
Technische Universität München

Fakultät für Informatik

Lehrstuhl für Bildverarbeitung und Mustererkennung

Efficient Algorithms for Large-Scale

Correspondence Problems in Computer Vision

Frank Thomas Steinbrücker

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Darius Burschka

Prüfer der Dissertation: 1. Prof. Dr. Daniel Cremers

2. Prof. Dr. Bastian Goldlücke

Universität Konstanz

Die Dissertation wurde am 07.08.2018 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 28.11.2018 angenommen.

Abstract

In this thesis, we investigate several aspects of inferring the content of a scene depicted
in a sequence of images.

We start with the ill-posed problem of dense optical flow and disparity estimation on
brightness intensity images, where we introduce a new method for efficiently estimating
the optical flow of small-scale structures moving over large distances. Given a sequence
of images with both dense depth estimates and brightness intensity, we continue with the
problem of estimating the trajectory of a moving camera in a static scene. Finally, we
address the problem of reconstructing the surface geometry and texture from a sequence
of RGB-D images taken from a camera with a known trajectory. Our focus lies on
dense methods, taking into account all the information contained in the images. Unlike
previous methods, we are able to recover fine details, while still correlating all the given
data.

A common aspect of these problems, and of computer vision problems in general, is the
involvement of high-dimensional input data. To make processing of this data feasible, we
need efficient algorithms. Depending on the problem, efficiency can mean both a feasible
asymptotic behavior and an optimized implementation yielding real-time capability.

The former is a typical aspect of ill-posed problems, where we are given insufficient
information and have to rely on additional priors in order to estimate a large number of
variables. This is the case for dense optical flow estimation, where our proposed method
is an alternative to the state-of-the-art approximation of a computationally infeasible
problem.

The latter is typical for problems involving large amounts of input data provided in
real-time, where we require our algorithms to run in real-time as well. This is the case for
camera pose estimation and dense environment reconstruction in robotic applications.

ii

Acknowledgements

Firstly, I want to thank Prof. Daniel Cremers for giving me the opportunity to work at
one of the best research groups in the field of computer vision. Daniel taught me most
of what I know about scientific work and about focusing on the relevant issues in my
work while simultaneously seeing beyond my own nose.

I am also indebted to my coauthors Thomas Pock, Christian Kerl, and Jürgen Sturm
for their fruitful and persistent collaboration.

Finally, I want to thank my colleagues Eno Töppe, Martin R. Oswald and Mohamed
Souiai for proofreading my thesis.

iii

Contents

1. Introduction and Overview 3

2. Mathematical and Algorithmic Concepts 7
2.1. Notation . 7
2.2. Camera Model . 8
2.3. Photoconsistency . 10
2.4. Motion Models . 11

2.4.1. Rigid Motion Model . 11
2.4.2. Dynamic Motion Model . 14

2.5. Advanced Photoconsistency Assumptions 17
2.6. Energy Models . 20

2.6.1. Discrete Formulations and Runtime Complexity 23

3. Dense Motion Estimation Without a Coarse-to-fine Scheme 29
3.1. Linearization . 29
3.2. Previous Strategies for Variational Optical Flow 31

3.2.1. Coarse-to-Fine Warping . 36
3.3. A Formulation without Linearization or Coarse-to-Fine Warping 38

3.3.1. Sub-pixel Accuracy and Parallelization 40
3.4. Experimental Evaluation . 44

3.4.1. Large Motion . 44
3.4.2. Parameter Evaluation . 48

3.5. Advanced Data Terms . 52
3.5.1. Experimental Evaluation . 55

3.6. Conclusion . 59

4. Camera Tracking on RGB-D Sequences 61
4.1. Previous Strategies for Camera Tracking 61
4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences 62

4.2.1. Energy Formulation . 63
4.2.2. Minimal Camera Pose Representation 64
4.2.3. Energy Linearization and Minimization 68

4.3. Relation to ICP . 72
4.4. Experimental Evaluation . 74

1

Contents

4.5. Conclusion . 76

5. Large-Scale 3D Reconstruction from RGB-D Sequences 79
5.1. Surface Representations and Prior Work 79
5.2. Sparse Representation of the Reconstruction Volume 86

5.2.1. Multiscale Approach . 88
5.3. Implementation . 91

5.3.1. Implementation on the GPU . 91
5.3.2. Implementation on the CPU . 94

5.4. Online Applications Using Dense Geometry Reconstructions 97
5.4.1. Mesh Extraction from Volumetric Data 99
5.4.2. Recursive Formulation . 103
5.4.3. Incremental Mesh Extraction . 106

5.5. Experimental Evaluation . 110
5.6. Conclusion . 118

6. Conclusion 119
6.0.1. Outlook and Future Work . 120

A. Appendix 123
A. List of Acronyms . 123
B. Dense Motion Estimation Without a Coarse-to-fine Scheme 124

B.1. Sub-pixel Optimization - Derivation of the Hyperbola Equation . . 124
B.2. Sub-pixel Optimization - Minimization of the Energy on the Hy-

perbola . 124
B.3. Sub-pixel Optimization - Algorithm for the Analytic Optimization 125

C. Camera Tracking on RGB-D Sequences 126
C.1. Explicit Formulation of the 6×1 Constraints for Camera Tracking 126

D. Large-Scale 3D Reconstruction from RGB-D Sequences 127
D.1. Degenerate Case of Edge-Triangle Configurations 127
D.2. Error Intervals of Disparity-based Depth Sensors 128
D.3. Intersecting a Cube with a Branch in the Tree 128

Own Publications 128

Bibliography 132

2

1. Introduction and Overview

Computer vision comprises various tasks dealing with deriving digital representations of
an environment observed by one or more imaging sensors. Depending on the task, these
representations can live in different domains. For example, the shape of an object can be
represented as a 3D surface or a 2D silhouette, and a 3D surface itself can have different
representations such as a polygonal mesh, a collection of simple primitives, control points
of a 3D spline etc. Motion in the environment can be represented as the 2D motion of
each pixel in an image from one camera frame to the next, the 3D motion of an object in
3D space, or the ego-motion of the camera itself. Higher-level tasks include the semantic
classification of objects in the environment or detection and classification of behavioral
patterns in image sequences. Besides the derivation of environment representations,
another set of computer vision tasks is targeted at estimating the parameters of the
imaging pipeline itself, i.e. sensor calibration.

The applications of these digital representations are manifold: Knowing the per-pixel
motion from one image to the next in an image sequence allows us to interpolate between
images and create artificial slow motion. Knowing both the ego-motion of a camera and
a digital representation of its environment enables robots to autonomously navigate
through an unknown terrain and send the environment representation to a base station,
where it can be used for virtual walks, distance measurements, inference of material
properties, etc.

All computer vision tasks involving a sensor have in common that their input data is
the output of an imaging pipeline, while their own output is a “clean” digital represen-
tation of parts of the input to that pipeline. Computer vision is therefore often regarded
as solving the inverse problem of computer graphics, where the objective is to synthesize
images from digital representations of the environment and imaging pipeline.

Among the central challenges in this context are that the imaging pipeline is lossy and
that the input data is high-dimensional.

The lossiness of the imaging pipeline is usually caused by the presence of noise, the
incapability of the sensor to represent high-frequency environment data with a fixed and
comparably low sample rate, and, in the case of a projective camera, the loss of 3D
information under the projection function.

The presence of high-dimensional, large-scale input data is the central topic of this
thesis, which explores several tasks in image sequence processing.

In order to achieve feasible runtimes, state-of-the-art approaches tackling these tasks
either rely on focusing only on a sparse subset of the data, or on downsampling the

3

1. Introduction and Overview

problem to a feasible scale. Both approaches are prone to neglect valuable details in the
data, and the downsampling itself can be a non-trivial and costly task as well.

This thesis deals with three computer vision tasks subject to large-scale input data:

• Computing the per-pixel displacement between two images over large inter-pixel
distances (Chapter 3).

• Estimating the six-degree-of-freedom ego-motion of a camera, given sequences of
both texture and depth images (Chapter 4).

• Computing a joint surface representation from a sequence of depth images at large
scales on commodity hardware (Chapter 5).

It is structured as follows:

Mathematical and Algorithmic Concepts

In Chapter 2 we introduce the camera model, photoconsistency, and motion models
used throughout this thesis, and explain the challenges in applying energy minimization
models for dense correspondence estimation under different motion models. We cover
the task of stereo disparity and optical flow estimation, i.e. the problem of computing
either an arbitrary displacement vector (optical flow) or the scalar disparity along an
epipolar line (stereo) that matches a pixel from one image to another image.

Sparse approaches for stereo and optical flow only compute these displacement esti-
mates at locations of sufficient spatial and temporal intensity variation of the image.
In contrast, dense energy approaches assign a displacement to every pixel in the image,
according to a data term describing how well the displacement matches the two input
images, and correlate the estimates with a regularity term to both avoid an undercon-
strained problem and to robustify the approach against noise, outliers, and missing or
ambiguous data.

For dense approaches, the main challenge regarding large-scale data lies in the high
dimensionality of the output data. We show that with two variables estimated for
every pixel in the image and a spatial coupling of the variables, the current standard
formulation of the optical flow problem becomes computationally intractable.

Dense Motion Estimation Without a Coarse-to-fine Scheme

As a remedy, most previous approaches downsample the problem to a coarser scale,
compute coarse displacements, and subsequently refine the displacements on finer scales.
This strategy has the problem that fine-scaled structures moving over a large distance
from one image to the next are neglected due to the downsampling.

4

In contrast, we propose a method for dense optical flow estimation in Chapter 3, that is
based on decoupling the regularity term from the data term. We published our method
in [4]. Since it is not relying on downsampling, our method is capable of accurately
estimating the displacements of fine-scaled structures. Furthermore, it allows us to use
arbitrary data terms, as we have demonstrated in [3].

Camera Pose Estimation on RGB-D Sequences

In Chapter 4, we cover the topic of camera tracking on images containing both a bright-
ness intensity value as well as a depth value in every pixel. The depth estimates can be
provided either by a passive photometric stereo approach as described in Chapter 3, by
a photometric stereo method aided by an illuminator in a sensor based on structured
light patterns, or by a sensor based on the time-of-flight principle. Publications based on
recently developed active sensors in the consumer market [42, 83] have coined the term
RGB-D cameras and RGB-D images (Red, Green, Blue, and Depth) for such cameras
and images. Tracking the camera on a sequence of such images means estimating the
relative 6-degree-of-freedom pose transformation the camera has undergone in the time
from capturing one image to the next.

This problem is closely related to optical flow and stereo disparity estimation. Instead
of estimating a displacement for every pixel, we estimate a camera movement producing
all the displacements in the image. The problem can also be regarded as the inverse
problem to stereo disparity estimation: For stereo disparity estimation, we are given the
relative camera pose transformation and want to estimate the disparity (and therefore
the depth) in every pixel. For camera tracking on RGB-D sequences, we are given the
depth and want to estimate the relative camera pose transformation. Both problems
can co-occur, for example if we want to estimate the trajectory of a binocular camera
from a sequence of calibrated stereo images.

The challenge regarding large-scale data lies in the real-time requirements of many
applications using novel active RGB-D cameras. Cameras like Microsoft’s 1st generation
Kinect or Asus’ Xtion Pro capture RGB-D images at 30 frames per second. Being able to
track the camera with the same speed on commodity hardware opens up a wide field of
applications such as robotic navigation, simultaneous localization and mapping (SLAM),
or real-time online reconstruction of 3D environments. Most previous approaches for
camera tracking either use a sparse subset of visual features based purely on the color
information of the images, or try to align the depth maps by an iterative closest point
(ICP) method. Both approaches suffer from computationally costly correspondence
estimation and outlier rejection.

In contrast, we propose a method for camera tracking using both dense image intensity
and depth information, and outperforming a comparable ICP implementation by means
of both accuracy and speed. We published this approach in [5].

5

1. Introduction and Overview

Large-Scale 3D Reconstruction from RGB-D Sequences

In Chapter 5, we assume to be given an image sequence of a static scene with both dense
depth information and a camera pose for every image. Our goal is to densely reconstruct
the joint surface geometry in real-time. State-of-the-art approaches rely on an implicit
volumetric representation of the surface geometry that can handle arbitrary changes in
topology. However, the worst-case memory demand increases cubically with the number
of integrated RGB-D pixels. The challenge regarding large-scale data in this case is the
sheer amount of voxels that need to be updated for the integration of every RGB-D
image. On the one hand, all previous approaches for real-time depth map fusion require
parallelization of the algorithm on a graphics processing unit (GPU). On the other hand,
the comparatively small amount of available memory on GPUs is an additional limiting
factor with respect to the size and resolution of the reconstructed scene.

In contrast to previous approaches, we propose a method that only stores and updates
those voxels in the volume actually bearing information about the surface geometry.
Furthermore, we represent the geometry adaptively on different scales, according to the
resolution we get from the camera observing it at different distances. As a result, our
method is able to store large scenes in the limited amount of available GPU memory,
as we demonstrated in [1]. Moreover, we show that with a number of optimizations
for serial processing and Single-Instruction-Multiple-Data (SIMD) parallelism, which is
supported by all central processing units (CPUs) in current commodity desktops and
laptops, we are able to perform our dense RGB-D image fusion method on a single laptop
CPU core.

In addition, we address the problem of map transmission and visualization. Previous
approaches involving an implicit volumetric surface representation use raycasting for
visualization. Raycasting heavily relies on GPU parallelization, and it requires a new
image to be rendered for every virtual camera pose observing the geometry. Therefore,
it is not well suited for decoupling the visualization of the observed geometry from
the machine performing the volumetric geometry fusion, and running the volumetric
geometry fusion on an embedded platform.

Different to previous approaches, we extract a triangle mesh of the geometry surface
incrementally on a second CPU core. The triangle mesh has a comparatively low memory
footprint and it can be transferred to a different machine and be used there as both a map
for tasks like path planning or obstacle avoidance and for visualization. We published
both the optimization of our approach for running on a CPU and the incremental mesh
extraction in [6].

Conclusion and Outlook

In Chapter 6 we summarize our work and give an outlook on future work, illustrating
how some our work can be improved.

6

2. Mathematical and Algorithmic Concepts

2.1. Notation

Scalars, Vectors, and Matrices

• We do not distinguish points from vectors in our notation.

• We use normal lower case letters for scalars such as temporal indices t, t0, t1, ... ∈ R.

• We use bold lower case letters for 2D vectors such as pixel indices p ∈ Ω ⊂
R2. Depending on the context, we use either simple letters such as x and y,
or subscripted letters such as fx, fy, cx, cy to denote the elements of different 2D
vectors.

• For 3D and higher-dimensional vectors and matrices we use bold upper case letters.
Similar to 2D vectors, we use either simple or subscripted upper case letter for the
elements of 3D vectors.

• For 2D and 3D points p ∈ R2 and P ∈ R3, we use the notation p̃ and P̃ for their
corresponding homogeneous coordinates in the 2D and 3D projective spaces RP2

and RP3.

Coordinate Transformations

• When we describe coordinate transformations in the form of matrix multiplications,
like rotating the point P ∈ R3 around the origin with the rotation matrix R, we
always multiply the operator from the left, i.e. RP.

• When we refer to the rotation/orientation and translation/position of a camera
R and T, we describe the transformation of a point from camera coordinates to
“world” coordinates. This infers that T is the position of the camera center in
“world” coordinates.

Derivatives

• For compositions of functions, with one or more variables, we use the total dif-
ferential notation to describe the derivative of the composition function. A 1D
example is the composition g(f(x)), where we write df(g(x))

dx for the derivative of

7

2. Mathematical and Algorithmic Concepts

the composite function h := (f ◦g) with respect to x, without explicitly defining h.
Similarly, if we have a multivariable function f(g(x), h(x), x), where f is explicitly
dependent on x both explicitly and implicitly through g and h, which themselves
are - potentially implicitly - dependent on x, we write ∂f

∂x to describe the partial

derivative with respect to the explicit dependency, whereas we write df(g(x),g(x),x)
dx

to describe the derivative of the composite function.

• We often use the short form ∂x for the partial derivative ∂
∂x .

• For the point at which we evaluate a derivative, we choose the notation(
∂f(x1, x1, x3, ...)

∂x{1,2,3,...}

) ∣∣∣∣∣
y1,y2,y3,...

or

(
df(g1(x), g2(x), g3(x), ...)

dx

) ∣∣∣∣∣
y1,y2,y3,...

to describe that the derivatives are evaluated at the location x1 = y1, x2 = y2, x3 =
y3, ..., or g1(x) = y1, g2(x) = y2, g3(x) = y3, ..., respectively. If we have introduced
a function before and the order of arguments is known from context, we might
choose to omit the arguments in the numerator for better readability, for example
like (

∂f

∂x

) ∣∣∣∣∣
y1,y2,y3

.

Predicates

In some of the formulas we use Iverson’s notation to convert predicates to binary values,
analogously to standard digital comparator arithmetic [50]:

[P] =

{
1 if P is true

0 else
. (2.1)

2.2. Camera Model

Throughout this thesis we assume the input images were acquired by a pinhole camera.
In the pinhole camera model, a ray of light passes on a straight line from the surface
through the camera center onto the image plane, without being refracted by a camera
lens. Figure 2.1 is a 2D schematic of the perspective projection of the pinhole camera
model. A 3D point P is projected on a straight line through the camera center C ∈ R3

onto the rectangular image plane Ω′ ⊂ R2 behind the camera center on the optical axis.
For convenience, we use the virtual image plane Ω ⊂ R2 in front of the camera center
instead of the real image plane Ω′ in this thesis, and without loss of generality, we use

8

2.2. Camera Model

Ω Ω′
C

f

p

P

Figure 2.1.: Pinhole camera model

a right-handed camera coordinate system, where X-values increase from left to right,
Y-values increase from top to bottom, and Z-values increase from near to far.

The focal length of the pinhole camera is the distance f ∈ R>0 of the image plane
to the camera center. To model the process of creating a pixel image, the focal length
f in Meters is multiplied with the pixel size in x- and y-direction, yielding the scaled
focal lengths fx and fy with a unit of measure in pixels. Furthermore, we represent
the position of the image plane Ω in the XY -plane in camera coordinates by the offset

c =
[
cx cy

]T ∈ R2 of the optical axis in the image plane in pixels.

The pixel position p =
[
x y

]T ∈ Ω of a 3D point P =
[
PX PY PZ

]T ∈ R3 can
now be computed as [

x
y

]
=

PXPZ fx + cx

PY
PZ
fy + cy

 . (2.2)

In the following, we will denote the projection of a 3D point P into a camera with some
intrinsic parameters K by the function

π : R3 → R2,P 7→ π(P). (2.3)

Using 2D homogeneous coordinates for p, this projective transformation can be expressed
as a multiplication with the intrinsic camera matrix K:

p̃ ∈ RP2 =

xy
1

 = KP =

fx 0 cx
0 fy cy
0 0 1

PXPY
PZ

 (2.4)

If P is not given in camera coordinates, but in world coordinates, and if we want to
project P into a camera rotated with R ∈ SO(3) and translated with T ∈ R3 (see 2.1),
we have to apply the inverse transformation to P beforehand

p = π(RTP−RTT). (2.5)

9

2. Mathematical and Algorithmic Concepts

Representing P in 3D homogeneous coordinates as P̃ =
[
P 1

]T
and using the matrix

Π to project back to Euclidean coordinates, we can rewrite Equation (2.5) with the
homogeneous transformation matrix M as

M =

[
RT −RTT
0 1

]
=


R11 R21 R31 −R11T1 −R21T2 −R31T3

R12 R22 R32 −R12T1 −R22T2 −R32T3

R13 R32 R33 −R13T1 −R23T2 −R33T3

0 0 0 1


Π =

1 0 0 0
0 1 0 0
0 0 1 0


p̃ = KΠMP̃ (2.6)

Finally, we will describe the image captured by a camera as a real-valued function on
the rectangular image plane,

I : Ω→ R, p 7→ I(p) (2.7)

Ic : Ω→ R3, p 7→ Ic(p) =

RG
B

 (p). (2.8)

where I in Equation (2.7) refers to gray-valued intensity images and Ic in Equation
(2.8) refers to RGB-color images. Naturally, there are many other types of images, for
example range or disparity images, which will play a role in Chapters 4 and 5. However,
unless explicitly stated otherwise, we consider gray-valued intensity images in the rest
of this thesis when referring to an image.

2.3. Photoconsistency

In this thesis, we deal with correspondence problems in a twofold way: First, Chapters
3, 4 and the last sections of this chapter address the problem of putting parts of different
images into correspondence with one another. Second, Chapter 5 deals with the problem
of applying correspondences found between images to reconstruct a geometry model. For
the first task, finding the correspondences, we require that the scene geometry we observe
in different images looks the same in these images, even though taken from different
angles. A common premise for this is that the geometry captured by a camera has a
surface subject to an isotropically diffuse or Lambertian reflectance model. In short,
this implies that the texture observed on the surface by a camera is independent of the
angle spanned by the camera center, the surface point, and the surface normal. This
assumption is a premise for the notion of photometric consistency, or photoconsistency.

10

2.4. Motion Models

For a set of n cameras {Ci}n−1
i=0 with camera poses Mi, capturing images Ii, a point

P ∈ R3 is photoconsistent, if

∀i, j ∈ {0, ..., n− 1} : Ii(πi(MiP))− Ij(πj(MjP)) = 0 (2.9a)

and a trivial pairwise photoconsistency score (the lower the better) for two cameras and
images i and j is the absolute difference

|Ii(πi(MiP))− Ij(πj(MjP))| . (2.9b)

A common assumption in computer vision is that 3D points lying on a Lambertian sur-
face are photoconsistent. The thus defined concept of photoconsistency can be used for
the following scenarios: On the one hand, for known camera poses and intrinsic param-
eters, one can infer the surface geometry of the scene with this assumption, provided
that one has a strategy for removing false correspondences. This will be detailed in the
next section. On the other hand, for a known surface geometry and intrinsic camera
parameters, one can infer the camera poses. This case will be covered in Chapter 4.

Naturally, the assumption of a Lambertian surface is an idealized one and proves true
only theoretically. Other issues corrupting photoconsistency are various forms of noise,
occlusions, and illumination changes. The latter will be covered in Section 3.5.

2.4. Motion Models

2.4.1. Rigid Motion Model

When a scene is observed concurrently by at least two cameras C0 and C1 with known
poses M0 and M1, we can use the photoconsistency assumption of Equation (2.9a) to
infer which points P lie on a 3D surface.

While many methods in computer vision involve computing a photoconsistency score
for all points on a Euclidean 3D grid [88, 52, 84], the surfaces in this thesis are parametrized
as range images or depthmaps in the projective volume of one camera. The projective
volume is the preimage of the image plane Ω under the perspective projection.

Figure 2.2 shows an example of a depthmap. Instead of sampling the photoconsistency
on a 3D grid, we sample the photoconsistency on the ray going from the camera center
through each pixel p0 in the image plane Ω0 of camera C0. Assuming C0 is rotated with
R0 and translated with T0, and that it has the intrinsic parameters K0, then this ray
is the set of points P that fulfill

P = R0K
−1
0 hp̃0 + T0 (2.10)

for a positive h ∈ R≥0. Projecting this ray into a second camera C1, we get

p1 = π1

(
RT

1 R0K
−1
0 hp̃0 + RT

1 T0 −RT
1 T1

)
, (2.11)

11

2. Mathematical and Algorithmic Concepts

Figure 2.2.: 2D depthmap (left) and the corresponding surface visualized in 3D (right).
Bright intensity values in the image imply a large distance of the surface
point from the camera center.

which is the line equation of the epipolar line of point p0 in the image plane Ω1.

It is the projection of the epipolar plane defined by the two camera centers T0, T1

and the true surface point P, and it has the projected camera center

e1 = π1

(
RT

1 (T0 −T1)
)

(2.12)

as one of its epipoles. Along the ray defined in Equation (2.10), only the 3D surface
point P∗ that is closest to the camera center at T0 is visible in p0, and we parametrize
it by its depth h∗, i.e. its displacement to the camera center projected onto the optical
axis of the camera. If P∗ is not occluded in I1, we can assume it to be photoconsistent
in I0 and I1. Combining the epipolar geometry with the photoconsistency definition in
Equation (2.9a), we get

I1

(
π1

(
RT

1 R0K
−1
0 h∗p̃0 + RT

1 T0 −RT
1 T1

))
− I0 (p0) = 0. (2.13a)

Moreover, an intuitive assumption is that P∗ is the point with the best photoconsistency
score along the ray:

h∗(p0) = arg min
h

{∣∣∣I1

(
π1

(
RT

1 R0K
−1
0 hp̃0 + RT

1 T0 −RT
1 T1

))
− I0 (p0)

∣∣∣} . (2.13b)

A special case is given, if two cameras have the same intrinsic parameters, the same ro-

tation matrix R, and a horizontal relative translation, i.e. RT(T0−T1) = B
[
1 0 0

]T
,

with the baseline B ∈ R. In this case, the denominator in the perspective projection
equation (2.2) for the epipole (2.12) is zero, yielding horizontally parallel epipolar lines

12

2.4. Motion Models

(a) Left Camera (b) Right Camera (c) Disparity (d) Point cloud

(e) Orthographic side view

T0T1

p1

Ω1

P

B

Ω0

p0

d -d

f

h

(f) Rectified stereo schematic view

Figure 2.3.: Image disparity caused by a horizontally shifted viewpoint. 2.3a-2.3e: Mid-
dlebury “Art” sequence. 2.3f: Schematic view of the relation between depth,
focal length, baseline and disparity in a rectified stereo setting.

and epipoles at x = ±∞. In this case of rectified images, the depth h of a 3D point P
in the cameras yields an inversely proportional disparity d in the images, which is the
displacement between the two projected points p0 and p1. If B denotes the length of

the relative baseline as introduced above, i.e. B =
〈[

1 0 0
]T
,RT(T0 −T1)

〉
, then

the disparity is given as

d = p1x − p0x = B
fx
h
. (2.14)

Figure 2.3f shows a schematic view of this relationship. Figures 2.3a - 2.3e show an
example of such a setup from the Middlebury “Art” sequence. For rectified images,
Equation (2.13b) can be reformulated as

h∗(p0) = B
fx

d∗(p0)
, and d∗(p0) = arg min

d

{∣∣I1(p0x + d,p0y)− I0(p0)
∣∣} , (2.15)

where the search space for a point of optimal photoconsistency is 2D instead of 3D.
Iterating over points in image space and re-projecting only those with optimal corre-
spondence into 3D space is computationally slightly less expensive than iterating over

13

2. Mathematical and Algorithmic Concepts

3D points and projecting every point onto the image plane, as it omits many projection
operations. Moreover, it has the advantage that a uniform sampling for correspondence
points along the epipolar line coincides with the sampling distribution of discrete digital
images. For example, all the points h ≥ Bfx correspond to disparities of |d| ≤ 1. If we
were to compute the photoconsistency of points uniformly sampled on the 3D ray, the
points of large depth h would have a very similar photoconsistency score. If we compute
the photoconsistency for uniformly sampled disparity values, e.g. for every full pixel po-
sition in a given range, this makes better use of the given data and leads to a reciprocal
sample distribution on the 3D ray. Figure 2.3e demonstrates this effect. It shows an
orthographic projection onto the Y Z-plane of the point cloud created from the disparity
image in 2.3c. For uniformly sampled disparity values, the depth resolution decreases for
lower disparity / higher depth values. In order to adequately estimate large depth values
at disparity values close to zero, we need both a large baseline and a large focal length,
which in our model represents both the zoom-level and the image resolution. However,
because digital images do not only have a discrete sampling rate, but also a discrete
quantization, the more samples we have for a given range of depth values, the more
likely it is that two samples correspond to the same image value. This makes the dispar-
ity value maximizing the photoconsistency in Equation (2.15) not unique and renders
the assumption that the correct depth value minimizes Equation (2.13b) incorrect.

To overcome this problem and to get a well-defined solution for the depth, there exist
two widely used strategies in computer vision. The first one is the use of advanced
photoconsistency assumptions, which we will explore in Section 2.5, and the second one
is the use of regularity priors, which will be explained in Section 2.6. In Section 3.5, we
present a combination of the two models.

2.4.2. Dynamic Motion Model

Photoconsistency plays a role not only for a static geometry observed by several cameras
at once, but also for a dynamic geometry with moving objects and a single camera
capturing image streams. In this case, the images captured by the camera also depend
on a temporal index:

I : Ω× R≥0 → R, (p, t) 7→ I(p, t) (2.16)

If the entire observed scene moves rigidly, i.e. the motion of every point in the scene can
be represented by the same six parameters for rotation and translation, the captured
image stream is identical to an image stream of a static scene with the camera moving in
an inverse way. Using the same argument, the camera motion can always be interpreted
inversely as motion of single objects in the scene and we can reduce problems involving
both a moving camera and scene to a problem where only the scene is moving whereas
the camera remains static. In other words, it does not matter which coordinate frame
we chose as a reference, so we can just as well chose the one with the camera pose in the
origin.

14

2.4. Motion Models

The most general way to describe the motion of a 3D scene in every point is defining
a 3D mapping or “warping” function

W : R3 × R≥0 → R3,

(P, t)→W(P, t),

W(P, 0) = P ∀P ∈ R3 (2.17)

for every point in 3D space and time. Combined with the perspective projection of
Equation (2.2) and knowledge about which 3D points lie on a surface visible to the
camera, this induces a 2D mapping/warping function

w : Ω× R≥0 → R2,

(p, t)→ w(p, t),

w(p, 0) = p ∀p ∈ Ω (2.18)

in the image plane. With this motion model, the photoconsistency assumption can be
written as

∀t0, t1 ∈ R≥0, ∀p ∈ Ω : I(w(p, t1), t1)− I(w(p, t0), t0) = 0. (2.19)

Assuming that the motion of the scene is differentiable (see Section 4.2.2 for a detailed
explanation of differentiable camera motion), we can rewrite Equation (2.19) as

∀t ∈ R≥0,∀p ∈ Ω :
dI(w(p, t), t)

dt
= 0. (2.20)

and by applying the chain rule we get

∀t ∈ R≥0,∀p ∈ Ω :

(
∂I(p, t)

∂p

) ∣∣∣∣∣
w(p,t),t

(
∂w(p, t)

∂t

) ∣∣∣∣∣
p,t

+

(
∂I(p, t)

∂t

) ∣∣∣∣∣
p,t

= 0. (2.21)

Finally, if we have t = 0 and ∀p : w(p, 0) = p, and define the velocity

ν : Ω× R≥0 → R2 as ν(p, t) =

(
∂w(p, t)

∂t

) ∣∣∣∣∣
p,t

(2.22)

we get the well known optical flow equation

∇ITν + ∂tI = 0 (2.23)

with ∇I = (∂pI)T. The 2D velocity field ν, the optical flow, can be regarded as the 2D
projection of the 3D scene flow, i.e. the temporal derivative of W on the points of a 3D
surface visible to the camera.

15

2. Mathematical and Algorithmic Concepts

(a) Occlusions. Left: Frame 1. Right: Frame 2

?

(b) Aperture problem

Figure 2.4.: Challenges in optical flow estimation

The problem of estimating the optical flow field from two or more images has been
studied extensively for more than 30 years. This is rooted in three major challenges,
giving rise to a variety of other problems.

Firstly, the correct optical flow field stemming from the scene flow of a 3D surface
is generally not continuous, due to occlusions. An example is shown in Figure 2.4a,
where an upward-moving camera and a discontinuous surface cause the cyan regions to
be occluded in frame 2, while the magenta ones appear without any correspondence in
frame 1. This directly violates the photoconsistency assumption in Equation (2.19).

Secondly, the photoconsistency assumption is not sufficient to determine the motion.
As we have two unknowns but only one equation for every point in Equation (2.23), we
can only determine the velocity magnitude in direction of the image gradient, i.e. the
normal flow

ν(p, t) =
∂tI
|∇I|2

. (2.24)

This is commonly known as the aperture problem, which is illustrated in Figure 2.4b.
In the left image the only motion observable through the aperture is the horizontal
component parallel to the image gradient, while the true motion includes a vertical
component as well. The right image shows the case where ∇I = 0, and no motion
at all can be determined. In this case, the normal flow is undefined. Using vector-
valued images such as color images can help overcome this problem, if the gradients in
the color channels do not coincide, but can also render the resulting equation system
overdetermined.

The third major challenge in determining the optical flow is that digital images are
neither continuous functions, nor are they captured in continuous streams, but as frames
in a discrete image sequence with a measurable time between them. Therefore, for two
images taken at time t0 and t1, we actually want to estimate a displacement field

v(p, t0) =

t0∫
0

ν(p, t) dt. (2.25)

Plugging this into Equation (2.19) and assuming that v(t0) ≡ 0, we get the standard

16

2.5. Advanced Photoconsistency Assumptions

optical flow constraint formulated on displacement fields:

I(p + v(p, t1), t1)− I(p, t0) = 0. (2.26)

In contrast to Equation (2.23), this formulation can be evaluated on discrete image
sequences. We use the common notation Ik(p) := I(p, tk) for the k-th image, and in
the case of only two images, we simply write v(p) for v(p, t1).

Depending on the parametrization of the displacement, the formulation can be ill-
defined. If we want to estimate the underlying rigid motion of a known 3D surface, as
we will describe in Chapter 4, the combination of Equation (2.26) for all pixels in the
image can yield a well- or over-determined system of equations, depending on the surface
structure and surface texture. If we want to estimate an independent displacement for
every pixel, i.e.

v∗(p) = arg min
v

{|I1(p + v)− I0(p)|} , (2.27)

there can be many possible displacement vectors fulfilling Equation (2.26), or none at all,
due to noise or occlusions, just as in the case of the rectified stereo correspondence search
in Equation (2.15). Similarly to this case, the two standard strategies to overcome this
ambiguity are the use of advanced photoconsistency assumptions and regularity priors.

