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Considering Uncertainty in Optimal Robot Control

Through High-Order Cost Statistics
José R. Medina and Sandra Hirche

Abstract—As the application of probabilistic models in robotic
applications increases, a systematic robot control approach con-
sidering the effects of uncertainty becomes indispensable. In-
spired by human sensorimotor findings, in this work we study the
stochastic optimal control problem with high-order cost statistics
in order to synthesize uncertainty-dependent actions in robotic
scenarios with multiple uncertainty sources. We present locally
optimal risk-sensitive and cost-cumulant solutions for settings
with non-linear dynamics, multiple additive uncertainty sources
and non-quadratic costs. The influence of each uncertainty source
on the cost can be individually parameterized offering additional
flexibility in the control design. We further analyze the case in
which static uncertain parameters are involved. Simulations of
several linear and non-linear settings with non-quadratic costs
and an experiment on a real robotic platform validate our
approach and illustrate its peculiarities.

Index Terms—Uncertainty in robot control, stochastic optimal
control, risk-sensitive control.

I. INTRODUCTION

ONE of the core capabilities of intelligent systems is

the appropriate reaction to uncertainties in its environ-

ment as recognized in AI since the late 80’s [1]. While

modern reasoning methods embrace stochastic uncertainties

in a sophisticated way, low level robot control still largely

lacks suitable approaches. State-of-the art stochastic control

methods consider the expected value and ignore higher order

statistics. The objective of this article is to fill the gap between

probabilistic modeling approaches and robot control by pro-

viding a systematic approach to robot control in the presence

of stochastic uncertainties beyond first-order statistics. As

an example, consider the task of grasping an object with

uncertain pose. Its expected value is only a rough estimation

of its probabilistic representation. Its variance, though, may

reveal more certainty in some degrees of freedom; control

design targeting those more aggressively while allowing more

variability in others may be key for task success. Similarly, if

we consider a navigation task in a cluttered environment where

obstacles have different levels of uncertainty, the possibility of

collision may vary significantly depending on obstacle pose

variances. These simple prototypical examples illustrate the

necessity of a systematic and flexible control approach that

considers uncertainty in robotic settings.

Due to the ability of humans succeeding on a wide variety of

tasks, a reliable source of inspiration for robot control design is

human behavior. In recent years neuroscientists have studied
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human sensorimotor control, highlighting their capability to

overcome and even benefit from the effects of noise and un-

certainty [2]. In particular, results in this area show that human

motor control can be modeled as an optimal control problem

with consideration of noise in the dynamics [3]. These findings

motivate many stochastic optimal control approaches for robot

control which minimize the expected value of a stochastic

cost [4], [5]. However, recent results interpret human actions

by means of risk-sensitive optimal control [6]. Intuitively,

a risk-sensitive decision-maker deviates from the expected

optimum in the face of uncertainty by considering not only

the expected value of the stochastic cost but also its variance

and further higher-order statistics (moments or cumulants).

Interestingly, human uncertainty-dependent behavior is not

limited to the effects of sensorimotor noise. Recent studies

demonstrate that human actions are similarly affected by the

uncertainty of task-related variables, such as a goal to reach [7]

or the internal model of a cooperating partner [8]. These

insights motivate us to explore risk-sensitive decision-makers

for prototypical robot control problems where not only the

robot dynamics but also task- and environment-dependent vari-

ables are uncertain. This problem setting naturally arises when

robots are deployed in unstructured environments and must

adapt to unknown surroundings, thereby estimating uncertain

dynamics, goal and obstacle configurations. To the best of

our knowledge, optimal control design considering high-order

statistics under multiple uncertainty sources is still an open

issue with potential application in many robotic scenarios.

In this work we study the stochastic optimal control problem

considering high-order cost statistics in order to synthesize

uncertainty-dependent actions in robotic scenarios with mul-

tiple uncertainty sources. We present locally optimal risk-

sensitive and cost-cumulant solutions for problems with non-

linear dynamics, multiple additive uncertainty sources, un-

certain parameters and non-quadratic costs. The influence

of each uncertainty source on the cost can be individually

parameterized offering additional flexibility in the control

design. Locally optimal solutions are found by iteratively

performing a linear quadratic (LQ) approximation around a

nominal trajectory, solving the local problem in closed form

and updating the trajectory until convergence. Simulations of

several linear and non-linear settings with non-quadratic costs

and an experiment on a real robotic platform validate our

approach and illustrate its peculiarities. Preliminary results

of this work are published in the conference paper [9]; this

article contains a modified problem setting, additional results,

simulations, and experiments.
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A. Related Work

Previous works explore the synthesis of uncertainty-

dependent decisions in robotic settings from an optimality

perspective by modifying the performance measure of de-

terministic settings to account for the uncertainty’s variance

in an application specific way. For instance, enhanced col-

lision avoidance is achieved including an additive cost term

in representing the probability of collision [10]. Similarly,

variance-dependent stiffness is synthesized adding prediction

variance to the performance measure [11]. The inverse of

the variance is also used as a weighting term for measuring

distance to desired states [12], [13]. The heterogeneity of these

solutions reveals the lack of a systematic approach to synthe-

size uncertainty-dependent actions. Control theory offers many

alternatives for decision-making in the face of uncertainty,

such as uncertainty tubes [14] or set-uncertainty to increase

robustness [15], [16]. Among those, risk-sensitive control and

cost-cumulant control provide the additional possibility of

assessing the effect of uncertainty in both a positive (risk-

seeking) and a negative (risk-averse) way. In this work, we

follow this approach, which relies on a statistical interpretation

of the stochastic performance measure, a flexible criterion

independent of the application scenario and therefore valid

as a systematic approach.

Stochastic optimal control in non-linear and non-quadratic

setting is easily trapped under the curse of dimensionality

which prevents from realtime implementations. In this con-

text, local linear-quadratic approximations are an effective

solution. The iterative Linear Quadratic Gaussian (iLQG)

method presented in [17] which is a simplified version of

Stochastic Differential Dynamic Programming (SDDP) [18],

[19] is a recurrent example. The resulting locally optimal

feedback policies have been applied in many robot navigation

problems combined with belief roadmaps [20] or adding the

state variance as a part of an augmented state [4], [21]. All

these approaches consider the expected value of the random

cost as a performance measure, neglecting cost variance. Here,

we also consider higher order cumulants of the cost in order

to capture the influence of uncertainty into robot actions.

The statistics of random costs have been primarily studied

in the context of mathematical finance, initially exploring

mean and variance solutions [22]. Further than the first two

cumulants, the risk-sensitive performance criterion initially

proposed in [23] and widely applied in modern portfolio

theory, considers a weighted sum of all infinite cumulants of

the cost [24] and has closed form solutions in LQ settings.

The discrete-time solution was analyzed in depth in [25].

High-order cost statistics have also been studied in the con-

text of other control approaches, such as game theory, en-

tropy control [16] or polynomial chaos expansion [26], [27].

Roboticists have also recently gained interest in risk-sensitive

control, applying it to stochastic cost functions learned with

Gaussian Processes [28] as well as in approximate inference

control [29], [30]. Risk-sensitive control assumes a specific

weighting in the infinite summation of the cumulants. When

more flexibility in the weightings is needed, cost-cumulant

control is a suitable generalization of the risk-sensitive crite-

rion. Main results for continuous-time LQ settings are found

in [31] or for the discrete-time case in [32]. Although [32]

presents results for quadratic costs, in this work we extend

this result to a more general family of LQ systems includ-

ing a linear term in the cost that enables the application

of dynamic programming for locally optimal solutions in

non-linear non-quadratic settings. We also consider multiple

uncertainty sources and propose a cost functional that enables

an individual assessment of the influence of each uncertainty

source.

