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I

Kurzfassung

In dieser Arbeit wird zur Reduktion des Rechenaufwands für raumakustische Simulatio-

nen im niedrigen Frequenzbereich ein Modellreduktionsverfahren verwendet. Die Methode

basiert auf der sogenannten Component Mode Synthesis. Das akustische System wird in

Substrukturen aufgeteilt, auf deren Ebene Analysen durchgeführt werden. In diesem an-

genäherten Modell des Gesamtsystems werden die Substrukturen durch Component-Modes

repräsentiert. Die Anzahl zusammengesetzter Moden, die für das Approximieren des akustis-

chen Systems notwendig ist, wird durch die Einführung von ”Modal Constraint Modes” oder

”Modal Attachment Modes” reduziert. Diese beschreiben das Verschiebungsmuster an der

Schnittstelle zwischen den Substrukturen. Die Anwendung der Methode wird, sowohl am

Beispiel des akustischen Fluids für die Kopplung von zwei und mehr Substrukturen, als auch

für Fluid-Struktur-Probleme, in zwei- und dreidimensionalen Simulationen gezeigt.

Abstract

In this thesis the calculation effort in room acoustical simulations at Low Frequencies is re-

duced with the help of a model reduction method. The applied model reduction is based on

the method of component mode synthesis. The acoustical system is divided into substruc-

tures and analyses are performed on the substructure level. In the approximated model of

the whole system the substructures are represented with component modes. The necessary

number of component modes for the approximation of the acoustic system is reduced by

introducing Modal constraint modes or Modal attachment modes. The modal constraint

and attachment modes describe the displacement pattern at the interface between the sub-

structures. This method is applied for coupling of two and more fluid substructures and for

Fluid-Structure Interaction problems in 2- and 3-dimensions.
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1 Introduction

1.1 Motivation and State of the Art

In everyday engineering practice the problem of predicting the vibrational behavior of acous-

tical systems often occurs. Knowing the physical behavior of the systems is a prerequisite

for providing a noise control and acoustic design.

Noise protection is very important for good working conditions in air enclosures like industrial

work spaces, big office rooms or machinery rooms. Also people need to be protected from

disturbing, vibration induced noise in their living surrounding as well as in all means of

transport (air, rail and road vehicles). The idea of providing the acoustical comfort of people

encouraged many researchers to work on the prediction of a sound field in an enclosed acoustic

volume, [Cremer and Heckl 2010] [Fahy 2005], [Fahy and Gardonio 2007]. The prediction

of the sound field is influenced by all the elements of the acoustical system and by their

interaction. Therefore the system needs to be observed as a whole.

Numerous methods are used in vibroacoustics for prediction of vibrations and induced sound

fields. The choice of the appropriate method is influenced by the characteristics of the system

and the frequency range of interest, see figure 1.1. Analytical method provide an exact

solution but their application is limited on simple systems. In the low frequency range the

system can often be presented as a multibody oscillator. For higher frequency ranges and

for more complex systems numerical and statistical methods have been developed. White

color in figure 1.1 marks the transition zones between methods in which different hybrid

approaches are possible (e.g. combination of numerical and statistical methods, or analytical

and numerical methods).

It should be mentioned that the division on the low and high frequency range depends on

the size of the system. Low frequency range usually considers the frequency band in which

the influences of single resonances can easily be distinguished. For example, on the left-hand

side of the figure 1.2 a room which has the volume of 25 m3 is shown. The room is limited

by a steel plate. At the steel plate a harmonic load F is applied. On the right-hand side
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of the figure, the measured transfer functions between the load and sound pressure in 18

different points are given. The transfer functions differ significantly in the higher frequency

range. These differences can be explained with the different contributions of single modes

which have eigenfrequencies that are close to each other.

FEM

BEM
SEA

fre
quency

low

high

complex

simple

boundary
conditions

limited

unlimited

s
y
s
te

m
s

Multibody
oscillator

analytical
algorithms

hybrid
approaches

Figure 1.1: Methods used for vibroacoustical simulations, depending on the characteristics of the
system and the frequency range, [Müller 2010]

Figure 1.2: Measured transfer functions in vibroacoustics, [Müller 2010]
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In the low frequency range (for vehicles and buildings - under 200 Hz) the prediction of the

sound field in acoustic enclosures usually can be supported by means of the Finite Element

Method (FEM). The application of this numerical method in acoustical problems is described

in [Harari 2006] and [Thompson 2006]. In these methods the system is divided into a finite

number of elements and the equation of motion of the system is solved for the degrees of

freedom of the elements. Numerical methods like FEM or the Boundary Element Method

(BEM) are convenient for detailed description of complex geometries and provide results

with a spatial resolution of the sound field. They allow the calculation of the deterministic

response of the system for deterministic load and defined model parameters. For higher

frequencies, the reliability of this method might be significantly reduced due to discretization

and also by the influence of small parameter variances, [Babuška et al 1997b] [Babuška et al

1997a]. Numerical models for higher frequencies require a very fine discretization which leads

to extensive calculations.

In the high frequency range energy methods like the Statistical Energy Analysis are usually

used, [Lyon and DeJong 1995] and [Keane and Price 1997]. This method is based on averaging

over frequency bands, points of excitation and points of observation. Due to the averaging the

assessment of influences of some changes on the sound field requires additional approaches,

e.g. the effects produced by the change of the position of the absorber inside the cavity.

Moreover, the resolution of the spatial distribution of the sound field and the possibility for a

detailed description of the boundary conditions is reduced. The fluctuations in the frequency

range, see figure 1.2, are smeared. For an appropriate application of the Statistical Energy

Analysis the existence of a high modal density and a sufficient modal overlap is necessary.

However, for lower frequencies the response of the system is predominated by individual,

well separated resonances. In order to model the coupling of structural vibrations with the

sound field inside of an acoustic cavity hybrid approaches that combine the SEA with FEM

have been created, [Shorter and Langley 2005] [Langley 2008].

In this work the FEM is used for room acoustical simulations. Numerous model reduction

methods have been developed over the years in order to reduce the calculation effort in

numerical methods, [Schilders et al 2008]. The model reduction method that is developed in

this work presents a modified version of the Craig-Bampton method, [Craig and Bampton

1968] [Craig 1981] [Craig 1995].

The Craig-Bampton method is a type of the Component Mode Synthesis (CMS) and has been

developed from the Hurty’s method, [Hurty 1967] [Collins et al 1972]. The basic idea of these

methods is, in the first step, to divide the structure into a set of substructures. Afterwards,

the analysis is performed on the substructure level. The substructures are represented with
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generalized coordinates in the approximated model of the full system. The transformation

from the degrees of freedom (DOFs) of a substructure to the generalized coordinates is

done by using the component modes (Ritz vectors). Through the development of the CMS

different types of the component modes were used, [Shyu et al 1997] [Jezequel 1985] [Goldman

1969]. A detailed overview of the development of the CMS and related works will be given

in section 4.2. The Craig-Bampton method is very effective in reduction of the calculation

time, especially when the influence of the modification of the system is investigated.

An idea for reducing the number of attachment modes necessary for the representation of

a substructure was introduced in [Chan 2006]. The attachment modes are not anymore

depending on the number of interface DOFs but on the frequency range of interest. In this

thesis the method that uses modal attachment modes for solving complex fluid geometries

and Fluid-Structure Interaction (FSI) problems is developed.

The FSI problems describe the coupling of the vibrating structures and the acoustic volume.

The coupling method is described in [Bhattacharyya and Premkumar 2003] and [Wandinger

1994].

1.2 Layout of the Thesis

This thesis presents a model order reduction method based on the Craig-Bampton method.

A modified version of the Craig-Bampton method is used for dividing an acoustic cavity into

substructures. The solid structures at the boundaries of the fluid or inside of the fluid are

treated as separate substructures.

Chapter 2 introduces the basic elements that can be found in an acoustic enclosure: the

fluid, the vibrating structures and the absorbers. The chapter begins with the derivation of

the wave equation in the fluid. In the following, the types of waves that can appear in solid

structures are described. Also, the principles of the fluid-structure interaction and sound

radiation are explained. At the end of this chapter the basic types of absorbers and the

values that characterize them are given.

Numerical methods used for solving the equations of motion of the fluid and of the solid

structure are given in Chapter 3. The first part of this chapter introduces the h-version of

the FEM and the second part of the chapter describes the hp-version of the FEM. The choice

of the shape functions and the determination of the element matrices for the fluid, structure

and coupling FSI elements are explained. The FEM and the SFEM are used to calculate the

normal and the attachment modes of the substructures.



1.2 Layout of the Thesis 5

At the beginning of Chapter 4 the historical development of the Component Mode Synthesis

method is presented. Upon this the Craig-Bampton method is described in detail. Next, the

idea for reducing the necessary number of attachment modes is introduced and its advantages

are proven through several numerical examples. Afterwards, the determination of the steady-

state solution with the help of the modal analysis is given. At the end of this chapter the

application and the advantages of the modified Craig-Bampton method in FSI problems are

shown.

Chapter 5 describes the acoustical measurements which were performed in the scope of this

work in order to verify some simulation results. The chapter starts with the description of the

correlation measurement technique which is used for determination of the Impulse Response

Functions (IRF) and Transfer Functions (TF). Afterwards, the advantages and disadvantages

of the different signal types are given. Finally, the measurements of absorption coefficients,

impedances and pressure distribution are described and the results are compared with the

simulations.

The conclusion of the presented work and the ideas for the future work are given in chapter

6.
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2 Background

2.1 Representation of Sound Pressure in Time and

Frequency Domain

A signal can be equivalently described in the time and in the frequency domain. The relation

between the description of a signal in the time domain and in the frequency domain is given

by the Fourier-series and the Fourier-integrals [Brigham 1997] [Müller 2010].

A signal which is repeated after a time period T is a periodic signal, see figure 2.1. The

fundamental frequency of the periodic function f0 is the reciprocal value of the time period:

f0 = 1
T

.

t

p (t) T T

t

p (t)

b)a)

Figure 2.1: a) Periodic function, b) Transient function

The signal in the time domain can be given as a linear superposition of pressure oscillations

with different time periods. With the help of Fourier-series, a periodical function p(t) is

described as follows:

p(t) =
∑

r=1,2,...

pre
i(r2πf0)t (2.1)

where pr are complex Fourier-coefficients which are determined by minimizing the difference

between the original function p(t) and the Fourier-series and i is the imaginary number.
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When the load is transient it can be considered to be periodic with the period T →∞ and

in this case Fourier-series is substituted with a Fourier-integral.

p(t) =

+∞∫
−∞

p(f)ei(2πf)tdt (2.2)

The spectral function of the signal is denoted with p(f).

In this thesis the acoustical systems will be analyzed in the frequency domain. They are

assumed to be linear, time-invariant (LTI) systems. For such a system the calculation of the

response on an input signal is typically more numerically expensive in the time domain than

in the frequency domain.

In the time domain the response is obtained as a convolution of the impulse response function

of the system and the input signal, while in the frequency domain the steady state response is

determined by multiplying the system’s transfer function with the Fourier transformed of the

input signal. In computer processing it is simpler and faster to perform the multiplication.

When the impulse response function (IRF) of the system is sought, a calculation in the

frequency domain will not be time-saving. The Fourier transformed impulse signal is a

constant spectrum for the frequencies from −∞ to +∞. Hence it is necessary to make an

approximation of the impulse in order to obtain a reasonable number of frequencies for which

the transfer function should be determined. In order to determine the IRF from the transfer

function it is necessary to perform the inverse Fourier transformation (IFT), see figure 2.2.

Time domain Frequency domain

FT

IFT

p(t) p(f)

w(t) W(f)

c
o
n
v
o
lu

ti
o
n

In
p
u
t 
s
ig

n
a
l

R
e
s
p
o
n
s
e

m
u
ti
p
lic

a
ti
o
n

IR
F

 *
 p

(t
)

F
T

p
(f

)

Figure 2.2: Calculation of the response of the system in the time and the frequency domain

However, the analysis of the system in the frequency domain in this work is reasonable since
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the primary goal of the work is to determine the resonant frequencies of the acoustical system

and solving the partial differential equations is simpler in the frequency domain, therefore it

is not necessary to perform the IFT.

For the determination of the transfer function in the frequency domain the response of the

system on the harmonic signal is analyzed. The response is harmonic and has the same

frequency as the input signal, if only the steady-state part of the solution needs to be

determined.

2.2 Sound in Enclosures

The acoustic behavior of an enclosure is influenced by the properties of all the individual

elements of that acoustic system and also by their dynamic interaction. One acoustic system

consists of various structural elements that contain or are surrounded by a fluid.

The basic difference between the acoustic behavior of a fluid in an enclosure and a fluid

in an unbounded domain is the existence of the eigenmodes and their eigenvalues in an

enclosure while in unbounded domain sound waves can propagate without interruption. The

eigenmodes appear due to the interference of the intersecting waves.

The existence of the eigenmodes results in the fact that the response of the fluid on the

vibration of the structures that are surrounding it or that are placed inside of the fluid is

strongly frequency dependent [Fahy and Gardonio 2007]. Depending on the impedances of

the adjoining structures a coupled model can be necessary. Thus, the interaction of the fluid

and the structures needs to be modeled.

This thesis considers an acoustic system that consists of a fluid, vibrating structures and

absorbers. In the following chapters the basic equations that describe the behavior of the

components of the system and their interaction will be given.

2.2.1 The fluid

The basic difference between fluids and solids is the fact that the fluids cannot resist the

shear force. Their common property is that they both resist the change of a volume. This

property of the fluid allows the phenomenon of sound in fluids, [Fahy 2005].
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The derivation of the wave equation

The wave equation describes a wave-like motion in solids, liquids, gas and electromagnetic

waves.

The sound propagation in air is also described by the wave equation. The propagation of

the air-borne sound is non-dispersive.

For the simplicity of the derivation and better understanding of the parameters that describe

a wave motion, the wave propagation in 1-dimensional space will be observed. Afterwards,

the wave equation in 3-dimensional space will be derived.

The 1-dimensional problem can be imagined as the air that fills out a long tube with a very

small cross-section A, see figure 2.3 a). The pressure distribution over a cross-section is

constant for each position x inside of the tube. The air can move only in the direction of the

tube.

x

x dx

p(x) p(x+dx)

dx

a)

b)

q dxi

Figure 2.3: a) 1-dimensional fluid b) Forces acting on infinitesimally small part of the fluid, compare
to [Müller 2010]

When the air inside of the tube is moving an inertia force is appearing. The inertia force

qi(x, t) can be determined with the help of D’Alembert’s principle:

qi(x, t) = −ρf · ax(x, t) (2.3)

where ax(x, t) marks the acceleration of the air and ρf is the density of the air.
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The acceleration of the fluid is defined as:

ax(x, t) =
∂2ux(x, t)

∂t2
=
∂vx(x, t)

∂t
. (2.4)

In (2.4) vx(x, t) marks the velocity of the fluid and ux(x, t) stands for displacements in

longitudinal x-direction.

The pressure in the fluid is proportional to the strain in fluid ε:

p(x, t) = −εx(x, t) · E. (2.5)

E stands for the Young’s modulus of elasticity of the fluid. The strain in the fluid is defined

as a change of length of the fluid:

εx(x, t) =
∂ux(x, t)

∂x
. (2.6)

Taking into account equations (2.3)-(2.6) and by writing the the equilibrium of forces that are

acting on the infinitesimally small part of the fluid (see figure 2.3 b) the following equations

are obtained:
∂2ux(x, t)

∂x2
− ρf
E
· ∂

2ux(x, t)

∂t2
= 0 (2.7)

∂2p(x, t)

∂x2
− ρf
E
· ∂

2p(x, t)

∂t2
= 0. (2.8)

When the derivative with respect to time t is marked with · and the derivative with respect

to the space x is marked with ′ the equations (2.7) and (2.8) can be rewritten as:

u′′ − ρf
E
ü = 0

p′′ − ρf
E
p̈ = 0

(2.9)

The wave velocity in fluid cf is defined as:

cf =

√
E

ρf
. (2.10)

After equation (2.10) is introduced in (2.9), the wave equation for the plane wave obtains

its well-known form:
u′′ − 1

c2f
ü = 0

p′′ − 1
c2f
p̈ = 0.

(2.11)

A more detailed derivation of the 1d wave equation is presented in A.1.
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For the derivation of the 3-dimensional wave equation figure 2.4 will be observed. The figure

shows an infinitesimally small part of a 3d fluid on which the pressure and the inertia forces

are acting.

dxdy

d
z

p(x)

p(x+dx)

p(y)

p(y+dy)

p
(z

)

p
(z

+
d

z
)

q ·dx
ix

q ·dy
iy

q
·d

z
iz

x
y

z

Figure 2.4: Infinitesimally small part of a 3d fluid on which the pressure and the inertia forces are
acting

The inertia force for that occurs due to the motion of a 3d fluid is:

qix = −ρf
∂2ux(x, y, z, t)

∂t2
qiy = −ρf

∂2uy(x, y, z, t)

∂t2
qiz = −ρf

∂2uz(x, y, z, t)

∂t2
.

(2.12)

After writing the equilibrium of forces for the infinitesimally small part of the fluid in carte-

sian coordinates shown in figure 2.4 we obtain:

∂p

∂x
= −ρf

∂2ux(x, y, z, t)

∂t2
∂p

∂y
= −ρf

∂2uy(x, y, z, t)

∂t2
∂p

∂z
= −ρf

∂2uz(x, y, z, t)

∂t2
.

(2.13)

By using the gradient notation these three equations can be connected into one vector equa-

tion, [Cremer and Müller 1976]:

∇p = −ρf
∂2u

∂t2
. (2.14)

Equivalently like in equations (2.5) and (2.6) pressure in a 3d fluid can be described as a

function of the change of volume:

p = −
(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
· E, (2.15)

which can be also written is vector notation as:

divu = − 1

E
p. (2.16)
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After applying the divergence operation on the equation (2.14) we obtain:

div∇p = −ρfdiv
∂2u

∂t2
. (2.17)

Because the time and space derivatives are independent equation (2.17) can also be written

as [Cremer and Müller 1976]:

div∇p = −ρf
∂2

∂t2
(divu) . (2.18)

Now equation (2.16) can be introduced into (2.18) and finally the wave equation for a 3d

fluid is obtained:

∆p =
1

c2
f

p̈. (2.19)

With ∆ the Laplace operator is marked and cf denotes the wave velocity in the fluid.

The same can be written in extended form:

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

1

c2
f

· ∂
2p

∂t2
. (2.20)

The wave equation can also be written in spherical (2.21) and cylindrical coordinates (2.22).

1

R2

∂

∂R

(
R2 ∂p

∂R

)
+

1

R2sinϑ

∂

∂R

(
sinϑ

∂p

∂ϑ

)
+

1

R2sin2ϑ

(
∂2p

∂ϕ2

)
=

1

c2
f

· ∂
2p

∂t2
(2.21)

with R =
√
x2 + y2 + z2.

Spherical coordinates are sketched in figure 2.5.

x

yz

R

rj

J

Figure 2.5: Spherical coordinates
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In cylindrical coordinates the wave equation becomes:

1

R

∂

∂R

(
R
∂p

∂R

)
+

1

R2

∂2p

∂ϕ2
+
∂2p

∂x2
=

1

c2
f

· ∂
2p

∂t2
(2.22)

with R =
√
y2 + z2.

Cylindrical coordinates are shown in figure 2.6.

x
y

z

R j

Figure 2.6: Cylindrical coordinates

The wave equation can be transformed into the frequency domain which results in the

Helmholtz equation for the pressure p(x, y, z) in the frequency domain:

∆p = −ω
2

c2
f

p. (2.23)

Here the derivative theorem

dn

dtn
f(t) (2πif)nF (f) (2.24)

is applied. In equation (2.23) ω marks the circular frequency (ω = 2πf). The Fourier

transformation is marked with and F (f) is Fourier transformation of the function

f(t).

