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Abstract

Developmental disorders present with a variety of phenotypes characterised by
deficits in different developmental domains that often become manifest right after
birth. There are, however, developmental disorders without apparent early signs,
such as autism spectrum disorder (ASD), fragile X syndrome (FXS), and Rett syn-
drome (RTT). The late onset of clinically detectable features in ASD, FXS, and
RTT usually leads to an accurate diagnosis beyond infancy. Even though an ear-
lier treatment would certainly be beneficial for affected individuals, research on early
markers of these disorders is still underrepresented. Some studies reported on delays
and early peculiarities in the socio-communicative domain — a key domain for the
clinical diagnosis of ASD, FXS, and RTT. However, little to nothing is known about
acoustic characteristics of disorder-related pre-linguistic vocalisations and their po-
tential role for an automatic earlier identification of affected individuals.

The objective of this thesis was to evaluate the basic feasibility of an ‘intelligent’
pre-linguistic vocalisation-based approach for enabling an earlier recognition of ASD,
FXS, and RTT. Therefore, early audio-video recordings of individuals later diag-
nosed with ASD, FXS, or RTT, and typically developing controls, were segmented
for pre-linguistic vocalisations. Then, the differentiability of class-related vocalisa-
tions was analysed on the basis of an extended set of acoustic signal-level features
extracted from the vocalisations. Finally, the automatic feature-based recognition of
ASD, FXS, and RTT by means of machine learning methodology was investigated.

A high number of acoustic features was identified to significantly differ be-
tween vocalisations of individuals with different developmental outcomes. Moreover,
promising recognition results were achieved for the automatic vocalisation-based
identification of individuals with ASD, FXS, or RTT.

The generated results raise evidence for acoustic information in pre-linguistic vo-
calisations to reflect the integrity of the developing young nervous system. Thereby,
this thesis may essentially contribute to a reliable earlier recognition of currently
‘late diagnosed’ developmental disorders and, ultimately, facilitate an earlier inter-
vention.






Zusammenfassung

Die frithkindliche Entwicklung ist hinsichtlich zahlreicher Entwicklungsaspekte in-
tensiv beforscht und verstanden. Ein Wissensdefizit — besonders in Bezug auf
das erste Lebensjahr — besteht jedoch bei Entwicklungsstorungen, die zurzeit nach
wie vor erst im Kleinkindalter diagnostiziert werden. Dazu zahlen beispielsweise
die Autismus-Spektrum-Stérung (ASS), das Fragile-X-Syndrom (FXS) und das
Rett-Syndrom (RTT). Wenngleich fiir diese Stérungen bereits Verzogerungen und
Auffalligkeiten im Zusammenhang mit der Sprachentwicklung attestiert werden kon-
nten, so sind akustische Parameter pralinguistischer Lautauferungen und deren Re-
levanz fiir die Fritherkennung bislang noch weitgehend unerforscht.

Ziel der vorliegenden Arbeit war es, diese Wissensliicke zu schlieen. So erfolgte
die Segmentierung von pralinguistischen LautduBerungen in Videoaufzeichnungen
von Sauglingen, die spater mit ASS, FXS oder RTT diagnostiziert wurden, sowie
von sich normal entwickelnden Kontrollkindern. Aus diesen Lautduflerungen wurde
anschliefend eine Vielzahl an akustischen Signalparametern abgeleitet. Die Para-
meter wurden zum einen zur detaillierten Untersuchung gruppenspezifischer Laut-
unterschiede auf Signalebene, zum anderen zur automatischen Klassifikation von
Lautauflerungen hinsichtlich der spateren Diagnose der Sauglinge basierend auf
Methoden des Maschinellen Lernens verwendet.

Eine Reihe von Signaleigenschaften, die sich als valide fiir die Unterscheidung
zwischen frithen Lautaulerungen von Sduglingen mit ASS, FXS oder RTT, sowie von
sich normal entwickelnden Sauglingen herausgestellt hat, sowie vielversprechende
Ergebnisse fiir die automatische lautbasierte Erkennung dieser Storungsbilder,
sprechen dafiir, dass sich anhand akustischer Informationen in pralinguistischen
LautauBerungen Aussagen iiber die Integritiat des sich entwicklenden Nervensystems
ableiten lassen.

Die in dieser Arbeit gewonnenen Erkenntnisse konnten einen wichtigen Beitrag
fiir eine zuverlassige Fritherkennung von derzeit erst im Kleinkindalter diagnos-
tizierten Entwicklungsstorungen leisten und in weiterer Folge betroffenen Kindern
kiinftig eine frithere Intervention ermoglichen.
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Preface

The first year of human life — a period of significant neurofunctional adaptations
and changes — represents one of the most striking periods for parents, but also for
clinicians and researchers. Phenomena such as the transition from the first sponta-
neous movements to the first step, the emergence of social smiling, or the acquisition
of verbal abilities from the first cry to the production of the first meaningful word,
characterise the ‘wonder’ of early human development. However, there are parents,
who cannot rejoice in their children to achieve specific developmental milestones
as developmental processes appear delayed or even deviant. Starting to realise
that something might be wrong, the fascinating period of early development often
becomes a period of concerns and frustration and a starting point for diagnostic
odysseys with uncertain outcomes.

This thesis is dedicated to all families — parents and children — who are affected
by a developmental disorder with a current mean age of diagnosis beyond infancy,
especially by autism spectrum disorder, fragile X syndrome, or Rett syndrome. By
presenting a nowvel, interdisciplinary approach, I hope this work will contribute to a
reliable earlier identification of children with ‘late diagnosed’ developmental disor-
ders, facilitating an earlier entry into intervention...






Part 1

Introduction






Early human development

Early human development is related to developmental phenomena within the broad
continuum between foetal and early postnatal life. Science in context of early (hu-
man) development may be referred to as developmental (neuro)science. When deal-
ing with developmental neuroscience, the ontogenetic adaptation paradigm postu-
lated by the Austrian physician, zoologist, anthropologist, and founder of develop-
mental neurology, Professor Dr. Heinz Friedrich Rudolf Prechtl, should be consid-
ered as a fundamental explanatory model. The concept of ontogenetic adaptation
acknowledges a recurring sequence of developing neural structure realising itself
through function that — for survival — has to meet the requirements of both the
organism and its environment (e.g., in utero vs. ex utero). This, in turn, leads to
the generation of adapted neural structure, which is prerequisite for differentiated
neurofunction, and so forth. [1] For example, the formation of a foetus’ diaphragm
sets in at 8 weeks of gestation (postmenstrual age!) [2] and represents the anatomi-
cal precondition (structure) for the production of hiccup (function). First breathing
movements usually follow 2-4 weeks later [3]. From around 30 weeks of gestation
onwards, foetal breathing movements are the predominant type of diaphragmatic
movements. By being required for the accomplishment of the morphological differ-
entiation between pneumocytes of type I and type II [4], foetal breathing movements
appear — amongst other reasons — to be essential for a normal foetal lung develop-
ment allowing for functional postnatal respiration [5] and vocalisation. As a direct
consequence of the onotogenetic adaptation paradigm, Professor Prechtl further em-
phasised that “[...] at different ages we are dealing with qualitatively different nervous
systems. [...] If various developmental stages are studied in their own right, it is
evident that an 'immature’ nervous system does not exist.” [1, p. 837]. This means
that “[...] each foetus, infant, and child has a biologically different brain at different
ages.” [1, p. 837]

I Postmenstrual age refers to the time elapsed from the first day of the mother’s last menstruation
period.



1 Early human development

The thesis at hand focusses on postnatal development in the first year of life, thus
in reference to a term birth, on aspects related to brain development from the 41%¢ to
the end of the 92"%week postmenstrual age. Important developmental processes and
milestones during this period are — amongst others — the development of the circa-
dian rhythm [6], reaching [7], grasping [7], eye-hand coordination [8], social smiling
[9], binocular vision [10], directional hearing [11], solid food intake [12], rolling over
[13], unaided sitting [13], crawling [13], pulling up [13], unaided standing [13], walk-
ing [13], the use of gestures [14], behaviour imitation [15], and the emergence of
the speech capacity from the onset of cooing around the third month post-term
age via the onset of canonical babbling around the eighth month post-term age, to
the production of the first meaningful words around the end of the first year of life
[16, 17, 18, 19, 20, 21, 22]. Different developmental domains, such as the cognitive
domain, the motor domain, or the socio-communicative/speech-language domain,
allow different ‘views’ into the developing brain. The integrity of the young nervous
system can be assessed by analysing domain-related parameters of interest (POI),
such as the anticipation of coming events or object permanence in the cognitive
domain, midline movements or laterality in the motor domain, or reaction to name
calling or vocalisation type ratios in the socio-communicative/speech-language do-
main, to name but a few. Deviations from the typical structure-function-structure
sequence of early development can manifest in a delayed, reduced, or qualitatively
and/or quantitatively deviant functional repertoire in any subsequent developmen-
tal stage. The comprehensive understanding of typical and deviant developmental
phenomena in the young human organism considering cross-domain and multi-POI
relations, requires a complex and highly interdisciplinary scientific approach.

1.1 Interdisciplinary developmental neuroscience

Aiming for a multi-domain analysis of phenomena in typical and deviant early hu-
man development also envisaging potential healthcare applications, interdisciplinary
developmental neuroscience is characterised by a close collaboration between differ-
ent professional groups, namely between scientists of diverse expertise, physicians,
and/or engineers that regard developmental phenomena from different angles, but
communicate in a ‘common language’. As illustrated in Figure 1.1, interdisciplinary
developmental neuroscience can be understood as a synergy of various disciplines
of basic research and applied clinical disciplines, such as gynaecology and obstet-
rics, neonatology, paediatrics, neurology, physiology, psychology, psychiatry, pathol-
ogy, genetics, linguistics, speech-language pathology, biomedical engineering, sensor
technology, and signal processing. Recent studies in this relatively young field, e.g.,
focussed on the effect of maternal Zika virus infection on foetal development [23],
the association between the postnatal motor repertoire and language development
[24], or on socio-communicative deficits in 9-24 months old children as markers for



1.1 Interdisciplinary developmental neuroscience

developmental disabilities [25, 26, 27, 28]. Over the last years, more and more tech-
nical approaches have gained increasing importance for developmental neuroscience,
especially approaches building on ‘intelligent” analytics implying the utilisation of
machine learning methodology.

Figure 1.1: Interdisciplinary developmental neuroscience as synergy of various dis-
ciplines shedding light on currently unknown aspects of early human development.
Picture Stangl 2014

1.1.1 Machine learning in developmental neuroscience

Building on fundamental mathematics such as linear algebra but also on probability
and information theory [29], machine learning can be regarded as a form of data
mining by means of applied statistics [30, 29]. ‘Learning’ in this context implies that
knowledge is acquired from data [31], which have to be available in an electronic
representation. The sought knowledge is about patterns within these data [30]. As



1 Early human development

the quantity and/or complexity of the data exceed the analytical competences of a
human being, a computer, a machine, is used to automatically perform this learning
process. Then, based on the learned, future data or data-related outcomes of interest
can be automatically predicted [30].

Also applying to other medical-related fields, machine learning methodology has
found its way into developmental neuroscience in connection with applications for
which human performance or the performance of conventional /deterministic signal-
based approaches has been unsatisfactory and the probability value generally in-
volved by machine learning practice has been arguable. Machine learning in de-
velopmental neuroscience allows for an automated analysis, classification, and/or
detection of foetal or infant neurofunctions and/or (medical) states. Apart from
its role in basic research, machine learning methodology currently has an essential
impact on applied clinical research, especially on the development of assistive tools
to support and automatise obstetric and paediatric diagnostic (pre-)processes.

Recent studies, e.g., focussed on the automated localisation of foetal body parts
in cine-MRI scans [32], the automated diagnosis of hip dysplasia in infants from 2D
ultrasound images [33], or on newborn face recognition via distance metric learning
[34]. Li and colleagues [35] compared different machine learning approaches for an
automated identification of infants, who were small for gestational age. Moreover, a
number of studies built on machine learning technology for the automatic detection
and categorisation of infant cries (e.g., [36, 37, 38, 39]). Another recent application
for machine learning in developmental neuroscience is the automated recognition
of infant sleep states, e.g., based on respiration [40] or EEG data [41]. Aiming
to improve the quality of neonatal resuscitation procedures, respective video data
were automatically analysed by Guo and colleagues [42]. An automated prediction
of apnea of prematurity, a breathing disorder prevalent in preterm infants, from
data collected during the first days of life was focussed on by Mago and colleagues
[43]. Machine learning-based infant MRI analyses were applied, e.g., to segment
infant brain tissue into white matter, grey matter, and cerebrospinal fluid [44], to
characterise functional connectivity in the preterm brain [45], or to predict infant
brain maturity providing a means for estimating an infant’s neurodevelopmental
outcome [46]. Obviously, machine learning represents an emerging methodological
tool in developmental neuroscience not only for the classification of neurotypical
behaviour, but also for the recognition or prediction of pathological conditions.