The remainder of this article is organized as follows: Sec-

tion II formally defines the problem and exposes the proposed

locally optimal approach. Section III and Section IV present

risk-sensitive and cost-cumulant solutions respectively. The

iteration towards the local optimum is described in Section V.

Examples with static uncertainty sources are presented in VI.

Simulations and an experiment in a real robotic platform are

presented in Section VII. Section VIII presents concluding

remarks.

Notation: N ≻ 0 or N � 0 denote that matrix N is

positive-definite or positive-semidefinite respectively. f(θ)[r]

denotes the r-th derivative of f(θ) w.r.t θ at point θ = 0,

i.e. f(θ)[r] = ∂rf(θ)
∂θr

∣∣∣
θ=0

. An r = 0 index corresponds to the

function itself at θ = 0. Cj
r denotes the binomial coeffi-

cient
(
j
r

)
.

II. PROBLEM SETTING AND APPROACH

Consider a robot with dynamics given by the stochastic

differential equation

dxr(t) = f r(xr(t),u′(t))dt+ Gr(t)dBr(t) , (1)

where xr ∈ R
v, u′ ∈ R

m represent the robot’s state and

control input respectively, Br is a v-dimensional standard

Brownian motion noise defined in the complete probability

space (Ωr,Fr,Pr), Gr ∈ R
v×v is its diffusion coefficient

matrix and xr
0 is the initial state. Additionally, let xg and xo

be a desired trajectory to follow and the state of an obstacle

respectively with stochastic dynamics

dxg(t) = f g(xg(t))dt+ Gg(t)dBg(t)

dxo(t) = f o(xo(t))dt+ Go(t)dBo(t) , (2)

where Bg and Bo are v-dimensional standard Brownian mo-

tion noises defined in complete probability spaces (Ωg,Fg,Pg)
and (Ωo,Fo,Po) respectively, Gg and Go their diffusion

coefficient matrices and x
g
0 and xo

0 their respective initial

states 1.

Remark 1. Throughout this article we will consider this

general form of a non-linear dynamics for the robot, goal,

and obstacle in order to keep the derivations general and

applicable to the different robotic tasks. Needless to say that

any continuous robot dynamics can be expressed in terms

1The emergence of probabilistic models as an effective tool for acquiring
motion models of a desired trajectory [33], [34], obstacles [35] or any
other dynamic elements in unstructured environment motivates stochastic
dynamics (1) and (2).
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of (1). Consider as example an n-link rigid manipulator

represented in joint space with xr = [θT
θ̇
T
]T , u′ = τ and

f
r(xr,u′) =

[
θ̇

M(θ)−1(τ − C(θ, θ̇)− g(θ))

]
,

where θ ∈ Rn are the joint angles, M(θ) is the posi-

tive definite inertia matrix, C(θ, θ̇) ∈ Rn is the vector of

centripetal and Coriolis forces, and τ ∈ Rn are the joint

torques. The additive stochastic uncertainties Gi(t)dBi with

i ∈ {r, g, o} in (1) and (2) can represent unmodelled dynamics

or unknown external wrenches. Analogously, this holds for the

dynamics represented in task space by applying the appropriate

coordinate transformation. An example on a 2-link manipulater

and a further example in terms of a mobile robot with car-like

dynamics is given in Section VII.

In order to keep a compact and general formulation,

let ξ′ ∈ R
n be a joint state comprising all dynamic elements

in the problem with dynamics

dξ′(t) = f (ξ′(t),u′(t))dt+
S∑

s=1

Gs(t)dBs(t) , (3)

where S is the number of independent Brownian motions, Bs

is the corresponding n-dimensional standard Brownian motion

noise defined in the s-th probability space (Ωs,Fs,Ps), Gs its

diffusion coefficient matrix and ξ′0 is the initial state. In our

particular scenario S = 3 and for later convenience we define

the joint state in terms of differences such that

ξ′ =

[
xg − xr

xo − xr

]
ξ′0 =

[
x
g
0 − xr

0

xo
0 − xr

0

]

f(ξ′(t),u′(t)) =

[
fg(xg(t)) − fr(xr(t),u′(t))
fo(xo(t))− fr(xr(t),u′(t))

]

G1 =

[
Gr

0

0 Gr

]
G2 =

[
Gg

0

0 0

]
G3 =

[
0 0

0 Go

]
. (4)

The control goal is to find the input policy that minimizes

cost function

J(ξ′(·),u′(·)) = hTc
(ξ′(Tc)) +

Tc∫

t=0

h(ξ′(t),u′(t))dt , (5)

where Tc is the time horizon, h is the cost rate and hTc

the end term. This performance index is commonly designed

penalizing both the distance of the robot to the desired tra-

jectory xg and the necessary control efforts u′ while favoring

configurations distant to obstacles xo.

The optimal control solution is given by the control

law u′(·) that minimizes (5) constrained to dynamics (3). Note

that cost (5) is a random variable as it is a function of the

random variable ξ
′

which is affected by random variables

dBs with s ∈ {1, ..., S}. To enable the optimization, an

assessment of (5) in terms of a deterministic performance

measure is necessary. A valid approach consists of evaluating

a statistical measure of (5) commonly limited to the expected

value, i.e. EP[J ], and where the expectation is defined in the

product probability space of all uncertainty sources, i.e. the

probability space (Ω,F ,P) given by

Ω = Ω1 × Ω2 × · · · × ΩS , F = F1 ×F2 × · · · × FS , (6)

where × denotes the Cartesian product and P is the joint

measure defined on measurable space (Ω,F). However, this

formulation has two drawbacks. First, all statistics except the

expected value are neglected. The influence of uncertainty on

performance representing for instance the required precision

while following a desired trajectory or the probability of

collision are typically captured only in high-order statistics

of (5). Considering only its expectation ignores this relevant

information in the optimization. Second, the evaluation of

the statistics in probability space (6) considers all random

variables jointly. This limits the way cost variability influences

decisions. It might be desirable that the desired trajectory

uncertainty decreases the overall cost to reflect less tracking

precision or that the robot model uncertainty decreases the

cost to foster exploratory behaviors while, at the same time,

obstacle uncertainty increases the cost as the probability of

collision rises. Considering both contradictory assessments of

cost variability (decreasing and increasing) at the same time

in a systematic way is not possible in probability space (6).

Concerning the first issue, cost-cumulant control [36] general-

izes optimal state feedback solutions to performance measures

given by an arbitrary finite sum of cost cumulants

κ
(1)
P

(J) +

K∑

r=2

γrκ
(r)
P

(J) , (7)

where κ
(r)
P

denotes the r-th cumulant calculated in probability

space (Ω,F ,P) and γr ∈ R ∀r ∈ 2, ..,K. The first moment

and cumulant are equivalent and defined by the expected cost.

The second cumulant is the cost variance and the third and

fourth cumulants are related to the skewness and kurtosis

of the distribution respectively. We will informally refer to

these high-order terms as cost variability indistinctly. Note that

high-order statistical terms are also denoted risk measures in

modern portfolio theory [31]. Cumulants are derived by means

of the cumulant generating function

ΨP(θJ) = log EP[exp{θJ}] , (8)

with θ ∈ R. Its power series expansion is given by

ΨP(θJ) =

∞∑

r=1

θr

r!
κ
(r)
P

(J) , (9)

where

κ
(r)
P

(J) =
∂rΨP(θ)

∂θr

∣∣∣∣
θ=0

, (10)

providing a compact way to calculate the desired cumulants.

