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Abstract— 1Energy efficiency and consumption are cur-
rently the challenging issues in current Petascale and in
designing future Exascale systems. The European Union
Horizon 2020 project READEX (Runtime Exploitation of
Application Dynamism for Energy-efficient Exascale com-
puting) develops a tools-aided online approach to analyze
and auto-tune HPC applications for energy efficiency on
Exascale systems. It exploits dynamism that occurs due to
the variation in the application behavior between iterations
of the time loop as well as changing control flow within the
time loop. This paper describes the readex_interphase tuning
plugin, which analyzes the inter-loop dynamism. The plugin
performs clustering using DBSCAN for normalized PAPI
metrics, and computes the best tuning parameter settings
for each cluster. It verifies the cluster analysis results, and
finally computes static and dynamic savings. The inter-phase
tuning strategy was evaluated for miniMD and INDEED, and
the energy savings obtained validate the effectiveness of this
methodology.
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1. Introduction
As we are moving towards Exascale computing, designing

new energy-efficient systems with an Exaflop capability
becomes a challenge, especially when HPC systems have
a power demand of several MW [1]. The European Union
Horizon 2020 project READEX (Runtime Exploitation of
Application Dynamism for Energy-efficient Exascale com-
puting) aims to deliver the first standalone auto-tuning
framework to tune large-scale HPC applications for energy-
efficiency. While previous works perform static tuning,
READEX performs dynamic tuning by switching tuning
parameters at runtime. It targets applications that exhibit an
iterative behavior in the form of a main progress loop, called
a phase region. Individual time steps of the phase region are
called phases.

The READEX methodology consists of Design Time
Analysis (DTA) and Runtime Application Tuning. DTA is
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performed by the Periscope Tuning Framework (PTF) [2].
First, coarse granular program regions, called significant
regions having a tuning potential are selected for tuning.
PTF then calls a tuning plugin, which performs one or more
tuning steps, and uses a search algorithm to explore the
multi-dimensional space of system configurations, each of
which is a tuning parameter. READEX currently supports
three tuning parameters: CPU frequency to perform DVFS
(Dynamic Voltage and Frequency Scaling), uncore frequency
to perform UFS (Uncore Frequency Scaling) and the number
of OpenMP threads.

READEX exploits the inherent dynamism in the execution
characteristics of an application to determine the potential
for energy reduction. It measures application dynamism w.r.t.
two aspects: intra-phase and inter-phase. The readex_in-
traphase [3] tuning plugin exploits dynamism that arises
from variations in the execution of instances of significant
regions, called runtime situations (rts’s). The tuning plugin
then selects the best configurations for individual rts’s. Since
the plugin has no notion of the phase behavior, it is limited
to tuning for rts’s, and simply selects one best configuration
for all the phases even if groups of phases behave differently.

Fig. 1: Variation of the execution time with respect to the
phase number of the time loop in INDEED.

A novel tuning plugin, called readex_interphase was
developed to extend the READEX methodology to exploit
inter-phase dynamism arising from variations in the char-
acteristics between phases. Figure 1 illustrates the trend of
the execution time across the phases of the INDEED [4]
time loop. The execution time is highly dynamic due to



the the process of adaptive mesh refinement when the tool
comes in contact with the workpiece. The readex_interphase
tuning plugin leverages this behavior by grouping application
phases based on these similarities, thus enabling the selection
of different best configurations for groups of phases.

After DTA, rts’s with identical/similar best configurations
are clustered into a scenario, and a selector determines
the best configuration for a scenario. This information is
encapsulated in a tuning model file, which guides the Run-
time Application Tuning. A lightweight substrate plugin of
Score-P [5], called the READEX Runtime Library reads the
tuning model and dynamically switches to the specific best
configuration upon encountering an rts at runtime. Both DTA
and runtime tuning use Score-P as the common measurement
and monitoring infrastructure.

The paper outlines the related work in Section 2, and
provides an overview of DTA in Section 3. Section 4 presents
the tuning steps performed by the readex_interphase plugin
to analyze application dynamism, select the best configura-
tions and generate the tuning model. Section 5 presents the
results of the cluster analysis and the savings obtained for
miniMD [6], a mini molecular dynamics application from the
Mantevo benchmark suite, and INDEED [4], a production
application used for sheet metal forming simulations. Sec-
tion 6 finally summarizes the important results and provides
an insight to the possibilities for future work.

