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Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit dem Informationswert in der Regelung
von cyber-physischen Systemen. Ein geregeltes cyber-physisches System ist ein
Rückmeldungssystem in dem die Messwerte über eine Rückkopplung zu einem
Regler kommuniziert werden, welcher das Systemverhalten in gewünschter Weise
beeinflusst. Die Reglergüte in solch einem System hängt von der verfügbaren
Information am Regler ab. Wie jedoch die Reglergüte von der Qualität der In-
formation abhängt und wie die Information selbst gesammelt werden soll, wurde
bisher noch nicht ausreichend und systematisch erforscht. Dies dient als Motiva-
tion in dieser Arbeit eine Informationswertanalyse in Bezug auf die Auswirkung
von Unsicherheiten in einem Rückmeldungssystem durchzuführen. Unsicherheiten
und limitierte Ressourcen sind zwei wichtige Faktoren in cyber-physischen Syste-
men. Ressourcenlimitierungen werden von verschiedenen Limitierungen in Kom-
munikation, Rechenleistung und Energie hervor-gerufen, während Unsicherheiten
von fehlerhaften und nicht vollständigen Messwerten, Modellierungsfehlern und
Störungen im System verursacht werden. Daher wird in dieser Thesis ein theoretis-
cher Rahmen entwickelt um drei Probleme in der Regelung von cyber-physischen
Systemen zu behandeln, welche auf den ersten Blick unterschiedlich sind, aber,
wie gezeigt wird, starke Gemeinsamkeiten aufweisen. Für jedes Problem wird das
Rahmenwerk in Form eines LQG-Reglers präsentiert und versucht die Reglergüte
unter einer Limitierung in dem Informationsfluss des Systems zu maximieren. Diese
Limitierung ist entweder als eine Beschränkung in der Kommunikationsrate, der
verfügbaren Energie oder in dem Datenschutzniveau ausgedrückt. Jede Problem-
stellung wird als dynamisches Spiel mit zwei verteilten Spielern modelliert, welche
versuchen das stochastische, nicht vollständig beobachtbare Regelungssystem mit
einer Rückkoppelungsstrategie zu beeinflussen. In diesem Spiel nimmt der Regler
die Rolle eines Spielers ein, welcher nicht über vollständige Kenntnisse und alle In-
formationen des Systems verfügt. Der zweite Spieler ist ein Mechanismus, der die
Unsicherheiten des Reglers imitiert. Unter gewissen Annahmen kann man die op-
timalen Strategien jedes Spielers in diesen Problemen charakterisieren und zeigen,
dass jedes Strategieprofil einem Nash-Gleichgewicht entspricht. Des Weiteren kann
gezeigt werden, dass sich diese optimalen Strategien separieren lassen.

Schlüsselwörter. Kommunikation, gerichtete Information, Energie, ereignisbasierte
Abtastung, fading channels, LQG-Regelung, Nash-Gleichgewicht, Optimale Strate-
gien, nicht vollständig beobachtbare Systeme, Privatsphäre, Informationswert.
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Abstract

This thesis is concerned with the value of information in control of cyber-
physical systems. At its simplest, a controlled cyber-physical system is a feedback
system in which sensory information is communicated via a feedback loop to a
controller that seeks to modify the behavior of the system in a desirable way. In-
deed, the control performance in such a system depends on the information that
is available to the controller. However, how the control performance changes with
respect to the quality of information and how the information itself should be col-
lected have not yet been studied thoroughly and systematically. This motivates us
in this thesis to carry out a value of information analysis by considering the impact
of uncertainty on a feedback system. Two inevitable issues that arise in cyber-
physical systems are resource constraints and uncertainties. Resource constraints
are caused by various limitations in communication, computation, and energy; and
uncertainties are due to incomplete or imperfect observations, unknown parame-
ters in the mathematical model, and disturbances that affect the system. In this
thesis, we develop a unified theoretical framework for the study of three problems,
which seem to be different but as we show in fact share substantial similarities, in
control of cyber-physical systems. In each problem, we present our framework in
the context of linear quadratic Gaussian control, and seek to maximize the control
performance subject to a constraint that restricts the information flow in the sys-
tem. This constraint is expressed by either a sampling rate, an energy capacity, or a
privacy level. We formulate each problem as a dynamic game with two distributed
decision makers that use closed-loop policies to influence the underlying stochastic
dynamical system that is partially observable. In this game, one decision maker is
the controller that does not possess all possible knowledge and information related
to the system, and the other one is a mechanism that controls the uncertainty of
the controller. We characterize, under certain assumptions, the optimal policies of
the decision makers in each of these problems such that the corresponding policy
profile represents a Nash equilibrium. We prove that a separation between the op-
timal policies is achievable.

Keywords. communication, directed information, energy, event-triggered sam-
pling, fading channels, linear quadratic Gaussian control, Nash equilibrium, optimal
policies, partially observable systems, privacy, value of information.
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CHAPTER 1

Introduction

This thesis is concerned with the value of information in control of cyber-
physical systems. Cyber-physical systems are complex systems that integrate com-
munication, computation, and control in a way that enable us to efficiently observe
and influence the physical world [1]. At its simplest, a controlled cyber-physical
system is a feedback system in which sensory information is communicated via a
feedback loop to a controller that seeks to modify the behavior of the system in a
desirable way. Indeed, the control performance in such a system depends on the in-
formation that is available to the controller. However, how the control performance
changes with respect to the quality of information and how the information itself
should be collected have not yet been studied thoroughly and systematically. This
motivates us in this thesis to carry out a value of information analysis by considering
the impact of uncertainty on a feedback system. The concept of value of information
has widely been used in multiple disciplines including information economics [2],
risk management [3], and stochastic programming [4]. Generally speaking, value of
information is defined as the value that is assigned to the reduction of uncertainty
from the decision maker’s perspective given a piece of information [5]. Besides, a
value of information analysis identifies the optimal information collection strategy
among a set of alternatives that maximizes the decision maker’s interest [6]. We
believe that the value of information is a building block for construction of a the-
ory that systematically integrates information/communication theory with control
theory.

Two inevitable issues that arise in cyber-physical systems are resource con-
straints and uncertainties. Resource constraints are caused by various limitations
in communication, computation, and energy; and uncertainties are due to incom-
plete or imperfect observations, unknown parameters in the mathematical model,
and disturbances that affect the system. Clearly, in control under resource con-
straints one has to make a trade-off between competing objectives, and in control
under uncertainty one needs to take into account different possibilities in the sys-
tem’s behavior. In this thesis, we develop a unified theoretical framework for the
study of three problems, which seem to be different but as we show in fact share
substantial similarities, in control of cyber-physical systems. In each problem, we
present our framework in the context of linear quadratic Gaussian control, and
seek to maximize the control performance subject to a constraint that restricts the
information flow in the system (i.e., in the communication channel that is placed
between the process and controller). This constraint is expressed by either a sam-
pling rate, an energy capacity, or a privacy level. We formulate each problem as
a dynamic game with two distributed decision makers that use closed-loop policies
to influence the underlying stochastic dynamical system that is partially observable
(i.e., only imperfect information is available to the decision makers). In this game,
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1.1. EVENT TRIGGERING MECHANISMS 10

one decision maker is the controller that does not possess all possible knowledge and
information related to the system, and the other one is a mechanism that controls
the uncertainty of the controller. In particular, in the first problem where there is a
constraint on the sampling rate this mechanism is an event trigger in which the de-
cision variable is the binary event δk ∈ {0, 1} representing whether an observation is
transmitted or not. In the second problem where there is a constraint on the energy
capacity, the mechanism is a power scheduler in which the decision variable is the
packet success rate PSRk ∈ (0, 1) representing the probability for successful trans-
mission of an observation. Finally, in the third problem where there is a constraint
on the privacy level the mechanism is a privacy filter in which the decision variable
is the perturbation covariance Nk ≽ 0 representing the uncertainty for obfuscation
of an observation. In the rest of this chapter, we describe the motivations, review
the related work, and specify our contributions for each of these three problems.

1.1. Event Triggering Mechanisms

Ubiquitous communication networks are essential for control of cyber-physical
systems [7]. Indeed, a major issue in any communication networks is congestion,
which must be mitigated. Traditionally, in a networked control system, observations
of the process are periodically sampled and transmitted to the controller because
this facilitates the design of such a system [8]. However, it has been conceived that
not every sampled observation of the process has the same effect on the perfor-
mance of a networked control system, and one can employ a mechanism, i.e., event
trigger, that transmits an observation only when a significant event occurs [9]. As
a result, a reduction in the sampling rate, which is an appropriate index for packet
switching networks, in event-triggered control can be expected. In the first part of
this thesis, we seek to jointly design an event trigger and a controller in a networked
control system by constructing a trade-off between the sampling rate and control
performance.

1.1.1. Related Work. In a seminal work, Åström and Berhardsson [9] showed
for a first-order continuous-time stochastic process under a sampling rate constraint
that event-triggered sampling outperforms periodic sampling in the sense of mean
error variance. This work fostered extensive research in event-triggered control. In
a networked control system an event trigger can be employed at the sensor side to
reduce the sampling rate in the observation channel, or at the controller side to
reduce the sampling rate in the control channel. We should point out that what we
are interested in here is the former in which the controller and event trigger are dis-
tributed. In the former, one primarily deals with an optimization problem with an
event trigger and a controller as the decision makers. Yet, this problem for the joint
design of the event trigger and controller is in general intractable (see e.g., [10,11]).
The reasons are that the optimal estimator at the controller is nonlinear with no
analytical solution, estimation and control are coupled due to a dual effect, and the
event trigger and controller have nonclassical information patterns. Nevertheless,
one can still characterize the solutions of this problem under certain conditions.
Herein, to elucidate the essence of this problem, we neglect network-induced effects
such as quantization, packet dropouts, and time-varying delays.

Several works have addressed optimal event-triggered estimation, and charac-
terized the optimal triggering policies [12–15]. In particular, Xu and Hespanha [12]
studied optimal event-triggered estimation with perfect information by discarding
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the negative information (i.e., information associated with non-transmitted obser-
vations). They searched in the space of stochastic triggering policies, and showed
that the optimal triggering policy is indeed deterministic. Rabi and Baras [13] for-
mulated optimal event-triggered estimation with perfect information as an optimal
multiple stopping time problem by discarding the negative information, and showed
that the optimal triggering policy for first-order systems is symmetric. Later, Lipsa
and Martins [14] used majorization theory to study optimal event-triggered esti-
mation with perfect information without discarding the negative information, and
proved for first-order systems that the optimal estimator is linear and the optimal
triggering policy is symmetric. Moreover, Molin and Hirche [15] developed an iter-
ative algorithm for obtaining the optimal estimator and optimal triggering policy
in optimal event-triggered estimation with perfect information that is applicable to
systems with arbitrary noise distributions. They studied the convergence proper-
ties of the algorithm for first-order systems, and obtained a result that coincides
with that in [14]. As explained before, in the joint design of the event trigger
and controller a separation between estimation and control is not given a priori.
Therefore, the results in the aforementioned studies do not apply directly to op-
timal event-triggered control. However, there exist a number of studies that have
addressed optimal event-triggered control, and characterized the optimal control
policies [11,16–18]. In particular, Molin and Hirche [16,17] investigated optimal
event-triggered control with perfect and imperfect information, and showed that
the optimal control policy is a certainty-equivalence policy while assuming that the
triggering policy is a function of primitive variables. Ramesh et al. [11] studied
dual effect in optimal event-triggered control with perfect information, and proved
that the dual effect in general exists. In addition, they showed that the certainty-
equivalence principle holds if and only if the triggering policy is independent of
the control policy. Recently, Demirel et al. [18] addressed optimal event-triggered
control with imperfect information by adopting a stochastic triggering policy that
is independent of the control policy, and proved that the optimal control policy
is a certainty-equivalence policy. Unlike these studies, in addition to scrutinizing
the notion of value of information in optimal event-triggered control, we herein
characterize both optimal triggering policy and optimal control policy such that
the corresponding policy profile represents a Nash equilibrium. Besides, we synthe-
size a closed-form suboptimal triggering policy with a performance guarantee. We
show that our analysis is tractable and also extensible to high-order systems with
imperfect information.

A special class of event-triggered estimation and event-triggered control is sen-
sor scheduling in which open-loop triggering policies are employed. Sensor schedul-
ing can be traced back to the 1970s. However, recently Trimpe and D’Andrea [19]
and Leong et al. [20] adopted sensor scheduling for networked control systems, and
obtained open-loop triggering policies in terms of the estimation error covariances.
It is also worth mentioning that in a rather different setup from what we consider
in this study, Antunes and Heemels [21] considered a networked control system in
which the event trigger and controller are both collocated. They proposed an ap-
proximation algorithm, and showed that a performance improvement with respect
to periodic control can be guaranteed. Our approximation algorithm is inspired
by this idea. Nevertheless, herein unlike the above work, the event trigger and
controller are distributed.
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1.2. Transmission Power Mechanisms

Wireless sensors provide a safe and flexible solution for control of cyber-physical
systems [22]. In general, wireless sensors possess sensing, data processing, and
communicating capabilities. Thanks to their unique characteristics, we can simply
integrate wireless sensors into physical systems, and realize unprecedented wireless
control systems in which ubiquitous sensors are connected to controllers over wire-
less networks. Nevertheless, wireless sensors have limited power supplies that must
be utilized efficiently. A promising technique in this respect is power control [23],
in which a mechanism, i.e., power scheduler, adapts the transmit power for trans-
mission of observations such that the energy consumption is reduced. In the second
part of this thesis, we seek to jointly design a power scheduler and a controller in a
wireless control system by constructing to a trade-off between the energy capacity
and control performance.

1.2.1. Related Work. Transmit power is a fundamental degree of freedom
in wireless networks, and power control as a technique for adaptation of transmit
powers has systematically been studied since the 1970s. A comprehensive survey
of the models, algorithms, and methodologies in power control is provided in [24].
We should point out that in wireless communication systems the objective of power
control can be management of energy, interference, or connectivity. To that end,
one make a trade-off between the network performance (e.g., throughput, delay,
or capacity) and energy resource, and obtains the optimal transmit power as a
function of the state of the channel. Indeed, the transmit power influences the
received signal-to-noise power ratio, and subsequently the probability of packet
dropouts [25]. In wireless control systems, where freshness of information is vital
and retransmission of dropped packets is not favorable, packet dropouts can have
severe effects on the control performance or even yield instability [26]. Therefore, in
contrast to wireless communication systems in which the transmit power is adapted
only to the state of the channel, the transmit power in wireless control systems must
be adapted to the state of the channel and of the dynamical system.

Previous research in control community has first recognized the severe effects
of packet dropouts on stability. Early works have considered erasure channels with
Bernoulli distributions, i.e., i.i.d. erasure channels [26–29]. In a seminal work,
Sinopoli et al. [27] studied mean-square stability of the Kalman filter over i.i.d.
erasure channels, and proved that there exists a critical point on the packet success
rate below which the expected estimation error covariance is unbounded. Besides,
Schenato et al. [26] addressed optimal control over i.i.d. erasure channels. They
proved that there exists a separation between estimation and control when the
receipt acknowledgment is available, and showed that below a critical point the
optimal controller fails to stabilize the system. Later, serval studies have employed
erasure channels modeled by a two-state Markov chain, i.e., Gilbert-Elliott chan-
nels, to capture the temporal correlation of wireless channels [30–33]. In this
respect, Wu et al. [30] studied stability of the Kalman filter over Gilbert-Elliott
channels, and proved that there exists a critical region defined by both recov-
ery rate and failure rate outside which the expected prediction error covariance is
unbounded. In addition, Mo et al. [31] investigated optimal control over Gilbert-
Elliott channels. They proved that the separation principle still holds when the
receipt acknowledgment is available, and showed that outside a critical region the
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optimal controller cannot stabilize the system. Eventually, a number of studies
have employed fading channels in order to take into account the time variation of
wireless channels [34–36]. In particular, Quevedo et al. [34] investigated stability
of the Kalman filter over fading channels with correlated gains, and established a
sufficient condition that ensures the exponential boundedness of the expected esti-
mation error covariance. Moreover, Elia [35] addressed the stabilization problem in
the robust mean-square stability sense over fading channels by modeling the fading
as stochastic model uncertainty, and designed a controller with the largest stability
margin.

