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Abstract

This thesis is devoted to the application of tensor-network methods to problems in
quantum many-body physics in one and two dimensions and in machine learning.

In the first part we contribute to the theory of infinite dimensional Matrix Product
States, for which the wave function of a lattice system takes the form of a correlator
of field operators. We show that these states can be defined not only from conformal
fields, but also from fields of a massive field theory. These states have analytical
wave functions, which allows us to construct a model of a quantum phase transition
and to study its properties using Monte Carlo simulations. We extend the application
of infinite dimensional Matrix Product States to density operators and investigate
the finite temperature phase diagram above the quantum phase transition.

We then turn to the application of infinite dimensional tensor networks in two
dimensions. The corresponding states are lattice versions of fractional quantum Hall
wave functions and allow us to build exact models realizing the same physics. We
investigate lattice effects on these wave functions, with a focus on generalizations of
the Kalmeyer-Laughlin and Moore-Read states, and characterize when topological
order is present along an interpolation between lattice and continuum limit. We
construct both quasihole and quasielectron excitations for these states and study
their anyonic properties on the lattice. Exact non-local parent Hamiltonians for
which these states are ground states are derived, and in some cases we find local
Hamiltonians for which the ground state is well approximated by the corresponding
infinite dimensional tensor network.

Studying these local Hamiltonians on large sizes is challenging. For this reason
we investigate the power of different classes of states, such as states for which the
wave function is represented by an artifical neural network, in approximating these
chiral spin liquids. We show that neural-network quantum states taking the form
of restricted Boltzmann machines are a subclass of String-Bond States, a kind of
tensor network, and discuss the implications of this connection with respect to the
underlying architecture of restricted Boltzmann machines. We demonstrate that
neural-network quantum states and their tensor-network generalizations are able to
represent certain lattice fractional quantum Hall states exactly and we numerically
compare their ability at approximating a chiral spin liquid.




Finally we show that the connection between Boltzmann machines and tensor
networks generalizes to probabilistic graphical models and has applications in
machine learning. It motivates the definition of generalized tensor networks, which
include String-Bond States as special cases and can be combined with neural-network
architectures. We provide an algorithm to train these networks in the context of
supervised learning and discuss its application to real-valued data. This algorithm
is benchmarked for several generalized tensor-network architectures on the task
of classifying images and recognizing environmental sounds, and we show that it
outperforms previously introduced tensor-network algorithms.




Zusammenfassung

Diese Dissertation widmet sich der Anwendung von Tensornetzwerkmethoden auf
Fragen der Quantenvielteilchentheorie in ein und zwei Dimensionen sowie des
maschinellen Lernens.

Im ersten Teil dieser Arbeit beschiftigen wir uns mit der Theorie der unendlich-
dimensionalen Matrixproduktzustinde, bei denen die Wellenfunktion eines
Spinsystems auf einem Gitter die Form eines Korrelators von Feldoperatoren
annimmt. Wir zeigen, dass sich diese Zustdnde nicht nur durch konforme Felder,
sondern auch durch Felder einer massiven Feldtheorie definieren lassen. Diese
Zustande haben analytische Wellenfunktionen, die es uns ermoglichen, ein Modell
eines Quantenphaseniibergangs zu erstellen und seine Eigenschaften mit Hilfe
von Monte-Carlo-Simulationen zu untersuchen. Wir erweitern die Anwendung
von unendlich-dimensionalen Matrixproduktzustdnden auf Dichteoperatoren
und studieren das Phasendiagramm bei endlicher Temperatur oberhalb des
Quantenphaseniibergangs.

AnschlieRend widmen wir uns der Anwendung von unendlich-dimensionalen Tensor-
netzwerken auf Systeme in zwei Dimensionen. Diese Zustédnde erlauben es uns, die
Wellenfunktionen fraktionaler Quanten-Hall (FQH) Systeme auf Gittersysteme zu
verallgemeinern und exakte Modelle mit denselben wesentlichen Eigenschaften wie
im Kontinuum zu erhalten. Wir untersuchen Gittereffekte dieser Wellenfunktionen,
mit einem Fokus auf Verallgemeinerungen der Kalmeyer-Laughlin und Moore-Read
Zustande, und charakterisieren, wann eine Interpolation zwischen Gitter und Kon-
tinuum topologisch geordnet ist. Wir konstruieren sowohl Quasi-Loch- als auch
Quasi-Elektron-Anregungen fiir diese Zustdnde und untersuchen deren anyonische
Eigenschaften auf dem Gitter. Exakte nicht-lokale Hamiltonoperatoren, fiir welche
diese Zustinde Grundzusténde sind, werden abgeleitet. In einigen Fillen finden
wir sogar lokale Hamiltonoperatoren, deren Grundzustand durch das entsprechende
unendlich-dimensionale Tensornetzwerk gut approximiert wird.

Dennoch stellt es eine grofe Herausforderung dar, diese lokalen Hamiltonopera-
toren auf grofleren Gittern zu studieren. Deshalb untersuchen wir die Eignung
verschiedener Klassen von Zustdnden fiir die Beschreibung solcher Quantenspinfliis-
sigkeiten, wie zum Bespiel die Klasse der Zustdnde, deren Wellenfunktion durch ein

xi



Xii

kiinstliches neuronales Netz reprasentiert wird. Wir zeigen, dass durch beschrankte
Boltzmann-Maschinen definierte neuronale Netzzustdnde eine Unterklasse von
String-Bond States, einer Art Tensornetzwerk, bilden. Die Implikationen dieser
Verbindung in Bezug auf die zugrundeliegende Architektur beschréankter Boltzmann-
Maschinen wird diskutiert. Wir beweisen, dass neuronale Netzzustidnde und ihre
Tensornetzwerk-Verallgemeinerungen in der Lage sind, bestimmte FQH Zustdnde auf
dem Gitter darzustellen und vergleichen ihre Fahigkeit, eine chirale Spinfliissigkeit
numerisch zu approximieren.

Schliel3lich zeigen wir, dass die Verbindung zwischen Boltzmann-Maschinen und
Tensornetzwerken auf probabilistische graphische Modelle verallgemeinert wer-
den kann und Anwendungen im Bereich des maschinellen Lernens hat. Diese
Verbindung motiviert die Definition von generalisierten Tensornetzwerken, welche
String-Bond-States als Sonderfélle beinhalten und mit neuronalen Netzwerkarchitek-
turen kombiniert werden konnen. Wir prasentieren einen Algorithmus, um diese
Netzwerke im Kontext des iiberwachten Lernens zu trainieren und diskutieren seine
Anwendung auf reellwertige Daten. Dieser Algorithmus wird fiir mehrere verall-
gemeinerte Tensornetzwerkarchitekturen zur Klassifizierung von Bildern und zur
Erkennung von Umgebungsgerduschen bewertet und wir zeigen, dass er bereits
bekannte Tensornetzwerkalgorithmen in seiner Leistungsfahigkeit tibertrifft.
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Introduction

Observe whenever the rays are let in and pour the
sunlight through the dark chambers of houses: you will
see many minute bodies in many ways through the
apparent void mingle in the midst of the light of the rays,
and as in never-ending conflict skirmish and give battle
combating in troops and never halting, driven about in
frequent meetings and partings; so that you may guess
from this what it is for the first-beginnings of things to
be ever tossing about in the great void. So far as it goes,
a small thing may give an illustration of great things
and put you on the track of knowledge.

— Titus Lucretius Carus
(De Rerum Natura, 1% century BCE,
translation by H. A. J. Munro)

Physics is pushing the boundaries of our knowledge, from the very small scale
associated with the properties of elementary particles to the cosmological scale of
the universe. But there is another frontier, ubiquitous in all areas of science: the
complexity frontier. This complexity often manifests itself when the system consists
of many interacting entities, such as molecules in fluid dynamics and meteorology,
neurons in neurobiology or humans in sociology. In these cases collective phenomena
that are not properties of the individual entities may play a crucial role. Such
a complexity may appear even when all the single entities are simple and the
interactions between them are governed by well defined physical laws, because we
may not be able to solve the equations describing the system or identify the relevant
emerging degrees of freedom.

One area where this property stands out is quantum physics. Consider a system
of N classical particles. Each configuration of the system is fully determined by
the positions and velocities of the particles. However, at atomic length scales
the motion of the particles is no longer governed by classical mechanics, but by
quantum mechanics. The position and momenta no longer have fixed values, but
follow probability distributions resulting from the Schrodinger equation. Instead of
considering one configuration of the system, all possible configurations must be taken
into account, which renders the exact description of the system intractable for more




than a few particles[8]. Many interesting phenomena in condensed matter physics
nevertheless arise through the interplay of interacting quantum particles, such
as superconductivity or the fractional quantum Hall effect, rendering approaches
to tackle the quantum many-body problem necessary. A quantum computer is
another example of a complex many-body quantum system, and understanding
which quantum systems can be efficiently simulated with classical resources is
therefore of practical interest.

In this thesis we will be mainly concerned with the classical simulation of many-body
quantum systems of spins or electrons placed on a lattice. Such systems can be
seen as approximations of materials, but are also of independent interest since they
can be realized artificially, for example with ultracold atoms in optical lattices[9].
Simulating a general system of IV spin-1/2 particles on a classical computer requires
storing 2V coefficients, rendering simulation of more than a few dozens of spins
impossible even on the largest computers. Different techniques have been introduced
to tackle larger systems. On the one hand, solvable models that are non-interacting
or integrable provide examples for which the properties can be computed exactly
even for large sizes[10]. These models have contributed to our understanding of
both equilibrium and non-equilibrium quantum phenomena, but many systems of
interest are interacting and not exactly solvable. On the other hand, numerical
simulation techniques have been developed, such as Quantum Monte Carlo methods
which sample the exponentially large space of configurations[11]. Quantum Monte
Carlo methods have been highly successful but suffer from a fundamental limitation:
the sign problem[12], which commonly appears in the simulation of fermions or
frustrated spin systems.

Other methods thus have to be studied. One approach which enjoyed tremendous
success, in particular in the simulation of one-dimensional quantum systems, is
the Density Matrix Renormalization Group algorithm[13, 14]. The understand-
ing of this algorithm in terms of tensor networks has since led to many insights
about the structure of quantum states[15] as well as efficient algorithms to study
them[16]. Tensor-network algorithms have the advantage, compared to Quantum
Monte Carlo methods, that they do not suffer from a sign problem and can thus
be used for studying problems that are not amenable to Quantum Monte Carlo.
Moreover they also make simulation of dynamical systems possible and give direct
access to a parametrization of the quantum wave function, which can be used to
compute its properties. This thesis will be concerned with the development of new
methods which extend the applicability of tensor networks to challenging problems
in condensed matter physics as well as machine learning.

Chapter 1 Introduction




1.1

Tensor networks states and entanglement

We are interested in the properties of quantum states at low temperatures, where
quantum effects play the most important role. These states live in a Hilbert space
which grows exponentially with the size of the system. Nevertheless it is still expected
that not all states in this Hilbert space are physical. Indeed many interactions in
nature are local, thus resulting in Hamiltonians which are not arbitrary. The ground
states of local Hamiltonians are not randomly distributed in the Hilbert space but
form a tiny subset of it, the physical corner of the Hilbert space. Tensor networks
are an attempt at parametrizing this subset.
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Fig. 1.1.: Area law in one and two dimensions.

To characterize the locality of quantum states, a system is divided between a region A
and a region B (Fig. 1.1). Intuitively, we expect that if interactions are local then the
correlations between regions A and B are concentrated on the boundary between
the two regions, while spins in the bulk of region A bring little contribution to such
correlations because they are far from any spin in B. This statement can be made
more rigorous. A measure of the amount of entanglement (quantum correlations)
between regions A and B is the entanglement entropy S4 = — Tr p4 log p4, where
pa is the reduced density matrix of the system A. While increasing the size of
region A, the entanglement entropy of a random state in the Hilbert space typically
scales as the volume (the number of spins) in region A. But ground states of local
Hamiltonians display a different behavior: indeed, in many cases one finds that the
entanglement entropy S4 of the ground state of a local Hamiltonian scales as the
boundary between systems A and B, a property known as area law: Sy = O(|0A|).
Such an area law has been proven in many cases, such as for models for which there
is an energy gap between the ground state and the excited states in 1D[17], for such
gapped models satisfying some spectral conditions in arbitrary dimension[18], for
free bosonic and fermionic models[19, 20], for frustration-free spin models[21] as
well as for states that are in the same phase as a state satisfying the area law[22].

1.1 Tensor networks states and entanglement




(a) (b)

Fig. 1.2.: a) Decomposition of the general tensor representing the wave function into a
one-dimensional tensor network known as Matrix Product State (MPS).
b) In two dimensions, the corresponding tensor network is a Projected Entangled
Pair State (PEPS).

Let us now see how this property is related to tensor networks. In general, a wave
function of a system of N spins with d degrees of freedom can be written as

d

|¢> — Z ¢51,...,SN |51>®|52>®"‘®|3N>, (1_1)

81,0, SN=1

where 1N is a tensor containing d”¥ complex coefficients. Tensor network
states[15, 23, 24] are quantum states for which this tensor has been decomposed
into a network of local tensors that are contracted (Fig. 1.2). The idea of tensor
network states is therefore to construct a global object (the wave function) from
simple building blocks (tensors) which are local. Links between the tensors cor-
respond to a sum over the corresponding indexes of the tensors. The maximum
dimension of the tensor indexes which are contracted is called the bond dimension
D. In one dimension, the resulting tensor network is a Matrix Product State (MPS)
(Fig. 1.2a), while in two dimension one obtains a Projected Entangled Pair State
(PEPS)[25] (Fig. 1.2b). These tensor network states satisfy the area law when D is
bounded. More importantly, it has been proven that any quantum state satisfying
an area law in one dimension can be efficiently approximated by a MPS[26, 27]
(this statement depends on the exact measure of entanglement considered), by
which we mean that the corresponding MPS will have a number of parameters that
scales polynomially, and not exponentially, with the system size. Together with the
previous results on ground states of local Hamiltonians satisfying an area law, this
means that MPS are the right parametrization for one-dimensional ground states of
gapped Hamiltonians. In two dimensions, satisfying an area law is not a sufficient
condition for having an efficient parametrization such as PEPS[28], but many states
of interest can nevertheless be approximated by a PEPS, such as thermal states of
local Hamiltonians[29].

Chapter 1 Introduction




1.2 Quantum phase transitions

The fact that tensor networks satisfy an area law also means that states with high
entanglement can be difficult to approximate with tensor network states. One
area where such states naturally appear are quantum phase transitions[30], which
occur at zero temperature. Changing a parameter of the Hamiltonian, for example
by applying a magnetic field, can bring the ground state of the system from one
phase of matter to another. The transition between the two phases happens at a
critical point corresponding to an abrupt change in the ground state wave function.
In a conventional continuous phase transition, the properties at the critical point
are associated with the symmetries on both sides of the transition. A local order
parameter that is exactly zero in one phase and non-zero in the other phase can be
defined, and the energy gap between the ground state and first excited state vanishes
at the phase transition. The characteristic length scale of the system diverges as
the critical point is approached, leading to power-law behavior of the correlation
functions and scale invariance at criticality (Fig. 1.3). Because of scale invariance, the
microscopic details of the system become irrelevant, which leads to the universality
of phase transitions: different physical systems can behave in a similar way at the
critical point and can be studied using the same scale-invariant theory.

In many cases, this theory is a conformal field theory (CFT)[32], which, in ad-
dition to being scale invariant, is invariant under transformations that preserve
angles. The conformal invariance provides analytical tools to study these theories in
great details. Consider for example a one-dimensional quantum system at a phase
transition described by a CFT. Then one can compute the entanglement entropy
of a reduced region A of the system and show that it scales as the logarithm of
the size of region A[33-35]. This is a violation to the previously introduced area
law. A MPS with fixed bond dimension satisfies the area law and has exponentially
decaying correlations at long distance. Therefore it cannot be used to study such
a critical system in the thermodynamic limit. Nevertheless, one can show that by
increasing the bond dimension polynomially with the system size, MPS can in fact
approximate critical systems efficiently[26]. Another approach is to build a tensor
network with a different network structure as the original lattice. The multi-scale
entanglement renormalization ansatz [36, 37] is such a tensor network which allows
scale invariance to be satisfied and critical states to be constructed.

The limitation of MPS to represent critical systems stems from the finite bond
dimension which limits the amount of entanglement that can be captured by the
MPS. Another approach to represent critical systems that will be developed in this
thesis are infinite dimensional MPS[38], in which the finite dimensional tensors
have been replaced with infinite dimensional operators, such as field operators in a
quantum field theory or conformal field theory. The wave function of such a state can

1.2 Quantum phase transitions
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Fig. 1.3.: a) Phase diagram of the 1D transverse field Ising model at zero temperature.

For low values of the transverse field & with respect to the Ising coupling J the
ground state is a ferromagnet, while for high values of the transverse field the
ground state is a paramagnet. In between there is a quantum phase transition at
a particular value of the transverse field.
b) This model can be mapped to a 2D classical Ising model at finite temperature,
which displays a phase transition at a critical temperature T,. The spin configura-
tions display scale invariance at the critical point. Monte Carlo simulation results
by Douglas Ashton[31].

then be written as a correlator of field operators, and its properties can be studied
using Monte Carlo simulations. Infinite dimensional MPS can support logarithmic
violations of the area law as well as polynomially decaying correlations even for
large systems, and are thus particularly well suited for describing critical systems.

In chapter 2, we will construct a toy model of a quantum phase transition using
infinite dimensional MPS. The construction of an infinite dimensional MPS from
conformal fields gives rise to a critical state. We will extend it to fields which are not
conformal and introduce a length scale in the system, and study the corresponding
transition. Quantum phase transitions happen at strictly zero temperature and it may
seem that they are not relevant to experiments taking place at small but non-zero
temperature. We will show that infinite dimensional MPS can also be defined at
finite temperature and use them to study how the quantum phase transition at zero
temperature affects the properties of the system at finite temperature, a phenomenon
known as quantum criticality[30].

Chapter 1 Introduction




1.3 The fractional quantum Hall effect

Not all phase transitions admit a local order parameter and can be fully characterized
by symmetries. Indeed, some quantum systems display a new kind of order that goes
beyond the conventional classification of phases of matter: topological order[39].
Topologically ordered states are long-range entangled: they cannot be transformed
into a product state through a local unitary evolution (quantum circuit with finite
depth), and their entanglement entropy displays a finite subleading correction to
the area law known as topological entanglement entropy[40, 41]. Such systems
are associated with a ground state degeneracy that depends on the topology of
the space they are defined on. This degeneracy cannot be lifted by any local
perturbation, so is not due to symmetry. This renders such states particularly suitable
for storing quantum information in a way that is robust to noise[42]. The finite
energy quasiparticle excitations over these ground states are neither bosons nor
fermions, but anyons with fractional statistics that can be employed to perform
fault-tolerant quantum computation[43, 44].

Physical systems realizing topological order are thus widely sought after, both for
the fundamental physics they display as well as for their potential applications
in quantum information processing. The fractional quantum Hall (FQH) effect,
discovered in 1982[45], provides such an experimental realization in a 2D electron
gas. By applying a strong magnetic field, the electrons form an incompressible
quantum fluid that gives rise to fractionally charged excitations which are anyons.
The magnetic field breaks time-reversal and parity symmetry, so the ground state is
known as a chiral topological state and is associated with chiral edge states which
have a preferred direction along the edge of the sample. This effect manifests itself
in the quantization of the Hall conductance observed in the experiments at particular
rational values of the ratio between the number of electrons and the number of
magnetic fluxes (Fig. 1.4).

Recently, there has been a lot of interest in finding fractional quantum Hall physics
in other systems. Indeed, experimental realizations of fractional quantum Hall states
and manipulation of their quasiparticles remain a challenge. Finding other systems
exhibiting the same physics is an important step towards a better understanding of
these phenomena as well as practical applications in quantum computing. Lattice
models hosting the same physics have been developed, such as for example fractional
Chern insulators which mimic the physical interactions leading to the fractional
quantum Hall effect on a lattice[47-51], or chiral spin liquids, which consists in an
interacting system of spins on a lattice for which the ground state displays similar
properties[52-62].

1.3 The fractional quantum Hall effect
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Fig. 1.4.: Hall resistance and longitudinal resistance of a 2D electron gas subject to a
magnetic field. From [46], reprinted with permission from AAAS.

The understanding of the fractional quantum Hall effect was in large part made
possible through the discovery of wave functions describing the electrons, such as
Laughlin’s wave function[63]. To describe chiral spin liquids on a lattice exact model
wave functions as well as numerical methods also need to be developed. Efforts
to construct chiral topological states with tensor networks such as PEPS have been
undertaken recently[64-67], but the resulting states are critical and are the ground
state of a gapless local parent Hamiltonian, unlike what happens in the fractional
quantum Hall effect.

Another approach is to construct chiral lattice wave functions from the fractional
quantum Hall continuum wave functions, the paradigmatic example being the
Kalmeyer-Laughlin wave function[52]. Other continuum wave functions which
can be extended to lattices are wave functions written in terms of correlators
of a CFT[68]. These lead to lattice wave functions that are infinite dimensional
MPS[69]. The resulting quantum states can then be studied in great details and exact
Hamiltonians for which they are ground states can be derived[70]. We note here that
this approach is unlike traditional approaches in condensed matter physics: instead
of being given a Hamiltonian and looking for the properties of its ground state, we
first construct a state with desirable properties and then look for a Hamiltonian for
which this state would be the ground state.

In chapter 3, we provide several contributions to the theory of infinite dimensional
MPS realizing fractional quantum Hall physics. We study properties of generaliza-
tions of the Kalmeyer-Laughlin states on several lattices and provide a characteriza-
tion of when chiral topological order is present. The excitations over these states are
studied both in terms of localized quasiparticles and in terms of edge excitations.
In particular we construct both quasihole and quasielectron excitations and study
their anyonic properties on the lattice. A family of chiral spin liquids with non-
Abelian excitations is discovered, which generalizes the Moore-Read[68] continuum
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wave functions. Both exact non-local Hamiltonians as well as approximate local
Hamiltonians that realize some of these states are constructed.

Neural-network quantum states

Infinite dimensional MPS allow us to construct many exact chiral topological models,
but possess only few parameters and are thus not suitable as a variational ansatz to
the ground state of a generic Hamiltonian. In particular, once an interesting exact
model has been constructed it is often necessary to study other Hamiltonians that
realize the same physics but that might be simpler or more suitable to experiments.
Other numerical methods to study such systems on large sizes are therefore necessary
to complement the use of infinite dimensional tensor networks. Recently, another
class of states has been introduced as an ansatz for a many-body quantum state:
neural-network quantum states[71] represent a wave function using an artificial
neural network. Artificial neural networks have been introduced as an approximation
to a function in the context of machine learning and have recently been at the
center of tremendous advances in computer vision, natural language processing
or robotics[72]. Inspired from biological neural networks, they consist of simple
building blocks, neurons, which take as input the value of several variables and
return as output a non-linear function of a weighted sum of their inputs. Arranged
together in a network, they are able to model complex dependencies. The versatility
of machine learning with neural networks has allowed scientists to employ it in a
number of problems which span from quantum control[73-75] and error correcting
codes[76] to tomography[77]. In condensed matter physics it has been applied to
recognize quantum phases[78-81] or to enhance Quantum Monte Carlo methods
[82, 83].

Particularly suited to the problem of representing wave functions of spin systems are
tools designed to represent probability distributions with discrete variables, such as
probabilistic graphical models[84]. These models include Boltzmann machines[85],
which represent a probability distribution as the Boltzmann weight of an Ising
Hamiltonian on a graph, as special cases. Boltzmann machines have recently been
shown to be able to represent many quantum states of interest[71, 77, 86-89]. The
structure of neural networks or graphical models, consisting of small local blocks
linked together in a complex network, is reminiscent of the structure of tensor
networks (Fig. 1.5). In fact, we will show that this connection can be made precise
in a number of cases, and that this connection has implications both for quantum
physics as well as for machine learning.

In chapter 4, we will discuss the connection between Boltzmann machines and

classes of tensor networks known as Entangled Plaquette States (EPS))[90-92]
and String-Bond States (SBS)[93, 94]. We will show that these tensor networks

1.4 Neural-network quantum states
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Fig. 1.5.: Different network architectures based on graphs that can be used to define a
function of the variables X;, X5 and X3: a) a feed-forward neural network, b)
an undirected probabilistic graphical model, c) a factor graph, d) a restricted
Boltzmann machine, e) a tensor network (Matrix Product State).

provide a natural generalization of restricted Boltzmann machines, a special class of
Boltzmann machines. We will apply these different classes of states to the problem of
representing a chiral spin liquid previously discovered with infinite dimensional MPS
methods. Through both analytical wave functions as well as numerical simulations,
we will show that these networks allow us to get an accurate description of the
ground state and to compute its properties.

Classical and quantum machine learning

So far we have discussed the application of machine learning techniques to study
quantum systems, but applying quantum techniques to machine learning has also
received a lot of attention[95, 96]. In supervised learning, data with labels is
provided and one tries to find a function that maps the input data to its label.
This function should generalize to previously unseen data, so it is not sufficient to
memorize the training data and its labels. Performance is then evaluated on a test
set which has not been used during training of the model. In unsupervised learning,
data without labels is provided and one tries to find some structure in the data, for
example through clustering, or by approximating its probability distribution. For
large scale datasets, one needs to rely on approximations and an ansatz function
is chosen to approximate the function or probability distribution given by the data.
This ansatz function can for example be a neural network or a probabilistic graphical
model.
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Quantum circuits that may be implemented on near-term quantum devices can
implement functions that cannot be computed efficiently on a classical computer, and
these functions could be used as approximation to the desired function or probability
distribution, in both supervised and unsupervised learning. Understanding how these
circuits may be useful in machine learning attracted a lot of recent interest[97-102].
In this setting, the function evaluation is performed by a quantum device, but the
optimization of its variational parameters is performed classically. Such algorithms
are therefore known as variational hybrid quantum-classical algorithms.

Since tensor networks are tools to simulate quantum systems, they are a natural
candidate to perform the classical simulation of quantum circuits. The circuits
that can be simulated efficiently using classical methods do not require a quantum
computer to run them. It is therefore of interest to understand how tensor networks
can be used in machine learning, both in order to develop new classical machine
learning algorithms[103-106] as well as to guide the development of future quantum
machine learning architectures[107, 108].

In chapter 5, we will show that the previously observed connection between restricted
Boltzmann machines and tensor networks generalizes to probabilistic graphical
models and motivates the definition of generalized tensor networks. These networks
rely on the copy and reuse of local tensor information and remain efficient to contract.
We provide an algorithm to train these networks in a supervised learning context
and show that they overcome the limitations of regular tensor networks in higher
dimensions. Our algorithm is benchmarked for several generalized tensor network
architectures on the task of classifying images and recognizing environmental sounds,
and we show that it outperforms previously introduced tensor-network algorithms.

Thesis structure

The rest of this thesis is organized as follows:

Chapter 2

In this chapter we first introduce the formalism of tensor networks with a focus
on Matrix Product States (MPS) in section 2.1. We discuss the applicability of
MPS to critical systems and motivate the definition of infinite dimensional MPS,
where the tensor network is replaced by a correlator of field operators. A simple
infinite dimensional MPS introduced in Ref. [38] to represent the ground state of
a critical system is presented in section 2.2. The resulting wave function arises
from the correlator of operators in a free massless boson quantum field theory. Our
first contribution consists in the generalization of this infinite dimensional MPS
to massive fields, which allows us to construct a toy model of a quantum phase
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transition in section 2.3. In section 2.4 we then provide a way to represent these
states at finite temperature by writing a purification of the system as an infinite
dimensional MPS, and study how the quantum phase transition at zero temperature
influences the phase diagram at finite temperature. We finally show in section 2.5
that our model could be realized in a realistic setting by constructing a Hamiltonian
whose thermal state is close to our mixed state ansatz.

Chapter 3

We then turn to the two dimensional case, where infinite dimensional MPS arising
from operators in a conformal field theory lead to the definition of fractional quan-
tum Hall lattice models. After introducing the fractional quantum Hall effect and
properties of Laughlin states in the continuum, we study in section 3.2 generaliza-
tions of the Kalmeyer-Laughlin states on several lattices, with different number of
particles per flux and particles per lattice site. We show that these states have the
same topological properties as the corresponding continuum Laughlin states except
on some particular lattices when the lattice is half-filled. We construct analytical
wave functions which correspond to edge states for these models and derive exact
parent Hamiltonians for which the infinite dimensional MPS is a ground state for
different fillings of the lattice. In section 3.3, we turn to the investigation of the
quasiparticle excitations of these states. While the construction of a quasielectron
wave function in the continuum remains more difficult than for the quasihole, we
show that the quasielectron wave function can be defined on the lattice in a similar
way as for the quasihole. This allows us to study properties of the quasiholes and
quasielectrons in a vast range of models that interpolate between the continuum
and the lattice limit. Exact Hamiltonians having quasiparticle states as their ground
states are constructed. In these models, braiding of quasiparticles can be realized
simply by changing the value of the couplings in the Hamiltonian. Section 3.4 finally
extends the lattice models displaying the fractional quantum Hall effect to models
having non-Abelian anyons as their quasiparticles. We introduce a family of states
which correspond to lattice versions of the Moore-Read wave functions. We provide
numerical evidence that the topological properties of these states remain the same
along an interpolation between the continuum and the lattice, and derive exact
parent Hamiltonians for these states on lattices of arbitrary size. By deforming these
parent Hamiltonians, we construct local Hamiltonians that stabilize some of the
states we introduce in one and two dimensions.

Chapter 4

In this chapter we focus on the variational optimization of tensor-network states
and neural-network quantum states. We first introduce in section 4.1 the Varia-
tional Monte Carlo method that can be used to optimize both tensor networks and
neural networks. We then present in section 4.2 our results showing that there
are strong connections between neural-network quantum states in the form of re-
stricted Boltzmann machines and some classes of tensor-network states in arbitrary
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dimensions. We demonstrate that short-range restricted Boltzmann machines are
Entangled Plaquette States, while fully connected restricted Boltzmann machines
are String-Bond States with a non-local geometry. These results allow us to un-
derstand the underlying architecture of restricted Boltzmann machines and their
efficiency at representing many-body quantum states. In section 4.3 we turn to the
application of these classes of states to the problem of representing the ground state
of lattice Hamiltonians introduced in chapter 3. We give analytical evidence that
neural-network quantum states and their non-local tensor-network generalizations
are able to represent lattice fractional quantum Hall states exactly. Furthermore we
numerically compare these different classes of states and show that some of them
are able to approximate a chiral spin liquid with high accuracy.

Chapter 5

After having used machine learning techniques to approximate quantum states, we
turn to the application of tensor network techniques introduced in quantum physics
to perform machine learning. In section 5.2 we introduce probabilistic graphical
models and discuss their connections with tensor networks. We show that this
connection motivates the definition of generalized tensor networks, which include
Entangled Plaquette States and String-Bond States as special cases. We prove that
these generalized tensor networks can represent some functions with exponentially
less parameters than regular tensor networks, and show how they can be used in
conjunction with neural networks. An algorithm for training these networks in a
supervised learning context is provided in section 5.4, and its applicability to data
which is real and not discrete is discussed in section 5.5. Finally we benchmark our
algorithm in section 5.6 for several generalized tensor network architectures on the
task of classifying images and recognizing environmental sounds, showing that it
outperforms previously introduced tensor-network algorithms.

1.6 Thesis structure
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Infinite dimensional Matrix
Product States and quantum
criticality

Quantum phase transitions are phase transitions happening at zero temperature and
driven by quantum instead of thermal fluctuations. They can happen for example by
tuning an external magnetic field, the pressure or the composition of a material. At
a conventional critical point, the ground state displays fluctuations over all length
scales, is highly entangled and its correlations decay polynomially with the system
size. While the quantum phase transition happens at zero temperature, it is still
relevant for experiments at finite temperature. Indeed the properties of the system at
finite temperature are influenced by the presence of the quantum phase transition[30,
109, 110], a behaviour that has been observed in several experiments [111-116].
The complete region affected by the critical point is in general very hard to study,
since one has to take into account the strongly-coupled dynamics of the quantum
critical point as well as its excitations.

In this chapter we discuss the application of infinite dimensional tensor networks to
quantum phase transitions in one dimension. We start by introducing the general
formalism of tensor networks in section 2.1, with a focus on Matrix Product States
(MPS). We review the properties of MPS and their applicability to critical systems. In
section 2.2 we present the notion of infinite dimensional MPS, where the tensors are
replaced by infinite dimensional field operators, through the example of a critical
state arising from massless fields introduced in Ref. [38]. We propose to use this
construction as a starting point for building models with a quantum critical region
in their low temperature phase diagram. We explain how an additional parameter
can drive the model away from criticality at zero temperature in section 2.3, thus
constructing a toy model of a quantum phase transition. We provide a way to study
the properties of the state at finite temperature in section 2.4, which is done by
doubling the number of spins and considering the reduced state of half of the spins.
Because the analytical expression of the wave functions is known, the properties
of the states can be computed using Monte Carlo techniques for large system sizes,
which allows us to investigate how the quantum phase transition influences the
finite temperature phase diagram. Finally we show in section 2.5 that our model of
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a mixed state ansatz corresponds to the thermal state of a local 2-body Hamiltonian.
Sections 2.3, 2.4 and 2.5 of this chapter are based on and reuse parts of Ref. [1]:

* [1] : Ivan Glasser, J. Ignacio Cirac, German Sierra and Anne E. B. Nielsen,
‘Construction of spin models displaying quantum criticality from quantum field
theory’, Nuclear Physics B 886, 63-74 (2014), under CC BY 3.0 license,
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.016

2.1 Introduction to tensor networks and Matrix Product
States

2.1.1 Tensor networks

Consider a generic quantum state of N spins si,...,sy on a lattice. The wave
function can be written as

d
W)= > TN [51) @ sa) @+ @ |sw) 2.1)

S1,...,SN=1

where %15V is a tensor containing d"¥ complex coefficients and d is the dimension
of the local Hilbert space. A tensor network state[15, 23, 24] is a state for which
this tensor has been decomposed in a network of contracted tensors over a graph.
An introduction to the graphical notation of tensor networks is presented in Fig. 2.1.
A leg between two tensors corresponds to a summation of the corresponding indices
of the tensors. Open legs index the resulting tensor and correspond to the physical
indices. The dimension of the indices corresponding to open legs is therefore called

[ R R - = ——

Fig. 2.1.: Graphical notation for tensor networks: (a) vector, (b) matrix, (c) order 3 tensor,
(d) vector-matrix multiplication (e) matrix-matrix multiplication (f) matrix-tensor
contraction. Figure reproduced from [6].
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the physical dimension d, while the maximum dimension of the contracted indices is
called the bond dimension and will be denoted D. Tensor networks provide both
a representation of quantum states, as well as algorithms based on tensor network
contractions to compute their properties. They can be defined in different geometries
and in this chapter we will focus on the one-dimensional case.

Matrix Product States

In one dimension, a natural choice of network is a Matrix Product State (MPS)
(Fig. 2.2), in which the wave function is decomposed as

D
YISt =y AV AR, 5 AR (2.2)
a,fB,...,w=1
= A7 A - A, (2.3)
where Aj' and A}Y are D-dimensional vectors, and Ajj ,j€e{2,...,N —1} are

D x D matrices. In periodic boundary conditions, all the A;j are matrices and the
coefficients of the wave function are

D
S81,.-,SN __ S s s
P = Y AT AT AR 24
a,f,...,w=1
= Tr (ASTAS? - A3Y). (2.5)
S1 S92 S3 S4 S5 Se J
d
[ 1 1 1 | F
I 1bslp.qu AJ
S1 S2 S3 S4 S5 Se S1 S22 S3 S84 S5 Sg

<’d <
D D

APAPAFAFADAR  Te (A7 AP AP AT AT AY)

Fig. 2.2.: Decomposition of a tensor into a MPS in open boundary conditions (left) or
periodic boundary conditions (right).