Regarding the second issue, instead of considering (7), in this

work we evaluate the cost variability produced marginally by

the s-th uncertainty source by solving

κ
(1)
Ps

(E
Ps
[J ]) +

K∑

r=2

γr,sκ
(r)
Ps

(E
Ps
[J ])) ,

where E
Ps
[J ] is the expectation defined in the product prob-

ability space of all uncertainty sources except for the s-th

one. This operator enables the evaluation of cost variability

produced marginally by the s-th uncertainty source by per-

forming a neutral assessment of all other uncertainties. We
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then consider the marginal influence of all uncertainty sources

by solving problem

min
u

′(·)
Ξ = min

u
′(·)

1

S

S∑

s=1

(
κ
(1)
Ps

(E
Ps
[J ]) +

K∑

r=2

γr,sκ
(r)
Ps

(E
Ps
[J ]))

)

s. t. (3), (5) (11)

The intuition behind Problem (11) is simple: we aim for the

controls that minimize not just the expected cost but also a

weighted average of marginal cost variabilities. In contrast

to (7), a solution to this problem may adopt different or even

opposite decisions depending on which uncertainty source is

responsible for cost variability. The assessment of the influence

of each uncertainty source is determined by their respective

weighting factors. If γr,s > 0, cost variability increases the

overall cost and the optimizer adopts a risk-averse attitude;

the respective risk measures imply additional costs and more

control efforts. In contrast, for γr,s < 0 the optimizer adopts

a risk-seeking attitude; risk measures are interpreted as a cost

discounting quantity taking part of the necessary control effort.

In case that all γr,s = 0, the expected value is recovered, i.e. it

neglects any risk measure adopting a risk-neutral attitude. In

our particular robotic scenario, by means of problem (11), the

assessment of obstacle uncertainty becomes independent of the

evaluation of the desired trajectory uncertainty. This way the

optimizer can adopt at the same time a risk-seeking attitude

towards the desired trajectory uncertainty and a risk-averse

attitude towards obstacle uncertainty by selecting appropriate

weighting factors. As a result, both tracking precision and

collision probability are properly considered into robot actions.

Risk-sensitive control [23] is a special case of cost-cumulant

control, which has been successfully employed for the synthe-

sis of uncertainty-dependent actions in robotic scenarios [37].

It is a particular case of cost-cumulant minimization [16]

where weighting factors are given by the McLaurin coeffi-

cients of the power series (9). In fact, we could similarly

formulate problem (11) for K → ∞ as

min
u

′(·)
Ψ = min

u
′(·)

1

S

S∑

s=1

θ−1
s ΨPs

(θs EPs
[J ])

= min
u

′(·)

1

S

S∑

s=1

θ−1
s logEPs

[exp{θs EPs
[J ]}]

= min
u

′(·)

1

S

S∑

s=1

(
κ
(1)
Ps

(E
Ps
[J ]) +

∞∑

r=2

θr−1
s

r!
κ
(r)
Ps

(E
Ps
[J ])

)
,

s. t. (3), (5) (12)

by fixing the the high-order statistics weighting factors to the

above-mentioned McLaurin coefficients divided by θs. The

cost functional to minimize reduces therefore to an average

of standard risk-sensitive functionals where θs, denoted in

the literature risk-sensitivity, determines the assessment of the

high-order statistics of the s-th uncertainty source. Due to its

relevance we will explore both the risk-sensitive (12) and the

K-cost-cumulant control (11) problems.

A. Locally optimal control for non-linear dynamics and non-

quadratic cost

A solution to the non-linear stochastic optimal control

problems (12) or (11) is in general not attainable. As an

alternative, we aim for a local optimum by means of an

iterative algorithm. By linearizing the dynamics and quadrat-

ically approximating the cost around a discretized nomi-

nal trajectory
(
ξ̄′0···T , ū

′
0···T−1

)
, a discrete-time LQ approx-

imation of state and control deviations, i.e. ξk = ξ′k − ξ̄′k
and uk = u′

k − ū′
k is obtained. Its solution is a gradient

towards the local optimum, found by iteratively updating

the nominal trajectory and repeating the whole process until

convergence.

The local deviations LQ problem is defined as follows.

Time is discretized in T steps with sample time ∆ = Tc/T .

Dynamics (3) linearized at time step k around
(
ξ̄′k, ū

′
k

)
is

given by

ξk+1 = Akξk +Bkuk +

S∑

s=1

ǫsk , (13)

where Ak ∈ R
n×n, Bk ∈ R

n×m are real matrices, ǫsk ∈ R
n

is an independent identically distributed Gaussian random

variable such that ǫsk ∼ N (0,Σs
k), ξ0 = 0 and

Ak = In +∆
∂f

∂ξ′k
Bk = ∆

∂f

∂u′
k

Σs
k = ∆Gs(k∆)Gs(k∆)

T
.

Cost functional (5) results in the quadratic approximation

J(ξ0,u0···T−1) =
1

2
ξTTQT ξT + ξTTqT+

T−1∑

k=0

1

2
ξTkQkξk + ξTkqk + qk +

1

2
uT

kRkuk + uT

krk, (14)

where Qk ∈ R
n×n, Rk ∈ R

m×m, qk ∈ R
n and rk ∈ R

m

and qk ∈ R are computed as

qk = ∆h qk = ∆
∂h

∂ξ′k
Qk = ∆

∂2h

∂(ξ′k)
2

qT = hTc
(ξ′T ) qT =

∂hTc

∂ξ′T
QT =

∂2hTc

∂(ξ′T )
2

rk = ∆
∂h

∂u′
k

Rk = ∆
∂2h

∂(u′
k)

2
,

where Qk � 0 and Rk ≻ 0.

Note that, from (13), ξk is normally distributed and

hence (14) is a generalized non-central chi-squared distribu-

tion due to terms 1
2ξ

T

kQkξk and ξTkqk. Thus, it remains an

expressive approximation to the original cost where cumulants

higher than the expected cost are relevant.

For this LQG setting we restrict our solutions to linear

policies with feedforward and feedback terms,

uk = lk + Lkxk , (15)

where lk is an affine input and Lk ∈ R
m×n is the feedback

matrix.
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The local deviations problems for the risk-sensitive (12) and

cost-cumulant problems (11) are

(a) min
u1···T−1

Ψ

s. t. (13), (14)

(b) min
u1···T−1

Ξ

s. t. (13), (14), (15)
(16)

respectively. Section III and Section IV solve problems (16a)

and (16b) respectively. The iteration, which drives the nom-

inal trajectory towards the local optimum, is detailed out in

Section V.

Remark 2. For the risk-sensitive problem (16a) the linear

control (15) corresponds also to the optimal solution over all

possible control policies. This linear solution is also optimal

for the risk-neutral and mean-variance case, but does not

hold for any arbitrary weighted sum of cost-cumulants. In the

cost-cumulant case, for the sake of computational complexity,

we restrict our solutions to linear policies, adding equality

constraints (15) to problem (16b).

III. RISK-SENSITIVE SOLUTION

In this section we study the solution to the discrete-time

marginal risk-sensitive LQ problems (16a) by means of dy-

namic programming applying Bellman’s optimality principle.