Recently, several works have adopted power control to reduce energy con-
sumption in wireless sensors in estimation and control tasks [37–41]. In partic-
ular, Leong et al. [37] studied power control for estimation over fading channels,
and derived the optimal power policy that minimizes the probability of outage
(i.e. the probability of the event that the estimation error covariance exceeds a
given threshold) subject to a constraint on the average total power. Moreover,
Quevedo et al. [38] investigated power control for estimation over fading chan-
nels, and characterized the optimal power policy that minimizes the average total
power subject to a stability condition ensuring that the expected estimation error
covariance is exponentially bounded. In fact, the studies in [37–39] derive open-
loop power policies in terms of the estimation error covariances. However, there
are two works that have characterized closed-loop policies [40,41]. In particular,
Ren et al. [40] studied the joint design of an estimator and a power scheduler for
estimation with perfect information over fading channels, and based on the common
information approach proved for first-order systems that the optimal estimator is
linear and the optimal power policy is deterministic and symmetric. Closely related
to our study, Gatsis et al. [41] addressed the joint design of a power scheduler and
a controller for control with perfect information over fading channels by discarding
the negative information, and showed that the optimal power policy is determinis-
tic and the optimal control policy is certainty-equivalence. In contrast to the work
in [41], we herein consider imperfect information, and characterize the optimal
power policy and optimal control policy such that the corresponding policy profile
represents a Nash equilibrium.

1.3. Privacy Protection Mechanisms

Cloud computing offers a flexible and scalable solution for control of cyber-
physical systems [42]. Literally, clouds possess unlimited computing and storage
resources that are ubiquitously available to the users. Moreover, clouds can have
global information, which may not be available locally at each user. In this respect,
we define cloud control as the use of cloud computing services and infrastructure
to perform control tasks in the systems where the users are dynamical agents. In
cloud control, the required information for accomplishing a control task has to be
shared by each agent with the cloud provider. However, the cloud provider can be
honest-but-curious, who may exploit the private information of the agents. This
raises a number of privacy issues, and necessitate the use of a mechanism, i.e.,
privacy filter, that protects the private information of each agent according to its
privacy preference. In the third part of this thesis, we seek to jointly design a
privacy filter and a controller in a cloud control system by constructing a trade-off
between the privacy level and control performance.
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1.3.1. Related Work. There is a large and growing body of work in the liter-
ature on privacy protection, where in particular database privacy from both statisti-
cal and data-mining perspectives [43], [44], location privacy [45], and smart-meter
privacy [46] have received remarkable attention since the 1970s. In privacy protec-
tion, one has to make a balance between private information (i.e., information that
should be hidden) and public information (i.e., information that can be revealed)
while guaranteeing a satisfactory quality of service, which is basically a function of
the public information. Privacy protection can be achieved by various techniques
including data encryption (e.g., multi-party computation [47] and homomorphic
encryption [48]) data anonymization (e.g., k-anonymity [49] and l-diversity [50])
and data perturbation (e.g., differential privacy [51]). Data encryption introduces
additional computation and latency that is often unacceptable in practice [52].
Moreover, it has been shown that data anonymization is insufficient to protect
privacy [53]. In our study herein, we concentrate on data perturbation, which is
readily applicable to control tasks.

It was only recently that researchers in the control community have been at-
tracted to privacy protection in control tasks [54–58]. In particular, Cortés et al. [54]
provided an overview of various affine privacy filters with additive Laplace or Gauss-
ian noise that enforce differential privacy for consensus and distributed optimiza-
tion. Wang et al. [55] studied affine privacy filters that guarantee differential pri-
vacy for control tasks. They sought to minimize the output entropy for linear
systems, and demonstrated that there is a lower bound on the entropy that is
achieved by an affine privacy filter with additive Laplace noise. Hale et al. [56]
used an affine privacy filter with additive Gaussian noise that enforces differential
privacy for control of multi-agent systems. They showed that the optimal control
policy is certainty-equivalence, and obtained a bound on the log-determinant of the
steady-state estimation error covariance. Jia et al. [57] proposed mutual informa-
tion as a privacy measure, and studied privacy protection in partially observable
Markov decision processes. They developed an approximation algorithm based on
Gibbs sampling for computing the privacy loss. For linear systems, they showed that
the optimal control policy is certainty-equivalence if the privacy filter is affine with
additive Gaussian noise. Closely related to our work, Tanaka et al. [58] investigated
the use of directed information as a privacy measure in control systems following
an axiomatic argument. For linear systems with perfect information, they proved
that the optimal (open-loop) privacy filter is an affine policy with additive Gaussian
noise whose perturbation covariance is obtained by a linear-matrix-inequality algo-
rithm depending on the estimation error covariances and that the optimal control
policy is certainty-equivalence. In contrast to the work in [58], we herein consider
closed-loop policies, and characterize the optimal perturbation policy and optimal
control policy such that the corresponding policy profile represents a Nash equilib-
rium.

In our work, we measure the leakage of private information by directed in-
formation. Directed information was first introduced by Marko [59], and then
formalized by Massey [60] as a natural generalization of mutual information for
characterizing causality [61] in feedback systems. Later, Kramer [62] introduced
the concept of causal conditioning, and extended the use of directed information to
communication networks with feedback. Directed information has been adopted in
multiple disciplines for characterizing phenomena in which causality is of interest,



1.4. THESIS OUTLINE AND CONTRIBUTIONS 15

including information theory [63], neuroscience [64], thermodynamics [65], portfo-
lio theory [66], swarm intelligence [67], video processing [68], and gambling [69].
A fundamental justification of the use of directed information as a loss function for
causal systems was provided by Jiao et al. [70]. They indicated that logarithmic
loss functions are the only measures that satisfy the data-processing axiom, and
among them directed information is the the unique measure that takes causality
into account.

1.4. Thesis Outline and Contributions

The thesis comprises five chapters and one appendix. The present chapter
serves the purpose of introducing the content of the thesis, the three intermediate
chapters delineate the main results, and the last chapter presents concluding re-
marks and possible directions for future research. The intermediate chapters can
be studied without any particular order. The main contributions of the thesis are
highlighted as follows:

In Chapter 2, we present our framework, in its basic form, for a networked
control system with imperfect information, and jointly design an event trigger and
a controller by constructing a trade-off between the sampling rate and control per-
formance. We obtain the optimal policies such that the corresponding policy profile
represents a Nash equilibrium. In particular, we prove, under certain assumptions,
that the optimal closed-loop triggering policy is a threshold policy that depends
on estimation errors and that the optimal closed-loop control policy is a certainty-
equivalence policy. Moreover, we characterize the value of information in the trade-
off between the sampling rate and control performance. Finally, we synthesize a
closed-form suboptimal triggering policy with a performance guarantee.

In Chapter 3, we extend our framework to a wireless control system with imper-
fect information by taking into account the state of a wireless fading channel, and
jointly design a power scheduler and a controller by constructing a trade-off between
the energy capacity and control performance. We introduce the specification of the
wireless fading channel, and determine the relation between the required transmit
power and packet success rate. We obtain the optimal policies such that the cor-
responding policy profile represents a Nash equilibrium. In particular, we prove,
under certain assumptions, that the optimal closed-loop power policy is a nonlinear
policy with packet success rate that depends on estimation errors and the chan-
nel gain and that the optimal closed-loop control policy is a certainty-equivalence
policy. Moreover, we characterize the value of information in the trade-off between
the energy capacity and control performance. Finally, we synthesize a closed-form
suboptimal power policy with a performance guarantee.

In Chapter 4, we further extend our framework to a cloud control system with
imperfect information by considering the causally-conditioned directed information
from the private information to the public information, and jointly design a pri-
vacy filter and a controller by constructing a trade-off between the privacy level
and control performance. We adopt a perturbation-based privacy filter, and calcu-
late the causally-conditioned directed information for the considered system. We
obtain the optimal policies such that the corresponding policy profile represents
a Nash equilibrium. In particular, we prove, under certain assumptions, that the
optimal closed-loop perturbation policy is an affine policy with additive Gaussian
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noise whose covariance depends on estimation errors and that the optimal closed-
loop control policy is a certainty-equivalence policy. Moreover, we characterize the
value of information in the trade-off between the privacy level and control perfor-
mance. Finally, we synthesize a closed-form suboptimal perturbation policy with a
performance guarantee.

1.5. Notations

We collect here for easy reference many of the symbols we use throughout this
thesis. Vectors, matrices, and sets are represented by lower case, upper case, and
Calligraphic letters like x, X, and X respectively. The sequence of all vectors xt, t =
0, . . . , k, is represented by xk, and the sequence of all vectors xt, t = k, . . . , N for
a specific N , is represented by xk. The indicator function of a subset A of a set X
is denoted by f(x) = 1A where x ∈ X . The identity matrix is denoted by I. For
matrices X and Y , the relations X ≻ 0 and Y ≽ 0 denote that X and Y are positive
definite and positive semi-definite respectively. The probability distribution of the
stochastic variable x is represented by P(x). The expected value and covariance of
x are represented by E[x] and cov[x] respectively.



CHAPTER 2

Optimal Event Trigger in Networked Control

In this chapter, we consider a networked control system, and seek to jointly
design an event trigger and a controller by constructing a trade-off between the
sampling rate and control performance. Based on our unified framework, we de-
velop the optimal estimators and characterize the optimal policies such that the
corresponding policy profile represents a Nash equilibrium. Moreover, we define
the value of information in the trade-off between the sampling rate and control
performance, and show the relation between the value of information and optimal
triggering policy. This chapter is organized in the following way. We formulate the
problem in Section 2.1. We provide the main results of the chapter in Section 2.2.
We present a numerical example in Section 2.3. Finally, we give a summary in
Section 2.4.

2.1. Problem Formulation

In this section, we describe the system model and define the indices for the
sampling rate and control performance. Then, we formulate the main problem of
the chapter. The material here requires basic knowledge of stochastic control theory
and game theory.

2.1.1. System Model. Consider a stochastic process with dynamics gener-
ated by the following linear discrete-time time-varying state system:

xk+1 = Akxk +Bkuk + wk,(2.1)

for 0 ≤ k ≤ N and with initial condition x0 where xk ∈ Rn is the state of the
process, Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×m is the input matrix, uk ∈ Rm

is the control input to be decided by a controller, wk ∈ Rn is a white Gaussian
noise with zero mean and covariance Wk ≻ 0, and N is a finite terminal time. It is
assumed that x0 is a Gaussian vector with mean m0 and covariance M0. At each
time, a noisy output of the process is measured by a sensor, which is given by

yk = Ckxk + vk,(2.2)

for 0 ≤ k ≤ N where yk ∈ Rp is the output of the process, Ck ∈ Rp×n is the output
matrix, and vk ∈ Rp is a white Gaussian noise with zero mean and covariance Vk ≻
0. It is assumed that x0, wk, and vk are mutually independent for all 0 ≤ k ≤ N .
In addition, it is assumed that (Ak, Bk) is controllable and (Ak, Ck) is observable.

We employ an event trigger with event variable δk ∈ {0, 1} that determines
whether an observation is transmitted or not (see Fig. 2.1). At time k, the output
of the process yk is available at the event trigger instantly, and is transmitted to

17
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Controller

Plant

Event
Trigger

Sensor

Figure 2.1. Schematic view of a networked control system with
an event trigger. At each time, the output of the process is available
at the event trigger instantly, and is transmitted to the controller
sporadically with one-step delay.

the controller with one-step delay if δk = 1. Therefore, we have

ζk+1 =

{
yk, if δk = 1,
∅, otherwise,

(2.3)

where ζk+1 is the transmitted output of the process subject to one-step delay.
In the sequel, we assume that the following assumption holds.

Assumption 2.1. The information associated with non-transmitted observa-
tions, i.e., when δk = 0, is discarded at the controller.

Remark 2.1. Assumption 2.1 leads to a Gaussian conditional distribution at
the controller, and allows us to obtain the optimal estimator at the controller in a
tractable way.

2.1.2. Trade-off Problem. Consider a triggering policy π = {δ0, . . . , δN}
and a control policy µ = {u0, . . . , uN}. Let It

k and Ic
k denote the admissible in-

formation set of the event trigger and of the controller at time k respectively, and
P and M denote the admissible set of triggering policies and of control policies
respectively. Then, π ∈ P if δk is a measurable function of It

k for all 0 ≤ k ≤ N ,
and µ ∈ M if uk is a measurable function of Ic

k for all 0 ≤ k ≤ N .
We would like to make a trade-off between the sampling rate and control perfor-

mance. We measure the sampling rate by an average number of transmissions, i.e.,

(2.4) R(π, µ) = 1
N+1 E

[∑N
k=0 αkδk

]
,

where αk is a weighting coefficient. Moreover, we measure the control performance
by an average cost function penalizing the state deviation and control effort, i.e.,

(2.5) J(π, µ) = 1
N+1 E

[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk

]
,

where Qk ≽ 0 and Rk ≻ 0 are weighting matrices. The desired trade-off is formu-
lated by the following optimization problem:

minimize λJ(π, µ) + (1− λ)R(π, µ),(2.6)
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for λ ∈ (0, 1) over π ∈ P and µ ∈ M. Equivalently, we can solve the following
optimization problem:

minimize Ψ(π, µ),(2.7)

where

Ψ(π, µ) = E
[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk + θkδk
]
,(2.8)

where θk = αk(1− λ)/λ.
Now, we can formally define the value of information.

Definition 2.1. The value of information VoIk in the trade-off between the
sampling rate and control performance is the variation in the value function asso-
ciated with the optimization problem in (2.7) with respect to an observation at the
controller.

In the sequel, we shall obtain π∗ and µ∗ such that (π∗, µ∗) represents a Nash
equilibrium, and characterize the value of information VoIk.

2.2. Main Results

In this section, our goal is to characterize the optimal policies. Let us define the
admissible information set of the event trigger at time k as the set of the current
and prior outputs of the process, i.e.,

(2.9) It
k =

{
yt

∣∣∣t ≤ k
}
,

and the admissible information set of the controller at time k as the set of the prior
transmitted outputs of the process and prior event variables, i.e.,

(2.10) Ic
k =

{
yt, δt′

∣∣∣t, t′ < k, δt = 1
}
.

We see that the latter is a subset of the former, i.e., Ic
k ⊆ It

k. Note that the
information set Ic

k satisfies Assumption 2.1.

2.2.1. Optimal Estimators. Given that the process is partially observable,
both event trigger and controller have to estimate the state of the process. We
shall derive the optimal estimators based on the Bayesian analysis. The next two
propositions give the optimal estimators with respect to the information sets It

k
and Ic

k respectively, and show that such estimators are linear.

Proposition 2.1. The conditional expectation E[xk|It
k] with the following dy-

namics minimizes the mean-square error at the event trigger:

x̌k = Ak−1x̌k−1 +Bk−1uk−1 +Hk

(
yk − Ck(Ak−1x̌k−1 +Bk−1uk−1)

)
,(2.11)

Σk =
(
(Ak−1Σk−1A

T
k−1 +Wk−1)

−1 + CT
k V

−1
k Ck

)−1
,(2.12)

where

Hk = ΣkC
T
k V

−1
k ,(2.13)

for 1 ≤ k ≤ N with initial conditions x̌0 = m0 + Σ0CT
0 V

−1
0 (y0 − C0m0) and

Σ0 = (M−1
0 + CT

0 V
−1
0 C0)−1 where x̌k = E[xk|It

k] and Σk = cov[xk|It
k].
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Proof. The output yk is available at the event trigger at each time. Hence,
it is clear that given the information set It

k at the event trigger, the state estimate
minimizing the mean-square error is the conditional expectation E[xk|It

k], and the
optimal estimator is the Kalman filter (see e.g., [71]). !

