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Abstract—In Software Defined Networking (SDN) critical con-
trol plane functions are offloaded to a software entity known as
the SDN controller. Today’s SDN controllers are complex soft-
ware systems, owing to heterogeneity of networks and forwarding
devices they support, and are inherently prone to bugs. Our
previous work showed that Software Reliability Growth Models
(SRGM) can model the stochastic nature of bug manifestation
process open source SDN controllers. In this article we focus
on different applications of our SRGM framework crucial for
an efficient management of SDN-based networks. We provide
guidelines for network operators to decide when the controller
software is mature enough to be deployed in operational en-
vironment, based on the reliability requirements of network
applications, and quantify the marginal benefits of the prolonged
testing phase on the software quality. We show how the accuracy
of software reliability prediction in the early phase of the software
lifecycle can be improved by extrapolating the behaviour of
previous controller software releases. We also propose software
maturity metrics, that can be used by operators to discriminate
between the competing SDN controller designs, i.e., ONOS and
OpenDaylight, when software reliability is a major concern.

Index Terms—Software Defined Networking, SDN controller,
ONOS, OpenDaylight, open source software, software maturity,
software reliability, Software Reliability Growth Models.

I. INTRODUCTION

A. Motivation and problem definition

Software Defined Networking (SDN) is an architectural
concept of decoupling control and data plane, by outsourcing
all control plane decisions of forwarding devices to a logically
centralized software entity known as the SDN controller. The
SDN controller assumes the role of the network operating sys-
tem, providing an integrated interface towards the forwarding
devices, switches and routers, which significantly simplifies
the network management and augments its programmabil-
ity [1]. The controller monitors the state of the network by
gathering the statistics from forwarding devices, makes the
global routing decisions, and reacts on the events, such as
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link congestion or switch failure. In order to fulfil the long
list of tasks, today’s production-grade controllers, ONOS [2]
and OpenDaylight [3], have grown to be rather complex
pieces of software, consisting of more than a million lines of
code. Such a large and complex1 software inevitably contains
bugs, that may disrupt the network operation and corrupt its
performance, when triggered. Recent study on the hazards in
SDN-based Google network infrastructure [4] reported that
software bugs contributed to more than 33% of the high
impact failures documented in post-mortem reports, which
they attribute mainly to a high velocity of network evolution,
and the need to keep up with the growing user traffic and
demand for new features and services. Another large-scale
study by Microsoft [5] on root causes of customer-impacting
incidents in their production networks reports similar results,
and shows that software bugs contributed to 36% of critical
outages, being major problem, way ahead of hardware failures
and human errors.

Despite the magnitude and ubiquity of software failures,
there is a lack of the tools to quantify software maturity,
and predict the risk of the software related outages in SDN.
The performance reports and benchmarks on SDN controllers
are still limited to scalability and latency related metrics,
such as flow burst install throughput or flow reroute latency.
The reliability of the controller software, which is still a big
concern and a major obstacle for the wide spread adoption of
SDN in commercial telecom and industrial networks [6], is
addressed only by a limited number of studies [7]–[9].

B. Theoretical background and problem solution

Software reliability growth modeling (SRGM) is a statistical
framework, used to estimate the reliability of the software
components in their operational phase, based on the bug
manifestation reports from the testing phase. During the testing
and early operational phase of the software lifecycle the
faults are detected and removed, which eventually leads to
reliability growth. The core idea behind SRGM is to describe
the fault detection and fault resolution as stochastic processes,
whose parameters can be estimated from the empirical data,
i.e., the history of the previous bug manifestations. Once
the best stochastic model to describe the data is found and
parametrized, it can be used to estimate reliability metrics,
such as residual bug content, failure intensity2 or expected
time until the next failure, and conditional software reliability.

1As a reference, the latest Linux kernel has around 20 million lines of code.
2In the remainder of this article the terms bug (manifestation) and failure

will be used interchangeably.
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Moreover, SRGM enable the operators to estimate how relia-
bility metrics change over time, as the software matures. Such
software reliability metrics capture the relationship between
the testing effort and the software quality, which is highly
relevant for the software developers of SDN controllers. With
SRGM the risk of the software outages in a given period of
time can be predicted with the high accuracy, providing useful
guideline for the operators of SDN-based networks to take the
calculated risk and estimate the best software adoption time,
based on the reliability requirements of their network applica-
tions. The practical value of SRGM was already recognized
by Network Function Virtualization (NFV) community, which
has already included in the guidelines for the assessment end-
to-end reliability [10].

C. Our contribution

Our study aims to provide a framework to assess the
maturity of SDN controllers, from the perspective of software
developers and network operators. We extend our previous
work [9], which focused on applicability of SRGM and soft-
ware reliability of ONOS open source controller. In this article
we extend our study to OpenDaylight controller platform, and
explore different applications of our framework crucial for an
efficient management of SDN-networks. The workflow steps:
data collection, model selection, evaluation of reliability and
management KPIs, are illustrated in Fig. 1, highlighting our
main contributions:

1) Data collection: We gather the empirical data, i.e. cu-
mulative number of detected and resolved bugs, from
public issue trackers and provide a high level statistics
that can be deduced from such data, e.g., distributions
of time between failures and time to resolve a bug.

2) Model selection: We find the best SRGM to describe the
stochastic behaviour of bug detection and bug resolution
process in SDN controllers. We show that the bug
detection process can be described with the class of
S-shaped SRGMs, and further propose new class of
models for fault correction process, as well as their
corresponding fitting technique.

3) Evaluation of reliability and management KPIs: We
show how the software reliability metrics can be used
to assess the quality of the controller software over
time, and provide the guidelines for the optimal software
release and adoption time. We further propose two novel
applications relevant for the SDN community: i) early
prediction of software reliability based on the previous
releases and ii) software maturity metrics as a compar-
ison criteria between alternative software solutions.

The rest of the article is organized as follows. Section II pro-
vides an overview of the related work on software reliability
growth modeling. A theoretical background of SRGM frame-
work is presented in Section III. In Section IV the gathering,
processing and analysis of the bug reports is discussed. The
model selection is discussed in Section V, while Section VI
presents the applications of software reliability prediction for
network management community. We conclude the paper with
a summary and an outlook for the future work.