Selected Analytical Solutions of the Helmholtz equation

The following analytical solutions of the Helmholtz equations give an insight into the waves

that can occure. A general solution of the wave equation can be formed out of superposition

of these waves and it is not connected with any specific sound source.



14 2 Background

• Plane waves:

p(x, y, z, t) = Aei(kxx+kyy+kzz±ωt) = Aei(kx±ωt)

with k =

kxky
kz

 and x =
[
x y z

] (2.25)

In a 1-dimensional fluid plane waves are defined as:

p(x, y, z, t) = Aei(kxx±ωt) = f1(kxx+ ωt) + f2(kxx− ωt) = f1(x+) + f2(x−) (2.26)

The function f1(x+) represents the wave that is traveling in the negative x direction

and the function f1(x−) represents the wave that is traveling in the positive x direction.

When the wave is propagating in an infinitely long tube only one of the functions exists.

• A spherical wave is propagating in all directions from a point source. The distance

from the source is marked with r.

p(r, t) =
A

r
ei(kr−ωt) (2.27)

• A cylindrical wave is generated by a line source with constant values along the coordi-

nate x. The distance from the source is marked with r.

p(r, t) =
A√
r
ei(kr−ωt) (2.28)

2.2.2 Vibrating Structures

Vibrating structures are parts of acoustic systems. They can be found at the boundaries of

the fluid as well as inside. The vibrating structures can behave as a sound source or a sound

absorber. The absorbing behavior of the vibrating structures will be explained in section

2.2.3.

Vibrating structures behave as absorbers when they vibrate due to the incident sound. They

influence the sound field inside of the enclosure by their vibration.Their behavior is typically

described by their reflecting and absorbing characteristics.

The structure can behave as a sound source, e.g. if an external force is applied on the

structure. Then the structure excites the fluid with its movement and sound is radiated.
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Waves in Structures

Displacements and stresses in a homogeneous, isotropic and linearly-elastic material are

described with the Lamé equation A.2.7. A way for solving this equation using Helmholtz

decomposition is shown in A.2.2. Through this solution it is shown that in an unbounded 3d

continuum, unlike fluid, two types of waves can appear - compressional and shear waves.

However in this work beam- or plate-like structures are observed and an approach for solving

the Lamé equation that differs from Helmholtz approach can be applied. This approach is

used because for the analysis of thin structures certain simplifications can be applied.

For deriving the equation of motion for a thin beam the Euler-Bernoulli beam theory is used.

This theory is valid for linearly elastic, isotropic material. It is assumed that the cross-section

of the beam remains plane and perpendicular to the deformed axis of the beam, which means

that the shear deformation can be neglected, [Graff 1991]. These assumptions are usually

fulfilled in long, thin beams when the hight of the beam is 8-10 times smaller than the wave

length of the bending wave. When the wave length gets shorter, higher beam theories need

to be applied.

x

y

Q (x,t)y Q (x+dx,t)y

M (x,t)z M (x+dx,t)z

q(x,t)

q(x,t)

a)

F (x,t)i

A

dx

b)

x

z

y

x

N(x,t) N(x+dx,t)

Figure 2.7: a) A solid beam exposed to a distributed, transverse load q(x, t) b) Equilibrium of an
infinitesimal part of the beam

Figure 2.7 a) shows a beam which is loaded by a continuously distributed transverse load

q(x, t).

It is assumed that the distributed transverse load causes only transverse displacement and

curvature of the cross-section, [Timoshenko 1953] [Bauchau and Craig 2009]. Considering
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this assumption as well as the assumptions of the Euler-Bernoulli theory the displacement

field becomes:
ux(x, y, z) = −y duy(x)

dx

uy(x, y, z) = uy(x)

uz(x, y, z) = 0.

(2.29)

Figure 2.7 b) presents the equilibrium of an infinitesimally small part of that beam. Mz

marks the bending moment around the z-axis, Qy is the transversal force and qi is the

inertia force. The inertia force equals: qi = m∂2uy
∂t2

, where m marks the mass of the solid

element.

According to linearized theory the following definitions of normal and shear strains (εx, εy, γxy)

are obtained:
εx = ∂ux

∂x

εy = ∂uy
∂y

γxy(x, y, z) = ∂ux
∂y

+ ∂uy
∂x
.

(2.30)

From Hooke’s law the normal stress in x direction σx can be calculated:

σx = E · εx = E · ∂ux
∂x

= E · y · ∂
2uy
∂x2

. (2.31)

Now the bending moment around the axis z can be calculated:

Mz =

∫
A

σx · y · dA =

∫
A

E · y2 · ∂
2uy
∂x2

dA = EIz
∂2uy
∂x2

(2.32)

with

Iz =

∫
A

y2dA. (2.33)

The equilibrium of the vertical forces that are acting on the part of the beam shown in figure

2.7 b) gives the following expression:

− ∂Qy

∂x
−m∂2uy

∂t2
+ q(x, t) = 0. (2.34)

From the equilibrium of the bending moments around the point marked with A and after

neglecting the small terms of higher order we become:

∂Mz

∂x
+Qy(x, t) = 0. (2.35)

By combining equations (2.32), (2.34) and (2.35) the equation of motion of the beam is
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received, [Timoshenko 1953]:

EI
∂4uy
∂x4

+m
∂2uy
∂t2

= q(x, t). (2.36)

In case of free vibrations equation (2.36) becomes:

EI
∂4uy
∂x4

+m
∂2uy
∂t2

= 0. (2.37)

For the bending wave equation we will assume the solution of the form:

uy = Aei(kx−ωt). (2.38)

This solution can now be introduced in equation (2.37) and we obtain:

EIk4 −mω2 = 0. (2.39)

The bending wave number k can now be calculated from:

k4 =
ω2m

EI
. (2.40)

It can be seen that this equation has eight solutions, so finally the solution of the equation

(2.37) is:

uy =
(
A+e−ikbx +B+e−kbx + C+e+ikbx +D+e+kbx

)
eiωt +(

A−e+ikbx +B−e+kbx + C−e−ikbx +D−e−kbx
)

e−iωt
(2.41)

with

kb =
√
ω 4

√
m

EI
. (2.42)

A,B,C and D mark complex constants (+ and − values mark the complex conjugate pair).

The first component of in equation (2.41) marks the wave propagating in positive x-direction,

the second component is the near field in positive x-direction, and the third and the forth

component mark the propagating and near field wave in negative x-direction. The near field

effects can typically be neglected at the certain distance from the edge. Finally the speed of

the bending wave cb can be determined:

cb = λf =
2π

kb
f =

ω

kb
=
√
ω

4

√
EI

m
(2.43)

As it can be seen the speed of the bending wave is frequency dependent, or in other words:

The bending waves are dispersive. In equation (2.43) ω marks the frequency of the bending
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wave.

According to Kirchhoff-Love theory of plates (classical plate theory) the partial differential

equation of a thin plate that is positioned in x− y plane is given by:

D

(
∂4uz
∂x4

+ 2
∂4uz
∂x2∂y2

+
∂4uz
∂y4

)
+m

∂2uz
∂t2

= 0. (2.44)

D marks the bending stiffness.

D =
Eh3

12(1− ν2)
(2.45)

In (2.45) h stands for the thickness of the plate. It is assumed that: uz << h and that the

wave length of the bending waves is much larger than h. Similar to (2.38) can again assume

the solution of the equation (2.44) in the following form:

uz = Aei(kxx+kyy+ωt) (2.46)

After introducing this solution into eqaution (2.44) we recieve the following expression:

D(k2
x + k2

y)
2 −mω2 = 0. (2.47)

Similar to equation (2.41), the solution of this equation gives the propagating and near field

waves in positive and in negative x and y direction. Figure 2.8 shows a bending wave that is

propagating in positive x and y direction. This wave represents one of the possible solutions

of equation (2.47). If the plate is infinitely long the the bending wave in the plate with

wave lengths λx and λy corresponds to the bending wave in a beam with the wave length
1
λ2w

= 1
λ2x

+ 1
λ2y

. The beam is perpendicular to the wave front.

λ
π

=
 2

/k
y

y

y

λ π= 2 /kxx

x

λ

π
=
 2

/k
w

w

Figure 2.8: Bending waves in the plate
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The Fluid-Structure Interaction

The formulation of the fluid-structure interaction problem depends on the variables that are

used for describing the vibration pattern of the fluid and of the structure. In the structure

the variable is generally the displacement while in the fluid several formulations are possible.

In [Wandinger 1994] different formulations of the fluid are divided into two groups: simple

and redundant formulations. A formulation is simple if one scalar field is used to describe

the fluid while redundant formulations use more functions than necessary to describe the

fluid. Variables in simple formulations can be: the pressure, the displacement potential or

the velocity potential. In redundant formulations a displacement field or a combination of

the pressure and the displacement potential is used.

Many authors, including [Wang and Bathe 1997], [Bao et al 2001] and [Wang 2008] used

redundant formulations. These formulations are self-adjoint and therefore no additional

interface conditions need to be applied. However, it is known that in these formulations

spurious non-zero frequency circulation modes appear. In order to avoid this effect, additional

constraints need to be introduced. Moreover, like the name redundant already shows, the

number of variables that is used is larger than necessary (e.g. if the displacement formulation

is used the number of unknowns in the fluid is three times bigger compared to the pressure

formulation) which requires large memory capacity of computers.

In order to reduce the number of variables, in this work a pressure description of the fluid

is chosen. In this formulation the fluid-structure formulation problem requires the coupled

system that consists of the elastic equation of the structure, the fluid equation and the inter-

face conditions that will bring asymmetric terms in the system mass and stiffness matrices.

When the system matrices are asymmetric the computational time is longer, however, these

negative effects can be diminished by using a method for acceleration of the computation

which is presented in chapter 4.5.

The influence of the structure on the fluid can be included into the fluid equation of motion

(2.19) in two manners. Firstly, it can be introduced as a boundary condition in which case

the equation of motion will be homogeneous if no additional load is acting on the fluid.

Secondly, it can be represented as forces that are acting on an unbounded fluid domain,

[Fahy 2005]. In this dissertation the vibrating structures will be introduced as a boundary

condition.

When the fluid is surrounded with rigid walls the boundary condition for the wave equation

(2.19) is:
∂p

∂n
= 0 (2.48)
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Where n marks the normal on the fluid boundary.

If instead of a rigid wall, a vibrating structure is limiting fluid the change of volume in the

direction perpendicular to the interface is proportional to the accelerations of the structure

(law of inertia):
∂p

∂n
= −ρf · ün (2.49)

ün marks the component of the fluid acceleration in direction normal to the common interface.

This acceleration is caused by the movement of the structure and therefore ün = üs, where

üs stands for the acceleration of the structure.

The fluid pressure that is acting on the interface is applied as a force on the structure. This

load is acting over the whole interface between the fluid and the structure. This interface

is usually referred to as the wet interface [Bhattacharyya and Premkumar 2003]. So the

equation of motion e.g. of a 1-dimensional beam-like structure becomes:

EI
∂4uy
∂x4

+m
∂2uy
∂t2

= pb. (2.50)

Here b marks the width of the wet surface.

The numerical solution for now described fluid-structure interaction problem will be given

in chapter 3.

Sound radiation to an infinite domain

Now the radiated sound pressure from an infinite plate placed in the x − y plane at the

position z = 0 will be determined. The plate’s oscillation pattern can be described via a

Fourier approach. One element of the Fourier approach is given by:

vs(x, y, t) = v0e
−iksxxe−iksyye−iΩt (2.51)

where the vs marks the velocity of the plate, ksx and ksy are the wave numbers in the plate

in x and y direction. Now the expected solution of the wave equation is:

p(x, y, z, t) = p0e
−iksxxe−iksxye−ikzze−iΩt (2.52)

We now just observe the radiated wave which is propagating in the positive z direction. In

equation (2.52)kz mark the wave numbers in fluid in z direction for the frequency Ω.
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After introducing the solution (2.52) in (2.20) the wave equation receives the following form,

[Cremer et al 2005]: (
k2
sx + k2

sy + k2
z −

Ω2

c2
f

)
p(x, y, t) = 0, (2.53)

where cf mark the speed of sound in the fluid.

This equation is always fulfilled if:

k2
sx + k2

sy + k2
z −

Ω2

c2
f

= 0. (2.54)

From (2.54) the wave number in z-direction kz equals:

k2
z =

Ω2

c2
f

− k2
sx − k2

sy. (2.55)

The ratio Ω2

c2f
can also be marked with k and it defines the total wave number in the fluid:

k2 = k2
sx + k2

sy + k2
z . (2.56)

When the fluid borders an oscillating plate at the position z = 0 the velocity of the fluid in z

direction vfz at the boundary needs to equal the velocity of the plate vs, [Cremer and Heckl

2010]:

vfz (z = 0, x, y) = vs(x, y). (2.57)

From the law of inertia the velocity of the fluid can be determined:

vf =
1

iΩρf
∇(p). (2.58)

Therefore, the velocity in y direction is defined as:

vfz (x, y, z, t) =
p0kz
Ωρf

e−iksxxe−iksyye−ikzzeiΩt. (2.59)

After introducing expressions (2.51) and (2.59) into boundary condition (2.57) at the position

z = 0, the amplitude of the radiated pressure in the fluid is resulting in:

p0 =
Ωρf
kz

v0 = ρfcf
k

kz
v0. (2.60)
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Now this pressure amplitude can be introduced in the solution of the wave equation (2.52)

and the sound pressure radiated from an oscillating plate is:

p(x, y, z, t) =
ρfcfv0√

1− k2sx+k2sy
k2

e−iksxxe−iksyye−i
√
k2−k2sx−k2syzeiΩt. (2.61)

The ratio of the wave numbers in the plate and in the fluid
k2sx+k2sy

k2
determines the radiation

of the sound of a plate. If k2
sx + k2

sy > k the value

√
1− k2sx+k2sy

k2
is imaginary and the sound

field is declining exponentially with the distance z from the plate. The sound field is given

by:

p(x, y, z, t) =
ρfcfv0

i

√∣∣∣1− k2sx+k2sy
k2

∣∣∣e
−iksxxe−iksyye

−
√
|k2−k2sx−k2sy|zeiΩt. (2.62)

In this case the vibration of the plate causes only local or near field disturbances in the

adjacent fluid. The particles of the fluid show elliptical motion and no power is radiated, see

figure 2.9 left.

Figure 2.9 illustrates the effect of the vibrating structure on the fluid. With ks the wave

number in the vibrating plate is marked (k2
s = k2

sx + k2
sy).

ks

k

ks

z

Figure 2.9: Schematic representation of the radiation of the sound from a vibrating structure,
[Müller 2010]

When k2
sx + k2

sy < k the value

√
1− k2sx+k2sy

k2
is real and the plate emits the progressive waves

and the radiation of the plate has far field effects. The radiated sound pressure waves are:

p(x, y, z, t) =
ρfcfv0√

1− k2sx+k2sy
k2

e−iksxxe−iksyye−i
√
k2−k2sx−k2syzeiΩt. (2.63)



2.2 Sound in Enclosures 23

These waves are shown on the right side of figure 2.9.

The limiting frequency that separates the near field and far field radiation of the plate is

the frequency for which the speed of sound in fluid equals the speed of bending waves in the

plate cf = cb, see equation (2.43). This frequency is called the coincidence frequency fc and

it is calculated from:

fc =
1

2π

c2
f√
EI
m

. (2.64)

where E, I and m mark the Young’s modulus, the inertia and the mass of the plate.

Figure 2.10 shows the coincidence frequency as a border between near and far field radiation

of an infinite plate. It can be seen that for the frequencies lower than the coincidence

frequency the speed of bending waves is smaller then the speed of sound, hence, the vibration

of the plate will cause only near field disturbances in the fluid.

1
0  
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f / f
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air

far fieldnear field
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Figure 2.10: Coincidence frequency as a border between near and far field radiation of an infinite
plate

The radiation of a structure that has a finite dimensions can also be analysed with respect

to the ratio of the wave number in the structure and in the fluid. Figure 2.11 shows the

oscillation of a plate in the spatial x-domain and in the wave number domain. In case when

an infinitely long plate is oscillating in the sinusoidal form, in the wave number domain the

oscillations of the plate is described with two Dirac-functions of the amplitude v0
2

at the

position ±kb, where the kb = Ω
cb

marks the wave number in the plate for the frequency Ω and

the speed of the bending wave cb, see figure 2.11 d).
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When the structure has finite dimensions the oscillation pattern can be obtained by multi-

plying the infinite sinus function of the equivalent beam with a window function that starts

at −A
2

and ends at A
2

in the spatial x-domain, where A corresponds to the area of the plate

(see figure 2.11 b)). A sinus cardinalis function in the transformed domain corresponds to

a window function in the original domain and the multiplication is substituted with the

convolution.

After the convolution of the two Dirac functions, figure 2.11 d), and the sinus cardinalis

function, figure 2.11 e), the description of the oscillation of a finite plate in the wavenumber

domain is received, see figure 2.11 f).

The gray rectangle in figures 2.11 d) and f) marks the range of the wave numbers that

are relevant for the radiation (values for which the structure radiation has far field effects),

[Müller et al 2006].

In figure 2.11 f) it can be seen that even when kb > k there will still be wave lengths that

radiate sound. However, the intensity of the radiated sound will be increased significantly

when kb < k.
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Figure 2.11: Representation of the velocity of the plate for the frequency Ω in the spatial x-domain
and in the wave number domain, [Müller et al 2006]
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2.2.3 Absorbers

In 2.2.1 and 2.2.2 it has been described how the sound waves are traveling through fluids

and elastic structures. It has also been mentioned that vibrating structures can absorb the

part of the acoustic energy of the sound wave. In this chapter the absorption phenomenon

and the most commonly used absorbers in room acoustics will be described.

When a sound wave arrives at the boundary of the fluid the related energy will only be

partly reflected while the other part will be transmitted or absorbed. Figure 2.12 shows how

an incident wave with the energy Ei is after the contact with the boundary reflected Er,

transmitted Et and absorbed Ea.

The absorption coefficient α is described as the ratio between the not reflected energy and

the incident energy:

α =
Et + Ea
Ei

=
Ei − Er
Ei

= 1− r. (2.65)

The reflection coefficient is marked with r.

Figure 2.12: Incident wave Ei is after the contact with the boundary reflected Er, transmitted Et

and absorbed Ea

The most commonly used absorbers in room acoustics can be divided into passive absorbers,

plate and Helmholtz resonators [Fuchs 2007]. These three types of absorbers are sketched

in figure 2.13. Number 1 in the figure marks the porous material, number 2 stands for the

air cushion, the plate and the reflective wall are denoted with numbers 3 and 4, respectively.

The thickness of the porous material is marked with dp and the thickness of the air cushion

is da.
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a) b) c)
da

dp

4 4 41 1

2 22

1

33

Figure 2.13: a) Passive absorber, b)Plate resonator and c) Helmholtz resonator

Passive absorber

Passive absorbers are built from porous or fibrous materials such as foams, textiles, mineral

wool or cotton wool. When a sound wave enters the absorber it causes vibration of the

fibrous or open-pored structured material. These vibrations cause friction inside of the

material which reduces the kinetic energy of the sound wave. Consequently the effect of the

porous absorber is higher if the sound velocity is also higher, [Fuchs 2007], [Buchschmid and

Müller 2008].

At the position of a totally reflective wall the sound pressure of the sound wave has its

maximum while the sound velocity equals zero. The sound velocity has its maximum at

the position that is one quarter of the wave length distanced from the wall. Therefore, the

absorber needs to be either thick enough in order to absorb the sound waves at limiting low

frequency effectively or it can be placed at a certain distance da from the reflective wall like

it is shown in figure 2.13 a).

Plate and Helmholtz resonators

At the resonant frequency of Plate and Helmholtz resonators the energy is absorbed due to

their resonant vibrations.