Proposition 2.2. The conditional expectation E[xk|Ic
k] with the following dy-

namics minimizes the mean-square error at the controller:

x̂k = Ak−1x̂k−1 +Bk−1uk−1 + δk−1Kk−1(yk−1 − Ck−1x̂k−1),(2.14)

Pk = Ak−1Pk−1A
T
k−1 +Wk−1 − δk−1Kk−1Ck−1Pk−1A

T
k−1,(2.15)

where

Kk−1 = Ak−1Pk−1C
T
k−1(Ck−1Pk−1C

T
k−1 + Vk−1)

−1,(2.16)

for 1 ≤ k ≤ N with initial conditions x̂0 = m0 and P0 = M0 where x̂k = E[xk|Ic
k]

and Pk = cov[xk|Ic
k].

Proof. Given the information set Ic
k at the controller, the state estimate min-

imizing the mean-square error is clearly the conditional expectation E[xk|Ic
k]. From

the definition, x̂k+1 = E[xk+1|Ic
k+1] and Pk+1 = cov[xk+1|Ic

k+1]. Taking the condi-
tional expectation of (2.1), we get

x̂k+1 = Ak E[xk|Ic
k+1] +Bkuk,(2.17)

Pk+1 = Ak cov[xk|Ic
k+1]A

T
k +Wk.(2.18)

From Assumption 2.1, the controller makes no inference when δk = 0. However,
the controller receives ζk+1 = yk at time k + 1 and subsequently can make an
inference when δk = 1. Let us define ξk = [xT

k yTk ]
T . We can easily show that

E[ξk|Ic
k] =

[
x̂k

Ckx̂k

]
,(2.19)

cov[ξk|Ic
k] =

[
Pk PkCT

k
CkPk CkPkCT

k + Vk

]
.(2.20)

Now, we can use Lemma A.2 together with the conditional distribution specified
by the mean and covariance in (2.19), (2.20), and get

E[xk|Ic
k, yk] = x̂k +K ′

k(yk − Ckx̂k),

cov[xk|Ic
k, yk] = Pk −K ′

kCkPk,

where K ′
k = PkCT

k (CkPkCT
k + Vk)−1. Therefore, from the definition of δk, we can

write

E[xk|Ic
k+1] = x̂k + δkK

′
k(yk − Ckx̂k),(2.21)

cov[xk|Ic
k+1] = Pk − δkK

′
kCkPk,(2.22)

where we used the definition of Ic
k+1 given δk at the controller at time k + 1. We

obtain the results by substituting (2.21), (2.22) in (2.17), (2.18) respectively. !
As it becomes evident later, in addition to the Kalman filter given in Propo-

sition 2.1, the event trigger needs to construct a copy of the estimator given in
Proposition 2.2. This is possible because Ic

k ⊆ It
k.
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2.2.2. Optimal Policies. We shall design the optimal policies using back-
ward induction. Let ek = xk − x̂k be the estimation error and νk = yk − Ckx̂k be
the innovation both associated with the estimator at the controller. Moreover, let
εk = x̌k − x̂k be the mismatch estimation error associated with the estimators at
the event trigger and controller. We can obtain

E[ek|It
k] = E[xk − x̂k|It

k] = x̌k − x̂k = εk,(2.23)

cov[ek|It
k] = cov[xk|It

k] = Σk.(2.24)

The next theorem characterizes the structures of the optimal triggering policy and
optimal control policy, and shows that there exists a separation between the optimal
designs of the event trigger and controller.

Theorem 2.1. Let Sk ≽ 0 be a matrix that satisfies the condition in Lemma A.1.
The optimal closed-loop triggering policy is a threshold policy given by

δ∗k = 1VoIk≥0,(2.25)

where VoIk is the value of information defined as

VoIk = νTk K
T
k Γk+1(2Akεk −Kkνk)− θk + ϱk,(2.26)

where ϱk is a variable that depends on εk and νk, and the optimal closed-loop control
policy is a certainty-equivalence policy given by

u∗
k = −Lkx̂k,(2.27)

where Lk is the control gain defined as

Lk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak.(2.28)

Proof. We need to show that (π∗, µ∗) represents a Nash equilibrium. Using
the optimal control policy µ∗ in the cost function Ψ(π, µ) given by Lemma A.1, we
obtain

Ψ(π, µ∗) = E
[
xT
0 S0x0 +

∑N
k=0

{
θkδk + wT

k Sk+1wk

+ eTk L
T
k (B

T
k Sk+1Bk +Rk)Lkek

}]
,

where we used the definition of the estimation error ek. Following the fact that
x0 and wk are independent of the triggering policy, associated with Ψ(π, µ∗), we
define the value function V t

k as

V t
k = min

δk
E
[∑N

t=k θtδt + eTt+1Γt+1et+1

∣∣∣It
k

]
,

where Γk = LT
k (B

T
k Sk+1Bk + Rk)Lk with the exception of ΓN+1 = 0. From the

additivity of the value function V t
k , we have

V t
k = min

δk
E
[
θkδk + eTk+1Γk+1ek+1

+min
δk+1

E
[
θk+1δk+1 + eTk+2Γk+2ek+2 + . . .

∣∣∣It
k+1

]∣∣∣It
k

]

= min
δk

E
[
θkδk + eTk+1Γk+1ek+1 + V t

k+1

∣∣∣It
k

]
,

with initial condition V t
N+1 = 0. We prove by induction that the value function V t

k
is independent of the control policy. Clearly, the claim is satisfied for time N + 1.
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We assume that the claim holds at time k+1, and we shall prove that it also holds
at time k. We can write the dynamics of the estimation error at the controller as

ek+1 = Akek + wk − δkKkνk.(2.29)

Thus, we find

E[eTk+1Γk+1ek+1|It
k]

= E
[
eTkA

T
k Γk+1Akek + wT

k Γk+1wk + δ2kν
T
k K

T
k Γk+1Kkνk

+ 2eTkA
T
k Γk+1wk − 2δkν

T
k K

T
k Γk+1wk − 2δkν

T
k K

T
k Γk+1Akek

∣∣∣It
k

]

= εTkA
T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk) + tr(Γk+1Wk)

+ δkν
T
k K

T
k Γk+1Kkνk − 2δkν

T
k K

T
k Γk+1Akεk,

where in the second equality we used the definitions of εk and Σk and the facts
that νk is It

k-measurable and that wk is independent of ek. Hence, we have

(2.30)

V t
k = min

δk

{
θkδk + εTkA

T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk)

+ tr(Γk+1Wk) + δkν
T
k K

T
k Γk+1Kkνk

− 2δkν
T
k K

T
k Γk+1Akεk + E[V t

k+1|It
k]
}
.

The minimizer in (2.30) is obtained as δ∗k = 1VoIk≥0 where

VoIk = νTk K
T
k Γk+1(2Akεk −Kkνk)− θk + ϱk,

where ϱk = E[V t
k+1|It

k, δk = 0] − E[V t
k+1|It

k, δk = 1]. From the hypothesis as-
sumption ϱk is independent of the control policy. Hence, we conclude that V t

k is
independent of the control policy. This complete the induction.

Now, using the the triggering policy π∗ in the cost function Ψ(π, µ) given by
Lemma A.1, we obtain

Ψ(π∗, µ) = E
[
xT
0 S0x0 +

∑N
k=0

{
θk1VoIk≥0 + wT

k Sk+1wk

+ (uk + Lkxk)
TΛk(uk + Lkxk)

}]
,

where Λk = BT
k Sk+1Bk + Rk. Following the fact that x0, VoIk, and wk are in-

dependent of the control policy, associated with Ψ(π∗, µ), we define the auxiliary
value function V c

k as

V c
k = min

uk
E
[∑N

t=k(ut + Ltxt)TΛt(ut + Ltxt)
∣∣∣Ic

k

]
.
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From the additivity of the auxiliary value function V c
k , we obtain

V c
k = min

uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)

+ min
uk+1

E
[
(uk+1 + Lk+1xk+1)

TΛk+1

× (uk+1 + Lk+1xk+1) + . . .
∣∣∣Ic

k+1

]∣∣∣Ic
k

]

= min
uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk) + V c
k+1

∣∣∣Ic
k

]
,

with initial condition V c
N+1 = 0. We prove by induction that the auxiliary value

function V c
k is a function of Pk. Clearly, the claim is satisfied for time N + 1. We

assume that the claim holds at time k + 1, and we shall prove that it also holds at
time k. Using the identity xk = x̂k + ek, we find

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)
∣∣Ic

k

]

= E
[
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ eTk L
T
kΛkLkek + 2(uk + Lkx̂k)

TΛkLkek
∣∣∣Ic

k

]

= (uk + Lkx̂k)
TΛk(uk + Lkx̂k) + tr(LT

kΛkLkPk),

where in the second equality we used the fact that x̂k is Ic
k-measurable and E[ek|Ic

k] =
0. Hence, we have

(2.31)

V c
k = min

uk

{
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ tr(LT
kΛkLkPk) + E[V c

k+1|Ic
k]
}
.

The minimizer in (2.31) is obtained as u∗
k = −Lkx̂k. Moreover, we conclude that

V c
k is a function of Pk. This completes the induction and also the proof. !

According to Theorem 2.1, the optimal triggering policy depends on εk and νk,
and is independent of the control policy. Besides, the error covariance Pk in (2.15)
does not depend on uk−1. Hence, the control has no dual effect. In Theorem 2.1, we
expressed the value of information based on the value function V t

k and corresponding
to the successful transmission of an observation. This is emphasized in the following
definition.

Definition 2.2. The value of information VoIk in the trade-off between the
sampling rate and control performance is given by

VoIk = νTk K
T
k Γk+1(2Akεk −Kkνk)− θk + ϱk.

Remark 2.2. The optimal triggering policy provided above depends on the
variable ϱk. Although ϱk can be computed with an arbitrary accuracy by solving
recursively the optimality equation in (2.30), its computation is expensive. Next,
we shall introduce a procedure for approximation of this variable.
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2.2.3. Approximation Algorithm. We here provide a rollout algorithm [72]
for approximation of the variable ϱk and the value of information VoIk, and ac-
cordingly synthesize a closed-form suboptimal triggering policy with a performance
guarantee that can readily be implemented. Let π̄ = {δ̄0, . . . , δ̄N} be a periodic pol-
icy with δk = 1 for all 0 ≤ k ≤ N . The following algorithm gives an approximation
of the variable ϱk.

Algorithm 2.1. An approximation of the variable ϱk associated with the policy
π̄ is given by

ϱπ̄k = E[V π̄
k+1|It

k, δk = 0]− E[V π̄
k+1|It

k, δk = 1],(2.32)

where

E[V π̄
k+1|It

k, δk] = E
[∑N

t=k+1 θtδt + eTt+1Γt+1et+1

∣∣∣It
k, δk

]
,

with δk+1 = δ̄k+1.

The next theorem guarantees that it is possible to synthesize a suboptimal
triggering policy that outperforms π̄.

Theorem 2.2. Let π+ be a suboptimal triggering policy obtained based on
Theorem 2.1 and Algorithm 2.1 and µ be the optimal control policy. Then,

Ψ(π+, µ∗) ≤ Ψ(π̄, µ∗).(2.33)

Proof. We shall show that Ψk(π+, µ∗) ≤ Ψk(π̄, µ∗) for any k and all initial

conditions. In order to show that, it is enough to show V π+

k ≤ V π̄
k . We prove this

by induction. Clearly, V π+

N+1 = V π̄
N+1 = 0. Assume that the claim holds for k + 1.

We have

V π+

k = E
[
θkδ

+
k + eTk+1Γk+1ek+1 + V π+

k+1

∣∣∣It
k

]

≤ E
[
θkδ

+
k + eTk+1Γk+1ek+1 + V π̄

k+1

∣∣∣It
k

]

≤ E
[
θk δ̄k + eTk+1Γk+1ek+1 + V π̄

k+1

∣∣∣It
k

]
= V π̄

k ,

where the first and second equalities come from backward induction, the first in-
equality from the induction hypothesis, and the second inequality from the defini-
tion of the suboptimal triggering policy π+. !

In the next proposition, we synthesize a closed-form suboptimal triggering pol-
icy with a performance guarantee.

Proposition 2.3. A suboptimal triggering policy that outperforms the periodic
policy π̄ is given by

δ+k = 1VoIπ̄k≥0,(2.34)

where

(2.35)
VoIπ̄k = νTk K

T
k Γk+1(2Akεk −Kkνk)− θk

+
∑N

t=k+2 ē
0T
t Γtē0t + tr(ΓtP̄ 0

t )− ē1Tt Γtē1t − tr(ΓtP̄ 1
t ),
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and

ē0t+1 = (At −K0
t Ct)ē

0
t ,

P̄ 0
t+1 = (At −K0

t Ct)P̄
0
t (At −K0

t Ct)
T +Wt +K0

t VtK
0T
t ,

P 0
t+1 = AtP

0
t A

T
t +Wt −K0

t CtP
0
t A

T
t ,

ē1t+1 = (At −K1
t Ct)ē

1
t ,

P̄ 1
t+1 = (At −K1

t Ct)P̄
1
t (At −K1

t Ct)
T +Wt +K1

t VtK
1T
t ,

P 1
t+1 = AtP

1
t A

T
t +Wt −K1

t CtP
1
t A

T
t ,

where

K0
t = AtP

0
t C

T
t (CtP

0
t C

T
t + Vt)

−1,

K1
t = AtP

1
t C

T
t (CtP

1
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē0k+1 = Akεk, P̄ 0
k+1 = AkΣkAT

k +Wk, P 0
k+1 =

AkPkAT
k +Wk, ē1k+1 = Akεk−Kkνk, P̄ 1

k+1 = AkΣkAT
k +Wk, and P 1

k+1 = AkPkAT
k +

Wk −KkCkPkAT
k .

Proof. For the proof, it is enough to derive ϱπ̄k based on the periodic policy
π̄. First, note that

E[V π̄
k+1|Ie

k,δk] = E
[∑N

t=k+1 θt + eTt+1Γt+1et+1

∣∣∣It
k, δk

]

=
∑N

t=k+1 θt + ēTt+1Γt+1ēt+1 + tr(Γt+1P̄t+1),

where in the first equality we used the definition of V π̄
k+1 and the fact that δt = 1

for all t ≥ k + 1 and in the second equality the definitions ēt = E[et|It
k, δk] and

P̄t = cov[et|It
k, δk] for all t ≥ k + 1.

From the dynamics of the estimation error in (2.29), given the fact that δt = 1
for all t ≥ k + 1, we obtain

et+1 = (At −KtCt)et + wt −Ktvt.