Developmental disorders with a
late clinical manifestation

Developmental disorders subsume medical conditions that are characterised by
deficits in any developmental domain and typically become manifest early in de-
velopment [47]. A number of these disorders are apparent from the day of birth on-
wards or even earlier in the prenatal period due to behavioural peculiarities and/or
physical atypicalities/dysmorphic features. For example, foetuses with chromoso-
mal anomalies, e.g., present in Down syndrome (trisomy 21), can be identified with
a certain probability between 10 and 14 week of gestation by means of a nuchal
translucency ultrasound scan [48]. Characteristic postnatal features of individuals
with Down syndrome are low set simple ears, an upward eye slant, epicanthic folds,
a flat occiput, a short neck, a single palmar crease, and a gap between the first and
the second toe [49]. Further examples of postnatal physical or behavioural signs for
developmental disorders are a low muscle tone in combination with facial abnormal-
ities including full lips, a wide mouth, a short upturned nose, a flat nasal bridge,
and a broad brow in Williams syndrome [50, 51, 52|, or high-pitched cat-like crying
in Cri-du-chat syndrome [53].

However, there are developmental disorders without apparent early signs (see
Figure 2.1). The late onset of clinically relevant features in individuals with such
a disorder currently leads to an accurate diagnosis in toddlerhood, at preschool
age, or even later. In addition, diagnosis is often hampered by (i) a wide pheno-
typical variation within one and the same disorder, (ii) different disorders sharing
the same or similar phenotypical signs, and (iii) comorbidities of multiple develop-
mental disorders. Examples! of ‘late recognised’” developmental disorders are atten-
tion deficit hyperactivity disorder (ADHD), Angelman syndrome, autism spectrum
disorder (ASD), Cohen syndrome, fragile X syndrome (FXS), Pitt-Hopkins syn-
drome, Prader-Willi syndrome, Rett syndrome (RTT), Smith-Magenis syndrome,

thttp://www.orpha.net, http://compbio.charite.de/phenomizer (as of 31 March 2018)



2 Developmental disorders with a late clinical manifestation

and Tourette syndrome, to name but a few. Some of these disorders are associated
with genetic causes, such as FXS or RT'T, but respective genetic testing is currently
not standard for screening in newborn healthcare. In other developmental disorders
with a late clinical manifestation, the exact cause is still unknown, as for example
in ASD (e.g., [47, 54]). Some ‘late recognised’ developmental disorders are relatively
prevalent, such as ADHD (1 of 20 individuals affected [47]) or ASD, others are rather
rare, such as FXS, RTT, or the Pitt-Hopkins syndrome with only a few hundred
confirmed cases worldwide [55].

I l ASD? I ‘ FXS? [ ‘ RTT?

Figure 2.1: Unawareness of the presence of a developmental disorder due to the lack
of early behavioural and/or physical evidence. ASD = autism spectrum disorder;
FXS = fragile X syndrome; RTT = Rett syndrome; TD = typical development.
Picture Loske 2016; www.artigebilder.at

Due to the availability of data of both quantity and quality sufficient for mean-
ingful scientific-technical analyses and for evaluating the potential of future clinical
implications, experimentation in the framework of this thesis was based on individu-
als with ASD, FXS, and RTT, and on typically developing (TD) controls. Thereby,
this work covers a relatively prevalent disorder of still unknown cause (ASD) as
well as two rare genetic disorders (FXS and RTT) necessitating to consider different
medical condition-related requirements. Henceforth, ASD, FXS, and RTT are also
referred to as conditions of interest (COI).

2.1 Autism spectrum disorder

ASD is a neurodevelopmental disorder, which was first described by the Austro-
American psychiatrist Leo Kanner and the Austrian paediatrician Hans Asperger,
in the 1940s [56, 57]. Today, more than 70 years later, the exact cause of ASD is
sill unknown (e.g., [47, 54]). However, a variety of environmental factors, such as
low birth weight or advanced parental age, and genetic configurations were found to
be associated with an increased risk for ASD [47]. According to the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5; [47]), an ASD diagnosis is based on
the criteria of persistent deficits in socio-communicative functioning as well as re-
stricted, repetitive behavioural patterns. Symptoms need to become manifest early
in development causing impairments of clinical relevance. Above all, the possibility
of an intellectual developmental disorder or a global developmental delay to be a
more appropriate exclusive classification of the condition must be excluded, even

10



2.2 Fragile X syndrome

though intellectual disability and ASD often co-occur. [47] Recent estimates from
the ADDM network (Autism and Developmental Disabilities Monitoring network)
funded by the Centers for Disease Control and Prevention, indicated an ASD preva-
lence of 1 in 59 children and an increased occurrence rate in males than in females
by factor 3.2-4.9 across the USA [58]. Moreover, ASD was found to have a recur-
rence risk of up to 18% for (younger) siblings of individuals with an existing ASD
diagnosis [59, 60]. This allows for longitudinal studies gathering prospective data
from high risk cohorts (e.g., Early Autism Sweden?). Currently, there is no cure
for ASD (e.g., [54, 61]), but the benefit of early treatment for affected children has
been repeatedly demonstrated (e.g., [62, 63, 64]). However, even though research
has been intensively focussing on early ASD screening over the last years (e.g., [65]),
children with ASD are usually not identified before toddlerhood [66, 58, 67].

2.2 Fragile X syndrome

FXS is a condition that was first described as a ‘mental defect’ by the British hu-
man geneticists James Purdon Martin and Julia Bell in 1943 [68]. Based on the
cytogenetic identification of a marker X chromosome with a secondary constriction
close to the end of the long arm by Herbert Lubs in 1969 [69], FXS was found to
result from a mutation in the X-linked Fragile X Mental Retardation 1 (FMR1)
gene and classified as trinucleotide repeat disorder in the 1990s [70, 71]. FXS is the
most prevalent inherited form of intellectual disability [72]. As usual for X-linked
diseases, clinical manifestation in affected females tends to be milder than in males
due to the presence of a second, ‘normal’ X chromosome [73]. The incidence of FXS
is about 1.4 of 10000 in males (1:7143) and 0.9 of 10000 in females (1:11111) [74].
The disease is characterised by a general developmental delay, cognitive impairment,
prominent stereotypies, ADHD symptoms, and anxious behaviour [75, 73]. More-
over, individuals with FXS often display autistic features, such as gaze aversion or
repetitive speech patterns [76, 73]. FXS with a comorbid diagnosis of ASD is com-
mon [77, 78, 79]. Physical features related to FXS are, e.g., a large head, a long
and narrow face, large and anteverted ears, a large jaw, and a seizure predisposition
[80, 81]. These features, however, become prominent only later during development.
On average, males with FXS are diagnosed at around 36 months of age, females at
around 42 months [82]. Besides facilitating an earlier intervention for affected indi-
viduals, an earlier recognition of FXS could open parents the opportunity of timely
genetic counselling with respect to further family planning.

http:/ /www.earlyautism.se (as of 27 March 2018)
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2 Developmental disorders with a late clinical manifestation

2.3 Rett syndrome

RTT is a profound progressive developmental disorder that was first described by the
Austrian neuropaediatrician Andreas Rett in 1966 [83, 84]. In 1999, the main cause
of the disease could be identified to be a spontaneous mutation in the X chromosome-
linked gene encoding Methyl-CpG-binding Protein 2 (MECP2) [85]. Therefore, RTT
almost exclusively occurs in females® at a prevalence of about 1 in 10000 live female
births [87]. Nevertheless, there are both individuals with MECP2 mutation without
showing the RTT phenotype and patients with the RTT phenotype without MECP2
mutation [88, 89]. Consequently, the diagnosis of RTT and its variants still remains
a clinical matter based on four main consensus criteria [88]: (1) loss of already
acquired purposeful hand skills, (2) loss of already acquired spoken language, (3)
gait abnormalities, (4) and hand stereotypies. For a more fine-grained classification
of the clinical picture of RTT, there are eleven supportive criteria [88], e.g., growth
retardation, scoliosis/kyphosis, muscle tone abnormalities, breathing irregularities,
bruxism during waking state, diminished pain response, and small cold hands and
feet. The early development of individuals with RTT usually appears inconspicuous
[90] for caregivers as well as for healthcare professionals being in charge of early
paediatric standard examinations. In most cases, first suspicion is raised due to a
regression of already acquired functions. Developmental regression is characteristic
for the progression of RTT and typically sets in between 6 and 18 months of age
[91]. Currently, RTT can only be treated symptomatically, but a reliable earlier
recognition of the disease could add to improve life quality of affected individuals
and to prevent diagnostic odysseys for parents from the day of their first concerns
to the day of their child’s definite RTT diagnosis. However, even though a number
of studies have raised evidence for RTT signs already in the pre-regression period,
such as atypicalities in early spontaneous movement patterns (e.g., [92]) or early
vocalisation peculiarities (e.g., [93, 94, 95, 25, 26]), the mean age of a RTT diagnosis
still is 2.7 years [96].

3 As being X-linked, MECP2 mutation in males usually leads to miscarriage, stillbirth, or a very
low life expectancy [86].
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The speech-language domain

Communication plays a central role in human life [97]. The intentional transmission
and exchange of information including wants and need, or emotions is an essential
human capacity and a requirement for individuals living together in a civilisation
[98]. Defined by the use of a conventional (abstract) symbolic code [98], language is
a fundamental means of human communication [99]. Spoken language represents a
basic mode of language use [99].

From a technical perspective, spoken language, i.e., speech, can be regarded
as a recordable signal with specific characteristics. These characteristics become
evident when understanding and modelling the process of speech production. For
engineering purposes, modelling the speech production process is not to exactly
rebuild anatomy and (neuro-)physiology of the real speech production system, but
to obtain a mathematical approximation fulfilling application-specific requirements,
such as intelligibility in speech synthesis or efficiency in speech transmission [99]. A
popular speech production model is the source-filter model, which approximates the
effects of the lung and the vocal folds as the excitation source, and the influence of
the vocal tract as a time-varying filter [99].

An infant’s pre-linguistic period, i.e., the time before the production of linguis-
tic utterances such as target language-related proto-words or words [100, 19], can
be regarded as a phase in which both source and filter are fundamentally tuned
due to underlying anatomical and physiological transformations and processes of
infant brain development. For almost 40 years, studies have documented typical
pre-linguistic verbal development (e.g., [101, 17, 18, 21, 22]). Besides aiming to
categorise early vocalisations (e.g., [16, 17, 19, 20, 21]), research has focussed on
defining milestones of speech-language development. Delays in achieving particu-
lar milestones have been discussed as potential early indicators of developmental
disabilities (e.g., [102]).
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3 The speech-language domain

3.1 Typical pre-linguistic verbal development

The first weeks of an infant’s life are mainly characterised by the production of vege-
tative and discomfort sounds, such as fussy and crying vocalisations [20]. A relatively
small proportion of vocalisations in this very early period is already composed of
non-distress sounds. These are typically brief, voiced, low-pitched, grunt-like sounds
with limited resonance referred to as quasi-resonant nuclei [17, 16]. The vocal qual-
ity of quasi-resonant nuclei is far from the quality of target language-related vowels
[16]. Very early vocal behaviour has been discussed to be endogenously produced
by specific neural networks located in the brain stem, the so-called central pattern
generators [103, 104].

Still not transcribable as target language-related vowels according to the Inter-
national Phonetic Alphabet (IPA), fully resonant nuclei to a small proportion occur
along quasi-resonant nuclei during the first two months of life. Then, they become
more and more prominent [17, 16]. Fully resonant nuclei are vowel-like vocalisations
longer than quasi-resonant nuclei with energy over a broader frequency range. Nev-
ertheless, fully resonant nuclei may exhibit a poor, e.g., harsh or high-pitched vocal
quality [16].

Shortly after infants have achieved a certain level of cortical control over sound
production, a more complex, distinctive type of vocalisation emerges around the
third month of life, namely the cooing vocalisation [17, 20]. A cooing vocalisation
consists of a usually velar consonant-like element, such as a voiced fricative, which
is optionally combined with a vowel-like element [17, 16], and frequently exhibits a
distinet melodic contour [19]. Even though the cooing pattern considerably varies
in structure and quality, cooing vocalisations are the first vocalisations in the course
of early verbal development exhibiting discernible tongue movements [18] and can
be regarded as a very first form of syllables [101]. The cooing pattern typically
develops alongside the pattern of social smiling and is frequently generated in face-
to-face interaction settings with a caregiver [20, 18].