The number of coefficients in the MPS is O(dD?N), which is linear in the system
size, instead of the original exponential scaling d"¥ of the number of coefficients
of 1. By successive application of the singular value decomposition to the tensor
1S-5N - one can show that any quantum state can be written as a MPS. In general
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the corresponding bond dimension D will however scale exponentially with the
system size. Nevertheless, already for small bond dimensions many interesting
states can be represented by a MPS. Consider for example the AKLT model, with
Hamiltonian for a one dimensional spin-1 system given by[117]

N1 1 , 1
H:Z isz"sz‘ﬂ—i—g(si-siﬂ) +§ . (2.6)
=1

This model is gapped and its ground state in periodic boundary conditions can be
written as a MPS, with matrices of bond dimension 2 given by

?j—lz\ﬁ 0 1) ysm=o_ _ JL(1 0 5'712—\/5 vo
4 3(0 0) 5\l —1) 3\1 0)° @7

Given a Hamiltonian, one can use variational methods to find an approximation to
its ground state in the form of a MPS. These algorithms rely on the minimization of
the energy of the MPS. The variational principle ensures that the ground state is the
only state minimizing the energy (up to potential degeneracies if the ground state
manifold contains more than one state), so it can be approximated by minimizing
the energy of a wave function:

(VH)

(V1)

The Density Matrix Renormalization Group algorithm[16] performs this variational
search on the class of MPS. It fixes the value of all tensors in the MPS except for
one and optimizes this tensor to minimize the energy, which can be computed using
tensor network contractions. By then sweeping along the MPS to update all tensors
and to minimize the energy, an approximation to the ground state can be found.
Another algorithm to optimize MPS based on Monte Carlo sampling will be presented
later in chapter 4. Conversely, given a MPS one can always find a local Hamiltonian,
denoted as parent Hamiltonian, for which this state is a ground state.

Ygs = H;bin (2.8)

Properties of Matrix Product States

Let us now discuss an important property of MPS: they satisfy an area law. Consider
a one dimensional spin chain with open boundary conditions and |¢)) a quantum
state that is a matrix product state. Let us denote A the region including the first L
spins, and B the region containing the remaining N — L spins (Fig. 1.1), and write
the Schmidt decomposition of |¢) as

D,
W}> = Z )\a‘wA,a> ® |¢B,a>a (2.9)

a=1
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where |4 o) (resp. |1)p o)) are orthonormal states living in region A (resp. B) and
Ao are positive numbers. For a MPS, we can compute explicitly the Schmidt values
Ao by performing successive singular value decompositions which bring the MPS
into a canonical form[118], we then have that the Schmidt rank D, is bounded by
the bond dimension D of the matrices. The reduced density matrix over system A
can be written as

D
pa=Trg|Y) (W] =D ANtaa)(thaal (2.10)
a=1

Let us introduce the entanglement entropy S 4, which is the Von Neumann entropy
of pa, and the a-Renyi entropies S§ (a > 0):

Sa=—Trpalogpa, (2.11)
1
9= log Tr p®. 2.12
Sa=q_—_logTrp (2.12)
We have that Sy = — 32, A2 log A2, which is maximum when all the Schmidt

values are equal to 1/D. Finally we obtain that
Sa <logD, (2.13)

which is the area law for a MPS: for a bounded value of D, the entanglement entropy
is bounded by a constant, which is proportional to the size of the boundary between
regions A and B. Notice that if region A consists of a region in the middle of the
chain, then two bounds are cut at the boundary between A and B, and we have that
Sa <2logD.

Moreover, any quantum state satisfying an area law in one dimension for a-Renyi
entropies, a < 1, can be efficiently approximated by a MPS[26, 27]. This means
that the number of parameters in the MPS scales polynomially with the system size
for a fixed accuracy. Moreover it has been shown that the area law holds for one-
dimensional Hamiltonians with local interactions and a finite non-zero energy gap
between the ground state and the first excited state[17]. This means that MPS can
approximate ground states of one-dimensional gapped Hamiltonians efficiently.

Let us now look at the computation of expectation values of observables for a MPS.
Consider an infinite translational invariant MPS and two local observables O, and
O, ; acting at two sites separated by a distance d. The correlation function is defined
as

C(d) = (V|00 400} = (IO ) (P07 4l¥h), (2.14)

which in tensor diagrams notation is represented in Fig. 2.3 (we assume here that
the MPS is normalized). The correlation function can be computed by contracting
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Fig. 2.3.: Correlation function of two observables for a MPS.

the corresponding tensor network. For an infinite translational invariant MPS, it can
be shown that at long distances

|C(d)] ~ Ce ¥, (2.15)

where C'is a constant and ¢ is the correlation length. Correlations in a MPS therefore
decay exponentially with the distance.

Infinite dimensional Matrix Product States for critical
systems

Critical states and Matrix Product States

Consider now a system at a continuous quantum phase transition. At the critical
point, the gap closes and the correlation length diverges. Scale invariance emerges
because there is no finite characteristic length in the system, so the correlations
cannot decay exponentially with the distance. Instead, the correlation function takes
the form of a polynomial C(d) = 1/d”, where v is a critical exponent. Because of
scale invariance, the critical point can be described by a scale invariant massless
theory. This theory is very often a Conformal Field Theory (CFT). Tools from CFT
allow in addition to compute the entanglement and Renyi entropies of an interval of
length L, obtaining the universal formulas[33-35]:

L
Sp ~ Elog—, (2.16)
3 a
c 1 L
S¥~—-(1——=)log— 2.1
L 6 ( Oé) og aa ( 7)

where c is the central charge, a number characterizing the CFT. These formulas show
that critical systems violate the area law, although only logarithmically.
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If we compare these properties with the properties of MPS of fixed bond dimension,
we see that they are incompatible: in a MPS with fixed bond dimension, the corre-
lations will decay exponentially, and not polynomially at large distances, and the
area law will be satisfied. Nevertheless it was shown that MPS can approximate
critical systems efficiently even if the entropy scales logarithmically with the size
of the subsystem[26, 27]. In this case the bond dimension D must increase poly-
nomially with the system size, as can be seen from (2.13). One may ask if there is
another way of defining MPS such that they would represent critical systems in the
thermodynamic limit, which requires having an infinite bond dimension. In general
this would require an infinite number of parameters and the wave function could
not be computed. Nevertheless, in some cases it is possible to deal with infinite
operators which have few parameters and compute an MPS wave function. The
resulting states are called infinite dimensional MPS and were introduced in [38].

Construction of an infinite dimensional Matrix Product States
from a free massless boson

An infinite dimensional MPS is a state for which the coefficients of the wave function
have the form of a vacuum expectation value of a product of field operators:

P(s1,...,5N) < (0|Vs,(21) ... Vs (23)]0). (2.18)

Here we consider a field theory with vacuum [0) as well as field operators Vs,
which depend on the value of the spin variable and act at positions z; which will be
specified later. In general such a correlator cannot be evaluated, but as we will see
an appropriate choice of the field operators leads to analytical expressions for the
wave function. This expression is reminiscent from the definition of a MPS in (2.3),
but the matrices have been replaced with field operators, and the boundary vectors
by a vacuum expectation value (Fig. 2.4). For a bosonic field for example the field
operators can be expressed in terms of bosonic creation and annihilation operators,
acting on an infinite dimensional space which is the bosonic Fock space. The virtual
degrees of freedom in a MPS now correspond to bosonic modes in this Fock space.

In the following we will review the construction for the first infinite dimensional
MPS introduced in [38]. Consider a field theory in 141 space-time dimensions,
with coordinates x and ¢. Since we are interested in describing critical systems, it is
natural to choose this theory to be conformal invariant, and the operators in (2.18)
to be scale invariant field operators of this theory. Because we later want to extend
our construction to other field theories which may not be conformal field theories,
we will present the construction independently of the CFT structure. This can be

2.2 Infinite dimensional Matrix Product States for critical systems
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Fig. 2.4.: MPS (top) and infinite dimensional MPS (bottom) in which the tensors have been
replaced by field operators depending on the spin s; and acting at positions z;.

done as follows. We choose the free massless boson field theory, which is a CFT[32],
with field ¢(x,t) and Lagrangian density

£= o (00@.0) - @.6(.0)?) . 219)

One can already see that this theory will be invariant under scaling transformations
of the form (z,t) — (Ax, At). We consider a cylinder geometry with circumference
R such that ¢(x + R,t) = ¢(x,t) and work in the transformed coordinates z =
e 2miz—it)/R anq z, = ¢2mi(*+i)/R The theory can be quantized and the mode
expansion for the field can be expressed as

&(2,2) = po — imgIn(22) + i \/lﬁ (anzj_" - ) + Z (anz &LE?) ,
n=1

(2.20)
where the non-zero commutators are [an, al ] = [an, ’m} = Snms [0, 0] = i. In
the massless case, this field can be divided into chiral fields ¢ (2) and vr(z) which

depend only on z and z: ¢(z) = ¢L(Z) + ¢r(2), with
vr(z) =Q —iPln(z Z (anz aLz?) , (2.21)

¢or(2) =Q —iPlIn(z Z (anz &;’12}1) , (2.22)

where [Q, P] = [Q P] =i and [Q Q} [Q P} [ ,Q} = [P, 15} = 0.
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Now that we know the expression of the field in terms of bosonic creation and
annihilation operators, we have to make a choice for the operators Vs, appearing
in the wave function. To obtain a scale-invariant wave function a natural choice
is to take operators which transform appropriately under such transformations.
More precisely, since we are working with a conformal theory, consider conformal
transformations. These are transformations which preserve angles, locally they
are equivalent to rotations and dilations. On the complex plane global conformal
transformations are defined as

az+b
_>

a1 d ad — bec = 1. (2.23)

Any mapping z — w = f(z), Z — w = f(Z), where f is analytic and f is antianalytic,
is locally conformal. A primary field is a field which transforms under such a mapping
as
ow\ " row\ "
— , - _ g g -

(2, 5) = ' (w, ¥) = (82) (82) (2, 2), 2.24)
where h and h are called the conformal dimensions of the field ®. Fields transforming
accordingly under global conformal transformations are called quasi-primary field.

Invariance under rotations, translations and scale invariance completely fixes the
correlations of such fields: two-point correlations take the form

1
(Zl _ 22)h1+h2 (21 _ 22)514-712’

(@1(21, 21)P2(22, 22)) (2.25)
which is reminiscent of the similar form for scale-invariant decay of correlations in a
critical system.

The boson field ¢ is not a primary field, and so not a suitable candidate to construct
a scale invariant infinite dimensional MPS. However it can be used to construct
primary fields in the free massless boson theory which are vertex operators, normal
ordered exponentials of the field defined as Vj(z,2) =: ¢#?(+2) .. The normal
ordering denoted as : : reorders operators such that creation operators are on the
left of annihilation operators. As we have seen we can decompose the field ¢ into
chiral fields depending only on z or z, which allows us to decouple holomorphic and
non-holomorphic operators, so here we can also use only the chiral part of the field
in the expression of the vertex operator:

Vrp(z) =: ePer(z) . (2.26)
These operators have for correlations

(VR gen) Vag (22)) = Sp1p—o(z1 — 22)7". (2.27)

2.2 Infinite dimensional Matrix Product States for critical systems
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Ref. [38] constructed an infinite dimensional MPS using these operators by making
the choice

Vsj (zj) = XS]'VR,\/ESJ- (Zj)a (2.28)
=Xs, eiVasjor(2) : (2.29)

where « is a positive real number that is a free parameter, z; is a position on the
complex plane and ;; is a phase that is chosen to be

x; = (=1)U=DGs+/2, (2.30)

It remains to evaluate the correlator of the field operators in (2.18), leading to a
wave function, that we denote 1)y, equal to

Yo(81,...,8n) < (x1: eVasigr(z1) . CLOXN G eVasner(2N) 2, (2.31)
N
x H Xi Os H(ZJ — 2 ) ¥k, (2.32)
=1 <k

where §; = 1if Zj.v:l s; = 0 and zero otherwise. The z; are free parameters that can
(but need not) be taken as position of the spins on the complex plane. For example
a translational invariant chain leads to positions z; = ¢™/N on the unit circle.

Computing properties of the state with Monte Carlo
techniques

Now that we have defined a quantum state using an infinite dimensional MPS, one
may ask what are its properties. Correlations can no longer be computed using
tensor-network contractions, but one has access to the analytical expression of the
wave function 1)y (2.32). This allows the use of powerful Monte Carlo techniques
to compute expectation values of observables. Indeed consider for example the
expectation value of o707, which can be written as

. (olozaglo)

< oioil>= , (2.33)
ot (dolo)
d 2
= 2 olsr, o5l (2.34)
51,...,81\7:1 <¢0|¢0>
Now observe that p(sy, ..., sy) = W is a probability distribution: it is

positive and normalized. The expectation value < oo} > can be computed as
an average value of s;s;, over samples from probability distribution p. Using the
Metropolis-Hastings algorithm[119, 120], it is possible to generate samples from a
distribution as long as one can compute a function f proportional to the probability
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distribution p. In our case we know the analytical expression for the wave function
up to a normalization factor and can use this expression as function f. The procedure
constructs a Markov chain which asymptotically reaches a stationary distribution
equal to p, using the following algorithm:

* Initialization:
— Set the time ¢t = 0.
- Choose a random configuration s® = s1,...,sy .
- Choose a proposal distribution g(s’|s) which generates a new configura-
tion from a previous configuration, for example by flipping a spin.

* Iterate at time ¢:
- Generate a new candidate configuration s’ randomly according to g(s’|st).
/ t|/
- Compute an acceptance probability A = min (1, J;((SS)) i EZ,‘LS%)
- Generate a uniform random number r € [0, 1].

« If r < A (which happens with probability A), accept the new configu-
t+1

ration s**! = ¢
« If r > A, reject the new configuration and set s

* Increment the time ¢ by 1.

t+1 t

=S

By repeating this procedure one obtains (correlated) samples s°,s?,...st from p.

It is straightforward to parallelize this algorithm by running multiple copies of the
program starting with different initial configurations. The mean of s;s; over these
samples converges to the desired expectation value and can be computed with
hundred of spins, which is a much larger system than can be studied with exact
diagonalization techniques.

Another quantity that can be computed efficiently with Monte Carlo techniques is

the second Renyi entropy 5512) = —log Tr p%, where p,4 is the density matrix of a

subsystem A. This can be done by rewriting[38, 121-123]

(Yo|n, m)(po|n/,m’) |

-2
I S R v DO B

n,n’,m,m’

(2.35)
where |n) (and |n’)) is an orthonormal basis in the space of the spins in region A and
|m) (and |m’)) another basis corresponding to the rest of the spins. The right-hand
side of this expression is an expectation value so that the sum can be performed
again by using the previous algorithm, this time with two independent spin chains.

Using these techniques, it was shown in [38] that the two-point correlations of
the state 1y decay polynomially with the distance and that the Renyi entropy of a
reduced part of the system of size L scales logarithmically with L, for all values
of 0 < a < 1/2. These results will be reproduced and extended on in the next

2.2 Infinite dimensional Matrix Product States for critical systems
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section. These properties confirm that ¢ is a critical state. Other critical models
have also been constructed using a different CFT as the starting point[124, 125]. It
has moreover been demonstrated that a related infinite dimensional MPS including
fewer bosonic modes can display even power law violations of the area law[126].

So far we have considered a wave function but not a physical system. One may ask
whether such a state is the ground state of a physical Hamiltonian. It was found that
1o has a high overlap with the ground state of the critical XXZ chain with periodic
boundary conditions for a suitable choice of the anisotropic coupling. Moreover at
a = 1/2, 1)y is exactly equal to the ground state of the Haldane-Shastry model[127,
128]. This confirms that the state v is critical. An exact parent Hamiltonian for
which 1) is the ground state at o = 1/2 for any choice of positions z; has also been
derived[70].

2.3 A quantum phase transition with infinite
dimensional Matrix Product States

2.3.1 Construction of an infinite dimensional Matrix Product State
from a massive field

We now would like to introduce a parameter that takes the state away from criticality,
to create a model of a phase transition. This can be done naturally by generalizing
the previous construction arising from a free massless boson to the case of a free
boson with mass m, breaking scale invariance.

The mode expansion of a free boson ¢,, with mass m is

wn R

R n,wnR n
, _ +p-usR _n_ t —f+upf n
+12211 27 (anz_ 27 74w 3727 Tarm 7aibz_ 20 4m 72T 4r ), (236)

J J

2
where the frequency is w, = \/m? + (2”7”) . Unlike in the massless case the zero

mode cannot be separated into two chiral parts, so instead of working with the chiral
field pr(z) we will work with the total field ¢,,(z, z). We can observe that already
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in the massless case the diagonal elements of the density operator only depend on
the full correlator:

[o(s1s- .., sn)|* o <: eVesieziz) o givasng(a,En) :> . (2.37)

This motivates us to choose a wave function which satisfies the same property with
a field of mass m. In this case, the full correlator takes the form

<. eiVasidm(z1,21) . . givasndm(zn,EN) > —
o }gﬁm %+wfR ~ %_wI,R
2 ™ 27 ™ j ™
exp( a27<k SjSk Rm ( |zj‘) ) exp O‘Z7<k 858k Zn 1 Run (Z) (i)
B L\ B
iy Z]' iy
Xexp aZ]<ks]sk Zn 1 R;‘n (Z) (a) . (238)

To obtain a wave function satisfying (2.37), one has to divide this correlator. This
can be done by choosing a wave function proportional to

exp aZstk i (’Zk’>

Rm

n | wpR

AR RN
X exp —aZs]skz an< > (f) . (2.39)

i<k “k

This expression is not translational invariant when the spins are placed on a circle at
2mij/N as was the case in the massless case. We therefore take the
limit R — oo in the previous expression, which maps the cylinder to a plane and a

positions Zj =€

periodic spin chain to an open spin chain. The resulting wave function is

o0 g~ tplek—a;) R
Um(s1,. - ) o HXz exp | —« Z 5j8k e~ Vmitp (tk_tj)dp
0 m?2 + p?
i<k

(2.40)

The diagonal elements of the density operator are now equal to the full correlator
for the field with mass (2.38). Moreover, in the limit m — 0, the wave function
reduces to

Yo(S1,...,SN) X ds H Xj H — g )5k (2.41)

j=1 i<k

where v; = z; — it;. Thus we recover the massless wave function (2.32) introduced
in the previous section, but in the planar geometry. For this reason we choose the
same particular choice of phases (2.30), which will be assumed in the rest of this
work.

2.3 A quantum phase transition with infinite dimensional Matrix Product States
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Properties of the phase transition at zero temperature

Let us now consider a one-dimensional chain of NV spins at positions z; = j, t; =0
with open boundary conditions and suppose that the wave function is given by
(2.40). The integral in the wave function can be expressed as:

oo o—ip(TK—1;) it k—j

(lo(m|xx, — xj|) — Lo(mlzg — ;1))

(2.42)

where Ly is a modified Struve function and K, and I, are modified Bessel functions.
This wave function depends only on the distance between two spins. In the thermo-
dynamic limit, it is invariant under a translation x; — x; + 2. We shall only consider
a value of « in the range (0, 1/2]. In the limit of zero mass and when the spins are
on a chain with periodic boundary conditions, the wave function corresponds to the
massless wave function studied in [38]: the state is critical and close to the ground
state of a critical XXZ chain. Here we study a chain with open boundary conditions
but we expect the state to have similar properties in the massless limit.

Let us first compute the second Renyi entropy (2.12) of a reduced part of the system
of size L in the middle of the chain. This can be done using the Monte Carlo
algorithm introduced in 2.2.3. The results for different values of the mass are shown
in Fig. 2.5a. When the mass is close to zero, the second Renyi entropy scales as
1 log(L), which is the expected result for an infinite critical chain with central charge
¢ = 1[33-35], such as the massless free boson theory. For higher values of the mass,
the entropy saturates to a constant that is independent of L and the state is no longer
critical.

We can also compute the expectation value of single spin operators (¢%) (a = z,y, z)
and two-point correlation functions C3* = (oy05_ ) — (on)(0h,4). Since we are
interested in the thermodynamic limit, we compute the correlators between spins
at positions (N — d)/2 and (N + d)/2 that sit in the middle of the chain. We check
that these quantities do not depend on the total number of spins N as long as
d < N/2, so that the behaviour in the thermodynamic limit can be extracted from
these measurements. The results in Fig. 2.5b and 2.5c show that in the massless
case C'J* decays polynomially and the expectation value (o7) is zero. In the massive
case however this expectation value is no longer zero, but shows long-range anti-
ferromagnetic order in the x direction, so the expectation value (o¥) can serve
as order parameter. The correlation function C7* decays exponentially at large
distances when there is a mass: this defines a finite correlation length A such that
C%*  e~%*, This length diverges when the mass goes to zero, while in the limit

m — oo, the state is a Néel state in the z direction, which is invariant under
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Fig. 2.5.: All quantities are evaluated from Monte Carlo simulations for o = 0.2.

(a) Scaling of the Renyi entropy S(LZ) for different values of the mass, N = 200
spins. The inset shows with a logarithmic scale for the abscissa that the scaling is
logarithmic in L when the mass is close to zero. The dotted line in the inset is a fit
of the form } log(L) + constant, confirming that the central charge of the critical
point is 1. For higher masses, the entropy saturates to a constant. The error bars,
estimated from the standard error of a mean of Monte Carlo trajectories with
different initial conditions, are of the order 10~2 for all points.

(b) Absolute value of the magnetization in the x direction for one site (o7, ,) as a
function of the mass for a chain with V = 600 spins. The error bars are smaller
than 5% of the values for all points. The dotted line is a fit of the first 6 points of
the form ym™, from which the critical exponent can be extracted. Here 7 = 0.4.
(c) Absolute value of the connected correlation function C%*, N = 200 spins.
When the mass is zero this quantity decays polynomially (red solid line), while in
the massive case the decay for large d is exponential. The inset shows the same
quantity in a log-log scale. The error bars are smaller than 2 x 10~ for all points.
Figure reproduced from [1].

translations x; — xj + 2. We can conclude that the mass introduces a length scale

in the system and breaks the criticality of the state.

Infinite dimensional Matrix Product States at finite

temperature

So far we have used a pure state description at zero temperature. Experiments

are however at small but non-zero temperature and we may ask what are the
properties above the quantum phase transition at finite temperature. For this we
need to introduce a mixed state ansatz to describe a spin chain at finite temperature.
Consider two chains A and B of N spins each, with coordinates (z; = j, t; = 0) and
(z; = j, t; = 9) respectively (Fig. 2.6). Let us describe the state of the complete

2.4 Infinite dimensional Matrix Product States at finite temperature
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system 1) 4 by the previously introduced wave function (2.40). The state of the first
spin chain can be computed by tracing out the degrees of freedom of the second
spin chain, resulting in the reduced density matrix p4 = Trp [Yap)(¢¥ap|. In the
limit where 6 — oo, the two chains decouple. System A is then in a pure state at
zero temperature and we recover two copies of the state described in the previous
section. In the limit § — 0, each spin from the first chain is very close to a spin from
the second chain and the two spins form a singlet, so that the effective temperature
for each chain is infinite. For a finite 4, this construction therefore introduces an
effective temperature for the chain A. We define 7' = 1/0 as a representation of
the temperature of the system A. Note that the effective temperature may depend
differently on .

bt ez N Chain B
5-D-B-O-O-0-0-0-O0-0-0-0-0——
-
o2z = A ™~ N X
;—@-Q-Q- Q- -
0 D D Chain A

Fig. 2.6.: The two spin chains A and B are separated by a distance ¢. The one dimensional
state that is studied is the reduced state of the chain A. To compute the mutual
information we separate the chain into the systems C of L spins in the middle of
the chain and the complementary system D of N — L spins. Figure reproduced
from [1].

It is not possible to compute the complete wave function and take the partial trace
for a large system, but it is not necessary in this case: Renyi entropies and spin-spin
correlators between spins on the first chain can be computed using the wave function
of the two chains in the same way as in the zero temperature case, so that the trace
never needs to be performed in actual computations.

At zero temperature and in the thermodynamic limit, the expectation value (o7) is
zero at the critical point but does not vanish when there is a non-zero mass. The
absolute value of this quantity, computed on a site at position i = % in the middle of a
chain of 600 spins, is used to draw the phase diagram at finite temperature (Fig. 2.7).
We observe that two distinct regions appear in the phase diagram. For non-zero mass
and small temperature, [(o7%;,)| is non-zero and independent of the temperature.
There is still long-range order in the x direction (region I). If we increase the
temperature, the magnetization starts to decrease rapidly with the temperature,
before reaching a very small value, which may disappear in the thermodynamic limit
(region II). These two distinct regions also appear when looking at other observables.
We show in Fig. 2.8 the behavior of the correlation length A computed from the C*
correlation function. For small temperatures, the correlation length is independent
of the temperature, whereas in the second region the correlation length decreases
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Fig. 2.7.: Absolute value of the magnetization in the x direction for one site (0, ,) as a

function of mass and temperature from Monte Carlo simulations with N = 600,
o = 0.2. Figure reproduced from [1].

with the temperature. We can compare this behaviour with the phase diagram of
an Ising model with a transverse magnetic field, which is the prototype model of
quantum criticality [30, 129, 130]: this model has a quantum paramagnetic phase at
low temperatures in which the correlation length is independent of the temperature,
while at higher temperatures it reaches a region of quantum criticality in which
the correlation length decays as 1/7. Our mixed state ansatz displays qualitatively
similar properties.

Another quantity that can be used to probe a state at finite temperature is the mutual
information I = S¢ + Sp — Scup, where {C, D} is a partition of the spin chain
and S¢ is the von Neumann entropy of subsystem C'. The mutual information is a
measure of both classical and quantum correlations between two parts of the system
[131]. It fulfils an area law when the system has a finite correlation length [132].
Here we consider instead the Renyi mutual information, obtained by replacing
von Neumann entropies by second Renyi entropies in the definition of the mutual
information: Ig) = S(C? ) + 51()2) — Sf). We take C' to be the system of L spins in the
middle of the chain and D to be the system of the N — L complementary spins in
the chain A. In this case A = C U D (Fig. 2.6). The Renyi mutual information has
been measured for spin systems at finite temperature [133-135] and is expected to
have a similar behaviour as the mutual information. At zero temperature, the chain
is in a pure state and the entropy of the complete chain is zero. The Renyi mutual
information therefore reduces to 251(:2), which scales logarithmically with L at the
critical point. We observe that the Renyi mutual information saturates to a constant

2.4 Infinite dimensional Matrix Product States at finite temperature
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Fig. 2.8.: Correlation length )\ as a function of the temperature for a spin chain with
N =200 and « = 0.2, at m = 0.01. The background colours represent the value
of [(o%/»)| taken from the phase diagram (Fig. 2.7) for the same value of the
mass. Figure reproduced from [1].

at large L except when we are close to the critical point, which is compatible with
the observation that the correlation length is finite everywhere except at the critical
point. In region I this constant is independent of the temperature. In region II
however the Renyi mutual information converges to a value that has some non
trivial dependence on the temperature. Above the critical point we observe that
the Renyi mutual information between two halves of the system decays with the
temperature (Fig. 2.9a). A similar behavior is expected for an XXZ chain at finite
temperature [136], since the mutual information diverges at zero temperature. In
the massive case this quantity increases when the region of quantum criticality is
reached (Fig. 2.9b), while in the limit of infinite temperatures there would be no
correlations and the mutual information would vanish again. A similar behavior
of the mutual information has been observed near regions of quantum criticality
at finite temperature in different models [133, 135, 137]. These results confirm
the presence of a region of quantum criticality above the critical point in the phase
diagram, in which strong correlations are present.

From a model wave function to a model
Hamiltonian

So far we have considered only wave functions, but not physical systems. One may
ask whether these wave functions correspond to the ground state or thermal state
of some physical Hamiltonian, which might realize a system with the properties we
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Fig. 2.9.: (a) Mutual information between two halves of the chain 11(\72/)2 for N = 200, o = 0.2
and m = 1075: for this value of the mass we are almost above the quantum critical
point and the mutual information decreases as we go away from the critical point
by increasing the temperature. The error bars, estimated from the standard error
of a mean of Monte Carlo trajectories with different initial conditions, are smaller
than 2 x 1072 for all points.

(b) Mutual information between two halves of the chain IJ(\?/)Z for N = 200, o = 0.2
and m = 0.01. The background colours represent the value of |(0%, ,)| taken
from the phase diagram (Fig. 2.7) for the same value of the mass: the mutual
information increases as we enter the region of quantum criticality. The error bars
are smaller than 5 x 1072 for all points.

Figure reproduced from [1].

have computed. It was already shown in [38] that ¢y has a high overlap with the
ground state of the critical XXZ chain with periodic boundary conditions:

N

Hxxz =Y (S§S51+SUSY, + ASiSH,) (2.43)

=1

where S¢ = 1o¢ for a € {,y, 2} and the ¢ are Pauli matrices. In this section we
show that we can also find a Hamiltonian for the massive case.

For a general Hamiltonian, a thermal state is given by
pin = e PH | Ty [e—ﬂH} . (2.44)
Since we know the density matrix but not the Hamiltonian, we can first define

H,, = —logpa, (2.45)

2.5 From a model wave function to a model Hamiltonian
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where p4 is the thermal state describing the chain A at a finite temperature. Note
that H,, may have a non-trivial dependence on the temperature and be non local,
and so would not be a suitable Hamiltonian.

We observe that when the mass is close to zero and the temperature is high, H,,
restricted to two-body interactions has the form of an Hy xz Hamiltonian, up to
some non translational invariant corrections. This suggests to look at H,, at high
temperatures in the massive case as well. H,, restricted to two-body interactions
has, up to some non translational invariant terms, the form

Hy = Hxxz+ H), (2.46)
N ] N—1

HY =AY (1S +p ) Si8Y,. (2.47)
i=1 j=1

Let us take this Hamiltonian as a guess for a Hamiltonian realizing the thermal
state. In the thermodynamic limit, this Hamiltonian is invariant under translations
xr — Tk + 2, as is the wave function. Let us now define a thermal state py for the
Hamiltonian H,, by:

pu = e Pt [Ty =M ] (2.48)

This state depends on the parameters 3, A, A and u. A way to check whether this
Hamiltonian corresponds to our system is to compute the fidelity [138, 139] between
this state and the state p4:

Fpropa) =T [\[Vorapa/om] - (2.49)

For different values of o, m and T' we optimize over the parameters 3, A, A and p in
such a way that the fidelity is maximized. The maximum for N = 12 spins (24 spins
in total for the two chains) is shown in Fig. 2.10a for different values of the mass and
the temperature. When the mass is zero and the temperature is small, we recover
the result from [38]: the fidelity is above 99% when \ and p are zero, so that the
state is close to the ground state of the XXZ chain. In the massive case the thermal
state from Hamiltonian H,, has a fidelity higher than 98% with the state of chain
A for all values of the mass and 7" smaller than 0.1, which is very high considering
the size of the Hilbert space: the fidelity per lattice site F1/V is higher than 99.85%
(Fig. 2.10D).

We can reduce the number of free parameters in the Hamiltonian by using the result
in the massless case to fix the parameters 8 and A with respect to 7" and «. We
then assume that these parameters do not depend on the mass m, and that all the
dependence in the mass is captured by parameters \ and u. By optimizing over these
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Fig. 2.10.: (a) Maximum of the fidelity F'(py, pa) between a thermal state obtained from a
Hamiltonian of the form H,, and the state of chain A as a function of the mass,
at o = 0.2 and different temperatures (/N = 12 spins).

(b) Corresponding fidelity per site F(pg, pa)'/" for different numbers of spins,
ata=0.2and m = 1071,

(c) Parameters A and p in the Hamiltonian H,,, for which the fidelity F'(pg, pa)
is maximal as a function of the mass, for « = 0.2, T = 1073, N = 10. The two
straight lines are fits of these data of the form A = \gm?2%, p = pom?*.

Figure reproduced from [1].

two remaining parameters, we find that there exist two functions A\(m) and u(m)
for which the previous result still holds. In the regime m € (0,107!], « < 1/4, these
functions can be written as A(m) = A\gm?® and u(m) = uom?>, where \q and g are
constants independent of the mass (Fig. 2.10c). The ansatz (2.40) therefore can
be used in this regime to describe the thermal state of a spin chain governed by a
Hamiltonian of the form:

N-1

Hy = 3 (STSf+ SUSh + ASESEy ) + (—1)m™ (ASF + 7Sl ) +m®ASE,

i=1
(2.50)

This two-body Hamiltonian is local and contains only nearest neighbour interactions,
so might be implemented in experiments.

Conclusion

Matrix Product States do not capture all properties of critical systems at a phase
transition. This motivated the definition of infinite dimensional MPS, arising from the
correlator of products of quantum fields. These ansatz wave functions can naturally
capture the properties of critical systems. We have shown that this formalism
is not limited to conformal fields, but that it also applies to other field theories,

2.6 Conclusion
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which allowed us to construct a model wave function displaying a quantum phase
transition. This model has an analytical wave function and can be investigated by
Monte Carlo simulations, which enable us to study the entanglement properties
and correlators of the spin chain. These quantities show that it presents a critical
point as well as a non-critical phase at zero temperature. We have shown that by
doubling the size of the system and considering the reduced state of one half of
the system, one can construct a thermal state for a one-dimensional spin chain at
finite temperature. The phase diagram of this model has then been investigated and
it was shown that the finite temperature properties of the state reflect the phase
transition at zero temperature. We also provided a Hamiltonian with only nearest
neighbour interactions whose thermal state is very close to this model, showing that
such an analytical construction is relevant for the description of realistic physical
Hamiltonians.
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Fractional quantum Hall lattice
models from infinite dimensional
tensor networks

There exist other phase transitions which can arise in strongly correlated quantum
systems and which do not admit a local order parameter. These occur between
topological states of matter, which have attracted a lot of attention, both for the
fundamental physics they display as well as for their potential practical applications
in quantum computing. They were realized experimentally with the discovery of the
fractional quantum Hall (FQH) effect[45], in which electrons of a two-dimensional
electron gas subject to a strong magnetic field form an incompressible quantum fluid
giving rise to fractionally charged excitations. A large understanding of the FQH
effect was made possible by the discovery of analytical wave functions describing
the electrons, such as Laughlin’s wave function[63]. Experimental realizations of
FQH states and manipulation of their quasiparticles however remain a challenge,
which motivated a lot of research devoted to the realization of the FQH effect in
different systems, such as lattice systems.

This chapter is concerned with the use of infinite dimensional tensor networks
to build lattice models displaying FQH physics. Arising from correlators of field
operators, the infinite dimensional tensor networks that we consider are natural
lattice versions of continuum FQH wave functions such as Laughlin’s wave function.
Because the analytical expressions for the wave functions are known, their properties
can be studied even for large sizes using Monte Carlo techniques. Wave functions
for the quasiparticle excitations above these states can also be constructed, allowing
for the study of the properties of anyons on lattices. This approach furthermore
enables us to construct exact parent Hamiltonians for which these states are ground
states. These Hamiltonians are not local, but in a few cases we are able to find local
Hamiltonians that approximately realize the same states.

In section 3.1, we start by reviewing some properties of the FQH effect and of
Laughlin wave functions in the continuum. We then show in section 3.2 how
generalizations of the Kalmeyer-Laughlin states arise from infinite dimensional MPS.
We study these states on several lattices and investigate when these states have the
same topological properties as the corresponding continuum Laughlin states. We
derive exact non-local parent Hamiltonians for which the infinite dimensional MPS
are ground states for different fillings of the lattice, and discuss the properties of
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related edge states wave functions that are also eigenstates of the same Hamiltonians.
In section 3.3, we turn to the investigation of the quasiparticle excitations of these
states, which are anyons. We show that we can define analytical wave functions
for both the quasihole and quasielectron excitations, which allows us to study their
properties on the lattice as well as to derive exact Hamiltonians for which the
quasiparticle wave functions are ground states. Section 3.4 finally generalizes the
previous results to models of Moore-Read states with spin-1/2 or spin-1 lattices,
which have non-Abelian anyons as their quasiparticles. We study the properties
of these states along an interpolation between the continuum and the lattice, and
derive exact parent Hamiltonians for these states. While these parent Hamiltonians
are not local, we show that we can construct local Hamiltonians that stabilize some
of the states we introduce. This chapter is based on and reuses parts of Refs. [2, 3,
5]:

* [2] : Ivan Glasser, J. Ignacio Cirac, German Sierra and Anne E. B. Nielsen,
‘Exact parent Hamiltonians of bosonic and fermionic Moore-Read states on
lattices and local models’, New Journal of Physics 17, 082001 (2015), under
CC BY 3.0 license,
http://dx.doi.org/10.1088/1367-2630/17/8/082001

* [3] : Ivan Glasser, J. Ignacio Cirac, German Sierra and Anne E. B. Nielsen,
‘Lattice effects on Laughlin wave functions and parent Hamiltonians’, Physical
Review B 94, 245104 (2016), ©2016 by the American Physical Society,
http://dx.doi.org/10.1103/PhysRevB.94.245104

* [5] : Anne E. B. Nielsen, Ivan Glasser and Ivan D. Rodriguez, ‘Quasielectrons
as inverse quasiholes in lattice fractional quantum Hall models’, New Journal
of Physics 20, 033029 (2018), under CC BY 3.0 license,
http://dx.doi.org/10.1088/1367-2630/aab5d0

The fractional quantum Hall effect and Laughlin’s
wave function

The fractional quantum Hall (FQH) effect[140, 141], discovered in 1982[45], arises
in a 2D electron gas subject to a strong perpendicular magnetic field. One drives
a current through the sample and measures the longitudinal as well as transverse
Hall resistance (Fig. 3.1). Whereas classical physics predicts a linear dependence
of the transverse Hall resistivity with the magnetic field, quantized plateaux are
observed in experiments at values Ry = %e% (Fig. 1.4), while the longitudinal

resistance vanishes at the same points. v is a rational number known as the filling
fraction. This quantization is so precise that it is nowadays used in the definition
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of the electrical resistance standard. When v is an integer, this effect is known as
the integer quantum Hall effect[142] and can be understood without taking into
account interactions between the electrons. If we consider non-interacting electrons
in a magnetic field, the quantized energy levels are known as Landau levels and
are degenerate, with degeneracy given by the number of flux quanta through the
surface of the sample. The filling fraction v is equal to the ratio of the number of
electrons and the number of flux quanta. The integer quantum Hall effect appears
when an integer number of Landau levels is filled, so when v is an integer. The
incompressibility of the system is due to the energy gap needed to add an electron
once a Landau level is filled.

o
/ o

RL RH

Fig. 3.1.: Measurement of the Hall resistance Ry and longitudinal resistance R; when a
current [ is driven through a 2D electron gas subject to a perpendicular magnetic
field.