Accordingly, when δk = 0, we have

ē0t+1 = (At −K0
t Ct)ē

0
t ,

P̄ 0
t+1 = (At −K0

t Ct)P̄
0
t (At −K0

t Ct)
T +Wt +K0

t VtK
0T
k ,

and

P 0
t+1 = AtP

0
t A

T
t +Wt −K0

t CtP
0
t A

T
t ,

K0
t = AtP

0
t C

T
t (CtP

0
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē0k+1 = Akεk, P̄ 0
k+1 = AkΣkAT

k + Wk, and
P 0
k+1 = AkPkAT

k + Wk. The initial conditions ē1k+1 and P̄ 1
k+1 were obtained by

using (2.29). Hence, we find

E[V π̄
k+1|It

k, δk = 0] =
∑N

t=k+1 θt + ē0Tt+1Γt+1ē0t+1 + tr(Γt+1P̄ 0
t+1).
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Moreover, when δk = 1, we have

ē1t+1 = (At −K1
t Ct)ē

1
t ,

P̄ 1
t+1 = (At −K1

t Ct)P̄
1
t (At −K1

t Ct)
T +Wt +K1

t VtK
1T
k ,

and

P 1
t+1 = AtP

1
t A

T
t +Wt −K1

t CtP
1
t A

T
t ,

K1
t = AtP

1
t C

T
t (CtP

1
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē1k+1 = Akεk −Kkνk, P̄ 1
k+1 = AkΣkAT

k +Wk,
and P 1

k+1 = AkPkAT
k + Wk − KkCkPkAT

k . The initial conditions ē1k+1 and P̄ 1
k+1

were obtained by using (2.29). Hence, we find

E[V π̄
k+1|It

k, δk = 1] =
∑N

t=k+1 θt + ē1Tt+1Γt+1ē1t+1 + tr(Γt+1P̄ 1
t+1).

Finally, following the definition of ϱπ̄k , we have

ϱπ̄k = E[V π̄
k+1|It

k, δk = 0]− E[V π̄
k+1|It

k, δk = 1]

=
∑N

t=k+1

{
ē0Tt+1Γt+1ē0t+1 + tr(Γt+1P̄ 0

t+1)

− ē1Tt+1Γt+1ē
1
t+1 − tr(Γt+1P̄

1
t+1)

}

=
∑N

t=k+2 ē
0T
t Γtē0t + tr(ΓtP̄ 0

t )− ē1Tt Γtē1t − tr(ΓtP̄ 1
t ),

where the last equality comes from the fact that ΓN+1 = 0. Incorporating this into
(2.26), we obtain the result. !

2.3. Numerical Example

In this section, we show an application of the theoretical framework we devel-
oped in this chapter. Consider an inverted pendulum on a cart observed by an
internal sensor that communicates with an internal controller through a controller
area network (see Fig. 2.2). The continuous-time equations of motion linearized
around the unstable equilibrium are given by

(I +ml2)φ̈−mglφ = mlẍ,

(M +m)ẍ+ bẋ−mlφ̈ = u,

where φ is the pitch angle of the pendulum, x here is the position of the cart, u here
is the force applied to the cart, I here is the moment of inertia of the pendulum,
m is the mass of the pendulum, l is the length to the pendulum’s center of mass, g
is the gravity, M is the mass of the cart, and b is the coefficient of friction for the
cart. We assume the following parameters: I = 0.006 kg.m2, m = 0.2 kg, l = 0.3 m,
g = 9.81 m/s2, M = 0.5 kg, and b = 0.1 N/m/sec. The sensor can only measure
the position and pitch angle. The discrete-time dynamics of form (2.1) obtained
by a zero-hold transformation with sampling frequency of 100 Hz and the sensor



2.3. NUMERICAL EXAMPLE 27

CAN BUS

Figure 2.2. Model of an inverted pendulum on a cart. The sensor
and controller are both insourced. The sensor is connected to the
controller through a controller area network.

model of form (2.2) together with the covariance matrices are given by

Ak =

⎡

⎢⎢⎣

1.0000 0.0100 0.0001 0.0000
0.0000 0.9982 0.0267 0.0001
0.0000 0.0000 1.0016 0.0100
0.0000 −0.0045 0.3122 1.0016

⎤

⎥⎥⎦ , Bk =

⎡

⎢⎢⎣

0.0001
0.0182
0.0002
0.0454

⎤

⎥⎥⎦ ,

Ck =

[
1 0 0 0
0 0 1 0

]
, Vk =

[
0.0020 0.0000
0.0000 0.0010

]
,

Wk =

⎡

⎢⎢⎣

0.0006 0.0003 0.0001 0.0006
0.0003 0.0008 0.0003 0.0004
0.0001 0.0003 0.0007 0.0006
0.0006 0.0004 0.0006 0.0031

⎤

⎥⎥⎦ ,

with initial conditions m0 = [0 0 0.2 0]T and M0 = 10Wk. For this system, we
are interested in designing an event trigger that is employed at the sensor and a
controller that is collocated with the actuator. The cost function of form (2.8)
is specified by the weights QN+1 = diag{1, 1, 1000, 1}, Qk = diag{1, 1, 1000, 1},
Rk = 1, and θk = 150 for all 0 ≤ k ≤ N where N = 500. The state estimates
x̌k and x̂k are provided by Proposition 2.1 and Proposition 2.2 respectively. From
Theorem 2.1, it follows that the optimal triggering policy is δ∗k = 1VoIk≥0 and the
optimal control policy is u∗

k = −Lkx̂k. We approximated the value of information
VoIk by using Proposition 2.3, and obtained the control gain Lk by solving the
Riccati equation in Lemma A.1. We carried out a simulation experiment. For a
realization of the system, Fig. 2.3 and Fig. 2.4 illustrate the trajectories of the main
variables of the system. In particular, the trajectories of the position, velocity, pitch
angle, and pitch rate are shown in Fig. 2.3. Moreover, the trajectories of the value
of information, event, and control are shown in Fig. 2.4. In this experiment, the
value of information became positive only 18 times, which lead to the transmission
of the observation at each of those times. Besides, we observe that the system could
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still achieve a good control performance while the sampling rate was reduced by
96.4% with respect to the periodic policy.

2.4. Summary

In this chapter, we provided a theoretical framework for the analysis and design
of networked control systems with event triggers. We formulated the problem as a
dynamic game, and characterized the optimal triggering policy and optimal control
policy such that the corresponding policy profile represents a Nash equilibrium. We
proved, under certain assumptions, that the optimal closed-loop triggering policy
is a threshold policy that depends particularly on the estimation innovation at
the controller and mismatch estimation error; and that the optimal closed-loop
control policy is a certainty-equivalence policy. Moreover, we synthesized a closed-
form suboptimal triggering policy with a performance guarantee. We propose that
further research should be undertaken in extension of the present framework to
networks of interacting systems that share a common communication channel. In
such a case, a multiple access scheme should be designed.
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Figure 2.3. Trajectories of the position, velocity, pitch angle, and
pitch rate. The solid lines represent the state components and
the dotted lines represent the state estimate components at the
controller.
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Figure 2.4. Trajectories of the value of information, event, and
control. The dotted line in the diagram of the value of information
represents the zero values. The value of information is scaled by
one tenth.



CHAPTER 3

Optimal Power Scheduler in Wireless Control

In this chapter, we consider a wireless control system, and seek to jointly design
a power scheduler and a controller by constructing a trade-off between the energy
capacity and control performance. Based on our unified framework, we develop the
optimal estimators and characterize the optimal policies such that the correspond-
ing policy profile represents a Nash equilibrium. Moreover, we define the value of
information in the trade-off between the energy capacity and control performance.
This chapter is organized in the following way. We formulate the problem in Sec-
tion 3.1. We provide the main results of the chapter in Section 3.2. We present a
numerical example in Section 3.3. Finally, we give a summary in Section 3.4.

3.1. Problem Formulation

In this section, we describe the system model, introduce the specification of the
wireless channel, and determine the relation between the required transmit power
and packet success rate. Moreover, we define the indices for the energy capacity
and control performance. Finally, we formulate the main problem of the chapter.
The material here requires basic knowledge of communication theory, stochastic
control theory, and game theory.

3.1.1. System Model. Consider a stochastic process with dynamics gener-
ated by the following linear discrete-time time-varying state system:

xk+1 = Akxk +Bkuk + wk,(3.1)

for 0 ≤ k ≤ N and with initial condition x0 where xk ∈ Rn is the state of the
process, Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×m is the input matrix, uk ∈ Rm

is the control input to be decided by a controller, wk ∈ Rn is a white Gaussian
noise with zero mean and covariance Wk ≻ 0, and N is a finite terminal time. It
is assumed that x0 is a Gaussian vector with mean m0 and covariance M0. At
each time, a noisy output of the process is measured by a wireless sensor, which is
given by

yk = Ckxk + vk,(3.2)

for 0 ≤ k ≤ N where yk ∈ Rp is the output of the process, Ck ∈ Rp×n is the output
matrix, and vk ∈ Rp is a white Gaussian noise with zero mean and covariance Vk ≻
0. It is assumed that x0, wk, and vk are mutually independent for all 0 ≤ k ≤ N .
In addition, it is assumed that (Ak, Bk) is controllable and (Ak, Ck) is observable.

The sensor is connected to the controller through a wireless fading channel, and
a power scheduler is employed at the sensor that adapts the transmit power (see
Fig. 3.1). At time k, the output of the process yk is available at the power scheduler
instantly, and is received by the controller with one-step delay if the transmission
is successful. In the following, we describe the specification of the wireless channel.

31
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Controller

Plant

Power

Scheduler

Sensor

Figure 3.1. Schematic view of a wireless control system with a
power scheduler. At each time, the output of the process is avail-
able at the power scheduler instantly, and is received by the con-
troller sporadically with one-step delay.

3.1.2. Wireless Channel Specification. Consider a discrete-time additive
white Gaussian noise (AWGN) channel with the following channel input-output
relationship:

rk =
√
gksk + nk,(3.3)

where rk is the channel output, gk ≥ 0 is the channel gain (also known as channel
state information), sk is the channel input, and nk is a white Gaussian noise with
zero mean and power spectral density N0. The channel gain gk is in general a
stochastic variable representing path loss, shadowing, and multipath effects. The
channel gain gk can change at each time with or without correlation over time. We
assume that the channel is block fading, i.e., the channel gain gk remains constant
during each packet transmission (i.e., block), but might change from block to block.
We also assume that the channel gain gk is known at both controller and power
scheduler before transmission at time k given an ideal feedback channel.

Let the transmit power at time k be ptxk , which is constrained by 0 ≤ ptxk ≤
pmax. The received power is obtained by prxk = gkptxk . Moreover, the received
signal-to-noise power ratio SNRk, defined as the ratio of the received signal power
to the noise power within the bandwidth of the transmitted signal [73], is given by

SNRk =
gkptxk
N0W

=
EkR

N0W
,(3.4)

where Ek is the received signal energy per bit, R here is the communication rate,
and W here is the noise bandwidth.

The bit sequence corresponding to each observation is modulated by the trans-
mitter into a carrier signal. It is then transmitted over the channel, and is eventually
detected by the receiver (see Fig. 3.2). For any modulation and detection tech-
niques, the performance of the wireless channel, specifying the bit error rate BERk,
depends only on the ratio Ek/N0 and not on any other detailed characteristics of
the signal and noise [73]. Hence, we can write

BERk = φ1
(

Ek
N0

)
,(3.5)
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Figure 3.2. Wireless communication over an AWGN channel that
connects the sensor to the controller.

where φ1(.) is a function often expressed in terms of Q-function. Note that BERk ∈
(0, 0.5] where 0.5 corresponds to the worst case.

Remark 3.1. It is shown in [25] that the performance of AWGN channels
corresponding to modulation with coherent detection and perfect recovery of the
carrier frequency and phase can generally be expressed by

φ1
(

Ek
N0

)
= ρ0Q

(√
ρ1

Ek
N0

)
,(3.6)

where ρ0 and ρ1 are constants depending on the particular form of modulation.

Each observation is transmitted as a network packet that encapsulates the
associated bit sequence. Thus, given the bit error rate BERk, one can obtain the
packet success rate PSRk for transmission of a packet as

PSRk = φ2(BERk),(3.7)

where φ2(.) is a function depending on the error correcting code and the length of
each packet ℓ. Note that PSRk ∈ [ϵ0, ϵ1) where ϵ0 = φ2(0.5) and ϵ1 = φ2(0). The
packet success rate PSRk tends to the extreme values 0 and 1 for large ℓ and pmax

respectively.

Remark 3.2. If all single bit errors in a packet can be detected, the packet
success rate for transmission of a packet with ℓ bits is specified by

φ2(BERk) = (1− BERk)
ℓ,(3.8)

where ℓ is the length of the packet.

Putting (3.4), (3.5), (3.7) together, we can obtain the required transmit power
at time k for a given packet success rate as

pk = N0R
gk

φ−1(PSRk),(3.9)

where φ(.) = φ2(φ1(.)) and pk is used instead of ptxk for the sake of keeping the
notation simple. Fig. 3.3 depicts the required transmit power as a function of the
packet success rate for a specific wireless fading channel. In the sequel, we assume
that pmax < ∞ leads to a successful transmission of the observation yk at time k
almost surely, i.e., PSRk ≃ 1. Moreover, we consider PSRk as the decision variable
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Figure 3.3. The required transmit power as a function of the
packet success rate for a specific wireless fading channel described
in Section 3.3.

of the power scheduler. Clearly, given gk and PSRk, the transmit power pk at each
time is obtained by (3.9).

Remark 3.3. In practice, the wireless sensor may decide not to transmit the
observation at time k if PSRk is very small. In this case, the transmit power should
be set to zero.

We model packet dropouts according to a random arrival process γk with prob-
ability distribution P(γk = 1) = PSRk where γk = 1 if yk is received successfully
and γk = 0 otherwise. Therefore, we have

ζk+1 =

{
yk, if γk = 1,
∅, otherwise,

(3.10)

where ζk+1 is the successfully received output of the process subject to one-step
delay. Packets are received with one-step delay, and packets that are not received
successfully are discarded without being retransmitted. Besides, the receipt ac-
knowledgement of the packet transmitted at time k is available at the power sched-
uler at time k + 1 via the ideal feedback channel.

In the sequel, we assume that the following assumptions hold.

Assumption 3.1. The arrival variables γk for all 0 ≤ k ≤ N are conditionally
independent given channel gains and transmit powers, i.e,

P(γ0, . . . , γk|gk,pk) = Πk
t=0 P(γt|gt, pt),(3.11)

for k ≥ 0.

Assumption 3.2. The information associated with dropped observations, i.e.,
when γk = 0, is discarded at the controller.

Remark 3.4. Assumption 3.1 comes from the fact that the packet success rate
at each time statistically depends only on the channel gain and transmit power at
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that time. This model incorporates i.i.d. erasure channels and Gilbert-Elliot chan-
nels as special cases. Assumption 3.2 leads to a Gaussian conditional distribution
at the controller, and allows us to obtain the optimal estimator at the controller in
a tractable way.

3.1.3. Trade-off Problem. Consider a power policy π = {p0, . . . , pN} and a
control policy µ = {u0, . . . , uN}. Let Is

k and Ic
k denote the admissible information

set of the power scheduler and of the controller at time k respectively, and P and
M denote the admissible set of power policies and of control policies respectively.
Then, π ∈ P if pk is a measurable function of Is

k for all 0 ≤ k ≤ N , and µ ∈ M if
uk is a measurable function of Ic

k for all 0 ≤ k ≤ N .
We would like to make a trade-off between the energy capacity and control

performance. We measure the energy capacity by an average transmit power, i.e.,

E(π, µ) = 1
N+1 E

[∑N
k=0 αkpk

]
,(3.12)

where αk ≥ 0 is a weighting coefficient. Moreover, we measure the control per-
formance by an average cost function penalizing the state deviation and control
effort, i.e.,

(3.13) J(π, µ) = 1
N+1 E

[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk

]
,

where Qk ≽ 0 and Rk ≻ 0 are weighting matrices. The desired trade-off is formu-
lated by the following optimization problem:

minimize λJ(π, µ) + (1− λ)E(π, µ),(3.14)

for λ ∈ (0, 1) over π ∈ P and µ ∈ M. Equivalently, we can solve the following
optimization problem:

minimize Ψ(π, µ),(3.15)

where

Ψ(π, µ) = E
[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk + θkpk
]
,(3.16)

where θk = αk(1− λ)/λ.
Now, we can formally define the value of information.