2.5. Advanced Photoconsistency Assumptions

A common assumption to overcome the inherent ambiguity of finding the disparity value
or optical flow vector optimizing photoconsistency in a pixel p is that not only the
intensity value I0(p) in the first image should be consistent with the corresponding
value I1(p+d(p)) or I1(p+v(p)) in the second image, but that the disparity or optical
flow in p should also match all pixels p′ in a local patch Np centered at p:

∀p′ ∈ N (p) :

0 = I1(x′ + d(p), y′)− I0(p′) (2.28)

0 = I1(p′ + v(p))− I0(p′) (2.29)

This patch-based photoconsistency constraint only holds for surfaces parallel to the im-
age plane and translational motions with a noiseless image acquisition and without oc-
clusions. Nonetheless it has proven a good approximation for many real-world scenarios.
Finding a disparity or optical flow estimate optimizing this patch-based photoconsis-
tency assumption can be regarded as a local energy model, with a weighted contribution
to the energy of each pixel in the patch. The general weighted sum energy formulation

17

2. Mathematical and Algorithmic Concepts

for a pixel p reads as follows:

EPatch,Stereo(d,p) =

∫
p′∈N (p)

w(p,p′)
∣∣I1(x′ + d, y′)− I0(p′)

∣∣αN dp′ (2.30a)

EPatch,Flow(v,p) =

∫
p′∈N (p)

w(p,p′)
∣∣I1(p′ + v)− I0(p′)

∣∣αN dp′ (2.30b)

The exponent αN is typically chosen as either 1 or 2, yielding a sum of absolute differ-
ences (SAD) or a sum of squared differences (SSD). The non-negative weight function w
controls the influence of each pixel depending on its distance to the center pixel. Typical
choices are uniform weighting w ≡ 1

‖N (p)‖ or a truncated Gaussian weighting

wσ(p,p′) = exp

(
−‖p− p′‖2

2σ2

)
(2.31)

The reconstructed disparity value or optical flow vector for pixel p is then computed as
the minimizer of the local energy

d∗(p) = arg min
d
{EPatch,Stereo(d,p)} , (2.32a)

v∗(p) = arg min
v

{EPatch,Flow(v,p)} (2.32b)

Normalizing the energy measures of (2.30) with the norm of the patch

‖w‖ =

∫
p′∈N (p)

w(p,p′) (2.33)

does not change the minimizing argument of (2.32). However, combining patch-based
energies with different patch sizes can merit a normalization.

For the rest of this section, we only list the formulations for optical flow estimation,
as the formulations for disparity estimation in the stereo setting are analogous.

A desired property of a photoconsistency assumption is invariance against changes in
illumination, which the discussed image intensity constancy assumption does not account
for. We can differentiate between two kinds of illumination changes: local and global.
Local illumination changes can appear if the Lambertian surface model is violated, while
global illumination changes are usually related to different camera calibrations or, in the
case of dynamic motion, changes in the light sources of the observed scene. In the context
of patch-based photoconsistency assumptions, an invariance to additive illumination
changes can be achieved by subtracting in each patch an additive offset Ī1(p) and Ī0(p):

EDiff-Patch(v,p) =

∫
p′∈N (p)

w(p,p′)
∣∣I1(p′ + v)− Ī1(p + v)−

(
I0(p′)− Ī0(p)

)∣∣αN dp′.

(2.34)

18

2.5. Advanced Photoconsistency Assumptions

Typical choices for the offsets Ī1(p) and Ī0(p) are either the weighted average intensity
values of the patch

Ī(p) =

∫
p′∈N (p)

w(p,p′)I(p′) dp′∫
p′∈N (p)

w(p,p′) dp′
(2.35)

or the center values (Ī(p) = I(p)). Other photoconsistency assumptions invariant to
additive illumination changes are the constancy of derivative measures such as the image
gradient or the image gradient magnitude

EGrad(v,p) = |∇I1(p + v)−∇I0(p)| (2.36a)

EGrad-Mag(v,p) = ||∇I1(p + v)| − |∇I0(p)|| . (2.36b)

Examples of photoconsistency assumptions invariant to multiplicative changes in illumi-
nation are the normalized cross-correlation (NCC)

ENCC(v,p) = 1−
∫

p′∈N (p)

(
I1(p′ + v)− Ī1(p + v)

)
Norm1 (p + v)

(
I0(p′)− Ī1(p)

)
Norm0 (p)

dp′, (2.37)

the census transform

ECensus(v,p) =

∫
p′∈N (p)

∣∣[I1(p′ + v) > I1(p + v)
]
−
[
I0(p′) > I1(p)

]∣∣ dp′, (2.38)

or the rank transform

ERank(v,p) =

∫
p′∈N (p)

[
I1(p′ + v) > I1(p + v)

]
dp′ −

∫
p′∈N (p)

[
I0(p′) > I1(p)

]
dp′,

(2.39)
For the NCC definition Ī denotes the average as in (2.35) and Normi (p) is the Euclidean
norm of differences to the average

Normi(p) =

√√√√ ∫
p′∈N (p)

(
Ii (p′)− Īi (p)

)2
dp′. (2.40)

Which photoconsistency assumption proves most accurate is depends on the data.
Whenever a filter is invariant to a certain attribute, it might be just that attribute
that proves useful on some data sequences, while it is a disturbance value on others.
For example, for locally constant image regions all the photoconsistency assumptions
mentioned above yield highly ambiguous results. Other factors determining the useful-
ness of these photoconsistency assumptions are computational stability and efficiency.

19

2. Mathematical and Algorithmic Concepts

The NCC has a higher descriptive power than the census or rank transforms, because
the binary terms of the latter neglect any absolute scale of the image patch. However,
the NCC becomes unstable for constant image patches where the denominator tends to
zero, and it comes at a higher computational cost than the census or rank transform. In
Chapter 3.5 we perform a thorough evaluation of these photoconsistency assumptions in
the context of dynamic motion estimation with energy models.

2.6. Energy Models

For many correspondence problems in computer vision, energy models have become the
method of choice. They combine several possibly conflicting assumptions for an optimal
solution and allow to abstract the solution from the algorithm used to compute it. While
Equations (2.15) and (2.27) already represent energies, the incorporation of additional
assumptions can help overcome their inherent ambiguity. For an overview of energy
models for optical flow estimation we refer to Section 3.2.

A very popular assumption for an optimal solution is spatial regularity. In the context
of optical flow, this means that neighboring pixels should move in a similar direction
with a similar speed. In the context of disparity estimation, it means that neighboring
pixels should have a similar disparity and depth. This assumption is combined with the
photoconsistency assumption by means of two soft constraints usually referred to as the
data term and regularity term. The data term penalizes the sum of the absolute distance
to the photoconsistency assumption for the stereo and optical flow case in every pixel:

Dstereo(d) =

∫
Ω

φD

(
|I1(x+ d(p), y)− I0(p)|2

)
dp (2.41a)

Dflow(v) =

∫
Ω

φD

(
|I1(x+ v1(p), y + v2(p))− I0(p)|2

)
dp

=

∫
Ω

φD

(
|I1(p + v(p))− I0(p)|2

)
dp (2.41b)

The first-order regularity term penalizes the magnitude of the derivative of the disparity
or optical flow field in every pixel:

Rstereo(d) =

∫
Ω

φR

(
|∇d(p)|2β

)
dp (2.42a)

Rflow(v) =

∫
Ω

φR

(
|Jv(p)|2β,γ

)
dp (2.42b)

We use the parameter β in our notation to define the norm with respect to columns of

20

2.6. Energy Models

the Jacobian matrix J , and the parameter γ to define the norm with respect to its rows:

|∇d|β =


|∂xd|+ |∂yd| β = 1 (2.43)

√
(∂xd)2 + (∂yd)2 β = 2 (2.44)

|Jv|β,γ =



|∂xv1|+ |∂yv1|+ |∂xv2|+ |∂yv2| β = 1, γ = 1 (2.45)

√
(∂xv1)2 + (∂yv1)2 +

√
(∂xv2)2 + (∂yv2)2 β = 2, γ = 1 (2.46)

√
(∂xv1)2 + (∂xv2)2 +

√
(∂yv1)2 + (∂yv2)2 β = 1, γ = 2 (2.47)

√
(∂xv1)2 + (∂yv1)2 + (∂xv2)2 + (∂yv2)2 β = 2, γ = 2 (2.48)

The non-decreasing loss functions φD and φR in (2.41) and (2.42) control the influence
of each pixel to the global energy. The most widely used loss functions correspond to
quadratic penalization (φ(s) = s) and penalization of absolute values (φ(s) =

√
s+ε),

where the ε-term is added to provide differentiability, depending on the method for
minimization. The energy equations (2.15) and (2.27) with a first order regularity prior
read as follows:

Estereo(d) =

∫
Ω

φD

(
|I1(x+ d(p), y)− I0(p)|2

)
dp + λ

∫
Ω

φR

(
|∇d(p)|2β

)
dp (2.49a)

for the stereo case, and

Eflow(v) =

∫
Ω

φD

(
|I1(x+ v1(p), y + v2(p))− I0(p)|2

)
dp + λ

∫
Ω

φR

(
|Jv(p)|2β,γ

)
dp

(2.49b)
for the optical flow case. In the case of monomial loss functions, data and regularity
terms can be written with the exponents αD and αR as in the expressions below.

Estereo(d) =

∫
Ω

|I1(x+ d(p), y)− I0(p)|αD dp + λ

∫
Ω

|∇d(p)|αRβ dp (2.50a)

Eflow(v) =

∫
Ω

|I1(x+ v1(p), y + v2(p))− I0(p)|αD dp + λ

∫
Ω

|Jv(p)|αRβ,γ dp

(2.50b)

The minimizing arguments h∗ and v∗ are disparity or flow fields, that adhere to both
the photoconsistency assumption as well as to a regularity assumption. The scalar weight

21

2. Mathematical and Algorithmic Concepts

parameter λ weights the regularity assumption against the photoconsistency assumption.
Larger values of λ result in smoother minimizing disparity or flow fields. The exponents
αD and αR determine the extent to which outliers affect the solution. The larger αD is,
the more will noisy pixels affect the result. The larger αR is, the more will the resulting
field be blurred around strong edges, as one large irregularity in the field will yield a
larger cost than several smaller ones.

The above formulations yield a regularity in both x and y direction of the 2-dimensional
image domain Ω. While we will focus on two dimensional image domains in this thesis,
stemming from the pinhole camera model described in the last section, the energy model
can also be applied in different ways. For example, magnetic resonance tomography pro-
vides volumetric 3D images. If the patient moves between several scans, the optical flow
energy (2.50b) can be reformulated for a 3D domain to estimate a 3D motion of the
volume [2]. In the 2D domain, we can consider a formulation in which the regularity
term is not formulated fully on all dimensions of Ω ∈ Rn, but only on a discrete subset
of directions P ⊂ Sn−1,

Ereg-1D =
∑
n∈P

∫
Ω

|J(p)n|αRβ dp, (2.51)

where J is either the 2×2 Jacobian Jv as in the optical flow equation, or the transposed
gradient (∇d)T as in the stereo equation. This formulation allows to find a minimizing
argument much easier than the original problems do, as we will see in the next section.

A combined problem of the two Equations (2.50) is the 2.5-dimensional scene flow
problem of estimating the 3D motion of points on a surface. In contrast to 3D shape
matching, this surface is parametrized as a 2D disparity image d that is either given or
has the be estimated as well. Given an image I0(t0) and two images I0(t1) and I1(t1),
the scene flow can be represented by a disparity field d and an optical flow field v that
match the three input images:

∀p : I0(x+ v1(p), y + v2(p), t1) = I1(x+ v1(p) + d(p), y + v2(p), t1) = I0(x, y, t0).
(2.52)

Wedel et al. [89] use a disparity field d0, matching I0(t0) to the image I1(t0) of the same
binocular stereo system, and parametrize d by its difference to d0,

d = d′ + d0, (2.53)

22

2.6. Energy Models

in a joint energy formulation:

Esf(d
′,v)

=

∫
Ω

φ
(
|I0(x+ v1(p), y + v2(p), t1)− I0(p, t0)|2

)
dp

+

∫
Ω

φ
(∣∣I1(xd + d′(p) + v1(p), y + v2(p), t1)− I1(xd, y, t0)

∣∣2) dp

+

∫
Ω

φ
(∣∣I1(xd + d′(p) + v1(p), y + v2(p), t1)− I0(x+ v1(p), y + v2(p), t1)

∣∣2) dp

+

∫
Ω

φ
(
λ |Jv(p)|22,2 + γ

∣∣∇d′(p)
∣∣αR
β

)
dp, (2.54)

with xd = x + d(p) and φ(s) = s. Using I1(xd, y, t0) instead of I0(p, t0) in the second
term accounts for potential errors in the original disparity estimate d.

The parametrization of the disparity field by d′ instead of d in the energy formulation
enforces spatial regularity of the change in disparity, which is a representation of the
motion in Z-direction, not of the disparity itself, which is a representation of the surface.

In the case of binocular stereo, the first order regularity term favors surfaces parallel
to the image plane. In the case of both optical flow and scene flow, it favors motions that
appear rigid under the camera projection. Although this represents only a small subset
of all possible surfaces and motions, the first order regularity term has been employed
in a large number of energy-based approaches addressing the correspondence problems
introduced in this thesis, mainly due to its simplicity. Before we give an overview of
those approaches in Chapter 3, we want to demonstrate that even this relatively simple
regularity term can impose significant challenges with respect to the runtime complexity
of algorithms for minimizing the energies (2.50a) and (2.50b).

2.6.1. Discrete Formulations and Runtime Complexity

As all digital computers work on discrete values, any notion of computational feasibility
is referring to the number of elementary compute operations an algorithm is spending
on an input of integer length. In the context of finding a continuous function minimizing
a given functional, the input length is a combination of the sampling resolution and the
bit depth used for quantization. In computer science, “feasible time” generally refers
to an asymptotically polynomial runtime complexity. For many problems in computer
vision, a polynomial runtime complexity does not guarantee practicality, as the large
number of input variables usually renders any method with a quadratic or higher runtime
complexity impractical. However, for the rest of this section, we concern ourselves with
the distinction between problems of polynomial and non-polynomial runtime complexity.

23

2. Mathematical and Algorithmic Concepts

To compute a minimizer of the functional, we can either discretize the functional itself
and then formulate an algorithm to minimize the discrete energy, or we can formulate
an optimization strategy in the continuous domain, for example gradient descent, and
afterwards discretizes this strategy. In this section, we are making statements about the
bounds in runtime complexity for any algorithm minimizing a particular energy, therefore
we discretize the energy functional itself. The discretized versions of Equations (2.50a)
and (2.50b), on a discrete image domain Ω = {0, ..., w − 1} × {0, ..., h− 1}, and with a
forward-difference approximation of the spatial derivatives, can be formulated as follows:

EStereo(d) =

w−1∑
x=0

h−1∑
y=0

(
|I1(x+d(x, y), y)− I0(x, y)|αD (2.55a)

+ λF
(
|d(x+1, y)− d(x, y)|β [x<w−1]

+ |d(x, y+1)− d(x, y)|β [y<h−1]
)αR
β

)
EFlow(v) =

w−1∑
x=0

h−1∑
y=0

(
|I1(x+v1(x, y), y+v2(x, y))− I0(x, y)|αD (2.55b)

+ λF

((
|v1(x+1, y)− v1(x, y)|β+|v2(x+1, y)− v2(x, y)|β

)
[x<w−1]

+
(
|v1(x, y+1)− v1(x, y)|β+|v2(x, y+1)− v2(x, y)|β

)
[y<h−1]

)αR
β

)

The boundary treatment of both formulations implies that ∀(x, y) ∈ Ω : d(w, y) =
d(w − 1, y) ∧ d(x, h) = d(x, h − 1). The same applies to v1 and v2. This is the discrete
version of the Neumann boundary conditions

∀p ∈ ∂Ω : 〈∇d(p),n(p)〉 = 0 (2.56)

where n is the normal pointing out of the image on the image boundary ∂Ω. Since
these boundary conditions are necessarily fulfilled by any minimizer as part of the Euler-
Lagrange equations, assuming this in the energy formulation instead of setting an explicit
boundary value constitutes the smallest bias with respect to the minimizer. Note that
these formulations are the discrete versions of (2.43) and (2.45) for β = 1, and of
(2.44) and (2.48) for β = 2. The discrete versions of (2.47) and (2.46) are analogous.
Additionally, one can also use central or backward differences for the approximations of
the derivatives.

Depending on the given input data, the choice of regularity formulations and param-
eter values discussed in the last section can have a huge impact in terms of the ability
to find a minimizing argument for the energy in feasible time. In the following, we will

24

2.6. Energy Models

distinguish different cases under which the problem of estimating a minimizer either
becomes feasible or hard.

Without the regularity term (λ = 0), both energies (2.50a) and (2.50b) can be trivially
minimized in feasible time. As mentioned before, the problem with a sole data term is
not the computational effort, but the fact that a minimizer is not unique. Naturally, this
problem does not vanish with a regularity term. A default degenerate example for all
first and higher order regularity terms are two completely constant images I0 ≡ I1 ≡ c.
An efficient minimization of the data term can be performed by a complete search for
the best correspondence for every pixel independently.

The regularity terms by themselves can be trivially minimized as well, since all con-
stant functions are minimizers. While the minimizers of the regularity terms are not
well defined either, for exponents αR ≥ 1, the regularity terms in (2.50a) and (2.50b)
are convex:

∀f1, f2∈F ,∀λ ∈ [0, 1] : R (λf1 + (1−λ)f2) ≤ λR (f1) + (1−λ)R (f2) . (2.57)

This implies that all sublevel sets Sα(R) = {f |R(f) ≤ α}, and in particular the set of
minimizers, are convex sets:

∀f1, f2 ∈ Sα(R),∀λ ∈ [0, 1] : λf1 + (1−λ)f2 ∈ Sα(R). (2.58)

Besides having a convex set of minimizers, convex functionals defined on convex sets can
be feasibly minimized by various algorithms for convex optimization, such as gradient
descent, finding a solution of the Euler-Lagrange equations, the FISTA-algorithm of
Beck and Teboulle [16], or the first-order primal-dual algorithm of Chambolle and Pock
[26]. Moreover, convex functionals are closed under linear combination with positive
coefficients:

∀E1, E2 convex, λ1, λ2 ∈ R≥0 : λ1E1 + λ2E2 convex (2.59)

Therefore, the combination of a convex regularity term with a convex data term again
yields a convex energy functional. However, the data terms are highly non-convex, since
the flow fields are index fields for arbitrary images. For exponents αR < 1, the regularity
terms are non-convex as well, and currently no general solutions for finding the global
optimum of energies with non-convex regularity-terms are known, if the dimensionality
of Ω is at least 2. For αR → 0 the regularity term becomes the Potts prior

EPotts(v) =

∫
Ω

[
|∇d(p)| 6= 0

]
dp. (2.60)

With this prior, the discrete stereo energy (2.55a) becomes NP-hard. The discrete optical
flow energy (2.55b) is NP-hard even for convex regularity terms.

In the following, we will sketch an NP-hardness proof for the optical flow energy with
αD = 1, αR = 1 and β = 1. To this end, we will reduce the NP-hard graph labeling
problem with three labels and Potts prior to the discrete optical flow problem.

25

2. Mathematical and Algorithmic Concepts

The graph labeling problem with Potts prior is given as follows: Given a graph G =(
V, E ⊆

[
V
2

])
and a discrete set of labels L, does a labeling function f : V → L exist,

for which the energy

EPotts =
∑
v∈V

ρ(v, f(v)) +
∑

{v,v′}∈E

λP δ
(
f(v) 6= f(v′)

)
(2.61)

is smaller than a constant CP ∈ R>0 Here, the function ρ : V ×L → R≥0 is an arbitrary
unary cost function. Veksler [87] has sketched a proof that this problem is NP-hard on
planar grids, by constructing a polynomial time reduction of the NP-hard multiway cut
problem to this problem. Since this reduction does not use more labels in the labeling
problem than there are terminal vertices in the multiway cut problem, and the multiway
cut problem is NP-hard for three labels, we can assume the labeling problem with Potts
prior to be NP-hard on a planar grid with three labels.

If the graph labeling problem with Potts prior is NP-hard for a graph G = 〈V, E〉
with V = {0, ..., w − 1} × {0, ..., h − 1} and E = {{(x, y), (x+ 1, y)}| x < w − 1} ∪
{{(x, y), (x, y + 1)}| y < h− 1}, then the decision problem of whether and argument

v =
[
v1 v2

]T
: {0, ..., w − 1} × {0, ..., h − 1} → Z2 exists, for which for the discrete

optical flow energy (2.55b) with αR = 1 and β = 1 is below a constant CF is NP-hard
as well. The main idea for our proof is to embed the three labels of the graph labeling

problem in the 2D label space of
[
v1 v2

]T
of the optical flow problem. For a grid of

size w × h we construct two images I0 and I1of size 5n × 3n, where n := max{w, h}.
The pixels of the top middle area of I0 will be matched to either a pixel in the top left,
top right, or bottom middle area. At first, I0 is 0 everywhere, and I1 contains images
of the three labels in those areas:

I1(x, y)← ρ((x, y), 0) : (x, y) ∈ {0, ..., w−1}×{0, ..., h−1}
I1(x, y)← ρ((x, y), 1) : (x, y) ∈ {4n, ..., 4n+w−1}×{0, ..., h−1}
I1(x, y)← ρ((x, y), 2) : (x, y) ∈ {2n, ..., 2n+w−1}×{2n, ..., 2n+h−1}

I1(x, y)← 0 : else (2.62)

Optical flow vectors of the form
[
−2n 0

]T
,
[
2n 0

]T
, or

[
0 2n

]T
of pixels in the

domain {2n, ..., 2n+w−1}×{0, ..., h−1} in I0 now add the unary label costs of the graph
labeling problem to the energy of an optimal solution of the optical flow problem. We
set λF := λP

2n and the regularity prior adds the binary label costs. To ensure that optical
flow vectors from I0 to I1 in the pixel domain {2n, ..., 2n+w−1}×{0, ..., h−1} only have

the form
[
−n 0

]T
,
[
n 0

]T
, or

[
0 n

]T
, we add the double maximal cost

Emax ← 2|V|max
v,l
{ρ(v, l)}+ |E|λP (2.63)

26

2.6. Energy Models

(a) I0 (b) I1

Figure 2.5.: Areas of the two images used for the reduction of the NP-hard graph labeling
problem with Potts prior to the optical flow problem.

of the problem in intervals onto every pixel, to ensure that matches adding an energy
less than 1

2Emax to EFlow correspond to flow vectors as described above:

∀(x, y) ∈ {0, ..., w−1}×{0, ..., h−1} :

Eint ← Emax(yw+x)

I0(2n+x, y) ← I0(2n+x, y) + Eint,

I1(x, y) ← I1(x, y) + Eint,

I1(4n+x, y) ← I1(4n+x, y) + Eint,

I1(2n+x, 2n+y) ← I1(2n+x, 2n+y) + Eint (2.64)

In the same manner we force the flow vectors of all pixels of the boundary of domain

{2n, ..., 2n+w−1}×{0, ..., h−1} to be
[
0 0

]T
. We enumerate them, starting with hw,

and add the product of Emax and the pixel number to I0 and I1 in that pixel. This
creates an additional cost of 2nλF for every boundary pixel, and the sum can be added
to Emax as well. All remaining pixels in I0 and I1 that have not been enumerated yet
are independent of the given instance of G, apart from the given grid dimensions. To
ensure that the remaining pixels in I0 do not match to pixels depending on the instance
in I1 and that remaining pixels in I1 are not being matched to by dependent pixels in
I0, we give them all the same value of a multiple of Emax that no other pixel has been
given yet. We apply the same value to all regions outside of the image domain.

Figure 2.5 illustrates the two images used in the proof. Pixels in the red area of image
I0 can be matched to one of the pixels in each red areas of image I1. Pixels in the
blue area are matched onto themselves. This is actually only necessary for a one pixel
boundary around the red area in image I0. Pixels in the white area of I0 can be matched
anywhere in the white area of I1 and are equal for all instances of the problem. Finding

27

2. Mathematical and Algorithmic Concepts

an optimal solution for the pixels in the white area of I0 is possible in polynomial time,
since the energy for them is convex and only depends on the boundary values. We can
put the optimal energy into the constant CF together with the energy for the boundary of
the red and blue area in I0 and have the equivalence of the two problems. We should note
that the optical flow problem of Equation (2.55b) with αD = 1, αR = 1, and β = 1 is just
one instance in the large family of variational optical flow formulations. We also do not
allow the flow vectors to point at sub-pixel positions, and we use forward differences for
the regularity term, while many discrete formulations use central differences. Therefore,
there might exist efficient algorithms for other instances of these problems. However,
the existence of an algorithm generic enough to be applied to this formulation would
prove P=NP.

For the stereo problem with αR = 1 and β = 1 as above, the reduction of the graph
labeling problem with three or more labels is not analogous to the one demonstrated
above for the optical flow problem. As the label range is one-dimensional, and with
the convex regularity term we cannot find three labels with equal pairwise non-zero
distances, which is the simulation of the Potts problem. However, for αR = 0, we
effectively have a Potts prior for the stereo problem as well, and the proof for the stereo
problem is analogous. With the Potts prior we do not have to distribute the three labels
of the graph labeling problem in three regions in two dimensions to have a pairwise equal
distance for any two regions. Instead, we can put the three regions all in one horizontal
line in accordance with the stereo problem.

Due to the non-convex data term, the stereo energy in (2.50a) is non-convex for any
regularity term. However, for convex regularity terms, it can be reformulated into a
convex problem of finding a minimal surface partitioning a 3D volume. Pock et al. [70]
showed this for the case of a Total Variation (TV) regularity term, and for general convex
regularity terms [69]. This method works for problems with a domain of arbitrary finite
dimensionality, as long as the co-domain of the function is one-dimensional.

Also, if the image domain or the regularity prior is one-dimensional as in (2.51), a min-
imizer can be found in feasible time for arbitrary data terms and for arbitrary parameters
of the regularity term. The case of a one-dimensional image domain is equivalent to a
string matching problem [17], while the case of a one-dimensional regularity term is
equivalent to finding a shortest path in a k-partite graph [43]. Both problems can be
solved efficiently with dynamic programming approaches.

In summary, the energy formulation is solvable in feasible time if the domain or the
co-domain of the estimated function is one-dimensional, or if both data and regularity
term are convex. Otherwise, no feasible solution is known and some cases of the problems
are NP-hard.

28

3. Dense Motion Estimation Without a
Coarse-to-fine Scheme

3.1. Linearization

In the last chapter we have seen that, due to the non-convexity of the data term, finding
a minimizer of the standard optical flow energy (2.50b) is generally intractable, or even
NP-hard in special cases. Therefore, the vast majority of papers on optical flow in the
last 30 years use a linearized version of the data term. To that end, the image indexed
with the flow function is approximated by the first two terms of a Taylor series. The
expansion point can either be at t0

I(p + v(p, t1), t1) ≈ I(p + v(p, t0), t0) +

(
dI(p + v(p, t), t)

dt

) ∣∣∣∣∣
p,t0

(t1 − t0) (3.1a)

or at t1

I(p + v(p, t1), t1) ≈ I(p, t1) + v(p, t1)

(
∂I(p, t)

∂p

) ∣∣∣∣∣
p,t1

. (3.1b)

We can transform Equation (3.1a) so that it has a similar for as (3.1b). To that end,
we split the total differential in Equation (3.1a) into partial derivatives with respect to
space and time by means of the chain rule:

dI
dt

=
∂I
∂p

∂v

∂t
+
∂I
∂t
. (3.2)

If we make the usual assumption that I0 is not warped, i.e. v(t0) ≡ 0, we get
I(p + v(p, t0), t0) = I(p, t0). We can further assume that the optical flow is constant
between t0 and t1, as we are not given any contradictory data between t0 and t1. From
Equation (2.25) we then get

v(p, t0) +

(
∂v

∂t

) ∣∣∣∣∣
p,t0

(t1 − t0) = v(p, t1). (3.3)

In the same manner, we can assume a linear transition between the images I0 and I1,
from which we get

I(p, t0) +

(
∂I
∂t

) ∣∣∣∣∣
p,t0

(t1 − t0) = I(p, t1). (3.4)

29

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

Equation (3.1a) is now reduced to

I(p + v(p, t1), t1) ≈ I(p, t1) + v(p, t1)

(
dI
dp

) ∣∣∣∣∣
p,t0

. (3.5)

The only difference to Equation (3.1b) is the spatial image derivative taken at t0 instead
of t1. Since both approximations are equally valid under the given assumptions, many
implementations use their arithmetic mean, which we will denote from now on when
using dI

dp or ∇I without a temporal index. Plugging the approximations of Equations
(3.1a) or (3.1b) together with the assumptions of Equations (3.3) and (3.4) into the
photoconsistency assumption in Equation (2.19), we get the differential optical flow
equation (2.23).

In the case of disparity estimation in a rectified stereo setting we can apply the spatial
linearization of (3.1b) with the directional derivative along the epipolar line. For a
rectified stereo image pair, we get the approximation

I(x+ d(p), y) ≈ I(p) + ∂xI(p)d(p) (3.6)

Using this approximation for the patch-based data terms in (2.30b) together with quadratic
penalization, we get a closed-form solution for the minimizer in each pixel by setting the
derivatives with respect to v and d to zero:

d∗(p) = arg min
d


∫

p′∈N (p)

w(p,p′)
∣∣∂xI(p)d+ I1(p′)−I0(p′)

∣∣2 dp′


=

(
Kw ∗ (∂xI)2

)
(p)

(Kw ∗ (∂xI (I1−I0))) (p)
(3.7)

v∗(p) = arg min
v


∫

p′∈N (p)

w(p,p′)
∣∣∣∇I(p′)Tv + I1(p′)−I0(p′)

∣∣∣2 dp′


=

((
Kw ∗

(
∇I∇IT

))
(p)
)−1

(Kw ∗ (∇I (I1−I0))) (p) (3.8)

Here, Kw is a symmetric convolution kernel with support N (0) defined by the weight
w. For a uniform weighting we get a box kernel, for a Gaussian weighting as in (2.31),
we get a truncated Gaussian kernel. Equation (3.8) gives us information about where
in the image the linearized patch-based approach is useful: The matrix ∇I∇IT has at
most rank 1, and is therefore not invertible. However, due to the convolution with Kw

it can get rank 2. In constant regions of the image with ∇I = 0, any flow vector is
a correct solution, in regions close to an image edge, only the normal flow (2.24) can

30

3.2. Previous Strategies for Variational Optical Flow

be estimated, and in regions close to an image corner, the full 2D flow vector can be
estimated. The matrix Kw ∗

(
∇I∇IT

)
is commonly known as the structure tensor and

it was used as an edge detector by Förstner and Gülch [37] and by Harris and Stephens
[41]. Lucas and Kanade used Equation (3.8) with a uniform weight to compute sparsely
distributed optical flow vectors as well as stereo depth estimate refinements for pixels
where the structure tensor is invertible, or in the case of stereo disparity estimation,
where the image gradient is non-vanishing along the epipolar line [57]. Based on this
approach of Lucas & Kanade, Tomasi and Kanade propose a system for feature tracking
in [85], where the feature selection is based explicitly on the eigenvalues of the structure
tensor.

3.2. Previous Strategies for Variational Optical Flow

Using the linearization of the data term in the variational optical flow energy formulation
in (2.50b) and the analogous approximation for the stereo formulation in (2.50a), we get

Estereo(d) =

∫
Ω

|∂xI(p)d(p) + I1(p)−I0(p)|αD dp + λ

∫
Ω

|∇d(p)|αRβ dp (3.9a)

Eflow(v) =

∫
Ω

∣∣∣∇I(p)Tv(p) + I1(p)−I0(p)
∣∣∣αD dp + λ

∫
Ω

|Jv(p)|αRβ,γ dp.(3.9b)

In contrast to the formulations with a non-linearized data term, these equations are now
convex in d and v, if the exponents αD and αR are greater or equal to 1. This convex
formulation has brought forth the majority of research on variational optical flow in the
past three decades. In the following, we give a brief summary of the most decisive ones.
We will omit the pixel index p for the sake of readability.

In their seminal paper “Determining Optical Flow” [44], Horn and Schunck propose
this formulation with exponents αD = αR = 2 and the approximation ∂tI ≈ I1−I0:

EHS(v) =

∫
Ω

∣∣∣∇ITv + ∂tI
∣∣∣2 dp + λ

∫
Ω

|Jv|22,2 dp. (3.10)

They minimize it by finding a solution of its corresponding Euler-Lagrange equations

∀p ∈ Ω : 0 = ∂xI
(
∇ITv + ∂tI

)
− λ∆v1 (3.11a)

0 = ∂yI
(
∇ITv + ∂tI

)
− λ∆v2 (3.11b)

∀p ∈ ∂Ω : 0 = nT∇v1 (3.11c)

0 = nT∇v2. (3.11d)

31

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

where n is the normal orthogonal to the image boundary. The Euler-Lagrange equations
are linear in v and their discrete counterparts can be solved very efficiently by iterative
methods. Horn and Schunck solve them with the Gauss-Seidel method. While being
easy to optimize, the quadratic loss terms have the problem of over-penalizing outliers
of the photoconsistency and regularity assumptions. Outliers in the data term occur
if a pixel in the first image has no reasonable match in the second image, possibly
due to noise or occlusions. Outliers in the regularity term occur mostly at occlusion
boundaries, where the correct optical flow is discontinuous. The quadratic loss function
in both terms penalizes few large deviations harder than many small ones. For the data
term, this leads to re-occurrences of the outliers in the minimizing flow field, while for
the regularity term, this leads to over-smoothing at image and flow edges.

