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Kuttler, meinen außerordentlichen Dank aussprechen. Sie waren schon während des Studiums

eine wichtige Ansprechpartnerin für mich, vom Proseminar bis hin zu meiner Masterarbeit.

Vielen Dank, dass Sie mir immer so hilfsbereit mit Rat und Tat zur Seite standen!

Frau Prof. Dr. Sonja Berensmeier danke ich herzlich für die Übernahme des Prüfungsvorsitzes.
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Abstract

In biological cells, the stochasticity of biochemical reactions inevitably causes so-called cellular

noise, resulting in fluctuating copy numbers of mRNA and protein species. In multistable gene

expression systems, large noise may lead to random transitions between distinct cellular states

and thus to heterogeneous population behavior. The aim of this work was to use mathematical

methods to predict and to gain control over the magnitude and the effects of gene expression

noise.

In a preliminary study, an analytical comparison between deterministic and stochastic model

descriptions was performed and it was shown that the reliability of deterministic models in

the context of gene expression is limited: Under common conditions, neither the average cel-

lular behavior, nor the preferred states of the system were depicted correctly. In particular,

deterministic bistability was not always associated with stochastic bimodality (and thus with

phenotypic heterogeneity). Criteria for the occurrence of such discrepancies could be identified

and visualized through a systematic graphical model analysis. Among these criteria are large

protein bursts combined with nonlinear reaction kinetics. The usage of deterministic approaches

for model simplification in order to approximately quantify cellular noise can thus lead to poor

estimates. This is, for example, the case with the classical linear noise approximation (LNA).

Due to that, a novel method called hybrid LNA (hLNA) was developed for the evaluation of

noise. This method is able to predict the variance of mRNA and protein fluctuations, based on

the kinetic parameters of the underlying regulatory system, with significantly increased accuracy.

Using this method, every stable expression state can be analyzed separately, so that multistable

systems can be characterized as well. Moreover, new definitions for the average protein burst

size and frequency were derived, which are again suitable for the characterization of multistable

systems. Based on those measures, the temporal structure of fluctuations can be investigated.

Additionally, a model reduction method was proposed based on the burst characteristics, which

enables an a priori estimation of the location of modes in a protein distribution. The quality of

all newly developed methods was verified through simulation studies.

This framework of novel methods was subsequently used to comprehensively characterize noise

in two bistable motifs, namely in an autoregulatory gene expression system and in the genetic

toggle switch. It was systematically evaluated how the strength and structure of mRNA and

protein fluctuations may be manipulated using specific genetic modifications of the regulatory

system. That way, the robustness of single expression states could be changed, which led to

various, partially complex heterogeneous patterns of population behavior.

All in all, this work demonstrated the significance of intrinsic noise in gene expression systems,

regarding the choice and reliability of mathematical modeling approaches as well as the biological

functionality of a system. The presented methods are not only suited to incorporate the effects

of cellular noise into the study of natural systems, but also to support the creation of robust

synthetic constructs, for example for applications in biotechnology.

vii





Zusammenfassung

In biologischen Zellen verursacht die Stochastizität biochemischer Reaktionen zwangsläufig so-

genanntes zelluläres Rauschen. Dieses äußert sich u. a. in fluktuierenden Kopienzahlen von

mRNA- und Proteinspezies. In multistabilen Genexpressionssystemen kann starkes Rauschen

zu zufallsgetriebenen Übergängen zwischen verschiedenen Zellzuständen und damit zu hetero-

genem Populationsverhalten führen. Das Ziel der Arbeit bestand darin, mit Hilfe mathemati-

scher Methoden die Stärke und die Auswirkungen von Genexpressions-Rauschen vorhersagbar

und besser kontrollierbar zu machen.

Als Voruntersuchung wurde ein analytischer Vergleich deterministischer und stochastischer

Modellbeschreibungen vollzogen und gezeigt, dass die Aussagekraft deterministischer Modelle

im Kontext der Genexpression eingeschränkt ist: Unter üblichen Bedingungen bildeten sie weder

das durchschnittliche Zellverhalten, noch bevorzugte Zellzustände korrekt ab. Insbesondere war

deterministische Bistabilität nicht immer mit stochastischer Bimodalität (und damit mit phäno-

typischer Heterogenität) assoziiert. Kriterien für das Auftreten solcher Diskrepanzen konnten

durch eine systematische graphische Modellanalyse identifiziert und veranschaulicht werden.

Unter diesen Kriterien sind vor allem große Protein-Bursts, kombiniert mit nichtlinearen Reak-

tionskinetiken, zu nennen. Werden demnach deterministische Ansätze zur Modelleinfachung

genutzt, um zelluläres Rauschen approximativ zu quantifizieren, kann dies zu gravierenden

Fehleinschätzungen führen. Dies ist beispielsweise bei der klassischen Linear Noise Approxi-

mation (LNA) der Fall.

Daher wurde zur Quantifizierung des Rauschens eine neue Methode, die Hybrid-LNA (hLNA)

entwickelt. Diese kann, basierend auf den kinetischen Parametern des betrachteten Regula-

tionssystems, die sich ergebende Varianz der mRNA- und Proteinfluktuationen mit deutlich

gesteigerter Genauigkeit vorhersagen. Dabei kann jeder stabile Expressionszustand getrennt

untersucht werden, so dass auch multistabile Systeme charakterisiert werden können. Deswei-

teren wurden neue Definitionen für die durchschnittliche Protein-Burst-Größe und –Frequenz

hergeleitet, die ebenfalls für die Charakterisierung multistabiler Systeme geeignet sind. Damit

kann auch die zeitliche Struktur von Fluktuationen untersucht werden. Darüberhinaus wurde

basierend auf den Burst-Charakteristiken eine Methode zur Modellreduktion vorgeschlagen, mit

deren Hilfe eine a-priori -Abschätzung der Lage der Modalwerte einer Proteinverteilung möglich

ist. Die Qualität der neu entwickelten Methoden wurde durch Simulationsstudien verifiziert.

Das erarbeitete Methodenspektrum wurde anschließend zur umfassenden Charakterisierung

des Rauschens in zwei bistabilen Motiven verwendet, nämlich in einem autoregulatorischen Gen-

expressionssystem und im genetischen Toggle-Switch. Es konnte systematisch untersucht werden,

wie die Stärke und Struktur von mRNA- und Proteinfluktuationen durch spezifische genetische

Eingriffe in das Regulationssystem manipuliert werden können. Dadurch ließ sich sogar gezielt

die Robustheit einzelner Expressionszustände beeinflussen, was wiederum zu unterschiedlichem,

teils komplexem heterogenem Populationsverhalten führte.

Insgesamt konnte in dieser Arbeit die Signifikanz intrinsischen Rauschens in Genexpressions-

systemen verdeutlicht werden. Dies betrifft sowohl die Wahl und Zuverlässigkeit mathematischer

Modellierungsansätze, als auch die biologische Funktionalität des Systems. Die vorgestellten

Methoden eignen sich nicht nur, um die Effekte zellulären Rauschens in die Studie natürlicher

Systeme einzubeziehen, sondern auch, um die Schaffung robuster synthetischer Konstrukte,

beispielsweise für Anwendungen in der Biotechnologie, zu unterstützen.
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Ḡ Scaled effective translation rate

Geo Geometric probability mass function

H Function proportional to F that is independent of burst size

H Function proportional to F that is independent of burst size

f∗ Local transcriptional sensitivity

J(x) Jacobian matrix, evaluated at state x

J∗ Local Jacobian matrix

kj Deterministic rate constant of j-th reaction

M Stochastic process describing mRNA copy numbers

M1 Stochastic copy number of mRNA 1 in the genetic toggle switch

M2 Stochastic copy number of mRNA 2 in the genetic toggle switch

m∗ mRNA copy number in the deterministic steady state

m̄ Current average mRNA copy number

pn(τ) Probability of system being state n at time τ

pBb Probability of protein burst with size B = b

pm,s Joint PMF of mRNA and protein evaluated at M = m and S = s

xvii



pm1,m2,s1,s2 Joint PMF of mRNA and protein species in the genetic toggle switch

pMm Marginal PMF of mRNA evaluated at M = m

pM∗ Local unimodal mRNA PMF

pSs Marginal PMF of protein evaluated at S = s

pS∗ Local unimodal protein PMF

pSBs PMF of burst proteins evaluated at Sb = s

P (x, τ) Probability density function, evaluated for state x at time τ

R∗ Combined parameter decisive for the effect of partial shifts in reaction time scales

r∗ Local protein-to-mRNA ratio

S Stochastic process describing protein copy numbers

S1 Stochastic copy number of protein 1 in the genetic toggle switch

S2 Stochastic copy number of protein 2 in the genetic toggle switch

Sb Stochastic copy number of burst proteins (during burst)

s∗ Protein copy number in the deterministic steady state

s̊ Mode (or minimum) of a protein distribution

s̄ Current average protein copy number

V Volume of the regarded system

Var Variance operator

v(x) Drift vector in a Fokker-Planck equation, evaluated at state x

wj Propensity of j-th reaction

w Vector of propensities

w∗m Stationary propensity of reactions on mRNA level

w∗s Stationary propensity of reactions on protein level

w̃ Vector of propensities in the thermodynamic limit

Z (Probability) generating function

α Average protein burst size

α∗ Local average protein burst size

β∗ Effective protein burst size

βij Absolute value of stoichiometric coefficient of i-th educt in j-th reaction

γ∗ Observable protein peak height

γij Stoichiometric coefficient of i-th product in j-th reaction

δ Time-scale parameter relating the two subsystems in the genetic toggle switch

η(N) Fano factor of the stochastic process N

η∗(N) Local Fano factor of the stochastic process N

ν Time-scale parameter relating mRNA and protein dynamics

κj Stochastic reaction constant of j-th reaction

π Propensity of state transition

Ψ∗ Combined parameter for the analysis of the toggle switch

ρ∗0 Average protein level at the beginning of a non-overlapping burst

ρ∗m Average protein level at the end of a non-overlapping burst

σ Standard deviation operator

Σ Approximate variance matrix

Σ∗ Approximate local variance matrix

τ Scaled time variable

ω Average protein burst frequency

ω∗ Local average protein burst frequency

xviii



List of Abbreviations

B. subtilis Bacillus subtilis

CFPE chemical Fokker-Planck equation

CME chemical master equation

CV coefficient of variation

E. coli Escherichia coli

EMRE effective mesoscopic rate equation

fb feedback

FPE Fokker-Planck equation

FPT first passage time

hLNA hybrid linear noise approximation

IOS inverse omega square

LHS left hand side (of an equation)

LNA linear noise approximation

MFPT mean first passage time

mRNA messenger ribonucleic acid

NB negative binomial

ODE ordinary differential equation

PDE partial differential equation

PMF probability mass function

PSS pseudo steady state

RE rate equation

RHS right hand side (of an equation)

SEM standard error of the mean

S. mutans Streptococcus mutans

xix





1. Introduction: Noise and Heterogeneity

Looking back at the research done in the field of microbial or cellular biology, it seems that the

original approach of studying metabolic pathways, regulatory networks, and signaling cascades

based on ensemble measurements has shaped the picture of single cells as small machines or

factories, which generate defined outputs from specific input signals. The ambition to gain full

control over these machines – for example for their use in biotechnology – has also motivated the

development of apt mathematical models: In accordance with experimental observations, they

were able to describe population-averaged kinetics of growth, product formation, intracellular

reactions, etc. [Almquist et al., 2014; Kompala et al., 1984; Koutinas et al., 2011]. The mod-

els were usually deterministic, often phenomenological, and sometimes motivated by concepts

from control theory [Alon, 2007; Iglesias and Ingalls, 2009]. These experimental and theoretical

tools have indeed boosted our understanding of complex cellular networks. Moreover, they have

enabled systematic modifications of these networks or the model-guided construction of syn-

thetic circuits according to various goals and requirements in research and industry [He et al.,

2016]. However, working with cells (or more generally, with biological entities) has never really

become completely unproblematic, as they remained somehow capricious. The true extent of

cellular individualism has only come to light in the last few decades through the development

of experimental techniques which allowed measurements on a single-cell level instead of using

ensemble averages. These experiments proved a significant level of heterogeneity in all kinds of

cellular behavior. This can partly be attributed to an inhomogeneous environment, but it is also

a consequence of an inherent stochasticity present inside cells [Elowitz et al., 2002; McAdams

and Arkin, 1997]. What is the origin of this stochasticity? By regarding biochemical processes

as collections of random reactive collisions between molecules, their stochastic nature becomes

obvious [Gillespie, 1976]. Fluctuations in the copy numbers of cellular components, referred to

as cellular noise, are thus an inevitable trait. Although the same basically holds for chemical

reactions occurring in a large, well-mixed reaction vessel, their reproducibility is usually much

higher, showing a difference in the significance of fluctuations. The main reason for this differ-

ence is the sparseness of many cellular reactants like genes, mRNA species, and protein species,

in contrast to the common abundance of reactive species in chemical experiments [Kærn et al.,

2005]. In the low copy number regime, even fluctuations in the order of single molecules may

have great impact on the dynamics of the system. Additional stochasticity is caused by cellular

dynamics like growth, replication and cell division [Huh and Paulsson, 2011]. Therefore, the

copy number or concentration of a specific protein is never uniform across the cells of a clonal

population. Instead, it follows a distribution that might be relatively broad, and which might

even have a complex shape with multiple peaks, indicating the presence of phenotypic subpopu-

lations. These could not be observed through population-averaged measurements [Dubnau and

Losick, 2006].

This insight has led to a change in the perception of cells as being fully controllable devices

and maybe to the impression that one might never be able to understand them completely.

Although it would be quite wrong to state that all methods and results based on ensemble

averaged experiments are void, single-cell experiments can provide additional – or even crucial
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1. Introduction: Noise and Heterogeneity

– insight into cellular mechanisms and strategies, which have remained hidden for a long time

[Altschuler and Wu, 2010]. In fact, it is fair to assume that phenotypic heterogeneity1, like any

other cellular trait, has been shaped by evolution and can thus be an advantageous property

[Ackermann, 2015; Cerulus et al., 2016; Dubnau and Losick, 2006] – at least from the perspective

of a cellular population.

One of the evolutionary goals that a population might pursue using heterogeneity is the an-

ticipation of environmental fluctuations: The split into phenotypically different subpopulations

may provide a certain amount of cells that are disadvantaged under most conditions (for example

with respect to growth rate), but which may be the only ones surviving sudden external stresses,

as they have invested most of their energy and resources into defense mechanisms2. Such slowly

growing, resilient subpopulations are known as persister cells [Balaban et al., 2004], and the

overall strategy of reducing the current fitness of a population in order to increase its chance

of long-term survival or its overall productivity is called bet hedging [Grimbergen et al., 2015;

Veening et al., 2008]. Another strategy that exploits heterogeneity is division of labour [Acker-

mann, 2015]. In this case, subpopulations are formed which are specialized onto the provision of

certain goods. Interactions between these subpopulations then result in collective functionality.

This is of particular relevance if some important metabolic pathways are incompatible, or if the

simultaneous activation of multiple pathways would culminate in a severe metabolic burden. In

contrast to heterogeneity caused by genetic variability, isogenic heterogeneity is self-sustaining,

since eliminated phenotypes can be regenerated [Ackermann, 2015]. Sometimes, phenotypic

diversification occurs irreversibly, constituting a process of cell fate decision [Huang, 2009].

Nowadays, cell-to-cell variability is undesired in most industrial applications, as it hampers

reproducibility. Current biotechnological research therefore aims at the reduction of cellular

noise [Delvigne et al., 2017]. However, most studies in this applied field deal, if at all, with en-

vironmental heterogeneity in bioreactors [Kuschel et al., 2017; Lara et al., 2006; Lemoine et al.,

2017], while not paying regard to the omnipresence of intracellular stochasticity [Delvigne and

Goffin, 2014; Lencastre Fernandes et al., 2011]. This is partially due to fact that single-cell

studies are more elaborate and less standardized than the majority of established population-

averaged methods. Besides the larger expenditure of time and costs for the performance and

evaluation of experiments3, the corresponding mathematical approaches are tedious as well:

While deterministic models of moderate complexity can often be analyzed in a straightforward

manner, supported by graphical methods that provide intuitive insight into certain basic sys-

tem properties, this does not necessarily hold for stochastic descriptions [Tolle and Le Novere,

2006]. Nevertheless, a lot of fundamental research concerning the generation and propagation

of fluctuations on a genetic and regulatory level has already been conducted in the last years

[Chalancon et al., 2012], elucidating fundamental connections between properties of a regulatory

network and its noise. Many of those examples will be presented throughout this study. To date,

cellular noise is still hard to predict, and the real potential of heterogeneity is far from being

fully explored. The vision however exists that noise will once be made controllable through tar-

geted genetic manipulations. One day, it might even become possible to transfer the advantages

of heterogeneity in natural systems to biotechnological applications in order to improve their

performance and robustness [Delvigne et al., 2017; González-Cabaleiro et al., 2017].

1The term phenotypic heterogeneity has been introduced in a review by M. Ackermann and denotes diversity
between isogenic cells in the same microenvironment [Ackermann, 2015].

2This phenomenon is a major issue in medicine, as it is known to increase bacterial drug resistance.
3A short overview of experimental single-cell methods is given e.g. in [Ackermann, 2015; Delvigne et al., 2017;

Huang, 2009]. Among these are flow cytometry [Baert et al., 2015], microfluidics coupled to time-lapse microscopy
[Grünberger et al., 2015], and single-cell sequencing [Winkel et al., 2016].
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In order to better understand the intracellular origins of phenotypic heterogeneity, one should

look at the level of gene expression and regulation. Gene expression occurs steadily in cells to

ensure the supply of important proteins (like enzymes) against the backdrop of protein degrada-

tion and dilution due to growth. Many genetic circuits are additionally regulated, so that they

can dynamically adapt the intensity of protein production to the current needs of the cell, e.g. in

response to the environment. Some circuits show a gradual response according to the strength of

the input signal [Igoshin et al., 2008]. Others operate almost exclusively in one of two (or more)

distinct expression states, while switches between these states are possible in reaction to specific

triggers [Novick and Weiner, 1957]. In contrast to circuits with gradual response, they are able

to sustain more than one stable phenotype under identical environmental conditions [Dubnau

and Losick, 2006]. Additionally, they often show a behavior called hysteresis, which denotes

a kind of robustness against external fluctuations preventing uncontrolled ON-OFF-switches

[Savageau, 1999]. Many natural genetic circuits exhibit this all-or-nothing behavior, because

it allows a strong, fast, and robust response. Moreover, such circuits are increasingly used in

biotechnology: With their help, cells can e.g. be artificially switched from growth to production

phase at a certain stage of the bioprocess for increasing its overall efficiency [Anesiadis et al.,

2008; Roquet and Lu, 2014]. Such approaches form a contrast to traditional static metabolic en-

gineering strategies. However, the noise that is inevitably associated with biochemical processes

might hamper the controlled usage of such cellular switches. This is depicted in Fig 1.1:
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Figure 1.1.: Emergence of phenotypic heterogeneity from noisy circuits. In (A), a circuit with a positive
feedback loop is shown, which has two different stable expression states. The stochasticity of processes
like transcription, translation or molecule degradation generates fluctuations in mRNA and protein
copy numbers as shown in the simulated time course in (B) (upper plot). Here, noise is large enough
to cause a spontaneous transition from the inactive to the active expression state through a random
activation of the positive feedback loop. The corresponding population distribution (lower plot)
exhibits both micro- and macroheterogeneity. Macroheterogeneity can be observed using suitable
fluorescent reporter strains, cf. (C) (image section taken from [Reck et al., 2015]). However, not
all bistable circuits result in phenotypic heterogeneity, since the probability of random transitions
depends on the noise levels of each expression state. Depending on the intensity of fluctuations,
transitions might be lacking, uni-directional, or bi-directional. Although a direct connection between
circuit properties and heterogeneity patterns exists, it cannot be easily determined. This limits the
possibility to predict and to control heterogeneity.
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In Fig 1.1 (A), a simplified circuit is illustrated which shows either high or low gene expression

and can therefore act as a cellular ON-OFF-switch. This binary behavior is due to the involve-

ment of a positive feedback loop, in which the target protein stimulates its own production,

thereby intrinsically maintaining the active or inactive expression state. If the circuit acted

deterministically, the cell would rest in one of the stable states until an external perturbation

triggers a state-transition. However, the noise within the circuit leads to temporal fluctuations

in the copy numbers of cellular components. This is illustrated in Fig 1.1 (B). As long as these

fluctuations occur within the attractor region of an expression state, they simply broaden the

peak representing the phenotype in the population distribution. This temporal heterogeneity

is also denoted as microheterogeneity [Huang, 2009]. Noise can, however, be large enough to

generate random transitions between expression levels, resulting in macroheterogeneity [Huang,

2009], i.e. in the coexistence of different phenotypic subpopulations4.

While noise-driven macroheterogeneity may be advantageous in nature, the majority of current

industrial applications requires almost noise-free circuits with full external controllability. It is

thus important to consider the impact of noise on the functionality of a circuit and to study how

different noise levels are generated (different “patterns” of heterogeneity are listed in Fig 1.1 (C)).

In general, intrinsic noise is solely determined by the architecture of the circuit itself and by the

dynamics of its reactions and can in principle be altered through suitable genetic manipulations.

In order to systematically analyze and to understand this rather direct, but intricate connection,

mathematical modeling of the regarded system is highly valuable. For capturing the stochasticity

of biochemical reactions, mesoscopic models are advantageous, which provide a description of

the system at single-species resolution. Their complexity is higher than that of macroscopic

models depicting population dynamics, but lower than that of microscopic models, with which

molecular dynamics are described based on quantum physical principles [Grima et al., 2011;

Tolle and Le Novere, 2006], cf. Fig 1.2. The latter are usually too involved to efficiently study

biochemical reactions with several regulatory interactions, however, the analysis of mesoscopic

models may be challenging as well. Despite a multitude of studies about circuit noise that make

use of stochastic models, the analytical connection between circuit properties and noise is still

rather unclear, especially in the context of macroheterogeneous systems. This is partially due

to the lack of suitable theoretical methods.

This motivates the overall goal of the study at hand – namely the development and applica-

tion of a theoretical framework for the comprehensive and predictive characterization of intrinsic

noise based on the underlying circuit. Special attention will be paid to systems with multiple

expression states. Based on the gained insights, one should be able to identify strategies for

the targeted adjustment of noise patterns. Since noise is an important trigger of spontaneous

cell state transitions, this would also be a first step towards a better understanding and control

of phenotypic heterogeneity. The obtained results are expected to improve our current under-

standing of natural mechanisms leading to cell-to-cell variability. Moreover, they should enable

an a-priori assessment of whether a given circuit is robust enough for industrial applications.

Last but not least, they should help in the design of synthetic circuits from a more “stochastic”

perspective, since it is nowadays primarily guided by deterministic considerations only.

As already stated, the theoretical framework needs to be mainly based on mesoscopic, i.e. on

stochastic modeling approaches. In this context, two major challenges are expected: The first

4The dynamics of a circuit can be figuratively thought of as marbles moving on a “potential landscape” [Hsu
et al., 2016; Tang et al., 2017; Waddington, 1957], whose valleys represent the favoured expression states. The
marbles tend to roll downhill, but are also subject to noise-driven random movement that may cause spontaneous
crossing of hills.
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Figure 1.2.: Classification of models for the dynamic description of biochemical processes. Modeling
approaches are grouped according to their resolution. From left to right, the complexity of the
approach increases, so that the complexity of the described systems needs to be reduced accordingly.

concerns the handling of these stochastic models themselves, since their analysis is generally

known to be intricate. In order to obtain closed-form solutions for the regarded noise char-

acteristics, which show their dependence on the properties of the circuit, approximations and

simplifications are often necessary. These might severely reduce the quality of results. Many

of the existing approaches use an underlying deterministic description, but the applicability of

deterministic models to the analysis of highly stochastic systems is questionable and needs to be

critically assessed. The second challenge concerns the definition and extraction of noise charac-

teristics in a macroheterogeneous regime: While noise can usually be quantified using measures

like the mean value and variance of a probability distribution, in case of macroheterogeneity, the

characterization needs to be performed for every phenotypic subpopulation separately, i.e. for

every peak in the probability distribution. This is non-trivial, since from a mathematical per-

spective, such “local” noise measures may be rather artificial. Currently existing approaches are

not fully reliable; their quality depends severely on the mathematical properties of the described

system. The development of novel, more suitable approaches might therefore be required.

The remaining chapters are organized as follows: In Chapter 2, the theoretical background

of this study is provided, including the most important mathematical concepts and tools that

are used and will partially be refined in the course of the study. Chapter 3 studies mathe-

matical connections and discrepancies between common deterministic and stochastic modeling

approaches in the context of gene expression and regulation. Based on that, the validity, in-

terpretability, and reliability of deterministic descriptions is critically assessed. These results

provide a basis for the development of novel methods in Chapter 4, with which expression-state

dependent noise levels in gene regulatory circuits can be characterized and analyzed. In the

subsequent two chapters, the methods are used to study noise patterns in two basic regulatory

motifs that can serve as biological ON-OFF-switches: Single-gene autoregulation (Chapter 5)

and the genetic toggle switch (Chapter 6). Each of the Chapters 3-6 is closed with a short

summary and discussion. Chapter 7 then provides an overall discussion of the obtained results,

followed by the main conclusions and possible future directions.
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2. Theoretical Background and Methods

This chapter introduces the most important terminology, notations, definitions, and established

methods that are used in this work for the modeling and analysis of biochemical processes.

They will be embedded in a broader theoretical context to allow comparisons with alternative

methods and to give a rough outline of current mathematical developments in this field. The

main focus will be on mesoscopic models, which provide an appropriate level of complexity for the

description of intracellular processes on a single-cell level, cf. Fig 1.2. In contrast to deterministic

(macroscopic) models based e.g. on rate equations (REs), they are able to describe stochastic

effects without going into too much molecular detail [Grima et al., 2011]. With their help,

different aspects of noise in genetic circuits have already been successfully studied in the last

years and decades. Some of the main results will be presented in this chapter.

Throughout this work, it is assumed that the interior of cells is spatially homogeneous, i.e.

that all intracellular reactants are diffusing freely in the cytoplasm. This is certainly a strong

simplification, as any cell – be it prokaryotic or eukaryotic – is in fact packed with macro-

molecules, which cause molecular crowding effects and which often form spatial clusters [Roberts

et al., 2011]. Besides that, noise contributions from the environment and from cellular dynamics

(growth, replication, and division) will mostly be ignored. Although all these neglected effects

are expected to actually have a significant impact on cellular behavior, it is valuable to first un-

derstand the reduced problem (which will itself turn out to be quite complex) before trying to

get the full picture – the basic principles derived from simplified systems should be present and

relevant in real, complex systems as well, albeit superposed by further effects. In fact, numerous

results derived from spatially homogeneous mesoscopic models could be verified experimentally,

especially in the field of synthetic biology. More details will be given in Section 2.2.

The chapter will start with the introduction of important stochastic modeling approaches, then

proceed to the quantification and characterization of noise in the context of gene expression and

regulation. The last part will deal with a comparison of deterministic and stochastic descriptions

of heterogeneity.

2.1. Stochastic modeling and analysis of biochemical systems

2.1.1. The chemical master equation

The chemical master equation (CME, also called master equation) is nowadays regarded as the

“gold standard” for describing biochemical processes inside living cells [Meister et al., 2014],

although it has met some criticism in the past. Conditions under which one of the most restric-

tive assumptions of this approach, namely spatial homogeneity, is physically justified, could be

identified for chemical reactions in gas phase [Gillespie, 1976, 1977, 1992] or in solution [Gille-

spie, 2009]. These conditions ensure the dominance of the frequency of non-reactive molecular

collisions over reactive ones [Nicolis et al., 1974], thereby creating a large enough mixing effect.

Even though the conditions do not exactly hold in the intracellular space, the CME is still the
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most accurate description available that allows the examination of stochastic cellular processes

with reasonable complexity: The additional inclusion of spatial gradients would lead to models

on the level of molecular dynamics [Grima, 2010], which would just be too detailed to efficiently

depict and analyze complex cellular processes [Gibson and Bruck, 2000].

Formulation of the CME

There are several detailed derivations of the master equation available in literature [Anderson and

Kurtz, 2015; Gillespie, 1976; McQuarrie, 1967; van Kampen, 2007]. This section will thus quickly

proceed to the general formulation of the CME and just provide some additional comments.

Let us consider a system with constant volume V that contains molecular populations of M

different reactive species. As the system is assumed to be spatially homogeneous, its current state

can be characterized by the copy numbers of all species, which are collected in a discrete-valued

state vector N(τ) = (N1(τ) N2(τ) ... NM (τ))>, where τ denotes time. The state vector changes

whenever a (bio-)chemical reaction occurs, according to the stoichiometry of the reaction. As

the reactions happen randomly, N(τ) is a stochastic process.

Its probabilistic dynamics can be mathematically described using the CME, which is basically

a differential form of the Chapman-Kolmogorov equation for memoryless Markov processes: Let

n ∈ (N0)M be a possible state of the stochastic process and pn(τ) be the probability that

N(τ) = n. The CME can initially be written as:

ṗn(τ) =
∑
n′

(
π(n,n′) pn′(τ)− π(n′,n) pn(τ)

)
, (2.1)

where ṗ is the time derivative of p, π(n2,n1) is the transition probability per infinitesimal unit

time from state n1 to n2, and the summation runs over all possible states. According to this

formulation, the probability of being in state n is enhanced through reactions that transfer the

system from other states to n, and reduced through reactions away from n. Non-negativity of

the state space is ensured by the conditions pn(0) = 0 ∀ n � 0 and π(n1,n2) = 0 if ni � 0,

i = 1, 2. The CME in the given form is discrete in state space, but continuous in time (there

is also a version of the CME with continuous state space, but in the context of small species

populations, it is much more accurate to take the discreteness of copy numbers into account).

The transition probability π(., .) can be further specified: This function only regards transi-

tions caused by single reactions, as the infinitesimal time unit δτ is chosen sufficiently small so

that the probability of having more than one reaction in a time interval of length δτ is negligible.

The “fundamental hypothesis” of the CME [Gillespie, 1976] is that the probability of the j-th

reaction to occur within the interval [τ, τ + δτ ] is proportional to δτ :

wj(n) δτ := the probability that the j-th reaction will occur in [τ, τ + δτ ],

if the system is in state n at time τ . (2.2)

wj(n) is also called the propensity of the j-th reaction1. If R reaction channels are considered

and the stoichiometric matrix is denoted by A with columns a1, ...,aR, then the CME can be

1Non-negativity of the state space is ensured by the condition (n � 0) ∨ (n + aj � 0) ⇒ wj(n) = 0.
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re-written as

ṗn(τ) =

R∑
j=1

(
wj(n− aj) · pn−aj (τ) − wj(n) · pn(τ)

)
. (2.3)

In fact, assumption (2.2) is the most critical part in the formulation of the master equation (at

least for systems that are spatially homogeneous). For certain physical conditions, D. T. Gille-

spie has indeed managed to rigorously prove that the assumption is valid: He derived explicit

expressions for wj(n) which only depended on some physical parameters and natural constants

[Gillespie, 1976, 1977, 2009]. In common applications of the CME, however, the propensities are

pragmatically formulated based on phenomenological constants that are inferred from experi-

mental data. This formulation additionally includes the stoichiometry of an elementary reaction

in the following way:

Let Xi, i ∈ {1, ...,M}, be the i-th reaction component and let the j-th reaction be given by

M∑
i=1

βij ·Xi −→
M∑
i=1

γij ·Xi, (2.4)

where βij , γij are the stoichiometric coefficients of the educts and products of the reaction.

Then, aj = (γij − βij)i=1,...,M and

wj(n) = κj ·
M∏
i=1

(
ni
βij

)
. (2.5)

Here, κj is the (phenomenological) stochastic reaction constant. The product term reflects the

combinatorial chance that all educt molecules collide randomly, which depends on the stoichiom-

etry of the reaction. Note that this dependence is only valid for elementary reactions and not

for reactions that are composed of multiple steps. In the latter case, the stoichiometry of the

rate-limiting step would be decisive for the combinatorial term, cf. [McQuarrie, 1967, p. 415]2.

By inserting Eq (2.5) into the CME formulation (2.3), we are now able to describe the considered

reaction system stochastically, based on stoichiometries and some phenomenological constants,

similar to the formulation of deterministic ordinary differential equation (ODE) models. The

connection between stochastic and deterministic reaction constants will be pointed out in Section

2.1.3.

Solving the CME using generating functions

In case the state variables can take on infinitely many values n, the master equation is actu-

ally an infinite-dimensional system of differential equations, which usually cannot be solved in

a straightforward manner. However, it can be converted into a single partial differential equa-

tion (PDE) using so-called generating functions [Kimmel and Axelrod, 2015; Scott, 2006; van

Kampen, 2007; Walczak et al., 2012]. For simple cases, this PDE can be solved exactly, and

backtransformation yields a solution of the master equation.

2Here, an example is given in the context of deterministic rate equations, but the same holds for the corre-
sponding stochastic formulation.
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The generating function Z of a time-dependent array an(τ),n ∈ (N0)M is defined as3

Z : [0, 1]M × R → R, Z(z, τ) =
∞∑

n1=0

...
∞∑

nM=0

an1,...,nM (τ) · zn1
1 · ... · z

nM
M . (2.6)

The array can be retrieved using the backtransformation:

an1,...,nM (τ) =
1

n1! ... nM !

∂n1+...+nM

∂zn1
1 ... ∂znMM

Z(z, τ)
∣∣∣
z=0

. (2.7)

If an(τ) is the probability mass function (PMF) pn(τ) of a discrete, non-negative random

process N(τ), then

Z(z, τ) = E
[
z
N1(τ)
1 · ... · zNM (τ)

M

]
= E

[
e r
>N(τ)

]
=:M(r, τ), (2.8)

where E denotes the expected value operator (cf. next section) and ri := ln(zi). In this case,

Z is usually called the probability generating function due to Eq (2.7), while M is called the

moment generating function. The latter term refers to the fact that the (k1, ..., kM )-th mixed

moment of N(τ), defined as

µ k1,...,kM (τ) := E
[
Nk1

1 (τ) · ... ·NkM
M (τ)

]
=

∞∑
n1=0

...
∞∑

nM=0

nk11 · ... ·n
kM
M pn1,...,nM (τ), (2.9)

is given by:

µ k1,...,kM (τ) =
∂k1+...+kM

∂rk11 ... ∂rkMM
M(r, τ)

∣∣∣
r=0

. (2.10)

Going back to Eq (2.3), the transformation of both sides of the equation using their respective

generating functions yields a PDE, which can possibly be solved explicitly based on the method

of characteristics [Scott, 2006; Walczak et al., 2012], so that a closed-form solution of pn(τ) is

obtained. Depending on the goal of the analysis, it might also be sufficient to regard the system

only in its steady state (i.e. under the condition ṗn(τ) = 0), which facilitates the solution of the

equation. This method will be applied a few times throughout this study.

However, in most cases, it remains impossible to find a closed-form solution of the (dynamic

or stationary) probability distribution p. Even for the mean vectors and/or variance-covariance

matrices of the system state (cf. next section), analytical expressions cannot always be found.

This has created the need for numerical and for approximate analytic approaches, a selection of

which will be presented later in the chapter.

2.1.2. Mean values, variances, and covariances

Moments are important and intuitive characteristics of a probability distribution, since with their

help, the average behavior of a stochastic process and the width and shape of its probability

distribution can be described. In order to calculate these measures, we first look at the general

definition of an expected value (mean value, average):

3The conversion is equivalent to a Z-transform, the discrete analogue of the Laplace-transform.
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2.1. Stochastic modeling and analysis of biochemical systems

Let h : RM → R be an arbitrary function. The expected value of h(N(τ)) is defined as

E[h(N)(τ)] :=
∞∑

n1=0

...
∞∑

nM=0

h(n) pn(τ). (2.11)

In the context of biochemical processes, pn(τ) is in general unknown, while its time derivative

is specified by the master equation. This allows the formulation of the derivative Ė[h(N)(τ)] =∑∞
n1=0 ...

∑∞
nM=0 h(n) ṗn(τ). The ODE describing the average dynamics of the i-th component

Ni is for example given by:

Ė[Ni] =
∑

n∈NM0

ni ṗn =
∑

n∈ZM
ni ṗn

=
∑

n∈ZM

(
ni

R∑
j=1

[
wj(n− aj) · pn−aj − wj(n) · pn

])

=
R∑
j=1

∑
n∈ZM

[ (ni + aij) ·wj(n) · pn − ni ·wj(n) · pn ]

=

R∑
j=1

(aij ·E[wj(N)]) . (2.12)

For the sake of simplicity, the time variable τ has been omitted. The second equality is ensured

by the condition pn = 0 ∀n � 0. The fourth equality is obtained by an index shift.

In an analogous manner, one can formulate an ODE for the variance of the i-th component,

Var(Ni) := E[(Ni − E[Ni])
2], and for the covariance between the i-th and j-th component,

Cov(Ni, Nj) := E[(Ni−E[Ni])(Nj−E[Nj ])], using the relations ˙Var(Ni) = Ė[N2
i ]−2 Ė[Ni]E[Ni]

and ˙Cov(Ni, Nj) = Ė[NiNj ]− Ė[Ni]E[Nj ]− E[Ni] Ė[Nj ].

We can now assess the solvability of Eq (2.12): In case all propensity functions are lin-

ear (which holds true if all reactions in the system are of zeroth or first order), the equality

E[wj(N)] = wj(E[N]) gives the ODE Ė[Ni] =
∑R

j=1 (aij ·wj(E[N])) , i = 1, ...,M , or:

Ė[N] = A w(E[N]). (2.13)

Here, A is again the stoichiometric matrix defined in Section 2.1.1 and w = (wj)j=1,...,R is the

vector of reaction propensity functions. Eq (2.13) is a system of first-order linear ODEs with

constant coefficients, for which a closed-form solution exists.

If wj is however nonlinear, in general, E[wj(N)] 6= wj(E[N]). In this case, multidimensional

Taylor expansion of wj(N) at E[N] would show that the ODE of the k-th moment (the first

moment being the mean value) depends on the (k + 1)-st moment as well. This finally results

in an infinite-dimensional system of ordinary differential equations, making an exact solution of

mean values, variances, etc. generally intractable [McQuarrie, 1967; van Kampen, 2007].

2.1.3. Connection to macroscopic models

At this point, it is useful to regard the macroscopic description of chemical reaction systems

based on deterministic rate laws, and to specify some of the connections to the parameters of

the CME. This will help in introducing the stochastic modeling approaches presented in the

11



2. Theoretical Background and Methods

subsequent sections.

The macroscopic description is based on the law of mass action (originally postulated and stud-

ied by Guldberg and Waage in the 1860s). Usually, concentrations ci = ni
V instead of molecule

numbers ni are regarded [Gillespie, 1976] and treated as continuous variables [Gillespie, 1977].

This conversion enables the description of the system using intensive (i.e. size-independent) vari-

ables and parameters, but the assumption of continuity is only justified in case copy numbers

and the system’s volume are large. For the elementary reaction (2.4), the deterministic dynamics

of ci are by default described by:

ċi =
R∑
j=1

(
kj (γij − βij)

M∏
l=1

c
βlj
l

)
=

R∑
j=1

(
kj aij

M∏
l=1

c
βlj
l

)
. (2.14)

kj is the deterministic reaction rate constant that depends on physical (e.g. thermodynamic)

properties of the reaction and of its environment. The relation between kj and the stochastic

constant κj can be formulated as:

κj = kj ·V ·
M∏
l=1

βlj !

V βlj
. (2.15)

This is a generalization of the formula derived in [Gillespie, 1977] and it shows that κj is an

extensive parameter which depends on the volume V . This dependence is in turn determined

by stoichiometry in a quite intuitive manner: For a given system state n, zero-order reactions

are more probable in large systems, while the chance of molecular collisions that are required

for reactions of second or higher order are reduced in larger volumes.

Insertion of Eq (2.15) into Eq (2.5) shows that the j-th reaction propensity can be written as:

wj(n) =
kj

V
∑M
l=1 βlj−1

M∏
l=1

nl!

(nl − βlj)!
. (2.16)

Furthermore, one can state that for systems with large size and copy numbers,

1

V
·wj(n) = kj

M∏
l=1

nl
V

(
nl − 1

V

)(
nl − 2

V

)
...

(
nl − βlj + 1

V

)
= kj

M∏
l=1

c
βlj
l + O(V −1) (2.17)

with c = n
V . The rate equation (2.14) then emerges in the thermodynamic limit ni → ∞,

V →∞, s.t. ci = ni
V = const.:

ċ = lim
V→∞

1

V
A w(c ·V ). (2.18)

This relation provides a connection to the stochastic formulation. However, it is nontrivial to

determine under which conditions the macroscopic formulation gives a good description of the

regarded system. This question will be addressed in Chapters 3 and 4.
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2.1. Stochastic modeling and analysis of biochemical systems

2.1.4. Simulating the master equation: the Gillespie algorithm

The stochastic simulation algorithm [Gillespie, 1976], also known as the Gillespie algorithm, is

probably the most prominent method with which the CME can be treated computationally. It is

a Monte-Carlo-based approach that generates exact trajectories of the CME, instead of providing

solutions of the whole distribution pn(τ). The basic idea behind it is probably explained best

by looking at the algorithm itself:

The Gillespie algorithm (pseudoalgorithm)

• Initialization:

Initialize the state vector n and calculate the propensities wj(n) of all reactions. Initialize

time by setting τ = 0.