Definition 3.1. The value of information VoIk in the trade-off between the
energy capacity and control performance is the variation in the value function asso-
ciated with the optimization problem in (3.15) with respect to a reliable observation
at the controller.

In the sequel, we shall obtain π∗ and µ∗ such that (π∗, µ∗) represents a Nash
equilibrium, and characterize the value of information VoIk.

3.2. Main Results

In this section, our goal is to characterize the optimal policies. Let us define
the admissible information set of the power scheduler at time k as the set of the
current and prior outputs of the process, current and prior channel gains, and prior
arrival variables, i.e.,

Is
k =

{
yt, gt, γt′

∣∣∣t ≤ k, t′ < k
}
,(3.17)
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and the admissible information set of the controller at time k as the set of the prior
successfully received outputs of the process, current and prior channel gains, and
prior arrival variables, i.e.,

Ic
k =

{
yt, gt′ , γt′′

∣∣∣t, t′′ < k, t′ ≤ k, γt = 1
}
.(3.18)

We see that the latter is a subset of the former, i.e., Ic
k ⊆ Is

k. Note that the
information set Ic

k satisfies Assumption 3.2.

3.2.1. Optimal Estimators. Given that the process is partially observable,
both power scheduler and controller have to estimate the state of the process. We
shall derive the optimal estimators based on the Bayesian analysis. The next two
propositions give the optimal estimators with respect to the information sets Is

k
and Ic

k respectively, and show that such estimators are linear.

Proposition 3.1. The conditional expectation E[xk|Is
k] with the following dy-

namics minimizes the mean-square error at the power scheduler:

x̌k = Ak−1x̌k−1 +Bk−1uk−1 +Hk

(
yk − Ck(Ak−1x̌k−1 +Bk−1uk−1)

)
,(3.19)

Σk =
(
(Ak−1Σk−1A

T
k−1 +Wk−1)

−1 + CT
k V

−1
k Ck

)−1
,(3.20)

where

Hk = ΣkC
T
k V

−1
k ,(3.21)

for 1 ≤ k ≤ N with initial conditions x̌0 = m0 + Σ0CT
0 V

−1
0 (y0 − C0m0) and

Σ0 = (M−1
0 + CT

0 V
−1
0 C0)−1 where x̌k = E[xk|Is

k] and Σk = cov[xk|Is
k].

Proof. The output yk is available at the power scheduler at each time. Hence,
it is clear that given the information set Is

k at the power scheduler, the state estimate
minimizing the mean-square error is the conditional expectation E[xk|Is

k], and the
optimal estimator is the Kalman filter (see e.g., [71]). !

Proposition 3.2. The conditional expectation E[xk|Ic
k] with the following dy-

namics minimizes the mean-square error at the controller:

x̂k = Ak−1x̂k−1 +Bk−1uk−1 + γk−1Kk−1(yk−1 − Ck−1x̂k−1),(3.22)

Pk = Ak−1Pk−1A
T
k−1 +Wk−1 − γk−1Kk−1Ck−1Pk−1A

T
k−1,(3.23)

where

Kk−1 = Ak−1Pk−1C
T
k−1(Ck−1Pk−1C

T
k−1 + Vk−1)

−1,(3.24)

for 1 ≤ k ≤ N with initial conditions x̂0 = m0 and P0 = M0 where x̂k = E[xk|Ic
k]

and Pk = cov[xk|Ic
k].

Proof. Given the information set Ic
k at the controller, the state estimate min-

imizing the mean-square error is clearly the conditional expectation E[xk|Ic
k]. From

the definition, x̂k+1 = E[xk+1|Ic
k+1] and Pk+1 = cov[xk+1|Ic

k+1]. Taking the condi-
tional expectation of (3.1), we get

x̂k+1 = Ak E[xk|Ic
k+1] +Bkuk,(3.25)

Pk+1 = Ak cov[xk|Ic
k+1]A

T
k +Wk.(3.26)
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From Assumption 3.2, the controller makes no inference when γk = 0. However,
the controller receives ζk+1 = yk at time k + 1 and subsequently can make an
inference when γk = 1. Let us define ξk = [xT

k yTk ]
T . We can easily show that

E[ξk|Ic
k] =

[
x̂k

Ckx̂k

]
,(3.27)

cov[ξk|Ic
k] =

[
Pk PkCT

k
CkPk CkPkCT

k + Vk

]
.(3.28)

Now, we can use Lemma A.2 together with the conditional distribution specified
by the mean and covariance in (3.27), (3.28), and get

E[xk|Ic
k, yk] = x̂k +K ′

k(yk − Ckx̂k),

cov[xk|Ic
k, yk] = Pk −K ′

kCkPk,

where K ′
k = PkCT

k (CkPkCT
k + Vk)−1. Therefore, from the definition of γk, we can

write

E[xk|Ic
k+1] = x̂k + γkK

′
k(yk − Ckx̂k),(3.29)

cov[xk|Ic
k+1] = Pk − γkK

′
kCkPk,(3.30)

where we used the definition of Ic
k+1 given gk+1 and γk at the controller at time k+1.

We obtain the results by substituting (3.29), (3.30) in (3.25), (3.26) respectively. !

As it becomes evident later, in addition to the Kalman filter given in Propo-
sition 3.1, the power scheduler needs to construct a copy of the estimator given in
Proposition 3.2. This is possible because Ic

k ⊆ Is
k.

3.2.2. Optimal Policies. We shall design the optimal policies using back-
ward induction. Let ek = xk − x̂k be the estimation error and νk = yk − Ckx̂k be
the innovation both associated with the estimator at the controller. Moreover, let
εk = x̌k − x̂k be the mismatch estimation error associated with the estimators at
the power scheduler and controller. We can obtain

E[ek|Is
k] = E[xk − x̂k|Is

k] = x̌k − x̂k = εk,(3.31)

cov[ek|Is
k] = cov[xk|Is

k] = Σk.(3.32)

The next theorem characterizes the structures of the optimal power policy and
optimal control policy, and shows that there exists a separation between the optimal
designs of the power scheduler and controller.

Theorem 3.1. Let Sk ≽ 0 be a matrix that satisfies the condition in Lemma A.1.
The optimal closed-loop power policy is a nonlinear policy given by

p∗k = N0R
gk

φ−1(PSR∗
k),(3.33)

where

(3.34)

PSR∗
k = argmin

PSRk

{
θkN0R

gk
φ−1(PSRk)

+ PSRk ν
T
k K

T
k Γk+1(Kkνk − 2Akεk) + ϱ̂k

}
,
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where ϱ̂k is a variable that depends on εk and νk, and the optimal closed-loop control
policy is a certainty-equivalence policy given by

u∗
k = −Lkx̂k,(3.35)

where Lk is the control gain defined as

Lk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak.(3.36)

Proof. We need to show that (π∗, µ∗) represents a Nash equilibrium. Using
the optimal control policy µ∗ in the cost function Ψ(π, µ) given by Lemma A.1, we
obtain

Ψ(π, µ∗) = E
[
xT
0 S0x0 +

∑N
k=0

{
θkpk + wT

k Sk+1wk

+ eTk L
T
k (B

T
k Sk+1Bk +Rk)Lkek

}]
,

where we used the definition of the estimation error ek. Following the fact that x0

and wk are independent of the power policy, associated with Ψ(π, µ∗), we define
the value function V s

k as

V s
k = min

PSRk
E
[∑N

t=k θtpt + eTt+1Γt+1et+1

∣∣∣Is
k

]
,

where Γk = LT
k (B

T
k Sk+1Bk + Rk)Lk with the exception of ΓN+1 = 0. From the

additivity of the value function V s
k , we have

V s
k = min

PSRk

E
[
θkpk + eTk+1Γk+1ek+1

+ min
PSRk+1

E
[
θk+1pk+1 + eTk+2Γk+2ek+2 + . . .

∣∣∣Is
k+1

]∣∣∣Is
k

]

= min
PSRk

E
[
θkpk + eTk+1Γk+1ek+1 + V s

k+1

∣∣∣Is
k

]
,

with initial condition V s
N+1 = 0. We prove by induction that the value function V s

k
is independent of the control policy. Clearly, the claim is satisfied for time N + 1.
We assume that the claim holds at time k+1, and we shall prove that it also holds
at time k. We can write the dynamics of the estimation error at the controller as

ek+1 = Akek + wk − γkKkνk.(3.37)

Thus, we find

E[eTk+1Γk+1ek+1|Is
k]

= E
[
eTkA

T
k Γk+1Akek + wT

k Γk+1wk + γ2kν
T
k K

T
k Γk+1Kkνk

+ 2eTkA
T
k Γk+1wk − 2γkν

T
k K

T
k Γk+1wk − 2γkν

T
k K

T
k Γk+1Akek

∣∣∣Is
k

]

= εTkA
T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk) + tr(Γk+1Wk)

+ PSRk ν
T
k K

T
k Γk+1Kkνk − 2PSRk ν

T
k K

T
k Γk+1Akεk,
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where in the second equality we used the definitions of εk and Σk and the facts
that νk is Is

k-measurable and that wk is independent of ek. Hence, we have

(3.38)

V s
k = min

PSRk

{
θkpk + εTkA

T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk)

+ tr(Γk+1Wk) + PSRk ν
T
k K

T
k Γk+1Kkνk

− 2PSRk ν
T
k K

T
k Γk+1Akεk + E[V s

k+1|Is
k]
}
.

The minimizer in (3.38) is obtained as

PSR∗
k = argmin

PSRk

{
θkN0R

gk
φ−1(PSRk)

+ PSRk ν
T
k K

T
k Γk+1(Kkνk − 2Akεk) + ϱ̂k

}
,

where ϱ̂k = E[V s
k+1|Is

k]. From the hypothesis assumption ϱ̂k is independent of the
control policy. Hence, we conclude that V s

k is independent of the control policy.
This complete the induction.

Now, using the the power policy π∗ in the cost function Ψ(π, µ) given by
Lemma A.1, we obtain

Ψ(π∗, µ) = E
[
xT
0 S0x0 +

∑N
k=0

{
θkN0R

gk
φ−1(PSR∗

k) + wT
k Sk+1wk

+ (uk + Lkxk)
TΛk(uk + Lkxk)

}]
,

where Λk = BT
k Sk+1Bk + Rk. Following the fact that x0, PSR∗

k, and wk are
independent of the control policy, associated with Ψ(π∗, µ), we define the auxiliary
value function V c

k as

V c
k = min

uk
E
[∑N

t=k(ut + Ltxt)TΛt(ut + Ltxt)
∣∣∣Ic

k

]
.

From the additivity of the auxiliary value function V c
k , we obtain

V c
k = min

uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)

+ min
uk+1

E
[
(uk+1 + Lk+1xk+1)

TΛk+1

× (uk+1 + Lk+1xk+1) + . . .
∣∣∣Ic

k+1

]∣∣∣Ic
k

]

= min
uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk) + V c
k+1

∣∣∣Ic
k

]
,

with initial condition V c
N+1 = 0. We prove by induction that the auxiliary value

function V c
k is a function of Pk. Clearly, the claim is satisfied for time N + 1. We

assume that the claim holds at time k + 1, and we shall prove that it also holds at
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time k. Using the identity xk = x̂k + ek, we find

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)
∣∣Ic

k

]

= E
[
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ eTk L
T
kΛkLkek + 2(uk + Lkx̂k)

TΛkLkek
∣∣∣Ic

k

]

= (uk + Lkx̂k)
TΛk(uk + Lkx̂k) + tr(LT

kΛkLkPk),

where in the second equality we used the fact that x̂k is Ic
k-measurable and E[ek|Ic

k] =
0. Hence, we have

(3.39)

V c
k = min

uk

{
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ tr(LT
kΛkLkPk) + E[V c

k+1|Ic
k]
}
.

The minimizer in (3.39) is obtained as u∗
k = −Lkx̂k. Moreover, we conclude that

V c
k is a function of Pk. This completes the induction and also the proof. !

According to Theorem 3.1, the optimal power policy depends on εk, νk, and
gk, and is independent of the control policy. Besides, the error covariance Pk

in (3.23) does not depend on uk−1. Hence, the control has no dual effect. In
Theorem 3.1, we expressed the value of information based on the value function
V s
k and corresponding to the successful transmission of an observation. This is

emphasized in the following definition.

Definition 3.2. The value of information VoIk in the trade-off between the
energy capacity and control performance is given by

VoIk = νTk K
T
k Γk+1(2Akεk −Kkνk)− θkpmax + ϱk,(3.40)

where ϱk = E[V s
k+1|Is

k, γk = 0]− E[V s
k+1|Is

k, γk = 1].

Remark 3.5. The optimal power policy provided above depends on the variable
ϱ̂k. Although ϱ̂k can be computed with an arbitrary accuracy by solving recursively
the optimality equation in (3.38), its computation is expensive. Next, we shall
introduce a procedure for approximation of this variable.

3.2.3. Approximation Algorithm. We here provide a rollout algorithm [72]
for approximation of the variable ϱ̂k and the value of information VoIk, and accord-
ingly synthesize a closed-form suboptimal power policy with a performance guar-
antee that can readily be implemented. Let π̄ = {p̄0, . . . , p̄N} be a power policy
with packet success rates PSRk ≃ 1 for all 0 ≤ k ≤ N . The following algorithm
gives an approximation of the variable ϱ̂k.

Algorithm 3.1. An approximation of the variable ϱ̂k associated with the policy
π̄ is given by

ϱ̂π̄k = E[V π̄
k+1|Is

k],(3.41)

where

E[V π̄
k+1|Is

k] = E
[∑N

t=k+1 θtpt + eTt+1Γt+1et+1

∣∣∣Is
k

]
,

with pk+1 = p̄k+1.
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Similar to Theorem 2.2, we can prove that it is possible to synthesize a sub-
optimal power policy that outperforms the policy π̄. In the next proposition, we
synthesize a closed-form suboptimal power policy with a performance guarantee.

Proposition 3.3. A suboptimal power policy that outperforms the policy π̄ is
given by

p+k = N0R
gk

φ−1(PSR+
k ),(3.42)

where

(3.43)

PSR+
k = argmin

PSRk

{
θkN0R

gk
φ−1(PSRk) + PSRk νTk K

T
k Γk+1(Kkνk − 2Akεk)

− PSRk

(∑N
t=k+2 ē

0T
t Γtē0t + tr(ΓtP̄ 0

t )− ē1Tt Γtē1t − tr(ΓtP̄ 1
t )
)}

,

and

ē0t+1 = (At −K0
t Ct)ē

0
t ,

P̄ 0
t+1 = (At −K0

t Ct)P̄
0
t (At −K0

t Ct)
T +Wt +K0

t VtK
0T
t ,

P 0
t+1 = AtP

0
t A

T
t +Wt −K0

t CtP
0
t A

T
t ,

ē1t+1 = (At −K1
t Ct)ē

1
t ,

P̄ 1
t+1 = (At −K1

t Ct)P̄
1
t (At −K1

t Ct)
T +Wt +K1

t VtK
1T
t ,

P 1
t+1 = AtP

1
t A

T
t +Wt −K1

t CtP
1
t A

T
t ,

where

K0
t = AtP

0
t C

T
t (CtP

0
t C

T
t + Vt)

−1,

K1
t = AtP

1
t C

T
t (CtP

1
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē0k+1 = Akεk, P̄ 0
k+1 = AkΣkAT

k +Wk, P 0
k+1 =

AkPkAT
k +Wk, ē1k+1 = Akεk−Kkνk, P̄ 1

k+1 = AkΣkAT
k +Wk, and P 1

k+1 = AkPkAT
k +

Wk −KkCkPkAT
k .

