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A B S T R AC T

Combinatorial multi-object auctions that enable buyers to submit bids on
packages of the auctioned items are becoming increasingly popular in practice.
These auctions allow for the most general expression of preferences and there-
fore are likely to be highly efficient. However, although they are known for
avoiding the famous exposure problem, only a limited number of studies on
optimal bidding behavior in these auction formats exist in the scientific litera-
ture. This thesis attempts to close the gap by modeling different combinatorial
auctions as Bayesian games and deriving corresponding bidding equilibria
in a standard framework in which bidders possess independent private and
decreasing marginal values in the number of perfect substitutes obtained. The
game-theoretic predictions are then compared with respect to efficiency and
seller revenue.

In a restricted setting in which two bidders compete for two units of a homo-
geneous good, a first-price sealed-bid combinatorial auction weakly dominates
a combinatorial ascending second-price format in expected seller revenue.
This ranking is reversed in an efficiency comparison. Optimal bidding in
both auction formats is characterized by a coordination problem between an
efficient and inefficient Bayesian equilibrium for the two bidders. Therefore,
revenue and efficiency predictions are not entirely unambiguous. Neverthe-
less, the dynamic structure of the ascending combinatorial auction format
lets the respective equilibrium behavior appear more robust. Generally, the
combinatorial ascending second-price format is weakly outcome equivalent to
other non-combinatorial second-price auction formats such as the well-known
Simultaneous Ascending Auction. The first-price sealed-bid combinatorial
format, however, is characterized by peculiar bidding behavior that distin-
guishes it from any other first- or second-price mechanism and leads to highest
seller revenue. Moreover, for more than two bidders, the first-price sealed-bid
combinatorial auction still possesses an inefficient equilibrium and only in its
efficient equilibrium is strategically equivalent to its ascending-price coun-
terpart and other standard auction formats. Based on these contributions we
then also examine the effect of budget constraints in bidding firms (principal-
agent relationships) and an application to combinatorial procurement auctions
(ex-post split-award auctions).

Principal–agent relationships between the supervisory board and the man-
agement of bidding firms are widespread in spectrum auctions, but they can
also be observed in other multi-object markets. The management aims at win-
ning the highest valued licenses whereas the board wants to maximize profit
and limits exposure in the auction. In environments in which it is efficient for
firms to coordinate on allocations with multiple winners, we show that the
principals would coordinate on smaller sets of objects while the agents would
not and inflate their demand to larger sets. We first analyze multi-unit markets
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in which principal and agent have complete information about the valuations,
and show that it can be impossible for the principal to implement her equilib-
rium strategy with only budget constraints in a first-price sealed-bid package
auction. With hidden information about the valuations a principal would need
to determine contingent budgets and transfers to compensate the agent, which
can be impossible with value-maximizing motives of the agent. Contrary, in
an ascending package auction this is straightforward even without knowledge
of valuations as long as the principals know the efficiency environment. The
second-price payment rule of the ascending auction enables the principal to
overcome the agency problem more easily and the dynamic mechanism further
facilitates coordination for the principals. This result is in strong contrast to a
setting in which all units are sold as a single package. Here, the contract does
not differ between the two auction formats which is in accordance with prior
findings on optimal budget constraints in standard single-object auctions.

Ex-post split-award auctions are a frequently used form of combinatorial
procurement auctions in which the demand for some quantity to be procured is
split into multiple shares. Markets with diseconomies of scale are wide-spread,
but strategically challenging. We show that, unlike in single-object auctions,
first-price sealed-bid and the Dutch combinatorial auction formats are not
strategically equivalent. While the former exhibits a coordination problem for
bidders, the Dutch formats have only efficient equilibria. The price information
revealed during the Dutch auction formats avoids equilibrium selection prob-
lems and helps bidders coordinate. Also, the theoretical predictions explain
important empirical patterns in the data from laboratory experiments.
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1
I N T RO D U C T I O N

Strategic bidding behavior of buyers demanding multiple items in combi-
natorial multi-object auctions is examined in this thesis. Contrary to other
multi-object auction formats, combinatorial mechanisms allow the submission
of bids on sets (combinations) of objects instead of just on single objects. This
greater bidding flexibility allows buyers to better express their valuations for
sets of objects and is therefore more likely to avoid inefficient allocations. For
example, combinatorial auction mechanisms avoid the well-known exposure
problem inherent in most non-combinatorial formats (Milgrom, 2000) by en-
abling bidders to take into account synergies between the auctioned objects
as is explained in Section 1.1.3. Therefore, combinatorial auctions are well-
suited to sell almost any type of object and they have extensively been used in
practice, for example, to sell the rights to use airport time (landing) slots to
competing airlines (Rassenti et al., 1982), to procure bus services from public
transport operators for bus routes in London (Cantillon and Pesendorfer, 2006),
to assign catering contracts for school meals in Chile (Epstein et al., 2002), to
buy raw materials from suppliers at Mars Inc. (Hohner et al., 2003) and, most
importantly, as spectrum auctions world-wide (Cramton, 2013). Surprisingly,
strategic bidding behavior in combinatorial multi-object auctions has hardly
been studied in the theoretic economics literature, which underlines the high
academic relevance of this research topic (Klemperer, 1999). Exceptions
include Goeree and Lien (2016) and Ausubel and Baranov (2018) amongst
others, which will be discussed in detail in Section 1.1.4.

The thesis follows the economic convention and models combinatorial
auctions as Bayesian games of incomplete information (Harsanyi, 1967a,b,c)
in an independent private values (IPV) setting with ex-ante symmetric buyers.
This is the benchmark model to derive Bayesian Nash equilibrium strategies of
Bayesian auction games (de Vries and Vohra, 2003; Klemperer, 1999; McAfee
and McMillan, 1987) and was first proposed for single-object and multi-unit
auctions in the seminal article by Vickrey (1961). In addition, we restrict
our attention to a setting in which a risk-neutral and revenue-maximizing
auctioneer sells multiple objects to a fixed and commonly known number
of profit-maximizing and risk-neutral bidders. In the combinatorial auction
formats analyzed, we assume an XOR bid language that allows a bidder to
specify a bid for each possible package (Nisan, 2000). Throughout the thesis
we refer to the above as standard assumptions and deviate only in Chapter
3, in which we examine budget constrained bidding firms. Finally, to keep
the model as simple as possible, we focus on a setting in which all auctioned

1



2 introduction

objects are perfect substitutes, which is common practice in the analysis
of multi-object auctions such as in Goeree and Lien (2014) and Ausubel
et al. (2014) for simultaneous single-object auctions and in Sano (2012) for
a combinatorial format, for example.1 In particular, we assume each buyer’s
marginal valuations to decrease in the number of perfect substitutes obtained
as is also assumed in Ausubel et al. (2014).

Sticking to these standard assumptions we do not contribute to the literature
that studies the advantages of auctions compared to other selling mechanisms
such as negotiations and posted-price schemes in broader environments, as
discussed in Milgrom (1985) and the references cited therein, or embeds auc-
tions in exchange games and standard bargaining models (Milgrom, 1987).
However, the uniquely beneficial properties of single-object auctions as single-
object market mechanisms as presented in Section 2.3.1, and the increasingly
frequent and successful use of auctions in the real world serve as sufficient
motivation to examine the theoretically and practically most advantageous
formats. For example, Cramton (1997) analyzes spectrum auctions to sell per-
sonal communications services (PCS) licenses conducted by the US Federal
Communications Commission (FCC) between 1994 and 1996, and finds that
the use of auctions lead to a significant improvement compared to other mech-
anisms such as lotteries or comparative hearings. Auctions have been used
since ancient times, for example in Rome commercial trade was carried out via
auction-like mechanisms. In modern times common auctioned commodities
include livestock, art and construction contracts (Cassady, 1967). Unusual
applications comprise the auctioning of the right to a market position as natural
monopoly (Williamson, 1976) and the procurement of locations for noxious
facilities such as prisons and hazardous waste disposal plants (Kunreuther
and Kleindorfer, 1986). Recently, the Internet has led to an explosion in the
conduction of auctions, for example on online trading platforms such as eBay
and Amazon (David, 2000), and especially by search engines to sell ad spaces
(online ad auctions) (Varian, 2009).

By comparing equilibrium bidding behavior in different combinatorial
auction formats, the goal of this thesis is to obtain a ranking of combinatorial
mechanisms in terms of predicted revenue (sum of expected selling prices) and
efficiency (maximum social welfare). Since the pioneering works by Vickrey
(1961) and Vickrey (1962), multi-object auction formats have frequently been
studied in this way as in Ausubel et al. (2014) and Ausubel and Baranov
(2018), for example. It is well-known that the winner determination problem
of a combinatorial auction and its approximation is computationally hard (NP-
complete) (Rothkopf et al., 1998; Sandholm, 2002). Thus, it can be inferred
that the derivation of Bayesian Nash equilibria in multi-object combinatorial
auction formats is impossible in polynomial time for general settings with
an arbitrary number of buyers and objects as well as any form of buyer
valuations. Therefore, attention is restricted to smaller but practically relevant

1Many spectrum auctions are for homogeneous goods such as multiple licenses of 5 MHz
spectrum in a particular band, for example. While the strategic problems discussed can also
be found with heterogeneous goods, markets with homogeneous goods require less notational
burden.



introduction 3

environments that allow generalization of results to complex scenarios. In
these restricted market settings computational hardness is not an issue anymore.
Efficiency and revenue rankings of different combinatorial auction formats
may then contribute to policy and managerial advice on selling multiple objects
depending on the goals of the auctioneer. If the auctioneer is a state agency
representing society’s interests, it might focus on maximizing social welfare.
However, if the auctioneer is a private company, its shareholders’ interests
may bind it to maximize revenue. For example, McMillan (1994) states that
in the first large spectrum auction to sell PCS licenses in 1994, the US FCC
had the primary goal to maximize efficiency and revenue was one of the least
concerns. Nevertheless, there is indication that efficient auction formats may
also lead to the highest seller revenue as is true for single-object auctions
(Myerson, 1981). Efficiency is achieved if the auctioned objects are assigned
to those buyers who value them most and, obviously, these bidders are also
willing to pay most. As combinatorial auctions are the multi-object auction
formats that allow the most general expression of bidder preferences among
all multi-object mechanisms they are likely to be most efficient and potentially
also maximize seller revenue.

Designing generally efficient and optimal (seller-revenue maximizing) com-
binatorial mechanisms, as in Myerson (1981) for the sale of a single item for
example, is beyond the scope of this thesis. In particular, regarding the optimal
auction format, we do not study any form of pre-bundling (of individual objects
into item-sets) by the auctioneer before the bidding process starts, as was first
examined for a monopolistic seller by (Palfrey, 1983) and in an auction frame-
work amongst others by (Armstrong, 2000). In contrast, we focus on standard
post-bundling in which the formation of item-packages results solely from the
auctioneer choosing the revenue-maximizing combination of bids submitted
by the buyers according to the bidding language of the combinatorial auction,
as explained in Section 1.2.1. In this setting the Vickrey-Clarke-Groves (VCG)
mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973), the multi-object
generalization of the famous Vickrey (single-object and multi-unit) auction
(Vickrey, 1961), is well-known to be the only strategy-proof and efficient
direct auction mechanism (Green and Laffont, 1979). Moreover, as shown
by Krishna and Perry (1999), it maximizes expected seller-revenue among
all efficient, incentive compatible and individually rational mechanisms for
allocating multiple objects. Despite this unique feature, the VCG mechanism
possesses severe weaknesses that prevent it from being employed in practice,
as discussed in more detail in Section 1.1.4, and make it worth considering
more practically-relevant combinatorial auction formats and their bidding
equilibria.

In the next section we motivate combinatorial auctions as the most advanta-
geous form of multi-object auctions and consecutively summarize our main
contributions.
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1.1 motivation

Generally, analyzing the auctioning of many and possibly diverse objects is
far more challenging than the sale of a single object as a larger number of
more complex auction mechanisms needs to be considered. For example, it
is necessary to identify an appropriate bidding language specifying the form
of bids the buyers are allowed to submit (Nisan, 2000). Are they allowed to
bid on all objects or only a subset and may they submit bids for combinations
of items or only bid on individual objects? In the literature it is mainly
distinguished between auction mechanisms that only allow for the sale of
perfect substitutes and those that also allow for the sale ob objects that are
not perfect substitutes (Krishna, 2002). Combinatorial auctions belong to
the latter category. We first discuss some practical insights into single-object
auctions that help explain why auction mechanisms are so prevalent in the
real world in general. Consecutively, we briefly introduce some popular non-
combinaotiral multi-object auction formats, those that allow only for the sale
of perfect substitutes and those that can also be employed to sell heterogeneous
objects. Their shortcomings will then motivate our focus on combinatorial
mechanisms.

1.1.1 Single-Object Auctions

Single-object auctions probably have been the most widely employed auction
mechanisms in practice. For example, the ascending-price (English) auction
is used to sell antiques and artwork worldwide, and the descending-price
(Dutch) format is traditionally employed for the sale of cut flowers in the
Netherlands, fish in Israel and tobacco in Canada. Moreover, real-estate is sold
with the first-price sealed-bid (FPSB) auction (McAfee and McMillan, 1987)
and mail sails of collectable stamps are conducted via the Vickrey mechanism
(Lucking-Reiley, 2000). Myerson (1981) has shown that under our standard
assumptions and one (distributional) regularity condition, the optimal market
mechanism to sell a single object is a ”standard” second-price sealed-bid
(Vickrey) single-object auction with an appropriately chosen reservation price.
In a standard single-object auction the buyer with the highest value submits
the highest bid and wins the object, which results in the efficient allocation
(Krishna, 2002). We will generalize this result to other standard single-object
auctions in Section 2.3.1.

An auction with reserve price, however, is not ex-ante efficient as the highest
willingness-to-pay among all bidders might be below the threshold, in which
case the object remains unsold and social-welfare is not maximized. Another
disadvantage of the optimal market mechanism is that the reserve price is
determined based on specific buyer parameters. This contrasts with one of the
two most fundamental requirements on auction mechanisms, universality, and
the other one being anonymity. Universality demands that any type of object
can be sold with any auction format and the mechanism does neither depend
on object specifics nor on buyer characteristics. Anonymity is achieved if the
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identities of buyers do not influence the final allocation, including payments,
but only the heights of their submitted bids. These two properties are important
because they guarantee the implementation of auctions to be relatively easy in
practice as object details and buyer specifics need not to be taken into account
in the design of the market mechanism. The idea that market mechanisms
should adhere to these principles is known as the ”Wilson doctrine” after
Wilson (1989). Moreover, Bulow and Klemperer (1996) show that a standard
single-object English auction without reserve price but involving one more
bidder results in higher expected profit for the seller than the optimal auction
with reservation price. Attracting one more buyer to the auction leads to
higher expected revenue for the seller than setting an optimal reservation price.
Again, this result is generalized to any standard single-object auction format
in Section 2.3.1. Based on these arguments, this thesis continues the analysis
of optimal auction mechanisms without explicit discussion of reservation
prices and the above results serve as the main justification to focus on auctions
as ideal market mechanisms. Let us now continue with the examination of
non-combinatorial multi-object auction mechanisms.

1.1.2 Auctions for Perfect Substitutes

If all objects are perfect substitutes from each buyer’s point of view, as is
most likely for multiple units of a homogeneous good, a bidder does not
distinguish between individual items. ”Standard” multi-unit auctions (Krishna,
2002), which allow all bidders to simultaneously report a demand function
specifying the amount a buyer bids on each additional unit, are particularly
suitable to sell multiple units of a homogeneous good. The bids can then
be summed over all bidders to obtain an aggregate demand function for the
market. Finally, the total number of units is assigned to the respective number
of highest bids (Vickrey, 1961, 1962). These auctions are used, for example,
in the auction of treasury bills by the U.S. Treasury Department (Weber,
1983). A great disadvantage of multi-unit auctions is that they do not satisfy
the fundamental requirement of universality defined in Section 1.1.1 as they
cannot be employed to sell objects that are not perfect substitutes. Moreover,
as first recognized by Vickrey (1961), all standard multi-unit auctions, except
the Vickrey auction, do not generally allocate efficiently.

1.1.3 Auctions for Heterogeneous Items

The items are not perfect substitutes from a buyer’s perspective in case he
distinguishes between individual objects, which is likely if multiple hetero-
geneous items are auctioned. Such items can only be sold in multi-object
auction mechanisms that allow buyers to bid on distinguished objects or sets of
objects and standard multi-unit auctions cannot be employed. In this case one
possibility is to sell each item in separate simultaneous or sequential single-
object auctions, or the sale of all items simultaneously in one combinatorial
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multi-object auction.2 Simultaneous single-object auctions, for example, are
employed to sell mineral rights on federal land by the U.S. Department of
the Interior and sequential single-object auctions are used as estate auctions
for a collection of objects such as stamps, coins and antiques (Weber, 1983).
As the modeling of heterogeneous items becomes increasingly notationally
complex in the number of items and the general derivation of optimal strategies
becomes impossible, the before-mentioned multi-object auctions are often
analyzed in a multi-unit (perfect substitutes) framework in the literature. See,
for example, Weber (1983), Weber and Milgrom (2000) and Katzman (1999)
for sequential single-object auctions, Ausubel et al. (2014) for simultaneous
single-object auctions and Sano (2012) for a combinatorial auction. Note, that
if auction mechanisms are suitable for the sale of heterogeneous items they
can also be used to sell multiple units of a homogeneous good. Thus, in this
thesis we focus on the study of combinatorial multi-unit auctions in which
only perfect substitutes are sold and bidders have decreasing marginal values.
This focus will be further justified in Section 1.1.4.

Similar to standard multi-unit auction formats, sequential and simultaneous
single-object auctions are generally inefficient and especially sequential mech-
anisms are rarely used in practice compared to other multi-object formats.
Cramton (1997) lists disadvantages of sequential single-unit auctions with
respect to simultaneous formats such as that bidders cannot switch between
bidding for different objects and have to build potentially very complex expec-
tations about prices and winning quantities in future auctions when bidding at
an early stage. Further theoretical shortcomings are discussed in more detail
in Section 2.3.3. chakraborty et al. (1995), McMillan (1994) and Bykowsky
et al. (2000) argue that in the practically most relevant form of simultaneous
single-unit auctions, the Simultaneous Ascending (multi-unit) Auction (SAA)
or Simultaneous Multiple-Round Auction (SMRA), inefficiencies might be
smaller than in sequential single-unit auctions. The SMRA auction, which
is predominantly used by the US FCC for the sale of PCS licenses, is a dy-
namic multi-round mechanism in which all objects (licenses) are auctioned
simultaneously in single-license auctions.3 In each round a buyer can raise
the bid on any license according to pre-specified bid increments. The auction
terminates as soon as no new bids are submitted in one round. Cramton (1995),
for example, argues that the ascending-bid (price) format of the SMRA en-
ables buyers to respond to price-information revealed in prior rounds, which
then helps the bidders to form efficient aggregations and better express value
interdependencies among the auctioned items.

Note that in case a buyer’s marginal valuations increase in the items obtained,
the well-known ”exposure problem” occurs if the bidder may only submit bids
on individual objects instead of being allowed to submit a bid for the entire
set of complementary objects demanded. The buyer would have to submit

2Weber (1983), for example, distinguishes between ”simultaneous dependent”, ”simultane-
ous independent” (single-object) and ”sequential” auctions.

3McMillan (1994) describes the FCC’s decision process to employ the SAA spectrum
auction and more detailed descriptions of the rules of the auction format can be found in
Cramton (1995), Milgrom (2000) and Bykowsky et al. (2000).
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a bid on each item that exceeds the optimal bid of aiming for a smaller set
of objects in expectation of winning the higher valued overall set demanded.
However, if any such bidder fails to be assigned the entire set demanded he
might end up with overpaid subsets. Anticipating this outcome, any bidder
with synergies in items obtained faces the following tradeoff: On the one
hand, he can restrict the height of his single-item bids to avoid making losses
in case of winning only individual objects but thereby lowering the chances
of winning the overall set. On the other hand, he can bid aggressively on
separate items to increase his chances of winning the full set with the side
effect of risking to make losses when obtaining only a subset. Note, that the
first alternative may result in an inefficient allocation whereas the magnitude of
the second effect might be so strong that buyers even submit bids that exceed
their value for the entire set. The latter phenomenon is known in the literature
as ”mutually destructive bidding” (Bykowsky et al., 2000). An early, complete
information, discussions of the exposure problem in the (SAA) can be found in
Milgrom (2000), for example. The exposure problem also occurs in standard
multi-unit auctions as well as sequential single-object auctions (Goeree and
Lien, 2014; Krishna and Rosenthal, 1996). Goeree and Lien (2014) provide a
general Bayesian characterization of the exposure problem in the SMRA for
a setting in which ”global” bidders with increasing marginal values compete
against ”local” bidders with single-unit demand who cannot switch between
different units (imperfect substitutes). This setting is generally referred to as
LLG (local-local-global) model in the literature because in its simplest form it
consists of one global and two local bidders. As the SMRA corresponds to the
standard ascending-price multi-unit auction for perfect substitutes, it follows
that the exposure problem also occurs in standard multi-unit auctions. In an
earlier work Krishna and Rosenthal (1996) demonstrate the full trade-off of
the exposure problem in the LLG model for two simultaneous as well as two
sequential single-unit Vickrey auctions.

Finally, Ausubel et al. (2014) observe that an environment in which small
bidders face perfect substitutes in the SMRA resembles more closely the
actual setting in spectrum auctions. As strong synergies among licenses are
particularly likely in spectrum auctions, giving rise to an exacerbated exposure
problem (Milgrom, 2000; Bykowsky et al., 2000), especially Bykowsky et al.
(2000) and chakraborty et al. (1995) argue in favor of the use of combinatorial
auction formats instead of the SMRA.

1.1.4 General Combinatorial Auctions

Combinatorial multi-object auction formats allow the submission of bids on
any subset of objects auctioned and therefore eliminate the exposure problem
by design. Here, the VCG mechanism stands out as it maximizes expected
seller-revenue among all efficient, incentive compatible and individually ratio-
nal combinatorial formats for allocating multiple objects (Krishna and Perry,
1999). Despite these theoretical merits the VCG auction may result in (un-
competitively) low prices for the auctioneer if there are value synergies for at
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least one bidder (Milgrom, 2007; Ausubel and Milgrom, 2002). In this case
revenue is not monotonically increasing in the submitted bids which has fur-
ther negative effects. The auctioneer may raise revenue by excluding bidders
from the auction (Day and Milgrom, 2008), buyers might be able to lower
their prices by participating as or collaborating with fake bidders (Yokoo et al.,
2004), and losing bidders can jointly deviate to become winning at very low
prices. These disadvantages occur if the VCG mechanism selects an allocation
that is not in the core (Bikhchandani and Ostroy, 2002). In the core objects
and prices are assigned to bidders and the auctioneer, respectively, such that
no coalition of buyers and the seller can do better by jointly deviating to a
different assignment. The core is always non-empty in our standard auction
model (Milgrom, 2007). The described outcomes are likely to be perceived as
unfair as there are buyers willing to pay more for certain sets of objects than
the respective winners.

Core-selecting combinatorial auctions modify the payment rule of the VCG
mechanism to ensure the resulting complete information equilibrium allocation
is in the core with respect to reported values as is done amongst others in Day
and Raghavan (2007), Day and Milgrom (2008) and Day and Cramton (2012).
Frequently applied core-selecting auction formats include the combinatorial
FPSB auction (actually modeled as a FPSB menu auction in Bernheim and
Whinston (1986)) and the combinatorial clock auction (CCA) (Cramton, 2013;
Ausubel et al., 2006) which has been used by Ofcom (the UK communications
regulator) to sell spectrum in the UK since 2006, for example. A combinatorial
FPSB auction, although not incentive compatible and generally inefficient, by
definition does not posses any of the disadvantages of the VCG mechanism
mentioned above, because prices are monotonically increasing in bids. More-
over, in a complete information setting Bernheim and Whinston (1986) show
that the FPSB mechanism always possesses equilibria in the core. Similarly,
the CCA auction selects core allocations with respect to the submitted reports.
It is a two-stage mechanism in which an open ascending combinatorial auction
is followed by a bidder-optimal, core-selecting and Vickrey nearest (BCV)
mechanism. A BCV auction results in a Pareto optimal core allocation for
bidders with prices as close as possible to the original Vickrey payments
(Goeree and Lien, 2016; Cramton, 2013).

Generally, in core-selecting auctions the VCG payment rule is manipulated
(by disregarding general truthfulness) to assure that under complete infor-
mation the resulting equilibrium allocation is in the core with respect to the
reported valuations. However, under incomplete information truthful reporting
might not be a Bayesian Nash equilibrium and the resulting allocation is not
computed with respect to true values and therefore not necessarily in the true
core. Goeree and Lien (2016) demonstrate under incomplete information that
if the equilibrium allocation of any auction is in the core then it corresponds
to the VCG outcome. Thus, if the VCG mechanism does not allocate within
the core, no other auction format does and true core-selecting auctions do not
exist. In this case little can yet be said about the exact outcome of (combi-
natorial) multi-object mechanisms. Moreover, under incomplete information
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core-selecting auctions suffer especially from the so-called threshold problem
(Ausubel and Baranov, 2018; Sano, 2011; Goeree and Lien, 2016; Sano, 2012).
In most combinatorial auctions, except the VCG mechanism, the threshold
problem occurs if multiple local bidders, each demanding a different subset
of a certain set of objects, compete against a global bidder who demands the
entire set. For the small bidders to win, the subset bids have to exceed the
large buyer’s bid for the entire set. In this case the local bidders face the
following trade-off: The higher any one buyer bids on his subset the more
likely the small bidders win, but also the less payoff this particular bidder
makes. Therefore, each local bidder might be tempted to free-ride on the other
small buyers by bidding low on his demanded subset and expect the others
to bid high enough and beat the global buyer. Early demonstrative accounts
of the threshold problem can be found in Cramton (1995), chakraborty et al.
(1995), Milgrom (2000) and Bykowsky et al. (2000). However, in particular
chakraborty et al. (1995) and Bykowsky et al. (2000) argue that the threshold
problem might be of minor practical concern in combinatorial auctions, and it
does not occur for ex-ante symmetric bidders anyway.

Similarly, there is no free-rider problem in our model framework as the
auctioned objects are perfect substitutes and all ex-ante symmetric bidders
have decreasing marginal values in the number of units obtained. Moreover, in
this case the allocation of the VCG mechanism is in the core, corresponds to the
competitive equilibrium and yields market-clearing prices for the auctioneer
(Bikhchandani and Ostroy, 2002). However, it is important to note that seller
revenue might still be low due to colluding bidders in the VCG mechanism
(Conitzer and Sandholm, 2006) and general equilibrium bidding behavior
in other package auction formats is yet unknown.4 Although revenue might
not be the primary goal of the auction designer, it is regarded as a valuable
indicator for the social welfare success of an auction. It can be offset by
lower taxes and prevents the creation of rents and the related wasteful rent-
seeking behavior as long as the auctioned objects are not sold below market
value. Additional reasons why the VCG mechanism might not constitute the
most suitable package auction format in practice include bidders reluctance
to report their true valuations in fear of this information eventually being
used against them in other transactions (Rothkopf et al., 1990; Rothkopf,
2007). In addition, although the mechanism may not be too computationally
demanding, certainly the formation of its prices are cognitively harder to
understand for participants. The above described scenario is exactly the
starting point of our analysis: Our standard assumptions guarantee most
theoretical advantages of the VCG mechanism which makes it a suitable
benchmark and prevent the analytical complexity of discussing the threshold
problem in other combinatorial formats. Here, it is of general interest to derive
and compare equilibrium bidding behavior in package auction formats such as
the FPSB and ascending package auctions in our standard setting. We hope this
restricted environment then allows us to derive insights into format-specific

4Combinatorial auctions are also referred to as package auctions, in particular if multiple
units of a homogeneous good are sold.



10 introduction

bidding peculiarities of different combinatorial multi-object auctions similar
to the derivation of demand reduction (Ausubel et al., 2014) and the exposure
problem (Goeree and Lien, 2014) in the SMRA, or the threshold problem in
the CCA (Sano, 2012), for example.

1.2 contributions

The contribution of this thesis to the literature on combinatorial auctions is
threefold. First, under our standard assumptions we examine the simplest multi-
object market possible in which 2 firms compete for 2 units of a homogeneous
good (perfect substitutes) and derive equilibrium bidding strategies for bidders
with decreasing marginal values in the FPSB and an ascending combinatorial
auction, based on which revenue and efficiency rankings are obtained. Second,
in the same 2 × 2 market environment and for the same combinatorial auction
formats we introduce a principal-agent model of bidding firms. In each firm a
value-maximizing agent bids on behalf of a profit-maximizing principal and
the latter determines budget constraints to restrict the former’s bids. Third,
we derive equilibrium bidding strategies as well as efficiency and revenue
rankings for n firms with increasing marginal costs, competing in ex-post
split-award (reverse) procurement auctions for either a 50% share or 100%
of a contract. Finally, the theoretical predictions are empirically evaluated
in laboratory experiments. These extensions are motivated by practitioners’
indications of the prevalence of budget constrained bidding teams as well as
agency problems in spectrum auctions, and the employment of multi-object
auctions in industrial procurement such as (combinatorial) ex-post split-award
auctions, respectively. Let us first motivate combinatorial auctions as the most
advantageous form of multi-object auctions.

1.2.1 Standard Package Auctions

The results of this section are mainly established for ”principals” in Chapter 3
and some insights into larger markets, different first-price auction formats and
other possible equilibria are based on our procurement model in Chapter 4.
The contributions described in this section are limited to our 2× 2 environment
from Chapter 3, in which 2 firms compete for 2 units of a homogeneous good
(perfect substitutes) in a package auction. In Chapter 4 we then extend some
of our contributions for first-price procurement auctions to markets with more
bidders. We focus on XOR bidding languages (Nisan, 2000) which allow each
bidder to submit one exclusive bid for the package of one unit and one bid
for the package of two units. However, for each firm only one package bid
can become winning and the auctioneer either sells the package of two units
to one firm or a package of one unit to each firm. This restricted scenario
captures the central strategic challenges that can also arise in larger markets
and we provide corresponding theoretical examples in Chapter 4 and 5, and
practical examples in Section 3.9. We primarily focus on the FPSB and an
ascending package auction in our analysis due to their relevance in spectrum
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auctions.5 The ascending format is a clock auction which, similar to the
clock-stage of the CCA, allows for arbitrary package bids but does not consist
of separate rounds as prices rise gradually. Our ascending package auction
shall represent the most simple generalization of the single-object English
auction and the standard ascending-price multi-unit auction to a combinatorial
setting. Moreover, we decided to omit the core-selecting stage of the CCA
given the negative results on core-selecting auctions by (Goeree and Lien,
2016) and in order to obtain more general bidding insights on ascending
combinatorial auctions. We are limiting our attention to markets in which it is
always efficient to have two winners (the dual-winner outcome) independent
of the bidders’ value draws. This efficiency environment has been motivated
in a procurement setting by (Anton and Yao, 1992) and we refer to it as
dual-winner efficiency. In the procurement context of Chapter 4 we use the
original name of dual source efficiency. Note, that this assumption implies
decreasing marginal valuations in the number of units obtained and especially,
each buyer’s highest possible marginal value for the second unit is below the
lowest possible marginal valuation for the first unit. In the procurement setting
this translates into an identical form of increasing marginal costs.

This limited setting actually allows us to derive Bayesian Nash equilibrium
strategies as one can only analyze combinatorial auctions as Bayesian games
in specific environments. The role of this model is similar to that of the
stylized LLG model that is often used to analyze the exposure problem in the
SMRA (Goeree and Lien, 2014) and the threshold problem in combinatorial
auctions Sano (2012), for example. Finally, the described setting models an
interesting market environment that is also relevant to business practice. For
example, in a spectrum auction two bidders might be interested in multiple
homogeneous licenses in a band and it is the efficient solution for bidders
to split the spectrum. Remember, that regulators tend to be legally bound to
prioritize efficiency.

Similar to (Anton and Yao, 1992) we assume prior information about the
efficiency environment, i.e. dual-winner efficiency, and show that coordination
on the efficient outcome constitutes a Bayesian Nash equilibrium (dual-winner
equilibrium) for both bidders in the FPSB package auction. In this equilib-
rium both bidders pool their bids for one unit at the same price and submit
equilibrium supporting bids on the package of two units independent of their
actual package valuations. Under reasonable distributional assumptions this
equilibrium payoff-dominates an entirely inefficient single-winner equilib-
rium in which both bidders use their unilateral ”veto-power” to exclude the
dual-winner outcome and solely aim for the package of two units. The latter
equilibrium is employed as a reference to demonstrate that also inefficient
equilibria exist under dual-winner efficiency and can be straightforwardly sup-
ported by bidders. To further keep the analysis traceable, we do not consider
equilibria in which bidders aim for different allocations depending on their

5For example, France (2011) and Norway (2013) used a first-price sealed-bid package auc-
tion, whereas Romania (2012) used an ascending combinatorial clock auction: https://www.
ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf.

https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf
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package valuations as have been examined in a procurement setting similar to
that of Anton and Yao (1992) by Anton et al. (2010). Moreover, they simply
correspond to a compound of dual-winner and single-winner equilibrium in
which bidders with high values for the single-unit package and low values for
the package of two units pool at a constant price for one unit in the dual-winner
outcome. The other bidder types use their veto-power against such allocations
and implement the single-winner outcome. Similar to the single-winner equi-
librium such equilibria are inefficient and an unambiguous ranking in bidder
payoff is not straightforward. However, in the procurement context of Chapter
4 these ”hybrid” equilibria are briefly discussed for the FPSB package auction.

Contrary to (Anton and Yao, 1992), and to our procurement model, the
proofs are independent of a publicly known efficiency parameter and in-
volve two-dimensional package valuations. We then extend these results to
the ascending (second-price) package auction format in which the ex-post
dual-winner equilibrium always weakly dominates the ex-post single-winner
equilibrium in payoff for bidders. In the former equilibrium each bidder does
not become active on the package of two units but follows the strategy of re-
maining active on the single-unit package until the respective price reaches her
valuation. As an immediate consequence there is no demand for the package,
the auction terminates and each bidder receives one unit at a price of zero.
The dynamic format of the ascending package auction possesses an additional
coordination advantage over other sealed-bid package auctions. Here, buyers
can adjust their bidding behavior and switch between equilibrium strategies
depending on the observed opponent’s bids. To the best of our knowledge
this is the first theoretical work to demonstrate the advantage of an ascending
package auction to coordinate on efficient allocations in an IPV auction model
of incomplete information. The above stated results are further interpreted and
integrated into the literature on multi-object auctions in much more detail in
Section 2.3.4. There we find a weak form of outcome equivalence between
the ascending package auction and standard second-price multi-unit auctions.
The VCG mechanism is generally efficient and leads to higher seller prices
than the other second-price multi-unit auctions. In its efficient equilibrium
the FPSB package auction dominates the mentioned second-price auction
mechanisms, including the VCG format, as well as the standard discriminatory
multi-unit auction in seller revenue. Moreover, in its inefficient equilibrium it
is payoff-equivalent to its ascending counterpart whereas the latter appears to
be generally more efficient. Further combinatorial (ascending) first-price re-
verse procurement auctions are shown to solely posses efficient equilibria that
are outcome-equivalent to the dual-winner equilibrium of the FPSB format in
a procurement setting.6.

The insights into combinatorial bidding in the 2 × 2 market under our
standard assumptions depend to a large extend on each buyer’s power to
unilaterally veto the dual-winner outcome. For an increasing number of
bidders this veto power is likely to vanish. In Chapter 4 we demonstrate within

6It is important to highlight that all Bayesian Nash equilibria derived in the procurement
context in Chapter 4 are ”linear” equilibria as specified in Section 1.2.3
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the procurement context that for n > 2 bidders the FPSB package auction
still possesses an efficient dual-winner equilibrium and an inefficient single-
winner equilibrium. However, by the RET the former equilibrium is outcome
equivalent to the unique dual-winner equilibrium of all other combinatorial
reverse mechanisms, such as a descending-price (English) auction, as well as
to all standard multi-unit auctions with single-unit demand from Section 2.3.2.

1.2.2 Principal-Agent Relations in Package Auctions

The contributions in this section are derived in Chapter 3. Agency problems
between the board of directors and the management of a telecommunica-
tion corporation are commonly observed in spectrum auctions (chakraborty
et al., 1995; Shapiro et al., 2013) but also occur in other auction markets
(Engelbrecht-Wiggans, 1987). Schmidt (2004) argues that they are likely
to cause inefficiencies in the resulting allocations. We introduce a princi-
pal–agent model of bidding firms within our 2 × 2 package auction setting
from Section 1.2.1. Here, a principal who is uninformed about the firms pack-
age valuations provides an informed agent with budget constraints to either
implement the single-winner or the dual-winner equilibrium. The inherent
agency bias between profit-maximizing principal and value-maximizing agent
predicts inefficient outcomes in multi-object auctions under dual-winner effi-
ciency in which bidders inflate their demand to larger sets of objects instead to
coordinate on efficient smaller sets.

Determining an optimal budget constraint that cannot be overbid by an
informed agent corresponds to an optimal delegation problem. Within a single-
object auction framework Burkett (2015) has to be given credit for introducing
optimal delegation in principal-agent relationships. He showed how the fact
that budget constraints are endogenously set by the principal to mitigate the
agency problem does not affect the revenue comparisons between standard
FPSB and Vickrey single-item auctions. Later, Burkett (2016) studies a princi-
pal’s optimal choice of the budget constraint for an agent participating in an
auction-like direct-revelation mechanism. Principal and agent are assumed
to be equity holders in the firm, interested in maximizing the firm’s expected
return at the auction, but the bidder receives an additional private payoff when
the firm wins the good. In contrast, in Chapter 3 we model a complementary
environment with multiple objects in which agents are no equity holders. The
types of manipulations possible for agents in such multi-object markets are
quite different from single-object auctions. We show that the information
asymmetry as well as the different preferences of principal and agent result in
an agency dilemma that is difficult to resolve even in a symmetric information
environment in which the principal is fully informed about the firm’s valua-
tions. Therefore, we also consider optimal contracts that consist of a menu of
contingent budgets and transfer payments from uninformed principal to agent
in the asymmetric information setting.

If two units are sold as a single package to both bidding principal-agent
pairs in a single-package auction (1 × 2 market), there is no difference in the
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optimal contract between the FPSB and the ascending auction. This result is
reminiscent of the findings in Burkett (2015, 2016) for an optimal delegation
setting in a single-object market. The analysis indicates how to overcome the
agency problem in case the principals wish to implement the single-winner
equilibrium in the 2 × 2 market. Nevertheless, if the agency bias is too strong,
an optimal contract does not exist in the asymmetric information environment.
Moreover, the first finding contrasts with the difference in overcoming the
principal-agent problem between the FPSB and the ascending package auction
in the 2 × 2 market.

In the FPSB package auction the agency bias cannot even generally be
solved in the symmetric information environment if principals try to implement
the dual-winner equilibrium. Moreover, the same impossibility result holds in
the asymmetric information setting if the agent’s value-maximization motive
is too strong. However, even if the agent’s motive is sufficiently moderate,
the distributional conditions that need to be met for the principal to prefer
the dual-winner equilibrium to the single-winner equilibrium are harder to
satisfy in comparison to the setting without agents in Section 3.6.1. Contrary,
in the ascending package auction the agency problem is straightforward to
overcome in the symmetric as well as in the asymmetric information setting
if the principal’s goal is to implement the dual-winner equilibrium. The
second-price payment rule of the ascending package auction allows for an easy
solution of the principal-agent problematic as is demonstrated by deriving
outcome equivalence in solving the agency problem to the VCG mechanism in
the same setting. Finally, by the same methods it is possible to solve the agency
problem in the non-combinatorial SMRA and even extend our finding to larger
markets. In summary, we find evidence in favor of (ascending) second-price
auction formats in efficiently overcoming agency problems within bidding
firms in mutli-object (package) auctions. Given the general coordination
advantage for bidders in the ascending package auction within a standard IPV
setting as described in Section 2.3.4, we now possess additional reasons to
argue towards a use of this package auction format if the auctioneer’s primary
goal is to maximize social welfare.

1.2.3 Procurement Package Auctions

This section introduces the contributions of Chapter 4. Split-award auctions
are often used for multi-sourcing in industrial procurement. Companies such
as Sun Microsystems (Oracle Corporation) and HP Inc., for example, pro-
cure products worth hundreds of millions of dollars using different types of
multiple sourcing auctions (Elmaghraby, 2007; Donohue et al., 2017). For
risk considerations, such firms often want to have more than one supplier,
especially in case the dual source solution is the cost-minimal outcome. In
split-award auctions a procurement manager splits his demand for a larger
quantity of a contract into two (or more) shares (aka. lots), such as a 30% and
a 70% share or two 50% shares.
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There are two classes of split-award auctions, which allow for different
allocations. Ex-ante split-award auctions always implement an outcome with
multiple winners, as no single supplier is allowed to win the 100% share only
(Bichler et al., 2015; Chaturvedi et al.).7 Hence, such formats are apt, when
the procurement manager commits to multi-sourcing a priori, for example due
to diseconomies of scale in the market. Contrary, ex-post split-award auctions
decide endogenously, whether there are multiple winners or only one supplier
wins the entire demand. Here, suppliers (bidders) can bid on all shares and
the cost-minimizing allocation is selected by the revenue-maximizing buyer.
Especially in settings in which the buyer is unsure about the exact scale
economies in the market ex-post split-award auctions allow to determine the
cost-minimal outcome for different environments. In this thesis we focus
mainly on combinatorial ex-post split-award auctions and for the sake of
simplicity refer to them as split-award auctions throughout. The ex-ante and
the non-combinatorial (typically sequential) ex-post formats, in particular
discussed in the conclusion in Chapter 5, are denoted explicitly.8

The majority of (reverse) procurement auctions are FPSB auctions (Bo-
gaschewsky, 2015) but one can think of a number of possible first-price
split-award auction formats combining sealed-bid and ascending-price (Dutch)
mechanisms. We focus on the types of auction designs used by one of the
largest European electronics and manufacturing multinationals, i.e. auctions
with a total purchasing volume of between 250 thousand and 175 million
Euros each, within one year (April 2015 to March 2016). We concentrate
on first-price auctions only, as nearly all of the split-award auctions in the
mentioned period were first-price auctions (FPSB and versions of a Dutch
auction). Only a small share were descending-price (English) auctions, and
the company never organized a VCG mechanism. There are two interesting
observations from the empirical analysis which motivate this research.

1. About every third first-price auction was a split-award auction, most of
which included two shares only. About 81% were ex-ante and 19% are
ex-post split-award auctions.

2. Only 5% of the split-award auctions were organized as combinatorial
auctions allowing bidders to submit a package bid. The majority was
organized as ex-ante or non-combinatorial (sequential) ex-post split-
award auctions.

Observation (i) shows the importance of split-award auctions in the procure-
ment practices of the electronics multinational. Most of them involved only
two predefined shares. The frequent application of ex-ante split-award auctions
arises from the unwillingness of a buyer to allow single-winner outcomes, in
case he wants to implement a dual sourcing strategy for sure. The motivation

7These auction formats are similar to standard multi-unit auctions in which each buyer
demands one unit only.

8In these non-combinatorial (sequential) ex-post split-award auctions the winner of the first
share(s) is also allowed to bid for subsequent shares, if he is interested in winning the package,
which distinguishes them from standard multi-unit auctions with unit-demand (Demange et al.,
1986).
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is to keep up competition for future auctions or to have a second source in
case the primary supplier defaults. Nevertheless, in about every fifth split-
award auction the buyer of the electronics multinational delegated the decision
about the sourcing strategy to the market mechanism by applying an ex-post
format. The most surprising observation (ii), however, is that the majority of
these ex-post split-award auctions did not allow for package bids, but were
non-combinatorial auctions. Sequential split-award auctions were employed
by the procurement managers, amongst others, in the hope of achieving lower
prices in the second stage as competition is more transparent.

Nevertheless, we focus almost exclusively on the analysis of combinatorial
ex-post split-award auctions in this thesis. One simple reason for the relatively
rare use might be the still lacking understanding of equilibrium strategies as
well as welfare and revenue properties of these mechanisms. Thus, our goal is
to promote these universal procurement mechanisms by making them more
accessible to procurement managers and by demonstrating their benefits. In
particular, in the conclusion in Chapter 5 combinatorial ex-post split-award
auctions are compared to their non-combinatorial (sequential) counterparts in
an environment of economies of scale and decreasing marginal costs.

Our basis for the study of combinatorial ex-post split-award auctions is the
work by Anton and Yao (1992) which provides a Bayesian Nash equilibrium
analysis for a FPSB split-award auction in a market in which two suppliers
compete for either a 50% share or 100% of a contract under diseconomies
of scale. We extend this analysis to n ≥ 2 bidders and different ascending
first-price (Dutch) auction formats in Chapter 4 that are used in the field. The
2 × n notation denotes n bidders competing for 2 homogeneous 50% shares
of the sold contract. Most importantly, in this procurement context we study
reverse auctions in which the suppliers submit bids to the auctioneer that
represent prices at which the latter may purchase their services or products.
The buyer then chooses his cost-minimizing allocation. The bidders incur costs
of conducting the order or the purchase which are their private information.
Within the independent private values model, the private values are simply
replaced by private costs but for sake of simplicity it is nevertheless referred
to as IPV model.

We are still focusing on a market in which it is always efficient to have
two winners (the split outcome) independent of the bidders’ costs for 50% or
100% of the contract, i.e. dual source efficiency. This efficiency setting implies
increasing marginal costs in the size of the share purchased in which the lowest
possible marginal cost for the second 50% share strictly exceeds the highest
possible marginal cost for the first 50% share as well as strictly separated
cost ranges for 50% or 100% of the order. In contrast to the 2 × 2 forward
auction market, a bidder’s costs are based on the one-dimensional private cost
draw for 100% of the contract and the costs for the 50% share correspond
to a constant fraction determined by an efficiency parameter. Be aware that
this linear cost structure limits us to the derivation of linear equilibria, similar
to Ausubel et al. (2014), but contrary to the 2 × 2 market, allows to analyze
n ≥ 2 bidding firms. We assume the dual source efficiency environment, i.e.
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the efficiency parameter, is commonly known by all suppliers but not by the
auctioneer. The latter assumptions helps modeling a scenario in which the
auctioneer is unaware of the exact economies of scale in the market and thus
cannot simply employ an ex-ante split-award auction to achieve the efficient
allocation but relies on auction mechanisms that endogenously allocate social-
welfare maximizing.

According to Anton and Yao (1992) it is well-known that for n = 2 bidders
the FPSB split-award auction possesses efficient σ equilibria and an inefficient
winner-takes-all (WTA) that correspond to the dual-winner equilibria and the
single-winner equilibrium of Section 3.6.1, respectively. Moreover, we show
that it also contains inefficient hybrid equilibria as defined in Anton et al.
(2010). For n > 2 bidders the latter equilibrium ceases to exist and the σ
equilibrium does not involve a pooling price anymore. Contrary, the Dutch
split-award auctions only contain efficient σ equilibria independent of the
number of bidders. If the σ equilibrium is the outcome of the FPSB auction
then all considered split-award auctions are fully efficient and cost equivalent.
Obviously, this result does not extend to the WTA equilibrium of the FPSB
format.

In consecutive laboratory experiments we evaluate our theoretical results
on the three combinatorial ex-post split-award auction formats. For n = 2
bidders we find that the Dutch auction on-average is more efficient than the
FPSB format which, nonetheless, is cheaper for the buyer. A (compound)
Dutch-FPSB mechanism combines the merits of both formats because it is as
efficient as the Dutch auction and as cheap as the FPSB auction. For n = 3
bidders all differences between the three auction formats vanish and they are
fully efficient. Not surprisingly, the increased competition causes a sharp
drop in procurement costs for the auctioneer as a relatively high pooling price
cannot be maintained by the bidders anymore.

1.3 outline of the thesis

This thesis consists of five main chapters in which the first chapter introduced
the topic of bidding behavior in combinatorial auctions as well as the contri-
butions, the second chapter sets the formal stage and updates the reader on
recent relevant findings, the third and fourth chapters contain applications on
optimal budget constraints and procurement auctions, respectively, and the
fifth chapter concludes with an outlook. All contributions are mainly based on
the three works Bichler and Paulsen (2018), Kokott et al. (2018a) and Kokott
et al. (2018b), each of which was co-authored by the author of the thesis.

The introduction in the present Chapter 1 motivated the study of optimal
bidding behavior in combinatorial auctions by outlining the unique properties
of auctions as optimal single-object market mechanisms and successively de-
picting the shortcoming of non-combinatorial auction formats in multi-object
markets. Finally, the detailed evaluation of combinatorial auctions, including
the contributions of this thesis, constitutes the completion of valid policy
advice on optimal multi-object sales mechanisms. Chapter 2 contains defi-
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nitions of all game- and contract-theoretic concepts made use of to establish
the results of this thesis. Moreover, it formalizes the standard Bayesian IPV
framework in which our contributions are derived and compares them to the
existing literature on single- and multi-object auctions within the same envi-
ronment. In Chapter 3 we introduce a principal-agent model of bidding firms
into our model of equilibrium bidding behavior in combinatorial auctions and
investigate the effect of optimal budget constraints on revenue and efficiency
comparisons. All proofs of this chapter and detailed descriptions of the dis-
cussed auction formats can be found in Appendix A. The chapter is based
on Bichler and Paulsen (2018). Another application, following Kokott et al.
(2018a), is contained in Chapter 4 in which we examine the ranking of first-
price ex-post split-award auctions in our standard model. These are reverse
combinatorial procurement auctions employed with increasing frequency in
the industry. Our theoretical findings are evaluated with an empirical analysis
of laboratory experiments. The relevant proofs and elaborate statistical sum-
maries of the experimental evaluation are provided in Appendix B. Finally,
Chapter 5 summarizes the contributions of this thesis, presents potential short-
comings as well as their remedies and extensions as in Kokott et al. (2018b),
and points towards complementary future research.



2
T H E O R E T I C A L BAC K G RO U N D

In this chapter we will first provide an introduction into the concepts of game
theory that allow us to analyze combinatorial auctions strategically. Second,
we formulate auctions as games of incomplete information in our standard IPV
framework with risk-neutral and ex-ante symmetric bidders. Third, we present
the basics of hidden information principal-agent relationships used to model
agency problems in bidding firms in a contract theory setting. Finally, an
overview of the most important results in auction theory within the specified
IPV environment is provided.

2.1 bayesian game theory

In this section we define all game-theoretic concepts that are employed to
establish our theoretical contributions in Chapters 3 to 5. The summary is
mainly based on Mas-Colell et al. (1995), Leyton-Brown and Shoham (2008)
and Fudenberg and Tirole (1991). Game theory analyzes decision situations
(games) in which the outcome depends on the decisions of several interacting
self-interested decision makers, i.e., for each decision maker the outcome
(payoff) depends on her own decisions and those of the other players. In a
standard single-object auction, for example, each player submits a bid and any
one player only wins the object if she outbids all the other decision makers. In
the game theoretic analysis of such decision situations it is generally assumed
that each subject behaves rationally, i.e., within a given environment each
player aims at maximizing utility and does not succumb to any intellectual
restrictions. This fundamental assumption can be interpreted normatively
and positively. In the first interpretation it is not claimed that all decisions
makers actually behave fully rational in a real world decision situation but
the assumption demonstrates the rational outcome which then might serve
as a guideline. The positive interpretation argues that at least in the long run
only rational behavior will be enforceable in practice. In Chapters 4 to 5 we
confirm the positive interpretation experimentally in a procurement context.

As is convention in the game-theoretic analysis of auctions, we restrict our
attention to non-cooperative games as opposed to cooperative game theory.
In the former, binding cooperative agreements between subgroups of self-
interested decision makers (enforced by an external authority) are not possible
and thus, only self-enforcing alliances (coalitions) may result in any game.
Moreover, we focus on games of incomplete information in which each player
is not completely informed about the structure of the game and, in particular,
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assume that she does not know her opponents’ exact payoff functions. Alter-
natively, incomplete information may refer/extend to the opponents’ strategy
or information spaces. In his benchmark works Harsanyi (1967a,b,c) proposes
an approach that allows to elegantly model all possible forms of incomplete
information. Here, each player’s entire ”private” information (not known to
the other players) is summarized in her ”type” which is drawn ”by nature”
from a commonly known probability distribution function prior to the start of
the game. Each player’s payoff function then depends not only on her strategy
choices and those of the opponents but also on her own type. As each oppo-
nent’s strategy choice depends on his private type, every player in the game
has to build beliefs about the other players’ types given her own type draw.
As these beliefs correspond to conditional probability distributions derived
from the common prior distribution via Bayes’ rule, games of incomplete
information are referred to as Bayesian games and the corresponding analysis
is called Bayesian game Theory. Analyzing auctions game-theoretically in a
complete information context would prohibit to capture and outline the essen-
tial strategic trade-offs present in real-world applications Engelbrecht-Wiggans
(1980).

In the next two sections we stick to convention and discuss static and
dynamic games of incomplete information separately. In static games, also
called simultaneous move games, such as (closed) sealed-bid auction formats
for example, the players move (make their decisions) simultaneously without
knowing their opponents’ choices. In dynamic games, like (open) ascending-
or descending-price auction formats, players move sequentially and at each
stage of the game some of the opponents’ prior moves might have been
observed. Finally, we introduce the reader to a formal game-theoretic definition
of the standard IPV model.

2.1.1 Static Games of Incomplete Information

We begin with a definition of all components of a Bayesian game, its normal
(strategic) form, which consecutively allows us to define strategies and various
equilibrium concepts.

Definition I. (Leyton-Brown and Shoham, 2008, Definition 7.1.2) (Normal
form of a Bayesian game): The normal form of a Bayesian game G ={
I, S , U, T , F

}
specifies:

• the set of players I =
{
1, ..., n

}
in which any single player is denoted by

i ∈ I;

• the strategy space S = S 1 × ... × S n in which S i ⊂ S is the space of
strategies available to player i and possibly includes mixed strategies
(statistical distributions over the set of all deterministic strategies);

• the space of utility functions U = U1 × ... ×Un in which Ui ⊂ U is the
utility function of player i;
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• the type space T = T1 × ... × Tn in which Ti ⊂ T is the type space of
player i;

• and the common prior probability distribution of types F (·).