As such it was a surprise to find also an incompressible fluid when v = 1/3[45],
and later at many more rational numbers. In this case, the interactions between
the electrons have to be taken into account and a perturbative treatment is not

possible, which renders a microscopic solution to the FQH effect an intricate problem.

Effective descriptions of the state of the electrons, through trial wave functions, have
contributed a lot to our understanding of the FQH effect.

These approaches started with the introduction of Laughlin’s wave function[63]:

1 (|2
wLaughlin(Zb SRR ZM) X H(Zk - Zl)qe * Zj %] ) 3.1
k<l

which represents the wave function of the electrons in the lowest Landau level, where
Z; are the positions of the A electrons on the complex plane and ¢ is an integer
related to the filling fraction by v = 1/¢. The gaussian factor comes from the single
particle wave functions, and the Jastrow factor in front vanishes when two electrons

are at the same position. In this expression the magnetic length has been set to one.

This wave function has very high overlap with the exact ground state of the original

Hamiltonian with Coulomb interactions at ¢ = 3 for small number of electrons[143].

It can be shown to be the exact ground state of a gapped Hamiltonian in which the
interactions have been modified to pseudopotentials[144].

3.1 The fractional quantum Hall effect and Laughlin’s wave function
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A natural next step is therefore to ask what are the gapped excitations above this
ground state. Such excitations can appear when slightly varying the filling factor
away from v = 1/q, which can be done by changing the magnetic field slightly. This
led Laughlin to suggest an ansatz for a localized quasiparticle at position wy:

_1 12
G in(Z1,e e Zar) o [[(wo — ) [[(2Z — 2% 5258 3.2)
i k<l

which is the wave function for an excitation when a flux quantum has been added
to the system, thus slightly lowering the filling fraction. The probability of finding
an electron at or around position wy has been lowered, so the wave function
creates a quasihole at this position. In order to compensate for the additional
flux, this excitation needs to have a charge e/q. This shows that the quasihole
carries a fractional charge, a property which distinguishes it from known elementary
particles. A quasielectron with the same properties can also be defined, but it
has turned out to be much harder to describe theoretically. This is because it is
easier to modify the wave function to reduce the electron density locally than to
increase it due to the Pauli exclusion principle[63, 141, 145]. Another fascinating
property of these quasiparticles is that they are neither bosons nor fermions. In three
dimensions, wrapping one particle adiabatically around another is equivalent to
interchanging the particles twice, which can be continuously deformed to the identity
operation. The wave function should be left unchanged, so under a single exchange
the wave function can change only by a minus sign (for fermions) or not at all (for
bosons). In two dimensions, however, when two particles are interchanged twice in
a clockwise manner, their trajectory involves a nontrivial winding. The system does
not necessarily come back to the same state, in which case the particles are called
anyons[44]. Laughlin quasiholes are an example of such anyons, which acquire a
phase, or statistics, of 27 /¢ when braiding one quasihole around another. Systems
with anyonic quasiparticles are topologically ordered, which also manifests itself
in patterns of long-range entanglement. Indeed, one way to detect the presence of
anyonic quasiparticles directly from the ground state wave function is to compute the
topological entanglement entropy. Consider a region of the system with boundary of
size L, its entanglement entropy for large sizes satisfies[40, 41]

S =al —, (3.3)

where the first part of this expression is the area law, and the constant correction is
the topological entanglement entropy, which depends on the number and properties
of the anyons. Laughlin states have a topological entanglement entropy of vy (q) =

In(,/q)[146].

Laughlin wave functions describe the state of the electrons at filling fractions 1/q,
but not at other filling fractions which have been observed experimentally. They
have been generalized to states at other filling fractions through a hierarchical
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construction describing states at filling factors with odd denominators[144, 147] or
using composite fermions[148]. One way of generalizing the Laughlin wave function
that is of particular interest for the rest of this chapter is the observation that the
Laughlin state can be written as a correlator from CFT fields[68]. Indeed,

M
Zr) x (0] H  eVAPR(Z)) . o=iaro [ P Zer(Z) . |0}, (3.4)
j=1

wLaughlin(Zly s

where we recognize the vertex operators of a chiral free massless boson introduced
in (2.26), pp = ﬁ is the electron density and the last term ensures that the charge
neutrality condition is satisfied. One can also construct a quasihole operator from a
) :, and inserting this operator in the correlator leads to
the Laughlin quasihole wave function.

-1
1—F= w
vertex operator : ¢ va?#(""

Since its discovery in 1987 [149], one FQH state has attracted a lot of attention:
the v = 5/2 FQH state with electrons occupying the second Landau level cannot be
explained by a hierarchical construction based on the Laughlin states. The leading
candidate for its description is the Moore-Read “Pfaffian” state at filling 1/2 [68, 150,
151], describing the wave function of the electrons in the second Landau level. It
can be constructed as a correlator of other CFT fields, leading to a wave function
written as

mr(Z1, . .., Zar) o Pfaffian ( ) [Tz - Z)2e” 125141 (3.5)

Zi — Zj k<l

for which the quasiparticle excitations are fractionally charged anyons displaying
non-Abelian braiding statistics[68, 152-155], which can be used for topological
quantum computation[43, 44].

Lattice effects on Laughlin wave functions and
parent Hamiltonians

To realize FQH physics on lattices, several approaches have been suggested. In one
approach, one tries to mimic the interactions which give rise to the FQH effect in
a lattice system. This leads to the proposal of flat-band models which mimic the
Landau levels[47-51], where the magnetic field is replaced by a complex hopping
phase on the lattice. Another approach are chiral spin liquids, in which spins on
a lattice form a collective state that has the same topological properties as FQH
states. These states were first introduced with the Kalmeyer-Laughlin state[52], a
bosonic Laughlin state at filling fraction » = 1/2 which has the same expression as
the Laughlin state with ¢ = 2 (3.1), but with positions of particles limited to the
lattice sites. Over the last decades, these has been a lot of interest in finding spin

3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
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Hamiltonians that have such a state as their ground state. Parent Hamiltonians have
been obtained for the Kalmeyer-Laughlin state and some of its generalizations[54,
55, 69, 156-160]. Recently several local Hamiltonians on the square or Kagome
lattice have been shown to exhibit such a chiral spin liquid as their ground state
[54-62].

The previous examples of the realization of the Kalmeyer-Laughlin state on spin-
1/2 lattices typically occur either at half-filling of the lattice (half of the spins are
pointing up in the z-direction) or at low filling of the lattice (so the system is close
to a continuum limit). As we will see we can in principle define such a state also on
lattices with different fillings. Indeed it was suggested that this state can emerge
on a lattice at filling 1/3 [161], which was recently observed numerically for a
Bose-Hubbard model on the Kagome lattice[162]. It is also of interest to understand
whether the lattice may destroy the physics of the FQH effect. Indeed, it is not a
priori clear that a wave function of a FQH state in the continuum still displays the
same topological effects once discretized and placed on a lattice, and we will see in
this section that while in most cases this happens[54, 69, 163-165], there are cases
where the lattice destroys the FQH physics.

In this section we define lattice versions of Laughlin wave functions on arbitrary
lattices, with lattice filling factor not necessarily equal to v, and investigate the phase
diagram using measures of correlations and entanglement entropy. We find evidence
that in a large part of the phase diagram the states on a square lattice have the
same topological properties as the continuum Laughlin states, but that particular
particle-hole symmetric states are topologically trivial. This behavior does not subsist
if the lattice is deformed to a frustrated lattice, like the triangular and the Kagome
lattice. We study edge states wave functions obtained by adding a charge outside
the boundary of the lattice, and parent Hamiltonians are constructed for both edge
states as well as the original lattice Laughlin states. This section is based on Ref. [3]
and is a modification thereof.

Lattice Laughlin states at different lattice filling factors

In this subsection we start by defining Laughlin wave functions with number of
particles per flux v = 1/q (¢ € N) on lattices with arbitrary lattice filling factor. Let
us consider a lattice with IV sites at positions z;, j € {1,2,..., N} in the complex
plane. Particular choices of the coordinates z; will for example yield a square or
triangular lattice on the plane or on the cylinder, as pictured in Fig. 3.2.

The systems we consider in this section can be spin systems with spin 1/2 or fermionic
systems. In order to provide a joint treatment of these cases, we map the spin 1/2
to hardcore bosons, where a spin down corresponds to the absence of a boson, and
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Fig. 3.2.: Example of lattices considered in this work: square lattice (upper left), triangular
lattice (bottom left), square lattice on a cylinder (right), obtained by mapping the
plane to the cylinder. The coordinates for the square lattice on the cylinder are
zj = exp(2r((z;—Ly/2+1/2)/Ly+(y; —L,/2+1/2)i/Ly)), xz; € {0,..., L, —1},
Y; € {0,...,Ly71}.

a spin up to the presence of a boson. We can then consider a local Hilbert space
|n;) such that the lattice site can be empty (n; = 0) or occupied (n; = 1), either by
a hardcore boson or a fermion. In the next sections we will also consider spin-1
systems, which are in this case mapped to a bosonic system with at most two bosons
per site, corresponding to n; = 2. We consider M particles hopping on this lattice
and define p = % as the lattice filling factor, which shouldn’t be confused with the
filling factor v in the FQH effect.

In general, a wave function defined on this lattice will have the form

W>: Z w(nl,---,nN)|n1,...,TLN>, (36)
N1,y DN
where ¢)(nq,...,nx) = 0 unless the number of particlesis >, n, = M (if the particles

are fermions, the Fock states are defined using the same ordering as for the lattice
sites).

Let ¢ be a positive integer. We would like to define Laughlin wave functions at
v = 1/q on this lattice. For this we merge the ideas of writing the Laughlin wave
function as a correlator of CFT operators[68] with the ideas presented in section 2.2

3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
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of infinite dimensional MPS also arising from correlators of field operators but on a
lattice[38], making the choice of an infinite dimensional MPS written as

PY(ni,...,nn) < Vn,(21) ... Vipy (28)), (3.7)

where V,;(z;) are operators attached at position z;. We choose as operators modified
versions of the vertex operators appearing in the continuum description of the
Laughlin state:

—iJz#r(z)

if n; = 0,

e
an (Zj) = { (38)

e G=1) 7 PR g n; =1,

where ¢p(2) is the chiral bosonic field introduced in (2.21) and the operators are
vertex operators as introduced in (2.26), n is a positive rational number such that
nN/q is an integer and in all this work ' denotes min(n, ¢ — 7). If 5 is not an integer,
a choice of branch cuts can be made consistently for all the formulas in this work.
We note here that an alternative way of implementing MPS ideas to 2D FQH systems
has been developed in [166, 167], where MPS ideas apply to continuum systems.

Evaluating the correlator in (3.7) yields[32, 160] a wave function, that we denote
as ¢, such that

Ya(na,...,ny) ocdnéy H(z@ — zpp)dmimE H(Zl —zj)” M, 3.9)

i<k j#

where §,, is zero unless the number of particles is M = )", n; = n% and &, is 1

ifn <g-—nor (—l)qzj(jfl)"j otherwise. The last factor in (3.9) represents the
effect of the lattice on a given particle, that in the continuum is generated by the
background charge. Note that no background charge needs to be inserted to evaluate
the correlator and charge neutrality is directly ensured by the choice of operators
(3.8).

It is important to note that the filling factor of the lattice is u = % = g, which can

be different from the Laughlin filling fraction » = 1/q. Here p is the number of
particles per lattice site, whereas v is the number of particles per number of fluxes.
In this work we will be particularly interested in lattice effects in the cases where

n # 1, so that u # v.

These wave functions have been studied in detail for particular values of ¢ and 7. It
was shown that the state at ¢ = 2,7 = 1 can be realized with a local Hamiltonian
that can be implemented in optical lattices[54, 69, 168], and non-local parent
Hamiltonians have been obtained for the states at » = 1[160]. It was shown for
lattices defined on the plane that in the thermodynamic limit and when the area
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a of each site is the same the state reduce to the Kalmeyer-Laughlin states in the
continuum limit. This can be seen by observing that

127

H(zl — )T eTi 2o 1t 2 Al (3.10)
A

where g; = Im[n 3.y 7 In(2; — z;)] is a real number. In the continuum, the wave

functions are expressed in the basis spanned by the position of the particles Z;.

Here the Z; are the positions z; where n; = 1 and the (Z1, ..., Z)) form a basis of
the Hilbert space. The wave function written in this basis then becomes, in the
thermodynamic limit (here the phase factors, which can be transformed away if
desired, are omitted)

Uy aughiin(Z1 -, Zor) o< [[(Zi — 2;)%e 3o 20120, (3.11)

1<j

which is the Kalmeyer-Laughlin wave function at filling fraction v = % for M
particles with positions restricted to the lattice sites. This means that the wave
functions we introduce are equivalent to the Kalmeyer-Laughlin wave functions in
the thermodynamic limit, but slightly different on finite lattices.

Let us show that this property is still valid on a cylinder geometry. To define the
states on the cylinder, the coordinates are taken to be of the form z; = %%, where
xj + iy, define the corresponding lattice on the plane. The previous factor can then
be computed by writing

[ —2) ™ oce” 20 2y MB35 (3.12)
J#l
and in the thermodynamic limit the real part of the sum can be replaced by an
integral on the cylinder:

R
> nlog(la— ) 1 [

2w .
/ log (|2 — e%e|)dydz, (3.13)
i) =0 Jy=0

2
% + constant, where the constant does not

depend on z;. In the thermodynamic limit on the cylinder the wave function therefore
also reduces to the Kalmeyer-Laughlin wave function with positions restricted to the
lattice sites.

which can be evaluated to yield —2%”

Let us first discuss a few particular values of the parameters ¢ and 7. In Fig. 3.3,
we draw a diagram of the 1/ states for the different values of the parameters that
will be considered in this work. When p = 0 (resp. p = 1), all the lattice sites are
empty (resp. occupied), so the state is a trivial ferromagnet. This happens when
n = 0 or when n = ¢ (red lines in Fig. 3.3). When 7 > ¢, the number of particles

3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
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Fig. 3.3.: Diagram of the vy states for the values of ¢ and n considered in this work. ¢ is
integer while 7 is a rational number in the interval [0, ¢, since the states for > ¢
(grey region) are not defined. When n — 0 or n — ¢ (red lines), the state is a
ferromagnet if V is fixed, or a Laughlin state in the continuum if N goes to infinity
and N « 1/n (if n = 0) or N « 1/(q —n) (if n — ¢) . The solid blue disks on
the line = 1 correspond to lattice Laughlin states that satisfy 4 = v = 1/q. The
green disk is an integer quantum Hall state. On the orange line (q not necessarily
integer), the state in 1D is critical, while on the dotted orange line it has long
range order. Figure reproduced from [3].

in the lattice has to be larger than the number of lattice sites, which is not possible
since only single occupancy is allowed. The state ¢ is therefore not defined for
1 > q (grey region in Fig. 3.3). In the limit where  — 0 but the number of particles
M is kept fixed while N « 1/n — oo, the states become Laughlin states in the
continuum|[160].

One particularly interesting case is the choice = ¢/2, which corresponds to half-
filling of the lattice. In one dimension, the states defined at half-filling (and q not
necessarily integer) have been shown[38] to be critical states for ¢ < 2 (orange line
in Fig. 3.3) and to exhibit antiferromagnetic long-range order for 2 < ¢ < 4 (dotted
orange line in Fig. 3.3). At ¢ = 1, n = 1/2 (green disk), the state in 2D corresponds
to an integer quantum Hall state[38]. Note that the states are bosonic for even ¢
and fermionic for odd g.

Properties of the lattice Laughlin states on the square lattice

In this subsection we explore the properties of the lattice Laughlin States to determine
the phase diagram of the states in the (¢, ) plane. Particle-hole transformation shows
that it is symmetric along the = ¢/2 line, on which the states are particle-hole
symmetric. We then give numerical evidence that the states have exponentially
decaying correlations on the square lattice unless n = ¢/2, ¢ > 5, and that when
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this is the case the states have the same topological entanglement entropy as the
Laughlin states in the continuum.

Particle-hole transformation

The different wave functions vy} are related under particle-hole transformation. This
transformation has the effect of exchanging n; and 1 — n;, so the vertex operators
used in the definition of the wave function are transformed as

il (7 i g (z)
Vn, (25) = €™ G=Dmy . gt o) V,’l]_(zj), (3.14)
where
.qn;—(q—n)
Vr/zj (z]) = e’iﬂ'?’]’(]’*l)ef’iﬂ"l]/(jfl)nj : 6717‘7 ! \/qf 2 #(25) . (3.15)

Now let us define V,,,(z;) the operators used to define the state ¥d~" and observe
that

(Vrlll(zl) .. .V;LN(ZN» x (f/m(zl) oo Vnn (2N))- (3.16)

This shows that the states ¢ and ¢/ ~" are exchanged under particle-hole transfor-
mation (see Fig. 3.3). Note that this transformation also changes the number of
particles, so that it relates states at lattice filling factor 1/q and 1 — 1/4. This can be
compared to the situation in the continuum, where a particle-hole transformation
can be defined[169] to relate the FQH states at filling fraction 1/¢ and 1 — 1/q.
On the lattice the particle-hole transformation is however different, because it only
involves exchanging the |0) and |1) states, so there is no separate treatment of an
electron or a hole. The ¢ and the " states are therefore related by a simple
change of basis, and as such all properties of the wave function that are symmetric
with respect to particle-hole transformation will be the same for the ;] and the ="
states. This is in particular the case of the connected particle-particle correlation
function, since (n;n;) — (n;)(n;) = ((1 —n;)(1 —nj)) — (1 —n;) (1 — ny).

The states at n = ¢/2 are special with respect to this transformation, since these
states are particle-hole symmetric: the operators used to define these states are
. e*V/4/2 ;. This is in particular the case for the bosonic 1} state, as is the case for the
bosonic v = 1/2 Laughlin state in the continuum. For larger values of ¢, the Laughlin
states in the continuum are not particle-hole symmetric. However on the lattice
we can change independently the lattice filling factor x to 1/2, which amounts to
considering the states ¢3/ % (red stars in Fig. 3.3). The properties of these states will
be investigated in more details in the following.

3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
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Correlations in the parameter diagram

To investigate possible different phases in the (¢, n)-diagram, we compute the con-
nected particle-particle correlation function C;; = (n;n;) — (n;)(n;) in the bulk of
the system for a square lattice on the cylinder, following the algorithm introduced
in section 2.2.3. We find that the correlation function decays exponentially with
the distance for all values of ¢ and 7, except for ¢ > 5 at n = ¢/2. In Fig. 3.4, we
explore the parameter range by using as parameter the correlation length estimated
from nearest-neighbours and next-nearest neighbours correlations in the bulk of the
system. More precisely we compute a characteristic length, defined as

1

) (3.17)
ln(Ci(iJrl)) - 1H(C@'(i+2))

d =

where i, i + 1 and 7 + 2 index neighbouring lattice sites in the periodic direction
that are located on a ring in the middle of the cylinder. This parameter is an
estimate on how fast the correlations decay. When the decay is exponential with a
short correlation length, this quantity almost coincides with the correlation length.
When this characteristic length is larger, further investigations are performed to
characterize the decay of correlations.
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Fig. 3.4.: Characteristic length dj! (3.17) estimating the correlation length of the v states.
The characteristic length is computed for ¢ integer and 7 integer and half-integer
using a Metropolis-Hastings algorithm on a square 12 x 12 (or 10 x 12 for ¢ = 5)
lattice on the cylinder. The decay is found to be exponential everywhere, except
when n = ¢/2, ¢ > 5. Figure reproduced from [3].

We first observe that for a given ¢ the correlation length decreases when 7, goes
away from the half-filling point = ¢/2. At half-filling, we find that the states )2
and ¢3 do not display exponentially decaying correlations, although for 7 slightly
different than ¢/2 the corresponding v have exponentially decaying correlations.
In Fig. 3.5, we show the decay of correlations in two dimensions and along the
periodic direction of the cylinder for the half-filled states at different values of q. It
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is observed that for ¢ < 4 the correlations decay exponentially. For ¢ > 6, the states
display clear long range anti-ferromagnetic correlations. The properties of the states
at these particular points will be investigated in more details in section 3.2.3. For
g = 5, the correlations decay and results on larger sizes suggest that long range
anti-ferromagnetic order is also present at larger scales. In addition, we observe that
Monte Carlo simulations at = ¢/2 need more computational effort to converge, in
part due to the larger number of particles and in part due to the structure of the
wave functions. The computations can be improved by exploiting the particle-hole
symmetry at these points to allow global change of configurations respecting this
symmetry in the Monte Carlo trajectories.

) } 025
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Fig. 3.5.: (a) Correlation function C;; between a fixed lattice site ¢ in the middle of the

lattice and all other lattice sites j in the state 1/13/ % on a square 8 x 8 lattice on the
cylinder.
(b) Absolute value of the correlation function |C;(;1a,)| between two lattice sites

separated by a distance Ay in the periodic direction in the state W ona square
16 x 16 lattice on the cylinder. There is long range anti-ferromagnetic order for
q > 6, while the correlations decay exponentially for ¢ < 4. Figure reproduced
from [3].

Topological entanglement entropy of the 7/ states

So far we have only checked that the states display exponentially decaying corre-
lations in most of the parameter range. We now turn to the investigation of their
topological properties. To compute the topological entanglement entropy (TEE) of
the states, we start with a lattice on the cylinder, cut the cylinder into two halves
and compute the second Renyi entropy of the first half (Fig. 3.6). The size along the
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cut is L, and we use the behaviour of the entanglement entropy (3.3) to extract the
topological entanglement entropy -, as has already been done using Monte Carlo
simulations for several chiral spin liquids for which the wave function is known[2,
69, 160, 170]. The results for the square lattice at ¢ = 4 and different values of 7,
shown in Fig. 3.7(a), confirm that the 1] have the same topological entanglement
entropy as the continuum Laughlin state at filling 1/4, independently of the value
of the lattice filling factor . A particularly interesting case is the state v?, defined
on a half-filled lattice: this state is particle-hole symmetric, but has the topological
entanglement entropy of the continuum Laughlin state at filling fraction v = 1/4,
which itself is not particle-hole symmetric. The same observation remains true at
g = 2 and ¢ = 3, where the particle-hole symmetric lattice state have the same
topological entanglement entropy as the continuum Laughlin state at v = 1/q (see
Fig. 3.7(b)). However, as we have seen previously the states 1/;3/ * for g larger than 5
on the square lattice have long range anti-ferromagnetic correlations. They do not
display non-trivial topological behaviour, as will be clear from more investigations in

PA PB
Re(z;) = {: »{: ‘:>{: :{: &{ Q{QO L,
2Q 9Q 0Q 9049 99 9

L,

the next subsection.

Im(z;)

Fig. 3.6.: To compute the entanglement entropy of the state, the cylinder is cut into two
halves and the Renyi entropy of the first half is computed using a Metropolis-
Hastings algorithm. The topological entanglement entropy is extracted by varying
the size L, of the cylinder. Figure reproduced from [3].

Another tool that we can use to characterize the topological properties of these
states is the braiding properties of their anyonic excitations and the localization of
quasihole wave functions. This will be studied for these states in section 3.3.

States at half-filling: from long-range order on the square
lattice to topological order on frustrated lattices

So far we have investigated the properties of the states on a square lattice. As we
have seen, the states on this lattice are lattice versions of the continuum Laughlin
states, except at half-filling when ¢ > 5 where the states display long-range anti-
ferromagnetic order. We now focus on these particular values of the parameters and
investigate this effect in more details. We explain the behaviour of the correlations
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(b)

Fig. 3.7.: (a) Scaling of the Renyi entropy S(LQU) of the state ¢ ona L, x L, square lattice
on the cylinder. The topological entanglement entropy of the Laughlin state at
filling 1/4 (y0(4) = In(2) ~ 0.693) is indicated with a red arrow. The size L, is
taken to be 12, unless = 2 in which case L, is 20. Larger sizes are taken when
7 = q/2, to account for the longer correlation length and to get rid of finite size
effects. The black lines are linear fits and the values found for the topological
entanglement entropy when 7 equals to 0.5, 1, 1.5 and 2 are respectively 0.698,
0.734, 0.643 and 0.718.

(b) Scaling of the Renyi entropy S(LQy) for the states at half-filling +/3 and ¢§/ % on
the square lattice on the cylinder. Here L, is 12 for ¢ = 2 and 20 for ¢ = 3. The
topological entanglement entropy of the Laughlin state at filling 1/2, v (2) ~ 0.346
(resp. at filling 1/3, 70(3) =~ 0.549) is indicated with a green (resp. blue) arrow.
The values found for the topological entanglement entropy are respectively 0.375
and 0.536.

Figure reproduced from [3].

on the square lattice and show that long-range order is not present on frustrated
lattices, where the expected topological behaviour is recovered.

Long range antiferromagnetic order and Néel states

The correlations previously computed show that for large values of ¢ and n = ¢/2,
the state on the square lattice has long range anti-ferromagnetic correlations. To
understand this, let us look at the behaviour in the limit of infinite q. The dominating
term in the wave function has the form [];_;(2; — 2;)?""/, and only terms where the
two positions z; and z; are occupied by a particle contribute to the wave function. The
main contribution to the wave function therefore comes from states that maximize
the product of the distances between pairs of particles on the lattice. In the infinite
g limit, only the states maximizing this product contribute to the wave function
and the contribution of the other terms is suppressed. Since the lattice is half-filled,
it is not possible to put particles too far apart to maximize this product. For the
square lattice, the maximum is obtained when lattice sites alternate between empty
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and occupied sites in a checkerboard pattern. There are two such possibilities,
corresponding to the two Néel states, that we denote v, and 1., and that are
related by particle-hole transformation.

Ll e TooTr T ooy, Sorttr [orT e et
* sy ¢ =20
0.8 [ ) ~-10
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= 06 f % q=T
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Fig. 3.8.: Overlap, defined as O, = |(thl, |72 + [(12,, |2 *)|2, between the state at

half-filling wg/ ? and the two Néel states, computed using a Metropolis-Hastings
algorithm on a square lattice of size N, x N, on the cylinder. The errors from the
Monte Carlo simulations are below 0.02 for all points. Figure reproduced from

[3].

To investigate how much these two Néel states contribute to the wave function, we
compute the overlaps between each Néel state and the state 1/13/ ? for different lattice
sizes (see Fig. 3.8). For large values of ¢, it is found that O, = y<¢}qéel\¢g/2>\2 +
|<¢§Iéel|¢f§/ ?}|2 is close to one, which shows that the wave function is almost a simple
superposition of ¢y, and ¢, For smaller values of ¢, this quantity goes rapidly
to zero, while there is a transition in the range 5 < ¢ < 7 where the overlap goes to
zero but remains high, especially considering the size of the Hilbert space for the
lattices considered. This explains the behaviour of the correlations, which decay
exponentially for small ¢ but have long range order for large . For other bipartite
lattices which can support Néel states the argument given for infinite ¢ remains valid,
so we expect a behaviour similar as for the square lattice. However the transition
range might happen for different values of q.

Frustration destroys the anti-ferromagnetic order

The two Néel states can arise because of the geometry of the square lattice. In this
particular case, strong lattice effects at half-filling can give rise to anti-ferromagnetic
behaviour. On frustrated lattices, we cannot define two Néel states respecting the
symmetries of the lattice. We therefore now turn to investigations of the ¢g/ ? on the

triangular and Kagome lattices. Fig. 3.9 shows evidence that the particle-particle
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correlations on the triangular and Kagome lattices decay exponentially with the
distance even for ¢ = 6, in sharp contrast with the behavior on the square lattice.
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Fig. 3.9.: (a) Correlation function C;; between a fixed lattice site i in the middle of the

lattice and all other lattice sites j in the state ¢g/ ? on a triangular and Kagome
lattice on the cylinder.
(b) Absolute value of the correlation function |C;(;1,)| between two lattice

sites separated by a distance Ay in the periodic direction in the state u)g/ *ona
triangular 16 x 16 lattice on the cylinder.

Unlike on the square lattice for the same parameters, there is no long range order.
Figure reproduced from [3].

Since the states are defined as a function of the positions z; of the lattice points, we
can study the transition between the square and the triangular lattice by changing
continuously the coordinates z; to interpolate linearly between a square lattice and
a triangular lattice on the cylinder (Fig. 3.10). The decay of correlations for ¢ = 6 is
shown in Fig. 3.11 for different values of the interpolation parameter 7. We observe
that the correlations decay exponentially when the lattice is close to a triangular
lattice (0.7 < 7 < 1), while there is a transition towards anti-ferromagnetic order
when the lattice gets closer to the square lattice. This confirms the importance of
the geometry of the lattice in the study of the wave functions 1/13/ 2,

Topological entanglement entropy on the triangular lattice

It was shown previously that the long range order was destroyed on frustrated
lattices. We might therefore wonder whether these half-filled states on the triangular
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Zj

A

Fig. 3.10.: Positions of the coordinates of the lattice sites along the interpolation between
a square and a triangular lattice. The coordinates along the periodic direction
y; are kept fixed to keep the periodicity, while the coordinates along the other
direction z; are linearly interpolated between the square (7 = 0) and the
triangular (7 = 1) lattice. The coordinates on the plane are then z; = e B (i)
as in Fig. 3.6. Figure reproduced from [3].
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Fig. 3.11.: Absolute value of the correlation function |C;(;a,)| between two lattice sites
separated by a distance Ay in the periodic direction in the state ¥)3 on a 16 x 16
lattice interpolating between the square (r = 0) and the triangular (+ = 1)
lattice on the cylinder. Figure reproduced from [3].

lattice have the same topological properties as the continuum Laughlin states at filling
fraction v = 1/q. We compute in Fig. 3.12 the topological entanglement entropy of
the state ng/ ? on the triangular lattice and show that its value is compatible with the
value for the corresponding continuum Laughlin states at ¢ = 2,4 and 6. Particle-
hole symmetric lattice Laughlin states with topological order on the triangular lattice
may therefore be described by these wave functions.

Edge states from a charge at infinity

We now define wave functions for edge states of the lattice Laughlin states. These
states are constructed using a charge operator placed at infinity and their wave
functions have the same expression as the lattice Laughlin states, except that the
number of particles is different. They have the same correlations as the ]/ states in
the bulk but a different density at the edge, as we shall see below.
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Fig. 3.12.: (b) Scaling of the Renyi entropy S(Li) for the states at half-filling 3, v and 3
on a triangular lattice on the cylinder. Here L, is taken to be 16. The topological
entanglement entropy of the continuum Laughlin state at ¢ = 2 (resp. ¢ = 4,
g = 6) is indicated with a blue (resp. red, green) arrow. The values found for
the topological entanglement entropy are respectively 0.347, 0.723 and 0.907.
Figure reproduced from [3].

Let us investigate the effect of inserting in the correlator defining the wave function
a single operator W),(o0) =: Vi) of charge p/q, p integer, when the position
of the operator is taken to infinity. When the lattice is mapped to the cylinder, this
amounts to having a charge at infinity on the axis of the cylinder (Fig. 3.13). The
wave function is now given by

Yalp(o0)](n1,...,nn) o< (Wp(00)Vn, (21) .- Viy (2n))- (3.18)

We suppose here that we start with a state at » = 1 and the resulting evaluation of
the correlator leads to

N N
@Z’; [p(00)] o wlgréo(% H(w — zj)P" H(zl — zj)I"im 1_[(2Z —z;) M,
J i<j i#]
(N-/a T )
: ! N— nin; A S ]
NPT | () | (e
i<j i#j
N N
oc &, [ [(zi = 2) ™" [T (zi = 2) ™™, (3.19)
i<j i

where 4], is zero unless the number of particles is

N —
M=% n=--"L (3.20)

q

We denote this state % [p]oo- It has exactly the same expression for the wave function
as the state 1/15, except that the number of particles has been modified to %. In
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the particular case p = N(1 — ), then the wave functions ¢} [p]o, and ¢} have the
same lattice filling factor ;1 = n/q and differ only by an 7 exponent in the last term
of the wave function.

(n;)
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Fig. 3.13.: (a) Square 12 x 12 lattice on the cylinder with a charge (here p = —6) at infinity.
The color shows the density of the state 1 [p].. The state with zero charge at
infinity ¢4 has uniform density 1/2 but here the density is modified at the edge
to account for the change of total particle number.

(b) Difference of density between the 13 [p|. states and the 13 state with respect
to the distance to the edge Ax. Values below 2 x 10~* are not converged. The
change of density is exponentially localized at the edge.

Figure reproduced from [3].

We show in Fig. 3.13 that these two states differ in their density: the density of
the 11 [p] state on the cylinder is the same as the density of the 3 state (1/2) in
the bulk, but is modified on the edge to account for the different total number of
particles. This modification of the density is exponentially decaying from the edge
towards the bulk of the system. This is in contrast with the density of the v state
with the same number of particles, which has a roughly uniform density of 1/q.

In addition, we give numerical evidence in Fig. 3.14 that the states 3 [p]o, and 15
have the same particle-particle correlations in the bulk. Therefore the 14 [p]. states
can be understood as edge states with respect to the 1) wave function, since they
differ from it only at the edge.

The properties investigated here are similar to the properties of the edge states
defined in Ref. [171], but their construction and wave functions are different.
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Fig. 3.14.: Absolute value of the correlation function |C;(;;a,)| between two lattice sites
in the bulk (middle of the cylinder) separated by a distance Ay in the periodic
direction on a square 12 x 12 lattice on the cylinder. The states considered here
are the ¢} [p].. state for different values of p. When p = 0, the state is simply
the 1)} state, while it is found that the other states have the same correlations.
Figure reproduced from [3].

Note that on the cylinder it is also possible to describe edge states on the other
edge by choosing the position of the charge to be 0 instead of infinity. Since the
coordinates of the lattice on the cylinder as well as the coefficients of the wave
functions are invariant under a transformation z — 1/z, this simply amounts to
flipping the two sides of the cylinder and as such will not change the properties of
the states.

Derivation of parent Hamiltonians

We now derive exact parent Hamiltonians of the lattice Laughlin states. We start
by deriving a parent Hamiltonian for which the 1,[); [ploo edge states are ground
states with different number of particles. The lattice Laughlin state wcll is the unique
ground state of this Hamiltonian with lattice filling factor 1/¢. We then obtain parent
Hamiltonians of the 1]} states when <1 or n > ¢ — 1. Compared to the approach
used to connect Hamiltonians in the lattice and in the continuum limit in [172],
our Hamiltonians do not increase in complexity when we go from the lattice to the
continuum limit, since only the coupling strengths need to be changed with 7. A
parent Hamiltonian is also derived for the 7 state. Fig. 3.15 shows the diagram
of the states and the values of the parameters for which parent Hamiltonians are
obtained. These Hamiltonians involve few-body interactions, but are not local.

3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
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Fig. 3.15.: Diagram of the 1] states. The blue lines and dots represent values of the
parameters for which exact parent Hamiltonians are derived in this section. On
the light blue line the parent Hamiltonians derived have a degenerate ground
state on the plane. Figure reproduced from [3].

Parent Hamiltonian for the edge state ¢} [p]..