The period around the fourth and fifth month of age is characterised by an
infant’s exploration of his or her vocal apparatus’ full potential. The playful use of
vocal behaviours, such as squealing, yelling, growling, or raspberry sounds is typical
for this phase. [17, 20, 19] Furthermore, the early vocal repertoire is expanded by
vowel-like vocalisations more and more turning into vowels of target language-related
quality and by vowel glides, i.e., vowel-like elements or vowels with slow variations
in vowel-quality, such as in pitch or loudness, without an audible gap [16].

Around the end of the first half year of life, infants typically start to produce first
sequences of consonant(-like)-vowel(-like) sound combinations with yet prolonged or
shaky formant transitions referred to as marginal babbling [17, 19, 16].

From the beginning of the second half year of life onwards, an infant’s so far
acquired vocal competence becomes manifest in the transition from marginal bab-
bling to the onset of canonical syllables — consonant-vowel combinations with target
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3.2 Deviant pre-linguistic verbal development

language-related quality and timing — and series of canonical syllables referred to
as canonical babbling [17, 20, 19, 16]. Canonical babbling is typically well in place
not later than 10 months of age representing a key milestone in pre-linguistic ver-
bal development [17, 20, 105]. At first, babbling consists of repetitions of the same
consonant-vowel sequence (reduplicated babbling). Then, infants more and more
systematically produce vocalisations with differing consonant-vowel combinations
referred to as variegated (non-reduplicated) babbling [17, 20, 19, 16].

Over the last months of the first year of life, the advanced level of phonation con-
trol and the perpetual competence of acquiring new (vocal) structures by combining
already acquired structures involve the generation of even more complex syllabic vo-
calisation types, such as gibberish or jargon. These are patterns of target-language-
like intonation but still without lexical meaning [17, 20, 19, 16].

The reached phonation competence in combination with the influence of an in-
fant’s language environment, finally, leads to the production of first target language-
related proto-words — phonetically consistent word-like vocalisations with consistent
lexical meaning — and words around the end of the first year of life [20, 19]. This
marks the end of the pre-linguistic period of speech-language development [100, 19].

3.2 Deviant pre-linguistic verbal development

Based on our knowledge on typical pre-linguistic verbal development (cf. Sec-
tion 3.1), deviant verbal behaviour — especially the delayed achievement or even the
non-achievement of specific speech-language milestones, e.g., canonical babbling,
has been discussed as potential early indicator of developmental disorders (e.g.,
[102]). As this thesis focusses on a selection of three developmental disorders
with a late clinical manifestation, this section will report on pre-linguistic verbal
peculiarities related to these three disorders, namely to ASD, FXS, and RTT.
Studies dealing with the early vocal development in these disorders have been
recently reviewed by Roche and colleagues [106].

A substantial number of studies on pre-linguistic verbal specificities in ASD
have exclusively focussed on crying vocalisations (e.g., [107, 108, 109]). Reasons
for this may be that crying is a frequent vocalisation pattern present right after
birth. Moreover, the identification and segmentation of crying sequences in audio
recordings for scientific purposes is comparably easy. Sheinkopf and colleagues [108]
investigated a group of 6-months-old individuals at heightened risk for ASD, i.e.,
each participant had an older sibling with an ASD diagnosis. Pain-related cries in
this sample exhibited a higher fundamental frequency (F0) as well as a higher FO
range compared to a group of low-risk controls. Those high-risk infants diagnosed
with ASD at 36 months of age produced among the highest FO values. In addition,
their crying was more poorly phonated than the crying of infants without ASD [108].
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3 The speech-language domain

Esposito and Venuti [107] documented an unchanged FO in cries between the first
and the second year of life in ASD, as opposed to a decrease in the respective FO
trajectory in TD infants. Furthermore, Esposito and colleagues [109] found out that
ASD-related crying is more negatively perceived by adults than crying related to
typical development (TD). In this study, listeners’ perceptions of negativity were
more determined by the length of pauses than by, e.g., the FO [109].

Beside investigations of crying, much research on pre-linguistic verbal behaviour
in ASD has focussed on babbling. Patten and colleagues [110] reported on
significantly lower canonical babbling ratios (# canonical syllables divided by # all
syllables) in ASD infants between 9 and 18 months of age compared to TD controls.
This was also shown by Paul and colleagues [111] for a group of infants at risk for
ASD, particularly at 9 months. In contrast, Chericioni and colleagues [112] did not
find ASD-related atypicalities concerning babbling frequency (rate per minute), but
significantly less first words produced by ASD participants than by controls between
12 and 18 months of age. They further attested a decrease in vocalising in infants
with ASD subsequent to the first half year of life and significantly less vocalisations
compared to TD controls during the second half year of life [112]. A lower
volubility in ASD infants compared to TD controls was also reported by Patten and
colleagues [110]. Other ASD-related peculiarities concerning pre-linguistic verbal
behaviour reported in different studies are (i) an absence of cooing [113], (ii) hardly
modulated unspecific vocalisations [113], (iii) less speech-like vocalisations in favour
of non-speech vocalisation [111], (iv) significantly less consonant types [111], (v) a
reduced number of vowel sounds produced per minute [114], (vi) significantly less
complex vocalisation contours in terms of melodic modulation [115], and (vii) signifi-
cantly less vocalising to people in both the first and second half year of life [116, 117].

Similar to ASD, also FXS was found to be associated with a significantly lower
volubility and a reduced likeliness for affected infants to achieve the canonical
babbling milestone by 9 to 12 months of age [118]. Marschik and colleagues [26]
reported on the dominance of non-verbal behaviours over pre-linguistic communi-
cation forms in connection with FXS.

The pre-linguistic, pre-regressional verbal development of individuals with RTT
has been repeatedly characterised by an intermittent occurrence of apparently typ-
ical and atypical vocalisations (e.g., [95, 119]). A listening experiment by Marschik
and colleagues [94] revealed that listeners were able to differentiate between a set of
pre-selected atypical vocalisations of individuals with RTT and vocalisations of TD
infants. Described prominent features of RTT-associated early vocalisation atypical-
ity are (i) inspiratory, (ii) pressed, and (iii) high-pitched crying-like phonation (e.g.,
[120, 95, 119]). Moreover, some infants with RTT were found not to achieve certain
pre-linguistic speech-language milestones, such as cooing, babbling, and proto-words
(25, 119, 27]). In a case study by Marschik and colleagues [120], a girl with the
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3.3 Early vocalisation engineering

preserved speech variant (PSV) of RTT, a relatively milder variant of RTT, e.g.,
in terms of a better recovery of speech-language capabilities, was documented to
produce repetitive, unmodulated vocalisations at 6 months of age [120]. She further
produced typical babbling sequences interspersed with atypical babbling patterns
[120]. Finally, in home video recordings of a sample of six female infants with RT'T,
Bartl-Pokorny and colleagues [25] could not observe any pre-linguistic vocalisations
in use for communicative purposes, such as for answering, imitating, or requesting an
action, an object, or information (also see the Inventory of Potential Communicative
Acts; IPCA [121, 122)]).

3.3 Early vocalisation engineering

Technical investigations of early verbal behaviour have been conducted for more than
40 years. Early studies already dealt with specific infant vocalisation types, e.g., with
fricative and trill vocalisations [123], and with acoustic features and methodological
aspects of the extraction of acoustic features from infant vocalisations. Acoustic
analyses of infant vocalic utterances conducted by Kent and Murray [124] were based
on features such as vocalisation duration, formant frequencies, or vocal tract source
excitation variation. Among acoustic vocalisation features, especially the FO and
its robust determination have been frequently focussed on in context of vocalisation
analysis — also for infant vocalisation analysis (e.g., [125, 124, 126]).

As acoustic measures for the characterisation of infant vocal behaviour have
been usually taken from traditional acoustic feature sets for the analysis of the
significantly different vocal behaviour of adults, Warlaumont and colleagues [127]
proposed a neural network approach for a data-driven derivation of features for
infant vocalisation analysis.

A popular and highly researched field of engineering activity is constituted by
infant crying and its computer-based processing. This may be motivated by simi-
lar reasons why crying vocalisations are frequently focussed on in investigations of
deviant early verbal behaviour (crying as easily segmentable, frequent behaviour
present from the day of birth; cf. Section 3.2). Moreover, infant crying research
opens up the opportunity for several useful healthcare-related applications and as-
sistive applications for parents. As already indicated in Section 1.1.1, early crying
processing primarily targets the automatic detection and categorisation of infant
crying patterns (e.g., [36, 37, 38, 39]). Moreover, Aucouturier and colleagues [128],
for instance, examined the segmentation of expiratory and inspiratory vocalisation
phases in infant cries using hidden Markov models. Current work in the field also
aimed for the identification of the cause of crying [129, 130]. Myakala and colleagues
[131, 132] proposed intelligent systems for infant monitoring and crying detection in
real time. Furthermore, infant crying even built the central topic in a sub-task of this
year’s (2018) Interspeech Computational Paralinguistics and Emotion (ComParE)
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Challenge [133]. In this sub-task, participants had to compete in the automatic
classification of more than 5000 infant vocalisations constituting the CRIED (Cry
Recognition In Early Development) database, which was recorded in the framework
of a study on neuro-physiological changes in early infancy at the Medical Univer-
sity of Graz, Austria [134]. In particular, participants had to differentiate between
three mood-related classes of vocalisations, namely neutral/positive vocalisations,
fussy vocalisations, and crying vocalisations, labelled by professionals in the field
of early speech-language development. In context of this challenge, the idea of an
‘intelligent” babyphone was mentioned. Such a babyphone would not only report an
increased sound level in a baby’s bedroom, but also indicate if a baby was ‘only’
vocalising, fussy, or already crying.

Dependent on the specific research question and the intended target application,
the availability of suitable data, i.e. in this context, the availability of audio record-
ings of infant vocal behaviour, plays a crucial and often limiting role in vocalisation
processing. On this, the setting in which infant recordings are performed, represents
an essential factor. On the one hand, the recording of infants under laboratory con-
ditions following a pre-defined recording protocol, best possibly allows for a high
recording quality and (semi-)standardised analyses, but infant behaviour might be
influenced by the artificial environment. On the other hand, recording in an infant’s
natural environment, e.g., at home, poses some methodological challenges. Issues in
connection with infant home recordings for early vocalisation engineering purposes
are, e.g., related to (i) the recording device and its positioning, (ii) the presence of
everyday background noise events or noise caused by the infant manipulating ob-
jects, such as toys, or (iii) the selection of a representative recording time span. For
versatile use in context of early communication development, the LENA® (Language
Environment Analysis) system! provides (i) a 24-hours audio recording of an infant
in its natural environment by means of a child-safe recording device fixed in a vest, as
well as (ii) an automated (pre-)analysis of the recorded infant’s developmental sta-
tus and language environment on the basis of different calculated metrics [135]. The
continuously growing ‘LENA® community’ emphasises the relevance of naturalistic
recordings for early speech-language-related research and healthcare applications,
and the potential of the link between the fields of speech-language acquisition and
vocalisation engineering for an earlier identification of speech-language-related (de-
velopmental) disabilities (e.g., [136]).

Thttps://www.lena.org (as of 25 April 2018)
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A technical tool for infant
healthcare assistance

By combining knowledge and methods from technical and medical-related disci-
plines, this thesis can be regarded as a highly interdisciplinary endeavour exploring
the technical feasibility of particular modules of a tool for pathology recognition.
This proposed tool is intended as an assistive pre-diagnostic screening tool, which
shall contribute to a future improvement of infant healthcare.

4.1 Motivation

In consideration of the beneficial role of an earlier identification of individuals with
developmental disorders such as ASD, FXS, or RTT (cf. Sections 2.1-2.3), research
on the prodromal period of these disorders appears to be underrepresented. While
to date there are more than 95000 COl-related articles indexed in Web of Science, of
which significantly less deal with the relatively rare genetic disorders FXS and RTT
compared to ASD (see Table 4.1), in total not even 2% of these articles address an
earlier recognition of these diseases. The socio-communicative domain represents a
key domain for the clinical manifestation and diagnosis of COI. Accordingly, almost
the half of articles on an earlier recognition of COI focussed on vocal behaviour.
However, only two articles were published on an automated approach for the earlier
identification of individuals with ASD. In one of these articles, Xu and colleagues
[137] report on a fully automatic machine learning-based autism detection mecha-
nism exploiting vocalisation composition data as an extension of the LENA® system
(cf. Section 3.3). In the other article, Orlandi and colleagues [138] describe an au-
tomatic infant cry recording system aiming for an acoustic differentiation between
newborns at heightened risk for ASD and a group of control individuals. To the best
of my knowledge, there are no empirical studies on an automated early identification
of individuals with FXS or RTT.
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Table 4.1: Number of articles indexed in Web of Science (all databases including Web
of Science Core Collection, BIOSIS Citation Index, BIOSIS Previews, KCI-Korean
Journal Database, MEDLINE®, Russian Science Citation Index, and SciELO Ci-
tation Index; as of 21 March 2018) on autism spectrum disorder (ASD), fragile
X syndrome (FXS), and Rett syndrome (RTT) in total, and filtered for relevance
for this thesis (early recognition of a condition of interest (i) based on vocalisa-
tions from the first year of life (ii) using an automated approach (iii)). For search
terms/strategy including boolean operators see footnotes!®. No additional relevant
articles were found in the IEEE Xplore® Digital Library (as of 21 March 2018).

| ASD! | FXS? | RTT?
Total | 75571 | 13546 | 6528
(i) Early recognition® | 1630 | 155 84
(ii) Vocalisation-based early recognition® | 755 49 35
(iii) Automated vocalisation-based early recognition® 2 0 0

In summary, a number of studies raised the evidence for early speech-language-
related deviances in COI (cf. Section 3.2) and at least a small proportion of arti-
cles on COI focussed on an earlier COI recognition based on verbal capacities (see
Table 4.1). However, little is currently known about COl-specific acoustic char-
acteristics within the complete range of early vocalisations on signal level. The
‘intelligent” acoustic analysis of pre-linguistic vocalisations for an early recognition
of COI almost seems to be a blind spot in studying developmental disorders.

