
INTEGRATING VERSIONS, HISTORY, AND LEVELS-OF-DETAIL
WITHIN A 3D GEODATABASE

G. Gröger, T. H. Kolbe, J. Schmittwilken, V. Stroh, L. Plümer

Institute for Cartography and Geoinformation, University of Bonn, Meckenheimer Allee 172, 53115 Bonn, Germany

{groeger, kolbe, schmittwilken, stroh, pluemer}@ikg.uni-bonn.de

KEY WORDS: 3D city models, 3D GIS, geodatabase, LOD, multi-representation, planning versions, history, workspaces

ABSTRACT:

The sustainable management and continuation of virtual 3D city models puts specific demands on 3D geodatabases. These demands
result from the need to manage three different dimensions of multiple representation: Levels-of-detail, concurrent planning versions,
and history over time. In this paper we propose a concept for the integration of all three aspects in the framework of spatial relational
database management systems. User applications need to see resp. work with different states of the database content, e.g.. the current
state “as-built” or the current state plus certain approved plannings. It is shown how the workspace manager of the RDBMS can be
extended by structures, which allow to combine these versions in so called City Model Aspects. Specific spatial integrity checks are
introduced in order to avoid conflicts between spatially disconnected concurrent plannings.

1. INTRODUCTION

The sustainable management and continuation of virtual 3D city
models puts specific demands on 3D geodatabases. First, the
content of 3D city models evolves over time as buildings and
other objects are added resp. changed or deleted reflecting urban
development. However, planning and documentation tasks often
need to have access to the state of the model at any point of time
in history. Second, urban planning needs to be able to manage
different versions and competing (re-)designs for the same
geographic areas. Third, 3D city models typically have a multi-
scale representation, i.e. all entities can be stored in different
levels of detail (LOD) regarding both geometry and semantic
granularity.

All three aspects are distinct, and from a logical perspective
“orthogonal” facets of multi-representation (cf. Kolbe & Plümer
2004). In the following, we analyze the specific properties of
each facet, before we show how the three facets can be modeled
in terms of the concepts of spatially enabled relational database
management systems (Geo-RDBMS) in an integrated way.

We exemplify the concept by the realization of a unified, multi-
scale data model for 3D city models on top of an object-
relational 3D geodatabase implemented in Oracle Spatial (cf.
Gröger et al. 2004). The employed data model has been
developed by the Special Interest Group 3D (SIG 3D) of the
initiative Geodatainfrastructure North-Rhine Westphalia (GDI
NRW) over the last 3 years (see Kolbe & Gröger 2003). It is
also the starting point for the development of CityGML, the
GML3-based standard for the interoperable access of 3D city
models (cf. Kolbe et al. 2005).

2. FACETS OF MULTI-REPRESENTATION

3D city models are often classified with respect to their
resolution and generalization level. In many existing models,
discrete levels of detail (LOD) are distinguished. The SIG 3D
model comprises five LOD, starting with the coarsest LOD 0
describing a regional model, and ending with the fully detailed
LOD 4, which comprises both the exterior and interior modeling
of city objects like buildings (Kolbe & Gröger 2003).
Representations differ both with respect to geometry and to

semantic structuring. The specific characteristic of LOD is that
multiple representations of the same object are simultaneously
valid.

The continuation process of city models implies the second
facet of multi-representation. Spatial objects change over time,
and therefore have different representations at different points in
time (in any LOD!). This aspect is especially important with
regard to 3D cadastres, where the complete history of the city
objects has to be maintained. In contrast to the LOD case above,
at any time exactly one representation of an object (in all LOD)
is valid.

The third facet of multi-representation results from urban
planning. A planning scenario typically comprises competing
designs reflecting alternative concepts and ideas. Thus, some
objects may exist in concurrent versions. However, these
parallel alternatives may not be used or visualized
simultaneously. The problem gets even more complicated by
the fact that there exist different construction projects at the
same time. Users and planners need to see or work with a
specific view on the 3D city model, in which an arbitrary
combination of a selected version for each different scenarios is
reflected. Since these alternative representations may exist in
different LOD and at any point in time, versions add another
dimension to the problem of multiple representations.