II. RELATED WORK

Software reliability growth modeling has been widely used
to estimate and predict the reliability of the software, and
in the past, many different models have been proposed. A
good overview of different classes of reliability growth mod-
els, together with their inherent assumptions and input data
requirements, can be found in [11]. In this section we present
the most relevant models, methods and tools for the fitting of
model parameters, as well as the applications of the software
reliability assessment.

Bug detection: The applicability of SRGMs for the model-
ing, analysis and evaluation of software reliability of open
source products was demonstrated in several case studies.
Zhou et al. [12] showed that the Weibull distribution can
describe well the bug manifestation rate for eight unnamed
software projects. Rahmani et al. [13] confirmed this result
by analyzing the bug reports for several popular big open
source projects, such as Apache HTTP server, Eclipse IDE and
Mozilla Firefox. Rossi et al. [14] studied failure occurrence
pattern across different releases of Mozilla Firefox, OpenSuse
and OpenOffice.org. All studied releases showed the learning
curve pattern, where the fault detection rate is slow at the
beginning until the community gets familiar with the product,
then it increases rapidly until only very few faults, whose
discovery is difficult, remain in the code. This effect is
captured well with S-shaped models. Syed et al. [15] and
Ullah et al. [16] studied the difference between the closed
and open source software with the inconclusive results. In this
work we compare eight most widely used SRGMs for the fault
detection process [17]–[24] in terms of their ability to describe
the empirical data.

Bug removal: The majority of the SRGM models assume
that once the bug is detected, it is corrected immediately, that
the debugging as always successful and without introduction
of new faults. A number of studies have modelled different
aspects of imperfect debugging [25]–[30]. Wu et al. [25]
described the fault resolution as a delayed fault detection
process, Pham et al. modelled the introduction of the new
faults [26], while Huang et al. [27] also include the changes
in debugging effort. Kapur et al. [28] generalized this result
and proposed unified approach to model the fault resolution
process, when both fault detection and fault removal are Non-
Homogeneous Poison Processes. Gokhale et al. [29] applied
the Non-Homogeneous Continuous Time Markov Chains (NH-
CTMC) to model the impact of arbitrary debugging policy,
while the study by Okamura and Dohi [30] modelled the time
dependency between the fault detection and fault correction
processes as a correlation. Comprehensive models have a large
number of parameters that have to be estimated, while the
number of data samples in the historical reports is often
very limited (as in the case with ONOS SDN controller),
which increases the risk of overfitting the data, as well as the
sensitivity of parameter fitting to the noise in the data. In order
to balance between the model accuracy and generalizability,
we propose a simpler class of models, based on the framework
presented in [28], together with their corresponding fitting
procedure.
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DATA COLLECTION MODEL SELECTION RELIABILITY KPIS MANAGEMENT KPIS

Analysis of empirical data
gathered from public bug
repositories:

(a) detected bugs
(b) resolved bugs

(a) Bug detection:
compare the most widely
used NHPP models

(b) Bug resolution: new
class of bi-variate NHPP
models*

(c) Parameter fitting:
regularized LSE*

(a) Residual bug content

(b) Expected time to
detect and resolve a bug

(c) Conditional software
reliability

(a) Optimal software
adoption and release time

(b) Early prediction of
software reliability*

(c) Maturity comparison
of alternative software
solutions*;

Fig. 1: Assessment of software maturity with Software Reliability Growth Models (SRGM) consists of four steps: (i) data
collection, (ii) model selection, (iii) evaluation of reliability KPIs and (iv) evaluation of management KPIs. The process
enhancements and novelty proposed in this article are marked with (*).

Model parameter fitting: The common statistical inference
techniques to estimate the parameters of SRGM are Maximum
Likelihood Estimation (MLE) and Least Square Estimation
(LSE), while historically Method of Moments (MoM), graph-
ical and simulation based approaches were used [11]. While
MLE is convinient for estimating the confidence intervals, LSE
is faster and easier to apply to the regularized models described
in the following section. Fitting of the model parameters to the
empirical data is done either with proprietary general purpose
statistical packages, such as SPSS, or specialized tools, such
as CASRE [31], SREPT [32] and CARATS [33], just to name
the few. In order to account for the newly proposed models,
and enhancements in the parameter fitting procedure we have
developed our own tool based on the libraries provided by the
Python scientific package [34].

Applications of software reliability assessment: Software
reliability metrics, such as expected bug detection rate, can
be used to balance the trade-off between the cost of software
testing and the software maintenance phase, which is known as
the optimal software release problem. Since the first study by
Okumoto and Goel [35], many researches have analyzed the
optimal software release problem under different constraints
[36]–[42]. Koch et al. [36] provide a cost-benefit analysis
for releasing the software after the scheduled deadline, while
Yamada et al. [37] propose optimal software release policies
minimizing the total expected cost, under minimum reliability
requirements. The authors in [39] considered the optimization
of the test-effort allocation to different software modules under
the constrained budget for the testing expenditures, while
Huang et al. [41] analyzed the impact of different test effort
allocation strategies. Kimura et al. [40] considered different
software maintenance models, i.e. warranty policies. Lai et
al. [42] extend the cost model to capture the additional effort of
documentation and distribution of the software patches. In this
article, we describe two novel use cases, namely i) early pre-
diction of software reliability based on the previous software
releases and ii) software maturity metrics as a comparison
criteria between the alternative software solutions.

III. SOFTWARE RELIABILITY GROWTH MODELS

In this section we present theoretical background on SRGM.
We focus on a particular class of models that describe the fault
detection and fault resolution process as Non-Homogeneous
Poisson Process (NHPP), that have been very successful in
modeling the behavior of large open source projects. The mod-
els for the bug detection process, presented in the Section III-
A, are well known models in software reliability community.
The composite models for the bug removal process described
in Section III-B are novel and extend the existing SRGM
literature.