Let us start by deriving parent Hamiltonians for the edge states 1/1; [p]oo- This state
is defined by introducing a charge operator in the wave function and taking the
position of this operator going to infinity:

w; [Ploo (1, ...y nN) o< (Wp(00) Vi, (21) - - . Vip (28))- (3.21)

In [173], an exact parent Hamiltonian was derived for states written in this form
when p > 0. We follow here the same procedure and extend this result to p > —q.
The starting point is to define a null field x(w)[160, 173] such that the correlator
with this field inserted vanishes:

(Wp(w)an (21) .. .Vni_l(zifl)x(zi)vmﬂ (Zi+1) ce VnN (ZN)> =0. (3.22)

This is done in details in Appendix A.1, where it is shown that this equation can be
rewritten, when p > —q, as

Al [p(w)]) =0, (3.23)

where

A=) ! [dj — di(qnj —1)] — P _a,. (3.24)

— 2z — Zj Zi—w
I I ‘

Here d; is the hardcore boson (resp. fermion) annihilation operator for ¢ even (resp.
odd), and n; = d;dj is the number of particles at site j. Taking the limit w — oo, so
that the charge is at infinity, leads to

Al [ploo) = 0, (3.25)
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where

1
Ai= > ———ldj —di(an; = 1)), (3.26)
i)
This leads to Hi}[p]e) = 0, where
H =Y AlA; (3.27)

is a positive semi-definite operator annihilating the wave function w; [p]oo. Here we
note that there is no dependence on p in this Hamiltonian. This means that the
Hamiltonian H has a degenerate ground space containing all the @b; [p]oo edge states
for p > —q. These states have however different total number of particles, and in
physical settings where the number of particles is fixed only one of these states would
be ground state of the corresponding Hamiltonian. A particular ground state of this
Hamiltonian is the state at p = 0, which is the wa Laughlin state, corresponding to
the ground state at filling factor u = 1/q. Moreover we have checked numerically
for small lattice sizes that H has only one ground state for each subspace with fixed
number of particles.

Parent Hamiltonians for vy states

Let us now turn to the derivation of parent Hamiltonians for the v states. The first
observation is that the 17 states differ from the ¢} [p]o. states with p = N (1 —n) only
by a factor Hgﬁj(zi — z;)(=Hni . We will use our previous result and account for this
factor at the level of the Hamiltonian. Let us denote 7" the operator

N i
r=]1 (H (zi — Zj)("_l)) :

i \j(0)
=118, (3.28)

where we have defined 3; = Hﬁ#)(zi — zj)(”*”. Then

T1g) = |vglploo), (3.29)
and using (3.25),
T 'AT ) = 0. (3.30)
Notice first that
T7d;T = B;d;. (3.31)
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This means that we can rewrite 7"'A;T as

A = T—IA-T

()

-3

i)

-[Bjdj — Bidi(qn; — 1)]. (3.32)

Finally we get that the state ¢]] is a ground state of the Hamiltonian

H =3 ATAG, (3.33)
(2
and exact diagonalization on small systems shows that it is its only ground state of
total number of particle M = n%. Note that in this derivation we assumed p > —q
to be able to use the Hamiltonian for the edge state w; [p]oo- This implies that this
derivation is valid whenever N(1 —n) > —q, in other words < 1 + . In the
thermodynamic limit, the Hamiltonian is therefore valid for n < 1 (see Fig. 3.15).

Parent Hamiltonians for the states at ¢ = 4

The parent Hamiltonians derived in the previous section are valid for n < 1 + %,
and are therefore not valid for all the values of 7, unless ¢ = 2. In this section we
derive a Hamiltonian valid for all values of n at ¢ = 4. We first concentrate on the
half-filled case ¢ = 4, n = 2.

Using a similar procedure as in the previous case we derive in Appendix A.2 an
operator §); annihilating the wave function v3:

=2 2 =

3(F0) k() ©

nidjska (3.34)

where d; is the bosonic annihilation operator at site j, n; = dj.di and s, =2n;, — 1is
the corresponding spin-1/2 degree of freedom at site k. In the rest of this section we
will use both the notations n; and s; for brevity.

In addition, the wave-function is particle-hole symmetric and is also annihilated by
the particle-hole transformed operator

ZZ

3G (2 R T z’

(1= ny)ds, (3.35)

where we have replaced all d; by dT, le by d; and n; by 1 — n; (or s; by —s)).
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Finally we define a Hamiltonian

H} = |l + 0l (3.36)

()

which can be expended and simplified, up to a global irrelevant real factor, as

1
Hi=3% % —— sk (didy + d;d}) s, (3.37)
Y G )
k()

which is a 4-body Hamiltonian for the state /. Note that since the state 17 is
equivalent to the SO(2) spin state defined in [124], this derivation also provides a
parent Hamiltonian for this case which was left open.

Replacing the operators d; in (3.34) by f;d; as in 3.2.5 now leads to operators
annihilating the ] wave function for any value of 7, and thus to parent Hamiltonians
for these states. We observe however numerically that this construction does not
always give a single ground state of the parent Hamiltonian when n # 2 (see
Fig. 3.15).

Conformal transformations of the parent Hamiltonians

The wave functions defined from correlators of conformal fields are invariant under
general Mobius transformations of the lattice coordinates:

az+b

M:z———, ad—bc=1. (3.38)

cz+d
This is not the case of the Hamiltonians derived previously. In fact there is a class
of Hamiltonians annihilating the lattice Laughlin states. These Hamiltonians are
related by conformal transformations and some of them have the same symmetries
as the lattices considered in this work, but there is no non-zero Hamiltonian that is
invariant under all conformal transformations.

The first observation is that the operators annihilating the wave functions have
the form T'; = Zj(#) Xij fij, where f;; does not depend on the coordinates z; and
Xij = 1/(z; — zj). As explained in more details in Appendix A.3, the space of
operators annihilating the wave functions that can be obtained by applying M&bius
transformations and multiplying by constant factors the operator I'; is the space of
operators

F?’BV = Z (aXij + Brij + vpij) fij, (3.39)
J(F9)
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2iZj o Zitz
Zi—Zj’ LY Zi—Z]"

In the

where «,  and v are complex numbers and k;; =

class of Hamiltonians obtained from F?ﬂ 7, one can check that there is no non-zero
Hamiltonian invariant under all conformal transformations, while the Hamiltonians
of the form 37, >7p(2i) 2o (20 PriPij f,ij fi; are invariant under the symmetries of
the lattice on the cylinder (Fig. 3.6). This result can be applied to all the parent
Hamiltonians derived in this chapter to make them invariant under the symmetry
transformations of the cylinder.

Local Hamiltonian for the ¢ Laughlin state

At the particular values ¢ = 2, n = 1, the state has an additional SU(2) symmetry.
The parent Hamiltonian previously obtained for this state is not SU(2) invariant, but
it is possible to construct another parent Hamiltonian invariant under SU(2) trans-
formations for this state. This was performed in [70] to obtain the Hamiltonian
2 9 2 _
Hparent = 3 > lwii*Si- S5+ 3 > WijwirS; - Sk
i#j ik
21 _
— g Z wijwiksi . (S] X Sk), (340)
i#i Ak

where Wij = th

_ZZ

2 and S; = (57, Sg?’, S%) is the spin-1/2 operator at site j.

It was moreover shown in [54] that a local Hamiltonian approximately stabilizing
the 14 state can be obtained on the square lattice by restricting Hparent to local terms
and setting the long-range interactions to zero. This leads to the Hamiltonian

H=J Z Si-Sj—i-JX Z Sz(S]XSk), (3.41)

<i,j> <i,j,k>0

where < 7, j > indicates indices of nearest neighbours on the lattice and < i, j, k >
indicates indices of all triangles of neighboring spins, with vertices labelled in the
counter clockwise direction. When J = J,, the ground state of H; has above 98%
overlap with the Laughlin wave function ¢4 on a 4 x 4 lattice, and in a large range of
parameters the ground state stays in the same phase[54]. A protocol to implement
this Hamiltonian experimentally in an optical lattice has been developed[168]. The
ground state of this Hamiltonian will be studied using other methods in chapter 4.
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3.3 Quasielectrons and quasiholes in lattice fractional

3.3.1

quantum Hall states

So far we have considered lattice versions of Laughlin wave functions. In this
section we extend this construction to the quasiparticle excitations of these states.
In the continuum we have already seen that we can construct the quasihole wave
function by inserting a quasihole operator in the correlator, and we will see that
this construction generalizes to the lattice. This amounts to inserting a flux tube
with positive flux, but if one instead inserts a flux tube with negative flux to get
a quasielectron, one gets a singularity in the continuum wave function[63, 141].
A lot of work has therefore been trying to construct suitable quasielectron wave
functions[63, 68, 141, 145, 174-182]. The resulting wave functions are however
significantly more complicated than the quasihole wave function and computing the
properties of quasielectrons is difficult.

Explicitly computing braiding properties of various types of quasiholes and quasi-
electrons has recently been performed using different methods[173, 183-191], and
we will see in this section that it can be done for both quasiholes and quasielectrons
on a lattice. One advantage of the lattice construction is that because electrons can
only be placed at fixed lattice sites, there is no singularity if one tries to construct a
quasielectron. The quasielectron wave function is therefore not more complicated
than the quasihole wave function and we can compute its shape and braiding proper-
ties. It is even possible to define models where there is an exact symmetry between
quasielectrons and quasiholes. We also show that parent Hamiltonians for states
containing quasiholes and quasielectrons can be constructed. In these Hamiltonians,
the positions of the quasiparticles are parameters that can be tuned for creating or
braiding the anyons. We also find that some of the wave functions we introduce
have high overlap with states realized in a fractional Chern insulator model. This
section is based on and reuses parts of Ref. [5].

Wave functions of quasiholes

Let us first consider the wave function for quasiholes (3.2), which can be defined
on the lattice by using the expression of a quasihole operator inserted at particular
lattice positions in the CFT correlator[68, 172, 173]. Consider ) quasiholes at
positions wj, j € {1,2,...,Q}, with charge p;/q, where p; is a positive integer. The
positions w; are not restricted to be on the lattice sites. We denote P = ZZ-Q pi/q
the total charge of the quasiholes and ' = (p1,p2,...,pg). At the position of each
quasihole, we attach a vertex operator
. Pj
W, (w;) =: e va®s) (3.42)

J
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and we consider the wave function with coefficients given by

bglpi(wi), - po(w)l(na, - nn) oc (W (wi) - Wi (w@) Vi, (21) -+ Vay (2))-

(3.43)
This expression evaluates to[173]
N N
Sy T (wi — 2P ™ [T (2 — 2) ™7 [ [ (20 = 2) ™™
i i<j i#j
N
% l‘[(wZ _ wj)pipj/q H(wz _ Zj)—pi/q’ (3.44)
i<j i
where ¢/, is zero unless the number of particles is
N
M=Y n;= n, P (3.45)

The total charge therefore modifies the number of particles, and quasiholes have to
be inserted in such a way that M is an integer. Moreover the number of particles
removed by a single quasihole is p; /¢, which confirms that the charge of a quasihole
is fractional and equal to p;/q.

Braiding statistics of quasiholes

The Berry phase, defined as 6 = ifc(wy%)dwk + c.c. [192, 193], that arises when
moving the kth quasihole around a closed curve ¢ evaluates to

Pk (ni)p
o = ik ]4 dwy, + c.c. 3.46
k z2 C;wk_% wy, + c.c ( )
The statistics of the quasiholes can be computed by evaluating 6y (w; inside) —
Ok, (w; outside)> WHeTe O (. inside) (T€SP. Ok (w; outside)) iS the Berry phase when the
jth quasihole is inside (resp. outside) ¢ and not close to ¢. As observed in
[172, 173], when the change of density due to the quasihole is localized around
the position of the quasihole, then the Berry phase is zero and therefore the
statistics is governed by the monodromy, i.e. the change obtained from analyt-
ical continuation of the wave function when the quasiholes move around each
other. Indeed in this case we have that (n;) (w, inside) — (7i)7,(w; outside) 1S Z€TO
except close to the position of the jth quasihole and does not depend on wy.
Since Z(i inside c)(<ni>ﬁ,(w]~ inside) — <ni>;5',(wj outside)) is the total excess charge of the
quasihole —p; /¢, we obtain that

ak,(wj inside) — gk,(wj outside) = 27ijpk/Q7 (3.47)

Chapter 3 Fractional quantum Hall lattice models from infinite dimensional tensor networks




3.3.3

which is the expected statistics for Laughlin anyons with charges p;/q and p;/qg.
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Fig. 3.16.: Difference in the density (n;)qn — (n;) between the state 1); with one quasihole

of charge 1/q and one quasihole of charge (¢ — 1)/¢ and the state ¢} without
quasiholes on a square 20 x 20 (or 12 x 12 for ¢ = 10, n = 5) lattice on the
cylinder. The coordinates w; of the quasiholes are placed in the center between
4 lattice sites and are visible in blue as a lack of density on the neighbouring
sites. At g = 4, it is found for all values of 7 that the quasiholes are localized.
For ¢ = 10 however, the quasiholes are localized when n = 1, but at half-filling
(n = 5) we observe that there is no splitting of the charge between a quasihole
of charge 1/q and a quasihole of charge (¢ — 1)/¢ and thus no screening of the
quasiholes. Figure reproduced from [3].

We give numerical evidence in Fig. 3.16 that the change of density due to a quasihole
is indeed localized around the position of the quasihole on the square lattice, except
for the values of ¢ and n where the state is not topological. This is an additional
indication that for large ¢ and at half-filling of the lattice the states do not display
the same topological properties as the Laughlin states, while for other values of ¢
and 7 the states are topological and display the properties of the Laughlin states.

Wave function, charge and density profile of the
quasielectron

So far we have considered only quasiholes. On the lattice, we define a wave function

for quasielectrons by simply setting some of the p; in (3.44) to be negative integers.

3.3 Quasielectrons and quasiholes in lattice fractional quantum Hall states

65



66

While this would lead to a singularity in the continuum, the wave function is still
well defined on the lattice.

We numerically investigate the change of particle density in the presence of both
quasiholes and quasielectrons in Figs. 3.17 and 3.18, showing that for ¢ = 3 on the
Kagome lattice the anyons only alter the particle density in a small region close to
their position. This confirms that the statistics of quasielectrons is the same as the
statistics of quasiholes.
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Fig. 3.17.: Modification of the particle density due to the presence of anyons in the lattice
Laughlin state at ¢ = 3 and half lattice filling (n = ¢/2). The lattice is chosen
to be a kagome lattice defined on a disc with radius 27.9. A quasielectron (resp.
quasihole) with charge —1/3 (resp. +1/3) is placed at the position * (+), and
the color of the jth lattice site shows (n;);_1 11] — (n;)[0,0- Figure reproduced
from [5].

Let us now take n = ¢/2 (i.e., lattice filling >, n;/N = 1/2 — 37, pi/(Ngq)), which
corresponds to the particle-hole symmetric case investigated in section 3.2.2. In this
case, the wave function with quasiparticles is invariant under the transformation
n; — 1 —n;, p; — —p;, which exchanges quasiholes and quasielectrons. The density
profile, defined as the difference of density in the presence and absence of an
anyon, of a quasihole of charge p;/q is then the opposite of the density profile of
a quasielectron with charge —p;/q. This quantity is presented in Fig. 3.17, which
shows how the shape of the density profile varies with the positions of the anyons.
When a quasihole or quasielectron approaches a lattice site, no singularity occur and
the probability that the site is empty or occupied approaches one.
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Away from the symmetric point = ¢/2, we observe that the excess charges for
quasiholes and quasielectrons, defined as

Qp(r) = — > ((na)g — (ni)g), (3.48)

{ie{1,2,.,N}||zi—w1|<r}

are still close to being opposite for a large range of values of n (Fig. 3.18). When
n is small we approach the continuum limit. In this case the excess charge of
the quasihole converges to a fixed function, while the charge distribution of the
quasielectron becomes more and more narrow, corresponding to a singularity in
the continuum limit. We also observe that the radius of the quasihole is only a bit
larger in the lattice than in the continuum, which is in agreement with the results in
[188].

Fig. 3.18.: Excess charge 3.48 of a quasihole/quasielectron (blue/red) and their sum (green)
for ¢ = 3 for different densities of the lattice sites. The quasihole/quasielectron
is placed at the origin at the center of a hexagon in a kagome lattice. The lattice
is defined on a disc with radius 27.9 for n = 1.5,1,0.1 and 18.2 for n = 0.01, and
an anyon of the opposite charge is placed at infinity. Figure reproduced from

[5].

3.3.4 Quasiparticles on the torus

In the continuum, it is particularly difficult to construct quasielectrons wave func-
tions, a task which has only been solved recently[182]. On the lattice however, such
a construction can be done in a simple manner. Let us consider a torus, defined on
the complex plane by identifying all points separated by nr; + mry with n,m € Z,
where r; is real and r, is a complex number such that Im(ry) > 0. Let us define
T =12/r1, § = 2j/r1, and (, = wy/rq. Lattice Laughlin states on the torus have

3.3 Quasielectrons and quasiholes in lattice fractional quantum Hall states
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been defined in [194], and we can generalize this construction to include quasiholes
and quasielectrons, leading to a wave function

¢g[p1(w1),--.,pQ(wQ)](nl,..., mdnnxnlng[iﬁg] gjﬂ_)pmj
[a—i—l/Q] (Zgz qn; — )+ZijjaqT>
j=1
<1l 9[1@ = &), (3.49)

1<j

where 0[9](€,7) = Y pep €O F2rin4a)(E4D) and | € {0,1,...,q9 — 1}. For ¢
even (a,b) = (0,0), and for ¢ odd (a,b) can be either (0,0), (0,1/2), (1/2,0), or
(1/2,1/2). For n = ¢/2 and | = 0 or | = ¢/2, the density profiles for quasielectrons
and quasiholes are still opposite of each other. In Fig. 3.19 we show numerically for
g = 2 that the anyons are localized and obey the expected statistics.

Im(é)

Fig. 3.19.: Quasihole (+) and quasielectron (x) on the torus in the state ¥3[1,—1]. The
color of the lattice sites shows (1;)[1,—1] — (n;)0,0)- When moving the quasihole
around the blue curve we find numerically, using Monte Carlo simulations, that
the difference in Berry phase when the quasielectron is at 4+ and at *, respectively,
is ¢ = —3.145 with a statistical error of order 0.003. This is in agreement with
the expected result —=. Figure reproduced from [5].

3.3.5 Exact parent Hamiltonians for states with quasiparticles

68

So far we have considered wave functions for quasiparticles and one may ask if
there are Hamiltonians for which these states are ground states. In section 3.2.5, we
showed that the operator

1
A= ——Bd; = Bidian; — 1)) (3.50)
(G R
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annihilates the lattice Laughlin state without quasiparticles. Using a procedure simi-
lar as in section 3.2.5 we can obtain an operator annihilating the state with anyons
simply by redefining 3, = e’ e~ ("= [T, (w; — 2)P* [1;(2; — 21)' 7", provided the
inequality n — >, pi/N < 1+ ¢/N is fulfilled. A 3-body Hamiltonian for these states
is then given by ), A;TA;, and we have checked numerically that this Hamiltonian
has a single ground state on small systems. Note that this only changes the strengths
of the terms in the Hamiltonian compared to the original Hamiltonian for Laughlin
states without quasiparticles.

This construction is very convenient for manipulating anyons, since the state with
anyons are ground states, and not excited states, of the model. By simply changing
the strengths of the interactions in the Hamiltonian one can create a pair of quasi-
electron and quasihole and seperate them, as well as perform braiding of anyons or
fuse them by bringing them to the same point.

Local Hamiltonians

The parent Hamiltonians we have introduced previously are non-local, but in some
cases it has been possible to find also a local Hamiltonian for which the ground
state is approximately the analytical states defined as correlators from CFT[2, 38,
54, 195]. It was already shown in [163, 196] that a bosonic fractional quantum Hall
state with ¢ = 2 can be realized on a square lattice using a Bose-Hubbard model with
complex hopping terms and interactions for low lattice fillings. This model is defined
on an N, x N, lattice on the torus. We define the coordinates n € {0,1,..., N, — 1}
and m € {0,1,..., N, — 1} and take 2,4, n,+1 = (n + mi)/27n, such that the area
of one lattice site is 27 (Fig. 3.20). In the Landau gauge, the Hamiltonian takes
the form

H=-J% (le+17mdn,me—27rinm +dl i dm + h.c.) + U A (n — 1),
n,m

n,m

(3.51)

where d is the boson annihilation operator, 7 is the number operator, J is the strength
of the hopping term, and U is the strength of the interaction term. In the following,
we take the limit of hardcore interactions U — oo. The amount of magnetic flux
going through one plaquette is 1, and in the absence of quasiparticles we fix the
number of particles in the system to n/N/2, so that the number of particles per unit
flux is 1/2.

3.3 Quasielectrons and quasiholes in lattice fractional quantum Hall states

69



70

For a square lattice, the factor [],_; 0[};2} (& — &, 7)" """ in (3.49) is propor-
tional to a Gaussian up to single particle phase factors [197], and in this section we

choose the phase factors y,, such that

[ 11 o[ /g6 = &m e xexp (‘i Emlmw) . G5

1<j

We take N, = N, = 6 and consider the case of 3 particles on the lattice, so that
n = 1/6. This ensures magneto-periodic boundary conditions of the Hamiltonian
on the torus. The Hamiltonian H has two ground states and each of them has an
overlap of 0.991 with a combination of the two Laughlin states on the torus without
quasiparticles.

We now add a potential to localize a quasihole and a quasielectron excitation by
giving an energy penalty to one lattice site to be occupied and an energy penalty to
another lattice site to be empty:

V = Q (ﬁnhml - ﬁnz,mz) . (3.53)

The lattice sites with coordinates (n;,m1) and (n2, ms) are taken to be as far as
possible from each other on the torus (Fig. 3.20). Since we are trying to create both
a quasihole and a quasielectron, the total number of particles is unchanged.

m Im(z;)

N, -1+

© © 0 O
© © 6 6 0 0O

(n1,mq)

O]

© © 6 6 0 0O

o 1 N, -1

Fig. 3.20.: Lattice coordinates on the torus. (n;,m;) indicates the position of a quasihole,
and (n2, m2) indicates the position of a quasielectron. Figure reproduced from

[5].

H + V has two almost degenerate ground states. We compare these two states with
combinations of the two analytical states on the torus with a quasihole at position
(n1,m1) and a quasielectron at position (ny,ms) and find that they have overlap
0.994 and 0.989, respectively, for large ). This shows that the analytical states
considered above are relevant for fractional Chern insulator models.
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3.4 Moore-Read states on lattices

3.4.1

So far we have only been concerned with Laughlin wave functions, which can be
used when the filling fraction v is 1/q. As we have seen in section 3.1, there is
another FQH state which has attracted a lot of attention: the leading candidate
to describe the v = 5/2 FQH state is a Moore-Read state at filling 1/2 [68, 150,
151], describing the wave function of the electrons in the second Landau level and
supporting non-Abelian excitations.

Non-Abelian FQH states were also found in lattice models with topological flat bands
[198-201], and Hamiltonians were derived for non-Abelian chiral spin liquids with
excitations with SU(2);, statistics [53, 159]. For k£ = 2 this corresponds to a bosonic
lattice Moore-Read state at filling fraction 1 on a spin-1 lattice [53]. Moore-Read
states of bosons have also been considered on one dimensional lattices, were parent
Hamiltonians have been obtained [202].

In this section we extend the construction of lattice wave functions from CFT
correlators introduced in the previous sections to non-Abelian FQH states. We
construct a family of lattice versions of the Moore-Read state at filling fraction 1/q
on arbitrary spin-1/2 and spin-1 lattices in one or two dimensions. This family of
states allows us to interpolate between the continuum limit, where all states become
continuum Moore-Read wave functions, and a lattice limit. We investigate the
properties of the states and provide numerical evidence that they are critical states

in one dimension and that they are topologically ordered states in two dimensions.

Parent Hamiltonians for which the lattice Moore-Read states are ground states are
derived on any lattice of arbitrary size. These parent Hamiltonians have long-range
interactions, so we provide a method to deform them to local Hamiltonians and show
numerical evidence that the state at filling fraction 1 on a spin-1 square lattice can be
stabilized by a local Hamiltonian in one and two dimensions, while the state at filling
fraction 1/2 on a spin-1/2 square lattice can be stabilized by a local Hamiltonian in
one dimension. This section is based on Ref. [2] and is a modification thereof.

Definition of lattice Moore-Read states

The lattices we now consider are chosen such that the average area per site satisfies
n = 5. We will study both models with local degree of freedom n; € {0,1} (case
denoted as S = 1/2, which can represent a spin-1/2, a number of hardcore bosons or
a number of fermions at each lattice site) and with degree of freedom n; € {0, 1,2}
(case denoted as S = 1, which corresponds to a spin-1 model, a bosonic model with
at most two bosons per lattice site or a fermionic model with up to two fermions of
different type per lattice site).

3.4 Moore-Read states on lattices
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We consider an infinite dimensional MPS as in (3.7), but now with the different field
operators:

Vi, (2)) = x(25)°n « eilamsmmer()/Va (3.54)

J

where ppr(z) is the chiral bosonic field introduced in (2.21), x is a Majorana fermion
field and Sn]. is 1 if n; = 1 and O otherwise. As in the rest of this chapter, ¢ is an
integer and 7 is a real number. We also define a phase coefficient

Un, (2j) = &7 ™a=1ms, (3.55)

where the ¢; are phase factors to be specified.

The infinite dimensional MPS defined with the previous operators is
Do, nn) o< (Vuy (21) - Vi (28)), (3.56)
where
Vn; (%) = Un;(2) Vi, (25)- (3.57)

Note that depending on whether we consider a model with spin-1/2 (S=1/2) or
spin-1 (S=1), this expression defines two different wave functions, which we will
refer to as the (¢, 7)g lattice Moore-Read states.

Im(Zj) Im(Zj)
A
o (34} [ @
5 o 0+n—1 ® °
""""""""""""""" Re(z;) Re(z;)
° e ° ®
\a — 0t Na =27

Fig. 3.21.: Ilustration of a square lattice on the complex plane in the continuum limit
(n — 0, N — oco) and in the lattice limit(n — 1). At each site there can be 0 (blue
circle), 1 (blue disk) or 2 (red disks) particles. The interpolation is performed by
fixing the number of particles M = n% and by varying = 5- between 0 and
1, which changes the number of lattice sites per particle between infinity and q.
Figure reproduced from [2].

Let us now evaluate the correlator. The correlator is zero unless >~ |, n; = nN/q.
This condition fixes the total number of particles in the system to M = YN n; =
nN/q. In this section we will fix the value of M, so that 7 interpolates between the
continuum limit (n — 0, N — oo) with infinitely many lattice sites per particle and
the lattice limit (n = 1) at which the lattice filling fraction is equal to 1/g, which
corresponds to the Landau level filling fraction in the FQH effect (Fig. 3.21). Let us
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3.4.2

write §,, = 1 if Ef\il n; = M and §,, = 0 otherwise. The evaluation of the correlator
yields [32]

Vg sy oynn) oby [ (2 = 25) ™" Py 1 [

1<j

]HfN )™, (3.58)

where fn(z1) = § 1) (2 — 2;) 7" and the Pfaffian is evaluated at the coordinates
where n; = 1. The Pfaffian is antisymmetric, so these are bosonic states when ¢ is
odd and fermionic states when q is even. The states (q,7); /, are projections of the
states (¢,n); onto the Hilbert space allowing only for single occupancy at each site,

while states with S = 1 and ¢ odd (resp. even) can have sites with two bosons (resp.

fermions of different types). The state (¢ = 1,7 = 1), /5 is trivial since the number of
particles is fixed to IV and there are N sites, so in the following we restrict ourselves
to states (g, 7)1/2 with ¢ > 2 and (q,7); with ¢ > 1 (Table 3.1).

Lattice limit n = 1

S i 1
q 2
1 X bosonic SU(2)2 (¢ =1,n=1);
fermionic (¢ = 2,7 =1)1,2 fermionic (¢ = 2,7 =1);
Continuum limit n — 0
S 1 1
q 2
1 X bosonic Moore-Read
fermionic Moore-Read fermionic Moore-Read

Tab. 3.1.: First (¢,7)s Moore-Read states.

The lattice states become Moore-Read states in the
continuum limit

In this section we consider a two dimensional lattice defined on a disk D of radius
R — oo and show that the lattice Moore-Read states we have introduced reduce to
Moore-Read states of particles in the continuum, that is (3.5), when n — 0, N — oo
and the number of particles M is fixed. We restrict ourselves to lattices where the
area per site a; is constant equal to a, but the derivation remains true for any lattice
if we make 7 position dependent [160].

Let us first compute [1; fn(z1)™. Notice that [fn| = exp(— 322y nln(lz — ;)
and since n = 2%, in the continuum limit this sum can be replaced by an integral

3.4 Moore-Read states on lattices
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JpIn(|z; — 2|))dz?/2m. This integral evaluates, in the thermodynamic limit, to
|z1|? + constant [68], so that

FNsoo(2) o< G912/ (3.59)

where g; = Im (Z () nn(z — )) is a real number. It was found numerically in
[160] and [69] that this formula was an accurate approximation even for moderately
large N. We thus get that

Hstoo a)" (Hf’” _mm) a2l (3.60)

In the rest of this section we set the phase factors such that & = e to get rid
of the overall gauge factor, which does however not change properties like the
particle-particle correlation function and entanglement entropy of the state.

Continuum limit of the S = % states

Let us now write the complete wave function in the continuum limit:

1

ZZ'—Zj

Ys(ni,...,ny) < 5nH i — 2) 1" Pl = =1 l

1<J

] em12lmlPm(3.61)

where the gauge factor has been set to one. It is not straightforward to take the
continuum limit in this basis, since one has to define the limit of the Hilbert space
on which the wave functions are defined. However, since the number of particles is
conserved, we can rewrite the wave function in the basis spanned by the positions
Z1, ..., Zy of the particles. For S = 1/2 there is at most one particle per site so the
wave function can be simply expressed as

Y1(Zuse. o Zu) o< [](Zi - Z)Pf[ z_Z]]e 12140 (3.62)

1<j

where the Z; are restricted to positions in the lattice. In the limit of infinitely many
lattice sites per particle the lattice becomes a continuous plane and the positions Z;
become positions in the plane. This state then coincides with the Moore-Read state
(3.5). The number of particles on the lattice is M = n— = 2‘;];7 so if the flux is 412,
then we can express 2= ﬂux This explains that th1s quantity corresponds to the
filling fraction in the contmuum, defined as the number of particles per magnetic

flux.
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Continuum limit of the S =1, ¢ = 1 state

For S = 1, ¢ = 1, the state also has the form (3.61), however since the n; can take
the value 2, it is not straightforward to take the continuum limit. We first have to
write the wave function in the basis spanned by the position of the particles. For a

basis element |n1,...,ny), let Z,, r € {1,..., M} be the positions of the particles.

Since we interpret the state |2) as the presence of two particles, positions Z; where
n; = 2 are listed with two different indices r in the set {Z, }. We now write the wave
function in the basis given by the sets {Z, }. As a starting point, observe that

M n
H e—\Z,,.\2/4 _ H e—ni‘zi|2/4. (3.63)

r=1 i=1

We can also prove that[2]:

1z - Zs)le{ ! } =[] (zi — ;)" "™ Pfy,—n, -1 [ ! Z'] : (3.64)

r<s Zy = Zs i<j
The wave function can therefore be written as

=20, 2 o< [ (2 2)) P [Zizl i 2laf, (3.65)
i<j t J

where the Z, can be repeated twice to allow for states with double occupation, in
which case this expression does not vanish because of a cancellation between the
Jastrow factor and the Pfaffian. If we now take the continuum limit, the positions of
the particles can be anywhere on the plane and this becomes the bosonic Moore-Read
state at filling fraction 1, which also does not vanish when two particles are at the
same site. The contribution of configurations with two particles at one or more
sites can be neglected in the continuum limit. Note that the previous derivation
also shows that the (¢ = 1,7 = 1); Moore-Read state in the thermodynamic limit is
equivalent to the spin-1 non-Abelian chiral spin liquid introduced in Ref. [53], but
the two states are different on finite lattices.

Continuum limit of the S = 1, ¢ > 2 state

When ¢ > 2 the state can be written as

5122(“1, nN) X H(Z’ — zj)(qfl)mnngzl(nh .., MN) (3.66)

i<j
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We have already derived the continuum limit of the state on the right at ¢ = 1 and
the remaining factor can be expressed as

[1(zi = z)te=Dmms = 1] 9(2, Z0) 7, (3.67)
1<J r<s
where
Zy — Zs if w, # wg
ZraZs = . 3.68
9 ) { 1 otherwise ( )
In the continuum limit, the wave function can therefore be written as
>2 1 —|2,]2/4
W20, ) <[] 9(Z0 — Z4)7PE [Z_Z} || G (3.69)

r<s r

When no two particles are at the same site, this wave function is the same as the
(q,m)1 /2 Moore-Read state in the continuum limit. Because configurations with two
particles at the same site do not contribute to the wave function in the continuum
limit[2], the (¢, 7)1 Moore-Read states for ¢ > 2 have the same continuum limit as
the (¢,7),/2 Moore-Read states, which is the continuum Moore-Read state at filling
fraction 1/q.

One dimensional continuum limit

So far we have focused on two dimensional states. In the one dimensional setting,
when z; = €2™/N | the same results enable us to perform an interpolation between
the lattice and the continuum. The only difference with the 2D case is that it is
now possible to compute analytically fy(z;) x &z, so the wave functions in the
continuum can be expressed as

¢S(Zl,...,ZM) X H(Zi_Zj)qu [ZiZ‘| Hfja (370)
i<j ! 71

which is a one-dimensional version of the Moore-Read state.

Properties of the lattice Moore-Read states

In two dimensions, the Moore-Read states in the continuum are topological states
which support non-Abelian quasi-particle excitations. It is of high interest to check
whether the lattice Moore-Read states we have introduced share these properties.
In one dimension, we expect that the lattice Moore-Read states display critical
behaviour related to the conformal operators used to construct the wave function.
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Here we focus on the states with ¢ = 1 and ¢ = 2, and numerically compute some of
the properties of the states we have introduced.

One dimensional critical states

We now look at one-dimensional chains such that z; = ™% /N Since we will find
local Hamiltonians for the states (¢ = 1,7)1 and (¢ = 2,7); /2 in one dimension in
the lattice limit in section 3.4.5, we focus on these states. First we compute the
Renyi entropy (2.12) of a subsystem of size L of the chain, following the algorithm
detailed in section 2.2.3.

The results are shown in Fig. 3.22. The entropy scales logarithmically with the size
of the subchain for all values of . Moreover, the scaling is approximately the same
for different values of n and fits of the form

5P — Ein(sin(T)) + b 3.71)

4 N

yield a value of the central charge c approximately equal to 1.36 for the (¢ = 1,7);
Moore-Read states (the main source of errors is here the finite size of the lattice
considered). This value is in agreement with the value of 1.395 found for the state in
the lattice limit in [70], where it was also shown that a value of 1.5 for the central
charge, as expected for the SU(2); WZW model, could not be excluded. For the
(q = 2,m)1/2 Moore-Read states we find a value of 0.98 which is compatible with a
central charge equal to 1. Another quantity that can be computed using Monte-Carlo
techniques is the particle-particle correlation function C;, = (ninr) — (n1)(nr).
Results in Fig. 3.23 confirm that the states are critical since the correlation functions
decay polynomially with the distance L. For the (¢ = 1,77 = 1); Moore-Read state,
the critical exponent is found to be 0.70, which is in agreement with the value
of 0.69 found in [70], where it was observed that such a value can be influenced
by a multiplicative logarithmic correction which could explain the difference with
the expected value of 0.75 [203-205]. Moreover for the (¢ = 2,7),/, states at
different values of 7, the correlations are very close once rescaled by a factor of 1/7?,
which confirms that properties of the state do not change along the interpolation.
For a Tomonaga-Luttinger liquid, the expected behaviour of the particle-particle
correlation function is [206]

Acos(2Lk K
Cr = ( ;){ + 7 (3.72)
’sin(%)%‘ 272 ‘sin(%)%

where K is the Luttinger parameter, kr = n7/q is the Fermi momentum and A is a
non-universal constant. For the (¢ = 2,7); /, state we find a good agreement of this
formula for K = 0.494, A = 0.123. This suggests that this state in one dimension
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Fig. 3.22.: Renyi entropy Sf) of a subsystem of L consecutive sites for the 1D (¢ = 1,7)1
Moore-Read states (a) and (¢ = 2,7),/2 Moore-Read states (b) for different
values of 7. The number of particles M = nN/q is fixed so the sizes of the chain
are N = 40, 80,160, 320 for n = 1,1/2,1/4,1/8 respectively. The lines are linear
fits of the points for n = 1/8 (blue) and n = 1 (red). Figure reproduced from
[2].

is well described by a Tomonaga-Luttinger liquid with central charge ¢ = 1 and
Luttinger parameter K = 0.5, which corresponds to the properties of a free-boson
CFT with radius v/2, as was the case for the corresponding one-dimensional Laughlin
state[160].