3. VERSION AND HISTORY MANAGEMENT USING
WORKSPACES

A well-known concept for the management of versioned data in
DBMS is the workspace. A workspace provides a virtual copy
of the state of a database (or another parent workspace), in
which modifications are carried out locally and stay separated
from other workspaces (cf. Katz 1990). The changes may be
merged into the original database content resp. the parent
workspace at a later point in time. Conflicts occur when the
same object is changed in different workspaces, and most
database management systems support the detection of such
conflicts and the process of solving them by the user.
Workspaces typically are used to support long-term transactions
in databases, which may take many months up to several years.

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

35

The concepts of versions and workspaces are quite mature and
have their origins in the 80s. They have been developed in the
context of CAD databases in order to enable concurrent work on
different parts of a VLSI integrated circuit design (Katz 1990).
The Oracle workspace manager now incorporates most of these
concepts into the Oracle RDBMS (Agarwal et al. 2003, Oracle
2003). Versioned tables are augmented by columns that denote
the version and workspace of each data tuple together with the
date and time of every update. Database views and triggers then
are constructed for each version, which preserve the original
table structure but show only the database content that belongs
to the respective version. Batty (2002) describes this approach
as shallow version management, which has the advantage of
being almost transparent to applications. Another prominent
version management concept is based on explicit checkouts and
checkins of portions of the geodatabase for the geographical
areas to be updated (Katz 1990). However, this approach is not
feasible with respect to the need for integrated views of the
whole city showing the impact of the different ongoing
plannings simultaneously.

In the following we employ the workspace concept to support
the planning processes for 3D city models. Since only the
changes or new added or generated objects are recorded by the
DBMS, redundant storage of planning regions is avoided. The
application of this concept for the management of a single
planning project is straightforward. Each project typically
comprises different competing planning versions for the same
region, accomplished by different planners or architects. Since a
workspace holds exactly one state of the city model, a planning
project would have to be represented by one workspace for each
competing version. After the planning process is completed, one
single version is chosen to be implemented and is submitted
(posted) to the parent workspace resp. the root workspace.

3.1 Handling of Conflicts

Problems arise due to the fact, that city development generally
covers a multitude of simultaneous, but independent planning
projects. In each project, one planning version is selected finally
and implemented after the process is completed. Thus the
changed or newly generated objects have to be updated or
inserted in the parent or root workspace. In this process of
merging different versions, conflicts may occur, if the same
object is modified in different alternatives or versions. These
conflicts, of course, have to be avoided.

Different planning projects usually are related to different
regions, which are spatially disjoint. If all updates and insertions
are restricted to the region of the corresponding planning
activity, no conflicts occur when the different alternatives will
be merged. However, it has to be ensured by the database that in
fact all changes are restricted to the planning region. To perform
this task, we propose an approach which stores the planning
region explicitly as a spatial attribute of a planning activity and
which employs the database concept of triggers (Ullman 1988).
A trigger is a procedure, which is executed automatically by the
database management system, when a update or insertion on a
field of a database table occurs and a certain condition is met by
the database state. The kind of update or insertion and the
condition is given explicitly in the trigger definition. For
example, a trigger may specify that an update of the field
‘height’ of a table ‘building’ is not allowed, when the new value
of this field is negative.

To apply this concept for conflict avoidance between planning
activities, a straightforward approach would be to define

triggers on all update operations (insertion, modification, and
deletion) on geometry fields of spatial features. These would
check whether the modified object is inside the planning region
associated with the corresponding planning. If this is not the
case, the modification would be rejected. This check can be
done very efficiently using the spatial indices and query filters
of the database.

The approach described above is sufficient if no spatial object
touches more than one planning region. However, there exist a
number of object types like highways and rivers for which it is
very likely that they touch more than one planning region (see
fig. 1). Although these objects might be modified only locally in
the different planning activities, the changes cause conflicts in
the database. This is due to the fact, that the same object that
contains the geometry is modified more than once.

Rhine
Planning
Region A

Planning
Region B

Fig. 1: One spatial object (the Rhine river) touching two disjoint

planning regions (A and B)

The traditional approach to deal with this problem is to split
large objects into parts, each part touching only a single
planning region. However, object identity and object
homogeneity would be affected, and all references to the objects
would have to be updated accordingly.

In the following we propose an approach with a higher
granularity, which maintains objects as a whole. The crucial
point is the definition of the trigger condition. While in the first
approach the condition checks whether the whole modified
object is inside the planning region, the new condition considers
only the actual geometric modification and checks whether it is
inside the planning region. Fig. 2 illustrates this approach.

