

Coastal Improvements for Tide Models: the Impact of ALES retracker

G. Piccioni, D. Dettmering, M. Passaro, C. Schwatke, W. Bosch, F. Seitz

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technische Universität München

11th Coastal Altimetry Workshop Frascati, 13-15 June 2018

ПΠ

Outline

- Motivation
- ALES retracker
- Estimation of tides
- Tide gauge dataset
- Evaluation
- Results
- Conclusions
- Outlook

ПΠ

Motivation

- Tides are a large source of errors in coastal altimetry
- Still coastal issues in tide models (Coastal Altimetry Workshop Feb2017)
 - High discrepancies among models in coastal areas
 - Degradation at coast due to extrapolation
 - Effects on ocean models
- Expertise at DGFI-TUM
 - EOT11a
 - ALES retracker
 - ➔ Update EOT

The Adaptive Leading Edge Subwaveform (ALES) Retracker

• Finds optimal subwaveform according to sea state > subwaveform retracking

Number of cycles with correlation ≥ 0.9 with respect to in-situ timeseries

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

- ~ 14 years of high-rate data: Jason-1 + Jason-2
- Solutions for major tidal constituents: M2, N2, S2, K2, K1, O1, Q1, P1
- Along-track solution: node on the track, 30-km cap-size
- Least-squares-based harmonic analysis of weighted SLA corrected for FES2014

- ~ 14 years of high-rate data: Jason-1 + Jason-2
- Solutions for major tidal constituents: M2, N2, S2, K2, K1, O1, Q1, P1
- Along-track solution: node on the track, 30-km cap-size
- Least-squares-based harmonic analysis of weighter SLA corrected for FES2014

- ~ 14 years of high-rate data: Jason-1 + Jason-2
- Solutions for major tidal constituents: M2, N2, S2, K2, K1, O1, Q1, P1
- Along-track solution: node on the track, 30-km cap-size
- Least-squares-based harmonic analysis of weighted SLA corrected for FES2014

- ~ 14 years of high-rate data: Jason-1 + Jason-2
- Solutions for major tidal constituents: M2, N2, S2, K2, K1, O1, Q1, P1
- Along-track solution: node on the track, 30-km cap-size
- Least-squares-based harmonic analysis of weighte SLA corrected for FES2014

What is the impact of ALES at the coast in the estimation of tidal constants with respect to a solution with an ordinary retracker?

From OSTST 2017:

- Extend investigation on different areas
- Is ALES's impact on tides sea-state dependent?

Tide Gauge dataset

- Tidal constants computed from Global Extreme Sea Level Analysis (GESLA) dataset (Woodworth et al. 2017)
- Maximum distance to track: 50 km
- Discarded tide gauges assimilated in FES2014 (Cancet, personal communication)

Evaluation

- Compare SGDR (S) and ALES (A) solutions at the nodes:
 - Number of observations VS distance to the coast: $\Delta obs = obs_A obs_S$
 - Uncertainty of least-squares fit VS distance to the coast: $\Delta \sigma = \sigma_{\rm S} \sigma_{\rm A}$
 - Difference of Root-Mean-Squares (RMS) VS tide gauge at closest node with the

relative difference:
$$\Delta RMS [\%] = \frac{RMS_S - RMS_A}{RMS_S} \cdot 100$$

- Root-Sum Squared (RSS) for overall accuracy: $\Delta RSS [cm] = RSS_S - RSS_A$

Results - Number of Observations

• Computed for all the nodes along-track

ТШТ

Results - Fitting Uncertainty

- Computed for all the nodes along-track
- Smaller fitting error with ALES solutions in 98.5 % of cases

Results - RMS differences

• Average computed for the closest nodes to the tide gauge

Constituents	RMSA [cm]	RMSs [cm]	∆RMS [%]
M2	8.0	8.2	2.4
K 1	2.1	2.2	4.5
S2	3.5	3.7	5.4
N2	2.1	2.3	8.7
K2	1.4	1.6	12.5
01	1.4	1.6	12.5
P1	1.2	1.4	14.3
Q1	0.8	1.1	27.3

Results - RMS differences

• Average computed for the closest nodes to the tide gauge

С	onstituents	RMSA [cm]	RMSs [cm]	ΔRMS [%]
	M2	8.0	8.2	2.4
	K1	2.1	2.2	4.5
	S2	3.5	3.7	5.4
	N2	2.1	2.3	8.7
	K2	1.4	1.6	12.5
	01	1.4	1.6	12.5
	P1	1.2	1.4	14.3
	Q1	0.8	1.1	27.3

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Results - Dependence on track direction

Results - Dependence on track direction

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Results - RSS differences

- Computed for the closest nodes to the tide gauges
- Uneven distribution of improvement
- Average improvement of 0.4 cm with maximum 1.9 cm

Results - RSS differences

- Computed for the closest nodes to the tide gauges
- Improvements of 0.5 cm for nodes closer than 5 km to coast

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

ТШТ

Results – RSS differences

- SWH values from ALES estimations
- No clear dependence on sea state
- Only few examples for high sea states

Positive valuesNegative values

ТЛП

Conclusions

- With ALES larger number of observations available for coastal nodes
- Smaller fitting error, especially at distances < 10 km to coast
- Positive impact of 0.1-0.3 cm on single constituents (2.4 % < Δ RMS < 27.3 %)
- Average improvement for 66 tracks (mean $\Delta RSS = 0.4$ cm) and independent on the location
- $\Delta RSS > 0.5$ cm at distances < 5 km to coast
- Results influenced by flight direction: differences of ca. 2 cm
- Improvements of ALES's tidal solutions have no clear dependence on sea state

Outlook

- Continue use of ALES for coastal tidal analysis
- Dedicated regional analyses
- Analyse impact of ALES on minor tides
- Quantitative impact analysis of additional altimetric corrections on tidal estimation
- Long-term goal: new global EOT model

Thank you!

More on this: Piccioni et al. 2018. Coastal Improvements for Tide Models: The Impact of ALES Retracker. Remote Sens. 2018, 10(5), 700; https://doi.org/10.3390/rs10050700

Thanks to the GESLA authors for the in-situ data! Data downloaded from: **gesla.org** Altimetry data are available on: **https://openadb.dgfi.tum.de**