• Monte-Carlo step:

Randomly choose a time step ∆τ (time until the next reaction event) and a number

J ∈ {1, ..., R} (number of the reaction channel that fires next). This is done by drawing

two independent, uniformly distributed random variables U1 ∼ U([0, 1]) and U2 ∼ U([0, 1]),

by then calculating

∆τ =
1∑N

j=1wj(n)
· ln

(
1

U1

)
, (2.19)

and by choosing J which satisfies the condition

J−1∑
j=1

wj(n) < U2 ·
R∑
j=1

wj(n) ≤
J∑
j=1

wj(n) (2.20)

• Update:

Set τ ← τ + ∆τ and n← n + aJ .

• Iteration:

Go back to the Monte-Carlo step unless the stopping criterion is fulfilled.

The Monte-Carlo step uses the principle of inverse transform sampling in order to choose the

time steps and reaction channels consistently with the CME. Basically, Eq (2.19) shows that the

time interval between two subsequent reactions is exponentially distributed, and Eq (2.20) says

that the probability of a reaction channel to be the next that fires is proportional to the relative

size of its propensity. For a rigorous derivation, see the original publication [Gillespie, 1976]. The

algorithm shown above is called the “direct method”, in contrast to the “first-reaction method”,

also presented in [Gillespie, 1976]. The direct method is computationally more efficient, however,

the idea of the first-reaction method has been modified later to yield the next-reaction method

[Gibson and Bruck, 2000]. This version is usually even faster, because part of the information is

continually updated so that after initialization, only one random variable needs to be generated

per iteration. In spite of their differences in computational efficiency, all the above mentioned

approaches yield equivalent outputs. Since in this work, simulations are only used for validating

approximate analytical methods, the choice of the algorithm plays a minor role.
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2. Theoretical Background and Methods

2.1.5. Fokker-Planck-type approaches

The Fokker-Planck equation (FPE) is a partial differential equation that describes the evolution

of a probability density function P , which is continuous in time and in space. Its general formula

in the multivariate case with state vector x reads:

∂P (x, τ)

∂τ
= −

M∑
i=1

∂

∂xi
[vi(x)P (x, τ)] +

1

2

M∑
i,k=1

∂2

∂xi∂xk
[dik(x)P (x, τ)]. (2.21)

vi and dik must be real-valued, differentiable functions and for every x, dik(x) needs to be

symmetric and positive definite. v(x) := (vi(x))i=1,...,M is called drift vector and D(x) :=

(dik(x))i,k=1,...,M is referred to as diffusion tensor.

A special case of Eq (2.21) is the linear FPE4, which possesses a drift term that is linear in

x and a constant diffusion tensor and which therefore has the form:

∂P (x, τ)

∂τ
= −

M∑
i,k=1

vik
∂

∂xi
[xk P (x, τ)] +

1

2

M∑
i,k=1

dik
∂2

∂xi∂xk
P (x, τ). (2.22)

It turns out that the solution of the linear FPE is a multivariate Gaussian distribution for

every τ , which is fully characterized by its current mean and variance [van Kampen, 2007].

The FPE formalism is often used to approximate the CME. In the following, two common

types of FPEs are presented. The first type, sometimes referred to as the chemical FPE (CFPE)

[Grima et al., 2011], results from the Kramers-Moyal expansion of the CME. The second, called

the linear noise approximation (LNA), has been proposed in [van Kampen, 2007]. As the LNA

is used later in this study, a stronger focus will be put on it. Afterwards, a brief look is taken

at some critical reviews and comparisons of the two approaches.

The chemical Fokker-Plank equation

Broadly speaking, the Kramers-Moyal expansion of the CME (2.3) is obtained by performing

a multivariate Taylor expansion with respect to the state variable n. This is only possible if

n is regarded as continuous vector and if the domain of the propensities wj is extended to

RM accordingly. Additionally, the probability mass function p.(τ) needs to be replaced by a

probability density function P (., τ). All these steps are obviously critical if molecular copy

numbers are small. The Kramers-Moyal expansion is therefore usually classified as a “large

number approximation”5. The CFPE is obtained by truncating the Kramers-Moyal expansion

at second order: If the function wj(.) ·P (., τ) is smooth, its Taylor expansion to second order

yields

4Note that in this context, the term linear does not refer to linearity in P (which holds per definition for
every FPE), but defines properties of vi and dik.

5In the context of the Kramers-Moyal expansion and of FPEs, copy numbers are often converted to concen-
trations, which are then assumed to be continuous. This assumption is reasonable in the case of a large system
size (concerning volume and copy numbers), but otherwise, the justification of performing interpolations remains
equally problematic after conversion as in the original state space. We thus refrain from any conversion at this
stage.

14



2.1. Stochastic modeling and analysis of biochemical systems

wj(n− aj) P (n− aj , τ)

≈wj(n) P (n, τ) −
M∑
i=1

∂

∂ni
(aij wj(n)P (n, τ)) +

1

2

M∑
i,k=1

∂2

∂ni∂nk
(aijakj wj(n)P (n, τ)). (2.23)

Inserting this expression into the CME (2.3) results in the CFPE

∂

∂τ
P (n, τ) ≈ −

M∑
i=1

∂

∂ni

 R∑
j=1

aij wj(n)P (n, τ)

+
1

2

M∑
i,k=1

∂2

∂ni∂nk

 R∑
j=1

aijakj wj(n)P (n, τ)


(2.24)

(cf. [Gillespie, 1996, 2000]). Compared with the general formulation of the FPE (2.21), vi(n) =∑R
j=1 aij wj(n) and dik(n) =

∑R
j=1 aijakj wj(n). The main criticism against the CFPE concerns

the physical justification of the performed truncation.

The linear noise approximation

The LNA is another large number approximation. Its derivation by van Kampen is based on a

Taylor series expansion, the so-called system size expansion, which explicitly includes the size of

the system V as a parameter. Truncation of the Taylor series is justified if V is large. The LNA

is built on the assumption that the state vector fluctuates stochastically around a macroscopic

solution φ(τ) ·V , and that the fluctuations are in the order of V
1
2 . The random state vector

can hence be decomposed into a deterministic and a stochastic part and can be written as:

N(τ) = φ(τ) ·V + Y(τ) ·V
1
2 . (2.25)

N, φ and Y are treated as continuous, and φ solves the macroscopic RE (2.18):

φ̇ = Aw̃(φ), (2.26)

where w̃(φ) := lim
V→∞

1
V w(φ ·V ). According to Eq (2.17), w̃(φ) = 1

V w(φ ·V ) +O(V −1).

The whole stochasticity of N is now contained in Y, which basically captures the deviation of

the original stochastic process from the deterministic solution. Its probability density function

P̃ is connected to that of N via the relation P (n, τ) = P (φ ·V + y ·V
1
2 , τ) =: P̃ (y, τ), where

in the first step, Eq (2.25) has been used. In [van Kampen, 2007], the derivation of the LNA

is shown in detail. In the Supporting Information of [Elf and Ehrenberg, 2003], a concise and

explicit derivation for the multivariate case is given. Here, only the main steps are summarized:

First, the variant of the CME for N which is continuous in time and space is transformed

into a CME in terms of Y. Taylor expansion of w(n) to second order around φ ·V , which

corresponds to an approximation up to order V 0, eventually yields the LNA:

∂P̃ (y, τ)

∂τ
= −

M∑
i,k=1

R∑
j=1

aij
∂

∂φk
w̃j(φ)

∂

∂yi
[yk P̃ (y, τ)] +

1

2

M∑
i,k=1

R∑
j=1

aijakjw̃j(φ)
∂2

∂yi∂yk
P̃ (y, τ).

(2.27)
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2. Theoretical Background and Methods

This is a linear FPE, whose general form was given in Eq (2.22). Here, vik =
∑R

j=1 aij
∂
∂φk

w̃j(φ) =

[ ∂∂φAw̃(φ)]ik is exactly the (i, k)-th entry of the Jacobian (cf. Section 2.3.1) of the macroscopic

rate equation (2.26) and dik =
∑R

j=1 aijakjw̃j(φ) = [A · diag(w̃(φ)) ·A>]ik. Note that these

coefficients are time-variant because of their dependence on φ. The solution is Gaussian dis-

tributed at any point in time and therefore fully characterized by the dynamics of its first two

moments.

The expected value and variance of this Gaussian distribution in its stationary state can be

analytically determined. One can show that E[Y] = 0 and that Σ̃ := Var(Y) obeys the so-called

Lyapunov equation

J∗ · Σ̃ + Σ̃ · (J∗)> + D̃∗ = 0, (2.28)

where J∗ := ∂
∂φAw̃(φ∗) is the Jacobian of the macroscopic ODE evaluated at its stable fixed

point φ∗, and D̃∗ := A ·diag(w̃(φ∗)) ·A>. The variance of the original state vector N is then

given by Σ := Var(N) = V ·Var(Y). It solves the Lyapunov equation

J∗ ·Σ + Σ · (J∗)> + D∗ = 0 (2.29)

with D∗ = D̃∗ ·V . The Lyapunov equation can always be solved, although the process might

be tedious, depending on the complexity of the system.

Eq (2.27) shows that the reaction rates only enter the LNA in a form that is linearized

around the deterministic solution (i.e. only in form of their zeroth and first derivatives evaluated

at φ). This allows the formulation and interpretation of the stationary LNA from a different

perspective: Since systems with nonlinear propensities are in general very difficult to analyze,

the idea is to linearize them. The point around which this linearization is performed is chosen

as the macroscopic fixed point φ∗ ·V , which serves as an approximation of the stationary mean

value of N. The variance of the linearized system Σ, which can be determined analytically, is

then used as an approximation of the variance of the original, nonlinear system. Performing the

according calculation steps automatically ends up in the Lyapunov equation (2.29) [Tomioka

et al., 2004].

The stationary LNA returns the correct mean and variance of N if all reaction propensities

are linear functions of the system state. However, unlike the distribution obtained with the

LNA, the real distribution is usually only Gaussian in the thermodynamic limit (cf. [Walczak

et al., 2012]6).

Comparison of the approaches

The CFPE with its nonlinear drift term is apparently more complex from a mathematical point

of view than the LNA. In fact, it can be shown that linearization of the propensity functions in

the CFPE exactly yields the LNA formulation [Gardiner, 2009; Wallace et al., 2012]. While it

is always possible to solve the LNA, this is not the case for the CFPE. However, it would be

wrong to immediately conclude that the CFPE is more accurate than the LNA:

For example, van Kampen has remarked that the truncation of the Kramers-Moyal expansion,

6In this paper, the fact is illustrated using a simple birth-death process that results in a Poisson distributed
state space. The mean and variance is correctly predicted by LNA, independently of the size of the system. For
large protein numbers, the Poisson distribution approximates a Gaussian.

16



2.1. Stochastic modeling and analysis of biochemical systems

which results in the CFPE, does not have any physical foundation due to the lack of a small

system parameter that would make higher orders of the Kramers-Moyal expansion negligible [van

Kampen, 2007]. In contrast to that, the LNA mathematically emerges from a Taylor expansion

with respect to V −
1
2 , showing that its results may be considered reliable if the LNA is applied,

e.g., to chemical processes in large, well-stirred reaction vessels.

However, van Kampen’s reasoning did not put an end to the discussion: Conditions were iden-

tified under which the CFPE (and the related chemical Langevin equation) does very well have

a physical meaning [Gillespie, 2000; Wallace et al., 2012]: For example, in case a time interval

can be defined during which every reaction channel is expected to fire several times without any

propensity changing its value significantly, the CFPE is shown to be a valid approximation. A

large system size usually helps to fulfill this condition, but it is not a necessary criterion.

For modeling intracellular processes, one should refrain from concentrating too much on sce-

narios close to the thermodynamic limit anyway, as the size of the system is naturally limited7,8.

Instead, one should assess how good the approximate approaches perform in smaller-scale sys-

tems. Under this aspect, R. Grima et al. have compared the accuracy of the CFPE and of the

LNA in monostable systems [Grima et al., 2011]. They have shown that the CFPE estimates the

mean and variance of a distribution accurately to order V −
3
2 . The estimation of the variance

using the LNA has the same accuracy, while the mean is only predicted accurately to order

V −
1
2 , even in cases where the applicability of the CFPE cannot be rigorously justified. This is

one important example of recent papers that have studied the reliability of the two approaches

in systems with limited volume. Other considerations, for example concerning thermodynamic

aspects, can be found in [Ceccato and Frezzato, 2018; Horowitz, 2015].

For the intended goal of this study, it is important to obtain closed-form solutions of the

probability distribution or, at least, of its mean and variance, as with their help, parametric

connections between the properties of a system and its noise level can be found. Therefore, the

usage of the LNA is preferred, but one needs to bear in mind that a critical evaluation of the

quality of results is absolutely necessary.

2.1.6. Other approaches

In this section, we will briefly mention some further approximate approaches that facilitate the

analysis of stochastic systems. Some of them are used in this work, some of them will be revisited

later for the discussion of the methodology that will be newly developed.

Higher orders of the system size expansion

Through the inclusion of more terms than those used for LNA, mean and variance estimates

can be improved, which becomes relevant in the mesoscopic regime. At least, this statement

holds for unimodal systems (the multimodal case will be discussed at the end of the chapter).

This idea has been pursued by Grima and colleagues, who have incorporated terms up to order

V −
1
2 to obtain the so-called effective mesoscopic rate equations (EMREs). They give a more

accurate description of average concentration dynamics than the common REs [Grima, 2010]

by adding a systematically derived mesoscopic correction term. The term vanishes in the limit

of large volumes. In an analogous manner, an improved estimation of the variance-covariance

7The volume of an Escherichia coli (E. coli) cell comprises about 10−15 liters [Scott, 2006].
8Remark: In the thermodynamic limit, the CFPE becomes equal to the LNA [Grima et al., 2011].
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matrix has been achieved by including terms up to order V −1. This approach has been denoted

the Inverse Omega Square (IOS) method [Thomas et al., 2012].

Moment closure techniques

Like the EMRE approach and the IOS method, moment closure techniques focus on the estima-

tion of (central) moments (means, variances, etc.) of a distribution. As already mentioned in

Section (2.1.2), the exact dynamics of the k-th moment can only be formulated in dependence

of the (k + 1)-st moment, unless the system comprises zero- or first-order reactions only. Mo-

ment closure techniques assume that moments higher than a certain order can approximately

be formulated in terms of lower moments only. The formulations usually follow the example of

prominent distributions like the normal distribution, where all cumulants except for the first and

second (mean and variance) are simply equal to zero [Gómez-Uribe and Verghese, 2007]. This

artificial limitation of the number of moment equations makes them analytically or numerically

solvable. If moments higher than the first are included in the moment closure technique, the

expression obtained for the average systems behavior usually differs from the corresponding RE

formulation, where the impact of fluctuations is fully neglected. Again, however, major prob-

lems arise when moment closure techniques are applied to multimodal systems [Gómez-Uribe

and Verghese, 2007; Lakatos et al., 2015; Schnoerr et al., 2015]. Moreover, they are often said to

constitute an ad hoc approximation, whose accuracy cannot be reliably predicted [Grima, 2012;

Schnoerr et al., 2015].

Model reductions based on separation of scales

The following approaches split the state variables into at least two groups: One that needs to

be modeled in detail, while the other can be described in a simplified manner, thereby reducing

the overall complexity of the model. The criteria used for the classification of the variables are

related to the presence of different scales.

Model reduction based on time-scale separation is a concept well-known from ODE modeling:

If the dynamics of certain components within the system are much faster than the dynamics of

all other components, one can regard the two time-scales separately. On the “fast” time-scale,

all slow components can be assumed to have constant values, as they do not significantly change

while the fast subsystem relaxes to its pseudo steady state (PSS). On the “slow” timescale, all fast

components can be expressed as functions of the slow ones and therefore be eliminated, since they

are assumed to adapt infinitely quickly to their PSS that is dictated by the dynamics of the slow

variables. In [Rao and Arkin, 2003], the same principle was applied to stochastic systems. The

elimination of fast variables (through conditioning on slow variables and subsequent averaging)

leads to a system consisting of non-elementary reactions, whose stochastic reaction “constants”

κj might actually be complex functions of the slow system variables. They might, e.g., have the

form of typical Michaelis-Menten or Hill-type kinetics. This is of great value in the modeling

of biochemical networks that are too complex to be described in terms of elementary reactions.

Similar approaches can be found in [Cao et al., 2005; Haseltine and Rawlings, 2005; Kepler and

Elston, 2001].

The method proposed in [Elf and Ehrenberg, 2003] first eliminates fast variables by setting

them into their macroscopic PSS, then applies the LNA to the slow variables only. Interestingly,

all these variables do not necessarily describe the original reaction components, but transformed

18



2.2. Noise in genetic circuits

versions thereof (so-called relaxation modes), which can be better grouped according to their

time-scales.

Another kind of model reduction exploits the molecular abundance of some components. In

[Lin and Galla, 2016], a piecewise deterministic Markov process was developed, in which the

dynamics of mRNA (low copy number species) are modeled as a stochastic switching process,

while the protein level is described deterministically using ODEs. The relevant set of ODEs

changes in accordance with the current state of the mRNA.

In a similar way, slow switches of a low copy number species (here: promoter state) are

modeled stochastically in [Thomas et al., 2014]. The high-copy number species (mRNA and

protein) are then described with the help of stationary LNAs, which are conditioned on the

promoter state. In contrast to the previously mentioned approach in [Lin and Galla, 2016], an

approximate stochastic distribution of the full system state can thus be obtained.

An approach where the description of components with small noise is reduced to the dynamics

of their mean values, whereas the other variables are simulated in detail using the Gillespie

algorithm, was proposed and discussed in [Hellander and Lötstedt, 2007; Jahnke, 2011].

2.2. Noise in genetic circuits

Gene expression is a highly stochastic process due to the involvement of reactive species that

occur in very low copy numbers. The amount of active promoters of a gene of interest usually

ranges between zero and eight per bacterial cell, and the abundance of the corresponding mRNA

often lies in the same order of magnitude [Milo et al., 2016]. Therefore, mRNA and protein

time courses typically show significant fluctuations, which influence the robustness of a circuit

and generate variability within isogenic populations. These fluctuations can be characterized

mathematically with the help of stochastic descriptions, some of which have been introduced in

the preceding section.

2.2.1. Measures of variability

Until now, we have discussed how the variance of fluctuations can be determined at least ap-

proximately. A better appraisal of variability can be achieved when the variance is related to the

mean value of fluctuations. One common measure with which the noise of a stochastic process

N is quantified is the so-called Fano factor (or noise strength)

η(N) :=
Var(N)

E[N ]
. (2.30)

The Fano factor enables to compare the distribution of N with a Poisson distribution, where

the variance is always equal to the mean and therefore η(N) = 1. Typical birth-death pro-

cesses are Poisson distributed, e.g. the simple formation and degradation of mRNA molecules,

if promoter dynamics are neglected and other regulatory mechanisms are absent. All deviations

from η(N) = 1 therefore indicate some kind of upstream stochasticity or the involvement of

regulation. Processes with η(N) < 1 are called sub-Poissonian, while processes with η(N) > 1

are referred to as super-Poissonian.
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An alternative measure is the coefficient of variation (CV):

CV(N) :=
σ(N)

E[N ]
, (2.31)

where σ(N) :=
√

Var(N) is the standard deviation of N .

There are different opinions about which measure is used best. While the Fano factor is often

favored due to its relation to Poisson processes [Chong et al., 2014; Elf and Ehrenberg, 2003;

Thattai and van Oudenaarden, 2001; Thomas et al., 2013], the CV is said to be better suited to

identify contributions from different noise sources [Bar-Even et al., 2006; Paulsson, 2005]. The

CV is furthermore regarded as a “dimensionless” [Scott, 2006], “unambiguous” [Kærn et al.,

2005] measure, accounting for the fact that fluctuations become negligible in large systems with

high molecular abundance. The discussion in [Kærn et al., 2005] implies that the CV is better

suited to compare noise levels in systems of differing size but with the same average concentration

of the target component. The Fano factor is more appropriate for comparing fluctuations around

different mean values within the same system and is therefore valuable for studying phenotypic

heterogeneity. Besides this aspect, the Fano factor better describes the influence of translational

bursts [Kærn et al., 2005; Ozbudak et al., 2002; Thattai and van Oudenaarden, 2001], which will

be introduced in the following section. As the present study will mainly deal with heterogeneous

systems and with the role of bursts, the Fano factor is preferred.

2.2.2. Translational bursts

Translational bursts (or protein bursts) emerge when several protein molecules are translated

from a single, short-lived mRNA molecule [Friedman et al., 2006] and constitute a major source

of gene expression noise. They can be quantified using the burst size and the burst frequency :

The burst size is the average number of proteins synthesized from a transcript. The burst

frequency is the average number of translational bursts (i.e. of mRNA transcription events) per

protein lifetime. The scaling of the burst frequency with the average lifespan of a protein ensures

that the average protein level is now given by the product of burst size and burst frequency. In

order to see how these measures can be calculated, let us have a look at the reaction scheme of

linear gene expression in Fig 2.1 (A) (cf. [Thattai and van Oudenaarden, 2001]). Here, m and s

denote the copy numbers of the regarded mRNA and protein species in a single cell, respectively.

Transcription occurs with constant rate â, while the translational propensity is proportional to

the mRNA level with proportionality constant ĝ. The degradation of mRNA and protein is

assumed to be linear as well with constants dm and ds, respectively. The average burst size α

and the average burst frequency ω are then given by [Thattai and van Oudenaarden, 2001]:

α :=
ĝ

dm
and ω :=

â

ds
. (2.32)

One can verify that the average protein level is indeed equal to the product of α and ω. In Section

4.5, the definitions are extended to more complex reaction schemes. Based on the derivations

shown there, it is also possible to reconstruct the emergence of the formulae in (2.32).

If the lifespan of a transcript, which determines the duration of a burst, was short enough to

neglect the degradation of proteins in that time interval (i.e. if ds � dm, which is typically the

case [Milo et al., 2016]), the burst size α would correspond to the average amplitude of protein

peaks that are generated through translational bursting [Thattai and van Oudenaarden, 2001],
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Figure 2.1.: Protein bursts in a linear scheme of gene expression. (A) Full reaction scheme of a linear
gene expression model. Interactions are indicated by dashed arrows, conversions by solid arrows. (B)
Reduced scheme exploiting protein burst dynamics. The number of protein molecules produced per
burst equals B, which is a geometrically distributed variable whose mean corresponds to the burst
size. (C) Protein bursts form peaks in a protein time course, which was obtained through a stochastic
simulation of the full reaction scheme. The average amplitude of the peaks is approximately equal to
the burst size, in this case α = 10. The parameters are: â = 0.02, ĝ = 10, dm = 1, ds = 0.1.

see Fig 2.1 (C). The actual number of translated proteins per mRNA is a random variable,

which is denoted by B. In [McAdams and Arkin, 1997], it has been theoretically shown that

its distribution is geometric, which means that the probability pBb of having a burst of size b is

equal to

pBb =

(
α

1 + α

)b
·
(

1

1 + α

)
. (2.33)

The impact of translational bursting on the Fano factor has been demonstrated mathemati-

cally in [Thattai and van Oudenaarden, 2001]: According to the linear expression model in Fig

2.1 (A), where promoter dynamics are neglected, the stationary mRNA distribution is Poisso-

nian. Therefore, η(M) = 1, where M is the random mRNA copy number. The protein Fano

factor η(S) = Var(S)
E[S] can be calculated based on the CME, following the approach from Section

2.1.2. It is possible in this case to obtain an explicit solution, as all reaction propensities are

constant or linear. The result is:

η(S) = 1 +
α

1 + ds
dm

≈ 1 + α. (2.34)

The given approximation is again valid if protein degradation is much slower than mRNA degra-

dation. The formula shows that the protein distribution is super-Poissonian and that the burst

size has substantial influence on the Fano factor. This fact has an interesting consequence: If

the transcription rate was decreased and if at the same time, the translation rate was increased,

so that the average protein level is kept constant, the protein noise level would be amplified

[Kærn et al., 2005; Kierzek et al., 2001; Thattai and van Oudenaarden, 2001]. This manipula-

tion causes an increase in the burst size and a corresponding decrease in the burst frequency.

Remarkably, this theoretical fact could be verified experimentally by varying inductor concen-

trations to modulate transcription initiation rates and by altering either the ribosomal binding

site or the initiation codon to change the translational efficiency in a linear expression system

[Ozbudak et al., 2002]. Through a similar manipulation of a bistable system that regulates

genetic competence in Bacillus subtilis (B. subtilis), it has been shown that artificial burst size

reduction led to fewer random cell-state transitions and hence to fewer entries of cells into the
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competent state [Maamar et al., 2007].

Even higher experimental resolution was achieved in [Cai et al., 2006] using microfluidic

devices, which allowed the tracking of protein production events in single cells at single molecule

resolution. Indeed, protein bursts could be observed, and the geometric distribution of B could

be confirmed9.

Based on these burst statistics and provided that mRNA half-life is so short that protein

translations from one mRNA molecule can be lumped into a single burst event, a reduction

of the full model in Fig 2.1 (A) can be performed, which is illustrated in Fig 2.1 (B). Here,

the mRNA level is eliminated, and each protein production event is assumed to result in a

geometrically distributed increase in protein molecules. Based on this model reduction, the

probability distribution of the protein copy number could be explicitly calculated from the

corresponding CME and it was shown to follow a negative binomial distribution [Aquino et al.,

2012; Paulsson and Ehrenberg, 2000; Shahrezaei and Swain, 2008] (or, depending on model

formulation, a Gamma distribution [Friedman et al., 2006], which is the continuous equivalent).

A mechanism equivalent to translational bursting that originates from the interplay between

promoter and mRNA dynamics can lead to the emergence of mRNA bursts. This mechanism is

more common in eukaryotes, while protein bursts are predominant in prokaryotes [Kærn et al.,

2005]. In this work, a stronger focus will be on prokaryotic systems and therefore on protein

bursts, but the mathematical tools will be transferable to the mRNA level.

Ever since the impact of bursts on gene expression noise has been recognized, their biological

role has been intensely discussed. It has for example been postulated that inefficient translation,

although being energetically unfavourable, is a strategy of reducing fluctuations in cyclic adeno-

sine monophosphate (cAMP) in E. coli [Ozbudak et al., 2002]. However, in other contexts, noise

from bursts might be exploited to generate population heterogeneity like in the lysis-lysogeny

decision of the bacteriophage λ [Ozbudak et al., 2002], or in the previously mentioned devel-

opment of competence in B. subtilis [Maamar et al., 2007]. In theses cases, the translational

efficiency is observed to be high, leading to large protein fluctuations. However, bursting is

not the only mechanism that predefines the magnitude of noise: The topology of a circuit as

well as the distribution of reaction time scales are further important determinants that will be

addressed next.

2.2.3. The influence of circuit topology and dynamics

As we have seen, the combination of different time-scales influences the emergence of noise

through the generation or attenuation of bursts. The same principle holds during further prop-

agation of noise through the gene expression system. In general, slow downstream reactions can

act as low-pass filters, partially averaging out fast fluctuations of upstream components [Kærn

et al., 2005; Paulsson, 2004; Pedraza and van Oudenaarden, 2005].

Another efficient way of noise reduction is negative feedback regulation. In [Becskei and

Serrano, 2000], this fact has been demonstrated experimentally by comparing noise levels of

systems with and without negative regulation. In accordance with this, the theoretical protein

Fano factor was shown to be lower in negatively autoregulated systems than in unregulated ones

[Paulsson, 2004; Simpson et al., 2003; Singh, 2011; Thattai and van Oudenaarden, 2001].

9Actually in this publication, the burst size was determined to be exponentially distributed. The exponential
distribution is the continuous equivalent of the geometric distribution, which is why the observation made in [Cai
et al., 2006] is in accordance with the aforementioned calculation in [McAdams and Arkin, 1997].
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The opposite holds for positive feedback regulation: It increases noise and may addition-

ally generate bistability, potentially leading to bimodal protein distributions and to transitions

between different expression states (a closer look at this fact will be taken in Section 2.3). There-

fore, positive autoregulation often plays a role in the generation of subpopulations and in cellular

decision making [Kærn et al., 2005; Tsimring, 2014]. Typical, well-studied examples are the lac

operon in E. coli and the development of competence in B. subtilis [Eldar and Elowitz, 2010;

Süel et al., 2006].

The connection of multiple topological motifs and different time-scales can lead to more com-

plex and fine-tuned noise regulation [Brandman et al., 2005; Cagatay et al., 2009; Hornung and

Barkai, 2008; Huang et al., 2014].

2.2.4. Intrinsic vs. extrinsic noise

The stochasticity of a gene expression system is not only determined by the randomness of

its reactions, but there are further factors that may influence its noise: For example, other

intracellular components (like metabolites or global regulators) can transfer their fluctuations

to the circuit via direct or indirect interactions. Moreover, the stochasticity of cellular dynamics

like growth, chromosomal replication, or cell division is a source of noise which affects all cellular

processes. Finally, even environmental fluctuations may be propagated into the cell.

All these noise sources can be classified as either being intrinsic or extrinsic, depending on

whether they lie inside the borders of the regarded system or not. Since these borders can be

defined individually (e.g. around a specific genetic circuit [Swain et al., 2002], or identical to the

cell membrane [González-Cabaleiro et al., 2017]), a uniform classification does not exist [Huang,

2009; Kærn et al., 2005; Paulsson, 2005].

Fluctuations that are experimentally measured are always superpositions of different noise

contributions. In order to differentiate between them, interesting experimental approaches exist,

which are then usually supported by and validated with statistical analysis and mathematical

models. For example, M. Elowitz et al. used two different fluorophores under the control of

the same regulatory sequence to discriminate gene expression-specific noise from extrinsic noise

sources [Elowitz et al., 2002]. This discrimination was based on a comparison of fluctuation

patterns of the two fluorophores, coupled with statistical correlation studies.

In this work, we focus on intrinsic noise that is generated and propagated within the regarded

genetic circuit. All other sources of noise are considered extrinsic. In the final outlook, the

incorporation of cellular dynamics will shortly be discussed.

2.3. Deterministic vs. stochastic descriptions of heterogeneity

Until now, we have not paid much attention to the presence or absence of phenotypic hetero-

geneity. This topic will be considered here, both from a deterministic as well as from a stochastic

perspective. More specifically, the concepts of “bistability” and “bimodality” are introduced. It

will then be shown which impact phenotypic heterogeneity may have on the applicability and

on the reliability of stochastic modeling approaches.
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2.3.1. Deterministic bistability

Deterministic models ignore all the stochasticity within a system. Probably the most prominent

approach in this field, with which temporal, but not spatial dynamics can be described, consists

in a system of autonomous10 ordinary differential equations of first order, which has the general

explicit form11

ċ = f(c). (2.35)

Here, c ∈ D ⊂ RM is a vector of state variables and f : D → RM is a vector-valued function

that specifies the dynamics of the system. Additionally, we assume that the initial condition

of the ODE system is given by c(0) = c0. If f fulfills certain requirements12, the existence

and uniqueness of a solution of the ODEs is guaranteed, which means that future dynamics are

unequivocally determined by present conditions. Obtaining an explicit analytical solution for

the system of ODEs might, however, be tedious or even impossible, depending on the structure

of f . In many cases, though, one is only interested in the long-time behavior of a system, which

can be studied using dynamical systems theory. The most important definitions and principles

in this context are the following (see [Guckenheimer and Holmes, 1983] for details):

A stationary state (or steady state, fixed point) c∗ is defined by the condition ċ = 0, i.e. it

is a state that is never left once reached. According to Eq (2.35), the stationary states are the

roots of f . One of their most important characteristics is their stability, which tells us how the

system qualitatively behaves in a domain around the fixed point, e.g. after a (sufficiently small)

perturbation:

The steady state c∗ is called stable, if for any neighborhood U0 ⊂ D, there exists a neighbor-

hood U1 ⊂ U0 such that every solution c(τ) with c0 ∈ U1 is defined and c(τ) ∈ U0 ∀ τ > 0.

In case U1 can be chosen such that additionally, limτ→∞ c(τ) = c∗, the fixed point is called

asymptotically stable. A fixed point is called unstable, if it is not stable.

The stability of a fixed point c∗ can in most cases be determined using the Jacobian matrix

J∗ of the right hand-side of Eq (2.35), evaluated at c∗:

J∗ :=
∂f

∂c

∣∣∣
c=c∗

=



∂f1
∂c1

∂f1
∂c2

... ∂f1
∂cM

∂f2
∂c1

∂f2
∂c2

... ∂f2
∂cM

...
...

. . .
...

∂fM
∂c1

∂fM
∂c2

... ∂fM
∂cM


∣∣∣∣∣
c=c∗

(2.36)

In case the real parts of the eigenvalues of the Jacobian are all negative, c∗ is asymptotically

stable. If at least one of the eigenvalues has a positive real part, it is unstable13. This finally

brings us to the definition of bistability, which denotes the presence of exactly two asymptotically

stable stationary states. This concept is generalized by multistability, referring to the occurrence

of more than one asymptotically stable fixed point. As already indicated, it only depends on

10The term autonomous refers to the fact that the function f in Eq (2.35) does not explicitly depend on τ .
11This is a generalized form of Eq (2.18), which has described processes consisting of elementary reactions only.
12cf. the central theorems by Peano and Picard-Lindelöf. In the following, we assume that f is globally Lipschitz

continuous, from which follows the existence and uniqueness of the solution [Murray and Miller, 1976].
13The given Jacobian-based criterion originates from a linearization of the differential equation (2.35). In case

f is nonlinear and the largest real part of eigenvalues is equal to zero, no direct statement can be made about the
stability of the fixed point, as it then depends on higher derivatives of f .
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2.3. Deterministic vs. stochastic descriptions of heterogeneity

the initial condition which of the two steady states will be assumed in the long run. Transitions

between them are excluded, unless a suitable change in parameter values occurs (cf. the theory

of bifurcations), which is driven by extrinsic forces.

From a fully deterministic viewpoint, a bistable genetic circuit (i.e. a circuit with two stable

gene expression states like the one shown in Fig 1.1) would not be able to generate population

heterogeneity under uniform environmental conditions, since all cells would always behave in a

completely synchronized fashion.

2.3.2. Stochastic bimodality

We already know that in a stochastic framework, the future behavior of a system is not uniquely

determined by present conditions. As a consequence, the solution of a stochastic model with

a given initial condition cannot be described by a single trajectory (like in the deterministic

case); instead, it is usually given in the form of the dynamic probability distribution p over the

whole state space. Bimodality means that this probability distribution possesses two maxima

(also called modes), each representing a preferred system state, and is therefore an indication

of true phenotypic heterogeneity. Random transitions between the phenotypes are in this case

not excluded. Unfortunately, simple mathematical criteria for the detection of bimodality are

lacking, in contrast to the methods available for the treatment of bistability.

Bimodality (or, in general, multimodality) is not only a theoretical trait, it can also be ob-

served experimentally, using suitable measurement techniques: If, for example, a target protein

can be quantified experimentally on a single-cell level in a large enough population, the measured

distribution should resemble the probability distribution obtained by a suitable stochastic de-

scription (cf. the frequentist interpretation of probabilities). Instead of regarding the steady-state

distribution across a whole population at one specific point in time, one might also consider the

distribution in one cell over a long enough time period in order to detect heterogeneity. Based on

the assumption of ergodicity, it is usually expected that the obtained distributions are identical

[Altschuler and Wu, 2010; Huang, 2009; Patrascioiu, 1987; Thomas et al., 2013].

2.3.3. Comparison between bistability and bimodality

Fig 2.2 illustrates and compares the concepts of bistability and bimodality, using the example

of a simple bistable genetic circuit with a positive feedback loop, which has been modeled

deterministically and stochastically14. In (A), protein trajectories obtained with deterministic

and with stochastic simulations are shown (the stochastic simulation was generated using the

Gillespie algorithm, cf. Sec 2.1.4). In the deterministic case, the trajectories are smooth, and

the initial condition determines which of the two stable steady states is assumed in the long

run. By contrast, the stochastic trajectory is dominated by random fluctuations, which may

be large enough to promote noise-driven system-state transitions. Panel (B) shows a method

to graphically identify deterministic fixed points. The system regarded here is one-dimensional

and can be described by an ODE of the form

ṅ = rsynthesis(n)− rdegradation(n). (2.37)

14The question which stochastic model corresponds to a given deterministic model has been answered in Section
2.1.3.
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Figure 2.2.: Bistability versus bimodality. (A.1) and (A.2) show deterministic and stochastic trajectories of
a bistable system. In the deterministic simulation, the initial condition determines whether the high
or low expression state is reached. The stochastic trajectory shows large fluctuations and a random
transition from the high to the low expression state. (B) Graphical fixed point analysis. Stable
steady states are marked with filled circles. (C) Population distribution obtained from stochastic
simulations. Here, rsynthesis(n) = 0.5 + 20 ·n4 · (9.54 + n4)−1, rdegradation(n) = n.

In this example, n is the deterministic protein copy number15, which determines the rates of its

own synthesis and degradation. The equation tells us that fixed points occur when rsynthesis(n)

and rdegradation(n) are identical. By visualizing the graphs of both rates in one common plot as

shown in panel (B), the stationary states can thus be found at the intersection points, whose

number and locations depend on the shapes of the two graphs. Using the Jacobian-based stabil-

ity analysis described before, one can show that in the case illustrated here (sigmoid synthesis

rate and linear degradation rate, generating three fixed points), the two outer stationary states

are stable, while the middle one is unstable – a clear indication of bistability. The graphical

analysis also shows that this bistability is basically generated through a nonlinear, positively

autoregulated (i.e. monotonically increasing) synthesis rate like in Fig 1.1. In (C), the stochas-

tically simulated protein distribution is shown to be bimodal. When comparing the locations of

stochastic modes and deterministic stable fixed points, bimodality simply seems to be a “noisy”

15In ODE modeling, state variables are usually given in terms of concentrations, while the usage of copy
numbers is prevalent in stochastic descriptions of low-abundance species. For the sake of comparability, however,
we only use copy numbers in this example.
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version of bistability, at least in this example.

It is thus reasonable to ask whether bistability and bimodality always coincide. If this was

the case, one could first use deterministic modeling to reliably (and comparatively easily) detect

bimodality. In case of interest, one could then further specify population distributions and

dynamics with the help of stochastic approaches. In [Karmakar and Bose, 2007], two scenarios

in which the introduction of only one noisy variable or parameter into an otherwise deterministic,

bistable model led to bimodality are illustrated: In the first scenario, noise was assumed to be

generated within the circuit, leading to fluctuations of a reaction component that might reach

the basin of attraction of another stable fixed point. In the second, noise enters the system

from outside the regarded circuit, resulting in fluctuations of a circuit parameter which span the

region around a bifurcation point. Although many other theoretical and experimental examples

have shown that bistability may be important for the generation of bimodality, it is evident

that if the level of internal and external noise was too low to generate random state transitions,

bistability would occur without bimodality.

Unfortunately, things are even more complicated, as a number of recent theoretical and exper-

imental studies have demonstrated the existence of bimodal distributions whose deterministic

counterpart was monostable [Artyomov et al., 2007; McSweeney and Popovic, 2014; Ochab-

Marcinek and Tabaka, 2010; Qian et al., 2009; Samoilov et al., 2005; Shu et al., 2011; To and

Maheshri, 2010]. After a review of these works, all of which concentrate on special cases, it

is hardly possible to derive universal conditions under which such qualitative deviations occur,

since there are many different ways in which bimodality can be generated. Two of them should

nevertheless be pointed out: It has been shown that bimodality without bistability can be gen-

erated in closed-loop and even in open-loop systems (i.e. in systems with or without feedback)

through slow binary switches of an upstream component (e.g. of the promoter or operator state)

[Karmakar and Bose, 2004, 2007; Kepler and Elston, 2001; Qian et al., 2009; Thomas et al.,

2014], which mathematically lead to a superposition of two unimodal distributions. The reason

for monostability is that the binary switching behavior is simply averaged out in a deterministic

description. A second, remarkable situation in which bimodality occurs in spite of monostability

is assessed in [Bishop and Qian, 2010]: In this study, a feedback system is regarded whose non-

linearity is too weak to generate deterministic bistability, but whose probability mass function

has, under certain parametric conditions, two modes: one corresponding to the deterministic

stable state and one state where the molecule copy number equals zero. This situation seems to

occur when the zero state is almost absorbing, i.e. if the probability of reactions away from this

state is comparatively low.

To conclude, bistability may serve as an important indicator of bimodality, but true phenotypic

heterogeneity is only reliably detected using stochastic approaches. Moreover, the observed

discrepancies between bistability and bimodality motivate a critical evaluation of deterministic

approaches in the context of highly stochastic mesoscopic systems, especially since they are often

used in the formulation of approximate stochastic system descriptions, like in the LNA.

