates publications based on uniform
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distribution from the content space. Subscribers are distributed among all brokers in
the overlay based on a random uniform distribution. Each subscriber subscribes to
one class of publications with the popularity of classes based on a Zipf distribution
with @ = 1 and the attribute range of each subscription based on a random uniform
distribution. In each experiment, initially, we have 20 subscribers in the overlay.
The rest of the subscribers join the overlay at a rate of 5 sub/sec and submit their
subscriptions. All subscribers join the overlay over a period of 30 seconds; after this
period no new subscriber joins the overlay. We study the impact of two variables
on our metrics. Overlay size is the number of brokers in the overlay (3, 6 and 10
brokers). Furthermore, we study the impact of the number of subscribers that join
the overlay each second (5, 10, and 15 sub/sec). The evaluation consists of three
experiments. In the following, for each experiment, we explain the purpose of the

experiment, the metrics we collect and the results.

7.5.2 Ack-based Delivery Guarantee

In order to evaluate the impact of the installation time on clients, we use a
workload where all subscriptions are ack-based and all advertisements and 10%
of the publications request an acknowledgment. Publication history size in PSDG is
set to zero and each broker waits at most 10 minutes for an acknowledgment. We
control the installation time by increasing the size of the overlay while measuring

the following metrics:

Ack-time is the time it takes for a publication p to be completely propagated in
the overlay and its acknowledgment, ack, to be delivered to the publisher of p. We

report the average ack-time across all publishers in the overlay.

While a publication is being propagated in the overlay, the publisher P must
temporarily buffer the publication in order to be able to retransmit the publication
if necessary. Only after receiving ack,, P is able to dismiss the publication p.
Publications in memory shows the number of publications that a publisher has to
keep in memory while they are being propagated in the overlay. For each publisher

P, we measure the number of un-acked publications that P keeps track of each
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second. We take average of all collected values for all of the publishers in the system.
For the baseline, where a timeout is used instead of an acknowledgment, we set the
timeout based on the maximum acknowledgment time measured by PSDG for the
same overlay rounded up to the next second. For example, if the maximum timeout
for an overlay of size 3 is 800 milliseconds, we set the timeout for the baseline to 1

second.

False positives are the publications that match a subscription s but are received by
s before s is fully installed in the overlay, Ppos(s) = {p € P | pZP) < 5,} . While
these false positives can happen in the baseline, PSDG prevents such deliveries. We
record the number of false positive publication deliveries for each client and report

the average.

Figure 7.5.2a shows the average time it takes for a publication p to be propagated
in the overlay, and the acknowledgments of the EB of matching subscribers to be
propagated back, aggregated and delivered to the publisher. As the overlay size
grows, the average path length connecting the publishers and subscribers increases
which results in the ack-time to increase by up to 54% when we increase the overlay
size from 3 to 10. Accordingly, as the average ack-time increases, the number of
publications that the publisher must keep track of increases (Figure 7.5.2b). In
comparison, a publisher using timeouts to keep track of delivered publications, needs
to buffer up to 10 times more publications. Note that, the buffering requirement of
the timeout approach depends on the maximum ack-time and publication rate of the
publisher which can result in keeping a large number of publications in comparison
to an ack-based approach that removes a publication as soon as the ack is received.
Furthermore, while here we have used the maximum ack-time measured in the overlay,
in practice, there is no upper bound on the maximum ack-time. Therefore, the actual
timeout used needs to be much higher in order to account for worst case scenarios.

Consequently, this results in higher buffering requirements in the timeout approach.

PSDG prevents publication delivery to ack-based subscriptions before they are fully
installed. This means for an ack-based subscription s, P’(s) = @. However, in the
baseline, P?(s) depends on existing subscriptions and the overlay. Figure 7.5.2¢ shows

that as the overlay size increases, up to 40% of the clients receive false positives.
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Figure 7.5.2: Impact of overlay size on PSDG metrics

Furthermore, the average number of false positives received by each client also
increases up to 17%. This is due to the longer paths that connect publishers and
subscribers as the overlay size grows. These longer paths result in a larger probability

for a propagating publication to cross a subscription path while it is being installed.

This experiment shows that providing an ack-based message installation can reduce
the buffering requirements of propagating publications by up to 10 times. Further-
more, the ack-based delivery guarantee can prevent any publication delivery before

the subscription is installed in the overlay.

7.5.3 Ref-Based Delivery Guarantee

In this experiment, we evaluate the impact of the installation period on subscribers

in terms of matching publications they miss. Furthermore, we show that even for
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identical subscriptions connected to different EBs in the overlay, the set of received
publications during installation time can be different. All subscriptions are of the ref-
based type and are chosen based on a random uniform distribution among time-based
and ID-based delivery guarantees. For time-based subscription s, s.timestamp = s,,
which means s is considered active as soon as it is received by its EB. For each
ID-based subscription s" we have: M[P] = s| * Ppuy rate, Va € A, s' = a where P is
the publisher with advertisement a, and s’g is the time that s’ is generated on the
client. In other words, s’ chooses a pidp that happens in the same second as s’ is
being sent to its £B. Furthermore, each subscription s has an identical copy s’, where
s and s’ belong to the same sgroup if they are time-based, or use the same M if they
are ID-based. However, the EBs of s and s’ are chosen randomly and therefore they
may end up on different parts of the overlay. Publication history size in PSDG is 2
minutes and each broker waits at most 10 minutes for an acknowledgment. Similar
to the previous experiment, we control the installation time by increasing the size of

the overlay while measuring the following metrics:

Missed publications are the set of publications that match subscription s, however,
due to the propagation delay of s, the subscriber misses these publications in the
baseline, while the time-based and ID-based delivery guarantees allow s to clearly
define the set of publications it receives during propagation. We count the number
of publications missed by a client in the baseline and report the average of all the

collected values.