Two dimensional topological states

In the continuum, the Moore-Read state at filling fraction 1/¢ has a topological
entanglement entropy (TEE), as defined in (3.3), of [146] vy(q) = %1n(4q). We
compute the TEE as in section 3.2.2, see Fig. 3.6. The results in Fig. 3.24 for the states
(g =1,7m)1 (resp. (¢ = 2,m)1/2) are in agreement with the topological entanglement

entropy of a Moore-Read state at filling fraction 1 (resp. 1/2), vo(1) = %ln(él) ~ 0.69

(resp. 70(2) = % In(8) ~ 1.04). Moreover the value of the TEE does not change with
7, so the topological properties of the states remain the same along the interpolation

between the continuum and the lattice limit.

We observe however that the state (¢ = 2,7); has a TEE close to zero and different
than ~((2). The TEE does not stay constant when 7 is changed, which is compatible
with the expectation that its value is 7y(2) in the continuum limit: there must be a
phase transition along the interpolation between the continuum and the lattice. The
states with S = 1, ¢ > 2 can therefore define distinct lattice states from the states
with S = 1/2, ¢ > 2, while having the same continuum limit.
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Fig. 3.23.: Rescaled correlation function n~2C}, as a function of the distance between the
sites for the 1D (¢ = 1,7); Moore-Read states (a) and (q = 2,7), /2 Moore-Read
states (b) for different values of 7. The number of particles M = nN/q is
fixed so the sizes of the chain are N = 40, 80, 160,320 for n = 1,1/2,1/4,1/8
respectively. The data for n = 1 is shown in the insets in log-log scale, confirming
the polynomial decay of correlations, and the line in the insets is a linear fit
yielding critical exponents 0.70 ((¢ = 1,7 = 1); state) and 1.02 ((¢ = 2,1 = 1)1 2
state). In (b), the line is a fit of the form (3.72) with parameters K=0.494 and
A=0.123. Figure reproduced from [2].

3.4.4 Parent Hamiltonians for the lattice Moore-Read states

So far we have considered wave functions for lattice states. It is also relevant
to ask whether these states are ground states of some Hamiltonians and whether
these Hamiltonians can be realized in nature or implemented in experiments. We
now turn to the construction of parent Hamiltonians for which the lattice Moore-
Read states are ground states. The procedure is similar as the one introduced
in section 3.2.5: null fields are found such that the correlators vanish. These
equations are transformed in a set of operators A; annihilating the wave function
and a Hamiltonian ), AIAZ- is defined for which the lattice states are ground states.
The details can be found in Appendix B and in the following we summarize the
expressions found for the operators A;. In the rest of this chapter the phase factors
are fixed to & = 1.

Parent Hamiltonians for the SU(2)2 (¢ = 1,7 = 1); Moore-Read state

The special case of the (¢ = 1,7 = 1); state has a wave function constructed from
the spin 1 primary fields of the SU(2), Wess-Zumino-Witten conformal field theory
[70, 207] and has already been considered partially in Ref. [70], where, however,
the focus was on 1D systems. This SU(2); symmetry can be used to construct

3.4 Moore-Read states on lattices

79



80

O Monte Carlo data n=1 O Monte Carlo data

— Linear fit — Linear fit

=1 =y 6 n=1/4 n=1/8

(g = 1,7m); state L (q=2,m)12 state

O Monte Carlo data
| — Linear fit —

(g =2,n)1 state

n=1/4 n=1/8 |

Fig. 3.24.: Linear behaviour of the Renyi entropy with the size of the cut L, for the

(¢ = 1,n)1 (@), (¢ = 2,m)1/2 (b) and (¢ = 2,m)1 (c) Moore-Read states on a
L, x L, lattice. The topological entanglement entropy of the continuum Moore-
Read states at filling 1 (a), v(1) =~ 0.69, and at filling 1/2 (b,c), 70(2) ~ 1.04,
are indicated with a red arrow. The values of n are 1, 1/4 and 1/8 and the
corresponding sizes L, are respectively 12, 16 and 16. The insets are enlarged
views confirming that the topological entanglement entropy stays the same when
n is varied and that its value corresponds to (1) (resp. vo(1/2)) in the first two
cases, while the topological entanglement entropy of the (¢ = 2,7n); Moore-Read
state is close to zero in the lattice limit and close to 7,(1/2) in the continuum
limit. Figure reproduced from [2].

parent Hamiltonians invariant under SU (2) transformations. Let us define the spin-1
operators t¢, written in the spin basis at site 7 as

t®
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the Levi-Civita symbol €,;. and rewrite the coordinates as w;; = if? Then the
1%

results of Appendix B.1 lead to operators annihilating the wave function

N
2 5 1
A=Y wy [3@% - ﬁzeabctgtg - ﬁ(t;lt? + tftg)tg] : (3.74)
J(#0)

from which we can derive a Hamiltonian

AN 1 N
H =3 > whwij + 3 S whwi +2 ) wiiwkg tit§
i#] i#] k(#1,5)
N
- EZW’?‘»W‘ (52 + > Lt sy — St ) 94040t (3.75)
6 (Rt VAN R 3zk v 2Zk i | Ytk .
i#] i#i#k

This Hamiltonian is SU(2) invariant and numerical diagonalization on small systems
confirm that it has the (¢ = 1,7 = 1); Moore-Read state as a unique ground
state. This Hamiltonian is similar to the one obtained in [159] for the spin-1 non-
Abelian chiral spin liquid state introduced in [53]. However the Hamiltonian we just
constructed is valid for any choice of lattice and not only in the thermodynamic limit
as is the case in [159].

Parent Hamiltonians for the (¢, = 1)1, ¢ > 2 Moore-Read states

For ¢ > 2, the (¢,n = 1)1 Moore-Read states do not display an SU(2) symmetry.
It is still possible to find null fields and construct operators annihilating the wave
function. Let us define the operators df, d to be creation and annihilation operators
(bosonic for ¢ odd, fermionic for ¢ even) acting between states |0) and |1), and
d'f, d' to be creation and annihilation operators acting between states |1) and |2).
The number of particles at site i is thus n; = ngl) + 2n£2), where ngl) = d'd and
nz@) = d''d’. In Appendix B.2 we derive the following operators annihilating the
wave function:

A" =3 di, (3.76)
A=y (3.77)
p=Lia-2 iz (5= %)P
_ 1
AT =) mdﬂﬁn?% (3.78)
i)

It qnj —1 )
EErAT L Dl (3.79)
gy (i) CLT
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This leads to a three-body Hamiltonian annihilating the wave function

N gq N 2
H=Y Y AAs + (Z n; — ) : (3.80)

i=1 a=0 i q
where the last term fixes the number of particles. This Hamiltonian annihilates the
wave function (¢,n7 = 1)1, however we find numerically that the ground space of this
Hamiltonian is degenerate when ¢ > 3 and that the degeneracy does not depend on
the number of sites. Other simple null fields of the theory constructed with the same
current operators do not lead to operators acting on the wave function that would
reduce this degeneracy.

Parent Hamiltonians for the (¢,7 = 1),/5, ¢ > 2 Moore-Read states

We can now use the previous results to construct parent Hamiltonians for the
(g,m=1)1/2, ¢ > 2 Moore-Read states. They are projections of the (¢, = 1); Moore-
Read states in the subspace allowing only for single occupation at each site, that
we denote H!. Let us also define the Hilbert space #? spanned by basis elements
containing at least one site with two particles. We will now project the operators
annihilating the (¢, = 1); Moore-Read states onto H! in order to get operators
annihilating the (¢, 7 = 1),/ Moore-Read states (see Appendix B.3 for the detailed
derivation):

N =3"d, (3.81)
/ 1 1)

AP = = gl ,

" 1 9 Z ( A_Zj)pd]nz ’ (3 82)

P=leed=2 ()

At = 1 nV 1 q”§1)_1d M. (3.83)

e Y P+ Y e —anl. @
i) VT s H (i 2 S

This leads to a five-body Hamiltonian

N q-1 2
H=Y Y AMAe +<Zn —). (3.84)

i=1a=0

As in the previous case, this parent Hamiltonian has a single ground state only when
q = 2 and this ground state is the (¢ = 2,7 = 1), Moore-Read state.
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3.4.5 Local Hamiltonians in one and two dimensions

The parent Hamiltonians we have derived involve three or five-body interactions
between all sites on the lattice. These Hamiltonians would therefore be very difficult
to implement in experiments. However in some cases it has turned out that states
constructed from correlators of conformal fields had very high overlaps with ground
states of local Hamiltonians [1, 38, 54, 195]. This has lead to a protocol to implement
one of these states in experiments [54, 168]. In this section we show that there
is a local Hamiltonian for which the ground state is close to the (¢ = 1,n = 1);
Moore-Read state in one and in two dimensions and that this result is also true for
the (¢ = 2,1 = 1)/, Moore-Read state in one dimension.

Local Hamiltonians for the (¢ = 1,77 = 1); Moore-Read state

In one dimension the case of the (¢ = 1,7 = 1); Moore-Read state was studied in
Ref. [70]. It was shown that this state has a high overlap with the ground state of
the bilinear-biquadratic spin 1 Hamiltonian

HfB = Z {cos (B)tits , +sin (B) (t§ ?+1)2} , (3.85)
i=1

with periodic boundary conditions, when 5 = —0.3213. Note that this Hamiltonian
includes the 2-body terms present in the parent Hamiltonian (3.75).

Operator Configuration Coefficient

wea Q CL) 1
tl t] a) b)
¢ b) 0.6227
? ¢) -0.1762
(tgt?)2 c) d)
.Y )

d) 0.3226
k ce | €)0.4637i

te9thth ¢) 9 0
T T ) 0.0208

Tab. 3.2.: Terms in the Hamiltonian H,p and coefficients obtained after numerical opti-
mization on a 4 x 4 lattice.

3.4 Moore-Read states on lattices

83



84

We now study the two dimensional case and build a local Hamiltonian from the
parent Hamiltonian (3.75). The operators A¢ contain 2-body interactions between
sites = and j. We cut these operators by keeping only terms for which the sites i and
j are nearest-neighbours on the square lattice. This leads to a local Hamiltonian
with three-body interactions. In addition to these terms, we include the two-body
interactions between next-nearest neighbours present in the parent Hamiltonian.
All six terms included in our trial Hamiltonian, that we denote Hsp, are shown in
Table 3.2. Note that the coefficients of these terms in the exact parent Hamiltonian
are position-dependent. In our local Hamiltonian, however, we choose them to be
position-independent and invariant under rotations.

By exact diagonalization and optimization on these coefficients, we find that there
is a local Hamiltonian for which the overlap |(1f7|¥moore-read) | PEtWeen the ground
state and the (¢ = 1,7 = 1); Moore-Read state on a 4 x 4 square lattice on the plane
is 97.36%. Considering the size of the Hilbert space 3'6 ~ 4 x 107, this overlap is
very high. Note that with the same parameters, the overlap is also above 98% on a
4 x 3 oronad4 x 2 lattice. On a cylinder geometry, i.e. periodic boundary conditions
in one direction, the overlap on a 4 x 4 square lattice is 97.21%.

Compared to the local Hamiltonian found in Ref. [53], which is for a state that
is equivalent to the (¢ = 1,7 = 1); Moore-Read state in the thermodynamic limit,
but different on finite lattices, the Hamiltonian we find has less free parameters (5
instead of 11) to fine-tune, which might make it easier to implement. Moreover,
the very good scaling with lattice sizes lets us expect that a good agreement will
persist on larger lattices. In Fig. 3.25, we show the low-energy spectrum of this local
Hamiltonian. This figure is compatible with having a gap in the thermodynamic
limit, but the limitations on the system sizes that we can consider prevent us from
making a reliable extrapolation.

10

o

E, — Ey

Overlap : 97.36%98.10% 99.18%

0 0.05 1/N 0.1

Fig. 3.25.: Energy difference to the ground state energy for the first excited states of the
Hamiltonian Hsp for different sizes of lattices. The overlap between the ground
state of this Hamiltonian and the (¢ = 1,7 = 1); Moore-Read state is indicated
below each ground state. Figure reproduced from [2].

Chapter 3 Fractional quantum Hall lattice models from infinite dimensional tensor networks




Local Hamiltonian for the 1D (¢ = 2,7 = 1), /, Moore-Read state

The state (¢ = 2,7 = 1);/, Moore-Read state has a five-body parent Hamiltonian.

Let us consider the one dimensional case. If we cut the A¢ operators by keeping only
terms for which the sites 7 and j are nearest-neighbours, we get a local Hamiltonian
with several terms. We find however numerically that even a smaller number of
terms is already sufficient to get a good overlap. Specifically, we choose to keep

only the simplest two-body and the simplest three-body terms, to obtain a local
Hamiltonian with periodic boundary conditions

HS)) = Z (nmi+1ni+2 + dedi-',-l) + c.c., (3.86)
=1

where d;r, d; are fermionic creation and annihilation operators at site i and n; = d;rdi.

For k = 0.274 + 0.0527, we find that the overlap between the ground state of H%

and the (¢ = 2,7 = 1),/ Moore-Read state is 97.71% for a chain with 20 spins
(Fig. 3.26a).
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Fig. 3.26.: (a) Overlap |(¢crr|t )| between the (¢ = 2,7 = 1), ), Moore-Read state and the

ground state of Hamiltonian H S)) with « fixed to 0.274 4 0.052i, as a function
of the number N of lattice sites. The dotted line is a linear fit with equation
y = 1.0075 — 0.00152N. If the overlap continues to follow this behavior at larger
sizes, it will still be above 85% for a spin chain with 100 lattice sites. (b) Overlap
per site |(¢crr|wr)|*/N between the same two states. Figure reproduced from

[2].

In two dimensions, since the SU(2) symmetry is not present in this model, cutting
the parent Hamiltonian leads to a local Hamiltonian with up to five-body interactions
with many different coefficients. In addition, the fact that the five-body terms involve
more sites means that each of them stretches over a larger part of the lattice. With
the limited lattice sizes that we can consider with exact diagonalization, this is
problematic because the local regions need to be small compared to the total size
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of the lattice (otherwise it would not be expected that the same local Hamiltonian
would also work for other lattice sizes). This suggests that even if a local Hamiltonian
that is related to the exact Hamiltonian exists, we may not be able to find it with
exact diagonalization. Instead of cutting the exact parent Hamiltonian, we therefore
asked whether, by chance, a local Hamiltonian can be obtained if we restrict the
range of the interactions to all interactions preserving the number of particles on all
possible configurations inside a plaquette of the lattice. Optimizing the coefficients in
this Hamiltonian, we did not, however, find a set of coefficients for these interactions
for which the ground state of this Hamiltonian is close to the (¢ = 2,7 = 1), , Moore-
Read state. Whether there exists a more complicated, but still local, Hamiltonian
stabilizing this state therefore remains an interesting open problem.

Conclusion

In this section we have shown that lattice fractional quantum Hall states can be
defined by writing a wave function as a correlator of conformal fields acting at
particular lattice sites. The resulting infinite dimensional MPS can be studied for
large sizes using Monte Carlo simulations and exact parent Hamiltonians having
these states as ground states can be constructed.

We first studied lattice versions of Laughlin wave functions with number of particles
per flux v = 1/q on arbitrary lattices with filling factor u = n/q, which allowed us to
investigate lattice effects all the way along the interpolation between the continuum
limit and the completely filled lattice. We found by computing correlations and
topological entanglement entropies that the lattice Laughlin states on the square
lattice have the same topological properties as the continuum Laughlin state in most
of the parameter range, except at the particle-hole symmetric point n = ¢/2 when ¢
is larger than five. We found that this effect is only present on the square lattice and
does not persist if the lattice is deformed to a triangular lattice or to the Kagome
lattice, in which case frustration destroys the long-range order and the topological
properties of the state are recovered. We defined edge states wave functions which
have a modified density at the edge of the lattice, but share the same correlations in
the bulk as the lattice Laughlin states. This then allowed us to construct few-body
non-local parent Hamiltonians for the lattice Laughlin states on arbitrary lattices in
a wide range of filling factors.

We then turned to the local excitations of these states and showed that lattice
versions of the Laughlin quasihole and quasielectron wave functions can be defined.
Unlike in the continuum, the quasielectrons on the lattice can be constructed as
inverse quasiholes. This allowed us to characterize the braiding properties, size
and charge of both quasiholes and quasielectrons. In particular we constructed
models for which there is a symmetry between quasiholes and quasielectrons, and

Chapter 3 Fractional quantum Hall lattice models from infinite dimensional tensor networks




studied how this symmetry is broken along the interpolation between the lattice and
the continuum. Parent hamiltonians for various states containing quasiholes and
quasielectrons have been constructed. These allow creation, braiding and fusion of
anyons simply by changing the interaction strengths in the Hamiltonian. It was also
found that the states we introduced are good approximations of particular fractional
Chern insulator states.

Finally we investigated how the previous constructions could be extended to states
having non-Abelian anyons as their ground state. We introduced a family of strongly-
correlated spin states on arbitrary lattices in one and two dimensions which cor-
respond to Moore-Read states of bosons and fermions in the continuum limit. We
provided numerical evidence that these states are critical states in one dimension and
topological states in two dimensions, and that their properties remain unchanged
along the interpolation between lattice and continuum. Non-local parent Hamiltoni-
ans for these states were derived in the lattice limit, and we found that in some cases
the states could be stabilized by local Hamiltonians in one and two dimensions.

Our results show that models in which at least the ground state can be found
analytically allow to study with high precision phenomena appearing in quantum
many-body systems, such as topology. The models we introduced can also be used
as a starting point to identify simpler models that realize the same physics, but that
are more realistic to realize in experiments.

3.5 Conclusion
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Neural-network quantum states
and tensor networks: relationship
and application to chiral states

In the previous chapters we have considered infinite dimensional tensor networks
with few variational parameters that allowed us to construct models with interesting
properties. The exact parent Hamiltonians we obtained were not local and difficult
to realize experimentally. It is therefore of interest to study other Hamiltonians
that might be simpler to implement but that realize the same physics. In general,
the ground state of these Hamiltonians cannot be found exactly and it is desirable
to be able to approximate it with more sophisticated variational wave functions.
In this chapter we investigate the power of different classes of states to represent
ground states of many-body Hamiltonians, with a focus on chiral topological states
introduced in the previous chapter.

Neural-network quantum states[71] were recently introduced as an ansatz for a
many-body wave function based on an artificial neural network. While a few
different neural-network architectures have been used[71, 208-210], the most
promising results so far have been obtained with Boltzmann machines[85], which
were originally designed for representing probability distributions. In particular,
state of the art numerical results have been obtained on popular models with
restricted Boltzmann machines (RBM) and it has been demonstrated that deep
Boltzmann machines can represent gapped ground states of many-body Hamiltonians
and quantum states generated by polynomial size quantum circuits efficiently[87,
88]. Neural-network quantum states can be optimized to approximate a ground
state wave function using the Variational Monte Carlo (VMC) method[211, 212].
Seemingly unrelated classes of states that are optimized using the same method are
classes of tensor-network states such as Entangled Plaquette States (EPS)[90-92]
and String-Bond States (SBS)[93, 94], which construct a wave function as a product
of tensor-network wave functions over overlapping clusters of spins.

In this chapter we will show that these classes of tensor-network states generalize

neural-network quantum states taking the form of restricted Boltzmann machines.

We will then exploit this connection to investigate the power of these different classes
of states in approximating a chiral spin liquid introduced in the previous chapter.
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We start in section 4.1 by introducing the Variational Monte Carlo method as an
algorithm to optimize both tensor networks and neural networks to approximate
the ground state of a many-body system. In section 4.2 we then provide a mapping
between restricted Boltzmann machines, Entangled Plaquette States and String-Bond
States and demonstrate that these classes of tensor networks generalize RBM states
in arbitrary dimension. This relation provides new insights over the geometric
structure of RBM and their efficiency and motivates us to define non-local String-
Bond States which provide a way of combining RBM and SBS together, while taking
leverage of both the entanglement structure of tensor networks and the efficiency
of neural networks. In section 4.3 we then apply these methods to the problem
of approximating chiral topological states. We first provide a way to represent
the Kalmeyer-Laughlin wave function analytically as a RBM, and use its parent
Hamiltonian to evaluate the accuracy that can be achieved numerically. We then
compare the power of EPS, SBS and RBM in approximating the ground state of a
chiral spin liquid and give evidence that the properties of the ground state of the
model can be accurately reproduced using our method. This chapter is based on
Ref. [4] and is a modification thereof:

* [4] : Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez and
J. Ignacio Cirac, ‘Neural-Network Quantum States, String-Bond States, and
Chiral Topological States’, Physical Review X 8, 011006 (2018),
http://dx.doi.org/10.1103/PhysRevX.8.011006, under CC BY 4.0 license.

Variational Monte Carlo with tensor networks and
neural-network quantum states

In the previous chapters we have mostly discussed the construction of exact models
from infinite dimensional tensor networks. Given a general Hamiltonian H, we
would also like to be able to obtain its ground state in the form of a tensor network.
The algorithms that one can use for solving this task in general depend on the class
of tensor network states that are considered. The density matrix renormalization
group algorithm[13] is an example of such an algorithm for Matrix Product States
(MPS). In this section we introduce the Variational Monte Carlo (VMC) method[211,
212], which is a general algorithm for finding an approximation to a ground state
wave function in a class of states for which the wave function coefficients can be
computed efficiently. In particular we introduce the Stochastic Reconfiguration
method, a powerful optimization method for performing VMC. We show that it can
be used to optimize MPS, but also other classes of tensor-network states such as EPS
and SBS. We then introduce neural-network quantum states based on Boltzmann
machines and explain how they are also optimized using the same method.
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4.1.1 Variational Monte Carlo and Stochastic Reconfiguration

Finding the ground state wave function |¢) satisfying the Schrodinger equation
H|vo) = Eplypo) is an eigenvalue problem, but this problem can be mapped to an
optimization problem. Indeed the variational principle states that the energy of any
quantum state is higher than the energy of the ground state, with equality only for
the ground state. Finding the ground state therefore amounts to finding the wave
function of lowest energy. Consider a generic quantum state defined on a lattice
with N spins, written in the computational basis as

’¢>: Z w(sl,...,SN)lsl,...,8N>. (4.1)
S814..3SN

Instead of finding the exponentially many parameters ¢ (s1, ..., sy) such that the
energy is minimized, one may restrict the search to a specific class of states specified
by a particular choice of function )y (s1,. .., sy) depending on polynomially many
variational parameters w = {ws,...,wy,}. The energy of such a state can be

expressed as

(Y[HY)

Ew="—"——""= p(s)Ep(s), 4.2)
where s = s1,..., sy is a spin configuration, p(s) = % and the local energy
is Eioc(s) = Yo (s|H|s') ﬁ“;’,((ssl)). Note that if the function 1)y, is given in a way that is

efficient to evaluate on a spin configuration, then p(s) can be evaluated efficiently,
and the local energy can also be evaluated efficiently for Hamiltonians involving
few-body interactions. p is a positive and normalized function over the Hilbert space,
it therefore defines a probability distribution. The energy is then the expectation
value of the local energy with respect to a probability distribution, and can be
evaluated using Markov Chain Monte Carlo sampling techniques as explained in
section 2.2.3.

To minimize the energy, several algorithms can be used. In gradient based methods,
one also needs to compute its gradient f, which can be expressed using

OFy,

ow =2 Zp(S)Awi (S)* (Eloc(s) - Ew) ) (4.3)
where we have defined A, (s) = wwl(s) 8%?025) as the log-derivative of the wave

function with respect to some parameter w;. The gradient is also an expectation
value with respect to the probability distribution p and can therefore be sampled at
the same time. The simplest possible algorithm is gradient descent, which consist in
the following steps:
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1. Initialize the variational parameters w" at iteration O to random numbers.

2. At iteration t, the parameters take the values w’. Run a Markov Chain Monte
Carlo algorithm to compute the energy of the corresponding wave function, as
well as its gradient with respect to the variational parameter.

3. Update the parameters by small steps in the direction of negative energy
derivative: w't! « w' + ~, where v = —af. « is called the step size or
learning rate.

4. Repeat steps [2-3] until convergence of the energy.

This method only requires the efficient computation of ﬁ”v"v((ss/)) for two spin configura-

tions s and ¢, as well as the log-derivative of the wave function A, (s). More efficient
optimization methods can be used, such as conjugate-gradient descent which uses
information from the gradient at previous steps or the linear method[213-215]
which use second-order derivatives of the energy. Newton method[216] would result
in a change of parameters given instead by

v =—aH'f, 4.4

where H is the Hessian of the energy.

Small changes of the variational parameters may however lead to big changes in
the wave function. Taking into account the metric of changes of the wave function
leads to the Stochastic Reconfiguration[217, 218] method, which is equivalent to the
natural gradient descent[219] and replaces the Hessian in (4.4) by the covariance
matrix of the derivatives of the wave function, avoiding the computation of the
second-order derivatives of the energy. The Stochastic Reconfiguration method can
also be viewed as an approximate imaginary-time evolution in the tangent space of
the wave function. Consider the normalized wave function |¢y) and its derivatives

|1ho) = o) (4.5)

V(Wolo)’
~ (Wolvi)  [tbo)
)

i)
V{Woltho)  (Wolvo) v/ (Wolthe)

defining a non-orthogonal basis set 2. Expanding the wave function to linear order
around some parameters w leads to

i) = (4.6)

Nw

(W +7)) =D vilvi)- 4.7)
1=0

To minimize the energy, one can apply the imaginary-time evolution operator e~
which for small « can be extended as 1 — aH. The change of coefficients ~ is found
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by applying this operator to |¢)(w + -)) and projecting in the set 2, which leads to
the equation

M
¢Z|HW0 = Z %Wy Vi (48)
j=1
which can be rewritten as
~=—aS7'f, (4.9)

where S;; = (1;]1;) and fi = (1;| H|1)o). If we expand these expressions as expecta-

tion values over the probability distribution p(s) = ZW‘“; s)* SE> We obtain
fi = (A7 Eioc) = (A7) {Eloc), (4.10)
Sij = (A747) = (AD{A). (4.11)

Finally, the complete algorithm of the Stochastic Reconfiguration method is as
follows:

1. Initialize the variational parameters w" at iteration 0 to random numbers.

2. At iteration ¢, the parameters take the values w’. Run a Markov Chain Monte
Carlo algorithm to compute stochastic estimates for the expectation values
<Aj>: (Eloc)> (A} Eloc), <A:AJ>

Construct the vector f and matrix S.

Update the parameters according to: wtt! < w! + ~, where v = —aS™!f.

5. Repeat steps [2-4] until convergence of the energy.

W

In practice we randomly select a subset of the parameters at each iteration of the
algorithm and update only these parameters, to reduce the computational cost
associated with the operations dealing with f and S. Moreover we avoid forming
the full matrix S by instead solving (4.9) with a conjugate-gradient solver[220].
The Stochastic Reconfiguration method might lead to numerical instabilities in the
solution of (4.9). These are prevented by adding a small constant ¢ to the diagonal
elements of the matrix S, rotating the direction of change towards the steepest
descent direction.

Variational Monte Carlo method with tensor networks

At this point one has to choose a parametrization for the wave function. One
natural choice in one dimension is a MPS, defined in (2.5). MPS can be efficiently
optimized using the density matrix renormalization group[13], but the previously
described VMC method can also be applied[93, 221] by observing that the ratio of
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two configurations is straightforward to compute, since one just needs to contract
/
the MPS, and that the log-derivative with respect to some matrix AZ’“ is given by

T
Sk SN AS1 ASk—1
Osg s (Ak+1 AN AT AT )

Tr(AT - AY) (4.12)

AAZkI (S) =

In some cases, this method is less likely to be trapped in a local minimum than
DMRG, since all coefficients can be updated at once. In addition, the cost only scales
as O(D?) in the bond dimension for periodic boundary conditions.
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Fig. 4.1.: Geometry of ansatz wave functions: (a) Jastrow wave function include correla-
tions within all pairs of spins. (b) Matrix Product States (MPS) in 2D cover the
lattice in a snake pattern. (c) Entangled Plaquette States (EPS) include all spin
correlations within each plaquette (2x2 on the figure) and mediate correlations
between distant spins through overlapping plaquettes. (d) String-Bond States
(SBS) cover the lattice with many 1D strings on which the interactions within
spins are captured by a MPS. Figure reproduced from [4].

In this chapter we will be mostly concerned with two dimensional systems. In this
case, a MPS can be defined by mapping the system to a line (Fig. 4.1b). Spins
which sit close to each other might however be separated by a long distance on the
line, so MPS in 2D fail to reproduce the local structure of the state, which leads
to an exponential scaling of the computational resources needed with the system
size[222]. Instead, one could use Projected Entangled Pair State (PEPS) (Fig. 1.2),
but their exact contraction is # P hard[223] and their optimization cannot rely on
the standard VMC method without approximations. Instead we will consider other
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classes of tensor-network states in more than one dimension for which the exact
computation of the wave function is efficient, which allows for the direct use of the
VMC method.

One way of defining such tensor networks relies on the definition of P small clusters
of n, spins, or plaquettes, on the lattice. These clusters may overlap, and because
the clusters are small the wave function on each plaquette can be written by a
tensor depending on the values of the spins in this plaquette. The wave function of
the full quantum system is then taken to be the product of the wave functions in
each plaquette. Because the plaquettes overlap, correlations take place between the
different plaquettes (Fig. 4.1c). The wave function of such an Entangled Plaquette
State (EPS, also called a Correlated Product State) is written as[90-92]:

P
Uw(s) =[] Cpr, (4.13)
p=1

where a coefficient C" is assigned to each of the 2" (for spin-1/2 particles) configu-
rations s, = Sq,., - - - , Sa,, Of the spins on the plaquette p. Each C), can be seen as the
most general function on the Hilbert space corresponding to the spins in plaquette
p. The accuracy can be improved by enlarging the size of the plaquettes. Moreover,
once the spin configuration s, is fixed, the log-derivative of the wave function with
respect to the variational parameters is simply

1

= = (4.14)
p

Ac;P (s)
which is efficient to compute. The VMC method can therefore be applied to optimize
EPS. Another choice of clusters of spins can be all pairs of spins on the lattice. The
corresponding EPS is a Jastrow wave function[211, 224], with the form

dw(s) = 1G5 (4.15)

1<j

This wave function does not presuppose a particular geometry: in general it is non-
local due to the correlations between all pairs of spins (Fig. 4.1a). A local structure
can be introduced by choosing a form for C;; which decays with the distance between
position i and j.

EPS are limited to small plaquettes since for each plaquette the number of coeffi-
cients scales exponentially with the size of the plaquette. To be able to use larger
clusters, one can describe the state on each cluster of spins by a MPS, avoiding the
exponentially many coefficients needed to describe the complete state of each cluster.
The lattice is now cut in overlapping 1D strings which can mediate correlations on
longer distances compared to local plaquettes (Fig. 4.1d). The resulting ansatz is
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a String-Bond State (SBS)[93] defined by a set of strings 7 € S (each string i is an
ordered subset of the set of spins) and a MPS for each string:

Pw(s) = HTr (H Affj) : (4.16)

JE

The choice of strings depends of the geometry of the problem considered. By using
small strings covering small plaquettes and a large bond dimension, SBS generalize
EPS. Instead, a single long string in a snake pattern includes a MPS in 2D. In 3D,
strings parallel to the axes of the lattice have been chosen[94]. Since the form of the
wave function is a product of MPS, the log-derivative with respect to some elements
present in one of the MPS is simply the log-derivative for the corresponding MPS
(4.12). The VMC procedure for optimizing SBS and MPS thus have the same cost.
In addition, the ratio of two configurations which differ only by a few spins can be
computed by considering only the strings including these spins, which speeds up
the computation considerably. One can map a SBS to a MPS analytically, but the
resulting MPS has a bond dimension exponential in the number of strings.

Variational Monte Carlo method with neural networks

It was recently realized that the VMC method can be viewed as a form of reinforce-
ment learning, in which an agent interacts with an environment through actions
and tries to maximize a reward, corresponding in this case to a low energy. This
motivated the use of neural-network quantum states[71] in which the wave function
has the structure of an artificial neural network. A few different networks have
been investigated[71, 77, 208, 209], but the most promising results so far have
been obtained with Boltzmann machines[85]. Boltzmann machines are a kind of
generative stochastic artificial neural networks that can learn a probability distri-
bution over the set of their inputs. In quantum many-body physics, the inputs are
spin configurations and the wave function is interpreted as a (complex) probability
distribution that the networks tries to approximate. Boltzmann machines consist
of two sets of binary units (classical spins): the visible units v;, i € {1,..., N},
corresponding to the configurations of the original spins in a chosen basis, and the
hidden units h;, j € {1,..., M}, which introduce correlations between the visible
units. The whole system interacts through an Ising interaction which defines a joint
probability distribution over the visible and hidden units as the Boltzmann weight of
this Hamiltonian:

P(v,h) = %GH(V’}]), (4.17)
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where the Hamiltonian A is defined as

H = Z a;v; + Z b;h; + Z Cij VU5 + Zwijhivj + Z dijhihj,
j i 4,3

1<j 1<j

and Z is the partition function. The marginal probability of a visible configuration is
then given by summing over all possible hidden configurations:

1
Pv)=Y" EeH(V’h). (4.18)
h

This quantity, when the inputs are spin configurations in a given basis, is chosen
as the wave function ¢y (s) = P(s). The variational parameters are the complex
parameters of the Ising Hamiltonian. In the case where there are interactions
between the hidden units (Fig. 4.2a), the Boltzmann machine is called a deep (or
unrestricted) Boltzmann machine. It has been shown that deep Boltzmann machines

L] L] L] L] L]
L] L] L] L] L]
2 5 8 0 o
L L] L L] L]
L] L] L] L] L]

visible hidden

(a) (b)

e
visible hidden

Fig. 4.2.: (a) Boltzmann machines approximate a probability distribution by the Boltzmann
weights of an Ising Hamiltonian on a graph including visible units (corresponding
to the spins s;) and hidden units h; which are summed over. (b) Restricted
Boltzmann machines (here in 2D) only include interactions between the visible
and the hidden units. Figure reproduced from [4].

can efficiently represent ground states of many-body Hamiltonians with polynomial-
size gap, local tensor-network state and quantum states generated by any polynomial
size quantum circuits[87-89]. On the other hand, computing the wave function
1w(s) of such a deep Boltzmann machine in the general case is intractable, due
to the exponential sum over the hidden variables, so the VMC method cannot be
applied to deep Boltzmann machines without approximations. Restricted Boltzmann
machines (RBM), which only include interactions between the visible and hidden
units (as well as the one-body interaction terms which correspond to biases), do
not suffer from such a limitation. In this case, the sum over the hidden units can be
performed analytically and the resulting wave function can be written as (here we
take the hidden units to have values £1):

hw(s) = ezj @357 H cosh | b; + Z wi;sj | - (4.19)
{ J
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Because this expression, as well as its derivative, can be evaluated efficiently, RBM
can be optimized using the VMC method. RBM can represent many quantum states
of interest, such as the toric code[86], any graph state, cluster states and coherent
thermal states[87]; the possibility of computing efficiently vy (s) prevents it however
to approximate all PEPS and ground states of local Hamiltonians, since there are
ground states of local Hamiltonians for which computing the coefficients of the wave
function is intractable[87].

Relationship between tensor-network and
neural-network states

Boltzmann machines and tensor networks are seemingly unrelated, but we will see
in this section that there are in fact strong connections between the two ansatz
classes. It was recently shown that while fully connected RBM can exhibit volume-
law entanglement, contrary to local tensor networks, all short-range RBM satisfy an
area law[225]. Moreover short-range and sufficiently sparse RBM can be written as
a MPS[89], but doing so for a fully-connected RBM would require an exponential
scaling of the bond dimension with the size of the system. In this section we will
show that short-range RBM are special cases of EPS, while fully-connected RBM are
special cases of SBS in arbitrary dimension. We will also prove that any Jastrow
wave function can be written as a RBM. These connections have implications for the
geometry of RBM and motivate the definition of non-local SBS.