The information in the normal form game G is common knowledge among
all players except each player i’s type, ti ∈ Ti, which is private information
to the corresponding agent. Before the game starts, each player is assigned
(by ”nature”) this, potentially multi-dimensional, private type such that the
vector of all types corresponds to t = (t1, ..., tn) ∈ T . The commonly known
joint cumulative distribution function of types t ∈ T is F (t) with mapping
F : T → [0, 1] and marginal distribution Fi (ti) with mapping Fi : Ti →

[0, 1] for any player i’s type, ti ∈ Ti. Let us next define the type draws as
t = (ti, t−i) in which t−i ∈ T−i represents the types of all players other than i.
Naturally, T = (Ti, T−i) and, given player i’s type draw ti ∈ Ti, the ex-interim
conditional distribution of the other players’ types F (t−i|ti) = F (t) /Fi (ti)
can be computed. Now, we are able to define each agent i’s strategy space
S i. Player i chooses a strategy si (ti) ∈ S i which is a mapping of the form
si : Ti → S i. Let the set of strategies chosen by all players be defined
as s = (si, s−i) in which s−i ∈ S −i corresponds to the subset of strategies
chosen by all players other than i. Also, s ∈ S = (S i, S −i). Although the
strategy space S allows for mixed strategies, any strategy si (ti) ∈ S i may also
denote a pure (deterministic) strategy as it simply corresponds to a special case
of a mixed strategy (probability distribution over all possible deterministic
strategies) in which the statistical distribution is degenerate. Finally, any
player i’s von Neumann-Morgenstern utility function (von Neumann and
Morgenstern, 1944) maps from the strategy and type spaces into utility payoff

such that for given type draws t ∈ T and given set of strategies employed s ∈ S
the utility is denoted as Ui = ui (s, t) in which ui : S × T → R. The above
definitions allow us to introduce three different forms of expected utility that
will facilitate the exposition of solution concepts to the normal form Bayesian
game G.

Definition II. (Leyton-Brown and Shoham, 2008, Definition 7.2.1) (Ex-Post
Expected Utility): In a Bayesian game G in which the players’ actual type
draws (ti, t−i) ∈ T are commonly known by all players and the unknown set of
strategies employed is given by (si, s−i) ∈ S , agent i’s ex-post expected utility
is defined as

EUi (si, s−i, ti, t−i) = Es−i∈S −i

(
ui (si, s−i, ti, t−i) (EXP)

Note that, although the actual vector of all players’ type draws t is known,
there is uncertainty about ex-post utility from agent i’s point of view as she
does not know which set of potentially mixed strategies s−i ∈ S −i are played
by the other players. Next, suppose the vector of type draws t ∈ T is not
commonly known (as is standard in any Bayesian game G) but each player i’s
actual type draw ti is private information.
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Definition III. (Leyton-Brown and Shoham, 2008, Definition 7.2.2) (Ex-
Interim Expected Utility): In a Bayesian game G in which player i’s type
draw is given by ti and the agents’ set of strategies by (si, s−i) ∈ S , agent i’s
ex-interim expected utility is defined as

EUi
(
si, s−i, ti; F (t−i|ti)

)
= Et−i∈T−i

(
EUi (si, s−i, ti, t−i) , F (t−i|ti)

)
. (EXI)

The ex-interim expected utility of agent i with type draw ti corresponds to
the expected ex-post expected utility in Definition II over all possible type
draws t−i ∈ T−i of the other players build with the conditional common prior
F (t−i|ti). In the final expected utility definition we assume that no agent i
does yet known his actual type draw ti ∈ Ti.

Definition IV. (Leyton-Brown and Shoham, 2008, Definition 7.2.3) (Ex-Ante
Expected Utility): In a Bayesian game G in which the agents’ set of strategies
is given by (si, s−i) ∈ S , agent i’s ex-ante expected utility is defined as

EUi
(
si, s−i; F(t)

)
= Eti∈Ti

(
EUi

(
si, s−i, ti; F (t−i|ti) , Fi (ti)

))
. (EXA)

Agent i’s ex-ante expected utility equals the expected ex-interim expected
utility from equation (EXI) in Definition III over all her possible type draws
ti ∈ Ti based on the marginal common prior Fi (ti).9 In the next step we can
now define an agent i’s best response.

Definition V. (Leyton-Brown and Shoham, 2008, Definition 7.2.4) (Best Re-
sponse): In a Bayesian game G player i’s best response si ∈ S i to the other
agents’ set of strategies s−i ∈ S −i is defined by

BRi (s−i) = argmax
s′i∈S i

EUi
(
s′i , s−i; F(t)

)
. (BR)

Any strategy from agent i’s set of best responses si ∈ BRi ⊆ S i maximizes
her ex-ante expected utility from equation (EXA) in Definition IV over all
possible strategies s′i ∈ S i given the other players employ strategy profile
s−i ∈ S −i. Be aware that agent i’s set of best responses in equation (BR) also
maximizes his ex-interim expected utility. This becomes clear by considering
equation (EXA) in Definition IV and noticing that the expression for ex-interim
expected utility conditioned on type ti does not depend on strategies that i
would chose if he were not of that type. Thus, by maximizing ex-ante expected
utility any element of BRi is in fact also maximizing ex-interim expected utility
conditioned on each possible type ti ∈ Ti. Definition V enables us to present
the most general solution concept for a Bayesian game.

9Alternatively, ex-ante expected utility can be defined as corresponding to expected ex-post
expected utility from Definition (II) over all possible type draws t ∈ T based on the common
prior F (t), i.e.,

EUi
(
si, s−i; F(t)

)
= Et∈T

(
EUi (si, s−i, ti, t−i) , F(t)

)
.
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Definition VI. (Leyton-Brown and Shoham, 2008, Definition 7.2.5) (Bayesian
Nash Equilibrium): A set of best responses (si, s−i) that satisfies si ∈ BRi (s−i)
from Definition V for all i ∈ I constitutes a Bayesian Nash equilibrium of the
Bayesian game G.

A Bayesian Nash equilibrium consists of a profile of mutually best responses
defined via ex-ante expected utility. The next notion of equilibrium represents
a special case of a Bayesian Nash equilibrium.

Definition VII. (Leyton-Brown and Shoham, 2008, Definition 7.4.1) (Ex-Post
Equilibrium): An ex-post equilibrium of a Bayesian game G is identified by
a strategy set (si, s−i) that solved the following equality for all t ∈ T and all
i ∈ I

si = argmax
s′i∈S i

EUi
(
s′i , s−i, t

)
. (EXPEQU)

Intuitively, an ex-post equilibrium comprises a set of mutually best re-
sponses defined for ex-post expected utility. In this equilibrium no agent
would want to deviate from the equilibrium strategy even if knowing all play-
ers’ types. Thus, this equilibrium is stronger than a Bayesian Nash equilibrium
in the sense of being robust against perturbations in the common prior F(t).
An ex-post equilibrium does not require any agent to believe that the other
players possess precise beliefs about his type. Before introducing the final
solution concept, let us first demonstrate how each player i’s strategy space S i

can be reduced ”rationally”. Suppose, any player i’s strategies that are never a
best response, in the sense of Definition V, are removed iteratively from her
set of strategies S i. We then end up with the following subset.

Definition VIII. (Mas-Colell et al., 1995, Definition 8.C.2) (Set of Rational-
izable Strategies): For any player i in a Bayesian game G, the strategies that
survive the iterated elimination of strategies that are never a best response
constitute her set of rationalizable strategies.

A ”rational” player should never employ a strategy which does not belong
to the set of rationalizable strategies. Special instances of this set are strictly
dominant strategies and the set of strategies that survive iterated elimination
of strictly dominated strategies.

Definition IX. (Mas-Colell et al., 1995, Definition 8.B.1) (Dominant Strategy):
In a Bayesian game G player i’s strategy si ∈ S i is dominant iff, for all possible
type draws t ∈ T and all strategy profiles of the other players s−i ∈ S −i,

si = argmax
s′i∈S i

EUi
(
s′i , s−i, t

)
. (DTS)

A dominant strategy is a unique best response (based on ex-post expected
utility from Definition II) against all other players’ strategy profiles s−i ∈ S −i

for all possible type draws t ∈ T . Closely related to the concept of dominant
strategies are dominated strategies.
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Definition X. (Mas-Colell et al., 1995, Definition 8.B.2) (Dominated Strat-
egy): Player i’s strategy s′i ∈ S i is dominated in a Bayesian game G iff there
exists another strategy si ∈ S i with s′i , si such that for all possible type draws
t ∈ T and all strategy profiles of the other players s−i ∈ S −i,

EUi (si, s−i, t) ≥ EUi
(
s′i , s−i, t

)
. (DDS)

Here, strategy si also dominates s′i . Moreover, a strategy si that dominates
every other strategy s′i ∈ S i is a dominant strategy. By iteratively deleting
player i’s strictly dominated strategies from her strategy space S i in a Bayesian
game G, we end up with the set of strategies that survive iterated elimination
of strictly dominated strategies. Strategies within this set cannot be strictly
dominated and always the same strategies will result independent of the order
of deletion. The same is not true for iterated elimination of weakly dominated
strategies. Moreover, the set of strategies surviving iterated elimination of
strictly dominated strategies cannot be smaller than the set of rationalizable
strategies. Based on Definition IX, we can present the last solution concept.

Definition XI. (Equilibrium in Dominant Strategies): An equilibrium in dom-
inant strategies of a Bayesian game G occurs if each player i ∈ I employs a
dominant strategy according to Definition IX.

An equilibrium in dominant strategies is the strongest possible solution
concept to any game as it does not require a player to build beliefs and expec-
tations about his opponents’ types and strategies. Moreover, an agent does not
have to believe the other players to act rationally. Although every equilibrium
in dominant strategies is a Bayesian Nash equilibrium, there is no one-to-one
relationship between dominant strategy and ex-post equilibria. Moreover, both
equilibria are rather unlikely to exist in any Bayesian game G. The general
existence of any Bayesian Nash equilibrium is an immediate consequence of
the existence of a Nash equilibrium in a game of complete information. The
relevant existence conditions are summarized in the following definition.

Definition XII. (Mas-Colell et al., 1995, Proposition 8.D.3) (Existence of
Bayesian Nash Equilibrium): In a Bayesian game G a Bayesian Nash equilib-
rium exists in pure strategies if for all players i ∈ I,

• the strategy space S i is a nonempty, convex and compact subset of some
Euclidean space Rn;

• and the utility function Ui is continuous in s ∈ S and quasiconcave in
si ∈ S i.

Definition XII is satisfied in all our settings as will be demonstrated in
Sections 3.3 and 4.3. Let us continue with the discussion of dynamic games
of incomplete information in the next section.

2.1.2 Dynamic Games of Incomplete Information

Similar to a static game from Section 2.1.1, a dynamic game of incomplete
information can be described by its normal form G from Definition I. Thus,
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Bayesian Nash equilibria, as defined in Definition VI, are computable for
dynamic games in the same way as for static games of incomplete information.
However, per definition of the normal form, these equilibria do not take into
account the sequential structure (time and information) of the dynamic game
and therefore, might be based on incredible strategies. Strategies are incredible
if they contain empty threats of the form that player i specifies to make a certain
move at a specific stage of the game (threat) which, however, is not rational
to carry out in case this stage and information set is actually reached. To
rule out such incredible behavior we require each strategy to comply with
the concept of sequential rationality. Sequentially rational strategies specify
optimal behavior from any point in the actual sequential structure of a dynamic
game onwards. The current section introduces an equilibrium refinement that
is based on sequentially rational strategies, though not in full formality, taking
into account the actual sequential time- and information-structure of a dynamic
game of incomplete information.

Nature first draws all players’ types and consecutively they participate in a
continuation game (dynamic subgame of the actual game). Note that as each
agent is uninformed about the other players’ type draws, she does not know in
which exact continuation game she finds herself and has to build corresponding
believes based on the common prior F(t). However, in the variety of dynamic
games of incomplete information studied in this thesis, in each continuation
game the sequential moves by all players are fully visible and any player
i can iteratively update her beliefs accordingly. In this scenario sequential
rationality requires strategies to be optimal in every continuation game of the
original game given the respective beliefs. Based on these concepts we can
now introduce an equilibrium refinement of a Bayesian Nash equilibrium that
satisfies sequential rationality given a system of consistent beliefs.

Definition XIII. (Mas-Colell et al., 1995, Definition 9.C.3) (Perfect Bayesian
Equilibrium): A Perfect Bayesian equilibrium of a dynamic game of incomplete
information consists of a profile of strategies and beliefs such that,

• all players’ strategies are sequentially rational given the system of
beliefs;

• and the beliefs are derived from the players equilibrium strategies with
Bayes’ Rule whenever possible.

It is important to note that every Perfect Bayesian equilibrium of a dynamic
game of incomplete information is also a Bayesian Nash equilibrium of the
same game. However, obtaining existence results is more challenging and we
have to content ourselves with the following observation.

Definition XIV. (Fudenberg and Tirole, 1991, Theorem 8.5) (Existence of
Perfect Bayesian Equilibrium): In a finite dynamic game of incomplete infor-
mation a Perfect Bayesian equilibrium exists (possibly in mixed strategies).

There are even further equilibrium refinements, such as Sequential and
Perfect equilibria, that put additional requirements on consistency of beliefs
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off the equilibrium path. Nevertheless, these equilibrium concepts place
restrictions beyond the needs of this thesis and thus, we continue with the
definition of our standard IPV model as a Bayesian game.

2.1.3 Standard IPV Auction Model

In this section we derive a general IPV normal form for (forward) auction
games, in which a single object is sold by a risk-neutral and revenue max-
imizing auctioneer to multiple ex-ante symmetric and risk-neutral buyers,
based on Krishna (2002) and the survey of Engelbrecht-Wiggans (1980). This
framework has been introduced to analyze auctions as strategic games of
incomplete information by Vickrey (1961) and then generalized by Riley and
Samuleson (1981). Let us consider each component of the normal form game
G =

{
I, S , U, T , F

}
from Definition I in Section 2.1.1 successively. In an

auction game the set of players I corresponds to the fixed set of bidders partici-
pating in the auction. Any bidder i’s strategy space defines the range of allowed
bids for the single object in the auction and we determine S i = [0, s] ⊆ R≥0

with upper bound s ∈ (0,+∞). Next, we assume identical non-empty value
spaces for all bidders such that Ti =

[
t, t

]
with t, t ∈ (0,+∞), t < t and

E (ti) < +∞ for all i ∈ I. Moreover, each bidder i’s private valuation ti is
drawn independently from an identical monotonically increasing cumulative
distribution function F (ti) according to the mapping F :

[
t, t

]
→ [0, 1]. In this

setting with independent values, the conditional distribution then corresponds
to F (t−i|ti) =

∏
t j∈T−i F

(
t j
)

and ex-interim expected utility can be denoted as

EUi

(
si, s−i, ti;

∏
t j∈T−i F

(
t j
))

. We assume that F (ti) admits a continuous and

strictly positive density function f (ti) on the full support for all i ∈ I. The last
two assumptions ensure ex-ante symmetric bidders. Finally, buyer i’s strategy
si (ti) ∈ [0, s] determines the height of his submitted bid as a function of his
valuation space si :

[
t, t

]
→ [0, s].

We focus on a quasilinear von Neumann-Morgenstern utility function of
the form Ui = ti − pi. Utility equals the difference (payoff) between a bidder
i’s type ti ∈ Ti, his value (maximum willingness to pay) for the object, and pi,
the price paid if the object is won. If bidder i does not obtain the item, her
reservation utility is normalized to be zero. Note, that the final price of the
object pi = p (si, s−i) depends on the pricing rule of the auction format used
based on the bids submitted by all buyers. We assume the pricing function to
be continuous in the submitted bids, identical for all buyers and to never charge
a bidder more than her bid. The assumptions are captured in the mapping of
p : [0, s]n → [0, s] with pi ≤ si. Based on the above assumptions a bidder
i’s utility can be expressed as a function of her type draw and all chosen
strategies such that Ui = ti − p (si, s−i), and the quasilinear specification has
three fundamental implications. First, it implies risk-neutrality, i.e., for each
bidder the expected utility equals the utility of the expected payoff. Second,
buyers maximize expected profit of participating in the auction. Third, it
implies independence of buyers’ valuations in the sense that the value any
bidder i assigns to the object does not depend on the height of any other
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buyer’s willingness to pay. Within the specified environment the strategy
space S i = [0, s] ⊆ R≥0 is a nonempty, convex and compact subset of an
Euclidean space. Moreover, the quasilinear utility function Ui is per definition
continuous in s ∈ S and quasiconcave in si ∈ S i. Therefore, according
to Definition XII, Bayesian Nash equilibria are guaranteed to exist in pure
strategies in our standard IPV setting with risk-neutral and ex-ante symmetric
bidders. Also, if a finite dynamic game of incomplete information is analyzed
within this setting, Perfect Bayesian equilibria (possibly in mixed strategies)
exist with certainty as stated in Definition XIV.

Finally, there are numerous ways to extend the above model to a multi-
object setting. Suppose for example each buyer demands one item out of a
set of auctioned objects. In this case a bidder i’s type draw ti determines his
value for the item demanded and the above specification can be transferred
almost one to one. See the works by Vickrey (1961), Ortega-Reichert (1968),
Harris and Raviv (1981), Weber (1983) and Milgrom (1985), for example,
for applications of this setting to standard multi-unit and sequential auctions
(perfect substitutes). Contrary, if a buyer demands more than one item she
possesses different marginal valuations for the different objects that might
be related with each other via a specific functional form such as satisfying
certain scale economies. These valuations need to be taken into account in
any bidder’s strategy space. For example, each bidder i’s type draw ti might
correspond to a multi-dimensional vector and a strategy has to specify multi-
dimensional decisions based on these multi-valued type draws. Versions of our
standard model are implemented for standard multi-unit auctions with multi-
unit demand by Noussair (1995), Engelbrecht-Wiggans and Kahn (1998a),
Engelbrecht-Wiggans and Kahn (1998b) and Ausubel et al. (2014). The
implementation of the described IPV model in our combinatorial auction
setting is carried out in Sections 3.3 and 4.3. Note, that the more complex the
auction formats, the more challenging becomes the application of our standard
model and an unambiguous game-theoretic analysis of auctions as Bayesian
games. In some of these settings the proof of existence of Bayesian Nash
equilibria might be much more complicated and needs to be established by
case.

Before reviewing the most important findings for single- and multi-object
auctions within the above defined standard setting in the literature, let us next
provide the reader with a brief introduction into contract theory that sets the
stage for our analysis of agency problems in bidding firms in Chapter 3.

2.2 contract theory

The introduction to contract theory in this section is largely based on Mas-
Colell et al. (1995), Fudenberg and Tirole (1991) and Dewatripont and Bolton
(2005). The rather informal excursion into optimal delegation follows Alonso
and Matouschek (2008), Holmström (1977) and Holmstrom (1984). Contract
theory is concerned with designing incentive schemes (contracts) in strategic
situations in which groups of individuals may maximize social welfare if they
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cooperate but some members of the group have an incentive to deviate. The
contract is written in order to prevent or minimize this deviating behavior. Only
environments with asymmetric information between members of the group,
and between the group and an all-enforcing external authority are relevant
to contract theory. Without these informational asymmetries, a complete
contingent contract that controls the behavior of each individual by severely
punishing deviating moves could be implemented. However, in situations
of asymmetric information or in settings in which a complete contingent
contract cannot be written it is often impossible to implement the social
welfare maximizing outcome. Here, contract theory aims at specifying an
incentive system that enforces the ”second best” outcome which achieves
social welfare as close as possible to full efficiency. Within a company, for
example, the management might have a misguided incentive to maximize short
run revenue or profit in order to obtain as large bonus payments as possible
whereas the board of directors would like the corporation to operate efficiently,
sustainable and achieve long run profit goals. Therefore, the company has to
enter an employment contract with each member of the management that
sets the right incentives from the firm’s point of view. However, as the
management is usually much better informed about the company’s operations
and performance potentials than the board, the latter party is unable to write a
complete contingent contract that implements the desired behavior precisely.
Approximating incentive schemes have to be installed instead.

Contrary to game theory, that takes the decision situation as given and
derives the optimal strategic behavior within, contract theory tries to alter
the strategic environment in order to achieve a desired outcome. Intuitively,
contract theory relies on many concepts from game theory but has a different
perspective. Subdisciplines include mechanism design, principal-agent theory,
new institutional economics and so on. Therefore, most concepts introduced
in this section are also relevant in applications of mechanism design to auction
theory, such as the use of the revelation principle in the design of the optimal
single-object auction mechanism (Myerson, 1981) or efficient generalized
VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973). In this thesis
we focus on a certain class of contractual problem within the principal-agent
theory, adverse selection, defined by information asymmetries between a fully
informed agent and a non-informed principal that arise before a contract is
negotiated. The agent is supposed to act on behalf of the principal’s inter-
est but has an incentive to deviate from the allocation that maximizes both
parties’ welfare. Therefore, the principal must design an optimal contingent
contract that aligns the incentives of the agent and implements the ”second
best” outcome. Applications include the study of how to regulate the pricing
policy of a monopoly with unknown costs in order to maximize social wel-
fare (Baron and Myerson, 1982), optimal monopolistic price discrimination
(Maskin and Riley, 1984) and famously optimal taxation (Mirrlees, 1971), for
example. Amador and Bagwell (2013) examine trade agreements between
governments in an optimal delegation framework. Let us now formulate a
general adverse selection principal-agent relationship that closely resembles
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a Bayesian game of normal form G =
{
I, S , U, T , F

}
from Definition I in

Section 2.1.1. Throughout this section we refer to these strategic situations
as Bayesian principal-agent relationships. Consecutively, we formulate the
principal’s optimization problem and derive a general form of the optimal
”second-best” contract.

The set of players corresponds to I =
{
P, A

}
in which i = P and i = A

denote the principal and agent, respectively. Note that the principal does not
have any private information but the agent’s private type is t ∈ T =

[
t, t

]
.

The type is drawn from the monotonically increasing cumulative distribution
function F (t) with mapping F :

[
t, t

]
→ [0, 1], and continuous as well as

strictly positive density function f (t) on full support. After the contract is
negotiated the agent chooses a strategy s(t) ∈ S = [0, s] ⊆ R≥0 in which
the upper bound satisfies s ∈ (0,+∞). The strategy is a mapping of the
form s : T → S . Finally, the quasilinear von Neumann-Morgenstern utility
functions of principal and agent for a given type draw t and a chosen strategy s
are UP = uP(s, t) − r and UA = uA(s, t) + r, respectively. Here, the mapping
is ui : S × T → R for all i ∈ I =

{
P, A

}
, and r ∈ R represents a transfer

payment from principal to agent as specified in the contract. The transfer r(t)
is modeled as a function of the form r : T → R. Note that the form of the
utility function implies risk-neutral and profit-maximizing principal and agent.
We also assume that the principal can fully commit to the terms of the contract.

2.2.1 Mechanism Design

Given the described information asymmetry, the general structure of the unin-
formed principal’s optimal contract is determined by the Revelation Principle.

Definition XV. (Mas-Colell et al., 1995, Proposition 14.C.6) (Revelation
Principle): In a Bayesian principal-agent relationship, an allocation which
assigns to every possible agent’s type t ∈ T a menu of strategy and transfer(
s(t), r(t)

)
, can be implemented by any mechanism iff it can be implemented

by a (direct) revelation mechanism.

Thus, any allocation in a Bayesian principal-agent relationship can be imple-
mented by a direct revelation mechanism. In a (direct) revelation mechanism
of a Bayesian principal-agent relationship, for every possible of the agent’s

reported type t̂ ∈ T a set of actual strategy and transfer
(
s
(
t̂
)

, r
(
t̂
))

is assigned.
Additionally, the revelation mechanism must be incentive compatible which
implies that it is optimal for the agent to truthfully report his actual type draw
t̂ = t for all t ∈ T . From the Revelation Principle it follows that we can focus
on (direct) revelation contracts

(
s(t), r(t)

)
to solve the principal’s second best

optimization problem.
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2.2.2 Second-Best Problem

This section is based on Section 3.3.3 in Dewatripont and Bolton (2005). To
ensure the existence of an optimal contract as specified above, the following
additional assumptions need to be made.

Definition XVI. (Assumptions for Existence of Optimal Contract): The ex-
istence of an optimal ”first best” and ”second best” contract in the general
adverse selection principal-agent problem requires the following assumptions:

A1: The utility function uA is monotonic in t, ∂uA(s,t)
∂t > 0.

A2: The ”single-crossing property” is satisfied for utility function uA,
∂2uA(s,t)
∂s∂t > 0.

A3: The optimization problem is concave as the utility function ui is concave
in s for all i ∈ I, ∂

2ui(s,t)
∂s2 < 0.

A4: The following technical assumptions are satisfied to guarantee that the
second-order condition of the optimization problem hold, ∂

2uP(s,t)
∂s∂t ≥ 0,

∂3uA(s,t)
∂s2∂t ≥ 0 and ∂3uA(s,t)

∂s∂t2 ≤ 0.

A5: The ”monotone hazard rate” is satisfied, ∂
∂t

(
f (t)

1−F(t)

)
≥ 0.

A6: To guarantee that the ”firs best” problem has an interior solution
it is assumed that for any t ∈ T there is an s < s such that s ∈
argmaxs′∈S i

{
uP(s, t) + uA(s, t)

}
.

Note that assumption A1 restricts the analysis to one-dimensional type
spaces. Nevertheless, most assumptions can be relaxed with complicating
effects on the structure of the optimal contract. For example, if assumption A5
is not given, then the optimal second best contract might consist of pooling
(”bunching”) regions in which the optimal strategy is the same for different
type draws. See amongst others Baron and Myerson (1982) and Guesnerie
and Laffont (1984) on this topic.

Let us now introduce the principal’s optimization problem in the asymmetric
information setting in which she is not informed about the agent’s type draw
t ∈ T .

Definition XVII. (Second Best Optimization Problem): The principal’s op-
timization problem if she is not informed about the agent’s type draw t ∈ T
corresponds to,

max
s(t),r(t)

∫ t

t

(
uP

(
s(t), t

)
− r(t)

)
dF(t) (SB)

subject to t = argmax
t̂∈T

{
uA

(
s(t), t

)
+ r(t)

}
for all t, t̂ ∈ T ; (SB-IC)

and uA
(
s(t), t

)
+ r(t) ≥ 0 for all t ∈ T . (SB-IR)
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The principal maximizes ex-ante expected profit subject to the agent’s incen-
tive compatibility condition that ensures truthfulness (as part of focusing on
direct revelation mechanisms) in (SB-IC) and the agent’s individual rationality
constraint in (SB-IR). The solution to the optimization problem in Definition
XVII is provided in the next definition.

Definition XVIII. (Second Best Contract): The optimal second best contract(
sS B(t), rS B(t)

)
in the asymmetric information environment for all type draws

t ∈ T of the agent corresponds to

∂uP
(
sS B(t), t

)
∂s

+
∂uA

(
sS B(t), t

)
∂s

−

1 − F(t)
f (t)

 ∂2uA
(
sS B(t), t

)
∂s∂t

= 0;

(SB-S)
and corresponding transfer of

rS B(t) = −uA
(
sS B(t), t

)
+

∫ t

t

∂uA
(
sS B(y), y

)
∂y

dy. (SB-R)

Analyzing the optimal second best contract, i.e. the first order conditions
in (SB-S), we find that there is ”underperformance” for all types t < t except
for the highest type t = t (no distortion at the top) in comparison to a ”first-
best” social welfare maximizing allocation. Moreover, the agent’s information

rent
∫ t

t
∂uA(sS B(y),y)

∂y dy in equation (SB-R) is increasing in t and there is a
general trade-off between maximizing social surplus and minimizing the
agent’s information rent.

2.2.3 Optimal Delegation

Contrary to standard contract theory, in which a second best contract consists
of a menu of contingent strategies and transfer payments

(
s(t), r(t)

)
, in optimal

delegation the principal can only influence the strategy space but is unable
to employ transfers. In this setting the principal’s optimization problem in
the asymmetric information setting corresponds to (Alonso and Matouschek,
2008; Holmstrom, 1984),

Definition XIX. (Delegation Problem): The uninformed principal’s optimal
delegation problem is,

max
D⊆S

∫ t

t

(
uP

(
s(t), t

))
dF(t) (D)

subject to s(t) ∈ argmax
s∈D

{
uA(s, t)

}
, (D-IC)

in which the delegation set D is a subset of the strategy space S .10

The agent’s incentive compatibility constraint in (D-IC) induces the agent
to choose an optimal strategy from the delegation set such that an appropriate

10In an alternative formulation of the delegation problem, the delegation set D is defined as
one subset from the collection of compact sets N of the strategy space S , i.e., D ∈ N ⊆ S .
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definition of D and the resulting strategy-choice maximizes the principal
ex-ante expected profit in (D). Following Holmstrom (1984), a solution to
the delegation problem in Definition XIX is guaranteed to exist. However,
as the form of the optimal delegation set is strongly case-dependent and any
solution is not necessarily unique, we do not provide a general characterization
but simply refer to the particular delegation problem of Section 3.3.2 and its
solutions.

Let us now summarize the major findings in auction theory within our
standard IPV model, also with respect to optimal delegation, that set the stage
for an integration of our contributions into the academic discourse.

2.3 state of research

In this section we summarize the most important findings in auction theory for
our standard IPV model with ex-ante symmetric and risk-neutral bidders who
have decreasing marginal values in the number of units of the homogeneous
good (perfect substitutes) obtained. Despite the modeling complexity of multi-
object auction formats we focus on auctions as candidates for most beneficial
multi-object market mechanisms and begin with a small positive result in
which Engelbrecht-Wiggans (1988), based on Vickrey (1961) and Vickrey
(1962), and similar to Myerson (1981) for single-object auctions, generalizes
the RET under our standard assumptions and one stronger regularity condition:
Any two multi-object auction formats that assign the same probabilities to the
same allocations and deliver identical payoffs to some benchmark type bidder
with lowest value for each possible allocation result in the same expected
revenue for the seller. Unfortunately, equilibrium bidding strategies are much
more difficult to characterize and differ substantially for specific auction
formats. Therefore, the RET generally cannot be applied and unambiguous
revenue comparisons are hard to obtain except in special cases. Moreover,
note that multi-object auctions may possess more than one equilibrium in
bidding strategies. Thus, in examining optimal strategies we assume each
bidder to follow exactly one of the existing equilibria. Also, given our standard
IPV assumptions with ex-ante symmetric bidders, we focus exclusively on
symmetric equilibria in pure strategies in which each buyer follows the same
strategy as a function of his possible type draws. This generally excludes
(hybrid) equilibria in mixed strategies although we make an exception in
Chapter 4. Nevertheless, we may have to compare efficiency and expected
seller revenue between different equilibria of different auction formats and
introduce additional equilibrium selection criteria such as payoff-dominance.

Let us next summarize the most important findings on single-object auctions
in the literature which will then guide us through the discussion of multi-object
formats.
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2.3.1 Single-Object Auctions

The results on optimal single-object auctions by Myerson (1981) and Bulow
and Klemperer (1996) as stated in Section 1.1.1 can be generalized to any
standard single-object auction format as follows: By the Revenue Equivalence
Theorem (RET), in a first version expressed by Vickrey (1961) and formalized
by Myerson (1981) and Riley and Samuleson (1981), under the same assump-
tions, any two standard single-object auctions result in the same expected
revenue for the seller. Moreover, the Vickrey auction and the English auction
are outcome equivalent whereas the FPSB and the Dutch format are strategi-
cally equivalent (Vickrey, 1961). Any standard auction achieves the strongest
competition among buyers and therefore is efficient and implements a higher
expected market price than any other mechanism that could be employed
instead, such as a simple posted price, a lottery or any form of negotiation.

However, note that the results stated so far heavily rely on our standard
assumptions, especially ex-ante symmetric buyers whose object values are
drawn from the same distribution function. Maskin and Riley (2000) demon-
strates that with asymmetric buyers, whose values are drawn from different
distribution functions, no general ranking in expected revenue between first-
and second-price single-object auctions is possible. Moreover, a second-price
auction is ex-ante efficient whereas a first-price auction is not, as first noted
by Vickrey (1961). As will be discussed in Section 2.3.2, even if buyers’ are
assumed to be ex-ante symmetric in the sense of demanding the same set of
objects and their valuations for subsets of objects being drawn from the same
distribution functions, multi-object auctions result in ex-interim asymmetric
information among bidders with similar consequences than in single-object
auctions with ex-ante asymmetric buyers. This complicates the comparison
and ranking of multi-object mechanisms dramatically.

In the following two sections we first consider auction formats that only
allow for the sale of perfect substitutes and then discuss those which also
allow to sell heterogeneous items that are not perfect substitutes, in particular
combinatorial auctions. We stick to our standard model assumptions for a
market in which multiple objects are sold and each buyer’s marginal value for
every demanded item can be computed.

2.3.2 Auctions for Perfect Substitutes

Similar to Engelbrecht-Wiggans (1988) for multi-object auctions, Maskin and
Riley (1989) generalize earlier findings by Vickrey (1961), Ortega-Reichert
(1968), Weber (1983), Milgrom (1985) and Harris and Raviv (1981), and
demonstrates that the RET extends to all standard multi-unit auction formats
for a setting in which each buyer demands at most one unit (single-unit de-
mand).11 This result follows already from Myerson (1981) if the analysis of
single-object auctions is interpreted through marginal values. However, this

11Single-unit (single-object) demand is a special case of a single-minded bidder who
demand only one specific set of objects as defined in Lehmann et al. (2002).



34 theoretical background

efficiency result does not extend to settings in which buyers demand more
than one unit (multi-unit demand). Bolle (1997) establishes general neces-
sary conditions for efficient equilibria in multi-unit auctions and shows that
the standard discriminatory and uniform-price (highest losing bid) formats
are inefficient. In a standard multi-unit auction with multi-unit demand, any
buyer’s bid on a certain unit, for example his first, competes with other buyers’
bids on different units, e.g. their second or third. As the distributions of
marginal values for distinct units differ, the market environment has close
analogy to standard single-object auctions with ex-ante asymmetric bidders,
which we know to be inefficient from Section 1.1.1 except the Vickrey auc-
tion. Intuitively, the asymmetries across bidders in the single-object setting
are replaced by asymmetries across units in multi-unit auctions for ex-ante
symmetric buyers with multi-unit demand.

Although closed-form expressions for bidding strategies cannot generally
be formulated, characterizations of equilibrium bidding strategies for bid-
ders with decreasing marginal valuations in the uniform-price (highest losing
bid) and the discriminatory auction are derived by Engelbrecht-Wiggans and
Kahn (1998a) based on Noussair (1995), and Engelbrecht-Wiggans and Kahn
(1998b), respectively. Ausubel et al. (2014) formalize differential shading
of bids for consecutive units between the discriminatory and uniform-price
standard multi-unit auction formats independent of the total number of units
demanded. In the latter auction mechanism bids fall stronger with successive
units as lower bids, except on the first unit, lower the expected price paid for
all units. This effect is termed ”demand reduction”. In fact, the differences in
equilibrium bidding strategies between standard auction formats are so funda-
mental that the mechanisms may lead to different allocations and, based on
Maskin and Riley (1989), the RET cannot be applied. Therefore, comparisons
in efficiency and expected revenue for the seller remain ambiguous.

2.3.3 Auctions for Heterogeneous Items

Let us begin with the examination of sequential single-object auctions. In
contrast to standard multi-unit auctions in which all units are sold at one go,
each consecutive unit is sold to the buyer with the highest bid in the respective
single-unit auction and the total number of units is not necessarily allocated
to the highest bids. However, in case of bidders with single-unit demand
sequential single-unit auctions are efficient and the RET applies as separately
demonstrated for various sequential multi-unit auction formats by Weber
(1983) and Weber and Milgrom (2000). For buyers with multi-unit demand it
is even more difficult to characterize equilibrium strategies in sequential multi-
unit auctions than in standard formats as further asymmetries are introduced.
The winner of the first unit, for example, bids in the consecutive single-unit
auction for his second unit whereas all other buyers compete for their first unit.
In addition to their marginal values being drawn from a different distribution,
the other buyers have to build believes about the marginal value of the first
unit to the winner which the latter has to take into account ex-ante and so on.
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This might be one of the main reasons why sequential auctions are rarely used
in practice and other multi-object mechanisms are preferred. An exception
is found in Katzman (1999) who analysis the sequential sale of two units
in two consecutive second-price auctions for bidders demanding up to two
units. Here, it is each bidder’s dominant strategy to bid truthfully in the
second auction and in the first auction all buyers are symmetric per definition.
Therefore, equilibrium strategies can be derived despite bidder asymmetries
and the two sequential second-price auctions turn out to be efficient. Another
instance in which it is possible to derive linear Bayesian Nash equilibria in
sequential auctions under our standard IPV assumptions is provided in Chapter
5 based on Kokott et al. (2018b).

In simultaneous single-unit auctions the highest bidding buyer in each
auction wins the corresponding unit and thus, opposite to standard multi-unit
auctions, the total number of units is not necessarily allocated to the respective
number of highest bids. Even in a restricted environment in which bidders have
single-unit demand, simultaneous single-unit auctions can be inefficient. For
simultaneous Vickrey single-unit auctions Engelbrecht-Wiggans and Weber
(1979) finds that in equilibrium (potentially in mixed strategies) buyers submit
bids of different height at more than one single-unit auction to increase the
chances of winning at least one unit. Here, the optimal strategy in any one
of the simultaneous single-unit auctions differs from the equilibrium strategy
in a standard single-object auction.12 We can conclude that the bidding
behavior in simultaneous single-unit auctions might differ strongly from the
one in standard multi-unit auctions. Moreover, to the author’s knowledge
there are very limited characterizations of equilibrium bidding strategies for
simultaneous single-unit auctions if bidders with multi-unit demand compete.

However, it is known that for perfect substitutes, the SMRA corresponds to
the standard ascending-price multi-unit auction (Ausubel et al., 2014; Goeree
and Lien, 2014), which is the outcome-equivalent pendant to the standard
(closed) uniform-price (highest losing bid) format. Thus, the SMRA is effi-
cient for bidders with single-unit demand but not for bidders with multi-unit
demand. In fact Ausubel et al. (2014) argue that for bidders with multi-unit
demand and decreasing marginal valuations, demand reduction and the re-
sulting inefficiency is likely to be aggravated in the SMRA in comparison to
its closed-form counterpart because bidders can ”propose divisions” of the
units already from an early stage. Nevertheless, the asymmetries and resulting
inefficiencies might still be smaller than in sequential single-unit auctions.13

12At this point it is worth illustrating that optimal bidding behavior might differ significantly
between the sale of perfect substitutes and objects that are not perfect substitutes in non-
standard multi-object auctions. In the model by Engelbrecht-Wiggans and Weber (1979), if
objects are not perfect substitutes, buyers will only participate in the single-object auction that
contains their item of interest. Nevertheless, the analysis of perfect substitutes might still allow
to demonstrate the different fundamental strategic trade-offs of different multi-object auction
formats.

13Milgrom (2000) and Gul and Stacchetti (1999) show that if the auctioned objects are
substitutes for bidders and they bid ”straightforward”, i.e. in each round a bidder submits
bids on those objects that provide the highest profit at current prices, then prices converge to
competitive equilibrium and the outcome is efficient. The allocation is in the core. If licenses are
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2.3.4 Combinatorial Auctions

This section on equilibrium bidding strategies in combinatorial auctions is
mostly based on the contributions of Bichler and Paulsen (2018) but also on
Kokott et al. (2018a) whose main findings have already been introduced in
Section 1.2.1. We now discuss their results in more detail and place them in a
greater context by comparing the equilibrium bidding predictions with those
of other non-combinatorial auction formats in the same multi-unit setting.
Remember, we are in our standard IPV setting in which ex-ante symmetric
and risk-neutral bidders with decreasing marginal valuations in the number of
perfect substitutes obtained compete.

The dual-winner equilibrium in the ascending package auction is reminis-
cent of the strong demand-reduction equilibrium in the standard ascending-
price multi-unit auction in the same setting with decreasing marginal values,
but not necessarily dual-winner efficiency. Here, each bidder remains active
on one unit until her valuation is reached but does not become active on a
second unit. As a result there is no excess demand and each buyer obtains one
unit at a price of zero (Engelbrecht-Wiggans and Kahn, 1998a).14 Remember,
in the standard uniform-price multi-unit auction there is a tradeoff of raising
the bid on the second unit: It increases the chances of winning two units but
also the price paid for both units. Intuitively, in the described equilibrium
the second effect outweighs the first, which is exactly the same reason for
the demand reduction equilibrium of the ascending package auction. Any
positive bid on the package of two units can only increase the price paid for
the single unit but does not raise the chances of winning the large package
given dual-winner efficiency. Moreover, this specific efficiency environment
is a sufficient condition for each bidder not to become active on the second
unit in the standard ascending-price multi-unit auction. Two units can only be
won by outbidding the opponent’s truthful bid on one unit which, by definition
of dual-winner efficiency, would then result in a loss for the winner of both
units.15

Based on the above results we are able to establish outcome equivalence
between the efficient equilibria of the ascending package auction and the
standard ascending-price multi-unit auction in our model under dual-winner
efficiency. Furthermore, as the standard multi-unit format is generally out-
come equivalent to the SMRA we can further extend this form of equivalence

not perfect substitutes and bidders cannot freely switch between units, there is no equivalence
between the SMRA and the standard ascending-price multi-unit auction (Goeree and Lien,
2014). However, in case of bidders with single-object demand it is a weakly dominant strategy
for any buyer to remain active on the unit of interest until the price reaches his valuation. Note,
though, that contrary to the standard ascending-price multi-unit auction, the SMRA is not
generally efficient for buyers with single-object demand.

14Engelbrecht-Wiggans and Kahn (1998a) derive conditions under which this ”single unit
bid” constitutes an equilibrium in the standard uniform-price (highest losing bid) multi-unit
auction which is outcome equivalent to the ascending-price multi-unit auction.

15Due to the above reasoning we assume bidders do not even start being active on both
units. Equivalently, letting the price for one unit only rise so far that it cannot become winning
is treated as not actively bidding for this unit.
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between efficient equilibria.16 Despite the above results we cannot conclude
general outcome equivalence between the package auction and the standard
multi-unit format in our setting, as there is also a single-winner equilibrium
in the former mechanism which does not exist in the latter. This inefficient
equilibrium is the result of any bidder’s unilateral veto power to exclude the
dual-winner outcome in the 2 × 2 setting of the ascending package auction.
Respective strategic possibilities neither exist in the standard ascending-price
multi-unit auction nor in the SMRA. Thus, we are able to present a strategic
peculiarity of the ascending package auction that cannot be found in other
standard multi-unit auctions even in our restricted setting. Moreover, the VCG
mechanism is not outcome equivalent to the ascending second-price auction
formats in our model, as it involves positive payments for both bidders. Not
surprisingly, this hints at the revenue-maximizing properties of the VCG mech-
anism amongst all efficient, incentive compatible and individually rational
mechanisms to allocate multiple objects (Krishna and Perry, 1999).

Continuing, it might at least be possible to argue towards a weak form of
general outcome equivalence between the ascending auction formats in our
model. First, the dual-winner equilibrium strictly dominates the single-winner
equilibrium in payoff. Second, the ascending format allows both buyers to
observe each others’ actions and adjust accordingly. Suppose, for example
a bidder starts trying to coordinate on the dual-winner outcome whereas her
opponent aims for the single-winner outcome. In this case the bidder still has
the possibility of switching to her strategy in the single-winner equilibrium.
The ascending package auction appears to be robust against an equilibrium
selection problem which might serve as another reason to start coordinating
on the dual-winner outcome. Moreover, as the number of buyers rises, bidders
lose their unilateral veto power and it becomes increasingly difficult to support
a single-winner equilibrium although not impossible as is demonstrated in
Chapter 4. Therefore, it might additionally be possible to conjecture some form
of approximate outcome equivalence between the ascending auction formats
for a large enough number of buyers. Strong forms of demand reduction,
not involving package bids, are unlikely in such a setting and expected seller
revenue might then even approach the VCG profit.

In our model with diminishing marginal values, but not necessarily dual-
winner efficiency, Engelbrecht-Wiggans and Kahn (1998b) derive conditions
under which an equilibrium of the standard discriminatory multi-unit auction
involves pooling of bids for different units at the same price (by the same
bidder). This occurs if marginal values for the first and second unit are close
enough (bearing in mind that the marginal value for the second unit is strictly
lower than for the first unit) and because bidders bid more aggressively on
the second unit as they face more competition than in case of just aiming for
one unit. However, contrary to the FPSB package auction under dual-winner
efficiency in which two different bidders pool their single-unit bids at the same

16However, this outcome equivalence of efficient equilibria under dual-winner efficiency
does not generally carry over to less restricted environments of decreasing marginal valuations.
The necessary and sufficient conditions for the demand reduction equilibrium depend on the
auction format, especially the bidding language, and therefore differ.
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price in order to successfully and most profitably coordinate on a dual-winner
equilibrium, the same form of pooling will only occur by pure chance in
the standard discriminatory auction. These are two entirely distinct forms of
pooling, with different underlying motives, indicating that there is no sort of
strategic or outcome equivalence between the two first-price auction formats.
Moreover, based on the work of Engelbrecht-Wiggans and Kahn (1998b) it
can be shown that the package format leads to weakly higher seller revenue in
its efficient equilibrium than the standard discriminatory multi-unit auction
in our model under dual-winner efficiency. In the latter format, submitting a
bid on the first unit in height of the optimal pooling price from the efficient
equilibrium in the FPSB package auction results in bidder profit of at least
the same amount as in the dual-winner equilibrium. A strictly lower bid earns
the bidder even weakly higher expected profits. Intuitively, the coordination
problem between dual-winner and single-winner outcome in the package
auction prohibits bidders to make higher profits. In the standard discriminatory
auction there is no coordination problem and the bidding language forces each
buyer to submit a relative low bid on her second unit (below the marginal
value) which then also allows lower winning prices for each bidder’s first unit.
It appears that the strategic complexities of the FPSB package auction are
even more peculiar with respect to non-combinatorial mechanisms than in its
ascending counterpart.

Although unambiguous distributional conditions for ex-ante payoff domi-
nance of the dual-winner equilibrium with respect to the single-winner equilib-
rium can be established (from point of view of the buyers), the FPSB package
auction is generally not efficient as each bidder can always unilaterally veto the
dual-winner outcome. Nevertheless, it results in weakly higher seller revenue
than the VCG mechanism in its efficient dual-winner equilibrium. Here, the
constant revenue from pooling bidders corresponds to the maximum possible
seller profit in the VCG mechanism in which this only occurs by pure chance.
Moreover, seller revenue in the inefficient equilibrium corresponds to the ex-
pected second highest valuation for two units and is identical to the respective
price in the ascending package auction. Thus, the FPSB package auction
weakly dominates its ascending counterpart (as well as all standard multi-unit
auctions and the VCG mechanism) in expected seller revenue whereas the
latter is more likely to be generally efficient. Within the set of second-price
multi-unit auctions the VCG is efficient and maximizes seller revenue.

In the procurement context of Chapter 4 and for linear equilibria we extend
our results for the 2 × 2 market to a setting with n > 2 bidders. In case the
dual-winner equilibrium is the outcome of the FPSB package auction, we can
employ the RET to show that all combinatorial auction formats, including the
VCG mechanism, are outcome equivalent to standard multi-unit auctions with
single-unit demand. The last result complements our findings on outcome
equivalence between second-price package auctions and standard second-price
multi-unit auctions with multi-unit demand in the 2× 2 forward auction market.
Remember, there is still no general outcome equivalence between the FPSB
package and other formats because the single-winner equilibrium always
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exists. This demonstrates that the peculiarity of the FPSB package auction
persists to some extend even for n > 2 bidders and that the outcome of all
second-price package auctions does indeed correspond to the VCG allocation
in the 2 × n market.





3
P R I N C I PA L - AG E N T R E L AT I O N S I N PAC K AG E
AU C T I O N S ∗

3.1 introduction

Agency problems in bidding teams are pervasive in many auction markets.
For example, it is well-known that the relationship between the supervisory
board (principal) and the management (agent) of a telecom company play an
important role in determining the firm’s bidding strategy in spectrum auctions
(chakraborty et al., 1995; Shapiro et al., 2013). Such principal–agent relation-
ships have been put forward as one possible cause of allocative inefficiencies
in spectrum auctions (Schmidt, 2004). In this chapter, we introduce a princi-
pal–agent model of a bidding firm in which the principal provides the agent
with an upper limit on the amount to be spent in an auction (budget constraint).
This model helps explain inefficient outcomes in multi-object auctions that
are characterized by bidders inflating their demand to larger sets of objects
(demand inflation) instead of efficiently coordinating on smaller sets. One
of our central results is that principals might be more likely to overcome the
agency problem if second-price auction formats are adopted, in particular
ascending mechanisms.

Our motivation is a wide-spread hidden information problem in auctions
in which the agent knows the valuation of different objects or packages,
but the principal does not. The agent has limited liability and the principal
determines upper limits on exposure in the auction. Any residual money is
re-invested in the firm and the agent is unlikely to be induced to maximize
profit. In this environment the agent tries to maximize the value of objects
won given the budget constraint. Let us motivate our model by looking at
spectrum auctions that are an important economic activity (generating billions
of dollars worldwide) and that have been a catalyst for theoretical research
in auctions. For example, principal–agent relationships arise between the
management of a multinational telecom and the management of a national
subsidiary bidding in the auction. In spectrum auctions, firms have preferences

∗This chapter is based on the publication A principal-agent model of bidding firms in multi-
unit auctions published in Games and Economic Behavior (2018), Vol. 111, 20-40, co-authored
with Martin Bichler. Compared to the publication, we extend our principal-agent relationship
to single-object auctions and generalize the findings to a setting with biased profit-maximizing
agent. Moreover, the derived profit-maximizing principal’s equilibrium strategies and the
resulting rankings of auction formats in terms of revenue and efficiency are discussed with
respect to the existing literature already in Sections 1.2 and 2.3.
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over different packages of spectrum licenses. Each of these packages can be
assigned a business case with a net present value. The management knows the
market best, it knows the technology, the competition, and the end consumer
market, and so they can compute business cases that allow for a good estimate
of the net present value of each package. The board of directors does not
have this information, and the management has no incentive to reveal it
truthfully. Principals often need to rely on analyst estimates that typically have
an enormous variance.17 The principal will also not learn the true valuations
of the licenses after the auction, as the future profits of the firm depend on
many other decisions.

The payments made by telecommunication firms in spectrum auctions are
often billions of dollars, and thus the management cannot cover the cost of the
auction. This means, the agent in these markets has limited liability and the
principal has to pay in the auction. The budgets that need to be reserved for
such an auction by the board are also such that they cannot just be transferred
in total to the agent in order to induce a profit-maximizing motive. The residual
budget after the auction might be in the billions, and there can be much more
efficient investments elsewhere. The different incentives of principal and agent
are nicely summarized in a report by a consulting firm in this field (Friend,
2015):

”The amount of money spent by mobile operators at auction is often stag-
gering. The money needed to pay for spectrum cannot usually be funded
from the agreed capital expenditure budget of the business. As a result, spec-
trum payments are usually treated as a separate amount that does not impact
the Key Performance Indicators of the business upon which the management
team’s bonuses are often based. However, the management team of a mobile
business usually prefers to have more spectrum rather than less. The Chief
Marketing Officer prefers more spectrum than his competitors as it allows him
to advertise a bigger, faster and better network which helps him achieve his
sales target. The Chief Technical Officer prefers more spectrum as it means
she needs to build fewer sites to provide the same capacity and helps him
achieve his capex to sales targets. The CEO is happy because the business is
hitting its targets. So the management team will typically prefer to win more
rather than less spectrum at auction.”

Empire-building motives are a widespread reason for such value-
maximizing behavior of agents in the principal–agent literature (Jensen, 1986).
Note that spectrum auctions are only one example of value maximizing agents.
Engelbrecht-Wiggans (1987) writes “. . . in bidding for mineral leases, a
firm may wish to maximize expected profits while its bidder feels it should
maximize the firm’s proven reserves.” In addition, he discusses auctions for

17Bulow et al. (2009) writes that ”Prior to the AWS auction, analyst estimates of auction
revenue ranged from $7.00 to $15.00 billion. For the recent 700 MHz auction, they varied
over an enormous range from $10.00 to $30.00 billion.” This is by no means an exception
and estimates of investment banks and other external observers can be quite different from the
actual revenue of the auction. Prior to the German spectrum auction in 2010, most analysts
expected low revenue (Berenberg Bank estimated e1.67 bn., the LBBW bank estimated e2.10
bn.). The actual revenue from the auction was e5.00 bn.
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defense systems and construction contracts. Payoff maximization is hard to
defend for an agent in such relationships, and agents typically try to ”win
within budget”. In contrast, value maximization is a good approximation of
such agent motives. In this setting it is important to understand the impact of
the agent’s bias on the firm’s bidding behavior and means for the principal to
implement an optimal strategy.

3.2 contributions and outline

Based on the description on Bayesian equilibrium bidding in combinatorial
auction formats in Sections 1.2.1 and 2.3.4, we introduce a principal-agent
model of bidding firms in the same standard model and 2 × 2 market environ-
ment. In each of the two firms an agent bids on behalf of a principal. The agent
has private information about the valuations of the packages and wants to win
the package with the highest valuation whereas the uninformed principal aims
at maximizing profit. The latter determines budget constraints that restrict the
agent’s bids. The auction itself corresponds to a Bayesian game in which the
risk-neutral auctioneer selects the revenue maximizing set of package bids
submitted by the privately informed firms (the privately informed agent within
each firm).

This principal-agent problem can be seen as a form of optimal delegation
in which an uninformed principal delegates decision rights to an informed
but biased agent. Holmström (1977), Holmstrom (1984) and Alonso and
Matouschek (2008) showed that the optimal mechanism for the principal
if utility is not transferable consists of choosing a subset of actions, from
among which the agent is allowed to pick the most desired one. A budget
constraint that cannot be overbid corresponds to a restriction on the actions
of the bidding agent. Budget constraints are widely used as a means to disci-
pline the bidding agent in spectrum auctions and other high-stakes auctions
(Engelbrecht-Wiggans, 1987; Shapiro et al., 2013). Whether the principal
can implement an optimal bidding strategy with such a constraint crucially
depends on the level of information she has about the valuations. We show
that even if the principal had full information (symmetric information environ-
ment), she could not always optimally align the agent’s incentives via budget
constraints only. Therefore, we also analyze contracts in which the principal
can employ contingent transfers to optimally incentive align the agent in an
asymmetric information environment. Principal-agent relationships within
bidding firms have only recently become a topic of interest in auction theory,
but prior models focus on delegation in single-object auctions (Burkett, 2015,
2016). We demonstrate that multi-object auctions are characterized by addi-
tional strategic considerations on which the agency problem has an impact
that do not appear in single-object auctions.

