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Abstract In this work, we present FADE, a frequency-

based descriptor to encode human motion. FADE is

simple, and provides high compression rate and low

computational complexity. In order to reduce space and

time complexity, we exploit the biomechanical property

that human motion is bounded in frequency. FADE and

U-FADE can be used in combination with both super-

vised and unsupervised learning approaches in order

to classify and cluster human actions, respectively. We

present also a branch of FADE, called Uncompressed

FADE (U-FADE). U-FADE performs well in combina-

tion with some unsupervised algorithms such as Spec-

tral Clustering (SC), paying the price of a reduced com-

pression rate. Also, U-FADE performs in general bet-

ter than FADE well with small datasets. We tested our

descriptors with well-known, public motion databases,
such as HDM05, Berkeley MHAD, and MSR. Moreover,

we compared FADE and U-FADE with diverse state of

the art approaches.
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Fig. 1 Overview of FADE approach
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1 Introduction

In the last decade, human-robot interaction and coop-

eration gained an intensive interest within the scien-

tific community. An important step to achieve an ef-

fective interaction between humans and robots consists

in understanding human actions and, consequently, hu-

man intentions. Human behavior, in fact, is difficult to

model and predict. Machine learning methods have the

potential to play a key role in this research area. Mo-

tion analysis and in particular action recognition are

topics of great interest in computer vision and human

movement science. The robotics community can ben-

efit greatly by the results achieved within such com-

munities. However, the methods for human movement

interpretation designed for robotics have additional re-
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quirements that are domain-specific. In particular, de-

scriptors for robotic applications require

1. compatibility with multiple sensor modalities,

2. low computational complexity,

3. high compression rate, and

4. robustness to noise.

The first requirement is essential in modern robotics.

Since we want to provide robots with the capability

to operate in unstructured environments, the sensors

adopted to observe humans are diverse. As a conse-

quence, also the state variables to represent human mo-

tion can be potentially of many types. For example, in

environments with generous light conditions, the robot

can observe humans with a simple RGB-D camera. With

such a perception modality, it is convenient to repre-

sent human body configuration in terms of joint Carte-

sian positions. In different scenarios, for example in

outdoor environments or in environments with variable

light conditions, humans can use wearable devices like

accelerometers or inertial measurement units. In this

case, the motion is generally represented through joint

angles. An effective descriptor has to work with both

the representations. Since FADE is based on frequency

properties of human motion, it easily adapts to different

data input. In this work, we test FADE and U-FADE

with both joint angles and joint positions.

Autonomous systems often have limited computa-

tional power and the energy consumption has to be lim-

ited as much as possible. Data-efficient methods, which

do not require powerful GPU and are suitable for fre-

quent retrain, are a key feature for the success of such

a technology.

The third requirement, i.e., achieving an high com-

pression rate, is important since a high-dimensional rep-

resentation requires higher computational cost for the

classification (or clustering) step. Also, representations

with high space complexity are more easily exposed to

the curse of dimensionality.

Robustness to noise, the fourth requirement, is clearly

a feature that algorithms for modern robotics have to

present. When the environment is unstructured, noise

of weakly-known nature and the possibility of missing

data have to be taken into account for a successful sys-

tem design.

In this work, we discuss how FADE and U-FADE

perform at the light of these four requirements. We

compare our approach with state of the art methods

by using as criteria these four features. This work ex-

tends the approach proposed in (Shah et al, 2016), in

which preliminary results are presented only on joint

angles as input and with a minimal number of compar-

isons with existing approaches. In the extended journal

version, we include several experiments on three public

datasets, the comparison with several well-known ap-

proaches, the joint 3D-position input mode, and more

insights on how to tune the parameters of the descrip-

tors. With the extended set of experiments, we show in

which applications and in which conditions FADE and

U-FADE can be a valid alternative to other approaches

in the literature.

The rest of the paper is structured as follows. In Sec-

tion 2 we mention papers in the literature concerning

action recognition. Section 3 presents the algorithm to

encode human motion with FADE and U-FADE. The

experimental results on three public motion dataset, as

well as comparison with state-of-the-art approaches, are

shown in Section 4. Section 5 reports conclusions and

future research directions.

2 Related Work

Kulic et al. proposed an unsupervised method based

on Hidden Markov Models (Rabiner, 1989) to repre-

sent and cluster actions (Kulić et al, 2008, 2011). This

approach introduces the possibility to learn a number

of actions in an unsupervised incremental fashion. It

was further extended in human-robot interaction and

human-robot collaboration (Lee et al, 2009) (Medina

et al, 2011). The approach presented in (Cavallo and

Falco, 2014) leverages Singular Value Decomposition

(SVD) to represent human manipulation actions, Eu-

clidean distance to measure the similarity among ac-

tions, k-means and k-NN for off-line and online cluster-

ing respectively. HMM-based models are adopted for

grasping and manipulation gesture recognition using

joint angles and fingertip force data in (Di Benedetto

et al, 2016) and (Schmidts et al, 2011). A template-

based approach to recognize actions (Leightley et al,

2014) uses a small set of a-priori known actions called

templates. To align observed actions with the example

actions, the dynamic time warping is adopted (Sakoe

and Chiba, 1978). In (Pervez et al, 2017), observed

actions were aligned without the preprocessing of dy-

namic time warping, but during the EM algorithm.

The work presented in (Wang et al, 2012) considers

frequency domain, and exploits ensembles models learnt

to represent each action and to capture the intra-class

variance. The method shows promising results in deal-

ing with data from depth cameras. The approach is su-

pervised and it uses a Support Vector Machine (SVM)

training method (Bishop, 2006). Compared with our

approach, the method proposed in (Wang et al, 2012)

adopts a different descriptor, which is based on pair-

wise joint relative positions and it only uses input data

based on joint Cartesian position. It clearly shows how



Representing Human Motion with FADE and U-FADE: an Efficient Frequency-Domain Approach 3

information in the frequency domain can be valuable in

human action recognition. A frequency-based approach

is also adopted in (Wang et al, 2015) for segmentation

of human repetitive actions. In (Wang et al, 2016) the

action recognition is performed by mining a set of key-

pose-motifs.

Ofli et al. suggested the SMIJ (Sequence of the Most

Informative Joint) for action recognition (Ofli et al,

2013), which is based on ranking the informative joints

involved in an action (Ofli et al, 2014). In particular, the

set of joints that present the maximum variance during

the motion are considered most informative. The ap-

proach was tested on 16 actions in the HDM05 database

and on 11 actions in the Berkeley MHAD database (Ofli

et al, 2013). On 11 actions of HDM05, the authors reach

84% accuracy with a supervised learning approach. In

(Falco et al, 2017), a descriptor is proposed that is based

on motion coordination. In (Evangelidis et al, 2014), a

simple features based on skeletal joint quads are intro-

duced, which achieve an interesting balance between

accuracy and computational cost.

In (Le Naour et al, 2012) the authors proposed a

representation that exploits the pair-wise joint-to-joint

distances in the skeletal model. Afterwards, the dimen-

sionality is reduced by Principal Component Analysis

(PCA). The descriptor is associated to a 2-NN method

to classify the actions.