Plate resonators are typically low frequent absorbers. Depending on the ratio between fre-

quency of excitation and coincidence frequency they can be modeled as a mass-spring system

or a plate. They consist of a plate that is placed in front of an air cushion. The cushion can

be filled with a porous material like it is shown in figure 2.13 b). The resonant frequencies of

such a system depend on the boundary conditions and mass of the plate as well as from the

the depth of the cushion and the material that it is filled with. By adjusting this parameters
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it is possible to obtain the desired resonant frequencies of the absorber, [Fuchs 2007], [Ford

and McCormick 1969].

The sound waves excite the plate and the sound energy of the wave is dissipated by the

damping inside of the plate or by the porous layer.

By using perforated plates Helmholtz resonators are obtained, see figure 2.13 c). When the

sound wave arrives to the resonator the air inside of the perforations starts oscillating and

it behaves as an inert mass and it is added to the mass of the plate. The air cushion behind

the resonator acts like a spring. The mass of the air inside of the slots and holes of the

absorber should not be small compared to the mass of the air moved by the incident wave

[Fuchs 2007]. The area-related mass of the air moved by a wave can be determined from:

m′′a = ρ0λ
2π

, with ρ0 marking the density of the air and λ the wave length.

The bandwidth of the Helmholtz resonators can be increased the same way like for plate

resonators by filling the cavity behind the resonator with a porous layer but it can also be

increased by changing the flow resistance by adding a fleece material in front or behind the

holes and slots.

The perforations can be created in such a way that the absorber obtains several eigenvalues

that lie close to each other. This way the Helmholtz resonators can become the broadband

absorbers.

Modeling of absorbing boundary conditions

In order to include absorbers in the model of an acoustic enclosure it is necessary to model a

boundary condition for a fluid that is at the same time able to reflect and to absorb the sound

waves. The degree to which the sound waves are absorbed and reflected can be described by

the acoustic impedance.

The acoustic impedance is defined as the ratio between the complex amplitude of the har-

monic pressure and the associated particle velocity or the volume velocity through a surface,

[Fahy 2005].

One possible solution of the wave equation is given in 2.25. For a specific case in which

the waves are perpendicular on the surface of the absorber, the pressure distribution over

the absorber area is constant and kx = ky = 0. Hence, when a harmonic loading with the



28 2 Background

amplitude p0 and frequency Ω is acting on the fluid the pressure waves are defined as:

p(z, t) = (p0e
−ikzz︸ ︷︷ ︸
pi

+ rp0e
ikzz︸ ︷︷ ︸

pr

)eiΩt. (2.66)

The incident wave is marked with pi and pr is the reflected wave. The ratio between the

amplitudes of the reflected and the incident wave is the reflection coefficient r. The wave

number is marked with k.

With the help of the law of inertia the sound velocity can be determined:

v(z, t) =
i

Ωρ

∂p(z, t)

∂z
=
p0

ρc
(e−ikz︸︷︷︸

pr

− reikz︸︷︷︸
pi

)eiΩt. (2.67)

Now the impedance becomes:

Z =
p

v
= ρc

1 + r

1− r
. (2.68)

When the impedance is known the absorption and the reflection coefficient can be determined

from:

r =

Z
ρc
− 1

Z
ρc

+ 1
α = 1− |r|2 =

4Re
(
Z
ρc

)
[
Re
(
Z
ρc

)
+ 1
]2

+
[
Im
(
Z
ρc

)]2 . (2.69)

From the absorption coefficient it can be seen that at the totally reflecting boundary (α = 0)

the real part of the impedance vanishes, while at the totally absorbing boundary (α = 1)

the imaginary part of the impedance equals zero.

The product ρc is called the characteristic acoustic impedance and it is marked with Z0. It is

a material property and depends on the material density ρ and the speed of the longitudinal

wave c. For air at the temperature of 0◦C ρ = 1.29 kg
m3 , c = 331m

s
, the characteristic acoustic

impedance Z0 = 428Ns
m3 .

However, typically the angle between the absorber cross-section and the sound wave differs

from 90◦ and the the sound pressure and sound velocity at the absorber surface will not

be constant and therefore the impedance will also depend on the wave numbers in x and y

direction, [Buchschmid and Müller 2008].

For the calculation of wave number dependent impedances of absorbers the porous foam

has to be modeled. A method in which the system of coupled partial differential equations

is transformed in the wave number-frequency domain in order to directly determine the
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impedances that are depending on the angle of the incident waves, is described in detail in

[Buchschmid 2011].

The measurement of impedances in the impedance tube is described in chapter 5. In order

to obtain the wave number dependent impedance through measurements it is necessary to

vary angles of the incident waves [Fuchs 2007].

In this work the influence of the absorber on the fluid is described over the normal specific

acoustic impedance. The normal specific acoustic impedance Zn, also known as boundary

impedance, is defined as the ratio between the complex amplitude of surface pressure and

the component of particle velocity normal to the surface and directed to the surface.

Zn =
p

vn
(2.70)

The component of the velocity normal to the interface is marked with vn.

The impedances of the absorbing structures that are included in the numerical model can

either be measured or calculated.
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3 Numerical Methods

In chapter 2 the differential equations of the fluid and the radiating structures are given.

These equations can be solved either analytically or numerically. Both methods are searching

for a solution that will satisfy the differential equation and fulfill the boundary conditions.

An analytic solution exists only for simple geometries and boundary conditions. For more

realistic systems that consist of more elements and have complex boundary conditions the

adequate numerical methods need to be applied.

3.1 Finite Element Method

First numerical methods appeared at the beginning of the 20th century. The methods have

been developed through years and they led to the creation of the Finite Element Method

(FEM). The FEM is a numerical method that is determining an approximate solution of

partial differential equations and integral equations.

In the FEM the problem domain is represented of a finite number of interconnected subdo-

mains. The division of the domain into subdomains is known as discretization.

[Hughes 2000] states that the main components of the FEM are: the variational statement

of the problem and the approximate solution of that variational equation. The approximate

solution is found by using the finite element functions. It consists of pre-defined shape func-

tions and coefficients that need to be determined. The shape functions are defined for each

subdomain and they are approximating the solution within the element. The subdomains

are connected by imposing the condition of the continuity of the displacements. The equilib-

rium of the system is obtained through the application of the Galerkin method of weighted

residuals.

In this chapter a short overview of the FEM is given. More detailed descriptions of the

method can be found in [Hughes 2000], [Rao 1982], [Zienkiewicz et al 2006a], [Zienkiewicz

and Taylor 2006], [Zienkiewicz et al 2006b] and [Wüchner 2007]. The implementation of the
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FEM in MATLAB is described for instance in [Pozrikidis 2005], [Kwon and Bang 2000] and

[Kattan 2007].

3.1.1 The FEM Procedure

In [Zienkiewicz et al 2006a], [Kwon and Bang 2000] and [Rabold 2010] the basic steps in the

FEM calculations are defined as follows:

• The FE Analysis starts with the building of the model. In this part of the analysis

the geometry and materials are defined and usually some assumptions and idealization

(e.g. the material can be assumed to be homogeneous and isotropic) are applied. Also,

in the building of the model the discretization of the domain is performed. The model

is divided into non overlapping elements. The response of each element is described

through a finite number of degrees of freedom. When choosing the type of the element

another idealization can be made. Even though all the structures are in reality 3-

dimensional, it can often happen that the behavior or dimensions in 1 or 2 dimensions

are dominant in comparison to other dimensions and therefore the structure can be

modeled over 1- and 2- dimensional beam, plate and shell elements, [Rabold 2010].

The accuracy of the solution depends on the choice of the elements and on the used

discretization. The accuracy of the solution can be improved by refining the mesh or

by using the form functions of higher polynomial degree.

• Degrees of freedom for each node of the element need to be defined and an form function

that describes the possible deformation should be chosen. The element mass and

stiffness matrices are assembled using the weak formulation.

Ke =

∫
Ωe

∇NTk∇NdΩe Me =

∫
Ωe

NTmNdΩe with Ω =
e=1⋃
nel

Ωe (3.1)

The element mass and stiffness matrices are marked with Me and Ke, N marks the

matrix that contains element shape functions, Ω is the domain of the element and

system mass and stiffness characteristics are denoted with m and k.

• The mass and stiffness matrices of the whole structure are assembled with

the help of the direct stiffness method. Since the characteristics of each element have

been described in terms of its state variables (e.g. pressure, velocity, displacement) at

certain discrete nodes along its edges, the assembly of element matrices into a global
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matrix is based on the fact that the displacement of a node shared by two elements

must be equal when considered as a part of both elements.

K = Anel
e=1K

e M = Anel
e=1M

e (3.2)

A denotes the assembly operator which is giving the connection between elements local

degrees and freedom and the global degrees of freedom [Hughes 2000].

• Applying the boundary conditions such as supports or applied loads and displace-

ments. There are three basic categories of boundary conditions. Dirichlet boundary

conditions are directly defining the state variable and they are introduced on the left-

hand side of the equation of motion, e.g. (2.36). Neumann boundary conditions are

defining the force variable and they are introduced on the right-hand side. The third

type of boundary conditions - Robin boundary conditions, define the relation between

the force and the state variable.

• Solving the system of equations for different types of loads F. In linear static

analysis the system of equations can be solved directly. For dynamic analysis the

solution can be sought in time or in frequency domain. In time domain analysis as

in the non-linear problems the step-by-step method needs to be applied. In frequency

domain it is necessary to find the solution for each frequency of interest.

(
K− ω2

nM
)

u = F (3.3)

• Optionally the homogeneous system of equations can be solved. Determinating

the systems eigenvalues ωn and eigenmodes Ψn.

(
K− ω2

nM
)

Ψn = 0 (3.4)

This way determined eigenmodes Ψn can be used for performing the modal analysis

on a reduced FE model like it will be shown in chapter 4.

• In the post-processing phase the stresses and strains on the element level are de-

termined.

• The final step includes the interpretation and the control of the results.
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3.1.2 The Fluid Finite Elements

As it is stated in 2.2.2 the chosen variable for the fluid in this work is pressure, therefore the

Helmholtz equation will be observed in the form in which it is given in (2.23).

The shape functions in the fluid

In the scope of the FEM the pressure in the fluid is described as:

p =
n∑
i=1

piNi = p1N1(x, y, z) + p2N2(x, y, z) + ...+ pnNn(x, y, z) (3.5)

In equation (3.5) Ni mark the shape functions and pi the corresponding coefficients. The

number n equals the number of degrees of freedom of the element.

The exactness of the FEM solution can be increased by refinement of the FE mesh (h-version

of the FEM) or by increasing the polynomial degree of the shape functions (p-version of the

FEM). Also a combination of these two methods, hp-FEM is possible.

In h-version the shape functions usually have a low polynomial degree l. When l > 1

the additional nodes are introduced between the end nodes of the elements. The shape

functions have the value 1 in one node and value 0 in all the other nodes. In p-version the

shape functions have higher polynomial degree and they are for example built from highly

orthogonal Legendre Polynomials. Another characteristic of the p-version is that the set

of shape functions of a higher polynomial degree contains the shape functions of the lower

polynomial degree.

Figure 3.1 shows the examples of the shape functions of a 1-dimensional element for h- and

p-version FEM for polynomial degree l = 1, 2, 3.

l=1

l=2

l=3

l=1

l=2

l=3

Figure 3.1: Examples for the shape functions for 1-dimensional element: h-version FEM(left) and
p-version FEM (right), [Düster 2001]
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Exemplarily, [Rank et al 2003] and [Dey et al 2006] have shown the advantages of the p- and

hp-version of FEM, however, due to the simpler implementation, initially in this work the

h-version of FEM has been used for the model reduction method that is described in chapter

4. Afterwards, some calculation examples have been performed using the Spectral Finite

Element Method. This method will be described in section 3.2.

In order to guarantee that the approximate solution will converge to the exact solution with

the refinement of the mesh the shape functions need to fulfill the following conditions [Hughes

2000]:

• Smoothness on element interior Ωe,

• Continuity of primary variables of adjoint elements at the boundary Γe,

• Completeness.

The first two conditions are influenced by the theory that elements should represent, e.g. if

the derivatives in the stiffness matrix are of order m the Cm continuity on Ωe and the Cm−1

continuity on Γe.

The third condition requires that the element shape function is able to exactly represent an

arbitrary polynomial. Completeness is a property of the whole set of the shape functions for

one element and not just the property of an individual shape function [Wüchner 2007].

Figure 3.2 shows a 1d fluid element of the length L and its shape functions of polynomial

degree p=1. The nodes of the element are marked with i and j. The shape functions need

to provide only C0-continuity over the element boundaries because the highest derivative

of the pressure in the weak formulation of the Helmholtz equation is the first derivative.

The derivation of the weak formulation is given in the subsection: The Fluid Element

Matrices.

i j

1

1

Ni

Nj

L

x

Figure 3.2: 1d fluid element with linear shape functions
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The shape functions are:

Ni = 1− x

L
= 1− ξ and Nj =

x

L
= ξ. (3.6)

In equation (3.6) the ratio ξ = x
L

is the dimensionless (or natural) coordinate.

Isoparametric Representation

The concept of the isoparametric representation will now be explained on the example of the

shape functions for 2d fluid elements.

An element of a simple geometry in parameter space (ξ, η) is chosen, see figure 3.3 (left).

All the shape functions are formulated in this parameter space. Afterwards, the mapping

between the parameter space and the real space is defined. Finally, the main idea of the

isoparametric representation is to choose the same shape functions for interpolation of the

physical quantities and geometry.

ξ

η

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

x

y

1 (x ,y )11

2 (x ,y )22

4 (x ,y )4 4

3 (x ,y )3 3

2 (1,-1)

x={ }x
y

ξ={ }ξ
η

Figure 3.3: Quadrilateral domain and original coordinate system [Hughes 2000]

With help of the shape functions the mapping between the coordinates in the parameter

space ξ =

{
ξ

η

}
and the coordinates in the real space x =

{
x

y

}
is realized:

x(ξ, η) =
4∑

a=1

Na(ξ, η)xea

y(ξ, η) =
4∑

a=1

Na(ξ, η)yea

(3.7)
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The shape functions Na are determined by supposing the bilinear expansions, [Hughes

2000]:

x(ξ, η) = α0 + α1ξ + α2η + α3ξη

y(ξ, η) = β0 + β1ξ + β2η + β3ξη
(3.8)

The coefficients α and β are determined from the conditions:

x(ξa, ηa) = xea

y(ξa, ηa) = yea,
(3.9)

for a = 1, 2, 3, 4. The shape functions are:

N e
1 = 1

4
(1− ξ)(1− η),

N e
2 = 1

4
(1 + ξ)(1− η),

N e
3 = 1

4
(1 + ξ)(1 + η),

N e
4 = 1

4
(1− ξ)(1 + η).

(3.10)

An example of a bilinear shape function Na for the node a is shown in figure 3.4. This

shape is not a linear polynomial but it varies linearly along the edges of the quadrilateral

element.

a

1
Na

Figure 3.4: Bilinear shape function

In order to assure completeness the condition:

4∑
a=1

N e
a(ξ, η) = 1 (3.11)

needs to be checked:

4∑
a=1

N e
a(ξ, η) = 1

4
(1− ξ)(1− η) + 1

4
(1 + ξ)(1− η)

+ 1
4
(1 + ξ)(1 + η) + 1

4
(1− ξ)(1 + η) = 1.

(3.12)
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Consequently, the pressure in the 2d fluid is determined by using the same shape functions

for each element:

p(ξ, η) =
4∑

a=1

Na(ξ, η)pea. (3.13)

For numerical representation of the 2d fluid triangular elements can also be used. For 3d

simulations hexahedral and tetrahedral elements will be used. The shape functions can be

determined using the same procedure see equations (3.8) - (3.10).

The fluid element matrices

In the following, the weak formulation of the Helmholtz equation will be derived. Afterwards,

the discretization of the problem will be performed and the expressions for the element

matrices will be obtained.

The request for calculating the second derivative in the Helmholtz equation (2.23) will be

weakened with help of the following integral over the problem domain Ω:

∫
Ω

(
∆pw +

ω2

c2
f

pw

)
dΩ = 0, (3.14)

where w is an arbitrary weighting function.

When the equation (3.14) is integrated by parts the weak formulation of the Helmholtz

equation is obtained:

∫
Ω

(
ω2

c2
f

wp−∇w∇p

)
dΩ +

∫
Γ

wtdΓ = 0. (3.15)

In equation (3.15) Γ marks the boundary of the domain Ω and t is a projection of the pressure

gradient on the normal vector of the boundary.

The weak formulations in mechanics are also known as virtual work or virtual displacement

principles.

The approximated solution in a domain of a single element Ωe becomes:

∫
Ωe

(
ω2

c2
f

wepe −∇we∇pe
)
dΩ +

∫
Γe

wetdΓ = 0. (3.16)
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When:
pe = Np N = [N1, N2, ..., Nn] p = [p1, p2, ..., pn]

we = Nw w = [w1, w2, ..., wn]
(3.17)

where we marks arbitrary constants, we obtain:

∫
Ωe

(
ω2

c2
f

NTNp−∇NT∇Np

)
dΩ +

∫
Γe

NtdΓ = 0. (3.18)

From equation (3.18) we yield in the matrix vector formulation written as:

[
Ke − ω2Me

]
p = Fe (3.19)

were Ke and Me stand for elements stiffness and mass matrix while Fe marks the load vector

that is acting on the element boundaries.

Ke =
∫
Ωe

∇NT∇NdΩe

Me = 1
c2

∫
Ωe

NTNdΩe

Fe =
∫
Γe

NtdΓe

(3.20)

The element mass and stiffness matrices are symmetric, banded and positive-definite which

allows very efficient computer solution of the problem (3.19).

For calculating the element stiffness matrix it is necessary to determine the partial derivatives

of the shape functions in the global coordinate system. These derivatives are determined with

the help of the partial derivatives in the local coordinate system. Exemplarily derivatives of

the shape functions for a 2d fluid element are given:[
∂Ni

∂ξ
∂Ni

∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

][
∂Ni

∂x
∂Ni

∂y

]
(3.21)

The matrix of derivatives of the vector of global coordinates with respect to the vector of

local coordinates is called the Jacobian matrix and is marked with J:

J =
∂(x, y)

∂(ξ, η)
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (3.22)
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By inverting the Jacobian matrix the derivatives of the shape functions in the global coor-

dinate system can be determined: [
∂Ni

∂x
∂Ni

∂y

]
= J−1

[
∂Ni

∂ξ
∂Ni

∂η

]
. (3.23)

The integration that is performed in order to determine the elements matrices and vectors

also requires the transformation from the local to the global coordinate system, [Rabold

2010]. For an arbitrary function q(ξ, η) over the surface A the transformation is defined

as: ∫
A

q(x, y)dA =

∫
x

∫
y

q(ξ, η)dxdy =

+1∫
−1

+1∫
−1

q(ξ, η) |J| dξdη (3.24)

where |J| marks the determinant of the Jacobian matrix.

These integrals are solved numerically by applying quadrature rules. For example, the Gaus-

sian quadrature rule approximates a definite integral with a weighted sum of the values of

the function (wi, wj) in certain points (ξi, ηj) inside of the integration domain:

+1∫
−1

+1∫
−1

q(ξ, η) |J| dξdη ≈
ni∑
i=1

nj∑
j=1

wiwjq(ξi, ηj) |J| (3.25)

In equation (3.25) ni and nj mark the number of Gauss points in ξ and η directions. When

the same shape functions are used in both directions ni = nj.

3.1.3 The Structure Finite Elements

In this chapter exemplary, the finite elements for a beam structures will be presented. A

remark can be made that in case of plane waves in an infinitely large plate the plate can

be approximated with a beam in the direction perpendicular to the wave front, see chapter

2.2.2.