An approach for overcoming the latter problem is incorporating image-driven regular-
ity terms. They rely on the heuristic that strong edges in image brightness coincide with
discontinuities in the resulting disparity or optical flow field. Alvarez et al. [8] propose
to weight the regularity term differently in each pixel with a strictly positive, decreasing
function g : R→ R, dependent on the gradient magnitude in image I0:

EAlv(v) =

∫
Ω

∣∣∣∇ITv + ∂tI
∣∣∣2 dp + λ

∫
Ω

|g (|∇I0(p)|) Jv|2 dp (3.12)

A popular choice for g is

g(s) =
1√
s+ ε2

(3.13)

where ε is a small constant to prevent unbounded values in constant image regions.
While the scalar function g imposes a low weight on the regularity term in pixels

with a high image gradient magnitude, the weight is the same for all directions, inde-
pendent of the direction of the image gradient. Nagel and Enkelmann [61] replace the
squared isotropic norm |Jv|2 = trace

(
JvJv

T
)

of the Horn & Schunck formulation with
an anisotropic regularity term:

ENE(v) =

∫
Ω

∣∣∣∇ITv + ∂tI
∣∣∣2 dp + λ

∫
Ω

trace
(
JvD (∇I0(p)) JT

v

)
dp (3.14)

The diffusion tensor D is a symmetric, positive semi-definite 2×2 matrix, which, like
g, only depends on the input images. Therefore, the corresponding Euler-Lagrange
equations remain linear in v:

∀p ∈ Ω : 0 = ∂xI
(
∇ITv + ∂tI

)
− λdiv (D∇v1)

0 = ∂yI
(
∇ITv + ∂tI

)
− λdiv (D∇v2)

∀p ∈ ∂Ω : 0 = nT∇v1

0 = nT∇v2. (3.15)

32

3.2. Previous Strategies for Variational Optical Flow

For D = I, we get the Horn & Schunck formulation (3.10), for D = gI, we get the
formulation of Alvarez et al. (3.12). In [61, 60], Nagel & Enkelmann propose several
variants of a diffusion tensor DNE, which only penalizes gradients of the optical flow
vector perpendicular to the image gradient:

DNE =

[
(∂yI)2 (∂xI) (∂yI)

(∂xI) (∂yI) (∂xI)2

]
= ∇I⊥∇IT⊥, (3.16)

where ∇I⊥ denotes the 2D-vector orthogonal to the gradient ∇I.
Image-driven approaches as (3.12) and (3.14) allow discontinuities in the minimizing

disparity or flow field and still yield linear Euler-Lagrange equations, which are easy to
solve. However, the heuristic that image edges coincide with disparity or motion edges
does not hold for many well-textured surfaces, where the data term might get too large
a weight, leading to oversegmentation of the flow field. A different approach, which is
not depending on heuristics of the image, is replacing the quadratic loss functions of
Horn & Schunck with more robust loss functions. Using the non-monomial formulation
of Equation (2.49b) in the formulations based on Horn & Schunck, we have φD(s) =
φR(s) = s. Among several loss functions proposed in [19], Black and Anandan [20]
evaluated the loss function

φ(s) = log

(
1 +

1

2

(s
σ2

))
(3.17)

for the regularity term as well as for the data term. Similar to sub-quadratic monomial
loss functions, it gives a comparatively smaller weight to noisy outlier pixels in the data
term and preserves strong edges in the flow field. The loss function of Black & Anandan
makes the energy non-convex in d and v. Thus, its Euler-Lagrange equations can have
multiple solutions not yielding a convex set. Therefore, Black & Anandan search for a
local minimum of the energy with a gradient descent method.

In [22], Bruhn et al. combine the robustness to noise of the method of Lucas & Kanade
(3.8) with dense variational optical flow estimation in a combined local-global (CLG)
framework. The functional of Horn & Schunck in (3.10) with generic loss functions as
in (2.49b) and an expanded square in the data term can be rewritten as

EHS(v) =

∫
Ω

φD

(
vT∇I∇ITv + vT∂tI∇I + (∂tI)2

)
dp + λ

∫
Ω

φR

(
|Jv|22,2

)
. (3.18)

By convolving the factors dependent on the image gradient with a Gaussian kernel,
Bruhn et al. integrate the potentially invertible structure tensor of the Lucas-Kanade
method into a variational framework (the constant term from the previous formulation
can be omitted):

ECLG(v) =

∫
Ω

φD

(
vT
(
Gσ ∗

(
∇I∇IT

))
v + vT (Gσ ∗ (∂tI∇I))

)
dp+λ

∫
Ω

φR

(
|Jv|22,2

)
.

(3.19)

33

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

Without this convolution and without the terms from the regularity term, the two Equa-
tions (3.11a) and (3.11b) are linearly dependent, reflecting the aperture problem. With
the convolution, the solution for the CLG problem can be regarded as a regularized ver-
sion of the Lucas-Kanade flow (3.8) rather than a regularized version of the normal flow
(2.24). For the loss functions φD and φR they use the function proposed by Charbonnier
et al. in [27]:

φCharbonnier(s) = 2β2

√
1 +

s

β2
(3.20)

In [29], Cohen proposes a regularity term based on the Lasso loss function φR(s) =
√
s,

combined with a square loss function for the data term:

ECohen =

∫
Ω

∣∣∣∇ITv + ∂tI
∣∣∣2 dp + λ

∫
Ω

|Jv|1,2 dp (3.21)

With the Lasso loss function the functional remains convex in v, but edges in the mini-
mizing flow field are much better preserved. Aubert et al. also uses this loss function for
the L1-norm of the data term (φD(s) =

√
s) in [11], to give a smaller weight to outliers

than the L2-norm used by Horn & Schunck.
In addition to using the Lasso loss function for both data term and regularity term,

Papenberg et al. incorporate various photoconsistency assumptions other than image
intensity consistency into the variational framework in [68]. In contrast to Cohen, who
uses a separate penalization of v1 and v2 (γ = 1), they use a rotationally invariant joint
penalization (γ = 2). The Euler-Lagrange equations of the optical flow formulation with
a linearized data term and generic loss functions φD and φR as in (3.18) read as follows:

∀p ∈ Ω : 0 = φ′D

(∣∣∣∇ITv + I1−I0

∣∣∣2) ∂xI(∇ITv + ∂tI
)
− λdiv

(
φ′R(|Jv|22,2)∇v1

)
0 = φ′D

(∣∣∣∇ITv + I1−I0

∣∣∣2) ∂yI(∇ITv + ∂tI
)
− λdiv

(
φ′R(|Jv|22,2)∇v2

)
∀p ∈ ∂Ω : 0 = nT∇v1

0 = nT∇v2. (3.22)

For Lasso loss functions φD(s) = φR(s) =
√
s, the corresponding derivatives in the

Euler-Lagrange equations are φ′D(s) = φ′R(s) = 1
2
√
s
. Therefore, the Euler-Lagrange

equations are non-linear. To solve these non-linear equations, Cohen employs an implicit
gradient descent scheme, Aubert et al. introduce dual variables for the loss functions and
alternatingly minimize the energy for v and for the dual variables, and Papenberg et al.
employ a fixed-point iteration scheme with lagged diffusivity values φ′D and φ′R. Since
the diffusivity values are unbounded in constant regions of the flow field with |Jv| ≡ 0,
Papenberg et al. smooth the loss functions by a small value ε ≈ 10−3:

φ(s) =
√
s+ ε2 ⇒ φ′(s) =

1

2
√
s+ ε2

(3.23)

34

3.2. Previous Strategies for Variational Optical Flow

Zach et al. [94] propose an approach for minimizing the optical flow formulation
with Lasso loss functions for data and regularity term based on the Legendre-Fenchel
transformation. They use the separate penalization of ∇v1 and ∇v2 and reformulate the
gradient magnitude by means of its convex biconjugate:∫

Ω

|∇vi| dp = sup
ξ∈C∞c (Ω,R2)

∫
Ω

〈∇vi, ξ〉 −∞
[
|ξ| ≤ 1

]
dp i ∈ {1, 2} . (3.24)

Furthermore, they introduce the auxiliary variable u and decouple the data term from
the regularity term:

EZach(u,v) =
1

λ

∫
Ω

∣∣∣∇ITv + I1 − I0

∣∣∣ dp +
1

2θ

∫
Ω

|v − u|22 dp +

∫
Ω

|Ju|1,2 dp (3.25)

where the coupling parameter θ is a small constant. With this decoupling scheme, the
functional becomes easy to minimize for u and v with the respective other variable kept
fixed. In u, the functional is now equivalent to the one proposed for image denoising by
Rudin et al. in [74]. Zach et al. minimize it with the fixed-point iteration scheme for
the dual variable ξ proposed by Chambolle in [25],

ξk+1
i =

ξki + τ∇
(
div
(
ξki
)
− vi

θ

)
1 + τ

∣∣∇ (div
(
ξki
)
− vi

θ

)∣∣ i ∈ {1, 2} , (3.26)

with a time-step τ ≤ 1
8 . When ξ reaches the steady-state

∇ (θdiv (ξi)− vi) = |∇ (θdiv (ξi)− vi)| ξi,

u can then be computed as

ui = vi − θdiv (ξi) i ∈ {1, 2} . (3.27)

The minimization of EZach in v can be performed by a simple thresholding:

v = u +


θ
λ∇I if

∣∣∇ITv + I1 − I0

∣∣ < − θ
λ |∇I|

2

− θ
λ∇I if

∣∣∇ITv + I1 − I0

∣∣ > θ
λ |∇I|

2

− ∇I
|∇I|2

∣∣∇ITv + I1 − I0

∣∣ if
∣∣∇ITv + I1 − I0

∣∣ ≤ θ
λ |∇I|

2

(3.28)

Both parts of the optimization can easily be parallelized on graphics processing units
(GPUs), and Zach et al. achieved real-time frame rates for QVGA images on commodity
graphics hardware at the time of publication.

For the rest of this thesis we will concentrate on the variational optical flow model
with Lasso loss functions for data and regularity term, and this separate penalization of

35

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

v1 and v2 in the regularity terms, i.e. a penalization of the total variation (TV) of each
of the two flow components.

For a more complete overview over the variety of optical flow and stereo methods we
refer to various works of Barron et al. [13, 15], Scharstein et al. [76, 78, 12], Butler et
al. [23], and to the popular benchmark websites at

• Middlebury Collge (http://vision.middlebury.edu)

• MPI Tübingen (http://sintel.is.tue.mpg.de)

• Karlsruhe (http://www.cvlibs.net/datasets/kitti).

3.2.1. Coarse-to-Fine Warping

The optical flow formulations presented in the last section have the common drawback
of relying on the linearization of the data term as in Equations (3.1) and (3.9). Since this
first-order approximation of the non-convex data term is only valid for small displace-
ments in the sub-pixel range, the approaches will produce incorrect results in regions of
high texture frequencies and large motion.

The standard solution to overcome this problem and to allow large displacements
is performing the Taylor expansion in (3.1) iteratively at different expansion points
corresponding to incremental stereo or optical flow estimates. To this end, the optical
flow field v in Equation (3.1b) is split into an accumulate field vkacc and an incremental
field vkinc in iteration k, and linearization is performed at p + vkacc:

I(p + vkacc(p, t1) + vkinc(p, t1), t1)

≈ I(p + vkacc(p, t1), t1) + vkinc(p, t1)

(
dI
dp

) ∣∣∣∣∣
p+vkacc(p,t1),t1

(3.29)

Indexing the images with a rough displacement estimate vacc is commonly referred to
as “warping” ([68]). After computing vkinc with a given vkacc, it is added to vkacc for the
next iteration,

vk+1
acc = vkacc + vkinc, (3.30)

and v0
acc is typically set to 0. Averaging the image gradient of I1 with the one of I0 as

a result of averaging Equations (3.1b) and (3.5) requires to also index the gradient of I0

with vacc, which is typically not done in implementations involving warping. Instead,
only the gradient of I1 is used for every refinement of the flow field.

To overcome the restriction of the optical flow to small displacements due to lineariza-
tion, this approach is usually embedded into a hierarchical system of images at different
resolutions. To this end, the images are downsampled to a coarser resolution, the stereo
or flow field is computed for the coarse resolution, upsampled, and used as an initial

36

http://vision.middlebury.edu
http://sintel.is.tue.mpg.de
http://www.cvlibs.net/datasets/kitti

3.2. Previous Strategies for Variational Optical Flow

estimate for the subsequent linearization on a finer resolution. On the coarse resolution,
linearization of the data term is justified because larger displacements on the original
resolution now become small enough to be in the sub-pixel vicinity. On subsequent
finer scales, linearization of the data term is justified as only increments in a sub-pixel
vicinity have to be estimated. Several of the works referenced in the last section use this
coarse-to-fine warping strategy [57, 10, 19, 20, 68, 94]. A theoretical justification and a
quantitative evaluation of coarse-to-fine warping on the Yosemite sequence (see [13, 15])
can be found in [68]. Given a ground truth disparity or optical flow field dGT or vGT,
usually computed from synthetic data like the Yosemite sequence and the Sintel bench-
mark [23] or from real-world sequences carefully captured under laboratory conditions
as in the Middlebury benchmark [12], the standard discrete error metrics for optical flow
evaluation are the average end-point error (AEE) and the average angular error (AAE),
defined as

AEE(v) =
1

‖Ω‖
∑
p∈Ω

|v(p)− vGT(p)|2 (3.31a)

AAE(v) =
1

‖Ω‖
∑
p∈Ω

arccos

 〈v(p),vGT(p)〉+ 1√
|v(p)|22 + 1

√
|vGT(p)|22 + 1

 . (3.31b)

For disparity fields, which are typically quantized at a coarser scale than optical flow
fields, the standard error metric is the number of falsely classified pixels with an AEE
greater than a given threshold T :

ERR(d) =
∑
p∈Ω

[
|d(p)− dGT(p)| > T

]
(3.31c)

While coarse-to-fine warping helps to improve the quality of the estimated optical flow
fields on many image sequences containing large motions, this strategy entails two sig-
nificant problems:

• Small structures moving over large distances between two frames of an image
sequence vanish on coarser image scales. Figure 3.1 demonstrates this effect on
frames 10 and 11 of the Middlebury Beanbags sequence at various resolutions. As a
result, the optical flow of pixels belonging to these structures cannot be estimated
correctly, if the objects move over distances greater than their size from one frame
to the next.

• While a large variety of data terms can be applied (see [68] for a comparison), all
of them have to be spatially differentiable. Moreover, some of the discriminative
power of the data terms can get lost under the linearization, as we will show in
Section 3.5.

37

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

(a) 640×480 (b) 320×240 (c) 160×120 (d) 80×60 (e) 40×30 (f) 20×15

Figure 3.1.: Middlebury “Beanbags” sequence at different resolutions. Top row:
frame 10. Bottom row: frame 11.

In the following, we propose an alternative method of optical flow and disparity estima-
tion that does not rely on linearization and can therefore cope with large displacements
of small objects as well as arbitrary data terms.

3.3. A Formulation without Linearization or Coarse-to-Fine
Warping

To introduce our alternative solution we have a look at the decoupled functional (3.25)
of Zach et al., combined with the original non-linearized data term in (2.50b):

EDec(u,v) =
1

λ

∫
Ω

φD

(
|I1(p + v(p))− I0(p)|2

)
dp

+
1

2θ

∫
Ω

|v(p)− u(p)|22 dp

+

∫
Ω

|Ju(p)|1,2 dp. (3.32)

We make three observations:

• Firstly, for θ → 0, the functional becomes a generalized continuous formulation of
(2.55b), therefore it cannot be optimized globally with respect to both u and v for
an arbitrary θ.

• Secondly, just as in (3.25), the functional is convex in u and equivalent to the image
denoising functional proposed by Rudin et al. in [74]. Therefore, for a fixed v, it
can be globally optimized in u with an arbitrary method for convex optimization.

38

3.3. A Formulation without Linearization or Coarse-to-Fine Warping

• Thirdly, for a fixed u, the functional can be optimized in v independently for every
pixel p. The dependence of the minimizer in pixel p on neighborhing pixels of p,
which makes the original functional (2.50b) NP-hard, comes from the regularity
term. By decoupling the data from the regularity term, the data term can be
minimized in v(p) for every pixel p by an exhaustive search around u(p).

Combining these observations, we propose an iterative method for optimizing (3.32)
by alternating the optimization in u and v. We start with a relatively large θ and
successively decrease θ after each pair of minimizations for u and v. This allows u and v
to be significantly different at the beginning, and successively “anneals” the optimization
process by more and more limiting the difference between u and v for smaller θ.

The proposed decoupling scheme can also be used for disparity estimation in the case
of two-view or multi-view stereo. As disparity estimation can be performed globally
optimal in feasible time, the benefit of the decoupling scheme is not theoretical in the
sense of an approximation of an NP-hard problem, but rather practical in comparison to
the globally optimal method of Pock et al. in [70, 69]. While their approach of functional
lifting requires to store fields in the 3D volume spanned by the image domain Ω and the
range of disparity values, the optimization in the proposed decoupling scheme remains
in the 2D domain, yielding a lower memory demand and shorter computation time.

The exhaustive search is the most computationally expensive part of the optimization,
especially for the case of optical flow. In the context of implementation, we want to
emphasize that the proposed approach is easily parallelizable on modern GPUs, and
doing so yields a significant speedup. The exhaustive search still prevents our approach
from achieving real-time frame rates for optical flow estimation on recent commodity
hardware. However, compared to all formulations for optical flow estimation mentioned
in the last section, our proposed model has two significant advantages:

• Since the algorithm does not rely on image coarsening, there is no issue with
small-scale structures being lost on coarser scales that warping schemes require for
estimating large motions. As a consequence, our algorithm provides better motion
fields for small scale structures undergoing large displacements.

• Without the linearization of the data term in previous approaches, we remove the
constraint on the data term regarding linearizable photoconsistency assumptions.
Without this constraint, we can incorporate local color values or patch-based and
correlation-based photoconsistency assumptions as in Section 2.5 into our energy.

In the context of algorithmic optimization with respect to runtime performance, a
trivial strategy for accelerating the exhaustive search for v is the limitation of the search
space for v(p) in each pixel p to a window around u(p). Qualitatively, this hyperpa-
rameter corresponds to the number of pyramid levels specified in warping schemes.

A different strategy is limiting the number of samples in the search space. While most
stereo approaches work with a coarse quantization of a fraction of a pixel, optical flow is

39

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

generally computed with floating-point precision. While the optimal solution for u has
inherent floating-point precision, the precision of the optimal solution for v is limited to
fractions of pixels, because we only take an integer amount of samples.

When sampling the data term at sub-pixel values, we have to do so according to a
given method for sub-pixel interpolation of the images I1, and according to a given choice
of a photoconsistency assumption. In the next section, we present analytic solutions for
computing optical flow and stereo fields with sub-pixel precision for an underlying bilin-
ear interpolation, which is the standard model implemented in GPU hardware besides
nearest-neighbor interpolation with a trivial sub-pixel solution. As the data term we use
the L1 data term. We will show that an analytic sub-pixel optimization is well suited for
1D disparity estimation with a standard image intensity photoconsistency assumption,
but rather ill-suited for 2D optical flow estimation and more complex photoconsistency
assumptions.

3.3.1. Sub-pixel Accuracy and Parallelization

The Rectified Stereo Case

In the one-dimensional case of rectified stereo, sub-pixel optimization comes down to
finding the optimal floating-point increment α for any integer disparity value a:

arg min
d∈R≥0

{
1

λ
|I1(x+ d, y)− I0(p)|+ 1

2θ
(d− d0)2

}
= arg min

a∈N0,α∈[0,1]

{
1

λ
|I1(a+ α, y)− I0(p)|+ 1

2θ
(a+ α− x− d0)2

}
(3.33)

Here the value d0 represents the auxiliary variable u of the decoupled optical flow model.
Using linear image interpolation in the 1D case, we can rewrite the value of I1 at sub-
pixel position as

I1(a+ α, y) = I1(a, y) + (I1(a+ 1, y)− I1(a, y))α. (3.34)

With the equality

|σα+ µ0| =
∣∣∣σ (α+

µ0

σ

)∣∣∣ = |σ| |α+ µ| for σ 6= 0, µ =
µ0

σ

we can rewrite the data term as

1

λ
|(I1(a+1, y)− I1(a, y))α+ I1(a, y)− I0(p)|

=
1

λ
|I1(a+1, y)− I1(a, y)|︸ ︷︷ ︸

σ

∣∣∣∣∣∣∣∣∣α−
(
I0(p)− I1(a, y)

I1(a+1, y)− I1(a, y)

)
︸ ︷︷ ︸

µ

∣∣∣∣∣∣∣∣∣ (3.35)

40

3.3. A Formulation without Linearization or Coarse-to-Fine Warping

Combined with the coupling term, the search for the optimal sub-pixel increment α is
now the problem of finding an α with minimal absolute distance to the offset µ and
minimal quadratic distance to the offset η:

α∗ = arg min
α

σ |α− µ|+ 1

2θ

α− (x+ d0 − a)︸ ︷︷ ︸
η

2 (3.36a)

⇒ α∗ = η − σθ sgn(α∗ − µ) (3.36b)

Obviously, the minimizing α∗ lies between η and µ. If |η − µ| ≤ θσ, the absolute distance
to µ outweighs the quadratic distance to η, and the minimum is found at µ. Otherwise,
the minimum is found according to (3.36b) with sgn(α∗ − µ) = sgn(η − µ). Finally, the
minimum of the convex energy in (3.36a) has to be projected into the interval [0, 1]. We
get the closed-form solution

α∗ = min

{
1,max

{
0,

({
min {η + σθ, µ} if µ ≥ η
min {η − σθ, µ} if µ ≤ η

)}}
. (3.37)

The Optical Flow Case

The splitting of the optical flow vector into an integer and a floating-point part is anal-
ogous to the 1D case in (3.33). For clarity we refrain from the vectorial notation and
write the energy depending on the two separate optical flow components v1 and v2:

arg min
v1,v2∈R

{
1

λ
|I1(x+v1, y+v2)− I0(p)|+ 1

2θ

(
(v1−u1)2 + (v2−u2)2

)}
= arg min

a1,a2∈Z,α1,α2∈[0,1]

{
1

λ
|I1(a1+α1, a2+α2)− I0(p)|

+
1

2θ

(
(a1+α1−x−u1)2 + (a2+α2−y−u2)2

)}
(3.38)

41

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

In the 2D case we assume a bilinear model for image interpolation. The L1 difference of
the data term in every pixel can be reformulated as

1

λ
|I1 (a1+α1, a2+α2)− I0(p)|

=

∣∣∣∣ 1

λ
(I1(a1+1, a2)− I1(a1, a2))︸ ︷︷ ︸

Ix

α1 +
1

λ
(I1(a1, a2+1)− I1(a1, a2))︸ ︷︷ ︸

Iy

α2

+
1

λ
(I1(a1+1, a2+1) + I1(a1, a2)− I1(a1+1, a2)− I1(a1, a2+1))︸ ︷︷ ︸

Ixy

α1α2

+
1

λ
(I1(a1, a2)− I0(p))︸ ︷︷ ︸

Ir

∣∣∣∣
= |Ixα1 + Iyα2 + Ixyα1α2 + Ir| . (3.39)

In the following, we abbreviate the term Ixα1 + Iyα2 + Ixyα1α2 + Ir with ρ (α1, α2). It
vanishes on the hyperbola

α2 = − Ix
Ixy

+
IxIy − IxyIr

I2
xy

1

α1 +
Iy
Ixy

, (3.40)

which has the asymptotes α1 = − IyIxy , and α2 = − IxIxy , and that is stretched by the factor

of
IxIy−IxyIr

I2xy
(see Appendix B.1). We can easily test whether this hyperbola intersects

the search space [0, 1]2 by comparing the sign of the data term at the four corner pixels.
Depending on the two regions of ρ (α1, α2) ≶ 0, we have to minimize the energy including
the coupling term:

E(α1, α2) = ±Ixα1 ± Iyα2 ± Ixyα1α2 ± Ir

+
1

2θ

((
α1 − (x+ u1 − a1)︸ ︷︷ ︸

η1

)2
+
(
α2 − (y + u2 − a2)︸ ︷︷ ︸

η2

)2)
(3.41)

The partial derivatives of the energy are

∂xE = ±Ix ± Ixyα2 +
1

θ
(α1 − η1) (3.42a)

∂yE = ±Iy ± Ixyα1 +
1

θ
(α2 − η2) (3.42b)

42

3.3. A Formulation without Linearization or Coarse-to-Fine Warping

and in the minimum we have for α1 and α2

α1 =
η1 + IyIxyθ2 ∓ Ixyθη2 ∓ Ixθ

1− I2
xyθ

2
(3.43a)

α2 =
η2 + IxIxyθ2 ∓ Ixyθη1 ∓ Iyθ

1− I2
xyθ

2
(3.43b)

The eigenvalues of the Hessian matrix are 1
θ ∓ Ixy for the eigenvectors

[√
2 ∓

√
2
]T

. If
1
θ = |Ixy|, the energy does not have a unique minimum in the open sets of ρ > 0 and

ρ < 0. Therefore, the minimum in [0, 1]2 lies either on the boundary or on the hyperbola
where ρ = 0. The same is true for 1

θ < |Ixy|, where the energy is concave in one direction.
If 1

θ > |Ixy|, the energy is convex in (α1, α2) and has a unique minimum (α1
∗, α2

∗) for
each of the two regions. If the minimum of each of the two regions lies in the respected
region itself, we have to project them into [0, 1]2 and choose the minimum. If not, we
have to find the minimum on the hyperbola or on the boundary of [0, 1]2. To this end,
we have to find the minimum of the coupling term for α1, where α2 is substituted as in
(3.40). This involves finding the zeros of a polynomial of degree 3 (see Appendix B.2).
If the projection of the analytic minimum onto [0, 1]2 does not lie in the same region of
±ρ ≤ 0, we have have to find the minimum on the boundary of [0, 1]2. An algorithm for
analytic sub-pixel optimization in each pixel with the L1 data term and image intensity
photoconsistency assumption can be found in Appendix B.3, for the case that 1

θ 6= |Ixy|.
While it is possible to perform an analytic sub-pixel optimization for optical flow in
principle, the following observations lead us to refrain from doing so:

• The algorithm is sufficiently complex with respect to case distinctions to produce
highly divergent code not suitable for GPU parallelization.

• The same case distinctions are required for the optimization on the boundary of
[0, 1]2.

• The analytic solution on the hyperbola is also too complex for GPU implementa-
tion.

• The degenerate case 1
θ = |Ixy| is not covered yet. Neither are the degenerate cases

for the analytic solution on the hyperbola.

Furthermore, the presented methods only work for an L1 data term with image intensity
photoconsistency assumption and a bilinear image interpolation model, for the optical
flow case as well as for the stereo case. Using patch-based data terms as in Section 3.5
would further complicate the computation by a large degree. Therefore, we refrain from
using an analytic sub-pixel optimization and rather evaluate supersampling the energy
at various resolutions in Section 3.4.2.

43

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

In addition to supersampling the energy at interpolated image positions, we can fit
a paraboloid through 5 adjacent energy measurements: For a discretely sampled flow
vector vs = (vs1, v

s
2) and the corresponding center position xc = (xc, yc) = (x+vs1, y+vs2),

let xl, xr, xu, and xd denote the image positions (xc − s, yc), (xc + s, yc), (xc, yc − s),
and (xc, yc + s) adjacent to xc with a supersampling step size s. Then the paraboloid
fitted through the 5 energy values E (xl), E (xr), E (xu), E (xd), and E (xc) is given by

E(x, y) = a (x− xc)2 + b (x− xc) + c (y − yc)2 + d (y − yc) + e (3.44a)

with

a =
E (xl)− 2E (xc) + E (xr)

2s2
, b =

E (xr)− E (xl)

2s

c =
E (xu)− 2E (xc) + E (xd)

2s2
, d =

E (xd)− E (xu)

2s
e = E (xc) (3.44b)

and an extremum at
0 = 2a (x− xc) + b = 2c (y − yc) + d (3.44c)

for a 6= 0 and c 6= 0. In the iterative search for the point xc of minimal energy, we
can buffer at least two, and, depending on the amount of available cache, possibly all
four adjacent energy values. Computing the sub-pixel refinement vsub = (x− xc) is
equivalent to performing a Newton step

vsub = xc −HE(xc)
−1∇E(xc) (3.45)

with gradient ∇E(xc) =

[
b
d

]
xc, and Hessian HE(xc) =

[
2a 0
0 2c

]
. If vsub lies in the

interval [−s, s]2, we include the sub-pixel value
(
vs + vsub

)
in the exhaustive search. In

the next section we include sample results of this method.

3.4. Experimental Evaluation

In the following, we are going to evaluate our method of optical flow computation in two
ways: First, we demonstrate the effectiveness of our method qualitatively on several real-
world images showing large displacements of small-scale objects, and compare it against
the linearization-based method of Zach et al. [95]. Second, we perform a quantitative
parameter evaluation on images of the Middlebury benchmark [12].

3.4.1. Large Motion

Since real-world images typically do not come with a ground truth flow field, we evaluate
the results in a two-fold manner:

44

3.4. Experimental Evaluation

(a) Frame 1 (b) Flow (warping) (c) HV color-code

(d) Frame 2 (e) Flow (proposed) (f) HS color-code

Figure 3.2.: Large displacement of small-scale structures. For two images of a lady
bug taken seconds apart, in contrast to the coarse-to-fine warping schemes,
the proposed approach allows to accurately estimate the correspondence.
The flow is visualized with an HSV color-code using the hue and value
channel.

• We verify qualitatively whether the computed and color-coded flow is meaningful.

• We check the consistency of the flow field by reconstructing the first of the two
frames Ir0 using the second frame I1 and the estimated flow field v according to

Ir0(p) := I1(p + v(p)). (3.46)

If the flow field is correct, then the reconstructed first frame Ir0 is identical to
the observed one I0. We can quantify this error by plotting the difference image
|Ir0 − I0|.

Both evaluations are purely qualitative. A quantitative assessment of the difference
image alone is meaningless, since it exactly represents an instance of the data term of
Equation (2.41b), and without a regularity term, it can be trivially by a single exhaus-
tive search for a possibly chaotic flow field. Therefore, we also evaluate the flow field
qualitatively and check whether it matches the visually observed motion in the images.

45

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

(a) Input Frame 10 (b) Flow (warping) (c) Reconstruction
(warping)

(d) Reconstruction er-
ror

(e) Input Frame 11 (f) Flow (proposed) (g) Reconstruction
(proposed)

(h) Reconstruction er-
ror

Figure 3.3.: Comparison of reconstructed images from flow fields computed
with and without warping. The experiments show the flow fields and
reconstructions of frame 10 computed from frame 11 of the Middlebury
Beanbags sequence. While the warping scheme (above) clearly loses small
scale structures such as the fast moving ball, these are appropriately pre-
served with the proposed algorithm (below). As a consequence, we obtain a
substantially smaller reconstruction error.

Figures 3.2, 3.3, and 3.4 show comparisons of the proposed method and the method of
Zach et al. [95]. The flow fields are color-coded using the Hue-Saturation-Value (HSV)
colorcode shown in Figures 3.2c and 3.2f. The orientation of the flow vector is encoded in
the hue channel, with linear interpolation in 6 sections between the colors red, magenta,
blue, cyan, green, and yellow. In Figure 3.2c its magnitude is encoded in the value
channel, and the hue sections have equal sizes. In Figure 3.2f its magnitude is encoded
in the saturation channel, and the hue sections have different sizes based on perceptual
dissimilarity [12].

The experiments demonstrate that indeed the motion fields and the reconstructed
frames obtained with the proposed approach are more convincing than those obtained
with the warping scheme. In all cases, the motion is larger than the size of the moving
objects. A closer observation shows that the warping scheme gives rise to flow fields

46

3.4. Experimental Evaluation

(a) Input frame 546 (b) Flow (warping) (c) Reconstruction
(warping)

(d) Reconstruction er-
ror

(e) Input frame 550 (f) Flow (proposed) (g) Reconstruction
(proposed)

(h) Reconstruction er-
ror

Figure 3.4.: Performance of the proposed algorithm on color sequences. The
experiments show the flow fields and reconstructions of frame 546 com-
puted from frame 550 and the estimated flow field for two images from the
HumanEva-II sequence of Sigal et al. in [80]. In contrast to the warping
scheme, the proposed method finds correspondences for fast moving struc-
tures as well as for occluded areas.

which tend to shrink the respective structures (to account for their disappearance).
This is most prominent in Figure 3.2b, where the motion is the opposite of the color
wheel in Figure 3.2c, which yields a convergent motion. In more complex scenes, the
warping scheme incorrectly matches small structures to the most similar structures in
their vicinity - see Figures 3.3 and 3.4. In contrast, our method provides reliable motion
estimates which give rise to faithful reconstructions of the first frame.

47

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

3.4.2. Parameter Evaluation

All in all, our proposed method has several free parameters:

• the type of photoconsistency assumption used in the data term with its own pa-
rameters,

• the regularity weight λ,

• the initial and final values of the coupling parameter θ,

• the rate at which θ is decreased over time,

• the size of the search window used in the exhaustive search for v,

• the supersampling frequency used in the exhaustive search for v,

• the convex optimization method used for finding a minimizing u for the energy
(3.32), and its parameters.

For an evaluation of the scalar parameters we use the standard image intensity pho-
toconsistency assumption, and deal with more advanced data terms in the next section.
The weight of the regularity term λ is a parameter of the energy functional and it is
independent of the method used to minimize the energy. It has to be set according to
the photoconsistency assumption, the range of image intensity values, and the motion in
the scene. In our experiments, we set it to 0.02 for image intensity values between 0 and
1. The size of the search window is also solely dependent on the motion in the images,
and it has to be set just large enough to capture the largest vectors in the flow field. In
our experiments, we use a window of 41×41 pixels. For the convex optimization of the
energy in u we use the method of Chambolle and Zach et al. according to Equations
(3.26) and (3.27).

We evaluate the remaining parameters of our method on the RubberWhale, Hy-
drangea, Dimetrodon, Grove2, Urban2, and Venus datasets of the Middlebury bench-
mark [12]. Figure 3.5 shows the images used in our evaluation. The top row shows
the 10th frame of the respective image sequence, the middle row shows the 11th frame.
The bottom row shows the ground truth flow field from the 10th to the 11th frame. We
evaluate one parameter at the time and keep the respective other parameters fixed at
λ=50, θ-start=50, θ-stop=0.1, and θ-factor=0.99.

The most prominent parameter determining the quality of the estimated flow field is
the supersampling frequency in the exhaustive search. Table 3.1 shows a quantitative
evaluation of this parameter. Except for the Grove2 and Urban2 sequences, where the
flow error is caused predominantly by large occlusions, both AAE and AEE, defined
in Equations (3.31), are monotonically decreasing the more samples we take per pixel.
However, the runtime required for the exhaustive search is approximately proportional

48

3.4. Experimental Evaluation

(a) RubberWhale (b) Hydrangea (c) Dimetrodon (d) Grove2 (e) Urban2 (f) Venus

Figure 3.5.: Middlebury benchmark images. From top to bottom: Frame 10, frame
11, color-coded ground truth flow field using the color-code in 3.2f.