2. Related Work

There are many approaches that employ DVFS tuning in
HPC to improve the energy-efficiency. Eastep et al. [7] were
able to increase the energy efficiency using offline and online
analysis in the GEOPM framework. Laros et al. [8] exper-
imented with both CPU frequency and network bandwidth
scaling on the Cray XT architecture and reported improved
energy consumption with no performance degradation. The
AutoTune project [2] implemented a DVFS tuning plugin
that used the enopt library to vary the core frequency for
different application regions. It also implemented a model
based frequency prediction for minimum energy consump-
tion. Gonzalez et al. [9] implemented an adaptive power-
capping technique to optimize the performance of threaded
applications. Active threads are dynamically packed onto
variable number of cores and, DVFS is used to optimize the
performance within the power constraints. While the above
methods are static, READEX implements a dynamic tuning
approach.

The ANTAREX project [10] specifies adaptivity strategies
of the application at runtime by using a Domain Specific
Language approach to configure software knobs for the
application regions. This is specialized for ARM-based
multi-cores and GPGPUs, while READEX targets all HPC
systems.

Fig. 2: The workflow of the Design-Time Analysis stage of
the READEX framework.

3. Design-Time Analysis
DTA is performed by PTF, which is a distributed frame-

work consisting of the frontend, the tuning plugins, the
experiment execution engine, and a hierarchy of analy-
sis agents. First, scorep-autofilter filters out fine-granular
program regions to avoid measurement overheads due to
automatic compiler instrumentation. The readex-dyn-detect
tool then selects significant regions that constitute most
of the application execution time based on a granularity
threshold. It then computes the application’s tuning potential
for: a) intra-phase dynamism, resulting from variations due
to the execution of rts’s or in the control flow within a
single phase, and b) inter-phase dynamism due to changing
application characteristics between phases. The dynamism
results for each significant region are then exported to a
READEX configuration file in the .xml format.

The readex_interphase plugin is configured via the con-
figuration file by specifying the objective function to tune
for, and the values for the system-level tuning parameters.
The plugin then executes experiments, during which the
PTF analysis agents send measurement requests and receive
results to and from Score-P. The plugin generates a tuning
model, which is propagated to the runtime tuning stage.

3.1 Leveraging Application Dynamism
READEX quantifies the tuning potential using two dy-

namism metrics: execution time and compute intensity. Intra-
phase dynamism exists for execution time if there is a
variation in the execution time of the rts’s, and for compute
intensity due to the deviation of the compute intensity
across significant regions. Finally, inter-phase dynamism for
execution time exists if there is a variation in the minimum
and maximum execution time for the phase region.

To exploit inter-phase dynamism, phases with similar
characteristics or behavior are grouped together for the
selection of different best configurations for each group of



Fig. 3: The readex_interphase plugin executes three tuning
steps: Cluster analysis, default execution and verification.

phases. This also allows individual rts’s to be distinguished
in the tuning model based on the behavior of the phase from
which it was called. The following sections describe how the
readex_interphase tuning plugin performs cluster analysis to
leverage inter-phase dynamism.

4. Inter-phase Tuning
The readex_interphase plugin is a modified Dynamic

Voltage Frequency Scaling (DVFS) plugin that performs a
cluster analysis of the phases based on the similarity in
their behavior, and determines the best configuration for
each cluster. The following sections describe the sequence
of steps performed by the readex_interphase tuning plugin,
as illustrated in Figure 3.

4.1 Cluster Analysis
The cluster analysis step uses the random search strat-

egy [2] to create a number of experiments to request
measurements for randomly selected configurations. It then
clusters the phases based on the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [11] algo-
rithm using normalized features (clustering aspects). Then,
cluster-best configurations are determined for the phase as
well as individual rts’s.

4.1.1 Initialization

The readex_interphase plugin first reads the tuning param-
eters and the objective for tuning. If no objective is specified,
energy is set as the default objective, and is measured as the
energy consumption of the entire node.

The plugin allows the user to specify different objective
functions to be measured in addition to energy, such as
execution time, CPU energy, Energy Delay Product and
Energy Delay Product Squared, and Total Cost of Ownership
(TCO). TCO determines the overall costs of a job as the
sum of the energy costs plus the execution time dependent
fraction of the HPC system costs.