A. Bug detection process as NHPP

We assume that the initial bug content, i.e. number of
introduced bugs present in the software before the start of the
testing phase, is a random variable N0 following the Poisson
distribution with the mean a:

P (N0 = n) =
an

n!
e−a (1)

The probability of detecting a single bug by the time t
follows an arbitrary distribution Fd(t). Assuming the bug
detection times are independent and identically distributed
random variables, the number of detected bugs Nd by the
time t is:

P (Nd(t) = k|N0 = n) =

(
n

k

)
Fd(t)

k(1− Fd(t))n−k (2)

The probability of observing exactly k bugs by the time t
is then described with the equation.

P (Nd(t) = k) =

∞∑
n=k

P (Nd(t) = k|N0 = n)P (N0 = n)

=
[aFd(t)]

k

k!
e−aFd(t)

(3)

The process is fully described with the mean value function
m(t), which represents the expected number of detected faults
by the time t:

E[Nd(t)] = m(t) = aFd(t) (4)
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From the mean value function of the fault detection process
many reliability features of the software can be estimated. The
instantaneous bug manifestation, i.e., bug detection rate is:

λ(t) =
dm(t)

d t
= a fd(t) (5)

Assuming that the number of initially introduced faults in
the software is finite limt→∞m(t) = a, the expected number
of the undetected faults in the software, i.e., the residual bug
content, is defined as:

r(t) = E[a−Nd(t)] = a−m(t) (6)

The conditional software reliability is defined as the prob-
ability of detecting a new fault in the time interval (t, t+ x]:

R(x|t) = e−
∫ t+x
t

λ(x) dx = em(t)−m(x+t) (7)

The expected cost of the software consists of the cost of
testing ct(t) in the pre-release phase, and the cost of removing
the fault cw(t) in the operational phase during the warranty
period Tw of the software lifecycle.

Assuming that the software is released after T time units
of testing, the total cost of software maintenance is:

C(T ) =

∫ T

t=0

ct(t)dt+

∫ T+Tw

t=T

cw(t)λ(t)dt (8)

We compare eight most widely used NHPP models for mod-
eling of the fault detection process: Musa-Logarithmic, Goel-
Okumoto Exponential, Generalized Goel-Okumoto, Inflection
S-shaped, Delayed S-Shaped, Yamada-Exponential, Gompertz
and Logistic, whose mean value function and failure intensity
are given in the Table I. The shortlisted NHPP models in
Table I represent well the space of the possible software
reliability growth patterns: containing a) three concave and
five S-shaped models, as well as b) seven finite failure models
and one infinite failure model.

B. Bug resolution process

The fault resolution process consists of two phases, fault
detection and fault correction. If we assume that the fault
detection and fault correction are independent, the resulting
fault resolution process can be written as [25]:

fr(t) =

∫ t

x=0

fd(t− x)fc(x)dx = [fd ∗ fc](t) (9)

where fd(t) and fc(t) represent densities of the fault detection
and fault correction process, respectively. The mean value
function of the resulting fault resolution process is then defined
as:

mr(t) = aFr(t) = a

∫ t

τ=0

[fd ∗ fc](τ)d τ (10)

Equation Eq. (10) can be used to generate different SRGMs
from arbitrary distributions for the fault resolution process.
However, the proposed models so far have been limited to
the combinations for which this integral has a closed form
solution, e.g., when both fault detection and correction are
Goel-Okumoto processes [25], [28].

mgo−go
r (t) = a

[
1− b1e

−b2t − b2e−b1t

b1 − b2

]
(11)

By replacing the integral in Eq. (10) with its Piecewise
Constant Approximation (PCA), we can obtain a numerical
approximation for an arbitrary combination of NHPP models,
which can be used for the fitting of the fault report data.

Fr(t) = lim
∆x→0

n=t/∆x∑
i=0

[fd ∗ fc](i∆x)∆x (12)

In this article, we compare the four combinations of Gener-
alized Goel-Okumoto and Inflection S-shaped models for fault
resolution process, which were preselected due to their perfor-
mance. We use combined Goel-Okumoto Eq.(11) from [28] as
a reference.

C. Fitting of the model parameters

The LSE method, which minimizes the squared distance
between the observed and expected data, is used for the fitting
of the model parameters. Unconstrained problems in model
selection phase (Section V), are solved using Levenberg-
Marquardt (LM) algorithm. In Section VI-B we provide the
bounds on the model parameters, based on the observed
parameter trends in the previous releases. The regularized
model is solved using the Trusted Region Reflective (TRF)
algorithm. Implementation of both methods is provided by
Python scientific computing package [34].

Three Goodness of Fit (GoF) measures are used to evaluate
the suitability of the models: Mean Square Error (MSE),
Theil’s statistics (TS) and coefficient of determination (R2).
MSE is used as to select the best model for individual releases,
while TS is more suitable to compare the goodness of fit

TABLE I: Fault detection process as Non-Homogeneous Poisson Process (NHPP)

Model Abbreviation Shape Mean value function Failure intensity

Musa-Okumoto logarithmic [17] MUSA(Log) Concave mmo(t) = a ln(1 + bt) λlog(t) =
ab

1+bt

Goel-Okumoto exponential [18] GO(Exp) Concave mgo(t) = a(1− e−bt) λgo(t) = abe−bt

Generalized Goel-Okumoto [11] GGO S-shaped mggo(t) = a(1− e−bt
c
) λggo(t) = abctc−1e−bt

c

Ohba’s inflection S-shaped [19] ISS S-shaped miss(t) = a 1−e−bt

1+φe−bt λiss(t) = abe−bt 1+φ
(1+φe−bt)2

Yamada delayed S-shaped [20] DSS S-shaped mdss(t) = a(1− (1 + bt)e−bt) λdss(t) = ab2te−bt

Yamada exponential [21] YEX Concave myex(t) = a(1− e−r(1−e
−bt)) λyex(t) = abre−bte−r(1−e

−bt)

Gompertz [24] GOMP S-shaped mgomp(t) = akb
t

λgomp(t) = a ln b ln k bt kb
t

Logistic [11], [20], [23] LOGIST S-shaped mlogist(t) =
a

1+ke−bt λlogist(t) =
abke−bt

(1+ke−bt)2
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across different software releases. R2 is used to measure which
portion of variance in data can be explained by the model. The
three GoF metrics are defined as follows:

MSE =
1

k

k∑
i=1

(m(ti)−mest(ti))
2 (13)

TS =

√√√√∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1m(ti)2

∗ 100% (14)

R2 = 1−
∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1 (m(ti)−m)

2
(15)

where m(ti) represent the observed data, and mest(ti) the
data estimated by the model, at time instance ti of the i-th
bug report, and m = 1

k

∑k
i=1m(ti).