4.2 Aims

The objective of this work was to bridge the gap of ‘intelligent’ pre-linguistic vo-
calisation engineering for an earlier recognition of ‘late recognised’ developmental
disorders, especially of ASD, FXS, or RTT. Accordingly, in the framework of this
thesis the answers to the following main research questions (MQs) were aimed to be
found:

Lautis* OR Asperger OR Kanner

Zfragile X OR ‘Martin-Bell’

3Rett

4earl* detect®™ OR ‘earl* diagnos™ OR ‘earl* identif*’ OR ‘ear]* recogni*’ OR ‘earl* screen*’

5Search terms from footnote* AND babbl* OR communicat* OR cooing OR cry OR crying OR
language OR linguistic* OR verbal* OR vocal* OR voice OR oral* OR sound* OR speech OR
utter* OR word*

6Search terms from footnote® AND automat®™ OR comput®* OR ‘deep learning’ OR engineer*
OR machine® OR ‘pattern recognition’ OR signal* OR technical®* OR technologi*; subsequent
manual review for relevance
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(MQ1) Do individuals with ASD and TD individuals differ in terms of acoustic signal-
level characteristics of pre-linguistic vocalisations?

(MQ2) Do individuals with FXS and TD individuals differ in terms of acoustic signal-
level characteristics of pre-linguistic vocalisations?

(MQ3) Do individuals with RTT and TD individuals differ in terms of acoustic signal-
level characteristics of pre-linguistic vocalisations?

(MQ4) Are individuals with different COI and TD individuals distinguishable in terms
of acoustic signal-level characteristics of pre-linguistic vocalisations?

(MQ5) Can individuals with ASD be automatically recognised vs. TD individuals on
the basis of pre-linguistic vocalisations?

(MQ6) Can individuals with FXS be automatically recognised vs. TD individuals on
the basis of pre-linguistic vocalisations?

(MQ7) Can individuals with RTT be automatically recognised vs. TD individuals on
the basis of pre-linguistic vocalisations?

(MQ8) Can individuals with different COI and TD individuals be automatically dif-
ferentiated on the basis of pre-linguistic vocalisations?

Apart from these questions on basic feasibility of an early vocalisation-based
identification of individuals with COI, the following additional research questions
(AQs) were aimed to be answered:

(AQ1) Which acoustic features allow best to distinguish individuals with different
COI and TD individuals?

(AQ2) How do COl-related auditory atypicalities manifest in the acoustic signal do-
main?

(AQ3) Can infant vocalisations be automatically segmented in audio material
recorded ‘in the wild’, i.e., in infants’ natural environments?

By answering to the above listed MQs and AQs, the feasibility, practicability, and
impact of a fully automatic, vocalisation-based early COI recognition tool should
have been evaluated. Figure 4.1 reveals the overall system block diagram of the
intended tool. It consists of two main modules, namely (i) an infant voice activity
detector, and (ii) the COI recogniser. Even though the first module certainly de-
scribes an interesting research topic addressed in this thesis, the main focus of this
work was the second module.
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Figure 4.1: Block diagram for the automated segmentation of pre-linguistic vocalisa-
tions from an audio input sequence and the subsequent pre-linguistic vocalisation-
based recognition of the potential presence of a developmental disorder, such as
ASD, FXS, or RTT, in the infant, who produced the respective vocalisations. ASD
= autism spectrum disorder; DB = database; FXS = fragile X syndrome; RTT =
Rett syndrome

To the best of my knowledge, this thesis is among the first empirical studies
dealing with an automatic identification of individuals with either ASD, FXS, or
RTT — three developmental disorders with a late clinical manifestation — exclusively
based on acoustic characteristics of pre-linguistic vocalisations. Thereby, this work
might have potential to break new ground in future paediatric diagnostics, which
may contribute to pave the way for a transition from a ‘wait-and-see’ to a ‘find-
early-to-intervene-early’ strategy in COl-related healthcare.

4.3 Outline

The remainder of this thesis is structured as follows: In Part II, first, the chosen
approach for the acoustic analysis of pre-linguistic vocalisations of infants later diag-
nosed with a developmental disorder is introduced in general (Chapter 5). Then, the
corpus building the basis for analyses in the framework of this thesis is described
(Chapter 6). Finally, the applied method of ‘intelligent’ vocalisation analysis is
specified (Chapter 7). Part III reports on the individual experiments carried out
in the framework of this thesis in order to find the answers to the posed research
questions (cf. Section 4.2), i.e. basically, to evaluate the feasibility of an automated
early COI recognition tool as depicted in Figure 4.1. Here, Chapter 8 deals with
the proposed infant voice activity detector and Chapter 9 with the automatic COI
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4.3 Outline

recogniser. Finally, this thesis concludes in Part IV by summarising the generated
results in context of the thesis’ aims (Chapter 10) and addressing approach-related
limitations (Section 10.1), as well as by discussing the thesis’ implications (Chap-
ter 11) from both a technical and a clinical perspective (Sections 11.1 and 11.2) and
presenting a potentially more powerful future early COI recognition tool based on
speech-language-related parameters combined with parameters derived from addi-
tional domains, such as the motor domain (Section 11.3).
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Approach

In the framework of this thesis, a relatively young field of engineering — ‘intelligent’
audio analysis (cf. [139]) — was applied to more or less unique behavioural data
of infants with a ‘late recognised’ developmental disorder, namely with either
ASD, FXS, or RTT, and to data of TD controls. Methodological procedures were
approved by the Institutional Review Board of the Medical University of Graz
(MUG), Austria (27-388 ex 14/15), where experimentation was carried out under
compliance with the respective Standards of Good Scientific Practice®.

When aiming to investigate early behavioural phenomena in developmental dis-
orders with a late clinical manifestation, appropriate approaches are limited. This is
due to the fact that analyses have to build on data from an infant’s period, in which
his or her developmental outcome, therefore, his or her eligibility to be included in a
study on a specific ‘late recognised’ developmental disorder is not yet known. Thus,
both the collection of infant data has to be managed and the respective infant’s
developmental outcome has to be found out. This allows for two approaches with
respected to participant recruiting strategy and study timeline.

On the one hand, infants fulfilling specific study-relevant a priori criteria, such as
to be younger siblings of children with an ASD diagnosis and, therefore, at height-
ened risk for ASD themselves, can be systematically recruited and prospectively
studied in the framework of a longitudinal study design including outcome eval-
uations. Such a procedure is well-suited for investigating developmental disorders
with a high prevalence and/or recurrence risk, but also for investigating typical early
development. The prospective collection of behavioural data on rare, inheritable de-
velopmental disorders is hardly possible.

On the other hand, participants can be recruited at a time at which their de-
velopmental outcome is already known, i.e., the diagnosis of a ‘late recognised’

Thttps://www.medunigraz.at/fileadmin /forschen/gsp/GSP_Standards_engl.pdf
(as of 11 April 2018)
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developmental disorder has already been made. Families affected by specific de-
velopmental disorders can, for example, be searched out via parents’ associations.
Then, early data of an included participant/data from an included participant’s
prodromal/pre-diagnostic period have to be collected retrospectively. For example,
a considerable part of the current knowledge on socio-communicative and speech-
language development in individuals with rare developmental disorders with a late
clinical manifestation, such as FXS, builds on retrospective family/parent interviews
and questionnaires (e.g., [140, 141, 82, 142, 143]). More objective, signal-based ret-
rospective analyses require the collection of early recordings of a participant, such
as audio-video recordings. Being aware of methodological limitations (cf. Part TV),
experimentation in the framework of this thesis was based on a retrospective signal-
analytical approach building on both prospectively and retrospectively collected
audio-video data of TD individuals and individuals with ASD, FXS, or RTT.

5.1 Retrospective audio-video analysis

Retrospective analysis of audio-video data in context of this thesis means that audio-
video recordings, i.e., video recordings including audio tracks as made by a standard
video camera, showing individuals in a period before a potential later diagnosis with
a COI were analysed at a time the diagnosis of a COI had already been made, or
the presence of a COI or a comparable other developmental disorder could had
been excluded and the individual considered as TD. This procedure is illustrated in
Figure 5.1.

L, Neurodevelopment >
! lermlbirlh 1 ylear Y

Outcome unknown Outcome known

Typical development l

' . .
“@\ Retrospective analysis
L

Atypical development T

e.g., ASD, FXS, RTT

Figure 5.1: Procedure of retrospective audio-video analysis for the identification of
early acoustic atypicalities in recorded infant vocalisations that could have already
predicted an infant’s later developmental outcome with regard to the presence of a
developmental disorder with a late clinical manifestation vs. typical development,
known at the time of analysis. ASD = autism spectrum disorder; FXS = fragile X
syndrome; RTT = Rett syndrome
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5.1 Retrospective audio-video analysis

Currently, retrospective audio-video analysis represents one of the most promis-
ing available means to ‘look’ and/or ‘listen back’ for studying the prodromal/pre-
diagnostic period in developmental disorders with a late clinical manifestation (e.g.,
(144, 145, 146, 147, 148, 27, 26]).

The goal of retrospective audio-video analysis as used in context of this thesis was
to find out whether infants’ developmental outcomes with respect to the presence
of a COI vs. TD would have already been deducible on the basis of information
within the infants’ early audio-video recordings. More precisely, the approach was
intended for the identification and delineation of early behavioural markers within
a given set of early infant recordings. In particular, the aim was to identify and
delineate acoustic atypicalities in recorded pre-linguistic vocalisations, usable to
reliably predict an infant’s later diagnosis of a COI, or his or her TD. By following an
‘intelligent’ audio analysis approach (cf. Chapter 7), the acoustic characterisation of
vocalisations and the vocalisation-based recognition of infants’ later outcomes were
carried out by means of signal processing and machine learning methodology.

In principle, for ‘intelligent’ audio analysis as applied here the collection of audio
recordings only (as against audio-video recordings) would have been enough, but (i)
audio-video recordings are usually more commonly available and, therefore, easier to
acquire, and (ii) video information is essential for a number of data pre-processing
steps, such as for the vocalisation segmentation process (cf. Chapter 6).

Experimentation in the framework of this thesis was based on audio-video ma-
terial of TD individuals and individuals later diagnosed with either ASD, FXS, or
RTT. For data availability reasons, the focus of this work was set to the second
half year of life, a period typically including the onset of canonical babbling as
an important milestone in pre-linguistic speech-language development. Material of
individuals with ASD as well as material of a matched group of TD controls was
prospectively recorded in the framework of a longitudinal ASD high-risk study and
included for experimentation in this thesis only after the individuals’ developmental
outcomes were assessed (cf. Section 9.1). Material of individuals with the rare ge-
netic disorders, FXS and RT'T, again respective material of matched TD controls, as
well as material of another individuals with ASD was provided by parents/families
for the purpose of retrospective scientific analysis at a time they already knew about
their children’s outcomes (cf. Chapter 8 and Sections 9.2-9.4).
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The data constituting the basis for this work were brought together from two dif-
ferent sources (see Figure 6.1).