Rhine
Planning
Region A

Planning
Region B

Fig. 2: Two modifications (hatched areas and dashed lines) of

the same object (Rhine river), which are located in
different, disjoint planning regions (A and B)

The object river Rhine is modified twice, in region A and in
region B. The first approach would reject those changes, since
the modified object touches region A and B. Since each

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

36

geometric modification is strictly inside a planning region, our
new approach admits this situation.

The process of merging versions of different planning regions is
more difficult to handle and has to be adapted. Since the same
object may have different geometric modifications in different
regions, the two or more new geometries have to be merged. In
principle, the functionality of spatial databases may be used for
this task. Oracle Spatial, for example, offers various functions to
intersect (�) or merge (�) two geometries or to subtract one
geometry from another (–). Using these functions the merging
process can be formalised as follows:

 Rhine.geometry – A.extent – B.extent
 �
 Rhine.geometry[Version A] � A.extent
 �
 Rhine.geometry[Version B] � B.extent

First, the areas of the extents of all affected planning versions
are subtracted from the original river geometry. The result
represents the untouched portions of the river geometry. In the
next step, the river geometry is clipped for every planning
version to the extent of the according planning region. Finally,
all resulting geometries are merged by the union function into
one river polygon again. This single polygon combines the
geometric modifications of all plannings involved.

Whereas the example illustrates the conflict management in a
2D scenario, the concept covers the 3D case as well. However,
since support for 3D geometric primitives is currently still
lacking in geodatabase management systems, no predefined
database functions can be used to implement the merging
procedure for 3D immediately (Zlatanova et al. 2002). First
steps of the integration of 3D primitives have been presented by
(Stoter & Oosterom 2002), but unfortunately the functionality is
not available in commercial DBMS yet.

3.2 Aspects: Integrated Views over different Planning

Regions

Users and city planners are interested in seeing and working on
an integrated view of the 3D city model, in which a user-defined
or predefined combination of selected designs for the distinct
planning projects is reflected. We call any such specific view a
city model aspect. City model aspects are used to define
different 3D city model products. For example, one specific city
model aspect may show the current state of the city model, a
second the current model plus approved versions of ongoing
planning projects, and a third the current model plus all designs
from a specific architect for the different planning projects in
which he is involved.

Since each combination has to be represented by one workspace
and any combination may be possible, there is a potential
combinatorial explosion of needed workspaces. The solution for
the described problem lies in defining an appropriate structuring
schema for workspaces and the application of so-called multi-
parent workspaces. Multi-parent workspaces are workspaces
which have more than one predecessor (Agarwal et al. 2003,
Oracle 2003). They integrate the different states of the parent
workspaces, provided that no conflicts occur on the tuple level.

Now, for each current planning region, a set of workspaces is
derived from the 3D reference model. Each workspace contains
a different planning version of the corresponding region and is
stamped by the name of the planning region and the version

identifier. For each city model aspect resp. individual user
configuration, a multiparent workspace is generated on demand,
integrating the desired versions for each region. The
information about the existing planning projects and the
contained competing versions is kept in two additional tables
(see fig. 3).

We have implemented the concept using the RDBMS Oracle
10g and the Oracle Workspace Manager (OWM). The OWM
allows any table to be put under the control of the versioning
mechanism. Then, an arbitrary number of workspaces can be
created, where each maintains its own state of the versioned
tables. Since versioned tables virtually retain their original
relational schema, the usage of workspaces is almost transparent
to applications. An application only has to select the appropriate
workspace before starting to work with the database.

The workspace concept is also being used for the management
of history. Since updates on versioned tables are stamped with
time and date, the database access cannot only be focused on
explicit versions but also on specific points of time in history.
This includes history over the different, concurring planning
versions – even those versions, which have not been selected for
realization in the past.