One of the main limitations of the state-of-the-art

approaches is the scalability to a large number of ac-

tions and classes (Chen and Koskela, 2015). The scala-

bility is difficult to achieve because of diverse problems:

potential complexity in the representation of actions,

potential complexity in computing distances between
actions, difficulty to differentiate actions in presence

of a high numbers of classes, and heavy curse of di-

mensionality in the classification process. Deep learning

approaches are potentially interesting to tackle these

challenges. In (Chen and Koskela, 2015) a method is

proposed to alleviate this problem. The method lever-

ages a skeleton-based action descriptor and it is tested

with extreme learning machines (Huang et al, 2006)

and SVM for the classification step. The descriptor is

defined as skeleton-based (or model-based) because it

requires the knowledge of the skeletal model of the per-

former to obtain a user-independent normalized repre-

sentation. Using the same skeleton-based features, in

(Cho and Chen, 2014) a convolutional neural network

is proposed to classify motion capture sequences, while

in (Du et al, 2015) a hierarchical recurrent neural net-

work (RNN) is adopted. Deep Long Short-Term Mem-

ory (LSTM) networks for skeleton based action recogni-

tion are used in (Zhu et al, 2016) and (Liu et al, 2016).

In (Mahasseni and Todorovic, 2016), LSTM is exploited

to improve action recognition in video by providing 3D

human-skeleton sequences as an additional modality in

training data. Despite the good performance in terms of

accuracy, deep learning methods require a big amount

of training data and long training time.

3 Representing Motion with FADE and

U-FADE

In this section, we describe the algorithms to repre-

sent human motion with FADE and U-FADE. In order

to successfully derive a motion descriptor that is in-

dependent from position and orientation of the world

reference frame, we need to leverage invariant represen-

tations of whole body motions. In the scientific commu-

nity, there are two well-known types of human motion

representations, which can be used for full-body mo-

tion. The first is represented by joint angles, the second

consists in Cartesian joint positions. In principle, FADE

can be used with both the representations. In practi-

cal applications, representations based on joint angles

can be used mainly with wearable devices based on ac-

celerometers or IMU. Also, most motion capture sys-

tems allow to compute joint angles using inverse kine-

matic from a skeletal model. Representations based on

joint positions are common in the computer vision com-

munity. Such representations are particular common in

works that exploit low-cost RGB-D cameras and mo-

tion capture systems. This representation, however, re-

quires a skeletal model, which is not always available in

robotics applications and it is not natively invariant to

position and orientation of the world frame.

3.1 Encoding Algorithms

We define the FADE action representation as the func-

tion f : A → Rm, where A is a set of human actions.

In this work, each action A ∈ A is expressed with a

matrix At of the form

At =


x1(t1) x2(t1) ... xJ(t1)

x1(t2) x2(t2) ... xJ(t2)

... ... ... ...

x1(tN ) x2(tN ) ... xJ(tN )

 . (1)

The vector xk = [x1(tk), . . . , xJ(tk)] contains the com-

ponents of the chosen invariant representation at the

discrete time frame k. In our work, J is the dimension

of the chosen representation. In particular, if we choose

joint angles, J is the number of angular signals that

describe the human body configuration. If we choose

joint Cartesian positions, we have J = 3×njoints, where

njoints is the number of joints of the skeletal model. The
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(c) FFT of the joint angular values

Fig. 2 Example of visualization, time domain signals, and frequency domain signals of a HDM05 cartwheel action

number of joints is multiplied by 3 since we express the

position of each joint with a point in the 3D space. In

Eq. (1) we use the symbol At to indicate that the ma-

trix contains values in the time domain. The first step

of FADE is to compute the Discrete Fourier Transform

(DFT) of the time-domain signals. In order to com-

pute the DFT, we leverage the Fast Fourier Transform

algorithm. For more details about the FFT, refer to

(Walker, 1996). Applying the FFT algorithm we have:

Af = FFT(At). (2)

The columns of the matrix Af contains the FFT of the

columns of the matrix At

Af =


x1(f1) x2(f1) ... xJ(f1)

x1(f2) x2(f2) ... xJ(f2)

... ... ... ...

x1(fN ) x2(fN ) ... xJ(fN )

 . (3)

The matrix Af has the same size as the matrix At. We

have that

∆f = fi+1 − fi = fs/N , ∀i ∈ {1, 2, ..., N − 1}, (4)

where ∆f is the resolution in the frequency domain, fs
is the sampling frequency and N is the number of sam-

ples in the time domain. Since the human motion does

not contain significant frequency components beyond

10 Hz (Forestier and Nougier, 1998), we can remove the

values above the threshold fth = 10 Hz, considering the

left-open interval (0, 10] Hz. After this step, we describe

the action with the following matrix:

Ath
f =


x1(f1) x2(f1) ... xJ(f1)

x1(f2) x2(f2) ... xJ(f2)

... ... ... ...

x1(fth) x2(fth) ... xJ(fth)

 . (5)

This is a significant step in FADE and U-FADE, since

it allows us to reduce significantly the number of points

and to identify a constant interval that contains all the

significant information about the motion. As it can be

seen in Eq. (4), the resolution in the frequency domain

depends on the number of samples in the time domain

N . As a consequence, each action will present a differ-

ent resolution. To solve the problem, we resample the

data in the frequency domain with a linear interpolation

methods (Dyn et al, 1990), obtaining to a resolution in

the frequency domain ∆̃f that is constant and equal

for all the actions. After computing the sampling point

in the frequency domain we obtain the matrix

Af̃ =


x1(f̃1) x2(f̃1) ... xJ(f̃1)

x1(f̃2) x2(f̃2) ... xJ(f̃2)

... ... ... ...

x1(f̃th) x2(f̃th) ... xJ(f̃th)

 . (6)

The set of all the selected sampling frequencies is de-

noted as ΩK , where K is the cardinality of the set ΩK ,

i.e. the number of points we sample in the frequency

domain. We have that

K =
fth

∆̃f
. (7)

In order to compute FADE, we apply the Principal

Component Analysis (PCA) on the matrix Af̃ , with the

aim of maximizing the compression of our descriptor:

V f̃ = PCA(Af̃ ). (8)

The matrix V f̃ contains the PCA coefficients and has

dimension J × J , where J is the number of joints. To

derive the FADE representation, we choose the first col-

umn of the matrix V f̃ and denote it as v. The vec-

tor v is then the FADE representation of the action

At and we can use the notation: v = FADE(At). In

this work, we have chosen K = 500. This value offers

a good trade-off between accuracy and computational

time. The dimension of the FADE descriptor is then

J × 1. A sequential description of the representation

procedure is described in Algorithm 1. We have cho-

sen PCA for compressing our descriptor because (i) it
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is a very mature and well-known technique, (ii) it is

very easy to find optimized software implementations in

most programming languages, (iii) it can be applied for

both supervised and unsupervised learning approaches,

since PCA does not require data labels, and (iv) it does

not require a training phase like for example neural au-

toencoders (Hinton and Salakhutdinov, 2006).

To derive U-FADE, instead of performing the PCA

in Eq. (8), we simply reshape the matrix Af̃ into a

J ·K column vector, where K is the number of points

in the frequency domain. In particular, the U-FADE

descriptor has the following structure:

vU = [x1(f̃1), ..., x1(f̃th), ..., xJ(f̃1), ..., xJ(f̃th)]T (9)

In U-FADE, hence, there is no compression but only a

reshape operation. Algorithm 2 reports the procedure

to derive U-FADE.

In Fig 2(a), an example of the action cartwheel is

shown. Fig. 2(b) shows the joint angular signals of the

same action in the time domain. In Fig. 2(c) the FFT of

the matrix At relative to the action cartwheel is com-

puted. Each signal depicted in Figures 2(b) and 2(c)

is associated to a color and represents one of the 56

joint angles as a function of the time and of the fre-

quency respectively. From Fig. 2(c) it is evident how

the significant information about a complex action like

cartwheel is all contained in the range 0 − 5 Hz. For

any action or automatically segmented primitive of any

time duration, the information useful to discriminate

an action is contained always in a very limited interval

of frequencies.

