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ABSTRACT: 
 
The sustainable management and continuation of virtual 3D city models puts specific demands on 3D geodatabases. These demands 
result from the need to manage three different dimensions of multiple representation: Levels-of-detail, concurrent planning versions, 
and history over time. In this paper we propose a concept for the integration of all three aspects in the framework of spatial relational 
database management systems. User applications need to see resp. work with different states of the database content, e.g.. the current 
state “as-built” or the current state plus certain approved plannings. It is shown how the workspace manager of the RDBMS can be 
extended by structures, which allow to combine these versions in so called City Model Aspects. Specific spatial integrity checks are 
introduced in order to avoid conflicts between spatially disconnected concurrent plannings.  
 
 

1. INTRODUCTION 

The sustainable management and continuation of virtual 3D city 
models puts specific demands on 3D geodatabases. First, the 
content of 3D city models evolves over time as buildings and 
other objects are added resp. changed or deleted reflecting urban 
development. However, planning and documentation tasks often 
need to have access to the state of the model at any point of time 
in history. Second, urban planning needs to be able to manage 
different versions and competing (re-)designs for the same 
geographic areas. Third, 3D city models typically have a multi-
scale representation, i.e. all entities can be stored in different 
levels of detail (LOD) regarding both geometry and semantic 
granularity.  
 
All three aspects are distinct, and from a logical perspective 
“orthogonal” facets of multi-representation (cf. Kolbe & Plümer 
2004). In the following, we analyze the specific properties of 
each facet, before we show how the three facets can be modeled 
in terms of the concepts of spatially enabled relational database 
management systems (Geo-RDBMS) in an integrated way. 
 
We exemplify the concept by the realization of a unified, multi-
scale data model for 3D city models on top of an object-
relational 3D geodatabase implemented in Oracle Spatial (cf. 
Gröger et al. 2004). The employed data model has been 
developed by the Special Interest Group 3D (SIG 3D) of the 
initiative Geodatainfrastructure North-Rhine Westphalia (GDI 
NRW) over the last 3 years (see Kolbe & Gröger 2003). It is 
also the starting point for the development of CityGML, the 
GML3-based standard for the interoperable access of 3D city 
models (cf. Kolbe et al. 2005).  
 

2. FACETS OF MULTI-REPRESENTATION 

3D city models are often classified with respect to their 
resolution and generalization level. In many existing models, 
discrete levels of detail (LOD) are distinguished. The SIG 3D 
model comprises five LOD, starting with the coarsest LOD 0 
describing a regional model, and ending with the fully detailed 
LOD 4, which comprises both the exterior and interior modeling 
of city objects like buildings (Kolbe & Gröger 2003). 
Representations differ both with respect to geometry and to 

semantic structuring. The specific characteristic of LOD is that 
multiple representations of the same object are simultaneously 
valid.  
 
The continuation process of city models implies the second 
facet of multi-representation. Spatial objects change over time, 
and therefore have different representations at different points in 
time (in any LOD!). This aspect is especially important with 
regard to 3D cadastres, where the complete history of the city 
objects has to be maintained. In contrast to the LOD case above, 
at any time exactly one representation of an object (in all LOD) 
is valid.  
 
The third facet of multi-representation results from urban 
planning. A planning scenario typically comprises competing 
designs reflecting alternative concepts and ideas. Thus, some 
objects may exist in concurrent versions. However, these 
parallel alternatives may not be used or visualized 
simultaneously. The problem gets even more complicated by 
the fact that there exist different construction projects at the 
same time. Users and planners need to see or work with  a 
specific view on the 3D city model, in which an arbitrary 
combination of a selected version for each different scenarios is 
reflected. Since these alternative representations may exist in 
different LOD and at any point in time, versions add another 
dimension to the problem of multiple representations. 
 

3. VERSION AND HISTORY MANAGEMENT USING 
WORKSPACES  

A well-known concept for the management of versioned data in 
DBMS is the workspace. A workspace provides a virtual copy 
of the state of a database (or another parent workspace), in 
which modifications are carried out locally and stay separated 
from other workspaces (cf. Katz 1990). The changes may be 
merged into the original database content resp. the parent 
workspace at a later point in time. Conflicts occur when the 
same object is changed in different workspaces, and most 
database management systems support the detection of such 
conflicts and the process of solving them by the user. 
Workspaces typically are used to support long-term transactions 
in databases, which may take many months up to several years. 
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The concepts of versions and workspaces are quite mature and 
have their origins in the 80s. They have been developed in the 
context of CAD databases in order to enable concurrent work on 
different parts of a VLSI integrated circuit design (Katz 1990). 
The Oracle workspace manager now incorporates most of these 
concepts into the Oracle RDBMS (Agarwal et al. 2003, Oracle 
2003). Versioned tables are augmented by columns that denote 
the version and workspace of each data tuple together with the 
date and time of every update. Database views and triggers then 
are constructed for each version, which preserve the original 
table structure but show only the database content that belongs 
to the respective version. Batty (2002) describes this approach 
as shallow version management, which has the advantage of 
being almost transparent to applications. Another prominent 
version management concept is based on explicit checkouts and 
checkins of portions of the geodatabase for the geographical 
areas to be updated (Katz 1990). However, this approach is not 
feasible with respect to the need for integrated views of the 
whole city showing the impact of the different ongoing 
plannings simultaneously. 
 