Samples/Pixel 1 4 25 100 400 2500

RubberWhale
AAE 0.181 0.136 0.101 0.097 0.094 0.093
AEE 0.357 0.254 0.186 0.177 0.172 0.170
Time 8 28 158 594 2253 13453

Hydrangea
AAE 0.086 0.070 0.056 0.053 0.052 0.052
AEE 0.385 0.330 0.263 0.251 0.241 0.241
Time 9 28 158 594 2253 13452

Dimetrodon
AAE 0.165 0.096 0.074 0.069 0.068 0.067
AEE 0.441 0.269 0.212 0.200 0.197 0.196
Time 9 28 158 594 2253 13453

Grove2
AAE 0.142 0.083 0.063 0.061 0.060 0.061
AEE 0.607 0.352 0.257 0.247 0.240 0.242
Time 11 37 214 802 3050 18284

Urban2
AAE 0.176 0.122 0.095 0.087 0.081 0.083
AEE 1.682 1.842 2.027 1.945 1.724 1.879
Time 12 37 214 802 3050 18320

Venus
AAE 0.136 0.113 0.102 0.101 0.100 0.099
AEE 0.604 0.453 0.367 0.357 0.350 0.344
Time 6 20 112 423 1608 9603

Table 3.1.: Quantitative evaluation of the supersampling frequency.

to the number of samples per pixel. We attribute the slightly sublinear increase in

49

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

(a) 1 sample (b) 1 sample,paraboloid (c) 2×2 samples

(d) 2×2 samples,paraboloid (e) 5×5 samples (f) 5×5 samples,paraboloid

(g) 10×10 samples (h) 10×10 samples, paraboloid (i) 20×20 samples

(j) 20×20 samples, paraboloid (k) 50×50 samples (l) 50×50 samples, paraboloid

Figure 3.6.: Qualitative evaluation of different resolutions of supersampling the
data term.

runtime in our experiments to having an increasing number of cache hits with densely
sampled images on our GPU architecture. Figure 3.6 shows the color-coded flow fields
of the RubberWhale sequence sampled with 1 to 2500 samples per pixel. It can be
seen particularly well on the wheel structure in the lower left part of the image, that an
increasing number of samples reduces structured errors in the flow field.

50

3.4. Experimental Evaluation

Samples/Pixel 1 4 25 100 400 2500

RubberWhale
AAE 0.122 0.102 0.095 0.093 0.092 0.092
AEE 0.229 0.188 0.175 0.172 0.168 0.169
Time 44 171 1037 4150 16700 104923

Hydrangea
AAE 0.066 0.056 0.053 0.052 0.051 0.051
AEE 0.305 0.264 0.247 0.242 0.239 0.239
Time 45 172 1037 4150 16691 104868

Dimetrodon
AAE 0.104 0.071 0.067 0.067 0.067 0.066
AEE 0.285 0.205 0.196 0.195 0.196 0.194
Time 45 172 1037 4150 16694 104697

Grove2
AAE 0.087 0.061 0.060 0.060 0.060 0.061
AEE 0.375 0.258 0.243 0.241 0.242 0.244
Time 61 234 1402 5603 22515 142101

Urban2
AAE 0.127 0.086 0.084 0.080 0.078 0.084
AEE 1.611 1.709 1.904 1.827 1.792 2.040
Time 61 232 1401 5604 22534 142273

Venus
AAE 0.109 0.102 0.099 0.098 0.099 0.098
AEE 0.418 0.364 0.344 0.343 0.341 0.340
Time 32 123 741 2963 11921 74790

Table 3.2.: Quantitative evaluation of the supersampling frequency with additional
paraboloid fitting.

The effects of fitting a paraboloid through 5 adjacent energy values, as discussed at
the end of Section 3.3.1, are demonstrated in Table 3.2. The parameters and hardware
are identical to the ones used for Table 3.1. The bold numbers show the best results in
each row before rounding to 3 decimal places. We can observe two prominent results in
this experiment: Firstly, with paraboloid fitting, the AAE and AEE are not monotoni-
cally decreasing with more samples per pixel on every dataset anymore. Secondly, the
error values for a certain number of samples with paraboloid fitting are mostly lower or
equal than the error values for twice the number of samples without paraboloid fitting.
However, also the required runtime values are higher than the ones for doubling the
number of samples in each dimension. Therefore, fitting a paraboloid can be a valid
alternative to using more samples per pixel, depending on the hardware capabilities.

Tables 3.3, 3.4, and 3.5 show evaluations of the start and stop values for the coupling
value θ, as well as the factor multiplied with θ in each iteration. While Table 3.5 shows
that in general a slow decrement of θ produces better results, Tables 3.3 and 3.4 show
that optimal start and stop values of θ are dependent on the image sequence.

This is not surprising, as our method is dependent on the initial values of u and v,

51

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

θ-start 200 100 50 20 10 1

RubberWhale
AAE 0.180 0.181 0.182 0.181 0.181 0.189
AEE 0.356 0.356 0.358 0.357 0.357 0.376

Hydrangea
AAE 0.087 0.087 0.086 0.086 0.087 0.447
AEE 0.386 0.384 0.385 0.386 0.386 1.911

Dimetrodon
AAE 0.165 0.166 0.165 0.165 0.167 0.376
AEE 0.441 0.443 0.441 0.443 0.447 0.934

Grove2
AAE 0.143 0.142 0.142 0.141 0.142 0.577
AEE 0.609 0.608 0.607 0.606 0.608 1.641

Urban2
AAE 0.172 0.175 0.176 0.230 0.362 0.785
AEE 1.154 1.625 1.682 3.070 4.787 7.553

Venus
AAE 0.134 0.136 0.136 0.130 0.131 0.565
AEE 0.597 0.602 0.604 0.594 0.637 2.389

Table 3.3.: Quantitative evaluation of the coupling weight start value.

and for an initial u ≡ v ≡ 0, the combination of λ and the start value θ is a prior on the
magnitude of the motion vectors in the first optimization of v. However, Table 3.3 also
shows us that our method is fairly robust against different choices for the initial value
of θ, as the resulting error values hardly vary for choices between 20 and 200.

Next to λ, the choice of the stop value for θ is a prior on the regularity of the resulting
flow as well: For θ = 0 we have u ≡ v, however, for θ > 0 we have different flow fields for
u and v, and choosing either one for evaluation poses a bias towards flow fields either
fulfilling the data or the regularity term. In our experiments we used u for evaluation,
and Table 3.4 shows us that the optimal flow field is slightly smoother than the joint
optimum of u and v.

3.5. Advanced Data Terms

As described in Section 3.2.1, the proposed method of decoupling the data term from the
regularity term allows us to incorporate any data term of the form E (v,p) : R2×Ω →
R≥0. The data term is neither required to be convex in v, nor does it have to maintain
its discriminative power under linearization. The latter feature is of particular interest,
because patch-based data terms are prone to lose a lot of their discriminative power
under linearization in the presence of high-frequency image data.

For example, we consider the SSD data term of Equation (2.30b) with αD = 2,

52

3.5. Advanced Data Terms

θ-stop 1 0.5 0.2 0.1 0.05 0.02

RubberWhale
AAE 0.141 0.148 0.173 0.181 0.185 0.188
AEE 0.272 0.284 0.340 0.357 0.367 0.374

Hydrangea
AAE 0.058 0.066 0.080 0.086 0.090 0.093
AEE 0.286 0.315 0.361 0.385 0.399 0.408

Dimetrodon
AAE 0.092 0.113 0.157 0.165 0.170 0.173
AEE 0.293 0.313 0.417 0.441 0.455 0.463

Grove2
AAE 0.097 0.087 0.124 0.142 0.153 0.160
AEE 0.430 0.362 0.527 0.607 0.653 0.681

Urban2
AAE 0.137 0.142 0.171 0.176 0.179 0.181
AEE 1.635 1.577 1.661 1.682 1.694 1.702

Venus
AAE 0.136 0.122 0.129 0.136 0.140 0.142
AEE 0.604 0.525 0.572 0.604 0.623 0.634

Table 3.4.: Quantitative evaluation of the coupling weight stop value.

θ-factor 0.5 0.8 0.9 0.95 0.98 0.99

RubberWhale
AAE 0.169 0.107 0.097 0.096 0.095 0.097
AEE 0.328 0.205 0.182 0.177 0.175 0.177

Hydrangea
AAE 0.592 0.134 0.061 0.053 0.053 0.053
AEE 2.94 0.774 0.308 0.259 0.251 0.251

Dimetrodon
AAE 0.441 0.174 0.105 0.076 0.072 0.069
AEE 1.145 0.545 0.338 0.223 0.207 0.200

Grove2
AAE 0.691 0.289 0.152 0.091 0.067 0.061
AEE 2.065 0.979 0.554 0.344 0.265 0.247

Urban2
AAE 0.759 0.517 0.408 0.305 0.148 0.087
AEE 7.400 6.547 5.853 4.970 3.363 1.945

Venus
AAE 0.743 0.371 0.220 0.141 0.105 0.101
AEE 2.866 1.885 1.235 0.734 0.426 0.357

Table 3.5.: Quantitative evaluation of the coupling weight decay factor.

combined with a Gaussian weighting as in (2.31):

ESSD,Gauss (v,p) =

∫
p′∈N (p)

exp

(
−‖p− p′‖2

2σ2

)(
I1

(
p′ + v

)
− I0

(
p′
))2

dp′, (3.47a)

The linearized and normalized version of the data term can be written as a Gaussian

53

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

(a) Image I0 (b) Image I1

Figure 3.7.: Example for patch-based optical flow. Optical flow methods based on
linearization have problems determining the motion of the marked patch
from frame 1 on the left to frame 2 on the right.

convolution

ESSD,Gauss (v,p)

≈ 1

‖wσ‖

∫
p′∈N (p)

exp

(
−‖p− p′‖2

2σ2

)(
I1 (p) +∇I1(p)Tv − I0 (p)

)2
dp′

= vT
(
Gσ ∗

(
∇I1∇IT1

))
(p)v + (Gσ ∗ ((I1 − I0)∇I1)) (p) (3.47b)

Combined with the approximation ∂tI ≈ I1−I0 of (3.4), a robust loss function φD, and
a regularity term, we get the data term of the CLG method (3.19) of Bruhn et al. [22].
Using the Charbonnier loss function, the CLG method is robust against outliers and
efficiently produces accurate flow fields. However, the linearized constancy assumption
limits the method to images with dominating low-frequency structure.

Figure 3.7 illustrates problems of the CLG method when applied to high-frequency
image structure. The marked patch in image I0 on the left clearly moves upward in
image I1. However, a linearized data term as in Equation (3.47b) indicates a different
motion: Without loss of generality, let the patch center p be 0. For every image gradient

∇I1 =
[
∂xI1 ∂yI1

]T
at point p′ =

[
x′ y′

]T
there exists an orthogonal image gradient

∇I⊥1 =
[
∂yI1 −∂xI1

]T
of equal magnitude at point p′⊥ =

[
−y′ x′

]T
. Since Gσ is point

54

3.5. Advanced Data Terms

symmetric at 0, we get a multiple of the identity matrix for Gσ ∗
(
∇I1∇IT1

)
:∫

p′∈N (0)

wσ
(
0,p′

)
∇I1(p′)∇I1(p′)T dp′

=

∫
{p′∈N (0)|

x′y′≥0,y′ 6=0}

wσ
(
0,p′

) (
∇I1

(
p′
)
∇I1

(
p′
)T

+∇I1

(
p′⊥
)
∇I1

(
p′⊥
)T)

dp′

=

∫
{p′∈N (0)|

x′y′≥0,y′ 6=0}

wσ
(
0,p′

)((∂xI1

∂yI1

)(
∂xI1

∂yI1

)T

+

(
∂yI1

−∂xI1

)(
∂yI1

−∂xI1

)T
)

(p′) dp′

=

∫
{p′∈N (0)|

x′y′≥0,y′ 6=0}

wσ
(
0,p′

) (
(∂xI1)2 + (∂yI1)2

)
(p′)I dp′ (3.48)

Moreover, for every image gradient ∇I1 at point p′, there is an opposing image gradient
−∇I1 at point −p′ with an equal temporal derivative (I1 − I0). In Gσ ∗ ((I1 − I0)∇I)
these sum up to 0, leaving

ESSD,Gauss(v,p) =
1

2

 ∫
p′∈N (0)

∣∣∇I(p′)
∣∣2 dp′

vTv (3.49)

Without the influence of the regularity term, the data term suggests that the patch does
not move at all, which is one of the worst possible motions for the patch in this example.
This stems from the fact that linearization discards the high image frequencies in the
patch, and that the patch moves over a relatively large distance. For this example,
the standard solution of embedding linearization of the data term into a coarse-to-fine
hierarchy fails as well, since on coarser scales of the Gaussian scale-space the intensity
of a patch converges to the average gray value of the patch. The average gray values of
all the marked patches in image I1 in Figure 3.7 are the same, rendering each patch an
equally good match for the center patch in image I0.

3.5.1. Experimental Evaluation

In the following, we evaluate the qualitative and quantitative performance of several
data terms in our proposed algorithmic framework. We compare the image intensity
data term (2.27) to the patch-based SAD data term (2.30b), the NCC data term (2.37),
the census data term (2.38), and the rank data term (2.39). For a quantitative and
qualitative evaluation we use the same datasets as in the last section. The quantitative

55

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

Dataset RubberWhale Hydrangea Dimetrodon Grove2 Urban2 Venus

∼ Time 599 s 600 s 600 s 810 s 810 s 428 s

1/λ AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

5 0.145 0.274 0.042 0.217 0.067 0.205 0.055 0.214 0.135 4.029 0.142 0.487

7 0.127 0.243 0.041 0.207 0.062 0.187 0.052 0.202 0.115 3.260 0.130 0.432

10 0.113 0.218 0.041 0.203 0.060 0.176 0.049 0.193 0.097 2.786 0.118 0.389

12 0.106 0.201 0.042 0.203 0.060 0.174 0.049 0.192 0.097 2.759 0.115 0.379

15 0.101 0.189 0.042 0.205 0.061 0.180 0.048 0.193 0.090 2.580 0.109 0.358

20 0.095 0.176 0.044 0.211 0.063 0.183 0.049 0.198 0.088 2.492 0.108 0.353

25 0.094 0.173 0.046 0.218 0.064 0.188 0.050 0.203 0.084 2.113 0.105 0.349

30 0.094 0.173 0.047 0.226 0.065 0.189 0.054 0.217 0.083 2.071 0.104 0.348

35 0.094 0.172 0.049 0.231 0.065 0.191 0.057 0.227 0.081 1.966 0.099 0.341

40 0.095 0.174 0.051 0.239 0.067 0.194 0.057 0.231 0.094 2.166 0.100 0.346

45 0.096 0.175 0.052 0.244 0.067 0.196 0.059 0.239 0.090 2.039 0.101 0.349

50 0.097 0.177 0.053 0.251 0.069 0.200 0.061 0.247 0.087 1.945 0.101 0.357

70 0.102 0.190 0.057 0.269 0.073 0.212 0.069 0.278 0.105 1.909 0.105 0.381

100 0.110 0.208 0.063 0.295 0.083 0.237 0.080 0.323 0.222 2.371 0.113 0.430

120 0.114 0.217 0.066 0.311 0.088 0.253 0.087 0.349 0.113 1.826 0.120 0.461

Table 3.6.: SAD data term evaluation

Dataset RubberWhale Hydrangea Dimetrodon Grove2 Urban2 Venus

∼ Time 6837 s 6830 s 6830 s 9256 s 9272 s 6284 s

1/λ AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

0.7 0.133 0.254 0.040 0.200 0.062 0.185 0.051 0.196 0.075 0.634 0.125 0.413

1 0.113 0.212 0.039 0.193 0.058 0.168 0.047 0.182 0.065 0.539 0.101 0.355

1.5 0.094 0.168 0.039 0.188 0.056 0.160 0.045 0.177 0.059 0.512 0.098 0.335

2 0.090 0.158 0.039 0.186 0.056 0.159 0.044 0.177 0.055 0.509 0.085 0.297

2.5 0.089 0.155 0.039 0.187 0.055 0.157 0.045 0.179 0.053 0.468 0.083 0.289

3 0.085 0.149 0.040 0.191 0.056 0.159 0.045 0.181 0.051 0.461 0.069 0.267

4 0.083 0.146 0.042 0.196 0.056 0.161 0.046 0.187 0.050 0.452 0.063 0.260

5 0.082 0.144 0.043 0.204 0.058 0.165 0.047 0.194 0.051 0.459 0.064 0.265

7 0.082 0.145 0.046 0.217 0.062 0.179 0.049 0.206 0.056 0.502 0.068 0.279

10 0.084 0.150 0.050 0.236 0.066 0.193 0.052 0.221 0.063 0.555 0.071 0.300

Table 3.7.: Patch data term evaluation

56

3.5. Advanced Data Terms

results for various regularity weights λ are shown in Tables 3.6 to 3.10. For qualitative
evaluation we show the color-coded flow images for the best parameter setup according
to the AEE (3.31a) in Figure 3.8, using the Middlebury color-code shown in Figure 3.2f.
We sampled all patch-based data terms in a box of 3×3 samples, centered at sub-pixel
location and with the space of one pixel between the samples in each direction. For
the coupling parameter θ we used a start value of 50, a stop value of 0.1, and a decay
factor of 0.99. We used a search radius of 20 pixels, and a sampling frequency of 10×10
samples per pixel.

Among the different data terms, the rank data term clearly performs worst. The
information of how many pixels in the patch are brighter or darker than the center pixel
is not very strong. If we do not require sub-pixel accuracy, we can use the rank data term
as a pre-computed image transform. The other patch-based data terms however compare
each sample individually, yielding much better results. When we look at the resulting
flow images in Figure 3.8, we see that the strength of the patch-based data terms lies in
correctly estimating the motion of small untextured regions, such as the hole in one of the
objects of the RubberWhale image, or the gap in the middle of the Venus image. On the
other hand, the patch-based data terms are more susceptible to image noise, especially
the NCC and census data terms, as they are based on high-frequency image derivatives.
In the quantitative results, the patch-based SAD data term is able to outperform the
standard SAD data term on every data set. The NCC data term outperforms the SAD
data term by large margins on most data sets, while performing slightly worse on the
Dimetrodon sequence and the Grove2 sequence in terms of the AAE, and much worse
on the Urban sequence. The census data term yields better results than the SAD data
term on the RubberWhale and Hydrangea sequences, while yielding worse results on the
other data sets. Similar to the rank data term, the census data term can be regarded
as an image transform on integer pixel positions. For a 3×3 sample window, the census
image simply stores the 8bit bitstring in every pixel. The data term computation then
only involves a fast binary Hamming distance computation of two census pixels. This is
also a core feature of the closely related BRIEF [24] and ORB [73] descriptors.

57

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

Dataset RubberWhale Hydrangea Dimetrodon Grove2 Urban2 Venus

∼ Time 7992 s 7983 s 7988 s 10852 s 10973 s 5704 s

1/λ AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

0.1 0.174 0.334 0.051 0.331 0.066 0.197 0.100 0.381 0.517 7.082 0.193 0.873

0.2 0.104 0.201 0.042 0.275 0.062 0.185 0.059 0.227 0.479 6.926 0.121 0.394

0.5 0.072 0.134 0.034 0.196 0.062 0.181 0.046 0.179 0.399 6.416 0.073 0.288

0.7 0.065 0.119 0.032 0.178 0.066 0.189 0.045 0.175 0.373 6.253 0.068 0.268

1 0.055 0.102 0.030 0.148 0.068 0.197 0.047 0.180 0.354 6.027 0.072 0.278

1.5 0.053 0.098 0.029 0.139 0.072 0.207 0.054 0.206 0.372 6.003 0.080 0.310

2 0.054 0.100 0.028 0.136 0.074 0.215 0.059 0.227 0.382 5.996 0.098 0.382

2.5 0.058 0.106 0.028 0.136 0.077 0.224 0.062 0.260 0.379 5.936 0.122 0.494

3 0.061 0.114 0.029 0.136 0.081 0.234 0.066 0.286 0.362 5.816 0.143 0.611

4 0.070 0.136 0.029 0.138 0.088 0.253 0.076 0.345 0.331 5.396 0.174 0.790

5 0.078 0.157 0.030 0.141 0.096 0.273 0.087 0.421 0.306 4.401 0.198 0.919

7 0.088 0.192 0.032 0.148 0.112 0.317 0.097 0.484 0.269 3.687 0.231 1.112

10 0.097 0.233 0.034 0.160 0.140 0.393 0.111 0.572 0.273 3.281 0.273 1.376

12 0.102 0.253 0.035 0.166 0.157 0.447 0.114 0.611 0.260 2.721 0.304 1.575

15 0.108 0.285 0.037 0.175 0.186 0.536 0.123 0.661 0.270 2.634 0.325 1.766

20 0.118 0.340 0.041 0.189 0.228 0.686 0.137 0.742 0.278 2.569 0.359 2.065

25 0.126 0.380 0.044 0.204 0.262 0.834 0.151 0.810 0.288 2.606 0.394 2.319

30 0.133 0.423 0.046 0.218 0.297 0.981 0.162 0.876 0.306 2.689 0.423 2.550

Table 3.8.: NCC data term evaluation

Dataset RubberWhale Hydrangea Dimetrodon Grove2 Urban2 Venus

∼ Time 1794 s 1796 s 1785 s 2435 s 2427 s 1278 s

1/λ AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

0.01 0.240 0.446 0.494 2.477 0.087 0.282 0.459 1.374 0.742 7.675 0.799 3.140

0.02 0.170 0.320 0.053 0.348 0.072 0.218 0.101 0.392 0.604 7.340 0.537 2.520

0.05 0.107 0.208 0.039 0.261 0.070 0.209 0.063 0.251 0.555 7.170 0.208 1.548

0.07 0.090 0.174 0.036 0.238 0.074 0.217 0.055 0.219 0.540 7.109 0.171 1.307

0.1 0.072 0.141 0.034 0.215 0.077 0.226 0.053 0.208 0.542 7.042 0.145 1.080

0.2 0.062 0.118 0.032 0.179 0.083 0.240 0.050 0.201 0.508 6.886 0.113 0.656

0.3 0.060 0.113 0.033 0.173 0.088 0.252 0.051 0.206 0.497 6.818 0.117 0.622

0.5 0.063 0.118 0.034 0.171 0.096 0.273 0.056 0.229 0.510 6.802 0.121 0.575

0.7 0.072 0.133 0.036 0.182 0.103 0.295 0.061 0.251 0.531 6.820 0.130 0.603

1 0.082 0.154 0.040 0.199 0.118 0.334 0.069 0.286 0.541 6.793 0.149 0.676

1.5 0.101 0.191 0.047 0.230 0.147 0.413 0.085 0.352 0.565 6.817 0.174 0.759

2 0.119 0.229 0.053 0.264 0.179 0.506 0.103 0.426 0.576 6.792 0.202 0.879

2.5 0.135 0.270 0.061 0.300 0.213 0.602 0.122 0.502 0.599 6.876 0.225 0.969

Table 3.9.: Census data term evaluation

58

3.6. Conclusion

Dataset RubberWhale Hydrangea Dimetrodon Grove2 Urban2 Venus

∼ Time 6091 s 6089 s 6194 s 10386 s 8239 s 4336 s

1/λ AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

10 0.128 0.251 0.876 3.177 0.625 1.417 1.336 3.157 1.012 8.141 1.098 3.577

12 0.120 0.238 0.861 3.146 0.625 1.414 1.332 3.152 1.002 8.128 1.096 3.573

15 0.114 0.228 0.860 3.133 0.617 1.398 1.311 3.120 0.986 8.106 1.100 3.575

20 0.108 0.218 0.882 3.137 0.618 1.388 1.299 3.099 0.983 8.099 1.112 3.587

25 0.109 0.218 0.904 3.151 0.617 1.379 1.294 3.087 0.977 8.088 1.106 3.580

30 0.108 0.216 0.919 3.159 0.618 1.378 1.283 3.068 0.981 8.089 1.115 3.592

35 0.107 0.215 0.937 3.171 0.618 1.377 1.275 3.055 0.981 8.091 1.115 3.593

40 0.106 0.213 0.953 3.184 0.620 1.377 1.271 3.048 0.986 8.094 1.108 3.586

45 0.108 0.215 0.966 3.194 0.618 1.373 1.267 3.041 0.988 8.095 1.110 3.588

50 0.108 0.217 0.979 3.206 0.616 1.368 1.268 3.043 0.992 8.101 1.111 3.589

70 0.111 0.221 1.000 3.202 0.620 1.375 1.252 3.020 0.997 8.107 1.107 3.584

100 0.119 0.235 1.018 3.217 0.621 1.380 1.243 3.006 1.003 8.115 1.109 3.588

120 0.120 0.238 1.023 3.226 0.626 1.389 1.231 2.992 1.006 8.119 1.098 3.573

150 0.124 0.244 1.031 3.233 0.630 1.398 1.226 2.985 1.005 8.119 1.101 3.577

170 0.125 0.245 1.032 3.232 0.629 1.397 1.223 2.985 1.004 8.117 1.101 3.578

200 0.126 0.249 1.034 3.232 0.629 1.397 1.224 2.984 1.002 8.114 1.094 3.567

250 0.127 0.252 1.026 3.224 0.628 1.397 1.224 2.985 1.006 8.119 1.093 3.568

300 0.128 0.252 1.023 3.223 0.630 1.400 1.224 2.987 1.008 8.125 1.094 3.570

350 0.130 0.256 1.028 3.239 0.628 1.396 1.223 2.985 1.002 8.114 1.106 3.588

Table 3.10.: RANK data term evaluation

3.6. Conclusion

In this chapter we have introduced an alternative minimization strategy for estimating
the dense optical flow between two images with a variational method consisting of a
data term and a regularity term. Other than the majority of existing methods, our
method does not rely on a linear approximation of the non-convex data term. Instead,
we optimize the non-linearized energy by decoupling the data term from the regularity
term, and perform an alternating optimization in both of these terms. The energy of the
data term can be minimized globally by an exhaustive search, while the energy of the
regularity term can be minimized globally by a standard method for convex optimization,
provided that the regularity term is convex.

As a result, our method can correctly estimate the motion of small objects over large
distances, a problem methods based on linearization of the data term struggle with.
We evaluated the parameters our approach thoroughly on a standard test data set, and
in addition, we proved that we are able to incorporate patch-based data terms in our
formulation, which lose much of their discriminative power under linearization.

59

3. Dense Motion Estimation Without a Coarse-to-fine Scheme

(a) RubberWhale (b) Hydrangea (c) Dimetrodon (d) Grove2 (e) Urban2 (f) Venus

Figure 3.8.: Qualitative evaluation of advanced data terms. From top to bottom:
Ground truth, SAD dataterm, patch-based SAD dataterm, NCC dataterm,
census data term, rank data term.

60

4. Camera Tracking on RGB-D Sequences

In Chapter 2 we have introduced the concept of photoconsistency in the context of
depth/disparity and optical flow estimation. We have proven that optimizing some
instances of the standard non-linearized optical flow energy formulation is NP-hard even
for convex regularity terms.

In Chapter 3 we have then presented a method for optical flow estimation without
the need for linearization or coarse-to-fine warping. While not being able to run in real-
time on current commodity hardware, it is able to estimate the optical flow of small-
scale structures moving over large distances. Compared to linearization and coarse-
to-fine warping based solutions, it therefore serves as an alternative approximation of
the original problem, which is computationally infeasible with respect to its asymptotic
runtime complexity.

In this chapter we address the problem of visual odometry or camera tracking, i.e.
estimating the relative camera pose transformation between each two successive images
in a continuous image sequence. As an input we assume a sequence of both intensity and
depth images, which can be provided in real-time by recent commodity RGB-D cameras.
Other than in the last chapter, the goal is not to find an asymptotically feasible solution
to a problem with a variable number of unknowns, but to estimate a fixed number of
unknowns in real-time. Mathematically, it is the complementary problem to the one of
depth/disparity estimation described in Chapter 2, as we will explain in Section 4.2.1.

4.1. Previous Strategies for Camera Tracking

Visual odometry, i.e. the problem of tracking the pose of a mobile system purely from
its visual observations, has a long history in the fields of computer vision and robotics
[53, 65]. Previous approaches tackling this problem can be roughly subdivided into two
categories:

The first category is comprised of methods using only geometry information. The
relative camera pose transformation is estimated as one optimally aligning the geometry
observed by the current frame with the geometry of one or several previous frames with
respect to some metric. A very popular method for aligning geometry for relative camera
pose estimation is the Iterative Closest Point (ICP) algorithm [18, 75], that uses one of
the simplest geometry representations, an unoriented point cloud. This point cloud
could come for example from triangulation from images, from a LIDAR system, or from
a CAD model in a frame-to-model or model-to-model alignment task. ICP finds the

61

4. Camera Tracking on RGB-D Sequences

closest point in one point cloud for each point in the other, and the estimated camera
pose transformation minimizes the alignment error of all point-to-point correspondences.
Since this method is highly dependent on the initial estimate of the pose transformation,
and the point-to-point correspondences from the initial estimate are not necessarily
correct, extensions of this method use point-to-plane assignments rather than point-
to-point assignments [77], referred to as Generalized-ICP (GICP). Compared to ICP,
GICP needs additional information about the local surface orientation in one of the
point clouds. If the point cloud is structured, in that it comes from an dense image
(including the spherical image of a LIDAR scan), then the local orientation can be
computed from the spatial neighborhood of each point in the image. If not, then the
local surface orientation for each point has to be estimated by finding neighbors in the
unoriented point cloud itself.

The second category contains methods optimizing photoconsistency in a sparse set
of key points or features in the image. The choice of key points is typically driven
by a heuristic for detecting image corners, as for example the Shi-Tomasi criterion [79]
in [32, 33], the FAST corner detector [71] in [49], or extrema of the trace [56] or the
determinant [14] of the image Hessian. The photoconsistency measure, i.e. the descriptor
of the key point, is a vectorial measure, usually either an image patch, as for example
in [32, 33, 49], or a histogram of gradients in the patch, as for example in [42, 81, 34].
These descriptor-based approaches are less prone to incorrect feature matches than ICP
and therefore better suited for relocalization in a global map, or tracking over large
distances. However, they are prone to containing many outliers that have to be rejected
with methods like Random Sample Consensus (RANSAC) [36]. The dependence on
strong outlier rejection can be mitigated by restricting the search for descriptor matches
to the local vicinity of the key point location re-projected from one image into the other.
However, this re-projection requires an already existing estimate of the 3D point on
the geometry surface corresponding to the key point. While the reduction to sparse
key points speeds up computation time considerably, much relevant information about
the scene is lost. For example, a point on a white wall does not provide sufficient
information to be uniquely matched to another point (see Equation (3.8)). However,
assuming reasonably good lighting conditions, it bears the information that it should
not be matched against a point on a black surface. Using the high computational power of
recent GPUs, dense localization methods as in [55] and [63] make use of this information.

4.2. A Direct Dense Method for Camera Tracking on RGB-D
Image Sequences

Similar to dense photometric stereo solutions, recent consumer RGB-D cameras provide
an RGB color image as well as a dense depth image in real-time by actively illuminating
the observed geometry. Most cameras either rely on correspondence estimation in a

62

4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences

structured light pattern, as in the popular Kinect camera developed by PrimeSense, or
on the time-of-flight principle, where the depth is measured by the time it takes for an
emitted light pulse to be reflected into a receiver. In contrast to passive photometric
stereo solutions, these active RGB-D cameras are robust against untextured environ-
ments, they achieve real-time frame rates, and they require little to no computational
overhead from the application using them. In addition they are comparatively mobile -
in contrast to many LIDAR systems, for example. On the one hand, camera tracking
method based on RGB-D cameras has the benefit of getting both dense texture and ge-
ometry information as inputs for free. On the other hand, the real-time and light-weight
nature of RGB-D cameras typically impose real-time and light-weight requirements on
the tracking method as well. A method estimating the camera trajectory in real-time
and on portable hardware has a wide range of applications, such as robotic navigation,
simultaneous localization and mapping (SLAM), and the real-time reconstruction of 3D
geometry.

In this section we propose such a method, that provides frame-to-frame tracking with-
out building a joint environment model and therefore requires only a constant amount
of memory, runs in real-time on a standard desktop CPU, and, in contrast to previ-
ous methods described above, uses both dense texture and geometry information in a
sequence of RGB-D images.

4.2.1. Energy Formulation

The geometry representation we get from the RGB-D camera is the same we introduced
in Equation (2.13b), i.e. a dense depth field h : Ω → R>0 describing the projection of
the radial distance of the surface point projected onto the optical axis in every pixel.
Inverting the pinhole camera projection model of Equation (2.4), we get a 3D surface
Sh : Ω→ R3

Sh(p) = K−1h(p)p̃ =


x−cx
fx

h(p)

y−cy
fy

h(p)

h(p)

 . (4.1)

Given such a surface, an optimal camera pose transformation (R∗,T∗) between two
images I0 and I1 achieves perfect photoconsistency in every pixel,

∀p ∈ Ω : I1 (π (R∗Sh(p) + T∗))− I0(p) = 0. (4.2)

The standard approach for finding the pose is the assumption of a Gaussian noise model
and a least-squares formulation summing up the constraints of all pixels,

E (R,T) =

∫
Ω

φ
(
|I1 (π (RSh(p) + T))− I0(p)|2

)
dp. (4.3)

63

4. Camera Tracking on RGB-D Sequences

Equation (4.2) is an instance of the general motion model in Equation (2.19), with
w(p, t0) = p and w(p, t1) = π (R∗Sh(p) + T∗). More precisely, it is the same equation
(2.13a) describing image intensity based photoconsistency under a rigid camera motion
we introduced in Section 2.4.1. The only difference is that we want to estimate the cam-
era pose transformation instead of the depth/disparity values. Photoconsistency based
camera tracking on intensity and depth images is therefore related to both optical flow
estimation and stereo estimation. Instead of estimating a displacement vector in every
pixel with either one or two degrees of freedom, we are estimating a motion represented
with only a few degrees of freedom, that describes the displacement vectors in all pixels
matching one image to the next. In the following sections, we provide a detailed deriva-
tion of both this representation of the camera motion and the optimization scheme to
estimate it.