Jastrow wave functions, restricted Boltzmann machines and
the Majumdar-Gosh model

Let us first consider the simple case of the Jastrow wave function (4.15). Boltz-
mann machines including only interactions between the visible units have a wave
function

Yw(s) = H eksk H e %155 (4.20)
k i<j

which has the form of a product between functions of pairs of spins, and is thus
a Jastrow wave function. More generally, semi-restricted Boltzmann machines
including interactions between visible units as well as between hidden and visible
units are a product of a RBM and a Jastrow factor. Nevertheless, one may ask
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whether a RBM alone is enough to describe a Jastrow factor. Let us first rewrite the
RBM as

(2

S5 S 1
w® =[[ATI [ B IV + 5= | - 4.21
Yw(s) - J ( j J B, Hj IIfijj) ( )

where we have redefined the parameters with uppercase letters as the exponential

of the original parameters, thus removing the exponentials in the hyperbolic cosine.

This form will be convenient for the numerical simulations presented later. Since
Jastrow wave functions are a product of functions of all pairs of spins, let us show that
a RBM with one hidden unit can represent any function of two spins. It then follows
that a RBM with M = N (N — 1)/2 hidden units, each representing a function of one
pair of spins, can represent a Jastrow wave function with polynomial resources. We
have to solve for a system of four non-linear equations with s, s € {—1,1} and f
the most general function of two spins, parametrized by its values:

Fi1 = A1 A (W1W2 + W1W2) (4.22)
Faoi= g (Wil + ) (4.23)

where we have set B; = By = 1. The RBM is well defined when all parameters are

non-zero and we change of variables by defining X = W1 W5, Y = %, A= A1A,

B = %, obtaining a new set of equations:

F 1 1A =Fp (4.26)

F 1 B’=F_, (4.27)
1

X% - ZX +1=0 (4.28)
1

y? - EY +1=0. (4.29)

We first suppose that the values Fy s, are non-zero. These quadratic equations all
have non-zero analytical solutions in the complex plane, that we denote Ay, By, Xo,
Y. The original parameters are then the solutions of

Wi = XoYo (4.30)
W3 = Xo/Yy (4.31)
A? = AgBy (4.32)
A3 = Ay/Bo, (4.33)
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99



422

100

which is again a set of quadratic equations with non-zero analytical solutions. If
Fi1 =F_ 1.1 =0 (resp. F1_1 = F_1; = 0), the exact solution is given directly by
Ao =1,X9 =1 (resp. Bp = 1,Y =1). In the remaining cases where some Fy,s; are
zeros, the equations do not always have an exact solution, but the function can still
be approximated to arbitrary precision. This case corresponds to strong restrictions
on the part of the Hilbert space which is used to write the wave function and these
constraints can also be imposed on the states directly by adding a delta function to
the wave function which is equal to 1 only when the constraints on the spins are
satisfied.

As an application, we use this result to write the ground state of the Majumdar-
Gosh model[226] exactly as a RBM. The Majumdar-Ghosh model is defined by the
following spin-1/2 Hamiltonian:

N-1 N-2
H=J Z S; - Si+1 + = Z S; - Si+2 (4.34)
i=1 i=1
The ground state wave function is a product of singlets formed by neighboring pairs
of spins:

N/2

¥y o< [ | P2n=1)] don) — | d2n—1)] T2n), (4.35)

n=1

This wave function can also be expanded in the computational basis as

N/2
Y(s1, .. ) o H 1)1 t/25 s (4.36)
N/2
x H f(s2n—1, S2n)- 4.37)
n=1

Using the previous result, each function of two spins f can be written as a RBM
using one hidden unit, which leads to a RBM representation of the ground states
with M = N/2 hidden units. We also find numerically on small systems that a RBM
using less than M = N/2 has higher energy than the ground state, which suggests
that M = N/2 could be optimal.

Short-range restricted Boltzmann machines are Entangled
Plaquette States

We now turn to the specific case of RBM with short-range connections (SRBM).
This includes all quantum states that have previously been written exactly as a
RBM, such as for example the toric code or the 1D symmetry-protected topological
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cluster state[86]. Such states have weights connections between visible and hidden
units that are local. Each hidden unit is connected to a local region with at most
d neighboring spins. If we divide the lattice into M subsets p;, i € {1,..., M},
the wave function can be rewritten as (we omit here the biases a; which are local
one-body terms):

I
—=

Yw(s)

-
Il
—

JEDi

cosh (bi +> wl-jsj) (4.38)

(4.39)

[
e
3

-
I
i

where s; is the spin configuration in the subset p;. This is the form of an EPS
(Fig. 4.3a), so short-range RBM are EPS. For translational invariant systems, the
short-range RBM becomes a convolutional RBM, which corresponds to a translational
invariant EPS. The main difference between a short-range RBM and an EPS is that
the RBM considers a very specific function among all possible functions of the spins
inside a plaquette, hence EPS are more general than short-range RBM. This also
implies that the entanglement of short-range RBM follows an area law. The main
advantage of short-range RBM over EPS is that due to the exponential scaling of
EPS with the size of the plaquettes, larger plaquettes can be used in short-range
RBM than in EPS. In practice fully-connected RBM should therefore be preferred
to short-range RBM. Other results relating EPS and RBM have been obtained in
[227].

Fully-connected restricted Boltzmann machines are
String-Bond States

Fully-connected RBM do not necessarily satisfy an area law[225], and hence cannot
always be approximated by local tensor networks. As we will see, they can neverthe-
less be represented by SBS by writing the RBM wave function as (here we omit the
bias a;):

Q,Z)W(S) = H cosh (bl + Z wijs]) (4.40)
( J
- H (ebﬁzj Wigsi 4 G*bi*Z]- wiij) (4.41)

x H Tr ebi+zj s 0
p 0 e 2 wisss

o [ Tr (H Af?) : (4.43)

JEL

(4.42)
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where

. bi/N+wijs;
A = (e . eibiﬂ&wij Sj) (4.44)
are diagonal matrices of bond dimension 2. This shows that RBM are SBS, as the
wave function can be written as a product of MPS over strings, where each hidden
unit corresponds to one string. The difference between SBS as depicted in Fig. 4.1d
and a RBM is the geometry of the strings. In a fully-connected RBM, each string goes
over the full lattice.

AL = J J
(a) Local RBM as an EPS (b) RBM as a non-local SBS

Fig. 4.3.: (a) A locally connected RBM is an EPS where each plaquette encodes the local
connections to a hidden unit. (b) Once expressed as a SBS a fully-connected RBM
can be represented by many strings on top of each other. Enlarging the RBM
by using non-commuting matrices to non-local SBS induces a geometry in each
string. Figure reproduced from [4].

Generalizing restricted Boltzmann machines to non-local
String-Bond States

We have seen that RBM consists in SBS with many strings overlapping on the
full lattice. The matrices in each string of a RBM are diagonal, hence commute.
Each string therefore does not have a fixed geometry and can adapt to stronger
correlations in different parts of the lattice, even over long distances. This motivates
the definition of SBS with diagonal matrices in which each string covers the full
lattice (Fig. 4.3b). We denote these states as non-local dSBS. They generalize RBM
by relaxing the constraints on the RBM parameters to the most general diagonal
matrix, with a bond dimension which may be larger than two. For example taking
the matrices

aijj 0 0
A= 0 b%o0 |, (4.45)
0 0 cffj
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with different parameters afjj for each string, lattice site and spin direction, leads to
the wave function (here D = 3):

Uw(s) =]1 (H ai+ 10 +11 cfjj> : (4.46)
? J J J

We can now generalize such a wave function to larger spins than spin-1/2, since the

values taken by s; are just indexing the matrices. This provides a way of defining

a natural generalization of RBM which can handle systems with larger physical

dimension.

Another way in which RBM can be generalized is by including non-commuting
matrices. This fixes the geometry of each string by defining an order and also
enables to represent more complicated interactions. In the following we will refer
to SBS in such a geometry as non-local SBS. The advantage of this approach is
that it can capture more complex correlations within each string, while introducing
additional geometric information about the problem at hand. It comes however at a
greater numerical cost than non-local dSBS or RBM due to the additional number of
parameters. Note that one can use an already optimized RBM or dSBS as a way of
initializing a non-local SBS.

It is not always clear which representation should be preferred. In some cases, the
SBS representation is more compact than the RBM/dSBS representation, but the
opposite can be true in different cases. Let us consider again the ground state of the
Majumdar-Gosh Hamiltonian, which we previously wrote as a RBM with M = N/2
hidden units. The ground state of the Majumdar-Gosh Hamiltonian can also be
written as a simple MPS with bond dimension 3 and periodic boundary conditions,
with matrices [16]

01 0 0 00
Ap=t=lo 0 —L | ap=t=| L 0 0. (4.47)
00 0 0 10

Since this state is a MPS, it is also a SBS with 1 string. The RBM representation of
the same state requires N/2 strings. In practice the number of non-zero coefficients
are comparable, since in both cases the representation is sparse, but for numeri-
cal purposes a fully-connected RBM needs of the order O(N?) parameters before
finding the exact ground state, while a MPS or SBS with one string will need O(N)
parameters for both open and periodic boundary conditions. Another example is
the AKLT model[117], previously defined in (2.6). Its ground state can be written
as a MPS of bond dimension 2, as given in (2.7). We have numerically optimized
the spin-1 extension of a RBM with form (4.46) and found that already for small
sizes of the chain a much higher number of parameters is required to approach the
ground state energy as compared to a SBS with non-commuting matrices, which is

4.2 Relationship between tensor-network and neural-network states
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exact with one string of bond dimension 2 (Fig. 4.4). We will also show in section
4.3 that in some other cases the RBM needs less parameters than a SBS to obtain a
similar energy. This demonstrates that both RBM and SBS have advantages and that
their efficiency depends on the particular model that is investigated.

10° |

107 L

Ew - EO
»

1 2 4 8 16 32
Number of strings

Fig. 4.4.: Energy difference with the exact ground state energy of a spin-1 extension of a

RBM (4.46) with D = 2 and different number of strings for the AKLT model on a
spin-1 chain with 8 spins. A non-local SBS with non-commuting matrices and one
string is exact within numerical accuracy. Figure reproduced from [4].

In order to combine the advantages of both RBM (efficient to compute, few parame-
ters) and SBS (complex representation, geometric interpretation), we suggest to use
SBS in which some strings have a full MPS, while some strings have the form of an
RBM. Optimizing a wave function starting from a random state is in general difficult,
but in many cases an initial approximation of the ground state can be obtained.
This initial approximation can then be used in conjunction with the previous ansatz
classes by simply multiplying a SBS with the initial approximation. For the resulting
wave function

V() = U (s)Ue(s), (4.48)
the ratio of the wave function on two configurations as well as the log-derivatives
depend only on the respective ratio and log-derivatives of each separate wave
function, making the application of the VMC method straightforward. This procedure
has the advantage of reducing the number of parameters necessary for obtaining
a good approximation to the ground state and making the optimization procedure
more stable, since the initial state is not a completely random state. A similar
technique has been used to construct tensor-product projected states with tensor
networks in [228]. More generally it can be used to project the wave function of an
initial reference state in a Fock space and is thus also suitable to describe fermionic
systems.
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4.3 Application to chiral topological states

4.3.1

So far we have discussed the relations between neural-network quantum states
in the form of restricted Boltzmann machines and tensor networks. We now turn
to a practical application on a challenging problem for traditional tensor-network
methods, namely the approximation of a state with chiral topological order. We
have seen in the previous chapter that infinite dimensional MPS can be used to
represent chiral topological states, but we would like to find a more general ansatz
class which would also be able to approximate such states. While chiral topological
PEPS have been constructed, the resulting states are critical[64-67]. Moreover the

local parent Hamiltonian of a chiral fermionic Gaussian PEPS has to be gapless[65].

In this section we show that, because of their non-locality, this obstruction does not
carry on to the tensor-network and neural-network states that we have introduced
previously.

Restricted Boltzmann machines can describe a Laughlin state
exactly

Let us consider the Laughlin state 1,!)% defined in (3.9). The wave function can be
rewritten, in terms of the spin-1/2 degrees of freedom, as

wLaughlin(S> = 0s H XZkX H(Zz - Zj)%sisj7 (4.49)
k

1<j

where 5 fixes the total spin to 0, the z; are the complex coordinates of the positions
of the lattice sites and the phase factor are defined as x;* = e"™(k=1(sx+1)/2_ We know
from chapter 3 that this state is topological and admits an exact parent Hamiltonian
given in (3.40).

The Laughlin wave function consists of a product of function of pairs of spins, so it
has the structure of a Jastrow wave function and we have shown in section 4.2.1
that any Jastrow wave function can be written as a RBM with M = N(N — 1)/2
hidden units. It follows that RBM and non-local SBS can represent a gapped chiral
topological state exactly. This is in sharp contrast to local tensor-network states for

which there is no exact description of a (non-critical) chiral topological state known.

This difference is due to the non-local connections in the RBM and Jastrow wave
function which allow them to easily describe a Laughlin state. We note that a chiral
p-wave superconductor is another example of a gapped chiral topological state which
has been recently written as a (fermionic) quasi-local Boltzmann machine[88].

The previous construction is however not satisfactory in the sense that the RBM
requires a number of hidden units scaling as O(N?) to represent the Laughlin state

4.3 Application to chiral topological states
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exactly. Although the representation is sparse, if the structure of the state is not
known in advance it will require O(N?) parameters to find the Laughlin state, which
is too high for numerical purposes on lattices which are not extremely small. We
thus turn to the approximate representation of the Laughlin wave function using a
RBM.

Numerical approximation of a Laughlin state

We consider a 6 x 6 square lattice with open boundary conditions and the parent
Hamiltonian (3.40) of the Laughlin state. We minimize the energy of different wave
functions with respect to this Hamiltonian by applying the VMC method. Results are
presented in Table 4.1.

It is found that EPS with plaquettes of size up to 3 x 3 have an energy difference
with the Laughlin state of the order 10~2, which is better than a short-range RBM
(denoted sRBM) on 3 x 3 plaquettes and up to M’ = 4 hidden units per plaquette,
while the energy of a fully connected RBM with M = 2N hidden units is within
1075 of the energy of the ground state. The resulting RBM uses much less hidden
units than would be required for it to be exact, yet reaches an overlap of 99.99%
with the Laughlin wave function. Similar results has been obtained on a related
Hamiltonian in [229]. This result shows that the fully-connected structure of the
RBM is an advantage to describe this state and that EPS can be used instead of short-
range RBM. We have moreover found that EPS are easier to optimize numerically
than a short-range RBM: they are more stable, since each coefficient is considered
separately, no exponentials or products that lead to unstable behavior are present
and the derivatives have a very simple form.

Ansatz (Ew — EO)/N ‘ij‘wLaughlinH
EPS 2 x 2 4.3 x 1072 46.10%
EPS 3 x 3 2.2 x 1072 75.79%

SRBM M’ =1 8.3x 102 0.01%
SRBM M'= 2 3.1x1072 46.32%
SRBM M’ = 4 2.5 x 1072 59.07%
RBMM= N 58x10°* 99.7%
RBM M =2N 1.1 x107° 99.99%

Tab. 4.1.: Energy per site difference with the ground state energy and overlap with the
Laughlin state of different ansatz wave functions optimized with respect to the
Hamiltonian Hparene 0N @ 6 x 6 square lattice with open boundary conditions.
sRBM have M’ hidden units connected to all spins in each plaquette of size 3 x 3,
while RBM have M hidden units connected to all spins of the lattice.
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4.3.3 Numerical approximation of a chiral spin liquid

The previous results indicate that RBM might be useful for approximating chiral
topological states numerically, but the exact Laughlin state has a particularly simple
structure and one may wonder whether the RBM would be able to find a state in the
same phase which is not exactly a Laughlin state. We now consider the Hamiltonian
H;, obtained in [54] and introduced in (3.41). This Hamiltonian is defined on the
square lattice, and its ground state for J = 1, .J, = 1 has above 98% overlap with the
Laughlin wave function on a 4 x 4 lattice, but its exact ground state is different than
the Laughlin state, although in the same phase. We minimize the energy of different
classes of states with respect to this Hamilgonian on a 4 x4 and 10 x 10 square lattices
with open boundary conditions. We consider several ansatz wave functions including
EPS with plaquettes of size 2 x 2, 3 x 2, 4 x 2 and 3 x 3, local SBS covering the
lattice with horizontal, vertical and diagonal strings and increasing bond dimension,
RBM with increasing number of hidden units, non-local SBS with diagonal matrices
(dSBS) or with non-commuting matrices of bond dimension 2 and different number
of strings covering the full lattice. We observe that while the optimization of EPS and
SBS is particularly stable, the optimization of RBM can lead to numerical instabilities
that are resolved by writing the RBM in the form presented in (4.21). Since we use
the same optimization procedure for all ansatz wave functions and since the required
time and memory to perform the optimization is mainly a function of the number of
parameters and of the accuracy, we can compare these classes by comparing how
many parameters are needed to obtain a similar energy.

We first focus on a 4 x 4 lattice for which the exact ground state can be obtained
using exact diagonalization and the results are presented in Fig. 4.5a. Local SBS
have an energy higher than the Laughlin state and the energy is saturated with
increasing bond dimension, which means that the pattern of horizontal, vertical
and diagonal strings is not enough to capture all correlations in the ground state.
While a large 4 x 4 plaquette would make EPS exact on this small lattice, this would
require 2'6 parameters. The energy of the Laughlin state is already reached for
3 x 3 plaquettes. RBM with a number of hidden units larger than N and non-local
SBS with a corresponding number of strings have lower energy than the Laughlin
state or the Jastrow wave function. When the number of strings grows, the energy
decreases even further. On a larger 10 x 10 lattice (Fig. 4.5b) the exact ground state
energy is unknown but we can compare the energy of the different wave functions
and observe similar results. Only the Jastrow wave function, non-local SBS and
RBM have an energy comparable to the Laughlin state. Notice that non-local SBS
have a constant factor more parameters than a RBM for the same number of strings.
On the one side this allows SBS to achieve better energy than RBM with the same
number of strings. On the other side this comes with the drawback than we can
only optimize fewer strings and on the large lattice we are numerically limited to
non-local dSBS with up to N strings. We can conclude that RBM are particularly
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Fig. 4.5.: Energy of H, per site for different optimized ansatz wave functions on a square
lattice. The number of parameters (NN,) is modified by increasing the bond
dimension D (local SBS, N,, < D?), the size of the plaquettes (EPS, N, o Mp2",
where Mp is the number of plaquettes and P is the number of spins in one
plaquette), the number of strings Mg (non-local SBS and dSBS, N, « Mg) or
the number of hidden units M;, (RBM, N, « M}). (a) 4x4 lattice for which the
energy difference with the exact ground state energy is plotted. (b) 10x10 lattice
for which the exact ground state energy is unknown and the reference energy of
the Laughlin state is indicated as a black line. (c¢) Optimization of wave functions
that have been multiplied by the Laughlin wave function on a 10x10 lattice. The
original RBM results are indicated for reference as grey crosses. Figure reproduced
from [4].

efficient in this example since they require significantly less parameters than SBS
for attaining the same energy. This has to be contrasted with the previous examples
of the Majumdar-Gosh and AKLT models where the opposite was true. Therefore
each class of states has advantages and drawbacks depending on the model we
are looking at. We note in addition that a non-local SBS can be initialized with
the results of a previous optimization with a RBM, which could provide a way of
minimizing the difficulties of optimizing large number of parameters.

As we have previously noticed, we can also use an initial approximation of the
ground state in combination with the previous ansatz classes. In the case of the
Hamiltonian H;, the analytical Laughlin wave function can be used as our initial
approximation in (4.48). We denote 1-EPS (resp. 1-SBS, -RBM) a wave function
that consists in a product of the Laughlin wave function and an EPS (resp. SBS,

Chapter 4 Neural-network quantum states and tensor networks: relationship and application




° ° ° ° ° o o o

© © © © © © © © © ©
© © © © © © © © © ©

° ° [ L) o [ [ [

Fig. 4.6.: Partition of the lattice used to compute the topological entanglement entropy.
Figure reproduced from [4].

RBM) and minimize the energy of the resulting states. This allows us to obtain lower
energies for each ansatz class (Fig. 4.5c¢). Once the wave functions are optimized,
their properties can be computed using Monte Carlo sampling. To check that the
ground state is indeed in the same class as the Laughlin state, we compute the
topological entropy of some of the optimized states by dividing the lattice into four
regions (Fig. 4.6) and computing the Renyi entropy (2.12) of each subregion using
the method presented in section 2.2.3. The topological entanglement entropy can
then be computed as[40, 41]

Stopo =S + 82 4 5 _ @) _ 5@ _ g2 4 @ (4.50)

and is expected to be equal to —In 2 ~ —0.347 for the Laughlin state[146].

Ansatz TEE
Laughlin —0.339(3)
-EPS 3 x3  —0.36(1)

RBM M =4N  —0.34(1)
I-RBM M =4N  —0.34(1)
Tab. 4.2.: Topological entanglement entropy (TEE) of the analytical Laughlin state and
optimized 1-EPS, RBM and [-RBM.

The results we obtain are presented in Table 4.2 and provide additional evidence
that the ground state of H; has the same topological properties as the Laughlin state.
The Hamiltonian H; was recently investigated on an infinite lattice using infinite-
PEPS[230] and further evidence was provided that the ground state is chiral. The
PEPS results suggest the presence of long-range algebraically decaying correlations
that may be a feature of the model or a restriction of PEPS to study chiral systems.
The correlations on short distances agree with the correlations that we can compute
on our finite system (Fig. 4.7a) but our method does not allow us to make claims
about the long-distance behavior of the correlation function. In [225] it was observed
that the entanglement entropy of some specific short-range RBM can be computed

4.3 Application to chiral topological states
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Fig. 4.7.: (a) The spin-spin correlation function between one lattice site (in red) and all
other spins on the lattice measured on the optimized 1-RBM with lowest energy
reveals the antiferromagnetic behavior of the correlations. (b) Decay of the
correlations with the distance across the direction indicated in (a) as a white solid
line. The error bars are within dot size and finite size effects can already be seen
for the last point. Figure reproduced from [4].

analytically from the weights of the RBM. The method we use here works in the
general case and also for a fully-connected RBM, but requires Monte Carlo sampling
of the wave function. The optimized RBM weights encode every information about
the wave function, it would thus be interesting to understand more precisely which
quantities can be extracted directly from them. Whether direct information about
the phase of the system can be obtained in this way without requiring Monte Carlo
sampling remains an interesting open problem for future work.

Conclusion

In this chapter we have introduced the Variational Monte Carlo method as an
algorithm to approximate a ground state wave function with both neural-network
quantum states and tensor-network states. We have then shown that these classes
of states are in fact intimately related. In particular we proved that short-range
restricted Boltzmann machines are a subclass of Entangled Plaquette States, while
fully connected restricted Boltzmann machines are a subclass of String-Bond States.
This connection allows us to understand the underlying structure of restricted
Boltzmann machines and to generalize them on larger local Hilbert spaces and with
additional geometric flexibility using non-local String-Bond States. We compared
the advantages and drawbacks of these different classes of states and suggested a
way to combine them together.

We then applied these methods to the problem of describing states with chiral

topological order introduced in the previous chapter. We showed that every Jastrow
wave function, and thus a Laughlin wave function, can be written as an exact
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restricted Boltzmann machine. By performing variational optimization on the parent
Hamiltonian of this state, we provided evidence that already a small number of
hidden units in the Boltzmann machine is enough to obtain a good approximation
of the Laughlin state. Finally we turned to the approximation of the ground state of
a chiral spin liquid that is in the same phase as the Laughlin state, but for which the
exact ground state is unknown. We showed that restricted Boltzmann machines and
non-local String-Bond States are able to achieve lower energy than the approximate
Laughlin state, and that they allow us to characterize the ground state and compute
its topological entanglement entropy.

4.4 Conclusion
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Machine learning with
generalized tensor networks

In the previous chapter we have used functions introduced in machine learning
to represent wave functions of quantum many body systems. In this chapter we
will take the opposite perspective and use functions and algorithms introduced in
quantum many-body physics to perform machine learning.

Tensor networks such as Matrix Product States can be used not only for representing
wave functions of quantum many-body systems, but also tensors that appear in ma-
chine learning[231, 232]. They have been used for example to compress weights of
neural networks[233-236], to study model expressivity[237-241] or to parametrize
complex dependencies between variables[103-105, 242-244].

In this chapter we show that the connection introduced in the previous chapter
between restricted Boltzmann machines and tensor networks generalizes to more
general probabilistic graphical models and motivates the definition of generalized
tensor networks, which are still efficient to contract and can be used to perform ma-
chine learning in higher dimensions where Matrix Product States are not efficient.

We start in section 5.1 by providing an introduction to machine learning with
a focus on supervised and unsupervised learning algorithms. In section 5.2 we
then review the framework of probabilistic graphical models, and how Boltzmann
machines appear in this framework. Section 5.3 discusses the connections between
probabilistic graphical models and tensor networks, and introduces generalized
tensor networks in which local tensor information can be copied and reused in
different parts of the network. We provide a proof, relying on the entanglement
properties of tensor networks, that generalized tensor networks are exponentially
more efficient at approximating some functions than regular tensor networks. In
section 5.4 we then provide an algorithm for training such generalized tensor
networks in a supervised learning context. Since we want to apply our algorithm
not only to discrete data, but also to continuous inputs, we discuss several ways
to use tensor networks with real data and introduce methods to combine tensor
networks and neural networks in section 5.5. Finally we benchmark our algorithm
for different network architectures on the tasks of classifying images and recognizing
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environmental sounds in section 5.6. This chapter is based on Ref. [6] and is a
modification thereof:

* [6] : Ivan Glasser, Nicola Pancotti and J. Ignacio Cirac, ‘Supervised learning
with generalized tensor networks’, arXiv:1806.05964 (2018).

Introduction to machine learning

In this section we introduce simple notions and notations appearing in the context
of supervised and unsupervised learning[84].

Consider a dataset D = {(x;, y;)}, where each x; is the vector corresponding to the
i-th training example in some input space X and y; is its label in an output space
Y. A supervised learning algorithm learns a function ¢ : X — Y which maps an
input vector to its label. If the label takes discrete values, this corresponds to a
problem of classification, while if it is a continuous variable then the task becomes a
regression. If the input space X is large, it is not possible to evaluate all possible
functions. Consider for examples images with N black and white pixels, then there
are 2V possible input images and it is not possible to parametrize a function by
its values over each image as it would require too much memory. This curse of
dimensionality, that we have already encountered for a quantum many-body wave
function, leads to a choice of parametrized functions f in an hypothesis space of
smaller size. This space can be for example the space of linear functions, or the
space of neural-network functions with some architecture. In order to find a function
in this space that approximates the mapping between input vectors and labels we
define a loss function L : Y, Y — Rx, such as the square error L(y,y') = (y — ¥/)?,
and minimize a cost function estimated from the training data

D]

> Ly, f (1)), (5.1)

i=1

el

D]
with respect to the parameters in the function f, for example using a steepest descent
algorithm. This procedure may lead to overfitting: if the function memorizes the
mapping x — y on the training examples, it will not necessarily generalize well to
unseen examples. The performance is therefore evaluated on a test set of examples
that are not used during training. The structure of the function f and its complexity
can lead to overfitting, and one way to prevent it is to add a regularization term in
the cost function such as a penalty on the norm of the parameters in f.

In unsupervised learning, we are presented with a dataset D = {(x;)}, where no

labels are present. We assume the x; to be independent and identically distributed.
The task is then to learn some structure present in the data, for example by finding
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clusters of related data points. A central problem in unsupervised learning is the
problem of density estimation, in which one constructs an estimate p(x) of the
unobservable underlying probability density function of the data. One method
to perform such a task is maximum likelihood estimation. The estimate of the
probability distribution is chosen in a parametrized hypothesis space and one finds
the value of the parameters which maximizes the likelihood given the values taken
by the data, or more often the (average) log-likelihood:

|D|
\D| Zlogp (xi). (5.2)

Such a model, once obtained, can be used for example to generate new samples
following the same distribution.

Generative training can be used to perform supervised learning in a classification
setting. In this case one learns the joint probability distribution p(x,y) as in the
unsupervised case, by maximizing the log-likelihood

|D|
1
L= |D| Zlogp X, Yi)- (5.3)

Once the model has been trained, one can compute the conditional probability

p(x,y)

_ Py 5.4
Zyj p(Xay]) ( )

p(ylx) =

and the label predicted by the model for a feature vector x; is f(x;) =
argmax p(y|x;). On the other hand in discriminative training one directly op-
y

timizes the conditional probability p(y;|x;), since one is ultimately interested in
classification performance, which can be done by maximizing

|D|
['discriminative = "D’ Zlogp yz|xz) (5.5)

This shows that functions designed for representing probability distributions can in
principle be used naturally in both supervised and unsupervised learning.

Probabilistic graphical models

Let us consider the case where the data examples are samples from a set of discrete
random variables X = {X7,..., Xy }. A common choice of parametrized models for
p are graphical models[84], which correspond to a factorization of the probability
distribution over a graph. Consider a graph G = (V, E). Here V is a set of vertices

5.2 Probabilistic graphical models
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Fig. 5.1.: (a) Undirected graphical model with three maximal cliques depicted in colors
(b) Corresponding factor graph (c) Factor graph with hidden units in orange that
are marginalized (d) Equivalent tensor network, which is a Matrix Product State.
Figure reproduced from [6].

corresponding to the random variables, E' a set of edges between these vertices and
cl(G) is the set of maximal cliques of the graph. An undirected graphical model or a
Markov random field defines a factorization of the joint probability of all random
variables as

p(x)z% II ¢ctxo) (5.6)

ced(G)

where x¢ are the values of the random variables in clique C, ¢¢ are the clique poten-
tials which are positive functions and Z is a constant that ensures normalization of
the probability (Fig. 5.1a). Graphical models can be converted to factor graphs[245]
defined on a bipartite graph of factors and variable vertices: one factor node f; is
created for each maximal clique and the factor is connected to the variables in the
corresponding clique (Fig. 5.1b). The factorization of the probability distribution
still reads

p(X:X) = %Hfs(xc), (57)

and inference can be performed through belief propagation and the sum-product
algorithm on factor graphs. To increase the set of distributions which can be
represented we can add additional dependencies by introducing ancillary hidden
variables (which are unobserved, i.e. their values are not supplied in the data)
Z ={Z,...,Zy}(Fig. 5.1c). The resulting probability distribution is obtained by
marginalizing these hidden variables:

p(X = X) = %ZH]CS(XC, Zc)- (5.8
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An example of graphical model that we have encountered in the previous chapter
are Boltzmann machines. Boltzmann machines are graphical models for which the
cliques potentials take a particular form. Because the potentials are positive, we can
write them as the exponential of some real function. In a Boltzmann machine this
function is taken to be a classical Ising Hamiltonian with two-body Ising interaction
between all pairs of variables in a clique. For a restricted Boltzmann machines
(RBM)[246, 247], which is defined on a bipartite graph with visible variables X and
hidden variables Z (Fig. 5.3a), the resulting probability distribution once the hidden
variables have been marginalized is

P(x) = % S eHxa), (5.9)
_ 1 Zj Wi Tj
=~ 1:[(1 +e ). (5.10)

where the Hamiltonian # is a classical Ising Hamiltonian defined as (we omit here
the bias terms for simplicity)

H = Z Wi 2T 5.
4,7
Note that the formula for the RBM is different than equation (4.19) obtained in the
previous chapter, since here we assume the variables to take values 0 and 1, instead
of —1 and 1. Because the normalization Z is unknown, computing the likelihood
(5.2) for a restricted Boltzmann machine cannot be done exactly. Approximate
algorithms relying on Monte Carlo (Gibbs) sampling can nevertheless be used, such
as contrastive divergence[85, 247]. Discriminative training can on the other hand be

performed exactly, since the normalizations cancel when computing the conditional
probabilities (5.4).

Generalized tensor networks

In the case where all variables are discrete, the functions fs(x.,z.) appearing in
(5.8) are tensors indexed by the values of the variables x. and z.. Since we sum over
the values of the variables z., this correspond to a contraction of the correspond-
ing indexes of the tensors. The probability distribution defined by a probabilistic
graphical models can therefore be written as a tensor network (or in some cases
hypernetwork). This connection, depicted in Fig. 5.1c and 5.1d for a MPS, has been
previously observed in Refs.[4, 89, 248, 249] in particular models, and we refer to
Ref. [250] for a more detailed analysis of this duality.

There is still an important difference between the frameworks of tensor networks and
graphical models: tensors of a factor graph coming from a graphical model have non-

5.3 Generalized tensor networks
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negative elements, while tensor networks are usually studied in the context of real (or
complex) elements. This has important consequences for the optimization algorithms
that can be used with them. Graphical models can be used in conjunction with
expectation-maximization algorithms, which rely on the computation of conditional
probabilities of some of the variables. Tensor networks instead are not interpreted
probabilistically, but their optimization algorithms can rely on the singular-value
decomposition of matrices.

It is interesting to note that there are simple classes of graphical models which do not
share the properties of tensor networks that all visible variables are only connected
to one factor. This is the case for example in a restricted Boltzmann machine, where
each visible variable is connected to all hidden variables. Despite the graph having
loops, p(x) or p(h|x) can be computed analytically for arbitrary sizes. This relies
on the fact that once we fix the value of the visible variables, the contraction of the
network from bottom to top becomes efficient.

o B =Ad _
s U Y h

Fig. 5.2.: Copy operation of a vector input A,, resulting in a new tensor B;; = A; A;, or of
a tensor network. Figure reproduced from [6].

This leads us to the definition of a new class of tensor networks, that we call
generalized tensor networks, where the value of tensors can be copied and reused in
different parts of the network. Defined on an appropriate graph, the tensor network
can still be contracted if the value of the visible variables are fixed. We graphically
depict this through a red dot between edges of the graph and an arrow which marks
the incoming edge. This copy operation copies vector inputs, resulting in two copies
of the original vector (Fig. 5.2). More generally one can apply this copy operation to
a larger tensor network, which is then copied. In practice one would first contract
the incoming network, resulting in a vector. This vector is then copied and sent
to the remaining edges. The rest of the tensor network can then be independently
contracted. We impose that there are no directed loops containing dots and ensure
that the tensor network can be efficiently contracted as long as it is contracted in
the right order, which amounts to choosing a tree structure of the graph obtained
after copying all parts of the network. Contrary to regular tree tensor networks,
this network includes several tensors which share the same values. In general, it
is not possible to write this dot as a tensor[251]. In particular cases, when all the
inputs are discrete and in a fixed basis, it is possible to write the copy operation as
a COPY-dot tensor, as introduced in [252]. For discrete inputs and when the copy
operation only applies to the inputs, the generalized tensor network can therefore
be written as a tensor network including COPY-dot tensors. In the more general case,
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while it is not possible to represent the copy operation as a tensor, duplicating a
vector and sending it to two different parts of the calculation is easily achieved in
practice.

X1 Xo X3 X4 X1 Xo X3 X4
(c) Short-range RBM (d) EPS

Fig. 5.3.: (a) Restricted Boltzmann Machine (RBM) consisting of visible and hidden vari-
ables (b) String-Bond State with 1D geometry generalizing RBM. The legs corre-
sponding to contracted indices in each MPS are depicted in orange for visibility.
(c) Short-range RBM with local connections between visible and hidden variables
(d) Entangled Plaquette State (EPS) generalizing the short-range RBM. Figure
reproduced from [6].

Examples of such tensor networks with copy of the input states have been used in
machine learning in the form of tree tensor networks with copy of the inputs[239,
251]. They have also been used in quantum physics, as we have seen in chapter 4.
Entangled Plaquette States (EPS), defined in (4.13), are tensor networks where
the inputs are copied and fed into overlapping plaquettes (Fig. 5.3d). EPS also
share some similarity with Convolutional Neural Networks (CNN): a convolutional
layer with discrete inputs is a particular case of EPS with weight sharing between
the tensors. The EPS realizes all possible convolutional filters over a discrete input
space, instead of selecting a small number of filters as CNN do. String-Bond States ,
defined in (4.16) are another example in which the inputs are copied to different
MPS (Fig. 5.3b). As we have proven in section 4.2, EPS generalize short-range RBM
and SBS generalize RBM. They provide a way to interpolate between a MPS (large
bond dimension, only one string) and a RBM (bond dimension 2, diagonal matrices,
many strings). In this chapter we will use the following string geometries: horizontal
and vertical strings covering the 2D lattice (Fig. 5.4a) will be denoted as 2D-SBS.
We will also also consider the choice of 4 strings, each covering the whole lattice
in a snake pattern, but in a different order (Fig. 5.4b). We denote these SBS as
snake-SBS.