IV. EMPIRICAL DATA SETS

The analysis of the software reliability described in the
previous section requires complete and uncensored bug re-
ports, which are publicly available only for the open source
controllers. At present, there are only two production-grade
open source SDN controller platforms, ONOS [2] and Open-
Daylight [3], both of them supported by the Linux foundation.
In this section we present the bug management system of
the two controllers, analyse the bug report statistics from
their issue trackers and compare the fault density of two
simultaneous releases, Kingsfisher ONOS v1.10 and Carbon
OpenDaylight v0.6.

A. Open Network Operating System (ONOS)

1) The scope: The focus of ONOS, since its inception has
been on providing scalability, high availability and carrier-
grade performance fulfilling the requirements of large operator
networks [43]. The project is supported by the key partners
from the telecom and data center operators and network
equipment vendors, such as AT&T, Google, Ericsson, Cisco,
just to name the few. Overall, more than 300 developers from
more than 60 organizations have contributed to its code base.
The code is written mostly in Java and contains at the present
743,531 lines of code (see Table II).

2) Release management: New ONOS releases are dis-
tributed every quarter, which provides a steady feature devel-
opment through incremental upgrades of the code base. The
three-month release lifecycle starts with the release planning
meeting, followed by three months of code development and
integration on the master branch. Two weeks before the official
release date feature integration is stopped and only bug fixes
are allowed. The support, including security patches and fix
for the critical defects, is provided for the six months after
the official release date. Thirteen releases (named in the
alphabetical order by the birds) have been distributed since
December 2014, when ONOS code was opened to the public.

3) Issue tracker: The issues associated to every release
are reported in the publicly available Jira tracking system.
For the purpose of our analysis we are interested in the
issues labelled as ”Bugs” rather than new feature requests
or enhancements. Such bug repositories represent a valuable
source of information, as they contain the detailed fault
reports from the live deployments in both lab and operational
environments. The bug reports contain the information details
such as affected versions, bug description and short summary,
priority, date of the report creation, and date of its resolution (if
applicable). The cumulative number of detected and resolved
faults reported over time are shown in Fig. 2a. It can be
observed from the figure that there is a steady increase in
the number of bugs, with the trend changes being noticeable
around the official release dates.

Analysis of the software maturity presented in the previous
section assumes that the only changes in the code are due
to the bug fixes, and hence, we separate the bugs reports
based on the ”affected release version” field. The number of
the bugs reported for every release, grouped by the priority,
are presented in Fig. 2b. Note that due to the time overlap
between the support periods some of the fault reports affected
more than one release. In the analysis of software maturity
in Section V, ”minor” and ”trivial” bugs (e.g., loading of the
GUI too slow) are ignored, as they do not have an impact on
the critical controller operations and often remain unresolved.

4) Data statistics: The most recent release, Magpie (ONOS
v.1.12) does not have enough samples, i.e., bug reports, for the
statistical analysis. Hence, we focus on Kingsfisher (ONOS
v.1.10), the most recent release whose support cycle has ended,
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and Loon (ONOS v.1.11), and refer to them as the two latest
stable releases. We have compared the distributions of the
times between bugs (TTF) and the times to resolve the bug
(TTR) for Kingsfisher and Loon with the previous ONOS
releases, as presented in Fig. 2c. The median TTF around
48 h, or only two days, is consistent for all three data sets. The
median TTR showed higher variation, between 168 h to 180 h,
or around a week. Both TTF and TTR show the characteristics
of long tail distributions, which makes it difficult for the
software management team to estimate, e.g., the effect of the
extended testing effort on the improvement of the software
quality. The SRGM models, presented in the Section III, add
the time dimension to these distributions, and can estimate
the parameters, such as the expected number of bugs to be
detected in a given time period, with much higher precision.

B. OpenDaylight (ODL)

1) The scope: OpenDaylight is much larger and older
project, foreseen from the beginning to be the Linux of
the networks, supporting a variety of southbound protocols
to ensure the smooth transition from the legacy networks.
Majority of the OpenDaylight key partners are vendors, and
the focus at the beginning was on the the applications in
data centers and coexistence with network virtualization tech-
nologies, as opposed to ONOS whose primary focus in early
days was fulfilling the requirements of service providers. The
comparison of the relevant characteristics, e.g., code size and
fault density, of OpenDaylight and ONOS controller platforms
is presented in Table II34.

2) Release management: The release management cycles of
the two controllers are different: while ONOS distributes the
code in the regular three-month cycles, the lifecycle of Open-
Daylight releases is irregular, between three and nine months,
as illustrated in Fig.3a. Seven releases have been distributed up
to date named by the elements in the periodic table. The bug
reports for the first release, Hydrogen (distributed in February,
2014) are not included in the statistics.

3Source:https://www.openhub.net/p/onos
4Data retrieved on February 1, 2018 from Jira issue trackers of ONOS

(https://jira.onosproject.org/) and ODL (https://jira.opendaylight.org/)

3) Issue tracker: The two controller platforms had a dif-
ferent approach to their issue tracking systems. While ONOS
has been using Jira since its inception for the documentation
and management of its bug repository, OpenDaylight relied
at the very beginning on the internal mailing list and excel
sheets, then used Bugzilla issue tracker in the first 6 releases,
and migrated to Jira in October, 2017. Although both issue
tracking systems offer the same reporting capabilities, we have
found that ONOS bug reports provided higher level of detail
and less ambiguity in its bug reports. An example is the
classification schemes for bug severity. While ONOS has five
well defined categories, OpenDaylight has six, with majority
of the bugs (68%) belonging to default ”normal” category.
Some bug entries in OpenDaylight issue tracker are even left
unclassified, as it can be seen in Fig. 3b.