2.3.4. Multimodality as a major challenge in modeling

In several passages of Section 2.1.6, it has been mentioned that the presented approximate ap-

proach is not applicable to multimodal systems. For example, the LNA per se is not suited

to describe multimodality, as the obtained probability distribution is necessarily Gaussian and

hence unimodal. However, even exact calculations of mean values and variances lose all signifi-
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cance in the multimodal case, cf. Fig 2.3. This might also hold for burst characteristics. It would

thus make sense to find a possibility to characterize noise for each expression state individually.
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Figure 2.3.: State-specific noise measures. The actual mean value and standard deviation (in mean± standard
deviation) of the bimodal distribution is visualized in red. Compared to that, expression-state specific
measures (shown in light green) are much more informative.

The way how this could be achieved is certainly dependent on the way how bimodality is

generated. For example in [Thomas et al., 2014], a monostable system is analyzed whose mul-

timodality is caused by rare switches of a binary upstream component. The system is modeled

using LNAs which are conditioned on the stochastically switching state of this component. This

ansatz is able to give a quite complete picture of the system dynamics, including state transi-

tions. However, the approach cannot be applied to other origins of multimodality, in particular

to multimodality that is due to feedback regulation and therefore associated with multistability.

In the latter case, one could associate every peak of a distribution with a stable deterministic

steady state and perform one LNA per fixed point in order to obtain local variance estimates

for each mode. This was done, e.g., in [Tomioka et al., 2004]. However, the probability of

transitions between different modes is not fully quantifiable. Moreover, it is hard to predict

a priori whether the deterministic variable is a good approximation of the local mean value

around which fluctuations occur. According to the decomposition in Eq (2.25), this is however

an important prerequisite, which has a severe impact on the quality of the LNA. The EMRE

and IOS methods, which generally give improved mean and variance estimates in the unimodal

case, cannot be applied to multimodal systems, as they approximate the means and variances

of the whole distribution instead of yielding local estimates for each mode. All in all, there is

currently no satisfying approach with which noise can be reliably quantified in systems that are

multistable and multimodal.
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stochastic models

As indicated in Section 2.3, deterministic models are typically much easier to analyze than their

stochastic counterparts, which is one reason for their great popularity in theoretical biology.

In general, they are assumed to give an accurate description of a dynamical system in the

thermodynamic (or macroscopic) limit, when random fluctuations become negligible. But what

about systems with smaller volume (like prokaryotic cells or eukaryotic cellular compartments),

where fluctuations might play a significant role?

In order to answer this question, one first needs to clarify how the quality of a deterministic

model can be assessed, i.e. what the stochastic equivalent of a deterministic variable is. One

might suppose that ODE models capture the average behavior of a system, implying that deter-

ministic variables are comparable to stochastic mean values. But if so, how can the occurrence of

deterministic bistability be explained? In Fig 2.2, it appeared as if deterministic variables were

rather associated with stochastic modes. But numerous examples from literature have shown

that bistability does not always coincide with bimodality.

The resolution of this ambiguity is not only important in order to assess whether a deter-

ministic description is appropriate or not; it is also crucial for the application of the LNA (and

hence for the analysis of noise using this approximate approach), where a symmetric distribu-

tion of fluctuations around the deterministic solution is assumed. In the following, a simple gene

expression system with feedback regulation and with protein bursts is systematically analyzed

under these aspects and some general rules are deduced. In contrast to previous studies on this

topic (e.g. in [Grima et al., 2011]), multimodal systems will be regarded as well. The results

have partially been published in advance in [Hahl and Kremling, 2016] and in [Hortsch and

Kremling, 2018b].

3.1. Deterministic and stochastic model of a gene regulatory system

with feedback

The system that will be described and analyzed is similar to that in Fig 2.1 (A), but with

autoregulated transcription. The reactions of the full model, which includes mRNA and protein

dynamics, can be described as follows:

∅ F̂ (s)−−−−→ mRNA

mRNA
dm−−−−→ ∅

mRNA
ĝ−−−−→ mRNA + Protein

Protein
ds−−−−→ ∅ (3.1)
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3. Bridging the gap between deterministic and stochastic models

F̂ : N0 → R≥0 is a monotonically increasing function that, depending on its shape, can specify

different types of autoregulation. For example, non-cooperative feedback is typically described

by a function that can either be interpolated linearly or by a Michaelis-Menten-type saturation

function. Cooperativity, where several protein molecules of the same species create a synergis-

tic, positive effect on their own expression, may be modeled using a sigmoid Hill-type function.

Obviously, F̂ is a non-elementary process consisting of a series of biochemical reactions (e.g.

potential interactions among target protein molecules to form complexes, binding of these pro-

teins to the activator site, assembly, binding/unbinding and action of RNA polymerase and of

other regulators), which are lumped into one function using time-scale separation (cf. the model

reduction techniques in Section 2.1.6). Using a similar argument, promoter states are assumed

to change quickly enough to be averaged out. In order to reduce the number of parameters

and to increase the comparability between different systems, the reactions are scaled: The di-

mensionless time variable τ := t · ds is chosen such that proteins degrade with proportionality

constant 1, where t is the original process time. F : N0 → R≥0, F (.) := 1
dm
F̂ (.) now defines the

mode of autoregulation, and g := 1
ds
ĝ is the scaled translation constant. Finally, the parameter

ν := ds
dm

relates the time-scales of mRNA and protein to each other. By changing ν, the scaled

propensities of mRNA transcription and degradation events are altered proportionally. The list

of scaled reactions reads:

∅
1
ν
·F (s)
−−−−−→ mRNA

mRNA
1
ν−−−−→ ∅

mRNA
g−−−−−→ mRNA + Protein

Protein
1−−−−−→ ∅ (3.2)

This reaction scheme is illustrated in Fig 3.1 (A).

gene mRNA (m)

F(s)/ν g∙m

1/ν 1

protein (s) B ∙ protein

H(s)/α

gene

A B

1

B ~ Geoα

Figure 3.1.: Reaction scheme of a simple autoregulatory circuit. Visualizations of (A) the full reaction
scheme (3.2), which encompasses the mRNA and protein level, and (B) the reduced reaction scheme
(3.3) that takes protein bursts into account while having eliminated the mRNA level. For both
systems, the reference time scale is determined by protein degradation.

As the chance of finding an exact solution to a CME usually decreases with the number

of involved reactive species, a model reduction based on the stochastics of protein bursts is

performed, which is inspired by [Aquino et al., 2012] and by [Friedman et al., 2006] and which

has been shortly introduced in Section 2.2.2. The idea is that only protein formation and
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3.1. Deterministic and stochastic model of a gene regulatory system with feedback

degradation events are described, while the mRNA dynamics are implicitly included in the

protein burst statistics. As already mentioned, the condensation of translation events into a

single bursty protein production event is only possible if ν � 1, i.e. if the average mRNA

half-life is extremely short. The reactions now read:

∅
1
ν
·F (s) = 1

α
·H(s)

−−−−−−−−−−−→ B ·Protein, B ∼ Geoα

Protein
1−−−−−−−−−−−→ ∅ (3.3)

cf. the illustration in Fig 3.1 (B). The average burst size in the reduced model is given by

α = ĝ
dm

= g · ν, cf. Eq (2.32). Like before, the random variable B is the actual burst size of

the reaction, which is geometrically distributed. Geoα(b) := ( α
1+α)b · 1

1+α denotes the geometric

probability mass function evaluated at b. In order to investigate the influence of the average

burst size on the accuracy of deterministic models without changing the corresponding ODEs,

we furthermore define the function H : N0 → R, H :≡ α
ν F = g ·F . An increase in α under

constant H and ν corresponds to an increase in g and a simultaneous, inverse proportional

decrease in F , as it was experimentally studied e.g. in [Ozbudak et al., 2002; Thattai and

van Oudenaarden, 2001], cf. Section 2.2.2. The reduced system (3.3) can be stochastically

simulated using the Gillespie algorithm, which can handle the random stoichiometric coefficient

B by drawing a geometrically distributed random variable with mean value α. For analytical

calculations, however, it might be useful to integrate the stochasticity of the burst size into the

reaction propensity. This results in an infinite number of reactions leading to protein production,

which differ in the number of produced molecules:

∅
Geoα(b) · 1

α
·H(s)

−−−−−−−−−−−→ b ·Protein, b ∈ N0

Protein
1−−−−−−−−−−−→ ∅ (3.4)

All parameters in the model are non-negative. Furthermore, the volume V of the system is

assumed to be constant.

3.1.1. CME formulation of the reduced system and its stationary solution

The basic stochastic description which our subsequent analysis will be based on is obtained by

inserting the propensities of the reduced model (3.4) into the general formulation of the CME,

which is given in Eq (2.3):

ṗs =
s∑
b=0

(
Geoα(b) · 1

α
·H(s− b) ps−b

)
− 1

α
·H(s) ps + (s+ 1) ps+1 − s ps. (3.5)

For the sake of simplicity, the time variable τ has been omitted.

The stationary1 PMF ps can be obtained using generating functions [Aquino et al., 2012],

see also Section 2.1.1. The calculations are shown in the Appendix, Section A.1, and yield the

1Since stochastic descriptions will mostly be regarded in their stationary state, the probabilistic steady state
will not be specifically labeled as such. In contrast, deterministic fixed points are marked with an asterisk.
The reason for this seeming inconsistency shall become clearer in the following chapters, when analyses of local
stationary fluctuations around fixed points are performed. All the obtained values and measures will then be
labeled with an asterisk as well to indicate their close association with the fixed point.
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3. Bridging the gap between deterministic and stochastic models

following recursive formulation:

p1 =
1

1 + α
H(0) p0,

(s+ 1) ps+1 =
1

1 + α

(
H(s)

s
+ α

)
s ps, s ∈ N. (3.6)

The explicit steady-state-distribution can now be determined easily:

ps =
H(0)

s
p0

(
1

1 + α

)s s−1∏
i=1

(
H(i)

i
+ α

)
. (3.7)

3.1.2. Determination of moments and modes

In order to later be able to compare deterministic fixed points with some of the most important

characteristics of a PMF, the locations of mean values and of modes are determined. Since the

size of fluctuations might influence these potential relations, also the variance is regarded.

The dynamics of the mean value and variance of the stochastic process S describing the

protein copy number are given by:

Ė[S] = E[H(S)] − E[S], (3.8)

˙Var(S) = 2 Cov(S,H(S)) + (E[H(S)] + E[S]) + 2αE[H(S)] − 2 Var(S), (3.9)

cf. Appendix, Section A.2. When the stationary state is reached, the following conditions2 hold:

E[S] = E[H(S)], (3.10)

Var(S) = E[S] (1 + α) + Cov(S,H(S)). (3.11)

The formulae show that if H is constant, i.e. if feedback regulation is missing, the relation

η(S) = (1 + α) is obtained, in accordance with Eq (2.34). In case of positive feedback, which is

described by a monotonically increasing function H, Cov(S,H(S)) > 0 holds, so that the protein

noise level is augmented compared to a system without feedback. In an analogous manner, one

can deduce that negative feedback reduces noise.

Next, the maxima and minima of the stationary PMF ps are determined. In general, a local

maximum (mode) occurs at a positive value s > 0 if ps−1 ≤ ps ≥ ps+1. Accordingly, a minimum

fulfills the condition ps−1 ≥ ps ≤ ps+1. Using these conditions and the recursive formulation of

the stationary distribution in Eq (3.6), which can be re-written as ps+1 = H(s) +α s
s+α+ 1 +α s ps, one

can conclude that a mode/minimum occurs at a positive value s̊ > 0 if:

(̊s− 1) + α + 1
≤
≥

H (̊s− 1) and s̊ + α + 1
≥
≤

H (̊s). (3.12)

A necessary condition for the occurrence of an extreme value is thus given by:

s̊ = dσe where σ ∈ R, σ + α + 1 = H(σ). (3.13)

2They can also be obtained using the stationary solution ps defined in Eqs (3.6) or (3.7).
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3.1. Deterministic and stochastic model of a gene regulatory system with feedback

Here, H is a smooth, reasonable3 interpolation of the originally discrete function, defined on the

nonnegative real line. If possible, the interpolation should be linear.

A further mode/minimum is located at s̊ = 0 if p0
≥
≤ p1, i.e. if

1 + α
≥
≤

H(0). (3.14)

3.1.3. RE model of the reduced system

After having obtained formulae that specify the location of stochastic means and modes, we

will now take a look at the deterministic formulation. In the ODE modeling of cellular systems,

variables are usually given in terms of concentrations (instead of copy numbers) and treated as

continuous. Let cs denote the deterministic concentration of the regarded protein in a cell. Now,

the scaled deterministic rates of protein production and degradation need to be specified, which

are related to the stochastic propensities. For this purpose, one should consider that 1
α H(s)

actually plays the role of an extensive stochastic reaction constant of a zeroth-order reaction,

which is however dependent on the current state of the system due to the PSS assumption. It

is therefore related to an intensive4, deterministic expression 1
α H(cs), specified by a function

H : R≥0 → R≥0, in a way that H(cs ·V ) =: H(cs) ·V , cf. Eq (2.15). Here, the continuous inter-

polation of H is used again. 1
ν · F := 1

α ·H is thus the deterministic rate of protein production.

Since protein degradation is a first-order process, it is described by the same reaction constant

as in the stochastic model.

Now the dynamics of cs can be formulated. Since stochasticity is neglected, the number of

proteins produced per burst is equal to the average burst size α. This gives the ODE

ċs = α · 1

α
H(cs) − cs = H(cs) − cs (3.15)

with the steady state condition

c∗s = H(c∗s). (3.16)

Note that this deterministic formulation is not influenced by the presence of protein bursts.

In case Eq (3.16) cannot be solved for c∗s, the number and location of fixed points can be

determined at least graphically by drawing the graphs of both sides of the equation in one

plot and by identifying the intersection points (cf. Fig 2.2 (B)). In the top row of Fig 3.2, four

exemplary plots are shown5 that differ in the shape ofH. Provided that basal protein production

occurs (i.e. H(0) > 0), systems without autoregulation (panel (A)) or with non-cooperative

feedback (panel (B)) can only have one stable fixed point. Under cooperative autoregulation,

the system might either be mono- or bistable (panels (C) and (D)).

3Sometimes, mechanistic considerations could help to find a reasonable, simple interpolation function - e.g. a
Michaelis-Menten-type function.

4One should bear in mind that H depends on the volume of the system, while H does not, when systems with
changing volume are considered.

5In these plots, the amount of protein is given in copy numbers. The deterministic fixed points s∗ = c∗s ·V
then fulfill the condition s∗ := H(s∗) (note that s∗ might assume non-integer values). This conversion is done in
order to allow direct comparisons to the locations of modes and mean values in the following section.
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Figure 3.2.: Analytical comparison of stable fixed points and modes. From left to right, the type of
feedback is varied. The top row shows the graphical determination of the locations of fixed points
and modes. The deterministic fixed points can be read from the value of s at the intersection points
between the graph of H(s) (red) and the graph of the identity (green). The system shown in (C) is
bistable, all others are monostable. The intersection points of the red line and the blue lines .+α+ 1
indicate the locations of the extreme values of ps. Three different values of α are shown: α1 = 1 (very
small bursts, dark blue), α2 = 5 (medium-size bursts, mid blue), and α3 = 10 (strong bursts, light
blue). Depending on the burst size, the location and number of modes may change. The second row
shows the histograms of the protein distribution obtained from protein time-course simulations using
the Gillespie algorithm. The distribution is shown for each burst size (same color as above). Average
values are marked by dashed lines. The protein synthesis rates are defined by: (A) H(s) = 10, (B)

H(s) = 3 + 60 s
s+30

, (C) H(s) = 3 + 58 s2

s2+680
, (D) H(s) = 7 + 41.25 s2

s2+400
. The figure is adapted

from [Hahl and Kremling, 2016].

3.2. What are the stochastic equivalents of deterministic variables?

Sometimes, deterministic models are regarded as descriptions of the average behavior of a system.

In order to assess the validity of this statement, let us revisit the dynamics of the mean value

in Eq (3.8) and compare them to the ODE formulation, Eq (3.15). Apparently, cs(τ) can be

identified with E[S]
V (τ) if H (and, accordingly, H) is a linear function:

Ė[S]

V
=

1

V
(E[H(S)] − E[S]) =

1

V
H(E[S]) − E[S]

V
= H

(
E[S]

V

)
− E[S]

V
. (3.17)

Linearity of H was used in the crucial second step in order to set E[H(.)] = H(E[ . ]). This

formula is independent of α. Combined with Eq (3.11), this shows that if H is linear, the

variance of protein fluctuations can be modulated by changing the average burst size α without

altering the average protein level.
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The relation (3.17) does usually not hold if H is nonlinear (cf. Jensen’s inequality6 to get a

rough idea of the bias). In order to see what causes the deviation between cs and E[S]
V in this

case, one may formulate the Taylor expansion of H(S) at E[S] and calculate the expected value

thereof:

E[H(S)] = H(E[S]) +
∞∑
r=2

(
1

r!
·E[(S − E[S])r] ·H(r)(E[S])

)
. (3.18)

H(r) denotes the r-th derivative of H. The expression E[(S−E[S])r] is the r-th central moment

of S (the second central moment being the variance). The deterministic variable is hence only a

good approximation of the mean value if the summation term almost vanishes, which is the case

if in the global range of protein fluctuations, the function H is almost linear. Our calculation of

Var(S) in Eq (3.11) has shown that this range of fluctuations increases with the average burst

size α, so that large bursts may promote even greater deviations of fixed points from the mean

value.

The statement about the role of linearity can be generalized: Eqs (2.12) and (2.18) show that

the deterministic vector of variables exactly describes the average dynamics of a multivariate

stochastic process N, if all propensity functions wj can be interpolated by a linear function7:

ċ
(2.18)

= lim
V→∞

1

V
A w(c ·V )

lin.
= A w(c) =̂ A w

(
E[N]

V

)
lin.
=

AE[w(N)]

V

(2.12)
=

Ė[N]

V
. (3.19)

Note that linearity of H excludes the possibility of the system to be bistable or bimodal.

Let us next compare the necessary condition for the occurrence of deterministic fixed points in

Eq (3.16) with that of stationary modes and minima in Eq (3.13). The mathematical structure of

the two conditions is very similar and shows that the smaller α is, the better is the correspondence

between c∗s ·V and s̊. One can furthermore use Eq (3.12) and deterministic stability analysis to

show that for sufficiently small bursts, the modes of the probability distribution are associated

with stable fixed points, while the minima correspond to the unstable ones. But what if bursts

are large? This question will be answered in the following.

3.3. Disrupting the connection between bistability and bimodality

This section aims at demonstrating that, as a consequence of the burst-dependent discrepancy

between stable steady states and modes, bistable, but unimodal, and monostable, but bimodal

systems may emerge. It is shown how such systems can be constructed with the help of graphical

methods, based on the rather simple, but flexible structure of the general autoregulatory circuit.

According to Eq (3.13), the location of modes and minima can be determined graphically by

evaluating the intersection points between the graphs of H(s) and of s+α+ 1. For this reason,

the latter, linear graph is added to the plots in the top row of Fig 3.2. Three different values

of α are chosen in order to demonstrate the influence of the burst size. We will go through

panels (A) to (D) to see what effect an increase in α might have, depending on the feedback

6In the stochastic context, Jensen’s inequality states that E[H(S)] ≤ H(E[S]) if H is concave, and that
E[H(S)] ≥ H(E[S]) if H is convex.

7For ensuring linearity of the propensity function, the combination of the (possibly state-dependent) reaction
“parameter” κj(s) with the product term taking the stoichiometry of the reaction into account needs to be linear,
cf. Eq (2.5).
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mechanism.

In panel (A), H is a constant function. For α = 1, the mode corresponds well to the stable

deterministic fixed point. An increase in α, however, shifts the location of the mode towards

lower protein copy numbers until finally, the intersection point vanishes. In this case, H(0) <

1 + α, so that the only mode is located at s̊ = 0, cf. Eq (3.14). In the bottom row of Fig

3.2, the corresponding protein distributions (obtained through simulations using the Gillespie

algorithm) are visualized in order to verify the analytical results. As expected, they clearly

show the shifting of the mode due to the increase in the burst size, resulting in a highly skewed

distribution. Moreover, the variance of the distribution is apparently increased through bursting,

in accordance with Eq (3.11). The locations of the mean values of all three distributions are

identical (i.e. not influenced by bursting) and correspond exactly to the deterministic fixed point,

which is due to the linearity of H.

In panel (B), H is a Michaelis-Menten-type saturation function, which is suitable to describe

non-cooperative feedback. In case of the smallest burst size that is shown here, the monostable

system has only one mode. A sufficiently large increase in α, however, does not only lead

to a shift of this mode like in panel (A), but also to the emergence of a second intersection

point between H(s) and s + α + 1, which corresponds to a de novo formation of a minimum

in the probability distribution. At the same time, another mode is created at s̊ = 0. The

distribution is thus bimodal, although the deterministic description postulates monostability. A

further increase in α lets both intersection points vanish, so that the only mode is now located

at s̊ = 0. However, this mode cannot be associated with the deterministic stable state anymore.

These qualitative changes in the probability distribution share some similarities with phenomena

observed in deterministic bifurcation analysis – however, the “stochastic bifurcation parameter”

α considered here does not have any effect on the deterministic model.

The location of the mean value in this example deviates from the location of the fixed point

due to the nonlinearity of H. The deviation is enlarged through greater bursts, which amplify

the range of protein fluctuations, making them cover a larger nonlinear domain of H.

The behavior of the system represented in panel (C) with cooperative feedback, described by a

sigmoid function H, is as follows: The parameters are chosen such that the deterministic system

is bistable. Accordingly, the stochastic distribution is bimodal for small burst sizes. However,

an increase in α finally leads to an unimodal distribution with a mode located at s̊ = 0.

In panel (D), the parameters of H are varied so that the deterministic system is monostable,

but in a certain range of α, the distribution becomes bimodal. In contrast to panel (B), both

modes occur at positive protein copy numbers.

We can conclude that sufficiently large bursts lead to a skewed protein distribution, whose

shape might contrast quantitatively and qualitatively with the behavior predicted by determin-

istic modeling. The graphical illustrations in the top row of Fig 3.2 facilitate the construction of

systems where bistability and bimodality do not coincide. Note that depending on the properties

of the circuit, bursts do not really need to be “large” (from a biological perspective) in order to

generate fundamental differences between deterministic and stochastic system properties.

From a more general point of view, we have just studied the influence of nonlinearities (rep-

resented by H) and of the magnitude of stoichiometric coefficients (represented by α) on the

relation between deterministic and stochastic models. The opportunity to flexibly choose these

functions and parameters makes the genetic circuit considered here a powerful object of study.
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3.4. Partial “rehabilitation” of deterministic rate equations

The insights that have been gained until now have challenged the role of rate equations in

the context of mesoscopic systems, as well as the role of bistability in cellular regulation and

signaling, since monostable systems may generate bimodal distributions as well. In this section,

two aspects are highlighted that justify the application of rate equations under special conditions:

The first one regards the macroscopic limit, which has already been thoroughly studied in other

works, using quite sophisticated approaches8. In the following, a good agreement between stable

fixed points and modes in large systems is demonstrated in a quite straightforward manner at the

example of the autoregulatory circuit. This connection can also be visualized with the graphical

method used in Fig 3.2. The second aspects concerns the robustness of a bimodal distribution,

which is shown to be particularly high when the system is bistable.

3.4.1. The thermodynamic limit

Despite the possibly large deviations between deterministic and stochastic model behavior in

systems with limited volume, a good agreement between stochastic stationary modes and stable

deterministic fixed points exists in the thermodynamic limit V →∞, s→∞, s.t. s
V is constant.

In order to show this, a system is considered whose original volume V is increased k-fold (k ≥ 1),

i.e. Vk = k ·V . The burst size α as well as the deterministic behavior of the system should be kept

constant. The deterministic rate of protein production Hk in the enlarged system is therefore

equal to H:

ċs = Hk(cs) − cs = H(cs) − cs. (3.20)

The propensity of protein production Hk changes in accordance with the volume Vk: Using

the relation cs = sk
Vk

, one obtains Hk(sk) = Hk(cs · k ·V ) = k ·V ·Hk(cs) = k ·V ·H(cs) =

k ·V · H(cs ·V )
V = k ·H( skk ). Next, the location of modes is determined in the system with changed

size: Let s̊k > 0 be an extreme value of the PMF. According to Eq (3.13), it fulfills:

s̊k = dσke where σk ∈ R, σk + α + 1 = Hk(σk) = k ·H
( σk
k ·V

·V
)

⇔ σk
k ·V

+
α+ 1

k ·V
= H

( σk
k ·V

)
(3.21)

Taking the limit k →∞ in the last equation gives (using the continuity of H):

lim
k→∞

σk
k ·V

= H
(

lim
k→∞

σk
k ·V

)
(3.22)

Eq (3.16) shows that the last equation is solved by a deterministic fixed point, i.e. ∃ c∗s ∈ R≥0 :

lim
k→∞

σk
k ·V = c∗s.

Furthermore, using

c∗s = lim
k→∞

σk
k ·V

≤ lim
k→∞

dσke
k ·V

≤ lim
k→∞

σk + 1

k ·V
= c∗s (3.23)

8e.g. approaches that use the chemical Langevin equation, whose validity needs to be justified itself [Ceccato
and Frezzato, 2018; Gillespie, 2009], or considerations based on stochastic convergence [Kurtz, 1972].
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and the squeeze theorem, one obtains

c∗s = lim
k→∞

s̊k
k ·V

, (3.24)

the right hand-side (RHS) of the equation being an extreme value of the probability distribution

in the thermodynamic limit.

Besides that, a mode occurs at s̊k = 0, if k ·H(0) = Hk(0) ≤ 1 + α, which in the thermody-

namic limit reduces to

0 ≤ H(0) ≤ lim
k→∞

1 + α

k
= 0. (3.25)

This means that a mode at zero only occurs in the macroscopic limit if basal protein production

is lacking. In this case, the deterministic model possesses a fixed point at c∗s = 0 as well.
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Figure 3.3.: Influence of system size on the relation between stable fixed points and modes. Two
systems are compared that differ in their volume, while the protein concentrations at the deterministic
fixed points are identical. The volume V1 of system 1 (graphs in light blue) is 50-fold smaller than the
volume V2 of system 2 (graphs in dark blue). In the upper plot, the location of modes is graphically
determined like in Fig 3.2; they correspond to the outer intersection points of the blue lines with the
red line. The modes of system 2 are almost identical to the stable fixed points, since the expression
α+1
V2

is negligible. The distributions in the bottom plot were obtained using the Gillespie algorithm and
confirm these results: the distribution of the larger system shows two distinct peaks whose locations
match those of the stable deterministic fixed points, while the modes of the small system are shifted
to smaller concentrations, and the distribution is much broader. The parameters and functions used

here are: H(cs) = 2 + 50
c2s

c2s+550
, α = 3, V1 = 1, V2 = 50. The figure has been modified from [Hahl

and Kremling, 2016].

We can thus conclude that in the thermodynamic limit, the deterministic fixed points corre-

spond to the extreme values of the protein distribution (except for minima at cs = 0, which,

however, do not hold any special significance). One can furthermore show as before that stable
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steady states are associated with modes, while unstable fixed points correspond to minima in the

distribution. The finding is illustrated in Fig 3.3, where the concentration distributions of two

deterministically equivalent systems with different size are compared. While the distribution of

the system with small volume is not clearly bimodal, the distribution of the system with larger

volume shows two narrow peaks, whose locations coincide with those of the deterministic stable

states. One can imagine that in this system, random transitions between the two expression

states are rare, so that its behavior is expected to be almost deterministic. The main reason

for the low relative noise level is that bursts in protein production (or, to be more general,

jumps in stochastic trajectories due to large stoichiometric coefficients) become negligible in the

macroscopic limit, leading to fluctuations that are small compared to their (local) average.

3.4.2. On the robustness of expression states

Going back to smaller volumes, the robustness of expression states in bimodal systems will

now be examined. It can be qualitatively assessed by regarding the local shape of the protein

distribution: A narrow peak that does hardly overlap with peaks of other expression states

suggests that the corresponding state is stably maintained (cf. the protein distribution of the

large-scale system in Fig 3.3). In order to find out which circuit properties lead to robustness,

the recursive formulation of the stationary PMF in Eq (3.6) is rewritten as:

ps+1 − ps =
1

1 + s
· H(s)− (s+ α+ 1)

1 + α
· ps. (3.26)

If s is held fixed, one can deduce that the relative local change in the PMF |ps+1−ps|
ps

is large if

• α is small, while

• |H(s)− (s+ α+ 1)| is large.

If those criteria are fulfilled in a domain around a mode, the corresponding expression state is

expected to be robust.

As far as the first criterion is concerned, we know that if the average burst size α is small in

relation to the protein copy number of the regarded mode, the deterministic fixed point and the

mode would be located closely to each other. We can thus already conclude that a circuit with

very high robustness is expected to be described well by the variables of a deterministic model.

Now the second criterion is regarded. From Eq (3.12), it can be deduced that in a domain

around s̊, the conditions H(s) ≥ (s + α + 1) ∀s < s̊ and H(s) ≤ (s + α + 1) ∀s ≥ s̊ hold

true, where the right hand-side (RHS) of the inequalities is linear with slope 1. Considering

that H is non-decreasing, the robustness of an expression state is therefore largest if H is locally

constant9. Interestingly, if the very same condition is fulfilled in a domain around a stable fixed

point c∗s, the time it requires for a locally perturbed system to return to c∗s is minimized: The

eigenvalue of the deterministic ODE (3.15) linearized around c∗s is equal to λ = d
dcs
H(c∗s)−1 < 0.

Its absolute value |λ| characterizes the velocity with which the system relaxes to its steady state.

It is maximized if d
dcs
H(c∗s) = 0, since the derivative of H is necessarily nonnegative. Stochastic

and deterministic robustness thus seem to be closely connected.

Taking both conditions together, the highest degree of robustness in bimodality (under con-

stant volume) appears to be achieved by deterministic bistability that ensures a fast relaxation

of the system inside each attractor region.

9In Section 5.1, a similar result is deduced using an approach that will be developed in Section 4.3.
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3. Bridging the gap between deterministic and stochastic models

In the following, further consequences of the two robustness criteria are highlighted: Three

scenarios are studied each of which compares two related systems that are bimodal, but monos-

table. The results are visualized in Fig 3.4.

In the first scenario (panel (A)), the burst size α is varied, while the expression H(s)− (s+α+

1) and the location of modes and minima are held constant by simply adjusting the basal protein

production rate. As expected, bimodality is more pronounced in the system with smaller burst

size (system 1, dark colors), which becomes apparent when comparing the simulated protein

distributions (plot in middle row). Morever, also the simulated protein time courses (lower

plots) show that system 1 switches between missing and active protein production, while it is

hardly possible to distinguish different expression states in the protein fluctuation pattern of

system 2.

In panel (B), two systems with equal burst size are compared, which are again monostable, but

bimodal. Once more, it is taken care that the extreme values of the probability distributions

occur at identical values. In one case, the positive feedback is cooperative (sigmoid H), in

the other case non-cooperative (concave H). This generates a local difference in the values of

|H(s) − (s + α + 1)|. The expression is always larger in the case of cooperative feedback10,

which can be recognized in the analytical plot, and which can be mathematically shown to hold

in general, see the Appendix, Section A.3.1. As a consequence, the protein distribution of the

cooperative feedback system has much sharper peaks. The time courses show that this system

mainly stays in its high expression state, while the other system fluctuates between both states.

Panel (C) again compares two monostable, but bimodal systems with identical locations

of modes and minima. In contrast to (A), the basal protein production rate is equal, and in

contrast to (B), feedback is non-cooperative in both systems. The systems differ in their average

burst size and in the parameters of the Michaelis-Menten-type function H. This affects both

robustness criteria in a way that the effects counteract each other (cf. Appendix A.3.2). Explicit

calculations are therefore required to determine which effect is prevailing. Interestingly, this

example shows that large bursts may even increase the robustness of bimodality by enabling

feedback with stronger nonlinearity.

Although in these three scenarios, only monostable systems have been regarded, it turned out

that the circuit which exhibits stronger features of a bistable system with potent attractors (in

particular small bursts and cooperativity, or at least a high degree of nonlinearity) tends to be

the one whose expression states are more robust.

3.5. Short discussion and summary

In several classical works, it has been shown that chemical reaction systems behave almost

deterministically in the thermodynamic (or macroscopic) limit, as fluctuations become negligibly

small compared to the absolute copy numbers of reactive species [Gillespie, 2001, 2007, 2009;

Kurtz, 1972; van Kampen, 2007]. Because of that, a direct comparison between deterministic

variables and the stochastic process is possible11. However, in systems with small volume, the

10Note that in a domain around the positive-valued mode, the propensity of protein production is usually
rather flat if feedback is cooperative. This has previously been identified as a stabilizing property.

11In [Kurtz, 1972], the probability of a deviation between the stochastic process and the deterministic value
that is larger than an arbitrarily small threshold value is shown to converge to zero in the large volume limit.
In the works by Gillespie, the chemical Langevin equation is used as a link between stochastic and deterministic
descriptions.

40



3.5. Short discussion and summary

A B C
A

n
a
ly

ti
c
a
l 
fu

n
c
ti
o
n
s

In
te

n
s
it
y

protein copy no. (s) s s

p
ro

te
in

 c
o
p
y
 n

o
. 
(s

)

time time time

H1(s)

s + α1 + 1
s + α2 + 1

H2(s)

H1(s)

s + α1 + 1
s + α2 + 1

H2(s)

H1(s)

s + α + 1

H2(s)

System 1

System 2

Figure 3.4.: Robustness of bimodality in different autoregulatory systems. In each panel, the robustness
of the expression states of two bimodal, but monostable regulatory systems is compared based on
protein distributions and exemplary protein time-courses. (A) Comparison of two non-cooperative
feedback regulations with differing burst sizes α1 < α2 and with functions H1(s) = a + v s

s+K

and H2 = (α2 − α1) + H1 that have identical shape but different intercept. (B) Comparison
of cooperative (H1(s) = a + v1

s2

s2+K1
) and non-cooperative (H2(s) = a + v2

s
s+K2

) regulation
in two systems with identical burst size α. (C) Comparison of two non-cooperative regulatory
systems Hi(s) = a + vi

s
s+Ki

with identical basal protein expression but with differing burst sizes

α1 > α2. In all cases (A)-(C), the system illustrated in dark colors shows clearer bimodality.
Parameters were chosen such that (A) α1 = 1, α2 = 20, smin = 8, smax = 40, (B) α = 4,
smin = 4, smax = 40, (C) α1 = 8, α2 = 2, smin = 15, smax = 120, where smin and smax set the
locations of the two modes (cf. Appendix A.3). The figure is adapted from [Hahl and Kremling, 2016].
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3. Bridging the gap between deterministic and stochastic models

probability distribution is typically much broader and it is thus not trivial to decide which

characteristic measure (e.g. mean value or mode) of the distribution the deterministic variable

should be compared with, and even whether such a comparison is justified at all. Further works

which have pointed out significant discrepancies between bistability and bimodality (cf. Section

2.3.3) have created further doubt about the validity of deterministic modeling in the context of

cellular systems.

In this study, a simple autoregulatory genetic circuit was modeled both stochastically (using

the CME) and deterministically (using REs). The flexibility to choose various kinds of propensity

functions and parameters allowed to systematically study the impact of different features (e.g.,

nonlinearity of reaction propensity functions or the magnitude of stoichiometric coefficients)

on the comparability of the two model types. The analysis has been supported by graphical

methods that allow a more intuitive understanding of the findings. They also clarify why in the

thermodynamic limit, potential deviations between the outcomes of the two modeling approaches

vanish.

To quickly summarize the main results, we have seen that only if all reaction propensities are

linear, the average behavior of the system is exactly described by the deterministic variable –

independent of the size of the system. As soon as nonlinearity is involved (at least in the range

of the stochastic fluctuations), the equivalence between average and deterministic systems be-

havior breaks down. This observation has already been made e.g. in [van Kampen, 2007]. The

comparability between stable fixed points and modes depends on the occurrence of translational

bursts (or more generally, on the involvement of large stoichiometric coefficients, be they ran-

dom or fixed), since large burst sizes promote highly asymmetric fluctuation patterns, thereby

increasing the skewness of the protein distribution. Modes are thus shifted away from the sta-

ble fixed points. In combination with nonlinear propensities, bursts can even alter the number

of modes, which can be analytically reproduced and visualized like in Fig 3.2. The graphical

method that is used here to locate modes is similar to the classical graphical approach to locate

fixed points. This suggests that parameter changes which lead to deterministic bifurcations may

also lead to stochastic bifurcations, in the sense that the number of modes is altered. However,

additional stochastic bifurcation parameters could be identified which do not have an impact on

the deterministic system – in our case, the average burst size α.

How do the findings presented here fit into the list of former publications about parallels and

discrepancies between deterministic and stochastic models in mesoscopic regimes – especially

concerning the relation between bistability and bimodality (cf. Section 2.3.3)? As already stated,

a fully generalizable rule for this relation cannot be deduced due to the variety of possible origins

of bimodality. However, the methods that have been presented in this section may at least unify

some of the observations12:

The study that is perhaps most closely related to the one at hand has analyzed a specific

phosphorylation-dephosphorylation cycle with autocatalytic kinase, which is basically a non-

cooperative feedback system [Bishop and Qian, 2010]. This system was shown to be determin-

istically monostable, but bimodal: One mode corresponded to the (only) deterministic fixed

point, while the other occurred at the zero state, which was explained by its weakly absorbing

property. Although the described system is not a genetic circuit, the principles of the graph-

ical determination of modes shown in Fig 3.2 can be directly applied to it, revealing that the

12Since the focus in this study was on one-component feedback systems, the effect of slow upstream binary
switches (cf. [Karmakar and Bose, 2004, 2007; Kepler and Elston, 2001; Qian et al., 2009; Thomas et al., 2014])
did not play a role.
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phosphorylation-dephosphorylation cycle is comparable to the system presented in Fig 3.2 (B),

where bimodality with a mode at the zero state has been observed as well. While the study in

[Bishop and Qian, 2010] was limited to that special case, we could in addition show that monos-

table, bimodal systems can be constructed where both modes lie in the positive-valued range

(cf. Fig 3.2 (D), medium-size burst). In this case, bimodality is more “related” to deterministic

bistability, in the sense that a moderate change in the parameters (but not in the structure or

shape) of the rates would result in actual bistability, not least because of the sigmoidal shape

of the protein production rate. Although an absorbing zero state is missing in that system, the

analytical plots showed that the principles underlying Fig 3.2 (B) and Fig 3.2 (D) are closely

related to each other. Moreover, the generation of a unimodal distribution from bistable sys-

tems could be explained likewise, cf. Fig 3.2 (C). In all cases, the occurrence of relatively large

stoichiometric coefficients led to a pronounced asymmetry of the peaks, which either resulted

in local accumulations within the protein distribution forming novel peaks, or to the gradual

coalescence of different peaks. The question what a “relatively large stoichiometric coefficient”

is can only be answered in the context of the regarded system. Sometimes, reactions generat-

ing only one molecule might be sufficient to cause stochastic bifurctions (like in the situation

depicted in [Bishop and Qian, 2010]).

All these results have shown that deterministic descriptions need to be treated cautiously in

the context of cellular systems. But are there still conditions under which their usage is justified?

In the last part of this study, it was shown that high robustness of expression states is often based

on principles of bistability. Therefore, many important regulatory systems are bistable, e.g. the

circuit triggering genetic competence in B. subtilis [Maamar et al., 2007], or the lysis-lysogeny

switch in the bacteriophage λ [Bednarz et al., 2014]. In bistable systems, the strongest effects of

hysteresis are expected (even in a stochastic regime), which is of particular importance in cases

where cellular state transitions are supposed to be controlled by external inductors. However,

one must not ignore the fact that a combination of large bursts and non-cooperative feedback

is capable of creating rather robust bimodality, too (cf. Fig 3.4 (C)). The potential discrepancy

between deterministic stable states and stochastic means or modes is highly relevant for the

application of the LNA. This will be addressed more thoroughly in the following study.

This discussion will now be closed with some thoughts about the thermodynamic limit, which

should offer additional views on the biological meaning of the discussed problems. As stated by

Gillespie, “[...] the thermodynamic limit is not a limit that the system actually approaches as a

consequence of its natural temporal evolution, nor even as a result of the experimenter’s direct

intervention; rather, the thermodynamic limit is a kind of gedanken limit, an idealized state

that turns out to be useful because it often provides a convenient approximation to macroscopic

systems” [Gillespie, 2009]. Let us now perform a “gedanken experiment”, visualized in Fig 3.5,

in which all cells of a large isogenic population are lyzed while maintaining the functionality of

all biochemical processes. Let us first assume that experimental measurements are performed

immediately after lysis and some rapid mixing. In this case, the measured concentration would

correspond to the stochastic population average. This situation resembles the performance of

classical ensemble measurements, which are not able to detect heterogeneity. Next, we assume

that the biochemical reactions would continue after lysis under perfect mixing conditions, before

measurements are made. The reactive species would synchronize and behave as predicted by

the deterministic (macroscopic) model, since this would be the experimental implementation

of the thermodynamic limit13. If the underlying system is bistable, the final concentrations

13It is, however, highly unrealistic that cell lysis is performed without altering cellular functions, which is why
this experiment remains purely hypothetical.
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3. Bridging the gap between deterministic and stochastic models

that are measured might be different when the experiment is repeated, depending on the initial

conditions. Last but not least, experimental measurements without lysis, which are performed

on a single-cell level, reveal the full heterogeneity of a population and can only be described using

stochastic models. A fine compartmentalization of a biological system into single cells apparently

creates individual cellular behavior, which can differ greatly from that of another individuum

as well as from the behavior within the hypothetical broth of lyzed cells. Processes inside

single cells thus have reduced reproducibility and controllability, but the resulting intercellular

heterogeneity provides greater flexibility and new opportunities to the population as a whole.