GUARDIAN

S
—

External dataset

Thesis DB
&

prospective {
data

—

" retrospective
data

Figure 6.1: Database used for experimentation in the framework of this thesis as a
composition of an external dataset and a sub-dataset of GUARDIAN. ASD = autism
spectrum disorder; DB = database; FXS = fragile X syndrome; GUARDIAN =
Graz University Audiovisual Research Database for the Interdisciplinary Analysis of
Neurodevelopment; RTT = Rett syndrome; TDCasp/rxs/rrr = typically developing
control dataset matched for ASD/FXS/RTT dataset

First, data of individuals with ASD as well as respective data of a matched
group of TD controls (cf. Section 9.1) were provided by cooperation partners from
the Karolinska Institutet, Stockholm, Sweden, and the Uppsala University, Sweden.
These data were collected within the project EASE (Early Autism Sweden'),
a longitudinal study on a Swedish population of individuals at heightened risk
for ASD as being younger siblings of individuals with an ASD diagnosis, and
low-risk controls. Developmental outcome assessments regarding ASD were carried

Thttp://www.earlyautism.se (as of 27 March 2018)
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out at a participant age of 3 years. The provided dataset contained audio-video
sequences of participants at 10 months of age, each recorded in a parent-child
interaction setting. This setting was designed as follows: Parents were instructed
to playfully interact with their children in a closed room on a mat with different
toys same as they would do in everyday life. Multi-view audio-video recording was
guaranteed by a four-angle recording system of Panasonic HC-V700 camcorders
fixed in the four room corners at the ceiling. Apart from the participant and
his or her parent(s), nobody/no study personnel was present in the room during
the recording. Therefore, potential distractions of the participant were prevented
and, from an acoustic point of view, toy manipulation sounds and parental
voice were the only background noise events contained in the recordings. For
analyses in the framework of this thesis, synchronised 4-angle video information
as well as the audio information recorded by one of the four cameras were
provided. Audio information was provided in 2-channel AAC format and con-
verted to single-channel format at 44.1 kHz and 16 bits, for further acoustic analysis.

Second, retrospectively collected recordings of TD individuals and individuals
with ASD, FXS, or RTT (cf. Chapter 8 and Sections 9.2-9.4) were taken from
GUARDIAN (see Section 6.1), the core database of the Research Unit iDN — inter-
disciplinary Developmental Neuroscience, at the MUG, Austria, where the research
for this thesis was carried out.

6.1 GUARDIAN

GURADIAN is the acronym for ‘Graz University Audiovisual Research Database for
the Interdisciplinary Analysis of Neurodevelopment’. Even though the database’s
name was first introduced in 2014, active data collection already started much earlier,
in the 1980s. In the meanwhile, GUARDIAN has grown to an extensive and unique
digital archive of both early typical and atypical human development in form of
prospectively and retrospectively collected data (mostly but not exclusively audio-
video data), physically stored on a secure network-attached storage (NAS) server at
the MUG, Austria, and administrated and employed by the MUG’s Research Unit
iDN. GUARDIAN’s main datasets are introduced and characterised in Table 6.1.

Over the last years, GUARDIAN was substantially enlarged and enhanced with
regard to data administration and data (pre-)processing automation. Especially,
Dataset 3 (cf. Table 6.1), a prospective collection of multi-domain recordings of TD
infants at 4-16 weeks, was built up and prepared for multivariate analyses between
2015 and 2018 in the course of this work. This dataset will be essential for the further
development of the approach delineated in this thesis (cf. Section 11.3). However,
for experimentation in this work, appropriate parts of GUARDIAN’s Dataset 4 (cf.
Table 6.1) were used.
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Dataset 4 of GUARDIAN contains retrospectively collected home video mate-
rial of TD individuals and individuals with ‘late recognised’” developmental disorders.
The individuals come from around the world and, therefore, from families of different
family languages. The material was recorded by the individuals’ parents within the
first 2 years of their children’s life — a period in which the parents of individuals with
developmental disorders were not yet aware of their children’s medical condition. In
the material, the children are shown in everyday situations, such as playing situa-
tions, during typical family routines, such as feeding situations, bathing situations,
and changing situations, or during special (family) events, such as birthday parties
or Christmas eve (see Figure 6.2). Consequently, the material is non-standardised
as being characterised by inhomogeneous recording settings, e.g., with regard to
the camera position or the number of persons present in a scene, and recording
locations, e.g., ranging from a cot in a children’s room to an outdoor swimming
pool. These factors involve a large acoustic variability within the dataset a priori
posing a challenge/representing a limitation for acoustic vocalisation analyses (cf.
Section 10.1). All videos of GUARDIAN’s Dataset 4 were provided by parents or
in the meanwhile grown-up participants themselves for the purpose of retrospec-
tive scientific analysis?. The data collection is still ongoing, but new material is
not included until a participant’s developmental outcome is known/the diagnosis
of a developmental disorder was already made. The earliest recordings contained
in GUARDIAN’s Dataset 4 were shot in 1964, the most recently included material
stems from 2016. Dependent on the variety of used recording devices and their com-
patible recording media from analogue standards such as Super 8, VHS, or S-VHS,
to digital standards such as DV tape or DVD, the original audio-video codecs vary
dramatically within the dataset.

bl

o

Figure 6.2: Sample frames of a typically developing female over the second half year
of life demonstrating inhomogeneity within GUARDIAN’s retrospective home video
dataset in terms of recording setting and recording location. mo = month (of life)

In consideration of the high recording-related variability within the raw material
of GUARDIAN’s Dataset 4, each recording included for the purpose of vocalisa-
tion analysis was manually pre-checked for suitability (e.g., regarding continuous
existence/quality of audio-video information, or information on participant age or

2Families/data were either recruited by the Research Unit iDN or by cooperation partners.
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6.1 GUARDIAN

developmental outcome) and then passed a 5-stage data pre-processing flow (see
Figure 6.3) to guarantee a best possible degree of comparability within the dataset.

In the first stage (I), original input material (as provided by the families) was
converted to a standard format/audio-video codec. This standard format is defined
and periodically updated by the Research Unit iDN. Since 2015, it has been MPEG-
4. Analogue input media were AD-converted in an initial step prior to the MPEG-4
conversion. For the purpose of subsequent vocalisation analyses on signal level as
carried out in the framework of this thesis, audio streams were additionally exported
in single-channel PCM format paradigm-dependently either at 44.1 kHz or 16 kHz,
and 16 bits.

In the second stage (II), the converted audio-video material was screened for
scenes of interest, i.e., scenes in which the participant was present (not necessarily
visible, e.g., only present in a room but not within the camera’s shooting angle)
and in a condition he or she was potentially able to vocalise. Thus, e.g., sequences
of participants sleeping were discarded. Furthermore, sequences showing more than
one infant or toddler present in a scene (e.g., the participant plus his or her younger
and/or older sibling(s) in everyday situations, or the participant plus his or her
playmate(s) at special events such as birthday parties) were discarded, if vocalisa-
tions could not be determined with absolute certainty to have been produced by the
participant. In connection with the process of scene selection, another — sometimes
quite challenging task — was performed. As early human behaviour has to be always
regarded in context of developmental processes associated with brain development,
the participant’s (term corrected) age in months of life was validated for each in-
cluded scene. Date stamps often displayed for a few seconds at the beginning of a
recording served as an important indication for the age validation process.

The third stage (III) comprised the annotation of selected scenes continuously
over time according to pre-defined categories, such as (a) ‘bathtime’, ‘mealtime’, or
‘play event’ with the additional, mutually exclusive modifiers ‘indoor’ and ‘outdoor’
for a general scene description, (b) ‘alone’ vs. ‘interactive’ with additional interaction
type modifiers for a description of the communicative setting in a scene, or (c) ‘no’,
‘low’, and ‘high’ to specify a participant’s physical restriction in the scene (e.g.,
infant crawling on the floor vs. seated in a high chair or being held by a caregiver).
Scene annotations can be regarded as information required for a detailed dataset
description or for generating scene-dependent or scene-matched (independent) sub-
datasets for specific analyses. However, detailed scene information was not used for
experimentation in the framework of this thesis.

The fourth (IV) and the fifth stage (V) comprised the processes of vocalisation
segmentation and vocalisation annotation. As these processes were not only applied
to material of GUARDIAN’s Dataset 4, but also to material from the external,
prospective ASD dataset provided for experimentation in this work, vocalisation
segmentation and vocalisation annotation are treated in detail in the following sec-
tions of this thesis (cf. Sections 6.2-6.3).
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Figure 6.3: GUARDIAN’s 5-stage (I-V) data pre-processing routine applied to retro-
spectively collected raw audio-video data for the purpose of subsequent vocalisation
analysis. A/D = analogue-digital converter; MB = marginal babbling; Q = quality

6.2 Vocalisation segmentation

The process of segmenting infant vocalisations in audio-video material basically
consists of two tasks. First, the presence of infant voice has to be identified. Second,
meaningful segment boundaries have to be set around the identified voice episodes to
generate semantic units alongside the continuous audio-video stream. ‘Meaningful’
in this context highly depends on the intended further processing/analysis steps and
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6.2 Vocalisation segmentation

the research question or target application behind. Thus, in some cases segmentation
into single phones might make more sense than, for example, segmentation into
phrases.

In the context of this thesis, a vocalisation was regarded as an utterance that gen-
erally lies in between the duration of a phone and a phrase (e.g., [149, 150]). There
are two established strategies for utterance segmentation. The first strategy is based
on setting segment boundaries at vocalisation pauses (episodes of silence/without
vocalisation) exceeding a defined pause duration (e.g., [150]). This strategy might
have advantages, e.g, regarding automatic vocalisation segmentation, however, per
definition it does not follow the physiological process of voice production as being
linked to the pulmonic air stream. Therefore, in the framework of this thesis the
second common strategy was applied. It relies on the criterion that a vocalisation
has to be assigned to a distinct vocal breathing group (e.g., [151, 150]). Thus, a
segment boundary has to coincide with audible ingressive breathing or with a vo-
calisation pause at which an experienced judge would assume ingressive breathing
(e.g., [151, 150]). Especially when segmenting home video material characterised by
occasionally low audio recording quality and background noise (partly) overlaying
vocalisations of interest, infant breathing activity is often not auditorily perceivable.
However, in theses cases the available video information, e.g., showing mouth open-
ing and closing, turned out to be very helpful to identify the beginning and the end
of a vocalisation. On the one hand, segmentation according to breathing groups
occasionally led to long vocalisation pauses within a segment, namely in case the
infant started with an utterance, then held his or her breath, and finally continued
with the utterance. In such a case, segmentation according to vocalisation pauses
would have led to two separate segments. On the other hand, segmentation on the
basis of underlying breathing activity sometimes necessitated to separate semantic
patterns of very short consecutive vocal sounds into series of isolated segments. Vo-
calised ingressive breaths/ingressive sounds were treated as (part of) a vocalisation
and not as the marker for a segment boundary. Furthermore, no segment boundary
was set, if an ingressive breath was extremely shortened and a distinct intonation
curve started before the breath and continued after it.

Figure 6.4 illustrates the segmentation of infant vocalisations on the basis of
vocal breathing groups and strategy-related challenges.

Segments of isolated vegetative sounds such as breathing sounds, hiccups,
smacking sounds, or burp sounds were excluded from experimentation in the
framework of this thesis as they are not primarily meaningful when studying an
infant’s pre-linguistic speech-language development. Moreover, infant vocalisation
segments completely overlayed with high level background noise were also excluded.

Basically, vocalisation segmentation in the framework of this thesis was done
manually using both audio and video information. All segment boundaries were
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verified by at least one second, independent coder. However, different automatic
audio-based infant voice activity detection approaches were investigated and evalu-
ated on the basis of a set of manually segmented data (cf. Chapter 8).
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Figure 6.4: FExamples of infant vocalisation segmentation on the basis of vocal
breathing groups in form of spectrograms and corresponding waveforms: (a) Infant
vocalisation including vocalisation pauses (without ingessive breaths); (b) Ingres-
sive breaths/sounds as components of infant vocalisations; (c¢) Infant vocalisation
intermittently overlayed with caregiver vocalisations. Spectrogram settings: win-
dow length = 0.025s, window shape = Gaussian, time step = 0.00625s (window
length/4), dynamic range = 50dB; dark grey frames = (target) vocalisation seg-
ments of a typically developing female in the 7*" month of life; light grey frames
with filling = ingressive breaths/sounds in (b) and caregiver vocalisation segments
in (¢); CG = caregiver; f = frequency; IN = inspiration; P = vocalisation pause

6.3 Vocalisation annotation

Manually created segments of infant vocalisations built the basis for each experi-
ment conducted in the framework of this thesis. The most important label of each
included vocalisation was the developmental outcome of the infant, who produced
the vocalisation, regarding the presence or absence of a COI. Moreover, the gender
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6.3 Vocalisation annotation

as well as the family language of the infant, who vocalised, were registered for each
segment. Even though vocalisations from all over the participants’ second half year
of life were pooled together for the different experiments, each vocalisation was
processed as a function of the exact month of life at which it was produced. This
information was considered in the experimental design of this work (cf. Section 7.2).
Furthermore, the age label together with the gender and family language labels
were essential for the compilation of balanced/matched sub-corpora from the
available database(s) for the different experiments. Whereas age, gender, family
language, and outcome actually represent vocalisation-independent variables linked
to the participant only, vocalisation-dependent annotations of vocalisation type
and vocalisation recording background quality were performed. However, these
annotations were not taken into account for resolving the MQs of this thesis, but
for considering experiment-related side aspects.