4) Data statistics: The statistics on times to find and
resolve a bug in OpenDaylight releases is presented in Fig. 3c.
We observe that the distribution of times between successive
bug reports (TTF) is comparable to ONOS, while the distribu-
tion of times to resolve a bug (TTR) has much larger variance.

5) Fault density: We compare Carbon (OpenDaylight v.0.6)
and Kingsfisher (ONOS v.1.10) releases, as both of them were
distributed approximately at the same time (June 5, 2017 and
May 25, 2017, respectively) and sufficient time has elapsed for
both controllers to reach the stable phase. We highlight here
the major differences between the two controller platforms,
relevant for the analysis of software maturity. Thus, we include
the bugs of all priorities in the fault density figure. We observe
that the fault density, i.e the number of the bugs detected
during the software lifecycle per lines of code, of the two
controllers is close to 0.1 [ bugs

kLOC ], with ONOS having slightly
lower fault density.

TABLE II: OpenDaylight vs. ONOS

Controller OpenDaylight ONOS
Started February, 2013 December, 2014

Releases 7 13
Active developers 374 168

No. commits 88,102 11,749
Lines of Code (LOC) 3,860,347 743,531

Reported bugs 493 (Carbon) 76 (Kingsfisher)
Fault density [ bugs

kLOC ] 0.128 0.102
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Fig. 3: Bug report statistics derived from OpenDaylight issue tracker.
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V. MODEL SELECTION

The next step after the data collection is to find the best
fitting SRGM model to describe the data. In this section
we present the best fitting models for the bug detection and
bug resolution processes, and discuss their Goodness of Fit
(GoF) metrics to determine how well can the models explain
the empirical data. We compare the best SRGM models for
the bug detection processs of ONOS and OpenDaylight in
Section V-A, while in Section V-B the best models for bug
resolution process are discussed only for ONOS.

A. Bug detection process

We compare the most widely used SRGM models for the
bug detection process presented in the Table I. The empirical
data, i.e. the cumulative number of detected bugs, and the
estimations of the two best fitting models for the latest two
stable releases of ONOS and OpenDaylight are presented in
Fig. 4. The models are ranked based on the MSE, as it was
the optimization criteria of the parameter fitting procedure
(Section III-C), which is also indicated in the figure. Time-
axis indicates the relative time since the beginning of the
integration testing phase.

The analysis shows that all 3-parameter S-shaped models,
Generalized Goel-Okumoto, Inflection S-Shaped, Gompertz
and Logistic, fit the data well. Since the difference in MSE
between these models is rather small, we show the estimated
number of bugs for the two best fitting models. The concave
models, i.e. Musa-Logaritmic, Goel-Okumoto Exponential and
Yamada Exponential, could not explain the data, except for
the few releases (Avocet, Falcon, Loon and Beryllium) that
experience more concave pattern.

The GoF metrics for all the models and the releases are
compared in Fig. 5. All GoF indicators show consistent results:
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Fig. 4: The best fitting models for bug detection process for
two latest stable ONOS and OpenDaylight releases.

the best model to describe the number of detected faults across
all releases are 3-parameter S-shaped models, showing very
good scores in each metric. The best fitting model in the
most of the cases are Logistic and Gompertz, followed by
Generalized Goel-Okumoto. Inflection S-shaped model also
shows very good GoF results, being the second best fit for
most of the releases (for 12 out of 18 releases). Delay S-
shaped shows slightly worse results, compared to the other
S-shaped models. This effect is due to the fact that this model
has only two parameters to tune, one less than the other S-
shaped models.

B. Bug resolution process

Arbitrary combination of NHPP models can be used for
fitting of the cumulative number of resolved bugs applying
the Eq.(10). Here we present the combinations of S-shaped
models: Generalized Goel-Okumoto (GGO) and Inflection S-
shaped (ISS). The models are abbreviated as a combination of
the initials of detection and resolution NHPP processes. For the
sake of comparison we also include the reference model from
[28] where both fault detection and resolution are modeled
as Goel-Okumoto processes, which is the most widely used
model due to the analytical tractability of the distributions for
the combined process.

The best fitting model for four representative releases,
Avocet, Blackbird, Junco and Loon, are shown in Fig. 6. It
can be seen that although the proposed models for the fault
resolution process could describe the data for some of the
releases, the actual data shows higher deviation from the fitted
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Fig. 6: Comparison of the best fitting models for fault resolu-
tion process for four representative releases.

model, than in the previous case. In the first two cases (Fig.
6a and Fig. 6b) the models have shown a very good fit to the
data. The best fitting models are ISS-ISS and GGO-ISS.

The two other releases have experienced sudden trend
changes around the official release date. In the case of Junco
(Fig. 6c) two sudden increases can be detected: the fist one
happens around its official release and the second one shortly
before the distribution of the subsequent release. Similar
behaviour can be observed in several other releases (Golden-
eye, Hummingbird, Ibis). Such sudden trend changes due to
external signals cannot be captured by the simple combination
of NHPP models. The trend shifts due to the changes in the
debugging effort shortly before the new upcoming release can
be modelled by introducing the (time) change points in the
underlying NHPP models, as described in [44]. This approach
requires, the time change points to be provided either manually
or defined as additional unknown parameters of the model. In
the first approach the generalizability of the model is poor,
while in the second approach the estimation of the parameters
in the small data sets might be noisy (e.g., fitting the model
with five or more parameters to dataset with less than 30
samples).

In the case of Loon (Fig. 6d), the trend after the official
release is changed, indicating the change in the debugging
strategy. Similar behaviour can be observed in (Cardinal,
Drake, Emu, Falcon). It has to be noted that in the open source
software, such as ONOS, all the users are at the same time
the testers, as anybody can report the bug in the public issue
tracker. However, only a limited group of people will work on
actually fixing the bugs. When this discrepancy between the
”test” and ”debug” team is too large, or when there is a sudden
change in the size of debugging effort, the time scales have to
be adjusted accordingly. The models, such as [45], can capture
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Fig. 7: Comparison of MSE of SRGM models for the fault
resolution process.

the changes in the test effort, but have the same problem of
the accuracy of the parameter fitting on comparatively small
data sets.