First, we describe the environment formally as the principal-agent 2 × 2
package auction model in which 2 firms compete for 2 units of a homogeneous
good (perfect substitutes) in Section 3.3. The 2 × 2 model captures the central
strategic challenge that can also arise in larger markets as we demonstrate in
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Chapters 4 and 5, and provide practical examples in the conclusion of this
chapter. We primarily focus on the FPSB package auction and the ascending
package auction, however, in Section 3.8 we also discuss the SMRA as it
has frequently been employed to sell spectrum. It is still a topic of debate
among regulators which auction format to use. Ideally, a mechanism would be
strategy-proof and welfare-maximizing for the agent and the principal. Unfor-
tunately, there is no general strategy-proof mechanism for value-maximizing
agents (Fadaei and Bichler, 2017) and therefore there cannot be a strategy-
proof mechanism for both. We briefly illustrate this result in our 2 × 2 model
for the VCG mechanism. In the principal-agent 2 × 2 package auction model
we are limiting our attention to dual-winner efficiency as introduced in Section
1.2.1. This context enables us to demonstrate strategic difficulties that can
arise with principal–agent relationships in bidding firms as principals need
to coordinate in the efficient equilibrium and there is a conflict of interest
with the agent. Interestingly, one can often observe demand inflation in such
situations in the field even though payoff-maximizing bidders would reduce
demand from the start. Remember, that regulators tend to be legally bound to
aim for efficiency.

In Section 3.5, we begin with the discussion of the peculiar principal-
agent 1 × 2 package auction model in which two units are sold as the unique
package to both bidding principal-agent pairs in a single-package auction.
Analogue to Burkett (2016) we model this setting by the use of a general
incentive-compatible direct-revelation mechanism, the principal-agent 1 × 2
direct-revelation mechanism model, that incorporates the principal-agent 1× 2
FPSB package auction model as well as the principal-agent 1 × 2 ascending
package auction model as special cases. The derivation of the solution is also
similar to the discussion of contracts with perfect commitment in Krishna
and Morgan (2008). The examination of the single-package market serves
as an introduction into the principal-agent 2 × 2 package auction model and
facilitates our main analysis. Similar to Burkett (2015, 2016), the optimal
contract between principal and agent does not differ between different auction
formats. Moreover, in the principal can easily overcome the agency problem
in the symmetric information setting. However, if agency costs are too high,
the optimal contract in the asymmetric information environment cannot be
feasibly implemented which foreshadows the result for the principal-agent
2 × 2 FPSB package auction model.

In Section 3.6, we focus on the principal-agent 2× 2 FPSB package auction
model and analyze the agency problem that arises. First, in Section 3.6.1 we
analyze the equilibrium bidding strategies of profit-maximizing principals
in case they had full information about the valuations of the firm and were
participating in the auction without their agents. The results of the analysis
have already been introduced within our standard IPV framework for combi-
natorial auctions in Sections 1.2.1 and 2.3.4. In Section 3.6.2 we then analyze
strategies of the agents if they were to participate in the auction without their
principals, but with a budget constraint for one and two units. In this section,
the constraints are considered exogenous and drawn from a random distribu-
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tion. We show that it is the unique Bayesian Nash equilibrium for the agent
not to bid on a single unit but only on the package of two units. The analysis
highlights the bias of the agent and shows how his equilibrium bidding strategy
differs from that of the principal leading to inefficiency. Consecutively, we
focus on the implementation of the principal’s original efficient equilibrium
using budget constraints in the symmetric information environment in Section
3.6.3. We show that even if the principal has complete information, there
cannot always be budget constraints that set the right incentives for the agents
and at the same time constitute the equilibrium for the principal in the FPSB
package auction. This results contrasts severely with the principal-agent 2 × 2
package auction model in the same information setting. Finally, in Section
3.6.4 we study the implementation of the optimal second-best contract with
menus of contingent transfers and budget constraints in an asymmetric infor-
mation setting. We focus on a strategically interesting situation in which there
is uncertainty about the package valuations as well as their corresponding
ranges, but not about the efficiency environment. With knowledge about the
efficiency in the market the principal can align the incentives of the agent by
paying wages that compensate the latter for not aiming to win the package
of two units. However, theses wages might have to be very high making
it impossible to implement the coordination equilibrium. Finally, under a
regularity condition and with the agent’s value-maximization motive being too
high it can be shown that for the principal to prefer the implementation of the
dual-winner equilibrium to the single-winner equilibrium the distributional
assumptions become harder to satisfy in comparison to the setting without
agents. Given the direction of the agency bias, the dual-winner equilibrium is
more expensive to implement compared to the single-winner equilibrium.

In Section 3.7, we extend our analysis to the principal-agent 2× 2 ascending
package auction model. The same bidding behavior of agents as in the FPSB
package auction continues to be optimal in the ascending format as shown in
Section 3.7.2. This finding indicates that agents’ bidding behavior is entirely
independent of the rules of the standard package auction format. As agents do
not internalize prices in their utility function, pricing rules are irrelevant and
only allocation rules (the highest combination of bids wins) matter. Moreover,
this bidding behavior is in stark contrast to the principals’ equilibrium strategy
which involves demand-reduction on one unit each as already described in
Sections 1.2.1 and 2.3.4. Nevertheless, if the principal knows the efficiency
environment in the market she could set the budget for the package to null and
implement her equilibrium strategy in the symmetric as well as asymmetric
information environment. Remember, that as an additional advantage over the
FPSB package auction the ascending mechanism allows bidders to observe
their opponents strategies and adjust accordingly. For profit-maximizing
bidders this reduces the burden of starting with coordination as the strategy
can be altered anytime if the opponent does not cooperate. Interestingly, the
major advantage of the ascending package auction over its FPSB counterpart
in solving the principal-agent 2 × 2 package auction model more easily is
a feature of the second-price payment rule. We demonstrate this result by
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establishing outcome equivalence between the principal-agent 2× 2 ascending
package auction model and the principal-agent 2 × 2 VCG mechanism model
with respect to solving the agency dilemma in Section 3.7.5.

Based on this major insight we are able to demonstrate that there is also
a solvable agency problem in non-combinatorial mechanisms in Section 3.8,
such as the well-known SMRA, for example. Finally, our findings are relevant
for a setting in which the agent is value-maximizing to some extent but also
internalizes package prices similar to Burkett (2015, 2016), too. The proofs
for all above findings are contained in Appendix A.1.

3.3 model

In our model we consider 2 ex-ante symmetric firms i, j ∈ I with |I| = 2,
competing in a multi-unit package auction for 2 units of a homogeneous good.
The number of units within a package is denoted by l ∈ L = {1, 2}. From now
on we mostly refer to the package of one unit as ”one unit” and to the package
of two units as ”package”. The revenue-maximizing auctioneer either sells
one package of two units to one firm or a package of one unit to each of the
two firms. He always allocates all units. We assume an XOR bid language that
allows a bidder to specify a bid for each possible package, i.e., the package of
one unit and the package of two units, but only one of the bids can win (Nisan,
2000).

Each firm i has a private value for the package of l units of vi(l) ∈ V(l) =[
v(l), v(l)

]
. We define the vector of package values as vi =

(
vi(1), vi(2)

)
∈

V = V(1) × V(2) for all i ∈ I. All package valuations in our model can then
be summarized within v =

(
vi, v j

)
∈ V2 with i, j ∈ I. Let us normalize the

reservation utility vi(0) = 0 and assume vi(1) < vi(2) for each i ∈ I. Note
that the latter assumption implies v(2) > v(1) and v(2) > v(1). Moreover, we
restrict our analysis to dual-winner efficiency, an environment in which it is
efficient for both firms to obtain one unit each, independent of their package
valuation draws. The condition 2 · v(1) > v(2) ensures dual-winner efficiency
for all vi, v j ∈ V . The above condition corresponds to a setting with decreasing
marginal values and an extra assumption that the highest possible marginal
value of the second unit is less than the lowest possible value for the first unit,
i.e. v(2) − v(1) < v(1). Dual-winner efficiency and the assumption of strictly
separated package-valuation ranges, v(2) > v(1), provide an interesting and
practically relevant market environment that actually allows us to derive firms’
Bayesian Nash equilibria in various combinatorial auction mechanisms.

Throughout the entire discussion each firm i has private information about
its package valuations and does not know the other firm’s vector of valuations.
Thus, we assume each firm i’s vector of valuation draws, vi, to be a priori
distributed according to a monotonically increasing joint cumulative distri-
bution function F(vi)|vi(1)<vi(2) with F|vi(1)<vi(2) : V → [0, 1]. The marginal

distribution function for the package-value of l units is of the form Fl
(
vi(l)

)
with Fl : V(l) → [0, 1] and strictly positive density function of fl

(
vi(l)

)
> 0.
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The distribution functions F(·)|vi(1)<vi(2), Fl(·) and fl(·) are assumed to be
common knowledge within each firm i and between both firms i and j.

Before any other decisions are made, the auctioneer chooses the multi-
unit package auction format. Let each firm’s report submitted to the auction

mechanism for the package of l units be denoted by bi(l) ∈ B(l) =
[
0, b(l)

]
⊆

R≥0 ∪ O for all l ∈ L. The report bi(l) = O specifies that firm i does not
compete in the auction for the package of l units. We can then define the vector
of package reports as bi =

(
bi(1), bi(2)

)
∈ B = B(1) × B(2) for all i ∈ I. All

reports in the auction are then contained within b =
(
bi, b j

)
∈ B2 with i, j ∈ I.

The exact functional form of bi(l) depends on the setting and will be defined
correspondingly below.

Within each firm i the principal maximizes expected profit with the profit of
winning a package of l units given by the function πi(l) = vi(l) − pi(l) and
the profit of not winning a package is zero. In the former expression pi(l)
denotes the price paid for a package of l units and is defined as a function of
the vector of reports pi(l) = pl

(
bi, b j

)
with mapping pl : B2 → R≥0. The

precise functional relationship between the reports and the prices depends on
the specific multi-unit package auction format.

The agent’s gross utility consists of his value-maximizing motives and is
denoted as ui(l) = w

(
vi(l)

)
in case of winning a package of l units. The

function w : V(l) → R≥0 is strictly increasing in package value, vi(l), and
thus, an agent always prefers winning two units to one unit. Moreover, the
function w(·) is assumed to be commonly known among both firms i and j, and
within each firm i. As long as the price for a bundle of l units is weakly lower
than his respective budget constraint of ai(l) ∈ A(l) =

[
a(l), a(l)

]
⊆ R≥0 for

all l ∈ L, the agent obtains a utility of ui(l). Any report bi(l) > ai(l) is not
allowed as it may result in the firm making losses. For agent i, the budget
constraint ai(l) reduces the range of permissible reports to Bi(l) =

[
0, ai(l)

]
for all l ∈ L.18 We refer to the vector of all package budget constraints as
ai =

(
ai(1), ai(2)

)
with ai ∈ A = A(1) × A(2).

In the settings in Section 3.3.1 and Section 3.3.2 the agent’s report for the
package of l units is a function of the vector of package values as well as the
vector of budget constraints bi(l) = βl(vi, ai) with βl : V × A → B(l). The
vector of reports bi = β(vi, ai) corresponds to the function β : V × A→ B.

Finally, in our model the strategy space B ⊆ R2
≥0 is a nonempty, convex

and compact subset of an Euclidean space. Also, the quasilinear utility func-
tions πi(l) and ui(l) for all l ∈ L of principal and agent, respectively, are
continuous in b ∈ B2 and quasiconcave in bi ∈ B. Therefore, according
to Definition XII in Section 2.1.1, Bayesian Nash equilibria are guaranteed
to exist in pure strategies in our standard IPV setting with risk-neutral and
ex-ante symmetric principals and agents. Also, Perfect Bayesian equilibria

18The principal may not specify a lower-bound on the report for the package of l units such
that the function ai(l) constitutes a standard budget constraint. This budget constraint then
corresponds to a special form of delegation in which, for example, dictation of bids is not
permitted.
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(possibly in mixed strategies) are guaranteed to exist in finite dynamic game
of incomplete information as stated in Definition XIV of the Section 2.1.2.

3.3.1 Independent Optimization

To better understand the bias between principal and agent within each firm i
we first abstract from the underlying principal-agent relationship and derive
the principal’s as well as the agent’s Bayesian Nash equilibria if they were
to participate on their own in a multi-unit package auction. To do so we
assume full information about the firm’s package valuations and their ranges
for principal and agent. However, there is still information asymmetry between
the two different firms i and j.

Let the principal’s reporting function for l units be defined as bi(l) = βl (vi)
and βl : V → B(l). The vector of package reports is a function of the vector
of package valuations such that bi = β (vi) with mapping β : V → B for
all i ∈ I. Now, according to Definition III in Section 2.1.1 and given vector
of valuations vi we can denote the principal’s ex-interim expected profit of
participating in the auction as Π(·) with corresponding maximization problem
of

max
bi∈Bi

Π
(
bi, b−i, vi; F

(
v j

)
|
v j(1)<v j(2)

)
for all vi ∈ V . (P-EXI)

The ex-interim expected profit is a function of the vectors of valuations vi

and reports b, taking into account the distribution function of the opponent’s
valuations F

(
v j

)
|
v j(1)<v j(2)

.
In our initial analysis of the agents’ strategies without the principals we

assume the package budget constraint for l units, ai(l), to be an exogenous ran-
dom variable drawn from A(l). Further, we assume ai(1) ≤ ai(2). The vector
of budget constraints ai is a priori distributed according to a monotonically in-
creasing joint cumulative distribution function Q(ai)|ai(1)≤ai(2) with mapping

of Q|ai(1)≤ai(2) : A → [0, 1] with marginal distribution function of Ql
(
ai(l)

)
with Ql : A(l) → [0, 1] and corresponding strictly positive density function
ql

(
ai(l)

)
> 0 for all ai(l) ∈ A(l). The distribution functions Q(·)|ai(1)≤ai(2),

Ql(·) and ql(·) are assumed to be common knowledge between agent i and j.
Analogue to Definition III in Section 2.1.1, we denote the agent’s ex-interim

expected utility of participating in the multi-unit package auction as EU(·),
given valuation and budget vectors of vi and ai, respectively, and his optimiza-
tion problem corresponds to

max
bi(l)≤ai(l)∀l∈L

EU
(
bi, b j, vi; Q(a j)|a j(1)≤a j(2)

, F
(
v j

)
|
v j(1)<v j(2)

)
for all vi ∈ V and ai ∈ A. (A-EXI)
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The expected utility is determined by the valuations vi and reports b, taking
into account the distribution functions of the other agent’s budgets and val-
ues, Q

(
a j

)
|
a j(1)≤a j(2)

and F
(
v j

)
|
v j(1)<v j(2)

, respectively. Ex-interim expected
utility in (A-EXI) is maximized for all possible valuation vi ∈ V and budgets
ai ∈ A given the reports do not exceed the respective budgets bi(l) ≤ ai(l). We
demonstrate in Section 3.6.2 and 3.7.2 that the above optimization problem is
actually independent of the vector of valuation draws v ∈ V2 and the respective
distribution functions.

Remember, according to in Definition VI of Section 2.1.1, if each principal
(agent) i ∈ I solves the problem in (P-EXI) ((A-EXI)) for all possible vector of
valuations vi ∈ V (and budgets ai ∈ A) a Bayesian Nash equilibrium is obtained.
In the two next sections the principal’s optimal contracting problems in the
symmetric and asymmetric information settings are formulated according to
Sections 2.2.3 and 2.2.2, respectively.

3.3.2 Symmetric Information Environment

In the symmetric principal-agent information setting in Sections 3.5, 3.6 and
3.7 we analyze an environment in which the agent does not posses private
information and there is no information asymmetry within each firm i. The
package value vi(l) as well as its corresponding range V(l) is known to
principal and agent for all l ∈ L. There is, however, information asymmetry
between both firms i and j.

After the auctioneer announces the auction format, principal and agent
learn their firm’s vector of package valuations vi ∈ V . The principal then
provides her agent with the vector of budget constraints ai derived according
to a function of the firm’s true vector of valuations ai = α(vi) with α : V → A.
Similar, the budget for the package of l units, ai(l), is defined as the function
ai(l) = αl(vi), in which αl : V → A(l) for all l ∈ L.

The definition of the agent’s reporting functions remains unaltered to Sec-
tion 3.3.1, however, as the budget constraints are endogenously determined
by the principal as functions of the vector of package valuations we employ
F(·)|vi(1)<vi(2) as the relevant distribution function for the agent. The princi-
pal’s optimization problem in the symmetric information environment of the
principal-agent 2 × 2 package auction model is based on Definition XIX of
the optimal delegation problem in Section 2.2.3 and corresponds to

max
ai(l)∀l∈L

Π
(
β(vi, ai), b j, vi; F(v j)|v j(1)<v j(2)

)
(PA-D)

subject to β(vi, ai) ∈ argmax
bi(l)≤ai(l)∀l∈L

EU
(
bi, b j, vi; F(v j)|v j(1)<v j(2)

)
;

(PA-D-IC)

and ai(l) ≤ vi(l) for all l ∈ L in the equilibrium allocation.
(PA-D-NL)
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The principal determines a vector of budget constraints ai (the delegation
set) which, given the agent’s incentive compatibility condition in (PA-D-IC),
induce the agent to choose a vector of reports β(vi, ai) that maximizes the
principal’s ex-interim expected utility in (PA-D). Again, the distribution
function of the opposing firm’s values, F(v j)|v j(1)<v j(2)

, is taken into account
in the principal’s (agent’s) ex-interim expected profit (utility). Finally, it cannot
be optimal for the principal to let the value-maximizing agent, who does not
internalize prices, report higher than the valuation for any package of l units
that is part of the equilibrium allocation. This additional restriction is ensured
in the no-loss condition (PA-D-NL). Note that the principal does not have to
take an individual rationality constraint of the agent into account as the agent
cannot incur negative utility in this setting.

Be aware that the definition of the delegation problem in Section 2.2.3 refers
to an asymmetric information setting in which the principal does not know
the package valuations which is not the case in our symmetric information
environment. Therefore, the above optimization problem is a non-standard
special case that bears some similarity to a ”first best” delegation problem
in which only an upper bound on the delegation space is set (and no lower
bound) and simple dictation of strategies by the principal is not permitted.
However, in the next section we formulate the principal’s optimization problem
in an asymmetric environment that corresponds to the standard second best
contracting problem as formulated in Definition XVII in Section 2.2.2. We do
not specify a delegation problem in the asymmetric information setting as our
analysis shows that optimal delegation is not even possible in the symmetric
information environment.

3.3.3 Asymmetric Information Environment

In the asymmetric information setting in Sections 3.5.4, 3.6.4 and 3.7.4 each
firm i’s principal is informed about dual-winner efficiency but she neither
knows the package value draw vi(l) nor its exact range V(l). However, we
assume that she knows supports for the range bounds: the support for the

lower bound v(l) is V(l) =
[
v(l), v(l)

]
and the support for the upper bound

v(l) is V(l) =
[
v(l), v(l)

]
. The agent has exactly the same information as the

principal and in addition knows the precise package value draw vi(l). However,
he also does not know the true range V(l).

As the principal does not know the true range V(l), from her point of
view, any package value vi(l) can be drawn from the largest possible value

range Z(l) =
[
v(l), v(l)

]
. The principal knows Z(l) because she is informed

about V(l) and V(l). We must then specify the monotonically increasing
joint cumulative distribution function G(vi)|vi(1)<vi(2) : Z → [0, 1] in which
Z = Z(1) × Z(2) with corresponding marginal distribution function of the
form Gl

(
vi(l)

)
with Gl : Z(l) → [0, 1] and strictly positive density function

gl
(
vi(l)

)
> 0 for all vi(l) ∈ Z(l) and l ∈ L. The distribution functions
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G(·)|vi(1)<vi(2), Gl(·) and gl(·) are common knowledge within a firm i and
between both firms i and j.

In the asymmetric information setting, the contract proposed by the principal
after the auctioneer announces the auction format specifies a menu of as many
as four functions (all functions of vi): The budget constraint for the package
of l units is ai(l) = αl(vi) with αl : Z → A(l). The vector of budgets
ai = α(vi) is a function with α : Z → A. The transfer from principal to
agent for the package of l units is mi(l) = µl(vi) with mi(l) ∈ M(l) ⊆ R≥0

and µl : Z → M(l). The vector mi =
(
mi(1), mi(2)

)
∈ M = M(1) × M(2)

summarizes the package transfers and we define mi = µ(vi) with µ : Z → M.
Finally, we restrict our analysis to positive transfers from principal to agent
with mi(l) ≥ 0.19 We denote the full contract by (αi, mi).20

The agent’s reports to the contract v̂i ∈ Z are translated into budgets âi =

α(v̂i) ∈ A and corresponding transfer payments m̂i = µ(v̂i) ∈ M according
to the above specified functions. He then reports to the auction mechanism
bids of the form bi(l) = βl(vi) with βl : Z → B(l) and the vector of bids is
bi = β(vi) in which β : Z → B.

In the optimum the principal’s use of transfer payments ensures that the
agent reports the true valuation, v̂i = vi, (via the direct revelation mechanism)
to the contract and that the latter’s reports to the auction mechanism for one
unit and the package will always correspond to the principal’s optimal budget
constraints, i.e., bi = ai. Moreover, as the agent’s reports to the contract, vi,
are directly translated into reports to the auction mechanism, bi = β (vi), the
contract can be rewritten as (bi, mi). According to general formulation of the
second best optimization problem in Definition XVII of Section 2.2.2, any
principal i’s optimization problem in the asymmetric information setting of
the principal-agent 2 × 2 package auction model is then denoted as

max
(β(vi),µ(vi))

Evi∈Z

(
Π

(
β(vi), µ(vi), b j, vi; G(v j)|v j(1)<v j(2)

))
(PA-SB)

subject to vi ∈ argmax
v̂i∈V

EU
(
β (v̂i) , µ (v̂i) , b j, vi; G(v j)|v j(1)<v j(2)

)
(PA-SB-IC)

bi(l) ≤ vi(l) for all vi(l) ∈ V(l) (PA-SB-NL)

and for all l ∈ L in the equilibrium allocation.

As the principal does not know the firm’s vector of valuation, vi, she has to
maximize the ex-ante expected profit (expected ex-interim expected profit),
which is denoted by Evi(·) in (PA-SB). Ex-ante expected profit is determined
by the valuations vi, reports bi and transfer payments mi, taking into account
the other firm’s valuations distribution function G(v j)|v j(1)<v j(2)

. The agent’s
incentive compatibility constraint, which ensures truthfulness of the direct

19This limited liability constraint on the principal is similar to Regime 2 in Burkett (2016).
20Contrary to the symmetric information environment in Section 3.3.2 in which the agent is

provided with fixed values as package budgets, the principal now allows the agent to choose
from sets of contingent package budget constraints defined as functions of vi.
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revelation mechanism, has to be taken into account in (PA-SB-IC) as well as
condition (PA-SB-NL) that prevents loss within the equilibrium allocation.
Again, the latter additional assumption is needed because a value-maximizing
agent does not internalize prices. As the agent receives weakly positive
transfers only, the individual rationality constraint does not apply for the
principal.

Next, we also define the random draw d ∈ D =
[
d, d

]
with d ≡ v(2) − v(1)

as the agent’s private information that is unknown to the principal and helps us
solve the latter’s optimization problem (PA-SB) for Section 3.6.4. However,
given the assumptions of the asymmetric information setting, the agent only
knows the value of d and not the values of v(2) and v(1). From the agent’s
point of view d can be the result of various v(2) ∈ V(2), v(1) ∈ V(1)
combinations. Note that d corresponds to the true entire range out of which
valuations for one unit and the package can be drawn. Again, as the principal
knows V(l) and V(l) she also knows D and its bounds with d ≡ v(2) −

v(1), the smallest possible range out of which all values can be drawn, and
d = v(2) − v(1), the largest possible range. We assume v(2) > v(1) and
v(2) > v(1), and that d is commonly known, within and between firms, to
satisfy dual-winner efficiency such that 2 · v(1) > v(2) always holds.

In this setting the agent reports d̂ ∈ D to the contract which are then
translated into reports of bi(l) = βl(d) with βl : D → B(l) and transfers
mi(l) = µl(d) with µl : D → M(l) to the auction. The vector of reports
bi = β(d) is a function with β : D→ B and the vector of transfers mi = µ(d)
is a function µ : D→ M.

Unlike standard single-object auctions, combinatorial package auctions may
possess multiple Bayesian Nash equilibria for profit-maximizing principals.
We solve the principal’s optimization problems (PA-D) and (PA-SB) subject to
the respective constraints by implementing specific Bayesian Nash equilibria.
Finally, we compare the different solutions to the optimization problems in
terms of payoff-dominance.

3.4 auction formats

We first analyze the simplest multi-unit package market in which both units
are sold as a single package. This setting is modeled by letting the auctioneer
employ an incentive-compatible 1 × 2 direct-revelation mechanism for profit-
maximizing bidders to sell the package. The mechanism contains the 1 × 2
FPSB package auction as well as the 1 × 2 ascending package auction as
standard single-package auction applications.

In settings in which the items are not sold as a single package, it is straight-
forward to see that the 2 × 2 VCG mechanism is not incentive-compatible
for agents, who do not internalize payments in their utility function. More-
over, there cannot be a strategy-proof and deterministic selling mechanism for
value-maximizing agents (Fadaei and Bichler, 2017). We then focus on the
2 × 2 FPSB package auction, the 2 × 2 ascending package auction and a 2 × 2
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ascending uniform-price auction. These auction formats are being used in
spectrum sales and other high-stakes auctions. In multi-unit package auctions,
each bidder i submits an all-or-nothing bid for every package. Here, each
package is identified by the number of units it contains l ∈ L. In these package
auctions, we assume an XOR bid language, because it is the most general
bidding language allowing the expression of complements and substitutes
(Nisan, 2000), and it is also typically used in spectrum auctions. An XOR bid
language allows a bidder to specify a bid for all possible packages, but only
one of the bids submitted can become winning. Finally, we assume that in
each auction format the auctioneer always sells all units.

3.4.1 The 1 × 2 Direct-Revelation Mechanism

The analysis of the 1× 2 direct-revelation mechanism is based on the model by
(Burkett, 2016) and helps us to derive the implementation of the single-winner
equilibrium in the principal-agent 2 × 2 package auction model as well as to
formulate our main findings.

Let us first define the mechanism to sell the package for the setting in which
the profit-maximizing principal participates in the auction independently of her
value-maximizing agent as described in Section 2.2.1. The direct revelation
mechanism, that is based on Proposition XV in Section 2.2.1, is proposed by
the auctioneer before any actions are taken and is composed of two functions,
F2

(
bi(2)

)
and T2

(
bi(2)

)
with T2 : B(2)→ R≥0. These functions specify the

probability that the package is awarded as a function of the report bi(2) and
the expected transfer made to the auctioneer, respectively. For a fully informed
and profit-maximizing principal who employs reporting function bi(2) =

β2
(
vi(2)

)
, the mechanism

(
F2

(
β2

(
vi(2)

))
, T2

(
β2

(
vi(2)

)))
is assumed to be

incentive compatible. Thus, the the principal reports β2
(
vi(2)

)
= vi(2),

and incentive compatibility of the mechanism
(
F2

(
vi(2)

)
, T2

(
vi(2)

))
implies

via standard arguments that F2
(
vi(2)

)
is non-decreasing and that T2

(
vi(2)

)
can be expressed as a function of F2

(
vi(2)

)
and T2

(
v(2)

)
. We also assume

the incentive-compatible 1 × 2 direct-revelation mechanism to be individually
rational, which requires that the payment made by the principal with the lowest
value does not exceed her valuation for two units, i.e., T2

(
v(2)

)
≤ v(2).

In the setting in which agents compete without their principals in the auction,

the distribution function F2 (·) is replaced by Q2 (·) and T2

(
β2

(
ai(2)

))
maps

according to T2 : A(2) → R≥0. Moreover, in the asymmetric information
environment F2

(
vi(2)

)
is replaced by G2

(
vi(2)

)
and T2

(
vi(2)

)
is defined via

T2 : Z(2)→ R≥0. Individual rationality then implies T2

(
v(2)

)
≤ v(2).
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3.4.2 The 2 × 2 VCG mechanism

The VCG mechanism, as formulated by (Groves, 1973), is the generalization
of the well-known second-price sealed-bid (Vickrey) auction Vickrey (1961)
to combinatorial package auctions. The VCG mechanism is composed of
the Clarke Pivot payment function, as introduced by (Clarke, 1971), that is
strategy proof for profit-maximizing bidders (principals) and they truthfully
report their package valuations. The VCG mechanism further contains a
welfare-maximizing social choice function that allocates the set of items
with the sum of highest package reports to the corresponding bidders and is
therefore efficient.

Budgets in the principal-agent 2 × 2 VCG mechanism model can optimally
be set as in the principal-agent 2× 2 ascending package auction with sufficient
information about the efficient allocation as we show in Section 3.7.5. There-
fore, the VCG mechanism and the ascending package auction are outcome
equivalent with respect to the agency dilemma. Nevertheless, we mainly focus
on the ascending format as it is practically relevant.

3.4.3 The 2 × 2 FPSB Package Auction

In the 2× 2 FPSB package auction, both bidders i and j simultaneously submit
their bids bi and b j to the auctioneer without knowing the opponent’s bids. Con-
secutively, a risk-neutral auctioneer selects the revenue-maximizing combina-
tion of package bids. This can either be an allocation in which each bidder i and
j gets one unit, bi(1) + b j(1) ≥ max

{
bi(2), b j(2)

}
, or an allocation in which

one bidder wins the package of both units, max
{
bi(2), b j(2)

}
> bi(1) + b j(1).

In case of a tie between an allocation with two winners or a single winner, the
auctioneer allocates one unit to each of the bidders. In case of a tie between
two package bids, the auctioneer randomizes. Any firm i that wins a package
of l units pays a corresponding price of pi(l) = bi(l) to the auctioneer.

3.4.4 The 2 × 2 Ascending Package Auction

In this section we formulate the 2 × 2 ascending package auction as a multi-
unit clock auction with continuously increasing package prices. There is one
clock to indicate the current single-unit price pc(1) and another clock for the
current package price pc(2). One clock per package guarantees anonymity of
the auction format. Each bidder i can individually decide if and when (at which
price) to become active on (demanding) any one of the packages. Moreover,
each bidder i specifies with his vector of bids bi =

(
bi(1), bi(2)

)
until which

current price to remain active on the package of l units, pc(l) = bi(l), for
all l ∈ L. Any current package price pc(l) increases automatically as long
as the package of l units belongs to a currently demanded but non-winning
allocation, or to an allocation for which there is excess demand. Prices rise
continuously (marginally) just until an allocation is winning and not over-
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demanded anymore. This process guarantees the second-price character of the
ascending pricing rule as will be demonstrated next.

Suppose, for example, each of the two bidders is currently active on the
single-unit and on the package of two units. In this setting there is over-demand
for the single-winner outcome but never for the dual-winner outcome.21 In case
twice the single-unit price marginally exceeds the package price at pc(1) =
pc(2)/2 + ε with ε → 0, the latter rises whereas the dual-winner outcome
is currently winning and the single-unit price remains constant. If, however,
the package price marginally exceeds twice the single-unit price at pc(2) =
2pc(1) + ε with ε → 0, both prices, for one unit and for the package, rise.
Again, there is excess demand for the package of two units and the demanded
dual-winner outcome is non-winning. Obviously, only one bidder can win
the package of two units in the end. As soon as all clocks stop increasing,
the auction terminates with the highest priced allocation being sold to the
corresponding bidders. The corresponding current prices then become the
final winning prices. If the dual-winner outcome wins, each bidder i’s final
price is p(1) = pc(2)/2, and if the single-winner outcome results, the highest
bidder i on the package pays either p(2) = 2pc(1) or p(2) = pc(2). A
participating bidder needs to become active at least on one of the two packages
at the start and once she stops bidding on one of both packages, she cannot
become active on this package again. Moreover, she cannot win a package for
which she is not active anymore. Note, this implies that if a bidder i stops being
active for the single unit but remains active for the package, the remaining
active bidder j on one unit actually competes for two units as she cannot win a
single unit on her own and the auctioneer always sells both units. Any bidder
j prefers or is indifferent to winning two units at a price at which she demands
one unit. Finally, as soon as a buyer quits being active on both packages she
cannot reenter the auction again. It is common knowledge among both bidders
and the auctioneer which buyer is active on which package.

3.4.5 The 2 × 2 Ascending Uniform-Price Auction

We also discuss a standard (non-package) 2 × 2 ascending uniform-price
auction that corresponds to the SMRA in a setting with perfect substitutes.
In this auction, there is one continuously increasing price pc(1) for one unit.
Each bidder can individually specify when (at which current price) to demand
which number of units. Once a bidder has decreased the number of units
demanded, it cannot be raised again. Moreover, by reducing demand to zero
units a bidder ultimately drops out of the auction. The price stops increasing
as soon as there is no excess demand and the bidders receive the number of
units for which they are still active. With slight abuse of notation, in this
setting the vector of bids bi =

(
bi(1), bi(2)

)
defines until which price bidder i

demands two units pc(1) = bi(2) and up to which price she is active on one
unit pc(1) = bi(1).

21With two bidders and two units, there cannot be excess demand for the dual-winner
outcome.
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Appendix A.2 provides a detailed discussion of the possible outcomes of
the 2 × 2 ascending package auction and the 2 × 2 ascending uniform-price
auction.

3.5 single-package auctions

In this section we derive the solution to the principal-agent 1 × 2 package
auction model if an incentive-compatible direct-revelation mechanism is em-
ployed by the auctioneer to sell two units as a single package. It is well known
that by the revenue equivalence theorem (Myerson, 1981) the solution then
also holds for the principal-agent 1 × 2 FPSB package auction model and
the principal-agent 1 × 2 ascending package auction model in the symmetric
and the asymmetric information environment. We begin with the analysis if
principals were to bid without agents.

3.5.1 Principals’ Strategies

The principal’s ex-interim expected payoff (P-EXI) in Section 3.3.1 is max-
imized by a report of β2

(
vi(2)

)
= vi(2) for all vi(2) ∈ V(2) in case

of participating in the incentive compatible 1 × 2 direct-revelation mecha-

nism
(
F2

(
vi(2)

)
, T2

(
vi(2)

))
. The same is true for opponent j who truth-

fully reports β2
(
v j(2)

)
= v j(2). Here, the corresponding expected profit

in indirect notation then corresponds to Π
(
vi(2), v j(2), vi(2); F2

(
vi(2)

))
=

F2
(
vi(2)

)
· vi(2) − T

(
vi(2)

)
. In this expression T

(
vi(2)

)
= F2

(
vi(2)

)
·

vi(2) −
∫ vi(2)

v(2) F2(x)dx + T
(
v(2)

)
is the ex-interim expected payment to the

auctioneer given a report of βi(2) = vi(2) and F2 (·) takes into account the
probability that bidder i’s value draw for the package vi(2) exceeds the op-
ponent’s draw. Following Mirrlees (1971), ex-interim expected profit can be
expressed as,

Π
(
vi(2), v j(2), vi(2); F2 (·)

)
=

∫ vi(2)

v(2)
F2(x)dx − T

(
v(2)

)
. (SPA-P-EXI)

In the 1 × 2 ascending package auction the principal’s equilibrium strat-
egy is to stay active on the package of two units until the price reaches
her valuation, i.e., β2

(
vi(2)

)
= vi(2). The ex-interim expected payoff

then corresponds to (SPA-P-EXI). Similar, the equilibrium bidding func-
tion in the 1 × 2 FPSB package auction is well-known to be β2

(
vi(2)

)
=

vi(2) − F2
(
vi(2)

)−1
·
∫ vi(2)

v(2) F2(x)dx. Thus, reporting a valuation of vi(2) to
this function results in the same ex-interim expected profit of (SPA-P-EXI).

Example 1. Let us demonstrate these relations with an example in which
the package valuation is uniformly distributed with vi(2) ∼ U[160, 190] and
F2

(
vi(2)

)
=

vi(2)−160
30 . In this setting the principal’s equilibrium bidding

strategy in the 1 × 2 FPSB package auction is β2
(
vi(2)

)
= vi(2)/2 + 80
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and β2
(
vi(2)

)
= vi(2) in the 1 × 2 ascending package auction. The

ex-interim expected payment under both auction formats is T
(
vi(2)

)
=

160
30 ·

(
vi(2) − 160

)
. Moreover, ex-interim expected and ex-ante expected

profit correspond to Π
(
vi(2), vi(2)|F2

(
vi(2)

))
= 1

30 ·
(
vi(2) − 160

)2
and∫ 190

160 Π
(
vi(2), vi(2)|F2

(
vi(2)

))
· f2

(
vi(2)

)
dvi(2) = 5, respectively.

3.5.2 Agents’ Strategies

With (exogenous) budget constraints the agent would simply submit a bid of his
entire budget for two units on the package, i.e., β2

(
ai(2)

)
= ai(2) if facing the

1 × 2 direct-revelation mechanism
(
Q2

(
ai(2)

)
, T2

(
ai(2)

))
. This maximizes

his chances of winning as the probability of being assigned the package is non-
decreasing in the report and the ex-interim expected utility (A-EXI) in Sub

3.3.1 corresponds to EU
(
ai(2), a j(2), vi(2); Q2

(
·)
))
= Q2

(
ai(2)

)
·w

(
vi(2)

)
.

Here, Q2
(
ai(2)

)
denotes the probability that agent i’s package budget draw

ai(2) exceeds the opponent’s draw and w
(
vi(2)

)
is the resulting winning-

payoff.

3.5.3 Symmetric Information Principal-Agent Model

In the symmetric information environment of the principal-agent 1 × 2
direct-revelation mechanism model the principal’s optimization problem from
Section 3.3.2 corresponds to the principal maximizing her expected profit
(SPA-P-EXI) from Section 3.3.2 by simply assigning the agent a budget
for two units in height of her equilibrium report α2

(
vi(2)

)
= vi(2). The

agent will report exactly this budget, β2
(
vi(2)

)
= vi(2), to the mechanism,(

F2
(
vi(2)

)
, T2

(
vi(2)

))
, as it maximizes his expected utility as expressed in

Section 3.5.2. Analogue, in the principal-agent 1 × 2 ascending package
auction model the principal implements her equilibrium strategy by allowing
the agent to stay active on the package until the price reaches her valuation,
α2

(
vi(2)

)
= vi(2). Similarly, in the principal-agent 1 × 2 FPSB package

auction model the principal provides her agent with a budget in height of her
optimal bid of α2

(
vi(2)

)
= vi(2) − F2

(
vi(2)

)−1
·
∫ vi(2)

v(2) F2
(
v j(2)

)
dv j(2) to

implement the equilibrium.

3.5.4 Asymmetric Information Principal-Agent Model

Now, we determine the optimal contract of contingent budget constraints
and transfers between principal and agent in the asymmetric information
setting of the principal-agent 1 × 2 direct-revelation mechanism model. The
principal’s optimization problem (PA-SB) in the asymmetric information
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setting in Section 3.3.3 if facing the incentive compatible direct revelation

mechanism
(
F2

(
β2

(
vi(2)

))
, T2

(
β2

(
vi(2)

)))
then corresponds to,

max(
β2(vi(2)),µ(vi(2))

) Evi(2)∈Z(2)

G2

(
β2

(
vi(2)

))
·

(
vi(2) − β2

(
vi(2)

))
+

+

∫ β2(vi(2))

v(2)
G2(x)dx − T

(
v(2)

)
− µ2

(
vi(2)

) 
(SPA-SB)

subject to vi(2) ∈ argmax
v̂i(2)∈Z(2)

G2

(
β2

(
v̂i(2)

))
·w

(
vi(2)

)
+ µ2

(
v̂i(2)

)
(SPA-SB-IC)

β2
(
vi(2)

)
≤ vi(2) for all vi(2) ∈ Z(2). (SPA-SB-NL)

The principal maximizes her ex-ante expected profit for the package in
(SPA-SB)22 given the agent’s incentive compatibility constraint (SPA-SB-IC)
subject to no-loss condition (SPA-SB-NL) for the value-maximizing agent
who does not internalize the package price. Be aware, in equilibrium we
assume the opposing firm j to truthfully report β2

(
v j(2)

)
= v j(2) to the in-

centive compatible direct revelation mechanism. The solution to the principal’s
optimization problem above is provided in the next theorem.

Proposition 1. The principal’s optimal contract
(
β2

(
vi(2)

)
, µ2

(
vi(2)

))
for

the principal-agent 1× 2 direct-revelation mechanism model in the asymmetric
information setting corresponds to a report of

β2
(
vi(2)

)
= vi(2) (SPA-SB-R)

with corresponding transfer

µ2
(
vi(2)

)
= w

(
v(2)

)
−

∫ v(2)

vi(2)
G2(x) ·

∂w(x)
∂x

dx −G2
(
vi(2)

)
·w

(
vi(2)

)
(SPA-SB-T)

22Note that, based on the indirect notation of ex-interim expected profit in Section 3.5.1,

Πi

(
βi(2), v j(2), βi(2); Q2

(
βi(2)

))
= Q2

(
βi(2)

)
· βi(2) − T

(
βi(2)

)
, which again can be

expressed as Πi
(
βi(2), v j(2), βi(2); Q2 (·)

)
=

∫ βi(2)
v(2) G2(x)dx − T

(
v(2)

)
. It follows that

T
(
βi(2)

)
= G2

(
βi(2)

)
· βi(2) −

∫ βi(2)
v(2) G2(x)dx + T

(
v(2)

)
. Substituting the last equa-

tion into Πi

(
βi(2), v j(2), βi(2); Q2

(
βi(2)

))
= Q2

(
βi(2)

)
· βi(2) − T

(
βi(2)

)
and writing

βi(2) = β2
(
vi(2)

)
as well as mi(2) = µ2

(
vi(2)

)
results in the stated expression for ex-interim

expected payoff.
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for all vi(2) ∈ Z(2) and ex-ante participation constraint

∫ v(2)

v(2)

G2
(
vi(2)

)
·

w (
vi(2)

)
+
∂w

(
vi(2)

)
∂vi(2)

·
G2

(
vi(2)

)
g2

(
vi(2)

)
+

∫ vi(2)

v(2)
G2(x)dx

 ·
·g2

(
vi(2)

)
dvi(2)

≥ (SPA-SB-PC)

T
(
v(2)

)
+ w

(
v(2)

)
.

In the proof of Proposition 1 we reformulate the principal’s maximization
problem (SPA-SB) subject to the constraints (SPA-SB-IC) and (SPA-SB-NL)
to an information setting in which the principal does not know the package
valuation but its exact support V(2) as well as dual-winner efficiency. The
derivation of the solution is then based on Burkett (2016) and similar to the
discussion of contracts with perfect commitment in Krishna and Morgan
(2008). Consecutively, we extend the optimal contract to the asymmetric
information environment with unknown package valuation and uncertain
boundaries, but common knowledge of dual-winner efficiency, as described in
Section 3.3.3.

The transfer structure in Theorem 1 ensures that no agent with true package
value vi(2) ∈ V(2) has an incentive to misreport and exceed his designated
truthful report. As neither principal nor agent know the precise package valua-
tion range V(2), the optimal reporting function β2

(
vi(2)

)
= vi(2) cannot be

implemented cheaper. The optimal contract
(
β2

(
vi(2)

)
, µ2

(
vi(2)

))
is the same

for the principal-agent 1 × 2 FPSB package auction model and the principal-
agent 1 × 2 ascending package auction model. This insight is similar to the
findings in Burkett (2015) and Burkett (2016) that the optimal endogenous
budget constraint contract is independent of the standard single-object auction
format employed by the auctioneer. Let us continue our example from Section
3.5.1 to illustrate these results.

Example 1 (Continued). We now assume vi(2) ∼ U[150, 200] and
G2

(
vi(2)

)
=

vi(2)−150
50 . Moreover, suppose w

(
vi(2)

)
= ρ · vi(2) with

0 < ρ < 1 such that the agent values the package less than the value to
the firm, which could be in the billions. The optimal report to the mech-
anism is β

(
vi(2)

)
= vi(2) with corresponding transfer of m

(
vi(2)

)
=

1
100 · ρ ·

(
40000 − vi(2)

2
)
. As T

(
v(2)

)
= 0 for our relevant auction formats,

the principal’s ex-ante expected profit is weakly greater than zero for ρ ≤ 1
11 .

The optimal contract restricts the report to truth-telling which may be very
expensive to implement.

If the magnitude of the agency-bias, w(·), in our model is too strong,
participation in the 1 × 2 direct-revelation mechanism is ex-ante unprofitable
for the firms. This result continues to hold in the asymmetric information
environment of the principal-agent 2 × 2 FPSB package auction model in the
next section.
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3.6 combinatorial fpsb package auction

In this section, we first analyze the equilibrium bidding strategy of the princi-
pal (without an agent) if she had full information about the valuations in the
2 × 2 FPSB package auction. Then, we discuss equilibrium bidding strategy
of the agent (without principals) and show the bias with respect to the princi-
pal’s equilibrium bidding strategy and the resulting inefficiencies. Next, we
examine the principal’s options to align the incentives of the agent with budget
constraints in the symmetric information environment of the principal-agent
2 × 2 FPSB package auction model. Finally, we discuss the optimal contract
in the asymmetric information setting.

3.6.1 Principals’ Strategies

We will first derive necessary and sufficient conditions for the dual-winner
equilibrium in Propositions 2 and 3, respectively. This is a Bayesian Nash equi-
librium that solves the principal’s maximization problem (P-EXI) in Section
3.3.1 for the 2 × 2 FPSB package auction in which the efficient dual-winner
outcome results for all possible valuations vi, v j ∈ V . Proposition 4 states
conditions under which the single-winner equilibrium solves the principal’s
maximization problem. This equilibrium is an adaptation of the principal’s
Bayesian Nash equilibrium for the 1 × 2 FPSB package auction from Section
3.5.1. Finally, Proposition 5 establishes a condition for which the efficient dual-
winner equilibrium is payoff-dominant. We will first start with the necessary
conditions for the dual-winner equilibrium.

Proposition 2. Given principal i with full information about her vector of
valuations vi ∈ V, suppose the bids bi constitute a dual-winner equilibrium in
the 2 × 2 FPSB package auction. Then it must be true that

1) bi(1) = β1 is constant over vi(1) ∈ V(1)

2) β1 ∈
[
v(2) − v(1), v(1)

]
3) 2 · β1 = supvi(2)

{
β2

(
vi(2)

)}
.

In the dual-winner equilibrium both bidders must pool at a constant single-
unit bid of β1 from condition 1) within the range in condition 2). Moreover,
the single-unit bid bounds in condition 2) show that dual-winner efficiency is
necessary for the existence of a dual-winner equilibrium. Condition 3) ensures
that the auctioneer always selects the dual-winner outcome in equilibrium. Let
us now derive sufficient conditions for the dual-winner equilibrium in the next
theorem.

Proposition 3. Assume dual-winner efficiency is given, then for a principal
i with full information about her valuations vi ∈ V, the vector of bids bi =(
β1, β2

(
vi(2)

))
is a dual-winner equilibrium in the 2×2 FPSB package auction

if the following conditions hold:



3.6 combinatorial fpsb package auction 61

1) β1 ∈
[
v(2) − v(1), v(1)

]
2) β2

(
vi(2)

)
is continuous and strictly increasing on its support V(2)

3) β2
(
v(2)

)
= 2 · β1

4) G
(
vi(2), β1

)
≤ β2

(
vi(2)

)
for all vi(2) ∈ V(2).

The lower bound G(.) is defined as:

G
(
vi(2), β1

)
≡ β1 +

β1 − v(1) ·
(
1 − F2

(
vi(2)

))
F2

(
vi(2)

) . (CFPA-S-G)

Conditions 2) and 4) restrain any bidder i’s equilibrium bidding function
for two units. It is not allowed to fall below the lower bound of G

(
vi(2), β1

)
in order to support the pooling bid for one unit. This condition ensures that
winning the package is less profitable in expectation than obtaining a single
unit in equilibrium. For our analysis we focus on the lowest pooling bid for
one unit of β1 = v(2) − v(1). This maximizes the utility of both bidders and
therefore serves as a natural focal point for implicit coordination in the dual-
winner equilibrium. Let us extend our earlier example 1 from the 1 × 2 FPSB
package auction in Section 3.5.1 to illustrate the dual-winner equilibrium.

Example 2. Suppose vi(1) ∈ [110, 150] and as before vi(2) ∈ [160, 190], both
uniformly distributed. The distribution assumptions on the package correspond
to the assumptions made in the earlier example in Section 3.5.1. The payoff-
dominant pooling bid in the dual-winner equilibrium for both bidders is
β1 = v(2) − v(1) = 190 − 110 = 80. The upper bound for bi(2) is 160. A
higher bid would make the auctioneer select the package bid. Remember, in
case of a tie, the auctioneer selects the dual-winner outcome. The bidder with
the lowest type for the single unit, vi(1) = 110, and the highest type for the
package, vi(2) = 190, has the strongest incentive to deviate. With equilibrium
bids bi = (80, 160), her payoff for one unit as well as for the package is 30.
The lower bound for β2

(
vi(2)

)
is defined by the function G

(
vi(2), 80

)
. For a

low value draw of vi(2) = 165 the lower bound is G (165, 80) = 10, and an
equilibrium bid for the package is bi(2) ∈ [10, 160]. Each bidder type has to
follow this lower bound function in equilibrium to ensure the opponent has no
incentive to profitably deviate on the single-winner award, i.e., the payoff in
the dual-winner equilibrium of 30 for the lowest type on one unit always needs
to be higher or equal to the expected payoff of the package bid. In addition,
suppose opponent j bids low, say zero, on the package. Then bidder i could
also bid low on the package in an attempt to be able to bid β1 < 80 on a single
object and make a higher profit on one unit in a dual-winner outcome. The
lower bound G

(
vi(2), 80

)
avoids such deviations from equilibrium, too.

The dual-winner equilibrium is not the only equilibrium for payoff-
maximizing principals in our model, and there is also a single-winner equilib-
rium.
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Proposition 4. For a principal i with full information about her vector of
values, vi ∈ V, the vector of bids bi is a single-winner equilibrium in the 2 × 2
FPSB package auction under dual-winner efficiency if the following conditions
hold:

1) β2
(
vi(2)

)
= vi(2) − F2

(
vi(2)

)−1
·
∫ vi(2)

v(2) F2 (x) dx

2) bi(1) ∈
[
0, v(2) − v(1)

)
.

The equilibrium bid on the package in the single-winner equilibrium of the
2 × 2 FPSB package auction from condition 1) corresponds to the equilibrium
strategy of the 1 × 2 FPSB package auction from Section 3.5.1. Condition
2) ensures any bidder can enforce the single-winner equilibrium by making
the dual-winner outcome unprofitable for the opponent. Let us include this
equilibrium in our example.

Example 2 (Continued). Remember from our ongoing example that the equi-
librium bid on the package is β2

(
vi(2)

)
) = vi(2)/2+ 80. The equilibrium bid

on one unit must be low enough to veto the dual-winner award for all possible
bidder types, i.e., bi(1) ∈ [0, 10). If principal i with type vi = (130, 165) bids
bi(1) = 9 and bi(2) = 162.5, even opponent j with the highest value draw for
one unit, v j(1) = 150, cannot profitably implement the dual-winner outcome
as the sum of single-unit bids is strictly smaller than the lowest equilibrium
bid on two units, i.e., 150 + 9 < 160.

Using payoff-dominance, we can show that for specific distributional prop-
erties, payoff-maximizing bidders prefer to coordinate on the dual-winner
equilibrium rather than select the single-winner equilibrium.

Proposition 5. Any principal i with full information about the values support
V ex-ante prefers the dual-winner equilibrium to the single-winner equilib-
rium of the 2 × 2 FPSB package auction model for all vi ∈ V under dual-
winner efficiency iff the expected value of two units exceeds two times the
bidder-optimal dual-winner equilibrium pooling bid β1 = v(2) − v(1), i.e.,

2 ·
(
v(2) − v(1)

)
<

∫ v(2)
v(2) f2 (x) · xdx.

Intuitively, the expected package valuation exceeds twice the pooling bid
if the probability for large package value draws is high. If high value draws
for the package are likely, however, any bidder prefers the dual-winner equi-
librium to the single-winner equilibrium because, for her given vector of
valuations vi, she is likely to lose in the latter equilibrium. Given the payoff-
dominance condition from Proposition 5 is satisfied, we analyze the principal’s
possibilities to implement the dual-winner equilibrium in the symmetric and
asymmetric information environments in Sections 3.6.3 and 3.6.4, respectively.
Let us finally examine if the condition is satisfied in our earlier example.

Example 2 (Continued). The condition is satisfied as 2 · 80 < 175. In this case
the principal prefers the dual-winner equilibrium as it yields higher expected
payoff.

Next, we turn to the analysis of the agent’s equilibrium strategy in the 2 × 2
FPSB package auction.
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3.6.2 Agents’ Strategies

We analyze the agent’s strategy that solves the maximization problem (A-EXI)
in Section 3.3.1 for the 2 × 2 FPSB package auction assuming the budget
constraints to be random variables. This assumption is sufficient to highlight
the bias of the agent and the resulting inefficiency of the auction. In Section
3.6.3 we will then analyze if a principal can set budget constraints such that
the agents implement her equilibrium bidding strategy. Let us first provide
a few useful lemmas for the 2 × 2 FPSB package auction that eliminate
weakly dominated strategies. These lemmas allow for a succinct analysis of
equilibrium bidding strategies.

Lemma 1. With full knowledge about his vector of values vi ∈ V and ex-
ogenously determined budgets of ai ∈ A with which agent i is provided, any
strategy that involves package-bids of b̂i(2) < ai(2), is weakly dominated by
any strategy including a bid on two units of bi(2) = αi(2) independent of his
bid on one unit in the 2 × 2 FPSB package auction.