Lysis & rapid mixing
Hypothetically ongoing cellular 

reactions in „unified“ cytoplasm
Bimodal population

s° E[S] cs
*

Figure 3.5.: Modes, means, and fixed points in a hypothetical experiment. Modes s̊ can be determined
by measurements on a single-cell level, as the measured protein distribution over the whole population
should resemble the probability distribution of a suitable stochastic model. The mean value E[S] ·V −1

of the distribution is obtained after unification of the cytoplasms of all cells and rapid mixing. If the
biochemical reactions continued in the unified, well-mixed cytoplasm, almost deterministic model
behavior would emerge. The observed stationary concentration c∗s might be similar to one of the
modes in the single-cell experiment, but the values do not need to be identical.
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4. Method development for the analysis of

noise in multistable circuits

In the previous study, the robustness of expression states was estimated based on the shape of

the corresponding peaks in the probability mass function (Section 3.4.2). This method requires

the solvability of the master equation and is therefore restricted to systems with few components

and with few reactions of limited complexity. In the following, an alternative method with much

wider applicability is proposed, which is inspired by the linear noise approximation (Section

2.1.5), but produces results of higher accuracy: It uses an alternative, newly developed deter-

ministic model formulation that better captures mesoscale dynamics. The so-called hybrid linear

noise approximation (hLNA) is used to approximate the local variances of every peak in a multi-

modal distribution. The prediction of the variance is solely based on circuit-specific parameters

and functions, so that quantitative connections between circuit properties and the robustness

of expression states can be deduced. Besides the width of fluctuations, also their skewness and

temporal structure will be regarded. This is done by a characterization of translational bursts,

whose average size may vary in dependence on the gene expression level as well.

The present chapter deals with the development of methods to characterize noise in a meso-

scopic, multistable regime at the example of autoregulatory gene expression. Furthermore, the

quality of the methods is evaluated. The obtained results and their biological implications will

then be elucidated in more detail in Chapter 5.

4.1. Model system: Two-stage gene expression with autoregulation

A single-gene autoregulatory circuit with scaled reaction propensities is used as model system,

which is very similar to the full gene expression system (3.2) of the previous study. This means

that mRNA formation and degradation will be explicitly regarded in order to study the inter-

play of the mRNA and the protein level in detail. The translational propensity function g ·m
is now replaced by a more general, potentially nonlinear function G(m) to further enhance the

flexibility of the description. G is assumed to be strictly monotonically increasing and to suffice

G(0) = 0. In this study, we allow the function F to describe positive, missing, or even nega-

tive autoregulation. The latter is described through a monotonically decreasing function. The

reaction system can thus be written as:

∅
1
ν
·F (s)
−−−−−→ mRNA

mRNA
1
ν−−−−−→ ∅

∅ G(m)−−−−−→ Protein

Protein
1−−−−−→ ∅ (4.1)
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and be visualized like in Fig 4.1 (A).

gene mRNA (m)

F(s)/ν G(m)

1/ν 1

protein (s) B ∙ proteingene

A B

1

B ~ Geoα(F(s))

F(s)/ν

Figure 4.1.: Reaction scheme of a simple autoregulatory circuit with nonlinear translation. Visual-
izations of (A) the full reaction scheme (4.1) and (B) the reduced reaction scheme (4.28) that is
formulated using state-dependent protein bursts. The reference time scale of both systems is again
determined by protein degradation.

The corresponding CME is given by:

ṗm,s =
[
F (s) pm−1,s − F (s) pm,s + (m+ 1) pm+1,s −mpm,s

]
· 1
ν

+G(m) pm,s−1 −G(m) pm,s + (s+ 1) pm,s+1 − s pm,s, (4.2)

where pm,s is the probability that the system is in state (M,S) = (m, s). M is the stochastic

process describing the mRNA copy number.

The system of ODEs depicting average dynamics reads:

Ė[M ] =
(
E[F (S)]− E[M ]

)
· 1

ν

Ė[S] = E[G(M)]− E[S]. (4.3)

The calculations as well as the dynamics and steady-state conditions of the variances Var(M)

and Var(S) and of the covariance Cov(M,S) are given in the Appendix, Section B.1.

4.2. Deterministic description: From rate equations to a novel

hybrid modeling approach

In the LNA, the dynamics of random variables are described as uniform stochastic fluctuations

around the solution of a deterministic description (cf. Section 2.1.5). However, as we have seen

in the previous study, rate equations may deviate significantly from the average behavior of a

system, which would unavoidably hamper the quality of the LNA and of the variance estimates

that are based on it. After formulating the classical REs for the reaction system (4.1), an

alternative way of deterministically modeling average dynamics will be derived, and the idea

will then be extended to multistable systems.
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4.2.1. Formulation in terms of classical rate equations

For the deterministic formulation in terms of rate equations, the variable cm, which denotes the

deterministic mRNA concentration, and the function G : R≥0 → R≥0, G(cm) := G(cm ·V )
V ∀ cm ∈

R≥0 are introduced. In the latter definition, the originally discrete function G has been interpo-

lated smoothly and, if possible, linearly, in analogy to the definition of the interpolated function

H and of H in the preceding chapter. All the other parameters and functions have already been

defined in the previous study in Section 3.1.3. The system of rate equations reads:

ċm = (F(cs)− cm) · 1
ν

ċs = G(cm)− cs. (4.4)

As shown in Chapter 3, this formulation only provides a good description of mRNA and

protein dynamics if all reactions are linear, or if the reaction volume and the copy numbers

of the reactive components are large enough so that fluctuations become negligible. These

conditions are usually not fulfilled in single cells, especially regarding the copy numbers of

mRNA species. Therefore, an alternative modeling approach is developed, which is referred

to as hybrid deterministic model : The approach takes discrete fluctuations in M into account,

although being fully deterministic.

4.2.2. Derivation of the hybrid deterministic model

As a first step towards improving the accuracy of the deterministic model, the differential equa-

tions (4.3) of the mean values are rewritten as

ċm =
( 1

V
E[F (S)]− cm

)
· 1

ν
=
( 1

V

∞∑
r=0

F (r) · pSr − cm
)
· 1

ν

ċs =
1

V
E[G(M)]− cs =

1

V

∞∑
n=0

G(n) · pMn − cs, (4.5)

where cm := E[M ]
V and cs := E[S]

V are the expected time-dependent mRNA and protein concen-

trations. pMn :=
∑∞

s=0 pn,s and pSr :=
∑∞

m=0 pm,r are the marginal PMFs of mRNA and protein

with mean values cm ·V and cs ·V , respectively.

In case F and G are linear, pS and pM do not need to be further specified, since 1
V ·E[F (S)] =

1
V ·F (E[S]) = F(E[S]

V ) = F(cs) and, analogously, E[G(M)] = G(cm) hold, so that the average

dynamics of mRNA and protein concentrations are exactly given by the rate equations (4.4).

However, if F and/or G are nonlinear, these equations are not valid. Moreover, the joint and

marginal probability distributions might be multimodal. In order to obtain local information

about noise for every gene expression state, we interpret multimodal distributions as superpo-

sitions of two or more unimodal ones, each one of them representing one cellular state, cf. Fig

4.2. As these local1 (unimodal) probability mass functions pS∗r and pM∗n are typically just purely

hypothetical constructs, they cannot be determined analytically. We hence need to search for

1From now on, all stationary, local – i.e. expression-state-dependent – parameters, functions, and measures
(probability distributions, expectations, variances, etc.) will be marked with an asterisk, just like deterministic
fixed points. The reason is that every state-dependent measure is associated with exactly one stable fixed point,
if the LNA or variants thereof are used.
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approximations, which might be pragmatic, but in the end expected to improve the quality of

the deterministic description compared to REs.
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Figure 4.2.: Bimodal distribution as a superposition of two unimodal ones. Interpretation of a univariate
bimodal PMF p as a superposition of two unimodal ones, pA and pB , each representing a specific
cellular state. In this example, the bimodal distribution consists of two gamma distributions. However
usually, an unambiguous analytical decomposition is not possible.

First, an approximation of the local mRNA distribution pM∗ is defined. Using generating

functions, the CME of the stationary marginal mRNA distribution

0 = ṗM∗n =

∞∑
s=0

(
F (s) p∗n−1,s − F (s) p∗n,s + (n+ 1) p∗n+1,s − n p∗n,s

)
· 1
ν

(4.6)

can be solved, first yielding the recursion formula

(n+ 1) pM∗n+1 =
∞∑
s=0

F (s) p∗n,s = E∗[F (S)|M = n] · pM∗n , (4.7)

which can then be explicitly written as

pM∗0 =

( ∞∑
n=0

∏n−1
l=0 E∗[F (S)|M = l]

n!

)−1

,

pM∗n =

∏n−1
l=0 E∗[F (S)|M = l]

n!
· pM∗0 . (4.8)

The calculation is given in the Appendix, Section B.2. At this point, the problem is encountered

that the conditional expectation is unknown, unless F ≡ a is constant (at least in the range of

local protein fluctuations). In the latter case, E∗[F (S)|M = l] = a ∀ l ∈ N0 and pM∗n = an

n! e
−a,

or equivalently,

pM∗n =
E∗[M ]n

n!
e−E

∗[M ], (4.9)

i.e.M is Poisson distributed. Due to the lack of a better, but still tractable a-priori -approximation

for systems with non-constant F or for systems that are not in their stationary state, Eq (4.9)
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will be generally used. Of course, the quality of this approximation needs to be evaluated, which

will be done in Section 4.4. The differential equation of the protein dynamics, Eq (4.5), is now

replaced by:

ċs =
1

V

∞∑
n=0

G(n) · (cm V )n

n!
e−cm V − cs =: Ḡ(cm) − cs. (4.10)

Ḡ can be interpreted as an effective translation rate, which emerges from a local averaging of the

function G that takes mRNA fluctuations around cm ·V into account. In order to express Ḡ in

terms of copy numbers m = cm ·V , set Ḡ(m) := Ḡ(mV ) ·V =
∑∞

n=0G(n)m
n

n! e
−m ∀m ∈ R≥0. Note

that in these function definitions, the usage of arbitrary2 continuous interpolations is completely

avoided, since only evaluations of G at integer values enter the formulae. This guarantees the

uniqueness of Eq (4.10), which is not given in the RE formulation. A visual comparison of the

translation rates in the RE-based (G) and in the hybrid model (Ḡ) is made in Fig 4.3. Here, G

was chosen to be a concave function. Obviously, the curvature of Ḡ is diminished compared to

that of G due to local averaging3.
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Figure 4.3.: Translation rates according to the classical and hybrid deterministic model. While the
translation rate G in the classical RE model (purple line) is an interpolation of the discrete function
values (black squares), the translation rate Ḡ of the hybrid deterministic model (green line) is a local
average (weighted sum following a Poisson distributed mRNA level with mean m). The exemplary
stable fixed points (outer intersection points with F−1, red dashed line) of the classical (purple filled
circles) and hybrid (green filled circles) models diverge significantly. In addition, the local derivatives
of G and Ḡ (dashed colored lines) at the respective fixed points are different, which has a great impact
on the calculation of the Fano factors using the LNA, cf. Section 4.3. The functions and parameters
used in this example are: F (s) = 0.022 + 1.46 s4

s4+584
, G(m) = 281 m

m+0.51
, ν = 0.01. The figure has

been adapted from [Hortsch and Kremling, 2018b].

It would now be logical to repeat the procedure in order to define an effective transcription rate

F̄ as well. However, it is known (and will also later be shown) that the local protein distribution

pS∗ may vary considerably between different circuits, so that it cannot be simply approximated a

priori, especially if regulatory mechanisms like feedback are involved. Depending on the variance

2The interpolation is arbitrary if it cannot be fully deduced based on reliable mechanistic considerations.
3Fig 4.3 can be basically interpreted as a visualization of Jensen’s inequality for concave functions.
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4. Method development for the analysis of noise in multistable circuits

of pS∗, the averaging effect on F might be more or less pronounced. As the average protein copy

number is typically quite large (at least compared to mRNA copy numbers), the small noise

assumption is applied to the protein level, resulting in the classical macroscopic formulation.

All in all, the hybrid deterministic model is given by:

ċm = (F(cs)− cm) · 1
ν

ċs = Ḡ(cm)− cs, Ḡ(cm) =
1

V

∞∑
n=0

G(n)
(cm V )n

n!
e−cmV . (4.11)

The first ODE defines via cm the dynamically changing average of the approximate mRNA

distribution, which is used in the second ODE for the calculation of the effective translation

rate.

4.2.3. Fixed points of the deterministic models and their stability

Here, the main properties of the two deterministic approaches according to the theory of dy-

namical systems are summarized.

The stationary mRNA and protein concentrations are given by c∗m = F(c∗s) and by

c∗s = G(F(c∗s)) in case of model (4.4), (4.12)

c∗s = Ḡ(F(c∗s)) =
1

V

∞∑
n=0

G(n)
(F(c∗s) ·V )n

n!
e−F(c∗s) ·V in case of model (4.11). (4.13)

The stability behavior of (c∗m, c
∗
s) is now determined as explained in Section 2.3.1. Here,

(c∗m, c
∗
s) may be a fixed point either of the classical or of the hybrid deterministic model. The

Jacobian J∗ evaluated at (c∗m, c
∗
s) reads

J∗ =

− 1
ν f∗ · 1

ν

g∗ −1

 , (4.14)

where f∗ := dF(cs)
d cs
|cs=c∗s and

g∗ :=
dG(cm)

d cm
|cm=c∗m in case of model (4.4), (4.15)

g∗ :=
d Ḡ(cm)

d cm
|cm=c∗m =

∞∑
n=0

(G(n+ 1)−G(n))
(c∗mV )n

n!
e−c

∗
mV in case of model (4.11). (4.16)

As expected, a difference between G and Ḡ can cause a significant difference in the steady

states and in the local derivatives, cf. Fig 4.3.

If the trace of J∗ is negative and the determinant is positive, (c∗m, c
∗
s) is asymptotically stable4.

The first condition is always fulfilled, while the second condition holds iff

f∗ · g∗ < 1. (4.17)

4This is a criterion applicable to 2× 2-matrices which ensures negativity of the real parts of all eigenvalues.
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4.3. The hybrid linear noise approximation

In this case, the expression (trace(J∗))2−4 · det(J∗) can be shown to be always positive, so that

the eigenvalues turn out to be real-valued and (c∗m, c
∗
s) is thus a stable node.

4.3. The hybrid linear noise approximation

The hybrid LNA is performed like the classical LNA (cf. Section 2.1.5), but using the hybrid

deterministic model instead of REs.

This implies that the stable fixed points of the hybrid model (c∗m V, c
∗
s V ) =: (m∗, s∗), de-

fined in Eq (4.13), serve as an approximation of the local mean values of mRNA and pro-

tein fluctuations. The local stationary variances Var∗(M) and Var∗(S) around the fixed point

φ∗ ·V = (m∗, s∗)> are calculated by solving the Lyapunov equation (2.29) and by extracting

the diagonal entries from the obtained variance-covariance matrix Σ∗. In that context, the local

Jacobian J∗ of the hybrid model is used, cf. Eqs (4.14) and (4.16).

As final noise measures, the expression-state specific Fano factors η∗(M) = Var∗(M)
m∗ and

η∗(S) = Var∗(S)
s∗ are deployed, which are obtained through division of the local variance estimates

by the corresponding local mean value estimates.

In general, solving the Lyapunov equation might be tedios, but to two-dimensional reaction

systems like the one analyzed here, the method proposed in [Tomioka et al., 2004] can be applied.

The corresponding calculation steps are shown in the Appendix, Section B.3, and yield:

η∗(M) = 1 +
f∗

(g∗)−1 − f∗

(
ν

1 + ν
+

1

1 + ν
· r∗ f

∗

g∗

)
(4.18)

η∗(S) = 1 +
f∗

(g∗)−1 − f∗

(
1

1 + ν
+

ν

1 + ν
· 1

r∗ f
∗

g∗

)
if f∗ 6= 0, (4.19)

η∗(S) = 1 +
ν

1 + ν

(g∗)2

r∗
if f∗ = 0. (4.20)

f∗ and g∗ have been defined in the previous section. r∗ = s∗

m∗ denotes the stationary ratio of

protein and mRNA copy numbers. Note that f∗, g∗, and r∗ are parameters whose values may

depend on the gene expression state, so that differences in local noise levels within a multistable

system are possible. The interpretation of these formulae from a biological point of view will be

done in Section 5.1 in the next chapter.

4.4. Comparing the quality of the classical and hybrid LNA

We have seen that the hybrid methods are based on some assumptions, which need to be critically

examined. First of all, one should note that the hLNA is only applicable to systems whose

multimodality can be explained by hybrid-deterministic multistability, since every expression

state needs to be associated with a stable fixed point. Chapter 3 has shown that this condition

is not always fulfilled, at least for deterministic models based on rate equations. The situation

for hybrid-deterministic approaches is similar (however improved), which will be discussed in

more detail in Section 4.4.3.

As a second preliminary note, it should be pointed out that the hybrid approach only dif-

fers from the classical one in the usage of an effective (locally averaged) translation rate. If
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4. Method development for the analysis of noise in multistable circuits

G(m) = g ·m is linear, the identity G(cm) = g · cm = g 1
V

∑∞
n=0 n

(cm V )n

n! e−cm V = Ḡ(cm) ∀ cm ∈
R≥0 shows that the two deterministic models (4.4) and (4.11) and the corresponding two LNA

approaches are equivalent. The following discussion about differences in quality is thus only

relevant for systems with a nonlinear translational propensity function – a condition which will

be of major interest, since it enables burst sizes to be state-dependent, as will be shown in

Section 4.5.

As already stated, for multimodal distributions that originate from multistability, an ana-

lytical and biologically reasonable approach by which the distribution can be unequivocally

decomposed into unimodal ones does not exist. As a consequence, the “local” measures by

which we like to quantify state-specific noise are only hypothetical values, which hampers rigor-

ous error estimation. The following results are therefore mostly restricted to semi-quantitative or

qualitative statements and, due to the additional intractability of the full CME, to comparisons

with values extracted from stochastic simulations.

4.4.1. Quality of local mean value estimates

First of all, the quality of the local mean value estimates is assessed. They are approximated

by the stable fixed points m∗ and s∗ of the classical or hybrid deterministic models, which are

determined by Eqs (4.12) and (4.13), respectively.

In the special case of a constant transcriptional propensity F ≡ a, the average mRNA level

E[M ] according to the CME (4.2) is correctly given by the value of m∗ = a in both deterministic

frameworks. Moreover, we have seen that the stationary distribution of the mRNA copy number

is exactly Poisson (see Eq (4.9)). As a consequence, also the value of s∗ according to the hybrid

model is equal to the average protein copy number:

s∗ = Ḡ(a) =
∞∑
n=0

G(n)
an

n!
e−a = E[G(M)] = E[S]. (4.21)

The hybrid fixed point thus provides the exact location of the means, as desired (still under the

condition F ≡ a). By contrast, the value of s∗ according to the RE model is given by the point

evaluation G(a). Here, G is a (maybe rather arbitrary) continuous interpolation of the original

translational propensity function, which had only been defined on the space of non-negative,

integer mRNA copy numbers. If G is nonlinear, G(a) usually differs from Ḡ(a) and hence from

E[S] due to the missing local averaging effect, cf. Fig 4.3. Therefore, it would certainly provide

a worse estimate of the stochastic mean in every system without feedback regulation.

One can more generally state that the hybrid deterministic model leads to reliable results

if the transcriptional propensity is almost constant in the range of local protein fluctuations:

First of all, the local stationary mRNA distribution is then well approximated by a Poisson

distribution, which is important for the hybrid formulation of ċs. Second, also the relation

F (E∗[S]) = E∗[F (S)] is approximately fulfilled, which has been used in the formulation of ċm.

This statement also holds for multistable systems, as shown in Fig 4.4: Here, a bistable

system with a Michaelis-Menten-type translational propensity function G and with a Hill-type

transcriptional propensity function 1
ν ·F is studied. In panel (A), the graphical determination

of fixed points according to the classical and hybrid ODE model is visualized, showing large

differences in their locations. Due to its sigmoid shape, the function F is almost constant in a

domain around the fixed points. Visual inspection of panels (B) and (C), which show a simulated
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4.4. Comparing the quality of the classical and hybrid LNA

protein trajectory and its histogram, respectively, suggests that the hybrid deterministic fixed

points are much better estimates of local averages. This is confirmed by panel (D), which

lists the values of the two fixed points according to both deterministic model types together

with estimates that have been numerically extracted from the stochastic simulations. In order

to obtain these numerical estimates, phases in which the system is clearly in one of the two

expression states have been visually grouped across a large collection of protein trajectories,

before state-specific local mean values were computed.

For systems with more sensitive or with locally highly nonlinear feedback regulation, the

quality of the hybrid ansatz is expected to be reduced, especially in the presence of large protein

fluctuations. However, further qualitatively distinct systems were tested and it was observed

that in each case, the hybrid approach clearly outperformed the classical one. This will be shown

and discussed in Fig 4.5. All in all, the higher accuracy of the hybrid approach is attributable

to the local averaging of G, which generates a more realistic effective translation rate, even if

the true mRNA distribution is not exactly Poisson.
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mean variance

simul 4.4 | 165.2 11.4 | 224.6

LNA 14.5 | 208.4 32.9 | 264.9

hLNA 4.1 | 162.5 11.5 | 224.7
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Figure 4.4.: Comparison of the classical and hybrid linear noise approximation. (A) Graphical deter-
mination of stable fixed points according to Eqs (4.12) and (4.13). Intersection points marked in
purple and green indicate the stable fixed points of the classical and hybrid deterministic model,
respectively. (B) Simulated protein time course showing a random transition from the inactive to
the active expression state. The locations of stable fixed points according to the analysis in (A) are
indicated by dashed lines. (C): Histogram of the simulated time course. In addition to the estimated
local means, the standard deviations obtained with classical and hybrid LNA are visualized by colored
areas (mean ± standard deviation). (D): Quantitative comparison of estimates with values extracted
from the simulation. Functions and parameters are the same as in Fig 4.3. Figure modified from
[Hortsch and Kremling, 2018b].
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4. Method development for the analysis of noise in multistable circuits

4.4.2. Quality of the estimation of local Fano factors

Reliable estimates of local averages are crucial for the quality of the linear noise approximation,

as they constitute the points around which the propensity functions are linearized. After having

compared the classical with the hybrid deterministic model, we would thus expect that the local

variances calculated via hLNA are better estimates than those based on standard (RE-based)

LNA. Indeed, this is the case in the example visualized in Fig 4.4. The numerical estimates

of Fano factors, listed in panel (D), were obtained in analogy to the mean value estimates:

After identifying and grouping intervals in the simulated trajectories according to the current

expression state, the empirical variances and means of each group were computed and the Fano

factor was obtained by dividing the two measures. In order to further validate the quality of the

hLNA, four qualitatively different exemplary reaction systems were studied, which are defined

by the following functions and parameters:

(A) constant F , concave G: F (s) = 0.2, G(m) = 281 m
m+0.51

(B) linear F , concave G: F (s) = 0.1 + 0.0025 · s, G(m) = 281 m
m+0.51

(C) concave F and G: F (s) = 0.02 + s
s+140 , G(m) = 281 m

m+0.51

(D) sigmoid F and G: F (s) = 0.022 + 1.46 s4

s4+584
, G(m) = 281 m4

m4+0.734

The corresponding deterministic phase plots are illustrated in the top row of Fig 4.5. The

parameter ν is varied (ν = 0.01 and ν = 0.1), which does not affect the location of the determin-

istic fixed points, but the shape of the probability mass functions (cf. the second row of plots in

Fig 4.5 showing simulated protein distributions). The tables in the lower part of the figure con-

tain estimates of s∗ and η∗(S) obtained by classical and hybrid LNA. Moreover, computational

estimates and their standard errors of means (SEMs) are given which have been extracted from

102 protein time courses with final reaction time τf = 103. In case of panel (D), the system is

bistable, so that the two expression states needed to be evaluated separately as in Fig 4.4. For

ν = 0.1, it was observed that the system switches quickly to the high expression state, so that

the numerical estimates for the low expression state are of reduced reliability. In the last row

of Fig 4.5, the mRNA Fano factor η∗(M) (obtained from simulations) is given in order to check

whether the approximation of the mRNA distribution with a Poisson PMF is justified.

The system in panel (A) can be regarded as a control for the hybrid deterministic formulation,

as F is constant and therefore, the fixed point of the model is expected to exactly match the

mean value. This is indeed the case, while the fixed point according to the classical approach

deviates significantly. Despite the nonlinearity of G, the hLNA is able to accurately predict the

Fano factor as well, suggesting that the approximation error made through the linearization of

propensity functions is small.

In (B), F is a linear, increasing function. The linearity of F ensures the commutativity with

the expected value operator, which is used in both the classical and the hybrid formulation of ċm.

Compared with panel (A), the quality of the hybrid approach is expected to be reduced, as under

feedback regulation, the mRNA distribution generally deviates from a Poisson distribution. The

empirical mRNA Fano factor however suggests that this deviation is moderate (although slightly

larger for ν = 0.1). As a consequence, the quality of the hybrid LNA is still high, which is not

the case for the estimates based on classical LNA.

The function F in panel (C) is a concave saturation curve. Interestingly, the simulated
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Figure 4.5.: Validation of the quality of the hybrid linear noise approximation in different regulatory
circuits. Four qualitatively different systems are analyzed, which are specified in the text: (A)
constant F , concave G; (B) linear, increasing F , concave G; (C) concave F and G; (D) sigmoid F
and G. In the last case, the system is bistable. The s-m-plots in the top row illustrate the deviations
in the fixed points between the classical and hybrid deterministic model. The plots underneath show
the protein distributions for ν = 0.01 and for ν = 0.1. The tables contain the estimated fixed points
and Fano factors of both approaches (purple: classical LNA, green: hybrid LNA) as well as values
extracted from simulations (blue; estimates ± SEMs of 102 repeats with final scaled process time
τf = 103 are shown). In (D), estimates for both steady states are given (upper right values: high
expression state; lower left values: low expression state). Functions and parameters are listed in the
text. The figure is adapted from [Hortsch and Kremling, 2018b].

55



4. Method development for the analysis of noise in multistable circuits

estimates of s∗ are highly different for ν = 0.01 and for ν = 0.1, a phenomenon which has not

been observed for linear F . This can be explained as follows: Similar to the averaging of G

within the range of mRNA fluctuations, protein noise actually leads to a local averaging of F

(which was not included in the hybrid deterministic model formulation). One can show that

the range of protein fluctuations is augmented by an increase5 in ν, which thus enhances this

averaging effect. When we imagine that the red line (F ) in the phase plot of panel (C) is averaged

to various degrees, we can indeed qualitatively reconstruct how the intersection point with the

green line (Ḡ−1) is shifted towards the values extracted from the simulations. An extension of

the hybrid approach that calculates an effective transcription rate F̄ (in a way similar to the

calculation of Ḡ) is thus expected to yield improved estimates. However, as mentioned before,

the range of protein fluctuations is highly variable and cannot be estimated a priori (cf. the

highly different values of η∗(S) in these examples). Nevertheless, the values listed in panel (C)

show that all estimates obtained with the hybrid methods are in a realistic range and clearly

outperform the values obtained with REs and with the classical LNA.

In (D), a hypothetical, bistable system with sigmoid F and G is shown. Interestingly, the

averaging effect on G is so strong that the effective rate Ḡ is not a sigmoid function anymore.

Due to its sigmoidal shape, F is almost constant in a domain around the fixed points (like in

Fig 4.4), leading to good mean and variance estimates when the hLNA method is used.

In all examples, we have seen that the mRNA Fano factor is still close to one (especially in the

systems where ν = 0.01), so that the Poisson distribution appears to be a valid approximation.

After this simulation-based evaluation of the hLNA, let us quickly revisit the formulae de-

scribing the local Fano factors in Eqs (4.18)-(4.20). Based on these expressions, the following

differences between the results of the classical and hybrid LNA can be identified: First of all, the

classical LNA uses a local derivative g∗ of the continuous function G, which depends strongly on

the chosen interpolation. In contrast, g∗ in the hybrid approach is a difference quotient (cf. Eq

(4.16)) that is unique, since it only uses the original, discrete function evaluations of G. While

the function F is the same in both approaches, the values of the local protein-to-mRNA ratio

r∗ and of the local derivative f∗ may differ greatly, since they depend on the locations of the

corresponding fixed points.

In summary, the quality of the hybrid approaches is highest for systems without feedback and

is not significantly affected by nonlinearity of G, which is the main advantage over the classi-

cal approaches. Moreover, the assumption that the mRNA distribution can be approximately

described by a Poisson PMF seems to be legitimate even under feedback regulation. Compared

with the RE-based approach, the hybrid approach is thus better suited to handle the involve-

ment of mRNA as a low-copy-number species that may participate in reactions with nonlinear

propensity functions.

4.4.3. Multistability vs multimodality

Due to the difference between G and Ḡ, classical and hybrid deterministic descriptions of the

same genetic circuit may predict qualitatively different systems behavior, which is illustrated

in Fig 4.6: In panel (A), the RE model is monostable, whereas the hybrid model is bistable,

in panel (B), the opposite holds. The number of stable fixed points according to the hybrid

approach coincides with the number of modes in the simulated protein distribution. It needs

5This fact can be read from the numerically extracted estimates of η∗(S) and will be addressed analytically
in Chapter 5.

56



4.5. Definition of state-dependent burst characteristics

protein copy number (s) protein copy number (s)

m
R

N
A

 c
o
p
y
 n

u
m

b
e
r 

(m
)

in
te

n
s
it
y

F(s)

G -1(s)
 𝐺-1(s)

monostable

bistable

bistable

monostable

bimodal unimodal

A B

Figure 4.6.: Differences in system behavior between classical and hybrid deterministic models. In
(A) and (B), two different systems are considered with sigmoid F and saturated G. The upper
part shows the phase plots of the deterministic models. Purple filled circles indicate the locations
of the stable fixed points according to the classical rate laws, while green filled circles mark those
of the hybrid deterministic model. Due to the difference between G and Ḡ, the number of fixed
points differs. The lower plots show simulated protein distributions. In (A), the system is bimodal.
According to the hybrid model, it is bistable, while the classical model predicts monostability. F (s) =
0.022 + 1.46 s4

s4+454
, G(m) = 250 m

m+0.51
. In (B), the protein distribution is unimodal, in accordance

with the monostability of the hybrid model. However, the classical approach predicts bistability.
F (s) = 0.1 + 1.46 s4

s4+584
, G(m) = 281 m

m+2.57
. The figure is modified from [Hortsch and Kremling,

2018b].

to be mentioned, however, that the burst sizes (which will be defined in the following sections)

in these examples are small. Under large bursts, the asymmetry of fluctuations may lead to

stochastic bifurcations, which can neither be captured by a RE-based nor by a hybrid deter-

ministic model. This phenomenon has been extensively discussed in Chapter 3. In this case,

the hLNA approach is not applicable, since modes and stable fixed points are not associated

anymore. Apart from this scenario, one may conclude that the hybrid model is able to predict

multimodality more reliably than the classical RE model. As a consequence, the applicability

of the hLNA is wider than that of the original approach.

4.5. Definition of state-dependent burst characteristics

Besides the Fano factor, translational bursting is an important characteristic of gene expression

noise, which provides information of the temporal structure of fluctuations (see Section 2.2.2 in

the Theoretical Background). Since conventional definitions of burst sizes and burst frequencies
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only consider systems in which those measures are independent of the gene expression state (as

it has also been assumed in Chapter 3), the definitions need to be extended. In this context,

will see how state-dependence in bursting is generated biologically.

4.5.1. State-dependent burst size

In general, the burst size is the average number of proteins translated per mRNA, and can be

calculated by dividing the effective rate of translation by the rate of mRNA degradation, cf.

Eq (2.32) [Friedman et al., 2006; Thattai and van Oudenaarden, 2001]. However, this ratio

may vary with the current mRNA level, making the burst size dependent on the state of the

system. In order to take this dependence into account, let m̄ ∈ R≥0 be the average mRNA

level around which the copy number currently fluctuates at time τ (note that the system does

not need to be in stationary state). α(m̄) is then defined as the number of proteins that are

expected to be produced during a potential burst starting in the infinitesimal interval [τ, τ +δτ ].

The burst is triggered by the formation of an additional mRNA molecule and ends with its

degradation. During that time, the distribution of the remaining mRNA molecules is assumed

to be unaffected6, so that the average mRNA copy number then becomes equal to m̄ + 1. In

consistence with the derivation of the hybrid deterministic model, the distribution of the other

mRNA molecules is assumed to be Poisson, i.e. during the burst, (M − 1) ∼ Pois m̄, where Pois

denotes the Poisson PMF, whose average is given by the subscript.

In order to determine the average burst size, let [τ0, τm] be the lifespan of the mRNA molecule

that causes the burst. Without loss of generality, let τ0 = 0. Let furthermore SB denote the

stochastic number of burst proteins translated from that specific mRNA molecule and pSBb (τ)

the probability that SB(τ) = b at time τ ∈ [0, τm]. The production of burst proteins is a Poisson

counting process with randomly distributed propensity G(M)
M , therefore

pSBb (τ) = E∗M
[
PoisG(M)

M
· τ (b)

]
= E∗M

[
(G(M)

M · τ)b

b!
e−

G(M)
M
· τ
]
. (4.22)

The subscript at E specifies the random variable the operator refers to. The average num-

ber of mRNA-specific translation events during the lifespan of the mRNA molecule, which is

exponentially distributed with mean ν, equals7:

α(m̄) = Eτm
[
ESB

[
E∗M

[
Pois(G(M)

M
· τm

)(SB)

]]]
= Eτm

[
E∗M

[
ESB

[
Pois(G(M)

M
· τm

)(SB)

]]]
= Eτm

[
E∗M

[
G(M)

M
· τm

]]
= Eτm

[ ∞∑
n=0

G(n+ 1)

n+ 1

m̄n

n!
e−m̄ · τm

]

=

∫ ∞
0

∞∑
n=0

G(n+ 1)

n+ 1

m̄n

n!
e−m̄ · τm

ν
e−

τm
ν d τm

=
∞∑
n=0

G(n+ 1)

n+ 1

m̄n

n!
e−m̄ ν =


Ḡ(m̄)
m̄ ν if m̄ > 0

G(1) ν if m̄ = 0.
(4.23)

If G(m) = g ·m was linear, the formula would reduce to α(m̄) = g · ν. The burst size is thus

6The validity and implications of this assumption will be considered later in Section 4.5.5.
7ν is the inverse of the degradation constant in the scaled system.

58



4.5. Definition of state-dependent burst characteristics

only state-dependent if the translational propensity G is nonlinear.

4.5.2. State-dependent burst frequency

The burst frequency is the mean number of bursts (i.e., of transcription events) occurring in

an interval [0, τs], whose average length corresponds to the average lifespan of a protein. Under

feedback regulation, the number of transcription events depends on the protein level, so that the

burst frequency becomes state-dependent. Let s̄ be the current mean copy number around which

protein fluctuations take place. Assuming that the average transcriptional propensity does not

significantly change during an interval of length τs, this propensity is simply approximated by the

point evaluation 1
ν ·F (s̄), like in the formulation of the hybrid deterministic model. The lifespan

of a protein is exponentially distributed with mean 1. The state-dependent burst frequency can

now be determined in analogy to the calculation of the state-dependent burst size:

ω(s̄) =

∫ ∞
0

1

ν
F (s̄) τs e

−τs d τs =
F (s̄)

ν
. (4.24)

α(m̄) and ω(s̄) are generalizations of the expressions formulated in [Friedman et al., 2006;

Thattai and van Oudenaarden, 2001], where only systems without feedback (F ≡ a) and with

linear propensities (G(m) = g ·m) are studied, leading to state-independent burst measures.

4.5.3. Stationary burst measures

Next, let us regard local bursts in stationary state. Let (m∗, s∗) denote a stable fixed point of

the hybrid deterministic model, around which the system fluctuates. It can be assumed that the

fixed point is positive-valued, since otherwise, bursts would not occur at all. Since the steady

state condition implies that Ḡ(m∗) = s∗ and F (s∗) = m∗ hold, the following relations for the

local stationary burst characteristics α∗ := α(m∗) and ω∗ := ω(s∗) are obtained:

α∗ =
Ḡ(m∗)

m∗
· ν =

s∗

m∗
· ν = r∗ · ν, ω∗ =

F (s∗)

ν
=
m∗

ν
=

s∗

r∗ · ν
. (4.25)

If s∗ is held fixed, the burst properties can be fully characterized in terms of the quantities

r∗ and ν, i.e. in terms of the stationary protein-to-mRNA ratio and the relative time-scale of

mRNA dynamics. In this case, it is sufficient to concentrate on the determination of the burst

size, since the burst frequency follows directly from the relation s∗ = α∗ ·ω∗. This means that

in order to keep s∗ constant, any change of α∗ needs to be balanced by an inverse change of ω∗.

4.5.4. Relation between stationary burst characteristics and stationary propensities
and its usage for a graphical determination of the burst size

The occurrence of bursts can be related to differences in the average propensities of reactions

on the mRNA versus the protein level: In the stationary state, the average propensities of

transcription and mRNA degradation, E∗[ 1
ν ·F (S)] and E∗[ 1

ν ·M ], are necessarily identical. We

denote this value by w∗m, since it reflects mRNA dynamics. In line with this, the average

propensities of translation and protein degradation, E∗[G(M)] and E∗[S], are equal as well and

their value is denoted by w∗s . Usage of the same approximations as in the hybrid deterministic

model yields the relations w∗m ≈ 1
ν ·F (s∗) = 1

ν ·m
∗ and w∗s ≈ Ḡ(m∗) = s∗. Since Ḡ is invertible,
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4. Method development for the analysis of noise in multistable circuits

the following two conditions for w∗m and w∗s are obtained:

w∗m =
1

ν
·F (w∗s), w∗m =

1

ν
· Ḡ−1(w∗s). (4.26)

A connection between propensities and stationary burst characteristics is now given by:

α∗ = r∗ · ν = s∗/m∗ · ν = w∗s/w
∗
m. (4.27)

This relation illustrates that in the stationary state, bursts with large size occur if reactions

on the protein level are much more probable and therefore expected to be much more frequent

than reactions on the mRNA level.

The steady state propensities can be graphically determined by visualizing the two equations

in (4.26) in a w∗s -w
∗
m-plot, and by reading the values at the intersection points of the two

graphs. The stationary burst size α∗ is then equal to the inverse slope of the line connecting the

intersection point with the origin. The plot helps to visualize how the shapes of F and Ḡ and

the interplay of relative reaction time-scales affect the burst size. Examples are shown later in

Fig 5.4 (B) and in Fig 5.5.

4.5.5. Quality of burst measures

The state-dependent burst measures provide information about the expected size and frequency

of protein bursts based on the current average system state (m̄, s̄), under the premise that the

average translational propensity per mRNA and the average transcriptional propensity do not

significantly change during a burst or during the lifespan of a protein. Is this premise justified?

First of all, the average translational propensity per mRNA, E∗
[
G(M+1)
M+1

]
, is obviously con-

stant if G is linear. However, even if this is not the case, the expression is expected to remain

unchanged during a burst if the system is stationary and if F is constant: In this case, the

mRNA distribution is not influenced by the production of burst proteins.

Apparently, constant F also leads to a constant average transcriptional propensity E∗
[
F (S)
ν

]
.

Moreover, it is the main criterion ensuring a high quality of the hybrid deterministic approach,

whose principles have been used again in order to locally approximate the averaged reaction

propensities with effective reaction rates Ḡ(m̄)
m̄ and 1

νF (s̄). Taken together, both burst measures

α(m̄) and ω(s̄) are expected to be of high accuracy if the effect of feedback is locally weak.

What if F is not constant? In this case, the mRNA level is regulated and may systematically

change during a burst. If additionally G is nonlinear, the effective rate of translation per mRNA

might accordingly increase or decrease, leading to larger or smaller bursts than predicted by

α(m̄).

Concerning ω(s̄), the relation E∗[F ( . )]) = F (E∗[ . ]) is usually not fulfilled, so that the burst

size may be over- or underestimated, depending on the local curvature of F .