The same pattern can be observed also in the Fig. 7,
where the MSE metrics of the five proposed models for all
releases are compared. We observe that GGO-ISS and ISS-ISS
outperformed the reference GO-GO model, for all the releases,
where fitting was possible.

VI. APPLICABILITY OF SOFTWARE MATURITY
ASSESSMENT

In this section we present the software maturity assessment
for the three software management problems. First we show
how to estimate the optimal software release and software
adoption times, based on the reliability and cost criteria, which
is a typical use case of SRGM found in the literature [36]–
[42]. Then we present two novel use cases, relevant for the
SDN community. We show how SRGM parameters can be
used for (i) an early estimation of software reliability, and
(ii) as criteria to discriminate between alternative controller
platforms, e.g., ONOS and OpenDaylight, when reliability has
the highest priority.

A. Optimal software release and software adoption time

SDN controllers comprise all the functionalities of the
network operating system, and require constant updates to
keep up with the velocity of the evolution of the user require-
ments [4]. In this section we discuss how SRGM can be used
to estimate the quality of the controller software to determine
the optimal software release and software adoption time, based
on the software reliability and the cost criteria.

1) Software reliability criteria: Software reliability, defined
in the literature as the probability of failure-free software
operation for a specified period of time in a specified envi-
ronment, is an important indicator of software quality. Once
the best model to describe the fault report data is selected
and the parameters are estimated, it can be used to predict
several software reliability parameters: residual bug content,
instantaneous fault intensity, conditional software reliability
and expected cost, as defined in Section III-A by Eq.(5)-(7).
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The software reliability metrics for the Kingsfisher release
are presented in Fig. 8. Kingsfisher is the most recent ONOS
release whose support cycle has ended, and its best fitting
model is Logistic. The official release date t0 is indicated with
the vertical line in the figure, and the time is expressed as
the relative time since the start of the testing. Note that only
severe bugs (bugs with major, critical and blocker priority) are
considered.

Residual bug content represents the number of undetected
faults remaining in the software. It can be seen in Fig. 8a that
the residual bug content was relatively high, as 14 severe bugs
were still remaining in the software on the day of its official
release. Already three months after the official release, this
number has dropped significantly.

Instantaneous fault intensity, or alternately expected time
until the next software failure, can be derived from the param-
eters of the mean value function. The expected fault intensity,
illustrated in Fig 8b, on the day of Kingsfisher’s release was
at the level of 0.0175 bug

h , or equivalent to approximately
2.38 days between detection of successive severe bugs. The
fault intensity is highly relevant for the software developers,
as it can indicate when is the software ready for the release.
This metric could help the developers estimate the efficiency
of the gains of the additional testing effort.

Conditional software reliability represents the probability
of encountering a severe software failure in the time interval
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Fig. 8: An example of the optimal software adoption and
release time based on the reliability criteria. Vertical lines
indicate the date of the official Kingsfisher release time (t0).

[t, t + x). We observe the interval starting with the software
adoption time t for a duration x, specified by the user. We
show that in order to achieve reliability of R(x|t) = 0.90,
during maintenance interval of x = 3 months, the user should
defer the software adoption more than ∆t ≥ 4 months after
its official release t0, as illustrated in Fig. 8c. Note that
the recommended adoption deferral period of 4 months is
larger than the 3-month gap between two consecutive ONOS
releases. Nevertheless, it is a common practice in telco and
enterprise domains not to use the most recent, but the lagged
version, due to the stability issue. Hence, ONOS provides
the support for the latest two releases, implying the support
window of 6 months after the official release date.

2) Software cost criteria: Software management team
needs to balance the effort spent on the testing in the pre-
release phase, and effort spent on the bug removal of the soft-
ware in the operational phase. Open source SDN controllers,
such as ONOS and OpenDaylight, come with no guarantees
provided on the either performance or reliability. However,
many commercial solutions provided by network vendors, such
as Ericsson and Huawei, are built on top of these controllers.

The software cost model, defined by Eq.(8), generalizes
the most of the cost models proposed in the literature. The
testing cost ct(t) function accounts for the cost of the software
testing team, the cost of the bug removal, the setup and the
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maintenance of the testing environment, code documentation,
etc. The cost during the warranty period cw(t) includes the
penalty paid for every severe outage encountered during the
normal operation, the cost of network service interruption, the
cost of the bug removal and the support team and sometimes
also a discounted value of money for the long support periods.
These cost factors must be determined per use case bases.
Here, we consider the constant cost functions ct(t) = Ct and
cw(t) = Cw. The assumption of the constant cost function,
i.e., independent of the bug complexity, is common in the
literature [35], [37], and it represents the average cost of bug
removal. The software cost function then becomes:

C(T ) = CtT + Cw[m(T + Tw)−m(T )] (16)

where m(t) is a mean value function of the best fitting model,
discussed in the previous section. Optimal software release
time T is obtained by finding the minimum of expected
cost function. For the simpler models, e.g., Goel-Okumoto,
the optimal solution, i.e. the minimum of the cost function
dC(T )

dT = 0, can be found analytically, while for other models
the minumum has to be found numerically.

In the baseline scenario we assume the relative cost (in
unnamed cost units CU) of Ct : Cw = 1[ CU

h ] : 100[ CU
bug ] and

the warranty period of Tw of 3 months. The impact of different
Ct : Cw and Tw on the software cost is illustrated in Fig. 9.
In some scenarios the cost function has no clear minimum. In
the cases when the cost post-release bug removal is expected
to be low, either due to low penalties (Fig. 9a) or the very
short warranty period (Fig. 9b), the optimal software release
policy is to distribute the software immediately. In the baseline
scenario, a clear minimum for the software release time T can
be observed, which is approximately 40 days after the official
software release date (t0 = 2616h), highlighting the benefits
of the extended period .