4.2.2. Minimal Camera Pose Representation

While the translation vector T in Equation (4.3) compactly describes the three degrees
of freedom of the camera pose translation, the rotation matrix R with its nine values
lies on an only three dimensional manifold as well, with two degrees of freedom for the
rotation axis and one for the rotation angle. Instead of estimating a full 3×3 matrix and
projecting it into the Special Orthogonal Group SO(3), we represent rotations by means
of the corresponding Lie algebra so(3). Furthermore, we represent the entire Special
Euclidean Group SE(3) by its Lie algebra of twists se(3). In the following, we will give
a brief introduction of this concept, derived from the one in [59], to which we refer for a
more detailed description.

Instead of representing a 3D rotation by its axis in polar coordinates and a rotation
angle around this axis, an equally compact representation is a vector ω∈R3 that is the
product of the normalized rotation axis in 3D Euclidean coordinates and the rotation
angle. We denote the ·̂-operator by the mapping of R3 into the Lie algebra of skew
symmetric matrices,

ˆ: R3 → so(3) :

ω1

ω2

ω3

 7→
 0 −ω3 ω2

ω3 0 ω1

−ω2 ω1 0

 . (4.4)

The multiplication with this skew-symmetric matrix is equivalent to the cross product
in R3:

∀ V ∈ R3 : ω̂V = ω ×V. (4.5)

From this equivalence, the following three equalities for unit vectors ω∈S2 can be easily

64

4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences

Figure 4.1.: Geometric interpretation of Equation (4.8). Black: Given vector V. Purple:
Normalized rotation axis ω. Blue: Projected vector ωωTV. Red: Cosine
part

(
I− ωωT

)
V. Green: Sine part ω̂V.

verified:

ω̂2 = ωωT − I, (4.6a)

ω̂3 = −ω̂, (4.6b)

ω̂4 = −ω̂2. (4.6c)

Using these three equalities, we can prove, that for a vector ω∈R3 the exponential map
of the corresponding skew symmetric matrix, defined by the Taylor series of the matrix
exponential,

exp : so(3)→ SO(3), ω̂ 7→ exp(ω̂) =

∞∑
k=0

ω̂k

k!
(4.7)

yields a rotation matrix R∈SO(3), which rotates any vector V∈R3 around ω by an angle
of ‖ω‖. For sake of readability we write t for ‖ω‖ and ω for ω

‖ω‖ . Due to the equalities

in (4.6) we can then separate the even and odd indices of the matrix exponential into a

65

4. Camera Tracking on RGB-D Sequences

sine part and a cosine part:

∞∑
k=0

(ω̂t)k

k!

(4.6b)(4.6c)
= I + ω̂

∞∑
k=0

(
(−1)k

t2k+1

(2k + 1)!

)
− ω̂2

∞∑
k=1

(
(−1)k

t2k

(2k)!

)
= I + ω̂ sin(t) + ω̂2 (1− cos(t))

(4.6a)
= ωωT + ω̂ sin(t) +

(
I− ωωT

)
cos(t). (4.8)

This closed form of the matrix exponential of skew-symmetric matrices is known as the
Rodrigues formula. With this formula, we can verify the exponential map for rotation
matrices in a geometric way. Figure 4.1 depicts the composition of the rotation matrix
according to the Rodrigues formula: The multiplication of the matrix exponential with
a vector V ∈ R3 yields the sum of three vectors defining the rotation plane: ωωTV is
the orthogonal projection of V onto ω and the position vector of the rotation plane.
(I − ωωT)V and ω̂V are the two orthogonal vectors spanning the rotation plane with
their coefficients cos(t) and sin(t). For a non-normalized rotation axis ω, we get the
matrix exponential

exp(ω̂) = I + ω̂
sin (‖ω‖)
‖ω‖

+ ω̂2 1− cos (‖ω‖)
‖ω‖2

. (4.9)

To compute the rotation axis and angle from an SO(3) rotation matrix, we follow [35],
and use the fact that every rotation matrix R can be uniquely decomposed into a sym-
metric part R+RT

2 and a skew-symmetric part R−RT

2 . In Equation (4.9), both I and ω̂2

are symmetric, while ω̂ is skew-symmetric. Therefore, we have

ω̂
sin(‖ω‖)
‖ω‖

=
R−RT

2
. (4.10a)

We can invert the ·̂-operator and get a vector z:

ω
sin(‖ω‖)
‖ω‖

=
1

2

R32 −R23

R13 −R31

R21 −R12

 =: z. (4.10b)

For the identity rotation matrix the rotation axis is undefined. Otherwise, we can factor
out the normalized rotation axis z

‖z‖ = ω
‖ω‖ and get

sin(‖ω‖) = ‖z‖ ⇒ ‖ω‖ = arcsin(‖z‖), (4.10c)

and by substituting ‖ω‖ in Equation (4.10b), we get

ω = z
arcsin(‖z‖)
‖z‖

. (4.10d)

66

4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences

Similar to rotations R ∈ SO(3) we can also represent rigid body motions M of the
special Euclidean group SE(3) by 6D vectors ξ. To that end, we redefine the ·̂-operator
to map a 6D vector ξ into the Lie algebra se(3) of twist coordinates:

ˆ: R6 → se(3) : ξ 7→ ξ̂ ⇔



ω1

ω2

ω3

v1

v2

v3

 7→


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

 =

[
ω̂ v
0 0

]
. (4.11)

The exponential map for elements of so(3) can be adapted to elements of se(3) to map
into the special Euclidean group SE(3). Given a twist ξ̂∈ se(3), the matrix exponential
exp(ξ̂) yields a matrix M representing a rigid body motion in homogeneous coordinates

M =

[
R T
0 1

]
=
∞∑
k=0

ξ̂k

k!
,

where T has the closed-form solution

T =

{(
I + 1−cos(‖ω‖)

‖ω‖2 ω̂ + ‖ω‖−sin(‖ω‖)
‖ω‖3 ω̂2

)
v : ‖ω‖ 6= 0

v : ‖ω‖ = 0
(4.12)

The exponential of the ω̂ follows from Equations (4.6) to (4.9). Concerning the transla-
tion T, we see from splitting the matrix exponential of ξ̂ into three parts,

∞∑
k=0

ξ̂k

k!
= I +

[
ω̂ v
0 0

]
+

∞∑
k=2

1

k!

[
ω̂k ω̂k−1v
0 0

]
, (4.13)

that in the trivial case of ‖ω‖ = 0, we have T = v. As in the last proof, we write
t := ‖ω‖, ω := ω

‖ω‖ , and v := v
‖ω‖ , to normalize ω factor t out of ξ̂. Then we note that

the following equality holds for any invertible 4×4 matrix g:

g−1 exp(gξ̂g−1t)g = g−1
∞∑
k=0


(
gξ̂g−1t

)k
k!

 g = g−1
∞∑
k=0

g
(
ξ̂t
)k
g−1

k!

 g = exp(ξ̂t).

(4.14)
With this equality, we can draw a translation orthogonal to ω and v out of the matrix

67

4. Camera Tracking on RGB-D Sequences

exponential, and find a closed form for T:

exp

([
ω̂ v
0 0

]
t

)
(4.14)

=

[
I ω̂v
0 1

](∞∑
k=0

tk

k!

([
I −ω̂v
0 1

] [
ω̂ v
0 0

] [
I ω̂v
0 1

])k)[
I −ω̂v
0 1

]
(4.6a)

=

[
I ω̂v
0 1

](∞∑
k=0

tk

k!

[
ω̂ ωωTv
0 0

]k)[
I −ω̂v
0 1

]
(4.13)

=

[
I ω̂v
0 1

] [
exp(ω̂t) ωωTtv

0 1

] [
I −ω̂v
0 1

]
=

[
exp(ω̂t)

(
(I− exp(ω̂t)) ω̂ + ωωTt

)
v

0 1

]
(4.15)

Removing the normalization of the rotation axis ω, we get

T =

(
(I− exp(ω̂)) ω̂ + ωωT

)
v

‖ω‖2
, (4.16)

and with the Rodrigues formula (4.8) and Equations (4.6) we get Equation (4.12).
While so(3)-parametrization of the rotation is an intuitive and minimal representation,

the parametrization of the rigid body motion (R,T) by a twist at first seems less intuitive
than a simple parametrization of the translation T in a canonical basis. However, with
the twist parametrization, we have the concept of a continuous and differentiable rigid
body motion. Similar to the general model for dynamic motion introduced in Chapter
2.4.2 we can define a rigid body motion model depending on a temporal parameter t:

G : R6 × R≥0 × R3 → R3, (ξ, t,P) 7→ R(ξ, t)P + T(ξ, t). (4.17)

With ξ =
[
ωT vT

]T
as in (4.11), we get

R(ξ, t) = exp(ω̂t) and T =

((I−exp(ω̂t))ω̂+ωωTt)vt
‖ω‖2t : ‖ω‖t 6= 0

vt : ‖ω‖t = 0
. (4.18)

4.2.3. Energy Linearization and Minimization

With the compact representation of camera poses introduced in the last section, we can
reformulate the problem of estimating the relative camera pose transformation between
the recording of two RGB-D images analogously to the problem of optical flow and
disparity estimation in the last chapter. Given two images taken at t0 and t1, the
problem of camera pose estimation in Equation (4.3) can now be reformulated as

ξ∗ = arg min
ξ∈Rse(3)


∫
Ω

φ
(
|I (π (G (ξ, t1, Sh(p))) , t1)− I (π (G (ξ, t0, Sh(p))) , t0)|2

)
dp

 ,

(4.19)

68

4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences

where we use the notation Rse(3) for the set

Rse(3) =
{
ξ =

[
ωT vT

]T ∣∣∣ ω, v ∈ R3, |ω| < 2π
}

(4.20)

to get a unique minimum. In the following, we set t0 to 0, so I (π (G (ξ, t0, Sh(p))) , t0) is
reduced to I (p, t0). For optimizing Equation (2.9a) with respect to R and T we now have
to find an optimal ξ in BR3×R3. Although the search domain has a fixed dimensionality,
a complete search for an optimal transformation in all six degrees of freedom is not
tractable, if we require real-time capability of our approach. The photoconsistency
measure is neither independent for the elements of ξ, nor is it convex in ξ. Therefore,
we rely on a local approach by iteratively linearizing the photoconsistency equation
with respect to ξ and therefore approximating Equation (2.20). Furthermore, we use
a coarse-to-fine approach, just as it is done for many optical flow implementations. In
contrast to the optical flow problem however, we do not care whether the coarse-to-fine
approach eliminates fine-scaled structures on coarse scales, since we are not interested in
reconstructing fine details but only the global camera motion, which is mainly defined on
coarse image scales. However, in cases where the camera motion is only distinguishable
from a sparse set of fine-scaled points moving over large distances from one image to the
next, our approach is inferior to feature-based methods.

Applying the spatial linearization of the image I1 with respect to t to Equation (4.19),
and applying the chain rule, we get

I (π (G (ξ, t1, Sh(p))) , t1)

≈ I (π (G (ξ, t0, Sh(p))) , t1) +(
dI (π (G (ξ, t,P)) , t1)

dt

) ∣∣∣∣∣
π(G(ξ,t0,Sh(p)))

(t1 − t0)

= I (π (G (ξ, t0, Sh(p))) , t1) + (4.21)(
dI(P, t1)

dp

) ∣∣∣∣∣
π(G(ξ,t0,Sh(p)))

(
dπ

dP

) ∣∣∣∣∣
G(ξ,t0,Sh(p))

(
dG

dt

) ∣∣∣∣∣
ξ,t0,Sh(p)

(t1 − t0) .

In an analogous way to the linearization at different points as in Equations (3.1), (3.4),

69

4. Camera Tracking on RGB-D Sequences

and (3.5), we can also apply a linearization completely at t0:

I (π (G (ξ, t1, Sh(p))) , t1)

≈ I (π (G (ξ, t0, Sh(p))) , t0) +(
dI (π (G (ξ, t,P)) , t)

dt

) ∣∣∣∣∣
π(G(ξ,t0,Sh(p))),t0

(t1 − t0)

= I (π (G (ξ, t0, Sh(p))) , t0) +(dI (π (G (ξ, t,P)) , t0)

dt

) ∣∣∣∣∣
π(G(ξ,t0,Sh(p)))

+

(
∂I
∂t

) ∣∣∣∣∣
t0

 (t1 − t0)

(3.4)
= I (π (G (ξ, t0, Sh(p))) , t1) + (4.22)(

dI(P, t0)

dp

) ∣∣∣∣∣
π(G(ξ,t0,Sh(p)))

(
dπ

dP

) ∣∣∣∣∣
G(ξ,t0,Sh(p))

(
dG

dt

) ∣∣∣∣∣
ξ,t0,Sh(p)

(t1 − t0) .

where the only difference to Equation (4.21) is, that the image gradient is now computed
on I0. From the differentiation rule of the exponential function we have the equality(

dG

dt

) ∣∣∣∣∣
ξ,t,P

= ω̂R(ξ, t)P + ω̂T(ξ, t) + v, (4.23)

and applying this equality to the derivative formulation, while omitting the indices in
the derivative chain for better readability, we get

I (π (G (ξ, t1, Sh(p))) , t1) (4.24)

≈ I (π (G (ξ, t0, Sh(p))) , t1) +∇IT dπ

dP
(ω̂ (R(ξ, t0)Sh(p) + T(ξ, t0)) + v) .

For t0 = 0, we have I (π (G (ξ, t0, Sh(p))) , t1) = I (p, t1), R(ξ, t0) = I, T(ξ, t0) = 0, and
Equation (4.24) is linear in ξ. Therefore, for functions φ such as φ(s) = s or φ(s) =

√
s,

energy (4.19) is convex and it can be globally minimized in ξ.

In our coarse-to-fine scheme, we iteratively estimate incremental motions ξinc from
images warped by the accumulated motion ξacc from all past iterations. After iteration
k, we update the accumulated motion with the estimated increment:

ξ̂k+1
acc = log

(
exp

(
ξ̂kinc

)
exp

(
ξ̂kacc

))
(4.25)

Given an initial estimate of a pose transformation (ξacc, tacc), where we set tacc = 1
for sake of simplicity, we find the incremental transformation ξinc by minimizing the

70

4.2. A Direct Dense Method for Camera Tracking on RGB-D Image Sequences

augmented Equation (4.19):

ξ∗inc = arg min
ξinc∈Rse(3)


∫
Ω

φ
(
|I (π (G (ξinc, t1, G (ξacc, tacc, Sh(p)))) , t1)− I (p, t0)|2

)
dp

 .

(4.26)
Using Equation (4.24) with t0 = 0, we get for the linearization

I (π (G (ξinc, t1, G (ξacc, tacc, Sh(p)))) , t1) (4.27)

≈ I (π (G (ξacc, tacc, Sh(p))) , t1)

+ ∇IT dπ

dP
(ˆωinc (R(ξacc, tacc)Sh(p) + T(ξacc, tacc)) + vinc) .

Using the abbreviations G(p) = G (ξacc, tacc, Sh(p)) and w(p) = π(G(p)), we get

∇IT(w(p))
dπ

dP
(G(p)) (ˆωincG(p) + vinc) . (4.28)

This expression is linear in ξinc and can be written as Cacc(p)Tξinc with a 6×1 constraint
vector Cacc. For an explicit formulation of this constraint vector we refer to Equation
(A.5) in the appendix. With this, Equation (4.3) now becomes

(R∗,T∗) = arg min
(R,T)∈SE(3)


∫
Ω

φ

(∣∣∣Cacc(p)Tξinc + I1(p)− I0(p)
∣∣∣2) dp

 (4.29)

and the necessary condition for (R∗,T∗) to be minimal is given by the normal equation∫
Ω

φ′
(∣∣∣Cacc(p)Tξinc + I1(p)− I0(p)

∣∣∣2)(Cacc(p)Cacc(p)Tξinc + I1(p)− I0(p)
)

dp = 0

(4.30a)
or ∫

Ω

φ′acc(p)Cacc(p)Cacc(p)T dp

 ξinc =

∫
Ω

φ′acc(p) (I0(p)− I1(p)) dp. (4.30b)

We can now iteratively compute the normal equation and solve the resulting 6×6 equa-
tion system iteratively or analytically, resulting in a Gauss-Newton method for relative
camera pose estimation.

In the next two sections, we are going to relate method to the ICP method, which is the
current standard for depth-based camera tracking. After this, we are going to compare
our approach with a quadratic loss function φ(s) = s against the GICP implementation
of Segal et al. [77] on the RGB-D benchmark of Sturm et al. proposed in [83].

71

4. Camera Tracking on RGB-D Sequences

4.3. Relation to ICP

Our method for camera pose estimation is related both to the ICP method and to
methods based on sparse feature correspondences, as all of them can be formulated us-
ing a representation of the camera pose transformation as the exponential of a twist
matrix. Given a sequence of depth images, ICP can estimate the camera pose trans-
formation between successive images on a frame-to-frame basis, and it is comparatively
free of hyper-parameters. In contrast, odometry methods based on monocular inten-
sity images and feature descriptor matches, as referenced in Section 4.1, have to infer
parts of the 3D geometry from several images, and follow a frame-to-model approach,
requiring an additional memory and compute overhead. RGB-D image based methods
like Endres et al.[34] estimate the camera pose transformation between two point pat-
terns ([86]), just like ICP. However, the estimated point-to-point correspondences are
not based on Euclidean distances, but on distances in the descriptor space. Therefore,
just like other feature based methods, its performance depends on the correct choice of
a feature descriptor, which itself has dependencies on methods for outlier detection and
on computational hardware.

The input to ICP is a set of 3D data points, {di|1 ≤ i ≤ nd}, and a set of model
points {mj |1 ≤ j ≤ nm}, where typically nd is much smaller than nm. The goal is to
find a rigid body motion (R,T) that optimally maps all data points onto the closest
corresponding model points. Under the assumption of a Gaussian error distribution,
this yields the energy formulation

EICP(R,T) =
∑
i

min
j

{
〈Rdi + T−mj ,nij〉2

}
, (4.31)

where different choices of the normal vector nij yield different versions of ICP. The

choice nij =
Rdi+T−mj

|Rdi+T−mj | yields the point-to-point ICP formulation, whereas a normal

nij corresponding to the local plane around mj yields point-to-plane ICP.
ICP alternates the search for point-to-point correspondences and solving for the pose

transformation: In every iteration k, it estimates for every data point dki a corresponding
model point mi of minimal distance

mi = arg min
j

{∣∣∣dki −mj

∣∣∣} , (4.32a)

and then updates the pose transformation as

(Rk+1,Tk+1) = arg min
(R,T)

{∑
i

〈
Rdki + T−mi,ni

〉2
}
. (4.32b)

Finally, the data points are transformed for the next iteration

dk+1
i = Rk+1dki + Tk+1 (4.32c)

72

4.3. Relation to ICP

After κ alternations, the camera pose transformation (R,T) is the concatenation of the
incremental transformations:[

Rκ Tκ

0 1

] [
Rκ−1 Tκ−1

0 1

]
...

[
R1 T1

0 1

] [
R0 T0

0 1

]
(4.33)

with R0 = I and T0 = 0. For step (4.32b) one can use the matrix exponential for-
mulation of Equation (4.12) for R and T. Using a first-order approximation of the
exponential

exp(ξ̂) ≈ I + ξ̂, (4.34)

and incorporating an initial motion estimate (Racc,Tacc), the energy is now convex in ξ

arg min
(R,T)


∑
i

〈
(I + ω̂)

(
Raccd

k+1
i + Tacc

)
︸ ︷︷ ︸

=:G

+v −mi,ni

〉2
 (4.35)

= arg min
(R,T)


∑
i




(GY ni3 −GZni1)
(GZni1 −GXni3)
(GXni2 −GY ni1)

ni1
ni2 ni3


T


ω1

ω2

ω3

v1

v2

v3

− 〈mi,ni〉



2


(4.36)

If the data and model point clouds stem from surfaces as in Equation (4.1), we get

Equation (4.28) of our formulation by setting ni ≡
[
1 1 1

]T
, projecting both point

clouds into their respective images and by penalizing the image intensity differences. To
keep the energy convex in ξ, we need to make the same two linear approximations for
the image intensity and for the perspective projection.

Though both our method and ICP use the same parametrization of camera motion,
our method has a key advantage compared to ICP, since the step of finding the closest
model point for each data point in Equation (4.32a) is computationally cumbersome. A
näıve implementation has a quadratic runtime complexity, and many implementations
rely on space partitioning trees to accelerate this task. However, the tree has to be
recomputed for every new image pair, and the runtime complexity of an iteration is
linear-logarithmic, while the runtime complexity of our method remains linear, rendering
our method faster than ICP.

Another difference between our method and ICP are the different types of failure
cases: A trivial failure case of our method is an untextured geometry, where ∇I ≡ 0.
In this case ICP can still find the correct camera pose transformation, if the structure
of the geometry contains sufficient information. Our method also relies on an additional
linearization of the perspective projection and the image, resulting in tracking failures

73

4. Camera Tracking on RGB-D Sequences

over large distances, where the linear approximations are incorrect. On the other hand,
our method can find the correct camera pose transformation on textured planar surfaces
like walls or floors, while ICP can only estimate 4 of the desired 6 degrees of freedom.
Also, in many indoor scenes suited for active RGB-D sensors, the high frequency texture
information, which causes tracking failures over large distances, enables our method
to be more precise for small camera pose transformations, as it is confirmed by our
experimental evaluation in the next section.

4.4. Experimental Evaluation

We evaluate our method for camera tracking on the Freiburg RGB-D dataset of Sturm
et al [83]. This dataset contains RGB-D images from a Microsoft Kinect sensor with
synchronized camera poses from an external motion capture system. Figure 4.2 shows a
qualitative assessment of our method on the fr2/desk sequence. The first row shows the
reference image in each column for comparison. The second row shows different images
that are tracked against the reference image, with increasing time and distance of the
camera pose from left to right. The third row shows the reconstructed reference frame
using the estimated camera motion. The fourth row shows the difference image between
the original and the reconstructed reference frame. As we can see, our method is capable
of accurately estimating the camera motion over a substantial distance, but fails if the
distance between two images becomes too large, as it gets stuck in a local minimum of
the energy.

We also use the Freiburg RGB-D dataset to quantitatively evaluate our method against
a reference implementation of the GICP method of Segal et al in [77]. From the large
variety of different sequences, we choose the fr1/desk and fr2/desk sequences for our
experiments, as they contain both translational and rotational motions in a typical
office environment at different speeds. To simulate larger camera velocities, we leave out
intermediate frames in the sequence. In particular, we matched I(t) and I(t + k) for
different k = 1, . . . , 20 and measured for all t the error between our motion estimate and
the motion from the ground truth. Figure 4.3 shows the median error with respect to k.
In particular, we found that our approach outperforms GICP when k is small, i.e., k < 5
for freiburg1/desk and k < 17 for freiburg2/desk. Note that the average camera speed
in freiburg1/desk is much higher than in freiburg2/desk. From this result, we conclude
that our approach is well suited for continuous camera tracking, while GICP can better
deal with larger displacements.

The superior performance of our method on smooth and continuous camera trajecto-
ries is also reflected in the drift-per-frame evaluation of these two sequences, see Table
4.1 and Figure 4.4b. Our approach has a median translational drift of 5.3mm and 1.5mm
while GICP drifts by 10.5mm and 6.2mm per frame, respectively. We analyzed this re-
sult further by computing the error histogram shown in Figure 4.4b: This plot confirms

74

4.4. Experimental Evaluation

(a) Frame 10 (b) Frame 20 (c) Frame 30 (d) Frame 40

Figure 4.2.: Camera motion estimation over increasing distances. From top to
bottom: Reference image 1, image tracked against the reference image, re-
constructed reference image, difference image. Our algorithm is capable of
tracking the camera over a substantial distance/time, but fails if the distance
is too large.

Dataset Proposed GICP Improvement

freiburg1/desk 0.0053 m 0.0103 m 1.94x
0.0065 deg 0.0154 deg 2.37x

freiburg2/desk 0.0015 m 0.0062 m 4.13x
0.0027 deg 0.0060 deg 2.22x

Table 4.1.: Comparison of the drift per frame of our approach versus GICP on two
different datasets. The values give the median. Our approach achieves more
than 50% better pose estimates than GICP.

75

4. Camera Tracking on RGB-D Sequences

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

frame difference k

er
ro

r
[m

]

Proposed GICP

(a) freiburg1/desk dataset

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

frame difference k
er

ro
r

[m
]

Proposed GICP

(b) freiburg2/desk dataset

Figure 4.3.: Pose accuracy under increasing frame differences, i.e., we match I(x, t) and
I(x, t + k) for all t. For not too large inter frame differences, the proposed
method gives more accurate results while GICP is more robust against larger
displacements.

that our approach has considerably lower pose errors than GICP. Additionally, our ap-
proach has fewer outliers. We found that GICP has in 15.3% of all frames an error larger
than 1cm, while our approach exceeds 1cm error only in one of the 2070 frames in the
fr2/desk sequence.

Our method also outperforms the reference GICP implementation with respect to
speed. On a single Intel Xeon E5520 CPU with 2.27GHz, we measured that our approach
takes an average of 8ms per frame (varying slightly with the number of pixels with valid
depth values), while the standard GICP implementation takes an average of 7.5s per
match. This means that our approach is able to provide visual odometry in real-time at
12.5Hz with our relatively näıve implementation. We suppose that frame rates surpassing
the one of the sensor can easily be achieved by using SIMD instructions available on
current commodity CPUs, and by possibly trading accuracy for speed by taking into
account only a subset of all available pixels with valid depth values.

4.5. Conclusion

We have introduced a direct method for estimating the relative camera pose transforma-
tions between two images of a static scene. By optimizing photoconsistency, it is related
to the disparity estimation introduced in Section 2.4.1. While previous methods like ICP

76

4.5. Conclusion

0 10 20 30 40 50 60 70 80 90
0

2

4

·10−2

er
ro

r
[m

]

Proposed
GICP

(a) time t [s]

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

co
u

n
t

Proposed
GICP

(b) error [mm]

Figure 4.4.: Per-frame error (top) and error histogram (bottom) on the fr2/desk se-
quence. We found that our approach has both a lower median error and
fewer outliers in comparison to GICP. Note that the ground truth informa-
tion is partially missing due to occlusions in the scene.

or sparse feature matching pre-compute point-to-point correspondences, based on spa-
tial 3D proximity or photoconsistency, our methods estimates the pose transformation
directly as a minimizer of a photoconsistency energy. In the context of dense RGB-D im-
age sequences provided by novel commodity sensors, our method is able to use the dense
information provided in both texture and depth, and it allows for frame-to-frame track-
ing without an additional mapping back-end. Without the need for a computationally
cumbersome step of point-to-point correspondence estimation, the proposed method is
significantly faster than a reference ICP implementation, and it enables real-time camera
tracking on a single core of a commodity laptop CPU. Using both depth and detailed
texture information, our method outperforms the reference ICP implementation with
respect to pose error for slower continuous motions, while losing track earlier then ICP
in the presence of large camera motions between consecutive images.

77

4. Camera Tracking on RGB-D Sequences

78

5. Large-Scale 3D Reconstruction from
RGB-D Sequences

In this chapter we cover the problem of dense geometry mapping. Given a sequence of
RGB-D images of a static scene, as well as the corresponding camera poses, we want to
reconstruct the joint textured geometry observed in these images in global coordinates.
The input sequence of RGB-D images can come from dense disparity estimation as
outlined in Chapters 2 and 3, or from an active RGB-D sensor. The camera poses
can come from inside-out methods similar to the one presented in 4, or they could be
provided by an external global motion tracking system as in [83]. Like our camera
tracking method in the last chapter, we want our geometry reconstruction method to
be real-time capable on consumer hardware - potentially even on mobile or wearable
hardware - and we want it to be scalable to large environments beyond the capability of
previous methods, while keeping fine-scale details. This limits our choices of input data,
and we use an active Kinect1 / Xtion Pro RGB-D sensor in combination with a derivative
of the camera tracking method from the last chapter [48, 47] for our experiments. In the
following, we abstract the methods used for creating the input data, and just assume it
to be given.

In addition to be real-time capable and scalable, we require our geometry reconstruc-
tion method to be an online method, meaning that not all the data has to be given at
the beginning of our method, and we require a real-time visualization method capable of
running on mobile and potentially remote platforms. We are going to explain the former
in greater detail in the next three sections, and the latter in Section 5.4.

5.1. Surface Representations and Prior Work

A näıve approach for a geometry reconstruction is creating a joint point cloud of all
depth images. Point clouds are one of the most intuitive global map representations.
They are featured in many popular approaches not necessarily restricted to those based
on dense RGB-D information but rather a sparse set of visual feature points matched
by their corresponding descriptors [7]. This sparse set of features can be combined with
a volumetric map representation as well, as for example in the work of Endres et al. in
[34].

However, point clouds lack information of the local neighborhood of each point, and do
not represent dense, continuous surfaces. The most popular dense surface representation

79

5. Large-Scale 3D Reconstruction from RGB-D Sequences

is a triangle mesh. When created from a point cloud, every point on the continuous
surface is interpolated linearly between 3 points of the cloud. Meshes can be stored
easily and efficiently, and they are the standard for 3D geometry visualization running
on dedicated graphics hardware.

Reconstructing the joint point cloud from a sequence of depth images creates the
problem that the memory required to store this point cloud scales linearly with the
number of processed depth images. While this is a problem for all reconstruction methods
in the worst case - when all images capture completely disjoint parts of the geometry -
the linear scaling is independent of the observed geometry for the näıve approach. For
example, if all images and camera poses are identical, because the camera does not move,
the resulting point cloud would be highly redundant with multiple points on the same
position. With a 3×4 Byte floating-point value for the 3D position and a 3×1 Byte RGB
color value for each point, a sequence of 1000 images of VGA resolution would already
result in a point cloud of more than 4.2 GB, assuming that all pixels in all images have
a valid depth value.

The next two plausible steps would be the removal or the averaging of points that
lie either on the same 3D position as other points, or in their close vicinity, and the
triangulation of a surface mesh from the remaining points. The näıve implementation
for removing redundant points from the cloud involves computing the nearest neighbor
for each new 3D point and successively averaging neighboring points until the distance
between any two points in the cloud is larger than some threshold. Without any special
data structure, the search for nearest neighbors results in a total runtime complexity
quadratic in the number of points, which becomes infeasible very fast. Finding neighbors
of points for the triangle surface computation has the same problem. To accelerate this
approach, the standard solution is a nearest neighbor search accelerated by binary space
partitioning tree, typically an axis-aligned k-d tree (k = 3), where each leaf contains
references to points in the cloud. Such a k-d tree is an example of a volumetric structure,
which is required for fast access to geometry elements located at a given 3D position.
Other examples of volumetric structures are 3d grids and octrees, that we are going to
investigate below.

Even with such a volumetric acceleration structure, computing a triangle mesh rep-
resenting a 3D surface from a point cloud is not trivial. Greedy algorithms such as
the one outlined above can produce ill-formed elongated triangles or triangle crossings.
Approaches based on the popular Voronoi diagrams [9] and the geometrically dual De-
launay triangulations [21] can overcome the problems of ill-formed triangles and triangle
crossings. However, the Delaunay triangulation can produce mesh edges shared by more
than two triangles, which constitutes self-crossing meshes. As described in [21], these
meshes can be reduced to valid surface meshes, but neither the Delaunay triangulation
nor the reduction to a surface mesh are computationally feasible for large point clouds.

To be a valid surface mesh, we want the mesh to be a collection of non-crossing,
orientable polyhedra, which implies that it locally divides the 3D space into an inside

80

5.1. Surface Representations and Prior Work

and an outside region. We allow the mesh to be non-watertight and to have a boundary,
i.e. triangles with less than three neighbors, as we have to account for the fact that
there will be regions unobserved by the camera. This definition can allow edges shared
by multiple triangles as degenerate cases as well, as outlined in Appendix D.1.

A prominent method for reconstructing orientable polyhedral meshes from a point
cloud with normal information is the method of Poisson surface reconstruction of Kazh-
dan et al. [46]. Internally, this method uses a popular implicit surface representation,
an occupancy map. In this volumetric representation, every point P in a 3D volume V
is assigned a value of an indicator function χ : V → {0, 1}:

χ(P) =

{
1 if P lies in the interior of an object

0 elseP
(5.1)

The surface is then extracted where the indicator function jumps between 0 and 1. In-
stead of using binary values, or ternary values as in [72], the image of χ is often relaxed to
the convex interval [0, 1], to represent the probability that a voxel belongs to the interior
of the reconstructed geometry [58]. This convex representation of 3D geometry is very
popular in the areas of photoconsistency-based single-view reconstruction [67], 3D recon-
struction [52], and 4D reconstruction [66], where no initial depth maps or point clouds are
given, and the 3D geometry is estimated entirely based on volumetric photoconsistency
estimates and additional cues like silhouette information or color distributions for object
and background textures. A commonly used prior here is a minimal surface area of the
observed objects, and for a binary indicator function, the surface area is directly given
by its total variation. Given an indicator function relaxed to the convex codomain [0, 1],
the surface is extracted as an iso-level, either by thresholding the continuous indicator
function with a threshold between 0 and 1 and successively extracting the surface at the
integer positions of the boundary voxels, or using a method for discretized iso-surface
extraction of a continuous occupancy function like the “Marching Cubes” method of
Lorensen and Cline in [54].

Compared to photoconsistency-based 3D reconstruction, the fusion of depth maps into
a joint geometry model gives us several advantages:

• It allows to abstract the modality of creation of the depth map. Depth cameras
using active illumination can be used equally well as photoconsistency-based stereo
depth maps. For example, since active sensors like Microsoft’s and PrimeSense’s
Kinect get the depth information from disparity estimates based on a structured
light pattern, depth maps can also be captured from completely textureless geom-
etry.

• We do not have to focus on the complicated 3D photoconsistency estimation prob-
lem. Estimating photoconsistency at global 3D coordinates involves a notion of
surface visibility. Combined with the task of surface reconstruction, this becomes
a chicken-and-egg problem.

81

5. Large-Scale 3D Reconstruction from RGB-D Sequences

• We get an intuitive volumetric data term. In variational photoconsistency-based
approaches the regularity term penalized the gradient of the indicator function
less in regions of good photoconsistency than in regions of weak photoconsistency.
However, without a data term preferring the indicator function to be positive in
some regions, the trivial optimal solution for the indicator function is the constant
zero function. To overcome this problem, Vogiatzis et al. propose a “ballooning”
term to inflating the geometry in [88], Kolev et al. propose data terms based on
color distributions in the images in [52] and propagated photoconsistency estimates
in [51], and Töppe et al. impose a volume constraint on the 3D geometry for
the case of single-view reconstruction in [84]. The globally optimal method for
photoconsistency-based disparity estimation of Pock et al. in [70] can also be
regarded as a method for volumetric photoconsistency-based 3D reconstruction.
However, here the reconstruction volume does not represent a Euclidean space but
a projective space. The indicator function has the constraint of being 1 at infinity
and 0 in the camera center. This constraint forces the indicator function to change
somewhere to 1, and as in the other aforementioned methods, the location where
it should change preferably is steered by the photoconsistency estimates in the
regularity term.