In contrast to the simulation-based validation of estimated Fano factors, the comparison be-

tween analytically approximated burst sizes and values extracted from experimental or simulated

time course data is difficult, since the production of burst proteins is superposed by degradation

events and by other, overlapping bursts. In Section 5.2.1, a procedure for the extraction of

burst characteristics from simulations is explained – however, its applicability is limited and the

obtained values are only approximations as well, so that the procedure is not suitable for system-
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4.6. Model reduction and determination of modes in the burst limit

atically and comprehensively evaluating the quality of the burst measures. An “indirect” way

of quality control however arises from the model reduction explained in the following section,

which is performed with the help of the state-dependent burst measures.

4.6. Model reduction and determination of modes in the burst limit

In Chapter 3, we have seen that based on a reduced model, which only describes burst-like

protein production and simple degradation without explicitly considering the mRNA level (cf.

the system given in (3.4)), modes in the protein distribution can be determined. Here, it will

be examined whether and how this procedure can be applied in case of state-dependent burst

sizes.

4.6.1. Model reduction

Like in the model reduction explained in Section 3.1, the condition ν � 1 needs to be fulfilled in

order to describe a translational burst as an instantaneous increase in the protein time course:

In this case, mRNA molecules are degraded very fast compared to the protein, so that all

translation events belonging to one burst occur in a temporally highly condensed manner (on a

time-scale determined by protein degradation). The general form of the reduced model should

be:

∅
1
ν
·F (s) · pBb−−−−−−−→ b ·Protein, b ∈ N0

Protein
1−−−−−−−−→ ∅ (4.28)

What remains to be defined is pBb , the probability of a burst of size B = b. Note that according

to the notation in Section 4.5, B = SB(τm).

We already know that if G(m) = g ·m is linear, the average burst size α = g · ν does not

depend on the current mRNA level and B is geometrically distributed [McAdams and Arkin,

1997], cf. Section 2.2.2. We will first review how the geometric distribution can be deduced,

before the calculations are transferred to systems with expression-state-dependent bursts. Let

us recall the reaction in which the burst proteins are generated in case of linear G:

∅
g= α

ν−−−−→ Burst proteins. (4.29)

The burst ends with the degradation of the responsible mRNA molecule (propensity equal to

1/ν). Comparing the two reactions, namely protein formation and mRNA degradation, the

probability that the next reaction happening will be translation is equal to g
1/ν+g , while the

probability that it will be mRNA degradation is equal to 1/ν
1/ν+g . A burst of size b is hence

generated when b protein formation events occur before the mRNA molecule is degraded. As a

consequence,

pBb =

(
g

1
ν + g

)b 1
ν

1
ν + g

=

(
α

1 + α

)b 1

1 + α
= Geoα(b), (4.30)

i.e. the burst size is indeed geometrically distributed for linear G.
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4. Method development for the analysis of noise in multistable circuits

If G is nonlinear, the burst size α(m̄) varies with the current average mRNA copy number

m̄. Since our goal is to fully eliminate the mRNA level, assumptions about m̄ need to be made

for every point in time τ , based solely on the knowledge of the current protein copy number s.

The assumption which will be used is that in the time interval between two consecutive bursts,

m̄ = F (s) holds. There are two scenarios in which this equality is valid: In the first, the overall

mRNA dynamics are much faster than protein degradation, so that the mRNA distribution

adapts instantaneously to the current protein copy number in the period between two bursts

(pseudo steady state). In the second scenario, F is constant in the range of local protein

fluctuations, meaning that the local mRNA distribution is not influenced by the protein level at

all. Furthermore, it will be assumed that the mRNA distribution does not change significantly

during a burst (like in the preceding chapter) – either again due to the missing dependence of

the average mRNA level on the protein level, or due to a certain delay in the mRNA dynamics8.

Under these assumptions, the translation of burst proteins occurs with propensity Ḡ(F (s))
F (s) =

1
ν ·α(F (s)), and the burst size is again geometrically distributed:

pBb =

(
α(F (s))

1 + α(F (s))

)b 1

1 + α(F (s))
= Geoα(F (s))(b). (4.31)

The CME of the reduced model then reads:

ṗs =
s∑
b=0

1

ν
·F (s− b) ·Geoα(F (s−b))(b) · ps−b −

1

ν
·F (s) ps

+ (s+ 1) ps+1 − s ps. (4.32)

In case the above assumptions do not hold, the general quality of the reduced model needs to

be critically evaluated, which will be done in Section 4.7.

4.6.2. Solving the CME of the reduced model

We already know from Chapter 3 the recursive and explicit solutions of the CME in case the

mean burst size α is constant, namely:

p1 =
α

1 + α

F (0)

ν
p0

(s+ 1) ps+1 =
α

1 + α

(
F (s)

s ν
+ 1

)
s ps, s ∈ N (4.33)

and

ps =
F (0)

s ν
p0

(
α

1 + α

)s s−1∏
i=1

(
F (i)

i ν
+ 1

)
(4.34)

(cf. Eqs (3.6) and (3.7), whose notations have been adapted to those of the present chapter). As

we have seen, fixed average burst sizes are obtained in systems without feedback (F constant)

or with linear translational propensity function G.

8Note that this delay needs to be so small that in between bursts, the pseudo steady state assumption is still
applicable.
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4.6. Model reduction and determination of modes in the burst limit

For bursts that depend on the protein level, an explicit calculation is not possible. Inspired

by the above equations, one may, however, assume that in this case, the approximate relations

p1 =
α(F (0))

1 + α(F (0))

F (0)

ν
p0

(s+ 1) ps+1 =
α(F (s))

1 + α(F (s))

(
F (s)

s ν
+ 1

)
s ps, s ∈ N (4.35)

and

ps =
F (0)

s ν
p0

α(F (0))

1 + α(F (0))

s−1∏
i=1

[
α(F (i))

1 + α(F (i))
·
(
F (i)

i ν
+ 1

)]
(4.36)

hold. As a control, these expressions may be inserted into the stationary form of the reduced

CME (4.32). It turns out that they approximately fulfill the steady state condition if α(F (s)) ≈
α(F (s+ 1)) ∀ s ∈ N0.

4.6.3. Estimation of modes

Based on Eq (4.35), we may – in analogy to the previous study – conclude that the locations of

positive modes approximately fulfill the condition

s = dσe where σ ∈ R, σ + α(F (σ)) + 1 =
α(F (σ))F (σ)

ν
= Ḡ(F (σ)), (4.37)

cf. Eq (3.13). A further mode is located at s = 0 if p0 > p1, i.e. if

α(F (0)) + 1 >
α(F (0))F (0)

ν
= Ḡ(F (0)). (4.38)

Like in Chapter 3, plotting the left and right hand-side of the equation in (4.37) helps to

understand the connection between circuit properties and the location of modes in the protein

distribution, which provide important indications on skewness. Since the LHS is not necessarily

linear anymore, but dependent on α(F (σ)), the degree of skewness may vary between different

expression states.

Using the determination of modes, potential discrepancies between multistability and multi-

modality, which would hamper the applicability of the hLNA, can be identified.

4.6.4. Applying the hLNA to the reduced model

The hLNA method can also be applied to the reduced model. Note that the stoichiometric

matrix of the reduced reaction system (4.28) is in this case infinite-dimensional, since the actual

jump size of a burst event can in principle be equal to any nonnegative integer. The calculations

are shown in the Appendix, Section B.4. It turns out that the hybrid deterministic model reads:

ċs = Ḡ(F(cs)) − cs. (4.39)

This formulation corresponds to the ODE which is obtained by assuming a PSS for cm in the

full hybrid deterministic model, Eq (4.11).
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4. Method development for the analysis of noise in multistable circuits

The Fano factor of the reduced model obeys:

η∗(S) = 1 +
1

(g∗)−1 − f∗

(
f∗ +

r∗ ν

g∗

)
. (4.40)

Here, g∗ := d Ḡ(cm)
d cm

|cm=F(c∗s) and r∗ := s∗

F (s∗) . If the condition ν � 1 is used to simplify Eqs

(4.19) and (4.20), which are the formulae of the protein Fano factors according to the full model,

this yields:

η∗(S) = 1 +
1

(g∗)−1 − f∗

(
f∗ +

g∗ ν

r∗

)
. (4.41)

The expression differs from Eq (4.40) if g∗ 6= r∗. This discrepancy will be discussed in the next

section, where the quality of model reduction is assessed.

4.7. Quality of model reduction and of the determination of modes

In order to be able to perform the model reduction, the condition ν � 1 is crucial, since it

justifies the temporal condensation of multiple translation events into a single reaction with

burst-like protein production. Besides that, there are other criteria which should be fulfilled:

The proposed techniques of model reduction and of mode determination make use of the

newly defined state-dependent burst size, whose quality is hence decisive. In Section 4.5.5, we

have discussed that the formula (4.23), with which the burst size is calculated, is accurate if G

is linear, or if F is constant and the mRNA level is stationary. Both conditions also allow the

mRNA level to be easily eliminated from the model. If G was nonlinear and F was non-constant,

the mRNA level could still be averaged out by assuming a pseudo-stationary mRNA distribution.

This assumption is justified if the mRNA dynamics adapt quickly to that of the protein while

the protein copy number changes due to degradation. At the same time, the mRNA distribution

should remain unaffected during protein bursts to ensure the geometric distribution of the burst

size. These two requirements on the mRNA dynamics seem contradictory, but they are still

feasible, since delay effects may only come into play during the high-frequency-production of

burst proteins. However, as soon as the mRNA level is sensitive to the sudden increase in

the protein level, the burst size distribution is not geometric anymore. In the case of positive

feedback, for example, the mean mRNA copy number m̄ would actually rise – at least slightly –

during burst protein production. If Ḡ was locally concave, the effective average translation rate

from a single mRNA, Ḡ(m̄)
m̄ , would decrease accordingly. The real protein burst size would thus

be smaller than predicted by the geometric distribution. The opposite holds if Ḡ was locally

convex. The local protein distribution of the reduced model would therefore be too broad or too

narrow, compared with the distribution of the full model.

Indeed, this fact comes to light as a quantifiable systematic error in model reduction when

the protein Fano factors of the full and reduced models are compared: Eqs (4.40) and (4.41)

show that η∗(S) of the reduced model is systematically biased if g∗ 6= r∗, which is in general

the case if Ḡ is nonlinear. In Fig 4.7, a comparison between simulated protein distributions

according to the full and the reduced model are shown for four qualitatively different systems.

Here, ν = 0.01� 1. The following circuits have been tested:
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Figure 4.7.: Quality of model reduction and mode prediction. Four qualitatively different reaction systems
are evaluated, which are specified in the text. Top row: s-m-phase-plots according to the hybrid
deterministic model. Second row: Plots for the determination of modes. Third row: Histograms
of the full and reduced models. To generate the distributions, protein time courses of each (full
or reduced) system have been simulated with final reaction time τf = 103. Protein Fano factors are
given in the tables, which were obtained either analytically (“calc.”) using Eq (4.19) for the full model
and Eq (4.40) for the reduced model, or computed based on the simulated distribution (“simul.”),
together with the SEMs. Histograms of full and reduced systems are nearly congruent if Ḡ is linear
as in system (A), while the distribution of the reduced system is broader if Ḡ is concave as in (D).
Nonlinearity of F does not hamper the quality of model reduction (cf. (B) and (C)). The prediction
of modes worked reliably in all four cases.

(A) concave F , linear G: F (s) = 0.02 + 0.192 s
s+140 , G(m) = 1000 ·m

(B) linear F , concave G: F (s) = 0.02 + 0.0008 · s, G(m) = 1153 m
m+0.1

(C) concave F and G: F (s) = 0.02 + 0.192 s
s+140 , G(m) = 1153 m

m+0.1

(D) concave F and G: F (s) = 0.2 + 1.92 s
s+140 , G(m) = 170.3 m

m+0.1
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4. Method development for the analysis of noise in multistable circuits

In all systems, the average protein copy number s∗ is approximately equal to 100. In systems

(A) to (C), m∗ ≈ 0.1, while in (D), m∗ ≈ 1. The top row of Fig 4.7 shows the protein-mRNA

phase plots of all four systems. In these plots, Ḡ, but not G is visualized, since the latter function

would mostly lie outside the range of the values shown. The seeming linearity of the effective

translation rate in panels (B) and (C) is due to local averaging and due to the very low mean

mRNA copy number. In panel (D), the curvature of Ḡ is comparatively larger. The middle row

of plots illustrates the condition (4.37) for the determination of modes, which are approximately

located at the intersection point of the red and the blue line. The plots in the third row show

the simulated protein distributions according to the full and the reduced model. For both model

types, the protein Fano factors are given in the table below: In each panel, the column on the

left contains the values calculated using Eqs (4.19) and Eq (4.40), the one on the right contains

the values extracted from the histograms. Differences between the analytically determined and

the numerically estimated values are mostly attributable to the strong feedback present in all

four circuits.

In the system illustrated in Fig 4.7 (A), the linearity of G makes the average burst size

independent of the mRNA level. As a consequence, the simulated protein distributions according

to the full and reduced model are almost identical. Minor differences emerge due to the stronger

temporal condensation of translation events in the reduced model and the resulting negligence

of protein degradation during a burst. This leads to a slight overestimation of noise, which is

why the Fano factors are not exactly equal. The prediction of modes in panel (A) is accurate.

In panel (B), the protein distribution of the reduced model is slightly broader than that of the

full model. This is due to the fact that G and, as a consequence, Ḡ is concave, so that g∗ < r∗

holds. According to the systematic deviation between Eqs (4.40) and (4.41), the reduced model

is indeed expected to overestimate the protein fluctuations. The effect is however moderate in

the regarded case since Ḡ is almost linear in the range of mRNA fluctuations (although G is

highly nonlinear). The prediction of the mode still works very well.

The system visualized in panel (C) combines the concave transcription rate of panel (A) with

the concave translation rate of (B). Again, the distribution of the reduced model is slightly

broader, but mode prediction is reliable. Apparently, nonlinearity of F does not hamper the

quality of model reduction, as it does not make use of the average burst frequency.

In Fig 4.7 (D), m∗ has been increased, while s∗ was kept constant. The burst size is therefore

reduced, so that the mode of the protein distribution is located closely to the mean value.

In contrast to panels (B) and (D), concavity of Ḡ is more pronounced, and as expected, the

distribution of the reduced model is now significantly broader than that of the full model.

Nevertheless, mode prediction works reliably.

Obviously, the correspondence between the distributions of the full and reduced model is good

except for systems in which positive (or negative) feedback is combined with strong nonlinearity

of Ḡ. Although one might expect that the quality of the determination of modes is closely

associated with the quality of model reduction, the estimation of modes was surprisingly accurate

in all studied cases.
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4.8. Short discussion and summary

Since the classical LNA approach for the approximation of local variances often performs poorly

in mesoscopic systems where low-copy-number-species like mRNA are involved (cf. Figs 4.4 -

4.6), a novel approach has been developed that is based on an improved underlying deterministic

description. This hybrid deterministic model takes the stochasticity and discreteness of mRNA

copy numbers into account and thereby generates variables that are usually closer to the local

stochastic mean values. It should be pointed out that the deterministic description is only

used for linearization of the stochastic model and not for replacing a part of the stochastic

variables, as it was done e.g. in [Hellander and Lötstedt, 2007; Jahnke, 2011; Lin and Galla,

2016] (cf. the reduced models presented in Section 2.1.6). The assumptions made during the

establishment of the hybrid deterministic model also served as a basis for burst quantification

and model reduction. As a result, profound connections between different noise measures can

now be identified and biologically interpreted. This will be elaborated on in the next chapter.

The development of the hybrid approaches and of state-dependent burst characterization was

based on several assumptions, which suggest that the methods work best if the transcriptional

propensity function is locally almost constant in a domain around the stable fixed points. Im-

portantly, this criterion is not only fulfilled in systems without feedback, but also in bistable

systems with cooperative autoregulation, cf. Fig 4.4. Moreover, simulation studies have shown

that even if the transcriptional propensity function is locally increasing, the mean value and

Fano factor estimates and the distributions obtained through model reduction are still rather

accurate. In all cases, the hybrid approach led to much better noise estimates than the classical

LNA approach through the improved description of locally averaged systems behavior.

Approaches other than the ones proposed, for example effective mesoscopic rate equations

(EMREs) [Grima, 2010] and the inverse omega square (IOS) method [Thomas et al., 2012] (cf.

Sec 2.1.6) have also led to a description of means and variances that are more accurate than

classical LNA. Compared with those methods, the hLNA approach is much more pragmatic,

as it simply assumes the mRNA copy number to be Poisson distributed. In return, it is easily

applied without the need for extensive Taylor expansion. Moreover – and this might be its main

advantage – it is suitable for analyzing multimodal systems.

However, in order to apply the hybrid approaches, this multimodality needs to be associated

with hybrid deterministic multistability. In this case, the multimodal distribution cannot be

easily decomposed into unimodal PMFs, which aggravated the rigorous assessment of the quality

of estimates9. This is why the evaluation was mainly based on simulations.

In cases where multimodality and (hybrid deterministic) multistability are divergent, (which

happens especially in the presence of large translational bursts), the hLNA method is not capable

of characterizing the noise in all peaks of the protein distribution anymore. However, it seems

that the locations of modes are predicted reliably, provided that the requirements for model

reduction are fulfilled (in particular ν � 1). An a priori comparison of the number and location

of modes and stable hybrid deterministic fixed points can thus tell in advance whether the

application of the hLNA is appropriate.

9By contrast, a multimodal distribution that is generated by a slowly switching component (e.g. promoter
state) can be modeled as a superposition of unimodal distributions with the help of conditional probabilities
[Hasenauer et al., 2014; Thomas et al., 2014].
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4.9. Outlook: Transferability and possible extensions of the

approaches

Even though the model system used here comprised only one mRNA and protein species, the ap-

proach can be extended to multi-gene systems, see Chapter 6. Furthermore, systems with more

than two stable expression states can be analyzed as long as the hybrid deterministic model

reflects this multimodality. The range of reaction components and reactions is not restricted

either: For example, nonlinear degradation rates can be treated in an analogous fashion, addi-

tional intermediate reactions or reactants can be included, the promoter state can be integrated,

and transcriptional bursts can be analyzed in rather the same way as translational bursts.

A major restriction of the hLNA approach originates from the assumption that the reacting

species, whose large noise level makes the calculation of effective rates necessary, is Poisson-

distributed. This approximation might work well for the local mRNA level, but is not reasonable

for, e.g., the protein distribution, for which we have simply applied the small noise assumption.

This is not always justified, as Fig 4.5 (C) has shown. For simple reaction systems, the protein

distribution has been proven to be well approximated by a negative binomial (NB) distribu-

tion [Aquino et al., 2012; Ochab-Marcinek and Tabaka, 2010; Paulsson and Ehrenberg, 2000;

Shahrezaei and Swain, 2008]. It therefore seems natural to just replace the Poisson distribution

accordingly. However, unlike in the Poisson case, the variance of an NB distribution is decoupled

from the mean value – it can take any value larger than the average. The NB PMF with mean

value s∗ and Fano factor η∗ is given by

NBs∗, η∗(r) =
Γ(r + s∗

η∗−1)

Γ( s∗

η∗−1) Γ(r + 1)

(
1

η∗

) s∗
η∗−1

(
1− 1

η∗

)r
. (4.42)

Trying to estimate the variance using an NB-based hLNA just ends up in a dilemma, since the

hLNA requires the formulation of a hybrid deterministic model, which in turn requires a variance

estimate for the NB distribution. One possible way to overcome this predicament is to start

with some initial variance estimate and to then use an iterative cycle that subsequently adapts

the mean and the average value until the chosen values do not lead to obvious inconsistencies

anymore. A computational procedure that implements this cycle has been developed and tested

in a first attempt. The pseudoalgorithm and some preliminary results are given in Section B.5 of

the Appendix. In one test system, the obtained average and noise estimates could be improved

significantly compared to the values obtained with Poisson-based hLNA. The NB-based method

seems to be promising, but the conditions under which the algorithm converges still need to be

evaluated.
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autoregulatory system

In the following, we will discuss the biological implications of the results obtained in the preceding

chapter, continuing with the same model system. It has been introduced and formulated in

Section 4.1. First of all, the formula of the mRNA and protein Fano factors will be analyzed

with regard to their dependence on circuit parameters and functions. Then, we will see how the

burst characteristics can – under certain conditions – be extracted from time course data, which

helps to interpret them. The dependence of burst sizes and frequencies on circuit parameters will

be discussed as well. Finally, connections between Fano factors and protein burst characteristics

will be drawn. Based on these biological insights, circuits with different noise patterns will be

designed in silico. With the term “noise pattern”, the qualitative distribution of noise levels

among different expression states (e.g. large protein noise in the low expression state, small

noise in the high expression state) is described. Since the noise level is a qualitative measure

for the robustness of an expression state, we can make rough predictions on the phenotypic

heterogeneity of a population. Throughout this chapter, it is assumed that the multimodality

of the considered systems is associated with hybrid-deterministic multistability (cf. Chapter 4),

so that the hLNA method can be applied.

The single-gene autoregulatory feedback system (4.1) studied here is a common regulatory

motif, for which several biological examples exist. One of those, namely the regulatory system

in Streptococcus mutans (S. mutans) that triggers genetic competence, will be part of the sub-

sequent discussion. In Chapter 6, we will then apply the methods to a two-gene system, the

genetic toggle-switch.

The results presented in the following have mostly been published in [Hortsch and Kremling,

2018b].

5.1. Interpreting the influence of circuit properties on Fano factors

The Fano factors given in Eqs (4.18) - (4.20) depend on the four parameters f∗, g∗, r∗, and ν. f∗

and g∗ are measures for the local sensitivities of the transcriptional and translational propensity

functions with respect to fluctuations on the protein and mRNA level, respectively. Note that if

G = g ·m is linear, the equality r∗ = g∗ = g holds, so that the degree of freedom in the formulae

is reduced. In the following, we will examine the influence of each of the circuit parameters on

the local noise level.

Transcriptional sensitivity f∗:

First, we regard the effect of f∗, which specifies the mode and sensitivity of autoregulation.

f∗ = 0 means that local feedback is missing. We already know that without feedback, the

stationary mRNA level is Poisson distributed. In accordance to that, Eq (4.18) reduces to
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5. Design of noise patterns in a single-gene autoregulatory system
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Figure 5.1.: Dependence of Fano factors on circuit properties. In the first row, the dependence of η∗(M)
(dashed line) and η∗(S) (solid line) on the transcriptional sensitivity f∗ with fixed g∗, r∗, and ν is
shown for two different sets of parameters: (A) g∗ = 1, r∗ = 100, ν = 1 and (B) g∗ = 100, r∗ = 100,
ν = 0.5. The lower plots show variations in the remaining parameters (colored lines) in order to
illustrate their effect. Compared to the first row, the following changes are made: In the second row,
the translational sensitivity g∗ is halved. In the third row, the stationary protein-to-mRNA ratio
r∗ is doubled. In the fourth row, both g∗ and r∗ are replaced by one-half (panel (A)) or one-tenth
(panel (B)) of their original values. In the last row, the time-scale parameter ν is halved.
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5.1. Interpreting the influence of circuit properties on Fano factors

η∗(M) = 1. At the same time, the protein distribution is super-Poissonian (η∗(S) > 1) due

to noise propagated from the mRNA to the protein level via translation. Positive feedback

(f∗ > 0) increases both the mRNA and protein Fano factor due to cyclic forward propagation

of noise, until finally, both Fano factors tend to infinity in the limit1 f∗ → (g∗)−1. In the case of

negative feedback (f∗ < 0), up- or downward fluctuations on the protein level cause an inverse

effect on the mRNA copy number, whose fluctuations are then immediately passed back onto

the protein level. Altogether, this results in the attenuation of protein noise. It can even reach

sub-Poissonian levels (η∗(S) < 1) for strong negative feedback with ν
1+ν as a lower bound. The

effect of autorepression on mRNA noise is slightly more complex: Reducing f∗ (< 0) first causes

a decrease in mRNA noise as well, but once f∗ has crossed a certain negative threshold2, the

mRNA Fano factor starts to rise again. Apparently, strong protein noise attenuation can be

achieved at the expense of enlarged mRNA fluctuations3. From the mRNA perspective, this can

be regarded as over-compensation.

In the first row of Fig 5.1, the graphs of η∗(M) and η∗(S) are plotted over f∗, while all

other circuit parameters are held constant. In panels (A) and (B), the graphs belonging to two

different parameter sets are illustrated. Based on this representation, one can determine the

regions where fluctuations are super- or sub-Poissonian. Depending on the circuit parameters,

either one or two reference points are available, which can help to draw the graphs and to thereby

roughly predict the influence of the other parameters: First of all, η∗(M) = η∗(S) = 1 is fulfilled

for R∗ := r∗ f
∗

g∗ = −ν. Moreover, η∗(M) = η∗(S) > 1 holds in case R∗ = 1, but this condition

is only relevant if the stability criterion is fulfilled, i.e. if f∗ < (g∗)−1 holds at the same time.

In the first row of Fig 5.1 (A), f∗ = g∗

r∗ = 1
100 < 1 = (g∗)−1, so that the second reference point

is available, but this is not the case in Fig 5.1 (B), where f∗ = g∗

r∗ = 1 > 0.01 = (g∗)−1. As a

result, the protein Fano factor in the latter system is always larger than the mRNA Fano factor

under positive or sufficiently weak negative feedback.

Translational sensitivity g∗ (in case g∗ 6= r∗):

Now, the influence of the remaining parameters on noise is studied. Let us first assume that

the two parameters g∗ and r∗ are uncoupled, so that they can be considered separately. This is

only possible if G is nonlinear.

The effect of g∗ under positive feedback is intuitive: An increase in g∗ augments noise propa-

gation through the circuit and therefore leads to larger mRNA and protein Fano factors.

If feedback regulation is negative, mRNA fluctuations are first transferred to the protein

level, from where they repress themselves. This way, η∗(M) is reduced, and the effect becomes

stronger the larger g∗ is. However, concerning η∗(S), overregulation through negative feedback

is possible: If the sensitivity of autorepression is very strong ( f∗ < − 2νg∗

r∗−ν(g∗)2 ) and if ν (g∗)2

r∗ < 1

holds simultaneously, an increase in g∗ leads to an increase in η∗(S).

The effect of a discrete reduction of g∗ on the Fano factors under different feedback sensitivities

is indicated by the colored graphs in the second row of Fig 5.1.

1Stability analysis in Section 4.2.3 has shown that the condition f∗ < (g∗)−1 holds in any case.

2namely − 1
g∗ ·

(√
1 + (g∗)2 ν

r∗ − 1

)
3Interestingly, the transition of protein noise from super- to sub-Poissonian levels occurs at the same negative

feedback strength f∗ = − ν g
∗

r∗ as the transition of mRNA noise from the sub- to the super-Poissonian region.
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5. Design of noise patterns in a single-gene autoregulatory system

Stationary protein-to-mRNA ratio r∗ (in case g∗ 6= r∗):

An increase in r∗ reduces η∗(S), but augments η∗(M) (cf. the third row in Fig 5.1) – a relation

with quite surprising simplicity.

Here, it was assumed that the parameters g∗ and r∗ are completely independent of each other.

However, a selective modulation of only one of these parameters is biologically challenging, as

they are in fact somehow coupled via the mechanisms underlying the translational propensity

function. This motivates us to consider the case when g∗ and r∗ are fully dependent of each

other:

Translational sensitivity and protein-to-mRNA ratio in case g∗ = r∗:

We first study the situation where g∗ = r∗, which is necessarily the case when G is linear. An

increase in this parameter leads to larger η∗(S) if f∗ > −ν, i.e. in case of positive feedback or

in case the negative feedback from the protein to the mRNA level is too weak to compensate

for the increased noise propagation from the mRNA to the protein level. For f∗ < −ν, protein

noise is reduced through an increase in g∗ = r∗.

Furthermore, an increase in g∗ = r∗ causes a rise in η∗(M) if f∗ > 0 or if f∗ < −ν and

to a decrease otherwise. This again tells us that under strong negative feedback, protein noise

reduction is associated with mRNA noise amplification.

In Fig 5.1 (B), g∗ = r∗ = 100 holds (except for the second and third row, where one of the

parameters has been varied). Such a parameter set might belong to a system with a linear

translational propensity function. The effect of a change in g∗ = r∗, which has just been

described, is illustrated in the fourth row. In contrast, 1 = g∗ 6= r∗ = 100 holds in Fig 5.1 (A),

indicating that Ḡ is in this case nonlinear. However, modulating translation may affect both

parameters in a similar manner, which is why in the fourth row of panel (A), the effect of a

proportional change in the two parameters is shown.

Time-scale parameter ν:

The impact of ν can be read quite directly from the formula, as the terms in brackets have the

form of a convex combination of two values, namely 1 and R∗ = r∗ f
∗

g∗ in the case of η∗(M),

and 1 and (R∗)−1 in the case of η∗(S). The point between these two edges is determined via ν.

When mRNA dynamics are accelerated (ν ↓), protein noise is attenuated if R∗ < 1 and mRNA

noise is reduced if 0 < R∗ < 1. Otherwise, the fluctuations are amplified (cf. the fifth row of

Fig 5.1). Note that in Fig 5.1 (B), where g∗ = r∗ = 100, R∗ < 1 holds for all f∗.

The combined parameter R∗ contains information on the relative capabilities of reactions

(transcription vs. translation) to propagate noise. It is decisive for the effect of the time-scale

parameter ν, which determines the capability of reactions to average out upstream fluctuations

(noise filtering through slow reactions, cf. Section 2.2.3). Note that in a bimodal system, the

value of R∗ may severely differ between the two stable expression states, so that the qualitative

effect of a change in ν on the noise level of those states might even be opposite.
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5.2. Interpretation of burst measures

5.2. Interpretation of burst measures

5.2.1. Extraction of burst parameters from time course data

Before discussing the effect of circuit properties on burst characteristics in the same way as it

was done for the Fano factors, we will first regard the biological meaning of α∗ and ω∗ per se.

In Section 2.2.2, it has been mentioned that it is indeed possible to measure translational bursts

experimentally. However, Paulsson has argued that even if a mathematical analysis predicts

large burst sizes, bursts in the form of distinct peaks in the protein time course are not always

observable [Paulsson, 2005]. It therefore makes sense at this point to see whether and how burst

measures can be inferred from time course data in order to be able to interpret them. We will

start with the simple case of a gene expression system without feedback, where all propensities

are linear, and then successively increase the mathematical complexity of the system.

Regulatory systems without feedback and with linear propensities

In [Thattai and van Oudenaarden, 2001], a schematic, idealized protein time course is shown,

where instantaneous increases in the protein copy number are followed by periods of exponential

protein degradation. The amplitude of the peaks is equal to the burst size α∗, while the time

interval between two consecutive bursts is given by the inverse of the transcriptional propensity,(
1
ν ·F (s∗)

)−1
= 1

ω∗ (see also Fig 2.1 (C)). Due to our choice of the reference time-scale (it is

defined by protein degradation), it is equal to the inverse of the burst frequency.

This intuitive interpretation of the burst measures and their seemingly easy extraction from

protein time courses turns out to be difficult when non-idealized data (be them experimental

or simulated) are regarded: First of all, the burst amplitude is randomly distributed. Second,

the peak height might not correspond to the actual number of produced proteins (which would

be the burst size), since some of the molecules might already have been degraded during the

burst. Third, bursts might overlap, so that the contributions of single bursts cannot be clearly

distinguished.

Concerning the first two problems, a mathematical analysis can be performed in order to

relate peak heights to burst sizes. We start with systems in which the translational propensity

is linear, G(m) = g ·m, and consider a burst which does not overlap with other bursts. Hence, if

[τ0, τm] is the lifespan of the mRNA that causes the burst, m(τ) = 1 for τ0 ≤ τ ≤ τm. Without

loss of generality, let τ0 = 0 and let s(0) =: s0, s0 ∈ N0. For τ ∈ [0, τm], the CME of the protein

dynamics read

ṗs(τ) = g · (ps−1 − ps) + (s+ 1) ps+1 − s ps,

ps(0) = δs({s0}). (5.1)

The ODE of the expected value E[S(τ)] is given by

Ė[S(τ) ] = g − E[S(τ) ],

E[S(0) ] = s0. (5.2)

73



5. Design of noise patterns in a single-gene autoregulatory system

Its solution evaluated at τ = τm reads:

E[S(τm) ] = g − (g − s0) · e−τm . (5.3)

The lifespan τm of the mRNA molecule is exponentially distributed with expected value ν. At

the end of the burst, which corresponds to the moment of mRNA degradation, the protein copy

number is thus on average given by:

ρ∗m(s0) := E [E[S(τm) | τm ]] =

∫ ∞
0
E[S(τm) ] · 1

ν
· e−

τm
ν dτm

=
g · ν + s0

1 + ν
=

α∗ + s0

1 + ν
. (5.4)

Note that g · ν = r∗ · ν = α∗ in systems with linear translation. Averaging out the stochasticity

of S(0) yields

ρ∗m := E[E[ ρ∗m(S(0)) |S(0) ]] =
α∗ + ρ∗0

1 + ν
(5.5)

with ρ∗0 := E[S(0)]. The expression α∗

1+ν is the average number of burst proteins that are available

at the end of the burst. We will call this term the effective burst size β∗:

β∗ :=
α∗

1 + ν
. (5.6)

ρ∗0
1+ν is the part of initial proteins that is still left after the burst.

α∗ can now be calculated as:

α∗ = ρ∗m · (1 + ν) − ρ∗0 = γ∗ + ρ∗m ν. (5.7)

with γ∗ := ρ∗m − ρ∗0 being the average observable peak height.

Fig 5.2 visualizes the connections between α∗, β∗, and γ∗. If ν is very small, protein degrada-

tion becomes negligible and the burst size α∗ is almost equal to the effective burst size β∗ and

to the peak height γ∗. Furthermore, when the protein level has dropped to zero before the next

burst is initiated, ρ∗m = β∗ = γ∗ = α∗

1+ν . This situation occurs frequently4 if ω∗ � 1
ln(α∗) . If

additionally, ν is known, the burst size could be read directly from the protein time course under

these circumstances. Otherwise, the burst characteristics are obtained following this procedure:

4The given upper boundary of ω∗ is derived from an idealized time course in the following way: When –
starting from zero protein molecules – a burst with size α∗ occurs at time τ = 0, the subsequent protein decay
follows on average the function α∗ · exp(−τ). After the time 1

ω∗ , just before the next burst occurs, it has dropped
to the level α∗ · exp(− 1

ω∗ ), which is smaller than 1 if ω∗ < 1
ln(α∗) .
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Figure 5.2.: Connections between the average burst size and the shape of protein peaks. The blue
solid line visualizes the expected protein time course during a burst with parameters g = G(1) = 20,
ρ∗0 = 2, τm = ν = 0.5. It is described by the function g − (g − ρ∗0) · e−τ , 0 ≤ τ ≤ τm. The parameter
ν was chosen quite large in order to visualize the effect of protein degradation. Without degradation,
the average protein time course would follow the light blue dotted line, given by the function ρ∗0 +g · τ .
The purple line shows the mean degradation of the initially available protein molecules, described by
ρ∗0 · e−τ .

Procedure for extracting burst measures from protein time courses

• Determination of the burst frequency ω∗:

Count the number of mRNA formation events and divide it by the length of the regarded

interval. The result is an estimate of ω∗.

• Determination of the burst size α∗:

Exclude all bursts that overlap with others (i.e. all bursts where more than one mRNA

molecule is transiently present) by scanning the mRNA trajectory. Based on all the other,

non-overlapping bursts, determine the average of the protein copy number at the beginning

and at the end of the burst. These are estimates of ρ∗0 and of ρ∗m, respectively. Use Eq

(5.7) to calculate an estimate of α∗.

• Determination of ν:

The average mRNA lifespan in the scaled system is equal to 1
ν and can be inferred from

the mRNA time course. However, note that for time scaling, the unscaled average lifespan

of protein ds needs to be known as well. It can be inferred from the dynamics of protein

degradation between bursts, which on average follows the function s(t) = s(0) · e−t · ds .

• Control:

Extract the average protein level s∗ from the time course and compare it with the product

α∗ ·ω∗.

In principle, the procedure should work whenever G is linear (otherwise, the relation g · ν = α∗

does not hold – the nonlinear case will be examined separately) and if there are enough bursts

that do not overlap with others. Table 5.1 lists estimates of burst measures obtained with the
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5. Design of noise patterns in a single-gene autoregulatory system

above procedure for a number of qualitatively different systems:

In the first set of systems, m∗ = 0.1 and s∗ = 10 holds. The functions F and G are given by:

(A.1) No feedback: F (s) = 0.1, G(m) = 100 ·m

(B) Positive linear feedback: F (s) = 0.02 + 0.008 · s, G(m) = 100 ·m

(C.1) No feedback, convex G: F (s) = 0.1, G(m) = 90.9 ·m2

(D) No feedback, concave G: F (s) = 0.1, G(m) = 398 · m
m+2.9

(E) Negative feedback, convex F : F (s) = 2
s+10 , G(m) = 100 ·m

(F) Positive feedback, concave F : F (s) = 0.05 + 3 · s
s+590 , G(m) = 100 ·m

Two systems with m∗ = 0.01 and s∗ = 10 are additionally regarded:

(A.2) No feedback: F (s) = 0.01, G(m) = 1000 ·m

(C.2) No feedback, convex G: F (s) = 0.01, G(m) = 9.9 · m2

0.01

In each case, two different values of ν were tested: 1 and 0.01. For every circuit, 103 stochastic

mRNA and protein time courses were generated, starting from m = 0 and s = 10 until the final

reaction time τf = 2 · 103 · ν was reached. From each trajectory, estimates of α∗ and ω∗ were

extracted. The values given in the table list the empirical means and SEMs of the estimates.

Table 5.1.: Estimates of α∗ and ω∗ extracted from simulated mRNA and protein time course data.

ν = 1 ν = 0.01

type α∗ [ · 102] ω∗ [ · 10−1] α∗ [−] ω∗ [ · 101]

analytical 1.00 1.00 1.00 1.00

(A.1) no feedback (fb) 0.95± 0.04 1.00± 0.07 0.92± 0.10 1.00± 0.07

(B) pos. linear fb 0.84± 0.07 0.99± 0.43 0.88± 0.10 0.99± 0.40

(C.1) no fb, convex G 0.87± 0.04 1.00± 0.07 0.83± 0.10 1.00± 0.07

(D) no fb, concave G 0.97± 0.04 1.00± 0.07 0.94± 0.10 1.00± 0.07

(E) neg. fb, convex F 0.99± 0.04 1.40± 0.06 0.93± 0.10 1.02± 0.07

(F) pos. fb, concave F 0.87± 0.05 0.90± 0.13 0.90± 0.10 1.01± 0.18

analytical 10.00 0.10 10.0 0.10

(A.2) no feedback 9.93± 1.32 0.10± 0.02 9.86± 2.38 0.10± 0.02

(C.2) no fb, convex G 9.85± 1.37 0.10± 0.02 9.92± 2.42 0.11± 0.02

(A.1) and (A.2) are systems without feedback and with linear propensity functions. The

estimates of ω∗ are accurate, while α∗ is slightly underestimated, which can be explained as

follows: mRNA molecules with a lifespan longer than average tend to produce an above-average

amount of protein. At the same time, they are the molecules which are more likely to be involved

in overlapping bursts. The elimination of those overlaps thus leads to a certain bias and to the

observed underestimation. The probability of overlaps depends of the burst frequency, which is

smaller in system (A.2), therefore resulting in a more reliable estimation of α∗.
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5.2. Interpretation of burst measures

Regulatory systems with feedback and with linear propensities

Before regarding the estimates for systems with feedback in Table 5.1, let us first have a look at

the simulated mRNA and protein trajectories in Fig 5.3. The time course in panel (A) belongs

to a system without feedback, the one in panel (B) to a system with positive feedback, where

F (s) = a + f · s, f > 0 is a linear function (and obviously, f∗ = f). At first glance, the

bursts in the protein time course of panel (B) seem to be have larger amplitudes and reduced

frequency than those in panel (A), although the calculated local characteristics α∗ and ω∗ of the

two systems are identical. Since all propensities are linear, they also correspond exactly to the

average ones: E[α(M)] = E
[
ν · g · (M+1)

M+1

]
= α∗ and E[ω(S)] = E

[
a+f ·S

ν

]
= a+f · s∗

ν = ω∗.
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Figure 5.3.: Bursts of systems with linear propensities without or with feedback. (A) In the system
without feedback, bursts are homogeneously distributed over time, as can be seen from the mRNA
time course (top) and the protein time course (bottom). (B) In the system with positive, linear
feedback, mRNA transcription events occur in temporal clusters, which promotes super-bursts. The
simulated circuits correspond to systems (A.1) and (B) in Table 5.1. In both systems, m∗ = 0.1,
s∗ = 10, α∗ = 100, ω∗ = 0.1, and ν = 1. Figure taken from [Hortsch and Kremling, 2018b].