As agents are value-maximizing and strictly prefer the package to one unit,
there is no reason for them to not fully bid their budget on two units.

Lemma 2. For agent i with full information about valuations of vi ∈ V
and exogenously determined vector of budgets ai ∈ A, the set of strategies
b̂i =

(
b̂i(1), ai(2)

)
with b̂i(1) ∈

(
0, ai(1)

)
is weakly dominated by the strategy-

set bi =
(
bi(1), ai(2)

)
with bi(1) ∈

{
0, ai(1)

}
in the 2 × 2 FPSB package

auction.

A value-maximizing agent either expects his budget for the package to
be high enough to win the package, and he vetoes the dual-winner outcome
with a bid of zero on one unit, or he beliefs coordination on the dual-winner
outcome allows his to win at least one unit, then he maximizes his chances
by bidding his full budget for one unit. Bids in the interval bi(1) ∈

(
0, ai(1)

)
are always weakly dominated. With Lemmas 1 and 2, we can derive the
agent’s equilibrium strategy in both 2 × 2 package auction formats. Our first
observation of the 2 × 2 FPSB package auction is an ex-post equilibrium in
which agents do not coordinate.

Proposition 6. It is an ex-post equilibrium for agent i with full knowledge
about his vector of values vi ∈ V and exogenously determined budget con-
straints of ai ∈ A to submit a vector of bids bi =

(
0, ai(2)

)
in the 2 × 2 FPSB

package auction.

Intuitively, any agent i’s opponent j would only be willing to coordinate
on one unit if his valuation for two packages was low. In this case, however,
it would be a best response for bidder i not to coordinate, but try to win the
package of both units independent of both agents’ actual values. In the ex post
equilibrium arbitrary risk-averse bidders cannot coordinate on winning one
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unit with certainty.23 Interestingly, bi =
(
0, ai(2)

)
is also the unique Bayesian

Nash equilibrium as we will show next.

Proposition 7. The strategy bi =
(
0, ai(2)

)
is the unique Bayesian Nash

equilibrium strategy for agent i with full information about his values vi ∈ V
and vector of exogenously determined package budgets ai ∈ A in the 2 × 2
FPSB package auction.

Note that the agent does not respond to the valuations of the firm vi, but only
to the budgets ai that he is given as long as vi(1) < vi(2) and ai(1) ≤ ai(2).
Therefore, the agent’s unique equilibrium bidding strategy is independent of
the efficiency environment considered. More importantly, the unique equilib-
rium of the agent in the 2 × 2 FPSB package auction is in conflict with the
efficient dual-winner equilibrium of the principal. In the next Section 3.6.3
we analyze the possibilities of the principal to implement her dual-winner
equilibrium bidding strategy by constraining the agent with budgets in the
symmetric information environment.

3.6.3 Symmetric Information Principal-Agent Model

In this section, we assume the symmetric information environment from Sec-
tion 3.3.2 in which the supports of the prior distributions and the value draws
are known to principal and agent. Given the principal’s payoff-dominance
condition from Proposition 5 is satisfied, the dual-winner equilibrium achieves
a higher value of the principal’s objective function (PA-D) in Section 3.3.1
than the single-winner equilibrium for the 2 × 2 FPSB package auction. We
show that even in this symmetric information setting budget constraints can be
insufficient to implement the principal’s dual-winner equilibrium as a solution
to her optimization problem (PA-D) in Section 3.3.2 for the principal-agent
2 × 2 FPSB package auction model.

In Section 3.6.2, we assumed agent i’s budget constraints, ai ∈ A
with ai(1) ≤ ai(2), to be exogenous random draws from the distribution
Q(ai)|ai(1)≤ai(2). As we have shown, agents would not bid on a single unit in
the unique equilibrium with these types of budget constraints. There is always
a set of possible values vi ∈ V and budgets ai ∈ A with a high enough package
budget constraint such that only bidding on two units yields higher expected
utility for the agent i, independent of the opponent’s strategy. Therefore, the
incentive compatibility constraint (CFPA-D-IC) in Section 3.3.2 would not be
satisfied for the 2 × 2 FPSB package auction. The only option to counteract
these incentives is to assign a relatively low budget constraint for two units for
all package valuations. In particular, budget constraints ai =

(
ai(1), ai(2)

)
with upper bounds for the set of single-unit and package constraints of A(1)

23We refer to risk aversion as is implied by a concave utility function w(·) over possible
outcomes of the auction (lottery)

{
0, vi(1), vi(2)

}
for some agent i. Regarding the agent’s

ex-post equilibrium in Proposition 7 one could expect a risk averse agent to prefer the certain
dual-winner outcome with utility of w

(
vi(1)

)
over the lottery of winning the single-winner

outcome with expected utility of w
(
vi(2)

)
· F2

(
vi(2)

)
and not winning at all.
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and A(2), respectively, of the form a(2) < a(1) are required. Given opponent
j wants to coordinate on the dual-winner outcome, even an agent i with the
highest possible package budget of a(2) cannot win two units with certainty
by not bidding on the small package. With the help of the next lemma we can
reformulate the incentive compatibility constraint (CFPA-D-IC).

Lemma 3. A principal i with full knowledge of her valuations vi ∈ V can
direct her agent on the dual-winner outcome in the symmetric information
environment of the principal-agent 2 × 2 FPSB package auction model by
assigning her package-dependent budget constraints ai that satisfy

1) a(2) < a(1)

2) α1
(
vi(1)

)
+ a(1) ≥ α2

(
vi(2)

)
for all vi ∈ V

3) ui(1) ≥ ui(2) · P
(
α2

(
vi(2)

)
≥ α2

(
v j(2)

)
∩ α2

(
vi(2)

)
≥ α1

(
v j(1)

))
for all vi ∈ V.

In Lemma 3 condition (1)) implements budgets that ensure the agents are
able to coordinate on the dual-winner outcome and (2)) lets the auctioneer
select the respective outcome for all budgets. The expression P(·) denotes
the probability of agent i’s package budget constraint exceeding opponent
j’s budget constraints for one and two units. In order of keeping the lemma
traceable we do not express the corresponding probability in terms of the
joint distribution function F

(
v j

)
|
v j(1)<v j(2)

. Formally, the principal’s optimiza-
tion problem (PA-D) from Section 3.3.2 for the principal-agent 2 × 2 FPSB
package auction model can then be denoted as

Implement ai that correspond to the bidding functions in Proposition 3

(CFPA-D)

subject to ai ∈ A satisfy Lemma 3 (CFPA-D-IC)

αi(1) ≤ vi(1). (CFPA-D-NL)

The conditions in Lemma 3 now replace the agent’s incentive compatibility
constraint. Note that in the above optimization problem, in particular in
(CFPA-D), we assume the opposing firm j to successfully implement the
dual-winner equilibrium from Proposition 3. Nevertheless, in Proposition
8 we derive a distributional condition under which the principals cannot
implement the dual-winner equilibrium as a solution to the optimization
problem (CFPA-D) with constraints (CFPA-D-IC) and (CFPA-D-NL).

Proposition 8. There is no vector of budget constraints ai with which principal
i with full information about her valuations of vi ∈ V can implement the dual-
winner equilibrium under dual-winner efficiency in the symmetric information
environment of the principal-agent 2 × 2 FPSB package auction model if the
following inequality is true: 2 ·

(
v(2) − v(1)

)
> v(1).

It follows that a solution in which principal and agent aim for the dual-
winner outcome cannot exist under reasonable ranges of valuations. Let us
illustrate this scenario within our example.
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Example 2 (Continued). In our leading example with vi(1) ∈ [110, 150] and
vi(2) ∈ [160, 190], both uniformly distributed, it is easy to verify that the
condition in Proposition 8 is satisfied as 2 · 80 > 150. Therefore, the principal
cannot implement her dual-winner equilibrium.

Budget constraints are not always sufficient to align agent strategies in
the principal-agent 2 × 2 FPSB package auction model, even if the principal
knows the valuations. Intuitively, any firm faces the following trade-off: On
the one hand, the principal has to bid high enough on two units in equilibrium
to prohibit the opponent from making a profit by deviating from the dual-
winner equilibrium. On the other hand, the agent can only be directed on
bidding for one unit if his budget constraint on the package is low enough.
Both requirements cannot always be met simultaneously.

Moreover, note that the impossibility result in Proposition 8 highlights
consequences of the principal-agent problem that are specific to the multi-unit
package auction environment. In the standard single-package auctions in
Section 3.5, for example, the principal can simply provide the agent with
a budget in height of her optimal bid for the package and solve the agency
problem under symmetric information within our principal-agent 1 × 2 FPSB
package auction model as shown in Section 3.5.3. As a direct consequence
the principal can easily implement the single-winner equilibrium of the 2 × 2
FPSB package auction by assigning the agent no budget for one unit and the
same budget for the package as in the symmetric information setting of the
principal-agent 1× 2 FPSB package auction model in Section 3.5.3. Therefore,
whenever the implementation of the dual-winner equilibrium in the principal-
agent 2 × 2 FPSB package auction model is not possible, the single-winner
equilibrium can always be enforced, which supports demand inflation.

3.6.4 Asymmetric Information Principal-Agent Model

In this section we derive the optimal contract that solves the principal’s op-
timization problem PA-SB in Section 3.3.3 for the asymmetric information
environment of the principal-agent 2 × 2 FPSB package auction model and
implements the principal’s dual-winner equilibrium from Proposition 3. Tak-
ing into account the transfer payments principal i has to direct her agent to
submit the following reports to the auction,24

bi(1) =v(2) − v(1) + mi(1); (CFPA-SB-bids)

bi(2) =2 ·
(
v(2) − v(1) + mi(1)

)
.

It is straightforward to verify that the above bids satisfy the sufficient condi-
tions for the principal’s dual-winner equilibrium in Proposition 3 as long as
mi(1) is not too large. Moreover, the reports can be expressed as functions
of the random variable d as defined in Section 3.3.3, i.e., bi(1) = β1(d) and
bi(2) = β2(d) with β1(d) = d + mi(1) and β2(d) = 2 ·

(
d + mi(1)

)
. The

24Incorporating the transfer payments, mi, into the principal’s profit function, πi(l) =
vi(l) − pi(l) −mi(l), the dual-winner equilibrium bids from Proposition 3 adjust accordingly.
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optimal contract needs to specify four functions which are solely determined
by the parameter d ∈ D: bi(l) = βl(d) and mi(l) = µl(d) for all l ∈ L.
The principal’s optimization problem (PA-SB) in the asymmetric information
setting from Section 3.3.3 for the principal-agent 2× 2 FPSB package auction
model in this case corresponds to

Implement bi and mi that satisfy (CFPA-SB-bids) given G(vi)|vi(1)<vi(2)

for allvi ∈ Z (CFPA-SB)

subject to d ∈ argmax
d̂∈D

EU
(
β
(
d̂
)

, µ
(
d̂
)

, vi; G(v j)|v j(1)<v j(2)

)
.

(CFPA-SB-IC)

The bidding functions (CFPA-SB-bids) satisfy βi(1) ≤ vi(1) as long as mi(1)
is not too large and we can ignore the no-loss constraint (PA-SB-NL) of
the principal’s optimization problem (PA-SB) in the asymmetric information
setting in Section 3.3.3. Note that the incentive compatibility constraint
(CFPA-SB-IC) can always be met with transfers and does not need to be
reformulated. Moreover, we assume, explicitly in (CFPA-SB), that prinicipal j
implements the bidding function from (CFPA-SB-bids). The optimal contract
that solves the optimization problem (CFPA-SB) is summarized in the next
proposition.

Proposition 9. The principal’s optimal contract
(
β (d) , µ (d)

)
to implement

the dual-winner equilibrium in the asymmetric information environment of
the principal-agent 2 × 2 FPSB package auction model given dual-winner
efficiency corresponds to reports of

β1(d) = d and β2(d) = 2 · d for all d ∈ D (CFPA-SB-R)

with transfer payments of

µ1 = w
(
v(2)

)
−w

(
v(1)

)
and µ2 = 0 for all d ∈ D (CFPA-SB-T)

and ex-ante participation constraint

Evi

(
vi(1) − d −w

(
v(2)

)
+ w

(
v(1)

))
≥ 0 for all vi ∈ Z and d ∈ D.

(CFPA-SB-PC)

The principal does not need to set incentives for bidding on the package but
needs to pay a constant amount that compensates the agent for not winning
two units. This transfer payment is solely a function of the agent’s utility
and does not depend on the implemented pooling price. Therefore, it is
always optimal to condition on the lowest possible pooling price as higher
prices cannot be achieved with lower transfer costs. Unfortunately, the agency
costs caused by wages in the principal-agent 2 × 2 FPSB package auction
model can be very high as the proposition shows. However, if any principal
i now sets the optimal menu of budget constraints and payments, the set of
implementable dual-winner equilibria becomes a subset of the original set.
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This becomes clear by looking at the range of implementable pooling prices:
β1 ∈

[
v(2) − v(1) + µ1, v(1) − µ1

]
.

Note, that for the given upper bound, d = v(2) − v(1), of the random draw

d, the optimal transfer, µ1 = w
(
v(2)

)
−w

(
v(1)

)
, increases as the magnitude

of the agent’s value-maximizing motive, w(.), rises. With larger µ1 the lower
bound of supportable pooling prices, v(2) − v(1) + µ1, increases whereas the
upper bound, v(1) − µ1, decreases. Therefore, it can happen that there is no
range of supportable pooling prices

[
v(2) − v(1) + µ1, v(1) − µ1

]
. Also, the

ex-ante participation constraint (CFPA-SB-PC) of Proposition 9 will not be
satisfied anymore. In this case the principal cannot implement an efficient
dual-winner equilibrium even with contingent transfers in the asymmetric
information setting.

As in the asymmetric information environment of the principal-agent 1 × 2
FPSB package auction model in Section 3.5.4, if the agency bias is too high,
the principals cannot implement their desired equilibrium. Furthermore, note
that in the implementation of the single-winner equilibrium the principal can
simply provide her agent with no budget and no transfer payment for the
single unit but with the same contract for the package as in Corollary 1 of
the principal-agent 1 × 2 FPSB package auction model under asymmetric
information.25 Unlike the implementation of the single-winner equilibrium in
the symmetric information environment, the agency-bias might be too high for

25Considering transfer payments to implement the dual-winner equilibrium and the single-
winner equilibrium in the asymmetric information environment, the payoff-dominance condi-
tion for the principal from Proposition 5 changes. Suppose agency costs are not too high such

that both equilibria can be implemented and the regularity condition of ∂
(

w′(vi(2))
g2(vi(2))

)
/∂vi(2) >

0 is satisfied. Then the difference in ex-interim expected profit between the dual-winner
equilibrium and the single-winner equilibrium for each vi ∈ V is:

∆T
(
vi(1), vi(2)

)
= vi(1) − d + w

(
v(1)

)
−

−

∫ vi(2)

v(2)
G2 (x) dx −G2

(
vi(2)

)
·

w (
vi(2)

)
+ w′

(
vi(2)

)
·

G2
(
vi(2)

)
g2

(
vi(2)

)
 .

(3.6.1)

Function (3.6.1) is strictly increasing in its first argument and strictly decreasing in its second

argument, and therefore takes its maximum value at vi =
(
v(1), v(2)

)
and its minimum value at

vi =
(
v(1), v(2)

)
. The minimum is strictly positive and therefore the dual-winner equilibrium

strictly preferred to the single-winner equilibrium for all vi ∈ Z whenever the following
condition is satisfied:

2 · d −w
(
v(1)

)
+ w

(
v(2)

)
+

w′v(2)

g2

(
v(2)

) < ∫ v(2)

v(2)
x · g2 (x) dx. (3.6.2)

The LHS of (3.6.2) strictly exceeds the LHS of the principal’s payoff-dominance condition
in Proposition 5. This implies that expected value draws for the package need to be even
higher for the dual-winner equilibrium to be preferred to the single-winner equilibrium. In the
implementation of the dual-winner equilibrium the principal incurs relatively higher agency
costs than in the contract for the single-winner equilibrium making the payoff-dominance
condition harder to satisfy.
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an ex-ante profitable contract to exist and each firm i might not participate in
the auction at all. In the next section we demonstrate that such negative results
do not occur in the principal-agent 2 × 2 ascending package auction model.

3.7 combinatorial second-price package mechanisms

In what follows we will first extend our analysis to the principal-agent 2 × 2
ascending package auction model. The structure of this section follows the
same logic as the previous Section 3.6 with an additional section at the end in
which we also analyze the benchmark principal-agent 2 × 2 VCG mechanism
model. The solution and its comparison to the principal-agent 2 × 2 FPSB
package auction model and the principal-agent 2 × 2 ascending package
auction model enable us to derive our main insights and generalize the findings
to non-combinatorial auction formats in Section 3.8, for example.

3.7.1 Principals’ Strategies

We start with the characterization of the principal’s dual-winner equilibrium
that solves the maximization problem (P-EXI) in Section 3.3.1 for the 2 × 2
ascending package auction if the principal had full information and were to
bid alone in the auction.

Proposition 10. In the ex-post dual-winner equilibrium of the 2× 2 ascending
package auction under dual-winner efficiency, a principal i with full informa-
tion about her vector of valuations vi ∈ V starts bidding only on one unit until
the respective price reaches her valuation of bi(1) = vi(1). If the opposing
bidder j starts bidding on two units, bidder i becomes active on the package
and remains until the opponent drops out or until her respective valuation is
reached, bi(2) = vi(2).

In the equilibrium described above there is no demand for the package
in the beginning and the auction terminates immediately at zero price for
the bidders. Becoming active on the package constitutes an off-equilibrium
threat that is not carried out in equilibrium. The last fact distinguishes the
dual-winner equilibrium of the 2 × 2 ascending package auction from the one
of the 2 × 2 FPSB package auction in which the ”‘threat-bid”’ on the package
is actually submitted in equilibrium, although it does not become part of the
winning allocation. Similar to the 2 × 2 FPSB package auction, there is also a
single-winner equilibrium.

Proposition 11. In an ex-post single-winner equilibrium of the 2 × 2 ascend-
ing package auction under dual-winner efficiency, any principal i with full
knowledge about her values vi ∈ V remains active on the single unit before its
price reaches pc(1) = v(2)/2 and simultaneously bids on the package of two
units until the respective price reaches her valuation of bi(2) = vi(2).

The bid on the package in the single-winner equilibrium of the 2× 2 ascend-
ing package auction corresponds to the equilibrium bid in the 1 × 2 ascending
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package auction as shown in Section 3.5.1. Any bidder can enforce the single-
winner equilibrium by simply dropping out from the dual-winner outcome
before the allocation becomes winning. However, the dual-winner equilibrium
always strictly dominates the single-winner equilibrium in payoff as the next
corollary demonstrates.

Corollary 1. Any principal i with full information about the valuations vi ∈

V ex-ante strictly prefers the dual-winner equilibrium to the single-winner
equilibrium of the 2 × 2 ascending package auction for all vi ∈ V under
dual-winner efficiency.

Be aware though, that the single-winner equilibrium is not based on weakly-
dominated strategies as is straightforward to show.26 Although the 2 × 2
ascending package auction is characterized by a similar equilibrium selection
problem than the 2 × 2 FPSB package auction, the former auction format pos-
sesses two advantages. First, the dual-winner equilibrium strictly dominates
the single-winner equilibrium in profit and therefore serves as a natural focal
point for the bidders to choose. Second, the ascending combinatorial mecha-
nism possesses coordination advantages in the sense that bidders can observe
their opponents’ equilibrium choices and adjust accordingly. This means they
can see if the opponent wants to coordinate on a dual-winner equilibrium.
If this is not the case, they can switch and still aim for the single-winner
equilibrium.

To illustrate the last point, suppose bidder i plays the dual-winner equi-
librium, defined in Theorem 3, and let opponent j chose the single-winner
equilibrium from Theorem 4. As all package prices are publicly observable,
principal i is able to recognize that her opponent is playing a different equilib-
rium and can adjust her own equilibrium strategy to that of the single-winner
equilibrium. Note that this robustness of the 2 × 2 ascending package auction
against the equilibrium selection problem might serve as an additional reason
for each bidder to start trying to coordinate on the dual-winner equilibrium.

3.7.2 Agents’ Strategies

In the analysis of the agent’s bidding behavior without principal in the 2 × 2
ascending package auction, let us first introduce an adapted definition of
straightforward bidding:

Definition 1. (Straightforward bidding of agents in the 2 × 2 ascending pack-
age auction): For any vector of exogenously determined budget constraints
ai ∈ A, agent i with full knowledge about his valuations of vi ∈ V begins to
bid on the most valuable package of two units and remains active until the

26Suppose the opposing bidder j starts bidding on both packages until her respective val-
uations are reached. With the single-winner equilibrium strategy buyer i obtains profit of
vi(2) − v j(2) if vi(2) > v j(2). In this case, if she follows the dual-winner equilibrium strategy,
i receives profit of vi(1)− v j(2)/2. Note that both profits cannot be unambiguously ranked and
therefore, the single-winner equilibrium strategy is not weakly dominated. Moreover, j’s ini-
tially assumed bidding behavior may be part of a strategy aimed at enforcing the single-winner
outcome and therefore not dominated either as is demonstrated in the proof to Proposition 10.
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package price reaches his corresponding budget of pc(2) = αi(2). As long as
he is winning, he does not bid for the single unit. If he is overbid, he starts
to bid for the less valuable package and again remains active until the price
equals his respective budget of pc(1) = αi(1).

Remember that Lemmas 1 and 2 describing the set of the agent’s non
weakly-dominated strategies for the 2 × 2 FPSB package auction also hold
for the 2 × 2 ascending package auction: An agent i’s strategies that are not
weakly dominated are to remain active on the package until the price equals
his corresponding budget and either to quit directly on one unit or to remain
active until the respective single-unit budget is reached. With these insights we
are able to derive the solution to the agent’s maximization Problem (A-EXI)
in Section 3.3.1 for the 2 × 2 ascending package auction.

Proposition 12. In the 2 × 2 ascending package auction straightforward
bidding of agent i with full information about the vector of values vi ∈ V and
any vector of exogenously determined budgets ai ∈ A constitutes an ex-post
equilibrium. In this equilibrium the agent with the highest budget for two units
does not get active on one unit.

Similar to Theorem 7 of the 2 × 2 FPSB package auction, Theorem 12
describes an ex-post equilibrium that is robust against risk aversion. In both
auction formats, agents never coordinate on winning one unit each, indepen-
dent of the efficiency environment. The analysis shows that once a bidder
does not care about profit, its bidding problem in both 2 × 2 package auction
formats is the same: agents will only bid on the large package in equilibrium.
Moreover, any bidder i’s equilibrium strategy is entirely independent of his
vector of valuations vi ∈ V and the efficiency setting, but only depends on the
height of his budget for the package of ai(2) ∈ A(2). In general, the agent’s
equilibrium behavior of not bidding on one unit leads to a conflict of interest
with the principal’s dual-winner equilibrium. In the next section, we discuss
how to overcome this conflict via budget constraints in the principal-agent
2 × 2 ascending package auction model.

3.7.3 Symmetric Information Principal-Agent Model

Unlike the principal-agent 2 × 2 FPSB package auction model, the principal’s
dual-winner equilibrium can be implemented as a solution to her optimization
problem (PA-D) in the symmetric information environment from Section 3.3.2
for the principal-agent 2× 2 ascending package auction model, as long as dual-
winner efficiency is known. Moreover, according to strict payoff dominance in
Corollary 1 the dual-winner equilibrium achieves higher expected profit than
the single-winner equilibrium for all vi ∈ V and therefore could be interpreted
as the unique solution to (PA-D).

Proposition 13. Any principal i with full knowledge about the valuations of
vi ∈ V can implement the dual-winner equilibrium with budget constraints of
ai(1) = vi(1) and ai(2) = 0 in the symmetric information environment of the
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principal-agent 2 × 2 ascending package auction model under dual-winner
efficiency.

This proposition assumes that the opposing principal uses the same budgets
to implement the dual-winner equilibrium. Furthermore, it is very important
to understand that the principal does not have to use a budget for two units of
ai(2) = vi(2) to implement the double-unit threat from Proposition 10 as this
is never realized in equilibrium anyways. Given the agent of firm i only bids
on one unit, firm j has no incentive to deviate on two units anyway and vice
versa as is made clear in the proof of Proposition 10.

The budget constraint in this theorem requires complete information about
the valuation for a single unit or at least a good estimate of vi(1). Alternatively,
the principal could just set a budget at ai(1) = v(1). In our model, from the
beginning there is no demand for the package and the auction would end im-
mediately anyway. As the principal can easily implement her payoff-dominant
dual-winner equilibrium we do not consider the single-winner equilibrium.
Unlike the symmetric information setting of the principal-agent 2 × 2 FPSB
package auction model there is no demand inflation in the principal-agent
2 × 2 ascending package auction model. Moreover, remember that if one
principal does not start to coordinate on the dual-winner outcome, the auction
continues and the other principal might be able to adjust budgets and also
pursue the single-winner award. Again, this observation might constitute an
additional reason why successful implementation of the dual-winner equilib-
rium is easier in the principal-agent 2 × 2 ascending package auction model
than in the principal-agent 2 × 2 FPSB package auction model. The result
continuous to hold for the asymmetric information environment as we show in
the next section.

3.7.4 Asymmetric Information Principal-Agent Model

The implementation of the dual-winner equilibrium as a solution to the prin-
cipal’s optimization problem (PA-SB) in the asymmetric information setting
from Section 3.3.3 for the principal-agent 2 × 2 ascending package auction
model remains as simple as in the symmetric information setting in Section
3.7.3 with the only difference of assigning a budget constraint weakly below
v(1) for one unit. Thus, principals do not incur any agency costs and the dual-
winner equilibrium remains strictly preferred to the single-winner equilibrium
for all vi ∈ V . Furthermore, unlike the asymmetric information environment
of the principal-agent 2 × 2 FPSB package auction model there is no risk of a
market breakdown as participation is always ex-ante profitable.

3.7.5 The Principal-Agent 2 × 2 VCG Mechanism Model

Ignoring the agents, the dual-winner outcome results for the principals in the
2 × 2 VCG mechanism under dual-winner efficiency. The payment function
forces the principals to truthfully reveal their package valuations and dual-
winner efficiency guarantees the social choice function to select the dual-
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winner outcome. Note, that given firm j reports zero on two units, principal i
is indifferent between reporting truthfully and fully hiding her valuation on the
package. Hiding the valuation on one unit is weakly dominated. The agents
are not affected by the generalized second-price payment function and their
reporting behavior corresponds to the one in Theorem 6 of the 2 × 2 FPSB
package auction.

With precise information about the valuation for a single unit in the symmet-
ric information setting, the principal can apply the same budgets as in Theorem
13 of the principal-agent 2 × 2 ascending package auction to implement the
efficient allocation in the principal-agent 2 × 2 VCG mechanism model. This
outcome equivalence is reminiscent of the outcome equivalence between the
standard single-package English and Vickrey auctions and suggests that the
payment function causes the different results for the implementation of the
principal’s dual-winner equilibrium in Theorem 8 and Theorem 13 for the
principal-agent 2 × 2 FPSB package auction model and the principal-agent
2 × 2 ascending package auction model, respectively. Moreover, the outcome
equivalence allows to focus on a comparison between the principal-agent 2× 2
VCG mechanism model and the principal-agent 2 × 2 FPSB package auction
model for the remaining discussion in this section.

Remember, in any 2 × 2 package auction format each bidder is able to
unilaterally veto the dual-winner outcome with a low enough report on the
single unit. Thus, under the first-price payment function the principal has to
submit a high package bid to make deviations from the dual-winner outcome
by her opponent unprofitable in equilibrium. This prevents a solution of the
agency dilemma as the budget for two units is too high for agents to coordinate.
Contrary, in the strategy-proof VCG mechanism the principal’s report on the
package does not affect the competing principal’s bidding behavior who is
indifferent between truthfully reporting her valuation for the package and
hiding this value. Vice versa, this reasoning is true for both principals and
therefore, the agency dilemma is straightforward to solve if the principals know
that the solution with two winners is efficient. This is because the principal
can also set the budget for the package bid to zero as in the principal-agent
2 × 2 ascending package auction model without altering the truthful report on
one unit.

As we have shown in Section 3.7.4, even under asymmetric information
coordination is straightforward to implement in the principal-agent 2 × 2
ascending package auction model and therefore also in the principal-agent
2× 2 VCG mechanism model as long as the efficiency setting is known. This is
a direct consequence of the independence of the principals’ bidding behaviors
in a strategy-proof second-price mechanism. The social choice function still
selects the efficient outcome even if bidders hide their valuations for packages
that are not part of the welfare-maximizing allocation. Therefore, principals
do not have to implement precise bids on all packages in the principal-agent
2 × 2 VCG mechanism model. In more complex environments, however, this
reasoning might not apply. If, for example, the principals neither know the
values nor the efficiency environment, they are not able to set the budget
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constraints such that the payoff-dominant equilibrium is selected in our model.
The bidding firms compete although they would not if the principals had the
same information as the agents.

Moreover, the insights of the principal-agent 2 × 2 package auction model
are also helpful for the analysis of non-combinatorial auction formats and less
severe agency bias.

3.8 generalization of results

In this section, we first analyze the 2 × 2 ascending uniform-price auction to
establish the existence of the agency-dilemma in non-combinatorial mecha-
nisms. We also show that our findings hold for principal-agent relationships in
which the agent internalizes prices but has value-maximization motive, too.

3.8.1 Ascending Uniform-Price Auction

Similar to Ausubel et al. (2014), who focus on an ascending uniform-price
multi-unit auction, in this section we discuss the 2× 2 ascending uniform-price
auction as a model for the SMRA, which is used worldwide to sell spectrum
licenses. Unlike the 2 × 2 ascending package auction there is only a dual-
winner equilibrium in which both principals immediately reduce demand to
one unit, but no single-winner equilibrium. To analyze the agent’s bidding
strategy in the 2 × 2 ascending uniform-price auction we need an adapted
definition of straightforward bidding.

Definition 2. (Straightforward bidding of agents in the 2 × 2 ascending
uniform-price auction): Suppose agent i with full information about his vector
of valuations vi ∈ V is provided with exogenously determined budget con-
straints of the form ai(1) ≥ ai(2)/2, then he remains active on two units
until the unit price reaches half his budget for the package, ai(2)/2. He then
reduces his demand to one unit and remains active until the price reaches his
single-unit budget constraint of ai(1). If agent i is provided with budgets of
ai(1) < ai(2)/2, he will bid up to ai(1) for two units, then indicate demand
for one unit and immediately drop out completely.

Any agent i must not bid beyond his constraint for one unit. If the agent did
bid beyond ai(1) for two units and first dropped out at ai(2)/2 from both units,
then he could be assigned a single unit at a price of ai(2)/2 beyond budget,
which is unacceptable. Moreover, the agent distributes his double-unit budget
constraint evenly over both units, because he needs to beat agent i on both
single units to obtain the double-unit package. An uneven distribution would
favor one single unit and therefore cannot be optimal. It is straightforward to
show an equilibrium in which both agents engage in straightforward bidding
that may result in the dual-winner outcome or in the single-winner outcome
depending on the budget constraints.

Proposition 14. In the 2× 2 ascending uniform-price auction straightforward
bidding of agent i with full knowledge of his values of vi ∈ V and any exoge-
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nously determined budget constraints of ai ∈ A constitutes a Bayesian Nash
equilibrium. The equilibrium results in the following outcomes depending on
the sizes of the budget constraints:
Agent i is provided with budget constraints of ai(1) ≥ ai(2)/2 and wins

A) One unit if ai(1) ≥ min
{

a j(2)/2, a j(1)
}

and ai(2)/2 ≤ a j(1)

B) Two units if ai(2)/2 > a j(1).

Agent i faces budget constraints of ai(1) < ai(2)/2 and wins

C) One unit if ai(1) = a j(1) in case a j(1) < a j(2)/2
or if ai(1) > a j(2)/2 in case a j(1) ≥ a j(2)/2

D) Two units if ai(1) > a j(1).

The derived equilibrium is also valid ex-post as knowing the opponent’s
budget constraints does not lead to an improvement in straightforward bidding.
Similar to the 2 × 2 ascending package auction, principals can set a zero
budget constraint for two units to implement the dual-winner equilibrium with
their agents, and the auction would stop immediately in our model in which the
principals know that there is dual-winner efficiency. In all multi-unit auction
formats an agency dilemma occurs because principals would like to coordinate
on the welfare-maximizing dual-winner outcome in dual-winner efficiency
whereas agents would never do so independent of the efficiency environment
in the 2 × 2 package auction formats. Even in the 2 × 2 ascending uniform-
price auction agents might not coordinate. For different efficiency settings this
divergence in preferred equilibrium might be less severe. Nevertheless, we
show in the following section that the agency-bias with respect to underlying
preferences might still prevent the implementation of an optimal contract.

In our model the agency bias occurs because the principal maximizes
expected profit whereas the agent maximizes value. In the next section we
show that the main findings of our model carry over to a setting in which
the agency bias is more moderate. We demonstrate that the principal might
not always be able to implement her dual-winner equilibrium with budget
constraints only (not even always with transfer payments) in the asymmetric
information environment of the principal-agent 2 × 2 FPSB package auction
model even if the agent maximizes profit to some extent.

3.8.2 Biased Profit-Maximizing Agent

In this section we derive the optimal contract to implement the dual-winner
equilibrium of the principal-agent 2 × 2 FPSB package auction model in
the asymmetric information environment as defined in Section 3.3.3 in case
principal and agent have preferences as in the model by Burkett (2015, 2016).
In this setting the agent’s payoff corresponds to ui(l) = vi(l) − pi(l) + mi(l)
and the principal maximizes ex-interim expected profit, in which her profit
of winning a package of l units is given by πi(l) = vi(l) − η

(
vi(l)

)
− pi(l) +
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mi(l). The function η : V(l) → R represents the bias between both parties for
the package of l units and the principal’s payoff is assumed to be positive and
smaller than the agent’s utility. Otherwise the model remains as described in
Section 3.3.

As the agency bias is not as large as with the utility functions described in
Section 3.3, we are able to derive necessary and sufficient conditions for the
optimality of a pure budget constraint contract without transfers. This result is
an extension of Burkett (2016)’s characterization of an optimal budget con-
straint for single-package auction-like mechanisms to combinatorial auctions.
Note that the implementation of the optimal budget constraint contract for the
principal-agent 2 × 2 ascending package auction model remains as simple as
in Section 3.7.4.

The proof for the principal-agent 2 × 2 FPSB package auction model is
based on the following observations: First, note that the agent internalizes
the price and has a profit-maximizing motive. The agents can therefore
coordinate on a dual-winner equilibrium which corresponds to the one defined
in Proposition 3 in Section 3.6.1 for the 2×2 FPSB package auction model. Let

us from now on denote the agent’s equilibrium bids by ba
i =

(
βa

1, βa
2

(
vi(2)

))
with corresponding lower bound for the package of βa

2

(
vi(2)

)
≥ Ga

(
vi(2), βa

1

)
satisfying Proposition 3. Second, we can modify the sufficient conditions for
the dual-winner equilibrium in Proposition 3 for the adapted principal’s utility
function as follows.

Corollary 2. Assume dual-winner efficiency is given, v(2) − η
(
v(2)

)
< 2 ·(

v(1) − η
(
v(1)

))
, then for any principal i with full information about her

valuations vi ∈ V, the vector of bids bp
i =

(
β

p
1 , βp

2

(
vi(2)

))
is a dual-winner

equilibrium of the 2 × 2 FPSB package auction, if the following conditions
hold:

1) βp
1 ∈

[
v(2) − η

(
v(2)

)
− v(1) + η

(
v(1)

)
, v(1) − η

(
v(1)

)]
2) βp

2

(
vi(2)

)
is continuous and strictly increasing on support V(2)

3) βp
2

(
v(2)

)
= 2 · βp

1

4) Gp
(
vi(2), β

p
1

)
≤ β

p
2

(
vi(2)

)
for all vi(2) ∈ V(2).

The lower bound Gp(.) is defined as:

Gp
(
vi(2), β

p
1

)
≡ β

p
1 +

β
p
1 −

(
v(1) − η

(
v(1)

))
·

(
1 − F2

(
vi(2)

))
F2

(
vi(2)

) .

Third, in the asymmetric information setting with unknown value ranges
V ⊆ Z, the principal’s and the agent’s lowest pooling prices can be expressed
as functions of the random variable d : bp

i (1) = β
p
1(d) and ba

i (1) = βa
1(d),

respectively, with βp
1(d) = d − η

(
v(2)

)
+ η

(
v(1)

)
and βa

1(d) = d. Therefore,
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the final reports of the principal-agent 2 × 2 FPSB package auction model to
the auction can be expressed as functions of d, too: bi = β(d). The principal’s
optimization problem for the asymmetric information environment (PA-SB)
from Section 3.3.3 can be specified for the adjusted utility functions from this
section as follows:

Implement bi that satisfy Corollary 2 given G(vi)|vi(1)<vi(2)

(B-CFPA-SB)

subject to bi = β(d) fulfill Proposition 3 (B-CFPA-SB-IC)

βi(1) ≤ vi(1) for all vi(1) ∈ V(1). (B-CFPA-SB-NL)

Although the agent maximizes profit, he is biased and the no-loss condition in
(B-CFPA-SB-NL) is required in our setting. We can now state necessary and
sufficient conditions for optimality of a budget constraint contract that solves
(B-CFPA-SB) subject to (B-CFPA-SB-IC) and (B-CFPA-SB-NL).

Proposition 15. If the necessary condition 2 · v(1) ≥ v(2) + η
(
v(1)

)
is

fulfilled, a principal i can ex-ante optimally implement her dual-winner equi-
librium with reports to the auction of

β
p
1(d) =

d if d ≤ βp
1(d)

β
p
1(d) if d > βp

1(d)
and βp

2(d) = 2 · βp
1(d) (B-CFPA-SB-R)

in which β
p
1(d) = d − η

(
v(2)

)
+ η

(
v(1)

)
, in the asymmetric information

environment of the principal-agent 2 × 2 FPSB package auction model given

dual-winner efficiency, v(2) − η
(
v(2)

)
< 2 ·

(
v(1) − η

(
v(1)

))
. The ex-ante

participation constraint is given by

Evi

(
vi(1) − η

(
vi(1)

)
− d

)
≥ 0 for all vi ∈ Z if d ≤ βp

1(d)

Evi

(
vi(1) − η

(
vi(1)

)
− β

p
1(d)

)
≥ 0 for all vi ∈ Z if d > βp

1(d).

(B-CFPA-SB-PC)

Note that the necessary condition in Proposition 15 implies that dual-winner
efficiency for the agent’s utility function as defined in the model in Section 3.3
is satisfied. Similar to Burkett (2016) in the optimal budget constraint contract
any principal lets her agent truthfully report the latter’s equilibrium strategy
βa

1(d) = d until a certain upper-bound βp
1(d) is reached. However, unlike

Burkett (2016) in which the principal optimally determines the upper-bound
to solve a trade-off between capturing the information rent and mitigating the
agency-bias to maximize ex-ante expected profit, in Proposition 15 it is simply
the nature of the principal’s dual-winner equilibrium as specified in Corollary
2 that does not allow him to implement a lower upper-bound than βp

1(d) on
the highest report by the agent to maximize ex-ante expected profit. For all
d ≤ βp

1(d) the agency-bias carries through the optimal reporting functions.
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The principal cannot implement a more profitable contract with transfer

payments as the optimal constant transfer for one unit, m(1) = η
(
v(2)

)
−

η
(
v(1)

)
, that sets incentives for the agent to submit the principal’s optimal

reporting function of βp
1(d) to the auction is relatively high independent

of the agent’s type. Nevertheless, if the necessary condition, 2 · v(1) ≥
v(2) + η

(
v(1)

)
, in Proposition 15 is not satisfied a pure budget constraint

contract cannot be implemented and the principal must employ the costly
transfer payment for one unit to let the agent submit reports of βp

1(d) =

d − η
(
v(2)

)
+ η

(
v(1)

)
and β

p
2(d) = 2 · βp

1(d) to the auction. In this case
the principal’s ex-interim expected profit for given d ∈ D and vi ∈ Z is

vi(1) − η
(
vi(1)

)
− β

p
1 − η

(
v(2)

)
+ η

(
v(1)

)
. Similar to our prior findings for

the principal-agent 2 × 2 FPSB package auction model in the asymmetric
information environment in Section 3.6.4, as the magnitude of the agency
bias η(·) becomes too large, profit becomes negative and implementation of
the dual-winner equilibrium unprofitable even if the agent possesses some
profit-maximizing motives.

3.9 conclusion

We analyze a hidden information model in which the agent bids on behalf
of the principal in a multi-unit auction. He knows the goods valuations but
has limited liability and the principal has to pay. In this model, there is no
reason for the agent to maximize payoff, but he tries to win the most valuable
allocation within budget. We show that there is a conflict of interest between
principal and agent in efficiency settings in which it is payoff dominant for
the principals to coordinate. The types of manipulation discussed in this
chapter are specific to multi-object auctions, and differ from the problems in
single-object auctions (Burkett, 2015, 2016).

If the auctioneer is concerned about efficiency and is aware of agency
problems among bidding firms he should favor ascending package auctions.
First, if the principals understand that there is dual-winner efficiency, the
ascending package auction and the VCG mechanism allow to implement
the efficient equilibrium that is also payoff-dominant in our model. Second,
ascending package auctions further alleviate coordination problems in multi-
object markets and might even have advantages in environments in which the
principals do not know the efficiency environment ex ante because they can
learn new information about the competition during the auction.

However, note that in our principal–agent package auction model, the
principal would need to know that there is dual-winner efficiency efficiency to
set budget constraints appropriately in an ascending package auction or the
VCG mechanism. In a FPSB package auction, this might not even be possible
in equilibrium with budget constraints only, even if the principal had precise
information about the valuations. The wide use of budget constraints in bidding
firms might be due to the fact that there is often considerable uncertainty about
the valuations, the efficiency environment and the prior type distributions
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for the principal in the field and only the agent has detailed information.
With uncertainty about the efficiency environment, the equilibrium bidding
strategies in our model are unknown. In such an environment, principals often
try to at least limit the risk of the agent overbidding substantially via budget
constraints. However, overall budget constraints are insufficient to make the
agent bid payoff-maximizing in general as we have shown.

Let us leverage the insights from our model and revisit some well-known
examples of spectrum auctions. In the German spectrum auction in 1999 the
two strong players Mannesmann and T-Mobile reduced demand to five blocks
each in the initial rounds of the ascending auction (Grimm et al., 2004). One
could assume that in this simple environment with 10 homogeneous objects
it was clear to the principal that the dual-winner outcome would be payoff-
dominant. The auction was criticized for low revenue, but it can well have
been the efficient allocation.27

While the 1999 auction result is compatible with enforcing coordination
on a dual winner outcome, other auctions show that demand inflation is also
observed, which is compatible with the agency problem generally described
in this chapter. An example is the German auction in 2015 (Bichler and
Goeree, 2017).28 The bidders did not coordinate and several observers reported
demand inflation rather than demand reduction.29 The analysts’ estimates
before the auction differed substantially and it is likely that the principals
had little information about the value of a package making it very hard to set
appropriate budget constraints.30

There is not much public information about FPSB combinatorial auctions.
France used this auction format for selling spectrum in the 800 MHz auction
and the 2.6 GHz auction in 2011 and the average prices in these auctions were
among the highest in Europe.31 Of course, one must not over-interpret these
observations. The comparison of prices in spectrum auctions in the field is
far from trivial and a number of factors influence the final prices. Apart from
the specifics of the auction format, the competitive situation, the reservation
prices and spectrum caps, the types of bands in the auction, and country-
level idiosyncrasies matter to name just a few. In summary, the traditional
assumption in which bidders are modeled as payoff-maximizing individuals
might be too simple and the presence of principal–agent relationships in the
bidding firms can have significant negative impact on the efficiency of auctions
as a means to allocate scarce resources.

27We leave revenue maximization by the auctioneer as a topic for future research and focus
on efficient auction design, which is the primary goal of regulators.

28http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/

Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/

Projekt2016/projekt2016-node.html
29http://telecoms.com/opinion/the-german-spectrum-auction-failure-to-negotiate/
30The strategic analysis of the wide-spread two-stage combinatorial clock auction is more

involved, which is why we do not discuss it in this context (Bichler and Goeree, 2017).
31https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/

telefonica_response.pdf

http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html
http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html
http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html
http://telecoms.com/opinion/the-german-spectrum-auction-failure-to-negotiate/
https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf
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O P T I M A L B I D D I N G I N E X - P O S T S P L I T- AWA R D
AU C T I O N S †

4.1 introduction

Following Section 1.2.3, we focus on (combinatorial) ex-post split-award
auctions in an n × 2 market under strong diseconomies of scale, i.e. dual
source efficiency. Furthermore, we assume that the suppliers know the scale
economies in the market, but the buyer does not. The choice of a proper
auction design depends on the prevailing scale economies in the market: with
economies of scale (and no risk-premium), it is efficient to select a single
supplier (sole source award), and the procurement manager should employ a
single-object auction. However, the solution with two suppliers (split award)
is efficient with diseconomies of scale and in case a buyer expects savings
from an ex-ante split-award auction. Knowing the scale economies in the
market, a buyer could use the appropriate efficient auction design for each
efficiency scenario. However, although it is reasonable to assume that bidders
know the scale efficiencies of their product, this is often not true for the buyer.
Thus, an auctioneer prefers to employ a (combinatorial) ex-post split-award
auction in which both outcomes, a sole source and a split award, are possible.
In these auctions, the suppliers can submit bids on shares as well as on the
whole business, i.e., the package of both shares. The buyer then selects the
cost minimizing combination of bids and therefore, the decision whether to
split the award or to select a single supplier is endogenous.

Markets with diseconomies of scale are interesting for a number of reasons.
First, in the efficient σ equilibrium bidders need to coordinate, which is
strategically challenging. Second, environments with diseconomies of scale
are relevant for a large number of procurement events, for example if suppliers
face capacity limits or stepwise fixed costs. Anton and Yao (1992) motivate the
environment with two bidders by a defense procurement example, but settings
with two shares and two bidders are also common in the electronics industry

†This chapter is based on the working paper Combinatorial first-price auctions: Theory and
experiments co-authored by Martin Bichler and Gian-Marco Kokott, Working-Paper Technical
University of Munich, 2018, Munich. In comparison with the working paper, the obtained
equilibrium strategies and the resulting rankings of auction formats in terms of revenue and
efficiency are already discussed with respect to the existing literature in detail in Sections 1.2
and 2.3. Moreover, Section B.2 contains further outputs of regression analyses and statistical
summary plots to allow for a more extensive analysis than in a forthcoming space-restricted
publication.
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due to the high specificity of the goods procured. It is unclear, however,
whether the two-bidder case in Anton and Yao (1992) generalizes and therefore,
we extend the analysis to markets with more than two bidders and different
types of first-price combinatorial auctions. We provide a comprehensive
theoretical analysis of FPSB and Dutch auction formats and also report results
of lab experiments, which provide evidence that different versions of the
Dutch combinatorial auction formats have remarkable properties with respect
to expected buyer revenue and efficiency.

4.2 contributions

Our contributions to the literature on (combinatorial) ex-post split-award
auctions are twofold. First, we derive Bayesian Nash equilibrium bidding
strategies for various first-price split-award auction formats in which n ≥ 2
suppliers compete for a contract.

Besides the simple combinatorial ex-post FPSB split-award auction, we
focus on two practically relevant ascending-price formats. The first format,
the Dutch split-award auction, consists of two phases. In the first phase
sellers can accept ascending prices for the 100% share and the 50% share
of the contract. If the entire contract is accepted, the auction ends with a
single-winner outcome. However, in case the 50% share is accepted first, the
second 50% share is auctioned in a consecutive second stage, again via an
ascending-price mechanism among all sellers. Finally, in the Dutch-FPSB split-
award auction the ascending-price in the second phase is replaced by a simple
simultaneous sealed-bid mechanism. We are not aware of a game-theoretical
treatment of the two latter Dutch auctions in spite of their wide-spread use
in procurement practice, nor do we know of an analysis with more than two
bidders. We show that both auction formats reduce the strategic complexity
for bidders considerably, because only efficient σ equilibria exist, whereas
there is a coordination problem for the bidders in the FPSB auction as there
is also an inefficient WTA equilibrium and an inefficient hybrid equilibrium
as defined in Anton et al. (2010). In contrast to the case with two bidders, σ
equilibria do not comprise pooling prices for the split, but prices are increasing
with costs.

While the Dutch and the Dutch-FPSB split-award auctions are cost equiv-
alent and fully efficient, this outcome only extends to the FPSB split-award
auction if bidders choose the payoff-dominant σ equilibrium. This result
contrasts with the well-known strategic and costs equivalence (RET) of the
Dutch and FPSB mechanisms in standard single-object auctions. Overall, the
fine differences among the information revealed to bidders during the FPSB,
Dutch-FPSB, and Dutch formats lead to interesting and non-obvious insights
into the equilibrium bidding strategies of multi-object auctions. In particular
we show that in the symmetric σ equilibrium, n > 2 bidders and identical 50%
shares, all auctions are strategically equivalent to standard multi-unit auctions
with single-unit demand as presented in Section 2.3.2 such that we can draw
on the RET for this environment. However, for the FPSB split-award auction
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this is only true if the efficient σ equilibrium is chosen by the bidders. All
above listed results are proven in Appendix B.1.

Second, we provide an experimental analysis of the three first-price auctions
for two- and three-bidder settings, and find that the theoretical models explain
important empirical regularities in the lab. As predicted, the two Dutch
formats are on average more efficient than their sealed-bid counterpart. In
the two-bidder environment, the Dutch auction is much more efficient than
the FPSB auction although at a higher cost. The price information from
the first phase of the Dutch auction formats provides a signal that facilitates
subjects to coordinate on the efficient split award. In contrast, the equilibrium
selection problem makes it very hard to coordinate in the FPSB auction with
two suppliers. Here, the experimental results demonstrate that bidders select
both types of outcomes (split and sole source awards), and we find 55%
inefficient allocations. The Dutch-FPSB auction appears as an interesting and
simple alternative that yields the highest share of efficient allocations (82%)
of all three mechanisms as well as low procurement cost. The sealed-bid
auction in the second phase of the Dutch-FPSB format allows for a broader
set of equilibrium bids and leads to lower prices in the first phase of the
experiments. This avoids deviation incentives that arise in the Dutch auction in
which subjects sometimes overbid the unique predicted equilibrium price in an
attempt to achieve a higher payoff, making it attractive to win the 100% share.
This phenomenon actually leads to a higher number of inefficient sole source
awards in the Dutch, compared to the Dutch-FPSB auction. Furthermore,
we find evidence for pooling and tacit collusion in all three mechanisms, as
subjects, who succeed to coordinate on the split award, achieved high profits
in all three auction formats.

Interestingly, the addition of just one more bidder levels the differences
among the three first-price mechanisms and almost always results in the
selection of an efficient split award. This is also the case for FPSB split-award
auction, although this format still possesses an inefficient WTA equilibrium.
Raising the number of bidders to three, also has substantial impact on total
procurement costs, which drop on average by roughly 42% in the FPSB and
Dutch-FPSB auctions, and by 49% in the Dutch auction. Here, a high pooling
price cannot be maintained in equilibrium anymore. Furthermore, in this more
competitive three-supplier setting, the bidding behavior in the Dutch auction
does not significantly differ from the equilibrium strategy. This is somewhat
remarkable as bidding in standard first-price single-object auctions typically
deviates substantially from the risk-neutral Bayesian Nash equilibrium strategy
(Cox et al., 1983; Filiz-Ozbay and Ozbay, 2007; Kirchkamp and Reiß, 2011;
Bichler et al., 2015). Overall, we find surprisingly high levels of efficiency in
simple combinatorial first-price auctions. An exception is the FPSB format
with two bidders, in which the equilibrium selection problem and the power
of bidders to unilaterally veto a split award leads to a high share of inefficient
allocations.
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4.3 model

Before describing the auctions discussed in this chapter, we first provide some
necessary notation and terminology.

A buyer conducts a split-award auction in order to award a business among
n ≥ 2 ex-ante symmetric, risk-neutral, and profit-maximizing suppliers.32 We
focus on a simple setting in which bidders can win either a contract for 50 or
100% of the business, which makes it technically a combinatorial (reverse)
auction with two identical units and the package up for auction. The possibility
to submit all-or-nothing package bids makes this type of auction different
from multi-unit auctions with multi-unit demand as discussed by Chakraborty
(2006). Bidder i’s costs for 100% of the business, ks

i , are determined by θi

(with i ∈
{
A, B, ...

}
and n = |

{
A, B, ...

}
|) which is independently and identically

distributed on the interval
[
Θ, Θ

]
, 0 < Θ < Θ, according to a distribution

function F(·). The density f is positive and continuous. The cost draw Θi

of θi is private, i.e. every supplier only knows his own costs which are not
affected by the cost draws of the opponent(s). Hereafter, the j-th lowest order
statistic out of n different cost types is denoted by Θ j:n (with j ∈

{
1, 2, ..., n

}
).

A constant efficiency parameter C ∈ (0, 1), which is equivalent for and known
to all suppliers, determines the costs for 50% of the business, kσi = CΘi. Costs
for no award are zero. Furthermore, the buyer does not know the efficiency
parameter C.

We discuss both static and dynamic formats in this chapter. In the static
mechanism, an offer of bidder i comprises prices for 100% and\or 50% of the

business, ps (Θi) :
[
Θ, Θ

]
−→ R and pσ (Θi) :

[
Θ, Θ

]
−→ R respectively.