3.2 Analysis of Time and Space Complexity

The asymptotic complexity of FADE and U-FADE as

a function of the time-frame number is O(n log n). To

derive this complexity, we consider the steps of Algo-

rithm 1. In line 2 we compute the FFT, whose O(.)

complexity is O(n log n). In line 3 we resample the sig-

nal in the frequency domain stopping at fth. Using lin-

ear interpolation for resampling the complexity is O(n).

Line 4 computes the PCA of the matrix Af̃ . Since the

dimension of Af̃ is fixed and does not depend on n,

we have O(1) time complexity. The total cost is then

O(n log n) +O(n) +O(1), that is asymptotically equal

to O(n log n). The dimensionality is only J for FADE

and K × J for U-FADE. The number of frequency do-

main points K is a parameter and does not depend on

the number of frames in the time domain. As a conse-

quence, after fixing the number of joints, both FADE

and U-FADE have O(1) space complexity.

Algorithm 1 FADE Action Representation

1: v = FADE(ActionMatrixAt)
2: Af =FFT(At)
3: Af̃ =resample(Af , ΩK)

4: V f̃ =PCA(Af̃ )

5: v = V f̃ (:, 1) //select the first column
6: return v

Algorithm 2 U-FADE Action Representation

1: vU = UFADE(ActionMatrixAt )
2: Af = FFT(At)
3: Af̃ =resample(Af , ΩK)

4: vU =reshape(Af̃ ,K · J, 1)
5: return v

3.3 Parameter Tuning

In order to give an example on how K and fth affect

the performance of the recognition pipeline, in Fig. 3 we

plot the accuracy of FADE, combined with 1-NN and

Manhattan distance, evaluated on the whole HDM05

dataset split into 80 classes.. The accuracy is defined

as the ratio between the number of test inputs cor-

rectly classified and the total number of test inputs. We

estimated the accuracy with a 10-fold cross-validation

method. It is possible to notice that fth = 5 Hz, fth =

10 Hz, and fth = 15 Hz show similar performance. As

expected, frequencies beyond 10 Hz do not add valuable

information. Reducing the frequency threshold to 2 Hz,

the accuracy decreases for every value of K. In terms of

number of points K, the accuracy increases significantly

Table 1 Time and space complexity of FADE, U-FADE, and
SVD.

Representation Time Complexity Space Complexity

FADE O(n logn) O(1)
U-FADE O(n logn) O(1)

SVD O(n2) O(1)
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78
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500

80

Fig. 3 Accuracy of FADE with 1-NN as a function of number
of points K for different values of fth
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before a threshold. Increasing the number of points K

after a certain threshold, the improvement of the accu-

racy becomes minor. For FADE, the threshold is around

K = 500. The number of points affects the computa-

tional cost. When limited computational power is avail-

able, it can be important to choose a trade-off between

accuracy and computational cost.

We performed the same experiment with U-FADE.

In Fig. 4, the accuracy of U-FADE is shown on the

whole HDM05 dataset as a function of K. It is ev-

ident that with the same value of K, increasing the

parameter fth to more than 10 Hz, we obtain slightly

worse performance since we use the the same number

of points to capture more frequencies. With frequency

less than 10Hz, the accuracy starts decreasing, since

we can loose information about human motion. Differ-

ently from FADE, U-FADE has a maximum for K = 25

and fth = 10 Hz. When the number of points K is too

small, we loose information. On the other hand, when

K > 30, the size of the descriptor increases with no sig-

nificant gain in information and in discrimination ca-

pability, also due to the curse of dimensionality. Hence,

the accuracy slightly decreases and the increased size

requires a higher computational cost for classification.

Compared to FADE, U-FADE is less compressed and

the size depends on the choice of the parameter K,

while for FADE the size is constant with K. However,

U-FADE performs well with a smaller value of the pa-

rameter K.

To give more detailed guidelines on the parameter

choice, we evaluated the robustness of FADE and U-

FADE to additive Gaussian noise for different values of

K with fth = 10 Hz. For each action of our test set,

described by the matrix At, we add noise as

Ât = At + rand(T, J ; 0, σ2), (10)

10 25 50 100 250
Number of points K

A
cc

ur
ac

y 
[%

]

76.5

77

77.5

78

78.5

fth=2Hz
fth=5HZ
fth=10Hz
fth=15Hz

500

79

79.5

Fig. 4 Accuracy of U-FADE with 1-NN as a function of num-
ber of points K for different values of the frequency threshold
fth
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AGWN standard deviation [deg]
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cc

ur
ac
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76

80

K=50
K=100
K=500
K=600

78

Fig. 5 Accuracy of FADE as a function of the standard de-
viation on the whole HDM05 using joint angles as represen-
tation and 1-NN to classify actions

0 5 10 15 20 25 30
AGWN standard deviation [deg]

A
cc

ur
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y 
[%

]

55
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75

80
K=10
K=15
K=30
K=50
K=100
K=200

Fig. 6 Accuracy of U-FADE as a function of the standard
deviation on the whole HDM05 using joint angles as repre-
sentation and 1-NN to classify actions

where rand(T, J) is a function which returns a T×J ma-

trix of real numbers sampled from a Gaussian stochas-

tic process with 0-mean, variance σ2, and impulsive

autocorrelation, i.e., Additive Gaussian White Noise

(AGWN). In Figures 5 and 6, the accuracy of FADE

and U-FADE as a function of the standard deviation is

reported, considering different values of K. The stan-

dard deviation range is [0, 30 ]deg. Concerning FADE,

with a standard deviation σ = 10 deg the accuracy re-

duces by 1% with K = 500 and it remains practically

constant for K = 50 and K = 600. With σ = 10 deg,

we can see that the accuracy starts decreasing for each

tested value of K. We can see that also with a very high,

unrealistic noise standard deviation of 30 deg the accu-

racy on the whole data set, using FADE, decreases by

6% for all K values. Approximately, we loose 0.25% ac-

curacy for standard deviation unit. As a consequence,

the choice K = 500 shows also a good robustness to
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noise. Concerning U-FADE, we approximatively loose

0.5% accuracy for each degree of noise standard devi-

ation and for all values of K. In this work, we choose

K = 25 since this value shows good accuracy and ro-

bustness to noise. Both FADE and U-FADE show ex-

cellent noise robustness. However, FADE shows better

performance than U-FADE in terms of robustness to

very high noise levels. Concerning high-frequency noise,

FADE and U-FADE are intrinsically robust since they

do not use frequencies above 10 Hz.

3.4 Discussion on FADE and U-FADE

It is of interest to underline the main differences be-

tween FADE and U-FADE. In terms of time and space

complexity, they both have O(n log n) and O(1), respec-

tively. As it can be noticed in Algorithms 1 and 2, the

difference between the two descriptors is in line 4: in

FADE we compute the PCA of the matrix Af̃ (Algo-

rithm 1, line 4) and extract only the first eigenvector

(line 5). In line 4 of U-FADE algorithm, instead, we

rearrange the matrix Af̃ into a single vector to obtain

the descriptor. Even though the big-O time complexity

is the same as U-FADE, computing the PCA in FADE

algorithm is more computationally expensive than re-

arranging Af̃ into a vector in U-FADE. Therefore, in

terms of encoding time, FADE is slower than U-FADE.