The reason for this seeming discrepancy can be found by looking at the state-dependent burst

frequency ω(s̄): While it is constant in the system without feedback, it depends on the protein

level when positive feedback regulation is present: ω(s̄) = F (s∗)
ν + F ′(s∗)

ν (s̄−s∗) = ω∗+ f∗

ν (s̄−s∗).
This causes an inhomogeneous distribution of bursts over time, as they tend to accumulate and

overlap when s̄ > s∗, while their frequency is below average when s̄ < s∗ (the opposite is true

for negative feedback). The mRNA time course in panel (B) shows that the transcription events

are indeed temporally clustered. We can thus conclude that the seemingly large protein peaks

do not result from an increase in the burst size, but from overlapping bursts.

The proposed procedure for the extraction of estimates ignores these overlaps, so that the

number of evaluable bursts is reduced and the estimate of α∗ tends to be underestimated even

more. The estimate of ω∗ is still expected to be correct, but with a larger SEM due to the

irregular distribution of transcription events. The values in Table 5.1 referring to system (B)

confirm all these expectations.
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5. Design of noise patterns in a single-gene autoregulatory system

Regulatory systems with nonlinear propensities

In the derivation of Eq (5.7), the fact that the burst size is given by the product g · ν for systems

with linear translational propensity has been used. In order to handle nonlinear translation,

the calculations need to be adapted. We can still only evaluate non-overlapping bursts, during

which the translational propensity is equal to G(1). The general formulation of the CME which

describes protein formation and degradation during a non-overlapping burst is given by:

ṗs(τ) = G(1) · (ps−1 − ps) + (s+ 1) ps+1 − s ps. (5.8)

Repeating the calculations as in the case of linear translation, one finally obtains – instead of

Eq (5.5) – the relation:

ρ∗m =
G(1) · ν + ρ∗0

1 + ν
(5.9)

and Eq (5.7) becomes

α∗ · G(1)

r∗
= G(1) · ν = ρ∗m · (1 + ν) − ρ∗0. (5.10)

Here, the problem occurs that G(1) might be unknown. For m∗ � 1, however, one can start

from the premise that the deviation of Eq (5.10) from Eq (5.7) is moderate since

r∗ =
Ḡ(m∗)

m∗
=

∑∞
n=0G(n) (m∗)n

n! e−m
∗

m∗
=
∞∑
n=0

G(n+ 1)

n+ 1

(m∗)n

n!
e−m

∗

≈
∞∑
n=0

G(n+ 1)

n+ 1

(0)n

n!
e− 0 = G(1) (5.11)

holds5. For average mRNA levels far below 1, the proposed procedure for extracting burst

measures is thus still applicable. This is confirmed by the evaluation of system (C.2) with its

concave translational propensity function, cf. Table 5.1. In system (C.1), the average mRNA

level is comparably higher and the estimated burst sizes are therefore indeed of reduced quality.

The same is basically expected for system (D), where the translational propensity function is

convex instead of concave; however, the estimates appear accurate. This might be the result of

an overestimation of the burst size, caused by the convex structure of Ḡ, which compensates for

the underestimation made through the elimination of overlapping bursts.

Note that the inference of ω∗ is not impaired by nonlinearity of G.

Now we consider the case in which G is linear, but F is not. The estimation of α∗ then works

properly, while the inference of ω∗ is hampered by the fact that the actual average burst size

indeed deviates from that value: E[F (S)] 6= F (E[S]) 6= F (s∗) = ω∗ · ν. The tendency of the

deviations can be predicted for concave or for convex F using Jensen’s inequality (cf. Table 5.1,

systems (E) and (F)). As the listed values show, the deviation becomes larger if ν is increased,

since this leads to amplified protein fluctuations and therefore to a higher impact of nonlinearity.

All in all, we can conclude that peaks in the protein time course are an indication of the

presence of translational bursts. Their average height is actually related to the burst size, but

one must keep in mind that a part of the burst proteins might have been degraded immediately.

5By the way, this would not be the case if r∗ was calculated based on the classical deterministic model.
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Degradation can happen so fast (compared to mRNA half-life) that the protein peaks almost

vanish. Furthermore, when the burst frequency is regular but high, single peaks might become

indistinct, leading to an optical smoothing of the protein time course. Therefore, protein pro-

duction that mechanistically occurs in bursts may in the end not appear burst-like, which has

already been remarked in [Paulsson, 2005]. In contrast to that, we have shown that positive

feedback might cause misleadingly large and rare superbursts. It is therefore not straightforward

to “read” burst characteristics from any protein time course data directly. However, this section

has hopefully further enhanced their interpretability.

5.2.2. Dependence of burst measures on circuit properties

Eqs (4.25) formalize the connections between circuit and burst properties. The average burst

size α∗ can be modified by changing the average protein-to-mRNA-ratio r∗ or the time-scale

parameter ν. The average protein level s∗ can be maintained by an inverse modulation of the

average burst frequency ω∗. Let us now look at the possible modifications in detail:

First, let us generate larger burst sizes α∗ by increasing r∗, while keeping ν and s∗ constant.

This means that the scaled translational propensity function G is increased, while the transcrip-

tional propensity is decreased through a reduction of F , which also reduces the burst frequency

ω∗. As a consequence, the average mRNA level m∗ is lowered. More burst proteins are thus on

average read from a single mRNA molecule through increased translational activity.

Next, α∗ is increased through an increase in ν, while r∗ and s∗ stay fixed. The dynamics

of mRNA are thus slowed down compared to those of the proteins. This not only means that

burst events occur less frequently, but also that mRNA half-life is prolonged, so that again,

more proteins are on average translated from one mRNA molecule. However, this also implies

that a larger amount of burst proteins are degraded during the burst. Although the two kinds

of modifications – increase in r∗ or in ν – may have the same effect on α∗, the effect on the peak

height γ∗ is thus less pronounced if ν is enhanced.

5.3. Influence of bursts on noise

Until now, it has remained rather unclear what the real effect of burst-like protein production

on intrinsic circuit noise might be. In the previous section, it has been shown that fast protein

degradation may lower the effect of translational bursts, while positive feedback may enhance

it through the generation of superbursts. This section therefore deals with the establishment of

a mathematical connection between burst characteristics and the variance and shape of fluctu-

ations.

5.3.1. Links between Fano factors and burst characteristics

First, we return to the very simple relation between bursts and noise strengths, which has

been set up in [Thattai and van Oudenaarden, 2001] and which has already been given in the

Theoretical Background, Eq (2.34):

η∗(S) = 1 +
α∗

1 + ν
= 1 + β∗. (5.12)
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5. Design of noise patterns in a single-gene autoregulatory system

This equation holds only if transcription is (at least locally) unregulated, i.e. if f∗ = 0, and

if the translational propensity is linear. If ν is small enough to be negligible, a direct relation

between α∗ and the protein Fano factor exists. If f∗ is unequal to zero due to transcriptional

feedback, the equation

η∗(S) = 1 +
α∗ + f∗ · r∗

(1 − f∗ · r∗) · (1 + ν)
. (5.13)

holds instead. This equation shows that η∗(S) can be quite flexibly adjusted via feedback without

changing α∗ or ω∗. At first glance, the burst characteristics thus seem to be of minor importance

for the magnitude of the Fano factor and vice versa. However, in the previous Section 5.2.1, we

have seen that feedback regulation influences the temporal homogeneity of burst events, leading

to super-bursts in the case of positive autoregulation. The change in the Fano factor might thus

be explainable with the help of some “extended” bursting properties. In order to prove this, we

take into account the state-dependence of α(m̄) = Ḡ(m̄)
m̄ ν and ω(s̄) = F (s̄)

ν : The local derivatives

of these functions are:

α′
∗

: =
dα(m̄)

d m̄
|m̄=m∗ =

g∗m∗ − Ḡ(m∗)

(m∗)2
ν =

g∗

ω∗
− α∗

ω∗ ν

ω′
∗

: =
dω(s̄)

d s̄
|s̄=s∗ =

f∗

ν
. (5.14)

They can be solved for f∗ and g∗, resulting in:

f∗ = ω′
∗ · ν and g∗ = α∗/ν + α′

∗ ·ω∗. (5.15)

The first relation in Eqs (5.15) shows how the presence of feedback generates a state-dependent

(and thus inhomogeneous) burst frequency (ω′∗ 6= 0), which has already been observed in the

previous chapter and which is now captured quantitatively. We can combine this information

with the previous analysis of the impact of f∗ on the Fano factor (Section 5.1) to tell that

the generation of super-bursts through positive feedback enhances η∗(S). On the other hand,

negative feedback regulation quickly compensates for protein levels that are above or below

average through a reduced or increased number of burst events, thereby reducing the protein

Fano factor6.

The second equation in (5.15) shows that the translational sensitivity g∗ is related to the

average burst size and to its behavior in a domain around the steady state, specified by α∗

and α′∗. As already shown in Section 4.5, the burst size is state-dependent (α′∗ 6= 0) if G is

nonlinear: If, for example, G is a concave function, α′∗ < 0 holds, i.e. a rise in the mRNA level

is accompanied by a decrease in protein burst sizes. Compared with an equivalent system with

the same average burst size α∗, but with linear or convex G, the capability to propagate mRNA

fluctuations to the protein level – expressed by the translational sensitivity g∗ – is therefore

reduced. We know from Section 5.1 that, in case of positive feedback, this also reduces the

protein and mRNA Fano factors.

Now that f∗ and g∗ have been expressed in terms of extended burst properties, they can be

replaced in Eq (4.19):

η∗(S) = 1 +
(α′∗ ·ω∗ · ν + α∗) · (α′∗ ·ω∗ · ν + α∗ · (1 + ω′∗))

α∗ · (1 + ν) · (1 − ω′∗ · (α′∗ ·ω∗ · ν + α∗))
. (5.16)

6This may happen at the expense of an enlarged mRNA Fano factor, as we have seen in Section 5.1.
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This formula captures the relation between η∗(S) and protein fluctuation patterns and shows

how the inhomogeneities in the burst properties affect the Fano factor. Compared to that,

Eq (4.19) is better suited for studying the dependence of the Fano factor on the basic circuit

properties.

Note that like in Eq (5.12), ν (or r∗, after a reformulation that uses the relation α∗ = r∗ν)

cannot be eliminated from the above expression, so that the Fano factor cannot be exclusively

expressed in terms of extended burst characteristics. On the other hand, it is impossible to

deduce the burst characteristics from the sole knowledge of η∗(S). This shows that both the

burst size and the Fano factor contain some unique information on the characteristics of protein

noise. It therefore makes sense to look at both kinds of noise measures and to combine the

obtained information to get a better understanding of intrinsic stochasticity.

5.3.2. Links between the skewness of the protein distribution and bursts

The relation between bursts and the location of modes has already been discussed in the last

two chapters for the case ν � 1. It has turned out that the burst size determines whether

the protein level fluctuates quite symmetrically around the mean value (small α∗, large ω∗),

or whether the protein trajectory remains below-average for most of the time, showing only

rare peak-like excursions to high copy numbers (large α∗, small ω∗), which causes strong right-

skewness of the protein distribution.

5.4. The effect of genetic manipulations

In this section, it is demonstrated how the obtained, quite formal results about the connection

between circuit properties and noise can be interpreted from a more biological point of view.

More specifically, the effect of concrete genetic manipulations on bursts and Fano factors is as-

sessed at the example of artificial protein overexpression. In order to better relate the performed

manipulations to circuit properties and parameters, it is helpful to first consider the regulatory

system in terms of the unscaled reactions, cf. the reaction system (3.1).

The example shown here focuses on a system without feedback and with linear translation. In

this case, the transcription and translation propensities of the original, unmanipulated system

are given by F̂ ≡ â and by Ĝ(m) = ĝ ·m, respectively. The degradation reactions of mRNA

and protein are linear with constants dm and ds. Then, a = â
dm

, r∗ = ĝ
ds

, ν = ds
dm

, α∗ = ĝ
dm

, and

ω∗ = â
ds

.

Now we assume that the steady state protein level s∗ is artificially raised k-fold (k > 1)

through a manipulation on the genetic level. In terms of the original parameter space, the

following four basic modulations of the system are possible:

1. k-fold increase in the transcription constant â,

2. k-fold reduction of the mRNA degradation constant dm,

3. k-fold increase in the translation constant ĝ,

4. k-fold reduction of the protein degradation constant ds.

The first two kinds of modulations are made on the mRNA level, while the others affect reactions

on the protein level. From a biotechnological point of view, the first modification could be

achieved by increasing the strength of the promoter, while the third may be accomplished
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5. Design of noise patterns in a single-gene autoregulatory system

through a stronger ribosomal binding site or through altered codon usage. The degradation of

mRNA or protein molecules might be decelerated through the usage of special tags [Cameron

and Collins, 2014; Carrier and Keasling, 1997; Rauhut and Klug, 1999].

Table 5.2 summarizes the effects of the modulations, which are listed in the left column and

which are also expressed in terms of the scaled parameters (second column). The third column

indicates changes in α∗ and ω∗, respectively. In the fourth column, the resulting protein Fano

factors are given as functions of the characteristics α∗ref and νref of the original reaction system

without overexpression, which has the reference Fano factor 1 +
α∗ref

1 + νref
. In columns 1 to 3, only

magnitudes that have changed are listed. ↑ and ↓ indicate a k-fold and 1
k -fold change compared

with the reference system, respectively.

The third column shows that in all cases, either the burst size or the burst frequency is

increased k-fold: Modulations 1 and 4 lead to a change in ω∗, while modulations 2 and 3 affect

α∗. Interestingly, the resulting protein Fano factors are all different. In particular, an increase

of the transcription rate (modulation 1) does not alter the Fano factor at all.

When modulations on the mRNA level (1 and 2) and on the protein level (3 and 4) are

considered separately, one realizes that increases in the burst size lead to larger changes in the

Fano factor than increases in the burst frequency. This becomes particularly obvious for very

small values of ν. Moreover, changes of either α∗ or ω∗ on the protein level affect η∗(S) more

severely than the corresponding change on the mRNA level.

Table 5.2.: Effects of changes in reaction rate constants on burst characteristics and on the protein Fano factor.

Changed
parameter

Changed parame-
ters (scaled)

Changes in burst
characteristics

Fano factor η(S)

â ↑ a ↑ ω∗ ↑ 1 +
α∗ref

1 + νref

dm ↓ a ↑, ν ↑ α∗ ↑ 1 +
k ·α∗ref

1 + k · νref
ĝ ↑ r∗ ↑ α∗ ↑ 1 +

k ·α∗ref
1 + νref

ds ↓ r∗ ↑, ν ↓ ω∗ ↑ 1 +
k ·α∗ref
k+ νref

5.5. Overview of graphical methods used in circuit design

In Section 4.5.4 and in Section 4.6.3, the graphical determination of the burst size and of

the location of modes has been described. Using a protein-mRNA-phase plot, further circuit

properties can be visualized which have an influence on the Fano factors (cf. Eqs (4.18)-(4.20)).

The three graphical methods are summarized in Fig 5.4. They support the construction of

circuits with a certain qualitative noise pattern. The insights will be used in the following

application.

Let us first have a look at the protein-mRNA phase plot in panel (A). The red graph is

the mRNA nullcline, the green line marks the protein nullcline. The outer intersection points

(grey circles) correspond to the stable deterministic fixed points. This kind of plot is commonly

used in the course of deterministic model analysis (cf. Fig 2.2 (B)), but it also contains some

information on the noise in the system: The dashed lines indicate the derivatives f∗ and g∗.

Furthermore, the stationary protein-to-mRNA ratio r∗ can be read at each stable steady state.

Except for ν, all parameters that have an influence on the local mRNA and protein Fano factors

can thus be visualized, cf. Eqs (4.18)-(4.20). Moreover, the parameters of different stable states
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Figure 5.4.: Graphical methods for state-dependent burst characterization. (A) Deterministic phase plot
supporting the analysis and adjustment of Fano factors. (B) Propensity plot for the determination
of burst sizes. (C) Plot for the determination of modes. The functions and parameters used are:

F (s) = 0.2 + 5.12 s4

s4+914
, G(m) = 290 m

m+2
. In panel (A), ν = 0.01. In panel (B), ν is increased

from ν = 0.010 to ν = 0.015. In (C), ν = 0.2 was chosen. The figure is adapted from [Hortsch and
Kremling, 2018b].

can be compared directly. One can thus make qualitative statements about how to modulate

the shapes of F and G in order to change the noise pattern. Obviously, nonlinearity of G

drastically increases the flexibility to adjust the noise pattern, since g∗ and r∗ can be chosen

rather independently of each other and differently in the two expression states. However of

course, mechanistic restrictions still need to be taken into account, which might limit the possible

range of those parameters. This plot also shows that strong cooperativity in feedback regulation

allows locally small values of f∗ in both expression states, which makes them robust. The effect

of locally flat transcriptional propensities has already been discussed in Section 3.4.2 without

using the hLNA, based on an explicit solution of the protein PMF.
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5. Design of noise patterns in a single-gene autoregulatory system

The propensity plot in panel (B) illustrates the influence of ν. It is basically very similar

to the phase plot, but the scaling is different, see Eqs (4.26). As already described in Section

4.5.4, α∗ is equal to the w∗s -to-w∗m-ratio at the outer intersection points, which still correspond

to the stable stationary states. A variation of ν vertically stretches or compresses the plotted

functions. This has a linear effect on wm, while the protein dynamics are unchanged. This plot

immediately shows that nonlinearity of G is also important in order to generate different average

bursts sizes in the two expression states.

The third plot can be used if ν � 1. It compares the locations of the stable steady states

(grey circles) with the locations of the modes (blue diamonds). The larger the local burst size

α(F (s∗)) is, the larger are the deviations between modes and stable fixed points.

5.6. Application: Generating different noise patterns in a bistable

feedback system

The previous results are now used for the in silico design of different noise patterns in single-gene

autoregulatory circuits, which can be described by the reaction system (4.1). The noise level

of a stationary state has an influence on its robustness, i.e. on the duration how long this state

is on average maintained. There are, however, further important determinants of robustness

that are not regarded (for example the basins of attraction of the stable expression states). For

a full quantitative prediction of dynamic population heterogeneity (e.g. in terms of mean first

passage times [Ghusinga et al., 2017]), the analysis of noise patterns is therefore insufficient.

The assessment of whether the desired population behavior is achieved at least qualitatively will

be done using stochastic simulations. As an example, we define our goal to be the construction

of a bimodal system whose low-expression (inactive) state has large noise, while noise in the

high-expression (active) state is small. With this noise pattern, we try to generate a population

in which cells can randomly jump from the inactive to the active state, but not back. Such

unidirectional switches are encountered in several cellular decision-making processes, where the

generation of two or more phenotypic subpopulations is advantageous in order to reduce overall

risks or costs. One example is the development of competence in S. mutans [Reck et al., 2015].

5.6.1. System with linear translation rate

First, a system with linear translational propensity G(m) = g ·m is regarded. Bistability is

generated through a sigmoid transcriptional propensity F (s) = a+ v sh

Kh
s +sh

, where a and a+ v

correspond to basal and maximum transcription, respectively, Ks is the microscopic dissociation

constant and h is the Hill coefficient.

Due to the restriction g = g∗ = r∗, the local Fano factors can only be adapted using three

parameters, ν, g, and f∗. In the two expression states, the parameters ν and g are identical

and therefore not suitable to generate different noise levels. The burst size α∗ = g · ν is state-

independent as well. A decoupling of the two stationary noise levels can only be achieved through

a difference in f∗. For the generation of a noise-driven, unidirectional switch to the active state,

the transcriptional propensity should be sensitive to protein fluctuations in the inactive state,

so that super-bursts are promoted, but it should be rather saturated in the active state.
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5.6.2. Systems with nonlinear translation rate

Now, G is allowed to be a nonlinear function. The basic shape of F remains unchanged. As

already mentioned, nonlinearity of G does not only decouple the parameters g∗ and r∗ from each

other, it also allows them to vary between different stationary states. The only parameter that

is still constant throughout the system is the time-scale parameter ν. In Fig 5.4, the graphical

evaluation of noise characteristics has been performed using a strictly concave function G, which

can be shown to result in strict concavity of Ḡ (see Section C.1 in the Appendix). In this case,

g∗ and r∗ obviously decrease with increasing m∗. It can be concluded immediately that the

burst size in the low-expression state is larger than in the high-expression state. The decrease

in g∗ also favors the reduction of the protein Fano factor in the active state, but this tendency

is counteracted by the decrease in r∗. Eq (4.19) shows that if the ratio g∗

r∗ decreases with m∗,

which is for example the case if G(m) = u m
Km+m has the form of a typical Michaelis-Menten

function (cf. Section C.1), η∗(S) will be smaller in the active than in the inactive state.

With this choice of G, we thus expect that in the inactive state, rare but large bursts occur

that may randomly activate the expression circuit. In the active state, the fluctuations are

supposed to be moderate and more symmetrical. The following simulation study will show

whether this assumption is correct.

5.6.3. Stochastic simulations of a bistable system

In Fig 5.5, simulated protein trajectories of three different bistable systems with cooperative

autostimulation are shown. All of them start in the inactive expression state. The distribution

of the population, consisting of 500 cells, is indicated by the color plot. Additionally, one

exemplary trajectory is highlighted in white in order to show the structure of fluctuations.

In panel (A), the translational propensity function G is linear. The burst size α∗ is therefore

constant throughout the system. Protein dynamics are rather slow, resulting in a small average

burst size. The sensitivity of feedback in the inactive state is small as well. As a consequence,

none of the simulated expression systems is activated. In panel (B), ν is increased compared

with (A). As a consequence, the burst sizes α∗ and the Fano factors η∗(S) are enhanced at both

fixed points. The resulting fluctuations in the inactive state are now large enough to randomly

activate some of the simulated circuits. However, the active state is too noisy to be robustly

maintained. The circuits thus switch between the two states in an irregular and uncontrolled

manner. The biological functionality of such a system is questionable. In panel (C), a concave,

saturated translational propensity function has been chosen. Both the burst size and the protein

Fano factor are significantly larger in the inactive than in the active state. They lead to random

activation of the circuit in a subpopulation of cells, which then remains in the high-expression

state. This results in a clear bimodal distribution of the population.

In all three systems, the transcriptional sensitivity f∗ at the stable fixed points is small due to

the sigmoid shape of F . We thus expect the results of hLNA and burst characterization to have

high accuracy. All in all, the desired noise-driven, unidirectional switching was achieved through

a targeted modulation of noise patterns within a bistable circuit, which has been confirmed

through stochastic simulations. A more quantitative view on the robustness of the expression

states in the considered systems is given in the Appendix, Section C.2, where the mean first

passage times extracted from the simulations are listed.
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Figure 5.5.: Stochastic simulations of bistable autostimulatory reaction systems. The upper row shows
propensity plots of three different regulatory systems, whose active expression states have similar
protein levels. The bottom row visualizes the protein dynamics of the simulated population, consist-
ing of 500 circuits, by color plots. All simulations were initialized in the inactive expression state.
Additionally, one representative time course is highlighted in white. (A) System with linear trans-
lational propensity function. The noise in the inactive expression state is too small to randomly
activate the system. F (s) = 0.49 + 5 s4

s4+1104
, G(m) = 40m, ν = 0.05. (B) Bursts are generated

through decelerated mRNA dynamics (increase in ν), leading to random switches between expression
states. Parameters as in (A), except for ν = 0.4. (C) System with saturated translational propensity.
Bursts occur in the inactive state, but are diminished in the active state, leading to a bimodal, robust
activation of the system. The parameters are equal to those in Fig 5.4 (C): F (s) = 0.2 + 5.12 s4

s4+914
,

G(m) = 290 m
m+2

, ν = 0.2. The figure is modified from [Hortsch and Kremling, 2018b].

5.7. Short discussion and summary

In this chapter, we have used our previously developed tools

• to identify mathematical connections between different noise measures (variance and skew-

ness of fluctuations and burst characteristics),

• to further examine and interpret the connection between circuit properties and intrinsic

noise,

• and to use this information to find strategies for the modulation of noise patterns through

in silico circuit design.
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The obtained results are in accordance with the insights gained in previous studies; for ex-

ample, the role of positive or negative feedback in noise amplification or attenuation, and the

impact of slow reactions acting as noise filters. Moreover, some facts about protein burst gener-

ation could be confirmed, cf. Sections 2.2.2 and 2.2.3. However, the present study goes beyond

these aspects. The novel definitions of state-dependent noise strengths and burst characteristics,

combined with their graphical visualization, has paved the way for the analysis of complex noise

patterns, where different expression states are associated with different noise properties.

For example, it could be shown that in order to better adjust the noise measures for every

expression state individually, a nonlinear translation rate is helpful, which makes the interplay

of mRNA and protein dynamics more flexible, especially concerning the generation of protein

bursts and concerning the capability to propagate fluctuations. In our example, it turned out

that the bistable combination of a Michaelis-Menten type translation function with a sigmoid

transcriptional propensity supports uni-directional noise-driven switches from the inactive to the

active expression state: Large bursts are generated when protein expression is low, while noise

is efficiently suppressed in the high-expression state. Biologically speaking, such a saturated

translation rate can be the result of indirect global regulation, e.g. limitation of cellular resources

like ribosomes, amino acids, or tRNAs [Mather et al., 2013].

This provides a possible explanation of how some random decision-making processes can ro-

bustly proceed. In S. mutans, for example, the activation of a central regulator, ComS, occurs in

a bimodal fashion [Reck et al., 2015]. ComS makes the cell enter a regulatory cascade that finally

leads to the genetically competent state. This state is quite risky, as it renders cells susceptible

to environmental stress. Therefore, it indeed makes sense that only a subpopulation of S. mutans

cells becomes activated. The observed bimodality has previously simply been attributed to the

presence of a positive feedback loop in the regulation of ComS and to the bistability it causes

according to a RE-based model [Son et al., 2012]. However, stochastic simulations of comS ex-

pression with linear translation propensities like those in Fig 5.5 showed either a lack in random

activation (panel A) or uncontrolled switches between the two expression states (panel B). This

switching behavior would not be functional, since the high ComS expression state needs to be

maintained for a certain period to ensure the proceeding of the competence cascade, before it

is deactivated in a controlled manner. The generation of a more delicate noise pattern ensuring

uni-directional switches – maybe due to global regulation, as mentioned above – is therefore

necessary. In fact, genetic competence is a costly process, as the competence cascade involves

the expression of multiple genes. As a consequence, the activation of ComS might indeed be

accompanied by a limitation of cellular resources, which would automatically stabilize the active

state.

Besides translation, nonlinearity of any other reaction enhances the flexibility of a circuit to

arrange its intrinsic noise pattern. Here, we have only considered linear mRNA and protein

degradation, but nonlinear relations are indeed realistic, for example if proteolytic machineries

are involved [Kasper et al., 2014] or if cooperative stabilizing effects in multimers occur [Buchler

et al., 2005]. Based on the previous results, it might now be easier to imagine how altered

mRNA degradation kinetics in one of the expression states would change the average burst size

and hence the fluctuation pattern.

One should note that although we have associated small local fluctuations with the robustness

of an expression state, this relation is purely qualitative, since the local noise level is not the only

determinant for system state transitions: For example, it might be valuable to relate the basins of

attraction of all fixed points, which are also determined by the reaction propensity functions, to
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the noise pattern. Moreover, it is per se difficult to define how to quantify robustness: Basically,

one could call a stationary state robust, if the mean first passage time (MFPT) away form this

state is large. However, the reference time-scale needs to be defined on which the MFPTs of

different expression states or circuits should be compared – this might be the original process

time, or time normalized with respect to mRNA or protein degradation, or with respect to

the average burst frequency. In this study, we have only compared the robustness of different

expression states within the same autoregulatory circuit referring to the scaled process time,

and we could verify through stochastic simulations that the targeted creation of noise patterns

has indeed led to the desired qualitative behavior.
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6. Engineering the genetic toggle switch

The novel methods are next applied to the genetic toggle switch, a system comprising two

genes whose gene products mutually inhibit each other. Its experimental construction was

first published in [Gardner et al., 2000]. In this early seminal work of synthetic biology, the

bistability predicted by a deterministic model could be confirmed. This chapter deals with a

more stochastic view on the circuit. In particular, it will assess whether and how the involvement

of two proteins increases the flexibility of noise adjustment. It will quickly turn out that the

doubled amount of reactive species and reaction channels makes the relation between circuit

parameters and Fano factors rather intricate. Therefore, three different model formulations of

the toggle switch with increasing complexity will be successively analyzed in order to identify

more and more contributions to circuit noise in a step-wise manner. Some of the results are

published in [Hortsch and Kremling, 2018a].

6.1. Model formulation

6.1.1. Full model

The full model is schematically shown in Fig 6.1 (A). It can be divided into two subsystems 1

and 2, each comprising one of the mRNA and protein species with copy numbers mi and si,

i = 1, 2, respectively. Transcription is negatively regulated by the protein of the other subsystem.

The reference time-scale is set by the degradation kinetics of protein 1. The propensities of the

other subsystem are scaled with the parameter δ, which corresponds to the degradation constant

of protein 2. Through a change in δ, the time-scale of all reactions in the second subsystem

can be uniformly altered and thereby shifted relative to subsystem 1. The notation within the

subsystems is consistent with that of the previous chapters. The reactions can be written as:

∅
1
ν1
·F1(s2)

−−−−−−−−→ mRNA 1

mRNA 1
1
ν1−−−−−−−−→ ∅

∅ G1(m1)−−−−−−−−→ Protein 1

Protein 1
1−−−−−−−−→ ∅

∅
1
ν2
·F2(s1) · δ

−−−−−−−−→ mRNA 2

mRNA 2
1
ν2
· δ

−−−−−−−−→ ∅

∅ G2(m2) · δ−−−−−−−−→ Protein 2

Protein 2
δ−−−−−−−−→ ∅ (6.1)
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δ/ν2 δ

A

gene 1 mRNA 1 (m1)
F1 (s2 )/ν1 G1 (m1 )

1/ν1
1

protein 1 (s1)

gene 2 mRNA 2 (m2)
F2 (s1 )/ν2∙δ G2 (m2 ) ∙δ

protein 2 (s2)

B

δ

gene 1
G1 (F1 (s2 ))

1

protein 1 (s1)

gene 2
G2 (F2 (s1 ))∙δ

protein 2 (s2)

C

δ

gene 1

1

B1 ∙ protein 1 (s1)

gene 2 B2 ∙ protein 2 (s2)

F1 (s2 )/ν1

F2 (s1 )/ν2∙δ

B1 ~ Geoα(F1(s2))

B2 ~ Geoα(F2(s1))

Subsystem 1

Subsystem 2

Figure 6.1.: Schematic representations of the genetic toggle switch. (A) Full model. (B) Reduced model
assuming infinitely fast mRNA dynamics. (C) Reduced protein bursting model.

and the corresponding CME reads:

ṗm1,s1,m2,s2 =[
F1(s2) pm1−1,s1,m2,s2 − F1(s2) pm1,s1,m2,s2 + (m1 + 1) pm1+1,s1,m2,s2 −m1 pm1,s1,m2,s2

]
· 1

ν1

+G1(m1) pm1,s1−1,m2,s2 −G1(m1) pm1,s1,m2,s2 + (s1 + 1) pm1,s1+1,m2,s2 − s1 pm1,s1,m2,s2

+
([
F2(s1) pm1,s1,m2−1,s2 − F2(s1) pm1,s1,m2,s2 + (m2 + 1) pm1,s1,m2+1,s2 −m2 pm1,s1,m2,s2

]
· δ
ν2

+G2(m2) pm1,s1,m2,s2−1 −G2(m2) pm1,s1,m2,s2 + (s2 + 1) pm1,s1,m2,s2+1 − s2 pm1,s1,m2,s2

)
· δ,

(6.2)

where pm1,s1,m2,s2 is the probability that the system is in state (M1, S1,M2, S2) = (m1, s1,m2, s2).

The hybrid deterministic formulation, in which local averaging of the translational propensity
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6.1. Model formulation

function is performed for both subsystems (again under the assumption that the two mRNA

species are Poisson distributed), is given by:

ċm1 = (F1(cs2)− cm1) · 1

ν1

ċs1 = Ḡ1(cm1)− cs1

ċm2 = (F2(cs1)− cm2) · 1

ν2
· δ

ċs2 = (Ḡ2(cm2)− cs2) · δ, (6.3)

with Ḡi(cmi) := 1
V

∑∞
n=0Gi(n)

(cmi V )n

n! e−cmiV , i = 1, 2. Its derivation is analogous to the one

performed for the autoregulatory circuit in Section 4.2.2.

6.1.2. Model reduction 1: Fast mRNA dynamics

The first model simplification that is performed in order to reduce the complexity of the de-

scription is an elimination of the mRNA level: It is assumed that the dynamics of both mRNA

species are infinitely fast, which corresponds to the limit ν1 → 0, ν2 → 0, while the ratio ν1
ν2

is

kept constant.

On a time-scale determined by the variable τ/ν1, on which the mRNA species are formed

and degraded, the protein copy number hardly changes, so that the mRNA dynamics can be

approximately depicted by the following conditional CMEs (cf. the derivation in the Appendix,

Section D.1):

d pm1|s2
d (τ/ν1)

= F1(s2) pm1−1|s2 − F1(s2) pm1|s2 + (m1 + 1) pm1+1|s2 −m1 pm1|s2 (6.4)

d pm2|s1
d (τ/ν1)

=
[
F2(s1) pm2−1|s1 − F2(s1) pm2|s1 + (m2 + 1) pm2+1|s1 −m2 pm2|s1

]
· ν1

ν2
, (6.5)

while the protein species are assumed to stagnate in their current state. The dynamics of the

two mRNA species are nearly independent of each other and the molecules are transcribed with

“constant” propensities F1(s2) and F2(s1), respectively. In the stationary state, they are thus

Poisson distributed with mean values E[M1|S2 = s2] = F1(s2) and E[M2|S1 = s1] = F2(s1).

Back on the time-scale of protein dynamics, the marginal CME of the protein species can be

calculated, using the above pseudo-stationary distributions of the mRNA species:

ṗs1,s2 = Ḡ1(F1(s2)) ps1−1,s2 − Ḡ1(F1(s2)) ps1,s2 + (s1 + 1) ps1+1,s2 − s1 ps1,s2

+
[
Ḡ2(F2(s1)) ps1,s2−1 − Ḡ2(F2(s1)) ps1,s2 + (s2 + 1) ps1,s2+1 − s2 ps1,s2

]
· δ, (6.6)

cf. the calculation steps in Section D.1.
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The reaction scheme is thus given by:

∅ Ḡ1(F1(s2))−−−−−−−−→ Protein 1

Protein 1
1−−−−−−−−→ ∅

∅ Ḡ2(F2(s1)) · δ−−−−−−−−→ Protein 2

Protein 2
δ−−−−−−−−→ ∅ (6.7)

It is visualized in Fig 6.1 (B). The hybrid ODE reads:

ċs1 = Ḡ1(F1(cs2))− cs1

ċs2 = (Ḡ2(F2(cs1))− cs2) · δ. (6.8)

Note that this kind of model reduction does not consider translational bursts. It will be used

to examine the interplay between the two subsystems on a basic level. The influence of bursts

is then considered in the next model version:

6.1.3. Model reduction 2: Translational bursting model

Like in the previous chapter, the bursting model provides a good system description if νi � 1,

i = 1, 2, since then, the translation events belonging to one burst can be condensed into a single

reaction. In this case, the burst sizes B1 and B2 are approximately geometrically distributed:

B1 ∼ Geo α(F1(s2)), B2 ∼ Geo α(F2(s1)).

The list of reactions reads:

∅
F1(s2) 1

ν1−−−−−−−−→ B1 ·Protein 1

Protein 1
1−−−−−−−−→ ∅

∅
F2(s1) · 1

ν2
· δ

−−−−−−−−→ B2 ·Protein 2

Protein 2
δ−−−−−−−−→ ∅ (6.9)

The CME reads, in analogy to Eq (4.32):

ṗs1,s2 =

s2∑
b=0

1

ν1
·F1(s2 − b) ·Geoα(F1(s2−b))(b) · ps1,s2−b −

1

ν1
·F1(s2) ps1,s2

+ (s1 + 1) ps1+1,s2 − s1 ps1,s2

+
( s1∑
b=0

1

ν2
·F2(s1 − b) ·Geoα(F2(s1−b))(b) · ps1−b,s2 −

1

ν2
·F2(s1) ps1,s2

+ (s2 + 1) ps1,s2+1 − s2 ps1,s2

)
· δ. (6.10)

The reaction scheme is depicted in Fig 6.1 (C). Like in Section 4.6.4, the hybrid deterministic
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formulation of the reduced bursting model is the same as the formulation in the fast mRNA

limit, i.e. it is identical to Eq (6.8).

6.2. Deterministic model behavior

In order to be able to apply the hLNA to the full model description, the behaviour of the

corresponding hybrid deterministic formulation (6.3) should be analyzed first. The deterministic

fixed points in terms of copy numbers are defined by the conditions:

m∗i =Fi(s
∗
j ),

s∗i = Ḡi(Fi(s
∗
j )) = Ḡi(Fi(Ḡj(Fj(s

∗
i )))) for i, j = 1, 2, i 6= j. (6.11)

The steady-state conditions for the proteins also apply to the reduced model versions. The

protein-protein phase plot in Fig 6.2 shows that the system can have three fixed points, if the

functions are chosen suitably.

copy number of protein 1 (s1)

c
o
p
y
 n

u
m

b
e
r 

o
f 
p
ro

te
in

 2
 (

s 2
)

G1 (F1 (s2 ))

G2 (F2 (s1 ))

Figure 6.2.: Deterministic protein-protein phase plot of the toggle switch. The two graphs indicate the
nullclines of protein 1 (dark blue) and protein 2 (green) according to the deterministic models of the
full and the reduced systems. The two outer intersection points mark the stable fixed points.

The Jacobian of the RHS of the full deterministic description (6.3) is given by:

J∗ =



− 1
ν1

0 0 f∗1
1
ν1

g∗1 −1 0 0

0 f∗2
δ
ν2
− δ
ν2

0

0 0 g∗2 δ −δ


. (6.12)

Here, f∗1 := dF1
ds2

(s∗2), f∗2 := dF2
ds1

(s∗1), g∗1 := dḠ1
dm1

(m∗1), and g∗2 := dḠ2
dm2

(m∗2), which are expression-

state specific parameters. f∗1 and f∗2 are non-positive since both proteins act as repressors. The

characteristic polynomial P of J∗ with variable λ reads:
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0 =

(
− 1

ν1
− λ
)
· (−1− λ) ·

(
− δ

ν2
− λ

)
· (−δ − λ)− f∗1 f

∗
2 g
∗
1 g
∗
2 δ

2

ν1ν2
=: P(λ). (6.13)

The solutions of this equation are the eigenvalues of J∗ and therefore crucial for the stability of

the fixed point. The first part of the expression is a quartic polynomial, whose roots correspond

to the diagonal entries of J∗. It is shifted downwards by
f∗1 f

∗
2 g
∗
1 g
∗
2 δ

2

ν1ν2
to yield the characteristic

polynomial. If the shift is small enough, all real-valued roots λ are negative. This holds until

λ = 0 solves Eq (6.13), i.e. as long as
f∗1 f

∗
2 g
∗
1 g
∗
2 δ

2

ν1ν2
< δ2

ν1 ν2
⇔ f∗1 f

∗
2 g
∗
1 g
∗
2 < 1. This is a necessary

condition for the stability of a fixed point.

In Fig 6.2, the two outer intersection points are stable, the middle one is unstable. The stable

fixed points therefore either exhibit high expression of protein 1, which represses protein 2, or

the opposite scenario where high levels of protein 2 restrict the formation of protein 1.

6.3. Calculations of Fano factors and burst characterization

We have seen in the study of the single-gene autoregulatory system that great adjustability

of noise patterns can be reached through nonlinearity of translation. In order to examine the

increase in flexibility through the usage of two instead of one gene, the translational propensity

functions are henceforward assumed to be linear, i.e. Gi(mi) = Ḡi(mi) = gi ·mi, i = 1, 2. The

hLNA approach is thus equivalent to the classical LNA, which is now expected to be reliable.

6.3.1. The protein Fano factors of the full model

In order to estimate the Fano factors, the Lyapunov equation (2.29) needs to be solved again,

this time for a system with four reactive species and with eight reactions. The calculations

are more tedious than those in the previous study, where only one gene was involved. The

required matrices are deduced in the Appendix, Section D.2. The local mean values are again

approximated by the stable fixed points, cf. Eq (6.11). By setting Ψ∗ := g1g2f
∗
1 f
∗
2 , the resulting

Fano factor of protein 1 according to the full model can be written as1:

η∗(S1) = 1 +
(
g1 ν1

[
(1 + δ)(1 + δ ν1)(1 + δν1/ν2)(δ + ν2)(δ + δ ν2)

− Ψ∗
(
(1 + δν1/ν2)(δ + ν2)(δ + δν2) + δ2ν2

2(1 + ν1 + δν1 + δν1/ν2)
)]

+ Ψ∗ δ2
[
(1 + δ ν1)(1 + δν1/ν2)(δ + δ ν2)

+ Ψ∗ ν2 (1 + δ ν1 + δν1/ν2)(1 + ν1 + δ ν1 + δν1/ν2)
]

+ (g1f
∗
1 )2 δ (1 + g2ν2)

[
(1 + δ ν1)(1 + δν1/ν2)(δ + δ ν2)

+ ν2 (1 + δ ν1 + δν1/ν2)(1 + ν1 + δ ν1 + δν1/ν2)
]
s∗2/s∗1

+ (g1f
∗
1 )2 δ (1−Ψ∗) ν2

2(1 + ν1 + δ ν1 + δν1/ν2)s
∗
2/s∗1

) 1

(1−Ψ∗)Q
,

Q = (1 + ν1)(1 + δ)(1 + δ ν1)(1 + δν1/ν2)(δ + ν2)(δ + δ ν2)

− Ψ∗ δ2 ν2 (1 + ν1 + δ ν1 + δν1/ν2)
2. (6.14)

1Deterministic stability analysis has shown that Ψ∗ < 1 holds for every stable fixed point.
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The Fano factors of the remaining reactive species are formulated analogously. The structure of

Eq (6.14) is rather intricate, especially due to the complexity of the denominator, so that it would

be difficult to directly deduce general rules about the connection between circuit properties and

noise. We will therefore study the Fano factors of the reduced models and of certain special

cases of the full model, which will altogether provide some fundamental insights into the intrinsic

noise of a toggle switch.