Group difference is the number of publications that are different between two identical
subscriptions s and s’ submitted to the overlay at the same time. Therefore, if
A =TPi(s) and B = P'(s'), the group difference is defined as (A — B)U (B — A). This

metric shows the difference

Figure 7.5.2d shows that in an overlay of 3 brokers, up to 50% of the subscribers
do not receive matching publications that are published before their subscriptions
are fully installed in the overlay. The set of publications missed by subscription
s is a subset of {peP|s, <p, < 353(1’)}. Furthermore, due to the increase in
the installation time in larger overlays, increasing the overlay size can cause up to

60% of subscribers missing matching publications. The average number of missed
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publications also increases from 28 to 38 publications as the overlay size grows. Note
that, increasing the number of publishers and the publication rate of publishers can

increase the average number of publications missed by clients.

Figure 7.5.2e shows that 10% to 20% of the subscription groups receive different
sets of publications and the group difference increases by up to 3 times, from 23
to 92, when increasing the size of the overlay from 3 to 10. The reason is that as
the average path size grows, the installation time and consequently the size of P!(s)
and P!(s") also increase. This can lead to larger group differences for subscriptions
located on different EBs.

This experiment shows that in the baseline, even in small overlays, the installation
time influences the set of publications received by subscribers while PSDG allows
subscribers to clearly define the set of publications they receive during their installa-
tion time. Furthermore, while PSDG makes sure ref-based subscriptions belonging
to the same sgroup receive the same set of publications, in the baseline, the group

difference can be on average up to 92 publications.

7.5.4 Performance Evaluation

In this experiment, we compare PSDG and the baseline in terms of scalability and
resources required to route messages and deliver publications. Furthermore, we study
the impact of the new routing algorithms on the brokers and the clients. We use
a mixed workload where 50% of advertisements and 10% of publications request
an ack-based installation and each subscription chooses one of the three delivery
guarantees based on a random uniform distribution. Ref-based subscriptions use a
timestamp or publication ID that is chosen randomly from 10 seconds before to 10
seconds after subscription time s,. Publication history size in PSDG is 2 minutes and
each broker waits at most 10 minutes for an acknowledgment. In order to increase the
load on the overlay, we keep the overlay size fixed at 6 but increase the subscription

rate from 5 to 15 subscriptions per second. We measure the following metrics:

CPU load is the system load on each broker obtained from the top utility of Linux.
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We normalize the value by dividing the output of the 1 minute system load by the
number of cores. Therefore, a CPU load of 1 means that all cores are utilized 100%
and no process is waiting for CPU. For each broker, we measure the average CPU

load and report the average CPU load of all brokers in the overlay.

Memory usage is calculated by measuring the maximum memory usage on each
broker during the experiment, and taking the average of all maximum memory usages

collected.

Sent messages is the total number of messages a broker sends during the experiment.

We report the average across all brokers in the overlay.

Throughput is the the number of publications processed by a broker per second.
On each broker, we measure the number of publications processed per second. We
calculate the average throughput for each broker and report the average throughput
across all brokers in the overlay. This metric helps us study whether providing the

delivery guarantees impacts broker performance or not.

In order to study the impact that providing the processing order guarantee on brokers
might have on clients, we use the 99" percentile of Publication delivery latency (PDL)
at each client. We calculate the 99" percentile of PDL at each client and take the

average of this value across all clients.

As seen in Figure 7.5.3a and 7.5.3b, PSDG and baseline have similar CPU load and
memory usage. The memory usage increases for both approaches as the number of
subscriptions increases. This is due to the higher number of publications that need

to be routed when there are more subscribers in the overlay.

Figure 7.5.3c shows the total number of sent messages required to deliver all
publications in each approach. Although 50% of advertisements, 10% of publications
and 33% of subscriptions request an ack-based installation, the number of messages
sent by PSDG is only 2 to 3% higher than the baseline. This is due to aggregating
acknowledgments in PSDG which reduces the number of messages required to deliver
acknowledgments. Increasing the number of subscribers decreases the message

overhead of PSDG in comparison to the baseline. This is due to the increase in the
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Figure 7.5.3: Impact of subscription rate on PSDG metrics

number of subscriptions that receive false positives which is avoided in PSDG.

Figure 7.5.3d shows that the routing algorithms in PSDG do not hinder the throughput

of the brokers. The throughput for both approaches increases as the number of

subscribers and consequently the number of publications propagating in the overlay

increases. Furthermore, clients experience similar PDLs in both baseline and PSDG

(Figure 7.5.3e).