Multi-stage games with observed actions are used to model the dynamic
mechanisms. The function ps1

(
Θi, h0

)
defines the price level at which a bidder

i accepts the sole source award in phase 1. When a bidder i accepts the split
award in phase 1, the respective price level is denoted by pσ1

(
Θi, h0

)
. Both

price functions include the history h0 = {}. The bidding strategies of phase

2 depend on the history of the game h1 =
{

pσ1
(
Θw, h0

)}
: a winner of phase

1 with cost type Θw plays a bidding strategy pσ2w
(
Θw, h1

)
and the loser (s)

with cost type (s) Θl with (l , w and Θl, Θw ∈

[
Θ, Θ

]
) follow a strategy

pσ2l
(
Θl, h1

)
. In phase 1 and phase 2, all price functions map from

[
Θ, Θ

]
×R

to R. All bidding functions are non-decreasing and continuous.
Each bidder i maximizes expected profit with the profit of winning the

50% share and 100% given by πσi = pσ (Θi) −CΘi and πs
i = ps (Θi) −Θi,

respectively, in the static auction. In the dynamic format the 50% share can be
won in phase 1 with profit of πσ1

i = pσ1
(
Θi, h0

)
−CΘi or in the second phase

with profit πσ2l
i = pσ2l

(
Θl, h1

)
−CΘi. The 100% share can be won directly

in phase 1 and profit of πs1
i = ps1

(
Θi, h0

)
−Θi or consecutively with profit

32The terms auctioneer and buyer as well as bidder and supplier are used interchangeably.
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πs1
i = pσ1

(
Θi, h0

)
+ pσ2w

(
Θw, h1

)
−Θi. Finally, the profit of not winning at

all is zero.
Bidders are assumed to be individually rational, which means that all sub-

mitted bids must be at least as high as the supplier’s costs for the respective
allocation. The auctioneer is ex-ante indifferent between awarding 100% of
the business to a single supplier (sole source award) and awarding 50% of the
business each to two different suppliers (split award). Hence, the winner de-
termination in a split-award auction must satisfy the auctioneer’s indifference
condition. We focus on markets with strong diseconomies of scale in which
suppliers must coordinate in the efficient solution. Dual source efficiency
(DSE) describes a setting in which it is always efficient for the buyer to award
50% of the business to each of two different suppliers. An ex-ante defined
risk-premium by the procurement manager extends the scope of dual source
efficiency. The same types of equilibria emerge in a setting with a constant risk
premium r for the sole source award and with C <

Θ+r

Θ+Θ
, which also allows

values for C of greater than 0.5, e.g., a setting with C = 0.52, Θ ∈ [100, 140],
and r = 25 in which an equilibrium with pooling prices and split awards exists
even though suppliers have economies of scale.

Let us denote the vector of any bidder i’s bids as pi =
(
ps (Θi) , pσ (Θi)

)
and summarize all sellers’ bids in the vector p = (pi, p−i) in which p−i

denotes all bids other than those of i. In this model environment the strategy
space, defined by the pair of bids

(
ps (Θi) , pσ (Θi)

)
⊆ R2

≥0 for all Θi and all i,
is a nonempty, convex and compact subset of an Euclidean space. In addition,
the profit functions π·i are continuous in p and quasiconcave in pi. Thus, based
on Definition XII in Section 2.1.1, the existence of Bayesian Nash equilibria
in pure strategies is guaranteed in our standard IPV setting. Perfect Bayesian
equilibria (possibly in mixed strategies) will exist in our finite dynamic auction
games of incomplete information as stated in Definition XIV of Section 2.1.2.

Based on Definition III in Section 2.1.1 and given costs Θi, we can denote a
bidder’s ex-interim expected profit of participating in the auction as E

[
Π (Θi)

]
for each Θi with corresponding maximization problem of

max
pi

E
[
Π (pi, p−i, Θi) ; F (·)

]
for all Θi ∈

[
Θ, Θ

]
. (S-EXI)

For any bidder i, the ex-interim expected profit depends on the costs Θi and
reports p, taking into account the distribution function of the opponents’ costs
F (·). Remember that combinatorial package auctions, including ex-post
split-award auctions, generally possess multiple Bayesian Nash equilibria for
profit-maximizing bidders, whether in a forward or in a reverse auction setting.
Therefore, we solve each bidder’s problem of minimizing ex-ante expected
utility in (S-EXI) with respect to specific Bayesian Nash equilibria. Finally,
we compare different equilibria in terms of payoff-dominance.
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4.4 auction formats

We next describe the auction formats analyzed in this chapter. As the FPSB
split-award auction is simple and identical to the mechanism in Anton and
Yao (1992), we only introduce the Dutch and Dutch-FPSB auction.

4.4.1 The Dutch Split-Award Auction

The Dutch split-award auction can be divided into two stages or phases. In
the first phase, bidders simultaneously compete for the split as well as the
sole source award. After one of the bidders accepts the price for 100% of the
business, the auction ends. In the case in which one of the bidders approves a
counteroffer for the 50% share, phase 2 starts.

phase 1: In each round r of the auction, bidders simultaneously receive
counteroffers33 for 50%, cσr , and 100% respectively, of the business, cs

r . The
starting prices for both counteroffers should be at least lower than or equal
to the minimal costs for each share, i.e. cσ1 ≤ CΘandcs

1 ≤ Θ. The auctioneer
can also start close to zero. Subsequently, both price functions are raised
continuously by the buyer such that cs

r = 2cσr is true in each round r. The
auctioneer must stick to this pricing rule in every round to assure that the
outcome of the auction satisfies his indifference condition.34 In each round, a
bidder i has three options: he can approve the counteroffer for 50 or 100% of
the business, or he can reject both. The following three scenarios are possible:

1. If bidder i is first to accept a counteroffer for the 50% share in round r,
the split is awarded to supplier i at a price of cσr and phase 1 is over;

2. If bidder i is first to accept cs
r in round r, this supplier i wins the sole

source award and the auction terminates immediately;

3. If a bidder rejects both counteroffers in round r, he risks losing the
whole or at least a share of the business.

phase 2: The second phase is only relevant, when the split award has been
awarded to a single supplier in phase 1. In this case, the remaining 50% of
the business is auctioned off to all suppliers in a regular single-unit Dutch
auction. Regardless of the price for the 50% share in phase 1, the starting price
in phase 2 is cσ1 (the same as in phase 1); this is necessary to allow efficient

33Typically, there is a request for quotation (RFQ) before the final awarding, in which
suppliers are asked by the buyer to submit first offers for the business. Hence, the auctioneer’s
offers in the final Dutch are normally called counteroffers in procurement practice.

34Suppose that the buyer would choose a pricing rule with cs
r < 2cσr . If one bidder accepts

the counteroffer for 50% in round t of phase 1 and a different bidder is willing to pay the same
price in phase 2, the auction ends with the buyer awarding the split at a price 2cσt . However, the
buyer does not know, if a supplier would have accepted 100% of the business for a counteroffer
cs

r , such that cs
t < cs

r < 2cσt . With such a deviation from the pricing rule proposed above, a
buyer would risk higher purchasing costs. Similar reasoning applies if the buyer commits to a
pricing rule such that cs

r > 2cσr .
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equilibrium bidding strategies (Gretschko et al., 2014). The first bidder to
approve a counteroffer wins the remaining half of the business and the auction
is over.

The following tie-breaking rules apply for the split-award auctions discussed
in this chapter: First, the split award is always chosen by the auctioneer, if
the procurement costs of the sole source and split allocation are equally high;
second, a lottery with equal chances for each involved supplier defines the
winning supplier if there is a tie between two or more bids for the same award.

4.4.2 The Dutch-FPSB Split-Award Auction

The Dutch-FPSB split-award auction is a hybrid format containing elements
from both the Dutch and the FPSB split-award auction formats. It can also be
divided into two phases, with phase 1 following the same rules as in the Dutch
format. Phase 2 becomes relevant if the split is awarded to a bidder in phase 1.
However, the remaining 50% of the business is auctioned off by an FPSB in
phase 2. All bidders including the winner of phase 1 are submitting bids for
the remaining 50% share, and the supplier with the lowest price wins.

4.5 equilibrium bidding in the 2-bidder model

First, we analyze equilibrium bidding behavior in split-award auctions with
only two bidders, for which bidders can veto the split outcome. This is a
specific environment, which needs to be analyzed differently. However, it
provides a basis for our analysis of markets with more bidders. We start with
equilibria in the FPSB auction. Subsequently, we derive equilibria in the Dutch
and the Dutch-FPSB split-award auction.

Within a given auction format, each equilibrium solves seller i’s maximiza-

tion problem (S-EXI) in Section 4.3 for all possible costs draws Θi ∈

[
Θ, Θ

]
.

Consecutively, we compare the different equilibria via payoff-dominance to
determine the equilibrium that globally maximizes (S-EXI).

4.5.1 The FPSB Split-Award Auction

Anton and Yao (1992) analyze equilibrium bidding behavior in a FPSB split-
award auction with two bidders and dual source efficiency, demonstrating
both WTA equilibria and σ equilibria. One result of this work is that con-
stant pooling prices for 50% of the business are necessary in order to derive
a σ equilibrium; they show that various σ equilibria with pooling prices

pσe ∈
[
ΘC, (1 −C)Θ

]
can exist. In such cases, bidders submit high sole

source prices that support the equilibrium and must not be higher than a given

boundary G
(
Θi, pσe

)
= pσe +

pσe −ΘCF(Θi)
1−F(Θi)

with Θi ∈

[
Θ, Θ

]
and pσe ≥ ΘC in

order to avoid profitable deviations for the sole source award. As bidders are in-
dividually rational, σ equilibria can only exist, when the boundary G

(
Θi, pσe

)
allows for sole source prices above costs for 100% of the business. We briefly
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revisit the main propositions of Anton and Yao (1992), in order to allow for a
simple comparison of equilibrium bidding strategies in other auction formats
and more general environments.

Proposition 16. (Anton and Yao, 1992, Proposition 2) Consider the dual
source efficiency split-award auction model including n = 2 bidders with cost
types Θi. In the FPSB split-award auction, a σ equilibrium S BNE

e is given by

ps
e (Θi) ≥ Θi strictly increasing and continuous and

pσe (Θi) = pσe ∈
[
ΘC, Θ (1 −C)

]
.

Additionally, ps
e

(
Θ

)
= 2pσe is true and ps

e (Θi) ≤ G
(
Θi, pσe

)
applies for all

Θi ∈

[
Θ, Θ

]
.

An inefficient WTA equilibrium exists as well, as a bidder i can strategically
veto the split allocation with a high bid-to-lose price for 50% of the business,
for example, with pσe (Θi) = ps

e (Θi) −CΘ. The sole source price ps
e (Θi) of

such a strategy equals the price in a single-unit auction, as this is the profit-
maximizing strategy of a bidder i, when the probability to win the split award
is zero in equilibrium.

Proposition 17. (Anton and Yao, 1992, Proposition 4) Consider the dual
source efficiency split-award auction model including n = 2 bidders with cost
types Θi. In the FPSB split-award auction, a WTA equilibrium S BNE

e with

ps
e (Θi) = Θi +

∫ Θ
Θi

(
1 − F (t)

)n−1
dt(

1 − F (Θi)
)n−1

pσe (Θi) = ps
e (Θi) −CΘ

exists.

Hybrid equilibria are of interest for settings with uncertain economies of
scale (Anton et al., 2010). These type of equilibria are described by a strategic
cost type τ, for which bidders change their equilibrium bidding strategy: low-
cost bidders with Θi < τ focus on winning the sole source award, whereas
bidders with high cost types try to win the split award. It is interesting to note
that the same type of hybrid equilibria also exist in settings with dual source
efficiency. Because the split is the efficient award for all cost draws under dual
source efficiency, τ is not restricted to a specific interval as with uncertain

economies of scale. Hence, hybrid equilibria with τ ∈
(
Θ, Θ

)
can exist as long

as individual rationality is given by condition 4.5.1. The proof of Corollary 3
is a straightforward extension.

Corollary 3. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi, as well as a constant parameter

τ ∈
(
Θ, Θ

)
. In the FPSB split-award auction, a hybrid equilibrium S BNE

e with
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(
ps

e (Θi) , pσe (Θi)
)
=

(
min

{
2 [τ −Cτ] , Θi

}
, τ (1 −C)

)
if Θi ≥ τ(

Θi + τ (1 − 2C)
1−F(τ)

1−F(Θi)
+

∫ τ

Θi

1−F(x)
1−F(Θi)

dx , τ (1 −C)
)

if Θi < τ
,

exists, if

2τ (1 −C) > Θ (4.5.1)

applies.

The fact that beyond the WTA and the σ equilibrium also hybrid equilibria
exist, underscores that there is a veritable equilibrium selection problem. This
is discussed further in Section 4.7.1, in which we analyze conditions for payoff

dominance of the efficient σ equilibrium.

4.5.2 The Dutch Split-Award Auction

In this section, we analyze bidding behavior in the Dutch split-award auction,
for which perfect Bayesian equilibria are applied as solution concept. Thus, an
equilibrium strategy in the Dutch split-award auction defines prices, for which
a supplier accepts either the split or the sole source award, as well as a system
of beliefs µ. Unlike the FPSB split-award auction, only the σ equilibrium with
the highest pooling price is possible in the Dutch split-award auction.

Corollary 4. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. Then, if a σ equilibrium (S PBE2

e , µ)
exists in the Dutch split-award auction, the split prices pσ1

e

(
Θi, h0

)
and

pσ2l
e

(
Θl, h1

)
must be constant and equal to pσe = Θ (1 −C), i.e.

pσ1
e

(
Θi, h0

)
= pσ2l

e

(
Θl, h1

)
= pσe = Θ (1 −C)

for all bidders with cost types Θi, Θw, Θl ∈

[
Θ, Θ

]
.

All proofs can be found in the Appendix B.1. As in the FPSB auction, the
split price in a σ equilibrium must be constant in the Dutch split-award auction.
Otherwise, it would be always more profitable for the supplier with the lower
price for 50% to accept the same counteroffer as his opponent. However,
only a σ equilibrium with constant split prices pσ1

e

(
Θi, h0

)
= pσ2l

e

(
Θi, h1

)
=

Θ (1 −C) can emerge, not multiple efficient equilibria as in the FPSB format.
The main difference between the FPSB and the Dutch split-award auction is

the information provided about the opponent’s behavior. Whereas the Dutch
split-award auction is a two-stage game, in which the winner immediately
observes a deviation from a σ equilibrium, this information is provided ex-post
in the FPSB split-award auction. Consider a setting with two bidders A and B.
If bidder A is the winner of 50% of the business for a price pσ in phase 1 of
a Dutch split-award auction then it must be a possible threat for A to accept
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the offer for the remaining share at a price of pσ2w
e

(
ΘA, h1

)
≥ pσ when it

becomes obvious that his opponent deviates from equilibrium.
In a two-stage game such a threat is only credible if bidder A makes at

least as much payoff as already achieved in phase 1, i.e., if at least bidder A’s
additional costs for providing 100% of the business, (1 −C)ΘA, are covered.
Therefore, (1 −C)Θ remains as the only possible split price for both bidders
because a profitable split deviation as described above cannot be prevented
by the winner of phase 1 for lower split prices. In the next proposition, we
provide conditions for which a pure σ equilibrium exists.

Proposition 18. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. In the Dutch split-award auc-
tion, there is a unique and efficient σ equilibrium with

(
S PBE2

e , µ
)

involving
strategies

pσ1
e

(
Θi, h0

)
= Θ (1 −C)

pσ2w
e

(
Θw, h1

)
= Θw (1 −C)

pσ2l
e

(
Θl, h1

)
= Θ (1 −C)

and beliefs

µ1
−i

(
Θi | h0

)
= F (Θ)

µ2
l

(
Θw | h1

)
= F (Θ)

µ2
w

(
Θl | h1

)
= F (Θ)

with Θ, Θi, Θw, Θl ∈

[
Θ, Θ

]
, if for all x ∈

(
Θ, Θ

]
∆Π

(
x, Θ

)
=

(
x (1 −C) −CΘ

) (
1 − F (x)

)
−Θ (1 −C) +CΘ < 0 (4.5.2)

applies.

Sole source deviations can be ignored, as for all possible cost types Θi the
payoff for winning the the split award is higher than the payoff for winning
the sole source award in every round q < r with counteroffers cs

q < cs
r =

2Θ (1 −C). Because the buyer sticks to his indifference condition, such a
deviation cannot be realized unilaterally. The proof of Corollary 4 shows
that split deviations for the remaining share are difficult to exclude, as the
threat to prevent such deviations by the winner of phase 1 has to be credible.
Therefore, condition (4.5.2) assures that a split deviation that tries to win the
remaining share in phase 2 for a higher split price than Θ (1 −C) yields a
lower expected payoff than the equilibrium payoff. Because of the pooling,
there is no additional information about the cost type of the winner in phase
1, which is why updating of beliefs is not critical for the derivation of the
equilibrium strategy. Next, we show that, unlike the FPSB split-award auction,
the efficient σ equilibrium is unique in a Dutch split-award auction.



4.5 equilibrium bidding in the 2-bidder model 91

Proposition 19. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. In the Dutch split-award auction,
there is neither a WTA nor a hybrid equilibrium.

In the FPSB split-award auction, bidders are able to play a WTA strategy,
because they can unilaterally exclude the split by submitting high bid-to-lose
prices for the 50% share. However, this is not possible in the Dutch auction,
because there is always a profitable split deviation for high cost types playing
a potential WTA equilibrium. Hence, such a strategy cannot be an equilibrium.
All possible types of hybrid equilibria can be excluded as well. Thus, if a σ
equilibrium exists in the Dutch split-award auction with n = 2 bidders, it is
the unique equilibrium.

4.5.3 The Dutch-FPSB Split-Award Auction

Next, we analyze equilibrium bidding in the Dutch-FPSB split-award auction.
The auction format combines the two first-price mechanisms and the bidding
behavior contains elements from the equilibrium strategies of both auction
formats. The necessary conditions for a split price in a σ equilibrium are
summarized in Corollary 5.

Corollary 5. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. Then, if a σ equilibrium with
(S PBE2

e , µ) exists in the Dutch-FPSB split-award auction, the split prices must

be constant with pσe ∈
[
ΘC, Θ (1 −C)

]
, i.e.

pσ1
e

(
Θi, h0

)
= pσ2l

e

(
Θl, h1

)
= pσe

for all bidders with cost types Θi, Θl ∈

[
Θ, Θ

]
.

Multiple constant split prices in a given range are possible in aσ equilibrium.
As in the FPSB split-award auction, a bidder can only observe ex-post, whether
or not his opponent played a σ equilibrium or not. Hence, it is easier for the
bidders to implement a σ equilibrium strategy. As described above, a threat
must be realized, and becomes payoff-relevant, when the opponent deviates in
a Dutch split-award auction. When phase 2 is a sealed-bid stage, this problem
disappears and it suffices that the threat prevents the opponent from deviating.
When this is fulfilled, the threat never becomes effective and the expected
payoff of the winner of phase 1 remains the same. Proposition 20 summarizes
the results for the existence of pure σ equilibria:
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Proposition 20. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. In the Dutch-FPSB split-award
auction, there are multiple efficient σ equilibria (S PBE2

e , µ) involving strategies

pσ1
e

(
Θi, h0

)
= pσe

pσ2w
e

(
Θw, h1

)
= max

{
pσe , Θw − pσe

}
pσ2l

e

(
Θl, h1

)
= pσe

and beliefs

µ1
−i

(
Θi | h0

)
= F (Θ)

µ2
l

(
Θw | h1

)
= F (Θ)

µ2
w

(
Θl | h1

)
= F (Θ)

with Θ, Θi, Θw, Θl ∈

[
Θ, Θ

]
and pσe ∈

[
ΘC, (1 −C)Θ

]
, if

Θi ≤ G
(
Θi, pσe

)
= pσe +

pσe −CΘF (Θi)

1 − F (Θi)
for all Θi ∈

[
Θ, Θ

]
(4.5.3)

applies.

The reasoning here is similar to that in Proposition 18. As the auctioneer
offers the shares according to his indifference condition in phase 1, sole source
deviations are not possible in equilibrium. Condition (4.5.3) is important to
assure that the credible threat of the winner of phase 1 is possible without
violating the assumption of individual rationality. Note that the function G (·, ·)
is the same as in Anton and Yao (1992). This means that exactly the same
σ equilibria as in the FPSB split-award auction can emerge. Furthermore, if
condition (4.5.3) applies, all split deviations in phase 2 can be excluded in a
σ equilibrium with split price pσe . As in the Dutch split-award auction, only
efficient σ equilibria can emerge.

Proposition 21. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. There is neither a WTA nor a
hybrid equilibrium in the Dutch-FPSB split-award auction.

We omit the proof for the Proposition 21 as it follows that of Proposition 19.
The same efficient equilibria as in the FPSB auction emerge without additional
restrictions. Furthermore, it can be shown that WTA and hybrid equilibria are
excluded as equilibrium bidding strategies, which reduces the coordination
problem to efficient equilibria. As we see in the welfare analysis below, such a
coordination problem can be solved via payoff dominance.

The characteristics of both first-price mechanisms influence the equilibrium
bidding behavior in the Dutch-FPSB split-award auction. The combinatorial
Dutch auction in phase 1 is sufficient to exclude inefficient equilibria. The
sealed-bid mechanism in phase 2 also allows for σ equilibria with various split
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prices in the same range as in the FPSB auction, as the winner in phase 1 has
a credible threat to punish deviations from a σ equilibrium.

4.6 equilibrium bidding in the n > 2-bidder model

Next, we analyze the bidding behavior with more than two suppliers. The
n-bidder case leads to differences in how the equilibrium strategies are derived
and in the outcome compared to the 2-bidder case. In particular, a pooling
equilibrium at high prices that exists in all first-price auction formats with two
bidders cannot be maintained anymore.

4.6.1 The FPSB Split-Award Auction

We start with analyzing bidding behavior in the FPSB split-award auction.
First, it is interesting to see that there is a WTA equilibrium in dual source
efficiency with n > 2 suppliers, even though bidders have less power to veto a
split award for their opponents:

Proposition 22. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. In the FPSB split-award auction,
there is a WTA equilibrium S BNE

e with

ps
e (Θi) = Θi +

∫ Θ
Θi

(
1 − F (t)

)n−1
dt(

1 − F (Θi)
)n−1 (4.6.1)

pσe (Θi) = ps
e (Θi) −ΘC. (4.6.2)

By following such an equilibrium strategy, the split-award auction is re-
duced to a single-object auction for 100% of the business, because the split
is excluded for all bidders (and the auctioneer) due to sufficiently high split
prices. The expected payoffs of all possible (unilateral) split deviations are
zero with probability 1. Therefore, the sole source price must be equal to
the equilibrium strategy in a single-object auction in order to maximize the
expected profit for winning the whole business.

In addition to the WTA equilibrium, a σ equilibrium exists with dual source
efficiency as well. This equilibrium always results in the efficient allocation,
the split award.

Proposition 23. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. In the FPSB split-award auction,
a σ equilibrium S BNE

e with

ps
e (Θi) = max

{
ΘC + pσe (Θi) , Θi

}
(4.6.3)

pσe (Θi) = ΘiC +C

∫ Θ
Θi

(
1 − F (t)

)n−1
+ (n − 1) F (t)

(
1 − F (t)

)n−2
dt(

1 − F (Θi)
)n−1

+ (n − 1) F (Θi)
(
1 − F (Θi)

)n−2 ,

(4.6.4)



94 optimal bidding in ex-post split-award auctions

exists, if either

C <
Θ

2Θ
(4.6.5)

or

E
[
Πσ

e (Θi)
]
>

(
pσe (x1) + pσe (x2) −Θi

)
·

· P
(
pσe (x1) + pσe (x2) < min

{
pσe (Θ1:n−1) +

+ min
{
pσe (Θ2:n−1) , pσe (x2)

}
,

max
{
Θ1:n−1, pσe (Θ1:n−1) + ΘC

} })
+

+
(
pσe (x2) −CΘi

)
P
(
pσe (x2) < pσe (Θ2:n−1)∧

∧ pσe (x1) ≥ pσe (Θ1:n−1)

)
(4.6.6)

applies for all Θi ∈ [Θ, 2CΘ) and x1 < x2 with x1 ∈

[
Θ, Θ

]
, x2 ∈ (x1, Θ].

The split price is derived by maximizing the expected payoff of being
amongst the two suppliers winning the split award in order to rule out split
deviations. In contrast to the setting with two bidders, in which the suppliers’
bids for the split award are constant, split prices are increasing with costs
and the highest cost type Θ makes a payoff of zero in equilibrium. Bidders
who concentrate on winning the split award, submit sole source prices at least
as high as the buyer’s maximal purchasing costs in the σ equilibrium, 2ΘC.
However, sole source or even hybrid deviations are nevertheless possible, if
the efficiency parameter is not too small, i.e. Θ

2Θ
< C <

Θ
Θ+Θ

.

In contrast to a split deviation, a deviating bidder is not dependent on another
competitive bid for the same share. Thus, there are sole source and hybrid
deviations with positive expected payoff, which is why the proof of excluding
both types of deviations is the most challenging part of the proof. While
sole source deviations can be excluded in general for all possible settings
within the model assumptions, the additional condition (4.6.6) as stated in the
proposition is needed to assure the exclusion of all possible hybrid deviations.
When condition (4.6.6) is verified, Proposition 23 provides a closed-form
solution for an efficient Bayesian Nash equilibrium strategy in a sealed-bid
combinatorial first-price auction and a general number of bidders n. Condition
(4.6.6) can be approximated by a stricter condition that is simple to evaluate
and numerical experiments yield that it holds for a wide range of distributions.

Furthermore, the following result can be derived.

Proposition 24. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. There is no hybrid equilibrium in
the FPSB split-award auction.
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With a hybrid equilibrium, there must be at least one definite cost type τ, for
which the winning allocation stays the same provided that all cost draws of the
n > 2 bidders are higher than τ. It can be shown that there is no such potential
cost type that fulfills all the required conditions with dual source efficiency,
which has as a consequence that such equilibria do not exist. Therefore, a
bidder faces a coordination problem in a FPSB split-award auction, for which
he has to decide whether to play a WTA or σ equilibrium. We discuss this
coordination problem in Section 4.8.1.

4.6.2 The Dutch Split-Award Auction

As presented in Section 4.4, the Dutch split-award auction comprises two
phases, if a single bidder has accepted a counteroffer for the 50% share in
phase 1. Therefore, an efficient equilibrium strategy has to maximize the
bidders’ expected payoff in both phases and has to consider the asymmetric
cost structure of the suppliers in phase 2. After the result of phase 1 is observed,
there are two different types of suppliers, one winner w and n − 1 losers l of
phase 1. Whereas all suppliers have the chance to win the whole business
in phase 1, this only applies for one supplier in phase 2. When the winner
of phase 1 accepts a counteroffer for the split in phase 2, he is the winner of
the whole business.35 Hence, we have to define the equilibrium strategies for
both of these different types of bidders, because suppliers are not symmetric
anymore in phase 2.

Proposition 25. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. In the Dutch split-award auction,
the unique σ equilibrium (S PBE2

e , µ) is given by

pσ1
e

(
Θi, h0

)
=

∫ Θ
Θi

pσ2l
e (t) (n − 1)

(
1 − F (t)

)n−2
f (t) dt(

1 − F (Θi)
)n−1

pσ2w
e

(
Θw, h1

)
= Θw (1 −C)

pσ2l
e

(
Θl, h1

)
= ΘlC +C

∫ Θ
Θl

(
1 − F (t)

)n−2
dt(

1 − F (Θl)
)n−2

35The buyer can also exclude the winning supplier from the auction in phase 2. All the
results apply for both auction variants with dual source efficiency. The format without the
possibility of a requote is easier tractable with other efficiency settings.
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and beliefs

µ1
−i

(
Θi | h0

)
= F (Θ)

µ2
l

(
Θw | h1

)
=


0 if Θ < Θw

1 if Θ ≥ Θw

µ2
w

(
Θl | h1

)
=


0 if Θ < Θw
F(Θ)−F(Θw)

(1−F(Θw))
if Θ ≥ Θw

with Θ, Θi, Θw, Θl ∈

[
Θ, Θ

]
.

In order to exclude split deviations in phase 1 and 2, we take the equilibrium
strategy of an ex-ante split-award auction, in which the 50% share is awarded
sequentially to two different suppliers. This strategy maximizes the expected
payoff for the split award in both phases. Hence, it only remains to be shown
that there is no sole source deviation, which is more profitable than the σ
equilibrium. An assessment of the expected payoff of such deviations yields
the desired result for phase 1. Additionally, it can be shown that the winner
of phase 1 has no chance to win the remaining 50% share in phase 2. One
of his opponents secures himself the remaining 50% share before this award
becomes attractive for him. Because this would be the only possible sole
source deviation in phase 2, the proof is complete.

In the FPSB split-award auction, bidders are able to play a WTA strategy, as
they can exclude the split by submitting high bid-to-lose prices in equilibrium.
However, this is not possible in the Dutch auction, as there is always a prof-
itable split deviation for high cost types playing a potential WTA equilibrium.
Hence, such a strategy cannot be an equilibrium. Furthermore, similar deliber-
ations as in the proof of Proposition 24 show that no hybrid equilibrium exists
with dual source efficiency in the Dutch split-award auction.

4.6.3 The Dutch-FPSB Split-Award Auction

The equilibrium analysis for the Dutch-FPSB split-award auction is identical
to the Dutch auction with more than 2 bidders. All the equilibrium strategies
of Section 4.6.2 are equivalent.

4.7 welfare analysis in the 2-bidder model

In this section we first study the efficiency of all three auction formats and
then discuss differences in the procurement costs for the auctioneer. As in the
equilibrium analysis, the setting with only two suppliers needs to be analyzed
separately from the setting with n > 2 suppliers.
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4.7.1 Efficiency Analysis

There is a unique and efficient σ equilibrium strategy in the Dutch split-award
auction. The Dutch-FPSB split-award auction, in which multiple σ equilibria
exist, always results in the efficient allocation. The σ equilibrium with the
highest possible split price pσe = Θ (1 −C) is payoff-dominant over all other
efficient equilibria; obviously, a σ equilibrium with a lower split price yields
less payoff, because the probability to win does not increase when the split
price decreases.

There is a coordination problem in the FPSB split-award auction, because

a WTA, multiple σ equilibria with split prices pσe ∈
[
ΘC, Θ (1 −C)

]
, and

multiple hybrid equilibria with different strategic parameters τ ∈
(
Θ, Θ

)
can exist in this auction format. Proposition 5 in Anton and Yao (1992)
describes a setting in which the σ equilibrium is payoff-dominant over the
WTA equilibrium for the bidders. We extend these results by considering
hybrid equilibria as well; Corollary 6 gives conditions for which an efficient σ
equilibrium is payoff-dominant over all other types of equilibria.

Corollary 6. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi and a constant parameter τ ∈(
Θ, Θ

)
. In the FPSB split-award auction, a σ equilibrium is payoff-dominant

for all bidders if the following conditions apply:

1. pσe = Θ (1 −C)

2. E
[
Πhybrid

e (Θi)
]
≤ Θ (1 −C) −ΘiC ∀ Θi ∈

[
Θ, Θ

]
3. E (θi) < 2Θ (1 −C)

The expected payoff of a supplier i in a hybrid equilibrium with strategic
parameter τ is

E
[
Πhybrid

e (Θi)
]
=


τ (1 − 2C)

(
1 − F (τ)

)
+

∫ τ

Θi

(
1 − F (x)

)
dx if Θi < τ(

τ (1 −C) −ΘiC
) (

1 − F (τ)
)

if Θi ≥ τ
.

As mentioned above, only the σ equilibrium with the highest pooling price
pσe = Θ (1 −C) can be payoff-dominant over all other equilibria. When
condition (ii) applies, there is no cost type with a higher equilibrium payoff in
a hybrid than in a σ equilibrium. Condition (iii) assures that the σ equilibrium
is payoff-dominant over its WTA counterpart. Corollary 6 can be interpreted as
a sign for strategic complexity of bidding in a FPSB split-award auction. The
conditions are very restrictive and it is hard to find a setting, for which these
conditions are fulfilled simultaneously. Furthermore, the strategic parameter τ,
for which bidders change the strategy must be known to all bidders and to the
buyer when hybrid equilibria are possible. This additional assumption is hard
to motivate in procurement practice.
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4.7.2 Comparison of Purchasing Costs

We use payoff dominance to overcome the bidders’ coordination problem. A
prediction on the expected procurement costs of a buyer can only be done
in settings with a payoff-dominant equilibrium. This applies for the Dutch
as well as the Dutch-FPSB split-award auction, although not always for the
FPSB auction.

Corollary 7. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. Then, there is cost equivalence
between the Dutch and the Dutch-FPSB auction. The buyer’s expected pro-
curement costs are E

[
pσb (·, ·)

]
= 2Θ (1 −C) in these auctions. This applies

for the FPSB auction if the conditions of Corollary 6 are valid.

We omit the proof, as it is trivial and follows directly from the equilibrium
analysis. Because the split is awarded with probability 1 in a σ equilibrium,
the purchasing costs in the Dutch and Dutch-FPSB split-award auctions equal
twice the highest possible split price pσe = Θ (1 −C). This only applies for
the FPSB split-award auction when all conditions of Corollary 6 are fulfilled
and there is a payoff-dominant σ equilibrium. Otherwise, cost equivalence
between the (partly) ascending auction formats and the sealed-bid variant fails.
According to the equilibrium analysis, bidders are able to coordinate on very
high split prices in a σ equilibrium, although they face lower average costs for
50% than for 100% of the business. In settings in which the expected costs of a
σ equilibrium are lower than in a single-unit auction, a buyer should prefer one
of the two (partly) ascending split-award auctions (Dutch and Dutch-FPSB) in
order to achieve higher efficiency at lower costs in equilibrium.

Furthermore, for all possible cost draws of the two suppliers, costs of the
auctioneer in an efficient σ equilibrium of the analyzed first-price auctions
are always lower than the VCG costs. The reason for this is that the VCG
payments for a supplier depend on the opponent’s sole source price, which is
high in dual source efficiency. This does not apply for n > 2, which will be
explained in more detail below.

Corollary 8. Consider the dual source efficiency split-award auction model
including n = 2 bidders with cost types Θi. The costs for the auctioneer,
pσb (·, ·), in a first-price split-award auction, for which a payoff-dominant σ
equilibrium exists, are lower than the VCG costs, pVCG

b (·, ·), independent of
the cost draws of the suppliers.

In other words, cost equivalence not only fails between the different first-
price split-award auctions, but also does not hold between first- and second-
price split-award auctions in the 2-Bidder-Model. By applying a Dutch or
Dutch-FPSB split-award auction instead of a VCG mechanism, the auctioneer
achieves full efficiency and lower expected procurement costs.
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4.8 welfare analysis in the n > 2-bidder model

In what follows, the efficiency and procurement costs with more than two
bidders are analyzed.

4.8.1 Efficiency Analysis

Bidding behavior in the Dutch or Dutch-FPSB split-award auction is straight-
forward for suppliers, as there is a unique and efficient equilibrium strategy.
However, in the FPSB split-award auction, bidders face a coordination prob-
lem between the WTA and the σ equilibrium. Payoff dominance can be a
remedy in coordination problems, but it does not help in the FPSB auction.

Proposition 26. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. In the FPSB split-award auction,
the WTA equilibrium cannot be payoff-dominant over the σ equilibrium for

all cost types Θi ∈

[
Θ, Θ

]
.

In the proof, we show that bidders with a high cost draw always prefer
a σ equilibrium due to higher expected profits regardless of the parameters

n, C, F (·) or the support
[
Θ, Θ

]
. Therefore, only the σ equilibrium can be

payoff-dominant with dual source efficiency. However, if there is at least a

single cost type Θi ∈

[
Θ, Θ

]
, whose expected profits in a WTA are higher

than in a σ equilibrium, the coordination problem cannot be solved by payoff

dominance. The proof of this proposition is omitted, because it follows directly
from the comparison of equilibrium payoffs of a σ and WTA equilibrium.

Proposition 27. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. Neither the σ nor the WTA
equilibrium is payoff-dominant in a FPSB split-award auction, if for at least

one cost type Θi ∈

[
Θ, Θ

]

C <

∫ Θ
Θi

(
1 − F (x)

)n−1
dx∫ Θ

Θi

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx

(4.8.1)

is true.

Condition (4.8.1) applies in many environments, e.g. whenever the cost

parameters are uniformly distributed over any support
[
Θ, Θ

]
.

Corollary 9. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. There is no setting, for which
either the WTA equilibrium or the σ equilibrium is payoff-dominant for all

cost types in a FPSB split-award auction, if θi ∼ U
[
Θ, Θ

]
.

Thus, the coordination problem makes it hard to predict bidding behavior
and the outcome in a FPSB split-award auction. An inefficient WTA or an
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efficient σ equilibrium are possible as equilibrium outcomes. These problems
do not arise in the Dutch or Dutch-FPSB split-award auction, because there is
a unique and efficient σ equilibrium.

4.8.2 Comparison of Purchasing Costs

For the FPSB split-award auction we can only define the expected costs for the
buyer on the condition that all bidders follow the same equilibrium strategy.
Hence, we get expected costs for the WTA and for the σ equilibrium in the
FPSB split-award auction. When bidders choose a WTA equilibrium, the
price for the auctioneer equals the purchasing costs in a single-unit auction. If
the bidders choose the σ equilibrium, then bidders in all auction formats, the
descending, the Dutch, the FPSB, and the VCG auction, aim for a single share
in equilibrium.

With this symmetric σ equilibrium, n > 2 and identical 50% shares, the
auctions are strategically equivalent to traditional multi-unit auctions with
single-unit demand such that we can draw on the well-known revenue equiva-
lence theorem for this environment (Myerson, 1981; Engelbrecht-Wiggans,
1988).

Bidders typically do not have single-unit demand in combinatorial auctions.
However, by playing a σ equilibrium and submitting non-competitive bid-to-
lose prices for 100% of the business, the sole source award is off-equilibrium
and the results are outcome equivalent to an ex-ante split-award auction, in
which bidders cannot win more than 50% of the business. This is the reason,
why the assumption of single-unit demand can be applied to bidders playing a
σ equilibrium and the purchasing costs in the Dutch auction equal the costs in
the VCG or descending auction with dual source efficiency. This is only true
for the FPSB auction provided that bidders are able to coordinate on the split.

Although the split is efficient, purchasing costs in a σ equilibrium are not
necessarily lower than in a WTA equilibrium. However, this applies for many
settings with dual source efficiency.

Corollary 10. Consider the dual source efficiency split-award auction model
including n > 2 bidders with cost types Θi. In the FPSB split-award auction,
the price for the buyer in the σ equilibrium is always lower than in the WTA
equilibrium,

• if either C <
Θ

2Θ
applies or

• if θi ∼ U
[
Θ, Θ

]
applies.

The expected price for the auctioneer in a σ equilibrium raises with a
higher efficiency parameter C, whereas prices in the WTA equilibrium are
independent of C. Hence, if the efficiency parameter C is sufficiently low, the
costs for the auctioneer are always lower in the σ equilibrium.

Additionally, we show that for all possible C <
Θ

Θ+Θ
and uniformly dis-

tributed cost types, the σ equilibrium yields lower purchasing costs than the
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WTA equilibrium. Corollary 9 states that there is always a coordination prob-
lem in such a setting and no equilibrium is payoff-dominant. Thus, when

costs are assumed to be uniformly distributed over any support
[
Θ, Θ

]
, the

auctioneer should prefer the Dutch or Dutch-FPSB over the FPSB split-award
auction with dual source efficiency not only because of its efficiency properties
and lower strategical complexity for the bidders but also because of lower
expected purchasing costs.

Note that the effect of adding a third bidder on procurement costs is
substantial. In a split-award auction, with uniformly distributed cost types
Θ ∈ [100, 140] and an efficiency parameter C = 0.3 procurement costs are
reduced by 44.3% in expectation36, if a third bidder is added. An additional
fourth bidder only has and impact of minus 2.6%, a fifth supplier only an
impact of minus 1.7%.

4.9 experimental evaluation

We begin with explaining the experimental design. Then, the results for
efficiency, procurement costs and bidding behavior in our experiments are
discussed.

4.9.1 Experimental Design

Our theoretical results for a two-bidder and a three-bidder setting of the three
first-price split-award auction mechanisms, i.e., FPSB, Dutch and Dutch-FPSB
formats, were tested in experiments in which human subjects interacted in
multiple periods. Thus, our treatment variables are the auction format and the
number of bidders that result in six different treatments as depicted in Table 1:

Auction format Number of bidders

FPSB
2
3

Dutch
2
3

Dutch-FPSB
2
3

Table 1: Treatments

Every period in all treatments starts with an information stage for the bid-
ders, in which they are informed about their own costs for supplying 50% or
100% of a fictitious order. The information about the cost draws is private
and the participants do not know the costs of their opponents. However, it is
common knowledge that the cost parameter Θ is uniformly and independently
distributed on [100.00, 140.00] and that the efficiency parameter remains con-
stant at C = 0.30 in every period. Hence, the costs of a bidder for the 100%

36Procurement prices are expected to drop from a σ equilibrium with the highest pooling
price, 2Θ (1 −C), to 2E [Θ3:3] in the σ equilibrium with three bidders.
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share, Θ, range from 100.00 to 140.00 and his costs for the 50% share, ΘC,
from 30.00 to 42.00. Successively, the respective auctions were conducted
according to the rules described in Section 4.4.

We implemented upper bounds for the split as well as the sole source price
in each auction format. In the FPSB auction, the highest possible bid for the
split award is set to 150.00 and the submitted sole source price cannot be
higher than 300.00. Both bids must be submitted as multiples of 0.50. The
starting price for the split award in the Dutch and in the first phase of the
Dutch-FPSB auction is set to 30.00 and increases with a step size of 0.50
every half second until the upper bound of 150.00 is reached. The price for
the 100% share is twice the price of the smaller share and rises accordingly,
i.e. it cannot exceed the upper bound of 300.00. The same upper bound as for
the split price in the FPSB auction applies for all bids submitted in the second
phase of the Dutch-FPSB auction.

Sample size
Group 1 Group 2 Group 3 Group 4 Σ

FPSB 12 12 12 10 46
2x2 setting Dutch-Dutch 12 12 12 12 48

Dutch-FPSB 12 12 12 12 48
FPSB 12 12 12 0 36

2x3 setting Dutch-Dutch 12 12 12 12 48
Dutch-FPSB 12 12 12 12 48

274

Table 2: Matching Group Sample Sizes

Two sessions were conducted for each of the treatment variables. For each
session, two matching groups of 12 subjects were defined, who participated
in 15 consecutive first-price split-award auctions. Random matching of the
subjects to the auctions was applied in each of the 15 periods. Each subject
was allowed to participate in one session only. One of the four matching
groups for the FPSB auction with 2 bidders comprised only 10 subjects and
the experiment could only be conducted for three matching groups for the
FPSB format with three bidders. Summarizing, 274 subjects took part in our
experiments and Table 2 gives a detailed overview of the sample sizes in the
different treatments.

In each period of the treatment with two bidders, the 12 subjects were
randomly divided into six auctions consisting of two bidders each. In total,
we conducted 360 auctions for the Dutch and Dutch-FPSB formats and 345
auctions for the FPSB format. In the three-bidder treatments the 12 subjects
per matching group were randomly distributed to four auctions in every period,
which resulted in 240 auctions for the Dutch and Dutch-FPSB auctions and
180 for the FPSB format. In the evaluation of our experiments the matching
group average serves as the unit of observation and is employed to calculate the
average costs to the auctioneer and efficiencies of the six different treatments.
In the two-bidder setting, in each matching group six first-price split-award
auctions were carried out in each of 15 consecutive periods. Thus, the average
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values per matching group are computed based on a sample of 90 auctions with
the exception of the FPSB auction in which one matching group contained only
75 auctions. With three bidders, four first-price auctions took place in each of
15 periods and the matching group averages are calculated for a sample of 60
auctions. Finally, note that in the discussion of individual bidding behavior in
Section 4.9.4 the unit of observation is the individual decision.

Before the subjects sifted through the instructions on their own, the in-
structions were read out aloud to all subjects at the start of each session.
Additionally, the subjects should answer comprehension questions, which
were included at the end of the instructions. All interaction in the experiments
was anonymously and computerized using the experimental software z-Tree
(Fischbacher, 2007). The subjects were neither allowed to personally interact
nor to communicate with each other during the session.

The experiments were carried out at the experimenTUM, the laboratory for
experimental economic studies of the Technical University of Munich in 2016.
Undergraduate as well as graduate students from the Technical University of
Munich from different study programs participated. At the end of the session,
each subject was anonymously paid his cumulative earnings from all periods
including a show-up fee of 6.00 EUR (6.56 USD). On average subjects earned
20.85 EUR (22.78 USD) and participated between one and a half to two hours
in the experiments.

4.9.2 Theoretical Predictions

In this section, we determine the equilibrium strategies for the chosen exper-
imental setting from Section 4.9.1 for two and three bidders. Note that the
parameters in our experimental setting are chosen such that a σ equilibrium
exists in the FPSB, Dutch, and Dutch-FPSB split-award auction.

4.9.2.1 The FPSB Split-Award Auction

In our experimental setting the σ equilibrium of the FPSB split-award auction
is characterized by a pooling price for the 50% share pσe ∈ [54.06, 70.00].
Each of these prices is supported by a bid on the 100% share according

to ps
e (Θi) ≤ G

(
pσe , Θi

)
for all Θi ∈

[
Θ, Θ

]
, where G

(
pσe , Θi

)
= pσe +

40.00pσe −42.00Θi+4200.00
140.00−Θi

. The range of equilibrium pooling prices is restricted

by the off-equilibrium non-negative profit condition Θi ≤ G
(
pσe , Θi

)
for all

Θi ∈

[
Θ, Θ

]
. In the WTA equilibrium, the optimal bid on 100% of the business

ps
e (Θi) = 0.50Θi + 70.00 is supported by any bid on 50% share of at least

pσe (Θi) ≥ ps
e (Θi) − 30.00. We predict split prices as high as 70.00.

In the setting with three bidders, there is an inefficient WTA equilibrium
with competitive prices for the package of two units, ps

e (Θi) =
2.00Θi

3.00 + 140.00
3.00 ,

and high bid-to-lose prices for the single unit, pσe (Θi) = ps
e (Θi) − 30.00. A

sole source price as high as the bidder’s cost type Θi is sufficient to support
competitive split prices in the efficient σ equilibrium of
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pσe (Θi) =
0.10

(
− (300.00 − 2.00Θi)Θi + 280.00Θi − 2800.00

)
Θi − 60.00

.

Neither the σ nor the WTA equilibrium is payoff-dominant in this setting as
shown in Corollary 9 and it is not possible to predict by this criterion, which
equilibrium the bidders should select.

4.9.2.2 The Dutch Split-Award Auction

In our experimental setting the σ equilibrium of the Dutch auction is defined
as a unique pooling price of pσ1

e

(
Θi, h0

)
= pσ2l

e

(
Θl, h1

)
= pσe = 70.00 on

the 50% share for phases 1 and 2. The winner of phase 1 threatens to accept
the remaining 50% of the business at a price of pσ2w

e

(
Θw, h1

)
= 0.70Θw. The

conditions for a σ equilibrium are fulfilled and we expect the same split prices
of 70.00 as in the FPSB format.

With more than two bidders there is still only a unique and efficient σ
equilibrium in the Dutch auction, which always results in split allocation
with two bidders winning a single unit sequentially in each phase. The
bidder with the lowest cost draw should win the first unit for a price of
pσ1

e

(
Θi, h0

)
= 0.15 (Θi + 140.00) + 0.05 (140.00 −Θi) and play a threat of

pσ2w
e

(
Θw, h1

)
= 0.70Θw in phase 2. The second-lowest cost draw is supposed

to accept a counteroffer of pσ2l
e (Θl) = 0.15 (Θl + 140.00) for the remaining

share in phase 2.

4.9.2.3 The Dutch-FPSB Split-Award Auction

The range of pooling prices for the 50% share in phases 1 and 2 in the σ
equilibrium of the Dutch-FPSB auction is analogous to the FPSB format with
pσ1

e

(
Θi, h0

)
= pσ2l

e

(
Θl, h1

)
= pσe ∈ [54.06, 70.00]. Each of the equilibrium

pooling prices is supported by the winner of 50% of the business from phase
1 threatening to submit a price of pσ2w

e

(
Θw, h1

)
= max{pσe , Θw − pσe } for the

remaining 50% of the business in phase 2. The σ equilibrium exists, and
based on payoff dominance we predict the Dutch-FPSB auction to produce the
same split prices as its Dutch counterpart. As the Dutch-FPSB is strategically
equivalent to the Dutch auction with n > 2 bidders, the same σ equilibrium as
above emerges.

4.9.2.4 Efficiency and Purchasing Costs

As the two ascending auctions are characterized solely by efficient σ equilibria
we expect the latter two formats to yield the efficient split award more often
than the FPSB format in the experiments. The expected procurement costs
for the buyer in the Dutch and the Dutch-FPSB split-award auctions are
E

[
pσb

]
= 140.00 in the two-bidder environment. This applies as well for FPSB

auctions in which all σ equilibria are payoff-dominant over the respective
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hybrid equilibria. If we consider non-payoff-dominantσ equilibria, predictions
about an expected purchasing price cannot be made.

The predictions concerning efficiency are independent of the number of
bidders. However, for n = 3 bidders the coordination problem in the FPSB
auction involves solely the σ and the WTA equilibrium as hybrid equilibria
do not exist anymore. The expected VCG price for buying the split award is
78.00 in the three-bidder setting, which equals the costs for the auctioneer in
each format, when bidders coordinate on the efficient σ equilibrium. Whereas
this can be expected in the ascending formats, also a WTA equilibrium with
expected costs for the auctioneer of 126.67 can be supported in the FPSB
auction.

4.9.3 Welfare Results

First, the results on efficiency and procurement costs are discussed.

4.9.3.1 Efficiency

Result 1. All three auction formats almost always implement the efficient split
award with three bidders. With only two bidders, the Dutch-FPSB auction
leads to higher proportion of split awards (81.44%) than the Dutch auction
(64.47%), for which again the split is more often awarded than in the FPSB
split-award auction (44.99%).

First, we analyze the proportion of auctions that result in the efficient split
out of all non-deleted auctions.37 The allocations of the different treatments
are summarized in Table 3 below and standard deviations (sd) are provided
in brackets. Contrary to theory, many sole source awards are observed in
all three auction formats in the two-bidder setting. The Dutch-FPSB auction
results significantly more often in the split allocation than the Dutch format
(p-value of 0.03). Moreover, the FPSB auction has lower efficiency than the
Dutch-FPSB format with p-value of 0.00 and than the Dutch auction with
p-value of 0.02 which is in line with the prediction.38 As predicted, the split
was awarded in nearly all of the auctions independent of the auction design in
the three-bidder setting. Only the Dutch auction ended in one profitable sole
source award.

Furthermore, we compare the share of efficient allocations, i.e. the propor-
tion of allocations, which resulted in an efficient split award for the two lowest
cost types. Again, standard deviations (sd) are added in Table 3. Obviously,
the two different metrics for efficiency are identical for the setting with two
bidders. The share of efficient allocations rises when increasing the number

37The omitted auctions are the result of a small number of participants repeatedly bidding
below their costs. In the two-bidder setting two individuals bid below their costs in the FPSB
auction, eight do so in the Dutch auction, and nine do so in the Dutch-FPSB format. In the
three-bidder setting, seven participants violate individual rationality in the FPSB split-award
auction, seven do so in the Dutch format, and six do so in the Dutch-FPSB counterpart.

38In this section a Welch test is used for all significance tests between two samples. The
Welch test is computed with the matching group average values.
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of bidders from two to three in the FPSB auction from 44.99% to 71.82%
(p-value of 0.00). It stays constant for the Dutch and Dutch-FPSB formats
with p-values of 0.98 and 0.06, respectively. As expected, with three bidders
all three auction mechanisms do not differ statistically in the share of efficient
allocations with p-value of 0.73 between the FPSB and the Dutch-FPSB auc-
tion, p-value of 0.20 between the FPSB and the Dutch format, and p-value of
0.37 for the difference between the Dutch-FPSB and Dutch auction.

Efficiency
Total Omitted Split Efficient Allocative

Auctions Auctions Awards Allocations Efficiency

2 x 2 Setting
FPSB 345 2 44.99% (sd = 6.78%) 44.99% (sd = 6.78%) 75.44% (sd = 2.80%)
Dutch 360 12 64.47% (sd = 9.55%) 64.47% (sd = 9.55%) 82.74% (sd = 4.47%)
Dutch - FPSB 360 15 81.44% (sd = 2.15%) 81.44% (sd = 2.15%) 90.37% (sd = 1.01%)

2 x 3 Setting
FPSB 180 10 100.00% 71.82% (sd = 4.06%) 98.80% (sd = 0.55%)
Dutch 240 7 100.00% 64.33% (sd = 8.89%) 98.31% (sd = 0.84%)
Dutch-FPSB 240 16 100.00% 70.15% (sd = 7.97%) 99.09% (sd = 0.22%)

Table 3: Efficiency

Often a relative measure of allocative efficiency is used to characterize the
result of combinatorial auctions. The last column of Table 3 provides the
mean allocative efficiency based on the definition of Kwasnica et al. (2005).39

Standard deviations (sd) of costs are given in brackets. Mean allocative
efficiency of the Dutch-FPSB auction is highest in both settings with two
and three bidders, and values of 90.37% and 99.09%, respectively. In the
two-bidder setting, just like the other two measures of efficiency, the share is
higher than in the Dutch auction (p-value of 0.04) which in turn has higher
allocative efficiency than the FPSB format with p-value of 0.04. The metric is
close to 100% for all different auction formats with three bidders and there are
no significant differences with p-values of at least 0.16.

Moreover, the fact that the share of efficient allocations is statistically below
one (p-values of 0.01 and lower) for all three auctions formats in the three-
bidder setting might be explained by the high values of allocative efficiency. If
the split is not won by the two lowest cost types, the cost draw of the bidder
with highest costs is relatively close to the two lowest cost draws. To explain
the high number of sole source awards in each split-award auction format
in the two-bidder setting and the discrepancy in efficiency between the two
ascending auctions, we analyze the bidding behavior in more detail in Section
4.9.4.

4.9.3.2 Procurement Costs

Result 2. With only two bidders the FPSB and Dutch-FPSB auction formats
yield substantially lower procurement costs of 130.49 and 130.08, respectively,

39Assume Nσ
winner, N s

winner are the sets of bidders, who won the split, respectively the sole
source award, and Nσ

optimal is the set of the two bidders with the lowest cost type per auction.
Then, the allocative efficiency of a split-award auction with dual source efficiency is defined as

Allocative efficiency =
Σi∈Nσ

optimal
CΘi

Σi∈Nσ
winner

CΘi + Σi∈N s
winner

Θi
.



4.9 experimental evaluation 107

than the Dutch split-award auction with a value of 155.03. Ranging from
75.49 to 79.16, the procurement costs of all auction formats with three bidders
are considerably lower than in the two-bidder setting but follow the same
ranking.