6.3.2. Noise under fast mRNA dynamics

The Fano factor of protein 1 according to the reduced system (6.7) is given by:

η∗(S1) = 1 +
g1f
∗
1

1−Ψ∗

(
g2f
∗
2

δ

1 + δ
+ g1f

∗
1

s∗2
s∗1

1

1 + δ

)

= 1 +
Ψ∗

1−Ψ∗

(
δ

1 + δ
+R∗

1

1 + δ

)
, (6.15)

where R∗ :=
g1f∗1 s

∗
2

g2f∗2 s
∗
1
. The second equation holds if f∗2 6= 0. Accordingly, the Fano factor of

protein 2 reads:

η∗(S2) = 1 +
g2f
∗
2

1−Ψ∗

(
g1f
∗
1

1

1 + δ
+ g2f

∗
2

s∗1
s∗2

δ

1 + δ

)

= 1 +
Ψ∗

1−Ψ∗

(
δ

1 + δ
+R∗

1

1 + δ

)
· 1

R∗
. (6.16)

These formulae are either obtained by taking the limit ν1 → 0, ν2 → 0, ν1ν2 = const. in Eq (6.14),

or by performing the LNA based on the CME given in Eq (6.6), which is easily calculated due

to the limited size and complexity of the formulation. Based on these simplified Fano factors,

the following insights can be gained:

Local effects of circuit parameters on Fano factors

Let us first interpret the single terms in Eq (6.15) (the structure of η∗(S2) can be explained

analogously): In case f∗1 = 0, i.e. if protein 2 does not influence system 1 (at least locally

around the fixed point), constant production and linear degradation of protein 1 results in a

Poisson distribution of its copy numbers and therefore, η∗(S1) = 1. If f∗1 < 0, but f∗2 = 0,

the feedback loop would not be closed, but subsystem 2 would act upstream of subsystem 1,

increasing the protein Fano factor by the term
(g1f∗1 )2

1−Ψ∗
s∗2
s∗1

1
1+δ . Interestingly, this term would

vanish if the dynamics of the second subsystem were extremely fast (δ → ∞). Now let us

assume that f∗2 < 0. The term Ψ∗

1−Ψ∗
δ

1+δ describes the noise that is propagated through the

whole loop. This expression now becomes largest if δ is large.

One might have realized that the structure of Eqs (6.15) and (6.16) is similar to that of

Eqs (4.18) and (4.19). This is because the number of species and reaction channels and their

topological connection is virtually identical. As a consequence, the effects of circuit parameters

on noise will show certain similarities to those identified in Section 5.1. Note that in the toggle

switch, f∗1 and f∗2 are actually non-positive, but they always occur in multiplicative pairs, so

that the negative signs are cancelled out. This facilitates the analysis of the formulae. As before,

both stable fixed points (s∗1, s
∗
2) will be held fixed when parametric variations are studied.
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The formulae of the Fano factors immediately show that an increase in g1 or in g2 would

enhance η∗(S1) and η∗(S2). However, note that if the change in gi is balanced by an inverse

scaling of Fi in order to maintain the average protein level, the products gif
∗
i , i = 1, 2 and thus

also the Fano factors would remain constant according to this model.

The expression-state-specific parameters f∗1 and f∗2 can be adjusted by selecting repressor

systems with suitable inhibition strength, cooperativity, etc. In general, locally small transcrip-

tional sensitivities |f∗1 | and |f∗2 | limit the propagation of noise and therefore the Fano factors.

The effect of δ depends on the value of the combined parameter R∗ and can be easily de-

termined when the expression in brackets in Eqs (6.15) and (6.16) is interpreted as a convex

combination: If R∗ < 1, a reduction (increase) in δ attenuates (amplifies) noise of both proteins,

while the opposite holds if R∗ > 1. A shift in δ can thus modulate the robustness of an expres-

sion state. The decisive parameter combination R∗compares the local capabilities of system 1

and system 2 to propagate noise, so that the influence of δ can be interpreted as follows: Noise

is reduced if the reactions with high sensitivity towards upstream noise are decelerated. Note

that R∗ is dependent on the expression state, so that a change in δ may even have opposite

effects on the local noise levels within the bistable system.

Since we are only regarding positive feedback, a local change of any of the circuit parameters

affects the local noise levels of both proteins in qualitatively the same way2. Therefore, it is not

possible to locally reduce the fluctuations of one protein while augmenting fluctuations of the

other. This facilitates statements about changes in the robustness of an expression state, which

is shaped by the Fano factors of both proteins.

Generation of asymmetric noise levels

How can the interplay of the two subsystems now support the creation of asymmetric noise

patterns between the two stable expression states, according to the simplified model?

We have previously seen that, in the case of bistable single-gene autoregulation with linear

translation, a difference between the Fano factors of the two stable expression states can only be

achieved through a difference in f∗. In case of the toggle-switch, the shape of the transcriptional

propensities can of course create such an imbalance, too: If both transcriptional sensitivities

|f∗1 | and |f∗2 | are larger in one state than in the other, this would lead to a clear difference

in the noise levels. However, the shapes of F1 and F2 are not completely flexible, since they

are mechanistically constrained and, at the same time, need to ensure bistability. Often, |f∗1 |
is larger in one state than in the other, while |f∗2 | behaves opposite, so that direct statements

about the relative robustness of the expression states cannot be made. A further way to generate

asymmetric noise is, though, available, even if the two subsystems are symmetric in the sense

that g1 ·F1 = g2 ·F2. In order to show this, let us denote the two stable fixed points by state a

and state b, and the according transcriptional sensitivities f∗i by fa1 , f b1 , fa2 , and f b2 , respectively.

Deterministic model analysis shows that due to the symmetry, sa1 = sb2 and sb1 = sa2. As a

consequence, g1 f
a
1 = g2 f

b
2 , g1 f

b
1 = g2 f

a
2 , and Ψa = Ψb =: Ψ hold. The only real asymmetry in

this example may be caused by δ: The decisive parameter combinations Ra and Rb fulfill the

relation:

Ra =
g1 f

a
1 · sa2

g2 fa2 · sa1
=
g2 f

b
2 · sb1

g1 f b1 · sb2
=

1

Rb
. (6.17)

2As already mentioned, this does not necessarily hold across different expression states.
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One can conclude that a shift in δ would inevitably change the noise levels of state a and b in

opposite ways unless Ra = Rb = 1.

Ra can now be calculated for a common structure of Fi, namely

Fi(sj) =
1

gi
· c

1 +
( sj
K

)h . (6.18)

This expression typically models the kinetics of cooperative inhibition and was also used in

[Gardner et al., 2000]. c is the maximum protein production rate in the absence of the repressor,

K corresponds to the amount of repressor molecules that causes a 50 percent inhibition, and h

is the cooperativity parameter. The derivative of gi Fi at a fixed point (s∗i , s
∗
j ) reads:

gi f
∗
i = − c(

1 +
(
s∗j
K

)h)2 ·
h

K
·
(
s∗j
K

)h−1

= − h

cK
· (gi Fi(s∗j ))2 ·

(
s∗j
K

)h−1

= − h

cKh
(s∗i )

2(s∗j )
h−1.

This results in the combined parameter:

Ra =

(
sa2
sa1

)h−2

. (6.19)

Without loss of generality, let sa1 > sa2, i.e. let state a be characterized by dominant expression

of protein 1. Obviously, Ra is equal to 1 if h = 2. In this case, ηa(S1) = ηa(S2) = ηb(S1) =

ηb(S2) = 1 + Ψ
1−Ψ . Otherwise, asymmetric noise patterns can be created through a suitable

choice of δ.

Fig 6.3 shows the time courses of three different toggle switches, which all have the same

deterministic protein-protein phase plot that is illustrated in panel (A). In the toggle switch

simulated in panel (B), all scaled parameters and functions of the two subsystems are identical,

and δ = 1. In accordance to that, the fluctuations are symmetric as well, without any of the

states being preferred. In panel (C), the parameters have been maintained except for δ = 0.05.

This means that all processes in system 2 occur more slowly than in system 1. Compared with

the circuit simulated in panel (B), the Fano factors of proteins 1 and 2 in state a are reduced,

while they are increased in state b. This is plausible since Ra < 1 holds in this example (note that

h = 3 and cf. Eq (6.19)), so that a reduction of δ leads to a stabilization of state a. One should

mention that the simulations and calculated Fano factors in this figure were obtained using the

full instead of the reduced model description. The principle deduced from the simplified model

thus seems to be valid in the full model as well.

In the case of single-gene autoregulation, the decoupling of Fano factors in the two expression

states could only be achieved through expression-state-specific circuit parameters. In the toggle

switch, the dynamical interplay between the two subsystems, which is modulated through the

state-independent parameter δ, can cause asymmetric noise despite all other parameters being

symmetric. Interestingly, the way how the parameter needs to be shifted to create a certain

noise pattern depends on the cooperativity of repression. These results demonstrate how the

adjustability of noise is increased through the involvement of a second gene expression system.
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G1 (F1 (s2 )) G2 (F2 (s1 )) protein 1 protein 2

ηa(S1) 4.70 4.65 1.92

ηa(S2) 5.92 4.88 6.68

ηb(S2) 4.70 4.77 6.64

ηb(S1) 5.92 6.89 5.05

B C D

state a

state b

Figure 6.3.: Creation of asymmetric noise patterns through state-independent circuit parameters.
(A) Protein-protein phase plot valid for all three systems whose simulated time courses are plotted on
the right. Simulations were created with the Gillespie algorithm based on the full model description.
The Fano factors of both proteins in the two expression states, calculated by numerically solving the
Lyapunov equation of the full model, are given in the table. (B) Fully symmetric toggle switch with
function parameters c1 = c2 = 2.5, K1 = K2 = 40, h1 = h2 = 3, g1 = g2 = 40, ν1 = ν2 = 0.1, δ = 1
(cf. main text). For the burst sizes, α1 = α2 = 4 hold. (C) All parameter values as in (B), except for
δ = 0.05. This shift leads to a relative destabilization of state b. (D) Compared to (C), gi and ci are
changed, while the products gi · ci are maintained: g1 = 10, g2 = 60, c1 = 10, c2 = 5/3. This changes
the burst sizes to α1 = 1 and α2 = 6. The reduction of ηa(S1) further stabilizes state a. All time
courses are shown in the time interval [0, 2 · 103/δ]; simulations have been initialized at the unstable
fixed point.

6.3.3. Noise under bursting conditions

The Fano factor of protein 1 in the translational bursting model (6.9) can either be obtained by

performing the LNA like in Section B.4 of the Appendix or by taking the limits νi → 0, i = 1, 2,

in Eq (6.14), while ν1
ν2

, gi · νi, and Fi
νi

are kept constant. Both approaches yield:

η∗(S1) = (1 + α1) +
g1f
∗
1

1−Ψ∗

(
(1 + α1) g2 f

∗
2

δ

1 + δ
+ (1 + α2) g1 f

∗
1

s∗2
s∗1

1

1 + δ

)
= (1 + α1)

[
1 +

Ψ∗

1−Ψ∗

(
δ

1 + δ
+

1 + α2

1 + α1
R∗

1

1 + δ

)]
. (6.20)

η∗(S2) = (1 + α2) +
g2f
∗
2

1−Ψ∗

(
(1 + α2) g1 f

∗
1

1

1 + δ
+ (1 + α1) g2 f

∗
2

s∗1
s∗2

δ

1 + δ

)
= (1 + α2)

[
1 +

Ψ∗

1−Ψ∗

(
1 + α1

1 + α2

1

R∗
δ

1 + δ
+

1

1 + δ

)]
. (6.21)
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These formulae have the same basic structure as Eqs (6.15) and (6.16), and they demonstrate

the additional impact of the burst sizes α1 = g1ν1 and α2 = g2ν2 on noise3.

In contrast to the previous model simplification, an increase in gi that is balanced by an

inverse scaling of Fi leads to noise amplification because of the increased burst size. Moreover,

the burst sizes influence the qualitative and quantitative effect of a shift in δ, as the decisive

parameter composition is now given by 1+α2
1+α1

·R∗. The fast mRNA limit can be regarded as a

special case of the translational bursting model with αi = 0.

In Fig 6.3 (D), the asymmetry of the noise pattern in panel (C) is further modified through

the generation of different burst sizes in the two subsystems, namely α1 = 1 and α2 = 6. The

nullclines in the protein-protein phase plot are still symmetric. The simulated time courses

suggest that state a is further stabilized through the modification of the burst sizes, but this

observation is less intuitive, since the reduction of α1 (compared with panel (C)) tends to reduce

noise in both expression states, while the increase in α2 has an opposite effect. By analyzing the

structures of Eqs (6.20) and (6.21) more closely, one may nevertheless comprehend why state a is

stabilized, although the argumentation is only qualitative and not predictive: To do so, we first

note that in this example, δ = 0.05 is again very small. In order to simplify the considerations,

let us thus regard Eqs (6.20) and (6.21) in the limit δ → 0. This yields:

η∗(S1) ≈ (1 + α1)

[
1 +

Ψ∗

1−Ψ∗
· 1 + α2

1 + α1
R∗
]

(6.22)

η∗(S2) ≈ (1 + α2)

[
1 +

Ψ∗

1−Ψ∗

]
. (6.23)

Since η∗(S2) is in this case independent of R∗, the Fano factors ηa(S2) and ηb(S2) are expected to

be similar4. This is indeed confirmed by the LNA-based estimates listed in Fig 6.3 (A). The real

effect of 1+α2
1+α1

R∗ is thus reflected by η∗(S1). Again, Ra < 1 and Rb = 1
Ra hold. Since 1+α2

1+α1
>

1, the stabilizing effect of a reduction in δ on state a is diminished through the asymmetric

burst sizes. However, at the same time, the destabilizing effect on state b is augmented over-

proportially (note that 1+α2
1+α1

Rb � 1+α1
1+α2

Rb = (1+α2
1+α1

Ra)−1 and that ηb(S1)� (1 +α1)), which in

the end might lead to the relative stabilization of state a.

All in all, the results show that the average burst sizes α1 and α2 have a severe impact on

protein noise. By modulating promoter strengths and ribosomal binding sites, the overall circuit

noise can thus be efficiently modified without altering average protein levels. In order to keep

the noise level low, large bursts should be avoided.

6.3.4. Special cases in the full model

In the previous two model simplifications, the assumptions ν1 � 1 and ν2 � 1 have been made.

In order to assess the effect of these two parameters, let us now consider two special limit cases

of the full model.

3Here, the asterisks are omitted, since the burst sizes αi are independent of the expression state.
4This was also the case in panel (C).
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Case δ → ∞:

In this case, the dynamics of system 2 become infinitely fast compared to those of system 1.

Taking the limit in the Fano factor of the full model, given in Eq (6.14), yields:

η∗(S1) = 1 +
Ψ∗

1−Ψ∗

(
1

1 + ν1
+

ν1

1 + ν1
· 1

g2f∗1 f
∗
2

)
=

(
1 +

α1

1 + ν1

)
+

Ψ∗

1−Ψ∗

(
1 +

α1

1 + ν1
− ν1

1 + ν1

)
. (6.24)

The formulation in the first row is equivalent to that of the protein Fano factor in a single-gene

autoregulatory system, cf. Eq (4.19). This is because the fast dynamics of subsystem 2 are

condensed into a single positive feedback reaction, given by the function F = F1(g2 ·F2(.)).

This implies that autoregulation can even be interpreted as a special case of the toggle-switch.

The effect of ν1 is thus comparable with the effect of ν in the autoregulatory system with linear

translation. The parameter combination f∗ = g2f
∗
1 f
∗
2 determines whether a shift in ν1 leads to a

local increase or decrease of the Fano factor. Usually, the average protein copy number is larger

than the average copy number of the corresponding mRNA, so that 1
g2f∗1 f

∗
2

= g1
Ψ∗ > g1 =

s∗1
m∗1

> 1.

An increase in ν1, which corresponds to a slow-down of mRNA dynamics in system 1, would

therefore in general augment the fluctuations of protein 1.

The formulation in the second row of Eq (6.24) allows an interpretation in terms of protein

bursts. For comparison, we also take the limit δ → ∞ in the Fano factor (6.20) of the reduced

bursting model, resulting in the expression:

η∗(S1) = (1 + α1) +
Ψ∗

1−Ψ∗
(1 + α1). (6.25)

If the burst size α1 was chosen identically in Eqs (6.24) and (6.25), the Fano factor according

to Eq (6.24) would be smaller, because this formula takes protein degradation into account,

which reduces the effective burst amplitude (cf. Section 5.2.1). One can conclude that although

an increase in ν1 augments the burst size α1 and thus also the Fano factor, this kind of noise

amplification is not as strong the one achieved through an increase in g1 (see also Section 5.2.2).

Case δ → 0:

When system 2 is slowed down, the Fano factor is given by:

η∗(S1) =

(
1 +

α1

1 + ν1

)
+

Ψ∗

1−Ψ∗
·R∗

(
1 +

α2

1 + ν2
− Ψ∗ ν2

1 + ν2

)
. (6.26)

g2, like g1, is typically larger than 1. Using the same argument as above, one can show that

an increase in ν1 and/or ν2 augments η∗(S1), but again, the effect is less pronounced than an

amplification of burst sizes through g1 or g2.

After having regarded these two limit cases, it seems that slow mRNA dynamics tend to make

the system noisier. Concerning the asymmetry of fluctuation patterns, a simulation of a toggle

switch was performed, whose parameters are equivalent to those of panel (C), but with changed

values of νi, so that the burst sizes α1 and α2 of panel (D) are generated. It turned out that

the calculated Fano factors as well as the fluctuation patterns were similar to that of panel (D),

but the asymmetry was slightly less pronounced (data not shown).
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6.4. Short discussion and summary

This study has shown that the toggle switch offers a broader range of possibilities for the adap-

tation of noise patterns than single-gene autoregulation. The basic principles of noise generation

through bursts and noise propagation through sensitive transcriptional and translational propen-

sities are maintained. However, the time-scale parameter δ, which relates the dynamics of the

two subsystems to each other, provides an additional means to create asymmetric noise patterns.

The influence of circuit parameters has been studied with the help of several different, simpli-

fied model versions, since the mRNA and protein Fano factors of the detailed model turned out

to be too complex to be analyzed comprehensively and comprehensibly. Based on a model reduc-

tion that assumed infinitely fast mRNA dynamics, fundamental effects concerning the interplay

between the two subsystems on circuit noise were studied. In this context, a special role could be

attributed to differences in time-scales of the two subsystems and to the degree of cooperativity

in mutual transcriptional repression. The bursting model then elucidated the additional impact

of protein bursts and demonstrated that the previous elimination of the mRNA level (which

is quite commonly applied in deterministic modeling) led to a quantitative underestimation of

noise. The qualitative principles, however, remained valid. The effect of time-scale-distributions

within the subsystems (interplay of mRNA and protein dynamics) was then analyzed by regard-

ing special cases of the full model. Although the Fano factors obtained with the reduced models

may not be accurate, the analysis of the corresponding formula led to a better understanding of

circuit noise. The qualitative design of noise patterns can now first be performed based on these

insights, then be tested with the help of the Fano factors according to the full model (which can

be numerically evaluated), or with stochastic simulations.

In this study, is was assumed that translation is a linear function of the mRNA copy number,

which is why the hLNA approach was equivalent to the classical LNA. Nonlinearity of translation

would be an additional effective tool to modify noise levels as it would generate state-dependent

burst sizes, which were previously shown to have a strong influence on protein noise.

In general, the assembly of a genetic toggle switch can be done quite flexibly: A lot of

repressor-promoter combinations are available that differ in the strength and cooperativity of

the repressor and in the strength of the promoter. Moreover, ribosomal binding sites can be

varied or genetically modified, and even mRNA and protein half-lives can be altered to a certain

extent. A model-driven selection of synthetic building blocks can thus lead to the construction

of a bistable switch with desired deterministic and stochastic properties.
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7. Discussion and Conclusions

7.1. Overall discussion of results

The main goal of this study was the development and subsequent usage of mathematical meth-

ods, with which noise patterns in multistable genetic circuits can be quantitatively analyzed.

In particular, the connection between expression-state-specific noise levels and the dynamic

properties of the underlying circuit should be clarified.

For the characterization of noise, two different types of measures were used: First of all,

the so-called Fano factors provided information on the variances of target mRNA and protein

fluctuations. Second, characteristics of protein bursts were used to take the temporal structure

of protein fluctuations into account. All these measures were chosen to be state-dependent (or,

say, subpopulation-specific).

The quantification of mRNA and protein Fano factors was performed using the hybrid linear

noise approximation (hLNA), which was developed in Chapter 4. It is a variant form of the

classical LNA approach proposed in [van Kampen, 2007], but better suited to model mesoscopic

systems with reactive species occurring in low copy numbers. This is of particular importance

in the context of gene expression, where components of low molecular abundance like mRNA

species are involved. In the derivation of the hLNA, the main advantages of the classical LNA

approach were maintained. Among these is the feasibility of finding approximate, but explicit

formulae, which describe all state-specific mRNA and protein variances in dependence of relevant

properties of the circuit. The (mainly simulation-based) assessment of the quality of the formulae

demonstrated that they reliably described the impact of feedback-regulated transcription, of

translation, and of target molecule degradation on noise. In particular, it could be shown that

the hLNA approach significantly outperformed the classical LNA in all considered examples, cf.

Fig 4.5.

In addition to the variance of fluctuations, their structure was characterized using novel def-

initions of state-dependent protein burst sizes and frequencies, which provide an extension to

the static definitions in [Thattai and van Oudenaarden, 2001]. The link between those burst

characteristics and the occurrence of peaks in protein time courses was discussed for better

interpretability in Section 5.2.1.

The intuitive understanding of noise was further improved by drawing connections between

Fano factors and burst characteristics, cf. Section 5.3.1. For example, it was shown that fast

protein degradation reduces the observable amplitude of protein peaks, so that the corresponding

Fano factor might turn out to be small in spite of bursty protein production. Moreover, small but

frequent bursts were demonstrated to cause smaller Fano factors than large, rare bursts. While

these observations had in principle already been made for simple, linear regulatory systems

[Ozbudak et al., 2002; Paulsson, 2005; Thattai and van Oudenaarden, 2001], further important

insights were gained by looking at bursts under feedback regulation: It was shown that positive

feedback resulted in a self-enforcing accumulation of burst events, which amplified the variance
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of fluctuations, while under negative feedback, bursts were triggered in order to balance below-

average protein levels, which led to noise attenuation. A further, novel aspect was that besides

the burst frequency, also the burst size might vary in unison with local fluctuations. This occurs

due to translation that is non-proportional to the mRNA level. For instance, concavity of the

translational propensity function was demonstrated to enable local noise reduction (at least

under non-negative feedback), since above-average mRNA copy numbers were compensated for

by a reduced amount of produced proteins, while low mRNA levels were accompanied by stronger

translational activity.

The formula-based study of the connection between circuit properties and noise was fur-

thermore supported by graphical illustrations, which are related to the phase plots commonly

deployed in deterministic model analysis for specifying the location and stability of fixed points.

By contrast, the graphical tools developed in this study helped to determine state-specific noise

measures qualitatively (like the Fano factor in Fig 5.4 (A)) or even quantitatively (like the burst

size in Fig 5.4 (B)). The latter plot highlighted the role of relative time-scales in the interplay

of mRNA and protein dynamics on protein bursting. Through the direct visual connection be-

tween noise measures and the graphs of the propensity functions, which reflect the dynamical

properties of the regulatory system, the plots were suitable to support the in silico design of

circuits with desired noise patterns. In particular, not only the local noise characteristics could

be read for every stable expression state, but noise levels of different states within the same

circuit could be compared directly. A further graphical method, shown in Fig 5.4 (C), allowed

the determination of modes in the protein distribution in dependence of the protein burst size,

under the premise that mRNA half-life is very short. The plot not only illustrated the impact of

bursts on the asymmetry (skewness) of fluctuations, it also explained how this asymmetry might

lead to the disappearance or to the de novo formation of modes, a phenomenon that could not

be foreseen with any kind of deterministic model. The way how the dependence of stochastic

circuit behavior on the burst size was studied graphically resembles deterministic bifurcation

analysis, although the burst size as a “stochastic bifurcation parameter” did not influence the

stationary state of the macroscopic model1.

The observed deviation between deterministic and stochastic model behavior was studied

more extensively in Chapter 3. There, the discrepancy between deterministic variables and

stochastic modes under bursting conditions, potentially leading to systems that are bistable

but unimodal, or monostable but bimodal, was systematically analyzed and explained. This

suggested a differentiation between circuits that are bimodal due to bistability, circuits whose

bimodality is at least associated with principles of bistability (e.g. cooperative feedback), al-

though the deterministic model postulates monostability, and circuits that are bimodal without

exhibiting any features of bistability, where one of the modes emerges at the zero state due to

a local accumulation of the skewed probability distribution. On the other hand, unimodality of

bistable systems, caused by a coalescence of modes, could be traced back to the same origin,

namely to the asymmetry of fluctuations due to large bursts. Once more, the usage of the above

mentioned graphical method led to a more intuitive understanding of all these observations, cf.

Fig 3.2. It should however be noted again that the scenarios considered here are not the only

ones in which deviations between bistability and bimodality may occur. Here, the reader is

referred to the discussion in Section 3.5.

Chapter 3 also studied the connection between deterministic variables and the average behav-

1This holds if the burst frequency was accordingly modulated to maintain the locally average protein expression
level.
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ior of the system. The main reason for potential deviations was identified to be the nonlinearity

of reaction propensities, which hampers its commutativity with the expected value operator,

as already reported in [van Kampen, 2007]. This fact basically motivated the formulation of

effective deterministic rates in the development of the hybrid deterministic model (cf. Chap-

ter 4), which served as a basis for the hLNA and for the state-dependent characterization of

protein bursts. This hybrid approach might be considered pragmatic, since it simply assumes

the copy number of any mRNA species to be Poisson distributed. However, it is easily and

broadly applicable, and the novel deterministic variables turned out to well approximate the

local (i.e. expression-state-specific) mean values – an important prerequisite for the quality of

the hLNA. In Section B.5, possible extensions of the hybrid ansatz were discussed, especially

concerning the replacement of the Poisson distribution with a more accurate one and concerning

the expansion of this idea to the protein level. In other publications, different (and maybe more

rigorous) ansatzes were chosen in order to improve the quality of deterministic descriptions in

the context of mesoscopic systems [Gómez-Uribe and Verghese, 2007; Grima, 2010]. However,

these approaches are not applicable to multistable systems, since they approximate real (and

not local) mean values, and are therefore not suitable for studying macroheterogeneity.

The hybrid methods developed for the state-specific characterization of noise were applied to

two bistable regulatory motifs, namely the single-gene autoregulatory feedback loop in Chapter 5

and the genetic toggle switch in Chapter 6. In case of the autoregulatory system, the dependence

of the Fano factor on the circuit properties could be discussed in a straightforward manner based

on the formulae resulting from the hLNA. However, it took a lot more effort in case of the

genetic toggle switch to analytically solve the Lyapunov equation for the approximate variances.

Morever, the obtained expressions were of much higher complexity. This demonstrated that

although the (classical or hybrid) LNA approach is in principle applicable to systems of any

size, the interpretability of results might be hampered by the number of involved components.

Numerical evaluations of the Lyapunov equation under systematic variation of parameters are

however possible for larger systems as well, and they are expected to be much more efficient and

easier to perform than the extraction of values from a huge number of stochastic simulations,

especially in the context of multimodal systems.

The problem of high complexity in the analysis of the genetic toggle switch was circumvented

by regarding certain limit cases that simplified the structure of the Fano factors. In this context,

the previous analysis of the single-gene autoregulatory system turned out to be helpful, as many

of the basic principles could be shown to hold in the two-gene system as well. One of these

principles that were identified in the autoregulatory circuit was the importance and efficiency of

nonlinear rates in the state-specific adaptation of noise levels. In particular, a nonlinear relation

between the mRNA level and translational activity, whose local effect on Fano factors has just

been discussed, was also demonstrated to enable a flexible adjustment of noise patterns across

different expression states. The example considered at the end of Chapter 4 showed that a

translational propensity which is a concave function of the mRNA level is highly sensitive to

mRNA fluctuations in the inactive state, while its saturation impedes noise propagation in the

active state. Concerning the protein time courses, significant protein bursts could be observed

in the OFF state, while their size was severely reduced after activation. It is indeed justified to

postulate nonlinear translation propensities, as experimental studies have shown that the mRNA

level is often nonproportional to translational activity, possibly due to limitations of cellular

resources [Mather et al., 2013; Mauro and Edelman, 2002; Rodnina, 2016]. Nonlinearity may

also occur in other reactions like degradation [Buchler et al., 2005], which could be analyzed

analogously using the same new methods proposed in this work. Compared to single-gene
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autoregulation, the flexibility to adjust noise patterns was shown to be higher in the toggle

switch due to the involvement and close interaction of two gene expression systems. A uniform

shift in the reaction time-scales in only one of the subsystems was demonstrated to enable

asymmetric noise levels between the two stable expression states, although the toggle switch

was otherwise constructed symmetrically and with constant average burst sizes (cf. Fig 6.3).

However, the analysis of the reduced bursting model once again illustrated the predominant role

of bursts in noise regulation and suggested that an efficient adaptation of noise patterns in the

toggle-switch may be achieved through state-dependent burst characteristics.

Although noise in gene expression and regulation has been theoretically studied in many other

publications as well (cf. Section 2.2.3), the work at hand differs in the approaches that were

used or developed and partially also in its goals: Throughout the present study, all stochastic

approaches were derived from the chemical master equation in order to obtain a detailed char-

acterization of noise. In contrast, many other publications directly started with a description

using the Langevin formalism [Ozbudak et al., 2002; Simpson et al., 2003; Zheng et al., 2011],

where Gaussian white noise terms are added to deterministic rate equations. The latter ansatz

obscures the real structure of fluctuations, but turned out to be valuable for studying approxi-

mate effects of noise in larger reaction systems [Ceccato and Frezzato, 2018]. While in principle,

the hLNA can also be regarded as a deterministic description with an added Gaussian noise

term, the particular formulation of the hybrid deterministic equations was motivated by the

trial to achieve a closer approximation to the CME. In addition, the analysis of the temporal

structure of fluctuations was derived from the CME as well and revealed a fluctuation pattern

which might significantly deviate from white noise due to high asymmetry. The combination of

information about the variance and structure of fluctuations could characterize circuit noise in

a comprehensive manner, which was one of the main focuses of this study. Besides that, the an-

alytical studies of connections between properties of the circuit and the different noise measures

form a contrast to those that are mainly simulation-based [Cagatay et al., 2009; Jaruszewicz

and Lipniacki, 2013; Maamar et al., 2007]. The latter studies are again valuable for studying

more complex regulatory systems, while the analytic approach helped in the derivation of more

general results and insights. On the other extreme, several studies dealt with exact solutions

of the chemical master equation [Friedman et al., 2006; Houchmandzadeh and Vallade, 2015;

Paulsson and Ehrenberg, 2000; Shahrezaei and Swain, 2008; Walczak et al., 2012]. While pro-

viding fundamental knowledge, e.g. about the analytical protein distribution in basic regulatory

systems, their approaches are usually restricted to systems with very low complexity, whereas

the approximate approaches presented here are more flexible.

An improved, generalized understanding of the emergence and propagation of circuit noise is

beneficial in various applications: Using the methods proposed here, one may study and compare

different circuit architectures and interpret the findings with respect to the functionality of the

noise pattern that is generated. This would be an important step towards the identification

of evolutionarily shaped design principles of noise and heterogeneity [Lehner, 2008]. In this

work, the circuit triggering the entry of S. mutans cells into the competence cascade has been

discussed. Its activation only occurs in a subpopulation of isogenic cells, but seems to be

unidirectional, as observed experimentally [Reck et al., 2015]. This was postulated to be the

result of an asymmetrical distribution of noise levels between the two stable expression states,

and it was explained how this could be achieved on a genetic level. Here, the fact was used

that in general, the strength of fluctuations in a certain expression state is associated with its

robustness. However, a generalized quantitative analysis of robustness (e.g. in terms of first

passage times) based on noise patterns has not yet been established. An accurate prediction or
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design of population heterogeneity is therefore not possible yet, but the local noise levels provide

at least good qualitative indications on robustness, as confirmed by the simulations in Fig 5.5.

The examination of noise patterns is also expected to be valuable in the field of biotechnology

[Levchenko and Nemenman, 2014]. For example, artificial cellular switches may become better

controllable through model-guided genetic manipulations that lead to noise reduction [Cardelli

et al., 2016]. As shown before for monostable systems, efficient noise attenuation can be achieved

through a relative increase in transcriptional activity, which is balanced by reduced translation

[Ozbudak et al., 2002], since this suppresses protein bursts2. The present work has demonstrated

that under positive feedback regulation, one additionally needs to take into account the possible

generation of super-bursts, which might destabilize the system. They can be partially prevented

through feedback regulation with high cooperativity, whose strongly sigmoid transcriptional

propensity function is locally flat in the two stable expression states, ensuring a homogeneous

temporal distribution of bursts.

Similar considerations can be made in applications of synthetic biology [Bandiera et al., 2016;

Murphy et al., 2010]. Until now, the design of artificial circuits has mostly been based on

deterministic considerations only, which worked well in many cases, e.g. in the construction

of the genetic toggle switch [Gardner et al., 2000]. However, since these circuits have never

been subject to evolutionary pressure, designing their noise levels might be equally important

in order to ensure functionality [Oyarzún et al., 2015]. This does not only hold for bistable

systems, which have been considered here, but also for circuits showing oscillatory behaviour

[Elowitz and Leibler, 2000; Potvin-Trottier et al., 2016].

Synthetic circuits are probably the ones suited best for verifying the results of this or of similar

studies experimentally: They are expected to show only few interference with other intracellular

processes, although some global regulators, environmental triggers, and, of course, cell cycle

dynamics inevitably affect the dynamics of any circuit. Using apt single-cell analysis techniques

like microfluidics coupled to time-lapse microscopy, at least extracellular disturbances can be

minimized and the population could be kept in a stationary state [Grünberger et al., 2015].

However, the volume of cells constantly varies because of growth and division – a fact that has

been neglected in this study, not because it is considered unimportant, but because it severely

aggravates the analytical treatment of models: The constant but stochastic change in cellular

volume, the discrete doubling of gene dosage during replication, and the random distribution

of cellular components on daughter cells in the course of division [Huh and Paulsson, 2011]

– all these factors influence the stochasticity of the circuit and keep the metabolic state of

a cell changing. Even average concentrations of cellular components are usually subject to

some regular deterministic fluctuations [Bierbaum and Klumpp, 2015], so that the analysis of

stationary states is in principle not possible. Due to the complexity of the processes, such

studies need to be simulation-based, which aggravates the deduction of general rules from the

obtained results. It therefore makes sense to first analytically study the isolated gene regulatory

system in stationary state, as it was done here, and to then check which of the observations

can still be confirmed based on simulations including the cell cycle and based on experimental

data. Several interesting studies have already been performed that modeled gene expression

under the influence of cellular dynamics [Gomez et al., 2014; Lu et al., 2004; Luo et al., 2013].

However, the mechanisms regulating cell cycle itself and the various mutual interactions with

2This constellation of strong transcription and weak translation, which leads to high mRNA levels, is actually
highly inefficient from an energetic perspective, but is justified under the aspect of noise reduction and is therefore
expected to be relevant in many natural circuits, too.
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gene expression3 are highly intricate and not fully understood even in E. coli [Adiciptaningrum

et al., 2016; Taheri-Araghi et al., 2015; Wallden et al., 2016; Wang and Levin, 2009; Wang et al.,

2010; Willis and Huang, 2017]. Further experimental and theoretical research is therefore still

required.

Besides the negligence of cell growth and division, further model simplifications have been

made in this study, among which was the description of reactions as non-elementary processes.

In particular, transcription and translation are actually events that are composed of many single

steps, which were assumed to be fast enough to be lumped into a single process. However, it is

known that this assumption is not always valid: For example, irregular elongation dynamics were

shown to be a potential trigger of transcriptional bursts [Chong et al., 2014]. In this context, one

can also revisit the two model reductions made in the analysis of the genetic toggle switch: In

the first, the mRNA dynamics were assumed to be fast enough to be averaged out – a conjecture

that is rather frequently made, at least in deterministic modeling [Alon, 2007; Gardner et al.,

2000; Süel et al., 2006]. However, the second model reduction showed that if mRNA dynamics

are only faster than those of protein degradation, but not of protein formation, protein bursts

emerge that have a major impact on noise. The omission of intermediate components or reaction

steps may thus distort the true behavior and properties of the system. But again, even the most

simplified description of the toggle switch provided beneficial insights into some basic regulatory

principles of the circuit, which were shown to also hold in the more complex model formulations.

Another problem occurs when using non-elementary reactions: All these events actually re-

quire some time, so that the effect of feedback regulation is always subject to a certain temporal

delay. An inclusion of these delays into the model is possible, but again, this renders the

mathematical analysis more complicate. Nevertheless, this would be a valuable further step in

the examination of gene expression noise, since interesting fluctuation patterns exhibiting e.g.

oscillatory behavior might occur [Bratsun et al., 2005].

A further model simplification, which has already been mentioned in the beginning of Chapter

2, is the assumption of spatial homogeneity – actually a prerequisite for the application of the

chemical master equation. Although in this work, the CME was used as the gold standard,

to which all other approaches were compared, one should keep in mind that even the CME,

no matter how detailed its formulation is chosen, would never be capable of describing the

system accurately. Only a comparison with experimental data will show which of the simplifying

assumptions are valid and which are not, but since this would entail a lot of new challenges

(uncertainty of measured data, superposition of intrinsic noise with other biological sources of

stochasticity, parameter estimation in a stochastic regime, etc.), this was beyond the scope of

this study.

3The production of proteins may influence the state of the cell either directly through the properties of the
protein (e.g. toxicity, or a role in metabolism as an enzyme) or indirectly through metabolic burdening. On the
other hand, the changing volume and composition of a cell during the cell cycle affects the reaction propensities
and makes them time-dependent. All these mutual interactions depend on the average growth rate and therefore
also on the environment [Hintsche and Klumpp, 2013; Klumpp and Hwa, 2014; Marguerat and Bähler, 2012].
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7.2. Conclusions and Future Directions

This study has dealt with the detailed characterization of intrinsic noise in multistable gene

expression systems. For this characterization, a theoretical framework was established and

applied, which enables an expression-state-specific description and prediction of mRNA and

protein noise based on the stochastic reaction propensity functions of the circuit. This framework

thus allows the quantitative examination of microheterogeneities. Since local noise, if large

enough, may lead to random state transitions, qualitative statements about macroheterogeneity

could be deduced as well. This, on the one hand, allows the prediction of noise patterns based

on the topological and dynamic features of a given circuit; on the other, it helps in the design

of circuits with defined stochastic properties. In particular, manipulations on the genetic level

can be identified which lead to the desired modulations of noise levels.

A comprehensive characterization of intrinsic noise was ensured through the combination

of different noise measures: Population distributions of mRNA and protein copy numbers were

specified via the mean values and variances of the single peaks in the probability mass functions.

Additionally, the temporal structure of protein fluctuations and their skewness were described

with the help of translational bursting properties. To this end, novel mathematical methods

were developed, which provide closed-form approximations of the state-specific noise measures,

showing their dependence on the reaction propensities. This dependence could also be depicted

graphically through illustrations that resemble deterministic phase plots. Through this visual

connection, the intuitive understanding of the emergence and propagation of circuit noise was

promoted. Additionally, connections between all the different noise measures were examined in

order to enhance their interpretability. Based on these insights, statements were derived about

how fluctuations within expression states can be influenced locally through genetic manipula-

tions, and how the noise levels of different states can be adjusted rather independently of each

other in order to create desired noise patterns. The framework is basically applicable to all

kinds of genetic circuits, although the obtained closed-form solutions might become intricate for

systems with many reactions and reactive species. In this work, it was tested on two common

regulatory motifs, namely a single-gene expression system with autoregulated transcription, and

the genetic toggle switch, where two gene products mutually inhibit each other.