Proof. For the proof, it is enough to derive ϱ̂π̄k based on the policy π̄. First,
note that

E[V π̄
k+1|Is

k, γk] = E
[∑N

t=k+1 θtp̄t + eTt+1Γt+1et+1

∣∣∣Is
k, γk

]

=
∑N

t=k+1 θtp̄t + ēTt+1Γt+1ēt+1 + tr(Γt+1P̄t+1),

where in the first equality we used the definition of V π̄
k+1 and the fact that pt = p̄t

for all t ≥ k + 1 and in the second equality the definitions ēt = E[et|Is
k, γk] and

P̄t = cov[et|Is
k, γk] for all t ≥ k + 1.

From the dynamics of the estimation error in (3.37), given the fact that γt = 1
with PSRt ≃ 1 for all t ≥ k + 1, we obtain

et+1 = (At −KtCt)et + wt −Ktvt.
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Accordingly, when γk = 0, we have

ē0t+1 = (At −K0
t Ct)ē

0
t ,

P̄ 0
t+1 = (At −K0

t Ct)P̄
0
t (At −K0

t Ct)
T +Wt +K0

t VtK
0T
k ,

and

P 0
t+1 = AtP

0
t A

T
t +Wt −K0

t CtP
0
t A

T
t ,

K0
t = AtP

0
t C

T
t (CtP

0
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē0k+1 = Akεk, P̄ 0
k+1 = AkΣkAT

k + Wk, and
P 0
k+1 = AkPkAT

k + Wk. The initial conditions ē1k+1 and P̄ 1
k+1 were obtained by

using (3.37). Hence, we find

E[V π̄
k+1|Is

k, γk = 0] =
∑N

t=k+1 θtp̄t + ē0Tt+1Γt+1ē0t+1 + tr(Γt+1P̄ 0
t+1).

Moreover, when γk = 1, we have

ē1t+1 = (At −K1
t Ct)ē

1
t ,

P̄ 1
t+1 = (At −K1

t Ct)P̄
1
t (At −K1

t Ct)
T +Wt +K1

t VtK
1T
k ,

and

P 1
t+1 = AtP

1
t A

T
t +Wt −K1

t CtP
1
t A

T
t ,

K1
t = AtP

1
t C

T
t (CtP

1
t C

T
t + Vt)

−1,

for t ≥ k + 1 with initial conditions ē1k+1 = Akεk −Kkνk, P̄ 1
k+1 = AkΣkAT

k +Wk,
and P 1

k+1 = AkPkAT
k + Wk − KkCkPkAT

k . The initial conditions ē1k+1 and P̄ 1
k+1

were obtained by using (3.37). Hence, we find

E[V π̄
k+1|Is

k, γk = 1] =
∑N

t=k+1 θtp̄t + ē1Tt+1Γt+1ē1t+1 + tr(Γt+1P̄ 1
t+1).

Finally, following the definition of ϱ̂π̄k , we have

ϱ̂π̄k = (1− PSRk)E[V
π̄
k+1|Is

k, γk = 0] + PSRk E[V
π̄
k+1|Is

k, γk = 1]

= E[V π̄
k+1|Is

k, γk = 0]− PSRk

(
E[V π̄

k+1|Is
k, γk = 0]− E[V π̄

k+1|Is
k, γk = 1]

)

= ϱ̂0 − PSRk

(∑N
t=k+1

{
ē0Tt+1Γt+1ē0t+1 + tr(Γt+1P̄ 0

t+1)

− ē1Tt+1Γt+1ē
1
t+1 − tr(Γt+1P̄

1
t+1

})

= ϱ̂0 − PSRk

(∑N
t=k+2 ē

0T
t Γtē0t + tr(ΓtP̄ 0

t )− ē1Tt Γtē1t − tr(ΓtP̄ 1
t )
)
,

where in the third equality ϱ̂0 = E[V π̄
k+1|Is

k, γk = 0] is a constant and in the last
equality we used the fact that ΓN+1 = 0. Incorporating this into (3.34), we obtain
the result. !
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Figure 3.4. Model of an inverted pendulum on a cart. The con-
troller is insourced, but the sensor is outsourced to a wireless node.

3.3. Numerical Example

In this section, we show an application of the theoretical framework we de-
veloped in this chapter. Consider an inverted pendulum on a cart observed by a
remote sensor (see Fig. 3.4). The parameters Ak, Bk, Ck, Wk, Vk, m0, and M0 are
similar to those used in Chapter 2.

The sensor is connected to an internal controller through a wireless fading chan-
nel that is assumed to be a discrete-time AWGN channel. The fading distribution
is chosen according to a combined path loss and shadowing model [25], which is
given by

gk =
(

4πfd0

c

)−2 (
d
d0

)−η
10ψk/10,

where f is the carrier frequency, d0 is the reference distance, c is the speed of light,
d is the distance between the receiver and transmitter, η is the path loss exponent,
and ψk is a Gaussian variable with zero mean and variance Σψ. The channel is
characterized by the following parameters: the noise bandwidth W = 2 MHz, data
rate R = 250 Kbps, carrier frequency f = 2.45 GHz, receiver distance d = 10.00 m,
reference distance d0 = 1 m, path loss exponent η = 3.6, noise power spectral
density N0 = 10−18 watt, and shadowing variance Σψ = 8. We suppose that the
channel performance is specified by the functions in (3.6) and (3.8) with ρ0 = 1,
ρ1 = 2, and ℓ = 128 bits.

For this system, we are interested in designing a power scheduler that is em-
ployed at the sensor and a controller that is collocated with the actuator. The
cost function of form (3.16) is specified by the weights QN+1 = diag{1, 1, 1000, 1},
Qk = diag{1, 1, 1000, 1}, Rk = 1, and θk = 9 × 106 for all 0 ≤ k ≤ N where
N = 500. The state estimates x̌k and x̂k are provided by Proposition 3.1 and
Proposition 3.2 respectively. From Theorem 3.1, it follows that the optimal power
policy is p∗k = N0R

gk
φ−1(PSR∗

k) and the optimal control policy is u∗
k = −Lkx̂k. We

approximated PSR∗
k according to Proposition 3.3 and by limiting PSRk in the in-

terval [0.00001, 0.99999], and obtained the control gain Lk by solving the Riccati
equation in Lemma A.1. We carried out a simulation experiment. For a realization
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of the system, Fig. 3.5 and Fig. 3.6 illustrate the trajectories of the main variables
of the system. In particular, the trajectories of the position, velocity, pitch angle,
and pitch rate are shown in Fig. 3.5. Moreover, the trajectories of the channel gain,
packet success rate, arrival process, power, and control are shown in Fig. 3.6. As
it is observed, the packet success rate is at its lowest value at many times, and
the wireless sensor avoids a transmission at those times to preserve energy further.
Moreover, it is seen that a high transmission power is used when the wireless sensor
decides to transmit an observation.

3.4. Summary

In this chapter, we provided a theoretical framework for the analysis and design
of wireless control systems with power schedulers. We formulated the problem as
a dynamic game, and characterized the optimal power policy and optimal control
policy such that the corresponding policy profile represents a Nash equilibrium.
We proved, under certain assumptions, that the optimal closed-loop power policy
is a nonlinear policy with packet success rate that particularly depends on the
estimation innovation at the controller, mismatch estimation error, and channel
gain; and that the optimal closed-loop control policy is a certainty-equivalence
policy. Moreover, we synthesized a closed-form suboptimal power policy with a
performance guarantee. We propose that as future research one should extend the
present framework to networks of interacting systems in which the effect of the
channel interference is taken into account. In such a case, the interference imposes
a constraint that must be incorporated in the underlying optimization problem.
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Figure 3.5. Trajectories of the position, velocity, pitch angle, and
pitch rate. The solid lines represent the state components and
the dotted lines represent the state estimate components at the
controller.
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Figure 3.6. Trajectories of the channel gain, packet success rate,
arrival process, transmit power, and control.



CHAPTER 4

Optimal Privacy Filter in Cloud Control

In this chapter, we consider a cloud control system, and seek to jointly design a
privacy filter and a controller by constructing a trade-off between the privacy level
and control performance. Based on our unified framework, we develop the optimal
estimators and characterize the optimal policies such that the corresponding policy
profile represents a Nash equilibrium. Moreover, we define the value of information
in the trade-off between the privacy level and control performance. This chapter
is organized in the following way. We formulate the problem in Section 4.1. We
provide the main results of the chapter in Section 4.2. We present a numerical
example in Section 4.3. Finally, we give a summary in Section 4.4.

4.1. Problem Formulation

In this section, we describe the system model. We specify the privacy filter,
and define the indices for the privacy level and control performance. To measure
the amount of information leakage, we adopt the causally-conditioned directed in-
formation. Then, we formulate the main problem of the chapter. The material
here requires basic knowledge of information theory, stochastic control theory, and
game theory.

4.1.1. Process Model. Consider a stochastic process with dynamics gener-
ated by the following linear discrete-time time-varying state system:

xk+1 = Akxk +Bkuk + wk,(4.1)

for 0 ≤ k ≤ N and with initial condition x0 where xk ∈ Rn is the state of the
process, Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×m is the input matrix, uk ∈ Rm

is the control input to be decided by a cloud provider, wk ∈ Rn is a white Gaussian
noise with zero mean and covariance Wk ≻ 0, and N is a finite terminal time. It is
assumed that x0 is a Gaussian vector with mean m0 and covariance M0. At each
time, a noisy output of the process is measured by a sensor, which given by

yk = Ckxk + vk,(4.2)

for 0 ≤ k ≤ N where yk ∈ Rp is the output of the process, Ck ∈ Rp×n is the output
matrix, and vk ∈ Rp is a white Gaussian noise with zero mean and covariance Vk ≻
0. It is assumed that x0, wk, and vk are mutually independent for all 0 ≤ k ≤ N .
In addition, it is assumed that (Ak, Bk) is controllable and (Ak, Ck) is observable.

A privacy filter is employed at the sensor, which obfuscates the private in-
formation (i.e., the sate of the process) and transmits public information to the
controller (see Fig. 4.1). At time k, the output of the process yk is available at
the privacy filter instantly, and a perturbed output is transmitted to the controller
with one-step delay. Next, we describe the structure of the privacy filter.

47
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Controller

Plant

Privacy
Filter

Sensor

Figure 4.1. Schematic view of a cloud control system with a pri-
vacy filter. At each time, the output of the process is available at
the privacy filter instantly, and a perturbed output is transmitted
to the controller with one-step delay.

4.1.2. Privacy Protection and Information Leakage. Consider a privacy
filter with an additive Gaussian noise structure in which the perturbed output is
given by

zk = Ekyk + nk,(4.3)

where zk ∈ Rq is the perturbed output, Ek ∈ Rq×p is the privacy filter’s output
matrix, and nk ∈ Rq is a Gaussian noise generated with zero mean and covariance
Nk. We assume that nk is independent of the state given Nk for all 0 ≤ k ≤ N .
In the sequel, we assume that Ek = I and q = p. In this case, the perturbation
covariance Nk is the only decision variable of the privacy filter. Moreover, we define
ζk+1 = zk as the perturbed output subject to one-step delay.

Remark 4.1. Similar to the analysis in [74], one can show that for the prob-
lem considered here the optimal test channel is in fact an additive Gaussian noise
channel. This justifies the chosen structure of the privacy filter.

Now, consider the sequences xN , zN , and uN over the horizon N . The casually-
conditioned entropy of zN given uN is defined by

h(zN ||uN ) =
∑N

k=0 h(zk|zk−1,uk),(4.4)

and the casually-conditioned entropy of zN given xN and uN is defined by

h(zN ||xN ,uN ) =
∑N

k=0 h(zk|zk−1,xk,uk).(4.5)

Then, the information leakage by disclosure of the public information to the con-
troller can be measured by the causally-conditioned directed information [62] from
xN to zN given uN , which is obtained as

I(xN →zN ||uN ) = h(zN ||uN )− h(zN ||xN ,uN ).(4.6)
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Furthermore, given the structure of the privacy filter in (4.3) and from the
properties of the mutual information, we can write:

(4.7)

I(xN →zN ||uN ) =
∑N

k=0 I(xk; zk|zk−1,uk)

=
∑N

k=0 I(xk; zk|zk−1,uk)

+
∑N

k=0 I(xk−1; zk|xk, zk−1,uk)

=
∑N

k=0 I(xk; zk|zk−1,uk)

=
∑N

k=0 h(xk|zk−1,uk)− h(xk|zk,uk),

where the first equality comes from the properties of the mutual information and
I(xk; zk|zk−1,uk) is the conditional mutual information between xk and zk given
zk−1 and uk, the second equality comes from the chain rule, the third equality from
the fact that zk is independent of xk−1 given xk, and the last equality from the
definition of the mutual information.

In the sequel, we assume that the following assumption holds.

Assumption 4.1. The information that the perturbation covariance Nk carries
about the process is discarded at the controller.

Remark 4.2. Assumption 4.1 leads to a Gaussian conditional distribution
at the controller, and allows us to obtain the optimal estimator at the controller
in a tractable way. Instead of the above assumption, one can assume that state
estimates under perturbed observations, which will be derived later, are transmitted
to the controller.

4.1.3. Trade-off Problem. Consider a perturbation policy π = {z0, . . . , zN}
and a control policy µ = {u0, . . . , uN}. Let If

k and Ic
k denote the admissible

information set of the privacy filter and of the controller at time k respectively, and
P and M denote the admissible set of perturbation policies and of control policies
respectively. Then, π ∈ P if zk is a measurable function of If

k for all 0 ≤ k ≤ N ,
and µ ∈ M if uk is a measurable function of Ic

k for all 0 ≤ k ≤ N .
We would like to make a trade-off between the privacy level and control perfor-

mance. We measure the privacy level by a weighted causally-conditioned directed
information from the private information to the public information, i.e.,

(4.8) P (µ,π) = 1
N+1 E

[∑N
k=0 αkI(xk; zk|zk−1,uk)

]
,

where αk is a weighting coefficient. Moreover, we measure the control performance
by an average cost function penalizing the state deviation and control effort, i.e.,

(4.9) J(π, µ) = 1
N+1 E

[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk

]
,

where Qk ≽ 0 and Rk ≻ 0 are weighting matrices. The desired trade-off is formu-
lated by the following optimization problem:

minimize λJ(π, µ) + (1− λ)P (π, µ),(4.10)

for λ ∈ (0, 1) over π ∈ P and µ ∈ M. Equivalently, we can solve the following
optimization problem:

minimize Ψ(π, µ),(4.11)
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where

(4.12)

Ψ(π, µ) = E
[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk

+
∑N

k=0 θkI(xk; zk|zk−1,uk)
]
,

where θk = αk(1− λ)/λ.
Now, we can formally define the value of information.

Definition 4.1. The value of information VoIk in the trade-off between the pri-
vacy level and control performance is the variation in the value function associated
with the optimization problem in (4.11) with respect to an unperturbed observation
at the controller.

In the sequel, we shall obtain π∗ and µ∗ such that (π∗, µ∗) represents a Nash
equilibrium, and characterize the value of information VoIk.

4.2. Main Results

In this section, our goal is to characterize the optimal policies. Let us define the
admissible information set of the privacy filter at time k as the set of the current
and prior outputs and prior perturbations, i.e.,

If
k =

{
yt, nt′

∣∣∣t ≤ k, t′ < k
}
,(4.13)

and the admissible information set of the controller at time k as the set of the prior
perturbed outputs and prior perturbation covariances, i.e.,

Ic
k =

{
zt, Nt

∣∣∣t < k
}
.(4.14)

We see that the latter is a subset of the former, i.e., Ic
k ⊆ If

k . Note that the
information set Ic

k satisfies Assumption 4.1.