In the following we employ the workspace concept to support 
the planning processes for 3D city models. Since only the 
changes or new added or generated objects are recorded by the 
DBMS, redundant storage of planning regions is avoided. The 
application of this concept for the management of a single 
planning project is straightforward. Each project typically 
comprises different competing planning versions for the same 
region, accomplished by different planners or architects. Since a 
workspace holds exactly one state of the city model, a planning 
project would have to be represented by one workspace for each 
competing version. After the planning process is completed, one 
single version is chosen to be implemented and is submitted 
(posted) to the parent workspace resp. the root workspace. 
 
3.1 Handling of Conflicts  

Problems arise due to the fact, that city development generally 
covers a multitude of simultaneous, but independent planning 
projects. In each project, one planning version is selected finally 
and implemented after the process is completed. Thus the 
changed or newly generated objects have to be updated or 
inserted in the parent or root workspace. In this process of 
merging different versions, conflicts may occur, if the same 
object is modified in different alternatives or versions. These 
conflicts, of course, have to be avoided.  
 
Different planning projects usually are related to different 
regions, which are spatially disjoint. If all updates and insertions 
are restricted to the region of the corresponding planning 
activity, no conflicts occur when the different alternatives will 
be merged. However, it has to be ensured by the database that in 
fact all changes are restricted to the planning region. To perform 
this task, we propose an approach which stores the planning 
region explicitly as a spatial attribute of a planning activity and 
which employs the database concept of triggers (Ullman 1988). 
A trigger is a procedure, which is executed automatically by the 
database management system, when a update or insertion on a 
field of a database table occurs and a certain condition is met by 
the database state. The kind of update or insertion and the 
condition is given explicitly in the trigger definition. For 
example, a trigger may specify that an update of the field 
‘height’ of a table ‘building’ is not allowed, when the new value 
of this field is negative.  
 
To apply this concept for conflict avoidance between planning 
activities, a straightforward approach would be to define 

triggers on all update operations (insertion, modification, and 
deletion) on geometry fields of spatial features. These would 
check whether the modified object is inside the planning region 
associated with the corresponding planning. If this is not the 
case, the modification would be rejected. This check can be 
done very efficiently using the spatial indices and query filters 
of the database.  
 
The approach described above is sufficient if no spatial object 
touches more than one planning region. However, there exist a 
number of object types like highways and rivers for which it is 
very likely that they touch more than one planning region (see 
fig. 1). Although these objects might be modified only locally in 
the different planning activities, the changes cause conflicts in 
the database. This is due to the fact, that the same object that 
contains the geometry is modified more than once. 

Rhine 
Planning 
Region A

Planning 
Region B

 
Fig. 1: One spatial object (the Rhine river) touching two disjoint 

planning regions (A and B) 
 
The traditional approach to deal with this problem is to split 
large objects into parts, each part touching only a single 
planning region. However, object identity and object 
homogeneity would be affected, and all references to the objects 
would have to be updated accordingly.  
 
In the following we propose an approach with a higher 
granularity, which maintains objects as a whole. The crucial 
point is the definition of the trigger condition. While in the first 
approach the condition checks whether the whole modified 
object is inside the planning region, the new condition considers 
only the actual geometric modification and checks whether it is 
inside the planning region. Fig. 2 illustrates this approach.  

Rhine 
Planning 
Region A

Planning 
Region B

 
Fig. 2: Two modifications (hatched areas and dashed lines) of 

the same object (Rhine river), which are located in 
different, disjoint planning regions (A and B) 

 
The object river Rhine is modified twice, in region A and in 
region B. The first approach would reject those changes, since 
the modified object touches region A and B. Since each 
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geometric modification is strictly inside a planning region, our 
new approach admits this situation.  
 