In contrast, every depth map we fuse into a global volumetric geometry represen-
tation bears an intuitive information of whether a voxel observed in the camera
frustum belongs to the geometry interior or exterior.

On the other hand, a method for depth map fusion is required to have certain features
not necessarily required in the area of photoconsistency-based 3D and 4D reconstruction.
For the latter, the entire input image sequence is usually known from the start. In the
area of RGB-D image fusion, we are usually not given all images from the start, but
rather expected to incrementally add one RGB-D image after another. An algorithm
not being given all data to work on from the start is commonly referred to as an online
algorithm. In most methods for photoconsistency-based 3D reconstruction, the indicator
function is optimized iteratively, and a very useful feature of the implicit representation
is that it allows for changes in the topology of the reconstructed geometry. This freedom
to change topology is also very useful for our purpose, successively fusing RGB-D images
into a global geometry model. This suggests using an implicit surface representation as
well.

In our approach, we do not use a binary indicator function as it is used in the afore-
mentioned publications on photoconsistency-based 3D reconstruction. Instead, following
the work of Curless and Levoy in [31], we store the running average of a signed distance
function (SDF). The value D(P) in each voxel P describes the distance to of that point
to the closest surface. Voxels with a negative SDF value represent empty space, while
voxels with a positive SDF value lie on the inside of an object. For the t-th RGB-D

82

5.1. Surface Representations and Prior Work

Figure 5.1.: Schematic partition of a voxel volume after the integration of one depth
image, with δ = 0. White voxels: D = 0, W = 0. Dark green voxels:
D=−TD, W =1. Light green voxels: −TD<D<0, W =1. Light red voxels:
0<D<TD, 0<W <1. Dark red voxels: D=TD, 0<W < 1.

image, the running average is updated as

Dt(P) =
1

t

t∑
j=0

dj(P) =
1

t
(Dt−1(P) (t−1) + dt(P)) (5.2)

with D0(P) = d0(P) = 0.
In addition to the signed distance value, we store a weight value W (P). The weight

value fulfills three interlinked purposes:

• It is required for storing a running average in every voxel. Not every voxel is
observed from every camera pose, therefore, storing a global counter of the number
of integrated RGB-D images as in Equation (5.2) does not suffice to accurately store
the denominator of the running average for every voxel P.

• We want to allow non-watertight surfaces. Voxels not observed by any camera
need to be assigned a special value. Otherwise, our reconstruction method would
hallucinate a surface at the boundary of the observed part of the reconstruction
volume. Instead of defining a special distance value, we define that voxels with
an accumulated weight value below a certain threshold TW should not contribute
to the reconstructed surface geometry. In Figure 5.1 this is illustrated by the

83

5. Large-Scale 3D Reconstruction from RGB-D Sequences

white voxels outside the camera frustum. There should neither be a surface at the
boundary between unobserved voxels and voxels with positive distance (red), nor
between unobserved voxels and voxels with negative distance (green).

• For each new RGB-D image, we want to weight distance increments d differently
in each voxel depending on how certain we are about the distance. In each new
camera frustum, we can be rather sure that there are not any objects in the
camera frustum between the camera center and the observed surface. However, we
have little prior information about the thickness of the observed geometry behind
the visible surface. Therefore, we assign a small or zero weight to the projective
distance estimates behind the observed surface in each camera frustum. In Figure
5.1 this is illustrated by the white pixels behind the observed surface.

Given depth images as input, we have a notion of surface visibility, and we can accumu-
late the color information of the RGB-D image volumetrically as well, storing a running
average C ∈ N3 in each voxel, and incrementing it by the values c read in the RBG
image. The combined update equations of distance, weight, and color read as

Dt(P) =
Dt−1(P)Wt−1(P) + dt(P)wt(P)

Wt−1(P) + wt(P)
, (5.3a)

Wt(P) = Wt−1(P) + wt(P), (5.3b)

Ct(P) =
Ct−1(P)Wt−1(P) + ct(P)wt(P)

Wt−1(P) + wt(P)
. (5.3c)

The integration of the t-th RGB-D image with color channel It, depth channel ht, and
camerapose (Rt,Tt) into a regular voxel grid of n3 voxels is summarized by Algorithm
1. Following Curless and Levoy in [31], we truncate the SDF values to a threshold
TD to avoid a too large contribution of outlier values in line 7. In the computation of
the incremental weight in line 8, the value δ denotes the value of the projective distance
estimate, above which the incremental weight w linearly decreases to zero, and represents
the assumed minimal object thickness. The weight threshold TW is the distance value,
above which w is set to zero. To avoid incorrect memory accesses and undefined values of
d in our program, we explicitly check for both visibility of the voxel in the camera frustum
(line 3) and validity of the depth estimate (line 5), instead of simply zeroing w in voxels
without a valid projective distance estimate. The term Pc [3] denotes the z-element of
the point P. In the context of active RGB-D sensors such as the Kinect, an invalid
depth estimate is detected if there is no correct correspondence in the structure light
pattern, possibly due to specular reflective surfaces, missing geometry or a geometry to
far away from the sensor, or too much ambient light covering the structured light pattern.
However, we can also integrate predefined minimum and maximum depth values here.

84

5.1. Surface Representations and Prior Work

Algorithm 1 Algorithm for SDF, weight, and color update in a regular voxel grid

1: for Pv ∈ {0, ..., n− 1}3 do
2: Pc ← RT

t Pv −RT
t Tt

3: if Pc [3] > 0 and π(Pc) ∈ Ω then
4: h← ht(π(Pc))
5: if valid(h) then

6: ∆D ← |Pc|
(

1− h
Pc[3]

)
7: dt ← max{min{∆D, TD},−TD}

8: wt(Pv)←


1 if ∆D < δ
TD−∆D
TD−δ if ∆D ≥ δ and ∆D ≤ TW .

0 if ∆D > TW
9: ct ← It(π(Pc))

10: Dt(Pv)← Dt−1(Pv)Wt−1(Pv)+dtwt
Wt−1(Pv)+wt

11: Wt(Pv)←Wt−1(Pv) + wt
12: Ct(Pv)← Ct−1(Pv)Wt−1(Pv)+ctwt

Wt−1(Pv)+wt
13: end if
14: end if
15: end for

The most prominent work based on the Curless and Levoy publication is “KinectFu-
sion” of Newcombe, Izadi et al. [62, 45], where the concept of volumetric depth map
integration is applied in a GPU-supported real-time framework based on the Kinect sen-
sor. Another approach worth mentioning here is the one of Zach et al. in [95]. Instead
of using a running average of SDF values, they create an L1 data term by penalizing
the sum of absolute differences to all projective distance estimates and combine it with
a spatial regularity term. Without this regularity term, the minimizer of the data term
yields the median of projective distances, which is more robust than the running average
of Curless and Levoy we are using. However, it also much more expensive, since we
would have to store all projective distance values to update the median value. In [40]
Graber et al. present an online version of this approach using histograms of projective
distance values to overcome the large memory demand.

Besides mapping approaches based on point cloud representation and approaches using
an implicit volumetric representation in the form of an occupancy or distance function,
there also exist other approaches for mapping, such as Multi-Resolution Surfel Maps of
Stückler and Behnke in [82].

85

5. Large-Scale 3D Reconstruction from RGB-D Sequences

5.2. Sparse Representation of the Reconstruction Volume

The main problem of dense volumetric surface representation is clearly its limited scala-
bility, mostly due to the large amount of voxel data required to be stored and updated.
The asymptotic complexity of the memory demand for representing the entire surface
geometry captured by an RGB-D camera is cubic in the length of the camera trajec-
tory, as in the worst case the camera moves on the diagonal of the cuboid reconstruction
volume. Analogously, it is also cubic in the resolution of the resulting surface mesh. Fur-
thermore, to be able to run in real-time, newer implementations of volumetric methods
typically rely heavily on parallelization, mostly on GPUs. The need for GPUs however
further decreases the amount of efficiently accessible memory, since contemporary GPUs
usually have a smaller amount of memory available than contemporary CPUs. There-
fore, methods like KinectFusion are restricted to small environments. For example, the
reconstruction of a house in a predefined volume of 20m×20m×10m at 1cm voxel resolu-
tion and a quantization of 4 Bytes for distance, 4 Bytes for weight, and 3*2 Bytes for
color would result in a data volume of more than 52 GB.

Currently a memory demand of this size is not met by any consumer grade GPU.
While we can certainly expect a significant increase in available GPU memory in the
near future, we can also expect an increase in the amount of data provided by RGB-
D sensors, related to higher spatial and temporal resolutions. Therefore, an optimized
approach fulfilling a given performance requirement on contemporary hardware can still
serve its purpose on future hardware in the presence of larger input data.

Another limitation in scalability of a dense reconstruction volume is its limited online
capability. We can incrementally integrate RGB-D images inside the reconstruction
volume, however, those parts of the camera frustum not intersecting the reconstruction
volume are lost. To reconstruct the entire geometry observed in the cameras, we need to
know the union of all camera frusta in advance. To have a fully online capable mapping
algorithm, we need to be able to dynamically adapt the reconstruction volume to the
progressing camera path.

The key observation for overcoming the problem of a large memory demand is the fact
that for many scenes the bulk of the volumetric data is constant. Voxels in the volume
not observed by any camera have a constant zero weight, voxels lying in empty space,
observed close to the camera position far in front the observed surface have a constant
weight of 1 and a truncated SDF value of −TD, and voxels lying far inside thick objects
have zero SDF and weight values. All these voxels do not contribute to the implicitly
represented surface. Therefore, a data structure only storing a narrow band of voxels
around the surface geometry can overcome the large memory demand of a dense voxel
grid.

Such a data structure needs to fulfill three general requirements: The first two require-
ments have already been explained above: The amount of memory required should be
dependent on the observed geometry, without unnecessary processing of voxels in empty

86

5.2. Sparse Representation of the Reconstruction Volume

space, and the reconstruction volume should “grow” dynamically with a progressing
camera path. The third requirement is that any update of the data structure with a
new RGB-D image should be possible in sublinear runtime complexity with respect to
the number of voxels already stored in the data structure.

Before we give an overview of different data structures, we want to emphasize that in
any data structure it is rather infeasible to store individual voxels, as an implicit surface
representation relies on the notion of voxel neighborhoods. Therefore, we group voxels
into small cubic mini-volumes or bricks, an approach common in computer graphics, see
for example [30].

A simple data structure is a list of bricks, with every brick storing its 3D position.
This structure is very similar to the joint point cloud described at the beginning of this
chapter. The requirement of a low, geometry-dependent storage cost is met, as we only
process bricks in the vicinity of the observed surface geometry. The requirement of being
able to efficiently grow the reconstruction volume is also met trivially, since one simply
adds new bricks to the list. However, the requirement of being able to efficiently update
the band is not met, since for every 3D point from a depth map we have to traverse the
complete list to check for already existing bricks in the vicinity of the point, in order
to avoid duplicate bricks in the list. This constitutes an O(n) operation, with n being
the length of the brick list. Assuming a linear growth of n with respect to the number
of integrated RGB-D images, this results in a quadratic runtime complexity for the
integration of all RGB-D images. A local reconstruction volume following the camera
can be regarded as this approach taken to the extreme, with overlapping bricks in the
size of an entire reconstruction volume and only one brick updated for every RGB-D
image. Whelan et al. follow this approach in [92, 90, 91], and instead of keeping a list of
reconstruction volumes, they extract a polygon mesh for the geometry outside the local
reconstruction volume around the camera. Doing so drastically reduces the memory
demand, but renders revisiting places of an already compressed reconstruction volume
a tricky task.

An approach different to a simple list of bricks is storing a dense grid of brick pointers
for which bricks are only allocated when lying close to the surface. Other than with
the list of bricks, we can access every brick in O(1) runtime. However, we give up
the ability to easily grow the reconstruction volume. Using a moving reconstruction
volume, the problem of being able to update parts of the geometry outside of the current
reconstruction volume again constitutes an O(n) problem, similar to the one with the
brick list described above, only with one or a few larger volumes instead of many smaller
bricks.

In general there are two data structures for efficient storage of a sparse set of elements,
hash maps and tree structures. In the case of tree structures, the three-dimensional key
space in combination with bricks at integer positions suggests using octrees.

Besides recent approaches in voxel hashing [64], most approaches for a sparse repre-
sentation of a reconstruction volume for implicit surface representation use octrees as a

87

5. Large-Scale 3D Reconstruction from RGB-D Sequences

method of choice, such as Fuhrmann and Goesele [38], Chen et al. [28], or Zheng et al.
[96]. Octrees are also popular in the context of occupancy maps, the most prominent
system is the “Octomap” of Wurm et al. [93].

In our work we also use an octree structure to perform fast and scalable RGB-D
image fusion. Compared to the methods above, instead of traversing the entire camera
frustum, we only update a narrow band around the surface. In Figure 5.1, this is
expressed by the white voxels in the frustum in front of the depth map not storing an
explicit representation of empty space (D = −TD, W = 1) like the dark green voxels.
Instead, they are not stored in the data structure at all (D = 0, W = 0). On the one
hand, this approach has the drawback of not being able to eliminate outlier noise far
away from the correct surface. This essentially means that everything visible in the joint
point cloud is also visible in our dense reconstruction. On the other hand, this approach
is very memory efficient, fast, parallelizable in several ways, and it runs on current CPUs
in real-time.

5.2.1. Multiscale Approach

A feature of an octree particularly useful for the fusion of disparity-based depth maps,
e.g. the depth maps of first generation Kinect sensors, is that an octree provides an
intuitive representation of hierarchical data. According to the intercept theorem, the
size of voxels projecting into a single pixel grows linearly with the distance between the
voxel and the camera center. A voxel at distance h to the camera center can have a size
of h

f to project into a single pixel (assuming square pixels, i.e. fx = fy = f). Also, as we
explained in Section 2.4.1, the distance of a point to the camera h and its corresponding
disparity estimate have a reciprocal relationship:

h(d) =
Bfx
d

(5.4)

Assuming that the disparity measurements d of the sensor lie in the interval

d ∈ [d∗ − σ, d∗ + σ] (5.5)

around the true disparity d∗, substituting (5.4) in (5.5), we get an interval of[
h(d∗) +

h2(d∗)σ

Bfx − h(d∗)σ
, h(d∗)− h2(d∗)σ

Bfx + h(d∗)σ

]
(5.6)

for the corresponding depth values (see Appendix D.2). Assuming a small disparity
error relative to the true disparity, we can approximate the depth values by a Taylor
expansion at d∗:

h(d∗ ± σ) ≈ h(d∗)± σ
(
∂h

∂d

) ∣∣∣∣∣
d∗

= h(d∗)∓ σBfx
d∗2

= h(d∗)∓ σh
2(d∗)

Bfx
(5.7)

88

5.2. Sparse Representation of the Reconstruction Volume

root intermediate branch k1

leaf-pointers

branch k1+1

branch-pointers branch array

leaf array

queue

... 0 1 2 3 4 5 6 70 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Q ol sl distance weight color

0 1 2 3

leaf-pointers

lowest level branch k2

...

... ...

...

...

Figure 5.2.: Octree representation in memory. We store all branches in one array. One
branch comprises 8 pointers to sub-branches and 8 pointers to its leaves. All
leaves are stored in a second array. For fast access during the integration of
a new RGB-D image a queue maintains pointers to the leaves that have to
be updated.

This means that for disparity-based depth sensors, for a relatively small disparity error
uniformly distributed among all disparity values, the error in the corresponding depth
values grows quadratically with increasing depth. For more detailed information we refer
to Gallup et al. [39]. Therefore, it makes sense to store the volumetric SDF information
on different resolutions in the sparse data structure, depending on how close a brick has
been to a camera. In our octree data structure this can be done easily by storing bricks
as leaves of the tree at different depths from the tree root. While in most descriptions
of tree data structures, the term “leaf” denotes a node or branch in the tree without
children or subbranches, we use it to denote the brick data stored in the branches at all
levels in the tree in the rest of this thesis, i.e. when a branch has a leaf, it means that
the leaf pointer in the branch array is not NULL.

The further away a brick is stored from the root, the smaller is the size of the voxels in
the brick, and the higher is the resolution of the implicit surface in this area. This implies
that bricks can lie inside one another, if parts of the volume covered by a coarse brick,
resulting from being observed by a camera far away, are also observed by a camera
close by, see Figure 5.4c. In this case, the coarse brick is not disregarded or entirely
subdivided into bricks of the same resolution as the small brick, but kept in the tree.
Extraction of the iso-surface from the volumetric data is then performed from fine to
coarse resolutions: If the weight in the voxels of a brick of fine resolution is too low, we
proceed to the next coarser resolution. Figure 5.2 shows a schematic overview of the
general composition of our octree data structure. It is comprised of an array of branches
in the tree, an array of leaves/bricks in the tree, and a queue of bricks to be updated for
every RGB-D image.

Instead of storing a pointer to a leaf/brick and 8 pointers to subtrees for every branch,
we do not place a leaf at the root of the tree, and directly store 8 pointers to leaves/bricks

89

5. Large-Scale 3D Reconstruction from RGB-D Sequences

in the leaf array and 8 pointers to possible subbranches in the branch array for every
branch. This way, we can omit pointers to branches for the lowest level of branches,
where only a leaf but no further subbranches are stored. For example, if we have an
octree representing a volume of 643 voxels at the finest resolution/voxel size λ, and a
brick size of 83 voxels, the tree has 3 layers: For the root and the next finer layer, 8
pointers for subbranches and 8 pointers for leaves are stored in the branch array. For
the lowest layer, only the 8 pointers to leaves need to be stored in the branch array (see
Figure 5.2). All bricks in the tree have the same size, therefore, the bricks stored in
the root branch and the layer of branches below the root also have a size of 83, but the
voxels have a size of 4λ and 2λ, respectively.

For each leaf/brick in the array, we store the volumetric SDF, weight, and color data.
For a brick of 83 voxels, as it is sized in our implementation, and each voxel using 4 Bytes
for a floating-point SDF value, 4 Bytes for a floating-point weight value, and 2 Bytes for
the integer color value of each channel in an RGB texture, this amounts to 7168 Bytes
of voxel data. In addition, we store for each brick its integer 3D offset ol relative to
the root of the tree in the number of voxels on the finest voxel scale, its integer scale
sl in multiples of the finest voxel scale, and an integer position in the brick queue for
the current RGB-D image. In our experiments we use 2 Bytes for each dimension in the
position value, 2 Bytes for the scale value, and 4 Bytes for the queue index, limiting the
maximum voxel resolution of the entire tree to 655363. With a minimum voxel size of
5mm, this limits the entire reconstruction volume to roughly (320m)3. While sufficient
for our experiments presented in Section 5.5, the extent of the maximum reconstruction
volume can be increased exponentially with respect to the size of the octree, by using
larger data types for the index arrays. Similar to other data structures like dense voxel
grids, we also store a global 3D position of the tree root and its finest voxel scale in
floating-point precision.

Since the depth sensor has a fixed maximum range, the geometry that can be observed
by the depth sensor lies in a convex frustum of fixed maximum diameter. Given a fixed
minimum voxel size, all voxels and bricks intersecting this frustum lie in an axis-aligned
cube of fixed maximum side length, and are bounded above by a constant. The number
of levels in the octree that lie between the finest level and the level at which no more
than 8 voxels and bricks intersect this cube is logarithmic. By means of the geometric
series, the sum of all voxels between the leaf level and this level is therefore bounded
above by a constant as well. Going higher in the tree, at each level at most 8 voxels
and bricks have to be updated. All in all, for each depth image the maximum number
of voxels to be updated in the tree is bounded above by a constant plus a negligible
logarithmic overhead.

In the next section we will detail the procedure of integrating an RGB-D image in the
tree and its implementation on CPU and GPU hardware.

90

5.3. Implementation

5.3. Implementation

Integrating an RGB-D image into our data structure involves a twofold process:
In the first step we iterate over all valid depth pixels in the current RGB-D image,

compute the corresponding 3D points in global coordinates by applying the pose trans-
formation from camera coordinates into global coordinates. For each point P, we create
an axis-aligned cube

[PX − TD, PX + TD]× [PY − TD, PY + TD]× [PZ − TD, PZ + TD] , (5.8)

i.e. a 1-ball around P with the truncation threshold TD as its radius. Beyond this cube,
the projective SDF update for the current RGB-D image corresponding to P is constant
(compare Figure 5.1). Depending on the distance of P to the camera center, we compute
the voxel resolution of the bricks intersecting the cube, which determines their level in
the tree. Next we look up the bricks in the tree. If the bricks for a given position and
size have not been already allocated in the tree, we add them to the tree. If not already
present from previous operations on the tree, we also add new subbranches along the
paths from the root to the bricks. For every RGB-D image we compute a bounding box
of all points outside the current reconstruction volume represented by the tree. If any
of the points lie outside the current reconstruction volume, we iteratively grow the tree
by adding new roots until the reconstruction volume represented by the tree encloses all
points of the current RGB-D image.

In the second step we iterate over all bricks previously placed in the brick queue and
update the SDF, weight, and color values inside those bricks. The update procedure for
the voxels in one brick is similar to the one presented in Algorithm 1 for the case of a
dense voxel grid, with the only difference in line 2, where we have to include the position
and scale of the tree and the current leaf to transform the point Pb in brick coordinates
to the point Pc in camera coordinates:

Pc ← RT
t (ot + (ol + Pbsl) st)−RT

t Tt (5.9)

5.3.1. Implementation on the GPU

In our implementation on the GPU we parallelize our code at two points: We integrate
all pixels of an RGB-D image into the octree in parallel, and we update all voxels in
the bricks in parallel. To this end, we need to adhere to certain paradigms of GPGPU
computing and slightly adapt our data structure.

The main bottleneck of current GPU computations is the access of global memory
accessible by all threads. Since this memory is accessed sequentially over a bus, it is
important that we use as much of the bus bandwidth as possible with coalesced memory
fetches. This induces the paradigm of using structures of arrays rather than arrays
of structures. Other than depicted in Figure 5.2 for the sake of clarity, we do not

91

5. Large-Scale 3D Reconstruction from RGB-D Sequences

use a structure for every leaf, comprised of the queue index, position, scale, distance,
weight, and color values, and store and array of these structures, but instead store all
the elements of the leaf structure in separate arrays.

On GPUs we also do not have trivial support for dynamic arrays or linked lists.
Though modern GPUs support allocation of global memory from inside GPU code, an
append operation on a dynamic array performed in one thread would void all memory
references to the array in other threads, if memory has to be resized. In addition,
the array would need to be copied into the newly allocated memory during a resize
operation, requiring the old and the new array to exist simultaneously, and therefore,
reducing the total available memory on the GPU. Linked lists require memory overhead
for pointers and produce fragmented fields of memory not suited for coalesced read and
write operations. Therefore, we allocate all arrays before integrating the first RGB-D
image, and perform later append operations by incrementing global variables.

Performing the SDF, weight, and color update according to Algorithm 1 in parallel
for every voxel is comparatively easy. Performing the tree traversal however is more
complicated, as we have a lot more diverging code, atomic append operations and limited
local memory.

For intersecting an axis-aligned cube with the volumes covered by branches in the
tree, we possibly have to traverse several paths in the tree from the root to all bricks
intersecting the cube. With k denoting the number of bricks intersecting the cube, and
d denoting their depth (i.e. their distance to the root) in the tree, the näıve strategy
of precomputing the positions of all bricks and then traversing the tree for each brick
from the root to the branch holding the brick requires O(kd) operations. However, given
the cube and any branch in the tree, we can easily deduce which subbranches intersect
the cube as well (see Appendix D.3). Therefore, we can reduce the runtime complexity
to O(k + d) by employing algorithms like breadth-first search or depth-first search. For
breadth-first search we need to store a queue of at least k indices of branches per thread.
For depth-first search, we need to store at most d indices per thread, one for each branch
on the path from the root to a leaf. Since k is dependent on the truncation threshold TD,
it can get very large for large threshold values. In contrast, d is limited by the maximum
depth of the tree. Since a queue of variable and possibly large size could exceed the
available amount of local memory for each thread on a GPU, we use the depth-first
search in our implementation, and store the indices in the shared memory of the GPU.

In our depth-first search implementation we have to handle mutually exclusive oper-
ations explicitly. Most modern GPUs have an intrinsic support for atomic operations
on single scalar values, assuring that only one thread at a time accesses a memory cell.
However, each branch or a brick should only be added to the tree once, which requires
more than one instruction in critical sections.

Algorithm 2 shows the parallel depth-first traversal of the octree in pseudo-code.
The atomic append operations for branches, bricks, and brick pointers in the queue
are highlighted in purple. As they consist of several instructions and are not natively

92

5.3. Implementation

Algorithm 2 Algorithm for parallel depth-first traversal of the octree

1: branch ← root
2: depth ← 0
3: while depth ≥ 0 do
4: for each child intersecting the cube do
5: if depth = desired depth then
6: if child brick pointer in branch array is NULL then
7: try to get access to MUTEX for child brick pointer in branch array
8: if got access to MUTEX then
9: append brick to brick array

10: set child brick pointer in branch array to newly allocated brick
11: end if
12: goto 6
13: else
14: if queue index of brick is NULL then
15: try to get access to MUTEX for queue index of brick
16: if got access to MUTEX for queue index of brick then
17: append brick pointer to brick queue
18: set queue index of brick to newly appended queue index
19: end if
20: end if
21: end if
22: else
23: if child branch pointer in branch array is NULL then
24: try to get access to MUTEX for child brick pointer in branch array
25: if got access to MUTEX then
26: append branch to branch array
27: set child branch pointer in branch array to newly allocated branch
28: else
29: goto 23
30: end if
31: else
32: branch ← child branch behind pointer
33: depth ← depth + 1
34: goto 3
35: end if
36: end if
37: end for
38: branch ← parent branch
39: depth ← depth - 1
40: end while

93

5. Large-Scale 3D Reconstruction from RGB-D Sequences

supported by current GPUs, we have to embed them into regions of mutual exclusion
(MUTEX). Because we also do not have a native call stack on current GPUs, we have
to emulate recursions into subbranches with the branch and depth variables. We do not
store a parent branch for every branch in an array in global memory, but rather store
one parent branch pointer at every depth level of the tree in shared memory as described
above. On current GPUs the computing cores are grouped into sets in which all threads
execute the same instructions. In Nvidia’s CUDA programming framework these sets
are referred to as “warps”. Sharing the same instructions, when only some threads in
a warp enter a conditional branch, all threads not entering the branch are stalled. For
“if-then-else” conditionals, it is also not defined whether the “then”-branch is executed
before or after the “else”-branch.

In lines 12 and 29, the threads that did not get the MUTEX to allocate the brick or
branch have to wait until the thread that did is done. In the case of an unallocated
branch they have to traverse it and in case of an unallocated brick they possibly have to
put it into the queue, since queuing bricks and allocating bricks have to be decoupled.
However, the threads cannot wait in infinite loops in lines 12 and 29 until another thread
has allocated the brick or branch, because it will stall the entire program if the “else”-
branch is executed before the “then”-branch. Instead, we have to repeat the loop for all
threads, including the allocating thread.

5.3.2. Implementation on the CPU

While an implementation of our approach on a modern GPU yields impressive run
time results (see Section 5.5), the use of GPUs limits its applicability. Many mobile
platforms do not support high-level GPUs, due to their relatively large weight and
power demand. However, they often support modern desktop and laptop CPUs, which
require significantly less power and cooling. A good example are recently developed
quadrotor platforms like the “Pelican” from Ascending Technologies, supporting Intel
Core-i7 CPUs. Though powerful GPUs suited for mobile and embedded devices are
in development, for example new Nvidia Tegra devices, being able to perform parts of
our approach efficiently on a CPU enables us to distribute the computational workload
between both processor types on future architectures. Another benefit we get from
having our approach run on a CPU is the larger amount of available memory compared
to a GPU, and implementations distributed on both processor types can make efficient
use of both types of memory at once.

For the traversal of the tree for allocation of branches and bricks, and for queuing
allocated bricks, we can make use of a serial loop over all bricks by eliminating multiple
traversals of the tree for allocating the same bricks: If we choose the truncation threshold
TD to be a multiple of the brick length, then the cubes around two points falling into the
same brick will intersect the same set of bricks. The two points that are most likely to
fall into the same brick are points corresponding to adjacent image pixels. If we iterate

94

5.3. Implementation

Algorithm 3 Parallelizable algorithm for SDF, weight, and color update in the brick
of a multiscale octree

1: for Pb ∈ {0, ..., sb − 1}3 do
2: Pc ← RT

t (ot + (ol + Plsl) st)−RT
t Tt

3: if Pc [3] > 0 and π(Pc) ∈ Ω then
4: h← ht(π(Pc))
5: if valid(h) then

6: ∆D ← |Pc|
(

1− h
Pc[3]

)
7: dt ← max{min{∆D, TD},−TD}

8: wt ←


1 if ∆D < δ
TD−∆D
TD−δ if ∆D ≥ δ and ∆D ≤ TD.

0 if ∆D > TD
9: ct ← It(π(Pc))

10: Dt(Pb)← Dt−1(P)Wt−1(P)+dtwt
Wt−1(Pb)+wt

11: Wt(Pb)←Wt−1(Pb) + wt
12: Ct(Pb)← Ct−1(Pb)Wt−1(Pb)+ctwt

Wt−1(Pb)+wt
13: end if
14: end if
15: end for

over all depth image pixels from top to bottom and from left to right (without loss of
generality), we can check for every pixel whether it falls into the same brick as its top
or left neighbor. This check is performed by a simple O(1) rounding operation and it
saves an O(d+ k) traversal of the tree as described above.

The update of the SDF, the weight, and the color values in each voxel is the part
of our algorithm that benefits most from parallelization. Being able to perform all
operations in the loop from line 1 to line 15 of Algorithm 1 in parallel enables methods
like KinectFusion to run in real-time. However, iterating over all voxels in a serial manner
on a CPU enables us to reduce many operations otherwise run in parallel. Moreover, we
can make use of the support for SIMD parallelism on modern CPUs. The x86-CPUs used
in our experiments provide SIMD parallelism in the form of Streaming SIMD Extensions
(SSE). To make use of these vector instructions, we have to replace the conditionals in
our code with binary masks. Algorithm 3 shows an implementation of the voxel update
in each brick that can run in parallel on a GPU, i.e. a combination of Algorithm 1 and
Equation (5.9). The algorithm focuses only on a single brick b and does not take into
account the position of b in memory among other bricks. The side length of the brick
in voxels is denoted by sb. Algorithm 4 shows various optimizations regarding the serial
iteration over the voxels in the brick.

Since memory is addressed linearly, we use the integer scalar value pb to address the

95

5. Large-Scale 3D Reconstruction from RGB-D Sequences

memory instead of the 3D addresses Pv and Pb in Algorithms 1 and 3, according to the
mapping rule

pb = (Pb [3] sb + Pb [2]) sb + Pb [1] . (5.10)

Algorithm 4 Serialized and SIMD-capable voxel update algorithm in an octree

1: pSIMD
b ← s3

bb
2: Pz

c ← RT
t (ot + olst)−RT

t Tt

3: for z = 0 to sb − 1 do
4: Py

c ← Pz
c

5: for y = 0 to sb − 1 do
6: Px

c ← Py
c

7: for x = 0 to sb
nSIMD

− 1 do
8: for k ∈ {0, ..., nSIMD − 1} do
9: pb ← pSIMD

b + k
10: Pc ← Px

c + RT [:, 1] kslst
11: h← ht(πΩ(Pc))

12: ∆D ← |Pc|
(

1− h
Pc[3]

)
13: dt ← max{min{∆D, TD},−TD}

14: wt ←


1 if ∆D < δ
TD−∆D
TD−δ if ∆D ≥ δ and ∆D ≤ TD.

0 if ∆D > TD
15: wt ← wt [Pc [3] > 0 and π(Pc) ∈ Ω and valid(h)]
16: ct ← It(π(Pc))

17: Dt(pb)← Dt−1(pb)Wt−1(pb)+dtwt
Wt−1(pb)+wt

18: Wt(pb)←Wt−1(pb) + wt
19: Ct(pb)← Ct−1(pb)Wt−1(pb)+ctwt

Wt−1(pb)+wt
20: end for
21: pSIMD

b ← pSIMD
b + nSIMD

22: Px
c ← Px

c + RT
t [:, 1] slstnSIMD

23: end for
24: Py

c ← Py
c + RT

t [:, 2] slst
25: end for
26: Pz

c ← Pz
c + RT

t [:, 3] slst
27: end for

Naturally this mapping to linear memory has to be computed in parallelized imple-
mentations as well. In a serial iteration over the voxels in a brick however, we can simply
increment the memory address from one voxel to the next instead of recomputing the
entire mapping.

96

5.4. Online Applications Using Dense Geometry Reconstructions

This optimization by itself is rather trivial, and we do not evaluate it specifically, but
we do not want to omit mentioning it either, because the similarly iterative computation
of the transformed voxel positions Pc yields a significant increase in performance: For
line 2 of Algorithm 3, we need to perform at least one camera pose transformation
RP+T, involving 9 multiplications and 9 additions. In a serial iteration over the voxels
in x-, y- and z-direction, as in lines 3, 5, and 6 of Algorithm 4, we can reduce the
computational effort to 3 additions for the corresponding columns of the rotation matrix
in lines 22, 24, and 26. The scalar multiplications in those lines can be precomputed and
the 3D positions of the tree and the brick in the tree only occur before the iteration in
line 2. Under the paradigm of using structures of arrays, as mentioned in the beginning
of Section 5.3.1, the memory area belonging to the b-th brick starts at address s3

bb, used
in the assignment in line 1.