In terms of memory requirement, FADE performs sig-

nificantly better than U-FADE. In fact, FADE has J el-

ements while U-FADE hasK ·J elements. In Sec. 3.3, we

showed that a suitable choice is K = 25, which means

that U-FADE typically needs 25 times more memory

than FADE. For FADE, the best value of this param-

eter is K = 500 in our tests. Choosing a high value of

K in FADE does not increase the required memory but

only the encoding time. Once the encoding operation

is completed, U-FADE needs more time for classifica-

tion. In fact, the classification time of most state of the

art learning algorithms increases with the dimension of

the descriptor, i.e., the number of features. In terms of

informativeness, U-FADE provides no loss of informa-

tion for frequencies minor than 10 Hz and allows distin-

guishing the contribution of single joints. With FADE,

distinguishing the contribution of single joints is not

straightforward, because the vector v is a linear combi-

nation of the columns of Af̃ .

4 Experimental Result

In this section, we present the experimental results to

show the performance of FADE and U-FADE evaluated

Table 2 Datasets characteristics.

Dataset Subjects Classes Sequences fs[Hz]

HDM05 5 80 2337 120

R-HDM05 5 16 401 120

MHAD 12 11 659 480
MSR 10 20 567 15

with different public datasets, namely HMD051, MHAD

(Ofli et al, 2013), and MSR Action3D (Li et al, 2010).

FADE and U-FADE are compared with well-known ap-

proaches to action recognition. Moreover, experiments

have been performed to test the robustness of FADE

and U-FADE in presence of noisy signals. The classifi-

cation algorithms we tested with FADE and U-FADE

are 1-Nearest Neighbor (1-NN) and Support Vector Ma-

chine (SVM). These are very simple and well-known

classifiers. Even though more complex classification al-

gorithms could be adopted, we intend to keep the clas-

sification module as simple as possible and to achieve

competitive performance due to a smart descriptor se-

lection. The main features of the adopted datasets are

described below, and are summarized in Table 2.

HDM05 Dataset

The HDM05 Motion Capture Database is a freely avail-

able dataset of human whole-body actions. It contains

80 action classes with 10 - 50 action sequences per class,

performed by 5 different actors. In total, the dataset has

2337 action sequences and the frame rate is 120 Hz. The

database provides motion data in format of both joint
3D positions and joint angles. In order to prove the gen-

erality of our approach, we tested the descriptors with

both joint angle-based data and joint position-based

data.

Berkeley MHAD Dataset

The Berkeley MHAD (Multimodal Human Action Data

set) is constituted by 11 action classes performed by

12 subjects. All the subjects performed 5 repetitions

of each action class, obtaining 659 action sequences in

total. The 3D positions of active LED markers are mea-

sured with an optical motion capture system. The sam-

pling frequency for this dataset is fs = 480 Hz. The

number of joints is njoints = 35 and for each frame

J = 35×3 Cartesian joint trajectories can be extracted.

1 Müller M, Röder T, Clausen M, Eberhardt B, Krüger B,
Weber A (2007) Documentation mocap database hdm05
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MSR Action3D Dataset

The MSR Action3D dataset is constituted by 20 action

classes performed by 10 subjects, and captured with

a RGB-D Kinect camera. Each subject repeated each

action 2 or 3 times, for a total of 567 action sequences.

The sampling rate fs of this dataset is 15 Hz, and the

Cartesian positions of 20 skeleton joints are captured.

This dataset is characterized by a low sampling rate,

low accuracy of the joint Cartesian positions, and by

the presence of noise and missing frames.

4.1 Cross-validation on the HDM05, MHAD, and

MSR datasets

First, we tested FADE and U-FADE on the HDM05,

MSR, MHAD datasets coss-validating the results with

a classical 10-fold method. This test is, in our opin-

ion, very important to assess the performance of our

descriptors. In fact, a test on the whole dataset does

not allow us to remove lower-quality actions or to se-

lect particular subsets which are more convenient. In

the literature, there are only few papers that evalu-

ate the results on these entire public available action

sets. In particular, (Chen and Koskela, 2015) and (Cho

and Chen, 2014) are frame-by-frame classification ap-

proaches tested on the whole HDM05 dataset with 40

and 65 action classes respectively. Recently, in (Du et al,

2015) the entire HDM05 is tested with 65 action classes

in order to be directly compared with (Cho and Chen,

2014). Both methods are based on deep learning and

achieve an excellent accuracy paying the price of hav-

ing a more complex classification procedure. In Table 3,

the performance of FADE and U-FADE are reported in

terms of accuracy, training time, and one-action testing

time. The training time is given by the time to compute

the descriptors for all the actions and the time to train

the classifier. The actions are encoded with a MATLAB

script running on a quadcore 2.4 GHz CPU. The SVM

classifier is trained with a Python script.

On the HDM05 dataset with 790 actions grouped

into 40 classes (Chen’s HDM05 subset), FADE reaches

95.0% accuracy with SVM and U-FADE 95.6%. The ap-

proach presented in (Chen and Koskela, 2015) achieves

96.5% accuracy with SVM and 95.8% with ELM. In

terms of accuracy and using the same classification al-

gorithm, Chen’s features preform slightly better than

FADE and U-FADE. However, in terms of training time

FADE performs much better since it requires 1.3 s to en-

code the entire HDM05 dataset and train the SVM clas-

sifier, while the approach in (Chen and Koskela, 2015)

requires about 21 minutes. In terms of testing time, i.e.

the time to evaluate one action, FADE and U-FADE

with SVM take 0.58 ms and 0.74 ms respectively. The

approach in (Chen and Koskela, 2015) with SVM takes

2500 ms in C++, and the same approach with Extreme

Learning Machine (ELM) takes 34 ms with a C++ im-

plementation. On the HDM05 dataset split in 65 action

classes, we compared our descriptors with (Cho and

Chen, 2014) and (Du et al, 2015). The first is a frame-

by-frame classification approach which uses a deep neu-

ral network to obtain a final decision on the sequence.

The second uses a recurrent neural network. The first

reaches 95.6% accuracy while the second achieves 96.5%

accuracy. FADE combined with a SVM achieves 92.0%

accuracy with a training time of 8.9 s. U-FADE with

SVM achieves 90.2% accuracy with a training time of

6.3 s. Using a compiled language such as C++ instead

of Python, we expect much faster results.

Concerning MSR, we have not found any approach

that tests the full dataset with a cross-validation ap-

proach. The results of the 10-fold cross-validation on

the entire MSR are 90.1% with U-FADE combined with

1-NN and 95.5% with SVM. FADE reaches 90.0% ac-

curacy with 1-NN and 90.3% with SVM. In general,

for small-size datasets, U-FADE performs better than

FADE. For larger datasets, the ratio between compu-

tational efficiency and computational cost is higher in

FADE. In terms of a rough estimation of the computa-

tional cost, we measured a time of 1.7 s to encode all the

actions and train a SVM classifier on the whole MSR

dataset with FADE. With U-FADE, it takes 0.17 s.