The principle of virtual work gives the equilibrium condition that the sum of the virtual

work of internal forces and the virtual work of the external forces equals zero:

δWint + δWext = 0. (3.26)
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A simple supported beam is shown in figure 3.5. Continuously distributed load q and mo-

ments m as well as the concentrated force Q0 and moment M0 are acting on the beam.

uy

ux

y

x

q

m

Q0
M0

x0

uy

β

Figure 3.5: Simple beam exposed to distributed and concentrated forces and moments, compare
to [Wüchner 2007]

The angle between the cross section of the beam in undeformed and deformed configuration

is marked with β. This angle consist of two parts:

β = γ +
duy
dx

(3.27)

where γ marks the transverse strains.

The virtual work of the internal forces is:

δWint =

L∫
0

(Mzδκ+Qδγ)dx. (3.28)

The Euler-Bernoulli beam theory assumes that γ = 0 and therefore the virtual work of

internal forces equals:

δWint =

L∫
0

Mzδκdx =

L∫
0

EIκδκdx =

L∫
0

EI
∂2uy
∂x2

δ
∂2uy
∂x2

dx (3.29)

where Mz marks the bending moment, κ the curvature, E the Young’s modulus and I is

moment of inertia of the beam.
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The virtual work of the external forces, when δw and δβ comply with boundary conditions

given in figure 3.5 is:

δWext =

L∫
0

(qδw +mδβ)dx+Q0δu0 +M0δβ0. (3.30)

When equations (3.29) and (3.30) are introduced in (3.26) the weak formulation of the

differential equation of the beam is obtained.

The virtual work of internal forces of the beam includes second derivatives of displacement u,

hence the variational index equals 2. The highest derivative of the displacement imposes the

condition of the C1 continuity, which means that the shape functions need to be continuous

and have continuous first derivatives.

The shape functions in the structure

The Hermitian cubic shape functions are the simplest shape functions that can satisfy the

condition of the C1 continuity across the elements boundaries.

The structural elements require additional nodal degrees of freedom in form of displacement

derivatives (nodal rotations). The nodal rotations are marked with ϕ. The interpolation

function of the displacements along the beam element in dependence of the nodal degrees of

freedom is defined as follows:

ue =
[
Nui Nϕi Nuj Nϕj

]

ui

ϕi

uj

ϕj

 = Nu. (3.31)

The Hermitian shape functions are:

N e
ui(x) = 1

4
(1− ξ)2(2 + ξ)

N e
ϕi(x) = 1

8
L(1− ξ)2(1 + ξ)

N e
uj(x) = 1

4
(1 + ξ)2(2− ξ)

N e
ϕj(x) = −1

8
L(1 + ξ)2(1− ξ)

(3.32)

where ξ is the dimensionless natural coordinate ξ = 2x
L
− 1.

The shape functions are sketched in figure 3.6.
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For the structural elements in 2d the trilateral and quadrilateral elements were used and the

shape functions also needed to fulfill the C1 continuity condition.

i j

Nui

L

ui uj

φi φj

Nuj

φi =1

Nφi

Nφj

ui =1

φj =1

uj =1

ξ= -1 ξ= 1

Figure 3.6: Hermitian shape functions, [Wüchner 2007]

The structure element matrices

The equation of motion of a beam (2.37) in a discretized form becomes

[
Ke − ω2Me

]
uy = Fe (3.33)

were Ke and Me stand for elements stiffness and mass matrix while Fe marks the force vector

that is acting on the element and uy are the displacements in y direction. These matrices

are calculated similarly to the fluid element matrices (3.20):

Ke =
∫
Ωe

EIBTBdΩe

Me =
∫
Ωe

ρsN
TNdΩe

Fe =
∫
Γe

NtdΓe −
∫
Ωe

NfdΩe.

(3.34)

In equation (3.34) B marks the matrix that contains the second derivatives of the shape

functions N, f is the vector of external loading and t marks the vector of prescribed boundary

conditions.



3.1 Finite Element Method 43

3.1.4 The Fluid-Structure Coupling Finite Elements

For determining the FE formulation of the system that consist of a fluid and a structure the

equations of motion of both components need to be observed, see equation (3.19) and (3.33),

and the boundary conditions (2.49) and (2.50) should be introduced.

The equations (3.19) and (3.33) can be rewritten as:

[Kf − ω2Mf ] p = Ff + Fu

[Ks − ω2Ms] uy = Fs + Fp

(3.35)

The load that is acting on the fluid can be separated into the load caused by the accelerations

of the structure at the fluid-structure interface Fu and the external load that is acting on

the other fluid boundaries Ff . Furthermore, the load that is acting on the structure can

be divided into the external load applied on the structure Fs and the load due to the fluid

pressure acting on the fluid-structure interface Fp.

The fluid and the structure are discretized like it is given in (3.17) and (3.31). The interpo-

lation functions in the fluid are marked with Nf , Ns denote the interpolation functions in

the structure.

Figure 3.7 shows the fluid-structure interface where element ij is a 1d structure element with

the degrees of freedom: ui, ϕi, uj and ϕj , while element ijkl is a 2d fluid element with the

degrees of freedom: pi and pj at the interface ij.

pi pj

ui

φj
φi

i j

ji

uj

kl

e

e

e

e
e

e

Figure 3.7: A 2d fluid FE coupled with a 1d structure element
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The interface forces are calculated as follows, [Bhattacharyya and Premkumar 2003]:

Fp =
∑
e

∫
Sl

Ne
s
TnpdS =

∑
e

(∫
Sl

Ne
s
TnNe

fdS

)
pe

Fu =
∑
e

∫
Sl

Ne
f
TnpdS =

∑
e

(
−ρf

∫
Sl

Ne
f
TnNe

sdS

)
üe

(3.36)

with pe = [pei pej ]
T and üe = [üei üej ]

T .

In equation (3.36) n is the outward normal vector at the fluid-structure interface Sl.

After introducing (3.36) in (3.35) we obtain:

[Kf − ω2Mf ] p = Ff +
∑
e

(
−ρf

∫
Sl

Ne
f
TnNe

sdS

)
üe

[Ks − ω2Ms] uy = Fs +
∑
e

(∫
Sl

Ne
s
TnNe

fdS

)
pe

(3.37)

The equation of motion of the coupled system can now be written as:[
Ms 0

Msf Mf

][
ü

p̈

]
+

[
Ks Ksf

0 Kf

][
u

p

]
=

[
fs

ff

]
. (3.38)

The asymmetric terms in the mass and the stiffness matrix of the coupled system result from

the interface forces and they are determined as:

Ksf =
∑

e

(∫
Sl

Ne
s
TnNe

fdS

)

Msf =
∑

e

(
−ρf

∫
Sl

Ne
f
TnNe

sdS

) (3.39)

3.2 Spectral Finite Element Method

The Spectral Finite Element Method (SFEM) is a class of the Finite Element Methods also

known as hp-FEM. In SFEM the exponential convergence rate is achieved by refining the

element mesh (h-refinement) and by increasing the polynomial degree of the shape functions

(p-refinement).
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SFEM are especially convenient for acoustical simulations because their shape can nicely

describe smooth, wave-like patterns that correspond to e.g. pressure distribution in a room.

Moreover, in order to achieve the same exactness of the solution SFEM involve less DOFs

compared to h-version of FEM, [Pospiech 2010].

The shape functions in SFEM

The basis functions for the SFEM on the reference interval [-1,1] are obtained from the modal

C0 continuous expansion of the Legendre polynomials from degree 1 to P , [Pospiech et al

2009] [Buchschmid et al 2010]:

Nl(ξ) =



1−ξ
2
, l = 0,

(1−ξ
2

)(1+ξ
2

)J1,1
l−1(ξ), 0 < l < P,

1+ξ
2
, l = P .

(3.40)

In (3.40) J1,1
l−1 marks the Jacobi polynomial of polynomial degree l and parameters α = 1,

β = 1.

The shape functions for 2- and 3-dimensional domains are obtained with the help of tensor

products, e.g. for a 2d reference element shown on the left side of figure 3.3 the shape

functions Nlm are:

Nlm(ξ, η) = Nl(ξ)Nm(η), (3.41)

with 0 ≤ l,m ≤ P and (ξ, η) ∈ [−1, 1].

For integration inside of each element the Gauss-Lobatto-Legendre quadrature is applied.

The quadrature points ξj and the weights w0,0
j are defined as [Pospiech 2010]:

ξj =



−1, j = 1,

ξ1,1
j−2,Q−2, j = 2, ..., Q− 1,

1, j = Q,

w0,0
j = 2

Q(Q−1)(J0,0
j−2(ξj))

2 , j = 1, ..., Q .

(3.42)
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The quadrature points ξ1,1
j−2,Q−2 are the zeros of the (Q − 2) Jacobi polynomial J1,1

Q−2. The

number of quadrature points Q has to be chosen so that Q = P + 2.

The differentiation matrix B, with respect to the previously defined quadrature points is

defined by:

Bij =



−Q(Q−1)
4

, i = j = 1,

J1,1
Q−1(ξi)

(ξi−ξj) J1,1
Q−1(ξj)

, i 6= j, 1 ≤ i, j ≤ Q,

0, 2 ≤ i = j ≤ Q− 1,

Q(Q−1)
4

, i = j = Q .

(3.43)
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4 Component Mode Synthesis

4.1 Overview

The need for analyzing complex structural systems has led to the development of the Finite

Element Method (FEM). Parallel to the development of the FEM the urge for reducing the

size of FE model for dynamic analysis arose in order to reduce the necessary computation

time and computer storage. The FE model is usually built for the static analysis and therefore

it consists from a very detailed set of grid points which is necessary for the description of

internal stresses and strains. Hence, it is often infeasible to perform dynamic analysis on the

FE model of the whole structure.

Section 4.2 gives an overview of the development of the Component Mode Synthesis (CMS)

and the relevant literature. Furthermore, the main steps of the CMS technique as well as

the advantages of this method are pointed out.

Section 4.3 gives a detailed description of the traditional Craig-Bampton method and the

basic terms used in this method: component modes, transformation matrix, constraint and

attachment modes. This section also introduces an improvement of the Craig-Bampton

method that has been developed in this thesis. Finally, simulation results which show the

advantages of this newly developed approach are given.

Section 4.4 shows the application of Craig-Bampton method in modal analysis. A possible

error that can appear due to modal truncation is emphasised and a method for reducing that

error is given.

The last section of this chapter (section 4.5) shows how the new approach that has been

developed in 4.3 can be applied in FSI problems. Additionally, results of several simulations

are presented.
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4.2 Development of the Component Mode Synthesis

Method

The CMS, initiated by Hurty in [Hurty 1965] quickly became a very popular model reduction

technique. The basic idea is to divide the structure into a set of substructures, perform anal-

ysis on the substructure level and represent the substructures with generalized coordinates

in the full system assembly.

The term component modes denotes a group of assumed modes (Ritz vectors), that are used

as basis vectors for transformation from the degrees of freedom (DOFs) of a substructure

to the generalized coordinates. This group of assumed vectors is arranged to form the

transformation matrix.

Exemplarily in scope of the CMS an elastically supported beam can be described through

normal modes Ψn, which are in figure 4.1 shown with rigid boundary conditions, and con-

straint modes Ψc, which introduce the elastic supports in example in figure 4.1. Therefore

the displacements of the beam u(x) can be calculated as:

u(x) =
∑
n

anΨn +
∑
c

bcΨc (4.1)

The modal coefficients an and bc will be referred to as generalized coordinates.

Ψn Ψcx

Figure 4.1: Elastically supported beam can be described with a group assumed modes (Ritz vectors)

Various types of component modes were included in the transformation matrix through the

development of the CMS. Theses modes are sketched in figure 4.2. With the dashed line in

figure 4.2 the interface that connects the substructure with other parts of the structure is

marked. The thicker line in figure 4.2 marks the original domain and boundary conditions
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and the thinner line presents a possible mode shape. In Hurty’s method the transforma-

tion matrix included rigid body modes, fixed-interface normal modes and constraint modes

([Hurty 1967] and [Collins et al 1972]). Rigid body modes exist if a substructure can move

without a deformation, see figure 4.2 c). Fixed-interfaces normal modes are obtained as a so-

lution of the eigenvalue problem when the DOFs at the interfaces between the substructures

are totally constrained, see figure 4.2 a). The CMS formulations that use fixed-interface

normal modes are also known as fixed-interface methods.

a) b)

e)

c) d)

f) g)

Ψn - fixed interface Ψn - free interface

Ψc - modal Ψa - nodal Ψa - modal

Ψr Ψc - nodal

Figure 4.2: a) Interface (dashed line) with fixed DOFs, b) Interface with free DOFs, c) Rigid-body
modes d) Nodal constraint modes and e) modal constraint modes f) Nodal attachment
modes g) Modal attachment modes

Through different stages of development of the CMS method also a free-interface method

[Shyu et al 1997] , a hybrid method (combination of fixed and free interface DOFs in normal

modes) ([Jezequel 1985] and [Tran 2001]) and loaded interface method [Gladwell 1964] were

used. The free-interface method introduced by Goldman [Goldman 1969] uses only rigid-body

modes and free-interface normal modes. The free-interface normal modes are the solution of

the eigenvalue problem when the interface DOFs are completely free, see figure 4.2 b). The

advantage of this method is that it denies the need for calculation of constraint modes and

in specific vibration cases can give satisfying results [Goldman 1969]. In general vibration

problems it suffers from weak convergence and can cause significant errors. In the hybrid

method the normal modes used to describe the component are calculated for a case when

some nodes are free and some nodes are fixed. Statically determined deflection influence

coefficients may be used to improve the accuracy of the solution. The hybrid method has

improved exactness compared to the free-interface method but requires a more complex

implementation than the fixed-interface method. The loaded interface method gives the

most accurate results but also requires a much more complex implementation in comparison
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to the fixed-interface method [Curnier 1983].

In [Craig and Bampton 1968], [Craig 1981] and [Craig 2000] Craig and Bampton slightly

modified Hurty’s method by using only normal and constraint modes as they considered rigid-

body modes to be a special case of constraint modes. This method is the most frequently

used CMS and it is known as Craig-Bampton method. In the Craig-Bampton method the

constraint modes are calculated by assigning the unit displacement to the each interface

DOFs, see figure 4.2 c). The use of attachment modes and load-dependent modes is described

in [Craig 1995] and [Abdallah 1990]. The constraint and the attachment modes are the modes

that allow the mobility of the interface.

An idea for reducing the number of necessary constraint and attachment modes in fixed-

interface method was introduced in [Chan 2006] and [Sremcevic et al 2009a]. In these works

the constraint and attachment modes were calculated by assigning a certain pattern to the

whole interface simultaneously, see figure 4.2 d). Chan used this concept for the problem of

Fluid-Structure Interaction (FSI) where the vibrating structure was placed at the boundary

of the fluid. For this dissertation the method has been extended for FSI problems in which

the vibrating structure is inside the fluid. It has also been broadened to tackle the problems

of assembling any user-defined number of fluid substructures. Furthermore, the criteria for

choosing the constraint and attachment modes are defined. The method developed in this

thesis is named MCM approach (MCM stands for Modal Component Modes).

A short overview of CMS methods is given in figure 4.3.

Figure 4.3: Modes used in different CMS methods

Additionally, according to [Yin et al 1991] and [Aoyama and Yagawa 2001], the Craig-
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Bampton method has only been used for connecting several substructures where different

interfaces do not have a common point, see figure 4.4 a). In this work the method has been

adapted to solve problems in which several interfaces meet in a common point, or have a

common edge in a 3d case, figure 4.4 b).

A B

C

A B C

a) b)

Figure 4.4: a) Typical configuration solved in [Yin et al 1991] and [Aoyama and Yagawa 2001]
b) Configuration solved in this dissertation

According to [Qu 2004] and [Suarez and Singh 1992] the CMS technique includes four major

steps :

• The partition of the whole system into subsystems, see figure 4.5. It is usually led by

different functions or different geometrical and dynamic characteristics of the subsys-

tems;

• The FEM is used to form the discrete model of each subsystem. The physical DOFs

of the subsystems are substituted by a reduced set of generalized coordinates. The

transformation from DOF to generalized coordinates is done through a transformation

matrix that consists of component modes;

• While assembling the global structure, each substructure is represented by a set of

basis vectors (Ritz vectors), where the number of vectors that are taken into account

is significantly smaller than the number of DOFs inside each related substructure.

The assembling of the structure is based on the fulfillment of the compatibility and

equilibrium conditions [Reyonso 1985];

• The resulting reduced-size model of the global system is used for all the analysis of the

system. To compute the responses in physical DOFs it is necessary to use the back

transformation.
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A

B

Figure 4.5: Initial structure (left) and two substructures (right)

The advantages of CMS are:

• The computational effort and computer memory usage are evidentiary saved by divid-

ing a large dynamic problem into several smaller dynamic problems and by representing

each subproblem with reduced number of DOFs;

• Independent analysis and design of different substructures. This property is very im-

portant when a structure consists of the components that are produced by different

expert groups;

• The calculation effort is remarkably reduced if the structure can be divided in identical

substructures;

• The characterization of the different substructures can be done in different manners,

so implementation of both analytical and experimental data is possible. This property

is also referred as hybrid modeling scheme;

• The changes on the structure can be easier performed while the change will be done

only on the substructure level without affecting the other substructures. This property

makes the optimization process much faster and cheaper.

4.3 Craig-Bampton Method

As mentioned in section 4.2 the Craig-Bampton method is nowadays one of the most often

used variants of the CMS method. The method is described for a structure that is shown in

figure 4.5 which consists of two substructures A and B.

The equation of motion for a single undamped component in time domain can be written in

the following form:

M · ü(t) + K · u(t) = f(t). (4.2)
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In equations (4.2) M denotes the mass matrix of one substructure, K its stiffness matrix, u

the vector of DOFs, f(t) is an external loading that is acting on the substructure.

ui

ub

Figure 4.6: Internal ui and boundary ub DOFs of the substructure A

The set of all physical DOFs of one substructure can be divided into a set of boundary

DOFs ub and a set of internal DOFs ui. The boundary DOFs are at the position where the

substructures are connected, the dotted line in figure 4.6. Now equation (4.2) becomes:[
Mii Mib

Mbi Mbb

][
üi

üb

]
+

[
Kii Kib

Kbi Kbb

][
ui

ub

]
=

[
fi

fb

]
(4.3)

The total number of DOFs of the system N is a sum of internal Ni and boundary Nb DOFs.

N = Ni +Nb (4.4)

In order to reduce the number of unknowns the physical DOFs u will be substituted with gen-

eralized coordinates g. The transformation is performed with the help of the transformation

matrix TCB, [Sellgren 2003]:

u(t) = TCB · g(t) and ü(t) = TCB · g̈(t). (4.5)

The generalized coordinates are the modal coefficients of the generalized shape functions that

are used for approximating the substructure. The set of generalized coordinates is truncated

by neglecting the higher oscillation modes if their contribution to the total response on a low

frequency excitation is small. The rule that defines the approximate cut-off frequency for

modal truncation states that the eigenvalue of the last kept mode should be 1,5 times higher

than the highest frequency of interest for analysis of the full structure or 1,5 times higher

than the excitation frequency [Young 2000]. In the case when the kept modes do not give a
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precise spatial description of the load (e.g. point loads have significant modal contributions

of higher eigenmodes), additional modes need to be introduced like it will be described in

the chapter 4.4.3.