More generally, one can think of complex networks built using the copy operation
for gluing different networks together. As example we will later consider the case

5.3 Generalized tensor networks
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Fig. 5.4.: Possible geometries of SBS: (a) 2D-SBS consisting of horizontal and vertical
overlapping strings. (b) Snake-SBS consisting of 4 overlapping strings in a snake
pattern. Figure reproduced from [6].

of an EPS, whose output are copied and taken as input into a SBS (Fig. 5.5). The
input variables are first copied and fed into overlapping clusters parametrized by
tensors. The output leg of each of these tensors is a vector which is copied a few
times. Each of these copies can then be contracted with the open legs of a different
MPS, forming together a SBS. In 2D, we choose 2x2 overlapping plaquettes in the
first layer, and 4 strings forming a snake-SBS in the second layer. In the following
we will call this generalized tensor network EPS-SBS, but we observe that more
complex networks based on trees or hierarchical designs with more than two layers
can also be constructed in the same way.

X1 X2 X:; X4

Fig. 5.5.: EPS-SBS consisting of a first layer of EPS, followed by a copy operation and a
second layer of SBS. Figure reproduced from [6].

These generalized tensor networks have the advantage, compared to standard tensor
networks, that they can be easily defined in arbitrary dimension and geometry while
remaining efficient to contract, as long as the input is fixed. This is in contrast to
Projected Entangled Pair States (Fig. 1.2b), which are naturally defined in higher
dimensions but cannot be contracted exactly efficiently. Moreover, the reuse of input
information in generalized tensor network is more similar to state-of-the-art CNN,
and weights can also be shared between different tensors.
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Another advantage of generalized tensor networks is that they can represent some
functions with exponentially fewer parameters than regular tensor networks. Indeed,
regular tensor network functions satisfy the area law, so they cannot represent
functions with volume law entanglement entropy.

One such function, defined for binary variables on an open chain x1,...,xy with N
even, is
N/2
fx) =[] 9(zi, 2n—141), (5.11)

=1

where g(z;,z;) = %(—l)miXOR(xi,xj). This function is the wave function of a

quantum state in which there are singlets between site [ and site N — [ + 1. The
entanglement entropy of the first half of the chain is therefore % log(2), and a MPS
representing f will need a bond dimension exponential in N.

A SBS defined on the same chain, with each string corresponding to the whole chain,
can represent this function by having N/2 strings with bond dimension 2, since each
string can capture the function g with a MPS of bond dimension 2. The function f
can then be represented as a SBS with a polynomial number of parameters.

Supervised learning algorithm

Graphical models are designed to represent probability distributions, so are mostly
used in the context of unsupervised learning. For a graphical model or a tensor
network on a tree, it is possible to compute the normalization Z, which gives exact
access to the likelihood (5.2). MPS can be used for unsupervised learning in this
way[242]. In the more general case, which includes RBM, the normalization Z can-
not be computed efficiently and Monte Carlo sampling has to be used. Generalized
tensor networks suffer from the same issue, which makes unsupervised learning
computationally expensive. Since these networks correspond to quantum states,
it might be possible to implement them on a quantum computer and sample from
them efficiently. In the rest of this chapter we focus instead on supervised learning,
where access to the normalization Z is not necessary.

As explained in section 5.1, an ansatz designed for a probability distribution can
be naturally used in a discriminative setting by maximizing Lgiscriminative (3-5). We
therefore approximate the joint probability distribution of the variables and labels as
a generalized tensor network (GTN):

p(x,y) o< GTN(x,y). (5.12)

5.4 Supervised learning algorithm
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(a) Discriminative RBM

X1 Xo X3 Xy Y

(b) Discriminative SBS

| Linear classifier

Xy Xo X3 Xy Y

(c) Discriminative EPS

Fig. 5.6.: (a) A classification RBM turns the label into an additional visible unit. (b) The
same procedure can be defined for a SBS by adding a node corresponding to
the label, and corresponding tensors which connect it to the rest of the tensor
network. (c¢) Generalized tensor networks can be combined with additional layers
of neural networks. For example an EPS output is a tensor that can be combined
with a linear classifier. Figure reproduced from [6].

The label is now seen as an additional input which corresponds to the index of one
tensor (Fig. 5.6a). For generalized tensor networks, once the network inputs are
fixed, the network factorizes in several tensor networks in the last layer. Each of
these tensor networks can have a tensor indexed by the label (Fig. 5.6b). In order for
L discriminative t0 be well defined, p should be positive. This can be done by ensuring
that the tensor elements are positive, as in a RBM or graphical model, or by choosing
instead

p(x,y) o (GIN(x,y))”, (5.13)
or
p(x,y) o STNGY) (5.14)

In the following we will adopt this last choice, for which training is more efficient.
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We then define

GTN(Xi7yk)
GTN(yx|x;) = . 5.15

The maximization of Lgiscriminative €an be performed by observing that one can
compute its gradient, which depends on

0log GTN(yi|x;) _ 9log GTN(xs, y:) . 2log GTN(x;, ;)
ow - ow > GTN(y;|x:) S . (5.16)

Yi

GTN(x;,y;) can be computed exactly by fixing the value of the input units and labels
and contracting the network. The derivatives with respect to the parameters in each
tensor can be computed by observing that the copy operations give rise to a tree
network in which the derivative with respect to a tensor is obtained by contracting
the rest of the network with the corresponding tensor removed, just as in a standard
tensor network (Fig. 5.7a). From the point of view of supervised learning there is

|y
|y |
X1 X1 Xo Xo
(b) (c) (d) (e)

_}3]

Xll XI‘Z X|1 Xlz
A .i. :
-i- ¢ cl WD

X; X, X; X,

(f) (2) (h) (i)

Fig. 5.7.: (a)-(f) Forward pass of contracting an EPS-SBS generalized tensor network. We
denote scalar and vectors that are the result of a tensor contraction as black
boxes, while other tensors are denoted as empty boxes. The result is a scalar
A x B. (g)-(i) We compute as an example the derivative with respect to the tensor
T;ji denoted in blue in (a). The computation can start from stage (d), obtained
during the forward propagation. Remaining additional tensors are contracted
until we are left with the log-derivative, equal to Jlog GTN(X1, X3)/0T;j, =
0x,=;0x,=k(C; + D;)/(AB). Figure reproduced from [6].

no difference between SBS and MPS in terms of the optimization algorithms: the
cost of optimizing a SBS is only a constant factor (the number of strings) more than

that of optimizing a MPS, and this procedure can be straightforwardly parallelized.

5.4 Supervised learning algorithm
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This is unlike in quantum physics where Monte Carlo sampling is necessary to
optimize a SBS. To further regularize the tensor network, we adopt the procedure
suggested in Ref. [105] to randomly drop tensor elements to 0 with probability §
during training.

The tensor networks we have constructed so far have no open legs when an input
and a label are given. We can also construct networks with open legs and use tensor
networks in combination with other machine learning techniques. In this case the
tensor network maps the input to a tensor, which can for example be used as input in
a neural network. In the case of EPS where each tensor over overlapping plaquettes
has an open leg, an input is mapped to a tensor with an extra dimension as output.
This is similar to the role of convolutional filters in a CNN. The simplest way to
combine EPS with other neural networks is to place a linear classifier on top of the
EPS (Fig. 5.6¢). The backpropagation algorithm used to compute derivatives of the
neural network is in this case combined with the algorithm for computing derivatives
of a tensor network, and the joint network can be optimized using stochastic gradient
descent.

Learning feature vectors of data

In the previous discussion we have always considered discrete input data. In practice,
one may want to apply these techniques to real data. In this section we explore
several strategies that can be used for this purpose. We suggest to learn relevant
tensor features as part of the tensor network and discuss how tensor features can
also be learned as part of a deep learning architectures which combines a neural
network extracting features with a tensor network.

A naive way of applying tensor networks with real data would be to discretize data
or use its binary representation. This is not a suitable approach, because that would
amount to increasing the size of the data a lot, rendering learning very slow, and
would also lead to big tensor networks which would be prone to overfitting. Another
approach, as suggested in [104], is to map the real data to a higher dimensional
feature space. Each variable is first independently mapped to a vector of length at
least two and these vectors are then contracted with the open legs of the tensor
network (Fig.5.8a). Choices of feature maps that have been used in [104, 105, 243,

244] include
(1) (cos(
r — or | .
x sin(
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and generalizations to higher dimensions. A choice which is suitable with our
algorithm, assuming that the data is normalized between 0 and 1, is to use

cos?(Zx)
T — (sinQ( x)> , (5.18)

because this ensures that the vectors are positive and the normalization prevents
numerical instabilities.

ISERNTE

Generalized Tensor Network

i i i i Generalized Tensor Network
_ (fi(Xy) M M M W
T 2(X5) X, X X3
(a) (b)

Fig. 5.8.: (a) Real inputs X; are mapped to a feature vector (here with length two). This
vector can then be used as input to a generalized tensor network by contracting
it with the open legs of the generalized tensor network. (b) Feature tensors can
compress the discretized representation of the inputs X; to a smaller dimensional
space. These tensors can share weights and can be learned as part of the tensor
network. Figure reproduced from [6].

These choices however limit the functions that can be learned. Consider for example
the dataset with just two variables presented in Fig. 5.9a. It cannot be separated by
a MPS of bond dimension 2 with one of these feature choices, since the boundary
decision will be a polynomial of degree two of the features. A different feature
choice could distinguish the two classes, even with bond dimension 2. We therefore
suggest to learn the appropriate features as part of the learning algorithm. This can
be done by parametrizing the feature functions and learning them at the same time

as the rest of the network. A choice of parametrization can be itself a tensor network.

In the simplest case, we discretize the real data and use a tensor to compress the
large dimensional input into a smaller dimensional vector of suitable length. This
tensor can be learned as part of the whole tensor network and prevents the size

of the rest of the tensor network to increase when the discretization size changes.

The feature tensor can be the same for all variables, for example image pixels, but
can be different in the case where the variables are of different nature. Using this
procedure, a MPS of bond dimension 2 is able to get perfect accuracy on the dataset
presented in Fig. 5.9a. The two features that the network has learned are presented
in Fig. 5.9b. We note that starting from random features on more complex datasets
makes learning difficult, but the feature tensor can be pretrained using a linear
classifier, before being trained with the rest of the network.

In comparison, we also show in Fig. 5.10b the features learned while classifying
MNIST with greyscale pixels and a snake-SBS (see section 5.6). These features
are not very different from the choice in (5.18) (Fig. 5.10a), and we could not

5.5 Learning feature vectors of data
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(a (b)

Fig. 5.9.: (a) Dataset with two features X; and X, and two classes (depicted in different
colors) that cannot be learned by a MPS of bond dimension 2 with features
in (5.18). (b) Two normalized features learned by a tensor while classifying
the previous dataset with a MPS of bond dimension 2. The features have been
discretized in 16 intervals. Using this choice of features the MPS can classify the
dataset perfectly. Figure reproduced from [6].

(a) (b)

Fig. 5.10.: (a) Choice of two features in (5.18) for an input taking real values between 0
and 1. (b) Two normalized features learned by a tensor with output dimension
2 combined with a snake-SBS classifying the MNIST dataset. The input features
x are the greyscale value of pixels, normalized between 0 and 1 and discretized
in 16 intervals. Figure reproduced from [6].

distinguish performance with this choice or with learned features on this dataset.
Moreover, the size of the feature vector provides a regularization of the model, and
higher sizes might be necessary for more complex datasets. More generally this
tensor could be itself represented with a small tensor network, to prevent the number
of parameters to increase too much with a very small discretization interval. It is
interesting to note that the features learned in our examples are almost continuous
even if we use smaller discretization intervals. This means that two real inputs
that are close to each other will lead to the same predictions by the network. Our
approach of learning the features as part of the tensor network may be especially
relevant in the context of quantum machine learning, where the tensor network is
replaced by a quantum circuit and it might be suitable to have the full network as
part of the same quantum machine learning architecture.

As an alternative way of choosing the features, we can combine the feature choice
with other machine learning techniques. If the input data represents images, it is
a natural choice to use Convolutional Neural Networks as feature extractors, since
these have been highly successful in image classification. CNN consist in convolution
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5.6.1

filters, which use convolutional kernels to transform an image into a set of filtered
images, and pooling layers which downsize the images (Fig. 5.11). The different
filters can be seen as different features of the corresponding pixel or region of the
image and preserve locality. Therefore it is natural to consider the vector of applied
filters associated with each location in the image as a feature vector that can be used
in conjunction with generalized tensor networks. The CNN and the tensor network
can be trained together, since the derivatives of the tensor network can be used in
the backpropagation algorithm which computes the gradient of the cost function.

. WY

Splitting  Contraction

Generalized
Tensor Network

Convolutions Pooling

Fig. 5.11.: Using convolutional Neural Networks as feature vector extractors from real data:
the output of the CNN is seen as an image with a third dimension collecting
the different features. For each pixel of this image, the vector of features is
contracted with the open legs of a tensor network. Figure reproduced from [6].

Application to image and sound classification

In this section we test the generalized tensor network approach on the task of
image classification, where a natural two-dimensional geometry is present, as well
as on the task of urban sound recognition, where the time dimension provides a
one-dimensional geometry.

Image classification

We first consider the MNIST dataset[253], which consists of 28 x 28 greyscale images
of digits. There are 10 classes and we adopt a multiclass classification procedure in
which one tensor of the tensor network is parametrized by the ten possible labels.
The original training set is split into training and validation sets of 55000 and 5000
examples and the performance of the different models is evaluated on the test
set of 10000 examples. We consider the following generalized tensor networks: a
snake-SBS with 4 strings (Fig. 5.4b), a 2D-SBS (Fig. 5.4a), an EPS with a 2 x 2
translational-invariant plaquette combined with a linear classifier (Fig. 5.6¢), an
EPS-SBS with translational-invariant plaquette combined with a snake-SBS (Fig. 5.5)
and a CNN-snake-SBS which uses a 1-layer CNN as input features (Fig. 5.11). The
CNN considered here uses a convolutional layer applying 6 5 x 5 filters (stride 1)
with ReLU activation function and a pooling layer performing max pooling with a

5.6 Application to image and sound classification
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Fig. 5.12.: Examples of images from the MNIST (a) and fashion MNIST (b) dataset. Figure
reproduced from [6].

2 x 2 filter. All other networks use the choice of features presented in (5.18) and
the greyscale values are normalized between 0 and 1. We compare the performance
of these networks with a MPS and a RBM. Hyperparameters such as the learning
rate, the regularization rate and the number of iterations over the training set are
determined through a grid search while evaluating the performance on the validation
set.

-eo- MPS
EPS-linear classifier
-e- 2D-SBS
-®- Snake-SBS
/ -e- EPS-SBS
¢ Ve -@- CNN-snake-SBS
’ -~ RBM

Test set accuracy

2 4 6 8 10
Bond dimension

Fig. 5.13.: Test set accuracy of different generalized tensor networks on the MNIST dataset.
Figure reproduced from [6].

The test set accuracy, presented in Fig. 5.13, shows that even with a very small bond
dimension generalized tensor network are able to accurately classify the dataset.
Their performance is significantly better than that of a tree tensor network[244] or
a MPS trained in frequency space[243], and while a MPS can also achieve 99.03%
accuracy with a bond dimension of 120 [104], the cost of optimizing very large
tensors has prohibited the use of this method for larger problems so far. The snake-
SBS with bond dimension larger than 6 has also better performance than a RBM.
Since the snake-SBS provides an interpolation between RBM and MPS, the choice of
number of strings and geometry can be seen as additional parameters which could
be tuned further to improve over the performance of both methods. All networks
have a training set accuracy very close to 100% when the bond dimension is larger
than 6, and we expect that better regularization techniques or network architectures
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have to be developed to significantly increase the test set performances obtained
here. We also optimized a snake-SBS with positive elements (by parametrizing each
element in a tensor as the exponential of the new parameters), which is a graphical
model. Using the same algorithm, we were not able to achieve better performance
than 93% classification accuracy with bond dimensions up to 10. This shows that
while having a structure closely related to graphical models, tensor networks may
provide different advantages.

Method Accuracy
Support Vector Machine  84.1%
EPS + linear classifier 86.3%
Multilayer perceptron 87.7%

EPS-SBS 88.6%
Snake-SBS 89.2%
AlexNet 89.9%
CNN-snake-SBS 92.3%
GooglLeNet 93.7%

Tab. 5.1.: Test set accuracy of generalized tensor networks and other approaches[254] on
the fashion MNIST dataset.

We then turn to the fashion MNIST dataset[254], consisting of 28 x 28 greyscale
images of clothes. While having the same size as the original MNIST dataset, it is
significantly harder to classify. We report the best accuracy obtained with different
generalized tensor networks with bond dimension up to 10 in Table 5.1. It is found
that these networks are competitive with other approaches such as Support Vector
Machines, AlexNet and GoogLeNet Convolutional Neural Networks or a multilayer
perceptron neural network.

Environmental sound classification

So far we have considered greyscale images, but it is also interesting to study
how generalized tensor networks work with other types of data. In the following
we consider the task of classifying environmental sounds. The UrbanSound8K
dataset[255] is a collection of 8732 audio clips (4s or less) divided into 10 classes
of urban sounds: air conditioner, car horn, children playing, dog barking, drilling,
engine idling, gun shot, jackhammer, siren and street music. The dataset is divided
into 10 folds and we use folds 1-9 for training and fold 10 for testing. The one-
dimensional structure of sounds allows us to compare MPS and SBS with the same
1D string geometry. Preprocessing of the data takes place as follows: clips shorter
than 4s are repeated to reach a fixed length of 4s. The first 13 Mel-frequency cepstral
coefficients (MFCCs) are extracted for each clip (sampled at 22050Hz) using a
window size of 2048 and hop length of 512, resulting in a sequence of length 173
and dimension 13 (Fig. 5.14). The corresponding 13-dimensional vectors are used as

5.6 Application to image and sound classification
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input feature vectors for the tensor network, and the time dimension of the sequence
corresponds to the 1-dimensional structure of the MPS, or the strings of the SBS.
Note that we do not perform any data augmentation nor split the training examples
to enlarge the size of the dataset set, since we are interested in comparing MPS and
SBS, rather than achieving the best possible accuracy on this dataset. The training
and testing accuracies are reported in Fig. 5.15 for a MPS with bond dimension up
to 10 and a SBS with 4 strings and bond dimension up to 5. Since we are interested
in comparing the expressivity of the different networks, no regularization is used
and training is performed until the training accuracy does not improve anymore.
Note that a MPS with bond dimension D has as many variational parameters as a
SBS with 4 strings and bond dimension D/2.

25

IR

Generalized Tensor Network

Iy

Fig. 5.14.: From the raw audio signal, Mel-frequency cepstral coefficients (MFCCs) are
extracted over short overlapping windows, resulting in a sequence of high
dimensional vectors. These vectors are taken as input to a generalized tensor
network. Figure reproduced from [6].
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Fig. 5.15.: Training and testing accuracy of a MPS and a SBS with 4 strings on the Urban-

Sound8K dataset. The density of parameters is the total number of parameters
divided by 174 (the length of the strings). Figure reproduced from [6].

We observe that the SBS has slightly higher training accuracy than a MPS with larger
bond dimension and the same number of parameters. The test set performance is
not significantly different between the different architectures and in both cases we
find that the networks overfit, which is not surprising given the small number of
training examples. Higher accuracies have been reported with other methods on the
same dataset. For example Convolutional Neural Networks can reach above 70% test
set accuracy[256], but use much more input features and rely on data augmentation.
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Nevertheless our results show that SBS should also be considered along with MPS
when considering one-dimensional data, and may be applied in other settings such
as natural language processing[257, 258].

Conclusion

In this chapter we have shown that tensor networks defined to represent wave
functions of quantum many-body systems can also be used in the context of machine
learning. We have discussed the relationship between tensor networks and proba-
bilistic graphical models, and shown that it motivated the definition of generalized
tensor networks, which enlarge the class of tensor networks by introducing a reuse of
information taking the form of a copy operation of tensor elements. We focused on
particular architectures of generalized tensor networks, such as Entangled Plaquette
States and String-Bond States, and discussed their relationship to other networks
studied in machine learning. We then provided an algorithm to train these models to
perform supervised learning and discussed how they can be used not only with dis-
crete input, but also with real-valued data. We demonstrated that generalized tensor
networks that can be contracted exactly can perform accurate image classification
with much smaller bond dimension than regular tensor networks, that they can be
used in other settings such as sound recognition and that they can be combined with
neural-network architectures.

Tensor networks can also be seen as a tool to simulate quantum circuits. The
functions we introduced can be implemented on a quantum circuit by using several
copies of the input features, and thus show that such quantum circuits are able to
perform accurate image classification. Moreover the results we have obtained show
that finding suitable regularizations for quantum circuits will be important in order
to achieve better accuracies. Generalized tensor networks which originate from
the classical simulation of quantum states may thus have applications in classical
machine learning, as well as serve as a testing and benchmarking platform of
near-term quantum machine learning architectures.

5.7 Conclusion
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Conclusion and outlook

Throughout this thesis we studied the application of novel tensor-network methods
to challenging problems in both quantum many-body physics and machine learning.
In these two areas, the curse of dimensionality prevents an exact treatment from
being possible on even moderate system sizes, and tensor networks provide powerful
function approximators with desirable properties.

The first part of this thesis contributed to our understanding of infinite dimensional
tensor networks, for which the wave function takes the form of a correlator of
field operators. In chapter 2 we reviewed the construction of critical models in
one dimension arising from conformal fields, and showed that infinite dimensional
matrix product states are not limited to conformal fields but can also be defined
using operators coming from a massive field theory. This allowed us to build a toy
model of a phase transition for which the wave function has an analytical expression.
The properties of the system could then be studied on large systems using Monte
Carlo methods. Our construction was extended to a mixed state ansatz, for which
the finite temperature properties were characterized. We demonstrated numerically
that this model density operator approximates the thermal state of a Hamiltonian
with nearest neighbour interactions, thus demonstrating that the analytical model
we constructed is physically relevant. Our construction is quite general and could be
performed using other field theories. Since we used the second dimension of the field
theory to introduce a temperature, it remains an interesting problem whether similar
techniques could be used to study phase transitions and their finite temperature
effects in two dimensions.

In chapter 3 we explored the properties of infinite dimensional tensor networks
taking the form of a correlator of conformal fields in two dimensions. These states
correspond to lattice versions of fractional quantum Hall wave functions. We investi-
gated the properties of these states on different lattices and along an interpolation
between the continuum and the lattice limit, with a focus on Laughlin and Moore-
Read wave functions. We showed that in most (but not all) cases, the states have the
same topological properties as the continuum wave functions. We constructed lattice
wave functions for the localized quasiholes and quasielectrons of these states and
showed that their braiding properties, size and charge could be computed. Unlike
in the continuum, the quasielectrons on the lattice can be constructed as inverse
quasiholes, and in some models there is an exact symmetry between quasiholes and
quasielectrons. We derived exact parent Hamiltonians for which the ground states
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are lattice Laughlin and Moore-Read states at different filling fractions, as well as for
which the ground states contain quasiparticles. These Hamiltonians have long-range
interactions but allow for the manipulation of quasiparticles simply by changing the
coupling strengths of these interactions. In a few cases, we were able to obtain local
Hamiltonians for which the ground states are close to the analytical wave functions
we introduced. This was possible by truncating the non-local parent Hamiltonians
and numerically optimizing the resulting Hamiltonian to keep the same ground state.
This procedure is however limited to small systems, and it would be highly desirable
to find a systematic way of obtaining local Hamiltonians for the states we introduce.
An experimental realization of such Hamiltonians, whether in natural materials or in
quantum simulators, would provide new platforms for studying topological systems
and using them in quantum computing.

The local Hamiltonians realizing lattice fractional quantum Hall effects do not
admit an exact description of the ground state, and other methods are needed to
study them on large system sizes. We showed in chapter 4 that this could be done
by minimizing the energy of other variational wave functions generalizing tensor
networks in higher dimension, as well as using neural-network quantum states for
which the wave function takes the form of a restricted Boltzmann machine. We
demonstrated that these classes of states are related, and in particular that restricted
Boltzmann machines are a subclass of String-Bond States. This connection sheds
light on the underlying architecture and geometry of restricted Boltzmann machines
and allowed us to generalize them to larger local Hilbert spaces using non-local
String-Bond States. We showed that lattice Laughlin states can be written exactly
as a restricted Boltzmann machine, and compared the ability of different classes
of states to represent a Laughlin wave function by variationally optimizing the
energy of these states with respect to the parent Hamiltonian of the Laughlin state.
Finally we applied these techniques to the local Hamiltonian realizing a related
chiral spin liquid, and showed that they allowed us to characterize the ground state
of this model. Whether similar techniques can be used to systematically approximate
ground states of more complicated topological systems remains an interesting future
research direction.

This connection between restricted Boltzmann machines and tensor networks reveals
a bridge between classical approaches to the quantum many-body problem and
machine learning techniques in high-dimensional settings. In chapter 5 we discussed
these connections in the more general context of probabilistic graphical models.
We showed that these connections motivate the definition of generalized tensor
networks, which include String-Bond States and Entangled Plaquette States and can
be used both in quantum physics as well as in machine learning. These networks can
moreover be combined with traditional neural-network architectures. We provided
an algorithm to train these models to perform supervised learning, which does not
require Monte Carlo sampling. We studied how these models can be used with real-
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valued input data, and showed that they could perform accurate image classification
and sound recognition with much smaller cost than regular tensor networks. The
connections we discussed might have an impact on both classical as well as quantum
machine learning. On the one hand tensor-network algorithms can be used in
conjunction with classical machine learning techniques. On the other hand these
tensor networks correspond to quantum circuits that can be simulated classically,
and may serve as a benchmarking platform of near-term quantum machine learning
architectures.

Machine learning is emerging as a tool that can be used to help physicist understand
and manipulate quantum systems. As such, it might be used to build quantum
computers, for example through the design of novel quantum error correcting
codes[76]. The building blocks of such a computer may be topological systems
that can be used to perform topological quantum computation[43, 44], and such
a computer might then perform quantum machine learning algorithms[95, 96] or
quantum simulations of condensed matter systems[259]. Future research directions
in quantum computing, topological matter and classical and quantum machine
learning are therefore naturally interconnected, and it is of no surprise that tensor
networks play a role in all these areas of science.
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Parent Hamiltonians for lattice
Laughlin states

The procedure for constructing parent Hamiltonians is as follows: first a null field
x(w) is defined, such that the correlator used to define the wave function with this
null field inserted is zero:

(Vni(21) -+ Vo1 (2i-1)X(20) Vi (2ig1) - - - Yy (28)) = 0. (A1)

This expression can then be transformed into operators annihilating the wave func-
tion

Ailp) = 0. (A.2)

One can then define a positive semi-definite operator annihilating the original wave
function as

H =Y AlA, (A3)

In the following sections we derive the operators A; for different wave functions.
This appendix reproduces derivations first presented in [3].

Operators annihilating the zp; [Pl Wave functions

In this section we obtain operators annihilating the @ZJ; [p]looc Wave functions by ex-
tending the procedure of [173] to p > —q, p integer. It was shown in Ref. [160]
that

Xw) = f 5 (G Vo) - TV )], (A%

is a null field, where G*(z) =: V39() . J(2) = i0.6/ /G, V_(2) = ¢ vi*? . and

Lg—1
Vi(z) =: ¢ Vi **) . The correlator with this field inserted vanishes :

<Ww<OO)Vm (Zl) s Vﬂi—1(zi—1)X(zi)Vni+1 (Zi-i-l) s VTLN (zN)> =0. (A.5)
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This expression is the sum of two terms,

dz 1

2 2ML 2 — %

Wp(w)vn1 (Zl) s Vnifl (Zi—l)G+(Z)V— (Zi)vni+1 (Zi-i-l) s VnN (ZN)>7
(A.6)

and

dz 1

2 2T 2 — 25

(Wp(w)Vny (21) -+ Vi1 (2i21) T (2) Vi (20) Vi (Zig1) - - Vi (28))-

(A7)
The second term, multiplied by (—1)*"!|ny,...,n;-1,0,m411,...,ny) and after sum-
mation of all ny, gives[173]
1 D 1
— | Y. ——dilgn; — 1) + ——d; | [y [p(w))), (A.8)
i) T S

where d; is the hardcore boson (resp. fermion) annihilation operator for ¢ even
(resp. odd), and n; = d;dj is the number of particles at site j. The first term instead
becomes, after deforming the contour integral around each z;,

dz 1
27rz z—

a Z% 2mi z — zl Wp(w)Vny (21) - - Vi s (2’@‘—1)G+(z)

<Wp(w)vn1 (Zl) Vnifl (Zi—l)GJr (Z)V— (Zi)vni+1 (Zi-i-l) s VnN (ZN)>

X V_ (Zi)vmﬂ (Zi+1) c. VnN (ZN)>. (A.9)
The sum in the second term has been computed in Ref. [173] and gives, after
multiplication by (—1)"Ynq,...,0,...,nx),
1 1
> dilvglp(w)]). (A.10)
i) T

The last remaining term is

<G+(Z)Wp(w)vn1 (21) -+ Viy (28)),

(A.11)

z 14p Z 5sz

27rz' zZ— 2z

where we have commuted G (z) in front of the correlator. Since we know the
expression of the correlator, we can compute the contour integral. The expression
then simplifies to

- 1
—(=1) 1+p5p<0 Z g
ng

ErCRE R VR .
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A2

dart (gt 1)6s;
X lim d>—p—1 H(Z - Zj)qnj =(at1)dy <Wp(w)vn1 (Zl) cee VTLN (ZN)>' (A12)
J

zZ—w dz

Now observe that this expression is zero when p > 0 (due to the first delta factor),
but also when p > —¢ (due to the derivative and the exponent of the polynomial).
This shows that when p > —gq, this term does not contribute and the resulting
expression is given by summing Eq. (A.8) and Eq. (A.10), which leads to

Ailthg[p(w)]) = 0, (A.13)

where

d;. (A.14)
w

Operators annihilating the 7 wave function

In this section we obtain operators annihilating the 1/ wave function. Using the
fields defined in section 3.2.5, we have for ¢ = 4 and n = 2 the following operator
product expansions :

GH(2)V_(w) = (le261'(Q¢>(z)¢(w)),
o1 b : i9(w)
o w)2€ + C—w) 2i0¢(w)e
1 1
~ (Z — w)2V+(w) + (Z — w) 28V+(w)’ (A15)
so that
1 1
GJF(Z)an:o(w) ~ = )2Vn]_1(w) + G—w) 28an:1(w), (A.16)
GT(2)Vn,=1(w) ~ 0. (A.17)
The field
) = f 3G VW) (118)

is therefore a null field. We can now use the fact that the correlator with the field
inserted vanishes :

<Vn1 (zl) e Vni—l (zi_l)x(z,-)vn“rl(ziﬂ) e VnN (ZN)> =0. (A.19)

A.2 Operators annihilating the 7 wave function
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This can be rewritten as

- 0o %O}nl (Zl) e G+(Z)V+(Zi) . VnN(ZN»
_ Z % %(Vm (2'1) .. .G+(2>V+(Zi) .. .VnN (,zN)>7 (A.20)
G(#0) 7

where we have deformed the contour integral around the positions z;. The contour
integral at infinity can be computed by evaluating the correlator, which leads to a
zero contribution. The remaining part can be transformed by observing that the
operators G*(z) and V4 (z;) commute, so that

- Z 7{ dz Vi (21) .- GT(2)Vi(20) -« Viay (28))

J(#)
d
727{ 2 W (21) . GH (), (27) - Vi (21) - Vg ()
J(#4) 75
-2 4 ﬁ—z”ﬁ"’";w (21) -+ Vg (23) - Vi (22) - Vi (o)
= ](?E) >, 27I‘Z (Z—Zj)Q ni 1).-- n]. j) e VH(Zi) .- Vny N
_ 27{ z_zj' S Vs (21) e Vi (27) - Vi (1) - Vi (o)), (A2D)

where we have moved the operator G*(z) to position j and applied the operator
product expansion in Eq. (A.16). d,, n, are the matrix elements of the bosonic
annihilation operator d; at site j (doo = d11 = d19 = 0, dg1 = 1), so that only terms
having a non-zero operator product expansion contribute to this expression. The
contour integral evaluated in the first term gives zero, so that we are left with

—92 Z Zdnn g (21) GVn;(zj)...V+(zi)...VnN(zN)>

J(#i) n
= -2 Z Zdnﬂbja nl Zl) Y ;_(Zj) . V+(ZZ) .. -VnN(ZN)>
J(F#6) n
0
=23y Zdnjngng(m,...,n;-,...,ni =1,...,nn), (A.22)
J(#0) n J

where we have used the expression of the wave function v7 as a correlator of fields.
Let us now compute the derivative of the wave function :

9 o
azji/)4(n1,...,n;-,...,ni =1,...,nn)
9 >
= w(nla"'vn]\/)a 1I1('(/J4(7’Ll’, nN))
Zj
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A.3

0
=Y, .. -anN)g [ Z Sks;» In(z, — zj) + Z 5k5;‘ ln(zj — )
T Lk(<d) k(>4)

=P(n1,...,nN) [Z s —— ] : (A.23)
k()

T2k — 25

where s; = 2ny, — 1, s} = 2n); — 1 are the corresponding spin-1/2 degree of freedom
at site k£ and j. In the rest of this section we will use both the notations n; and s, for

brevity. Note that & can be equal to i in this sum, in which case s; = 1 since n; = 1.

The previous expression becomes

2 Z Zdn]n Z sks

J(F#i) k(#5)

¢4(n1,...,n;,...,ni:1,...,nN)>. (A.24)

Since this expression is zero unless n; = 0 and nj; = 1, we can replace s by 1.

To take into account the fact that this expression evaluates to 0 when n; = 0, we
introduce the number operator n; and write the expression as

222‘1“”’”1 Z Sk V3 (ny, . My Mgy N, (A.25)
J(#) k) kTR
which when multiplied by the basis elements |n,...,ny) and summed over all ny,
leads to
Z Z nid;sg|v3). (A.26)

J(#3) k(#]) “i

We started with the fact that this expression was zero, so the operator

6= 3

3 k() kT A

1

n;id; sy, (A.27)

annihilates the wave function 7.

Conformal transformations of the parent
Hamiltonians

In this section we discuss the properties of the parent Hamiltonians obtained in
this work under conformal transformations of the coordinates z;. We will use the
notations :

(A.28)

A.3 Conformal transformations of the parent Hamiltonians
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If an operator I'; has the form I'; = > () Aij fij>» where f;; does not depend on the
coordinates z;, then it is transformed under a Mobius transformation M as

Ly — Z (dZ)‘ij + Prij + Csz’j) fij- (A.29)
J(F#9)

If T'; annihilates a wave function that is invariant under M, then ) (i) R fij
annihilates the same wave function (choice ¢ = 1, d = 0 in the previous equation).
Since p;; = Zi)\ij—i-z%lﬁj, then > (i) Pig [i; also annihilates the wave function. Noting
that the composition of Mobius transformations is a Mobius transformation, the space
of operators annihilating the wave function that can be obtained by applying Mobius
transformations and multiplying by constant factors the operator I'; is therefore the
space of operators

rof = > (i + Brij + vpij) fijs (A.30)
J3(#)

where «, $ and 7 are complex numbers. An operator in this space is invariant under
M when the following conditions are satisfied :

o =d*a+ b6 + 2bd,
B =ca+a®B + 2acy, (A.31)
v = cda+ abf + (ad + be)y.

Note that since the Hamiltonians we construct have the form ), FIFi, these condi-
tions only need to be satisfied up to a phase for the Hamiltonian to be invariant under
M. A particular case is the translation z — z+1 (a = 1,b =1,¢ = 0,d = 1), which
leads to the conditions 8 = 0, v = 0. Another particular case are the rotations along
the periodic direction of the cylinder z — ¢2™/Nvz, (@ = €2™/Nv b= 0,c = 0,d = 1),
which lead to the conditions o« = 0, 5 = 0. Therefore I'; cannot be invariant un-
der translations and rotations at the same time (unless I'; = 0), hence it cannot
be invariant (up to a phase) under all conformal transformations. We note more-
over that for the operators f;; that we have used before (in particular the case
fij = dj — d;i(gn; — 1)) no further simplification in H =}, FIFZ- appears, so that in
the space of Hamiltonians we constructed there is no non-zero Hamiltonian that
would be invariant under all conformal transformations.