4. INTEGRATION OF MULTIPLE LEVELS-OF-
DETAIL

The representation of multiple levels-of-detail of the same
spatial phenomenon differs from the other two facets of multi-
representation, versions and history, on a conceptual level. This
has strong impacts on the way to implement multiple LOD in a
spatial database. Across different versions and points in time,
the schema of a database remains constant, allowing
applications to access the database in a transparent way. Across
multiple LOD, however, this is not the case in general. For
example, a coarse LOD may represent a building by a single
class on a semantical level, and by a simple block
geometrically. A more detailed representation provides several
thematic classes for building parts like balconies, chimneys and
roofs, and a more elaborated geometry with solid and surface
geometries (Köninger & Bartel 1998, Coors & Flick 1998,
Kolbe & Gröger 2003). Thus the database schemas in both LOD
differ. As a consequence, accessing different LOD may not be
transparent to applications, which must be aware of the specific
schema in the desired LOD. Thus the problem of representing
multiple LOD cannot be solved on the level of database
mechanisms, but on a conceptual modeling level, i.e. the
corresponding LOD must be reflected in the UML diagrams
from which the database schema is derived.

Our approach to distinguish multiple LOD is to tag or stamp the
UML classes and relations by the corresponding LOD identifier
(cf. Vangenot et al. 2002). In our model (Kolbe et a. 2005), a
thematic object may have different spatial representations in
different LOD. These spatial properties are based on a
geometric-topological model. It is implemented using a hybrid
representation using the Oracle Spatial data type
SDO_GEOMETRY on the one hand, and an explicit relational
modeling of topology on the other hand. The former provides
efficient spatial indexing mechanisms, while the latter is needed
in order to maintain topological consistency. A detailed
description of the model is given in (Gröger et al. 2004).

The number of classes in our model increases with growing
degree of detail, by specializing classes into sub-classes or by
adding more detailed thematic aspects, but no classes are

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

37

Workspace 1

Basic City Model

Workspace 3
PrenzlauVer2

Region:
Prenzlauer Berg

Region:
Kreuzberg

Workspace Structure Table
Workspace No Workspace Name Region Extent

(Polygon)
Starting
Date

Termination
Date

WS 2 PrenzlauVer1 Prenzlauer Berg 12-07-2002 12-12-2003
WS 3 PrenzlauVer2 Prenzlauer Berg 07-06-2002 12-11-2003
WS 4 KreuzbergVer1 Kreuzberg 05-03-2004
WS 5 KreuzbergVer2 Kreuzberg 12-04-2004

City Model Aspects

Task: Planning Task: Planning

Workspace 6 (Multiparent)
City Scenario 1

Workspace 7 (Multiparent)
City Scenario 2

City Model Aspect Table
Workspace No Workspace Name Parent Workspaces
WS 6 City Scenario 1 WS 2, WS 4
WS 7 City Scenario 2 WS 2, WS 5

Workspace 2
PrenzlauVer1

Workspace 4
KreuzbergVer1

Workspace 5
KreuzbergVer2

Fig. 3: Simple example for the structuring of different planning versions and their integration into user defined city model
aspects. The topmost workspace contains the current state of the city model. There are planning activities in different
regions, where the designs are represented in concurring workspaces. The integrated views (City Scenario 1 & 2) are
provided by multiparent workspaces which incorporate selected planning versions. Please note, that each workspace
does represent the whole 3D city model with only regional modifications. The tables keep track of the different
versions and are needed for the construction of the city model aspects, i.e. the multiparent workspaces.

dropped. When classes are aggregated to or assimilated by
different, coarser classes, and these generalized classes are
omitted in more detailed LOD, the issue of representing LOD
becomes more complex. The relations between different classes
in different LOD representing the same spatial phenomenon
must be recorded explicitly (c.f. Vangenot et al. 2002 or Kolbe
& Gröger 2003). Relations with specific semantics must be
introduced to guarantee that queries or visualizations are
consistent, i.e. that no spatial phenomenon is considered more
than once. Corresponding rules operating on theses specific
relations may be found in (Kolbe & Gröger 2003).

5. CONCLUSIONS AND OUTLOOK

Th presented concepts show how the three different aspects of
multi-representation can be mapped to spatially enabled
RDBMS. Whereas history and version management is handled

almost transparently to the user, the representation of levels-of-
detail affects the data model and thus has to be treated by the
application on top of the geodatabase. City model aspects are
used to define application-relevant combinations of versions. By
maintaining the extent of planning regions, conflicts between
concurrent versions can be assessed and resolved not only on a
database tuple level, but more specific on a geometry parts
level.