Experiments on the whole MHAD are in (Chen and

Koskela, 2015) and (Ofli et al, 2013). In particular,

Chen’s appraoch reaches 99.6% accuracy and Ofli’s ap-

proach reaches 74.7% accuracy. U-FADE with SVM
presents an accuracy of 99.3% with an encoding and

training time of 7.1 s. In particular, 7.0 s are for encod-

ing all the actions and 0.1 s is for training the SVM. In

(Chen and Koskela, 2015) and (Ofli et al, 2013) there

is no discussion concerning the training time. We ex-

pect higher computational cost in Chen’s approach due

to the frame-by-frame classification method and similar

performance as FADE in Ofli’s approach. The latter, in

fact, adopts very simple and compressed features based

on properties of human motion, instead of using a com-

plex classification algorithm. This is the same philoso-

phy we adopt with FADE and U-FADE. Concerning the

computational time of the approach discussed in (Du

et al, 2015), in the discussion section the authors report

that the training time for the entire MHAD is about 50 s

per epoch. To reach an accuracy higher than 98%, the

RNN required 30 epochs. The estimated training time

for the entire MHAD is then about 300 s with a C++

implementation. From this rough consideration on com-

putational cost, we can claim that FADE and U-FADE
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Table 3 Accuracy, training time, and one-action testing time of FADE and U-FADE on different complete datasets compared
with well-known state of the art approaches

Method Dataset Classes Actions Acc. (%) Train time[s] Test time[ms]

FADE+SVM HDM05 40 790 95.0 2.6 0.58
U-FADE+SVM HDM05 40 790 95.6 1.3 0.74

(Chen and Koskela, 2015) + SVM HDM05 40 790 96.5 1300 (C++) 2500 (C++)
(Chen and Koskela, 2015) + ELM HDM05 40 790 95.8 31 (C++) 4.7 (C++)

FADE + SVM HDM05 65 2337 92.0 8.9 0.57
U-FADE +SVM HDM05 65 2337 90.2 6.3 0.76

HBRNN-L (Du et al, 2015) HDM05 65 2337 96.6 - -
(Cho and Chen, 2014) HDM05 65 2337 95.6 - -

FADE + 1NN MSR 20 567 90.0 1.7 0.15
FADE + SVM MSR 20 567 90.3 1.7 0.58

U-FADE + 1-NN MSR 20 567 90.1 0.17 1.8
U-FADE + SVM MSR 20 567 93.5 0.17 0.58

FADE + 1NN MHAD 11 659 98.3 10.5 0.15
FADE + SVM MHAD 11 659 98.6 10.6 0.58

U-FADE + 1-NN MHAD 11 659 98.9 7.0 1.8
U-FADE + SVM MHAD 11 659 99.3 7.1 0.74

(Chen and Koskela, 2015) + ELM MHAD 11 659 99.6 - -
(Ofli et al, 2013) + 1-NN MHAD 11 659 74.8 - -
(Ofli et al, 2013) + SVM MHAD 11 659 79.9 - -
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Fig. 7 Accuracy of FADE (upper row) and U-FADE (lower row), averaged on 10 executions, in presence of missing frames
with all the considered datasets

are particularly suitable in applications where the clas-

sifier needs to be trained frequently. The cost to pay

with respect to complex classification algorithms based

on deep learning is a slight reduction (from a minimum

of 0.2% to a maximum of 5%) of the accuracy.

4.2 Robustness to noise and missing frames

The robustness to FADE and U-FADE to missing frames

is shown in Fig. 7 both for Cartesian and joint angle

data. Missing frames are created by removing frames

at random time instants. This test represents the per-

formance of FADE and U-FADE in presence of sen-

sors or communication channel with heavy data loss. It

is possible to notice that for HDM05 and MHAD the

accuracy remains practically constant even with 30%

missing frames. In the MSR, FADE loses 4% accuracy

when 30% of the frames are missing, while U-FADE

loses only 2% accuracy with both 1-NN and SVM. Our

guess is that the robustness of MSR is slightly lower

with respect to HHD05 and MHAD cases because for
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Fig. 9 Accuracy of U-FADE, averaged on 10 executions, in presence of AGWN with all the considered datasets

MSR the sampling rate is rather low(15 Hz), as reported

in Table 2. We can conclude from this analysis that

both FADE and U-FADE are very robust to missing

frames and, hence, they can be used successfully with

low-quality sensors or communication channels. More-

over, we notice that U-FADE is slightly more robust to

missing frames than FADE.

Figures 8 and 9 report the robustness to noise for all

the datasets. We added additive gaussian white noise to

the signals with different standard deviations, ranging

from 0 cm to 15 cm in case of Cartesian joint positions

and from 0 deg to 15 deg in the case of joint angles. It is

worth emphasizing that the noise is added to the orig-

inal acquisition noise, which already corrupts the sig-

nals. We can notice that, with HDM05 and Cartesian

joint positions, and a noise standard deviation of 5 cm,

the accuracy drop is 3% using SVM and 4% using 1-

NN as a classification method. With the MHAD dataset

and the MSR dataset, the accuracy loss is around 5%

for 5 cm standard deviation when using the SVM clas-

sifier and 10% with 1-NN classification. In case of U-

FADE, the robustness to noise is slightly better with the

HDM05 dataset. However, with MHAD and MSR the

accuracy is significantly higher with respect to FADE,

especially using the SVM classifier.

For sake of speculation, we tested also unreasonable

standard deviations of 10 cm and 15 cm. We see that

even in those extreme cases, FADE and U-FADE with

SVM do not lose more than 30% accuracy. From this

experiments we conclude that both FADE and U-FADE

show good robustness to noise and missing frames. Com-

bining FADE and U-FADE with SVM gives better per-

formance than 1-NN not only in terms of accuracy, but

also in terms of robustness to noise and missing frames.

In the case of joint angles, we applied AGWN with

standard deviation between 0 deg and 15 deg. We see
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the same trend in the performance as in the Cartesian

position case. However, a maximum standard deviation

of 15 deg is more realistic than 15 cm. Hence, the max-

imum drop in performance is much lower than in the

previous case. In fact, the drop of accuracy with 15 deg

is between 2% and 5% also in the worse cases.

4.3 Experiments with HDM05

The HDM05 contains two types of data: joint angles

and joint Cartesian positions. In the literature, the joint

Cartesian positions seem to perform in general better.

Also, methods that work with joint angles, such as (Ofli

et al, 2014), adopt as input joint Cartesian position and

then compute joint angles. We evaluated the perfor-

mance of FADE and U-FADE with both joint angles

and joint Cartesian positions with both supervised and

unsupervised learning approaches. In order to show the

performance of our approach on datasets of different

sizes, it was evaluated on distinct sets:

1. Joint angle-based data

– Cho’s HDM05 dataset We used all the actions

and the classes in the HDM05 dataset without

removing lower quality actions. The actions were

performed by five different actors. The dataset

consists of 2337 actions split in 65 classes accord-

ing to the class distribution adopted in (Cho and

Chen, 2014).

2. Joint position-based data

– Cho’s HDM05 dataset 2337 actions of HDM005

split in 65 classes according to the class distri-

bution adopted in (Cho and Chen, 2014).

– Chen’s HDM05 dataset 790 actions of HDM005

split in 40 classes according to the class distri-

bution adopted in (Chen and Koskela, 2015).

– R-HDM05 It is a subset of HDM05 composed by

16 action classes. We consider this action sub-

set to compare our approach with diverse ap-

proaches such as (Ofli et al, 2014), and (Bissacco

et al, 2001).

– R2-HDM05 It is a subset of HDM05 composed

by 11 action classes, used to compare our ap-

proach with Evangelidis et al (2014)

For each dataset, the performance of FADE and U-

FADE is evaluated with respect to supervised and un-

supervised methods. A first performance evaluation of

FADE and U-FADE on HDM05 joint angle data is re-

ported in (Shah et al, 2016). The baseline of our com-

parison for action classification is the Singular Value

Decomposition approach in (Cavallo and Falco, 2014).