The average price the auctioneer has to pay in each treatment defines the
overall procurement costs. Table 4 below gives an overview of the procurement
costs of the different treatments with the standard deviations (sd) given in
brackets. With values of 155.03 and 79.16, the Dutch auction results in higher
average costs than the other two auction formats in the two- and three-bidder
setting, respectively (p-values of 0.01 for all comparisons). As predicted, there
is no significant difference in costs between the FPSB and the Dutch-FPSB
split-award auctions with p-values of 0.93 and 0.20 in case of two and three
bidders.

The procurement costs for the FPSB auction in the two-bidder setting do not
differ significantly from the theoretical prediction of 140 (p-value of 0.08) with
95% confidence interval of [116.86, 144.12].40 However, the average prices
of the Dutch-FPSB and the Dutch format are statistically lower and higher
than the predicted 140 with 95% confidence intervals of [126.28, 133.88]
and [141.93, 168.13], respectively. Nevertheless, note that the costs of the
Dutch-FPSB auction are still fully within the predicted range of supportable
equilibrium pooling prices of [108.12, 140.00]. Furthermore, as predicted, the
average prices in all auction formats are significantly below the expected VCG
price of 168 with p-values of 0.02 and lower.

Finally, as expected, all procurement costs in the three-bidder setting are
substantially lower compared to the respective costs in the two-bidder setting
(all p-values of 0.00) but the ranking remains constant. For the FPSB and
the Dutch-FPSB auction the average prices are statistically lower than the
expected VCG price of 78.00 with 95% confidence intervals of [74.27, 76.71]
and [74.74, 77.99] and p-values of 0.01 and 0.05, respectively, whereas they
correspond to the prediction for the Dutch format with 95% confidence interval
of [77.17, 81.15] and p-value of 0.16. Explanations for the remarkably high
prices of the Dutch auction in the two-bidder setting and the unexpectedly
low prices of the FPSB and the Dutch-FPSB auctions in the setting with three
bidders are given in Section 4.9.4.

Average Procurement Costs
Overall Split Award Sole Source Award

2 x 2 Setting
FPSB 130.49 (sd = 8.57) 125.04 (sd = 11.52) 134.73 (sd = 6.30)
Dutch 155.03 (sd = 8.23) 152.24 (sd = 7.18) 158.80 (sd = 10.38)
Dutch-FPSB 130.08 (sd = 2.39) 128.32 (sd = 1.84) 137.90 (sd = 8.07)

2 x 3 Setting
FPSB 75.49 (sd = 0.49) 75.49 (sd = 0.49) -
Dutch 79.16 (sd = 1.25) 79.02 (sd = 1.1) 115.00
Dutch-FPSB 76.37 (sd = 1.02) 76.36 (sd = 1.02) -

Table 4: Procurement Costs

40A student t-test is used for all single sample significance tests.
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In the two-bidder setting, there is a trade-off between the higher efficiency
of the Dutch auction and the lower procurement costs of the FPSB auction.
We find higher prices for both the sole source and the split award in the
Dutch auction than in the FPSB auction. The Dutch-FPSB auction achieves
low prices and high efficiency and thus has advantages for the procurement
manager in this respect, even resulting in higher efficiency than the Dutch
auction with procurement costs that are not significantly different from those
of the FPSB auction. Conversely, in the three-bidder setting all three auction
formats are equally efficient. Again, the Dutch auction is the most expensive
format tested at a 5% level. However, the differences are much smaller than in
the two-bidder case.

4.9.4 Bidding Behavior

We next discuss the individual bidder behavior in the two-bidder and three-
bidder environments for each of the three different auction formats. We
estimated fixed-effects regressions for bids and prices of bidders in the split
and sole-source award in all treatments and attached the outcomes in Appendix
B.2 Section B.2.1. We also included univariate regressions in which the cost
draw is the single independent variable. These regressions allow us to interpret
all plots of bids and prices on cost draws in Section B.2.2. These plots and the
corresponding univariate regressions provide intuitive insights on the subjects’
bidding behavior. Finally, Appendix B.2 Section B.2.3 contains plots of
bids/prices in split allocations for all treatments across periods. These plots
visualize any adaptation in bidding behavior with repeated interaction of the
bidders.

Especially in the two-bidder setting, the derived σ equilibria have a col-
lusive flavour. In order to describe the different forms of tacit collusion we
apply the following distinction. We define that pooling behavior includes high
split prices, which lie (1) above the highest possible cost draw for the split,
ΘC, and (2) within the range of equilibrium predictions. Furthermore, the
regression analysis should show that (3) these pooling prices are not signif-
icantly influenced by the own cost draw of the bidder. When this is not the
case and only (1) and (2) apply, we talk about tacit collusion. Prices, which
are even higher than the equilibrium predictions, are defined as strong pooling
or strong tacit collusion.

4.9.4.1 Two-Bidder FPSB Split-Award Auction

Result 3. As theory predicts, split-award winners show pooling behavior
as nearly all split prices are above 42.00 (ΘC) and the average split price
is 62.30. Furthermore, the own cost draw does not significantly influence
the split prices in the fixed-effects regression analysis. In the sole-source
allocations, bidders tried to exclude the split award with high bids on one unit
and submitted competitive bids on two units.
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Remember, there is an inherent coordination problem in the FPSB auction
format, because the inefficient WTA equilibrium can be simply implemented
by the unilateral use of veto bids. Solely the existence of these veto bids
might make the σ equilibrium less attractive in practice as its implementation
requires both bidders not to use veto bids. Moreover, it is strategically complex
for two bidders to coordinate on a split. To support any single-unit pooling
price bidders have to bid at least twice the amount on two units such that the
auctioneer chooses the split award. Note, however, that such bids only lead to
an equilibrium if both bidders actually pool at the same bid for one unit which
is very unlikely.

We observe that bidders who win the split-award bid low on the single
unit with an average bid of 62.30 and submit a high average bid of 145.70 on
the double-unit package. Such bids facilitate coordination on the split award
independent of slight deviations by the opponent, especially regarding the
choice of an alternative pooling price. However, this strategy is vulnerable
against a combination of high single-unit prices and low double-unit bids.
In sole source award allocations that do not involve veto bids (9.04% of all
bidders make use of their veto power), winners submit average bids of 68.76
and 135.48, and losers bid on average 78.28 and 157.13 on one and two units,
respectively. As a result, the sum of both parties average single-unit bids,
147.04, exceeds the winner’s average bid on two units. In other words, the
winners do not bid high enough on two units and the losers bid too high on one
unit, thus, preventing coordination on the split award. This ”off-equilibrium”
behavior differs from the bidding behavior in the ascending auction formats as
is discussed for the Dutch and Dutch-FPSB auctions in Sections 4.9.4.2 and
4.9.4.3, respectively.
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Figure 1: Bids of Split-Award Winners
in FPSB (n=2)
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Figure 2: Bids in Sole-Source-Award
in FPSB (n=2)

Figure 1 shows the single- and double-unit bids of split award winners
plotted against the cost draws. The figure already indicates that winners of
the split award pool their single-unit bids and submit high double-unit bids
as theory predicts. Also, the bids of split-award winners on the package are
increasing with the cost draw. The regression line (solid line) for the single-
unit bids lies within the predicted pooling boundaries (dashed lines) and the
regression line for the double-unit bids is within the predicted support, too.
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The winners of the sole-source award submit bid-to-lose split prices as can be
seen in the left plot of Figure 2 in which the univariate regression line (solid
line) even has a negative slope. The bid for two units (solid line) is increasing
in the cost draw as predicted by theory (dashed line) and illustrated in the
right plot of the figure. We observe overbidding which is mainly caused by
the very high double-unit bids of the sole-source award losers. We conjecture
that many of them aim for the split award.

In Appendix B.2 we summarize the results of a number of fixed-effects
regressions, which support the graphical analysis. We also analyze the bidder
behavior across the periods in a session. For split-award winners the cost
draw is not a significant explanatory variable for the height of the single-unit
bid. Manual inspection yields that many bidders stick to their strategy of
either bidding on the sole source or the split award over time. We observe
a significant decrease in the height of the single-unit bid for ten out of 46
sole-source award bidders across all 15 periods. This might suggest that some
sole-source bidders adapt and try to win the split award but do not alter their
double-unit bids. The latter bids of split-award winners and the distribution of
allocations appears to remain constant over periods. Details can be found in
Appendix B.2 in figures 17 and 18, respectively.

4.9.4.2 Two-Bidder Dutch Split-Award Auction

Result 4. Split-award winners achieve above-equilibrium prices with an
average of 74.80 in the first phase and an average of 77.23 in the second
phase. This can be seen as a form of strong tacit collusion, where bidders
agree on higher payoffs.

In the Dutch auction there is a unique perfect Bayesian σ equilibrium.
Therefore, strategic complexity is lower compared to the FPSB format as
bidders observe increasing single- and double-unit prices publicly and can
constantly compute their respective profits. Furthermore, a payoff-maximizing
bidder does not accept two units at a double-unit price below 140.00 (which
corresponds to a single-unit price of 70.00) as the split is more profitable. In
the experiments, 10.39% of all direct sole-source winners accept a double-unit
price below 140.00. With this common knowledge there is a low risk in letting
the single-unit price rise to 70.00 as the equilibrium suggests. Even if the
opponent accepts at a lower price in the first phase, there is always a chance to
win the second unit.

Interestingly, we find average split prices of 74.80 in phase 1 and 77.23 in
phase 2, which strictly exceed the equilibrium prediction of 70.00. It appears
that bidders implicitly agree upon letting the price rise above the equilibrium
prediction to make higher profits in the split allocation. The publicly increasing
prices allow both bidders to constantly reinforce this agreement on strong
tacit collusion until one bidder accepts, which apparently leads both bidders
to exceed the equilibrium price. The first bidder to accept the single-unit price,
signals at which price the opponent should accept the second unit. Assume
that one unit was sold in phase 1 for a price of 74.00. The loser of phase 1
knows that the price for the remaining share is likely to rise again at least to
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74.00, as otherwise the opponent would have accepted both units at a price of
148 in phase 1. In fact, 77.68% of the bidders only accepted the counteroffer
for one unit in phase 1, when their payoff for the split award was strictly higher
than for the sole source award. Therefore, the loser of the first unit might not
want to accept the second unit at a lower price than his opponent in phase 1,
because it is not credible for the winner of phase 1 to accept the second unit
below the price of the first unit. The price of the first unit is a natural lower
bound for the price of the second unit and typically bidders try to go even a
bid higher at the risk that the opponent takes both shares.

Of course, if the loser of the first phase lets the price in phase 2 rise too high
it becomes more profitable for the winner to accept the second consecutive
unit. Similarly, if the price in phase 1 rises too high it might become more
profitable for one of the two bidders to directly accept two units. For example,
if the first unit is sold at a price of 74.00, a bidder with cost draw 110.00
makes a payoff of 74.00-33.00=41.00. Now, if the second unit reaches a price
of 78.00, the winner of the first unit should accept this price as well, as it
provides a higher payoff of 152.00-110.00=42.00. Thus, if bidders let the split
prices rise too high the sole-source award becomes more profitable at some
point. This is also what we see in the data. There is a substantial proportion of
sole-source awards in the Dutch auction due to such behavior, although the
proportion of efficient split awards has increased significantly compared to the
FPSB format.
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Figure 3: Bids of Split-Award Winners
in Dutch-Dutch (n=2)
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Figure 4: Bids of Consecutive Sole-
Source-Award Winners in
Dutch-Dutch (n=2)

The first-unit price was taken as a signal for the second-unit price, which
was higher in 57.59% of all split allocations. The relation between the two split
prices is depicted in Figure 3 in which both univariate regression lines (solid
lines) lie entirely above the predicted pooling price of 70.00 (dashed lines).
The prices in case of bidders winning two consecutive units are depicted in
Figure 4 and are strongly increasing in costs (solid lines), but otherwise show a
similar pattern as the split prices. Figure 9 in Appendix B.2 contains the prices
at which two units were directly accepted (solid line) which are on average
higher than in the split award. Similar to the FPSB auction the distribution of
allocations does not change across the periods as is shown in Figure 20 in the
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appendix. The fixed-effects regressions for split-award winners in Appendix
B.2 yield that the cost draws have a significant but small effect on the bid price
of the first phase, but not on the price in the second phase. In phase 2, the
price of the first phase is a significant covariate.

4.9.4.3 Two-Bidder Dutch-FPSB Split-Award Auction

Result 5. Split allocations involve tacit collusion of the bidders with average
single-unit prices of 61.80 and 66.57 in phases 1 and 2, respectively. The lower
prices avoid sole-source bids as they happen in the Dutch auction. Repeated
auctions lead to significantly higher prices in this auction format, as bidders
learn to coordinate on higher split prices.

In the Dutch-FPSB auction we observe average single-unit prices of 61.80
and 66.57 in phases 1 and 2, respectively. Efficient equilibria, in which bidders
tacitly collude on split prices below 70.00, are in line with the theoretical
predictions for this format. In contrast to the Dutch auction, bidders have a
credible threat with low sealed bids on the second unit that would result in a
lower overall profit for a bidder, but forces his opponent not to bid too high on
the second unit and win. Interestingly, we observe that 61.92% of the winners
of the first unit submit bids for the second unit to make as much profit when
winning both units as when winning one unit. Such bids are no credible threats
in the Dutch-FPSB auction. The strategic option of using threats to implement
split prices below 70.00 is rarely used in the experiments, probably because it
cannot be directly observed by the opponent.

The credible threat is the reason for the different equilibrium bidding strate-
gies between both ascending auction formats. The fact that this credible threat
is not used might suggest that one would see prices similar to the Dutch auc-
tion. However, prices are lower in the Dutch-FPSB auction. It appears less
certain for a bidder to win the second unit, and bidders tend to accept the first
unit already at a lower price in order to secure one unit. Furthermore, we con-
jecture that the possibility of possible threats in itself leads to higher insecurity
and lower bidding already in phase 1. Similar to the Dutch auction, the price
of the first unit is a signal for the second unit, and we observe slightly higher
prices for the second unit. In summary, bidders are faced with relatively low
split prices at which sole-source deviations are less likely to occur. Therefore,
we observe even fewer sole-source allocations in the Dutch-FPSB auction than
in the Dutch format. Overall, this increases efficiency.

Plots of the bids in the Dutch-FPSB auction can be found in Appendix B.2.
In the fixed-effects regressions we find a small but significantly positive effect
of the cost draws on both units, and again the price of the first phase was a
significant covariate for the price in the second phase (see Table 7 in Appendix
B.2). As in the Dutch auction the impact of the cost draws on the bid is very
small (e.g., 0.13 for the first bid), which is close to the constant bid price
predicted by the theory. In contrast to the other auction formats, we found
a significant positive impact of the number of periods on the bid price for
the first price. This indicates that the subjects adapted and learned to tacitly
collude on higher split prices over time.
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4.9.4.4 Three-Bidder FPSB, Dutch, and Dutch-FPSB Split-Award Auction

Result 6. With three bidders almost always the efficient split award is im-
plemented. In the FPSB auction format it is difficult for bidders to realize a
sole source allocation, and they need to rely on another bidder. In the two
ascending auction formats sole source awards are no equilibrium and they do
not happen in the lab.

Contrary to the ascending auctions, there is an inefficient WTA equilibrium
in the FPSB auction. To implement a sole-source allocation in this format
at least two bidders have to exclude the split award with high bid-to-lose
prices for one unit. Note, however, that in this case only the bidder with the
lowest cost type wins and both losers know that they would have won one
unit with certainty by coordinating on the split award. This implies that both
losers may regret their decision to chose the WTA strategy. In contrast, in
the split allocation the only loser could not have won the sole-source award
by unilaterally playing a bid-to lose strategy for the split. He could only
regret not to bid aggressive enough for the split award after the winning bids
are disclosed. The anticipation of this form of loser’s regret is a possible
explanation for too aggressive bidding in first-price sealed-bid auctions (Filiz-
Ozbay and Ozbay, 2007). In our experiments, not only the winning bid(s) but
also the winning allocation is disclosed to all bidders after each auction. Hence,
we conjecture that anticipated regret of the losers in a WTA equilibrium as
described above prevent bidders from trying to win the sole-source allocation
in an environment with three bidders, whereas these equilibria can be observed
in the experiments with two bidders.

Furthermore, note that a coordination on a WTA equilibrium, in which
all bidders submit high bid-to-lose prices for the split award, becomes more
difficult with a higher number of bidders in the auction. Indeed, a bidder
following a split deviation from such an equilibrium only wins, when there is
at least one other bidder placing a competitive bid for the 50% share. However,
the chances that there is another deviating bidder of course increases with the
number of participants in the auction and the expected payoffs in this case can
be very attractive due to the dual source efficiency environment. This applies
especially for bidders with a high cost draw whose expected payoff in a WTA
equilibrium is relatively low.

Finally, a simple and effective strategy in such an environment is to bid
competitively for the split as well as for the sole source award. Such a bidding
behavior excludes the sole source and is not vulnerable to deviations even from
both opponents. Such a strategy is a form of a σ equilibrium with a moderate
bid-to-lose price for 2 units.41 Assume a bidder with costs of 120.00 for two
units and 36.00 for one unit submits bids of 124.00 and 38.00, respectively.
If all bidders follow a σ strategy with bid-to-lose prices on two units, he has
good chances to win the split award. In the case where both opponents try to
coordinate on the sole source award with high bid-to-lose prices for one unit

41Remember, that in our setting bidding the cost draw for two units is enough to exclude
the split award.
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and competitive bids for two units, his chances (with regard to his cost draw)
are still good to win both units.

We conjecture that the combination of those phenomena leads to the high
efficiency and non-appearance of sole source awards in the FPSB auction with
three bidders. Note that payoff-dominance or (weakly) dominated strategies
cannot be used as an explanation in our environment due to Corollary 9. As
predicted, in the ascending auction formats competition and the inherent dual
source efficiency cost structure lead to low prices for the first and the second
unit consecutively, so that the sole-source award is always unprofitable.

As expected in case of competitive bidding for the split award with three
bidders in all auction formats the fixed-effects regressions in tables 8 to 10 in
Appendix B.2 contain a cost parameter with significant explanatory power that
is positively correlated with the corresponding dependent variable. The Wald
test is used to test for the correspondence between fixed-effects regression
model and the derived equilibrium strategy.

Although the single-unit bids of split-award winners in the three-bidder
setting of the FPSB auction are significantly different from the equilibrium
strategy (Wald test with p < 2.2e − 16), the univariate regression line in the
left plot of Figure 13 in Appendix B.2 still indicates correspondence. Similar
to the experimental evaluation of bidding in single-unit auctions we observe
underbidding in our setting. Moreover, in the right plot the double-unit bids
weakly exceed the cost type as predicted by theory.

As can be seen from the regression line in the left plot of Figure 14, the
equilibrium strategy is a good predictor for the bidding behavior of split-
award winners for the first unit in the Dutch auction (Wald test with p =

0.34). Also, the bidding behavior for the second unit corresponds to the
theoretical prediction (Wald test with p = 0.08). The left plot of Figure
15 in Appendix B.2 shows that split-award winners of the first unit in the
Dutch-FPSB auction submit bids weakly below the equilibrium strategy and
the fixed-effects regression differs significantly (Wald test with p < 2.2e − 16).
Although split-award winners of the second unit appear to bid closer to the
theoretical prediction in Figure 16, their bidding behavior does not correspond
to the equilibrium strategy (Wald test with p = 0.00).

Similar to the experimental literature on first-price single-item auctions, we
observe underbidding for the split-award winners in the FPSB and the Dutch-
FPSB auctions with three bidders. This causes the fixed-effects regression lines
to differ significantly from the equilibrium predictions. Moreover, the first-
and second-unit bids in the Dutch-FPSB format neither differ from each other
(Wald test with p = 0.99), nor from the single-unit bid of split-award winners
in the FPSB auction (Wald test with p = 0.23 and p = 0.26 respectively). We
conjecture that the strategical differences between both auction formats do not
influence average bidding behavior.

Similar to our two-bidder setting, average single-unit prices in the Dutch
auction with three bidders are significantly higher than in the other two formats.
The bids for the first and second units do not differ significantly from the
predictions although they are not statistically different from each other (Wald
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test with p = 0.07). These higher prices in the Dutch format may explain the
lower allocative efficiency as well as the lower share of efficient allocations
compared to the other two auctions.

4.10 conclusion

Ex-post split-award auctions are a widely used form of combinatorial pro-
curement auctions. In particular, first-price auctions are often chosen for their
simplicity. There is often little competition in procurement particularly if there
are only a few qualified suppliers for specific products to be procured. Unfor-
tunately, bidding strategies of such auctions are not well understood. However,
the analysis of a limited 2 × 2 market by Anton and Yao (1992) showed that,
for the wide-spread FPSB split-award auction with two bidders, there is an
efficient split equilibrium and an inefficient WTA equilibrium, leaving the
bidders with a veritable coordination problem. The 2-bidder model is specific,
because bidders can veto the split award unilaterally, and it is unclear if the
results carry over to markets with more than two bidders, and if it is predictive
in the lab.

We extend the analysis to n > 2 bidders, and also analyze the Dutch
split-award auction and the Dutch-FPSB split-award auction, which are wide-
spread in procurement practice, but have not yet been studied. For markets
with two bidders, we show that the Dutch split-award auction has a unique
split equilibrium with a constant pooling price. The Dutch-FPSB also exhibits
only efficient split equilibria, but it allows for multiple equilibrium prices. The
strategic differences for the bidders arise because of differences in the revealed
information in the three auction formats. There is cost equivalence between
the Dutch and the Dutch-FPSB auction, while this only applies for the FPSB
format when suppliers coordinate in a split equilibrium. In markets with more
than two bidders, the FPSB auction still exhibits a WTA equilibrium even
though the veto power of bidders ceases. The theoretical results organize
important patterns in the experimental results such as pooling prices in the
two-bidder auction and the coordination problem.

In our experimental assessments, we found that bidders in the two-bidder
FPSB auction indeed selected both types of awards. It is interesting to see
that many more split allocations emerged in the Dutch auctions at prices even
beyond the equilibrium pooling price. We conjecture that bidders interpret
non-acceptance of counteroffers at low prices as an implicit agreement on high
prices. These high prices sometimes lead bidders in the first phase to bid on
the package of two units or accept also a high price in the second phase, such
that there are inefficient sole-source awards. The introduction of a sealed-bid
stage in phase 2 of the Dutch-FPSB auction led to lower prices in the first
phase. As a consequence, winning the package became less attractive, which
led to even higher efficiency. The Dutch-FPSB auction appears as a robust and
simple alternative that yields high efficiency and low procurement cost.

Interestingly, with a single additional bidder the inefficiency of the 2-bidder
environment is largely gone, even in the FPSB split-award auction, in which
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there is also an equilibrium selection problem. The veto power of bidders
vanishes and instead they want to win the 50% share and coordinate with
others. Furthermore, we found that prices drop substantially in all three
auction formats as theory predicts. Competition was very effective in the
laboratory even though bidders in the FPSB split-award auction could also
choose a sole-source award in theory. In summary, first-price combinatorial
auctions are highly efficient in our setting. The lower strategic complexity and
high efficiency of the Dutch auction formats can be seen as an advantage.



5
C O N C L U S I O N

We first summarize our main findings and subsequently present present some
ideas on how to generalize the mayor results. Furthermore, potential promising
areas of future research are proposed. The contributions of this thesis are
threefold.

First, we derive optimal bidding strategies in various combinatorial (for-
ward) auction formats in a limited 2× 2 setting in which two profit-maximizing
bidders compete for two units of a homogeneous product (perfect substitutes).
We assume a standard IPV model with risk-neural and ex-ante symmetric
bidders who possess decreasing marginal values in the number of units ob-
tained. To be precise we concentrate on dual-winner efficiency in which it
is always social-welfare maximizing to have two winners of one unit each.
As demonstrated in Anton and Yao (1992), these assumptions allow us to
derive Bayesian Nash equilibrium strategies and guarantee the benchmark
allocation of the VCG mechanism to be in the core and there is no threshold
problem in the studied combinatorial package auction formats and no expo-
sure problem in comparable non-combinatorial auctions. This allows us to
restrict attention solely on strategic differences between the latter two auction
mechanisms that are caused by the bidding language. Second, in the same
market we examine principal-agent relationships in bidding firms and present
different optimal contracts that resolve the agency problem depending on the
information asymmetries between both parties. Third, we extend the focus
on combinatorial package auctions to predominantly first-price combinatorial
ex-post split-award (reverse) auctions with n ≥ 2 bidders who compete for two
50% shares or 100% of a contract in an IPV procurement setting. Analogue to
the forward auctions we assume increasing marginal costs and dual-source effi-
ciency such that it is always efficient to have to winners of one 50% share each.
Our linear Bayesian Nash equilibrium predictions for this 2 × n procurement
market are evaluated with laboratory experiments later on.

In the 2 × 2 forward auction market we are able to demonstrate a weak
form of outcome equivalence between the ascending package auction, the
non-combinatorial standard uniform-price multi-unit auction and its ascending-
price counterpart which is outcome equivalent to the non-combinatorial SMRA.
In all these auction formats bidders reduce demand to obtain one unit each
at zero price. The outcome equivalence is only weak because the ascend-
ing package auction also possesses an inefficient equilibrium in which each
bidder unilaterally vetoes the outcome with two winners. Nevertheless, this
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equilibrium is strictly dominated in payoff by the efficient equilibrium and
the dynamic auction format also allows for coordination advantages on the
latter equilibrium. In the procurement setting with reverse auctions and linear
equilibria, we are able to demonstrate by the use of the revenue-equivalence
theorem that for n > 2 bidders all above auctions become in fact strategically
and revenue equivalent to all efficient standard multi-unit and sequential auc-
tions with single-unit demand. This includes the generalized VCG mechanism,
which additionally, leads to higher (strictly positive) seller revenue in the 2× 2
market.

Contrary to the above findings, the FPSB package auction is neither out-
come nor strategically equivalent to its non-combinatorial standard multi-unit
counterpart in the 2× 2 setting. Moreover, general unambiguous revenue rank-
ings between its efficient and inefficient equilibrium are not possible. However,
in its efficient pooling equilibrium it strictly dominates its ascending coun-
terpart as well as the VCG mechanism and even the standard discriminatory
multi-unit auction in seller revenue. In its inefficient equilibrium it is revenue
equivalent to the ascending package auction. Again, for n > 2 bidders in the
procurement setting, the efficient equilibrium of the FPSB package auction
is strategically in line with all other auction formats mentioned above. Nev-
ertheless, the FPSB format possesses an inefficient equilibrium independent
of the number of bidders. This is not generally true for other combinatorial
(ascending) first-price reverse auctions as shown in the procurement setting.
These mechanisms are characterized by uniquely efficient equilibria that are
payoff-equivalent to the efficient allocation of their sealed-bid counterpart. In
summary, the FPSB package auction is characterized by peculiar bidding be-
havior that differentiates it from other non-combinatorial auction mechanisms
and leads to relatively high seller revenue but also inefficient allocations. This
is not necessarily true for the ascending package auction which is weakly out-
come equivalent to other efficient non-combinatorial uniform-price auctions
but achieves comparably low seller revenue. The generalized VCG mechanism
serves as an intermediate that is fully efficient and achieves strictly positive
revenue. For n > 2 bidders all considered auction formats except the FPSB
package auction are strategically equivalent and efficient. It is interesting
to observe that in our setting the combinatorial auction formats perform at
least as good in terms of revenue and efficiency as all other non-combinatorial
mechanisms. In environments with exposure and threshold problems this
ranking is likely to persist as the free-rider risk is generally considered less
of a threat than the exposure risk (Bykowsky et al., 2000; chakraborty et al.,
1995).

In our principal-agent model of bidding firms the profit-maximizing princi-
pal uses budget contracts to direct her value-maximizing agent, who bids in the
auction, on the efficient equilibrium within the 2 × 2 forward auction setting.
The agency bias causes the agent to inflate his demand on two units in an
inefficient equilibrium. We distinguish between an environment of symmetric
information about the firm’s values between principal and agent in which the
principal uses a delegation set of budgets to incentive-align the agent and an
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asymmetric information setting in which the uninformed principal employs
a menu of contingent budgets and transfer payments to incentivize the agent
who is informed about the firm’s package valuations. In the symmetric infor-
mation setting of the FPSB package auction, optimal delegation is impossible
and the agent cannot be directed on the efficient equilibrium bidding strategy.
Moreover, in the asymmetric information setting the agency bias might be so
strong that even the use of optimal transfer payments cannot implement the
efficient equilibrium. Contrary, in the ascending package auction the efficient
equilibrium is straightforward to achieve with an optimal delegation set of
budgets in the symmetric and asymmetric information environment. In the
special setting in which both units are sold as the single package, the agency
problem is easy to overcome in the symmetric information environment but the
bias might be so strong that an optimal contract cannot be implemented with
asymmetric information. Here, the optimal contract is identical for all auction
formats within the respective information environment which is reminiscent of
earlier results on optimal delegation in single-object auctions (Burkett, 2015,
2016). Summarizing, in addition to its beneficial efficiency properties, the
ascending package auction can also be put forward as an advantageous auction
format in case the social-welfare maximizing auctioneer is aware of agency
problems within the participating bidding firms.

Finally, in the 2 × n procurement auction setting we consider different com-
binatorial first-price ex-post split-award auctions that are frequently employed
in industry practice. In our theoretical analysis we show that independent
of the number of bidders the FPSB auction always possesses at least one
inefficient equilibrium whereas the Dutch (ascending firs-price) auctions are
characterized by only efficient equilibria. Therefore, general efficiency and
revenue rankings are impossible but there is payoff-equivalence if the efficient
equilibrium of the FPSB format is played and the open formats appear to
be more efficient. In our experimental analysis we show for n = 2 bidders
that the Dutch auctions are significantly more efficient than their sealed-bid
counterpart, whereas the latter achieves higher buyer revenue compared to the
Dutch auction but with respect to the Dutch-FPSB format. For n = 3 bidders,
we find all auction formats to be outcome equivalent. Thus, we can conclude
that our theoretical predictions are well reflected in a laboratory setting, which
might then indicate that our results offer valid managerial and policy advice.
Based on our experimental study the compound Dutch-FPSB auction can be
proposed as an efficient and revenue maximizing combinatorial first-price
ex-post split-award auction in industrial procurement.

The potential shortcomings of our contributions are obvious. In all applica-
tions we never considered package auctions for more than two units or shares,
and always focus on dual-winner or dual-source efficiency, respectively. At
first glance it appears unclear whether our insights generalize to markets with
more than two auctioned items and different efficiency environments. Let us
first consider more complex markets.

In the 2 × 2 market, the existence of inefficient equilibria in the IPV setting
as well as the agency bias in the principal-agent model depend to a large extend
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on each bidder’s power to unilaterally veto the efficient outcome. On the one
hand, we have already shown that this veto power generally decreases with an
increasing number of bidders. However, any individual bidder can never be
entirely certain about his competitors’ willingness to coordinate as was shown
for the FPSB package auction which still possesses an inefficient equilibrium.
In this equilibrium each bidder independently vetoes the efficient allocation
such that any one bidder is forced to participate in the inefficient outcome. On
the other hand, if the number of possible packages strictly exceeds the number
of buyers, which is common in combinatorial auctions in the field, unilateral
veto-power against multiple-winner outcomes may still be very strong. Here,
the results from the 2× 2 market simply extend and the fundamental trade-offs
described above are likely to remain valid. Often there are many bidders
participating in an auction, but only a few are strong and they decide the
outcome. For example, in the German auction in 1999 that was discussed in
Section 3.9, there were four bidders and ten units, but in the strategic analysis
one can focus on the competition between Mannesmann and T-Mobile. It
is reasonable to assume both bidders understood that an outcome with two
winners was efficient and payoff-dominant to a single-winner outcome.

The results regarding overcoming the principal-agent problem in the 2 × 2
market depend on each principal’s power to unilaterally veto the efficient
outcome. As we have established above, in more complex markets this veto-
power can still be strong. The fact that the VCG mechanism is strategy-proof
independent of the complexity of the market environment suggests that it
makes it easier to solve the agency dilemma more generally in a second-price
payment mechanism. Because of the payment function, principals have no
incentive to deviate from the welfare-maximizing allocation independent of
the opponent’s bidding behavior. Contrary, any equilibrium of the FPSB pack-
age auction that requires bidders to coordinate involves potentially complex
bidding on packages not part of the equilibrium allocation. Each bidder has
to submit bids that make a deviation by any of her opponents unprofitable in
expectation and thereby prevent him from using her veto-power. Next, we
focus on different efficiency settings.

It is worth mentioning that our model also allows to examine other envi-
ronments than dual-winner efficiency in a 2 × n market. Under single-winner
efficiency, for example, in which it is always efficient to have one buyer
winning the package of two units and the lowest possible package-valuation
strictly exceeds twice the highest possible single-unit value, no equilibrium
with two winners exist. For fully combinatorial auctions there is no equilib-
rium selection problem and no inefficient allocations arise. The theory from
single-object auctions applies (actually, in this case single-package auctions)
and there is revenue equivalence between all combinatorial mechanisms con-
sidered in this thesis. In our principal-agent model there is no agency bias
with respect to the equilibrium allocation in the first place and therefore no
agency dilemma that needs to be solved. Principal and agent both aim for the
efficient equilibrium with one winner, and the principal-agent problem in the
symmetric information environment is then easy to solve as already discussed
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in Section 3.5.3. The principal can simply provide her agent with a budget for
the package that corresponds to her profit-maximizing equilibrium report and
with no budget for the single unit. In the asymmetric information setting in
which there is an agency bias with respect to the optimal height of the bid, the
principal provides her agent with the same optimal contract for the package
as is demonstrated in Corollary 1 in Section 3.5.4 and with no budget for the
single unit. Nevertheless, as shown before, depending on the extend of the
agency-bias it might be ex-ante infeasible for the firm to participate in the
mechanism.

At this stage it is important to highlight that the revenue-equivalence result
for an environment in which it is always efficient to have a single winner in the
2 × n market does not generally extend to non-combinatorial (sequential) auc-
tions or to auctions that are not fully combinatorial and, for example, contain
some element of sequential sales as is demonstrated in Kokott et al. (2018b).
Here, the authors analyze three different practically relevant first-price ex-post
split-award auctions in a procurement context similar to Anton and Yao (1992)
Anton et al. (2010) and Kokott et al. (2018a) but in which it is always efficient
to have a single supplier winning the contract (strong economies of scale).
Again, the suppliers are assumed to be commonly informed about the effi-
ciency environment whereas the auctioneer is uninformed and thus, cannot
ex-ante decide to buy both 50% shares as a single contract in a single-object
auction. The authors consider the combinatorial FPSB and Dutch-FPSB pack-
age auctions as introduced in Chapter 4, and a non-combinatorial (sequential)
Dutch-FPSB auction in which both 50% shares are bought consecutively. Note
that the Dutch-FPSB package auction contains a sequential mechanism in
case the entire contract is not bought in the first stage and is therefore not
expected to be efficient and revenue-equivalent to its sealed-bid counterpart.
Remember, that there is hardly any literature on sequential auctions in a setting
with bidders demanding multiple units. In particular, we are not aware of the
derivation of any bidding strategies for a setting in which it is efficient to have
a single winner. Nevertheless, Kokott et al. (2018b) manage to characterize
linear bidding equilibria under the assumption that sellers are not allowed to
bid below costs or marginal costs at any stage in the auction. This assumption
is justified for a large proportion of procurement auctions in which sales repre-
sentatives participate on behalf of their firms and must not incur losses at any
circumstance.

In this setting Kokott et al. (2018b) show that for high economies of scale
suppliers bid their marginal cost for one share in both phases of the sequen-
tial Dutch-FPSB auction which results in the efficient allocation. With low
economies of scale bidders overbid their marginal cost for one share in both
phases and therefore also inefficient allocations result in equilibria. Contrary,
in the combinatorial FPSB auction only efficient equilibria exist. This is also
true for the Dutch-FPSB in which 100% of the contract is sold in the first
phase as long as scale economies are sufficiently high. For relatively low
economies of scale, however, sequential deviations are profitable. There are
no equilibria in which always allocations with two winners result in any of



122 conclusion

the considered auction formats and unambiguous rankings of buyer revenue
cannot generally be computed.

Comparing different combinatorial auction formats across single-winner
efficiency and dual-winner efficiency we find that the FPSB auction possesses
an efficient equilibrium in both setting whereas the Dutch-FPSB package
format is fully efficient only under dual-winner efficiency as are the sequential
mechanisms. Bear in mind that there is also an inefficient equilibrium of the
FPSB auction under dual-winner efficiency. Therefore, we cannot propose a
general efficiency ranking of different combinatorial auctions across different
efficiency settings. However, the FPSB auction appears to weakly dominate
all other formats in terms of auctioneer revenue. In an accompanying experi-
mental study in Kokott et al. (2018b), it is demonstrated that the equilibrium
predictions organize the experimental data accurately. The FPSB package
auction on average is most efficient and leads to the lowest procurement costs
for the buyer. The sequential auction format appears to have no advantages
and its frequent use in industrial procurement should be severely questioned.
The authors thus argue in favor of an increased employment of combinatorial
auction formats in industry practice.

In future research it remains to show that our results generalize to settings
with imperfect substitutes and heterogeneous items in the forward auction
context and to different share sizes in the procurement setting. In addition,
research should strive to analyze combinatorial auction formats in even more
general efficiency settings, such as ”mixed winner efficiency” for example,
in which it is not pre-specified whether the only the double-winner or single-
winner outcome is efficient (Anton et al., 2010). Here, the goal should be to
derive general Bayesian Nash equilibrium bidding strategies independent of
a certain pre-determined efficiency environment. In this context unambigu-
ous efficiency and revenue rankings among various combinatorial auctions
should be achieved and finally an efficient and revenue-maximizing (optimal)
combinatorial mechanism proposed.
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A
A P P E N D I X A

a.1 proofs of chapter 3

a.1.1 Proof of Proposition 1

We begin with the reformulation of the principal’s optimization problem
(SPA-SB) to an information setting in which the principal does not know the
package valuation but, different to the asymmetric information setting, its true
support V(2) as well as dual-winner efficiency.

max(
β2(vi(2)),µ2(vi(2))
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βi(2) ≤ vi(2) for all vi(2) ∈ V(2). (SPA-A-NL’)

In this case, budget and transfer are functions of the report v̂i(2) ∈ V(2) ⊂
Z(2) and the relevant marginal distribution function is F2 (·). Next, we restate
the agent’s incentive compatibility constraint (SPA-IC’). Following Mirrlees
(1971) to rewrite the agent’s indirect ex-interim expected utility, his ex-interim
expected utility in (SPA-IC’) is equated with his ex-interim indirect utility to
obtain transfer payment of
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. The single crossing condition is satisfied as w(·) is strictly increasing.
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It also must be the case that F2

(
β2

(
vi(2)
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is a non-decreasing function of

vi(2), which given the assumption on F2(·) implies that β2
(
vi(2)

)
must be

non-decreasing and that µ2
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is non-increasing.42 As µ2
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with β2
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being non-decreasing completely characterize the incentive-

compatibility constraint on the principal.
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is non-increasing, optimality then requires µ2
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is weakly positive for all vi(2) ∈ V(2). Therefore (A.1.1)

can be rewritten as follows,43
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Plugging (A.1.2) into SPA’ to rewrite the principal’s optimization problem and
integrating
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subject to
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≥ 0 for all vi(2) ∈ V(2); (A.1.4)

and βi(2) ≤ vi(2) for all vi(2) ∈ V(2). (A.1.5)

Condition (A.1.4) now reflects the agent’s incentive-compatibility constraint
on the principal. The solution to the first-order condition of the unconstrained
program in (A.1.3) is
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For the report in A.1.6 it is straightforward to very that the second order
condition of the principal’s unconstrained optimization problem in (A.1.3)
is satisfied. As β2

(
vi(2)

)
> vi(2) for all vi(2) ∈ V(2), given the no-loss

condition (A.1.5), the optimal report of the constrained optimization problem
corresponds to β2

(
vi(2)

)
= vi(2), which also satisfies condition (A.1.4).

Substituting β2
(
vi(2)

)
= vi(2) into (A.1.2) and into the principal’s ex-ante

expected profit in (A.1.3) results in the optimal transfer scheme µ2
(
vi(2)

)
in (SPA-SB-T) and the ex-ante participation constraint in (SPA-SB-PC) of
Proposition 1, respectively. Finally, substituting the marginal distribution
function G2

(
vi(2)

)
for F2

(
vi(2)

)
for each vi(2) ∈ Z(2) results in Proposition

1. �

a.1.2 Proof of Proposition 2

For the following argument suppose opponent j follows the equilibrium strat-

egy b j =
(
β1, β2

(
v j(2)

))
. Regarding condition 1), suppose any bidder i’s equi-

librium bidding function for one unit bi(1) varies with vi(1) in the dual-winner
equilibrium, so that β1

(
vi(1)

)
< β1

(
v̂i(1)

)
with vi(1) , v̂i(1). Then bidder

i with value v̂i(1) for one unit has an incentive to bid bi(1) = β1
(
vi(1)

)
to

raise her profit: v̂i(1)− β1
(
vi(1)

)
> v̂i(1)− β1

(
v̂i(1)

)
. Thus, any bidder i with

single-unit values of vi(1) or v̂i(1) bids bi(1) = β1
(
vi(1)

)
independent of her

valuation. This reasoning is true for any bidder with any value and results in
the equilibrium bidding function for one unit of β1

(
vi(1)

)
= β1

(
v̂i(1)

)
= β1

for all vi(1), v̂i(1) ∈ V(1), the pooling bid.
The upper bound in condition 2) ensures that any bidder with the lowest

single-unit value v(1) will not make a negative profit in the dual-winner
equilibrium: v(1) ≥ β1. Note further that any bidder i with vector of valuations
vi =

(
v(1), v(2)

)
has the highest incentive to deviate from the dual-winner

outcome. The lower bound in condition 2) makes sure this bidder does not
deviate at any pooling price β1 ≥ v(2) − v(1). The respective bidder i could
marginally overbid twice the pooling bid with her bid on the package of
two units to obtain the profit of the single-winner outcome with certainty:
πi(2) = v(2) − 2 · β1 − ε for ε→ 0.

Note, that depending on her type, opponent j might in fact bid twice the
pooling bid on the package of two units. It is the highest bid on two units
that still supports the dual-winner outcome as stated in condition 3) below.
For this deviation not to be profitable, the pooling bid has to be of the form
β1 ≥ v(2) − v(1). Note that bidder i’s profit in the dual-winner equilibrium
is given by πi(1) = v(1) − β1. If this bidder with vector of valuations vi =(
v(1), v(2)

)
has no incentive to deviate from the dual-winner equilibrium,

then no other bidder j with valuations v j(1) ≥ v(1) and v j(2) ≤ v(2) deviates
either. Note that, if bidder i did not bid β1, but zero for example, then it would
not be in equilibrium for bidder j to bid β1.

For the dual-winner outcome to be chosen by the revenue-maximizing
auctioneer for all possible package bids, it has to be true that 2 · β1 ≥
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supvi(2)

{
β2

(
vi(2)

)}
as stated in condition 3). The supremum is defined

as the smallest upper bound or the greatest element in the set. Suppose

2 · β1 > supvi(2)

{
β2

(
vi(2)

)}
, then for any bidder i, it is a best response to devi-

ate from her equilibrium strategy by underbidding the pooling bid slightly with
her single-unit bid (and thus raising her profit in the dual-winner equilibrium).
This cannot be optimal and therefore we obtain the equilibrium requirement

of 2 · β1 = supvi(2)

{
β2

(
vi(2)

)}
. �

a.1.3 Proof of Proposition 3

Assume opponent j sticks to her equilibrium strategy b j =
(
β1, β2

(
v j(2)

))
for all possible package values v j(1) ∈ V(1) and v j(2) ∈ V(2). Then we

demonstrate that under conditions 1) to 4), bi =
(
β1, β2

(
vi(2)

))
is an equilib-

rium supporting strategy in relation to any other deviating bidding strategy
b̂i =

(
b̂i(1), b̂i(2)

)
. Note that the profit in a dual-winner equilibrium for any

bidder i is given by πi(1) = vi(1) − bi(1) for all vi(1) ∈ V(1). Let us refer to
this as equilibrium profit.

Now we consider three different cases that can result from bidder i playing
any deviating strategy b̂i =

(
b̂i(1), b̂i(2)

)
instead of the equilibrium strategy

bi =
(
β1, β2

(
vi(2)

))
. Any deviating strategy might involve changing only the

bid for one unit, the bid for two units or both bids. Nevertheless, any of the
three mentioned deviations will always end up in one of the following three
outcomes given opponent j sticks to the proposed equilibrium strategy b j =(
β1, β2

(
v j(2)

))
: no single-winner outcome for principal i, β1 + b̂i(1) > b̂i(2),

a single-winner outcome, β1 + b̂i(1) < b̂i(2), and an indifference condition
for bidder i, β1 + b̂i(1) = b̂i(2). Let us consider each case in turn:

A) β1 + b̂i(1) > b̂i(2)

Bidder i deviates to a different dual-winner outcome. However, bidder
i would never receive a dual-winner award if β1 + b̂i(1) < β2

(
v j(2)

)
for all v j(2) ∈ V(2), i.e., β1 + b̂i(1) < β2

(
v(2)

)
. Thus, it is a necessary

condition for b̂i(1) to exceed β2
(
v(2)

)
− β1 to satisfy case A). Due to

condition 3), raising b̂i(1) above β1 does not increase the probability of
winning, which is already equal to one in the dual-winner equilibrium,
but strictly lowers profits. Therefore, the rationalizable range for the

deviating bid is defined by b̂i(1) ∈
(
β2

(
v(2)

)
− β1, β1

)
. The ex-interim

expected profit, Π̂i(1), of submitting a b̂i(1) from this range for any
single-unit value vi(1) ∈ V(1) is given by equation (A.1.7):

Π̂i(1) =
(
vi(1) − b̂i(1)

)
· P

(
β2

(
v j(2)

)
≤ β1 + b̂i(1)

)
(A.1.7)
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Now, (A.1.7) can be simplified as follows: As the function β2(·) is

continuous and strictly increasing, for any b̂i(1) ∈
(
β2

(
v(2)

)
− β1, β1

)
,

a unique proxy valuation for the package of two units v̂i(2) ∈ V(2) can
be defined, so that b̂i(1) = β2

(
v̂i(2)

)
− β1. Using this expression for

b̂i(1) to rewrite equation (A.1.7) we obtain equation (A.1.8):

Π̂i(1) =
(
vi(1) − β2

(
v̂i(2)

)
+ β1

)
· F2

(
v̂i(2)

)
(A.1.8)

Deviating single-unit bids of the form b̂i(1) ∈
(
β2

(
v(2)

)
− β1, β1

)
imply

a focus on a deviation weakly below the pooling equilibrium price of β1.
In addition, any bidder i with single-unit value of vi(1) = v(1) earns
least in a dual-winner outcome and therefore has the highest incentive
to deviate to a lower bid on one unit in equilibrium. To cancel this
incentive, her equilibrium profit of πi(1) = v(1) − β1 has to exceed her
ex-interim expected profit from deviating, Π̂i(1), which is ensured in
inequality (A.1.9):

v(1) − β1 ≥

(
v(1) − β2

(
v̂i(2)

)
+ β1

)
· F2

(
v̂i(2)

)
(A.1.9)

Rearranging we obtain condition 4) for all vi(1) ∈ V(1) and v̂i(2) ∈
V(2),

β2
(
v̂i(2)

)
≥ β1 +

β1 − v(1) · (1 − F2
(
v̂i(2)

)
F2

(
v̂i(2)

) ≡ G
(
v̂i(2), β1

)
(A.1.10)

If bidder i with the lowest value for one unit has no incentive to deviate,
then in fact no player with a higher value can have an incentive to deviate
independent of the valuation for two units. The proposed dual-winner
equilibrium is preferred to a deviation from case A) by any bidder i
as long as all deviating bids for two units are bounded from below by
G

(
vi(2), β1

)
. This is true for all valuations vi ∈ V .

B) β1 + b̂i(1) < b̂i(2)

Bidder i deviates in a way that the auctioneer never selects any dual-
winner outcome. She definitely does not win both units either if b̂i(2) <
β2

(
v(2)

)
, which then defines the lower bound of her deviating bid

for the package. If b̂i(2) > β2
(
v(2)

)
, the bidder wins both units, but

lowering the respective bid until b̂i(2) = β2
(
v(2)

)
strictly dominates

in profit without changing the probability of winning. Thus, we obtain
a rationalizable range for bidder i’s deviating package bid of b̂i(2) ∈(
β2

(
v(2)

)
, β2

(
v(2)

))
with an ex-interim expected deviating profit of

Π̂i(2) =
(
vi(2) − b̂i(2)

)
· P

(
β2

(
v j(2)

)
≤ b̂i(2)

)
for all vi(2) ∈ V(2).

Let us again use the proxy notation b̂i(2) = β2
(
v̂i(2)

)
to rewrite above

profit as Π̂i(2) =
(
vi(2) − β̂i(2)

)
· F2

(
v̂i(2)

)
. Bidder i prefers the
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equilibrium profit πi(1) to the deviating profit of Π̂i(2) if the following
inequality (A.1.11) holds:

0 ≥ F2
(
v̂i(2)

)
·

β1 − vi(1)

F2
(
v̂i(2)

) + vi(2) − b̂i(2)

 (A.1.11)

The above inequality is true for all valuations vi ∈ V and v̂i(2) ∈ V(2)
if the term in squared brackets is weakly negative. We already know
the sufficient condition to satisfy case A) is β2

(
v̂i(2)

)
≥ G

(
v̂i(2), β1

)
.

It ensures opponent j’s equilibrium-supporting bid on two units to be
sufficiently high. Then, principal i’s deviation to a different dual-winner
award is less likely to succeed and therefore does not offer high enough
expected profit for the deviation to be worthwhile. Note, that a similar
reasoning applies in case B): Again, principal j’s equilibrium-supporting
bid on two units must be sufficiently high. In this case, principal i’s
deviation to a single-winner award is less likely to succeed and therefore
not profitable enough in expectation. As a result the sufficient condition
from case A) can be used in case B) as well. Thus, the term in squared
brackets in condition (A.1.11) is in fact weakly negative for all vi ∈ V
and v̂(2) ∈ V(2) because the following inequality (A.1.12) is true:

β1 − vi(1)

F2
(
v̂i(2)

) + vi(2) ≤ G
(
v̂i(2), β1

)
(A.1.12)

Using the definition of G
(
v̂i(2), β1

)
and rearranging, we obtain (A.1.13):

v(1) − vi(1) ≤ F2
(
v̂i(2)

)
·
(
β1 + v(1) − vi(2)

)
(A.1.13)

The LHS of the above inequality is weakly negative. Now we have to
distinguish two cases regarding the RHS of inequality (A.1.13): If β1 +

v(1) − vi(2) ≥ 0, the inequality always holds. If β1 + v(1) − vi(2) < 0,
we have to show that β1 + v(1) − vi(2) ≥ v(1) − vi(1). This is true for
all vi ∈ V given the lower bound of condition 1). As inequality (A.1.13)
holds, inequality (A.1.12) must also be true. Remember from A) that
β2

(
v̂i(2)

)
≥ G

(
v̂i(2), β1

)
must be given, which implies that inequality

(A.1.11) is satisfied. Therefore, any deviation considered in case B) is
not profitable.

C) β1 + b̂i(1) = b̂i(2)

In this case, bidder i deviates as if she were indifferent between the
dual-winner and single-winner outcome. Remember from condition
1) that any bidder i with valuations of vi =

(
v(1), v(2)

)
is indifferent

between the dual-winner equilibrium and any single-winner outcome at
the pooling price. Hence, the deviating behavior in case C) does in fact
define her equilibrium strategy. Rewrite as the deviation in case C) to
β1 = b̂i(2) − b̂i(1) and bear in mind the lower bound from condition
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1): β1 ≥ v(2) − v(1). Combining these two equations by substituting
for β1 and rearranging, we obtain inequality (A.1.14):

v(1) − b̂i(1) ≥ v(2) − b̂i(2) (A.1.14)

Now, consider player i with values of vi =
(
vi(1), vi(2)

)
in which

vi(1) > v(1) and vi(2) ≤ v(2). For any such bidder condition (A.1.14)
holds with strict inequality and she strictly prefers any deviating dual-
winner award (LHS) to any single-winner award, which contradicts case
C). Note that for bidder i with valuations of vi =

(
vi(1), vi(2)

)
in which

vi(1) ≥ v(1) and vi(2) < v(2), the same reasoning holds.

Note in particular that by strictly decreasing the deviating bid on two
units from b̂i(2) to b̂i(2)′, so that the deviation from case C) becomes
β1 + b̂i(1) > b̂i(2)′, the bidder changes from a case C)-deviation to
a case A)-deviation. As the latter always leads to some dual-winner
outcome, it dominates case C) for all vi =

(
vi(1), vi(2)

)
with vi(1) >

v(1) and vi(2) ≤ v(2), and for all vi =
(
vi(1), vi(2)

)
in which vi(1) ≥

v(1) and vi(2) < v(2). Finally, as a case A)-deviation is not beneficial,
a case C)-deviation cannot possibly be either.

�

a.1.4 Proof of Proposition 4

In a single-winner equilibrium, any bidder i solely aims for the package of
two units for all package valuations of vi ∈ V . This scenario is strategically
equivalent to the well-known first-price sealed-bid auction for a single package,
in which two units are sold as the only bundle. In this standard auction format,
the equilibrium strategy of any bidder i takes the form of bi(2) = β2

(
vi(2)

)
from condition (1)).