To be able to use the SIMD capabilities of current CPUs, we split the inner iteration
over x into two parts, a serial part in line 6 and a parallel part in line 7. Apart from
non-aligned memory accesses in line 11, the code between lines 7 and 20 can be run
in parallel. The conditionals in lines 3 and 5 of Algorithm 3 are now encoded in line
15, using Iverson’s notation from (2.1). If one of the conditions is false, we add a zero
increment to the SDF, weight, and color values. To avoid incorrect memory accesses
previously avoided by the conditional in line 3 of algorithm 3, we have to clamp pixel
coordinates to the image plane after the pinhole camera projection, denoted by πΩ in
line 11.

5.4. Online Applications Using Dense Geometry
Reconstructions

In the last sections we have presented data structures and algorithms for dense surface
geometry reconstruction, that run in real-time on consumer hardware due to an efficient
usage of memory and computational power, are capable of dealing with changes in
topology, and that do not require all the input data to be given at the beginning of the
algorithm, therefore constituting an online method. We will prove these claims in the
experiments in Section 5.5.

However, the focus lay primarily on the input side - building up a dense geometry
representation from input data with the aforementioned attributes. In addition, we have
to address the output/consumer side as well - how such a representation can be used
in other systems that motivate these attributes, and what kind of additional challenges
these systems come with.

For example, large-scale 3D geometry reconstruction methods can be used for new view
synthesis or creating virtual tours through prominent landmarks. A popular example
is “Building Rome in a Day” by Agarwal et al. [7]. This system can reconstruct a
point cloud representation of an entire city from extremely large collections of photos on

97

5. Large-Scale 3D Reconstruction from RGB-D Sequences

Internet photo sharing sites, estimating camera locations and calibrations concurrently.
While yielding impressive results, systems like this are clearly neither required to deliver
the point cloud reconstruction while the input image are being captured, nor do they
have to run in real-time on mobile devices. Instead, the method runs on a cluster of
desktop computers and takes up to a day for the reconstruction of a typical scene.

In contrast, two systems using dense environment reconstructions provided in real-time
from an online algorithm are mixed reality (MR) applications and robotic exploration.

In MR, virtual objects rendered on see-through devices or on portable screens like
smartphones or tablets interact with real objects in their environment. Possible interac-
tions are occlusions of virtual objects by physical objects with respect to the observer,
physics simulations like collision detection or casting shadows, or other tasks like path
planning. To simulate these interactions, the MR system needs a dense geometry recon-
struction of the environment.

In robotic exploration, a mobile robot is navigating through an unknown environment.
The navigation can be autonomous, for which the robot has to interpret the reconstructed
environment representation itself, or the robot can be controlled remotely from a base
station, for which the environment representation has to be transmitted to the base
station. Combinations are possible as well, where local obstacle avoidance is performed
autonomously by the robot, while larger-scale tasks like path planning are performed
remotely, potentially coordinating multiple robots simultaneously.

These two examples reveal additional challenges for applications based on dense envi-
ronment reconstructions, both with respect to runtime and memory efficiency:

• “Real-time” can mean many different speeds for different applications, both in
terms of frame rates and latency. Until now in this thesis, “real-time” meant “as
fast as the input sensor, or slower by a constant factor, so that dropped frames to
not affect the result”. In MR applications, the frame rate and latency at which
the geometry reconstruction is rendered from different perspectives have to be as
fast as the display for screen-based systems, or as fast as the human visual system
for see-through devices. Especially the latter is usually much faster than the input
sensors. On the other hand, the rate and latency at which new observations of the
environment are reflected in the virtual reconstruction can be much slower than
the rendering rate and the MR system can still deliver a compelling experience in
static environments. The same is true for robotic exploration, where the frame rate
and latency at which an environment representation is rendered on a base station
can differ greatly from the rate and latency at which updates of the geometry
representation are sent from the mobile platform to the base station.

• Tasks like transmitting an environment map from one system to another or ren-
dering it in real-time can have even stricter memory constraints than reconstruct-
ing a scalable geometry representation itself. However, these tasks can operate

98

5.4. Online Applications Using Dense Geometry Reconstructions

on volatile snapshots of the geometry reconstruction that are not required to be
adaptable with respect to topology changes over time.

The implicit SDF representation of the surface geometry from the previous sections is
already applicable for some robotic tasks such as autonomous path planning or obstacle
avoidance. However, for tasks like map transmission or multi-robot coordination, a map
representation in form of a triangle mesh is preferable, because it has a much lower
memory footprint than an SDF.

For visualization, the method of choice in the approaches cited above is raycasting,
where for each pixel in the image of a virtual camera, a ray is traversed through the
voxel structure until it passes the iso-level. However, rendering a triangle mesh can be
performed much faster than raycasting a volumetric geometry representation of equal size
and complexity, as GPUs are highly optimized for triangle rasterization, and raycasting
involves both scattered memory read operations and branching code.

For MR applications, extracting a triangle mesh from the SDF instead of raycasting
every image benefits the required high rendering frame rates. For robotic exploration,
it benefits the rendering rate as well as the memory footprint for map transmission, if
the geometry is rendered on the base station. If it is rendered on the mobile platform, a
potentially large number of images have to be transmitted to the base station, and the
rendering latency includes the transmission time. If the rendering rate is higher than the
reconstruction rate, this can impose a significant computational burden on the mobile
platform, especially for a computationally expensive method like raycasting. Giving the
base station control over the virtual camera used for visualization also requires an uplink
from the base station to the mobile platform, adding to the rendering latency. Therefore,
this is not a favorable approach.

In the following, we will present a method for efficiently extracting a triangle mesh
from the SDF data, that can then be used for fast visualization and incremental map
transmission.

5.4.1. Mesh Extraction from Volumetric Data

To extract a mesh at the zero-level of our SDF, we use the “Marching Cubes” method
of Lorensen and Cline [54]. Every method for iso-level extraction from voxel data re-
quires to look at a local neighborhood of each voxel. In the case of Marching Cubes,
we need to consider groups of 8 adjacent voxels for extracting triangles in the volume

between them. For meshing a voxel at position
[
x y z

]T ∈ N3, we have to know

the SDF values of this voxel as well as its 7 higher neighbor voxels at
[
x+1 y z

]T
,[

x y+1 z
]T

,
[
x y z+1

]T
,
[
x+1 y+1 z

]T
,
[
x+1 y z+1

]T
,
[
x y+1 z+1

]T
,

and
[
x+1 y+1 z+1

]T
. Based on the sign of the SDF values in those 8 voxels there

are 256 different configurations for triangles approximating the zero-level between the
voxels. Taking into account the symmetry with respect to inversion of the SDF values

99

5. Large-Scale 3D Reconstruction from RGB-D Sequences

Figure 5.3.: Equivalence classes of Marching Cubes triangulations. Each corner of a cube
represents a voxel. The triangles separate the voxels with a negative value,
marked with a dot, from the voxels with a non-negative value. The vertices
of the triangles lie on the lines between two voxels.

100

5.4. Online Applications Using Dense Geometry Reconstructions

(a) Boundary voxels of
a brick

(b) Boundary voxels with a subdivided
neighbor brick

(c) Differently sized
bricks lying inside
one another

1 2

4 5
3

6
(d) Mesh extraction from partially subdivided bricks. Left: Large branch with brick of low

resolution with one allocated brick on a grandchild branch. Middle: Adaptive subdivision
of ancestral brick. Right: Different mesh parts associated with branches, while creating
the mesh on the resolution of the large brick.

Figure 5.4.: Brick configurations

and to rotation, these 256 configurations reduce to 15 equivalence classes depicted in
Figure 5.3. On a dense voxel grid Marching Cubes produces watertight meshes, pro-
vided that every voxel has a positive weight, and not taking into account the boundary
of the reconstruction volume. In an octree, however, we have the problem that we do
not readily know the 7 neighbor voxels for every voxel. Figure 5.4a shows a schematic
view of a brick of 83 voxels, with voxel coordinates increasing from left to right, bottom
to top, and front to back. The voxels are colored differently, depending on their local
neighborhood:

• The white colored voxels belonging to the interior of the brick are all inside the
brick itself.

• For the blue colored voxels belonging to the faces of the brick, at least one neigh-
boring voxels lies in a different brick.

• For the red colored voxels belonging to the edges of the brick, at least three neigh-

101

5. Large-Scale 3D Reconstruction from RGB-D Sequences

(a) Face and edge without sub-
division

(b) Face and edge with one
subdivided branch

(c) Face and edge with 2 sub-
divided branches

Figure 5.5.: Two different cases of subdivided faces and edges

boring voxels lie in different bricks.

• For the green colored voxels belonging to the corner of the brick, all seven neigh-
boring voxels lie in different bricks.

A näıve approach for computing the mesh from the geometry of a brick would be an
iteration over all bricks, looking up the seven higher neighbors for each brick in the tree,
and then computing the mesh for the brick. This approach works well if all adjacent
bricks have the same size. Otherwise, a brick can have multiple neighbors, as shown in
the example in Figure 5.4b. Some of the visible boundary voxels of the left brick have 4
neighbors to the right, others have 16.

Knowing the neighbors of each voxel, the mesh between them can be computed on
the finest scale with a linear interpolation of the SDF values of coarser voxels. Since
Marching Cubes finds the subvoxel position of the triangle vertices by linear interpolation
of the SDF values as well, the resulting mesh would be consistent.

However, the analogous approach to looking up the seven higher neighbors for each
brick in the case of uniformly sized bricks is a traversal of the tree for all neighboring
voxels of each voxel belonging to a brick boundary in the case of non-uniformly sized
bricks. Besides running slowly on current commodity hardware, this approach does not
take into account that bricks can also lie into one another, visualized in Figure 5.4c. This
is the case if the same surface has been observed from several camera poses at different
distances.

Therefore, an iteration over all bricks and the resulting union of the meshes of all
bricks would yield a mesh with several instances of the same geometry on top of each
other in different resolutions. We could avoid this by adaptively subdividing bricks in
the presence of bricks on descendant branches. For example, if a brick is allocated on

102

5.4. Online Applications Using Dense Geometry Reconstructions

a grandchild branch, the subdivision of the grandparent brick would create 7 bricks on
the grandchild level and 7 bricks on the child level. The middle of Figure 5.4d shows
a 2D illustration of this example. While this procedure solves the problem of having
parts of the reconstruction volume covered by several voxels, it also wastes memory by
supersampling coarse-scale information.

5.4.2. Recursive Formulation

Algorithm 5 traverse interior(branch b)

1: for all 8 subbranches b′ do
2: if b′ has subbranches then
3: traverse interior(branch b′)
4: else
5: if any brick (also from coarser levels) covers b′ then
6: extract mesh interior(b′)
7: end if
8: end if
9: end for

10: for all 12 pairs of 2 adjacent subbranches b′and b′′ do
11: traverse face(b′,b′′)
12: end for
13: for all 6 groups of 4 adjacent subbranches b′, b′′, b′′′ and b′′′′ do
14: traverse edge(b′,b′′,b′′′,b′′′′)
15: end for
16: traverse corner(b′,...,b′′′′′′′′)

Instead of extracting the mesh brick by brick, we associate mesh parts with branches of
the trees. On branches covered by smaller-scaled bricks providing fine-scaled geometry
information, a higher-resolution mesh is computed, while larger-scaled bricks provide
the rest of the mesh on a smaller resolution. For creating the mesh for the volume of a
branch, we start with the smallest brick covering it, and proceed to larger, coarser-scaled
bricks whenever the weight values are too small on the finer scale. Instead of computing
a mesh for every brick, we compute a mesh for every branch not having a subbranch.
However, we cannot simply iterate over all those branches either, as we would have the
same problem as with an iteration over all bricks, illustrated in Figure 5.4b. We also
have to consider the surface passing through the faces between 2 branches, the edges
between 4 branches, and the corners between 8 branches, as shown in Figure 5.5.

Abstracting mesh parts not only from bricks, but also from branches helps us to
overcome this problem. The key idea is that while a branch can have common faces and
edges with many other branches, every face lies between exactly two branches, and every

103

5. Large-Scale 3D Reconstruction from RGB-D Sequences

Algorithm 6 traverse face(branches b1,b2)

1: if b1 or b2 has subbranches then
2: Let {b′1, b′′1, b′′′1 , b′′′′1 } and {b′2, b′′2, b′′′2 , b′′′′2 }

be the branches belonging to the 4 subfaces
3: traverse face(b′1,b′2)
4: traverse face(b′′1,b′′2)
5: traverse face(b′′′1 ,b′′′2)
6: traverse face(b′′′′1 ,b′′′′2)
7: traverse edge(b′1,b′2,b′′1,b′′2)
8: traverse edge(b′′′1 ,b′′′2 ,b′′′′1 ,b′′′′2)
9: traverse edge(b′1,b′2,b′′′1 ,b′′′2)

10: traverse edge(b′′1,b′′2,b′′′′1 ,b′′′′2)
11: traverse corner(b′1,b′2,b′′1,b′′2,b′′′1 ,b′′′2 ,b′′′′1 ,b′′′′2)
12: else
13: if any 2 bricks cover b1 and b2 then
14: extract mesh face(b1,b2)
15: end if
16: end if

edge lies between either 3 branches, if the edge lies on a T-junction between one large
branch and two small branches, as it is the case for any of the orange edges in Figure
5.5b, or 4 branches in all other cases.

Therefore, we separate the extraction of the mesh into 4 parts: extracting the mesh for
the interior of branches, for faces between 2 branches, for edges between 3 or 4 branches,
and for corners between 8 branches. By building up the mesh part by part, where each
part is a branch interior, a face, an edge, or a corner, instead of brick by brick or branch
by branch, we only have to store a constant amount of neighborhood information for
each part.

Algorithms 5, 6, 7, and 8 represent a top-down approach for extracting the mesh of
the entire tree, if Algorithm 5 is executed on the root branch.

• Algorithm 5 performs the mesh extraction of the 3D interior volume covered by
a branch. If it is subdivided, it spawns 8 new 3D volumes, 12 2D faces, 6 1D
edges, and one corner point in the middle. When a 2D face between 2 branches is
subdivided, it spawns 4 2D faces, 4 1D edges, and one corner point in the middle.
This is illustrated in Algorithm 6.

• A face is subdivided if any of its two branches is subdivided. If both branches are
subdivided, 4 of the 8 subbranches of each branch share a subface of the original
face. This case is illustrated in Figure 5.5c, where the subbranches belonging to
the 4 new subfaces are colored pink. If only one branch of a face is subdivided,

104

5.4. Online Applications Using Dense Geometry Reconstructions

Algorithm 7 traverse edge(branches b1,b2,b3,b4)

1: if b1, b2, b3, or b4 has subbranches then
2: Let {b′1, b′′1}, {b′2, b′′2}, {b′3, b′′3}, and {b′4, b′′4} be the branches belonging to the 2

subedges
3: traverse edge(b′1,b′2,b′3,b′4)
4: traverse edge(b′′1,b′′2,b′′3,b′′4)
5: traverse corner(b′1,b′2,b′3,b′4,b′′1,b′′2,b′′3,b′′4)
6: else
7: if any 4 bricks cover b1, b2, b3 and b4 then
8: extract mesh edge(b1, b2, b3,b4)
9: end if

10: end if

the non-divided branch is passed to all recursive calls. For example, if only b1 in
Algorithm 6 is subdivided, then we have b′2 = b′′2 = b′′′2 = b′′′′2 := b2. This case is
illustrated in Figure 5.5b. Independent of whether all branches belonging to a face
are subdivided, every instance of traverse face is given two different branches as
parameters, albeit possibly of different size. This is not the case for edges.

• When a 1D edge between 4 branches is subdivided within Algorithm 7, it spawns
2 1D edges and one corner point. The central edge in Figure 5.5a has 4 distinct
branches, and when subdivided with only one subdivided branch as in Figure 5.5b,
each one of its two subedges still has 4 distinct branches, though 3 of them are
the same for both subedges. The 4 edges newly created from the subdivision of
the face with Algorithm 6 however each have two identical branches, if only one
of the branches of a face is subdivided. This also applies to corners created by
the subdivision of faces in Algorithm 6, line 11, and by the subdivision of edges in
Algorithm 7, line 5.

• A corner point itself is not subdivided, but we have to traverse all branches into
the respective 8 smallest branches by tail-recursive calls.

While the four nested recursive algorithms 5 to 8 illustrate the structure of the mesh,
the actual computation of the mesh with the Marching Cubes algorithm is performed in
separate routines denoted by extract mesh interior, extract mesh face, extract mesh -
edge, and extract mesh corner in the algorithms. They are only called if the branches
belonging to an interior, face, edge, and corner are covered by bricks. In our top-down
meshing approach we have to keep track of the smallest bricks covering each branch.
Those do not have to be distinct, in fact, all branches of a face, edge or corner can be
covered by the same brick. For example, this would be the case in Figure 5.5c, if the
entire depicted volume was covered by a brick from a coarser level, and the subdivision of

105

5. Large-Scale 3D Reconstruction from RGB-D Sequences

Algorithm 8 traverse corner(branches b1,b2,b3,b4,b5,b6,b7,b8)

1: if b1, b2, b3, b4, b5, b6, b7 or b8 has subbranches then
2: Let b′1, b′2, b′3, b′4, b′5, b′6, b′7, b′8 be the tranches belonging to the corner
3: traverse corner(b′1, b′2, b′3, b′4, b′5, b′6, b′7, b′8)
4: else
5: if any 8 bricks cover b1, b2, b3, b4, b5, b6, b7 and b8 then
6: extract mesh corner(branches b1,b2,b3,b4,b5,b6,b7,b8)
7: end if
8: end if

the left and right branch only leads to fine-scaled bricks on the branches not belonging to
the blue faces. A coarse brick covering the depicted volume is the smallest brick covering
each of the purple-colored branches belonging to the faces, edges, and the corner in the
middle.

In addition to the smallest brick for each branch, we also have to keep track of the
entire brick hierarchy, to be able to fill holes in the fine-scaled bricks with information
from coarse-scaled bricks, if the fine-scaled bricks contain unobserved voxels. This can be
done either by keeping a list of bricks for every branch, or by precomputing a brick-tree
for the entire reconstruction volume, where a reference to the closest ancestor is stored
for every brick. We use the latter one in the data structure described in the next section,
enabling us to compute an incremental meshing in real-time.

5.4.3. Incremental Mesh Extraction

The top-down approach described in the last section extracts the mesh of the entire
geometry at once. In principle, we could call the traverse interior routine on the root of
our octree after the integration of each RGB-D image. However, as we do not update
every brick with the integration of a new RGB-D image, this way of extracting a mesh
would result in a redundant extraction of mesh parts belonging to a volumetric repre-
sentation that has not changed. We would perform an O(n) operation in every mesh
update, with n denoting the number of bricks in the tree. If we add an asymptotically
constant number of bricks to the tree with each RGB-D image, we would significantly
slow down the mesh extraction process over time.

Instead, we propose an incremental method, which only extracts the mesh of those
parts of the dense geometry representation changed in the last RGB-D image integration,
with a runtime overhead linear in the number of updated bricks, once those bricks
have been identified. Combining this mesh with saved mesh of the unchanged parts of
the geometry, we have a mesh of the entire geometry as it is after each RGB image
integration.

We want to remark that combining old and new parts of the mesh in an array to

106

5.4. Online Applications Using Dense Geometry Reconstructions

display a mesh of the entire geometry is always an O(n) operation. However, this
combination can take place on a separate machine, limiting the workload of the system
performing dense geometry fusion and mesh extraction. The visualization of the mesh of
the entire geometry can also be accelerated by methods of space partitioning according
to the virtual camera frustum, but we do not further discuss this in this thesis. Instead,
we focus on keeping the runtime complexity for mesh extraction with Marching Cubes
linear in the number of updated bricks per integrated RGB-D image.

Adding checks on the respective bricks before the calls of the extract mesh-routines
in algorithms 5 to 8 would extract meshes only from updated bricks, but the runtime
complexity would still be linear in the number of bricks in the tree, as we would have
to look at all branches, and the number of bricks is bounded from above by the number
of branches. Furthermore, it does not solve the problem of maintaining the mesh parts
extracted at the integration of the last RGB-D image. If we want to update only those
parts of the mesh belonging to the updated parts of the volumetric representation, but
maintain a consistent partition of the mesh for the entire geometry, we have to keep
track of all mesh parts, and we have to be able to efficiently delete those parts of the old
mesh that get replaced by updated parts.

We achieve this by explicitly storing the neighborhood relations of every branch in the
tree. Instead of storing references to all adjacent branches however, we store references
to mesh parts represented by a structure we call “MeshCell”. Each MeshCell stores its
type, i.e. if it belongs to the interior of a branch, a face, an edge, or a corner, its position
and size in 3D space, references to up to 8 branches and bricks, and a reference to a
mesh storing vertices, vertex colors, and triangle indices. In addition to the references
to subbranches and bricks we store references to the MeshCells for each branch. Figure
5.6 shows an array-of-structures schematic of our octree data structure including the
MeshCell components. As we discussed in Section 5.3.1, we choose structures of arrays
over arrays of structures, but the latter are better suited for illustration.

For every branch we store a reference to the MeshCell for the interior of the branch, 6
vectors of references to MeshCells for its 6 faces, 12 vectors with references to MeshCells
for its edges, and 8 references to MeshCells for its corners. The vectors for the faces
also store references to MeshCells of edges and corners, and the vectors for the edges
also store references to MeshCells of corners. An example is the lower right branch in
Figure 5.5b, where the vector for its left face contains references to the 4 blue faces, the
4 orange edges, and the yellow corner, and the vector for its upper left edge contains
references to the two red edges and the green corner.

In addition to its position, scale, queue index, and voxel data, every brick stores a
vector of references to all MeshCells of the branches it covers, and a reference to its
parent in the tree, i.e. the next larger brick it is covered by. Each mesh cell stores a
reference to the smallest bricks, and with the parent-brick reference, we can traverse
the bricks from fine to coarse during the mesh extraction with Marching Cubes. Given
the vector of MeshCell references and the brick queue for every RGB-D image, we can

107

5. Large-Scale 3D Reconstruction from RGB-D Sequences

class Tree

float3 position;
float scale;
vector<Branch> branches;
vector<Brick> bricks;
vector<Brick*> brick queue;
vector<uint> mesh queue;
Branch* root;

class Branch

Branch* branch[8];
Brick* leaf[8];
MeshCell * interior;
vector<MeshCell *> faces[6];
vector<MeshCell *> edges[12];
MeshCell * corners[8];

class Brick

uint index in brick queue;
int position[3];
int scale;
Voxel voxel[8][8][8];
Brick* parent;
vector<MeshCell *> cells;

class Voxel

float distance;
float weight;
uchar3 color;

class MeshCell

enum type;
int position[3];
int size;
Branch* src branches[8];
Brick* src bricks[8];
uint index in mesh queue;
Mesh* mesh;

class Mesh

vector<float3> vertices;
vector<uint3> triangles;
vector<byte3> color;

class MeshParts

vector<Mesh> meshes;

Figure 5.6.: Proposed data structure. Every branch refers to up to 8 subbranches and 8
bricks. A brick contains 83 voxels. A MeshCell stores the triangle mesh of
a particular region. Cross references (e.g., from a branch to its MeshCells
and vice versa) enable fast traversal during data fusion and meshing.

108

5.4. Online Applications Using Dense Geometry Reconstructions

construct a queue of MeshCells for every RGB-D image in linear time with respect to the
number of updated bricks. This MeshCell queue can be processed after each integration
of an RGB-D image, it can be processed after the integration of several images since the
last mesh extraction, or it can be processed in parallel to the update of the volumetric
geometry representation, for which the MeshCell queue is duplicated and one queue is
being filled simultaneously while the other one is being emptied. Both the queues for
MeshCells and bricks are stored in the tree data structure.

The differently colored MeshParts array containing all meshes can be stored on several
platforms. In this case, the platform performing the volumetric fusion and mesh extrac-
tion sends the MeshCell queue as well as the updated MeshCells to the other platforms
for synchronization of the map, and the MeshCell queue contains references relative
to the MeshParts array. In Figure 5.6 we illustrate this fact by storing unsigned inte-
ger (UINT) values in the MeshCell queue while storing pointers/references in the brick
queue. While it is possible in principle to use global references for all other references, in
our structure-of-arrays implementation all references are relative to a predefined global
array (see Figure 5.2). This representation is useful if the total amount of available
memory is significantly lower than the amount of addressable memory, as it is the case
for most 64 Bit architectures, because it reduces the amount of memory necessary for
storing the references.

For each MeshCell, the data containing its type, position, size, and references to
bricks and to the mesh are used in the methods for mesh extraction. The 8 references
to branches are used to efficiently subdivide a MeshCells when one of its branches is
subdivided to a size smaller than the MeshCell, as in this case all other branches shar-
ing the MeshCell need to be given references to all new MeshCells stemming from the
subdivision.

Compared to storing references to the mesh parts directly with the branches, we get
two essential benefits from the MeshCell data structure:

• If the volumetric data of any one of two adjacent branches sharing a face, an edge,
or a corner is updated, the mesh for the interior of that branch and the joint mesh
parts have to be updated, but not necessarily the interior of the other branch. If
the volumetric data of several branches belonging to a face, an edge, or a corner is
updated, the joint mesh parts have to be updated only once. Therefore, we have
to decouple the update of mesh parts associated with multiple branches from the
update of the branches themselves. With the MeshCell data structure, we can
create a queue of MeshCells from the queue of updated bricks. This way, every
part of the mesh is updated at most once for every RGB-D image.

• In the case of a branch sharing faces or edges with multiple smaller adjacent
branches, we do not have to store neighborhood relations of single voxels explicitly.
This information is represented by the size and position values stored with each

109

5. Large-Scale 3D Reconstruction from RGB-D Sequences

MeshCell. For each branch belonging to a MeshCell, the voxels that are used for
the extraction of the mesh can be easily determined.

5.5. Experimental Evaluation

To demonstrate the scalability of our approach, we recorded an office scene of approxi-
mately 45m×12m×3.4m in a sequence of 24076 images. We reconstructed the geometry
with a maximal voxel resolution of 5mm per voxel. Naturally in our multiscale approach,
not all the geometry is stored at the finest resolution. We compute the leaf size at which
we stop the tree traversal for a depth value h with the formula

sl =

⌊
max

{
h

hmin
, 1
}
sb

⌋
sb

. (5.11)

The minimum depth hmin is the depth below which the geometry is reconstructed at
maximum resolution, corresponding to a leaf size of sl = 1. For the reconstruction
shown below we set hmin to 1m, while we set the truncation threshold TD to twice the
voxel size in every brick. There is no need for specifying the reconstruction volume before
starting the integration of depth images, as our implementation supports online growth
of the tree by inserting additional branches at the top. Figure 5.7 shows a view of the
entire reconstructed geometry and the tree structure it is embedded in. The ceiling of the
offices has been removed in a postprocessing step for a better view of the office interior
from this position. Figure 5.8 shows RGB images at different camera positions and the
corresponding geometry mesh observed from the same positions as well as from different
positions. It shows that we are able to reconstruct fine details in the scene where they
are available, even though the entire scene fits into approximately 2.5 GB GPU memory,
including color. The geometry fusion was performed on an Nvidia GTX680 GPU at an
average of 220 frames per second, not including post-processing such as Marching Cubes
and visualization.

In Figure 5.10, we illustrate the hierarchical nature of our data structure on the
fr3/long office household sequence of the Freiburg RGB-D benchmark of Sturm et al.
[83]: The left column shows the reconstructed mesh after 50 RGB-D images have been
integrated into the SDF representation. The middle column shows the mesh after 170
images, and the right column shows the mesh after 300 images. We see that as the
camera observes the geometry from a close-by viewpoint, the resulting geometry gets
more detail. This effect is particularly well observable in the two bottom rows. While
the two top rows show a flat-shaded mesh representation with and without texture, the
two bottom rows show a close-up wireframe representation and a coloring of the different
MeshCells as in Figure 5.4.

We evaluate the performance of our method on the GPU quantitatively on the Freiburg
RGB-D benchmark as well. The results are shown in Table 5.1, demonstrating that our

110

5.5. Experimental Evaluation

(a) Triagle mesh of the reconstructed surface geometry

(b) Reconstructed surface geometry embedded in a visualization of the octree branches

Figure 5.7.: Reconstruction of an office floor of approximately 45m×12m×3.4m

111

5. Large-Scale 3D Reconstruction from RGB-D Sequences

(a) Input image

(b) Reconstructed view

(c) Novel view

Figure 5.8.: Sample reconstructions of two different images from our office floor sequence.

112

5.5. Experimental Evaluation

Dataset Images Bricks
Processing Time Memory

Acquisition Fusion Total Fusion Total

fr1/360 744 917 24s 2.79s 3.7ms 333MB
fr1/desk 5738 987 191s 1.89s 3.3ms 135MB
fr1/desk2 620 1058 20s 2.54s 4.0ms 186MB
fr1/plant 1126 1131 37s 4.15s 3.6ms 221MB
fr1/room 1352 1073 45s 4.96s 3.6ms 453MB
fr1/rpy 694 1049 23s 2.94s 4.2ms 113MB
fr1/teddy 1401 1179 46s 4.78s 3.4ms 248MB
fr1/xyz 792 1054 26s 2.46s 3.1ms 65MB
fr2/desk 2893 1268 96s 12.0s 4.1ms 178MB
fr3/office 2488 1366 82s 10.8s 4.3ms 297MB

average 1785 1108 59s 4.93s 3.7ms 223MB

Table 5.1.: Quantitative evaluation of our GPU implementation. From left to right:
Dataset, number of images in the dataset, number of bricks used stored in
our data structure for the entire dataset, acquisition time of the dataset,
total fusion time of the dataset, average fusion time for one frame, memory
requirement for the volumetric voxel data.

113

5. Large-Scale 3D Reconstruction from RGB-D Sequences

Dataset Images Bricks
Traversal Time SDF Update Time

Näıve Brick Check Näıve
Serialized S.T. +
Transform SSE

fr1/360 744 917 30ms 23ms 27ms 22ms 10ms
fr1/desk 5738 987 28ms 23ms 29ms 24ms 11ms
fr1/desk2 620 1058 28ms 24ms 31ms 26ms 11ms
fr1/plant 1126 1131 28ms 23ms 34ms 29ms 12ms
fr1/room 1352 1073 33ms 24ms 35ms 29ms 12ms
fr1/rpy 694 1049 31ms 24ms 34ms 28ms 11ms
fr1/teddy 1401 1179 31ms 23ms 38ms 33ms 13ms
fr1/xyz 792 1054 27ms 24ms 31ms 27ms 11ms
fr2/desk 2893 1268 30ms 23ms 42ms 37ms 14ms
fr3/office 2488 1366 32ms 24ms 44ms 39ms 15ms

Average 1785 1108 30ms 23.5ms 34.5ms 29.4ms 12ms

Table 5.2.: Runtime performance gains on the CPU by various optimizations. From left
to right: Name of the dataset, number of images in the dataset, average
number of updated bricks per frame, average time per frame to find the
bricks for a depthmap in the tree without and with checking for double bricks,
average time per frame to update the SDF in the bricks performed in a näıve
, possibly parallel way, with serially optimized transform, and with serially
optimized transform as well as SSE-SIMD instructions.

method is very efficient by means of both runtime and memory demand. On average,
our method runs at approximately 270 Hz on the listed benchmark sequences. With an
average number of 1785 images per sequence, a joint point cloud with 15 Bytes for each
point (12 Bytes for the 3D position and 3 Bytes for RGB color) would require more than
7800 MB for images with a resolution of 640×480 pixels. The average 223 MB required
to store a scene with our approach constitute less than 2.9% of this amount of required
memory. For most sequences, the final tree had a depth of 10 layers, yielding a volume
of 81923 voxels on the finest resolution.

In Table 5.2 we assess the performance gains of the various optimizations discussed in
Section 5.3.2. We tested our CPU implementation on the same datasets of the RGB-D
benchmark of Sturm et al. [83] as for the runtime assessment of our GPU implementa-
tion. We also used the same parameters for voxel size on the finest resolution (5mm) and
truncation threshold TD (twice the voxel size in each brick). We measured the timings on
a Laptop CPU of type Intel Core i7-2720QM with 2.2 GHz system clock frequency and
8 GB of system memory. For all sequences, we measured the time for traversing the tree
to allocate and queue branches, bricks, and MeshCells, as well as the time for updating

114

5.5. Experimental Evaluation

0 200 400 600 800 1,000 1,200 1,400
0

20

40

60

80

100

frame number

ti
m

e
[m

s]

computation time camera speed (33ms/frame)

(a) Computation time for data fusion per frame

0 200 400 600 800 1,000 1,200 1,400
0

500

1,000

1,500

2,000

frame number

n
u
m

b
er

o
f

b
ra

n
ch

es
/
b
ri

ck
s/

ce
ll
s

new branches/frame new bricks/frame

new mesh cells/frame updated bricks

(b) Number of branch/brick/cell updates per frame

0 200 400 600 800 1,000 1,200 1,400

0

500

1,000

1,500

frame number

ti
m

e
[m

s]

mesh update time time for merging all meshes

(c) Computation time (latency) for incremental meshing

Figure 5.9.: Evaluation of the runtime on the fr1/teddy sequence on an Intel Core i7-
2720QM. (a) computation time for the geometry fusion of every frame, com-
pared to the camera frame rate. (b) amount of updated bricks for every
frame as well as the number of newly created branches, bricks, and mesh
cells. (c) Evaluation of the runtime for meshing (corresponding to display
latency).

115

5. Large-Scale 3D Reconstruction from RGB-D Sequences

the SDF values in the voxels of the queued bricks. For traversing and queuing bricks,
the näıve algorithm required an average of 20.7 ms per RGB-D frame, while our opti-
mized versions required 12.9 ms, yielding a speedup of 37%. Updating the SDF values
took another 27.6 ms for the näıve implementation, buy only 8.9 ms after optimization
using the serialized transform and SSE instructions, i.e. a speedup of 67%. In total, the
optimized integration of an RGB-D image requires an average 21.8 ms, corresponding
to a processing speed of approximately 45 Hz.

To study the sequential behavior of our CPU implementation in more detail, we also
evaluate the computational load over time on the fr1/teddy sequence. Figure 5.9 shows
the results. At the top, we plot the total time needed per RGB-D frame for the traversal
of the tree to add and queue new branches, bricks, and MeshCells, and for updating the
distance, weight, and color values in every voxel, i.e., the work performed by the “main”
thread. As can be seen, the processing time stays below 33 ms for almost all frames.