However the choice a = 0, 8 = 0 leads to an operator that is invariant under
rotations along the periodic direction of the cylinder. In addition the operator
I’y = 37() pij fij is then invariant, up to a phase, under a transformation » — 1/z.
This means that the Hamiltonians of the form 3=, 37y i) 2254 PkjPis f,Zj fij are
invariant under the symmetries of the lattice on the cylinder (Fig. 3.6).
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B.1

Parent Hamiltonians for lattice
Moore-Read states

The procedure followed here is the same as in appendix A, but this time we use the
operators used to construct the Moore-Read wave function (3.58). This appendix
reproduces derivations first presented in [2].

Operators annihilating the (¢ = 1,7 = 1) lattice
Moore-Read state

Let us consider first the case ¢ = 1,7 = 1 for a spin-1 model. This model arises
from the spin 1 primary fields of the SU(2), Wess-Zumino-Witten conformal field
theory[70, 207]. As shown in [70], we can parametrize a null field in this case by

() = (KD) (2 00) (20), (B.1)

where repeated indices are summed over, ,, is a chiral spin-1 primary field used
to define the wave function, .J®, are the —1 modes of the SU(2), current operators
and

e 2 5 1
(K@), = 30 — Jgicants — 75 (158 +1215), (B.2)

where ¢, is the Levi-Civita symbol and t¢ are the spin-1 operators acting on site i.

These operators can be written in the spin basis at site i as

p (010 p (0 10 10 0
tr=—1|10 1|, t!=—1|i 0 —i|, tZ=hr{0 0 0 |. (B.3)
V2 010 V2 0 i 0 00 —1

We then exploit that the correlator with a null field inserted is zero :

<‘Pn1 (Zl) cee Xa(zi) <o Pnpy (zN)> =0. (B4)

We can transfer the action of a current operator to fields at other positions :

(o (21) - (J2100,)(20) - Py (2)) =
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4

>

i) LT

<90n1 (21) <o (Pni(zi) < Pny (ZN)>' (B.5)

Using (B.5) it is possible to rewrite (B.4) as [70]

Aly) =0, (B.6)
where
N a
A=Y (KD with, (B.7)
J(#9)
N
2 5 . 1
— Z wij [3t§‘ - Ezeabctgtf - ﬁ(tgtﬁ? + t?tﬁ)tﬂ : (B.8)
J(#4)
where we have defined w;; = zlfz . This can be used to construct a parent Hamilto-

nian H =3, A’TA?, which gives

4N 1y N

H=- Zw;‘jwij + - Z wiiwij + 2 Z wriWks | tit5

3 = 3 = <
i#j i#J k(#1.)

N
-5 3 whwi () + S <3wikwij — 2wikwij> totI0]. (B.9)
i#] i j#k

B.2 Operators annihilating the (¢,n = 1)1, ¢ > 2 lattice
Moore-Read state

We restrict ourselves to the case ¢ > 2, since the construction of the parent Hamil-
tonian when ¢ = 1 has already been obtained. Note however that the derivation
presented here can also be used to obtain a Hamiltonian without the SU(2) sym-
metry for the (¢ = 1,7 = 1); Moore-Read state. The Moore-Read states are defined
from the operators V,,.(z;) given in Eq. (3.57). Additional operators that are
needed to construct parent Hamiltonians are the operators G*(z) = y(z)e™Va¢(?),
J(z) = L0¢(z). The operator product expansion (OPE) of G*(z) and J(z) with

Va
the operators used to build the wave function are, for g > 2,

0

b

+ ~ (— -1 7"y,
GT(2)Vy, (w) ~ (1)’ 7z_wV1(w), (B.10)
J(2) Vi, (w) ~ Tan; = 1vnj (w). (B.11)

q z—w
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We first show that x?(w) is a null field, where

dz 1

LGVl — f

X (w) =

= Q5(w) — Q5(w),

where the contour of the integration is a circle around w traversed counter-clockwise.

We have that

w 210 2 —w (2 — w)d~!

qJ(2)Va(w), (B.12)

w 2T 2 — W

(B.13)

dz 1 1
Qd(w) = fiﬂ 2mi 2 — w (2 — wyad G+(Z)Vl(w)} ,
= %Z 1 ” (z zllj)q_lX(g)x<w)e+i\/a¢(z)ez(q—l)qﬁ(w)/\/a]
w &7 — L _
[ -1
e [ st
w &T0 — _

— f (- W) ) VR b

w 2T 2 — W |

dz 1 . .
dz A l\/6¢(Z)+l(q—1)¢(w)/\/§]
2mi [((2—w)2+ (w) + )e ’

gz ei\/ﬁ¢(z)+i(q—1)¢(w)/\/§y

_ % — [iv/ade(w)e! VIV (B.14)
and
) = § =@ alw) (B.15)
N
_ ;z;z 1 [\[Z(%( )eil2a=1)$(w )/\/6} (B.17)
= Q5(w), (B.18)

which shows that y%(w) is a

dz

null field. Similarly, there are other null fields

1

XP(w) = TiGJr(z)Vl(w), (B.19)
p=0,1,...,g—2 w &7 (Z - w)p
X Hw) = 71{} % [(Z_i))q_lGJr(z)Vl(w) e _1 w)Vg(w) . (B.20)

Let us now use the fact that by replacing the field at site ¢ by a null field, the

correlator vanishes :

0:

B.2 Operator

Vi (z1) X (21) -+ Vin (28))- (B.21)

s annihilating the (¢,n = 1)1, ¢ > 2 lattice Moore-Read state
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We will transform this equation into an equation involving the wave function by
deforming the contour integral and moving the operators in the null fields at different
positions. Let us do it for the null field y%(w). We will use the OPEs as well as the
commutation relations :

Vi, ()G T (2) = (1)@ =IGH ()Y, (), (B.22)

where we have used : € @?(2) .. ¢f0w) . — (_1)0f . BW) .. ¢ied(z) . and
x(2)x(w) = (=1)x(w)x(z), which adds a minus sign only when n; = 1. We then
have, starting with the first term involving x(w) :

= 1 (Vi (21) - G ()VA(21) .- Vi (23)),

.. 2mi (2 — 2)

dz 1
. Vi (21) - GTEVAR) - Vg (2),
(#)i' ( ) 1 1 )

; 2mi (2 — 2

. i—1
il gy (DI X 5,

= —(—1)’—1F1 : 9 (z — 2)1 z— 2
X (Vni(21) .. Vi(z5) .. . Vi(zi) .. Van (28))
g §
S S 2m (z — z)4 Z— 2

X (Vny(21) - Vi(zi) .- Vi(25) . Vay (28)),
i—1 o (@) Y
i—1 (—1) J

5nj70<Vm (z1) .- Vi(z5) .. . Vi(zi) .. . Van (28))

j=1 (zj — 2)1
o (*1)(61“)(—1)(‘1“)ZEHM
- (=Dt Y o
j=i+1 (25 — 2)4
X <Vn1 (21) ce Vl(zz) ce Vl(Zj) ce VTLN(ZN»,
i—1 (_1)(q+1) Z;ljﬂnk
:_Z (Zj—z-)q 6nj70w(%77:1)1(n17”-717”-,1,...777,]\[)
j=1 i
Noo(— D eI
( 1)(q+ ( 1) k=i+1
_ (Zj_z‘)q 671]',01/}(11,7]:1)1(”17...,17...,1,...,’TLN)7
J=i+1 i
il (g+1) ZZ:1 ng
1 (=1) k=j+1
:jz:l(—l)(qu ) CErT On; 0% (gm=1), (P15, 1,0 1, oo ny)

N (—p)leth i
+ (Z' —Zj)q 5,1_7701/1([1’77:1)1(711,...,1,...,1,...,71]\]), (B23)
j=i+1 v
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where ) is the wave function of the (¢,7 = 1); Moore-Read state. Let us

q777:1)1
now define the creation and annihilation operators d, d!, d], d;" acting on the Hilbert

YRRl Rt SRl
space at site j as

0 nj =0
j—1
djlng) = (-1 L™ Loy py =1 (B.24)
O nj =2
|1> nj =0
j—1
dijng) = (-1 Ximm Lo =1 (B.25)
0 nj =2
0 nj =0
j—1
dilng) = (1)@ im0 py =1 (B.26)
‘1> nj =2
0 nj =0
i—1
dfng) = (~)E L™ dy2y ny =1 (B.27)
0 nj =2

We also define the particle number operators corresponding to these operators as

ngl) = d}dj and ngg) = d}Td;-, such that n; = ng-l) + 2n§~2). We multiply Eq. (B.23)

by
"I’Ll, s Mg =1, My M1 w05 M1, Qani-‘rl ce ,TLN>, (B28)

and sum over all ng, k # i, to get an expression involving the wave function

1 /-1-
Y ———did [t =1),)- (B.29)
P (Zi—zj)q 77 a1 1
3(F#)

Let us now look at the second term involving x4 (w):

1
0 f S W) TEVaE) - Vi ) (8.30)
dz 1
= qj%) f;j iz (Vi (21) ... J(2)Va(2) ... Vi (28)), (B.31)
= qT,Lj__ ,1<Vn1(21)-~"/2(zz-)--.VnN(ZN)>. (B.32)
i) A

Let us multiply this expression by

2
N1y i1, 2, g1 -y AN = an )]nl, N YR (O R (B.33)
n;

B.2 Operators annihilating the (¢,n = 1)1, g > 2 lattice Moore-Read state
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which leads after summing over all ng, k # i to

-y mn(.z)ym. (B.34)

Summing the two terms together, we get an operator annihilating the wave function:

1 -1
——dyd = 3 T (B.35)

ja (7 2) ) T

The same procedure applied to the other null fields gives the following operators
annihilating the (¢,7 = 1); CFT wave functions :

A =>"d;, (B.36)

ﬁdjdﬁ, (B.37)

A= S mczjcz;T + 0 (B.38)
]

Operators annihilating the (¢,n = 1), /2, ¢ > 2 lattice
Moore-Read state

To obtain operators annihilating the (¢,n = 1),/ Moore-Read wave functions, we
can follow the same procedure and use the following null field instead of x?(w) :

f om0 (f gme @)

2ri (z —w) w 271
d 1 d 1
0 g’ (1) zi(x_u})qu*(x)vl(w)) . (B.39)

However this procedure does not work when ¢ = 2 since this is not a null field
when ¢ = 2. Instead of following this approach, we present a different way to
obtain operators annihilating the (¢,7 = 1), /» Moore-Read wave functions, using
the operators already obtained in Appendix B.2. The resulting operators are the
same that would be obtained directly using null fields when ¢ > 2 but this approach
allows us to also construct a parent Hamiltonian when ¢ = 2.
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We start by multiplying the previously obtained operators on the left by d;. Since
d;al;T = ngl), this leads to new operators

" 1
P=long=2 () J
7 1
jE) T
" 1 n: — 1
S S M O T
g j#) Tt
The operator d; in A;lq can be replaced by — 3,4 Wdhn(l) since A;/qfl

annihilates the (¢, = 1); wave function :

)

7" 1 1 qan,; - — 1
q_ (1) J (1)
A= Z Gy ) + > Z ey T o dyn; ' (B.43)
3(F#0) 7 3(£4) h(£i) J
A;/q then acts separately on H' and on #? and the operators A}, ..., A;,q_2 give

zero on H2. By keeping only the terms acting on H! and since the (¢,n = 1); /2
states are projections of the (¢,n = 1); states on H!, we get operators annihilating
the (¢,n = 1)1/, wave functions:

_ Z d;, (B.44)
VI O (B.45)
p=1,....,q—2 3(£0) ( T Zj)p

(1)
1 n,’ —1

T "M (B46)
- Zh)q Zi — Zj

i+ 35

(i) (51 = ) §(E0) ()

The Hamiltonian can finally be constructed as

N q—1 N 2
H=3 3 Affag +<Z M _ q) . (B.47)
i=1a=0

B.3 Operators annihilating the (¢, = 1)1,2, ¢ > 2 lattice Moore-Read state
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* CNN : Convolutional Neural Network

* CFT : Conformal Field Theory

* DMRG : Density Matrix Renormalization Group
» dSBS : diagonal String-Bond State

* EPS : Entangled Plaquette State

* FQH : Fractional Quantum Hall

* GTN : generalized tensor network

* MPS : Matrix Product State

* PEPS : Projected Entangled Pair State

* RBM : Restricted Boltzmann Machine

* SBS : String-Bond State

* sRBM : short-range Restricted Boltzmann Machine
* TEE : Topological Entanglement Entropy

e VMC : Variational Monte Carlo
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are linear fits and the values found for the topological entanglement
entropy when 7 equals to 0.5, 1, 1.5 and 2 are respectively 0.698, 0.734,
0.643 and 0.718. (b) Scaling of the Renyi entropy S(LQy) for the states at

half-filling 4 and @bg/ ? on the square lattice on the cylinder. Here L,
is 12 for ¢ = 2 and 20 for ¢ = 3. The topological entanglement entropy
of the Laughlin state at filling 1/2, v¢(2) = 0.346 (resp. at filling 1/3,
~0(3) = 0.549) is indicated with a green (resp. blue) arrow. The values
found for the topological entanglement entropy are respectively 0.375
and 0.536. Figure reproduced from [3].. . . . . . ... ... ... ...

Overlap, defined as O, = \wgléelwg/?)y? + !WI%]ée]Wg/QHQ, between the
state at half-filling wg/ * and the two Néel states, computed using a
Metropolis-Hastings algorithm on a square lattice of size N, x N, on
the cylinder. The errors from the Monte Carlo simulations are below
0.02 for all points. Figure reproduced from [3]. . . ... ... ... ..
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(a) Correlation function C;; between a fixed lattice site ¢ in the middle
of the lattice and all other lattice sites ; in the state 1/}3/ *ona triangular
and Kagome lattice on the cylinder. (b) Absolute value of the correlation
function |C;(; 1 a,)| between two lattice sites separated by a distance Ay

in the periodic direction in the state ng/ “ona triangular 16 x 16 lattice
on the cylinder. Unlike on the square lattice for the same parameters,
there is no long range order. Figure reproduced from [3]. . ... ...

Positions of the coordinates of the lattice sites along the interpolation
between a square and a triangular lattice. The coordinates along the
periodic direction y; are kept fixed to keep the periodicity, while the co-
ordinates along the other direction x; are linearly interpolated between
the square (7 = 0) and the triangular (= = 1) lattice. The coordinates
on the plane are then z; = e%(wj i ), as in Fig. 3.6. Figure reproduced

from [3]. . . . . . e

Absolute value of the correlation function |Cj(;4a,)| between two lattice
sites separated by a distance Ay in the periodic direction in the state
Y3 on a 16 x 16 lattice interpolating between the square (7 = 0) and

the triangular (7 = 1) lattice on the cylinder. Figure reproduced from [3]. 54

(b) Scaling of the Renyi entropy Sﬁj for the states at half-filling 43, 42
and +¢ on a triangular lattice on the cylinder. Here L, is taken to be 16.
The topological entanglement entropy of the continuum Laughlin state
at g = 2 (resp. ¢ = 4, ¢ = 6) is indicated with a blue (resp. red, green)
arrow. The values found for the topological entanglement entropy are
respectively 0.347, 0.723 and 0.907. Figure reproduced from [3].

(a) Square 12 x 12 lattice on the cylinder with a charge (here p = —6)
at infinity. The color shows the density of the state 4[p]~.. The state
with zero charge at infinity 14 has uniform density 1/2 but here the
density is modified at the edge to account for the change of total particle
number. (b) Difference of density between the 14 [p]~ states and the 3
state with respect to the distance to the edge Az. Values below 2 x 104
are not converged. The change of density is exponentially localized at
the edge. Figure reproduced from [3]. . . ... ... ... ... .. ..

Absolute value of the correlation function |Cj(;;a,)| between two lattice
sites in the bulk (middle of the cylinder) separated by a distance Ay in
the periodic direction on a square 12 x 12 lattice on the cylinder. The
states considered here are the @ZJ; [ploo state for different values of p.
When p = 0, the state is simply the 3 state, while it is found that the
other states have the same correlations. Figure reproduced from [3].
Diagram of the v states. The blue lines and dots represent values of
the parameters for which exact parent Hamiltonians are derived in this
section. On the light blue line the parent Hamiltonians derived have a
degenerate ground state on the plane. Figure reproduced from [3]. . .
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3.16

3.17

3.18

3.19

3.20

3.21

Difference in the density (n;),, — (n;) between the state v with one
quasihole of charge 1/¢ and one quasihole of charge (¢ — 1)/q and the
state 1;] without quasiholes on a square 20 x 20 (or 12 x 12 for ¢ = 10,
n = 5) lattice on the cylinder. The coordinates w; of the quasiholes are
placed in the center between 4 lattice sites and are visible in blue as
a lack of density on the neighbouring sites. At ¢ = 4, it is found for
all values of 7 that the quasiholes are localized. For ¢ = 10 however,
the quasiholes are localized when 1 = 1, but at half-filling (n = 5) we
observe that there is no splitting of the charge between a quasihole of
charge 1/¢q and a quasihole of charge (¢ — 1)/q and thus no screening
of the quasiholes. Figure reproduced from [3]. . ... ... ... ...

Modification of the particle density due to the presence of anyons in
the lattice Laughlin state at ¢ = 3 and half lattice filling (n = ¢/2). The
lattice is chosen to be a kagome lattice defined on a disc with radius
27.9. A quasielectron (resp. quasihole) with charge —1/3 (resp. +1/3)
is placed at the position * (+), and the color of the jth lattice site shows
(n5)(=1,41] — (7j)[0,0- Figure reproduced from [5]. . . ... ......

Excess charge 3.48 of a quasihole/quasielectron (blue/red) and their
sum (green) for ¢ = 3 for different densities of the lattice sites. The
quasihole/quasielectron is placed at the origin at the center of a hexagon
in a kagome lattice. The lattice is defined on a disc with radius 27.9
for n = 1.5,1,0.1 and 18.2 for » = 0.01, and an anyon of the opposite
charge is placed at infinity. Figure reproduced from [5]. ... ... ..

Quasihole (+) and quasielectron (+) on the torus in the state 3[1, —1].
The color of the lattice sites shows (n;)(;, _1)—(n)[0,0)- When moving the
quasihole around the blue curve we find numerically, using Monte Carlo
simulations, that the difference in Berry phase when the quasielectron
is at + and at x, respectively, is ¢ = —3.145 with a statistical error of
order 0.003. This is in agreement with the expected result —=. Figure
reproduced from [5]. . . . . . . . . . ...

Lattice coordinates on the torus. (ni,m;) indicates the position of a
quasihole, and (ng, ms) indicates the position of a quasielectron. Figure
reproduced from [5]. . . . . . . . . ... ..

Ilustration of a square lattice on the complex plane in the continuum
limit (n — 0, N — oo) and in the lattice limit(n — 1). At each site
there can be 0 (blue circle), 1 (blue disk) or 2 (red disks) particles. The
interpolation is performed by fixing the number of particles M = n%
and by varying n = 5~ between 0 and 1, which changes the number of
lattice sites per particle between infinity and ¢. Figure reproduced from

[2]. . o e

List of Figures



3.22

3.23

3.24

3.25

3.26

Renyi entropy Sf) of a subsystem of L consecutive sites for the 1D

(¢ = 1,m)1 Moore-Read states (a) and (¢ = 2,7),/, Moore-Read states
(b) for different values of n. The number of particles M = nN/q is fixed
so the sizes of the chain are N = 40, 80, 160, 320 forn = 1,1/2,1/4,1/8
respectively. The lines are linear fits of the points for n = 1/8 (blue)
and n = 1 (red). Figure reproduced from [2]. . . ... ... ......

Rescaled correlation function ~2C/, as a function of the distance be-
tween the sites for the 1D (¢ = 1,7n); Moore-Read states (a) and
(¢ = 2,7m)1/2 Moore-Read states (b) for different values of n. The
number of particles M = nN/q is fixed so the sizes of the chain are
N = 40,80,160,320 for n = 1,1/2,1/4,1/8 respectively. The data for
n = 1 is shown in the insets in log-log scale, confirming the polynomial
decay of correlations, and the line in the insets is a linear fit yielding crit-
ical exponents 0.70 ((¢ = 1,7 = 1); state) and 1.02 ((¢ = 2,17 = 1);9
state). In (b), the line is a fit of the form (3.72) with parameters
K=0.494 and A=0.123. Figure reproduced from [2]. . . ... ... ..

Linear behaviour of the Renyi entropy with the size of the cut L, for
the (¢ = 1,7)1 (@), (¢ = 2,m)1/2 (b) and (¢ = 2,n)1 (c) Moore-Read
states on a L, x L, lattice. The topological entanglement entropy of the
continuum Moore-Read states at filling 1 (a), yo(1) ~ 0.69, and at filling
1/2 (b,c), 70(2) ~ 1.04, are indicated with a red arrow. The values of
are 1, 1/4 and 1/8 and the corresponding sizes L, are respectively 12,
16 and 16. The insets are enlarged views confirming that the topological
entanglement entropy stays the same when 7 is varied and that its value
corresponds to (1) (resp. 70(1/2)) in the first two cases, while the
topological entanglement entropy of the (¢ = 2,7); Moore-Read state
is close to zero in the lattice limit and close to vy(1/2) in the continuum
limit. Figure reproduced from [2]. . .. ... ... ... ... .....

Energy difference to the ground state energy for the first excited states of
the Hamiltonian H,p for different sizes of lattices. The overlap between
the ground state of this Hamiltonian and the (¢ = 1,7 = 1); Moore-
Read state is indicated below each ground state. Figure reproduced
from [2]. . . . ...

(a) Overlap |(Ycrr|Yn)| between the (¢ = 2,7 = 1), Moore-Read state
and the ground state of Hamiltonian H % with « fixed to 0.274 + 0.0521,
as a function of the number N of lattice sites. The dotted line is a
linear fit with equation y = 1.0075 — 0.00152N. If the overlap continues
to follow this behavior at larger sizes, it will still be above 85% for a
spin chain with 100 lattice sites. (b) Overlap per site |(scpr|vw )|/
between the same two states. Figure reproduced from [2]. . . . . . ..
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4.1

4.2

4.3

4.4

4.5

4.6

Geometry of ansatz wave functions: (a) Jastrow wave function include
correlations within all pairs of spins. (b) Matrix Product States (MPS) in
2D cover the lattice in a snake pattern. (c) Entangled Plaquette States
(EPS) include all spin correlations within each plaquette (2x2 on the
figure) and mediate correlations between distant spins through over-
lapping plaquettes. (d) String-Bond States (SBS) cover the lattice with
many 1D strings on which the interactions within spins are captured by
a MPS. Figure reproduced from [4].. . . . . . ... ... ... .....

(a) Boltzmann machines approximate a probability distribution by the
Boltzmann weights of an Ising Hamiltonian on a graph including visible
units (corresponding to the spins s;) and hidden units h; which are
summed over. (b) Restricted Boltzmann machines (here in 2D) only
include interactions between the visible and the hidden units. Figure
reproduced from [4]. . . . . . . . . . ...

(a) A locally connected RBM is an EPS where each plaquette encodes
the local connections to a hidden unit. (b) Once expressed as a SBS
a fully-connected RBM can be represented by many strings on top of
each other. Enlarging the RBM by using non-commuting matrices to
non-local SBS induces a geometry in each string. Figure reproduced
from [4]. . . . . . e e

Energy difference with the exact ground state energy of a spin-1 ex-
tension of a RBM (4.46) with D = 2 and different number of strings
for the AKLT model on a spin-1 chain with 8 spins. A non-local SBS
with non-commuting matrices and one string is exact within numerical
accuracy. Figure reproduced from [4]. . . ... ... ... ... ....

Energy of H; per site for different optimized ansatz wave functions on a
square lattice. The number of parameters (/V,) is modified by increasing
the bond dimension D (local SBS, N, D?), the size of the plaquettes
(EPS, N, o Mp27, where Mp is the number of plaquettes and P is the
number of spins in one plaquette), the number of strings Mg (non-local
SBS and dSBS, N, «x Mg) or the number of hidden units M} (RBM,
N, o< Mp). (a) 4x4 lattice for which the energy difference with the
exact ground state energy is plotted. (b) 10x10 lattice for which the
exact ground state energy is unknown and the reference energy of the
Laughlin state is indicated as a black line. (c) Optimization of wave
functions that have been multiplied by the Laughlin wave function on a
10x10 lattice. The original RBM results are indicated for reference as
grey crosses. Figure reproduced from [4]. . . ... ... ... ... ..

Partition of the lattice used to compute the topological entanglement
entropy. Figure reproduced from [4]. . . . . ... ... ... .. ....
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(a) The spin-spin correlation function between one lattice site (in red)
and all other spins on the lattice measured on the optimized 1-RBM with
lowest energy reveals the antiferromagnetic behavior of the correlations.
(b) Decay of the correlations with the distance across the direction
indicated in (a) as a white solid line. The error bars are within dot
size and finite size effects can already be seen for the last point. Figure
reproduced from [4]. . . . . . . . ...

(a) Undirected graphical model with three maximal cliques depicted
in colors (b) Corresponding factor graph (c) Factor graph with hidden
units in orange that are marginalized (d) Equivalent tensor network,
which is a Matrix Product State. Figure reproduced from [6]. . . . . .

Copy operation of a vector input A;, resulting in a new tensor B;; =
A;A;, or of a tensor network. Figure reproduced from [6]. . . . . . ..

(a) Restricted Boltzmann Machine (RBM) consisting of visible and hid-
den variables (b) String-Bond State with 1D geometry generalizing
RBM. The legs corresponding to contracted indices in each MPS are
depicted in orange for visibility. (c) Short-range RBM with local con-
nections between visible and hidden variables (d) Entangled Plaquette
State (EPS) generalizing the short-range RBM. Figure reproduced from

Possible geometries of SBS: (a) 2D-SBS consisting of horizontal and
vertical overlapping strings. (b) Snake-SBS consisting of 4 overlapping
strings in a snake pattern. Figure reproduced from [6]. . . . . . . . ..

EPS-SBS consisting of a first layer of EPS, followed by a copy operation
and a second layer of SBS. Figure reproduced from [6].. . . . . .. ..

(a) A classification RBM turns the label into an additional visible unit.
(b) The same procedure can be defined for a SBS by adding a node
corresponding to the label, and corresponding tensors which connect it
to the rest of the tensor network. (¢) Generalized tensor networks can
be combined with additional layers of neural networks. For example
an EPS output is a tensor that can be combined with a linear classifier.
Figure reproduced from [6]. . . . . . . ... ... ... ... ......

(a)-(f) Forward pass of contracting an EPS-SBS generalized tensor
network. We denote scalar and vectors that are the result of a tensor
contraction as black boxes, while other tensors are denoted as empty
boxes. The result is a scalar A x B. (g)-(i) We compute as an example
the derivative with respect to the tensor 7;;, denoted in blue in (a).
The computation can start from stage (d), obtained during the forward
propagation. Remaining additional tensors are contracted until we
are left with the log-derivative, equal to dlog GTN(X1, X»)/0T;1, =
0x,=j0x,=k(Ci + D;)/(AB). Figure reproduced from [6].. . . . . . ..
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(a) Real inputs X; are mapped to a feature vector (here with length two).
This vector can then be used as input to a generalized tensor network
by contracting it with the open legs of the generalized tensor network.
(b) Feature tensors can compress the discretized representation of the
inputs X; to a smaller dimensional space. These tensors can share
weights and can be learned as part of the tensor network. Figure
reproduced from [6]. . . . . . . . . ... e
(a) Dataset with two features X; and X, and two classes (depicted in
different colors) that cannot be learned by a MPS of bond dimension 2
with features in (5.18). (b) Two normalized features learned by a tensor
while classifying the previous dataset with a MPS of bond dimension 2.
The features have been discretized in 16 intervals. Using this choice of
features the MPS can classify the dataset perfectly. Figure reproduced
from [6]. . . . . . e
(a) Choice of two features in (5.18) for an input taking real values
between 0 and 1. (b) Two normalized features learned by a tensor
with output dimension 2 combined with a snake-SBS classifying the
MNIST dataset. The input features x are the greyscale value of pixels,
normalized between 0 and 1 and discretized in 16 intervals. Figure
reproduced from [6]. . . . . . . . . ... ...
Using convolutional Neural Networks as feature vector extractors from
real data: the output of the CNN is seen as an image with a third
dimension collecting the different features. For each pixel of this image,
the vector of features is contracted with the open legs of a tensor
network. Figure reproduced from [6]. . ... .. ... ... ......
Examples of images from the MNIST (a) and fashion MNIST (b) dataset.
Figure reproduced from [6]. . . . . . . . .. ... ... ... ......
Test set accuracy of different generalized tensor networks on the MNIST
dataset. Figure reproduced from [6]. . . . . . ... ... ... .....
From the raw audio signal, Mel-frequency cepstral coefficients (MFCCs)
are extracted over short overlapping windows, resulting in a sequence
of high dimensional vectors. These vectors are taken as input to a
generalized tensor network. Figure reproduced from [6]. . . . . . . ..
Training and testing accuracy of a MPS and a SBS with 4 strings on
the UrbanSound8K dataset. The density of parameters is the total
number of parameters divided by 174 (the length of the strings). Figure
reproduced from [6]. . . . . . . . . ...

List of Figures

128



List of Tables

3.1
3.2

4.1

4.2

5.1

First (¢,n)s Moore-Read states. . . . . .. .. ... ... ........
Terms in the Hamiltonian Hsp and coefficients obtained after numerical
optimizationon a4 x 4 lattice. . . ... .. ... ... .. .......

Energy per site difference with the ground state energy and overlap
with the Laughlin state of different ansatz wave functions optimized
with respect to the Hamiltonian Hparent 0n @ 6 x 6 square lattice with
open boundary conditions. SRBM have M’ hidden units connected to
all spins in each plaquette of size 3 x 3, while RBM have M hidden
units connected to all spins of the lattice. . . . . . ... ... ......
Topological entanglement entropy (TEE) of the analytical Laughlin state
and optimized -EPS, RBMand I-RBM. . ... ... ... ........

Test set accuracy of generalized tensor networks and other ap-
proaches[254] on the fashion MNIST dataset. . .. ... ........

129

179






Acknowledgments

First and foremost, I am deeply indebted to my supervisor Ignacio Cirac for the
opportunity of doing research in his group. This thesis has greatly benefited from
his guidance and insights, and his extraordinary scientific knowledge and creativity
have been a source of inspiration throughout these years. I am especially grateful
for his kindness, generous support and his encouragements to develop my own ideas
in an outstanding research environment.

I would like to thank Anne Nielsen for her supervision during the first years of my
PhD, for introducing me to the physics of strongly correlated quantum many-body
systems and for the opportunity to visit her group in Dresden. The many discussions
we had on both theoretical aspects as well as technical details of this work, her
guidance and patience have been invaluable to me and this thesis benefited from
many of her ideas.

I am profoundly grateful to my collaborators, without whom this work would not
have been possible. German Sierra provided me with the opportunity to learn from
his knowledge of the vast landscape of field theories, Moritz August introduced me
to the practical implementation of machine learning algorithms and Ivan Rodriguez
taught me a lot about the fractional quantum Hall effect. My sincere thanks to Nicola
Pancotti for the nice atmosphere in our office, for the innumerable discussions we
had and for his many contributions to the present work.

These years at the Max Planck Institute of Quantum Optics have been filled with
many inspiring interactions and I am very grateful to all former and present members
of the theory division for all the things they have taught me and for the time spent
together. In particular I have to acknowledge helpful discussions with Hendrik
Dreyer, Vedran Dunjko, Alessandro Farace, Yimin Ge, Andrew Goldsborough, Anna
Hackenbroich, Benedikt Herwerth, Johannes Kofler, Stefan Kithn, Andras Molnir,
Julian Roos, Tao Shi, Antoine Sterdyniak, Antoine Tilloy, Hong-Hao Tu, Jordi Tura,
Thorsten Wahl and Erez Zohar, who all contributed in one way or another to this
thesis. I also would like to thank Lucas Clemente for being a great office mate and
Andrea Kluth for her help in all administrative matters.

Over the last years, I have travelled to many places and this work was influenced by
discussions with great scientists all over the world, I am grateful to all of them.

Most importantly, I owe my deepest gratitude to my family and friends for their
support. I would especially like to thank my parents and grand parents for nurturing
my curiosity about the world. Finally, I thank Anna Medvedeva for her unconditional
love and endless support.

181









	Titlepage
	Titlepage
	Abstract
	Zusammenfassung
	List of publications
	1 Introduction
	1.1 Tensor networks states and entanglement
	1.2 Quantum phase transitions
	1.3 The fractional quantum Hall effect
	1.4 Neural-network quantum states
	1.5 Classical and quantum machine learning
	1.6 Thesis structure

	2 Infinite dimensional Matrix Product States and quantum criticality
	2.1 Introduction to tensor networks and Matrix Product States
	2.1.1 Tensor networks
	2.1.2 Matrix Product States
	2.1.3 Properties of Matrix Product States

	2.2 Infinite dimensional Matrix Product States for critical systems
	2.2.1 Critical states and Matrix Product States
	2.2.2 Construction of an infinite dimensional Matrix Product States from a free massless boson
	2.2.3 Computing properties of the state with Monte Carlo techniques

	2.3 A quantum phase transition with infinite dimensional Matrix Product States
	2.3.1 Construction of an infinite dimensional Matrix Product State from a massive field
	2.3.2 Properties of the phase transition at zero temperature

	2.4 Infinite dimensional Matrix Product States at finite temperature
	2.5 From a model wave function to a model Hamiltonian
	2.6 Conclusion

	3 Fractional quantum Hall lattice models from infinite dimensional tensor networks
	3.1 The fractional quantum Hall effect and Laughlin's wave function
	3.2 Lattice effects on Laughlin wave functions and parent Hamiltonians
	3.2.1 Lattice Laughlin states at different lattice filling factors
	3.2.2 Properties of the lattice Laughlin states on the square lattice
	3.2.3 States at half-filling: from long-range order on the square lattice to topological order on frustrated lattices
	3.2.4 Edge states from a charge at infinity
	3.2.5 Derivation of parent Hamiltonians

	3.3 Quasielectrons and quasiholes in lattice fractional quantum Hall states
	3.3.1 Wave functions of quasiholes
	3.3.2 Braiding statistics of quasiholes
	3.3.3 Wave function, charge and density profile of the quasielectron
	3.3.4 Quasiparticles on the torus
	3.3.5 Exact parent Hamiltonians for states with quasiparticles
	3.3.6 Local Hamiltonians

	3.4 Moore-Read states on lattices
	3.4.1 Definition of lattice Moore-Read states
	3.4.2 The lattice states become Moore-Read states in the continuum limit
	3.4.3 Properties of the lattice Moore-Read states
	3.4.4 Parent Hamiltonians for the lattice Moore-Read states
	3.4.5 Local Hamiltonians in one and two dimensions

	3.5 Conclusion

	4 Neural-network quantum states and tensor networks: relationship and application to chiral states
	4.1 Variational Monte Carlo with tensor networks and neural-network quantum states
	4.1.1 Variational Monte Carlo and Stochastic Reconfiguration
	4.1.2 Variational Monte Carlo method with tensor networks
	4.1.3 Variational Monte Carlo method with neural networks

	4.2 Relationship between tensor-network and neural-network states
	4.2.1 Jastrow wave functions, restricted Boltzmann machines and the Majumdar-Gosh model
	4.2.2 Short-range restricted Boltzmann machines are Entangled Plaquette States
	4.2.3 Fully-connected restricted Boltzmann machines are String-Bond States
	4.2.4 Generalizing restricted Boltzmann machines to non-local String-Bond States

	4.3 Application to chiral topological states
	4.3.1 Restricted Boltzmann machines can describe a Laughlin state exactly
	4.3.2 Numerical approximation of a Laughlin state
	4.3.3 Numerical approximation of a chiral spin liquid

	4.4 Conclusion

	5 Machine learning with generalized tensor networks
	5.1 Introduction to machine learning
	5.2 Probabilistic graphical models
	5.3 Generalized tensor networks
	5.4 Supervised learning algorithm
	5.5 Learning feature vectors of data
	5.6 Application to image and sound classification
	5.6.1 Image classification
	5.6.2 Environmental sound classification

	5.7 Conclusion

	6 Conclusion and outlook
	A Parent Hamiltonians for lattice Laughlin states
	A.1 Operators annihilating the q1[p] wave functions
	A.2 Operators annihilating the 42 wave function
	A.3 Conformal transformations of the parent Hamiltonians

	B Parent Hamiltonians for lattice Moore-Read states
	B.1 Operators annihilating the (q=1,=1)1 lattice Moore-Read state
	B.2 Operators annihilating the (q,=1)1, q2 lattice Moore-Read state
	B.3 Operators annihilating the (q,=1)1/2, q2 lattice Moore-Read state

	Bibliography
	List of Acronyms
	List of Figures
	List of Tables
	Acknowledgments