B. Early prediction of software reliability
In order to estimate the SRGM parameters, a large number

of samples, i.e. bug reports, has to be provided. In case
of ONOS data set, the standard parameter fitting techniques
cannot accurately predict the model parameters before 90%
of all bug reports are available, which happens for ONOS
approximately after six months of testing when it is already
too late for software developers (as the software is already
released) and the SDN operators (since new release is already
available). Estimating the SRGM parameters when only few
data samples are available is especially difficult for S-shaped
models, since they change the concavity around three months
after the start of the integration testing (See Fig. 5). How-
ever, we have noted that the SRGM parameters show very
small variation across the releases, thanks to the incremental
development strategy of ONOS, as it can be seen in the case
of the Gompertz model in Fig. 10. We leverage this fact to
guide the parameter fitting procedure, and regularize the model
which improves the prediction accuracy in the early phase. The
regularization of the model is implemented by restricting the
parameter search space, as described in the Section III-C.

The trend observed in Fig. 10 shows several interesting
points and hints how the regularization of the search space
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Fig. 10: Estimated parameters of Gompertz model for bug
detection process for all ONOS releases.

could be done. The scale parameter a and the shape parameter
b show small variations between the consecutive releases. The
parameter a varies between 54 and 85; parameter b is in the
range (0.99879, 0.99935). The parameter k for the releases
with S-shape bug detection trend is in the range (0,0.02). The
releases with concave trend (Avocet, Falcon and Loon) show
higher values of parameter k, in the range of (0.5,0.85).

We have explored several parameter regularization strate-
gies. In our previous work we proposed the strategy based on
the extreme values, where the search space of every parameter
ξ is bounded to [0.9 ξmin, 1.1 ξmax], which represents the
range of previously observed parameters extended by 10%.
Here we consider the strategy based on the mean mξ and the
variance σ2

ξ , where the parameter search space is bounded to
mξ ± 2σξ. In addition to these two strategies based on the
distributions of the parameters, we have considered a strategy
based on the trend. We consider an exponentially weighted
moving average, defined as:

mi
ξ ← ω ξi + (1− ω)mi−1

ξ (17)

where the average value of the parameter ξ after i releases
mi
ξ is computed as a weighted sum of the estimated parameter

for the i-th release ξi and the previous average value mi−1
ξ .

Here we assume the ω = 0.5, and bound the parameter search
space to mi

ξ ± 2σξ. Note that in cases where the lower bound
is negative, the values are capped to zero, due to the nature of

TABLE III: Gompertz model regularization with parameter
prediction strategies, based on: i) extreme parameter values,
ii) mean and variance and iii) moving average.

ξ [0.9 ξmin, 1.1 ξmax] [mξ ± 2σξ] [miξ ± 2σξ]

a [50.74, 85.15] [41.62, 80.65] [34.21, 73.64]
b [0.9888, 1.0092] [0.9987, 0.9992] [0.9982, 0.9987]
k [8.2 e-7, 0.0933] [0.0, 0.0936] [0.0, 0.0629]
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Fig. 11: Early prediction of software reliability, when only few samples, i.e. bug reports, are available for the fitting of SRGM
parameters. Benefits of regularization can be seen in the evolution of mean value function and RMSE, as illustrated for Loon
release and Gompertz model.

the model. The parameter search space bounds with different
preparation strategies are compared in Table III.

All prediction strategies narrow down the parameter search
space: while the first strategy covers extreme values, the range
for the other two is more narrow. Overall, all prediction strate-
gies showed improvement over the standard fitting techniques,
demonstrating the positive impact of the prior knowledge on
the parameter fitting accuracy. The prediction strategy based
on the trend shows the unstable performance when parameter
experienced the sudden trend changes, as in case of parameter
k for Loon release, illustrated in Fig. 10. It might be possible to
use a different regularization strategy for each parameter. We
leave it for the future work to study the performance of such
hybrid strategies, when more software releases are available
and behavioural patterns of each parameter can be estimated
more precisely.

The benefits of regularization on the early prediction of
software reliability, can be quantified by observing the esti-
mated mean value function mgomp(t) and the evolution of
root mean square error (RMSE), when the limited number of
the samples, i.e. bug reports are fed to the parameter fitting
function. The results for the prediction strategy based on the
observed mean and variance are shown in Fig. 11. The impact
of the error in parameter estimation is illustrated in Fig. 11a.
The error of the estimation with 50% of the available samples
with standard fitting techniques is much larger due to the local
variations of early samples. It can be observed in Fig. 11b
that the regularized model is able to estimate the parameters
with higher accuracy much earlier, with 30% fewer samples.
While the standard fitting technique requires 32 samples for
RMSE to drop below 3, the regularized technique only needs
21 samples.

In this section we present the Gompertz model, which has
the best performance across all releases, being the best fit for
five releases, and showing very good results for the other
seven. Moreover, the parameters of Gompertz model have

shown the smallest coefficient of variation (variance/mean).
However, the general conclusions hold for the other three
3-parameter S-shaped models, as well. While studying the
impact of the model selection, we observe that, in general, the
regularization improves the predictive capabilities of SRGM
in the early phase of the software lifecycle for all 3-parameter
S-shaped models, but the magnitude of the improvement
depends on the data set. For Junco release, none of the
combinations of the models and prediction strategies show
significant improvements with 50% of the samples. This is
probably due to the timing of the burstiness of bug reports
at the beginning of testing (see Fig. 4). Further improvements
could be achieved with smoothing techniques and grouping of
the data, e.g, by reducing the time resolution of the bug reports
from hours to days or weeks. The limitations of SRGM are
further discussed in Section VI-D.

C. Comparison of two SDN controller software solutions:
ONOS vs. OpenDaylight

As SDN is gaining the popularity a multitude of commercial
and open source SDN controllers have been developed. While
the most of the early open source solutions have remained
in the research community at the level of the prototype, two
projects have reached production grade readiness, ONOS and
OpenDaylight. In this section we address the problem that a
network operator might face when it has to choose the optimal
SDN controller platform for its network, or alternatively an
open source platform as a code base to build his customized
controller upon, when code maturity is the major concern.
Although the difference in the support of some of the advanced
features is still present (e.g., the OpenDaylight support for
the wireless networking), the two controller platforms are
converging and it is not clear for the network operators
which solution to choose. For instance, the commercial SDN
controller platform by Ericsson is based on OpenDaylight,
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Fig. 12: Software maturity evolution over time.

while Huawei Agile controller solution is based on ONOS,
and AT&T deploys both platforms in its production networks.