By introducing equation (4.5) in (4.2) we obtain:

M ·TCB · g̈(t) + K ·TCB · g(t) = f(t). (4.6)

The influence of the other substructures fb can also be introduced over the transformation

matrix TCB in the procedure that will be explained in section 4.3.1. In this work the response

of the structure on a time harmonic loading is determined. If the spatial distribution of the

load is time invariant we assume that the harmonic loading f(t) can be described as a product

of spatial part f0 (steady-state solution) and a time varying part ft = eiΩt, where Ω marks

the frequency of the harmonic excitation.

f(x, y, z, t) = f0(x, y, z) · eiΩt (4.7)

After multiplying the equation (4.6) with the matrix TT
CB from the left-hand side we re-

ceive:

TT
CB ·M ·TCB · g̈(t) + TT

CB ·K ·TCB · g(t) = TT
CB · f0 · eiΩt, (4.8)

which can also be written as:

Mc
CB · g̈(t) + Kc

CB · g(t) = FCB · eiΩt, (4.9)

where

Mc
CB = TT

CB ·M ·TCB Kc
CB = TT

CB ·K ·TCB FCB = TT
CB · f0. (4.10)

Mc
CB and Kc

CB denote the generalized mass and stiffness matrices of a component c while

FCB is the generalized loading.

For harmonic vibrations the equation (4.9) becomes:

(Kc
CB − Ω2Mc

CB) · g0e
iΩt = FCBe

iΩt. (4.11)
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4.3.1 Component Modes

The transformation matrix consists of component modes of the following types: rigid-body

modes, normal modes, constraint modes and attachment modes.

Normal Modes

As already mentioned in section 4.2, the normal modes used Craig-Bampton method are

fixed-interface normal modes, see figure 4.2 a). Therefore, the displacements of the interface

ub equal zero. Fixed-interface normal modes represent the solution of a general eigenvalue

problem of the following form:

[
Kii − ω2

nMii

]
[Ψin] = 0. (4.12)

Index i denotes the internal DOFs while the index n stands for the fixed-interface normal

modes and related eigenvalues.

The set of normal modes for all the DOFs of the substructure, Ψn, is:

Ψn =

[
Ψin

0bn

]
, (4.13)

where zero values correspond to the boundary DOFs.

The normal modes are normalized with respect to mass matrix so:

ΨT
inMiiΨin = Inn and ΨT

inKiiΨin = Λnn = diag(ωn)2. (4.14)

Inn is an identity matrix and ωn marks the eigenvalues of the substructure.

The total number of normal modes equals the number of DOFs Ni. With n the reduced set

of normal modes is marked.

Constraint Modes

The constraint mode is defined as static deformation of the substructure when a unit value

is assigned to one boundary DOF, while the value at the other boundary nodes equals zero,
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see figure 4.2 d). [
Kii Kib

Kbi Kbb

][
Ψic

Ibc

]
=

[
0

Rbc

]
(4.15)

Index c marks the constraint modes and I is a unit matrix. In Craig-Bampton method to

each interface DOFs corresponds one constraint mode and therefore b = c. The reactions at

the interface nodes are marked with the force vector Rbc.

From equation (4.15) solution for constraint modes Ψc is obtained:

Ψc =

[
Ψic

Ibc

]
=

[
−K−1

ii Kib

Ibc

]
. (4.16)

Rigid-body Modes

When a substructure is displaceable (i. e. There are less constraints then rigid-body DOFs.)

the set of the Component Modes also includes the Rigid-body Modes, see figure 4.2 c).

Rigid-body displacements are the modes in which the component is displaced without defor-

mation, see figure 4.2 c). Within the Craig-Bampton method they are defined as a special

case of constraint modes and can be determined relative to any set of boundary coordinates

that can detain the rigid-body motion of the component. In this case the number of sub-

structure’s boundary DOFs Nb is divided into DOFs that restrain the rigid-body motion Nr

and other the other boundary DOFs Nb′ with Nb′ +Nr = Nb.

Rigid-body modes fulfill the equation:Kii Kib′ Kir

Kb′i Kb′b′ Kb′r

Kri Krb′ Krr


Ψir

Ψb′r

Irr

 =

0

0

0

 . (4.17)

Irr stands for an identity matrix whose size corresponds to the number of possible rigid-body

motions.

Solving equation (4.17), we receive the solution for the matrix of rigid-body modes Ψr:

Ψr =

Ψir

Ψb′r

Irr

 =

−
[

Kii Kib′

Kb′i Kb′b′

]−1 [
Kir

Kb′r

]
Irr

 (4.18)
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Attachment Modes

An attachment mode is defined as a static deformation of the substructure when a unit force

is applied to one boundary DOF, while the remaining boundary DOFs are force-free, see

figure 4.2 f). [
Kii Kib

Kbi Kbb

][
Ψia

Ψba

]
=

[
0

Iba

]
(4.19)

Here, index a marks the attachment modes and in the Craig-Bampton method the number

of attachment modes equals the number of boundary DOFs a = b. Matrix Iba is an identity

matrix whose size is defined with the number of boundary DOFs.

From equation (4.19) the matrix of attachment modes Ψa is determined:

Ψa =

[
Ψia

Ψba

]
=

[
Kii Kib

Kbi Kbb

]−1 [
0

Iba

]
=

[
Gia

Gba

]
, (4.20)

where G stands for the flexibility matrix.

When a substructure has rigid-body DOFs, the stiffness matrix is singular and constraints

need to be added on the stiffness matrix. The attachment modes relative to the added

constraints r are defined by: Kii Kib′ Kir

Kb′i Kb′b′ Kb′r

Kri Krb′ Krr


Ψia

Ψb′a

0ra

 =

 0

Ib′a

Rra

 . (4.21)

Here Rra marks the reaction at the the position of the added constraints r.

As already defined in equation (4.20) the attachment modes are columns of the flexibility

matrix:

Ψa =

Ψia

Ψb′a

0ra

 =

Gia

Gb′a

0ra

 . (4.22)

Gia and Gba are inverse matrices of the upper left part of the matrix K in equation (4.21).

An alternative method for determining the attachment modes for a structure with rigid-body

freedom is defining inertia relief modes. The name inertia relief refers to the procedure in

which the part of the load that is causing the rigid-body motion is removed from the load.

The attachment modes should be orthogonal to the rigid-body modes. In [Craig 1981] an

algorithm is developed in order to remove the rigid-body force from the force vector, so the
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force vector is separated into two parts, one causing rigid-body motion and other causing

elastic deformation.

4.3.2 Selection of the Component Modes

For the transformation from physical to generalized DOFs it is necessary to form the trans-

formation (or component-mode) matrix. Thereby it is necessary to decide which type of

modes and how many of them need to be included in the transformation matrix. In [Craig

1995] the following criteria for selection of the modes are given:

• Linear independence and completeness;

• Low computational costs for their determination and simple selection of the number

of the modes;

• High accuracy of the solution obtained by using these vectors; and

• Simplicity of obtaining the system response characteristics of interest by using these

vectors.

The combination of fixed-interface normal modes and complete set of constraint modes fulfills

all above mentioned criteria. In specific situations it is convenient to replace the constraint

modes with attachment modes, which will be described in chapter 4.3.4. If the set of con-

straint modes or alternatively attachment modes is not complete, the component-mode set

is not statically complete and the first criteria is violated.

In the case of two substructures A and B, as presented in figure 4.5, the Craig-Bampton

transformation matrix TCB can be formed in the following manner, after calculating normal

Ψn (4.12) and constraint modes Ψc (4.16):

TCB =

[
ΨA
in ΨA

ic

0 IAbc

]
(4.23)
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When the transformation is performed, the mass and stiffness matrices of the substructure

A have the following form:

MA
CB = TT

CBMATCB =

[
Inn Mnc

Mcn Mcc

]

KA
CB = TT

CBKATCB =

[
Λnn 0

0 Kcc

]
,

(4.24)

where
Mnc = MT

cn = ΨT
in (MiiΨic + Mib)

Mcc = ΨT
ic (MiiΨic + Mib) + MbiΨic + Mbb

Kcc = ΨT
ic (KiiΨic + Kib) + KbiΨic + Kbb

When using nodal constraint modes Kcc becomes:

Kcc = Kbb −KbiK
−1
ii Kib with Ψic = −K−1

ii Kib.

In equation (4.24) the index n marks the normal modes while index c stands for constraint

modes, Inn is an identity matrix whose size is defined by the kept number of normal modes

and Λnn = diag(ω2
j ), where ωj marks the eigenvalues of the kept normal modes.

The transformation matrix is similar when instead of constraint modes attachment modes

Ψa (4.20) are used:

TCB =

[
ΨA
in ΨA

ia

0 ΨA
ba

]
. (4.25)

4.3.3 System Synthesis

For simplicity the system shown in figure 4.5, which consists of two components A and B,

will again be observed. Its two components have a common interface. The physical DOFs

at the interface ub are constrained by the following condition:

uAb = uBb (4.26)

If no external forces are acting on the interface the interface forces fb are related by:

fAb + fBb = 0 (4.27)

to provide the equilibrium of forces in the system.
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For the derivation of the system’s equation of motion, the Lagrange equation with undeter-

mined multipliers will be used, [Craig and Chang 1976]. For that we need expressions for

system’s kinetic and potential energy.

When:

g =

[
gA

gB

]
, m =

[
MA

CB 0

0 MB
CB

]
and k =

[
KA
CB 0

0 KB
CB

]
, (4.28)

the kinetic energy T of the system is expressed by:

T =
1

2
ġTmġ =

1

2
ġA

T

MA
CBġA +

1

2
ġB

T

MB
CBġB (4.29)

Here g are generalized coordinates defined in (4.5) while MA
CB and MB

CB mark the generalized

mass matrices of substructures A and B and they are defined in (4.24).

The potential energy U of the system equals:

U =
1

2
gTkg =

1

2
gA

T

KA
CBgA +

1

2
gB

T

KB
CBgB (4.30)

KA
CB and KB

CB mark the generalized stiffness matrices of substructures A and B.

The coupling conditions (4.26) and (4.27) can also be expressed in terms of generalized

coordinates:

gAc = gBc (4.31)

f̃Ac + f̃Bc = 0 (4.32)

Where gAc and gBc are interface generalized coordinates of substructures A and B that corre-

sponds to the constraint (or attachment) c modes while f̃Ac and f̃Bc are interface generalized

forces.

The constraint equation (4.31) can be written with respect to the set of all generalized coor-

dinates of the system g and combined so that the matrix constraint equation is obtained:

Cg =
[
0 I 0 −I

]


gAn

gAc

gBn

gBc

 = 0 (4.33)
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It will be shown later that the force equilibrium condition (4.32) will be automatically fulfilled

by introducing the displacement compatibility condition (4.31).

The Lagrange equation of the total system can now be written as:

L = T − U − σTCg (4.34)

where σ is the vector of Lagrange multipliers.

The system equation of motion is here obtained by applying the Lagrange equation in the

form:
d

dt

∂L

∂ζ̇
− ∂L

∂ζ
= Q̃ (4.35)

In equation (4.35) ζ refers to g or σ and Q̃ is a generalized force. For the problem of

free-vibrations the generalized force is only related to the interface forces between the sub-

structures.

For the problem of free-vibrations forces are inserted only at the component interface so the

virtual work of the interface forces is described as follows:

δW = (δuAb )T fAb + (δuBb )T fBb . (4.36)

By introducing the condition that the virtual displacements at the interface are equal δuAb =

δuBb in (4.36):

δW = (δuAb )T (fAb + fBb ) (4.37)

is obtained. When the force equilibrium condition (4.27) at the interface is fulfilled :

δW = 0. (4.38)

In the case of nonconservative forces at the interface δW = 0 and Q = 0: When equations

(4.29), (4.30) and (4.34) are introduced into (4.35) the system equation of motion becomes:

mg̈ + kg = CTσ. (4.39)
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After introducing (4.33), equation (4.39) becomes:
IAnn MA

nc 0 0

MA
cn MA

cc 0 0

0 0 IBnn MB
nc

0 0 MB
cn MB

cc




g̈An

g̈Ac

g̈Bn

g̈Bc

+


ΛA
nn 0 0 0

0 KA
cc 0 0

0 0 ΛB
nn 0

0 0 0 KB
cc




gAn

gAc

gBn

gBc

 =


0

σ

0

−σ

 (4.40)

In reference [Craig 1981] is shown that the set of equations (4.40) and (4.33) is usually solved

by using the following transformation:

g = Sgl. (4.41)

This transformation needs to be performed because the generalized coordinates are not inde-

pendent. They are connected with the constraint (4.31). The full set of system’s generalized

coordinates g can be divided into independent generalized coordinates gl and dependent

generalized coordinates gd. The dependent generalized coordinates are those that describe

the displacement of the interface because they are influenced by all adjoint substructures.

The set of independent generalized coordinates is obtained with the following coordinate

transformation: The coupling matrix is in equation (4.41) denoted with S and it is obtained

from the constraint equation (4.31):

Cg =
[
Cdd Cdl

] [gd
gl

]
= 0

g =

[
gd

gl

]
=

[
−C−1

dd Cdl

Ill

]
gl = Sgl

(4.42)

The structure of the component coupling matrix S for assembling the system that consists

of two substructures A and B can be easily recognized:

g =


gAn

gAc

gBn

gBc

 =


I 0 0

0 0 I

0 I 0

0 0 I


︸ ︷︷ ︸

S

gAn

gBn

gAc

 . (4.43)

After introducing the coordinate transformation (4.41) into (4.40) and multiplying the whole

equation with ST from the left-hand side the equation of motion for the full system is obtained
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in terms of the independent coordinates gl:

Msysg̈l + Ksysgl = 0. (4.44)

Msys and Ksys are the mass and the stiffess matrices of the total system.

Msys = STmS and Ksys = STkS

The resulting system’s mass and stiffness matrices have the following form:

Msys =

 IAnn 0 MA
nc

0 IBnn MB
nc

MA
cn MB

cn MA
cc + MB

cc



Ksys =

ΛA
nn 0 0

0 ΛB
nn 0

0 0 KA
cc + KB

cc

 .
. (4.45)

Now, at the end of this section it will be shown that the interface force-equilibrium condition

(4.32) is also fulfilled. The equation of motion of the substructure A expressed in generalized

coordinates has the following form:[
IAnn MA

nc

MA
cn MA

cc

][
g̈An

g̈Ac

]
+

[
ΛA
nn 0

0 KA
cc

][
gAn

gAc

]
=

[
0

f̃Ac

]
. (4.46)

Generalized interface forces f̃Ac equals:

f̃Ac = MA
cng̈

A
n + MA

ccg̈
A
c + KA

ccg
A
c . (4.47)

Accordingly, generalized interface force f̃Bc is defined as:

f̃Bc = MB
cng̈

B
n + MB

ccg̈
B
c + KB

ccg
B
c . (4.48)

By introducing (4.47) and (4.48) into (4.32)

MA
cng̈

A
n + MA

ccg̈
A
c + KA

ccg
A
c + MB

cng̈
B
n + MB

ccg̈
B
c + KB

ccg
B
c = 0 (4.49)
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is obtained. The condition (4.31) can now be introduced into (4.49) and the force equilibrium

condition receives the following form:

MA
cng̈

A
n + MB

cng̈
B
n + (MA

cc + MB
cc)g̈

A
c + (KA

cc + KB
cc)g

A
c = 0. (4.50)

Equation (4.50) can be found in the same form in the equation of motion of the coupled

system (4.44), hence the force equilibrium condition is fulfilled.

4.3.4 Reduction of the Number of Constraint Modes

In the traditional Craig-Bampton method the number of constraint modes is firmly connected

to the number of interface DOFs while each constraint mode corresponds to the unit value

at each interface DOF.

In this dissertation an approach has been developed in which, instead of unit values at each

interface DOF, a displacement pattern is applied along the whole interface [Sremcevic et al

2009b]. This approach reduces the number of constraint modes significantly while keeping a

similar exactness of the solution. The constraint modes obtained by applying a displacement

pattern at the interface will be referred to as modal constraint modes and the approach in

which they are used will be named the MCM approach, while the traditional Craig-Bampton

modes will be denoted as nodal constraint modes. Equation (4.15) becomes:[
Kii Kib

Kbi Kbb

][
Ψic

Φbc

]
=

[
0

Rbc

]
(4.51)

From equation (4.51) the solution Ψc for the MCM approach is obtained:

Ψc =

[
Ψic

Φbc

]
=

[
−K−1

ii KibΦbc

Φbc

]
(4.52)

Φbc stands for the forced pattern at the interface. The indexes i and b mark, as well as in

the equation (4.15), internal and boundary nodes. Index c denotes the number of constraint

modes and, in contrast to the Craig-Bampton nodal approach, in MCM approach c 6= b.

In MCM approach the number of constraint modes depends on the frequency range of interest

and therefore the expected vibration pattern at the interface.
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In order to decide what kind of displacement pattern should be forced at the interface the

following questions have to be considered:

• How can the displacement be introduced along the interface? The answer to this

question defines if the constraint or attachment modes are needed. There are two

possible answers to this question: The first possibility is to give a certain value to the

physical DOFs. That can be achieved by using constraint modes. The second option is

to introduce the displacement over the right-hand side (the ”force” side) of the equation

of motion. In this case the attachment modes are needed.

• What is the boundary condition for both substructures at the end points of the interface

(points 1 and 2 in figure 4.7)? The answer to this question defines the boundary

conditions for the pattern applied in the MCM approach.

If the substructures that meet at the interface are solid structures whose physical DOFs are

displacements, the movement of the interface will be provided by using constraint modes.

The shape of the pattern that should be applied in the scope of the MCM approach depends

on the boundary condition that the assembled structure needs to fulfill. If the assembled

structure has pinned boundary conditions, the pattern should also provide a displacement

equal to zero at the boundary of the interface and allow a rotation. Those conditions can be

fulfilled by applying a sinusoidal pattern for the constraint modes, see figure 4.7 a). When

the assembled structure has a clamped boundary condition then an appropriate pattern is

found using the eigenmodes of a clamped beam, figure 4.7 b). In case of the free interface a

pattern that allows maximal displacements at the boundaries should be applied, figure 4.7

c). Finally, a cosine pattern at the interface describes a boundary condition in which only

rotational DOFs are constrained. In case of different boundary conditions in points 1 and 2

combinations of these patterns has to be applied.

B

A

1 2

boundary
condition

displacement pattern
at the interface

1

1

1

2

2

2b)

c)

a)

1 2d)

Figure 4.7: Examples for displacement patterns that can be applied on the interface depending on
the boundary condition at the end points of the interface
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When two fluid substructures, which are described via pressure, are coupled, the displace-

ment of the interface is introduced via attachment modes. The attachment modes are used

while the displacement in the fluid system is forced from the right-hand side (the ”force”

side). For the displacement pattern of the attachment modes all the variants described for

the solid substructures are possible, see figure 4.7.

The choice of attachment modes for coupling a fluid and a solid structure will be explained

in chapter 4.5.

In the following examples fluid substructures are coupled. Cosine pattern are defined for all

attachment modes because the totally reflecting boundary condition is applied on the whole

assembled structure so the pressure has its maximal value at the boundaries. For example

for the interface 1− 2 in figure 4.7 the cosine pattern is defined as:

Φbc = cos

(
n · xmπ
Lx

)
for n = 1, 2, ..., c and m = 1, 2, ..., b (4.53)

Here c is the number of constraint modes, b barks the size of the set of boundary nodes and

l is the length of the interface.

Example 1: 2d Fluid

The reduction of the number of attachment modes used for calculation and the exactness

of the obtained results will be shown on the example of a 2D-fluid that is divided into two

substructures.

B

xBLxAL

yL A

1 2 3

4 5 6

1 2

4 5

2 3

5 6

Figure 4.8: A 2d fluid (left) is divided into 2 substructures A and B (right)

In this example the goal is to calculate the first 50 eigenmodes of the fluid shown in figure 4.8

(left). The dimensions of the fluid are (LxA +LxB)×Ly, for this example: LxA = LxB = Ly.

For the calculations the fluid is divided into substructures A and B along the interface 2-5,

see figure 4.8 (right). The substructures are discretized and the normal and attachment

modes are computed.
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This simple system is taken for the calculations because the analytic solution for such

a system i known. The analytic solution for the eigenvalues of the fluid of dimensions

(LxA + LxB)× Ly is determinated by using the following expression:

ωml = πcf

√(
m

LxA + LxB
+

l

Ly

)
with m = 0, 1, 2, ... and l = 0, 1, 2, ...