Without loss of generality, we first consider a single uncer-

tainty source. Dynamics simplify to

ξk+1 = Akξk +Bkuk + ǫk , (17)

where ǫk ∈ R
n is an independent Gaussian random variable

such that ǫk ∼ N (0,Σk) and the cost functional to mini-

mize reduces to ΨP(θJ(ξ0···T ,u0···T−1)). Given a control

law uk···T−1 in the form (15) and having observed ξk,

the cost-to-go at time step k is computed by means of the

backwards recursion

θ−1ΨP(θJ(ξk,uk···T−1)) = J(ξk,uk)

+ θ−1ΨP(θJ(ξk+1,uk+1···T−1)) . (18)

Note that the overall cost given control policy u0···T−1 corre-

sponds to the cost-to-go at k = 0, i.e. Ψ(J(ξ0,u0···T−1)).
The following lemma computes the risk-sensitive cost-to-go

recursively yielding a quadratic form in ξk.

Lemma 1. If (Σi
−1 − θWi+1) ≻ 0 for i = k · · ·T − 1, the

analytic solution to (18) with cost (14) and dynamics (17) is

given by the backwards recursion

θ−1ΨP(θJ(ξk,uk···T−1)) =
1

2
ξTkWkξk + ξTkwk + wk ,

(19)

where

Wk = Qk +AT

kW̃k+1Ak + LT

kHkLk +GT

kLk + LT

kGk

(20)

wk = qk +AT

k w̃k+1 + LT

kHklk + LT

kgk +GT

k lk (21)

wk = qk + w̃k+1 +
1

2
lTkHlk + lTkgk (22)

Hk = Rk +BT

k W̃k+1Bk Gk = BT

k W̃k+1Ak

gk = rk +BT

k w̃k+1

with WT = QT , wT = qT and wT = qT and

W̃k+1 = (I − θWk+1Σk)
−1Wk+1 (23)

w̃k+1 = (I − θWk+1Σk)
−1wk+1 (24)

w̃k+1 = wk+1 + θwT

k+1Σkw̃k+1 −
1

2
θ−1 logFk (25)

with Fk = |I − θWk+1Σk| and FT = 1.

Proof. See Appendix. �

The influence of θ on the cost becomes apparent ob-

serving (23), (24) and (25). A positive θ results in higher

quadratic cost coefficients as it diminishes the eigenvalues of

the inverted factor (I − θWk+1Σk)
−1, thereby adopting a risk-

averse attitude. In contrast, a negative θ increases the inverted

factor and therefore decreases the overall cost, adopting a risk-

seeking attitude. In fact, extreme risk-seekingness, i.e. θ ≪ 0,

yields W̃k+1 → 0 and w̃k+1 → 0. This degenerate case is

described as euphoria in [25], as cost variability nullifies the

overall cost.

The cost-to-go for problem (16a), i.e. the remaining average

cost of all marginal problems at time step k is given by the

following corollary.

Corollary 1. The cost-to-go for problem (16a) is given by

Ψ(ξk,uk···T−1) =
1

2
ξTkW kξk + ξTkwk + wk , (26)

where

W k =
1

S

S∑

s=1

W s
k wk =

1

S

S∑

s=1

= ws
k

wk =
1

S

S∑

s=1

ws
k +

T−1∑

t=k

S∑

g=1,g 6=s

Tr{Σg
tW

s
t+1}, (27)

and where W s
k , ws

k and ws
k are given by (23), (24) and (25) re-

sulting from applying the backwards recursion from Lemma 1

in the s-th probability space, i.e. with Σk = Σs
k and θ = θs.

Note that the trace term in (27) follows from the evaluation

of operator E
Ps
[J ]. The solution to problem (16a) is computed

applying Bellman’s optimal equation, which minimizes (26)

w.r.t Lk and lk at each step of the backwards recursion from

Corollary 1, yielding

Lk =− (Rk +BT

k W̃ k+1Bk)
−1(BT

k W̃ k+1Ak)

lk =− (Rk +BT

k W̃ k+1Bk)
−1(BT

k w̃k+1 + rk) , (28)

where

W̃ k =
1

S

S∑

s=1

W̃ s
k w̃k =

1

S

S∑

s=1

= w̃
s
k ,

and where W̃ s
k and w̃

s
k are given by (23) and (24) computed

in the s-th probability space.

Remark 3. Note that the computational effort for solving the

risk-sensitive control problem - even for the case of multiple

uncertainties - is comparably low as i) the control law is linear,

and ii) for finding the optimal feedforward and feedback terms

only basic algebraic operations are involved. The approach
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is therefore also well-suited for robotic applications with

high sampling rates and on low-cost computational platforms

(assuming that a linear approximation to the system dynamics

is sufficient for the purpose of control design, e.g. if feedback

linearization is employed.)

IV. COST-CUMULANT SOLUTION

In this section we address the discrete-time cost-cumulant

control problem (16b). In contrast to risk-sensitive control,

cost-cumulant control allows more flexible decision-makers as

the number of cumulants and their respective weighting factors

are design parameters.

We consider first a single probability space and dynam-

ics (17). From Lemma 1, the cumulant generating function

of the cost-to-go at time step k is given by

ΨP(θJ(ξk,uk···T−1)) = θ
(1
2
ξTkWkξk + ξTkwk + wk

)
.

(29)

The r-th cumulant is calculated by means of expres-

sion (10). As an illustrative example, the first cumulant is given

by

∂ΨP(θJ(ξk,uk···T−1))

∂θ

∣∣∣
θ=0
=

1

2
ξTkWk

[0]ξk + ξTkw
[0]
k + w

[0]
k

+ θ
(1
2
ξTkW

[1]
k ξk + ξTkw

[1]
k + w

[1]
k

)∣∣∣∣
θ=0

,

that, after evaluating θ = 0 yields EP[J ], the cost-to-go

of a standard LQ Gaussian problem. Similarly, the second

cumulant, i.e. the cost variance VarP[J ], is given by

∂2ΨP(θJ(ξk,uk···T−1))

∂θ2

∣∣∣
θ=0

= 2
(1
2
ξTkW

[1]
k ξk + ξTkw

[1]
k + w

[1]
k

)

+ θ
(1
2
ξTkW

[2]
k ξk + ξTkw

[2]
k + w

[2]
k

)∣∣∣∣
θ=0

.

The expressions for the d-th cumulant are calculated recur-

sively, as a function of lower order cumulants, yielding the

following lemma [32].

Lemma 2. The d-th cost cumulant of the cost-to-go at sample

time k of random cost (14) constrained to dynamics (17) is

given by

κ
(d)
P

(J(ξk,uk···T−1)) =

d
(1
2
ξTkW

[d−1]
k ξk + ξTkw

[d−1]
k + w

[d−1]
k

)

where for d = 1

W
[0]
k =Qk +AT

kW̃
[0]
k+1Ak + LT

kH
[0]
k Lk +G

[0]T
k Lk + LT

kG
[0]

k

w
[0]
k =qk +AT

k w̃
[0]
k+1 + LT

kH
[0]
k lk + LT

kg
[0]
k +G

[0]T
k lk

w
[0]
k =qk + w̃

[0]
k+1 +

1

2
lTkH

[0]
k lk + lTkg

[0]
k

H
[0]
k =Rk +BT

k W̃
[0]
k+1Bk G

[0]
k = BT

k W̃
[0]
k+1Ak

g
[0]
k =rk +BT

k w̃
[0]
k+1

with W
[0]
T = QT , w

[0]
T = qT and w

[0]
T = qT and for d > 1

W
[r]
k =AT

kW̃
[r]
k+1Ak + LT

kH
[r]
k Lk +G

[r]T
k Lk + LT

kG
[r]
k

w
[r]
k =AT

k w̃
[r]
k+1 + LT

kH
[r]
k lk + LT

kg
[r]
k +G

[r]T
k lk

w
[r]
k =w̃

[r]
k+1 +

1

2
lTkH

[r]
k lk + lTkg

[r]
k

H
[r]
k =BT

k W̃
[r]
k+1Bk G

[r]
k = BT

k W̃
[r]
k+1Ak

g
[r]
k =BT

k w̃
[r]
k+1

with W
[r]
N = 0n×n, w

[r]
N = 0 and w

[r]
N = 0 and for both cases

W̃
[r]
k+1 = W

[r]
k+1 + r

r−1∑

j=0

Cj
r−1W

[j]
k+1ΣkW̃

[r−1−j]
k+1 (30)