Beneath we show how the number of newly created branches, bricks, and MeshCells
varies over time, depending on the camera motion and the amount of newly discovered
geometry. A peak in these values is due to the fact, that the camera visits “unknown
territory” at this time. In contrast, the number of updated bricks per RGB-D frame
remains more or less constant around 1,100, which is closely related to the computation
time of that frame.

At the bottom of Figure 5.9 we show the processing time of the meshing queue, and
thus, the latency at which the updated mesh becomes available. The latency varies
between 0.5 s and 1.5 s, while the final O(n) merging of the meshes of all MeshCells,
updated or not, for visualization in OpenGL grows monotonically to 0.1 s after 1,400
frames. The final mesh consists of roughly 3.3 million triangles on 2.8 million vertices.

When assessing the performance of our incremental meshing approach, that is running
on a separate thread in parallel to the update of the volumetric data, we have to keep in
mind, that updating the mesh parts covered by a brick is generally much slower than up-
dating the distance, weight, and color values in the brick, as the former involves relations
between several voxels and append operations on the resulting mesh parts by means of
both vertices and vertex indices for the triangles. Both severely limit parallelizability
inside the update of a MeshCell. When running the meshing in a separate thread, we fill
a queue of MeshCells in the thread performing the volumetric updates and empty the
same queue. Therefore, the faster the RGB-D images are integrated into the volumetric
data, the more the meshing thread will lag behind. Three things reducing the lag of the
meshing thread are limitation of the rate of RGB-D image integration, parallelization of
the meshing across MeshCells, and a slow moving camera resulting in several successive
RGB-D images queuing the same MeshCells.

116

5.5. Experimental Evaluation

Figure 5.10.: Geometry evolution of the fr3/long office household sequence. Left to
right: Result after the first 50, 170, and 300 frames. Top to bottom: Ge-
ometry and texture, geometry only, textured wireframe, and visualization
of different mesh parts as in Figure 5.4. The level of detail in the geometry
increases as the camera records more close-up images.

117

5. Large-Scale 3D Reconstruction from RGB-D Sequences

5.6. Conclusion

We have introduced a novel method for reconstructing a 3D surface from a sequence
of RGB-D images. Our method represents the surface implicitly as the zero-level of a
volumetric signed distance function. Other than previous methods, we choose a sparse
representation of the reconstruction volume based on an octree. This enables our method
to run in an online setup without a predefined reconstruction volume. The reconstruction
of the joint surface follows the camera trajectory, and for each RGB-D image, there is
only an asymptotically constant number of voxels, that need to be updated on each
level of the octree. Nevertheless, any part of the reconstruction volume can be re-
visited an arbitrary number of times without loss of reconstruction accuracy. The octree-
based method also facilitates a multi-level representation of the geometry, based on
the closest distance from a point on the surface to any camera. Finally, due to the
compact representation of the geometry, our method outperforms previous methods both
by means of computational speed and memory demand. To the best of our knowledge,
it is the first published method capable of running in real-time on one core of a standard
laptop CPU. This includes storing an RGB color value in each voxel, facilitating an
online update of the geometry texture as well.

In addition, we have introduced a method for an incremental mesh extraction, facil-
itating map transmissions with an even lower memory footprint. The mesh extraction
follows the volumetric surface reconstruction in that its computational complexity is
asymptotically constant for the geometry update induced by each depth image. Our
method is able to extract a mesh of the updated geometry in roughly 1sec on a separate
CPU core.

118

6. Conclusion

In this thesis, we have introduced efficient algorithms for a variety of correspondence
problems in geometry and motion estimation from image sequences.

For half of the problems addressed, algorithmic efficiency means finding an approx-
imate solution to a given problem with a better asymptotic runtime or memory com-
plexity than the state of the art. This is the case for the energy-based optical flow
computation without linearization of the data term, and the octree-based volumetric
geometry fusion from depth image sequences.

For the other half of the problems, efficiency means computing results in online, real-
time scenarios on limited commodity hardware. This is the case for estimating the
camera motion in 3D space from a sequence of RGB-D images and for computing the
joint geometry observed in these images in real-time on a CPU with the ability to
compute an incremental light-weight mesh representation for visualization on a remote
platform.

For the variational optical flow problem with a non-linearized data term, we proved
that it can be NP-hard for some parameter settings, even with convex regularity terms.
In order to solve the problem in feasible time, we therefore have to come up with an
approximate solution. While most approximate solutions rely on a linearized data term,
we proposed an alternative in Chapter 3. By decoupling the data term from the regularity
term, we were able to retain the original non-convex dataterm, and we demonstrated that
we can overcome the problem of small-scale structures vanishing on coarse resolutions
within a coarse-to-fine scheme required to estimate large motions with a linearized data
term.

In addition, we have demonstrated that keeping the original non-linearized data term
allows us to incorporate patch-based data terms into our variational optical flow scheme,
that would otherwise lose much of their descriptive power under linearization. We eval-
uated the performance of our algorithm with different patch-based difference metrics,
such as the sum of absolute differences of a patch, normalized cross correlation, census
and rank metrics.

In Chapter 4 we have shown how to estimate the trajectory of a moving RGB-D
camera in real-time. The energy formulation used for this motion estimation problem
is equivalent to the formulation used for disparity estimation in Chapter 3, except we
optimize the energy with respect to a different variable. For slow continuous camera
motions, our method proved to be more precise than standard ICP methods, while
skipping their computationally costly point-to-point correspondence estimation.

119

6. Conclusion

Given both disparity or depth images and their corresponding camera poses, poten-
tially estimated by the methods introduced in Chapters 3 and 4, we have shown how to
reconstruct a joint representation of the geometry observed in these images in Chapter
5. We employ an implicit representation capable of capturing changes in topology of
the reconstructed surface geometry, however, in contrast to previous methods based on
this representation, our method does not require a pre-determined area containing the
geometry to be reconstructed, and can therefore be applied in online scenarios where not
all data is present up front. By retaining a sparse octree-based representation of the re-
construction volume, we are also able to keep the runtime and memory space complexity
linear with respect to the number of integrated images. Additionally, the hierarchical
octree representation allows us to represent the geometry on different resolutions based
on their distance to the camera.

We have demonstrated that we can reconstruct geometry on large scales on current
commodity GPU hardware with a speed many times the image rate of current commodity
depth cameras, while additionally being able to reconstruct the RGB surface texture
volumetrically, provided the depth camera provides color information as well.

Finally, we have presented how to taylor our approach to serial SIMD architectures,
enabling our method to run on current laptop CPUs in real-time. By computing an incre-
mental mesh representation from the reconstruction volume, we are able to abstract the
visualization of the surface from its volumetric representation, enabling a visualization
on a remote machine.

6.0.1. Outlook and Future Work

All the methods presented in this thesis constitute first proofs of concept in their respec-
tive research areas. In our opinion, the most manifest directions for further research are
the following:

• Construction of a joint pipeline including all the proposed methods. In
this thesis, we have evaluated our decoupling scheme for variational optical flow
estimation. We can evaluate it for disparity estimation, compare it to methods
based on functional lifting with respect to accuracy and hardware demand, and
use the resulting disparity images instead of images from and active depth sensor
as input to our method for camera motion estimation. Both the estimated dispar-
ity images and the camera trajectory can then be used as inputs for our surface
reconstruction algorithm.

• Robust loss functions and sparsification for camera pose estimation.
We can replace the quadratic loss function used in our formulations with more
robust loss functions. Robust loss functions would only introduce another factor
in the chain of derivatives for the linearized energy. We expect to attain greater
robustness against outliers with this formulation. Furthermore, we could restrict

120

the method from all pixels in the image to only a salient subset of pixels, in order
to make the method even faster. As a criterion for using a pixel in the formulation
we could use the distance to a line in the image. While we would no longer use
all the information in the image, we would still use more pixels than state-of-the-
art feature-based methods, which are mostly based on corner detection, and avoid
computationally cumbersome descriptor matching steps.

• Computing the intersection of the viewing frustum with the octree for
large-scale surface reconstruction. In this thesis, we have limited the voxels
and bricks allocated in the octree to a small band around the observed surface.
We could instead use efficient methods from the computer graphics literature for
intersecting a camera frustum with an axis-aligned cube in order to allocate all
bricks in the camera frustum in front of the observed surface. This method would
still remain sparse, only storing what is actually observed. However, it would
include a more explicit representation of empty space, similar to those methods
based on a dense voxel grid. While this would require more memory than the
method proposed here, it would reduce the amount of flying-triangle artifacts in
the reconstructed surface.

• Frame-to-model tracking. Instead of using a depth or disparity image to com-
pute the 3D surface S in (4.1), we raycast the SDF in the octree, and only use the
depth image for integration into the joint geometry. That way, we would expect
better tracking results, as the model removes much of the noise present in the indi-
vidual depth images. Combined with the sub-sampling strategy mentioned above,
we expect to still achieve real-time performance.

121

6. Conclusion

122

A. Appendix

A. List of Acronyms

• AAE Average Angular Error (3.31b).

• AEE Average End-Point Error (3.31a).

• CPU Central Processing Unit 1.

• GPU Graphics Processing Unit 1.

• HSV Hue-Saturation-Value 3.4.1.

• ICP Iterative Closest Point 4.1.

• MR Mixed Reality 5.4.

• MUTEX Mutual Exclusion 5.3.1.

• NCC Normalized Cross-Correlation (2.37).

• RGB-D Red, Green, Blue, and Depth 1.

• SAD Sum of Absolute Differences 2.5.

• SDF Signed Distance Function 5.1.

• SIMD Single-Instruction-Multiple-Data 1.

• SSD Sum of Squared Differences 2.5.

• SSE Streaming SIMD Extensions 5.3.2.

• TV Total Variation 2.6.1.

• UINT Unsigned Integer 5.4.3.

123

A. Appendix

B. Dense Motion Estimation Without a Coarse-to-fine Scheme

B.1. Sub-pixel Optimization - Derivation of the Hyperbola Equation

0 = Ixα1 + Iyα2 + Ixyα1α2 + Ir

α2 = − Ixα1 + Ir
Ixyα1 + Iy

= − Ixα1 + Ir
Ixy

(
α1 +

Iy
Ixy

)
= −

Ix
(
α1 +

Iy
Ixy −

Iy
Ixy

)
+ Ir

Ixy
(
α1 +

Iy
Ixy

)
= −

Ix
(
α1 +

Iy
Ixy

)
+
IxyIr−IxIy

Ixy

Ixy
(
α1 +

Iy
Ixy

)
= −

Ix
(
α1 +

Iy
Ixy

)
Ixy

(
α1 +

Iy
Ixy

) +
IxIy − IxyIr
I2
xy

(
α1 +

Iy
Ixy

)
= − Ix

Ixy
+
IxIy − IxyIr

I2
xy

1(
α1 +

Iy
Ixy

) (A.1)

B.2. Sub-pixel Optimization - Minimization of the Energy on the Hyperbola

On the hyperbola we have

Ixα1 + Iyα2 + Ixyα1α2 + Ir = 0 ⇔ α2 = − Ix
Ixy

+
IxIy − IxyIr

I2
xy

1(
α1 +

Iy
Ixy

)
Substituting the hyperbola equation into the formulation of the coupling term, we get

E(α1) =
1

2θ

(
(α1 − η1)2 + (α2 − η2)2

)
=

1

2θ

(α1 − η1)2 +

− Ix
Ixy

+
IxIy − IxyIr

I2
xy

1(
α1 +

Iy
Ixy

) − η2

2 ,(A.2)

124

B. Dense Motion Estimation Without a Coarse-to-fine Scheme

which we have to minimize in α1. The first derivative w.r.t. α1 is

1

θ

α1 − η1 +

− Ix
Ixy

+
IxIy − IxyIr
I2
xy

(
α1 +

Iy
Ixy

) − η2


− IxIy − IxyIr

I2
xy

(
α1 +

Iy
Ixy

)2


(A.3)

=
1

θ

α1 − η1 +

(
Ix
Ixy

+ η2

)
IxIy − IxyIr

I2
xy

(
α1 +

Iy
Ixy

)2 −
(IxIy − IxyIr)2

I4
xy

(
α1 +

Iy
Ixy

)3

 , (A.4)

which is a polynomial of degree 3.

B.3. Sub-pixel Optimization - Algorithm for the Analytic Optimization

if 1
θ > |Ixy| then
{The energy is convex.}
Compute the minima (α1+, α2+) and (α1−, α2−) with Equations (3.43).
if ρ (α1+, α2+) < 0 then

Compute (α1+, α2+) on the hyperbola.
Project the solution on the hyperbola into [0, 1]2.
if The hyperbola does not intersect [0, 1]2 then

Recompute (α1+, α2+) on the boundary of [0, 1]2.
end if

else
Compute the projection π (α1+, α2+) of (α1+, α2+) into [0, 1]2.
if ρ (π (α1+, α2+)) < 0 then

Recompute (α1+, α2+) on the boundary of [0, 1]2.
end if

end if
if ρ (α1−, α2−) < 0 then

Compute (α1−, α2−) on the hyperbola.
Project the solution on the hyperbola into [0, 1]2.
if The hyperbola does not intersect [0, 1]2 then

Recompute (α1−, α2−) on the boundary of [0, 1]2.
end if

else
Compute the projection π (α1−, α2−) of (α1−, α2−) into [0, 1]2.
if ρ (π (α1−, α2−)) < 0 then

Recompute (α1−, α2−) on the boundary of [0, 1]2.
end if

end if
else

125

A. Appendix

{The energy is convex-concave and the minimum lies at infinity or on the hyper-
bola.}
Compute (α1+, α2+) and (α1−, α2−) on the boundary of [0, 1]2.
if The hyperbola intersects [0, 1]2 then

Compute (α1+, α2+) and (α1−, α2−) on the hyperbola.
Check for possible better solution in the intersection.

end if
end if

C. Camera Tracking on RGB-D Sequences

C.1. Explicit Formulation of the 6×1 Constraints for Camera Tracking

∇IT(w(p))
dπ

dP
(G(p)) (ˆωincG(p) + vinc)

=

∂xI(w(p))

∂yI(w(p))

T



fx
GZ

0

0
fy
GZ

−fxGX
G2
Z

−fyGY
G2
Z



T 

0 −GZ GY (p)
GZ 0 −GX(p)

−GY (p) GX(p) 0
1 0 0
0 1 0
0 0 1



T 

ω1inc

ω2inc

ω3inc

v1inc

v2inc

v3inc



=



−∂yI(w(p))fy − ∂xI(w(p))fxGX(p)+∂yI(w(p))fyGY (p)

G2
Z(p)

GY (p)

∂xI(w(p))fx +
∂xI(w(p))fxGX(p)+∂yI(w(p))fyGY (p)

G2
Z(p)

GX(p)

∂yI(w(p))fyGX(p)−∂xI(w(p))fxGY (p)
GZ(p)

∂xI(w(p))fx
GZ(p)

∂yI(w(p))fy
GZ(p)

−∂xI(w(p))fxGX(p)+∂yI(w(p))fyGY (p)

G2
Z(p)



T



ω1inc

ω2inc

ω3inc

v1inc

v2inc

v3inc



= Cacc(p)Tξinc (A.5)

126

D. Large-Scale 3D Reconstruction from RGB-D Sequences

1

2

3

4

5

6

7

8

OBJ Code

v 0.05 1 0
v 0.05 0 1
v 1 1 1
v 1 0 0
v -1 1 1
v -1 0 0
v -0.05 1 0
v -0.05 0 1
f 1 2 3
f 2 1 4
f 8 7 5
f 7 8 6
f 3 4 1
f 4 3 2
f 6 5 7
f 5 6 8

(a) Closed Orientable Surface 1

1

2

3

4

5

6

7

8

OBJ Code

v 0 0.95 -0.05
v 0 -0.05 0.95
v 1 1 1
v 1 0 0
v -1 1 1
v -1 0 0
v 0 1.05 0.05
v 0 0.05 1.05
f 7 8 3
f 2 1 4
f 8 7 5
f 1 2 6
f 3 4 1
f 4 3 2
f 6 5 1
f 5 6 2
f 8 2 3
f 2 8 5
f 1 7 3
f 7 1 5

(b) Closed Orientable Surface 2

1

2

3

4

5

6

OBJ Code

v 0 1 0
v 0 0 1
v 1 1 1
v 1 0 0
v -1 1 1
v -1 0 0
f 1 2 3
f 2 1 4
f 2 1 5
f 1 2 6
f 3 4 1
f 4 3 2
f 6 5 1
f 5 6 2

(c) Degenerate Case

1

2

3

4

5

6

OBJ Code

v 0 1 0
v 0 0 1
v 1 1 1
v 1 0 0
v -1 1 1
v -1 0 0
f 1 2 3
f 2 1 4
f 2 1 5
f 1 2 6

(d) Degenerate Open Orientable Surface

Figure A.1.: Orientable surface configurations. The left side of each subfigure shows
an orthogonal projection of the triangle mesh described by the Wavefront
OBJ format on the right side. The triangles have a right-handed orientation,
in that a triangle f a b c has the surface normal (b− a)× (c− a).

D. Large-Scale 3D Reconstruction from RGB-D Sequences

D.1. Degenerate Case of Edge-Triangle Configurations

In Section 5.1 we have mentioned that orientable triangle meshes can have degenerate
cases containing edges shared by more than two triangles. Figure A.1 shows such a
case. Figures A.1a and A.1b show two valid orientable surfaces. Figure A.1c can be
seen as their degenerate limiting case, where the edges (1, 2) and (7, 8) are fused. Figure
A.1d then shows an open surface, that can still be regarded as a valid degenerate case.
This example demonstrates the importance of the individual triangle orientations. If
either the first and fourth, or the second and third triangle were flipped, the mesh would
self-cross in edge (1, 2).

127

A. Appendix

D.2. Error Intervals of Disparity-based Depth Sensors

The disparity interval
d ∈ [d∗ − σ, d∗ + σ] (A.6)

is mapped to the depth interval

[h(d∗ − σ), h(d∗ + σ)] . (A.7)

Using the notation h∗ := h(d∗), we get

[h(d∗ − σ), h(d∗ + σ)] =

[
Bfx
d∗ − σ

,
Bfx
d∗ + σ

]
=

[
Bfx
d∗

+
Bfx
d∗ − σ

− Bfx
d∗

,
Bfx
d∗

+
Bfx
d∗ + σ

− Bfx
d∗

]
=

[
h∗ +Bfx

(
d∗ − (d∗ − σ)

d∗ (d∗ − σ)

)
, h∗ +Bfx

(
d∗ − (d∗ + σ)

d∗ (d∗ + σ)

)]
=

[
h∗ +

h∗σ

d∗ − σ
, h∗ − h∗σ

d∗ + σ

]
=

[
h∗ +

Bfxh
∗σ

Bfxd∗
(
1− σ

d∗

) , h∗ − Bfxh
∗σ

Bfxd∗
(
1 + σ

d∗

)]

=

[
h∗ +

h∗2σ

Bfx − h∗σ
, h∗ − h∗2σ

Bfx + h∗σ

]
. (A.8)

D.3. Intersecting a Cube with a Branch in the Tree

Having traversed the tree from its root to a branch b, we know the cubic volume it
covers, parametrized by its position in the tree ob and its size sb. Figure A.2 shows
a 1D illustration of an axis-aligned cube, parametrized by its lower and upper corners
cmin and cmax, intersecting the volume covered by a branch having subbranches. The
volumes covered by its subbranches in this 1D example go from ob to ob + sb

2 and from
ob+

sb
2 to ob+sb. We assume that the cube intersects the volume covered by b, therefore,

cases 1 and 7 in figure A.2 do not happen. In cases 2 to 6, the question whether the
cube intersects the lower subbranch is solely depending on whether cmin < ob + sb

2 .
Analogously, the question whether the cube intersects the upper subbranch is depending
on whether cmax > ob + sb

2 . In a 3D octree,the question whether the 3D cube intersects
a subbranch is simply a conjunction of the three 1D checks.

128

D. Large-Scale 3D Reconstruction from RGB-D Sequences

ob ob + sb
2 ob + sb

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

cmin cmax

cmin cmax

cmin

cmin

cmax

cmax

cmax

cmax

cmax

cmin

cmin

cmin

Figure A.2.: 1D example cases of intersections of a cube with a tree branch and sub-
branches

129

A. Appendix

130

Own Publications

[1] Frank Steinbrücker, Christian Kerl, Jürgen Sturm, and Daniel Cremers. Large-scale
multi-resolution surface reconstruction from rgb-d sequences. In IEEE International
Conference on Computer Vision (ICCV), 2013.

[2] Frank Steinbrücker, Anke Meyer-Bäse, Axel Wismüller, and Thomas Schlossbauer.
Application and evaluation of a motion compensation technique to breast mri. In
SPIE Defense, Security, and Sensing, pages 73470J–73470J. International Society
for Optics and Photonics, 2009.

[3] Frank Steinbrücker, Thomas Pock, and Daniel Cremers. Advanced data terms for
variational optic flow estimation. In Proceedings Vision, Modeling and Visualization
(VMV), Braunschweig, Germany, 2009.

[4] Frank Steinbrücker, Thomas Pock, and Daniel Cremers. Large displacement optical
flow computation without warping. In IEEE International Conference on Computer
Vision (ICCV), Kyoto, Japan, 2009.

[5] Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers. Real-time visual odometry
from dense rgb-d images. In Workshop on Live Dense Reconstruction with Moving
Cameras at ICCV, 2011.

[6] Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers. Volumetric 3d mapping in
real-time on a cpu. In Proc. International Conference on Robotics and Automation
(ICRA), Hongkong, China, 2014.

131

Own Publications

132

Bibliography

[7] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski.
Building rome in a day. In ICCV, 2009.

[8] Luis Alvarez, Julio Esclaŕın, Martin Lefébure, and Javier Sánchez. A PDE model
for computing the Optical Flow. In Proceecings XVI Congreso de Ecuaciones Difer-
enciales y Aplicaciones, pages 1349–1356, Las Palmas de Gran Canaria, September
1999.

[9] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-based sur-
face reconstruction algorithm. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pages 415–421,
1998.

[10] P. Anandan. A computational framework and an algorithm for the measurement of
visual motion. International Journal of Computer Vision, 2:283–310, 1989.

[11] Gilles Aubert, Rachid Deriche, and Pierre Kornprobst. Computing optical flow via
variational techniques. SIAM Journal on Applied Mathematics, 60:156–182, 1999.

[12] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black, and
R. Szeliski. A database and evaluation methodology for optical flow. In Proc. In-
ternational Conference on Computer Vision, 2007.

[13] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow tech-
niques. International Journal of Computer Vision, 12(1):43–77, 1994.

[14] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[15] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM Comput.
Surv., 27(3):433–466, September 1995.

[16] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2:183–202, 2009.

[17] Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
New Jersey, 1957.

133

Bibliography

[18] Paul J. Besl and Neil D. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–256,
1992.

[19] Michael J. Black. Robust incremental optical flow. Technical report, 1992.

[20] Michael J. Black and P. Anandan. A framework for the robust estimation of optical
flow. In Proc. International Conference on Computer Vision, pages 231–236, 1993.

[21] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape repre-
sentation. ACM Trans. Graph., 3(4):266–286, October 1984.

[22] Andrés Bruhn, Christoph Schnörr, and Joachim Weickert. Lucas/kanade meets
horn/schunck: Combining local and global optic flow methods - updated version
with errata. International Journal of Computer Vision, 61(3):211–231, 2005.

[23] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A nat-
uralistic open source movie for optical flow evaluation. In Proceedings of the 12th
European Conference on Computer Vision - Volume Part VI, ECCV’12, pages 611–
625. Springer-Verlag, 2012.

[24] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Bi-
nary robust independent elementary features. In Proceedings of the 11th European
Conference on Computer Vision: Part IV, ECCV’10, pages 778–792, 2010.

[25] Antonin Chambolle. An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision, 20(1-2):89–97, 2004.

[26] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical Imaging
and Vision, 40(1):120–145, 2011.

[27] Pierre Charbonnier, Laure Blanc-Fraud, Gilles Aubert, and Michel Barlaud. Two
deterministic half-quadratic regularization algorithms for computed imaging. In
ICIP, pages 168–172, 1994.

[28] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable real-time volumet-
ric surface reconstruction. In SIGGRAPH, 2013.

[29] Isaac Cohen. Nonlinear Variational Method for Optical Flow Computation. In
Proceecings 8th SCIA, pages 523–530, June 1999.

[30] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavoxels
: Ray-guided streaming for efficient and detailed voxel rendering. In SIGGRAPH,
feb 2009.

134

Bibliography

[31] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In SIGGRAPH, 1996.

[32] Andrew J. Davison. Real-time simultaneous localisation and mapping with a single
camera. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2003.

[33] Andrew J. Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 29(6):1052–1067, 2007.

[34] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm, Daniel Cremers, and
Wolfram Burgard. An evaluation of the RGB-D SLAM system. In Proc. Interna-
tional Conference on Robotics and Automation (ICRA), 2012.

[35] Kenth Engø. On the BCH-formula in so(3). Technical report, BIT, 2000.

[36] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with application to image analysis and automated cartography.
Comm. Assoc. Comp. Mach., 24:381–395, 1981.

[37] Wolfgang Förstner and Eberhard Gülch. A fast operator for detection and precise
localization of distinct points, corners and circular features. In Proc. Intercommis-
sion Conf. on Fast Processing of Photogrammetric Data, pages 281–305, Interlaken,
Switzerland, 1987.

[38] Simon Fuhrmann and Michael Goesele. Fusion of Depth Maps with Multiple Scales.
ACM Trans. Graph., 30(6):148, 2011.

[39] David Gallup, Jan-Michael Frahm, Philippos Mordohai, and Marc Pollefeys. Vari-
able baseline/resolution stereo. In Proc. International Conference on Computer
Vision and Pattern Recognition, 2008.

[40] Gottfried Graber, Thomas Pock, and Horst Bischof. Online 3d reconstruction using
convex optimization. In ICCV Workshops, pages 708–711, 2011.

[41] Chris Harris and Mike Stephens. A combined corner and edge detector. In Proc. of
The Fourth Alvey Vision Conference, pages 147–151, Manchester, 1988.

[42] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. RGB-D
mapping: Using depth cameras for dense 3D modeling of indoor environments. In
Proc. of the Intl. Symp. on Experimental Robotics (ISER), Delhi, India, 2010.

[43] Heiko Hirschmüller. Accurate and efficient stereo processing by semi-global match-
ing and mutual information. In CVPR, 2005.

135

Bibliography

[44] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. A.I., 17:185–
203, 1981.

[45] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew J. Davi-
son, and Andrew Fitzgibbon. Kinectfusion: real-time 3d reconstruction and in-
teraction using a moving depth camera. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, UIST ’11, pages 559–568,
2011.

[46] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing,
SGP ’06, pages 61–70, 2006.

[47] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In Proc.
of the Int. Conf. on Intelligent Robot Systems (IROS), 2013.

[48] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for RGB-D cam-
eras. In ICRA, 2013.

[49] Georg Klein and David Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’07), Nara, Japan, 2007.

[50] Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–422, May
1992.

[51] Kalin Kolev, Thomas Brox, and Daniel Cremers. Propagating photoconsistency
in multiview 3d reconstruction. In Proc. International Conference on Computer
Vision and Pattern Recognition, 2007. submitted.

[52] Kalin Kolev, Maria Klodt, Thomas Brox, Selim Esedoḡlu, and Daniel Cremers.
Continuous global optimization in multiview 3d reconstruction. In Int. Conf. on
Energy Minimization Methods for Computer Vision and Pattern Recognition, 2007.
To appear.

[53] Kurt Konolige, Motilal Agrawal, Robert C. Bolles, Cregg Cowan, Martin Fis-
chler, and Brian Gerkey. Outdoor mapping and navigation using stereo vision.
In Intl. Symp. on Experimental Robotics (ISER), 2007.

[54] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. ACM Transactions on Graphics (Proc. SIG-
GRAPH), 21(4):163–169, 1987.

136

Bibliography

[55] Steven Lovegrove and Andrew J. Davison. Real-time spherical mosaicing using
whole image alignment. In Proceedings of the 11th European Conference on Com-
puter Vision Conference on Computer Vision: Part III, ECCV’10, pages 73–86,
2010.

[56] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[57] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with
an application to stereo vision. In Proc.7th International Joint Conference on Ar-
tificial Intelligence, pages 674–679, Vancouver, 1981.

[58] Hans P. Moravec. Robot spatial perception by stereoscopic vision and 3d evidence
grids. Technical report, 1996.

[59] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathematical Introduction
to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1994.

[60] Hans-Hellmut Nagel. On the estimation of optical flow: Relations between different
approaches and some new results. Artif. Intell., 33:299–324, 1987.

[61] Hans-Hellmut Nagel and Wilfried Enkelmann. An investigation of smoothness con-
straints for the estimation of displacement vector fields from image sequences. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(5):565–593, 1986.

[62] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. In
ISMAR, 2011.

[63] Richard A. Newcombe, Steven Lovegrove, and Andrew J. Davison. DTAM: dense
tracking and mapping real-time. In Proc. of the Intl. Conf. on Computer Vision
(ICCV), Barcelona, Spain, 2011.

[64] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger.
Real-time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph.,
32(6):169:1–169:11, November 2013.

[65] David Nister, Oleg Naroditsky, and James Bergen. Visual odometry. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2004.

[66] Martin R. Oswald and Daniel Cremers. A convex relaxation approach to space time
multi-view 3d reconstruction. In ICCV Workshop on Dynamic Shape Capture and
Analysis (4DMOD), 2013.

137

Bibliography

[67] Martin R. Oswald, Eno Toeppe, Kalin Kolev, and Daniel Cremers. Non-parametric
single view reconstruction of curved objects using convex optimization. In Pattern
Recognition (Proc. DAGM), 2009.

[68] Nils Papenberg, Andrés Bruhn, Thomas Brox, Stephan Didas, and Joachim We-
ickert. Highly accurate optic flow computation with theoretically justified warping.
International Journal of Computer Vision, 67(2):141–158, April 2006.

[69] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. Global so-
lutions of variational models with convex regularization. SIAM Journal on Imaging
Sciences, 3:1122–1145, 2010.

[70] Thomas Pock, Thomas Schoenemann, Gottfried Graber, Horst Bischof, and Daniel
Cremers. A convex formulation of continuous multi-label problems. In European
Conference on Computer Vision (ECCV), Marseille, France, October 2008.

[71] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-
tion. In Proceedings of the 9th European Conference on Computer Vision - Volume
Part I, ECCV’06, pages 430–443, 2006.

[72] Y. Roth-Tabak and Ramesh Jain. Building an environment model using depth
information. Computer, 22(6):85–90, June 1989.

[73] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2564–2571, 2011.

[74] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992.

[75] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In
Proc. of the Intl. Conf. on 3-D Digital Imaging and Modeling, Quebec, Canada,
2001.

[76] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7–42, April
2002.

[77] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-ICP. In Pro-
ceedings of Robotics: Science and Systems, Seattle, USA, 2009.

[78] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruction algo-
rithms. In CVPR, 2006.

138

Bibliography

[79] Jianbo Shi and Carlo Tomasi. Good features to track. In Proc. International
Conference on Computer Vision and Pattern Recognition, pages 592–600, 1994.

[80] Leonid Sigal, Alexandru O. Balan, and Michael J. Black. Humaneva: Synchro-
nized video and motion capture dataset and baseline algorithm for evaluation of
articulated human motion. Int. J. Comput. Vision, 87(1-2):4–27, March 2010.

[81] Hauke Strasdat, J.M.M. Montiel, and Andrew J. Davison. Scale drift-aware large
scale monocular slam. In Proceedings of Robotics: Science and Systems, Zaragoza,
Spain, 2010.

[82] Jörg Stückler and Sven Behnke. Integrating depth and color cues for dense multi-
resolution scene mapping using rgb-d cameras. In MFI, 2012.

[83] Jürgen Sturm, Stéphane Magnenat, Nikolas Engelhard, François Pomerleau, Francis
Colas, Wolfram Burgard, Daniel Cremers, and Roland Siegwart. Towards a bench-
mark for RGB-D SLAM evaluation. In Proc. of the RGB-D Workshop on Advanced
Reasoning with Depth Cameras at Robotics: Science and Systems Conf. (RSS), Los
Angeles, USA, 2011.

[84] Eno Toeppe, Martin R. Oswald, Daniel Cremers, and Carsten Rother. Image-based
3d modeling via Cheeger sets. In Asian Conf. on Computer Vision, 2010.

[85] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, Pittsburgh, PA, 1991.

[86] Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(4):376–380, 1991.

[87] Olga Veksler. Efficient Graph-based Energy Minimization Methods in Computer
Vision. PhD thesis, Cornell University, July 1999.

[88] George Vogiatzis, Philip H.S. Torr, and Roberto Cippola. Multi-view stereo via
volumetric graph-cuts. In Proc. International Conference on Computer Vision and
Pattern Recognition, pages 391–399, 2005.

[89] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe Franke, and
Daniel Cremers. Efficient dense scene flow from sparse or dense stereo data. In Eu-
ropean Conference on Computer Vision (ECCV), Marseille, France, October 2008.

[90] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J. Leonard, and John B.
McDonald. Robust tracking for real-time dense RGB-D mapping with Kintinuous.
Technical report, MIT, 2012.

139

Bibliography

[91] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J. Leonard, and John B.
McDonald. Robust real-time visual odometry for dense RGB-D mapping. In ICRA,
Karlsruhe, Germany, 2013.

[92] Thomas Whelan, Michael Kaess, Maurice F. Fallon, Hordur Johannsson, John J.
Leonard, and John B. McDonald. Kintinuous: Spatially extended KinectFusion. In
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[93] Kai M. Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: A probabilistic, flexible, and compact 3D map representation
for robotic systems. In Workshop on Best Practice in 3D Perception and Modeling
for Mobile Manipulation at ICRA, 2010.

[94] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for
realtime TV-L1 optical flow. In Pattern Recognition (Proc. DAGM), LNCS, pages
214–223. Springer, 2007.

[95] Christopher Zach, Thomas Pock, and Horst Bischof. A globally optimal algorithm
for robust TV-L1 range image integration. In ICCV, 2007.

[96] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. A Memory-Efficient
KinectFusion using Octree. In Computational Visual Media, volume 7633 of Lecture
Notes in Computer Science, pages 234–241. Springer Berlin Heidelberg, 2012.

140