Vocalisation type annotation in the framework of this thesis was based on the
Stark Assessment of Early Vocal Development-Revised (SAEVD-R [16]). Depend-
ing on the participant age and the particular research question, selected categories
of the SAEVD-R were applied. The complete SAEVD-R, comprises 23 mutually
exclusive vocalisation type descriptors including, e.g., vowel (V), vowel glide (VG),
marginal babbling (MB), canonical babbling (CB), but also crying/fussing (CR),
divided into 5 levels of ascending complexity for the categorisation of pre-linguistic
vocalisations and, thus, the assessment of the early speech-language development
[16]. As useful with regard to the fact that vocalisations in the framework of this
thesis were treated as utterances potentially containing a number of single vocal-
isation episodes, the SAEVD-R allowed for annotating series of vocalisation type
descriptors per vocalisation segment with an overall vocalisation level always corre-
sponding to the highest level associated with an involved vocalisation type descriptor
[16]. Vocalisation type annotation was basically done by at least two independent
raters. In cases of disagreement the raters discussed until consensus was achieved.

Vocalisation recording background quality was annotated according to the
following four mutually exclusive classes in descending order from best to worst
quality from an acoustic point of view: (Q1) No background noise present; (Q2)
Stationary background noise (partly) overlaying the vocalisation, such as vehicle
noises or the sound of a hair blower; (Q3) Transient background noise (partly) over-
laying the vocalisation, such as parental/caregiver voice or a turned-on radio; (Q4)
Both stationary and transient background noise (partly) overlaying the vocalisation
simultaneously. Vocalisations recorded with a markedly low signal-to-noise ratio
were assigned to Q2, as a recording’s noise floor at increased sound level equals a
stationary background noise.

Finally, external factors of potential influences on vocalisation acoustics were
documented, e.g., food, a toy or a pacifier in the infant’s mouth while vocalising.
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Vocalisation annotation as well as vocalisation segmentation and scene annota-
tion were carried out by means of the video coding system The Observer® XT3
by Noldus, which allowed for the individual set-up of a coding scheme of be-
haviour groups (e.g., vocalisation: start/stop) and related modifiers (e.g., vocalisa-
tion recording background quality: Q1/Q2/Q3/Q4) in different hierarchical layers.
Figure 6.5 shows the tool’s coding surface. For all audio-video coding processes
(segmentation and annotation) AKG K240 studio headphones were used.
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Figure 6.5: Coding surface of Noldus’ The Observer® XT showing a typically devel-
oping female individual in the 10** month of life in an indoor playing situation. Ex-
amples of categorical and orthographic vocalisation type annotations can be found
in the Comment column on the basis of previously created vocalisation segments
with the respective start and stop times in the Time column. ¢ = consonant(-like)
sound; MB = marginal babbling; v = vowel(-like) sound; _ = juncture

3https:/ /www.noldus.com/human-behavior-research /products/the-observer-xt (as of 25 May
2018)

40



Intelligent vocalisation analysis

The method of intelligent vocalisation analysis can be regarded as a special
application of the field of intelligent audio analysis [139]. Whereas intelligent audio
analysis deals with all types of audio signals such as speech, music, or sounds in
general [139], intelligent vocalisation analysis exclusively focusses on the analysis
of recorded vocal behaviour. In the framework of this thesis, vocal behaviour
was further limited to pre-linguistic vocalisations of human infants. Intelligent
vocalisation analysis aims for the automatic recognition of vocalisation-related
(meta-)information, such as semantic behavioural patterns/states (e.g., vocalisation
vs. non-vocalisation, vocalisation types, or affective states) or attributes/traits
associated with the individual who produced the vocalisation (e.g., age, gender,
or the medical condition of the speaker). In the framework of this thesis, the
method was used for (i) the automatic detection of infant vocal behaviour within
continuous audio sequences' (Chapter 8), and (ii) the automatic vocalisation-wise
recognition of the (neuro)developmental outcome of the individual, who produced
the vocalisation (Chapter 9). In principle, intelligent vocalisation analysis is related
to the fields of speech and language processing (cf. [152]) and computational
paralinguistics (cf. [153]). However, ‘intelligent’ analysis in this context means
that conventional signal processing techniques for acoustic information retrieval are
complemented by the involvement of artificial/computational intelligence strategies
in form of machine learning algorithms [154]. Research questions in the framework
of this thesis were basically associated with supervised learning paradigms. Thus, in
unknown data, information of interest had to be deduced on the basis of knowledge
previously learned from training data, in which the information of interest was
known, e.g., as acquired or generated in a data pre-processing procedure. In
this work, information used for system training was represented by (a) the posi-

'Tn context of this thesis, the automatic audio-based detection of infant vocal behaviour is
ranked among applications of intelligent ‘vocalisation’ analysis, even though, strictly speaking,
types of audio other than vocalisations, such as everyday background noise events, were also
included in the analysed material (cf. Chapter 6).
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7 Intelligent vocalisation analysis

tions in time of infant vocalisation segment boundaries alongside continuous audio
sequences, and (b) the outcome labels of the individuals, who vocalised, respectively.

In the framework of this thesis, the method of intelligent vocalisation analysis
was basically implemented — according to the general chain of audio processing in
intelligent audio analysis systems [155, 139] — as a sequence of three steps, namely
a feature extraction step, a feature processing step, and a classification step. In
the feature extraction step, acoustic signal-level features were extracted from in-
put vocalisations, which can be understood as the generation of each vocalisation’s
individual acoustic fingerprint. In the feature processing step, extracted features
were either analysed or prepared in a way to obtain an advantageous/optimal rep-
resentation for the subsequent classification step. Here, the actual class decisions
on the input vocalisations were generated. This sequence of steps is illustrated in

Figure 7.1.
input vocalisation % WHN-B

Feature extraction
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Figure 7.1: Applied procedure of intelligent vocalisation analysis for (i) the gen-
eration of output states on the basis of input vocalisations including performance
validation by means feature extraction, feature processing and classification (cf.
MQ5-MQ8 in Section 4.2), and (ii) the analysis of acoustic features with regard
to their informative value for a specific differentiation task as part of the feature
processing step (cf. MQ1-MQ4 and AQ1 in Section 4.2).

In this work, a feature-based learning approach was preferred to a representation
learning approach (e.g., [156]), as in addition to the automatic recognition of an
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7.1 Feature extraction

infant’s later developmental outcome with regard to the presence or absence of
a COI exclusively based on pre-linguistic vocal behaviour, also potential specific
relations between a COI and acoustic vocalisation characteristics were aimed to be
studied (cf. MQ1-MQ4 and AQ1 in Section 4.2). On the one hand, this was because
an early acoustic characterisation of a ‘late recognised’ developmental disorder on
the basis of features can constitute the groundwork for a future approach to increase
the sensitivity of healthcare professionals and, especially of caregivers/parents for
early vocalisation atypicalities and, therefore, an auditory earlier recognition of
deviant developmental. On the other hand, acoustic vocalisation features allow for
drawing conclusions on the underlying speech production processes and, to some
extent, on the involved neural processes behind. Consequently, feature analyses
in the framework of this thesis can be regarded as a contribution to a better
understanding of developmental disorders themselves, in case of ASD, potentially
even of the cause of the disease.

In the following, the steps of feature extraction, feature processing, and classifi-
cation as used for experimentation in this work are described in detail. Prior to the
extraction of features, audio normalisation was tested by, first, shifting each input
sequence’s mean to zero and, then, setting the maximum amplitude of the corrected
sequence to -3dB. Depending on the nature of the used set of audio recordings
regarding variability of vocalisation energy and the presence of background noise
events, audio normalisation is a common pre-processing procedure in studies us-
ing intelligent vocalisation analysis (e.g., [157, 158, 159]). However, neither audio
normalisation nor all subsequently described feature extraction, feature processing,
and classification methods were applied in each experiment. For reasons of repro-
ducibility, technical computing in the framework of this thesis was either carried out
using open-source software or Matlab? by MathWorks®, which is widely used in the
technical community.

7.1 Feature extraction

The extraction of acoustic features from audio recordings represented the basic step
for further analyses in the framework of this thesis. Acoustic features are mathemat-
ical descriptors defined with the intention to characterise audio signals in a compact,
informative, but preferably non-redundant way, that is meaningful /optimal for sub-
sequent processing/analysis steps or tasks/applications of interest [139]. Thus, op-
timal acoustic features for speech applications (cf. [153]) might differ from optimal
acoustic features for applications of music information retrieval (cf. [160]). Any-
way, the transformation of an audio signal into a meaningful feature representation
basically implies a reduction of information [139].

Zhttps://de.mathworks.com/products/matlab.html (as of 5 June 2018)
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7 Intelligent vocalisation analysis

Natural audio signals such as speech signals are usually time variant, i.e.,
they change over time [161]. This also holds true for infant vocal behaviour.
Therefore, the extraction of acoustic features is usually carried out on the basis
of short, window-function-weighted, overlapping time frames, within which audio
information can be considered as stationary [161]. Descriptors calculated at this
first level of signal sub-sampling are denominated as low-level descriptors (LLDs).
By extracting further information, such as statistical functionals from frames
alongside LLD contours, so called higher-level descriptors or supra-segmental
features can be generated [139, 153].

In the framework of this thesis, experiments on two basically different intelligent
vocalisation analysis paradigms were carried out. On the one hand, different
algorithms for the automatic detection of infant vocalisations within continuous
audio recordings were implemented and evaluated. On the other hand, the basic
feasibility of a vocalisation-based recognition of an infant’s developmental outcome
in a COI vs. TD design was investigated. Whereas in the first paradigm, infant
voice had to be acoustically differentiated from other recorded sound sources, in
the second paradigm, meta-information-related discrimination between different
vocalisations had to be managed. According to these different paradigm-individual
requirements, different sets of acoustic features were employed throughout the
different experiments of this work.

Experiments on infant voice activity detection were based on two different sets of
features extracted for overlapping frames of 25 ms with a step size of 10 ms between
consecutive frames.

The first set contained 100 features including, on the one hand, 40 established fea-
tures for speech analysis applications [162, 163, 152], namely pitch, 13 Mel-frequency
cepstral coefficients (MFCCs), 13 perceptual linear predictive coding coefficients
(PLPCCs), and 13 relative spectral transform PLPCCs (RASTA-PLPCCs), and on
the other hand, 60 features suggested by Temko and Nadeu [164] for general acous-
tic event detection purposes and used in the 2006/2007 CLEAR (Classification of
Events, Activities and Relationships) Challenges [165, 166, 167]. Extraction of these
100 features was performed by means of Matlab.

The second feature set consisted of line spectral frequencies, Mel spectra, and
energy, and constituted the set of a standard rule-based voice activity detection
implementation, which was used for baseline evaluations only (cf. Chapter 8).
Baseline infant voice activity detection as well as the extraction of features for all
experiments on the paradigm of developmental disorder recognition were carried
out by means of openSMILE? by audEERING ™ GmbH.

3https://audeering.com/technology/opensmile/ (as of 5 June 2018)
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7.1 Feature extraction

openSMILE is an open-source, C++-based, real-time capable feature extraction
tool kit [168, 169]. Originally, openSMILE was designed for both speech and music
applications, which explains ‘SMILE’ to be the acronym for ‘Speech and Music
Interpretation by Large-space Extraction’. The development of openSMILE began
in 2008 at the Technical University of Munich, Germany. Hosted by audEERING
GmbH since 2014, openSMILE is still continuously updated, enhanced, and
provided free of charge for non-commercial research use. Consequently, the tool
is widely used and allows for comparability and reproducibility of feature-based
experiments throughout the research community.

For investigating the feasibility of automatic vocalisation-based developmental
disorder recognition, again two different feature sets were employed in the frame-
work of this thesis. Ensuring reproducibility, suitability for audio/speech analysis
applications, and currentness, both used feature sets are standard sets included in
the recent release of openSMILE (version 2.3).

The first set is denominated ‘ComParE set’ as it represented the official baseline
feature set of the 2013-2018 Computational Paralinguistics and Emotion Challenges
(154, 170, 171, 159, 172, 133] that have been carried out in connection with the
Annual Conferences of the International Speech Communication Association (Inter-
speech conferences) since 2009. Comprising 6 373 acoustic features, the ComParE set
is still the most comprehensive standardised feature set contained in openSMILE.
Due to its extensiveness, it is a popular ‘out-of-the-box’/‘brute-force’ choice for
baseline /feasibility experiments and a powerful basis for subsequent feature selec-
tion/analysis steps. The ComParE set consists of higher-order features in form of
statistical functionals that were computed for the trajectories of a wide range of
acoustic time-, energy-, and/or spectral/cepstral-based LLDs as well as their first
order derivatives (see Table 7.1) [154].