(4.54)

In figure 4.9 a selection of fixed-interface pressure normal modes of the substructures are

shown. Wave numbers in x and y direction are marked with kx and ky.

Figure 4.9: Fixed-interface pressure normal modes for the 2d fluid substructure

Figure 4.10 shows exemplarily four nodal attachment modes of the substructure B obtained

by applying unit velocity in each interface node. The attachment modes are calculated as a

quasi-static modes with a circular frequency ω = 1 rad
s

(Ly

Λf
= Lyf

cf
≈ 0, 0005).

Figure 4.10: Exemplarily presented nodal attachment modes for the 2d fluid substructure B, Ly =
LxB

Figure 4.11 presents the first four modal attachment modes of the substructure B that

are calculated by forcing a cosine velocity pattern Φbc = coskcπ
Ly

yb at the interface, where

kc = 0, 1, 2, 3. The circular frequency used is again ω = 1 rad
s

(Ly

Λf
≈ 0, 0005).
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Figure 4.11: The first four modal attachment modes for the 2d fluid substructure B

Figure 4.12 shows the results obtained by using nodal attachment modes. The ordinate

shows the number of eigenmode and the abscissa gives the eigenvalue ωn normalized with

respect to the first eigenvalue ω1. The number of attachment modes is firmly connected with

the discretization of the substructure and it equals to the number of interface nodes. In

order to get a better approximation of the total structure, the substructures require a finer

discretization which necessarily increases the number of attachment modes.

Figure 4.12: The eigenvalues ωn for n eigenmodes of the total system obtained by coupling of
two fluid substructures while using traditional Craig-Bampton method with different
number of nodal attachment modes.

In the MCM approach the used number of attachment modes is independent from discretiza-

tion. In figure 4.14 the results obtained by using the MCM approach are shown. Analogous

to previous example the ordinate shows the number of eigenmode and the abscissa gives the

eigenvalue ωn normalized with respect to the first eigenvalue ω1.
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It can be noticed that a good convergence is achieved while using a significantly smaller

number of attachment modes compared to the nodal approach. Furthermore, this exam-

ple shows that the convergence of the solution in MCM approach is good as long as used

attachment modes are able to describe the vibration pattern at the interface. In order to

explain how many normal and attachment modes are necessary to take in order to achieve a

good approximation of the system for certain frequency we will now look back at the wave

equation (2.20). If we introduce the solution (2.25) into (2.20) we can see that the wave

equation is satisfied if:

k2
x + k2

y + k2
z −

1

c2
f

Ω2 = 0. (4.55)

The wave numbers can be written as the number of the wave lengths per length: kx = nxπ
Lx

,

ky = nyπ

Ly
and kz = nzπ

Lz
. If we now introduce these expressions in equation (4.55) we can

determine the eigenfrequecies of the 3d fluid:

Ω = cfπ

√(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
nz
Lz

)2

. (4.56)

Equivalently, the eigenfrequencies of a 2d fluid are defined by [Cremer and Müller 1976] as:

Ω = cfπ

√(
nx
Lx

)2

+

(
ny
Ly

)2

. (4.57)

Each curve in figure 4.13 limits the area of all possible combinations of wave numbers that

nx

ny

Ω3

Ω2

Ω1

Figure 4.13: The eigenvalues ωn of the total system obtained by coupling of two fluid substructures
while using the MCM approach with a different number of modal attachment modes.

can appear under certain frequency (e.g. Ω1, Ω2 or Ω3). With the choice of the number of

normal and constraint modes that are taken into account we limit the maximal wave number

in x and y direction that we can describe with the approximated model. Therefore, also the

maximal frequency for which the approximated model gives good results is limited.

By chosing the number of normal and constraint modes we define the parameters nx and ny.



70 4 Component Mode Synthesis

The number of modes of the coupled system that can be determined:

N = π

√(
nx
Lx

)2

+

(
ny
Ly

)2

=
√
k2
x + k2

y =
Ω

cf
(4.58)

Figure 4.14: The eigenvalues ωn of the total system obtained by coupling of two fluid substructures
while using the MCM approach with a different number of modal attachment modes.
When using 5 attachment modes N=33 (nx

Lx
= 3,

ny

Ly
= 2) and for 6 attachment

modes N=38 (nx

Lx
= 3,

ny

Ly
= 2, 5).

Example 2: 3d Fluid

When coupling 3d substructures the number of obligatory nodal attachment modes in the

Craig-Bampton method is increasing even more rapidly. Hence, using the MCM approach

will reduce the size of the transformation matrix notably and therefore it will result in smaller

generalized mass and stiffness matrices.

zL

xLyL

A

B

Figure 4.15: A 3d fluid (left) is divided into 2 substructures A and B (right)
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Figure 4.16 shows the attachment modes for a 3d fluid substructure calculated with the help

of the MCM approach. The pattern applied at the interface is:

Φbc = cos
kcxπ

Lx
xbcos

kcyπ

Ly
yb. (4.59)

The circular frequency used for determining the attachment modes is ω = 1 rad
s

(Lx

Λf
= Ly

Λf
≈

0, 0005).

Figure 4.16: Modal attachment modes for the 3d fluid substructure A with dimensions Lx, Ly and
LzA (Lx = Ly)

In this example the first 20 eigenvalues of the 3D fluid were calculated. The fluid is divided

into two substructures A and B. Each substructure is approximated with 10 normal modes

and 4 modal attachment modes. Figure 4.17 shows that this approximation is giving results

that are identical with analytical solution for the first 15 eigenvalues. After the 15th the

wave lengths at the interface are smaller then Lx and Ly and more attachment modes should

be used. The ordinate shows the number of eigenmode and the abscissa gives the eigenvalue

ωn normalized with respect to the first eigenvalue ω1.

In case of using the nodal approach the number of necessary attachment modes with the

same discretization that is used in the MCM approach, would be 121, which greatly surpasses

the number of used normal modes and therefore reduces the efficiency of modal reduction.

Example 3: Complex geometry

Model reduction methods are developed for examining more complex geometries. In general,

when a structure consists of several substructures, the procedure described on the example
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Figure 4.17: Eigenvalues ωn of a 3d fluid; Analytic solution (blue line) and the numerical solution
obtained by applying the MCM approach (green line), nx

Lx
=

ny

Ly
= 1 and nz

Lz
= 1, 5

of two substructures can simply be applied. The only exception is a case when more than

two substructures have a common interface point. An example of such structure is given in

figure 4.18, where all three substructures meet in the node number 5.

B

2xL
1xL

1yL A B

A

1 2 3

4 m=5 6

1 2

4 5

2 3

5 6

78

C

5 6

78

C
2yL

b´2

b´1

Figure 4.18: ”L”-shaped fluid structure (left) divided into three substructures A, B and C (right)

In this case the boundary nodes b are divided into the middle node m (node number 5 in

figure 4.18) and other boundary nodes b′. Two sets of attachment modes are used in this

case. The first set of the modes include the attachment modes Ψa that are the result of a

pattern Φb′a applied on the set of boundary nodes b′. The second set Ψm is result of the

pattern Φmm applied in the set of boundary nodes m. In a 2d example presented here, the

set of boundary nodes m includes only one node so Ψm will consist of only one attachment

mode that will correspond to unit displacement in the central node.
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The transformation matrix for one substructure when the modal constraint modes are used

has the following form:

TCB =

ΨA
in ΨA

ia ΨA
im

0 ΦA
b′a ΨA

b′m

0 ΨA
ma ΦA

mm

 . (4.60)

Here, index i marks internal nodes, n the number of normal modes and a the number of

used modal attachment modes.

When the transformation is performed, the mass and stiffness matrices of one substructure

have the following form:

MCB =

 Inn Mna Mnm

Man Maa Mam

Mmn Mma Mmm



KCB =

Λnn 0 0

0 Kaa Kam

0 Kma Kmm


(4.61)

In order to connect the dependent generalized coordinates the component coupling matrix

S is again defined as:

g =



gAn

gAa1

gAm

gBn

gBa1

gBa2

gBm

gCn

gCa2

gCm



=



I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 I 0 0 0 0

0 0 0 0 I 0

0 0 I 0 0 0

0 0 0 0 0 I

0 0 0 0 I 0

0 0 I 0 0 0


︸ ︷︷ ︸

S



gAn

ga1

gm

gBn

ga2

gCn


, (4.62)

where index a1 marks the number of attachment modes used to approximate the vibration

pattern of the interface 2 − 5 and a2 stands for the number of attachment modes used to

approximate the vibration pattern of the interface 5− 6.
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Finally with the help of the component coupling matrix S the mass and stiffness matrices

of the system which consists of three substructures that all have a common node can be

formed:

M =



IAnn MA
na1 MA

nm 0 0 0

MA
a1n MA

a1a1 + MB
a1a1 MA

a1m + MB
a1m MB

a1n MB
a1a2 0

MA
mn MA

ma1 + MB
ma1 MA

mm + MB
mm + MC

mm MB
mn MB

ma2 + MC
ma2 MC

mn

0 MB
na1 MB

nm MB
nn MB

na2 0

0 MB
a2a1 MB

a2m + MC
a2m MB

a2n MB
a2a2 + MC

a2a2 MC
a2n

0 0 MC
nm 0 MC

na2 MC
nn



K =



ΛA
nn 0 0 0 0 0

0 KA
a1a1 + KB

a1a1 KA
a1m + KB

a1m 0 KB
a1a2 0

0 KA
ma1 + KB

ma1 KA
mm + KB

mm + KC
mm 0 KB

ma2 + KC
ma2 0

0 0 0 ΛB
nn 0 0

0 KB
a2a1 KB

a2m + KC
a2m 0 KB

a2a2 + KC
a2a2 0

0 0 0 0 0 ΛC
nn


(4.63)

Figure 4.19 presents eigenvalues of the structure shown in figure 4.18 (left). The green line

shows the eigenvalues obtained from the FEM solution of the full system, while the red

and blue lines mark the values obtained after applying the MCM approach while varying

the number of attachment modes used for the approximation of the substructures. For the

description of interfaces 2 − 5 and 5 − 6 the same number of attachment modes is used

because in this example interfaces have the same length.

When deciding how many normal and attachment modes will be taken into account, one

should first determine which is the highest frequency of interest fh. Hereafter it is necessary

do determine which are the shortest wave lengths that can appear in substructures for that

frequency (e.g. for a fluid λmin =
cf
fh

). Finally, the normal and the attachment modes of

all substructures have to be able to describe the wave lengths λ ≥ λmin in all observed

dimensions (1d, 2d or 3d). When the normal or the attachment modes are not able to

describe the vibration pattern significant errors occur like in the example shown in 4.14.
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Figure 4.19: Eigenvalues ωn of the ”L-shaped” structure obtained by using the MCM approach

From figure 4.19 can be seen that the approximation of the substructures in which 2 attach-

ment modes were used for description of each boundary is giving good results for the first

13 eigenvalues. For calculating 20 eigenvalues 3 attachment modes need to be used in order

to properly describe the vibration of the interface.

Figure 4.20 shows four pressure modes of the structure sketched in figure 4.18 (left) obtained

by the MCM approach. The transformation matrix for each substructure consists of 10

normal and 3 attachment modes.

Figure 4.20: Exemplarily selected pressure normal modes of the structure sketched in figure 4.18
(left) obtained with the MCM approach
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4.4 Steady-state Solution with the Help of Modal Analysis

In this section it will be shown how the Craig-Bampton method can be applied in the scope

of the modal analysis and which problems can occur due to the modal truncation.

In the modal analysis the solution of the equation (4.11) is sought.

g(t) = (Kc
CB − Ω2Mc

CB)−1 · FCBe
iΩt = g0e

iΩt. (4.64)

The response in physical DOFs is obtained with the help of the back transformation:

u0 = TCBg0. (4.65)

4.4.1 Root-point Excitation

In case of a root-point excitation of a structure or a pressure source in a fluid the following

pre-processing needs to be executed before performing the Craig-Bampton transformation

[Young 2000].

If we observe the equation of motion of one substructure in physical DOFs and take into

account only the external load (the influence of other substructures is introduced over con-

straint modes) on which a harmonic root-point excitation is acting we receive:([
Kr̄r̄ Kr̄r

Krr̄ Krr

]
− Ω2

[
Mr̄r̄ Mr̄r

Mrr̄ Mrr

])[
ur̄

ur

]
=

[
0

fr

]
(4.66)

Index r marks the nodes in which the root-point excitation is acting while index r̄ stands

for its complement in the set of total DOFs. Forces fr are usually not known initially. Only

the values ur are known. The forces fr are the forces that are needed to produce the desired

value ur .They are determined in the following steps: from the first equation in (4.66) we

can calculate ur̄:

ur̄ = −
(
Kr̄r̄ − Ω2Mr̄r̄

)−1 (
Kr̄r − Ω2Mr̄r

)
ur. (4.67)

Inserting this in the second equation of (4.66), fr can be determined by:

fr =
(
Krr̄ − Ω2Mrr̄

)
ur̄ +

(
Krr − Ω2Mrr

)
ur. (4.68)
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With the help of the transformation matrix TCB the generalized load can be determined:

FCB = TT
CB · fr (4.69)

and the response of the reduced system can be calculated:

gr =
(
KCB − Ω2MCB

)T · FCB. (4.70)

The response in physical DOFs is obtained by using equation (4.65).

4.4.2 Modal Truncation

Model reduction methods exclude the higher oscillation modes in order to provide saving in

calculation time and computer storage like it has already been explained at the beginning

of this chapter. This reduction can change the modal representation of the loading applied

on the structure and therefore it can affect the quality of the calculated response. The

inaccuracy of the calculated response can appear due to inconsideration of modal truncation

on the spatial representation of the applied load [Chopra 2000].

The part of the load that is not represented by the normal modes that are taken into account

is named force truncation vector and it is denoted with Ft. The force truncation vector is

used to represent the contribution of the modes which have eigenvalues that are higher than

the frequency content of the loading so their response should be quasi-static.

The part of the load that is described by the kept eigenvectors Fk can be calculated from

the following expression:

Fk = KuCB. (4.71)

uCB is the response of the system on which the modal load FCB is applied. By multiplying

the generalized force with the transformation matrix TCB the force is transformed from the

domain of generalized coordinates to the domain of the natural DOFs.

The force truncation vector is determined as a difference between the spatial load vector F0

and the part of the load that is described by the kept eigenvectors Fk.

Ft = F0 − Fk (4.72)

The quality of the calculated response can be improved by reducing Ft. This can be achieved

by increasing the number of kept modes. However, the number of kept modes needed for
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convergence to an exact solution is significant and it can destroy the positive effects of modal

truncation because the achieved reduction of the calculation time would not be evidential,

see Example 4. In [Dickens et al 1997] two most commonly used methods for reduction of

modal truncation error the Mode acceleration method and the Modal truncation augmentation

method are compared. The modal truncation augmentation method showed to be more exact

and simpler for implementation.

4.4.3 The Modal Truncation Augmentation Method

The modal truncation augmentation method is improving the spatial representation of the

loading by introducing the additional pseudo-eigenmodes also known as MT vectors [Dickens

and Pool 1992]. These modes are called pseudo-eigenmodes because they are orthogonal on

the set of eigenmodes that are taken into account but they are not orthogonal on the full set

of eigenmodes of the system.

For determining the MT vector the effect of the force truncation vector is calculated:

Xt = K−1Ft. (4.73)

Afterwards, the reduced eigenvalue problem is solved:

K̄Q = M̄Qω̄2
p, (4.74)

with

K̄ = XT
t KXt and M̄ = XT

t MXt?

ω̄p is the pseudo-eigenfrequency of the MT vector.

Finally, the MT vector ΨMT is determined from:

ΨMT = XtQ. (4.75)

This vector is added to the transformation matrix TCB

TCB =

[
ΨA
in ΨA

ic ΨA
iMT

0 IAbc ΨA
bMT

]
. (4.76)
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Equation (4.76) shows that the Modal Truncation Augmentation Method can simply be

applied in the scope of the Craig-Bampton method.

Example 4: Application of the Modal Truncation Augmentation Method

The effectiveness of the modal truncation augmentation method is shown on the example of

a simple beam of the length Lx = 4m that is exited with a harmonic force Fcos(Ωt) applied

on a distance a = 0, 24m from the left support of the beam, see figure 4.21.

F

x
L

a

Figure 4.21: Simple beam exited with a harmonic force Fcos(Ωt)

The Young’s modulus of the beam is E = 210GPa, moment of inertia I = 10−4m4, density

ρ = 7850kg/m3. Amplitude of the force is F = 100kN and the circular frequency Ω =

400rad/s. According to the advice stated in chapter 4.3 which states that in the modal

analysis the eigenmodes whose frequency is lower than 1, 5Ω should be taken into account,

four eigenmodes of the beam are taken. Figure 4.22 shows how the dependency between the

truncation frequency and truncated part of the load Ft. It can be seen that for 600 rad/s the

truncated part of the load is about 0, 05F0 and this part of the load will be represented with

the MT vector. The truncated part of the load can be reduced by increasing the truncation

frequency, but figure 4.22 shows that if we want to achieve: F = 0, 01F0, the truncation

frequency should be 2600 rad/s which would increase the necessary number of normal modes

from 4 to 14 which reduces the effectiveness of the method. In figure 4.22 the ordinate shows

the ratio of the absolute values of the truncated and initial load.
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Figure 4.22: The ratio between the truncated load Ft and the original load F0 depending on the
truncation frequency

Figure 4.23 shows the spectrum of the harmonic load FcosΩt and generalized force FCB.

The forms of the eigenmodes and the MT vectors that are included in the transformation

matrix are also sketched.
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Figure 4.23: The spectrum of the harmonic load FcosΩt and generalized force FCB

The obtained response of the beam is shown in figure 4.24 with a red line. The response of

the full FE model is shown with the blue line.

The modal truncation augmentation method is applied to calculate the additional MT vector

ΨMT . After repeating the modal analysis with the additional MT vector the response shown

with the dashed lite-blue line is obtained. It can be noticed that the eigenmodes can present

the dynamic response of the beam but the use MT vector is necessary in order to present

the missing spatial part of the load.
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This simple example shows that the modal truncation augmentation method can increase

the exactness of the modal analysis significantly.

Figure 4.24: Response of the simple beam on a harmonic loading calculated by application of the
modal truncation augmentation method

4.5 Application of the MCM approach in FSI problems

In this chapter the implementation of the MCM approach in FSI problems will be explained.

The configurations in which the vibrating structure is at the boundary of the fluid (figure

4.25 a))as well as inside of the fluid (figure 4.25 b)) will be considered. In figure 4.25 the

fluid is marked with F and the structure is denoted with S and its position is showed with

a dashed line.

f

a) b)

fs

Figure 4.25: Examples of FSI problems that have been analyzed with the MCM approach

In chapter 3 the equation of motion for the system that consists of a fluid and a structure

for the mixed pressure-displacement formulation is derived and a method for acceleration of

the calculations by symmetrization of the mass and stiffness matrices is described.

In this work another method for fastening the calculations is suggested. The idea is to

observe the fluid and the structure as two separate substructures. The mass and stiffness
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matrices are symmetric for both substructures and normal and attachment modes can be

calculated efficiently.

Example 5: FSI problem in 2d

For the coupled system shown in figure 4.25 a) fixed interface normal modes have the same

shape like the modes shown in figure 4.9.

The 1d structure is modeled as a beam. The normal modes of the beam are calculated with

clamped boundary conditions, see figure 4.26.