w̃
[r]
k+1 = w

[r]
k+1 + r

r−1∑

j=0

Cj
r−1W

[j]
k+1Σkw̃

[r−1−j]
k+1 (31)

w̃
[r]
k+1 = w

[r]
k+1 + r

r−1∑

j=0

Cj
r−1w

[j]
k+1Σkw̃

[r−1−j]
k+1

+
T−1∑

t=k

Tr(P
[r−1]
t ) (32)

with

P
[r]
t = (r + 1)W

[r]
t+1Σt + r

r−1∑

j=1

Cj
r−1W

[j]
t+1ΣtP

[r−1−j]
t .

Proof. See Appendix. �

The cost-to-go for problem (16b) at time step k follows

immediately and is given in the following corollary.

Corollary 2. The cost-to-go of the cost-cumulant control

problem (16b) is given by

Ξ(ξk) =
1

2
ξTkŴkξk + ξTk ŵk + ŵk , (33)

where

Ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,sW
s
k
[r−1]

ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,sw
s[r−1]
k

ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,s

(
ws

k
[r−1] +

T−1∑

t=k

S∑

g=1,g 6=s

Tr{Σg
tW

s
t+1}

)

where W s
k
[r] and ws

k
[r] and ws

k
[r] are the quadratic coefficients

of the r-th cumulant resulting from applying the backwards

recursion from Lemma 2 in the s-th probability space con-

strained to the s-th marginal dynamics and γ1,s = 1.

The solution to problem (16b) follows from the minization

of (33) w.r.t Lk and lk at each step of the backwards recursion

of Corollary 1 yielding

Lk =− (Rk +BT

k

̂̃
W k+1Bk)

−1(BT

k

̂̃
W k+1Ak)

lk =− (Rk +BT

k

̂̃
W k+1Bk)

−1(BT

k
̂̃wk+1 + rk) , (34)

where

̂̃
W k =

1

S

S∑

s=1

K∑

r=1

γr,sW̃
s[r−1]
k

̂̃wk =
1

S

S∑

s=1

K∑

r=1

γr,sw̃
s[r−1]
k
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where W̃
s[r−1]
k+1 and w̃

s[r−1]
k+1 result from the computation of

the r-th cumulant in the s-th probability space in (33).

As cost cumulants in LQ settings are always positive [31],

the effect of weightings γr,s on the resulting cost (33) is

evident: risk-aversion is achieved by selecting γr,s > 0 and

thereby increasing the resulting quadratic coefficients. Select-

ing γr,s < 0 has the opposite effect yielding a risk-seeking

evaluation, i.e. ’less’ cost than the expected value. Note

that the existence of solutions (34) is only warranted if the

Hessian (Rk +BT

k

̂̃
W k+1Bk) ≻ 0. Although this constraint

imposes no limits in terms of risk aversion, a negative γr,ss

must fulfill this condition.

Remark 4. As for the risk-sensitive case, also the computa-

tional effort for solving the cost-cumulant control problem

even for the case of multiple uncertainties is low. Also this

approach is well-suited for robotic applications with high

sampling rates and on low-cost computational platforms.

V. ITERATION TO A LOCALLY OPTIMAL SOLUTION

A numerical approximation of problem (12) or (11) that

computes locally optimal solutions in non-linear and non-

quadratic problems requires a procedure that iteratively ap-

proximates and updates a nominal trajectory. The main it-

eration of our approach follows the iLQG algorithm [38].

In this section, we summarize it pointing out the subtle

changes that arise due to the different problem setting. The

resulting algorithm is either an iterative Linear Exponential

Quadratic Regulator (iLEQR) for the risk-sensitive case or an

iterative K-Cost Cumulant Regulator (iKCCR) for the cost-

cumulant optimization.

Given an initial state ξ′0, the algorithm iterates around the

nominal control trajectory ū′
0···T−1 by calculating the opti-

mal control deviations that improve performance. This initial

trajectory can be first obtained from a planning algorithm,

for instance [39] or, if no suitable initialization is available,

initially set to 0. At the i-th iteration, the locally optimal

solution is denoted u′(i)
0···T−1 = ū′(i)

0···T−1 + L
(i)
0···T−1ξ0···T−1

and is updated to obtain the next u′(i+1)
0···T−1 following the next

steps:

1) The corresponding state trajectory ξ̄′0···T is computed

simulating the discretized dynamics, for instance by Euler

integration, i.e. ξ̄′k+1 = ξ̄′k +∆f(ξ̄′k, ū
′(i)
k ).

2) The dynamics are linearized and the costs quadrat-

ically approximated around (ξ̄′0···T , ū
′
0···T−1), obtain-

ing an LQ approximation of state and control devia-

tions, ξk = ξ′k − ξ̄′k and uk = u′
k − ū′

k as explained in

Section II-A.

3) Depending on the desired optimization criteria, the op-

timal deviations law uk = lk + Lkξk is computed by

means of either the risk-sensitive (28) or cost-cumulant

recursions (34).

4) As feedforward deviations l0···T−1 only hold in the close

vicinity of the current nominal trajectory, a line search

algorithm aims for an adapted step that yields a policy

improvement. Starting with α = 1, a potential policy

update is given by

u′(i+1)
k (α) = ū′(i)

k + αlk + Lkξk (35)

where ξk follows from simulating the linearized system

ξk+1 = Akξk + Bk(αlk + Lkξk) with initially ξk = 0.

If the performance of (35) improves, the new policy is

accepted, i.e. ū′(i+1)
k = ū′(i)

k + αlk and L
(i+1)
k = Lk. If

not, the line search parameter is halved, i.e. α = 1
2α and

the corresponding performance for u′(i+1)
0·T−1(α) is evalu-

ated again until improvement. If all l0···T−1 are close to 0,

the algorithm ends. Otherwise, the next iteration starts

going back to step 1) with u′(i+1)
0···T−1 = u′(i+1)

0···T−1(α).
This algorithm ensures convergence to a locally optimal

control policy [40].

The performance evaluation of (35) in step 4) is not

straightforward. In fact, an analytical expression of (11) or (12)

for an arbitrary J is rarely available. As an alternative, an

LQ approximation of the cost around (35) is obtained as in

step 2) and its expected performance is computed by means

of lemma 1 or 2 respectively. This approximation is effective

when the nominal trajectory is close to the local optimum.

However, if this is not the case, the feedback matrix Lk may

lead to inaccurate results as it is based on local second order

information. To avoid this issue, a two-step optimization is

applied. First, a solution close to the local optimum is found

considering only the feedforward term, i.e. Lk = 0. Once

the feedforward trajectory converges, the quadratic feedback

problem is solved. This second solution converges in few

iterations, as the local optimum is already in the vicinity of

the nominal trajectory.

Note that the application of this algorithm can be also

recomputed after every time step in a non-linear Model Predic-

tive Control manner, yielding a closed-loop control. With the

appropriate optimizations and exploiting the problem structure,

the solution to this main iteration can be computed in close

to real-time computation times [41].