This approach is used for online classification of manip-

ulation actions with force and position data. However,

the SVD compression can be applied also as a descriptor

for full-body actions. It is interesting comparing the fre-

quency domain compression performed in FADE with

a similar compression method performed directly in the

time domain. It is possible to notice how FADE is more

data-efficient, has a lower time complexity, and higher

accuracy.

4.3.1 Joint-Angle Data

The results on the HDM05, with Chen’s class organi-

zation, are shown in Table 4. This dataset challenges

the scalability of action representation and classifica-

tion methods, since it contains a large number of ac-

tion classes and action sequences. As shown in Table 4,

FADE with 1-NN obtains a recognition rate of 83.7%

and with SVM it achieves an accuracy of almost 84.7%.

Considering its simplicity and compression rate, FADE

shows good properties of scalability with supervised

learning approaches. The results obtained with unsu-

pervised learning are reported in Table 5. We evaluated

the performance of FADE and U-FADE combined with

K-means (KM), Spectral Clustering (SC), and Agglom-

erative Clustering (AC) (Bishop, 2006). The accuracy

of unsupervised approaches is computed with the Clus-

tering Accuracy (CA) metrics in (Xu et al, 2003). Given

an action Ai, let αi be the cluster label estimated by the

clustering algorithm and let λi be the label provided by

the motion dataset, i.e., the true label. The clustering

accuracy CA (Xu et al, 2003) is defined as

CA =

∑Na

i=1 δ(li,map(λi))

Na
, (11)

where Na is the number of actions in the test set, and

δ(x, y) is the Kronecker delta function. It is equal to

one if x = y, and it equals zero otherwise. The func-

tion map(λi) maps each cluster label λi to the equiva-

lent label from the motion dataset. Such a function can

be implemented by using the Kuhn-Munkres algorithm

(Lovász and Plummer, 2009). Unsupervised approaches

are less scalable and suffer more with high compression

rate. With FADE, both KM and SC achieve 37% accu-

racy. U-FADE combined with SC performs almost 10%

better than FADE with SC, getting 47% accuracy. With

k-means U-FADE reaches 40% accuracy, while U-FADE

combined with AC shows 39% accuracy.

4.3.2 Joint Cartesian-position Data

In order to make the data invariant to the world frame,

we adopted a coordinate transformation process. This

procedure allows us to observe the joint Cartesian tra-

jectories in a frame fixed to the torso. Additionally, it
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Table 4 Classification Accuracy on HDM05 using joint po-
sitions (P. Acc.) and joint angles (A. Acc.)

Method Classif. P. Acc.(%) A. Acc.(%)

FADE 1-NN 88.0 83.7
FADE SVM 92.0 84.7

U-FADE 1-NN 86.3 82.3
U-FADE SVM 90.2 86.9

SVD 1-NN 87.1 77.8
SVD SVM 88.0 77.9

Table 5 Clustering accuracy on HDM05 using joint positions
(P. CA) and joint angles (A. CA)

Method Clustering P. CA(%) A. CA (%)

FADE SC 43.6 37.5
FADE KM 43.4 37.0
FADE AC 44.3 36.2

U-FADE SC 51.2 46.6
U-FADE KM 42.4 40.4
U-FADE AC 45.9 39.2

SVD SC 38.9 34.0
SVD KM 39.6 33.3
SVD AC 39.9 34.4

is possible to compute the skeleton model normaliza-

tion according to the procedure presented in (Chen and

Koskela, 2015), which normalizes the skeletal model of

the subject such that the lengths of all the bones sum

up to 1.

4.3.3 Whole HDM05 Action Set

The results are reported in Table 4. Using FADE with

1-NN results in an accuracy of 89.7%. With SVM, it

increases to 92.0%. For unsupervised learning, U-FADE

with SC gets an accuracy of 51.22%. For big datasets,

the performance of unsupervised methods can appear

rather weak. However, unsupervised methods have a

great potential for robotic applications. Such methods,

indeed, can allow robots to observe and cluster human

actions without any human contribution.

4.3.4 R-HDM05 Action Set

After evaluating FADE and U-FADE on HDM05, we

show the performance on the reduced set, which we

called R-HDM05. This subset is constituted by 401 ac-

tion sequences grouped into the 16 action classes: de-

positFloorR (1), elbowToKnee1RepsLelbowStart (2), grab-

HighR (3), hopBothLegs1hops (4), jogOnPlaceStartAir2

StepsLStart (5), jumpDown (6), jumpingJack1Rep (7),

kickLFront1Reps (8), lieDownFloor (9), rotateArmsBoth-

Backward1Reps (10), sitDown Chair (11), sneak2 Steps

LStart (12), squat1Reps (13), standUpKneelToStand (14),

throwBasketball (15), throwFarR (16). With this dataset,

Table 6 The best classification results for different action
descriptors obtained for the R-HDM05 dataset.

Descriptor Accuracy (%)

FADE + 1-NN 93.3
FADE + SVM 91.2

U-FADE + 1-NN 97.0
U-FADE + SVM 94.9

SMIJ (Ofli et al, 2014) + 1-NN 91.5
SMIJ (Ofli et al, 2014) + SVM 89.2
HMIJ (Ofli et al, 2014) + 1-NN 73.5
HMIJ (Ofli et al, 2014) + SVM 78.5
HMW (Ofli et al, 2014) + 1-NN 77.4
HMW (Ofli et al, 2014) + SVM 79.4

LDSP (Bissacco et al, 2001) + 1-NN 67.8
LDSP (Bissacco et al, 2001) + SVM 70.6
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Fig. 10 Confusion matrix of U-FADE with R-HDM05.

U-FADE achieves the best performance with 97.0% ac-

curacy. The accuracy of FADE is 93.2%. We compared

the performance of the proposed descriptors with Se-

quence of Most Informative Joints (SMIJ), Histogram

of Most Informative Joints (HMIJ), Histogram of Mo-

tion Words (HMW), proposed in (Ofli et al, 2014). Also,

we compared the performance also with Linear dynam-

ical system parameters (LDSP), which is a classical

method to analyze human motion. SMIJ gets 91.5%

accuracy with 1-NN and 89.2% with SVM.

The confusion matrix of U-FADE with SVM is shown

in Fig. 10. U-FADE gets 100% recognition accuracy

with all the actions except depositFloorR (1), rotateArms-

BothBackward1Reps (10), and throwBasketball (15). Con-

cerning the action depositFloorR, U-FADE shows 85%

accuracy since it is confused with a rate of 7% with the

action hopBothLegs1hops (4) and in 7% of the cases

with the action sneak 2StepsLStart (12). The action

rotateArmsBothBackward1Reps (10) achieves 83% ac-

curacy and in 17% of the cases is confused with throw-

Basketball (15). Finally, in 20% of cases, throwBasket-

ball is confused with grabHighR (3). Concerning unsu-

pervised learning, FADE reaches a clustering accuracy

of 63.9% with KM, 63.0% with AC, and 17.4% with SC.

U-FADE achieves a cluster accuracy of 62.7%, 51.9%,

and 68.7% with KM, AC, and SC respectively. On this
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Table 7 The best classification results for different action
descriptors obtained for the R2-HDM05 dataset.

Descriptor Accuracy (%)

FADE + 1-NN 94.9
FADE + SVM 96.9

U-FADE + 1-NN 97.6
U-FADE + SVM 96.4

(Evangelidis et al, 2014) 93.9

reduced dataset, the performance of clustering methods

increases significantly, even though still inferior to the

performance of supervised approaches.