Figure 4.26: Normal modes of the clamped beam

Based on criteria for choosing constraint/attachment modes that are given in chapter 4.3.4

it can be concluded that attachment modes are needed. The attachment modes should allow

the fluid to move at the interface. As a pattern the normal modes of the beam can be applied

because that way the boundary conditions will automatically be fulfilled, see figure 4.27. The

circular frequency used for determining the attachment modes is ω = 1 rad
s

(Lx

Λf
≈ 0, 0005).

The attachment modes for the beam are calculated by applying the pressure that appears

at the interface in the fluid normal modes.

Figure 4.27: Attachment modes for the FSI interaction problem sketched in figure 4.25 a)
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In contrast to the assembly of the system in which all substructures are just fluids or just

structures where the reduced mass and stiffness matrices are created on the substructural

level in FSI problems, the systems matrices are created for the coupled system and afterwards

the system’s reduced matrices are calculated.

The system’s mass and stiffness matrices are defined in (3.38).

The transformation matrix TCB has the following form:

TCB =

Ψf
in 0 Ψf

ia 0

Ψf
bn 0 Ψf

ba 0

0 Ψs
n 0 Ψs

a

 (4.77)

In equation (4.60) indices n and a mark the normal and attachment modes while f and s

denote the fluid and the structure. The size of the transformation matrix is (Nf + Ns) ×
(nf + ns + af + as). Nf and Ns stand for the number of physical DOFs of the fluid and

structure, nf , ns are the kept number of fluid and structure normal modes and as and af

are the number of attachment modes in the fluid and structure.

The generalized mass and stiffness matrices are calculated using equation (4.10).

Figure 4.28 shows that the approximation of the system with the MCM approach gives the

same values for the first 28 eigenvalues as the full FEM model. For the approximation of the

system the fluid is presented with 25 normal and 5 attachment modes while the structure

is described with 5 normal modes. The calculation time needed for calculating the first

30 eigenvalues in the full FEM model of the coupled system is 5.17 seconds while for the

reduced system the elapsed time was 3.64 seconds. For the calculations a PC with 8Gb

RAM memory was used. The assembling of the system mass and stiffness matrices and the

calculation of the normal and attachment modes for the MCM approach is included in the

stated calculation time. The FEM model has 1155 physical DOFs while the reduced system

has 35 generalized DOFs. The used number of normal and attachment modes was sufficient

for determinating the first 28 eigenvalues of the coupled system. For determinating more

eigenvalues of the coupled system more normal and attachment modes should be used in

order to be able to describe the vibration pattern of the coupled system.
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Figure 4.28: Eigenvalues ωn of the coupled system calculated using the FEM method (blue line)
and by applying the MCM approach (green line)

In this example also the radiation of the structure under and above the coincidence frequency

is observed. The coincidence frequency was calculated by using the equation (2.64). Figure

4.29 shows the vibration pattern of the coupled system for different frequencies. Figure 4.29

left, shows an eigenmode of the coupled system for frequency f < fc and figure 4.29 right

shows an eigenmode of the coupled system for frequency f > fc.

Figure 4.29: Eigenmodes of the 2d coupled system for different frequencies

For the coupled system shown in figure 4.25 b) the nodes in the fluid need to be defined on

both sides of the structure. The fluid boundary nodes b are divided into groups b1 on the

upper side of the structure and b2 on the bottom side of the structure, see figure 4.30.
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b1

b2

Figure 4.30: Nodes in fluid are defined on both sides of the solid structure

The attachment modes are shown in figure 4.31. They are again calculated as a quasi-static

modes with a circular frequency ω = 1 rad
s

(Lx

Λf
≈ 0, 001) .

Figure 4.31: Attachment modes for the boundary nodes b1 (upper row) and attachment modes for
boundary nodes b2 (lower row)

The coupling matrices for these two groups of boundary nodes will differ in sign because

the outward normal vector n at the fluid-structure interface Sl (see equation (3.38)) has

the opposite direction. Therefore, the system mass and stiffness matrices have the following
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form:

Msys =


Mf

ii Mf
ib1 Mf

ib2 0

Mf
b1i Mf

b1b1 Mf
b1b2 Mfs

b1

Mf
b2i Mf

b2b1 Mf
b2b2 −Mfs

b2

0 0 0 Ms



Ksys =


Kf
ii Kf

ib1 Kf
ib2 0

Kf
b1i Kf

b1b1 Kf
b1b2 0

Kf
b2i Kf

b2b1 Kf
b2b2 0

0 Kfs
b1 −Kfs

b2 Ms



(4.78)

and the transformation matrix will be:

TCB =


Ψf
in 0 Ψf

ia1 + Ψf
ia2 0

Ψf
b1n 0 Ψf

b1a1 + Ψf
b1a2 0

Ψf
b2n 0 Ψf

b2a1 + Ψf
b2a2 0

0 Ψs
n 0 Ψs

a1 + Ψs
a2

 . (4.79)

Exemplarily three normal modes of the coupled system that are obtained by applying the

MCM approach are shown in figure 4.32. The blue arrows show the gradient of the fluid

substructure and the red line presents the displacements of the solid substructure.
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Figure 4.32: Normal modes of the coupled system
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Example 6: FSI problem in 3d

The MCM approach was also applied for the coupling of a 3d fluid with a 2d radiating

structure shown in figure 4.33. The fluid dimensions are [0;Lx], [0;Ly], [0;Lz]. The structure

coordinates are [xs;xs+ds], [ys; ys+ ls], [0;hz]. The boundary of the structure at the position

z = 0 is clamped.

xy

z

xL

zL

yL

sx

sy
sl

sh

Figure 4.33: The coupling of a 3d fluid with a 2d radiating structure

The full coupled system had 7791 DOFs.

In this example the goal was to check if the MCM approach can also be used in 3d FSI

problems for determination of the eigenvalues of the coupled system.

Figure 4.34 shows exemplarily chosen 3 attachment modes in fluid. The attachment modes

were calculated by applying at the interface the vibration pattern of the structure that is

clamped at the bottom. They are calculated as a quasi-static modes with a circular frequency

ω = 1 rad
s

(Lx

Λf
≈ 0, 001).



4.5 Application of the MCM approach in FSI problems 89

Figure 4.34: Attachment modes for the 3d FSI problem

Figure 4.35 shows that the reduced model is a good approximation of the full system for the

calculation of the first 40 eigenvalues of the coupled system. It can be noticed that there is

no significant deviation from the exact solution if all normal modes up to the frequency of

interest are taken into account. Dashed line in the figure shows the analytical solution for

the fluid cavity without the plate. For all the curves in the figure the ordinate shows the

number of eigenmode and the abscissa gives the eigenvalue ωn normalized with respect to

the first eigenvalue of the coupled system ω1. Through the application of the MCM approach

the calculation time is significantly reduced.

Figure 4.35: Eigenvalues ωn of a 3d coupled and decoupled FSI system and analytical solution
for the fluid cavity; The full FEM solution (blue line) and the approximated solution
obtained by applying the MCM approach (green line)
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The light blue and the orange curve in figure 4.35 show the eigenvalues of the structure and

the fluid when the system is decoupled. It can be seen that in the coupled system for a

certain frequency Ω the number of the eigenvalues equals the sum of the numbers of the

eigenvalues in the fluid and in the structure (nf + ns).

Figure 4.36 shows exemplary two pressure normal modes of the coupled system. Figure 4.36

a) shows the normal mode in which the vibrations of the fluid are dominating and figure 4.36

b) shows the normal mode of the coupled system in which the vibrations of the structures

are dominant.

(a) (b)

Figure 4.36: Normal modes of the 3d coupled system
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5 Acoustic Measurements

5.1 Introduction

Acoustic measurements are an inseparable part of acoustic analysis in both research and

practical application. In this chapter the measurements performed in collaboration with

the company Müller-BBM will be described. Afterwords, the measurement results will be

compared with the simulation results obtained from the methods described in chapter 4.

5.2 Measured Variables

The most commonly measured variables in acoustics are sound pressure, velocity, accelera-

tion, sound intensity and sound power [Müller and Möser 2004], [Kohlrausch 1955]. Those

variables can be divided in two categories: field variables (pressure, velocity and acceler-

ation) and performance variables (intensity and power). Only field variables can be mea-

sured directly while performance variables need to be determined indirectly. Additionally

to the variables already mentioned, other derived values such as the absorption coefficient,

impedance or reflection coefficient can also be determined.

The basic equipment for all acoustical measurements consists of a sending part (or an existing

sound source) and a receiving part. A signal is generated in the emitter and registered at

the receiver which can be a sound-level-meter or an analyzer depending on the characteristic

we want to measure [Heckl and Müller 1994].
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5.3 Measurement of Transfer Functions and Impulse

Response Functions

The Impulse Response Function (IRF) is the response of a system on a Dirac impulse and

is used for characterization of a linear time-invariant (LTI) system in systems theory. The

response of the system on external loading is defined as:

uk(t) =

t∫
t0

gkl(t− τ)pl(τ)dτ for t > t0 (5.1)

Here uk(t) denotes the response in point k due to the loading p(t) in point l. For t < t0 the

LTI system is in the stationary state of rest (pl(t) ≡ 0), [Natke 1983].

The response in frequency domain is obtained through a Fourier transformation of equation

(5.1):

FT {uk(t)} = FT


∞∫

−∞

gkl(t− τ)pl(τ)dτ

 . (5.2)

Considering that for t < t0 → pl(t) ≡ 0 and for t < 0→ gkl(t) ≡ 0 equation (5.2) becomes:

FT {uk(t)} = FT


t∫

t0

gkl(t− τ)pl(τ)dτ

 . (5.3)

If we introduce that:

Fkl(iω) := FT {gkl(t)} and Pl(iω) := FT {pl(t)} (5.4)

and remember that convolution in time domain corresponds to multiplication in frequency

domain we can rewrite equation (5.2):

Uk(iω) := FT {uk(t)} = Fkl(iω)Pl(iω) (5.5)

The transfer function Fkl(iω) is the response in frequency domain in point k on a unit force

in point l.

The IRF represents a response of a room on an infinitely short acoustical impulse (Dirac

impulse). However, in practice it is not possible to produce a perfect impulse so a signal

that is very short in comparison to the impulse response is used as an approximation of
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an impulse. Significant problem for the application of an impulse as excitation is that it is

necessary to have a strong signal in order to assure the needed signal-noise ratio over the

whole frequency range. Often such a strong short signal will bring a system into a nonlinear

regime and the assumption that the measured system is LTI will not be valid.

In practice the IRF is detected with a help of correlation method which allows better signal-

noise ratio.

5.3.1 Signal processing - Correlation Measurement Technique

In this work sweeps were used as excitation signal for the measurements and in order to

obtain transfer functions of the system the signal processing had to be applied. Basic terms

of Correlation Measurement Technique will now be defined [Möser 2010], [Kiencke and Eger

2005], [Natke 1983].

The Cross Correlation Function

In signal processing, cross correlation is a measure of similarity of two different time signals

p(t) and u(t). In this measurement those two signals are the input and the output signal.

For continuous functions the cross correlation is defined as:

Φpu(t) =

∞∫
−∞

p∗(τ)u(t+ τ)dτ. (5.6)

and p∗ stands for complex-conjugate of p.

For discrete functions the cross correlation is calculated from:

Φpu(n) =
∞∑

m=−∞

p∗(m)u(n+m). (5.7)

The Auto Correlation Function

The auto correlation function is a cross correlation of a signal with itself. It describes the

correlation between the values of the process at different points in time. For continuous
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functions the auto correlation is defined as:

Φpp(t) =

∞∫
−∞

p∗(τ)p(t+ τ)dτ =

∞∫
−∞

p∗(τ + t)p(τ)dτ. (5.8)

The discrete auto correlation at lag j is:

Φpp(j) =
+∞∑

n=−∞

p∗(n)p(n+ j). (5.9)

The Power Spectrum

The correlation functions give information about the power of the process. In order to

obtain information about the power in the frequency domain a Fourier transformation of the

correlation function is needed.

The Cross power spectrum is a Fourier transformation of cross correlation function:

Spu(ω) =

∞∫
−∞

Φpu(τ)e−iωτdτ. (5.10)

and analogously auto power spectrum is a Fourier transformation of auto correlation func-

tion:

Spp(ω) =

∞∫
−∞

Φpp(τ)e−iωτdτ. (5.11)

The connection between these functions is presented in figure 5.1.

5.3.2 Measurement methods

Through decades many methods for measuring IRF and TF have been developed [Müller

and Massarani 2001], [Müller and Möser 2004], [DIN 2006–08] . Common goal for all of those

methods is that they should ideally have an excitation signal that contains all frequencies

of interest. Moreover, the signal power should be higher than the power of the background

noise. The ratio between the power of the signal and the power of the background noise is

called signal-to-noise ratio (S/N ratio). There are three basic types of the excitation signals:

impulse, noise and sweep.
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Figure 5.1: Overview diagram

The Impuse-Based Measurements

Using impulses as input signal is the most straight-forward method for measuring the IRF

and the captured response is already the desired result. In order to be able to stimulate the

acoustical system the impulse needs to be strong enough. By using periodically repeated

impulses it is possible to improve the signal-to-noise ratio, but the period between two

impulses needs to be long enough that the measured response has time to decay below

the background noise level. This method can be applied only in cases when the level of

background noise is low but one has to be aware of possible entering in the non-linear range

of the loudspeaker due to the strength of the signal.

The Noise-Based Measurements

In measurements with noise signal usually a Dual-Channel FFT-Analysis is used. The basic

principle of this method is to divide the spectrum of the output with the one from input

signal. In general, any signal of the length 2m can be used. Therefore the input signal in the

dual-channel analyzers can be a non-deterministic noise signal whose spectrum is not known

and therefore also needs to be captured, [Müller and Massarani 2001]. The quality of results

obtained by using such signals are strongly dependent on the frequency band of the signal

and the achieved signal-to-noise ratio. Usage of pink and white noise signals is also possible.

Due to the fact that the loud speakers are more sensitive in the high frequency range, which



96 5 Acoustic Measurements

can cause distortions, the usage of pink noise can be more convenient compared to white

noise.

The biggest shortage of these signals are large oscillations of the amplitudes which might

occur in almost every analysis interval which can result in insufficient signal-to-noise ratio

for single frequencies. Moreover, for comparison of the results one needs to be aware that

the time sequence and crest factor of the noise signal can vary, [Möser 2010]. Crest factor

marks the ratio between the maximal and mean amplitude of the signal.

The Maximum Length Sequences (MLS) use a periodical binary pseudo stochastic noise

signal whose autocorrelation function comes very close to Dirac impulse which simplifies the

determination of the IR function in the time domain. When using MLS, much more energy

can be introduced into the system because the signal is stretched over a longer time-period.

The signal sequence is characterized by the order of the sequence m which is a positive whole

number and it defines the number of samples L = 2m − 1. The samples are members of a

binary sequence and they can take the value 1 or 0. The case when all samples take the

value 0 is excluded. The sequence of binary values is obtained through a deterministic process

which is described in [Möser 2010].The autocorrelation function of the signal obtained in this

process is periodic and the amplitude and the period equal the length of the sequence L. The

IR of the system is determined through the correlation function between the signal sequence

and the measured response.

In this method it is not always possible to make a clear difference between the response

from the excitation signal and from background noise, especially when the background noise

contains random clicks and pops because it will not be possible to separate them from the

noise input signal. Even when the background noise level is low, the quality of the received

IR can not be guaranteed for the following reasons: due to the fast switching from the

maximal to the minimal values the loudspeaker can produce distortion and when the noise is

used as excitation signal it is hard to differentiate the distortion products because they will

be noise-like distributed over the whole impulse response period. Moreover, periodic noise

sequences are extremely sensitive to any time variance.

The Sweep-Based Measurements

Using sweeps as excitation signal can remove a significant part of these limitations. Firstly,

sweep-based measurements are less sensitive to time variance because the noise-based mea-

surements require averaging over longer time period. Furthermore, a much more favorable
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signal-to-noise ratio can be achieved while all harmonic distortions are removed and hence

sweeps can be emitted with much more power, [DIN 2006–08].

Nowadays most commonly used sweep-based measurements include linear and logarithmic

sweeps. The linear sweep emits the same energy in each frequency band and corresponds

to white spectrum. In case of a logarithmic sweep, the energy in an octave band is staying

constant and the sweep has a pink spectrum. In these measurements the logarithmic sweep

has been used.

The capture period for recording the system response needs to be as much longer than the

excitation signal as the response needs to decline under the background noise level. A low

background noise level is a prerequisite for successful measurements. Since sweep signals

start with low frequencies whose responses need the longest time to decay, there is enough

time to catch all the components while sweeping through higher frequencies and therefore,

the capture period is just slightly longer than the excitation signal itself.

The IR function can be obtained through the direct deconvolution or by applying the spectral

division of the response spectrum and the excitation spectrum.In this work the spectral

division is used and this method is presented graphically in figure 5.2.

Signal
Generator FFT

FFT

Spectral
Division IFFT

Sweep Response Impulse Response

Room

F( )=S S ( )ω pu pp( )/ω ω

Figure 5.2: Graphical description of the method for determination of an impulse response [DIN
2006–08]

5.4 Measurement of Absorption coefficient in Kundt’s tube

The determination of the impedances or absorption coefficient is possible with any method

that is separating incident and reflected waves. Therefore, the method for measuring the

impulse response described in 5.3 can be applied here.
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For determination of absorption coefficients for perpendicular waves it is necessary to create

plane waves. Plane waves can be excited in an one dimensional continuum which is created

inside of Kundt’s tube. One can expect the plane waves inside of the Kundt’s tube as long

as the cross-section dimensions are smaller than the wave length, see equation (5.21).

The Kundt’s tube needs to be straight with constant cross-section and to have rigid, smooth

and non-porous walls. The walls need to be rigid and thick enough so they are not excited

to oscillation by the sound signal and they do not have eigenvalues in the tube’s operating

frequency range. The instructions for building an impedance tube are given in [DIN 2001–

10].

The theoretical principle for calculation of the impedance and absorption coefficient is given

in [DIN 2001–10], [Cremer and Müller 1976], [Beranek 1988] and [Möser 2007]. Figure 5.3

shows the geometry of the Kundt’s tube and positions of the microphones.

1x 2x 3x

12s 23s

13s

x

)(ˆ xp

1p̂

3p̂

2p̂

Figure 5.3: Kundt’s tube geometry, compared to [DIN 2001–10]

The measurement of absorption and impedances is based on the knowledge that the reflexion

coefficient can be determined from the transfer function between two microphones on the

front side of the test sample.

The measured sound pressure spectra p̂1(f) and p̂2(f) at the positions 1 and 2 of the micro-

phones is:

p̂1 = p1I + p1R = p̂Ie
ikx1 + p̂Re

−ikx1

p̂2 = p2I + p2R = p̂Ie
ikx2 + p̂Re

−ikx2 ,
(5.12)
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where pI marks the incident wave, pR the reflected wave and k is a wave number, k = ω
c0

.

The transfer function between measurement positions 1 and 2 is defined as:

Ĥ12 =
p̂2

p̂1

=
eikx2 + r̂e−ikx2

eikx1 + r̂e−ikx1

=
eik(x1+s12) + r̂e−ik(x1+s12)

eikx1 + r̂e−ikx1
.

(5.13)

Here s12 = x2 − x1 and marks the distance between two microphones.

The transfer function of the incident wave is:

ĤI =
p̂2I

p̂1I

= eik(x2−x1) = eiks12 (5.14)

and the transfer function of the reflected wave is:

ĤR =
p̂2R

p̂1R

= e−ik(x2−x1) = e−iks12 . (5.15)

Solving equation (5.13) for r̂ gives:

r̂ = ei2kx1
eiks12 − Ĥ12

Ĥ12 − e−iks12
, (5.16)

and after introducing equations (5.14) and (5.15) reflection coefficient is given by:

r̂ = ei2kx1
ĤI − Ĥ12

Ĥ12 − ĤR

. (5.17)

The absorption coefficient and impedance ratio can be calculated from reflection coefficient

using:

α = 1− |r̂|2 , (5.18)

Ẑ =
1 + r̂

1− r̂
, (5.19)

In practice, the measurements are often done with one microphone. The measurement

is typically repeated three times while the microphone is taking three different positions

according to figure 5.3. The transfer functions between all three positions are calculated

afterwards.
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Ĥ12 =
p̂2

p̂1

Ĥ13 =
p̂3

p̂1

Ĥ23 =
p̂3

p̂2

(5.20)

For each of those three couples the transfer functions for incident and reflected waves will

be calculated as well as the corresponding reflection coefficient. At the end the absorption

coefficient and the impedance are calculated using the mean reflection coefficient.