Note that the single-winner equilibrium requires any bidder i to possess
ultimate “veto” power on the dual-winner outcome to make it unprofitable
for her opponent to deviate from equilibrium. Suppose opponent j follows
the proposed equilibrium strategy and submits a very low “veto” bid on one
unit, such as b j(1) = 0, for example. Then bidder i would have to submit a
deviating single-unit bid, b̂i(1), to retain the chance of winning the dual-winner
outcome that satisfies the next inequality (A.1.15):

b̂i(1) > β2
(
v(2)

)
= v(2) (A.1.15)

In inequality (A.1.15), β2
(
v(2)

)
is the optimal bid on the package of bidder i

with lowest valuation for two units. Add the valuation for one unit vi(1) on
both sides of inequality (A.1.15) and rearrange to obtain inequality (A.1.16):

vi(1) − v(2) > vi(1) − b̂i(1) (A.1.16)
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The LHS of inequality (A.1.16) is strictly negative if v(2) > vi(1) for all single-
unit valuations vi(1) ∈ V(1), i.e., if v(2) > v(1) is true. The last inequality
holds by assumption. As the LHS of (A.1.16) is strictly negative, the RHS of
inequality (A.1.16) must be strictly negative. Note that the RHS corresponds
to bidder i’s profit in the forced deviating dual-winner outcome. Thus, if
opponent j submits a “veto” bid in form of condition (2)), any deviating
single-unit bid b̂i(1) of bidder i to enforce the dual-winner outcome results in
strictly negative profit. As she receives weakly positive expected profit in the
single-winner equilibrium, a deviating bid of b̂i(1) is strictly dominated by any
single-unit bid that supports the single-winner equilibrium. By symmetry, only
a bid of the form bi(1) < v(2) − v(1) supports the single-winner equilibrium
for all vi ∈ V with certainty. �

a.1.5 Proof of Proposition 5

Remember from Proposition 3 that any principal i submits the payoff-
maximizing pooling bid of β1 = v(2) − v(1) in the dual-winner equilibrium
and obtains respective equilibrium profit of vi(1) − v(2) + v(1) with certainty.
The principal’s ex-interim expected equilibrium profit in the single-winner
equilibrium is

∫ vi(2)
v(2) F2 (x) dx, as in the standard FPSB auction, in which two

units are sold as the sole package to two bidders. For principal i let us define
the difference between expected profits in the dual-winner and single-winner
equilibrium as a function ∆

(
vi(1), vi(2)

)
: V → R on the compact set V ⊂ R2,

with

∆
(
vi(1), vi(2)

)
= vi(1) − v(2) + v(1) −

∫ vi(2)

v(2)
F2 (x) dx (A.1.17)

The above function is continuous, due to the differentiability of its constituents.
It follows that it possesses a global maximum and a global minimum on
V . Moreover, ∆

(
vi(1), vi(2)

)
is strictly increasing in its first argument and

strictly decreasing in its second argument. Consequently, the function does
not have a critical point in the interior of its domain, but on the boundary. Its
maximum occurs at

(
v(1), v(2)

)
and the minimum at

(
v(1), v(2)

)
, with values

of ∆
(
v(1), v(2)

)
= v(1) − v(2) + v(1) and ∆

(
v(1), v(2)

)
= v(1) − v(2) +

v(1) −
∫ v(2)

v(2) F2 (x) dx, respectively. Remember that dual-winner efficiency

is defined by v(2) < 2 · v(1). This implies the maximum ∆
(
v(1), v(2)

)
is

always strictly positive and the minimum ∆
(
v(1), v(2)

)
is strictly positive for

all package valuations vi ∈ V if inequality (A.1.18) holds:

v(1) − v(2) + v(1) −
∫ v(2)

v(2)
F2 (x) dx > 0 (A.1.18)
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Using integration by parts, inequality (A.1.18) can be rewritten to (A.1.19):∫ v(2)

v(2)
f2 (x) · xdx > 2 · v(2) − 2 · v(1) (A.1.19)

Thus, ∆
(
vi(1), vi(2)

)
is strictly positive for all package valuations vi ∈ V if∫ v(2)

v(2) f2 (x) · xdx > 2 · d with β1 = d. �

a.1.6 Proof of Lemma 1

We prove the lemma by eliminating weakly dominated strategies. Suppose
agent i follows the set of strategies b̂i =

(
bi(1), b̂i(2)

)
with fixed bi(1) ∈[

0, ai(1)
]

and b̂i(2) < ai(2). Let us first focus on the setting in which opponent
j submits bids of bi(1) + b j(1) < b j(2). Then,

a) if b j(2) < b̂i(2) agent i wins both units. However, he also wins the
package with strategy bi =

(
bi(1), ai(2)

)
, and the higher bid on two

units does not impact his utility.

b) If b j(2) = b̂i(2) agent i might win two units through randomization by
the auctioneer. With strategy bi agent i would win the package, which
provides a strictly higher utility.

c) If b j(2) > b̂i(2) agent i wins nothing, but might have won the pack-
age with strategy bi in case ai(2) > b j(2), such that b̂i was strictly
dominated. Otherwise he is indifferent between strategies b̂i and bi.

Let us now consider the setting in which opponent j submits bids of bi(1) +
b j(1) ≥ b j(2). Here,

d) if bi(1) + b j(1) < b̂i(2) agent i wins the package in any case and is
indifferent between b̂i and bi.

e) If bi(1) + b j(1) ≥ b̂i(2) agent i wins one unit, but could win the
package with strategy bi as long as bi(1) + b j(1) < ai(2), which would
strictly dominate b̂i. For bi(1) + b j(1) ≥ ai(2) agent i is indifferent
between strategies b̂i and bi.

Thus, any strategy set b̂i =
(
bi(1), b̂i(2)

)
with b̂i(2) < ai(2) is weakly

dominated by the set of strategies bi =
(
bi(1), ai(2)

)
for all bi(1) ∈

[
0, ai(1)

]
.
�

a.1.7 Proof of Lemma 2

We prove this lemma by eliminating weakly dominated strategies. From
Lemma 1, we know that any strategy bi(2) < ai(2) is weakly dominated. Now,
we can concentrate on strategies b′i =

(
0, ai(2)

)
, b′′i =

(
ai(1), ai(2)

)
, and the

strategy set b̂i =
(
b̂i(1), ai(2)

)
with b̂i(1) ∈

(
0, ai(1)

)
. In what follows, we
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show that b̂i is weakly dominated. Let us first analyze agent j submitting bids
of b̂i(1) + b j(1) < a j(2). Then,

a) if a j(2) < ai(2) agent i wins both units just as with strategy b′i =(
0, ai(2)

)
. A strategy b′′i =

(
ai(1), ai(2)

)
might still lead to winning the

package, but it could also lead to ai(1) + b j(1) > ai(2), such that the
agent wins only one unit. In this case, strategy b′′i is strictly dominated.
b̂i is weakly dominated in each of the cases, because a payment is not
considered in utility ui.

b) If a j(2) = ai(2) he might win the package or nothing due to the ran-
domization of the auctioneer as with strategy b′i . Strategy b′′i does either
not change the outcome or it leads to winning one unit with certainty in
case of ai(1) + b j(1) > ai(2). In the latter case, b′′i dominates the other
strategies if ui(1) > 0.5 · ui(2). If ui(1) < 0.5 · ui(2), then the agent is
indifferent between b̂i and b′i . Strategy b̂i is again weakly dominated in
each of the cases.

c) If a j(2) > ai(2) he wins nothing independent of strategy b̂i or b′i . With
strategy b′′i agent i will not win anything if ai(1) + b j(1) < a j(2), or
he will win one unit if ai(1) + b j(1) > a j(2). In the earlier case the bid
on a single unit is irrelevant, in the latter case, b′′i strictly dominates the
other strategies b′i and weakly dominates b̂i.

Let us now consider opponent j submitting bids of b̂i(1) + b j(1) ≥ a j(2).
Then,

d) if b̂i(1) + b j(1) < ai(2), the outcomes of this case correspond to a) for
agent i.

e) If b̂i(1) + b j(1) = ai(2) he wins one unit just as with strategy b′′i . If
ai(2) > a j(2), then b′i strictly dominates b̂i. Also, if ai(2) = a j(2) and
ui(1) < 0.5 · ui(2), then b′i strictly dominates b̂i. If ai(2) = a j(2) and
ui(1) > 0.5 · ui(2), then b′′i strictly dominates b′i . Strategy b̂i is weakly
dominated in all cases.

f) If b̂i(1) + b j(1) > ai(2) he wins one unit just as with strategy b′′i . With
strategy b′i we have to distinguish different cases. Case a j(2) > ai(2)
corresponds to the outcome in c) and b′i is strictly dominated by b′′i ,
where agent i would win one unit. If in case a j(2) < ai(2), then b′i
strictly dominates the other strategies. Finally, case a j(2) = ai(2) is
reflected in b) and b′i is strictly dominated by b′′i if ui(1) > 0.5 · ui(2).
With ui(1) < 0.5 · ui(2) then strategy b′i would strictly dominate b′i .
Also here strategy b̂i is weakly dominated.

In summary, the strategy set b̂i =
(
b̂i(1), ai(2)

)
with b̂i(1) ∈

(
0, ai(1)

)
is

always weakly dominated by the set of strategies bi =
(
bi(1), ai(2)

)
with

bi(1) ∈
{
0, ai(1)

}
. �
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a.1.8 Proof of Proposition 6

Suppose opponent j follows the proposed equilibrium strategy and bids b j =(
0, a j(2)

)
. In this case bidder i cannot win one unit independent of which

strategy he chooses from the set of weakly dominant strategies defined in
Lemma 2. Remember, he always bids his full budget on two units which
exceeds his single unit budget by assumption. With bi =

(
ai(1), ai(2)

)
he

either wins the package or nothing because ai(1) ≤ ai(2). Therefore, agent
i is indifferent between both strategies and bi =

(
0, ai(2)

)
is an equilibrium.

In this equilibrium no agent i would want to deviate even if he knew the
opponent’s type. Again, assume opponent j to follow the proposed equilibrium
strategy. For package budgets of the form ai(2) > a j(2), bidder i wins two
units following the equilibrium strategy and has no incentive to adjust. In case
of ai(2) < a j(2), agent i does not win anything independent of his strategy
and therefore is indifferent to deviating. �

a.1.9 Proof of Proposition 7

We prove the theorem by contradiction. Assume there is a set of budget
combinations S ⊂ A for which bidders submit bids bi =

(
ai(1), ai(2)

)
. For

all draws of package budget combinations not in S bidders bid on the large
package only, i.e., bi =

(
0, ai(2)

)
. Let us focus on a bidder i with any draws

of package budgets ai ∈ A and suppose his opponent j possesses budget
draws of a j ∈ S . Based on Lemma 2 opponent j employs the strategy
b j =

(
a j(1), a j(2)

)
. Bidder i’s ex-interim expected payoff of bidding on

the large package only is EU p
i = ui(2) · P

(
ai(2) ≥ a j(2)

)
, whereas, his ex-

interim expected payoff of using bi =
(
ai(1), ai(2)

)
, is

EU s pi =ui(2) · P
(
ai(2) ≥ a j(2) ∩ ai(2) ≥ ai(1) + a j(1)

)
+

+ ui(1) · P
(
ai(1) + a j(1) ≥ ai(2) ∩ ai(1) + a j(1) ≥ a j(2)

)
(A.1.20)

in which P(X) denotes the probability of event X to occur. To keep the
proof traceable we will not express the relevant probabilities with distribution
function Q(a j)|a j(1)≤a j(2)

. Define the difference between bidder i’s ex-interim
expected payoffs, ∆EU i, as ∆EU i = EU s pi − EU p

i . We now demonstrate
that ∆EU i ≤ 0 for all ai ∈ A which corresponds to showing that set S is empty,
i.e., there cannot exist a Bayesian Nash equilibrium strategy in which any
agent i bids bi =

(
ai(1), ai(2)

)
.

First, observe that bidder i’s package draw for two-units of ai(2) ∈(
âi(2), a(2)

)
, in which âi(2) is some budget close to a(2), cannot belong

to set S independent of the budget for one unit. For the highest possible
budget draw for two units, ai(2) = a(2), the difference in bidder i’s ex-
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pected payoffs is weakly negative for all possible single-unit budgets, i.e.,
∆EU i ≤ 0∀ai(1) ∈ A(1), as

ui(2) · P
(
a(2) ≥ ai(1) + a j(1)

)
+ ui(1) · P

(
ai(1) + a j(1) ≥ a(2)

)
≤ ui(2).
(A.1.21)

Let us distinguish two different cases. If a(2) < 2 · a(1) then
P

(
a(2) ≥ ai(1) + a j(1)

)
< 1 and P

(
ai(1) + a j(1) ≥ a(2)

)
> 0. As ui(1)is

strictly smaller than ui(2) the LHS is strictly smaller than the RHS and
(A.1.21) holds strictly for bidder i with highest package budget and any single-
unit budget draw. If a(2) ≥ 2 · a(1) then
P

(
a(2) ≥ ai(1) + a j(1)

)
= 1 and P

(
ai(1) + a j(1) ≥ a(2)

)
= 0, so (A.1.21)

holds with equality. Bidder i is indifferent between bidding on the package
only and bidding on one and two units for all possible single-unit budget draws
because he wins the large package anyway. WLOG in this case we can assume
bidder i with package budget draws ai(2) ≥ ǎi(2) to bid on the large package
only, independent of the single-unit budget draw, with ǎi(2) being defined as
the lowest package budget such that P

(
ǎi(2) ≥ ai(1) + a j(1)

)
= 1. Note that

for both cases (A.1.21) also holds strictly for slightly lower two-unit budgets
than a(2), ai(2) ∈

(
âi(2), a(2)

)
, independent of the budget draw for one unit.

Second, define the set of budget combinations with the highest package
budget draw in S as H ⊆ S . Let us from now on focus on bidder i with budget
draws of ai ∈ H. By definition, if his package budget draw, ai(2), is marginally
increased he does not belong to set S anymore. Bidder i’s expected payoff

from bidding on the large package only, bi =
(
0, ai(2)

)
, remains unaltered

whereas his expected payoff from bidding on the single unit and the package
corresponds to

EU sp
i =ui(2) · P

(
ai(2) ≥ a j(2) ∩ ai(2) ≥ ai(1) + a j(1)

)
+

+ ui(1) · P
(
ai(2) ≥ a j(2) ∩ ai(1) + a j(1) ≥ ai(2)

)
. (A.1.22)

The bidder’s probability of winning the single unit must include the opponent
not having a higher package budget draw than himself, a j(2) ≤ ai(2). Other-
wise, by symmetry, opponent j would not bid on the single unit independent
of his corresponding budget and bidder i could not win one unit anyway. Note
at this stage, there might be budget combinations with lower budget draws for
two units for which opponent j bids on the large package only. However, if we
can show that bidder i prefers to bid on the large package only, if we assume
all bidders with lower package budget draws to bid on both packages, he will
not change this behavior if some bidders with lower package budgets bid on
the large package only.
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By definition for bidder i with a budget draw from set S the difference
in his expected payoff must be positive for all his budget combinations, i.e.
∆EU i > 0 for all ai ∈ H ⊆ S , which corresponds to

ui(2) · P
(
ai(2) ≥ a j(2) ∩ ai(2) ≥ ai(1) + a j(1)

)
+

+ ui(1) · P
(
ai(2) ≥ a j(2) ∩ ai(1) + a j(1) ≥ ai(2)

)
>

> ui(2) · P
(
ai(2) ≥ a j(2)

)
. (A.1.23)

We use conditional probability to rewrite the LHS of A.1.23 and cancel out
P

(
ai(2) ≥ a j(2)

)
to obtain

ui(2) · P
(
ai(2) ≥ ai(1) + a j(1)|ai(2) ≥ a j(2)

)
+

+ ui(1) · P
(
ai(2) ≤ ai(1) + a j(1)|ai(2) ≥ a j(2)

)
> ai(2). (A.1.24)

As ui(1)is strictly smaller than ui(2) the LHS is strictly smaller than the RHS
in and in fact ∆EU i < 0 for all ai ∈ H ⊆ S . Hence, bidder i has an incentive
to deviate and bid for the large package only. Thus, set H cannot belong to
S . Finally, as it is always possible to define a subset H in S in which bidder i
has the highest budget for two units in the set S , there cannot be a set S ⊂ V
as defined above, and the argument unravels for all types. Therefore, the
proposed Bayesian Nash equilibrium strategy is in fact unique. �

a.1.10 Proof of Lemma 3

Any agent i can be coordinated on winning one unit together with his opponent
with certainty. For this, the sum of both single-unit bids must exceed each
agent’s package bid. Remember from Lemma 1 that any agent always spends
his entire package budget constraint and from Lemma 2 that if he submits
a non-zero bid on one unit, he bids his entire single-unit budget constraint.
Therefore, both principals have to implement a budget constraint scheme
so that the sum of both single-unit budget constraints exceeds each agent’s
package budget constraint in the dual-winner outcome.

In this allocation, principal i chooses the vector of budget constraints ai such
that condition ai(1) + a(1) ≥ ai(2) is satisfied. She does not know firm j’s
budget for one unit. Thus, she has to make sure her two-unit budget constraint
is below the sum of both single-unit budget constraints. This has to be true
for all possible single-unit budget constraints of her opponent, especially the
smallest budget constraint of a(1). Thus, we get ai(1) + a(1) ≥ ai(2).

For agent i to in fact submit a positive single-unit bid, his certain util-
ity from bidding on this package must exceed his ex-interim expected util-
ity from winning two units. This is ensured in condition ui(1) ≥ ui(2) ·
P

(
ai(2) ≥ a j(2) ∩ ai(2) ≥ a j(1)

)
. On the RHS, agent i does not bid on one

unit, but can win two units instead. Here,
P

(
ai(2) ≥ a j(2) ∩ ai(2) ≥ a j(1)

)
is the probability with which his package

budget constraint exceeds opponent j’s single- and package budget constraints.
The budget constraint ai(2) is chosen so that
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P
(
ai(2) ≥ a j(2) ∩ ai(2) ≥ a j(1)

)
is low enough for the RHS to be lower than

the LHS. Thus, agent i prefers to bid on one unit and win with certainty. �

a.1.11 Proof of Proposition 8

For the following line of argument suppose the opposing principal j manages
to implement the equilibrium strategy from Proposition 3. In Proposition
3, every principal chooses the same pooling price of β1 = v(2) − v(1) in
the dual-winner equilibrium. Thus, according to Lemma 3, any principal i
has to provide her agent with the same single-unit budget constraint which
must correspond to the pooling bid, i.e., ai(1) = v(2) − v(1) for all i ∈ I.
Moreover, any principal i selects a package budget constraint that matches her
equilibrium bid on two units, ai(2) = β2

(
vi(2)

)
. We will now demonstrate

that the principal cannot implement her dual-winner equilibrium strategies
from Proposition 3 given conditions (CFPA-D-IC) and (CFPA-D-NL) for all
vi ∈ V .

Let us focus on the following conditions for a principal with vector of
valuations vi =

(
vi(1) = v(1), vi(2) = v(2)

)
and the focal point pooling bid

of β1 = v(2) − v(1):

a(2) < a(1) (A.1.25)

a(1) ≤ v(1) (A.1.26)

β2
(
v(2)

)
= 2 ·

(
v(2) − v(1)

)
(A.1.27)

For principal i the budget for two units is determined by a(2) = β
(
v(2)

)
ac-

cording to Proposition 3. Condition (A.1.25) corresponds to (1)) from Lemma
3 and resembles the incentive compatibility constraint (CFPA-D-IC) for prin-
cipal i. Condition (A.1.26) is the no-loss condition (CFPA-D-NL) for one
unit and (A.1.27) is the equilibrium bid on two units from Proposition 3 with
single-unit bid of β1 = v(2)− v(1). Let us summarize conditions (A.1.25) and
(CFPA-D-NL), and use a(2) = β2

(
v(2)

)
to combine with condition (A.1.27)

to obtain
2 ·

(
v(2) − v(1)

)
< v(1) (A.1.28)

Condition (A.1.28) cannot be satisfied whenever the condition in Proposition
8 holds. In this case, any firm i with package value of vi(2) = v(2) cannot
implement budget constraints that satisfy two restrictions: They correspond
to its principal’s equilibrium strategy and at the same time direct its agent to
bid truthfully on both packages. Hence, the dual-winner equilibrium cannot
be supported as a solution to the principal-agent 2 × 2 first-price sealed-bid
package auction model. �

a.1.12 Proof of Proposition 9

Assume opponent j submits the equilibrium bids from (CFPA-SB-bids) to
the auction. Now, suppose agent i chooses a deviating report of d̂ > d such



A.1 proofs of chapter 3 147

that β1
(
d̂
)
> β1(d) for one unit, which by construction implies a deviating

package bid of β2
(
d̂
)
= 2 · β1

(
d̂
)
. This deviation results in the single-winner

outcome for agent i with certainty as 2 ·β1
(
d̂
)
> β1

(
d̂
)
+ β1(d) and 2 ·β1

(
d̂
)
>

β2(d). For this deviation to be unprofitable, incentive-compatibility constraint
(CFPA-SB-IC) corresponds to

ui(1) + mi(1) ≥ ui(2) + mi(2). (A.1.29)

Any profit-maximizing principal chooses mi(2) = 0 and mi(1) as small as
possible. Therefore, A.1.29 can be rewritten as

mi(1) = ui(2) − ui(1). (A.1.30)

The agent type with highest incentive to deviate has package valuations of
vi =

(
v(2), v(1)

)
. He has to receive a transfer of mi(1) = w

(
v(2)

)
−w

(
v(1)

)
in order to report the true d to the contract. As principal i does not know
the package valuation vi(l) for all l ∈ L, each agent has to receive the same
transfer and the principal could now offer a menu of payments m(1) =

w
(
v(2)

)
− w

(
v(1)

)
with corresponding reports of β1(d) = d + m(1) and

β2(d) = 2 ·
(
d + m(1)

)
to the auction.

However, as any value of d could be the result of various v(2) ∈ V(2) and
v(1) ∈ V(1) pairings, any agent i has an incentive to choose the pairing that
offers the highest payment and still satisfies d = v(2) − v(1). Hence, as the
principal also does not know the exact valuation support of V(l) for all l ∈ L,
the transfer must be constant over all possible values of d ∈ D and high enough

such that agent i with package valuations of vi =
(
v(2), v(1)

)
will not deviate.

Therefore, the optimal payment scheme consists of constant transfers in height

of µ1 = w
(
v(2)

)
−w

(
v(1)

)
and µ2 = 0.

Finally, suppose agent i chooses a deviating report of d̂ < d that results in a
bid for one unit of β1

(
d̂
)
< β1(d) and implies a deviating bid on the package of

β2
(
d̂
)
= 2 · β1

(
d̂
)
. This deviation results in the single-winner award for firm j,

as 2 ·β1
(
d̂
)
< β1

(
d̂
)
+β1(d) and 2 ·β1

(
d̂
)
< β2(d). According to the incentive

compatibility constraint A.1.30, this deviation cannot be optimal for any agent
i. This leaves the reports of β1(d) = d + m(1) and β2(d) = 2 ·

(
d + m(1)

)
with transfers of µ1 = w

(
v(2)

)
−w

(
v(1)

)
and µ2 = 0 as the only solution to

the principal’s optimization problem. �

a.1.13 Proof of Proposition 10

In this proof we first demonstrate that the proposed dual-winner equilibrium
constitutes an ex-post equilibrium and consecutively show its uniqueness as
dual-winner equilibrium. Let both bidders follow the described equilibrium
strategy and become active on the single unit first. This situation corresponds
to case (A)) of the possible outcomes of the 2 × 2 ascending package auction
in Appendix A.2. Here, the auction immediately stops at a price of zero for
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one unit. Any bidder i receives equilibrium profit of vi(1) with certainty.
We assume opponent j follows the proposed equilibrium strategy to show its
existence.

Assume principal i tries to win two units by excluding the dual-winner
outcome with a sufficiently low bid on one unit. In this case the highest
obtainable profit in the singe-winner outcome is vi(2) − v j(2). As soon as
i becomes active on the package of two units, bidder j also starts bidding,
which corresponds to case (E)) of Appendix A.2. Given dual-winner efficiency,
the profit is always smaller than the proposed equilibrium profit and such a
deviation cannot be viable independent of the height of the bids. Next, suppose
principal i tries to win one unit by implementing the dual-winner outcome
with a sufficiently high single-unit bid. Here, any immediate accompanying
positive bid on two units prevents the termination of the auction at zero dual-
winner outcome prices (and bidder j then also becomes active on two units
as described in case of Appendix A.2). This reduces equilibrium profit and
therefore does not constitute a viable deviation. In fact, any strategy that
involves becoming active on two units simultaneously to start bidding on one
unit is strictly dominated in profit. However, any strategy that dictates to start
bidding solely on one unit is a best response against principal j’s equilibrium
strategy, independent of what it prescribes to bid on two units (and even
how high to bid on one unit). As in case of Appendix A.2, the dual-winner
outcome results at zero prices with certainty and the bidding behavior on
two units simply constitutes a threat. Finally, note that the proposed dual-
winner equilibrium strategy would not change for any bidder i by knowing
the other bidder j’s package valuations and, therefore, constitutes an ex-post
equilibrium.

Now, we demonstrate that the proposed dual-winner equilibrium strategy
weakly dominates any other strategy aimed at enforcing the dual-winner
outcome.

Assume bidder j does not follow the proposed equilibrium strategy anymore.
Note, we have already shown that if principal j bids such as to implement the
dual-winner outcome, any strategy by i that enforces the dual-winner outcome
at zero prices as in case case of Appendix A.2 is a best response independent
of the height of the bids. However, suppose j tries to enforce the single-
winner outcome by bidding sufficiently low on one unit and simultaneously
becoming active on two units. In this case principal i cannot enforce the dual-
winner outcome and her ”‘threat”’-bidding on two units becomes active. This
corresponds to case of Appendix A.2. Staying active on two units until the
opponent drops out or until her respective valuation is reached, bi(2) = vi(2),
maximizes her chances of obtaining profit of vi(2) − v j(2) instead of zero
and does not influence the price paid for two units. Any bid of bi(2) < vi(2)
reduces the respective chances and a bid of bi(2) > vi(2) on two units might
result in losses. Finally suppose principal j simply becomes active on both
packages until his respective values are reached. Here, if i follows the proposed
dual-winner equilibrium strategy, the setting corresponds to case of Appendix
A.2 and the dual-winner outcome will result with certainty, given dual-winner
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efficiency, but at positive price. Corresponding profit is vi(1) − v j(2)/2.
Remember, in this case the height of i’s bid on two units is irrelevant for
determining the allocation. However, if principal i lowers her bid on one
unit marginally to bi(1) < vi(1) it simply reduces the chances of winning
one unit but does not affect the dual-winner price and is therefore dominated.
If the corresponding bid is lowered significantly, the setting matches case ,
the single-winner outcome results and we are not looking at a dual-winner
outcome enforcing deviation anymore. Any bid bi(1) > vi(1) is dominated as
it might result in losses.

Given the described bidding behavior by principal j, it might be profitable
for i to deviate from a dual-winner outcome enforcing strategy if vi(2) −
v j(2) > vi(1) − v j(2)/2. This is why a single-winner enforcing strategy as
described in Proposition 11 is not weakly dominated. Moreover, j’s strategy
might in fact be part of such a deviation. �

a.1.14 Proof of Proposition 11

We have already shown in the proof of Proposition 11 that the proposed single-
winner equilibrium strategy is not weakly dominated. Next, we demonstrate
that this strategy in fact constitutes an ex-post equilibrium.

Suppose both bidders do not begin to bid on one unit, but start bidding on
two units and continue to be active until the lowest respective value is reached,
i.e., p(2) = min

{
vi(2), v j(2)

}
. With this strategy any bidder i obtains an

ex-interim expected equilibrium profit of F2
(
vi(2)

)
·
(
vi(2) − v j(2)

)
. Bidder i

has the highest package value with probability of F2
(
vi(2)

)
. In this case, she

wins two units at a price of the second highest value, v j(2), and receives a
profit of vi(2)− v j(2). From now on, assume opponent j follows the proposed
equilibrium strategy. Bidder i has no chance to enforce the dual-winner
outcome because at a single-unit price that satisfies 2p(1) > v(2) opponent j
has already dropped out and ”‘vetoed”’ the dual-winner outcome. From this
point on bidder i competes for two units if remaining active as is demonstrated
in case (E)) of the possible outcomes of 2 × 2 ascending package auction
in Appendix A.2. Bidder i is indifferent between submitting any single-unit
bid of bi(1) ∈

{
0, vi(1)

}
as long as she continues to be active on the large

bundle until the price reaches her corresponding value of bi(2) = vi(2). She
obtains an ex-interim expected profit of F2

(
vi(2)

)
·
(
vi(2) − v j(2)

)
. However,

if bidder i decides to drop out on two units before the price reaches her value
of vi(2), she strictly lowers her probability of winning. This strictly decreases
her ex-interim expected profit and cannot be optimal. In the single-winner
equilibrium, by symmetry, both bidders quit bidding on one unit before its
price reaches v(2)/2 and remain active on the package of two units until its
price reaches their respective valuations. With dual-winner efficiency being
common knowledge, the proposed equilibrium strategies are independent
of the bidders’ actual package valuations and therefore are rationalizable
ex-post. �
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a.1.15 Proof of Corollary 1

In the dual-winner equilibrium from Proposition 10, the bidder with the lowest
value for one unit obtains the lowest profit of v(1) with certainty. According
to Proposition 11, the highest possible profit achievable in the single-winner
equilibrium is v(2) − v(2). Using the definition of dual-winner efficiency we
obtain

v(2) − v(2) < 2v(1) − v(2) < 2v(1) − v(1). (A.1.31)

The last inequality stems from the fact that v(2) > v(1). Therefore, the profit
in the dual-winner equilibrium is strictly greater than in the single-winner
equilibrium for all possible bidder’s valuations vi ∈ V . �

a.1.16 Proof of Proposition 12

Definition 1 implies that both agents start bidding on the package. Each of
them remains active until his budget for two units is reached. Any bidder i,
who is outbid on the package with ai(2) < a j(2), can then start bidding on one
unit. However, as ai(1) < ai(2), bidder i cannot become winning unilaterally
with his bid on one unit. Both bidders have a higher utility for the package,
and therefore agent j, who is the standing winner on the package, would not
bid on a single unit. Note that the low bidder i on the package can also not
win by starting to bid on the single unit only, because he would be overbid by
opponent j as well, who submits his equilibrium bid on the package only. In
summary, even knowing the opponent’s type, no agent can benefit by deviating
from his equilibrium strategy. Thus, straightforward bidding constitutes an
ex-post equilibrium in the second stage of the principal-agent 2 × 2 ascending
package auction model. �

a.1.17 Proof of Proposition 13

In Proposition 11, any principal i does not bid on the package of two units.
She remains active on the package of one unit at most until the price reaches
her corresponding valuation of bi(1) = vi(1). To implement the principal’s
equilibrium strategy for her agent, the principal provides a zero budget con-
straint on the large package. This eliminates the agent’s possibility to win
the package and the principal can simply provide her agent with a budget
constraint in the amount of her valuation for one unit. From the beginning
there is no over-demand and the auction terminates immediately. �

a.1.18 Proof of Proposition 14

Suppose opponent j follows the proposed equilibrium strategy. At the begin-
ning of the auction both agents are active on both units and the uniform unit
price starts to increase. Let us now distinguish two cases:
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a) Whenever agent i faces budget constraints of the form ai(1) ≥ ai(2)/2
straightforward bidding is clearly optimal. If the opposing agent j drops
out before the unit price rises up two ai(2)/2, i.e. ai(2)/2 > a j(1), the
auction terminates and agent iwins two units. If the unit price passes
ai(2)/2, because ai(2)/2 ≤ a j(1), agent i can no longer demand two
units as this would exceed his double-unit budget constraint of ai(2). He
reduces demand to one unit and remains active until the price reaches
his corresponding budget of ai(1) such that he can still win the small
award if ai(1) ≥ min

{
a j(2)/2, a j(1)

}
.

In case agent i does not engage in straightforward bidding but begins
demanding one unit only until his respective budget of ai(1) is reached,
the budget constraint for one unit prohibits him from demanding two
units later on. Such a strategy prevents him from winning two units
and as agent i strictly prefers two to one unit such behavior cannot be
optimal. The same is true for not demanding two units from the start as
he might miss out winning the package.

b) If agent i is provided with budgets of the form ai(1) < ai(2)/2,
straightforward bidding is optimal, too. Suppose the uniform unit price
reaches ai(1). If opponent j also reduces demand at exactly this price,
ai(1) = a j(1), when facing budgets of a j(1) < a j(2)/2, both agents
win one unit each. If agent j has already reduced demand to one
unit, ai(1) > a j(2)/2, with budgets of a j(1) ≥ a j(2)/2, agent i wins
one unit. Whereas if opponent j has already reduced demand before
ai(1) > a j(1), agent i wins two units. Otherwise agent i is overbid
and wins nothing. Using the same argument as in a) it follows that any
bidding behavior other than straightforward bidding cannot improve
agent i.

�

a.1.19 Proof of Proposition 15

It will be convenient to focus on the principal’s and agent’s true lowest pooling
prices of βp

1(d) = d − η
(
v(2)

)
+ η

(
v(1)

)
and βa

1(d) = d with d = v(2) −
v(1) ∈ D, respectively, as they maximize each party’s profit. The principal
can implement higher pooling prices by the same logic as in the following
proof, but this is not optimal as the profit-maximizing lowest pooling price
serves as a natural focal point.

Define principal i’s lowest possible pooling price as βp
1(d) = d − η

(
v(2)

)
+

η
(
v(1)

)
and her highest possible pooling price as βp

1(d) = d − η
(
v(2)

)
+

η
(
v(1)

)
in the asymmetric information environment. The agent’s respective

pooling prices are βa
1(1) = d and βa

1(1) = d. Note that the principal’s
true lowest pooling price, βp

1(d), is strictly smaller than the agent’s true
lowest pooling price, βa

1(d), given η
(
v(2)

)
> η

(
v(1)

)
, and it is also true that
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β
p
1(d) < βa

1(d) and βp
1(d) < βa

1(d). Therefore, it is generally impossible for
the uninformed principal to implement a report in height of her desired true
lowest pooling price of β1(d) = β

p
1(d) by the use of a menu of contingent

budget constraints only and the contract results in an inherent welfare loss for
the principal as the agent always over-reports β1(d) = βa

1(d).
The only exception is the implementation of the upper bound on the menu

of budget constraints β1(d) ≤ β
p
1(d) for all d ∈ D. The principal knows

the supports D and Z and can define the upper bound βp
1(d). It cannot be

optimal for any principal to allow bids on one unit that exceed this highest
possible pooling price. Any agent i with true d > βp

1(d) automatically chooses

β1(d) = β
p
1(d) as it is the closest possible budget to his optimal budget

constraint for one unit of βa
1(d) = d and as choosing a lower report would

result in the single-winner award for the opponent. The principal cannot
implement a lower upper bound than βp

1(d) as this is her true lowest pooling
price in case of d = d. Given it is true that d = d, suppose firm j reports
β1(d) < β

p
1(d) to the auction. Now it is profitable for principal i to deviate to

a report that exceeds β1(d) and is still smaller than βp
1(d) which results in the

single-winner award for him as illustrated in the proof of Proposition 3.
Note that the implemented reports from Proposition 15 satisfy the agent’s

and the principal’s highest lower bound for the bid on the package as specified
in Proposition 3 and Corollary 2, respectively, with Gp

(
vi(2), d

)
= 2 · d and

Ga
(
vi(2), d

)
= 2 · d. As the principal generally cannot enforce the submission

of her true lowest pooling price, she must adhere to the agent’s report of
the latter’s true lowest pooling price. Therefore, a necessary condition for
a budget constraint contract to exist is that the agent’s true lowest pooling
price βa

1(d) = v(2) − v(1) is smaller than the principal’s true largest pooling
price of v(1)− η

(
v(1)

)
which is guaranteed as long as the following necessary

condition is satisfied:

2 · v(1) ≥ v(2) + η
(
v(1)

)
. (A.1.32)

Note that if the above condition is satisfied, dual-winner efficiency for the
agent’s utility function is given such that they can coordinate on their dual-
winner equilibrium as specified in Proposition 3. As the vector of reports bi

satisfies both parties’ dual-winner equilibrium it simultaneously fulfills the
no-loss condition (B-CFPA-SB-NL) in the principal’s optimization problem
in (B-CFPA-SB).

Next, we have to verify that the above necessary condition is also suffi-
cient for the vector of reports in Proposition 15 to be optimal. To do so we
demonstrate that the principal cannot improve by trying to implement her
true lowest pooling price of βp

1(d) = d − η
(
v(2)

)
+ η

(
v(1)

)
together with

transfer payments to the agent. In this case a principal i would have to design
a contract

(
β(d), µ(d)

)
to direct her agent to submit the equilibrium strategy

of β1(d) = β
p
1(d) and β2(d) = 2 · βp

1(d).
Suppose the opposing principal j manages to implement these equilibrium

reports to the auction. Then agent i with high enough valuation for the
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package and low enough value for the single unit has an incentive to deviate
to report d̂ = d + ε with ε → 0 to the contract such that β1

(
d̂
)
> β

p
1(d) and

β2
(
d̂
)
> β1

(
d̂
)
+ β

p
1(d). In this case she obtains the single-winner award at a

price of 2 · βp
1(d) + ε with ε → 0. For this deviation to be unprofitable, the

following incentive-compatibility constraint then needs to be satisfied:

vi(1) − β
p
1(d) + mi(1) ≥ vi(2) − 2 · βp

1(d) + mi(2) (A.1.33)

Profit maximization by the principal requires mi(2) = 0 and, using the defini-
tions of βp

1(d) and βa
1(d), A.1.33 then corresponds to

mi(1) ≥ vi(2) − vi(1) − v(2) + η
(
v(2)

)
+ v(1) − η

(
v(1)

)
(A.1.34)

The agent with highest incentive to deviate has valuations of vi =
(
v(2), v(1)

)
and has to receive a transfer of mi(1) = η

(
v(2)

)
− η

(
v(1)

)
to truthfully

report d to the contract such that β1(d) = β
p
1(d) and β2(d) = 2 · βp

1(d) is
reported to the auction. As principal i is not informed about package valuations
vi(l) for all l ∈ L, she has to implement the constant transfer payments of
m(1) = η

(
v(2)

)
− η

(
v(1)

)
and m(2) = 0 with corresponding budget menu

of β1(d) = β
p
1(d) and β2(d) = 2 · βp

1(d).
However, as β1(d) could result as a combination of different v(2) ∈ V(2)

and v(1) ∈ V(1) pairings, agent i will choose to report the pairing that offers
the highest transfer payment to the contract. Agent i with package valuations of

vi =
(
v(2), v(1)

)
has the highest incentive to deviate and the optimal payment

scheme must involve constant transfers in height of m(1) = η
(
v(2)

)
−η

(
v(1)

)
because the principal does not know the true valuation support, V(l), for all
l ∈ L.

The principal’s profit in the dual-winner equilibrium under the pure budget
constraints contract is

πBC
i (1) =

vi(1) − η
(
vi(1)

)
− d if d ≤ βp

1(d)

vi(1) − η
(
vi(1)

)
− β

p
1(d) if d > βp

1(d)
(A.1.35)

and under the contract with transfers it corresponds to

πT
i (1) = vi(1) − η

(
vi(1)

)
− βp(1) − η

(
v(2)

)
+ η

(
v(1)

)
(A.1.36)

with βp(1) = v(2) − η
(
v(2)

)
− v(1) + η

(
v(1)

)
. Principal i prefers the budget

constraint contract to the contract with transfers if πBC
i (1) ≥ πT

i (1) which is

always satisfied for d ≤ βp
1(d) as η

(
v(2)

)
− η

(
v(1)

)
− η

(
v(2)

)
+ η

(
v(1)

)
≤ 0.

For d > βp
1(d), π

BC
i (1) becomes even larger relative to πT

i (1) by definition.

As the optimal transfer payment m(1) = η
(
v(2)

)
− η

(
v(1)

)
is a function of

the agent’s utility only and is independent of the implemented pooling price, it
is always optimal for the principal to condition on her lowest possible pooling
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price, βp
1(d) = d − η

(
v(2)

)
+ η

(
v(1)

)
, in the contract with transfer payments

as higher prices cannot be achieved with lower transfer costs. �

a.2 ascending auction formats from chapter 3

This appendix includes detailed descriptions of the possible outcomes of the
2 × 2 ascending package auction as well as the 2 × 2 ascending uniform-price
auction. In what follows, we begin with the 2 × 2 ascending package auction:

A) Both bidders are only active on one unit with current price of pc(1) =
pc(2)/2. Then the dual-winner outcome is winning and there is no
demand for the single-winner outcome. Thus, the auction stops with
both bidders winning one unit each at a price of p(1) = pc(2)/2. If
both bidders only bid on one unit directly at the beginning of the auction,
the bidding process stops immediately at price of p(1) = 0.

B) Bidder i bids on the package while bidder j only bids on a single unit.
In this case one of the two allocations must be non-winning and its price
rise. If pc(1) > pc(2), the price for the package rises and in case of
pc(1) < pc(2), the price for the single unit increases. If bidder i reduces
demand to one unit, we are in A). In case bidder i releases the button
and does not switch to one unit, then bidder j wins the package at price
p(2) = pc(1), because the auctioneer always allocates all objects and
bidder j does not suffer as v j(1) < v j(2). However, if bidder j releases
the button on one unit and does not switch to the package, then the
single-winner outcome is winning and not over-demanded. Thus, the
package is assigned to bidder i at a price of p(2) = pc(1). If bidder j
switches to the package, we are in C).

C) Both bidders are only active on the package and its price rises at pc(2),
given excess demand, until one bidder stops bidding on the package.
There is no current demand for the dual-winner outcome. The bidder,
who dropped out on two units might still be allowed to bid on one unit,
such that we are in B). If a bidder i drops out of the auction, the auction
stops, as there is no overdemand for the single-winner outcome, and j
wins the package at a price of p(2) = pc(2). If both bidders reduce
demand to one unit simultaneously, we are in A). If both bidders drop
out from the auction at the same time, the auctioneer randomly assigns
the package to one of the bidders at the current price.

D) One bidder i bids on the package and the single unit, the other bidder j
only on a single unit. In this case one of the two allocations must be non-
winning and its price rise. If 2pc(1) > pc(2), the price for the package
rises and in case 2pc(1) < pc(2), the single-unit price increases. In
case bidder i stops bidding on the package, we are in A) and if bidder i
stops bidding on the one unit, we are in B). In case bidder i releases both
buttons, bidder j wins the package at price p(2) = pc(2). If bidder
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j stops bidding on one unit, there is no demand for the dual-winner
outcome and bidder i wins the package at price p(2) = 2pc(1).

E) One bidder i bids on the package and the single unit, the other bidder j
only on the package. Here, there is excess demand on the package and
its price rises. Moreover, if the dual-winner outcome is non-winning the
single-unit price increases, too. If bidder i stops bidding on the single
unit, we are in C). In case bidder i stops bidding on the package, we are
in B). If bidder j stops bidding on the package, there is no overdemand
and i wins both units at price p(2) = pc(2).

F) Both bidders are active on the package and the single unit such that
prices rise on all clocks. If one of them stops bidding on one unit, we
are in E). If one of them stops bidding on the package, we are in D). If
both release the button for the package, the setting corresponds to A).
If both simultaneously release the button for the single unit, we are in
C). In case one bidder stops bidding on the package and her opponent
stops bidding on one unit, we are in B). If both bidders simultaneously
release both buttons, the auctioneer assigns each bidder i one object at
price of p(1) = pc(2)/2.

In contrast, the following outcomes are possible in the 2 × 2 ascending
uniform-price auction:

A) Both bidders only bid on one unit with current price of pc(1). As
there is no excess demand the auction stops and each bidder wins one
unit at unit price of p(1). If both bidders only demand one unit at the
beginning of the auction, the process terminates immediately at unit
price of p(1) = 0.

B) Bidder i demands two units, while bidder j only bids for one unit.
Thus, there is excess demand and the current unit price pc(1) increases
continuously. If bidder i stops bidding on the second unit, we are
in A). In case bidder j stops demanding one unit, there is no excess
demand and bidder i wins both units at twice the current unit price of
p(1). If bidder i reduces demand to zero, then the auction stops and the
auctioneer awards both units to bidder j at the current unit price of p(1).

C) Both bidders bid on two units. If one bidder drops out of the auction,
there is no overdemand and the other bidder gets the package of both
units at twice the current unit price of p(1). In case one bidder reduces
demand to one unit, we are in B). If both bidders simultaneously stop
bidding on the second unit, we are in A). Finally, in case both bidders
reduce demand to zero at the same time, the auctioneer assigns each
bidder i one object at unit price of p(1).
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b.1 proofs of chapter 4

b.1.1 Proof of Corollary 4

Using the same logic as in proposition 1 of Anton and Yao (1992), it is possible
to show that split prices pσ1

e

(
Θi, h0

)
and pσ2l

e

(
Θl, h1

)
in a σ equilibrium of

the Dutch split-award auction have to be constant. Otherwise, the bidder with
the lower split price always has an incentive to deviate from the equilibrium
strategy. We will show that the only possible split price in a σ equilibrium is
pσe = Θ (1 −C). First, we assume that a σ equilibrium with a constant split
price pσ

′

e

(
Θi, h0

)
> pσe = Θ (1 −C) exists. In this case, there is always a

ε > 0 and a profitable sole source deviation for a bidder Θ̂ = Θ by accepting
the counteroffer for 100% of the business at a price of p̂s1

(
Θ̂

)
= 2pσ

′

e , as

E
[
Π̂s

(
Θ

)]
> E

[
Πσ′

e

(
Θ

)]
is true for pσ

′

e > (1 −C)Θ.

Second, we assume a σ equilibrium such that pσ
′

e

(
Θi, h0

)
< pσe =

Θ (1 −C) exists. Supplier A with ΘA , Θ sticks to such an equilibrium
strategy and accepts the 50% share in the first phase; then, he makes a profit of
pσ
′

e −ΘAC > 0 in equilibrium. However, in this case there is a split deviation
for the loser of phase 1, which generates a higher payoff than in equilibrium.
This player knows that the additional costs for providing 100% of the business
are ΘA (1 −C) for the winner of phase 1. Hence, the deviating bidder can ac-
cept the remaining share at a price of Θ (1 −C) knowing that the other bidder
cannot accept any previous offer without reducing his already achieved payoff

(ΘA = Θ is a null set) . A threat of the winner to accept the 50% share for a
lower price than Θ (1 −C) is not credible because both bidders are assumed
to be payoff-maximizing. Following such a strategy, a deviating bidder wins
50% of the business with probability 1 and achieves a higher payoff than by
playing a σ equilibrium with a split price pσ

′

e

(
Θi, h0

)
< (1 −C)Θ. �

b.1.2 Proof of Proposition 18

The Dutch split-award auction is modeled as a two-stage game, where the
action of phase 1 is observed by both players before phase 2 starts. Because the
σ equilibrium includes pooling prices, which are independent on the respective
cost type, the loser of phase 1 does not get any information about the cost type

157
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of his opponent. Hence, his beliefs µ are not updated after phase 1 and remain
the same as ex-ante.

Furthermore, it has to be proven that the strategy profile
(
S PBE2

e , µ
)

is
sequentially rational given the system of beliefs. Therefore, we show to
prove that there is neither a sole source nor a split deviation for any bidder
i ∈ {A, B} that yields a higher expected payoff than the equilibrium payoff of
Πσ

e (Θi) = Θ (1 −C) −ΘiC.

sole source deviations: In each round r, the counteroffers cσr and cs
r are

presented according to the pricing rule, 2cσr = cs
r , which satisfies the buyer’s

indifference condition. Thus, only sole source deviations with prices p̂s1
(
Θ̂

)
>

2Θ̂ (1 −C) have to be considered. For all other sole source deviations, a bidder
makes a higher profit by accepting the split in the same round. However, sole
source deviations with prices greater than 2Θ̂ (1 −C) can never be realized, as
the opponent who sticks to the equilibrium strategy accepts the split at a price
of Θ (1 −C) in equilibrium, and counteroffers for 100% of the business greater
than 2Θ (1 −C) are not presented. This excludes sole source deviations in
phase 1. As the remaining 50% share is offered in phase 2, only the winner of
phase 1 can follow a sole source deviation in this stage. Again, if the other
bidder sticks to the equilibrium strategy, the sum of the split price in phase 1
and a counteroffer for the remaining share cannot be greater than 2Θ (1 −C),
which excludes profitable sole source deviations in phase 2 as well.

split deviations: The expected payoff of all possible split deviations with
split prices lower than Θ (1 −C) is obviously less than the equilibrium payoff,
as the probability of winning 50% does not increase with a lower split price.

In phase 1, a split deviation with a split price higher than Θ (1 −C) is not
possible, when the other bidder follows the equilibrium strategy. However,
this does not apply in phase 2 because it would not be a credible threat for

bidder A, the winner of phase 1 with a cost of type ΘA ∈

(
Θ, Θ

]
, to accept

the remaining 50% share in phase 2 for a price Θ (1 −C). Bidder A can
only accept a counteroffer for the remaining 50% share when his additional
costs ΘA (1 −C) in the case of winning the remaining 50% share are covered
and he makes at least the same payoff as in phase 1. Although such split
deviations with split prices p̂σ2l

(
Θ̂, h1

)
> Θ (1 −C) are possible, we show

in the following that they yield lower expected payoff than the equilibrium
strategy.

Assume a bidder tries to deviate with a split price Θ (1 −C) <

p̂σ2l
(
Θ̂, h1

)
≤ Θ (1 −C) in phase 2. The upper boundary arises because

the winner of phase 1 accepts the counteroffer for the remaining 50%
share latest at a price of (1 −C)Θ. Such a strategy can be expressed by

p̂σ2l
(
x, h1

)
= x (1 −C) with the variable x ∈

(
Θ, Θ

]
. A deviating bidder B

risks losing the whole business because he knows that supplier A will fulfill his
threat at pσ2w

e

(
ΘA, h1

)
= ΘA (1 −C). Therefore, bidder B faces a trade-off

because he does not know the cost type of the other bidder; recall that the split
price in phase 1 is constant and independent of the cost type ΘA, which is why
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the loser does not get any information about the cost type of the winner in
phase 1.

Split deviations with p̂σ2l
(
x, h1

)
can only be excluded, when for all possible

cost types Θi ∈

[
Θ, Θ

]
and for all x ∈

(
Θ, Θ

]
, the expected payoff of such a

deviation is less than the σ equilibrium payoff, i.e.,

∆Π (x, Θi) =
(
p̂σ2l

(
x, h1

)
−CΘi

)
P

(
p̂σ2l

(
x, h1

)
≤ Θ1:n−1 (1 −C)

)
−

−
(
Θ (1 −C) −CΘi

)
< 0(

x (1 −C) −CΘi
) (

1 − F (x)
)
−

(
Θ (1 −C) −CΘi

)
< 0

for all Θi ∈

[
Θ, Θ

]
and for all x ∈

(
Θ, Θ

]
. As ∆Π (x, Θi) is strictly increasing

in Θi, it suffices to show that ∆Π
(
x, Θ

)
< 0 applies for all x. This is fulfilled

by the necessary condition (4.5.2). The strategy in phase 2 of the winner of
the 50% share in phase 1 is credible, as the payoff of this threat equals the
equilibrium payoff when it must be carried out. �

b.1.3 Proof of Proposition 19

First, we will show that there is no WTA equilibrium in a Dutch split-award
auction. Subsequently, hybrid equilibria are excluded. If there is a WTA
equilibrium strategy, such a strategy would have to be payoff-dominant over
all possible split and sole source deviations.

sole source deviations: Similar to the WTA equilibrium from proposi-
tion 17, a bidder must accept a counteroffer for the sole source award, cs

r , in

round r for a price of ps1
e

(
Θi, h0

)
= Θi +

∫ Θ
Θi
(1−F(t))dt

(1−F(Θi))
in order to ensure that

there is no sole source deviation that yields a higher payoff than the equilibrium
strategy in a (potential) WTA equilibrium (S PBE1

e , µ). Trying to win the sole
source award sequentially cannot be an equilibrium strategy. Assume such a
equilibrium (S PBE2

e , µ) exists. Then, the price in phase 2 must be higher than
Θw (1 −C) in order to make at least as much payoff than already achieved.
This cannot be an equilibrium strategy with dual source efficiency, as there is
a ε > 0 such that even an opponent with cost type Θ makes a strictly positive
payoff by accepting a counteroffer at cσr = Θw (1 −C) − ε.

split deviations: Next, we show that if all bidders follow such a strat-
egy, ps1

e

(
Θi, h0

)
, there is at least one bidder who has an incentive to deviate.

Consider a bidder with the highest cost type Θ who makes a payoff of zero in

equilibrium by accepting the counteroffer cs
r = ps1

e

(
Θ

)
in round r. With dual

source efficiency, there is always a ε > 0 and a round q preceding round r with
a counteroffer cs

q = 2ΘC + ε < cs
r , in which this bidder makes a higher payoff
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than in the potential WTA equilibrium. Hence, there is no WTA equilibrium
in a Dutch split-award auction with dual source efficiency.

In the dual source efficiency split-award auction model, each potential
hybrid equilibrium with a strategy set S PBE2

e or S PBE3
e (in pure strategies)

can be described by disjunct intervals I s
1, I s

2, ..., I s
t and Iσ1 , Iσ2 , ..., Iσu . If both

bidders have the same cost type Θi ∈ I s
1, I s

2, ..., I s
t , the sole source award

emerges. The same is true for the split award when both suppliers have costs
Θi ∈ Iσ1 , Iσ2 , ..., Iσu . Furthermore, t, u ∈ N and I s

1

.
∪ I s

2

.
∪ ...

.
∪ I s

t
.
∪ Iσ1

.
∪

Iσ2
.
∪ ...

.
∪ Iσu =

[
Θ, Θ

]
applies. We divide the different hybrid equilibria

in two types: hybrid equilibria with I s
t =

(
τ, Θ

]
and hybrid equilibria with

Iσu =
[
τ, Θ

]
. The strategic parameter τ indicates the cost type for which

bidders change their strategy in a hybrid equilibrium.
Using the same reasoning as above for the WTA equilibrium, the bidder

with the highest cost type has an incentive for a split deviation in the hybrid

equilibrium with I s
t =

(
τ, Θ

]
. Hence, such hybrid equilibria do not exist.

Next, assume a hybrid equilibrium with an interval Iσu =
[
τ, Θ

]
. As in

the analysis of Anton et al. (2010), a bidder with cost type τ must be indif-
ferent between winning the split for pσ1

e

(
τ, h0

)
or the sole source award

for ps1
e

(
τ, h0

)
= 2pσ1

e

(
τ, h0

)
. Otherwise, this bidder would not change

his strategy, i.e. pσ1
e

(
τ, h0

)
= τ (1 −C) follows from E

[
Πs1

e

(
τ, h0

)]
=

E
[
Πσ1

e

(
τ, h0

)]
. This directly implies that pσ1

e

(
τ, h0

)
= τ (1 −C) is the equi-

librium split price for bidder τ and all other bidders with Θi ∈ Iσ1
.
∪ Iσ2

.
∪ ...