The process of merging versions of different planning regions is 
more difficult to handle and has to be adapted. Since the same 
object may have different geometric modifications in different 
regions, the two or more new geometries have to be merged. In 
principle, the functionality of spatial databases may be used for 
this task. Oracle Spatial, for example, offers various functions to 
intersect (�) or merge (�) two geometries or to subtract one 
geometry from another (–). Using these functions the merging 
process can be formalised as follows: 
 
    Rhine.geometry – A.extent – B.extent 
     � 
   Rhine.geometry[Version A] � A.extent 
     � 
   Rhine.geometry[Version B] � B.extent  
 
First, the areas of the extents of all affected planning versions 
are subtracted from the original river geometry. The result 
represents the untouched portions of the river geometry. In the 
next step, the river geometry is clipped for every planning 
version to the extent of the according planning region. Finally, 
all resulting geometries are merged by the union function into 
one river polygon again. This single polygon combines the 
geometric modifications of all plannings involved. 
 
Whereas the example illustrates the conflict management in a 
2D scenario, the concept covers the 3D case as well. However, 
since support for 3D geometric primitives is currently still 
lacking in geodatabase management systems, no predefined 
database functions can be used to implement the merging 
procedure for 3D immediately (Zlatanova et al. 2002). First 
steps of the integration of 3D primitives have been presented by 
(Stoter & Oosterom 2002), but unfortunately the functionality is 
not available in commercial DBMS yet. 
 
3.2 Aspects: Integrated Views over different Planning 

Regions 

Users and city planners are interested in seeing and working on 
an integrated view of the 3D city model, in which a user-defined 
or predefined combination of selected designs for the distinct 
planning projects is reflected. We call any such specific view a 
city model aspect. City model aspects are used to define 
different 3D city model products. For example, one specific city 
model aspect may show the current state of the city model, a 
second the current model plus approved versions of ongoing 
planning projects, and a third the current model plus all designs 
from a specific architect for the different planning projects in 
which he is involved. 
 
Since each combination has to be represented by one workspace 
and any combination may be possible, there is a potential 
combinatorial explosion of needed workspaces. The solution for 
the described problem lies in defining an appropriate structuring 
schema for workspaces and the application of so-called multi-
parent workspaces. Multi-parent workspaces are workspaces 
which have more than one predecessor (Agarwal et al. 2003, 
Oracle 2003). They integrate the different states of the parent 
workspaces, provided that no conflicts occur on the tuple level. 
 
Now, for each current planning region, a set of workspaces is 
derived from the 3D reference model. Each workspace contains 
a different planning version of the corresponding region and is 
stamped by the name of the planning region and the version 

identifier. For each city model aspect resp. individual user 
configuration, a multiparent workspace is generated on demand, 
integrating the desired versions for each region. The 
information about the existing planning projects and the 
contained competing versions is kept in two additional tables 
(see fig. 3). 
 
We have implemented the concept using the RDBMS Oracle 
10g and the Oracle Workspace Manager (OWM). The OWM 
allows any table to be put under the control of the versioning 
mechanism. Then, an arbitrary number of workspaces can be 
created, where each maintains its own state of the versioned 
tables. Since versioned tables virtually retain their original 
relational schema, the usage of workspaces is almost transparent 
to applications. An application only has to select the appropriate 
workspace before starting to work with the database.  
 
The workspace concept is also being used for the management 
of history. Since updates on versioned tables are stamped with 
time and date, the database access cannot only be focused on 
explicit versions but also on specific points of time in history. 
This includes history over the different, concurring planning 
versions – even those versions, which have not been selected for 
realization in the past.  
 

4. INTEGRATION OF MULTIPLE LEVELS-OF-
DETAIL 

The representation of multiple levels-of-detail of the same 
spatial phenomenon differs from the other two facets of multi-
representation, versions and history, on a conceptual level. This 
has strong impacts on the way to implement multiple LOD in a 
spatial database. Across different versions and points in time, 
the schema of a database remains constant, allowing 
applications to access the database in a transparent way. Across 
multiple LOD, however, this is not the case in general. For 
example, a coarse LOD may represent a building by a single 
class on a semantical level, and by a simple block 
geometrically. A more detailed representation provides several 
thematic classes for building parts like balconies, chimneys and 
roofs, and a more elaborated geometry with solid and surface 
geometries (Köninger & Bartel 1998, Coors & Flick 1998, 
Kolbe & Gröger 2003). Thus the database schemas in both LOD 
differ. As a consequence, accessing different LOD may not be 
transparent to applications, which must be aware of the specific 
schema in the desired LOD. Thus the problem of representing 
multiple LOD cannot be solved on the level of database 
mechanisms, but on a conceptual modeling level, i.e. the 
corresponding LOD must be reflected in the UML diagrams 
from which the database schema is derived.  
 
Our approach to distinguish multiple LOD is to tag or stamp the 
UML classes and relations by the corresponding LOD identifier 
(cf. Vangenot et al. 2002). In our model (Kolbe et a. 2005), a 
thematic object may have different spatial representations in 
different LOD. These spatial properties are based on a 
geometric-topological model. It is implemented using a hybrid 
representation using the Oracle Spatial data type 
SDO_GEOMETRY on the one hand, and an explicit relational 
modeling of topology on the other hand. The former provides 
efficient spatial indexing mechanisms, while the latter is needed 
in order to maintain topological consistency. A detailed 
description of the model is given in (Gröger et al. 2004). 
 