Fault density discussed in Section IV is a static measure of
the code quality, which can be reliably computed only after the
software lifecycle is over and the support has ended. Several
methods have been proposed for an early estimation of fault
density, based on the complexity, programming languages and
other software features, which might not always be available
to the public. On the other hand, SRGM framework treats
the software component as a black box, and provides the
estimation of the software reliability, without requiring the
information about the code internals. The challenge of direct
comparison based on the empirical data between the two
releases is illustrated in Fig. 12a 5. It can be observed that the
direct comparison of the empirical data is not straightforward
(we assume the bug detection is a realization of the stochastic
process), and that on June 1, 2017, both controllers had
detected around half of the number of bugs. Instead, it is
much more precise to compare the fitted curves of the two
controllers.

In order to compare the reliability and code stability of the
two SDN controllers, we propose software maturity metric.
The software maturity metric is derived from the respective
SRGM as λ(t)/mmax, which provides a measure on how far
from the stable region (i.e. how close to horizontal line) is
the controller software at any given moment. The practical
value of our proposed software maturity metric is illustrated
in Fig. 12b and Fig. 12c, where the software maturity after one
(θ1) and three months (θ2) after the official software release is
indicated. The units are expressed as the percentage of detected
bugs per day, where zero indicates the stable software. We
observe that the maturity of the Kingsfisher improves much
faster θ1 = 0.3693[ %

day ]→ θ2 = 0.0398[ %
day ], compared to the

Carbon θ1 = 0.3029[ %
day ] → θ2 = 0.1983[ %

day ]), thanks to the
shorter release lifecycles of ONOS.

The software maturity metric can be further used to profile
the behaviour of the controller, and quantify the improvement

5In software maturity analysis bugs of all priorities reported during entire
lifecycle are included in the analysis, as illustrated in Fig. 12 and 13, while
in Fig. 4 only severe bugs (ONOS) and bugs reported after the start of the
integration testing (OpenDayligt) are included.

of the software quality over different software lifecycle phases,
as illustrated in Fig. 13. Comparison of the maturity evolution
over time across different releases can be used to track
the progress of the software development process and the
efficiency of the testing effort on the improvement of software
quality. We recognize the challenges of an early estimation
of mmax, which have to be estimated before the software
lifecycle is over. We can exploit the approach presented in
Section VI-B for an early prediction of model parameters.
Note that in this particular case, at least 50% of the bug
reports were available before the official software release
dates for both controllers, in which case our approach for an
early prediction can estimate the SRGM parameters with the
reasonable accuracy.

D. Threats to validity

The framework presented in this paper comes with certain
limitations. The first limitation comes from the fault reports,
as the results are only as good as the accuracy of the data sets.
While doing the data mining we noticed few inconsistencies.
SRGM models require the complete uncensored fault reports,
in order to accurately estimate the parameters in the model.
Since we can neither fully guarantee the accuracy nor the
completeness of the reported data in the issue trackers, we
do not emphasize the numerical results, but rather focus on
the general approach to quantify the software reliability.

The second limitation comes from SRGM models. The mod-
els assume independent times between the consecutive fault
reports, which is not entirely true since occasionally several
related bugs were reported at the same time. The models also
assume that every undetected fault contributes the same to the
fault manifestation rate. The time in our study represents the
calendar time. It would be more accurate to consider the actual
test effort in men-hours and CPU time, but this information is
not available large open source projects. Although we cannot
guarantee that any SDN controller software can be modelled
as mixture of simple SRGM models, previous studies have
shown that described models can be successfully applied to
many large open source software products, such as Apache
Web Server, Mozilla Firefox, and Eclipse IDE (see Section II).
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Fig. 13: Software maturity in different phases of the controller lifecycle.

In order to benefit from the early prediction method there
are important dependencies: first, a relatively large number of
regular releases has to be available; second, the behavior of
the releases has to be similar enough, which has been the case
only for ONOS so far. Nevertheless, it can be observed that
the number of releases increases for other SDN controllers,
i.e., the regularity of the release distributions is expected
to stabilize (as it has been also the case for other open
source projects, e.g., Linux OS). As a consequence, the early
prediction approach might find more valuable applications for
further SDN controllers in near future. Moreover, the proposed
early prediction of software reliability could potentially find an
application for any software with the regular release intervals.

VII. CONCLUSION

We present a framework to assess and to predict the maturity
of SDN controllers, based on the Software Reliability Growth
Models (SRGM). Using real data describing software failures
of the SDN controllers OpenDaylight and ONOS, SRGM
describes the stochastic behavior of bug manifestation and
correction processes, which makes it possible to analyze
the controllers reliability. The investigated software reliability
metrics derived with SRGM can be used to guide software
developers and network operators to help making important
operational decisions: e.g., deciding on when a software
controller is mature enough to be released and deployed.
Moreover, we propose model regularization techniques for the
early prediction of software reliability based on the observed
trend of the model parameters of previous software releases.
Besides, we define new software maturity metrics, which can
be used as a selection criteria for controller candidates.

The main value of our practical approach lies in the appli-
cability of the framework for the assessment of the software
maturity of SDN controllers. As demonstrated for two open
source controllers, ONOS and OpenDaylight, the analysis
can be applied to other open source products or even the
commercial products of major vendors (e.g., Huawei or Cisco);
particularly commercial controllers can be easily verified, as
they mainly build up on ONOS and OpenDaylight. Moreover,

bug reporting systems of the controllers collaborative software
projects provide a valuable source of data that can be used
by our framework. For instance, developers can report bugs
either directly via code version control systems like Git or in
separate issue trackers, e.g, the open source tool Bugzilla or
the commercial one Jira. Furthermore, we envision that the
described workflow can be integrated into existing AGILE
software development techniques, such as SCRUM; hence,
developers even receive quantitative evaluations of their code
and their productivity process during development.
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