The measurement setup is presented in figure 5.4.

Loud speakerImpedance tubeReflecting wall

Test sample

Microphone positionsMicrophone Amplifier

Signal
generator

Microphone
pre-amplifier

System for frequency
analysis

Figure 5.4: Measurement set up in Kundt’s tube, compared to [DIN 2001–10]

The measurements can be carried out up to the frequency where the first transverse mode

in the tube arises. That frequency, marked with fu for the tube with square cross-section

with the edge length d and the speed of sound c0 is determined from:

fu = 0, 5
c0

d
. (5.21)

Kundt’s tube was used in [Paolini 2010], where absorption coefficients and impedances of

melamine foam, polyurethane foam and mineral-fibers were measured and the results were

compared with analytical and numerical solutions that were obtained in [Buchschmid et al

2009a] and [Buchschmid et al 2009b].

In this work the measurements in Kundt’s tube were done on the compound absorber with

a slot that consists of a foam material and a plate. The position of the slot was altered from

a slot in the front plate to a slot in the side frame and finally to a slot between the absorber

and the back wall. This sort of absorber was not possible to simulate with an ITM-TPM

based model because this method allows the changes in the absorber only in the direction
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perpendicular to the cross-section plane and here the changes also appeared in cross-section

itself.

The measured impedance is used to calculate the analytical solution for a 1D fluid. The

length of the fluid is L, the measured impedance is applied at the position x = 0 and at the

open end at x = L the harmonic loading is acting. The reference solution for the pressure

inside of the fluid in frequency domain, similar to (5.12), is given by:

p̂ = pI + pR = p̂Ie
ikx + p̂Re

−ikx. (5.22)

The incident and the reflected wave at the boundaries have the following values:

pI = p̂I and pR = p̂R for x = 0

pI = p̂Ie
ikL and pR = p̂Re

−ikL for x = L
(5.23)

Therefore the reference pressure (5.22) at the boundaries becomes:

p̂ = p̂I + p̂R for x = 0

p̂ = p̂Ie
ikL + p̂Re

−ikL for x = L
(5.24)

The application of the impedance boundary condition will now be explained. If in equation

(5.19) the reflection coefficient is introduced as the ratio between the amplitudes of the

reflected wave and the incident wave at the position x = 0 (r̂ = p̂R
p̂I

), the following expression

for the impedance is obtained:

Ẑ =
p̂I + p̂R
p̂I − p̂R

. (5.25)

From equation (5.25) the following ratio of the reflected and the incident wave is obtained:

p̂R
p̂I

=
Ẑ − 1

1 + Ẑ
. (5.26)

From equation (5.26) the impedance boundary condition is obtained:

(Ẑ − 1)p̂I − (1 + Ẑ)p̂R = 0 for x = 0. (5.27)

At the position x = L a harmonic load f = p0e
iωt is acting and the boundary condition for

the steady-state solution is:

p̂Ie
ikL + p̂Re

−ikL = p0 for x = L. (5.28)
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Equations (5.27) and (5.28) can also be written in matrix notation:[
(Ẑ − 1) −(Ẑ + 1)

eikL e−ikL

][
p̂I

p̂R

]
=

[
0

p0

]
(5.29)

The analytical solution for a harmonically excited fluid with the totally reflective boundary

condition at position x = 0 and for a fluid with an absorber at the position x = 0 is given in

figure 5.5. Figure 5.6 shows the normalized absolute value of the impedance Abs(Ẑ/Z0) of

the absorber shown in figure 5.5 left. Here Z0 marks the characteristic acoustic impedance

of the air.

4 mm thick pads in the corners

the plate

porous material
inside of the
wooden frame

Figure 5.5: The absorber inside of Kundt’s tube (left) and the analytical solution for the sound
pressure level in harmonically excited fluid with totally reflective boundary condition at
position x = 0 and for a fluid that has an absorber at position x = 0 (right)

100 150 200 250
0

4

8

12
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Figure 5.6: Normalized absolute value of the impedance of the absorber shown in figure 5.5 left
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In the numerical method the impedance boundary condition will be introduced as additional

damping and stiffness or mass matrix members. In figure 5.7 a numerical model of a 1d fluid

with an impedance boundary condition on the left-hand side and a harmonic load acting

on the right-hand side is shown. The node in which the impedance boundary condition is

applied is marked with L, R stands for the node in which the harmonic load is acting and I

mark internal nodes.

c

k m

L I R
p0

x

Figure 5.7: Numerical model of a 1d fluid with an impedance boundary condition on the left-hand
side and a harmonic load acting on the right-hand side.

If the damping in the system is neglected, the system’s dynamic stiffness matrix K∗ in the

frequency domain is calculated from:

K∗ = K− Ω2 ·M (5.30)

where Ω marks the frequency of excitation. The damping is only introduced at the bound-

ary.

Now, with a help of the equation (3.19) the equation of motion for the fluid shown in figure

5.7 can be written as: K∗LL K∗LI K∗LR
K∗IL K∗II K∗IR
K∗RL K∗RI K∗RR


pL

pI

pR

 =

FL

0

FR

 . (5.31)

The right-hand side of the equation (5.31) is defined in chapter 3.1.2 as the projection of the

pressure gradient on the normal of the boundary FL = ∇pL. The law of inertia gives the

relationship between the pressure gradient and the fluid velocity:

∇pL = −ρ0
∂vL
∂t

. (5.32)

The same can be written in the frequency domain:

∇pL = ρ0ΩvL. (5.33)
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The boundary conditions for the numerical model are:

pL

vL
= ZL for x = 0,

pR = p0 for x = L.
(5.34)

If the first boundary condition is introduced in equation (5.32) the value ∇pL can be deter-

mined as:

∇pL = ρ0ΩvL = ρ0Ω
pL
ZL

. (5.35)

After introducing the boundary conditions into equation (5.31) we obtain:K∗LL K∗LI K∗LR
K∗IL K∗II K∗IR
K∗RL K∗RI K∗RR


pL

pI

p0

 =

ρ0ΩpL

ZL

0

∇pR

 . (5.36)

Using equation (5.36) the sound pressure p in Kundt’s tube can be determined.Figure 5.8

shows the numerical and analytical solution for a 1D-fluid with the impedance boundary

condition at x=0 and harmonic excitation at x=L.

Figure 5.8: Numerical and analytical solution for 1d fluid with impedance boundary condition at
x=0 and harmonic excitation at x=L
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5.5 Measurement of the sound pressure distribution

The measurements of the sound pressure distribution in a room were performed with the goal

to verify the simulation results for the acoustic fluid with a vibrating plate and an absorber

at the boundaries. The geometry of the room is presented in figure 5.10.

For measuring the sound pressure distribution in the vertical direction a ”microphone tree”

(see figure 5.9 left) had been created. It consisted of 10 microphones that have been taped on

the stander with a spacing of 27 cm. In the horizontal plane the points where the microphone

tree was placed were 20 cm distanced from each other. Due to some additional objects in

the room and the size of the stander’s basis it was not possible to measure the whole area

of the room. The marking of the measurement points in the room is shown on the figure 5.9

right and the position of all measured points can be seen at 5.9.

As the resolution of the measurement points in the vertical direction is smaller than in

the horizontal direction, it gives the frequency limit up to which the condition of minimal

number of points per wave length will be fulfilled. For a satisfying description of the wave it

is recommended to have at least 7 points per one wave length. Since the distance between

the microphones in vertical direction is 27 cm, the limit wave length is λ = 1.62m and the

limit frequency f = c
λ

= 212Hz where c is the speed of sound and for the temperature of

20◦C equals 343 m
s

.

Figure 5.9: Microphone tree (left) and measurement points (right)

The excitation signal is the sweep described in 5.3.2. The sweep is produced in the sweep

generator and it is sent through the amplifier to the loud speaker. The signal that is emitted

in the room is captured by microphones. The signal created by the generator and the signal
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captured by microphone will be transformed with Fast Fourier Transformation (FFT) into

the frequency domain. The sound pressure spectrum is divided by the voltage spectrum and

after the Inverse Fourier Transformation (IFFT) of the result, the impulse response function

is determined (see figure 5.2). The received IRF can be shortened from the point where the

response to the excitation signal turns into background noise.

The impulse response represents the transfer function between the input voltage at the

input of the amplifier and the sound pressure at the microphone position. The existence of

a frequency-independent sound power level in the combination amplifier-sound source needs

to be provided, which implies that impulse response needs to be normalized by the sound

power of the sound source.

The measurement equipment consisted of:

• A measured data recording system consisting of PAK software (Müller-BBM VAS)

with 10 input channels for sound pressure and one input channel for recording the

reference voltage,

• A dodekaedar and power amplifier,

• A signal generator

• Software CalcTransmissionSpeaker (Müller-BBM) for calculation of the source-normalized

impulse responses from the data that was recorded by PAK.

In figure 5.11 the pressure distribution in the horizontal cross-section of the room for different

frequencies is shown. On the left-hand the calculated results are shown while on the right-

hand side the measurement results are presented. It can be noticed that the amplitudes in

measured results are lower then in the calculated results. The reason for this can be the fact

that, due to the shape of the microphone-tree it was not possible to measure the pressure

directly at the boundaries of the room where the sound pressure achieves its maximum.
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Figure 5.10: Geometry of the measurement room with positions of the sender, receivers and vi-
brating plate

In the numerical model pressure transfer functions were also calculated and results are com-

pared with measured results. Here presented measured and calculated transfer functions

show the pressure value in two points in the room that are close to the vibrating plate. The

results are are shown in figure 5.12. It can be seen that the numerical model can be used

for determination of the resonances of the coupled system for low frequencies. For higher

frequencies, due to high modal density, results become very sensitive to small changes in

frequencies or position of the loud speaker and microphones. In order to present the sen-

sitivity of the results for higher frequencies the position of the source and the receiver was

slightly varied as well as the frequency and the response is calculated for all combinations.

The source and the receiver were taking 9 different positions each inside of the blue rectan-

gle shown in figure 5.10. Frequencies were varied around the second and the third resonant
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(a) f = 35,27 Hz

(b) f = 46,61 Hz

(c) f = 58,45 Hz

(d) f = 70,54 Hz

Figure 5.11: Calculated (left) and measured pressure (right) for different frequencies.
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frequencies of the system in range ±2Hz.

Figure 5.12: Calculated and measured pressure transfer function

Figure 5.13 shows the histograms of the results for two frequency ranges and proves the

assumption that the results in higher frequency range become more sensitive. Therefore,

averaging in post-processing would be necessary.

(a) f = 44 - 48 Hz

(b) f = 58 - 62 Hz

Figure 5.13: Histograms for frequency ranges 44 - 48 Hz and 58 - 62 Hz
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It is assumed that the dispersion of the results in figure 5.13 a) comes from the variation

of the frequency and in figure 5.13 b) from the variation of the position of excitation and

receiving point. This assumption is proved in figure 5.14 where only the position of excitation

and the receiving point were changing and the frequency was constant.

(a) f = 46 Hz

(b) f = 58 Hz

Figure 5.14: Histograms for frequencies 46 Hz and 58 Hz
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6 Conclusion

The presented work describes a model reduction method for room acoustical simulations.

This thesis begins with the basic equations that describe the motion of the fluid and the

structure components in an acoustic cavity. Afterwards a numerical method that is used for

solving these equations is given. At this point the problem of the size of the numerical model

occurs.

The Craig-Bampton model reduction method based on the Component Mode Synthesis

(CMS) is presented as a solution of the problem of the extensive calculations. The acoustic

system is separated into its substructures. The division into substructures is performed in a

manner that one substructure consists only of fluid or only of solid elements. All the analysis

are performed on the substructure level. In the assembly of the model of the full system the

substructures are represented by generalized coordinates instead of their natural degrees of

freedom (DOFs). The number of generalized coordinates equals the number of normal and

attachment modes that are taken into account for the approximation of the substructure.

This number is influenced by the frequency range of interest and it is usually much smaller

then the number of physical DOFs. The normal modes of all substructures are fixed-interface

normal modes. The attachment modes allow the mobility of the interface nodes and they

serve for the coupling of the substructures. The Craig-Bampton method is especially suitable

for the processes of optimization because the changes in the system can be implemented in

the substructure level without the need to change the whole system.

The main difference between the Craig-Bampton method and the MCM approach that is in-

troduced in this thesis is the choice of the attachment modes. The traditional Craig-Bampton

method uses the nodal attachment modes. These modes are determined by assigning a unit

displacement to each interface DOF. Hence, the number of attachment modes equals the

number of interface DOFs. In this work it has been shown through a couple of calculation

examples that the number of nodal attachment modes can multiple surpass the number of

necessary normal modes and therefore reduce the positive effects of the model reduction

method. The MCM approach that is presented in this thesis suggests the use of so-called
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modal attachment modes. These modes are gained by applying a certain displacement pat-

tern at the interface. The shape of the pattern depends on the types of the substructures

that are coupled and boundary conditions that the substructures should fulfill at the ends

of the common interface. The guidelines for proper choice of the attachment modes are also

given in this thesis.

The numerical examples show that the MCM approach has approximately the same exactness

as the traditional Craig-Bampton method and therefore, it can be used for the approximation

of the full FE model. The MCM approach has given good results in coupling of several fluid

substructures as well as in coupling of fluid and solid structures. Therefore, this method

can be used for substructuring of complex geometries and in FSI problems. It has also

been shown that the MCM approach does not only give the good approximation of the FE

model but it also can accelerate the calculation time significantly by reducing the number of

unknowns.
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A.1 Derivation of the 1d Wave equation

In this appendix a more detailed derivation of the 1d wave equation is given.

For the derivation of the 1d wave equation figure 2.3 will be observed. When the air inside

of the tube is moving an inertia force qi is appearing. The inertia force can be determined

with the help of D’Alembert’s principle:

qi(x, t) = −ρf · a(x, t)

qi(x, t) · A · dx = −ρf · A · dx · a(x, t)
(A.1.1)

where a(x, t) marks the acceleration of the air and ρf is the density of the air.

The acceleration of the fluid is defined as:

a(x, t) =
∂2ux(x, t)

∂t2
=
∂vx(x, t)

∂t
. (A.1.2)

In (A.1.2) v(x, t) marks the velocity of the fluid and ux(x, t) is the fluid displacement. For

deriving the wave equation, the equilibrium of the forces that are acting on the infinitesimally

small part of the fluid (see figure 2.3 b)) needs to be provided [Müller 2010]:

p(x, t) · A− p(x+ dx, t) · A− qi(x, t) · dx · A = 0. (A.1.3)

After including (A.1.1), equation (A.1.3) becomes:

p(x, t) · A− p(x, t) · A− ∂p(x,t)
∂x

dx · A− ρf (x, t) · dx · A · a(x, t) = 0

−∂p(x,t)
∂x

dx · A− ρf · dx · A · a(x, t) = 0.
(A.1.4)

The pressure in the fluid is proportional to the strain in fluid ε:

p(x, t) = −εx(x, t) · E. (A.1.5)

E stands for the Young’s modulus of elasticity of the fluid. The strain in the fluid is defined

as a change of length of the fluid:

εx(x, t) =
∂ux(x, t)

∂x
. (A.1.6)

After inserting (A.1.6) in (A.1.5), pressure in the fluid is defined as:

p(x, t) = −∂ux(x, t)
∂x

· E. (A.1.7)
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By using (A.1.7), equation (A.1.4) becomes:

∂2ux(x, t)

∂x2
· E · dx · A− ρf · dx · A · ax(x, t) = 0. (A.1.8)

Substituting (A.1.2) in (A.1.8) gives:

∂2ux(x, t)

∂x2
· E − ρf ·

∂2ux(x, t)

∂t2
= 0. (A.1.9)

After deriving equation (A.1.9) with respect to x

∂3ux(x, t)

∂x3
· E − ρf ·

∂3ux(x, t)

∂x∂t2
= 0 (A.1.10)

is received. Now, (A.1.7) can be introduced in (A.1.10):

∂2p(x, t)

∂x2
− ρf
E
· ∂

2p(x, t)

∂t2
= 0. (A.1.11)

When the derivative with respect to time t is marked with · and the derivative with respect

to the space x is marked with ′ the equations (A.1.9) and (A.1.11) can be rewritten as:

u′′x −
ρf
E
üx = 0

p′′ − ρf
E
p̈ = 0

(A.1.12)

When we introduce the expression for the wave velocity (2.10) in equation (A.1.12) the final

for of the 1d wave equation is obtained:

u′′x − 1
c2f
üx = 0

p′′ − 1
c2f
p̈ = 0.

(A.1.13)
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A.2 Waves in continuum

A.2.1 Lamé equation

Lamé equation is a differential equations which can describe the displacement or stress fields

in continuum for linear, small deformations [Müller 2009]. For obtaining the Lamè equation

following relations need to be observed:

σij|j +Qi − ρüi = 0, (A.2.1)

εij =
1

2
(uj|i + ui|j), (A.2.2)

σij = 2µεij + λεmmg
ij. (A.2.3)

Equation (A.2.1) describes the equilibrium condition for the continuum where σij stands for

Cauchy stresses tensor, Qi are volume forces and ρüi is D‘Alembert‘s inertia force.

With equation (A.2.2) the kinematic relations between strains and displacements are de-

scribed. The strain tensor is marked with εij and uj marks the displacement field. The

displacements are assumed to be small so the elements of higher order are omitted.

The kinematic relations between the stresses and strains for a homogeneous, isotropic and

linearly-elastic material are given in equation (A.2.3). Coefficients µ and λ mark the Lamé

constants and they can be determined from Young’s modulus E and Poisson’s ratio ν by

using the following expressions:

µ =
E

2(1 + ν)
(A.2.4)

λ =
Eν

(1 + ν)(1− 2ν)
. (A.2.5)

The connection between the stresses and displacements is obtained by introducing the equa-

tion (A.2.3) in equation (A.2.2):

σij = µ(uj|i + ui|j) + λum|m gij. (A.2.6)

After introducing (A.2.6) in the equilibrium equation (A.2.1) the Lamé equation is re-

ceived:

µui|jj + (λ+ µ)uj|ij +Qi − ρüi = 0. (A.2.7)
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A.2.2 Solution of the Lamé equation

With a help of Helmholtz principle the Lamé equation can be transformed into wave equa-

tions. The displacements field u is shown as a superposition of the gradient of a scalar

potential Φ and the rotation of a vector potential Ψ:

ui = Φ|i + Ψl|k εikl (A.2.8)

If we suppose that the loading is acting only at the boundaries the volume forces Qi will

vanish. After introducing the Helmholtz decomposition in Lamé equation one wave equation

for the scalar potential and 3 decoupled wave equations for the vector potential are obtained

[Müller 2009]:

Φ|jj − 1
c2p

Φ̈ = 0

Ψi|jj − 1
c2s

Ψ̈i = 0.
(A.2.9)

The wave velocities are marked with cp and cs and they equal:

cp =

√
λ+ 2µ

ρ
und cs =

√
µ

ρ
. (A.2.10)

The equation with the scalar potential Φ is the wave equation for a compressional wave which

is moving with the velocity cp and the equations with the vector potential Ψi describe the

wave equation for shear waves which are spreading with the velocity cs. The compressional

wave is causing the change of volume and the shear waves are causing the change of shape.
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