The number of classes in our model increases with growing 
degree of detail, by specializing classes into sub-classes or by 
adding more detailed thematic aspects, but no classes are 
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Workspace 1 

Basic City Model 

Workspace 3
PrenzlauVer2

Region: 
Prenzlauer Berg 

Region: 
Kreuzberg 

Workspace Structure  Table  
Workspace No Workspace Name Region Extent 

(Polygon)
Starting 
Date 

Termination 
Date 

WS 2 PrenzlauVer1 Prenzlauer Berg .... 12-07-2002 12-12-2003 
WS 3 PrenzlauVer2 Prenzlauer Berg .... 07-06-2002 12-11-2003 
WS 4 KreuzbergVer1 Kreuzberg .... 05-03-2004  
WS 5 KreuzbergVer2 Kreuzberg .... 12-04-2004  

City Model Aspects 

Task: Planning Task: Planning 

Workspace 6 (Multiparent)
City Scenario 1 

Workspace 7 (Multiparent) 
City Scenario 2 

City Model Aspect Table  
Workspace No Workspace Name Parent Workspaces 
WS 6 City Scenario 1 WS 2, WS 4 
WS 7 City Scenario 2 WS 2, WS 5 

Workspace 2 
PrenzlauVer1 

Workspace 4
KreuzbergVer1

Workspace 5 
KreuzbergVer2 

Fig. 3: Simple example for the structuring of different planning versions and their integration into user defined city model
aspects. The topmost workspace contains the current state of the city model. There are planning activities in different
regions, where the designs are represented in concurring workspaces. The integrated views (City Scenario 1 & 2) are
provided by multiparent workspaces which incorporate selected planning versions. Please note, that each workspace
does represent the whole 3D city model with only regional modifications. The tables keep track of the different
versions and are needed for the construction of the city model aspects, i.e. the multiparent workspaces. 

 

dropped. When classes are aggregated to or assimilated by 
different, coarser classes, and these generalized classes are 
omitted in more detailed LOD, the issue of representing LOD 
becomes more complex. The relations between different classes 
in different LOD representing the same spatial phenomenon 
must be recorded explicitly (c.f. Vangenot et al. 2002 or Kolbe 
& Gröger 2003). Relations with specific semantics must be 
introduced to guarantee that queries or visualizations are 
consistent, i.e. that no spatial phenomenon is considered more 
than once. Corresponding rules operating on theses specific 
relations may be found in (Kolbe & Gröger 2003). 
 

5. CONCLUSIONS AND OUTLOOK 

Th presented concepts show how the three different aspects of 
multi-representation can be mapped to spatially enabled 
RDBMS. Whereas history and version management is handled 

almost transparently to the user, the representation of levels-of-
detail affects the data model and thus has to be treated by the 
application on top of the geodatabase. City model aspects are 
used to define application-relevant combinations of versions. By 
maintaining the extent of planning regions, conflicts between 
concurrent versions can be assessed and resolved not only on a 
database tuple level, but more specific on a  geometry parts 
level.   
 
Our prototypical implementation of the 3D geodatabase system 
is based on Oracle Spatial 10g and demonstrates the feasibility 
of the concept. In fig. 4 a small city scene is shown, where two 
distinct planning regions are depicted (one on the left and one 
on the right side). For each planning, two workspaces are 
created to hold two concurrent designs respectively.  Fig. 5 
shows two competing designs for the left hand planning, while 
fig. 6 is focussed on the  right hand planning. In order to view a 
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Fig. 4: Portion of a 3D city model. Two planning regions are described by their spatial extent: one on the left (blue) and another
on the right (dark green). Each planning may comprise several competing alternatives as versions. Each alternative is
assigned to one workspace which stands for a virtual copy of the 3D city model. 

Fig. 5: Two versions of the “blue” planning. Each version
is stored in a separate workspace. 

Fig. 6: Two alternatives of the “green” planning. Please 
note, that each workspace contains the whole dataset. 

Fig. 7: A city model aspect was defined to show the combination of alternatives of different plannings. Here the tall version of 
the “blue” planning and the broad version of the “green” planning have been combined. A city model aspect is a
multiparent workspace whose parents are the workspaces associated to the planning alternatives (cf. fig. 3). 

combination of specific designs, a city model  aspect consisting 
of the 2nd alternative of the left hand and the 1st of the right 
hand planning is defined.  
 
In the future, we intend to investigate how the conflict 
management rules can be incorporated into the workspace 
manager of the database. Thus triggers will be generated 
automatically on all tables with spatial attributes when new 
workspaces are created.  
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