4.1.2 Experiment Execution

The plugin reads the list of significant regions from
the configuration file, and uses the random search strategy
to create a search space of the tuning parameters. This
prevents the search space from exploding. The plugin then
performs experiments, i.e., an execution of a single phase
by measuring the effect of a random system configuration
selected based on a uniform distribution [2]. The number

of experiments that are executed is determined by a user
specified number of samples in the configuration file.

In each experiment, the plugin requests the objective val-
ues for the phase and the rts’s in the form of a tuning request
to Score-P. Each PTF analysis agent stores the measurements
returned by Score-P for those MPI processes controlled by it.
The plugin computes the consumed energy by aggregating
the values returned by the designated processes of all the
nodes for an MPI application. In addition to the objective
values, the plugin collects PAPI [12] hardware metrics, such
as the number of AVX instructions, L3 cache misses, and
the conditional branch instructions. These are used to derive
phase features in later steps.

At the end of each experiment, each PTF analysis agent
generates a partial Calling Context Graph (CCG) 2 to build
the sequence of calls from the phase to different regions.
Individual CCGs are propagated to the frontend and then
aggregated to produce the complete CCG.

4.1.3 Process Results
The plugin performs clustering using a carefully selected

set of features, and determines the best configuration for
each cluster, as described in the following sections.

a) Clustering: Phase features, such as arithmetic intensity,
capture the characteristics of phases. The mapping of phases
into clusters enables PTF to select different best configura-
tions for each cluster. The features for clustering should be
chosen carefully since the resulting tuning model heavily
influences the runtime tuning stage. Hence, the following
considerations were taken into account while selecting the
clustering method and the features:
• Since the dynamism in many applications arises from

the variation in the compute intensity or memory
read/write access patterns, compute intensity and the
number of conditional branch instructions were chosen
as the features for clustering. Compute intensity is
determined by #AVX Instructions

#L3 Cache Misses .
• DBSCAN was chosen for clustering, since it does not

make any assumptions about the shape of the clusters.
Moreover, it is robust against noise or measurement
outliers, and prevents them from being assigned to a
cluster.

The plugin normalizes the phase features using the min-
max method. Feature normalization ensures that while using
features with different data ranges for clustering, all features
have a similar weight, there is no bias during clustering. The
min-max method is a range normalization method that scales
the numeric range of a feature to a [0,1] range, as shown in
the following formula:

∀xi ∈ X, x
′
=

xi −min(X)

max(X)−min(X)

2A context sensitive version of a call graph.



The plugin uses the normalized features to perform clus-
tering using DBSCAN to group points that are closely
packed together, resulting in high density regions. It marks
points that lie in low-density regions as noise. The algorithm
requires two parameters to cluster the data points:

1) minPts: minPts determines the minimum number of
points that must lie in the neighborhood to define
a cluster. The minPts parameter was chosen to be
4 [13], which means that a neighborhood should have
a minimum of 4 data points.

2) eps: eps is the maximum distance between any two
points for them to be considered to be in the same
neighborhood. This ensures that ∀p ∈ Ci, the Eu-
clidean distance between any pair of points is less than
or equal to eps. eps is automatically determined using
the elbow method [14]. The plugin computes the av-
erage 3-NN (3-Nearest-Neighbor) Euclidean distances
for all the data points, and the distances are arranged in
the ascending order. The elbow is a sharp change in the
average 3-NN distance curve, as shown in Figure 4. It
is computed as the average 3-NN distance of the point
that has the maximum distance to the line formed by
the points with the minimum and the maximum 3-NN
distance (the first and the last point on the curve).

Fig. 4: eps for DBSCAN is automatically determined as the
point that has the greatest distance from the line formed by
the first and last points on the curve.

b) Computation of cluster-best configurations: The plu-
gin uses the objective normalized by the AVX instructions to
compute the best configuration for the clusters and the rts’s.
This allows the plugin to tune phases with different amounts
of work but of the same kind, such as more iterations of an
iterative solver. For each newly created cluster, the plugin
determines the best setting of the tuning parameters for all
the phases as well as individual rts’s to achieve the lowest
normalized objective value. The cluster-best configuration is
then applied for all the phases of a particular cluster during

the next application run.

4.2 Default Execution
Before starting the default execution step, PTF restarts

the application, and the plugin creates the same number of
experiments as the previous step. Each experiment measures
the objective value for the default configuration, i.e., the
execution with the default tuning parameter settings provided
by the batch system. The measurements obtained for each
phase as well as the rts’s are then used for computing the
savings incurred at the end of the plugin.