VI. UNCERTAIN STATIC GOAL AND OBSTACLE

Although the problem setting from Section II considers

only uncertainty in dynamic settings, many robotics scenarios

comprise uncertain parameters in its performance measure

representing for example a static obstacle/goal or piecewise

constant desired trajectory. These problems arise due to sen-

sor noise and also in many programming by demonstration

settings [42] when task models are obtained as time series, for

example [12] or [43]. The analysis of cost statistics in this case

reduces to a static problem that can be solved preceding the

optimization of the dynamic program considered in previous

sections. To illustrate this, in this section we study two specific

examples considering a static uncertain goal and obstacle.
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Fig. 1: Simulated optimal trajectories for a 2D point mass damper robot xr tracking goal xg with uncertain mass-damper system

dynamics and where γ = 9 for a horizon of Tc = 0.5s. Initial states of robot and goal are xr
0 = [0 0], ẋr

0 = [0 0], xg
0 = [0.1 0.1]

and ẋ
g
0 = [1 − 0.5]. Results are shown every 0.02s.
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Fig. 2: Sample statistics of the cost for 104 simulations of

each of the policies (a)-(i) from Fig. 1 showing the first 4
cumulants.

Consider a cost functional in the form

J(u′(·),x′(·)) = hg(x
r(Tc),x

g(Tc))

+

Tc∫

t=0

hg(x
r(t),xg(t)) + ho(x

r(t),xo(t))

+ hso(x
r(t),xso(t)) + hu(u(t))dt , (36)

where hg(x
r(t),xg(t)) penalizes the distance to de-

sired configurations, hu(u
r(t)) penalizes control efforts

and ho(x
r(t),xo(t)) favors configurations distant to dynamic

obstacles and hso(x
r(t),xso(t)) to static obstacles.

A. Static uncertain goal

Let xg be normally distributed and static goal such

that xg(t) ∼ N (µg,Σg). A typical convex functional used to

reach a desired goal is the quadratic functional

hg(x
r(t),xg) =

1

2
(xr(t)− xg)TQ(xr(t)− xg) ,

where Q � 0. In this case, a marginal analysis of the cumulant

generating function of (36) in probability space (Ωg,Fg,Pg)
is only relevant concerning hg(x

r(t),xg) (any other terms are

only present in the expected value). Its cumulant generating

function is given by

logEPg
[exp{θhg(x

r(t),xg)}] = −
1

2
log|Iqg − θQΣg|

+
1

2
(xr(t)− µg)T(I − θQΣg)−1Q(xr(t)− µg) .

(37)

Applying (10) and ignoring the constant term which does

not depend on xr(t), the computation of any cumulant is

straightforward. For example, the mean and variance of hg

are

EPg
[hg] =

1

2
(xr(t)− µg)TQ(xr(t)− µg) + const

VarPg
[hg] =

1

2
(xr(t)− µg)TQΣgQ(xr(t)− µg) + const

Remark 5. Previous work rely on the Mahalanobis distance in

order to approach this problem [13], [44], i.e.

1

2
(xr(t)− µg)T(Σg)−1Q(xr(t)− µg) .

This expression becomes pathological and numerically un-

stable when the goal tends to the deterministic case,

i.e. Σg → 0qg . Adding a regularization quantity given by the

identity matrix to avoid this issue yields

1

2
(xr(t)− µg)T(I +Σg)−1Q(xr(t)− µg) . (38)

Observing (37), it becomes apparent that (38) is a specific

instance of a risk-seeking evaluation of hg, where θ = −1
and the goal variance is Σg′ = Q−1Σg .

B. Static uncertain obstacle

Let xso be normally distributed and static such

that xso(t) ∼ N (µso,Σso). An effective convex and
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continuously differentiable cost functional typically used in

potential fields for collision avoidance is given by

hso(x
r(t),xso) =

β exp{−
1

2
(xr(t)− xso)TQ(xr(t)− xso)} ,

where β ∈ R is a weighting factor. In this case, its cumulant

generating function has no closed form. The expectation,

though, is given by

EPso
[hso] = const · β

· exp{−
1

2
(xr(t)− µso)T(I +QΣso)−1Q(xr(t)− µso)}

(39)

and already considers goal variance Σso. In fact, we can

interpret this expression as the moment generating function

of the negative quadratic cost. This result is equivalent to the

generalized binary saturating cost considered in [45] as an

attractor instead of a repelling obstacle.

VII. EVALUATION

In order to illustrate the peculiarities of the proposed

approach we performed simulations on a point-mass robot

following an uncertain goal trajectory in a scene with uncertain

dynamic and static obstacles. A similar implementation on a

two-link manipulator and a car-like robot validates the pro-

posed approach for non-linear dynamics. We also implemented

our approach in a robot manipulator to validate its performance

in a real setting. All experiments rely on the iterative algorithm

explained in the previous section.

A. 2D Point-Mass robot

Consider a two-dimensional point robot with

state xr =
[
pr ṗr

]
where pr ∈ R2 is its position and

with dynamics

M p̈r +Dṗr = u′ . (40)

1) Uncertain goal trajectory:: we first validate the pro-

posed iterative algorithm for high-order cost statistics. The

control task consists of following desired trajectory xg ∈ R2

with dynamics given by a mass-damper system with noise. The

joint dynamics of the problem are given by (4) but considering

only robot and goal difference, i.e. ξ′ = [xg − xr], and a

single uncertainty source related to the desired trajectory. We

consider performance measure (36) with

hg =
1

2
ξ′

T
Qgξ

′ hu =
1

2
u′TRu′ ho = 0 hso = 0 .

The optimal policy takes the form u′ = ū′ + [Lx
g Lẋ

g ]ξ. In

the following results, parameters were fixed to M = I2 kg,

D = I2 Ns/m, R = 10−2I2, Qg = diag{ 1 1 0.1 0.1 } ,

∆ = 10−2 and Tc = 0.5s. Goal dynamics are assumed to have

diffusion coefficient matrix Gg(t) = I4 and identical mass and

damping to the robot’s.

Simulated trajectories for several cost-cumulant and risk-

sensitive controls are depicted in Fig. 1. The solution corre-

sponding to the expected cost depicted in Fig. 1(a) serves as

the risk-neutral reference. Fig. 1(e) and Fig. 1(i) show risk-

sensitive solutions in their seeking and averse variants respec-

tively. The risk-seeking policy adapts its trajectory tolerating

higher distances to the goal. This policy is desirable when goal

uncertainty suggests more flexibility or unconstrained regions,

for instance in PbD settings [44]. The risk-averse solution has

the opposite effect, tracking goal dynamics more aggressively

as well as increasing feedback gains thereby becoming stiffer.

This behavior is more in accordance with navigation scenarios

where uncertainty may hinder performance. Cost cumulant

solutions are shown in Fig. 1(f), Fig. 1(g), Fig. 1(h) for

the second, third and fourth cumulant in their risk-averse

variants. All three cases are similar: the feedforward trajectory

is marginally adapted diminishing the distance to the goal

with higher feedback gains. Their risk-seeking counterparts

depicted in Fig. 1(b), Fig. 1(c), Fig. 1(d) accept less tracking

precision w.r.t the risk-neutral policy Fig. 1(a). To validate

the implementation of our iterative algorithm, the first sample

four cost cumulants of all control policies depicted in Fig. 1

are shown in Fig. 2. Although the first cumulant (sample

mean) is similar for all policies except for (i), higher order

sample cumulants show that all risk-seeking variants produce

higher cost variability w.r.t the expected cost policy (a) while

risk-averse policies increase robustness by diminishing cost

variability.