As an alternative to the comprehensive ComParE set, openSMILE’s most cur-
rent feature set was applied: The so-called ‘extended Geneva Minimalistic Acoustic
Parameter Set” (eGeMAPS) was launched and published in 2016 by Eyben and col-
leagues [173] and represents a comparatively small set of 88 acoustic higher-order
features (see Table 7.1) that were selected based on their theoretical and practical
relevance for applications of automatic voice analysis also including clinical applica-
tions as well as their proven value in previous studies in field.

Keeping the standard settings, LLD trajectory extraction for both the ComParE
set and the eGeMAPS was based on overlapping time frames of 60 ms alongside an
input vocalisation at a frame step size of 10ms. Extracted LLD contours were
smoothed using a symmetric moving average filter over an interval of three frames
(except for unvoiced—voiced transitions in pitch, jitter, and shimmer contours). Fi-
nally, statistical functionals were calculated for the smoothed LLD contours over
the individual length of each vocalisation (variable frame size) resulting in exactly
one vector of 6373 or 88 higher-order feature values per vocalisation, respectively.
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7 Intelligent vocalisation analysis

Table 7.1: Overview (in alphabetical order) of LLDs and statistical functionals cal-
culated for LLD contours contained in the ComParE set [154] and in the eGeMAPS
[173] (not all functionals are applied to all LLDs; in the eGeMAPS functionals are
basically calculated for voiced regions, i.e., regions of non-zero FO only, however,
functionals of specific LLDs are exclusively or additionally calculated for all regions
and/or unvoiced regions; for details see [173]), as well as additional features con-
tained in the eGeMAPS. A3 = amplitude of harmonic closest to third formant; Com-
ParE = Computational Paralinguistics and Emotion; eGeMAPS = extended Geneva
Minimalistic Acoustic Parameter Set; FO = fundamental frequency; H1 = amplitude
of first harmonic; H2 = amplitude of second harmonic; LLD = low-level descriptor;
MFCC = Mel-frequency cepstral coefficient; LP = linear prediction; RASTA = rel-
ative spectral transform; RMS = root mean square; SD = standard deviation; # =
number of; * = used in the ComParE set only; ** = used in the eGeMAPS only;
neither® nor **: used in both the ComParE set and in the eGeMAPS

LLDs [ Functionals
Alpha ratio** Amplitude mean of minima*
Formant 1**, 2** 3** bandwidth Amplitude mean of peaks*
Formant 1** 2** 3** frequency Amplitude range of peaks*
Formant 1**, 2** 3** relative energy Arithmetic mean
FoO Arithmetic mean value of peaks*
Hammarberg index** Coefficient of variation**
Harmonic difference H1-A3** Contour centroid*
Harmonic difference H1-H2** Contour flatness*
Harmonics-to-noise ratio Interquartile ranges (3)*
Jitter Kurtosis*
Loudness (sum of auditory spectrum) LP coefficient 1-5*
MFCC 1-4, 5-14* LP gain*
Psychoacoustic harmonicity* Linear regression offset™
Psychoacoustic sharpness* Linear regression quadratic error*
RASTA-filtered auditory spectral band 1-26* | Linear regression slope*®
RASTA-filtered auditory spectrum sum* Maximum of segment length*
RMS energy* Mean of inter-peak distance*
Shimmer Mean of falling slopes
Spectral energy 250-650 Hz*, 1-4 kHz* Mean of rising slopes
Spectral centroid* Mean of segment length*
Spectral entropy* Mean value of peaks*
Spectral flux Minimum of segment length*
Spectral kurtosis* Percentage of non-zero frames*
Spectral roll-off point 0.25%, 0.5%, 0.75*%. 0.9% | Percentile 1*, 20%* 50** 80** 99*
Spectral skewness* Percentile range 1-99*, 20-80**
Spectral slope*, 0-500 Hz**, 500-1500 Hz** Position of minimum*
Spectral variance® Position of maximum*
Voicing probability* Quadratic regression a*
Zero-crossing rate® Quadratic regression b*

Quadratic regression offset*
Additional features Quadratic regression quadratic error*®
Equivalent sound level** Range (maximum — minimum)*
Mean length of voiced regions** Rel. dur. > 25%*, 50%*, 75%%*, 90%* range
Mean length of unvoiced regions** Relative duration positive curvature*
# continuous voiced regions per second** Relative duration rising*
Rate of loudness peaks** Root quadratic mean*
SD of length of voiced regions** SD*
SD of length of unvoiced regions** SD of inter peak distance*

SD of falling slopes

SD of rising slopes

SD of segment length*

Skewness*

Quartile 1-3*
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7.2 Feature processing

7.2 Feature processing

In the framework of this thesis, feature processing subsumes strategies (i) to adapt
the representation of previously extracted features to the intended classification
procedure in order to optimise classification performance, or (ii) to analytically
deduce further information from the raw features in order to systematically gain
insights into acoustic characteristics underlying a specific classification task.

As this thesis aimed at investigating the basic feasibility of a novel approach,
one common, minor feature adaptation step and standard feature analysis methods
were applied only. Thereby, the number of degrees of freedom in the single
experiments could be kept as small as possible. Feature processing/analysis was
basically carried out by means of Matlab, or by means of Weka*, which is a widely
used Java-based open-source data mining and machine learning tool kit provided
by the University of Waikato, New Zealand [174, 175].

Considering potential dataset-related influences on feature distributions with
respect to absolute feature values (e.g., speaker/infant-dependent specificities and
age-dependent variations regarding physiological/anatomical changes of the vocal
folds and in the vocal tract or regarding varying predominant vocalisation types
over the second half year of life), feature normalisation/standardisation was tried
out according to different strategies. On the one hand, features were normalised
to a defined interval, such as [0,1]. On the other hand, features were standardised
to have a mean of zero and unit variance. Feature normalisation/standardisation
was carried out either speaker/infant-dependently, i.e., in separate for each infant’s
instances, (infant-)age-dependently, i.e., in separate for instances of each available
month of age of an infant, or globally, i.e., on the basis of all instances, contained
in a respective set of data.

7.2.1 Feature analysis

In order to investigate the value of each individual acoustic feature in context of
a vocalisation-based differentiation between COI and TD or between different COI
(cf. MQ1-MQ4 and AQ1 in Section 4.2), statistical tests of difference were applied.
As feature values extracted throughout this work were basically not always normally
distributed, non-parametric tests were used, namely the Mann-Whitney U-test in
two-class paradigms, e.g., when examining differences between a COI and TD (cf.
Sections 9.1-9.3), and the Kruskal-Wallis test in paradigms of more than two classes,
e.g., when examining differences between multiple COI and TD (cf. Section 9.4).
The significance level was set to a = 0.05. For each feature, these tests were used
to evaluate the null hypothesis that feature values extracted from vocalisations of

4https://www.cs.waikato.ac.nz/ml/weka/ (as of 13 June 2018)
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7 Intelligent vocalisation analysis

individuals with a COI, in case of a paradigm of more than two classes, feature
values extracted from vocalisations of individuals with an other COI, and feature
values extracted from vocalisations of TD individuals, were likely to derive from
the same population [176]. Features were then ranked according to the effect size
estimate r (see Equation 7.1 [177]).

- z-value (7.1)
 VF samples '

7.3 Classification

The final step of the applied intelligent vocalisation analysis procedure, classifi-
cation, is understood as a task in which an audio sequence/a vocalisation ‘under
test’ has to be assigned to a specific category/class [29], such as a specific medical
condition related to the individual who produced the vocalisation. In this work,
assignment decisions were generated by classifiers on the basis of previously
extracted and optionally processed acoustic features. In this context, a classifier
refers to the entity that performs a classification tasks, i.e., a computational
decision making unit operating on the basis of a specific classification algorithm.
As already mentioned at the beginning of Chapter 7, the classifiers applied in
the framework of this thesis built on supervised machine learning algorithms, i.e.,
the intended assignment of a sequence of audio/a vocalisation to one of different
discrete classes was made on the basis of knowledge/a set of rules the classifier had
previously acquired/learned from training data in which the assignments between
the contained audio sequences/vocalisations and the possible class labels were
given [178]. In the field of intelligent audio analysis, classifiers can be roughly
divided into two groups or ‘learners’, namely static learners and dynamic (or
sequential) learners [139, 153] both designable to operate on features extracted
from an audio sequence/a vocalisation. While static learners exclusively handle
acoustic information within single audio frames, e.g., one feature vector for one
audio sequence/vocalisation, dynamic learners operate on the acoustic content’s
time trajectory, i.e., the sequence of acoustic information within consecutive frames
over time [139)].

The two scenarios dealt with in the framework of this thesis, namely (i) the
scenario of detecting infant vocalisations in recorded audio according to the first
module of the proposed, fully automatic developmental disorder recognition tool
(cf. Figure 4.1 in Section 4.2), and (ii) the scenario of the actual vocalisation-based
recognition of an infant’s developmental outcome with respect to the presence or
absence of a COI according to the proposed tool’s second module, posed different
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requirements for the application of a learning algorithm and its performance valida-
tion. However, due to their widespread use for feasibility /baseline evaluations (e.g.,
(154, 170, 171, 159, 172, 133]), experimentation on either scenario was primarily
carried out using support vector machines (SVMs), which are a representative of
static learners.

The first scenario, i.e., the identification of sequences of infant voice alongside
a recorded audio sequence actually does not represent a classification task, but a
detection task. In contrast to the assignment of a frame of audio to a specific class, in
a detection task, the presence or absence of specific states has to be evaluated, e.g.,
frame by frame, alongside a usually continuous audio sequence. Apart from SVMs,
for the detection of infant voice in audio recordings, another frequently used static
learner and a popular dynamic learner were tested. The additional static learner was
a random forest (RF) classifier, the dynamic learner was a hidden Markov model
(HMM). Furthermore, baseline evaluations were generated using a standard rule-
based approach, i.e., an algorithm does not performing on the basis of previously
learned knowledge, but making deterministic decisions as a function of implemented
rules relying on expert knowledge [153].

For the second scenario, i.e., the classification of vocalisations according to the
developmental outcomes of the individuals who produced the vocalisations, in one
of the experiments, one of the most popular, currently used learning approaches was
tested in addition to the SVM approach, namely an artificial neural network (ANN).
In particular, a bidirectional long short-term memory neural network (BLSTMNN)
was employed, which is a special implementation of an ANN capable of modelling
temporal context.

In the following, all learning algorithms applied in the framework of this thesis
are briefly described. Classifier implementation/design and validation were basically
carried out using Matlab, Weka, and/or TensorFlowTM5, which is an open-source
library widely used in machine learning practice across different scientific domains
as it allows for high performance numerical computation on the basis of a flexible
architecture [179].

Introduced in 1995 by Cortes and Vapnik [180], SVMs are binary decision mak-
ing units, i.e., they are capable of discriminating between two classes by directly
providing class identities instead of posterior probability outputs. Multiple-class
paradigms can be processed through strategies of combining binary SVM decisions.
The principle of SVMs relies on statistical learning and optimisation. The basic idea
is a non-linear mapping of input feature vectors to a higher dimensional decision
space in which an optimal hyperplane of high generalisation ability is determined
on the basis of training instances in order to achieve a best possible linear discrim-
ination between the two classes. For mapping into the higher dimensional decision

Shttps://www.tensorflow.org/ (as of 19 June 2018)
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space, a kernel function is applied. This is called the ‘kernel trick’. The margins
of the largest separation between the two classes are defined by the so-called ‘sup-
port vectors’. These are determined by solving a quadratic optimisation problem.
Based on the support vectors, classification only builds on a subset of learning in-
stances. Thereby, SVMs can handle from large feature spaces to features being zero
most of the time while the risk of overfitting to the learning instances is reduced.
[180, 181, 139, 153, 29|

In the framework of this thesis, both linear kernels and a Gaussian kernel were
employed. The kernel complexity parameter C', which is a factor regulating the
trade-off between training error and generalisation ability of the classifier, and in
case of the Gaussian kernel, additionally the kernel width ~, were optimised on
respective data(sub)sets. The sequential minimal optimisation (SMO) algorithm
[182] was selected for SVM training.

Competitive to the SVM approach, the RF classifier is another supervised learn-
ing and decision making algorithm. It is based on the concept of decision trees.
Decision trees generate output states for input observations, e.g., feature vectors,
on the basis of a sequence of rules that are, for example, implemented in the form
of comparisons to constants alongside the tree’s branches. In contrast to a standard
rule-base classification approach, in which rules are base on expert knowledge, here
the optimal sequence of rules is automatically derived from training data. [139, 153].
Finally, RFs are ensembles of multiple decision trees constructed by random fea-
ture and training set sub-sampling as defined by ensemble learning methodology
[183, 184, 185, 186, 187, 139, 153]. Thereby, the sensitivity of decision trees for
overfitting to training data is corrected [188].

The number of trees, the maximum tree depth, or the minimum number
of samples per leaf represent design parameters of RFs. Experimentation in
the framework of this thesis was designed to determine these parameters in an
optimisation task.