4.3 Verification
In the verification step, PTF restarts the application, and

the plugin creates the same number of experiments as in
the previous steps. This step determines if the theoretical
savings computed in the cluster analysis step match the
actual savings incurred after switching the configurations.

PTF first configures the READEX Runtime Library at the
start of the phase with the corresponding cluster-best phase
configuration. If the phase was determined to be a noise
point in the cluster analysis step, it is executed using the
default configuration. Similarly, the configurations for the
rts’s are set to the rts-specific best configuration for the
current phase’s cluster. The runtime system thus enforces
the static phase configuration for the phase, and dynamically
switches system configurations for the individual rts’s. The
measurements recorded for these experiments are used to de-
termine the true static and dynamic energy savings obtained
by taking the dynamic switching overhead into account.

4.3.1 Cloning the Calling Context Graph (CCG)
Once all the experiments are completed, the plugin clones

the children of the phase region of the Calling Context Graph
(CCG) to correctly depict the formed clusters.

Phase
Region

foo bar

baz

(a) Before cloning.

Cluster=1

foo bar foo bar

Phase
Region

Cluster=2

bazbaz

(b) After cloning.

Fig. 5: Calling Context Graph (CCG) for a dummy applica-
tion consisting of three regions foo, bar and baz.

Figure 5a shows the initial CCG of a dummy application
containing regions foo, bar and baz. The callpath of an
rts starts with the phase region and includes the names of
the regions that are called on the way to this region. For
the phase, the callpath would be /PhaseRegion. Figure 5b



illustrates the case when the plugin creates new nodes for
the clusters, and clones all the nodes under the phase region.
After this step, the cluster ID is used to represent all the
phases belonging to a cluster. Thus, the callpath becomes
/PhaseRegion/Cluster=1. Doing this has an advantage of
reducing the memory overhead because a single cluster node
can be used to represent all the phases belonging to it. The
tuning results for each cluster can now be inserted into the
cluster nodes.

4.3.2 Computing the savings

The plugin determines the following three values to char-
acterize the savings:

1) Static savings for the whole phase: The improvement
in the objective value for the best static configuration
of the phase compared to the objective value for
default configuration accumulated over all the clusters.

Sstatic
phase =

n∑
cluster=1

(odefaultphase,cluster − ooptphase,cluster)

/

n∑
cluster=1

odefaultphase,cluster ∗ 100

2) Static savings for the rts’s: The improvement in the
objective value for the rts’s for the best setting for the
cluster (static best) compared to the objective value
for the rts’s for the default setting accumulated over
all the clusters.

Sstatic
RTS =

n∑
cluster=1

∑
rts∈RTS

(odefaultrts,cluster − ostaticrts,cluster)

/

n∑
cluster=1

∑
rts∈RTS

odefaultrts,cluster ∗ 100

3) Dynamic savings for the rts’s: The improvement in the
objective value for rts-specific best configuration over
the objective value for rts’s for the static best setting
for the cluster accumulated over all the clusters.

Sdyn
RTS =

n∑
cluster=1

∑
rts∈RTS

(ostaticrts,cluster − ooptrts,cluster)

/

n∑
cluster=1

∑
rts∈RTS

ostaticrts,cluster ∗ 100

(1)

where,

odefaultphase,cluster = objective value of the phase for the

default configuration for a cluster

ooptphase,cluster = objective value of the phase for the

static best configuration for a cluster

odefaultrts,cluster = objective value of the rts for the default

configuration for a cluster

ostaticrts,cluster = objective value of the rts for the static

best configuration for a cluster

ooptrts,cluster = objective value of the rts for the rts-

specific optimal configuration for a cluster

4.3.3 Tuning Model Generation
As the last step of DTA, the plugin calls the tuning model

generation. A classifier map rts’s that have identical best
configurations onto a unique scenario. Rts’s with similar
system configurations can also be clustered using a similarity
score that determines if the objective values are close to
each other. This ensures that two rts’s with similar best
configurations can be merged into one scenario to reduce
the runtime switching overhead. A selector then returns the
best configuration for that scenario with respect to the chosen
objective. The tuning model encapsulates this knowledge as
a JSON file. For production runs, the READEX Runtime
Library reads the tuning model and dynamically switches to
the best configuration specified for cluster ID of the currently
executing phase.