2) Uncertain goal trajectory and dynamic+static obstacles:

we now include an uncertain dynamic obstacle xo in the

scene with mass-damper dynamics. This is a similar setting

to the one considered in [35]. The joint error dynamics

are given by (4). The cost remains identical to the pre-

vious setting except for the dynamic obstacle-related term,

which is set to ho = β exp{−0.5(xr − xo)TQo(x
r − xo)},

with Qo = 200I2 and β = 0.1. The optimal policy is now

u′ = ū′ +

[
Lx

g Lẋ
g

Lx
o Lẋ

o

]
ξ.

Obstacle dynamics are assumed to have diffusion coefficient

matrix Go(t) = 0.3I4 and identical mass and damping to the

robot’s. We also consider static normally distributed obstacles

in the scene by setting the static obstacle term hso from (36)

to the expected value of the weighted exponential decay (39)

as explained in Section VI, with Q = I2 and β = 0.1. To com-

pute collisions we assume that the robot has a radius of 0.05m.

In addition, the goal and obstacle mass-damper systems

are driven by external forces ug =
[
cos(2xg

1) sin(2xg
2)
]T

and uo =
[
cos(10xo

1) sin(10xo
2)
]T

. Note that the uncertainty

of an obstacle is an indicator of the probability of collision.

Therefore, we consider its marginal cost variability in a risk-

averse manner, as it is instrumental to diminish the risk of

collisions, while the goal variability is assessed with a risk-

seeking attitude assuming more flexibility.

The resulting trajectories are shown in Fig. 3(b) for the

cost cumulant case in comparison with the risk-neutral policy

from Fig. 3(a). On one side, risk-aversion towards obstacle

variability yields a pronounced deviation at the beginning

of the simulation due to the proximity of the obstacle. On

the other side risk-seekingness w.r.t the goal uncertainty

tolerates higher distance to the desired trajectory enabling
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Fig. 3: Simulated trajectories for a 2D point mass damper

robot xr tracking goal xg with mass-damper system dy-

namics and avoiding obstacle xo with noisy mass-damper

system dynamics including static obstacles and where γ1,g = 4
and γ1,o = 16 for a horizon of Tc = 2s. The two

static obstacles considered are normally distributed, centered

in (0.8,−0.3) and (0.8,−0.6) with covariance matrices 0.1I2
and 0.5I2 respectively. Initial states of robot, goal and obstacle

are xr
0 = [0 0], ẋr

0 = [0 0], x
g
0 = [0.1 0.1], ẋ

g
0 = [1 − 0.5],

xo
0 = [0.15 0.15] and ẋo

0 = [1 − 0.5]. Results are shown every

0.02s.

better obstacle avoidance. The influence of the static obstacles’

uncertainty is also evident; the one with low variance centered

at (0.8,−0.3) produces almost no deviations from the expected

goal trajectory in comparison with the obstacle with high

variance centered at (0.8,−0.6). The benefits of the cost

cumulant policy are also shown in terms of the number of

collisions: both the sample average µ#col and the sample

variance s2#col are significantly reduced w.r.t. the risk-neutral

policy. In order to illustrate the influence of the uncertainty

level in the resulting policy, Fig. 4 shows solutions for the

same setting but with different diffusion coefficient matrices.

From Fig. 4(a) to Fig. 4(d), decreasing uncertainty for both

obstacle and goal dynamics are considered. As uncertainty

diminishes, results approach the risk-neutral solution as shown

by the almost deterministic setting from Fig. 4(d). This vali-

dates our proposed approach as a suitable systematic method

of considering uncertainty the seamlessly generalizes to a

deterministic problem.

B. Two-link manipulator

To evaluate the validity of the algorithm in settings with

non-linear dynamics, we consider a torque-controlled arm

with two joints moving in the horizontal plane with inverse

dynamics

M(θ)θ̈ + C(θ, θ̇) +Bθ̇ = τ ,

where θ ∈ R2 are the joint angles, M(θ) is the inertia ma-

trix, C(θ, θ̇) is the vector of centripetal and Coriolis forces, B
is the joint friction matrix and τ ∈ R2 are the joint torques. We

set the mass of each link to m1 = 1.4kg and m2 = 1.1kg, the

length of each link to l1 = 0.3m and l1 = 0.33, the moments

of inertia to I1 = 0.025 kg · m2 and I2 = 0.045 kg · m2 and

we assume the center of mass of each link is placed at the

link’s center. The joint friction matrix is set to

B =

[
0.05 0.025
0.025 0.05

]
.

In line with the previous subsection, the control task consists of

tracking a goal xg ∈ R2 with uncertain mass-damper dynam-

ics while avoiding a dynamic obstacle xo ∈ R2 with similar

dynamics. The joint state is given by (4), where xr represents

now the workspace coordinates of the manipulator and the

control input u′ are the joint torques in workspace coordinates.

The cost function is identical to the previous subsection with

the same parameters.

Optimal trajectories are shown in Fig. 5 for the expected

cost policy in comparison with the mean variance solution.

While the expected cost solution of Fig. 5(a) opts for a faster

trajectory at the beginning to track more precisely the goal

dynamics, the risk-averse evaluation of obstacle variability in

Fig. 5(b) waits for the obstacle at the beginning and signif-

icantly reduces its tracking performance. This effect is also

boosted by the risk-seeking evaluation of goal variability. As

a result, the average number of collisions is also significantly

reduced.

C. Car-like Robot

Consider a simplified car-like robot model with state

space xr =
[
x1 x2 θ v c

]T
and dynamics

ẋ1 = v cos θ ẋ2 = v sin θ θ̇ = vc v̇ = u1 ċ = u2

(41)

where x1 and x2 denote the 2D position, θ the orientation, v
the velocity, c the curvature and the control input is given

by u =
[
u1 u2

]T
.

The control task consists of tracking goal xg with dynam-

ics (41) with additive noise while avoiding an obstacle xo

with uncertain mass-damper dynamics. Their diffusion co-

efficient matrices are given by Gg = diag{ 1 1 1 0 0 }



MEDINA AND HIRCHE: CONSIDERING UNCERTAINTY IN OPTIMAL ROBOT CONTROL THROUGH HIGH-ORDER COST STATISTICS 11

 

 

0

0

0

0

0

0

0

0

−0.3−0.3−0.3−0.3

−0.6−0.6−0.6−0.6

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3 0.60.60.60.6 0.90.90.90.9 1.21.21.21.2

(a) (b) (c) (d)
x
2
[m

]

x1[m] x1[m] x1[m] x1[m]

Robot
Goal
Dynamic obstacle
Static obstacle

Fig. 4: Optimal trajectories and feedback gains for the same setting from Fig. 3(b) but considering different diffusion

coefficient matrices for the obstacle and goal diffusions. (a) shows results for Gg = Go = 1.6I4, (b) for Gg = Go = 0.8I4, (c)

for Gg = Go = 0.3I4 and (d) for Gg = Go = 0.001I4.

and Go = I4 respectively. The state of the system is given

by

ξ
′ =

[
(xg − xr)T (xo − [x1 x2]

T)T (ẋo − [ẋ1 ẋ2]
T

]T
.

The cost function considered is identical to the previous

setting, except for the goal’s quadratic weighting matrix

and the control input’s weighting matrix, which are set

to Qg = diag{ 1 1 0 0 0 } and R = 10−5 respectively.

The resulting optimal trajectories are depicted in Fig. 6 for

the risk neutral and the mean variance solution with aversion

towards obstacle-related variability and risk-seekingness to-

wards goal-related cost variance. The goal tracking flexibility

provided by the risk-preferring evaluation of goal variability

enables deviations from the desired trajectory, providing im-

proved obstacle avoidance. As a result the number of collisions

is also diminished.