4.2.1. Optimal Estimators. Given that the process is partially observable,
both privacy filter and controller have to estimate the state of the process. We
shall derive the optimal estimators based on the Bayesian analysis. The next two
propositions give the optimal estimators with respect to the information sets If

k
and Ic

k respectively, and show that such estimators are linear.

Proposition 4.1. The conditional expectation E[xk|If
k ] with the following dy-

namics minimizes the mean-square error at the privacy filter:

x̌k = Ak−1x̌k−1 +Bk−1uk−1 +Hk

(
yk − Ck(Ak−1x̌k−1 +Bk−1uk−1)

)
,(4.15)

Σk =
(
(Ak−1Σk−1A

T
k−1 +Wk−1)

−1 + CT
k V

−1
k Ck

)−1
,(4.16)

where

Hk = ΣkC
T
k V

−1
k ,(4.17)

for 1 ≤ k ≤ N with initial conditions x̌0 = m0 + Σ0CT
0 V

−1
0 (y0 − C0m0) and

Σ0 = (M−1
0 + CT

0 V
−1
0 C0)−1 where x̌k = E[xk|If

k ] and Σk = cov[xk|If
k ].
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Proof. The output yk is available at the privacy filter at each time. Hence,
it is clear that given the information set If

k at the privacy filter, the state estimate

minimizing the mean-square error is the conditional expectation E[xk|If
k ], and the

optimal estimator is the Kalman filter (see e.g., [71]). !

Proposition 4.2. The conditional expectation E[xk|Ic
k] with the following dy-

namics minimizes the mean-square error at the controller:

x̂k = Ak−1x̂k−1 +Bk−1uk−1 +Kk−1(zk−1 − Ck−1x̂k−1),(4.18)

Pk = Ak−1Pk−1A
T
k−1 +Wk−1 −Kk−1Ck−1Pk−1A

T
k−1,(4.19)

where

Kk−1 = Ak−1Pk−1C
T
k−1(Ck−1Pk−1C

T
k−1 + Vk−1 +Nk−1)

−1,(4.20)

for 1 ≤ k ≤ N with initial conditions x̂0 = m0 and P0 = M0 where x̂k = E[xk|Ic
k]

and Pk = cov[xk|Ic
k].

Proof. Given the information set Ic
k at the controller, the state estimate min-

imizing the mean-square error is clearly the conditional expectation E[xk|Ic
k]. From

the definition, x̂k+1 = E[xk+1|Ic
k+1] and Pk+1 = cov[xk+1|Ic

k+1]. Taking the condi-
tional expectation of (4.1), we get

x̂k+1 = Ak E[xk|Ic
k+1] +Bkuk,(4.21)

Pk+1 = Ak cov[xk|Ic
k+1]A

T
k +Wk.(4.22)

The controller receives ζk+1 = zk at time k + 1. Let us define ξk = [xT
k zTk ]

T .
We can easily show that

E[ξk|Ic
k] =

[
x̂k

Ckx̂k

]
,(4.23)

cov[ξk|Ic
k] =

[
Pk PkCT

k
CkPk CkPkCT

k + Vk +Nk

]
,(4.24)

where we used the fact that nk is independent of xk given Nk. Now, we can use
Lemma A.2 together with the conditional distribution specified by the mean and
covariance in (4.23), (4.24), and get

E[xk|Ic
k+1] = x̂k +K ′

k(zk − Ckx̂k),(4.25)

cov[xk|Ic
k+1] = Pk −K ′

kCkPk,(4.26)

where K ′
k = PkCT

k (CkPkCT
k +Vk +Nk)−1 and we used the definition of Ic

k+1 given
Nk at the controller at time k + 1. Moreover, from Assumption 4.1, apart from
(4.25), (4.26), no inference is possible about xk given zk and Nk. We obtain the
results by substituting (4.25), (4.26) in (4.21), (4.22) respectively. !

As it becomes evident later, in addition to the Kalman filter given in Propo-
sition 4.1, the privacy filter needs to construct a copy of the estimator given in
Proposition 4.2. This is possible because Ic

k ⊆ If
k .
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4.2.2. Optimal Policies. We shall design the optimal policies using back-
ward induction. Let ek = xk − x̂k be the estimation error and νk = yk − Ckx̂k be
the innovation both associated with the estimator at the controller. Moreover, let
εk = x̌k − x̂k be the mismatch estimation error associated with the estimators at
the privacy filter and controller. We can obtain

E[ek|If
k ] = E[xk − x̂k|If

k ] = x̌k − x̂k = εk,(4.27)

cov[ek|If
k ] = cov[xk|If

k ] = Σk.(4.28)

Given the optimal estimator in Proposition 4.2, the following proposition can
be used to calculate the weighted causally conditioned directed information.

Proposition 4.3. The causally conditioned directed information is equal to

I(xN →zN ||uN ) = −
∑N

k=0
1
2 ln detDk,(4.29)

where Dk = I − PkCT
k (CkPkCT

k + Vk +Nk)−1Ck.

Proof. Since the conditional distributions P(xk|Ic
k) and P(xk|Ic

k+1) are Gauss-
ian, the entropies associated with the optimal estimator in Proposition 4.2 are
obtained as

h(xk|Ic
k) =

1

2
ln
(
(2πe)n det cov[xk|Ic

k]
)
,

h(xk|Ic
k+1) =

1

2
ln

(
(2πe)n det cov[xk|Ic

k+1]
)
,

where cov[xk|Ic
k] = Pk and cov[xk|Ic

k+1] = Pk−K ′
kCkPk whereK ′

k = PkCT
k (CkPkCT

k +
Vk +Nk)−1. Therefore, given uk, we have

I(xN →zN ||uN ) =
∑N

k=0 h(xk|zk−1,uk)− h(xk|zk,uk)

=
∑N

k=0 h(xk|Ic
k)− h(xk|Ic

k+1)

=
∑N

k=0
1
2 ln detPk − 1

2 ln det
(
Pk −K ′

kCkPk

)

= −
∑N

k=0
1
2 ln det(I −K ′

kCk),

where the first equality comes from (4.7) and the second equality from the definition
of Ic

k given Nk−1 at the controller at time k. This completes the proof. !

Remark 4.3. Following Proposition 4.3, the privacy filter can control the
amount of information leakage by means of the perturbation covariance Nk. The
two extreme cases of the perturbation covariances are Nk → 0 and Nk → ∞, which
correspond to the maximum and minimum information leakage.

The next theorem characterizes the structures of the optimal perturbation pol-
icy and optimal control policy, and shows that there exists a separation between
the optimal designs of the privacy filter and controller.

Theorem 4.1. Let Sk ≽ 0 be a matrix that satisfies the condition in Lemma A.1.
The optimal closed-loop perturbation policy is an affine policy given by

z∗k = yk + nk,(4.31)
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where nk is a Gaussian noise generated with zero mean and covariance N∗
k that is

given by

(4.32)

N∗
k = argmin

Nk

{
− θk

2 ln detDk + νTk K
T
k Γk+1(Kkνk − 2Akεk)

+ tr(KT
k Γk+1KkNk) + ϱ̂k

}
,

where ϱ̂k is a variable that depends on εk and νk, and the optimal closed-loop control
policy is a certainty-equivalence policy given by

u∗
k = −Lkx̂k,(4.33)

where Lk is the control gain defined as

Lk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak.(4.34)

Proof. We need to show that (π∗, µ∗) represents a Nash equilibrium. Using
the optimal control policy µ∗ in the cost function Ψ(π, µ) given by Lemma A.1, we
obtain

Ψ(π, µ∗) = E
[
xT
0 S0x0 +

∑N
k=0

{
− θk

2 ln detDk + wT
k Sk+1wk

+ eTk L
T
k (B

T
k Sk+1Bk +Rk)Lkek

}]
,

where we used the definition of the estimation error ek. Following the fact that x0

and wk are independent of the perturbation policy, associated with Ψ(π, µ∗), we
define the value function V f

k as

V f
k = min

Nk
E
[∑N

t=k −
θk
2 ln detDk + eTt+1Γt+1et+1

∣∣∣If
k

]
,

where Γk = LT
k (B

T
k Sk+1Bk + Rk)Lk with the exception of ΓN+1 = 0. From the

additivity of the value function V f
k , we have

V f
k = min

Nk

E
[
− θk

2 ln detDk + eTk+1Γk+1ek+1

+ min
Nk+1

E
[
− θk+1

2 ln detDk+1 + eTk+2Γk+2ek+2 + . . .
∣∣∣If

k+1

]∣∣∣If
k

]

= min
Nk

E
[
− θk

2 ln detDk + eTk+1Γk+1ek+1 + V f
k+1

∣∣∣If
k

]
,

with initial condition V f
N+1 = 0. We prove by induction that the value function V f

k
is independent of the control policy. Clearly, the claim is satisfied for time N + 1.
We assume that the claim holds at time k+1, and we shall prove that it also holds
at time k. We can write the dynamics of the estimation error at the controller as

ek+1 = Akek + wk −Kkνk −Kknk.(4.35)
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Thus, we find

E[eTk+1Γk+1ek+1|If
k ]

= E
[
eTkA

T
k Γk+1Akek + wT

k Γk+1wk + νTk K
T
k Γk+1Kkνk + nT

kK
T
k Γk+1Kknk

+ 2eTkA
T
k Γk+1wk − 2νTk K

T
k Γk+1wk − 2nT

kK
T
k Γk+1wk

− 2νTk K
T
k Γk+1Akek − 2nkK

T
k Γk+1Akek + 2νTk K

T
k Γk+1Kknk

∣∣∣If
k

]

= εTkA
T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk) + tr(Γk+1Wk) + νTk K
T
k Γk+1Kkνk

+ tr(KT
k Γk+1KkNk)− 2νTk K

T
k Γk+1Akεk,

where in the second equality we used the definitions of εk and Σk and the facts
that νk is If

k -measurable, that wk is independent of ek, and that nk is independent
of ek and wk given Nk. Hence, we have

(4.36)

V f
k = min

Nk

{
− θk

2 ln detDk + εTkA
T
k Γk+1Akεk + tr(AT

k Γk+1AkΣk)

+ tr(Γk+1Wk) + νTk K
T
k Γk+1Kkνk + tr(KT

k Γk+1KkNk)

− 2νTk K
T
k Γk+1Akεk + E[V f

k+1|I
f
k ]
}
.

The minimizer in (4.36) is obtained as

N∗
k = argmin

Nk

{
− θk

2 ln detDk + νTk K
T
k Γk+1(Kkνk − 2Akεk)

+ tr(KT
k Γk+1KkNk) + ϱ̂k

}
,

where ϱ̂k = E[V f
k+1|I

f
k ]. From the hypothesis assumption ϱ̂k is independent of the

control policy. Hence, we conclude that V f
k is independent of the control policy.

This complete the induction.
Now, using the the perturbation policy π∗ in the cost function Ψ(π, µ) given

by Lemma A.1, we obtain

Ψ(π∗, µ) = E
[
xT
0 S0x0 +

∑N
k=0

{
− θk

2 ln detDk + wT
k Sk+1wk

+ (uk + Lkxk)
TΛk(uk + Lkxk)

}]
,

where Λk = BT
k Sk+1Bk +Rk. Following the fact that x0, Dk, and wk are indepen-

dent of the control policy, associated with Ψ(π∗, µ), we define the auxiliary value
function V c

k as

V c
k = min

uk
E
[∑N

t=k(ut + Ltxt)TΛt(ut + Ltxt)
∣∣∣Ic

k

]
.
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From the additivity of the auxiliary value function V c
k , we obtain

V c
k = min

uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)

+ min
uk+1

E
[
(uk+1 + Lk+1xk+1)

TΛk+1

× (uk+1 + Lk+1xk+1) + . . .
∣∣∣Ic

k+1

]∣∣∣Ic
k

]

= min
uk

E
[
(uk + Lkxk)

TΛk(uk + Lkxk) + V c
k+1

∣∣∣Ic
k

]
,

with initial condition V c
N+1 = 0. We prove by induction that the auxiliary value

function V c
k is a function of Pk. Clearly, the claim is satisfied for time N + 1. We

assume that the claim holds at time k + 1, and we shall prove that it also holds at
time k. Using the identity xk = x̂k + ek, we find

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)
∣∣Ic

k

]

= E
[
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ eTk L
T
kΛkLkek + 2(uk + Lkx̂k)

TΛkLkek
∣∣∣Ic

k

]

= (uk + Lkx̂k)
TΛk(uk + Lkx̂k) + tr(LT

kΛkLkPk),

where in the second equality we used the fact that x̂k is Ic
k-measurable and E[ek|Ic

k] =
0. Hence, we have

(4.37)

V c
k = min

uk

{
(uk + Lkx̂k)

TΛk(uk + Lkx̂k)

+ tr(LT
kΛkLkPk) + E[V c

k+1|Ic
k]
}
.

The minimizer in (4.37) is obtained as u∗
k = −Lkx̂k. Moreover, we conclude that

V c
k is a function of Pk. This completes the induction and also the proof. !

According to Theorem 4.1, the optimal perturbation policy depends on εk and
νk, and is independent of the control policy. Besides, the error covariance Pk in
(4.19) does not depend on uk−1. Hence, the control has no dual effect. In Theo-
rem 4.1, we expressed the value of information based on the value function V f

k and
corresponding to the transmission of the private information. This is emphasized
in the following definition.

Definition 4.2. The value of information VoIk in the trade-off between the
privacy level and control performance is given by

(4.38) VoIk = νTk K
nT
k Γk(2Akεk −Kn

k νk) +
θk
2 ln detDn

k + ϱk,

where ϱk = E[V f
k+1|I

f
k , Nk → ∞]−E[V f

k+1|I
f
k , Nk → 0], Dn

k = I−PkCT
k (CkPkCT

k +
Vk)−1Ck, Kn

k = AkPkCT
k (CkPkCT

k + Vk)−1.

Remark 4.4. The optimal perturbation policy provided above depends on the
variable ϱ̂k. Although ϱ̂k can be computed with an arbitrary accuracy by solving
recursively the optimality equation in (4.36), its computation is expensive. Next,
we shall introduce a procedure for approximation of this variable.
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4.2.3. Approximation Algorithm. We here provide a rollout algorithm [72]
for approximation of the variable ϱ̂k and the value of information VoIk, and accord-
ingly synthesize a closed-form suboptimal perturbation policy with a performance
guarantee that can readily be implemented. Let π̄ = {z̄0, . . . , z̄N} be a perturba-
tion policy with perturbation covariances Nk ≃ 0 for all 0 ≤ k ≤ N . The following
algorithm gives an approximation of the variable ϱ̂k.

Algorithm 4.1. An approximation of the variable ϱ̂k associated with the policy
π̄ is given by

ϱ̂π̄k = E[V π̄
k+1|I

f
k ],

where

E[V π̄
k+1|I

f
k ] = E

[∑N
t=k −

θk
2 ln detDk + eTt+1Γt+1et+1

∣∣∣If
k

]
,

with zk+1 = z̄k+1.

Similar to Theorem 2.2, we can prove that it is possible to synthesize a subop-
timal perturbation policy that outperforms the policy π̄. In the next proposition,
we synthesize a closed-form suboptimal perturbation policy with a performance
guarantee.