This experiment shows that PSDG is able to provide the delivery guarantees while

keeping a similar CPU, memory and network requirement to the baseline and without

impacting broker throughput or PDLs experienced by clients.
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Conclusions

8.1 Summary

In this work, we presented four approaches to address four non-functional require-
ments of a distributed content-based pub/sub system in order to facilitate adoption
of such systems for providing a dependable pub/sub service suitable for distributed

application development.

Firstly, we presented GEPS, a low-overhead gossip-based mechanism that increases
publication delivery ratio in case of broker failure without increasing delivery latency.
With this approach, we aimed at maintaining fault-resilience and scalability of
epidemic algorithms while minimizing their inherent redundancy. To this end, we
used a similarity metric and partial view of the overlay to forward publications past
failed brokers. GEPS provides a configurable approach to tune the message overhead
and fault tolerance trade-off. Using GEPS, a pub/sub service can reduce the impact
of broker failures on publication delivery and tolerate failure of large subsets of the

overlay.

The results of our evaluation based on synthesized and real-world traces confirms

that GEPS improves the delivery ratio of the underlying dissemination tree up to
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29%. Furthermore, we have shown that GEPS can provide higher delivery ratio than
the evaluated topology-based approach when failure rate is high (30% or more) or
the failures follow a non-uniform distribution. By comparing similarity-based and
random gossip target selection, we confirm the effectiveness of the similarity metric in
reducing the gossiping message overhead up to 70%. Compared to a topology-based

approach, GEPS results in 29% lower view maintenance cost.

Secondly, we presented PopSub, our approach to increase resource utilization of a
pub/sub system by prioritizing publications based on their popularity and handling
less popular publications with approaches that require fewer resources. The three
proposed approaches for handling unpopular publications provide different tradeoffs
and are suitable for different scenarios. Furthermore, by identifying unpopular
publications and using the proposed alternative dissemination approaches only for
such publications, PopSub is able to maintain the same publication delivery latency
for a majority of publications while increasing resource utilization of the system.
Using PopSub’s popularity-based routing scheme, a pub/sub service can improve its

resource utilization, and consequently, reduce its operational costs.

The result of our evaluations, using real-world workloads and traces, confirms that
PopSub is able to improve resource efficiency of the system by up to 62%, reduce
unnecessary publication forwards by up to 59%, and reduce popular publication
delivery latencies by up to 57% in an overloaded pub/sub system. Additionally,
these improvements can be achieved with workloads following any distribution of
subscriptions on the advertisements.

Thirdly, we presented IPITT, an integer-programming-based approach to incremental
topology transformation of pub/sub systems. Using an IP-based formulation, IPITT is
able to find transformation plans with a minimal number of steps and minimize
service disruption. Furthermore, IPITT facilitates integration of new constraints
and cost models to customize the generated plans. Using IPITT, a pub/sub service
can continuously evaluate and adapt its overlay to the existing usage patterns and

minimize the impact of performing overlay changes on the service users.

Compared to existing solutions, IPITT, with our proposed optimization heuristics,

reduces planning time by a factor of 10 while producing plans that have up to 45%
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fewer actions and can be executed up to 55% faster. Furthermore, we showed that

IPITT minimizes disruption to clients by producing plans with higher quality.

Lastly, we presented PSDG, a collection of message installation and delivery guarantees
for a distributed content-based pub/sub system. Using PSDG, a client can request
an acknowledgment for any message it submits to the overlay in order to be notified
when its message is installed. Furthermore, the proposed ack-based, time-based and
ID-based delivery guarantees allow subscribers to clearly define the set of publications
they receive during and after the propagation of their subscription in the overlay.
Using PSDG, a pub/sub service can ensure clear delivery guarantees to its clients

regardless of the size and latency of the overlay.

Our evaluation suggests that, without the proposed set of delivery guarantees, an
overlay-based pub/sub system can result in missing or false positive publications
due to the message propagation delay. Furthermore, by introducing the notion of
subscription groups, a group of subscribers can request to receive the exact same set

of publications and thereby avoid out-of-band communication or synchronization.
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8.2 Future Work

The GEPS protocol as explained in Chapter 4 provides a best-effort delivery guarantee.
However, the protocol can be extended to incorporate message retransmission. While
we use push messages to propagate publications during failures, a combination of
publication digest exchange and pull messages can be used to achieve 100% delivery
ratio. Another direction for extending GEPS is providing more sophisticated similarity

metrics to improve delivery ratio and lower message overhead.

IPITT can produce topology transformation plans consisting of different overlay
reconfiguration operators. As the current planner aims to reduce the number of
actions required to perform the transformation, it prefers larger modifications such
as move over shift. This means in conditions where for example, one move has the
same effect as three shifts, the planner will choose move. However, depending on
link latency and overlay load, performing the reconfiguration using a higher number
of shifts might result in lower service disruption. Future work can consider finding
run-time performance metrics that can be used to decide between move and shift
actions. Furthermore, the planner can be extended to allows customization of the

plan search based on these run-time metrics.
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