4.3.5 R2-HDM05 Action Set

This subset is used by the skeletal quad approach in

(Evangelidis et al, 2014). This is an interesting approach

for our work because, like FADE and U-FADE, it aims

at finding simple features for time-efficient and data-

efficient classification. R2 is a subset of R-HDM05. In

particular, the subset is constituted by the actions {(1),

(2), (3), (4), (5), (8), (9), (10), (12), (13), (15)}. Table

7 reports the results in terms of accuracy of FADE, U-

FADE, and the approach in (Evangelidis et al, 2014).

U-FADE reaches 97.6% accuracy with 1-NN e 96.4 ac-

curacy with SVM. The skeletal quad approach reaches

93.9% on this dataset. FADE shows 94.9% with 1-NN

and 96.6% with SVM. Hence, on this dataset, both

FADE and U-FADE performs better in terms of ac-

curacy. With clustering approaches, FADE gets an ac-

curacy of 69.1%, 68.6%, and 17.4% with KM, AC, and

SC respectively. U-FADE gets 64.1%, 53.8%, and 68.0%

with KM, AC, and SC respectively.

4.4 MSR Action3D Dataset

In order to have more comparisons between our method

and other approaches in the literature, we adopt the

test protocol proposed in (Li et al, 2010). In this proto-

col, the action classes of the MSR dataset are split into

3 Action Sets (AS) with 8 classes: AS1, AS2, and AS3.

For each action set, three tests (T1, T2, and T3) are

performed. In the first test case, T1, one demonstra-

tion of each user is used for training and the other two

demonstration for testing. In T2, two demonstrations

of each user are used for training and one demonstra-

tion for testing. In T3, all action sequences performed

by half of the users are used for training and the rest

for testing. T3 is then a cross-subject test, while in T1

and T2 data from all the subjects are considered for the

training. The actions of the database are split in action

sets in the following way:

– AS1: horizontalArmWave (1), hammer (2), forward-

Punch (3), highThrow (4), handClap (5), bend (6),

tennisServe (7), pickUpThrow (8)

– AS2: highArmWave (1), handCatch (2), drawX (3),

drawTick (4), drawCircle (5), twoHandWave (6),

sideBoxing (7) ,forwardKick (8)

– AS3: highThrow (1), forwardKick (2), sideKick (3),

jogging (4), tennisSwing (5), tennisServe (6), golf-

Swing (7) pickUpThrow (8)

Using these action sets and action tests, we can com-

pare our method with diverse approaches presented in

the literature. Most approaches, such as (Gowayyed

et al, 2013), (Vemulapalli et al, 2014), (Evangelidis et al,

2014), (Ofli et al, 2014), implemented only a part of

the proposed tests. Other approaches like (Xia et al,

2012), (Li et al, 2010), (Chen et al, 2013) are tested

adopting the complete protocol. Comparing the exper-

imental results in Table 8, there is no ultimate method

that outperforms all the others on this dataset. On this

dataset, U-FADE performs slightly better than FADE.

This happens in general for small-sized datasets.

In Figures 11(a), 11(b), 11(c), the confusion matri-

ces of U-FADE with SVM are reported relatively to

Action Set 1 (AS1). On AS1, U-FADE combined with

SVM achieves 94.7% on T1, 100% on T2 and 92.4%

on T3. On this action set, (Xia et al, 2012) performs

better than (Li et al, 2010), (Chen et al, 2013) and

U-FADE on T1 with 92% accuracy. On the test T2,

UFADE reaches 100% accuracy and performing bet-

ter than all the other methods, while on T3 U-FADE

reaches 92.7% accuracy. On the test T3, it is possible

to make comparisons with more methods. In particu-

lar, U-FADE performs better than (Xia et al, 2012),

(Li et al, 2010), (Evangelidis et al, 2014), (Gowayyed

et al, 2013). Also, (Du et al, 2015) performs slightly

better than U-FADE (0.5% better), while (Vemulapalli

et al, 2014) achieves 95.3% accuracy (2.5% better) and

(Chen et al, 2013) achieve 96.2% accuracy, which is the

best accuracy on T3 for the first Action Set.

The confusion matrices relative to AS2 are shown

in Figures 11(d), 11(e), 11(f). On the AS2, U-FADE

with SVM gets 82.0% in the test T1. Compared to

(Xia et al, 2012), (Chen et al, 2013), and (Li et al,

2010), U-FADE shows worse performance in this par-

ticular case. To investigate in more detail the reason,

we can consider the confusion matrix reported in Fig.

11(d). As it can be seen from the confusion matrix

in Fig. 11(d), the actions that mostly contribute to

drop the accuracy are handCatch (2) with 65% accu-

racy, drawTick (4) with 70% accuracy, and sideBox-

ing (7), with 71% accuracy. handCatch (2) is confused

especially with drawX (3) in 10% of cases and with

sideBoxing (7) in 12% of cases. In 6% of cases, (2) is
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confused with drawTick (4), and emphdrawCircle (5).

drawTick (4) is confused with highArmWave(1) in 15%

of cases, and with drawCircle, sideBoxing and drawX in

5% of cases. The action sideBoxing (7), is confused with

drawCircle in 24% of cases. From analyzing the confu-

sion matrix we can conclude that the actions sideBox-

ing, drawCircle, drawX, drawTick have a rather similar

spectrum and in some cases are confused. A plausible

explanation is that using only the spectrum, we loose

information on the directionality of the motion. This

way, actions like stand-up and sit-down are encoded

with similar descriptors. In applications where the di-

rectionality of the motion is important, we can include

the mean velocities of the joints in the descriptor, pay-

ing the price of a slightly higher computational cost,

but without increasing the O(.) time and space com-

plexity. On the same action set and on Test 2, U-FADE

performs slightly better than (Li et al, 2010) and it

performs worse than (Chen et al, 2013) and (Xia et al,

2012). However, on test T3, U-FADE performs better

than most approaches such as (Xia et al, 2012), (Li

et al, 2010), (Chen et al, 2013), (Gowayyed et al, 2013),

(Vemulapalli et al, 2014), (Evangelidis et al, 2014). The

only method which in this case perform better is (Du

et al, 2015).

Concerning the Action Set 3, U-FADE achieves 97.5%

accuracy on T1, 98.9% accuracy on T2 and 91.9% on

T3. The confusion matrices relative to this action set

are reported in Figures 11(g), 11(h), 11(i). On T1 and

T2, U-FADE performs better than (Li et al, 2010) and

(Xia et al, 2012), but it is slightly outperformed by

(Chen et al, 2013). On T3, U-FADE has the same per-
formance as (Chen et al, 2013), but it performs worse

than (Evangelidis et al, 2014), (Du et al, 2015) and

(Vemulapalli et al, 2014). On the AS3, in (Ofli et al,

2014), an accuracy of 47.1% is reported. It is also inter-

esting to compare U-FADE with the frequency-based

approach proposed in (Wang et al, 2012). The aver-

age value for this approach is 88.1% using the proposed

classification method based actionlet ensembles, while

U-FADE reaches 91.6% with a standard SVM classifier.

From these experiments we can conclude that U-

FADE performs better than other simple and data-

efficient descriptors, and also in terms of accuracy is

competitive with descriptors that adopt more complex

classifiers and features. The unsupervised approaches,

i.e., KM, AC, and SC show accuracy of 52.2%, 32.7%,

and 25.4%, respectively, for FADE; they show and ac-

curacy of 45.8%, 11.7%, and 46.0, respectively, for U-

FADE.