Proposition 4.4. A suboptimal perturbation policy that outperforms the policy
π̄ is given by

z+k = yk + nk,(4.39)

where nk is a Gaussian noise generated with zero mean and covariance N+
k that is

given by
(4.40)

N+
k = argmin

Nk

{
− θk

2 ln detDk + νTk K
T
k Γk+1(Kkνk − 2Akεk) + tr(KT

k Γk+1KkNk)

+
∑N

t=k+1 −
θt
2 ln detDn

t + ēTt+1Γt+1ēt+1 + tr(Γt+1P̄t+1)
}
,

and

ēt+1 = (At −Kn
t Ct)ēt,

P̄t+1 = (At −Kn
t Ct)P̄t(At −Kn

t Ct)
T +Wt +Kn

t VtK
nT
t ,

Pn
t+1 = AtP

n
t A

T
t +Wt −Kn

t CtP
n
t A

T
t ,

where

Kn
t = AtP

n
t C

T
t (CtP

n
t C

T
t + Vt)

−1,

Dn
t = I − Pn

t C
T
t (CtP

n
t C

T
t + Vt)

−1Ct,

for t ≥ k+1 with initial conditions ēk+1 = Akεk −Kkνk, P̄k+1 = AkΣkAT
k +Wk +

KkNkKT
k , and Pn

k+1 = AkPkAT
k +Wk −KkCkPkAT

k .
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Proof. For the proof, it is enough to derive ϱ̂π̄k based on the policy π̄. First,
note that

E[V π̄
k+1|I

f
k , Nk] = E

[∑N
t=k+1 −

θt
2 ln detDt + eTt+1Γt+1et+1

∣∣∣If
k , Nk

]

=
∑N

t=k+1 −
θt
2 ln detDn

t + ēTt+1Γt+1ēt+1 + tr(Γt+1P̄t+1),

where in the first equality we used the definition of V π̄
k+1 and in the second equality

the fact that zt = z̄t for all t ≥ k + 1 and the definitions ēt = E[et|If
k , Nk],

P̄t = cov[et|If
k , Nk], and Dn

t = I − Pn
t C

T
t (CtPn

t C
T
t + Vt)−1Ct for all t ≥ k + 1.

From the dynamics of the estimation error in (4.35), given the fact that Nt ≃ 0
for all t ≥ k + 1, we obtain

et+1 = (At −Kn
t Ct)et + wt −Kn

t vt,

where

Pn
t+1 = AtP

n
t A

T
t +Wt −Kn

t CtP
n
t A

T
t ,

Kn
t = AtP

n
t C

T
t (CtP

n
t C

T
t + Vt)

−1,

for t ≥ k+1 with initial condition Pn
k+1 = AkPkAT

k +Wk−KkCkPkAT
k . Accordingly,

we have

ēt+1 = (At −Kn
t Ct)ēt,

P̄t+1 = (At −Kn
t Ct)P̄t(At −Kn

t Ct)
T +Wt +Kn

t VtK
nT
t ,

for t ≥ k + 1 with initial conditions ēk+1 = Akεk −Kkνk and P̄k+1 = AkΣkAT
k +

Wk+KkNkKT
k . The initial conditions ē

1
k+1 and P̄ 1

k+1 were obtained by using (4.35).
Finally, following the definition of ϱ̂π̄k , we have

ϱ̂π̄k = E[V π̄
k+1|I

f
k , Nk]

=
∑N

t=k+1 −
θt
2 ln detDn

t + ēTt+1Γt+1ēt+1 + tr(Γt+1P̄t+1).

Incorporating this into (4.32), we obtain the result. !

4.3. Illustrative Example

In this section, we show an application of the theoretical framework we devel-
oped in this chapter. Consider an inverted pendulum on a cart observed by an
internal sensor (see Fig. 4.2). The parameters Ak, Bk, Ck, Wk, Vk, m0, and M0

are similar to those used in Chapter 2.
For this system, we are interested in designing a privacy filter that is employed

at the cart and a controller that is placed at a cloud. The cost function of form (4.12)
is specified by the weights QN+1 = diag{1, 1, 1000, 1}, Qk = diag{1, 1, 1000, 1},
Rk = 1, and θk = 100 for all 0 ≤ k ≤ N where N = 500. The state estimates x̌k

and x̂k are provided by Proposition 4.1 and Proposition 4.2 respectively. From The-
orem 4.1, it follows that the optimal perturbation policy is specified by z∗k = yk+nk,
and that the optimal control policy is u∗

k = −Lkx̂k. We approximated the variable
N∗

k according to Proposition 4.4 assuming that N∗
k is a diagonal matrix with similar

elements whose values are limited in the interval [0, 0.2], and obtained the control
gain Lk by solving the Riccati equation in Lemma A.1. We carried out a simula-
tion experiment. For a realization of the system, Fig. 4.3 and Fig. 4.4 illustrate the
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Figure 4.2. Model of an inverted pendulum on a cart. The sensor
is insourced, but the controller is outsourced to a cloud.

trajectories of the main variables of the system. In particular, the trajectories of
the position, velocity, pitch angle, and pitch rate are shown in Fig. 4.3. Moreover,
the trajectories of the perturbation covariance’s diagonal element, position pertur-
bation, pitch angle perturbation, and control are shown in Fig. 4.4. Although the
public information is noisy due to privacy preservation, the controller could obtain
a satisfactory performance.

4.4. Summary

In this chapter, we provided a theoretical framework for the analysis and de-
sign of cloud control systems with privacy filters. We formulated the problem as a
dynamic game, and characterized the optimal perturbation policy and optimal con-
trol policy such that the corresponding policy profile represents a Nash equilibrium.
We proved, under certain assumptions, that the optimal closed-loop perturbation
policy is an affine policy with additive Gaussian noise whose covariance particularly
depends on the estimation innovation at the controller and mismatch estimation
error; and that the optimal closed-loop control policy is a certainty-equivalence pol-
icy. Moreover, we synthesized a closed-form suboptimal perturbation policy with
a performance guarantee. The results here can be useful for the rate-distortion
problem in causal systems. In such a problem, the directed information measures
the data rate in the communication channel with feedback, and the privacy filter
developed here should be seen as a test channel.
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Figure 4.3. Trajectories of the position, velocity, pitch angle, and
pitch rate. The solid lines represent the state components and
the dotted lines represent the state estimate components at the
controller.
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Figure 4.4. Trajectories of the perturbation covariance’s diago-
nal element, position perturbation, pitch angle perturbation, and
control.



CHAPTER 5

Conclusions and Future Work

Ubiquitous communication, sensing, and computing have led to the emergence
of a new kind of complex systems. Our main goal in this thesis was to answer two
questions pertaining to control of such systems: 1) how does the control perfor-
mance change with respect to the quality of information? 2) what is the optimal
information collection policy? In this regard, we developed a unified theoretical
framework in the context of linear quadratic Gaussian control for the maximiza-
tion of the control performance subject to different constraints that restrict the
information flow in the system. The results have implications for decision making
in causal systems. We have already reviewed the results in the previous chapters.
Here, we discuss the common points, and propose general steps that are required
for the extension of our framework.

5.1. Conclusions

In this thesis, we introduced our framework and tackled three different prob-
lems. We formulated each problem as a dynamic game with a controller and a
mechanism that use closed-loop policies to influence a partially observable stochas-
tic process. We demonstrated that the controller and mechanism have to construct
dedicated estimators, and that the mechanism requires to construct the estimator
of the controller as well. We characterized the structures of the optimal closed-loop
control policy and optimal closed-loop information collection policy. We proved that
a separation between the optimal policies is achievable. In particular, we showed
that the former is a certainty-equivalence policy and the latter is a feedback policy
that depends on the sample path of the system, i.e., on an estimation innovation
and an estimation mismatch error.

5.2. Future Work

There are several directions for the extension of the framework presented in this
thesis. First, we developed our framework under some assumptions that reduce the
information set of the controller. One should study the optimal policies when
these assumptions do not hold. Furthermore, our framework was presented in the
context of linear quadratic Gaussian control. This can be extended to partially
observable Markov decision processes for instance. Moreover, in our framework
we used rollout algorithms for approximation of the optimal information collection
polices. Other approximation algorithms should be developed, and a comparison
between the results should be made. Finally, we considered different constraints
on the observation channel, and carried out a value of information analysis. We
suggest that future research should consider different constraints on the control
channel, and accordingly a value of control analysis should be carried out.
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Appendix

Here, we provide some definitions and lemmas that are used throughout this
thesis.

Definition A.1. Consider a team game with two decision makers. Let γ1 ∈ G1

and γ2 ∈ G2 be the policies of the first and the second decision makers respectively,
and J(γ1, γ2) be the cost function. A policy profile (γ1∗, γ2∗) represents a Nash
equilibrium [75] if and only if

J(γ1∗, γ2∗) ≤ J(γ1, γ2∗), for all γ1 ∈ G1,

J(γ1∗, γ2
∗
) ≤ J(γ1∗, γ2), for all γ2 ∈ G2.

The optimality considered in this study is in the above sense.

Definition A.2. Let Ic
k be the information set of the controller and Ĩc

k be the
information set of the controller when controls are equal to zero. The control has
no dual effect [76] of order r (r ≥ 2) if

E[Mr
k,i|Ic

k] = E[Mr
k,i|Ĩc

k],

where Mr
k,i = (xk,i − E[xk,i|Ic

k])
r is the rth central moment of the ith component

of the state conditioned on Ic
k. In other words, the control has no dual effect if the

expected future uncertainty is not affected by the prior controls.

Definition A.3. Let a bandpass signal s(t) at carrier frequency fc be repre-
sented by:

s(t) = x(t) cos(2πfct)− y(t) sin(2πfct),

where x(t) and y(t) are real baseband signals of bandwidth B ≪ fc. The energy of
the signal s(t) is defined as

E =
∫∞
−∞ s2(t) dt.

Definition A.4. The Q-function is defined as the tail function of the standard
Gaussian distribution:

Q(z) = 1√
2π

∫∞
x e−x2/2 dx.

Notice that the Q-function cannot be solved for in closed form.

Definition A.5. Let P(x) and Q(x) be two probability measures defined on a
measurable space. The Kullback-Leibler divergence [77] is defined as

D(P||Q) =
{ ∫

ln dP(x)
dQ(x)dP(x), if dP(x)

dQ(x) exists,

∞, otherwise,
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where dP(x)
dQ(x) is the Radon-Nikodym derivative. In practical terms the Kullback-

Leibler divergence is the amount of information lost when Q(x) is used to approxi-
mate P(x). The Kullback-Leibler divergence is always non-negative.

Definition A.6. Let P(x) be a probability measure defined on a measurable
space. The differential entropy [77] of the random variable x with distribution
P(x) is defined as

h(x) = −D(P||R),
where R(x) is the Lebesgue measure.

Definition A.7. Let x and y be jointly distributed random variables according
to the joint measure P(x, y) with marginal distributions P(x) and P(y) respectively.
The mutual information [77] of x and y is defined as

I(x; y) = D
(
P(x, y)||P(x)P(y)

)
.

We can equivalently show that I(x; y) = h(x)− h(x|y).

Lemma A.1. Consider a stochastic process with the following dynamics:

xk+1 = Akxk +Bkuk + wk,(A.1)

for 0 ≤ k ≤ N and with initial condition x0 where xk ∈ Rn is the state of the
process, Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×m is the input matrix, uk ∈ Rm

is the control input, and wk ∈ Rn is a white Gaussian noise with zero mean and
covariance Wk ≻ 0. We assume that wk is independent of x0. Moreover, consider
the following cost function:

Ψ = E
[
xT
N+1QN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk + θkσk
]
,(A.2)

where Qk ≽ 0, Rk ≻ 0, and θk ≥ 0 are weighting parameters and σk ∈ R is a
variable that can depend on xk and uk. Let Sk ≽ 0 be a matrix that satisfies the
following algebraic Riccati equation:

Sk = Qk +AT
k Sk+1Ak − LT

k (B
T
k Sk+1Bk +Rk)Lk,(A.3)

Lk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak,(A.4)

for 0 ≤ k ≤ N with initial condition SN+1 = QN+1. Then, the cost function is
equal to

(A.5)

Ψ = E
[
xT
0 S0x0 +

∑N
k=0 θkσk + wT

k Sk+1wk

+ (uk + Lkxk)
T (BT

k Sk+1Bk +Rk)(uk + Lkxk)
]
.

Proof. Using the process dynamics (A.1) and the Riccati equation (A.3), we
can write

xT
k+1Sk+1xk+1 = (Akxk +Bkuk + wk)

T

× Sk+1(Akxk +Bkuk + wk),
(A.6)

xT
k Skxk = xT

k

(
Qk +AT

k Sk+1Ak

− LT
k (B

T
k Sk+1Bk +Rk)Lk

)
xk.

(A.7)
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Consequently, we find

xT
N+1SN+1xN+1 − xT

0 S0x0

=
∑N

k=0 x
T
k+1Sk+1xk+1 − xT

k Skxk

=
∑N

k=0

{
wT

k Sk+1wk + 2(Akxk +Bkuk)TSk+1wk

+ xT
k L

T
k (B

T
k Sk+1Bk +Rk)Lkxk

− xT
kQkxk − uT

kRkuk + 2xT
kA

T
k Sk+1Bkuk

+ uT
k (B

T
k Sk+1Bk +Rk)uk

}
,

where the first equality is an identity, and in the second equality we used (A.6)

and (A.7) and also added and subtracted the term
∑N

k=0 u
T
kRkuk to and from the

right-hand side. Rearranging the terms in the above relation, we find

xT
N+1SN+1xN+1 +

∑N
k=0 x

T
kQkxk + uT

kRkuk

= xT
0 S0x0 +

∑N
k=0

{
wT

k Sk+1wk

+ 2(Akxk +Bkuk)
TSk+1wk

+ (uk + Lkxk)
T (BT

k Sk+1Bk +Rk)(uk + Lkxk)
}
.

Adding the term
∑N

k=0 θkσk to both sides of the above relation and taking expec-
tation, we obtain the result:

Ψ = E
[
xT
0 S0x0 +

∑N
k=0

{
θkσk + wT

k Sk+1wk

+ 2(Akxk +Bkuk)
TSk+1wk

+ (uk + Lkxk)
T (BT

k Sk+1Bk +Rk)(uk + Lkxk)
}]

= E
[
xT
0 S0x0 +

∑N
k=0

{
θkσk + wT

k Sk+1wk

+ (uk + Lkxk)
T (BT

k Sk+1Bk +Rk)(uk + Lkxk)
}]

,

where in the second equality we used the fact that wk is independent of xk. !

Lemma A.2. Let x and y be two random vectors that are jointly Gaussian
with the following mean and covariance:

E

[
x
y

]
=

[
mx

my

]
, cov

[
x
y

]
=

[
Rx Rxy

Ryx Ry

]
.

Then, the conditional distribution of x given y is also Gaussian with the following
mean and covariance:

E[x|y] = mx +RxyR
−1
y (y −my),(A.8)

cov[x|y] = Rx −RxyR
−1
y Ryx.(A.9)
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Proof. Let us define the variables ξ = x −mx − RxyR−1
y (y −my) and Rξ =

Rx −RxyR−1
y Ryx. We have

[
ξ

y −my

]
=

[
I −RxyR−1

y

0 I

] [
x−mx

y −my

]
,

and [
x−mx

y −my

]
=

[
I RxyR−1

y

0 I

] [
ξ

y −my

]
.

As the Jacobian of the transformation is one, we find that the joint distribution
of x and y can be written as

P(x, y) = (2π)−(n+p)/2(detR)−1/2

× exp
(
− 1

2ξ
TR−1

ξ ξ − 1
2 (y −my)TR−1

y (y −my)
)
,

where

R =

[
Rx Rxy

Ryx Ry

]
.

Moreover, the distribution of y is

P(y) = (2π)−p/2(detRy)
−1/2

× exp
(
− 1

2 (y −my)TR−1
y (y −my)

)
.

From determinant properties, we can write

detR = det(Rx −RxyR
−1
y Ryx) detRy = detRξ detRy.

Now, we can compute the conditional distribution of x given y as

P(x|y) = P(x, y)

P(y)
= (2π)−n/2(detRξ)

−1/2 exp
(
− 1

2ξ
TR−1

ξ ξ
)
.

This completes the proof. !
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