5. Evaluation
The evaluation of the clustering analysis by the readex_in-

terphase plugin was performed on two applications, miniMD
and INDEED.

miniMD is a lightweight, parallel molecular dynamics
simulation code written in C++, and performs molecular
dynamics simulation of a Lennard-Jones Embedded Atom
Model (EAM) system. It provides an input file for users
to specify the problem size, temperature, the number of
timesteps, and the timestep size among others. The eval-
uation of DTA was done for the hybrid (MPI+OpenMP)
AVX vectorized version, with a problem size of 50 for the
Lennard-Jones system.

INDEED is a finite element software that performs sheet
metal forming simulations, and has an implicit time integra-
tion. The simulation involves a stationary workpiece and a
number of tools with different geometries that move towards
this workpiece. When there is a contact between the tool and
the workpiece, an adaptive mesh refinement takes place, and
the number of finite element nodes increases with every time
step. This results in an increasing computational cost. For
every change in the number of contact points between the



tools and the workpiece, the time loop computes the solution
to a system of equations until equilibrium is reached.

Experiments were conducted on the Taurus HPC system
at the ZIH in Dresden. Each node on Taurus contains
two 12-core Intel Xeon CPUs E5-2680 v3 (Intel Haswell
family), running with a default CPU frequency of 2.5 GHz
and an uncore frequency of 3 GHz. Energy measurements
are provided on Taurus via the HDEEM [15] measurement
hardware, which allows processor as well as blade energy
measurements.

Figures 8 and 9 show the trend for the compute intensity
for the executions of the time loop of miniMD and INDEED
respectively. As can be seen, both applications show dynamic
behavior during the course of the execution.

For miniMD, a sharp change occurs at every tenth phase,
while for INDEED, it is non-deterministic due to the adap-
tive mesh refinement.

The readex_interphase tuning plugin was run on both
applications, and the results are illustrated in Figures 6
and 7 for miniMD and INDEED respectively. The plugin
uses the normalized compute intensity and the normalized
conditional branch instructions to perform the clustering.
Six clusters were produced for miniMD, while three clus-
ters were produced for INDEED. The points that were
not assigned to any cluster were marked as noise, and
colored in red. In both figures, a low normalized compute
intensity coupled with a low normalized conditional branch
instructions value requires a high CPU frequency, while a
low normalized compute intensity value coupled with a high
value of conditional branch instructions requires high values
of both CPU and uncore frequencies.

Table 1 presents the static and dynamic savings in per-
centages obtained for miniMD and INDEED as a result of
applying DTA using the readex_interphase tuning plugin.

Table 1: Static savings for the phase and the rts’s, and the
dynamic savings for the rts’s for miniMD and INDEED
obtained after applying the readex_interphase plugin.

Application
Static savings

for the
whole phase (%)

Static savings
for the rts’s

(%)

Dynamic savings
for

the rts’s
(%)

miniMD 13.74 14.51 0.03
INDEED 5.75 9.24 10.45

A static savings of 13.74% for miniMD and 5.75% for
INDEED was observed for the phase. This value is measured
as the overall savings for the phases over all clusters obtained
as a result of the inter-phase tuning. While the static and
dynamic savings for the rts’s of INDEED show a relatively
good improvement of 9.24% and 10.45% respectively, min-
iMD records low dynamic savings. This is because miniMD
has only two significant regions, and one of the regions is
called only once during the entire application run. On the

other hand, INDEED has nine significant regions, providing
more potential for dynamism, and hence records better
dynamic savings.

6. Summary and Future Work
Energy efficiency optimization is now one of the major

challenges on the way to Exascale computing. A novel
readex_interphase tuning plugin enables READEX to ex-
ploit inter-phase dynamism, and select best configurations
for groups for phases. The tuning plugin implements a three-
step tuning strategy that handles dynamism across phases via
experiments for randomly chosen system configurations. It
clusters phases using DBSCAN and uses normalized PAPI
metrics as phase features (compute intensity and conditional
branch instructions). A verification step is performed to
compute the true savings by taking into account the dynamic
switching overhead. Static savings of 13.74% obtained for
miniMD, and dynamic savings of 10.45% for INDEED
highlight the effectiveness of the inter-phase plugin.

For future improvements, a planned search for selective
configurations can be performed if we have low confidence
on the results due to the presence of only a few points
in a cluster. Another step is the development of a cluster
prediction mechanism similar to a branch prediction scheme
for dynamic cluster prediction at runtime.
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