.
∪

Iσu as well, as split prices must be constant based on corollary 4. However, all
cost types for which the strategy changes in equilibrium must be indifferent

between both awards, such as τ for Iσu =
[
τ, Θ

]
. As this is never true for

multiple disjunct intervals, a hybrid equilibrium with u > 1 can be excluded.
Hence, it suffices to show that no hybrid equilibrium with I s

1 =
[
Θ, τ

)
and

Iσ1 =
[
τ, Θ

]
exists.

Assume there is such an equilibrium with an arbitrary parameter τ ∈
(
Θ, Θ

)
.

The sole source price ps1
e

(
Θi, h0

)
for Θi ∈

[
Θ, τ

)
must assure that there

is no sole source deviation in equilibrium, i.e., that E
[
Πs1

e

(
x, h0

)]
=(

ps1
e

(
x, h0

)
−Θi

) (
1 − F (x)

)
is maximized for x = Θi. Similar to Anton

et al. (2010), this applies with the following sole source prices

ps1
e

(
Θi, h0

)
= Θi + τ (1 − 2C)

(
1 − F (τ)

)(
1 − F (Θi)

) +
∫ τ

Θi
1 − F (t) dt(

1 − F (Θi)
)

for types Θi ∈
[
Θ, τ

)
.

Furthermore, for a type τ there must be no incentive to deviate from equilib-
rium by accepting the offer for 50% for a price pσ1

e

(
y, h0

)
= 0.5ps1

e

(
y, h0

)
<
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0.5ps1
e

(
τ, h0

)
with y ∈

[
Θ, τ

)
. Such a deviation would yield the expected pay-

off E
[
Π̂σ

(
y, h0

)]
=

(
0.5ps1

e

(
y, h0

)
− τC

) (
1 − F (y)

)
dependent on variable y.

Solving the first-order condition yields:

d
dy

E
[
Π̂σ

(
y, h0

)]
= 0

0.5
(
− f (y) (y − 2Cτ) +

(
1 − F (y)

)
−

(
1 − F (y)

))
= 0

− f (y) (y − 2Cτ) = 0.

The solution of the first-order condition is y = 2Cτ < τ, and it can be shown
that it is the unique maximum of the expected payoff function, as f is positive

and the derivative of E
[
Π̂σ

(
y, h0

)]
is positive (negative) for all values for y

that are lower (higher) than 2Cτ. Hence, there is always a profitable split
deviation with y < τ for a bidder with cost type τ in a hybrid equilibrium, as

E
[
Π̂σ

(
y, h0

)]
> E

[
Π̂σ

(
τ, h0

)]
= E

[
Πσ

e

(
τ, h0

)]
.

Hence, we proved that no such hybrid equilibrium can emerge and that,
when a σ equilibrium exists, it is unique. �

b.1.4 Proof of Corollary 5

The results for (i) and (ii) of proposition 1 in Anton and Yao (1992) can be
easily transferred to the Dutch-FPSB split-award auction case. In the Dutch
split-award auction, the bidding strategy of a bidder w, the winner of phase
1, has to assure that it yields at least the same payoff as in phase 1, as the
payoff is realized by carrying out the threat. However, when phase 2 is a
FPSB mechanism, it suffices that the offer for the remaining share impedes
split deviations. As long as bidder w bids at least pσe for the remaining share,
the probability that the threat must be carried out and the payoff of bidder w
decreases is changed to zero, as the opponent has no incentive to deviate from
equilibrium. This makes it easier for the winner to exclude split deviations in
phase 2 and various split prices can emerge in equilibrium. �

b.1.5 Proof of Proposition 20

As in the proof of proposition 18, the pooling price in phase 1 does not allow
for any updating of the beliefs about the opponent’s cost type. In what follows,
we show that deviations from the pooling equilibrium are unprofitable for
all different cost types in every stage of the game. Hence, the sequential
rationality assumption for perfect Bayesian equilibria applies.

Assume a σ equilibrium in which both bidders win 50% of the business for

a constant split price pσ1
e

(
Θi, h0

)
= pσ2l

e

(
Θl, h1

)
= pσe ∈

[
ΘC, Θ (1 −C)

]
exists.
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sole source deviations: With the same logic as in the proof of propo-
sition 18 no bidder has an incentive to deviate for the sole source award in
equilibrium.

split deviations: Split deviations in phase 1 can be easily excluded, as
the expected payoff is either strictly lower than the equilibrium payoff (for
deviations with a lower split price than pσe ) or zero (for deviations with higher
split prices). Bidder w, the winner of the first 50% share, submits a quote
of pσ2w

e

(
Θw, h1

)
= max{pσe , Θw − pσe } in phase 2 in order to implement the

σ equilibrium strategy. This threat is credible as his equilibrium payoff of
phase 1 does not change in expectation. The probability that his opponent
deviates is zero, as the expected payoff of such a split deviation is lower than
the equilibrium payoff. This is assured by condition (4.5.3). We skip this
line of reasoning because it is based on the proof of proposition 1 (Case 1
deviation) in Anton and Yao (1992) for the FPSB split-award auction. �

b.1.6 Proof of Proposition 22

Similar to a setting with two bidders, the existence of such an inefficient
equilibrium can be shown in the FPSB auction with n > 2 bidders:

sole source deviations: In order to avoid any sole source deviation, the
sole source price ps

e (Θi) has to maximize the expected payoff of winning
100% of the business

E
[
ΠWT A

e (Θi)
]
=

(
ps

e (Θi) −Θi
)

P
(
ps

e (Θi) ≤ ps
e (Θ1:n−1)

)
for every Θi ∈

[
Θ, Θ

]
.

split deviations: Additionally, split deviations can be excluded by suffi-
ciently high equilibrium prices for the split, which satisfy

pσe (Θi) > Θ −ΘC.

These prices assure that the auctioneer never chooses the split, as the sum of
any possible split deviation p̂σ

(
Θ̂

)
≥ ΘC and the lowest split price of another

supplier is strictly greater than Θ, the highest possible price the auctioneer has
to pay for the sole source award in equilibrium. Hence, the payoff of such a
deviating strategy is always zero. �

b.1.7 Proof of Proposition 23

We will show that in equilibrium neither sole source nor split nor hybrid
deviations are attractive for bidders.
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sole source deviations: With a sole source deviation
(
p̂s

(
Θ̂

)
, p̂σ

(
Θ̂

))
,

a bidder aims to win the sole source award and excludes the split (for himself).
By differentiating the following cases, it is shown that there is no sole source
deviation, which yields a higher expected payoff than a σ equilibrium.

i) 2ΘC ≤ Θ
All possible deviating sole source prices p̂s

(
Θ̂

)
have to be greater than or equal

to Θ, which is a necessary condition such that the assumption of individual
rationality is fulfilled. As all other bidders play the σ equilibrium, the highest
possible price for the auctioneer is 2ΘC by awarding the split. Therefore, the
auctioneer never allocates the sole source award to any bidder with p̂s

(
Θ̂

)
≥

Θ > 2ΘC and the expected payoff of such deviations is zero.
ii) Θ

2Θ
< C <

Θ
Θ+Θ

:

We show that there is no sole source deviation with prices p̂s
(
Θ̂

)
. A sole

source deviation with price p̂s
(
Θ̂

)
= 2pσe

(
Θ

)
is payoff-dominant over all

possible deviations with lower sole source prices, because the probability to
win the sole source award is 1 for all deviations of this type. Hence, it suffices
to show that deviations with prices greater than or equal to 2pσe

(
Θ

)
are not

attractive for the bidders. The upper bound for deviating sole source prices is
2ΘC, because the probability that a sole source award is chosen is zero, when
a bidder submits a higher price for the sole source award.

Let us first derive the optimal deviating sole source price p̂s
(
Θ̂

)
∈[

2pσe
(
Θ

)
, 2ΘC

]
for all possible cost types Θ̂ ∈

[
Θ, 2ΘC

]
. As pσe (Θi) is

continuous, we can express all possible p̂s
(
Θ̂

)
by 2pσe (Θ) with variable

Θ ∈
[
Θ, Θ

]
and the expected profit of a sole source deviation as

E
[
Π̂s

(
Θ̂

)]
=

(
p̂s

(
Θ̂

)
− Θ̂

)
P

(
p̂s

(
Θ̂

)
≤ pσe (Θ2:n−1) + pσe (Θ1:n−1)

)
=

(
2pσe (Θ) − Θ̂

)
P

(
2pσe (Θ) ≤ pσe (Θ2:n−1) + pσe (Θ1:n−1)

)
.

Obviously, the probability that the deviating sole source price is lower than
the split prices of the second lowest and lowest order statistic is always less
than the probability that it is lower than two times the split price of the second
lowest order statistic:

E
[
Π̂s

(
Θ̂

)]
<

(
2pσe (Θ) − Θ̂

)
P

(
2pσe (Θ) ≤ 2pσe (Θ2:n−1)

)
=

(
2pσe (Θ) − Θ̂

)
P

(
pσe (Θ) ≤ pσe (Θ2:n−1)

)
=

(
2pσe (Θ) − Θ̂

) ((
1 − F (Θ)

)n−1
+ (n − 1) F (Θ)

(
1 − F (Θ)

)n−2
)

<
(
pσe (Θ) −CΘ̂

) ((
1 − F (Θ)

)n−1
+ (n − 1) F (Θ)

(
1 − F (Θ)

)n−2
)

≤ E
[
Πσ

e

(
Θ̂

)]
.
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This assessment is true, as Θ = Θ̂ maximizes the payoff function and

C <
Θ

Θ + Θ

ΘC < Θ (1 −C)

pσe (Θ) < Θ̂ (1 −C) because pσe (Θ) ≤ ΘC and Θ ≤ Θ̂ | +pσe (Θ)

2pσe (Θ) − Θ̂ < pσe (Θ) −CΘ̂.

Therefore, all possible sole source deviations can be excluded.

split deviations: Split prices pσe (Θi) have to maximize the expected
payoff of winning 50% of the business for a bidder with cost type Θi.

E
[
Πσ

e (Θi)
]
=

(
pσe (Θi) −ΘiC

)
P

(
pσe (Θi) ≤ pσe (Θ2:n−1)

)
for every Θi ∈

[
Θ, Θ

]
in equilibrium. The first-order condition can be simplified to:

d
dΘi


((

1 − F (Θi)
)n−1

+ (n − 1) F (Θi)
(
1 − F (Θi)

)n−2
)

pσe (Θi)

 =

ΘiC
(
(n − 1) (n − 2)

(
1 − F (Θi)

)n−3
F (Θi)

(
− f (Θi)

))
.

By applying the boundary condition pσe
(
Θ

)
= ΘC and integration on both

sides, we get((
1 − F (Θi)

)n−1
+ (n − 1) F (Θi)

(
1 − F (Θi)

)n−2
)

pσe (Θi) |
Θ
Θi
=∫ Θ

Θi

xC
(
(n − 1) (n − 2)

(
1 − F (x)

)n−3
F (x)

(
− f (x)

))
dx.

Solving for pσe (Θ) results in the equilibrium split price for a bidder with cost
type Θi:

pσe (Θi) = CΘi +C

∫ Θ
Θi

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx(

1 − F (Θi)
)n−1

+ (n − 1) F (Θi)
(
1 − F (Θi)

)n−2 .

hybrid deviations: Least, one have to exclude hybrid deviations, i.e.
deviating strategies, for which the sole source as well as the split award can
emerge with strictly positive probability.

i) 2ΘC ≤ Θ
When this condition applies, hybrid deviations are excluded due to the indi-
vidual rationality assumption following the same logic as discussed above for
sole source deviations.
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ii) Θ
2Θ

< C <
Θ

Θ+Θ
:

In contrast to the other two types of deviations, the supplier’s offers are influ-
encing each other in a hybrid deviation, as a low bid for the sole source award
can lower the probability of winning the split award and vice versa. Because
all other bidders follow the equilibrium strategy, only bidders with cost types
Θ̂ ≤ ΘC + p̂σ

(
Θ̂

)
have positive probability of winning the sole source award.

The lower bound 2pσe
(
Θ

)
≤ p̂s

(
Θ̂

)
emerges, as all lower deviating sole source

prices are dominated. The same logic applies for deviating split prices, which
are bounded below by pσe

(
Θ

)
and above by ΘC. The expected payoff of such

deviations
(
p̂s

(
Θ̂

)
, p̂σ

(
Θ̂

))
is

E
[
Π̂hybrid

]
=

(
p̂s

(
Θ̂

)
− Θ̂

)
P

p̂s
(
Θ̂

)
< min

{
pσe (Θ1:n−1) +

+ min
{

pσe (Θ2:n−1) , p̂σ
(
Θ̂

)}
,

max
{
Θ1:n−1, pσe (Θ1:n−1) + ΘC

} }
+

(
p̂σ

(
Θ̂

)
− Θ̂C

)
P
(
p̂σ

(
Θ̂

)
< pσe (Θ2:n−1)

∧ p̂s
(
Θ̂

)
≥ p̂σ

(
Θ̂

)
+ pσe (Θ1:n−1)

)
.

We define p̂s
(
Θ̂

)
= pσe (x1) + pσe (x2) and p̂σ

(
Θ̂

)
= pσe (x2) with x1 ∈[

Θ, Θ
]

, x2 ∈

[
Θ̂, Θ

]
and pσe (x1) + pσe (x2) > 0. It is known that

C <
Θ

Θ + Θ

ΘC < Θ (1 −C)

pσe (x1) < Θi (1 −C) as pσe (x1) ≤ ΘC and Θ ≤ Θi

pσe (x2) + pσe (x1) −Θi < pσe (x2) −Θi
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with Θi ∈

[
Θ, Θ

]
. We want to find x1 and x2 such that the following expected

payoff function is maximized:

E
[
Π̂hybrid

(
Θ̂

)]
=

(
pσe (x1) + pσe (x2) − Θ̂

)
P

pσe (x1) + pσe (x2) <

< min
{

pσe (Θ1:n−1) + min
{
pσe (Θ2:n−1) , pσe (x2)

}
,

max
{
Θ1:n−1, pσe (Θ1:n−1) + ΘC

} }+
+

(
pσe (x2) − Θ̂C

)
· P

(
pσe (x2) < pσe (Θ2:n−1)∧

∧ pσe (x1) + pσe (x2) ≥ pσe (x2) + pσe (Θ1:n−1)

)
.

For deviations with x1 ≥ x2 we can show that

E
[
Π̂hybrid

(
Θ̂

)]
<

(
pσe (x2) −CΘ̂

)
P
(
pσe (x2) ≤ pσe (Θ2:n−1)

∧ pσe (x1) < pσe (Θ1:n−1)

)
+

(
pσe (x2) − Θ̂C

)
P
(
pσe (x2) ≤ pσe (Θ2:n−1)∧

≤∧ pσe (x1) ≥ pσe (Θ1:n−1)

)
(
pσe (x2) − Θ̂C

)
P

(
pσe (x2) ≤ pσe (Θ2:n−1)

)
≤E

[
Πσ

e

(
Θ̂

)]
.

If condition (4.6.6) applies, deviations with x1 < x2 can be excluded. �

Remark: If one wants to test condition (4.6.6) for a specific setting, it is
more convenient to use the stricter condition

E
[
Π̂

(
Θ̂

)]
<

(
pσe (x1) + pσe (x2) − Θ̂

)
P
(
pσe (x2) ≤ pσe (Θ2:n−1)∧

∧ pσe (x1) < pσe (Θ1:n−1)

)
+

(
pσe (x2) −CΘ̂

)
P
(
pσe (x2) ≤ pσe (Θ2:n−1)∧

∧ pσe (x1) ≥ pσe (Θ1:n−1)

)
<

(
pσe (x1) + pσe (x2) − Θ̂

)
P

(
pσe (x1) < pσe (Θ1:n−1)

)
+

(
pσe (x2) −CΘ̂

)
P
(
pσe (x2) ≤ pσe (Θ2:n−1)∧

∧ pσe (x2) ≥ pσe (Θ1:n−1)

)
| as x1 < x2
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and check, whether it is lower than the equilibrium payoff for all possible cost
types and all possible combinations of x1 and x2.

b.1.8 Proof of Proposition 24

Assume there is a hybrid equilibrium with cost intervals I s
1, I s

2, ..., I s
t and

Iσ1 , Iσ2 , ..., Iσu , for which the sole source award, respectively the split award, is
the equilibrium outcome when the interval includes the two lowest cost draws
of the n competitors. Furthermore, t, u ∈N and

I s
1 ∪ I s

2 ∪ ...∪ I s
t ∪ Iσ1 ∪ Iσ2 ∪ ...∪ Iσu =

[
Θ, Θ

]
applies. The functions ps

i (Θ) for i ∈ 1, ..., t and pσj (Θ) for j ∈ 1, ..., u are the
relevant equilibrium prices for the sole source and split awards in the intervals
I s
i and Iσi , respectively. Then, every possible hybrid equilibrium must include

a strategic parameter τ1 ∈

(
Θ, Θ

)
, for which the equilibrium results in the

same award, when all bidders have cost draws higher than τ. Without loss of

generalization, we assume for the proof that I s
1 =

[
Θ, τ1

]
and Iσ1 =

(
τ1, Θ

]
.

Then, the following conditions have to apply for a hybrid equilibrium:

1. ps
1 (τ1) = 2pσ1 (τ1)

2. ps
1 (τ1) − τ1 = pσ1 (τ1) −Cτ1

3. pσ1 (τ1) ≤ ΘC.

The first two conditions for hybrid equilibria have been established by Anton
et al. (2010) for the FPSB auction and two bidders. When all cost types
belong to I s

1, the auctioneer chooses the sole source award in equilibrium; the
split is selected, when all cost types are in Iσ1 . Then, the auctioneer must be
indifferent between both awards in the case that all bidders have the same
cost type τ1, as the price functions ps

e (Θi) and pσe (Θi) are increasing and
continuous. Furthermore, a bidder must be indifferent between winning the
sole source award or the split award, when his cost parameter is τ1. Otherwise,
he would not change his strategy for this cost type in equilibrium. The third
condition is a standard requirement for split prices in equilibrium with more
than two bidders.44

In what follows, we show that these three assumptions can never be met
simultaneously with dual source efficiency:

Combining (i) and (ii) results in pσ1 (τ1) = τ1 (1 −C) . Hence, with (iii)

pσ1 (τ1) ≤ ΘC

C ≥
τ1

τ1 + Θ

44This is different to the case with two bidders, in which split prices are constant and can be
greater than or equal to ΘC. In such a setting, hybrid equilibria cannot be excluded.
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must apply. This is never true for τ1 ∈

(
Θ, Θ

)
with dual source efficiency. �

b.1.9 Proof of Proposition 25

In order to prove sequential rationality, it has to be shown that there are no
payoff-dominant sole source or split deviations in phase 1 as well as in phase
2. In contrast to the setting with two bidders, the equilibrium strategies for
both phases are increasing. Hence, the losers of phase 1 have full information
about the cost type of the winner of phase 1 (reflected by history h1), while
the cost types of the losers remain private. This updating process has to be
considered for the derivation of the equilibrium strategies.

split deviations: The equilibrium bidding strategy in phase 1 and 2 is
similar to the equilibrium strategy in an ex-ante split-award auction, in which
two times 50% are auctioned off sequentially in two first-price auctions. The
winning bid of phase 1 is revealed to all bidders and the winner of the first
auction cannot participate in the auction for the remaining 50% share,45 which
is the reason why only deviations for the split award are possible. Hence, a
strategy which maximizes the expected payoff in a sequential ex-ante split-
award auction, also excludes all split deviations in the Dutch split-award
auction. In proposition 15.1 of Krishna (2009), an equilibrium in a sequential
multi-unit forward auction is characterized, which can be easily transferred
to our setting. Both environments are comparable, as the winner of the first
50% share cannot win the remaining 50% share due to dual source efficiency
and the assumption of individual rationality. Hence, the following equilibrium
emerges:

Bidders accept the counteroffer for the split award in phase 1 at a price of

pσ1
e

(
Θi, h0

)
=

∫ Θ
Θi

pσ2l
e

(
t, h1

)
(n − 1)

(
1 − F (t)

)n−2
f (t) dt(

1 − F (Θi)
)n−1 .

For phase 2, bidders are asymmetric, because n − 1 losers and one winner of
phase 1 compete for the remaining 50% share. The losers of phase 1 approve
the counteroffer for the 50% share at a price of

pσ2l
e

(
Θl, h1

)
= CΘl +C

∫ Θ
Θl

(
1 − F (t)

)n−2
dt(

1 − F (Θl)
)n−2

in equilibrium.
Additionally, we have to define a strategy for the winner of phase 1, which

is off-equilibrium. When supplier w wins 50% of the business in phase 1 and
is also the winner of the remaining 50% share in phase 2, the auctioneer pays
him the sum of both split prices. Due to individual rationality this sum must

45Otherwise it would not be an ex-ante split-award auction.
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be at least as high as the costs for 100% of the business, Θw. Furthermore, the
overall payoff of bidder w has to be at least as high as the payoff in phase 1, as
bidders are assumed to be payoff-maximizing and otherwise the strategy would
not be a credible threat. Therefore, bidder w can only accept counteroffers in
phase 2, which are at least as high than his additional costs Θw (1 −C),

pσ2w
e

(
Θw, h1

)
≥ Θw (1 −C) .

A loser of phase 1 with cost type Θl faces the following maximization
problem in phase 2:

max
z

E
[
Πσ2l

(
z, h1

)]
=

(
pσ2l

e

(
z, h1

)
−ΘlC

)
·

· P
(
pσ2l

e

(
z, h1

)
< min

{
pσ2l

e

(
Θ1:n−2, h1

)
, pσ2w

e

(
Θw, h1

)}
| Θ1:n−2 ≥ Θw

)

=
(
pσ2l

e

(
z, h1

)
−ΘlC

) (
1 − F (z)

)n−2(
1 − F (Θw)

)n−2 .

As Θw (1 −C) > pσ2l
e

(
Θl, h1

)
applies for all Θw, Θl ∈

[
Θ, Θ

]
with dual

source efficiency, the n− 1 losers know that Θw never wins the remaining share
in equilibrium. Otherwise it would not be a a σ equilibrium and this is also
the reason, why ΘC and not pσ2w

e

(
Θw, h1

)
is the upper limit for pσ2l

e

(
Θl, h1

)
.

Nevertheless, the beliefs about the cost types of the n − 1 losers are updated
after phase 1, as every supplier knows that the costs of every loser of phase 1
cannot be lower than Θw, which is identical to the ex-ante format discussed in
Krishna (2009). Inserting the equilibrium strategy pσ2l

e

(
Θl, h1

)
with z = Θl

from above maximizes the expected payoff.
The expected equilibrium payoffs in phase 2 has to be considered for the

derivation of the strategy in phase 1. As the winner of phase 1 never wins
the remaining share in phase 2, the same logic as in the proof of ex-ante
split-award auctions yields pσ1

e

(
Θi, h0

)
.

However, there could be profitable sole source deviations, which are only
possible in the ex-post format. In what follows, we show that such deviations
do not exist with dual source efficiency.

sole source deviations: In phase 1, a bidder can deviate from equilib-
rium by accepting the 100% share before the first 50% is awarded. Such a sole

source deviation is only possible for types Θ̂ ∈
[
Θ, 2ΘC

]
and has to satisfy

2pσ1
e

(
Θ, h0

)
≤ p̂s1

(
Θ̂, h0

)
≤ 2ΘC.

The probability of winning the auction by accepting a counteroffer for 100% at
a price of 2pσ1

e

(
Θ, h0

)
is 1. Therefore, no price which is lower than this bound

can yield a higher expected payoff and such deviations can be neglected. There
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is an upper bound for sole source deviations, because the split is accepted by a
bidder at the latest in round r with counteroffers cs

r = 2ΘC and cσr = ΘC.
Because all price functions are continuous, the deviating sole source price

p̂s1
(
Θ̂, h0

)
can be expressed by p̂s1

(
Θ̂, h0

)
= 2pσ1

e

(
Θ, h0

)
with Θ ∈

[
Θ, Θ

]
.

In what follows we show that the expected payoff for a sole source deviation
is strictly lower than the expected payoff in a σ equilibrium:

E
[
Π̂s

(
Θ̂, h0

)]
=

(
p̂s

(
Θ̂, h0

)
− Θ̂

)
P

(
p̂s

(
Θ̂, h0

)
< 2pσ1

e

(
Θ1:n−1, h0

))
=

(
2pσ1

e

(
Θ, h0

)
− Θ̂

)
P

(
2pσ1

e

(
Θ, h0

)
< 2pσ1

e

(
Θ1:n−1, h0

))
=

(
2pσ1

e

(
Θ, h0

)
− Θ̂

)
P

(
pσ1

e

(
Θ, h0

)
< pσ1

e

(
Θ1:n−1, h0

))
=

(
pσ1

e

(
Θ, h0

)
− Θ̂C + pσ1

e

(
Θ, h0

)
− (1 −C) Θ̂

) (
1 − F (Θ)

)n−1

<
(
pσ1

e

(
Θ, h0

)
− Θ̂C

) (
1 − F (Θ)

)n−1
+(

ΘC − (1 −C) Θ̂
)

︸                 ︷︷                 ︸
<0, as C< Θ̂

Θ̂+Θ

(
1 − F (Θ)

)n−1

<
(
pσ1

e

(
Θ, h0

)
− Θ̂C

) (
1 − F (Θ)

)n−1

≤ max
Θ

(
pσ1

e

(
Θ, h0

)
− Θ̂C

) (
1 − F (Θ)

)n−1

= E
[
Πσ

e

(
Θ̂, h0

)]
.

The winner w of phase 1 has the chance to deviate for the sole source
award in phase 2. We know that in equilibrium the highest possible price for
the auctioneer is ΘC, which determines the upper bound for any sole source
deviation. However, accepting the split for this price is unprofitable regardless
of the cost type of bidder w, because the additional costs for producing 100%
of the business are not covered at this price:

ΘC < Θw (1 −C)

C <
Θw

Θw + Θ
.

This applies for all Θw with dual source efficiency. �

b.1.10 Proof of Corollary 6

The expected payoff in a σ equilibrium, Θ (1 −C) −CΘi, must be for all

cost types Θi ∈

[
Θ, Θ

]
greater than or equal to the expected payoff of any

other possible equilibrium. Condition (i) is necessary in order to achieve
payoff dominance over all σ equilibria. The derivation of the expected payoff

function used in condition (ii), which assures payoff dominance of the split
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over hybrid equilibria with parameter τ, can be found in Anton et al. (2010).
Condition (iii) is adapted from proposition 5 of Anton and Yao (1992). �

b.1.11 Proof of Corollary 8

It is known that truthful bidding, i.e. CΘi for 50% as well as Θi for 100% of
the business is a weakly dominant strategy for bidders i ∈ {A, B} in a VCG
mechanism. Hence, the price of the auctioneer can be calculated as

pVCG
b (ΘA, ΘB) =ΘAC +

(
ΘB − (ΘAC + ΘBC)

)
+ ΘBC+(

ΘA − (ΘAC + ΘBC)
)

= (ΘA + ΘB) (1 −C)

≥2Θ (1 −C)

=pσb (ΘA, ΘB) for all ΘA, ΘB ∈

[
Θ, Θ

]
.

For every possible combination of cost types, the VCG costs are higher than
or equal to the purchasing costs in a payoff-dominant σ equilibrium in one of
the three first-price split-award auctions analyzed above. �

b.1.12 Proof of Proposition 26

For the following proofs, we need the expected payoffs for a cost type Θi

E
[
Πs

e (Θi)
]
=

∫ Θ

Θi

(
1 − F (x)

)n−1
dx in a WTA equilibrium and

E
[
Πσ

e (Θi)
]
= C

∫ Θ

Θi

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx in a

σ equilibrium.

We show that for all possible settings with dual source efficiency, regarding

the parameters C, F, Θ, Θ and n, there is always an interval
(
Θ∗, Θ

]
for which

the σ equilibrium yields a higher payoff than the WTA equilibrium, i.e., for
which

E
[
Πs

e (Θi)
]
< E

[
Πσ

e (Θi)
]

for all Θi ∈

(
Θ∗, Θ

]
E

[
Πs

e (Θi)
]
− E

[
Πσ

e (Θi)
]
< 0 for all Θi ∈

(
Θ∗, Θ

]
.
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We show that this is true for high cost types:

lim
Θi→Θ

E
[
Πs

e (Θi)
]
− E

[
Πσ

e (Θi)
]
< 0

lim
Θi→Θ

∫ Θ

Θi

(
1 − F (x)

)n−1
dx−

C
∫ Θ

Θi

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx < 0

lim
Θi→Θ

∫ Θ
Θi

(
1 − F (x)

)n−1
dx∫ Θ

Θi

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx

< C

‖
0
0

L’Hospital

lim
Θi→Θ

−
(
1 − F (Θi)

)n−1

−
(
1 − F (Θi)

)n−1
− (n − 1) F (Θi)

(
1 − F (Θi)

)n−2 < C

lim
Θi→Θ

1

1 + (n − 1) F(Θi)
1−F(Θi)

< C

0 < C.

As this inequality applies for all possible C, the σ equilibrium always yields

more payoff than the WTA equilibrium for cost types in an interval
(
Θ∗, Θ

]
.

Therefore, a WTA equilibrium cannot be payoff-dominant for all cost types
with dual source efficiency. �

b.1.13 Proof of Corollary 9

In order to prove that the σ equilibrium is payoff-dominant for an arbitrary
setting with dual source efficiency, more than two bidders and uniformly

distributed cost parameters with support
[
Θ, Θ

]
, we show that

E
[
Πs

e (Θi)
]
− E

[
Πσ

e (Θi)
]
< 0 ∀Θi ∈

[
Θ, Θ

]
.

We know from proposition 26 that the σ equilibrium yields higher expected
payoff than the WTA equilibrium for bidders with high cost types. Therefore, it
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suffices to show that for a bidder with cost type Θi = Θ, the WTA equilibrium
yields a higher expected profit than the σ equilibrium:

E
[
Πs

e

(
Θ

)]
− E

[
Πσ

e

(
Θ

)]
> 0∫ Θ

Θ

(
1 − F (x)

)n−1
dx−

C
∫ Θ

Θ

(
1 − F (x)

)n−1
+ (n − 1) F (x)

(
1 − F (x)

)n−2
dx > 0

(1 −C)

∫ Θ

Θ

(
Θ − x

)n−1

(
Θ −Θ

)n−1 dx −C
∫ Θ

Θ
(n − 1)

(
x −Θ

) (
Θ − x

)n−2

(
Θ −Θ

)n−1 dx > 0

(1 −C)

−
(
Θ − x

)n

n


Θ

Θ

−C (n − 1)

−
(
Θ − x

)n

n (n − 1)


Θ

Θ

> 0

(1 − 2C)︸    ︷︷    ︸
>0

(
Θ −Θ

)n

n︸      ︷︷      ︸
>0

> 0.

Hence, for small cost types, a WTA equilibrium yields higher payoff than a
σ equilibrium, which is sufficient to prove the corollary. �

Remark regarding integration by parts:

∫ Θ

Θ

(
x −Θ

) (
Θ − x

)n−2
dx =

−
(
Θ − x

)n−1

n − 1

(
x −Θ

)
Θ

Θ

−

∫ Θ

Θ
−

(
Θ − x

)n−1

n − 1
dx

= 0 +

−
(
Θ − x

)n

n (n − 1)


Θ

Θ

.

b.1.14 Proof of Corollary 10

We show that the expected price for the buyer in the σ equilibrium is lower
than in the WTA equilibrium, when either C is sufficiently low or the cost
types are uniformly distributed with dual source efficiency.

First, assume C <
Θ

2Θ
. Then,

E
[
pσb (·, ·)

]
= 2CE [Θ3:n] < E [Θ2:n] = E

[
pWT A

b (·, ·)
]

C <
E [Θ3:n]

2E [Θ2:n]
.
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The function f (x, y) = x
2y is decreasing in y and increasing in x. As E [Θ2:n] <

Θ and E [Θ3:n] > Θ, the inequality applies.
Second, with a uniform distribution the expectation value of the k-th lowest

order statistic Θk:n can be expressed by

E [Θk:n] = Θ +
k

n + 1

(
Θ −Θ

)
.

Therefore, we can show that

E
[
pσb (·, ·)

]
= 2CE [Θ3:n] < E [Θ2:n] = E

[
pWT A

b (·, ·)
]

2C
(
Θ +

3
n + 1

(
Θ −Θ

))
< Θ +

2
n + 1

(
Θ −Θ

)

C <
Θ + 2

n+1

(
Θ −Θ

)
2Θ + 6

n+1

(
Θ −Θ

) .

As the right hand side approaches 0.5 with n → inf, it suffices to show that
the condition applies for n = 3 and C =

Θ
Θ+Θ

. This is true, as

Θ

Θ + Θ
<

Θ + 1
2

(
Θ −Θ

)
2Θ + 3

2

(
Θ −Θ

)
Θ

Θ + Θ
<

Θ + Θ

Θ + 3Θ

3ΘΘ + Θ2 < Θ2 + 2ΘΘ + Θ
2

0 < Θ
(
Θ −Θ

)
.

�

b.2 statistics of laboratory experiments

This appendix contains fixed-effects regressions of bids and prices for bidders
in split and sole-source awards for all treatments in subsection B.2.1. Moreover,
fixed-effects regressions of the allocation (split vs. sole-source award) are
included. We also added the univariate regressions of bids and prices on the
cost draws and plotted them in Section B.2.2. Finally, plots of split-award
winner bids and prices over periods of all treatments are attached to provide
insight into the development of bidding behavior with repeated interaction in
auctions. We also added plots to visualize the distribution of allocations over
periods for the two-bidder treatments.
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b.2.1 Regression Tables

In Tables 5 to 10 the dependent variable is depicted in the left column and
the intercept as well as all independent variables in the columns to the right.
For each dependent variable we provide estimates for the coefficients of all
explanatory variables for the univariate regression on cost draws X and the
fixed-effects regression X(P). The corresponding p-values are included in
brackets below the coefficients. The columns ”subjects” and ”subjects per
period” contain the number of subjects with significant (at least at the 5% level)
fixed-effects and fixed-effects over the periods of the experiment, respectively.
The column ”period” is the fixed-effect over periods for the reference subject
and included for completeness. NA-values for the latter column occur if a
subject ends up in the corresponding allocation only once. The right outermost
column contains the R2 as a measurement for the explanatory power of the
linear regression model. Note that we used a logistic regression for the fixed-
effects model of the binary outcome allocation with ajusted measurement of
explanatory power McFadden R2.

allocation intercept #subjects period #subjects per period McFadden R2

FPSB 2 A 0.82151 2 (all negative)/47 -0.15915 3 (all positive)/48 0.15533
(0.4737) * (0.2383) *

Split Bidders
single-unit bid intercept teta double-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 S S 51.88973 0.08566
(1.04e-13)*** (0.117)

FPSB 2 S S(P) 34.49385 0.0571 0.07806 8 (all positive )/46 0.35459 2 (one positive and negative)/46 0.5286
(8.66e-05)*** (0.242545) (0.012520)* * (0.633163) *

double-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 S D 91.11576 0.44934
(7.21e-13)*** (9.22e-06)***

FPSB 2 S D(P) 62.887305 0.481243 0.368754 3 (all positive)/46 0.094282 2 (all negative)/46 0.3685
(0.001058)** (3.50e-06)*** (0.012520)* * (0.953452) *

Sole-Source Bidders
single-unit bid intercept teta double-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 SS S 100.8732 -0.1387
(8.7e-10)*** (0.303)

FPSB 2 SS S(P) 81.1726 -0.3662 0.444 5 (4 positive, 1 negative)/46 3.4386 11 (1 positive, 10 negative)/46
(6.98e-05)*** (0.001212)** (2.85e-12)*** * (0.033868)* *

double-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 SS D 51.50754 0.7907
(1.18e-05)*** (6.31e-15)***

FPSB 2 SS D(P) 1.70465 0.83653 0.35606 7 (all positive)/46 -1.25169 1 (positive)/46
(0.926719) (<2e-16)*** (2.85e-12)*** * (0.390034) *

Table 5: FPSB (n=2) Regressions

In the fixed-effects regression FPSB 2 S S(P) in Table 5 the cost draw is
not a statistically significant explanatory variable for the single-unit bid of
split award winners whereas each bidder’s double-unit bid possesses relevant
explanatory power. In regression FPSB 2 S D(P) the double-unit bid strictly
increases in costs and the single-unit bid has explanatory power. In the
fixed-effects regressions FPSB 2 SS S(P) and FPSB 2 SS D(P) the single-
and double unit bids of sole-source award bidders are statistically significant
increasing in the bid for the alternative number of units. The latter possesses
more explanatory power than for the split award winners which corresponds
to our conjectures about the different relations of single- and double-unit bids
for split award winners and sole-source bidders. The negative influence of
the cost parameter in FPSB 2 SS S(P) might be explained by a large number
of sole-source bidders, who submit high bids on one unit to exclude the split
award.
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allocation intercept #subjects period #subjects per period McFadden R2

DU 2 A 1.90367 0 -0.013362 0/49 0.1415133
(0.2575) * (0.9398) *

Split Bidders
first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 S 1 51.20217 0.19497
(3.22e-08)*** (0.00854)**

DU 2 S 1(P) 52.2339 0.14209 4 (1 positive, 3 negative)/47 4.51003 2 (1 positive, 1 negative, 2 NA)/47 0.6171
(1.93e-05)*** (0.01678)* * 0.10722 *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 2 S 2 62.10713 0.12452
(5.98e-12)*** (0.0767)

DU 2 S 2(P) 46.61149 0.06771 0.50969 25 (24 positive, 1 negative)/47 -0.71126 8 (6 positive and 2 negative, 3 NA)/47 0.8001
(9.74e-09)*** (0.088325) (<2e-16)*** * (0.142994) *

Sole-source Winners
direct double-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 SS D 95.6622 0.5888
(0.00108)** (0.02207)*

DU 2 SS D(P) 122.4552 0.09057 6 (all positive)/33 1.03293 1 (positive, 14 NA)/33 0.6203
(0.00176)** (0.76205) * (0.46129) *

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 SS 1 6.4632 0.6052
(0.733072) (0.000589)***

DU 2 SS 1(P) -6.74E+00 5.44E-01 0/30 2.22E+00 0 (16 NA)/30 0.7367
(0.913) (0.149) * (0.535) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 2 SS 2 18.9572 0.5672
(0.212) (7.56e-05)***

DU 2 SS 2(P) 54.87064 -0.09605 1.06658 0/30 -3.48774 0 (16 NA)/30 0.7518
(0.3252) (0.7897) (0.0773). * (0.3008) *

Table 6: Dutch-Dutch (n=2) Regressions

In regression DU 2 S 1(P) in Table 6 the price of the first unit is increas-
ing in the cost parameter. Considering that the average price is above the
equilibrium prediction. This suggests that high cost bidders let the price rise
higher above 70 as compared to their low cost counterparts. Interestingly,
the price for the second unit in the regression model DU 2 S 2(P) does not
significantly depend on the cost draw but on the height of the price for the
first unit. Especially, the last observation is in line with our explanation of the
bidding behavior in the split awards of the Dutch auction with two bidders.
Regarding the second unit, bidders appear to be influenced much more by the
signal of their counterpart rather than by their own cost type. Eight subjects
even increased the price for the second unit statistically across the periods to
make even more profit (see figure 19).

In the fixed-effects regressions there are almost no independent variables
with explanatory power. This can be explained by our conjecture that sole-
source awards occur when bidders let the price of the first and/or the second
unit rise too high. Similar to the split regression, the model DU 2 SS 2(P)
describes sole-source winners who obtain two single units consecutively. The
price for the second unit is influenced by the price of the first unit. If split-
award winners hesitate to accept a second-unit price below the first-unit price,
sole-source winners are even more likely to do so.
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allocation intercept #subjects period #subjects per period McFadden R2

DUSB 2 A -6.82E-03 0/49 2.59E-01 1 (negative)/49 0.1907833
(0.9961) * (0.2414) *

Split Bidders
first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 S W 1 51.01613 0.09005
(3.53e-15)*** (0.0776)

DUSB 2 S W 1(P) 51.05587 0.13715 34 (almost all negative)/49 0.26856 26 (almost all positive, 2 NA)/49 0.8192
(<2e-16)*** (1.83e-07)*** * (0.512747) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

winner of first unit 49.61836 0.32714
DUSB 2 S W 2 (7.18e-07)*** (7.33e-05)***

DUSB 2 S W 2(P) 19.79858 0.446 0.124 4 (all positive) 0.07968 6 (4 negative, 2 positive, 2 NA)/49 0.4933
(0.254066) (1.11e-08)*** (0.537509) * (0.943477) *

winner of second 48.96511 0.14544
DUSB 2 S L 2 (2.61e-11)*** (0.0127)*

DUSB 2 S L 2(P) 4.83E+01 1.20E-01 1.81E-01 23 (almost all positive)/49 -2.73E-01 15 (mix, 1 NA)/49 0.7046
(1.88e-09)*** (0.002013)** (0.014269)* * (0.628269) *

Sole-source Winners
direct double-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 SS D 83.8373 0.4807
(0.00769)** (0.07491)

DUSB 2 SS D(P) -10.7642 1.3082 0/13 -0.5096 0 (8 NA)/13 0.415
(0.8837) (0.1137) * (0.8631) *

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 SS 1 22.2237 0.3737
(0.2648) (0.0381)*

DUSB 2 SS 1(P) 6.783 0.4602 0/25 1.517 0 (16 NA)/25 0.8669
(0.9588) (0.6678) * (0.2148) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DUSB 2 SS 2 0.5297 0.6516
(0.974) (4.21e-05)***

DUSB 2 SS 2(P) 216.8512 -2.3889 2.4789 0/25 -2.8574 0 (16 NA)/25 0.9321
(0.224) (0.174) (0.123) * (0.201) *

Table 7: Dutch-FPSB (n=2) Regressions

In the fixed-effects regressions for the Dutch-FPSB auction in table 7 we
observe almost identical relationships between prices and explanatory vari-
ables than in the Dutch format. However, in the split-award regression models
DUSB 2 S W 1(P), DUSB 2 S W 2(P) and DUSB 2 S L 2(P) the cost draw
has statistically significant positive influence on the dependent variable. This
is not surprising as with lower prices, that are not supported by tacit collusion
to the same extent as in the Dutch auction, bidders are inclined to take into
account their single-unit costs. Moreover, the price for the first unit is not a
reliable predictor for the bids on the second unit by winners of the first unit.
As depicted in the right plot of figure 10 they bid much higher to not risk
winning the respective unit and sustain the split. In the left and right plot of
this figure the univariate regression lines lie within the predicted boundaries.
The prices and bids of sole-source winners are illustrated in figures 11 and 12.

Note, however, that contrary to the Dutch format, 26 winners of the first
unit in split-award allocations significantly increase the price for the respective
unit over the number of periods as is shown in figure 21. Regarding the second
unit 15 winners substantially adapt the price at which they accept although not
all of them let the price rise higher. The distribution of allocations does not
change over the periods as illustrated in plot 22. These observations might
indicate that subjects manage to overcome the initial uncertainty with respect
to the second period and eventually end up in a similar strong tacit collusion
as described for the Dutch auction and even support prices above equilibrium.

single-unit bid intercept teta 1/(teta-60) double-unit bid #subjects period #subjects over period adjusted R2

FPSB 3 S 2.09512 0.32766
(0.753) (5.53e-09)***

FPSB 3 S(P) -7.92E+01 5.75E-01 1.38E+03 2.08E-01 0/34 -8.71E-02 3 ( 2 positive, 1 negative)/34 0.3942
(0.117803) (0.044607)* (0.142947) (8.70e-10)*** * (0.903771) *

double-unit bid intercept teta single-unit bid #subjects period #subjects over period adjusted R2

FPSB 3 D 17.3928 0.9504
(0.243) (8.1e-14)***

FPSB 3 D(P) 17.35231 0.7494 0.39953 2 (all positive)/34 0.05135 3 ( all positive)/34 0.7784
(0.1358) (<2e-16)*** (7.05e-10)*** * (0.95894) *

Table 8: FPSB (n=3) Regressions
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first single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 3 1 26.9637 0.10899
(<2e-16)*** (5.24e-14)***

DU 3 1(P) 26.12313 0.092455 23 (all positive)/47 0.229195 12 (all negative, 6 NA)/47 0.6826
(<2e-16)*** (1.09e-14)*** * (0.028266)* *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 3 2 25.18748 0.12198
(<2e-16)*** (<2e-16)***

DU 3 2(P) 15.03993 0.120899 0.253872 3 (3 positive)/48 0.023405 2 (all negative, 3 NA)/48 0.6084
(9.50e-08)*** (<2e-16)*** (2.09e-05)*** * (0.84849) *

Table 9: Dutch-Dutch (n=3) Regressions

first single-unit bid intercept teta #subjects period #subjects over period adjusted R2

DUSB 3 W 1 18.61513 0.16846
(<2e-16)*** (<2e-16)***

DUSB 3 W 1(P) 17.888482 0.185402 10 (all positive)/49 -0.20185 8 (all positive, 2 NA)/49 0.7758
(<2e-16)*** (<2e-16)*** * (0.03235)* *

second single-unit bid intercept teta single-unit bid #subjects period #subjects over period adjusted R2

winner of first unit 45.426 0.4004
DUSB 3 W 2 (0.0126)* (0.0123)*

DUSB 3 W 2(P) 8.6789 0.32287 1.08283 9 (7 positive, 2 negative)/49 -0.39624 7 (4 positive, 3 negative, 2 NA)/49 0.8237
(0.651303) (0.052737). (0.148866) * (0.623098) *

winner and loser of second 7.2542 0.28409
DUSB 3 L 2 (0.238) (2.28e-08)***

DUSB 3 L 2(P) -5.794843 0.26957 0.282631 7 (all positive)/46 -0.042096 6 (1 positive, 5 negative)/46 0.5344
(0.584099) (6.51e-10)*** (0.161048) * (0.956202) *

Table 10: Dutch-FPSB (n=3) Regressions

For the split award with three bidders the fixed-effects regressions in tables
8 to 10 contain a cost parameter with significant explanatory power that is
positively correlated with the corresponding dependent variable. Also, in
regressions FPSB 3 S(P) and FPSB 3 D(P) the height of the single- and
double-unit bid significantly depends on the height of the bid for two and one
units, respectively. The lower a bidder’s competitive bid for one unit the more
willing he is to submit a low bid on two units and vice versa as would be
expected in a competitive outcome.

Interestingly, in panel regression DU 3 2(P) for the second unit in the Dutch
auction the price of the first unit still contains high explanatory power whereas
this is not the case for the respective regression DUSB 3 L 2(P) in the Dutch-
FPSB format. To explain this observation note that in the Dutch auction 12
subjects significantly decrease the price at which they accept the first unit
over the periods. It appears that if some bidders accepted the first unit at a
higher price in the earlier periods then the price of the second unit was also
accepted at higher prices. This connection then vanishes with more periods.
In contrast, in the Dutch-FPSB format eight bidders let the price at which they
accept the first unit rise significantly higher with more periods. These bidders
have accepted the first unit at rather low prices in early periods which did not
constitute a relevant signal for the price of the second unit. Generally, bidder
behavior is rather constant over periods as is depicted in plots 23 to 25.

b.2.2 Figures

In the plots of bids and prices against cost draws in Figures 9 to 25 we include
the solid univariate regression lines and the dashed equilibrium strategies. If
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there are no significant fixed and period effects in the linear regressions of bids
and prices the univariate regression on the cost draws helps to visualize the
subjects’ underlying bidding behavior.
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Figure 5: Bids of Split-Award Winners
in FPSB (n=2)
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Figure 6: Bids of Sole-Source-Award
Winners in FPSB (n=2)

100 110 120 130 140

40
60

80
10

0
12

0
14

0

cost draw

fir
st

 5
0%

 s
ha

re
 b

id

100 110 120 130 140

40
60

80
10

0
12

0
14

0

cost draw

se
co

nd
 5

0%
 s

ha
re

 b
id

split−award winners

Figure 7: Bids of Split-Award Winners
in Dutch-Dutch (n=2)
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Figure 8: Bids of Consecutive Sole-
Source-Award Winners in
Dutch-Dutch (n=2)
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Figure 9: Bids of Direct Sole-Source-
Award Winners in Dutch-
Dutch (n=2)
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Figure 10: Bids of Split-Award Win-
ners in Dutch-FPSB (n=2)
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Figure 11: Bids of Consecutive Sole-
Source-Award Winners in
Dutch-FPSB (n=2)

100 110 120 130 140

40
60

80
10

0
12

0
14

0

cost draw

0.
5*

(1
00

%
 s

ha
re

 b
id

)

direct sole−source award winners

Figure 12: Bids of Direct Sole-Source-
Award Winners in Dutch-
FPSB (n=2)
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Figure 13: Bids of Split-Award Bid-
ders in FPSB (n=3)
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Figure 14: Bids of Split-Award Bid-
ders in Dutch-Dutch (n=3)
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Figure 15: Bids of First-Unit Split-
Award Winners in Dutch-
FPSB (n=3)
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Figure 16: Bids of Second-Unit Split-
Award Winners in Dutch-
FPSB (n=3)

b.2.3 Period Plots

In the following plots of bids and prices against periods the solid black line
represents the average bid/price in period 15 and the solid grey line depicts
the average bid/price over all periods. For the two-bidder treatments we
included dashed lines for the range of constant pooling prices. Furthermore,
for the treatments with two bidders we also added plots of the distribution of
allocations against periods.
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Figure 17: Bids of Split-Award Winners in FPSB (n=2)
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Figure 18: Distribution of allocations in FPSB (n=2)
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Figure 19: Prices of Split-Award Winners in Dutch-Dutch (n=2)
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Figure 20: Distribution of allocations in Dutch (n=2)
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Figure 21: Prices of Split-Award Winners in Dutch-FPSB (n=2)
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Figure 22: Distribution of allocations in Dutch-FPSB (n=2)
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Figure 23: Bids of Split-Award Winners in FPSB (n=3)
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Figure 24: Prices of Split-Award Winners in Dutch-Dutch (n=3)
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Figure 25: Prices of Split-Award Winners in Dutch-FPSB (n=3)








	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Single-Object Auctions
	Auctions for Perfect Substitutes
	Auctions for Heterogeneous Items
	General Combinatorial Auctions

	Contributions
	Standard Package Auctions
	Principal-Agent Relations in Package Auctions
	Procurement Package Auctions

	Outline of the Thesis

	Theoretical Background
	Bayesian game Theory
	Static Games of Incomplete Information
	Dynamic Games of Incomplete Information
	Standard IPV Auction Model

	Contract Theory
	Mechanism Design
	Second-Best Problem
	Optimal Delegation

	State of Research
	Single-Object Auctions
	Auctions for Perfect Substitutes
	Auctions for Heterogeneous Items
	Combinatorial Auctions


	Principal-Agent Relations in Package Auctions
	Introduction
	Contributions and Outline
	Model
	Independent Optimization
	Symmetric Information Environment
	Asymmetric Information Environment

	Auction Formats
	The 1 2 Direct-Revelation Mechanism
	The 2 2 VCG mechanism
	The 2 2 FPSB Package Auction
	The 2 2 Ascending Package Auction
	The 2 2 Ascending Uniform-Price Auction

	Single-Package Auctions
	Principals' Strategies
	Agents' Strategies
	Symmetric Information Principal-Agent Model
	Asymmetric Information Principal-Agent Model

	Combinatorial FPSB Package Auction
	Principals' Strategies
	Agents' Strategies
	Symmetric Information Principal-Agent Model
	Asymmetric Information Principal-Agent Model

	Combinatorial Second-Price Package Mechanisms
	Principals' Strategies
	Agents' Strategies
	Symmetric Information Principal-Agent Model
	Asymmetric Information Principal-Agent Model
	The Principal-Agent 2 2 VCG Mechanism Model

	Generalization of Results
	Ascending Uniform-Price Auction
	Biased Profit-Maximizing Agent

	Conclusion

	Optimal Bidding in Ex-Post Split-Award Auctions
	Introduction
	Contributions
	Model
	Auction Formats
	The Dutch Split-Award Auction
	The Dutch-FPSB Split-Award Auction

	Equilibrium Bidding in the 2-Bidder Model
	The FPSB Split-Award Auction
	The Dutch Split-Award Auction
	The Dutch-FPSB Split-Award Auction

	Equilibrium Bidding in the n > 2-Bidder Model
	The FPSB Split-Award Auction
	The Dutch Split-Award Auction
	The Dutch-FPSB Split-Award Auction

	Welfare Analysis in the 2-Bidder Model
	Efficiency Analysis
	Comparison of Purchasing Costs

	Welfare Analysis in the n > 2-Bidder Model
	Efficiency Analysis
	Comparison of Purchasing Costs

	Experimental Evaluation
	Experimental Design
	Theoretical Predictions
	The FPSB Split-Award Auction
	The Dutch Split-Award Auction
	The Dutch-FPSB Split-Award Auction
	Efficiency and Purchasing Costs

	Welfare Results
	Efficiency
	Procurement Costs

	Bidding Behavior
	Two-Bidder FPSB Split-Award Auction
	Two-Bidder Dutch Split-Award Auction
	Two-Bidder Dutch-FPSB Split-Award Auction
	Three-Bidder FPSB, Dutch, and Dutch-FPSB Split-Award Auction


	Conclusion

	Conclusion
	Appendix A
	Proofs of Chapter 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Lemma 3
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11
	Proof of Corollary 1
	Proof of Proposition 12
	Proof of Proposition 13
	Proof of Proposition 14
	Proof of Proposition 15

	Ascending Auction Formats from Chapter 3

	Appendix B
	Proofs of Chapter 4
	Proof of Corollary 4
	Proof of Proposition 18
	Proof of Proposition 19
	Proof of Corollary 5
	Proof of Proposition 20
	Proof of Proposition 22
	Proof of Proposition 23
	Proof of Proposition 24
	Proof of Proposition 25
	Proof of Corollary 6
	Proof of Corollary 8
	Proof of Proposition 26
	Proof of Corollary 9
	Proof of Corollary 10

	Statistics of Laboratory Experiments
	Regression Tables
	Figures
	Period Plots


	 Appendix C