4.5 Berkeley MHAD Dataset

The comparison between FADE, U-FADE, and diverse

state of the approaches on the classes of the MHAD

database is reported in Table 9. In this case, FADE

achieves 91.6% accuracy, U-FADE achieves 93.8%. The

RNN-based method proposed in (Du et al, 2015) reaches

100% accuracy on this test set, while SMIJ with 95.1%.

In this experiment, 7 subjects are chosen for training

(384 action sequences) and 5 (275 action sequences) for

testing, according to the cross-subject validation proto-

col adopted in (Ofli et al, 2014). MHAD is constituted

by 11 action classes: jumping (1), jumping jacks (2),

bending (3), punching (4), waving two hands (5), waving

one hand (6), clapping (7), throwing (8), sit down (9),

stand up (10), sit down/stand up (11). The confusion

matrix is shown in Fig. 12. For most action classes, the

accuracy of FADE is 100%, except for actions jumping

jacks (2), bending (3), punching (4), sit down/stand

up (11). The most critical action is jumping jacks (2),

which achieves 64% accuracy. In 24% of cases is con-

fused with throwing (8), while in 12% of cases is con-

fused with waving two hands (5). The action throw-

ing (8) is confused with a 4% rate with waving two

hands (5) and clapping (7), and in 8% of the cases

with waving one hand (6). The action sit down/stand

up (11) is confused with stand up (10) in 12% of the

cases. On this dataset U-FADE performs slightly worse

than SMIJ and it performs better than MHIJ, HMW,

and LDSP. Also, U-FADE is less accurate than ap-

proach proposed in (Du et al, 2015), which is based

on hierarchical RNN. Nevertheless, this approach uses

a more complex classifier and requires higher computa-

tional power. With the whole dataset, FADE with KM

reaches 32.2% accuracy, 57.0% accuracy with AC, and

25.4% with SC. U-FADE achieves an accuracy of 56.0%,

43.7%, and 59.5% with KM, AC, and SC respectively.

5 Conclusion and Future Work

In this paper, we presented Frequency-based Action De-

scriptor (FADE) and Uncompressed FADE (U-FADE).

We tested the performance of FADE and U-FADE with

three publicly available datasets, i.e. HDM05, MHAD,

and MSR Action3D. Due to its strong compression,

FADE is suitable for classifying several actions with

very reduced training and test times. U-FADE is less

compressed but it performs better than FADE on small-

sized actions sets and with some unsupervised clus-

tering algorithm such as Spectral Clustering. Despite

their simplicity, FADE and U-FADE present an accu-

racy comparable with most existing approaches that
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Table 8 Recognition results on the MSR Action3D dataset.

Test 1 Test 2 Test 3

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

U-FADE + SVM 94.7% 82.0% 97.5% 91.4% 100% 93.3% 98.9% 97.4% 92.7% 90.2% 91.9% 91.6%

(Xia et al, 2012) 98.47% 96.67% 93.47% 96.2% 98.61% 97.92% 94.93% 97.15% 87.98% 85.40% 63.46% 78.97%

(Li et al, 2010) 89.5% 89.0% 96.3% 91.6% 93.4% 92.9% 96.3% 94.2% 72.9% 71.9% 79.2% 74.7%

(Chen et al, 2013) 97.3% 96.1% 98.7% 97.4% 98.6% 98.7% 100% 99.1% 96.2% 83.2% 92.0% 90.47%

(Gowayyed et al, 2013) - - - - - - - - 92.39% 90.18% 91.43% 91.26%

(Vemulapalli et al, 2014) - - - - - - - - 95.29% 83.87% 98.22% 92.46

(Du et al, 2015) - - - - - - - - 93.33% 94.64% 95.50% 94.49%

(Evangelidis et al, 2014) - - - - - - - - 88.4% 86.6% 94.5% 89.8%

(Wang et al, 2012) - - - - - - - - - - - 88.2%

(Ofli et al, 2014) - - - - - - - - - - - 47.1%
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Fig. 11 Confusion matrices for U-FADE with SVM evaluated on the MSR Action3D dataset using the protocol suggested in
(Li et al, 2010).

Table 9 Cross-subject for Berkley MHAD

Descriptor Accuracy (%)

FADE + 1-NN 84.3
FADE + SVM 91.6

U-FADE + 1-NN 92.4
U-FADE + SVM 93.8

SMIJ (Ofli et al, 2014)+1-NN 93.1
SMIJ (Ofli et al, 2014)+SVM 95.4
HMIJ (Ofli et al, 2014)+1-NN 81.6
HMW (Ofli et al, 2014)+SVM 83.1
LDSP (Bissacco et al, 2001) 92.8

(Du et al, 2015) 100

use more complex classifiers. Due to their low compu-

tational cost, FADE and U-FADE shine for applica-

tions in which the classifier needs to be frequently re-

trained. Combining FADE with SVM, the training time

for the whole HDM05 is 1 s with a python script, loos-

ing 2% to 4% accuracy with respect to methods based

on deep networks, which requires much longer training

time. We tested FADE and U-FADE with data sets of

different sizes, in order to prove that the descriptor can

be used for both large training sets with thousands of

actions and for small training set with hundreds of ac-

tions. However, we noticed that in most cases U-FADE

performs better than FADE in small-size datasets.

Emergent deep learning techniques such as (Cho

and Chen, 2014) have a good potential to achieve a high
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Fig. 12 Confusion matrix of U-FADE with SVM evaluated
on the MHAD dataset

accuracy with large datasets, paying the price of high

computational cost, especially in the training phase.

However, such approaches do not perform well when

only few examples are available. FADE and U-FADE of-

fer a balance for good performance with both small and

large datasets, by exploiting prior knowledge on human

biomechanics. FADE and U-FADE have a O(1) space

complexity and a O(n log n) time complexity. Hence,

they scale well when the dimensionality of the prob-

lem increases. In the literature, most action recognition

methods use supervised learning approach. On the con-

trary, we have tested our descriptor also with diverse

clustering methods. We found out that FADE and es-

pecially U-FADE work well with clustering approaches

when the size of the dataset is small (few hundred of

actions).

In the light of the diverse experiments and compar-

isons performed in this work, we suggest approaches

based on FADE and U-FADE in applications where

a low computational cost and robustness to noise are

important issues. Also, FADE and U-FADE perform

well when we want good performance on both small

and large datasets, and when we seek a good trade-

off between accuracy and computational cost. For this

reasons, the proposed descriptors are good solutions

for autonomous robots with limited computation power

and energy storage capabilities. However, when pow-

erful CPUs (and GPUs) are available without relevant

power consumption issues, a large set of training data is

available, and there is no need to retrain often the clas-

sification algorithm, methods based on deep networks

and RNN can be a very solid option.

We believe that, for robotic applications, develop-

ing descriptors suitable for unsupervised learning has

a particularly important value. However, still much has

to be understood on descriptors for unsupervised learn-

ing that can achieve good performance also with large

datasets. A future research direction will consist in find-

ing extensions of FADE and U-FADE that perform bet-

ter with unsupervised learning on both small and large

action sets. Also, run-time action recognition methods

leveraging the online FFT will be investigated. We used

FADE and U-FADE only for classifying actions that are

already segmented with a state of the art approach. As

next step, we will use the concepts of FADE and U-

FADE also for segmenting data streaming into distinct

behaviors. Another direction will consist in combining

the proposed descriptor with motion invariant repre-

sentations such as (Soloperto et al, 2015),(De Schutter

et al, 2011), Lee et al (2017) and (Saveriano and Lee,

2013).
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