D. Real manipulator

To validate our approach in a real system we implemented

our algorithm on a 7 DOF KUKA LWR 4+ manipulator

equipped with a JR3 force/torque sensor implementing dy-

namics (40) in R3, with M = 10I3 kg and D = 30I3 Ns/m.

We consider a similar setting to the one from Section VII-B,

where the control task consists of tracking a goal xg ∈ R3

with uncertain linear attractor dynamics while avoiding a

dynamic obstacle xo ∈ R3 with similar dynamics. The ob-

stacle position is retrieved online by means of a Qualisys

tracking system. Both goal and obstacle have goals and initial

positions that could potentially lead to collisions, see Fig. 7.

The joint state is given by (4), where xr represents now the

position of the endeffector and the control input u′ are the

forces applied at the endeffector. Goal and obstacle dynamics

are assumed to have diffusion coefficient matrix Gg(t) = I4
and identical mass and damping to the robot’s. The cost

function is identical to the previous subsection with pa-

rameters R = 102I3, Qg = diag{ 104 104 104 0 0 0 } ,

∆ = 10−2, Qo = 100I3, β = 106 and Tc = 5.0s.

The trajectories of 7 runs of a risk-neutral control are

depicted in Fig. 8(a) against a control with a risk-averse atti-

tude towards obstacle-related variability and risk-seekingness

towards goal-related cost variance, shown in Fig. 8(b). Similar

to the other examples, the resulting trajectories for the risk-

sensitive solution deviate from the desired goal trajectory

keeping a safer distance to the obstacle, while the expected

solution ignores variability and closely follows the desired

trajectory.

VIII. CONCLUSION AND FUTURE WORK

Motivated by the application of probabilistic methods as a

tool to estimate dynamic models of a desired trajectory, an

obstacle or the robot, in this work we presented a systematic

approach to uncertainty-dependent optimal robot control for

non-linear dynamics, non-quadratic costs and multiple uncer-

tainty sources. Our approach iteratively computes locally opti-

mal feedback solutions considering high-order cost cumulants.

As a result, robot actions react according to and specifically

to each uncertainty source. Results on both linear and non-

linear plants with non-quadratic costs validate the approach

and highlight its flexibility. Interesting areas of future research

are the analysis of predictive control variants as well as input-

and state-dependent noise extensions.
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APPENDIX

Proof of Lemma 1. The solution to recursive equation (18) en-
tails only complication in the term involving the expectation,
i.e. θ−1ΨP(θJ(ξk+1,uk+1···T−1)). Assuming (19) holds yields

θ
−1ΨP(θJ(ξk+1,uk+1···T−1)) =

θ
−1 log EP[exp{θ(

1

2
ξ
T

k+1Wk+1ξk+1 + ξ
T
wk+1 + wk+1)}] .
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Fig. 5: Simulated trajectories for a two-link manipula-

tor xr tracking goal xg with uncertain mass-damper dynam-

ics and avoiding obstacle xo with uncertain mass-damper

dynamics including static obstacles and where γ1,g = 100
and γ1,o = 100. The static obstacle considered is nor-

mally distributed, centered at (0.37, 0.25) with covariance

matrix 0.3I2. Initial states of robot, goal and obstacle

are xr
0 = [0.3 0.4], ẋr

0 = [0 0], xg
0 = [0.3 0.4], ẋg

0 = [0 −0.7],
xo
0 = [0.42 0.4] and ẋo

0 = [0.3 − 0.6]. Results are shown

every 0.02s.

Let now mk = Akξk + Bkuk. Considering dynamics (17), the
expression for the expectation is given by the Gaussian integral

∫ √
(2π)n|Σk| exp

{
−
1

2
ǫ
T

kΣ
−1
k ǫk

}

· exp
{
θ
(1
2
(mk + ǫk)

T
Wk+1(mk + ǫk)

+ (mk + ǫk)
T
wk+1 + wk+1

)}
dǫk

=
√

(2π)n|Σk|

· exp
{
θ
(1
2
m

T

kWk+1mk +m
T

kwk+1 + wk+1

)}

·

∫
exp

{
−

1

2
ǫ
T

k(Σ
−1
k − θWk+1)ǫk

+ ǫ
T

k

(
θWk+1mk + θwk+1

)}
dǫk . (42)
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Fig. 6: Simulated trajectories for a car-like robot xr track-

ing a goal xg with uncertain mass-damper dynamics and

avoiding obstacle xo with uncertain mass-damper dynamics

for a horizon of Tc = 2s, where γ1,o = γ1,g = 0.1. The

static obstacle considered is normally distributed, centered

at (0.6, 0.3) with covariance matrix 0.1I2. Initial states of

robot, goal, and obstacle are xr = [ 0 0 0 0.01 0.01 ],
xg = [ 0.01 0.01 0.1 0.4 0.8],xo

0 = [0.05 0.15]
and ẋo

0 = [0.2 0.3]. Results are shown every 0.2s.

Let Nk = (Σ−1
k − θWk+1) and nk = 2θWk+1mk + θwk+1.

If Nk ≻ 0 the integral has analytical solution

∫
exp

{
−
1

2
ǫ
T
Nkǫ + ǫ

T
nk

}
dǫ =

√
(2π)n|Nk|−1 exp

{
n

T

kN
−1
k nk

}
.

Note that condition (Σk
−1 − θWk+1) ≻ 0 motivates

the initial condition from Lemma 1 and is satisfied
if θ < (λmax(Σk)λmax(Wk+1))

−1, where λmax denotes the
largest eigenvalue [32].

Considering that |(Σ−1
k − θWk+1)

−1(I − θWk+1Σk)|= |Σk|

Wk+1 + θWk+1(Σk
−1 − θWk+1)

−1
Wk+1 =

(I − θWk+1Σk)
−1

Wk+1 ,

with similar formulations for wk+1 and wk+1, the expectation term
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Fig. 7: Robotic setup consisting of a robot manipulator

equipped with a force-torque sensor at its end-effector and an

obstacle equipped with markers and tracked with a Qualisys

system.

has closed form solution

√
|I − θWk+1Σk| · exp

{
θs

1

2
m

T

kW̃k+1mk

+ θsm
T

kw̃k+1 + θsw̃k+1

}

where W̃k+1, w̃k+1, and w̃k+1 are defined as in (23), (24) and (25).
Inserting this result and expressions (14) and (15) into (18) completes
the proof.

�

Proof of Lemma 2. The results for W
[r]
k , w

[r]
k and w

[r]
k are straight-

forward from their definitions in (20), (21) and (22). For the proof

of expression W̃
[r]
k+1 see [32]. The solution to w̃

[r]
k+1 and w̃

[r]
k+1 is

derived with the same procedure. We reformulate (24) as

w̃k+1 = wk+1 + θWk+1Σkw̃k+1 . (43)

Applying Leibniz’s Theorem twice we get

w̃
[r]
k+1 = w

[r]
k+1 + θ(Wk+1Σkw̃k+1)

[r]

+ r(Wk+1Σkw̃k+1)
[r−1]

= w
[r]
k+1 + θ(Wk+1Σkw̃k+1)

[r]

+ r

r−1∑

j=0

Cj
r−1W

[j]
k+1Σkw̃

[r−1−j]
k+1 ,

which after evaluating θ = 0 yields (31). The procedure for w̃
[r]
k+1

is analogous. Note that the term − 1
2
logFk from (25) gives rise to

expression H
[r]
t as already shown in [32]. �
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