Our prototypical implementation of the 3D geodatabase system
is based on Oracle Spatial 10g and demonstrates the feasibility
of the concept. In fig. 4 a small city scene is shown, where two
distinct planning regions are depicted (one on the left and one
on the right side). For each planning, two workspaces are
created to hold two concurrent designs respectively. Fig. 5
shows two competing designs for the left hand planning, while
fig. 6 is focussed on the right hand planning. In order to view a

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

38

Fig. 4: Portion of a 3D city model. Two planning regions are described by their spatial extent: one on the left (blue) and another
on the right (dark green). Each planning may comprise several competing alternatives as versions. Each alternative is
assigned to one workspace which stands for a virtual copy of the 3D city model.

Fig. 5: Two versions of the “blue” planning. Each version
is stored in a separate workspace.

Fig. 6: Two alternatives of the “green” planning. Please
note, that each workspace contains the whole dataset.

Fig. 7: A city model aspect was defined to show the combination of alternatives of different plannings. Here the tall version of
the “blue” planning and the broad version of the “green” planning have been combined. A city model aspect is a
multiparent workspace whose parents are the workspaces associated to the planning alternatives (cf. fig. 3).

combination of specific designs, a city model aspect consisting
of the 2nd alternative of the left hand and the 1st of the right
hand planning is defined.

In the future, we intend to investigate how the conflict
management rules can be incorporated into the workspace
manager of the database. Thus triggers will be generated
automatically on all tables with spatial attributes when new
workspaces are created.

ACKNOWLEDGEMENTS

Parts of this work have been done within the EU-funded project
“Geodata management for the administration of Berlin – 3D VR

model for investors and enterprises” in cooperation with the
state administration and business development Berlin.

REFERENCES

Agarwal S, Arun G, Chatterjee B, Speckhard B, Vasudevan
(2003): Long transactions in an RDBMS. In: Proceedings of the
26th GITA Conference 2003 in San Antonio, Texas

Batty PM (2002): Version Management Revisited. In:
Proceedings of the 25th GITA Conference, March 17-20, 2002
in Tampa, Florida

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

39

Coors V, Flick S (1998): Integrating Levels of Detail in a Web-
based 3D-GIS. Proc. 6th ACM Symp. on Geographic
Information Systems (ACM GIS 98), Washington D.C., USA.

Gröger G, Reuter M, Plümer L (2004): Representation of a 3-D
City Model in Spatial Object-relational Databases. In: Intern.
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol. 34. Part B4 (Proc. of the XXth
ISPRS Congress, Istanbul, Turkey).

Katz RH (1990): Toward a Unified Framework for Version
Modeling in Engineering Databases. ACM Computing Surveys,
Vol. 22, No. 4

Köninger A, Bartel S (1998): 3D-GIS for Urban Purposes,
Geoinformatica, 2(1), March 1998.

Kolbe TH, Gröger G (2003): Towards unified 3D city models.
In: Schiewe, J., Hahn, M, Madden, M, Sester, M (eds):
Challenges in Geospatial Analysis, Integration and
Visualization II. Proc. of Joint ISPRS Workshop, Stuttgart

Kolbe TH, Gröger G, Plümer L (2005): CityGML –
Interoperable Access to 3D City Models. In: van Oosterom, P,
Zlatanova, S, Fendel, EM, (Eds.) Geo-information for Disaster
Management (Proc. of the first International Symposium on
Geo-Information for Disaster Management GI4DM), Delft, The
Netherlands, March 21-23, Springer.

Kolbe TH, Plümer L (2004): Bringing GIS and CA(A)D
Together - Integrating 3d city models emerging from two
different disciplines. GIM International, Vol. 18, No. 7, July
2004.

Oracle (2003): Database Application Developer’s Guide -
Workspace Manager (2003), 10g Release

Stoter JE, van Oosterom PJM (2002): Incorporating 3D geo-
objects into a 2D geo-DBMS. In: Proc. FIG, ACSM / ASPRS,
Washington D.C., April 2002

Ullman JD (1988): Principles of Database and Knowledge-Base
Systems. Vol. 1, Computer Science Press.

Vangenot C, Parent C, Spaccapietra S (2002): Modelling and
Manipulating Multiple Representations of Spatial Data. In:
Proc. of the Symposium on Geospatial Theory, Processing and
Applications, Ottawa, 2002.

Zlatanova S, Rahman AA, Pilouk M (2002): 3D GIS: Current
Status and Perspectives. In: Proc. of the Symposium on
Geospatial Theory, Processing and Applications, Ottawa, 2002.

In: Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005

40