Compared to simple models of linear gene expression, the regarded circuits exhibited two ad-

ditional features, namely feedback regulation and a nonlinear translational propensity function.

These features turned out to have a significant influence on local noise levels by making protein

burst frequencies and sizes vary in accordance with the current state of the system, thereby am-

plifying or attenuating noise propagation. Nonlinear translation was also shown to enable highly

different bursting regimes in the two expression states of a bistable system. Through this asym-

metric distribution of noise levels, unidirectional state-transitions are promoted. This might

play a role in cellular decision-making, like in the bimodal development of genetic competence

in isogenic S. mutans populations.

The newly developed mathematical methods succeeded in overcoming the two expected chal-

lenges mentioned in the beginning (cf. Chapter 1); namely finding a way to characterize intrinsic

noise in an expression-state (or subpopulation-specific) manner, and formulating these local noise

characteristics in terms of (approximate) closed-form expressions: First of all, each mode in the

probabilistic state distribution was associated with one stable fixed point of a corresponding

deterministic description. Local simplifications of the stochastic model around the fixed points

then led to closed-form noise estimates. The deterministic description used here was newly de-
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veloped in order to appropriately describe the dynamics of mesoscopic systems. This resulted

in an improved quality of noise estimates compared to classical approaches like the linear noise

approximation, which is based on rate equations.

Despite the improvement of the deterministic model, it could be shown that deviations be-

tween deterministic bistability and stochastic bimodality may occur: A systematic study sup-

ported by graphical methods demonstrated that translational bursts may cause the coalescence

of multiple modes or the formation of new modes through stochastic bifurcations, which cannot

be captured by any kind of deterministic model. In these cases, a state-dependent character-

ization of noise using the novel theoretical framework is not possible, due to the missing link

between modes and fixed points.

After having established a basic, comprehensive framework for characterizing intrinsic noise

patterns, the following steps are recommended for future work: First of all, the gained knowl-

edge might be used to further establish approaches with which transition probabilities between

different expression states can be predicted. This would allow a full quantitative description

and prediction of phenotypic heterogeneity. To this end, it might be valuable to relate the in-

formation about local noise levels to more global properties of the circuit, e.g. to the basins of

attraction of the corresponding stable fixed points.

Furthermore, the reliability of the established mathematical framework should be verified

experimentally, using suitable single-cell techniques like microfluidics and different synthetic

constructs for comparison and validation. The inevitable overlap of intrinsic noise with other

contributions to cellular noise, in particular with cell-cycle-dynamics, needs to be resolved. To

that end, established experimental approaches for the discrimination of intrinsic and extrinsic

noise may be used. Moreover, model-based methods, with which the cell cycle dynamics can

either be integrated into the stochastic description of the circuit, or eliminated from the experi-

mental measurements, should make experimental and theoretical data better comparable. This

would show whether the description of intrinsic noise is accurate, or if it needs modification.

Extensions to or modifications of the newly established methods are thinkable and have already

been discussed, e.g. possible extensions of the principles of the hybrid LNA. Moreover, the level

of detail in the description of the circuit may be increased, e.g. through the inclusion of pro-

moter dynamics or through the introduction of time delays for reactions that actually consist of

several reactive steps. After having obtained a full description of cell-associated noise sources,

it could be further extended in order to study the effect of external disturbances. This would

finally yield a full stochastic description of the genetic circuit with which its functionality and

robustness can be assessed.
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A. Calculations for Chapter 3

A.1. Generating functions for the solution of the stationary CME

Generating functions will be used to find a closed-form expression of ps, which is defined through

the CME (3.5). The CME is only considered in the stationary state (ṗs = 0), where it fulfills:

∞∑
b=0

(
Geoα(b) · 1

α
·H(s− b) · ps−b

)
− 1

α
·H(s) ps = − ((s+ 1) ps+1 − s ps)

⇔ ((Geoα − δ.({0})) ∗ H p) (s) = −α ((s+ 1) ps+1 − s ps) . (A.1)

Here, H(s) = 0 ∀ s < 0, and ∗ denotes a discrete convolution. In the following, Zf will denote

the generating function of the array as := f(s), s ∈ N0, which is specified by the real-valued

function f . The generating function of the LHS of the equation is given by:

Z [Geoα−δ.({0})] ∗H p (z) =
(
ZGeoα(z)−Zδ.({0})(z)

)
· ZH p(z) = (ZGeoα(z)− 1) · (ZH ∗ Zp) (z)

=
( ∞∑
s=0

1

1 + α

(
α

1 + α

)s
zs − 1

)
· (ZH ∗ Zp) (z)

=
( 1

1 + α

∞∑
s=0

(
α z

1 + α

)s
− 1

)
· (ZH ∗ Zp) (z)

=
( 1

1 + α
· 1

1− α z
1+α

− 1
)
· (ZH ∗ Zp) (z) = − α (1− z)

α (1− z) + 1
· (ZH ∗ Zp) (z). (A.2)

The generating function of the RHS of Eq (A.1) divided by −α reads:

∞∑
s=0

zs ((s+ 1) ps+1 − s ps) =
1− z
z

∞∑
s=0

zs s ps = (1− z) ∂z Zp(z). (A.3)

All in all, the Z-transform of the whole steady state equation reads

−α (1 − z) ∂zZp(z) = − α (1− z)
α (1− z) + 1

· (ZH ∗ Zp) (z) (A.4)

or, after some simplification:

(α (1− z) + 1) ∂zZp(z) = (ZH ∗ Zp) (z). (A.5)

One can easily show that ∂zZp(z) = Z(s+ 1) ps+1
. Backtransformation thus yields

α (s+ 1) ps+1 − α s ps + (s + 1) ps+1 = H(s) ps, (A.6)

from which follows the simplified recursive steady state condition in Eq (3.6).
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A. Calculations for Chapter 3

A.2. Mean and variance of the stochastic distribution

The calculation of the dynamics of the mean value and variance of the protein copy number S

is performed as explained in Section 2.1.2 (cf. Eq (2.12) for the general calculation):

Ė[S] =
∞∑
s=0

s ṗs

=

∞∑
s=0

[ ∞∑
b=0

(
Geoα(b)

1

α
H(s− b) s ps−b

)
− 1

α
H(s) s ps + s (s+ 1) ps+1 − s2 ps

]

=
∞∑
s=0

[ ∞∑
b=0

(
Geoα(b)

1

α
H(s) (s+ b) ps

)
− 1

α
H(s) s ps + (s− 1) s ps − s2 ps

]

=
∞∑
s=0

[( ∞∑
b=0

b Geoα(b)

)
1

α
H(s) ps +

( ∞∑
b=0

Geoα(b)

)
1

α
H(s) s ps −

1

α
H(s) s ps − s ps

]

=

∞∑
s=0

[
α

1

α
H(s) ps − s ps

]
= E[H(S)] − E[S]. (A.7)

The third equality was obtained through an index shift in s (note that ps = 0 for negative s).

In the fifth equality, the fact that Geoα(b) is a probability distribution with mean α was used.

In a similar manner, the variance of S is computed. The ODE of the second moment E[S2] is

given by:

Ė[S2] =
∞∑
s=0

s2 ṗs

=
∞∑
s=0

[ ∞∑
b=0

(
Geoα(b)

1

α
H(s− b) s2 ps−b

)
− 1

α
H(s) s2 ps + s2 (s+ 1) ps+1 − s3 ps

]

=
∞∑
s=0

[ ∞∑
b=0

(
Geoα(b)

1

α
H(s) (s+ b)2 ps

)
− 1

α
H(s) s2 ps + (s− 1)2 s ps − s3 ps

]

=
∞∑
s=0

[( ∞∑
b=0

b2 Geoα(b)

)
1

α
H(s) ps + 2

( ∞∑
b=0

bGeoα(b)

)
1

α
H(s) s ps +

+

( ∞∑
b=0

Geoα(b)

)
1

α
H(s) s2 ps −

1

α
H(s) s2 ps − 2 s2 ps + s ps

]

=
∞∑
s=0

[
(2α+ 1)H(s) ps + 2H(s) s ps − 2 s2 ps + s ps

]
= (2α+ 1)E[H(S)] + 2E[S H(S)] − 2E[S2] + E[S] (A.8)

The ordinary differential equation of the variance Var(S) = E[S2]− E[S]2 reads:

˙Var(S) = Ė[S2] − 2E[S] Ė[S]

= 2 Cov(S,H(S)) + (E[H(S)] + E[S]) + 2αE[H(S)] − 2 Var(S). (A.9)
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A.3. Comparing the robustness of expression states in different

bimodal systems

In Section 3.4.2, three different pairs of bimodal systems are compared. Here, we perform this

comparison mathematically for two of the bimodal pairs (corresponding to panels (B) and (C)

in Fig 3.4).

A.3.1. Comparison of cooperative and non-cooperative systems

Let

H1(s) = a+ v1
sh

sh +K1
, h ≥ 2, and

H2(s) = a+ v2
s

s+K2
(A.10)

be two functions expressing a saturated feedback mechanism, the first one being cooperative, the

second non-cooperative. Moreover, let (.+α+1) and H1 possess two positive intersection points

smin and smax, which are identical to the only two positive intersection points of (.+α+ 1) and

H2. In this section, we show that

|H1(s)− (s+ α+ 1)| ≥ |H2(s)− (s+ α+ 1)| (A.11)

holds for all s ≥ 0.

The proof is given as follows: Since H2 is concave, for the above conditions to be met, it can

easily be derived that

• H2(s) < s+ α+ 1 ∀s ∈ [0, smin)

• H2(s) > s+ α+ 1 ∀s ∈ (smin, smax)

• H2(s) < s+ α+ 1 ∀s ∈ (smax,∞).

Therefore, it is sufficient to prove that

• H1(s) < H2(s) ∀s ∈ (0, smin)

• H1(s) > H2(s) ∀s ∈ (smin, smax)

• H1(s) < H2(s) ∀s ∈ (smax,∞).

As a first step, we prove that v1 < v2. Solving both conditions H1(smin) = H2(smin) and

H1(smax) = H2(smax) for K1 and equating the resulting expressions leads to

v1

v2
=

shmax − shmin
shmax − shmin + K2 (sh−1

max − sh−1
min)

. (A.12)

This fraction is smaller than 1.

First, this fact is used in order to prove that 0, smin and smax are the only intersection points

between H1 and H2. Reformulating the equation H1(s) = H2(s) leads to the following conditions

for nonzero solutions:

g(s) := sh−1 [(v2 − v1) s − v1K2] + v2K1 = 0 (A.13)
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A. Calculations for Chapter 3

The extreme values of g fulfill the condition

g′(s) := sh−2 [h (v2 − v1) s − (h− 1) v1K2] = 0 (A.14)

which has at most one positive solution. From Rolle’s theorem, one can conclude that g has

at most two positive roots. Hence, the only intersection points in positive space correspond to

smin and smax.

Due to the fact that for s → ∞, H1 and H2 converge to a + v1 and a + v2, respectively, the

relation v2 > v1 and the fact that H1(s) 6= H2(s) for all s > smax shows that one the one hand,

H2(s) > H1(s) necessarily holds for all s ∈ (smax,∞).

On the other hand, as H ′1(0) = 0 < v2
K2

= H ′2(0), the inequality H1(s) < H2(s) is fulfilled in

the interval (0, smin).

Finally, it remains to prove that H2 < H1 in (smin, smax). It is sufficient to show that

H ′1(smin) 6= H ′2(smin) or H ′1(smax) 6= H ′2(smax), so that H1 and H2 truly intersect. Suppose

that

v1
K1 h s

h−1
min

(shmin +K1)2
= H ′1(smin) = H ′2(smin) = v2

K2

(smin +K2)2
. (A.15)

Then, by exploiting the relation H1(smin) = H2(smin), this equation can be reformulated as

K1 v2 h

K2 v1
= sh−1

min. (A.16)

In an analogous manner, the assumption H ′1(smax) = H ′2(smax) leads to the contradictory equa-

tion

K1 v2 h

K2 v1
= sh−1

max, (A.17)

which is why the original assumption was wrong and H ′1(smin) 6= H ′2(smin) or H ′1(smax) 6=
H ′2(smax) holds true. �

A.3.2. Comparison of non-cooperative systems with differing burst sizes

Let

H1(s) = a+ v1
s

s+K1
and

H2(s) = a+ v2
s

s+K2
(A.18)

be two functions describing Michaelis-Menten type kinetics. Let furthermore α1 > α2 and let

the equations H1(s) = s + α1 + 1 and H2(s) = s + α2 + 1 have an identical set of solutions

{smin, smax}. Our aim is to show that

|H1(s) − (s+ α1 + 1)| > |H2(s)− (s+ α2 + 1)| , s /∈ {smin, smax} (A.19)

holds true, which counteracts the effect of the difference in the burst sizes with regard to the

robustness of bimodality.
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First, note that for l ∈ {1, 2},

• Hl(s) < s+ αl + 1 ∀s ∈ [0, smin)

• Hl(s) > s+ αl + 1 ∀s ∈ (smin, smax)

• Hl(s) < s+ αl + 1 ∀s ∈ (smax,∞).

Therefore, it suffices to show that

• H2(s)− s+ α2 + 1 > H1(s)− s+ α1 + 1 ∀s ∈ (0, smin)

• H2(s)− s+ α2 + 1 < H1(s)− s+ α1 + 1 ∀s ∈ (smin, smax)

• H2(s)− s+ α2 + 1 > H1(s)− s+ α1 + 1 ∀s ∈ (smax,∞).

K1, K2, v1, and v2 can be determined analytically, using the relations above. The results are:

K1 =
smin smax
α1 + 1− a

,

K2 =
smin smax
α2 + 1− a

,

v1 =
(smin + α1 + 1− a) (smax + α1 + 1− a)

α1 + 1− a
,

v2 =
(smin + α2 + 1− a) (smax + α2 + 1− a)

α2 + 1− a
(A.20)

The evaluation of the first derivative of H1 and H2 at the intersection points smin and smax
reads

H ′l(smin) =
smax smin + smax (αl + 1− a)

smax smin + smin (αl + 1− a)
,

H ′l(smax) =
smax smin + smin (αl + 1− a)

smax smin + smax (αl + 1− a)
, (A.21)

for l ∈ {1, 2}. The dependence of the expressions on αl shows that

H ′1(smin) > H ′2(smin) and

H ′1(smax) < H ′2(smax). (A.22)

The equation H ′2(s) − H ′1(s) = 0 has only one positive solution (analytical calculation not

shown), so that smin and smax are the only intersection points of H1(s) − s − α1 − 1 and

H2(s)− s− α2 − 1 according to Rolle’s theorem. Hence, one can conclude from the derivatives

at the intersection points that the above conditions are fulfilled. �
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B. Calculations for Chapter 4

B.1. Means, variances, and covariances of the stochastic distribution

The mean value of M using the CME (4.2) is calculated as follows (cf. the theory in Section

2.1.2):

Ė[M ] =

∞∑
s=0

∞∑
m=0

(
[m F (s) pm−1,s − m F (s) pm,s + m (m+ 1) pm+1,s − m2 pm,s] ·

1

ν

+ [m G(m) pm,s−1 − m G(m) pm,s + m (s+ 1) pm,s+1 − m s pm,s]
)

=
∞∑
s=0

∞∑
m=0

((
F (s) − m

)
pm,s

)
· 1
ν

=
(
E[F (S)]− E[M ]

)
· 1
ν
.

In an analogue manner,

˙Var(M) =
(
E[F (S)] + E[M ] − 2 Var(M) + 2 Cov(M,F (S))

)
· 1

ν

Ė[S] = E[G(M)]− E[S]

˙Var(S) = E[G(M)] + E[S] − 2 Var(S) + 2 Cov(S,G(M))

˙Cov(M,S) =
1

ν
·Cov(S, F (S)) + Cov(M,G(M)) − 1 + ν

ν
·Cov(M,S) (B.1)

For calculating stationary distributions, the above ODEs are all set to 0 and the obtained

system of equations is solved, which leads to the implicit relations:

E[M ] = E[F (S)]

Var(M) = E[M ] + Cov(M,F (S))

E[S] = E[G(M)]

Var(S) = E[S] + Cov(S,G(M))

Cov(M,S) =
Cov(S, F (S)) + ν ·Cov(M,G(M))

1 + ν
. (B.2)
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B.2. Generating functions for the calculation of the stationary

marginal mRNA distribution

The stationary marginal mRNA distribution is given in Eq (4.6). Transformation of this equation

using generating functions yields:

0 =

∞∑
s=0

[
F (s)

∞∑
n=0

(z − 1) zn p∗n,s

]
− (z − 1)

∂

∂z

( ∞∑
n=0

zn pM∗n

)
,

⇔ 0 =
∞∑
s=0

[
F (s)

∞∑
n=0

zn p∗n,s

]
− ∂

∂z

( ∞∑
n=0

zn pM∗n

)
(B.3)

Backtransformation leads to the recursive version of the solution given in Eq (4.7).

B.3. Application of the classical and hybrid linear noise

approximation to the full reaction system

Here, the LNA is applied to the full reaction system (4.1). The following formulae are valid

for both the classical and the hybrid LNA; the difference lies in the values of the deterministic

stable fixed points m∗ and s∗ (and therefore in the stationary protein-to-mRNA ratio r∗), as

well as in those of the local derivatives f∗ and g∗.

In order to formulate the vectors and matrices required for the Lyapunov equation (2.29), with

which the local variance-covariance-matrix can be estimated, we first define the stoichimetric

matrix and the vector of stationary propensities:

A =

(
1 −1 0 0

0 0 1 −1

)
(B.4)

w(m∗, s∗) =
(

1
ν m

∗ 1
ν m

∗ s∗ s∗
)>

(B.5)

The stationary Jacobian matrix J∗ = (v∗i,l) i=1,...,M,
l=1,...,M

has already been given in Eq (4.14). The

diffusion matrix D∗ = D(m∗, s∗) reads:

D∗ = A ·diag(w(m∗, s∗)) ·A> =

(
2 1
ν m

∗ 0

0 2 s∗

)
(B.6)

Since D∗ = (d∗i,l) i=1,...,M,
l=1,...,M

is a diagonal matrix and M = 2, the method proposed in [Tomioka

et al., 2004] can be applied which gives a general, direct formulation of Σ∗:
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B. Calculations for Chapter 4

Σ∗ = − 1

2

d∗1,1
v∗1,1 + v∗2,2

((
1 0

0 0

)
+

1

v∗1,1 v
∗
2,2 − v∗1,2 v∗2,1

(
(v∗2,2)2 −v∗2,1 v∗2,2
−v∗2,1 v∗2,2 (v∗2,1)2

))

− 1

2

d∗2,2
v∗1,1 + v∗2,2

((
0 0

0 1

)
+

1

v∗1,1 v
∗
2,2 − v∗1,2 v∗2,1

(
(v∗1,2)2 −v∗1,2 v∗1,1
−v∗1,2 v∗1,1 (v∗1,1)2

))

= m∗
1

1 + ν

((
1 0

0 0

)
+

ν

1− f∗ g∗

(
1 g∗

g∗ (g∗)2

))

+ s∗
ν

1 + ν

((
0 0

0 1

)
+

1

ν (1− f∗ g∗)

(
(f∗)2 f∗

f∗ 1

))
. (B.7)

A reformulation of Σ∗1,1 and Σ∗2,2 yields the following approximate expressions for Var∗(M) and

Var∗(S):

Var∗(M) ≈ m∗
[
1 +

f∗

(g∗)−1 − f∗

(
ν

1 + ν
+

1

1 + ν
· r∗ f

∗

g∗

)]

Var∗(S) ≈ s∗
[
1 +

1

(g∗)−1 − f∗

(
f∗

1 + ν
+

ν

1 + ν
· g
∗

r∗

)]
. (B.8)

B.4. Application of the hybrid linear noise approximation to the

reduced system

The mean value of the CME of the reduced reaction scheme (4.32) obeys (with F (s) = 0 if

s < 0):

Ė[S] =
∞∑
s=0

[ ∞∑
b=0

(
1

ν
· s F (s− b) Geoα(F (s−b))(b) ps−b

)
− 1

ν
· s F (s) ps + s (s+ 1) ps+1 − s2 ps

]

=
∞∑
s=0

∞∑
b=0

(
1

ν
· b F (s) Geoα(F (s))(b) ps

)
−
∞∑
s=0

s ps =
∞∑
s=0

(
1

ν
·F (s) α(F (s)) ps

)
− E[S]

=

∞∑
s=0

Ḡ(F (s)) ps − E[S] = E[Ḡ(F (S))] − E[S]. (B.9)

For the formulation of the hybrid deterministic model, the small noise assumption is made for

the protein level again, so that the deterministic formulation

ċs = Ḡ(F(cs)) − cs (B.10)

is obtained (it also holds for constant F ). Its fixed points c∗s correspond to those of the full

hybrid deterministic model. In the subsequent calculations for the hLNA, linearization is thus

performed around the same protein level.

Next, the vectors and matrices that are required for LNA are calculated. Since bursts of any

size can occur, the stochastic matrix A has an infinite number of columns.
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B.5. Hybrid linear noise approximation with NB distributed protein copy number

A =
(
−1 0 1 2 3 . . .

)
w(s∗) =

(
s∗ 1

ν ·Geo r∗ν(0) ·F (s∗) 1
ν ·Geo r∗ν(1) ·F (s∗) 1

ν · Geo r∗ν(2) ·F (s∗) . . .
)>

J∗ = g∗ · f∗ − 1

D(s∗) = s∗ +

∞∑
b=0

1

ν
b2 Geo r∗ν(b) ·F (s∗)

= s∗ + r∗ (1 + 2 r∗ ν) ·F (s∗)

= 2 · s∗ · (1 + r∗ ν) (B.11)

Here, g∗ := d Ḡ(cm)
d cm

|cm=F(c∗s) and r∗ := s∗

F (s∗) . The one-dimensional equation can be written as

Σ = − D∗

2J∗ , so that the approximate local variance of the protein copy number reads

Var∗(S) = s∗ · 1 + r∗ ν

1 − f∗ g∗
= s∗

[
1 +

1

(g∗)−1 − f∗

(
f∗ +

r∗ ν

g∗

)]
. (B.12)

B.5. Hybrid linear noise approximation with NB distributed protein

copy number

The NB-based iterative hLNA can be implemented as follows:

Pseudoalgorithm

• Initialization:

Set F̄ (s) := F (s) ∀ s ∈ R≥ 0 and Ḡ(m) :=
∑∞

n=0G(n) ·Poism(n) ∀m ∈ R≥ 0.

• Update stationary states:

Choose m∗ and s∗ as solutions of

s∗ = Ḡ(F̄ (s∗))

m∗ = F̄ (s∗)

and return the values.

• Update Fano factors:

Calculate the derivatives F̄ ′(s) and Ḡ′(m) and the Fano factors

η∗(M) = 1 +
F̄ ′(s∗)

(Ḡ′(m∗))−1 − F̄ ′(s∗)

(
ν

1 + ν
+

1

1 + ν
· s∗ · F̄ ′(s∗)
m∗ · Ḡ′(m∗)

)
η∗(S) = 1 +

1

(Ḡ′(m∗))−1 − F̄ ′(s∗)

(
F̄ ′(s∗)

1 + ν
+

ν

1 + ν
· m
∗ · Ḡ′(m∗)
s∗

)
(B.13)
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B. Calculations for Chapter 4

Return the Fano factors.

• Update effective rates:

If η∗(M) > 1 set

Ḡ(m) =
∞∑
n=0

G(n) ·NBm, η∗(M)(n)

else Ḡ(m) =
∞∑
n=0

G(n) ·Poism(n)

If η∗(S) > 1 set

F̄ (s) =

∞∑
r=0

F (r) ·NBs, η∗(S)(r)

else F̄ (s) =
∞∑
r=0

F (r) ·Poiss(r)

Go back to step where stationary states are updated unless the stopping criterion is ful-

filled.

The PMF NBx,η of the negative binomial distribution with mean x and Fano factor η has

been defined in Eq (4.42). Poisx denotes the PMF of the Poisson distribution with mean x. The

stopping criterion could for example be fulfilled when the values of m∗, s∗, η∗(M), and η∗(S)

stop changing significantly between consecutive iterations, indicating consistency between all

four estimates.

The idea behind this algorithm is to use the mRNA and protein variances that have been

obtained with the Poisson-based hLNA (which was developed in Section 4.3) in order to for-

mulate improved approximations of local mRNA and protein PMFs. Based on these PMFs,

the formulation of the locally averaged rates F̄ and Ḡ is adapted. Usually, negative binomial

distributions are chosen as a basis for the approximate PMFs. However, since NB distributions

are always super-Poissonian, this procedure only works if η∗(M) and η∗(S) are larger than 1.

Otherwise, the Poisson distribution is used instead1. If the system is multistable, the algorithm

needs to be run for each state separately, and in each iteration it needs to be taken care that

the correct stable steady state m∗, s∗ is selected.

The algorithm however raises some questions: First of all, it is not guaranteed that mRNA

and protein distributions can in any case be well approximated by an NB distribution. This

might be a problem since the chosen approximate PMFs have a major impact on the estimated

fixed points and Fano factors, whose consistency is the only criterion by which their quality can

be intrinsically assessed. It might thus be reasonable to somehow take the uncertainty of the

approximate PMFs into account.

Second, the consistency between the local fixed point and Fano factor estimates is never

checked simultaneously: In the i-th iteration, the current values of m∗〈i〉 and s∗〈i〉 are used to

1In case of the mRNA distribution, the Poisson PMF has been shown to be a good approximation anyway.
In case of the protein distribution, using the Poisson distribution usually yields an effective rate F̄ which is close
to F . This is because the protein copy number is typically high so that the local averaging effect of a Poisson
distribution is small. The Poisson PMF is therefore expected to yield good estimates in case of sub-Poissonian
distributions as well.
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obtain new estimates of η∗(M)〈i〉 and η∗(S)〈i〉, but the effective rates based on these Fano

factors might yield updated stable states m∗〈i+1〉 and s∗〈i+1〉 that differ from the previous ones.

This shows that the estimates in the i-th iteration were not consistent, and it is not guaranteed

that this inconsistency is reduced in the course of iterations. In other words, the convergence

of the algorithm is not ensured. Moreover, it is unclear whether the algorithm is robust, i.e.

whether its convergence depends on the initialization of the algorithm or not.

In order to perform some preliminary tests, the algorithm was applied to the system in Fig 4.5

(C) for ν = 0.01 and for ν = 0.1, where the Poisson-based hLNA yielded inaccurate estimates

(in particular concerning s∗). It has been discussed that the reason for the observed deviations

might be large protein noise, which is neglected in the Poisson-based hLNA formulation, although

it may have a strong impact on the effective transcription rate. The results of the NB-based

hLNA are summarized in Table B.1: It shows the mean and Fano factor estimates during the first

iterations (“iter”), where the 0-th iteration corresponds to the values obtained from Poisson-

based hLNA, with which the algorithm is initialized. The values extracted from stochastic

simulations (with SEMs) are given in the last row (“true”).

Table B.1.: Mean and Fano factor estimates according to the iterative NB-based hLNA.

ν = 0.01 ν = 0.1

iter s∗

[ · 10]
η∗(S) m∗

[ · 10−1]
η∗(M) s∗

[ · 10]
η∗(S)
[ · 10]

m∗

[ · 10−1]
η∗(M)

0 4.258 6.503 2.532 1.026 4.258 3.710 2.532 1.168

1 3.889 7.037 2.315 1.029 2.377 5.291 1.438 1.254
2 3.856 7.084 2.296 1.029 1.821 5.347 1.120 1.255
3 3.853 7.088 2.294 1.029 1.812 5.345 1.114 1.254
10 3.853 7.088 2.294 1.029 1.812 5.346 1.114 1.254

true 3.79
±0.13

7.72
±0.63

2.26
±0.08

1.03
±0.01

2.08
±0.28

4.20
±0.30

1.26
±0.18

1.19
±0.03

Obviously, convergence happened very fast in these two examples: After ten iterations, the

values stayed constant. In the system where ν = 0.01, all estimates could be improved compared

to Poisson-based hLNA. For ν = 0.1, the local mean value estimates moved closer to the true

values in the course of the iterations, while the mRNA and protein Fano factors were both

slightly overestimated. Choosing different, quite arbitrary initial PMFs lead in both systems to

the same estimates after few iterations (data not shown), indicating that the algorithm worked

robustly in these cases.

All in all, the idea behind the algorithm seems to be promising, but a lot of further studies

about convergence and quality still need to be performed.
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C. Calculations for Chapter 5

C. Calculations for Chapter 5

C.1. Noise in systems with saturated translational propensity

In order to compare the local Fano factors of different stable expression states in a bistable

system with concave translational propensity function, the dependence of Ḡ′(m) and of Ḡ
′(m) ·m
Ḡ(m)

on m is studied. Based on that, the values of g∗i and
g∗i
r∗i

i = 1, 2, at the two fixed points

(m∗1, s
∗
1) < (m∗2, s

∗
2) can be compared (cf. Section 5.6.2).

First, the behavior of Ḡ′(m) is regarded. Since G is concave,

G(n+ 1) ≥ 1

2
G(n) +

1

2
G(n+ 2) ∀n ∈ N0. (C.1)

holds. Therefore,

Ḡ′′(m) =

∞∑
n=0

(G(n+ 2) − 2G(n+ 1) + G(n))
mn

n!
e−m ≤ 0 ∀m ∈ R≥0. (C.2)

As a consequence, g∗1 ≥ g∗2. (In an analogous manner, it can be proven that Ḡ is strictly concave,

convex, or strictly convex, whenever G is.)

The monotonicity of Ḡ′(m) ·m
Ḡ(m)

depends on the choice of G. Here, we set

G(m) = u
m

Km +m
(C.3)

as in the main text. In this case, one obtains:

Ḡ′(m) ·m
Ḡ(m)

=

∑∞
n=0(G(n+ 1) − G(n)) m

n

n! e
−m∑∞

n=0
G(n+1)
n+1

mn

n! e
−m

=

∑∞
n=0

Km
(Km+n+1)(Km+n)

mn

n! e
−m∑∞

n=0
1

Km+n+1
mn

n! e
−m

=

∑∞
n=0 h(n) ·h(n+ 1) m

n

n! e
−m∑∞

n=0 h(n+ 1) m
n

n! e
−m ·Km (C.4)

with h(n) := 1
Km+n . Let N :=

∑∞
n=0 h(n+ 1) m

n

n! e
−m be the denominator of the above expres-

sion. Then:

1

Km

d

dm

(
Ḡ′(m) ·m
Ḡ(m)

)

=

(∑∞
n=0 (h(n+ 1)h(n+ 2) − h(n)h(n+ 1)) m

n

n! e
−m) (∑∞

n=0 h(n+ 1) m
n

n! e
−m)

N2

−
(∑∞

n=0 (h(n+ 2) − h(n+ 1)) m
n

n! e
−m) (∑∞

n=0 h(n)h(n+ 1) m
n

n! e
−m)

N2
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=

(∑∞
n=0 h(n+ 1)h(n+ 2) m

n

n! e
−m) (∑∞

n=0 h(n+ 1) m
n

n! e
−m)

N2

−
(∑∞

n=0 h(n+ 2) m
n

n! e
−m) (∑∞

n=0 h(n)h(n+ 1) m
n

n! e
−m)

N2

=

(∑∞
n=0

∑n
k=0 h(k + 1)h(k + 2)h(n− k + 1) mn

k!(n−k)! e
−2m

)
N2

−

(∑∞
n=0

∑n
k=0 h(k + 2)h(n− k)h(n− k + 1) mn

k!(n−k)! e
−2m

)
N2

=
1

N2

∞∑
n=0

n∑
k=0

h(k + 2)h(n− k + 1) [h(k + 1) − h(n− k)]︸ ︷︷ ︸
= 1
Km+k+1

− 1
Km+n−k

=h(k+1)h(n−k) (n−2k−1)

(
n

k

)
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

n∑
k=0

h(k + 1)h(k + 2)h(n− k)h(n− k + 1)︸ ︷︷ ︸
:=H(k)

(n− k)

(
n

k

)
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

n∑
k=0

H(k) (k + 1)

(
n

k

)
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

n−1∑
j=−1

H(j) (j + 1)

(
n

j + 1

)
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

n∑
k=0

H(k) (k + 1)

(
n

k

)
2−n

(2m)n

n!
e−2m

= − 1

N2

∞∑
n=0

H(n) (n+ 1) 2−n
(2m)n

n!
e−2m

+
1

N2

∞∑
n=0

n−1∑
k=0

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

<
1

N2

∞∑
n=0

bn
2
c−1∑

k=0

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

+
1

N2

∞∑
n=0

n−1∑
k=dn

2
e

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

bn
2
c−1∑

k=0

H(k) · (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

bn
2
c−1∑
j=0

H(j) · (n− j)
((

n

j + 1

)
−
(
n

j

))
2−n

(2m)n

n!
e−2m. (C.5)

During this calculation, we twice substituted j = n − k − 1 and used the symmetry of the

binomial coefficient. For k = 0, ..., bn2 c − 1,
((

n
k+1

)
−
(
n
k

))
> 0. Furthermore, k + 1 < n − k.

Therefore, the above expression is negative. From this follows that Ḡ′(m) ·m
Ḡ(m)

is monotonously

decreasing and that
g∗1
r∗1
≥ g∗2

r∗2
.
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C.2. Evaluation of first passage times for the systems in Fig 5.5

The three regulatory systems considered in Fig 5.5 were analytically shown to exhibit different

noise patterns, from which qualitative statements about their relative robustness were deduced

that were verified through stochastic simulations. Here, first passage times (FPTs) of noise-

driven transitions from the inactive (OFF) to the active (ON) state as well as from the ON to

the OFF state are determined computationally based on the simulations. For each system and

switching direction, 103 trajectories have been generated using the Gillespie algorithm, starting

from the OFF (s∗ = 20) and the ON (s∗ = 200) state, respectively. The first passage times τFPT

correspond to the time points when the trajectory reaches the other opposite expression state for

the first time. For different reaction times τf , the percentage of cells for which τFPT < τf holds is

evaluated (these are the cells that have switched during [0, τf ]). The faster this percentage rises,

the less robust is the state. The mean FPT (MFPT) of a switch is determined by taking the

average of the FPTs (given in Table C.1 together with the standard error of the mean). Extreme

robustness of an expression state might impede the determination of the MFPT (note that

MFPTs might be infinite). This case is indicated with the entry “n.a.”. Table C.1 summarizes

the results for the three bistable systems illustrated in Fig 5.5. It shows that in the systems

visualized in panels (A) and (B), where G is linear, the OFF state is more robust than the ON

state. In order to achieve the opposite, one might try to adjust the parameters in F accordingly.

However, the range of modulations is limited as bistability needs to be preserved. Much greater

flexibility is ensured by allowing nonlinear translation propensities (system in panel (C)) that

generate state-dependent burst sizes.

Table C.1.: Percentage of cells that have left their original state within [0, τf ] and MFPTs

Switch Cells having switched during [0, τf ] MFPT
[%] [ · 102]

(A) τf [ · 102] 1.3 2.6 5.1 10.3
OFF → ON 0.00 0.00 0.01 0.01 n.a.
ON → OFF 0.29 0.50 0.78 0.95 3.49± 3.03

(B) τf [ · 10] 0.8 1.56 3.12 6.24
OFF → ON 0.02 0.05 0.11 0.23 2.24± 2.34
ON → OFF 0.28 0.51 0.77 0.94 0.22± 0.20

(C) τf [ · 10] 0.72 1.44 2.88 5.76
OFF → ON 0.19 0.52 0.81 0.97 0.19± 0.15
ON → OFF 0.00 0.00 0.00 0.00 n.a.

In the cases shown here, FPTs are useful for comparing the robustness of different stable

expression states within the same regulatory system. If the aim is to compare different systems,

the reference time scale needs to be defined (e.g. the original process time, or time normalized

with respect to mRNA or protein degradation rates).
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D. Calculations for Chapter 6

D.1. Stochastic description of the fast mRNA limit

On the time-scale defined by τ/ν1, the CME (6.2) reduces in the limit ν1 → 0, ν2 → 0, ν1ν2 = const.

to:

d pm1,s1,m2,s2

d(τ/ν1)
=

F1(s2) pm1−1,s1,m2,s2 − F1(s2) pm1,s1,m2,s2 + (m1 + 1) pm1+1,s1,m2,s2 −m1 pm1,s1,m2,s2

+
([
F2(s1) pm1,s1,m2−1,s2 − F2(s1) pm1,s1,m2,s2 + (m2 + 1) pm1,s1,m2+1,s2 −m2 pm1,s1,m2,s2

]
· δν1

ν2
.

(D.1)

Summation over m2 and s1 yields:

d pm1,s2

d(τ/ν1)
= F1(s2) pm1−1,s2 − F1(s2) pm1,s2 + (m1 + 1) pm1+1,s2 −m1 pm1,s2 . (D.2)

Using Bayes’ theorem, the joint PMF can be re-written as pm1,s2 = pm1|s2 ps2 if ps2 6= 0. The

derivative of the LHS fulfills:

d pm1,s2

d(τ/ν1)
=
d pm1|s2
d(τ/ν1)

· ps2 +
d ps2
d(τ/ν1)

· pm1|s2 ≈
d pm1|s2
d(τ/ν1)

· ps2 , (D.3)

since the protein dynamics are assumed to be constant on the fast time-scale. Cancelling ps2 on

both sides of Eq (D.2) yields Eq (6.4). Analogously, Eq (6.5) is obtained.

On the time-scale of protein dynamics, the mRNA species are assumed to be in their pseudo

steady-state, which means that they are Poisson distributed and E[M1|S2 = s2] = F1(s2) and

E[M2|S1 = s1] = F2(s1), as explained in the main text. Therefore, the joint PMF of S1 and S2

reduces to:

ṗs1,s2 =
∞∑

m1=0

∞∑
m2=0

(
G1(m1) pm1,m2|s1−1,s2 ps1−1,s2 −G1(m1) pm1,m2|s1,s2 ps1,s2

+ (s1 + 1) pm1,m2|s1+1,s2 ps1+1,s2 − s1 pm1,m2|s1,s2 ps1,s2

+
[
G2(m2) pm1,m2|s1,s2−1 ps1,s2−1 −G2(m2) pm1,m2|s1,s2 ps1,s2

+ (s2 + 1) pm1,m2|s1,s2+1 ps1,s2+1 − s2 pm1,m2|s1,s2 ps1,s2
]
· δ
)

= E[G1(M1)|s1 − 1, s2] ps1−1,s2 − E[G1(M1)|s1, s2] ps1,s2

+ (s1 + 1) ps1+1,s2 − s1 ps1,s2

+
[
E[G2(M2)|s1, s2 − 1] ps1,s2−1 − E[G2(M2)|s1, s2] ps1,s2

+ (s2 + 1) ps1,s2+1 − s2 ps1,s2
]
· δ
)
. (D.4)

Inserting the PSS-distributions of the mRNA copy numbers determined above leads to Eq (6.6).
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D.2. Application of the LNA to the genetic toggle switch

The stoichiometric matrix, the vector of stationary propensities, and the diffusion matrix D∗

read:

A =


1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


w(m∗1, s

∗
1,m

∗
2, s
∗
2) =

(
1
ν1
m∗1

1
ν1
m∗1 s∗1 s∗1

δ
ν2
m∗2

δ
ν2
m∗2 δ s∗2 δ s∗2

)>
,

D∗ =


2 1
ν1
m∗1 0 0 0

0 2 s∗1 0 0

0 0 2 δ
ν2
m∗2 0

0 0 0 2 δ s∗2

 . (D.5)

The Jacobian matrix J∗ is given in Eq (6.12). Now, the Lyapunov equation (2.29) needs to

be solved for Σ∗. Due to its symmetry, it is basically an inhomogeneous linear system of 10

equations with 10 unknown variables (these are the variances and covariances) C ·x = b with

C =



− 1
ν1

0 0
f∗1
ν1

0 0 0 0 0 0

g1 −
(

1
ν1

+ 1
)

0 0 0 0
f∗1
ν1

0 0 0

0
f∗2 · δ
ν2

−
(

1
ν1

+ δ
ν2

)
0 0 0 0 0

f∗1
ν1

0

0 0 g2 · δ −
(

1
ν1

+ δ
)

0 0 0 0 0
f∗1
ν1

0 g1 0 0 −1 0 0 0 0 0

0 0 g1 0
f∗2 · δ
ν2

−
(

1 + δ
ν2

)
0 0 0 0

0 0 0 g1 0 g2 · δ − (1 + δ) 0 0 0

0 0 0 0 0
f∗2 · δ
ν2

0 − δ
ν2

0 0

0 0 0 0 0 0
f∗2 · δ
ν2

g2 · δ −
(
δ
ν2

+ δ
)

0

0 0 0 0 0 0 0 0 g2 · δ δ


,

x =



Var(M1)

Cov(M1,M2)

Cov(M1, S1)

Cov(M1, S2)

Var(M2)

Cov(M2, S1)

Cov(M2, S2)

Var(S1)

Cov(S1, S2)

Var(S2)


, b = −



m∗
1

ν1
0

0

0

s∗1
0

0
m∗

2 · δ
ν2
0

s∗2 · δ


, (D.6)

for which a unique solution exists.
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