A state-of-the-art alternative to SVMs or RFs are ANNs, especially ANNs
with specific architecture-related properties. Over the last years, for example,
BLSTMNNSs have proven to be powerful classification models for audio applica-
tions, also including speech-related tasks (e.g., [189, 190, 191, 192, 193]). Inspired
by neuro-physiological structures in vertebrates, ANNs are generally based on neu-
rons as main information processing units, which are connected to other neurons
via synapses according to a specific network topology. Information is propagated
across the network as a function of the properties related to neurons (mathematical
capacities) and connections (e.g., weights). Thereby, ANNs allow for learning arbi-
trary, even non-linear functions. Typically, ANNs are structured into different layers
of neurons potentially exhibiting different properties. Information propagates from
the input layer via one or more hidden layers to the output layer and, thereby, gets
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processed from observational input data, e.g., in form of feature vectors, to class
predictions. [194, 181, 139, 153]

The architecture of BLSTMNNSs is intended for the classification of time series
as it builds on recurrent neural networks (RNNs). RNNs are characterised by both
forward and backward (recurrent) connections between neurons of different layers,
which yields a kind of memory. Consequently, not only a current input, but also
the history of previous inputs can influence the current output and future outputs
of the network. The implementation of a bidirectional RNN (BRNN) enables the
accessibility of the full input sequence in forward as well as in backward direction
at any time by using two independent hidden layers — one responsible for input
sequence forward processing, the other for input sequence backward processing —
both connected to the same previous/input and subsequent /output layers. Finally,
a BLSTMNN is a BRNN equipped with long short-term memory (LSTM) layers of
LSTM blocks instead of the original neurons. An LSTM block comprises at least
one linear cell featuring an internal recurrent connection weighted with 1 (‘constant
error carousel’). In addition, the dynamic data flow including a potential storing of
new content and an erasing of content is controlled by multiplicative units (‘input’,
‘output’ and ‘forget gates’). While a BRNN is limited with regard to the range of
manageable temporal context as dependent on the weights of recurrent connections
(< 1 or > 1) the input’s influence decays or blows-up exponentially (‘vanishing
gradient problem’ [195]), LSTM cells, yield a more functional, potentially permanent
memory and allow for considering an optimal amount of contextual information for
a specific learning paradigm. [29, 139, 153]

For BLSTMNN implementation in the framework of this thesis, the popular
‘vanilla architecture’ was used [196]. As a BLSTMNN allows for modelling
time series, each vocalisation was input in the form of its extracted, smoothed
LLD trajectories based on time steps of 10ms (cf. Section 7.1). For training,
the first-order gradient-based Adam optimisation algorithm [197] was employed.
The optimum number of layers and cells was determined by performing a grid search.

In the end, HMMs are among the most frequently encountered learning models
for audio sequence classification. Both Markov chains and HMMSs can be regarded
as extended finite state automata, i.e., they build on sets of states and sets of
transitions between the states with associated probabilities that indicate how likely
a respective transition is to be taken. At any time step, the state may be changed.
In a Markov chain, a specific input sequence uniquely determines the sequence of
states stepped through by the automaton. This is useful when needing to calculate
the probability of a sequence of observable events. However, in HMMs the states are
unobservable, latent attributes presumed to have a causal relation to observational
data. An observation in form of a feature vector is modelled and generated as a
function of the current state and a respective emission probability at each time step.
Thus in a recognition task, the sequence of the most probable ‘hidden’ states is to be
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derived from a given sequence of state-related observational data. Underlying model
parameters have to be previously determined on the basis of training observations
with the related states given. [198, 152, 181, 139, 153]

Regarding HMM implementation in the framework of this thesis, state prediction
was performed by means of the Viterbi algorithm [199, 200]. As usual for intelligent
audio analysis applications, the emission probabilities were modelled by Gaussian
mixtures [139, 153].

7.3.1 Validation

To evaluate the performance of (learning) algorithms applied in the framework
of this thesis for (i) the automatic detection of infant vocalisations within audio
recordings, and (ii) the automatic classification of vocalisations according to the de-
velopmental outcomes of the infants, who produced the vocalisations, respectively,
different evaluation strategies were pursued.

Infant voice activity detection validation was based on each audio recording’s vo-
calisation segmentation reference information, i.e., the manually set start and stop
markers for infant vocalisations alongside each recording. The set of available audio
recordings was split into a partition for training and tuning the employed learning
algorithms, and a test partition for performance evaluation. The detection output
of each employed approach was given in form of a raw binary data stream alongside
each recording of the test partition on a time basis defined by the feature extraction
process, i.e. in this case, on a frame basis of 10ms steps (cf. Section 7.1). In this
binary data stream, the value ‘1’ indicated that infant voice was detected, the value
‘0’ indicated that no infant voice was detected in a respective frame. In order not
to allow for unrealistic vocalisation detection outputs, a moving median filter was
applied to the raw data streams prior to the validation process. Thereby, an isolated
value or too short sequences of the same value surrounded by sequences of the other
value were eliminated. Consequently, implausibly short detected vocalisation peri-
ods were precluded and too short interruptions between two detected vocalisation
periods were prevented by generating one single vocalisation of extended duration.
The length of the moving median filter was set to 15 frames according to the dura-
tion of the shortest reference vocalisation contained in the training set (~150ms).
By setting the filter length to an odd frame number, no further processing step
was necessary to ensure that the filtered data stream still exclusively contained the
values ‘17 and ‘0’. The filter length of 15 frames led to a duration threshold for
sequences of isolated values in a row to be eliminated of half of the length of the
shortest reference vocalisation within the training set. Accordingly, sequences of
less than 8 same values in a row preceded and followed by sequences of at least
8 times the other value, respectively, were eliminated, i.e., set to the value of the
surrounding sequences.
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Infant voice activity detection performance was evaluated in two different ways,
namely frame-based on the one hand, and vocalisation-based on the other hand.

In the frame-based evaluation approach, the filtered binary output stream of
each employed detection algorithm was compared to the vocalisation segmentation
reference information frame by frame. In doing so, true positives (TPs; value ‘1’ in
the detection output stream for a frame within the period of a reference vocalisation),
false negatives (FNs; value ‘0’ in the detection output stream for a frame within
the period of a reference vocalisation), and false positives (FPs; value ‘1’ in the
detection output stream for a frame outside the period of a reference vocalisation)
were counted.

In the vocalisation-based evaluation approach, the locations of detected vocali-
sation periods, i.e., sequences of the value ‘1’ in the filtered detection output stream,
were compared to the locations of reference vocalisations. According to Phan and
colleagues [201], in this scenario a reference vocalisation was regarded as correctly
identified (TP), either if the centre of a detected vocalisation was located within the
boundaries of the reference vocalisation, or if the centre of the reference vocalisation
was located within the boundaries of a detected vocalisation. A FN was counted if
a reference vocalisation was not correctly identified according to the afore-explained
criterion concerning the centre of vocalisations. Finally, a FP was given if a detected
vocalisation did not include the centre of a reference vocalisation or the detected
vocalisation’s centre was not included in a reference vocalisation. The assignment
of TPs, FNs, and FPs for the vocalisation-based evaluation scenario is exemplified
in Figure 7.2.

On the basis of the determined TPs, FNs, and FPs, for both the frame-based
and the vocalisation-based validation scenario, four common measures for evaluating
the performance of acoustic event detection algorithms were calculated according to
Phan and colleagues [201] and following the 2006/2007 CLEAR challenges [165, 167],
namely precision, recall, the acoustic event detection accuracy (AED-ACC = F-
measure), and the acoustic event error rate (AEER; see Equations 7.2-7.5).

TP
precision = # TPs (7.2)
4 TPs + # FPs
4 TPs

Il = .
T = U TPs 1 # FNs (7.3)
AED-ACC — 2 x precision x recall (7.4)

~ precision + recall '

4 FNs+ # FPs

AEER = .

R= T Ps T # FNs (7.5)
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FN FP FP FN FN FP FN
Figure 7.2: Exemplification of comparing reference vocalisations (dark grey frames)
and detected vocalisations (light grey frames with filling) according to their relative
positions of vocalisation centres (dark grey and light grey dashed lines, respectively)
in order to assign (a) true positives (TPs), and (b) false negatives (FNs) and false
positives (FPs) for the vocalisation-based evaluation scenario.

The frame-based evaluation delivered precise performance information within
the scope of detecting fragments of infant vocal patterns in a continuous audio
stream irrespective of their role as elements of larger entities, such as vocalisations,
whereas the vocalisation-based evaluation referred to the detection of the rough
locations of infant vocalisations alongside the audio stream. Both the frame-based
evaluation approach and the vocalisation-based evaluation approach have their
justification in context of an intended fully automatic infant vocalisation detection
system. However, as in the vocalisation-based evaluation approach one detected
vocalisation period of extended duration could lead to more than one reference
vocalisations to be correctly identified (one single segment over a whole recording
would lead to all reference vocalisations within the recording to be correctly
detected without causing any FPs), the respective performance measures must not
be interpreted without also carefully considering the results from the frame-based
scenario, especially the precision value.

For evaluating the performance of the automatic classification of infant vocalisa-
tions according to the infants’ developmental outcomes with respect to the presence
or absence of a COI, cross-validation strategies were applied. For this purpose, the
datasets of the individual experiments were split into, as far as possible, equally
sized, speaker/infant independent partitions alternately used for classifier training,
classifier optimisation if applicable, and classifier testing throughout the single itera-
tions of the cross-validation scheme. In this context, ‘infant independent’ means that

o4



7.3 Classification

vocalisations of one and the same infant were never split up over different partitions
and, therefore, could not be used for both classifier training and testing during one it-
eration of the cross-validation procedure. In case of very small datasets available for
individual experiments, leave-one-matched-speaker-group-out cross-validation was
employed. This means that each created partition only contained vocalisations of
a matched group of one infant per class, i.e. in case of a two-class scenario, one
infant later diagnosed with a COI and one matched TD control. In case of highly
imbalanced training partitions with regard to the number of instances per class, i.e.,
vocalisations associated with a specific COI and vocalisations associated with TD,
the instances of the underrepresented class were upsampled.

Analogous to the evaluation of the infant voice activity detection performance,
also the performance of vocalisation classification was carried out in two differ-
ent ways, namely vocalisation-wisely and infant-wisely. In the first approach, the
vocalisation-wise classification decisions were evaluated, whereas for the infant-wise
approach a global decision on each infant was generated on the basis of the single
decisions on all of his or her vocalisations, e.g., by applying majority voteS. Both
the vocalisation-wise scenario and the infant-wise scenario make sense for evaluating
the basic feasibility of an automatic early COI recognition tool.

In accordance with all so far held Interspeech” challenges (2009-2018 [202, 203,
204, 205, 154, 170, 171, 159, 172, 133]; since 2013 called ‘ComParE challenges’), the
unweighted average recall/unweighted accuracy (UAR/UA; average of class-specific
recall values [139]; for recall see Equation 7.3) was selected to be the primary mea-
sure for vocalisation classification performance in the framework of this thesis. As
compared to the (class) weighted average recall/weighted accuracy (WAR/WA; av-
erage of class-specific recall values weighted according to the distribution of instances
per class in the test dataset = number of correctly identified instances divided by
the total number of instances in the test dataset [139]), the UAR is more adequate
for class imbalanced (test) datasets [139]. On the one hand, the UAR was calculated
in separate for each iteration of the cross-validation procedure and then averaged
over all iterations. On the other hand, the predictions of each iteration were stored
and, finally, the UAR was calculated globally for the whole dataset.

In the particular case of exactly the same number of class-wise predictions (representing the
majority), the involved class with the smaller /smallest internal numerical identifier was arbitrarily
defined to be selected.

"Annual Conference of the International Speech Communication Association (cf. Section 7.1)
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Infant voice activity detection

The first experiment conducted in the framework of this thesis dealt with the
automatic detection/segmentation of infant vocalisations in audio recordings.
Thereby, the experiment addressed AQ3 of this thesis (cf. Section 4.2) and refers to
the first module of the proposed, fully automatic developmental disorder recognition
tool (cf. Figure 4.1 in Section 4.2). Parts of the analysis of this experiment were
carried out by colleagues, namely by Dr. Robert Peharz, currently affiliated with
the Machine Learning Group at the University of Cambridge, UK (at the time of
experimentation he was with the Research Unit iDN, at the MUG, Austria), and by
Wolfgang Roth from the Signal Processing and Speech Communication Laboratory,
at the Graz University of Technology, Austria. Experiment-related procedures and
findings were published in 2016 by Pokorny and colleagues [206].

In order to investigate automatic infant voice activity detection in considera-
tion of representing the audio input pre-selection step for a complex vocalisation
classification system intended for application in clinical but also home scenarios,
experimentation was carried out on the basis of audio-video material recorded un-
der real-world conditions. For this experiment, more than 20 hours of home video
material were extracted from GUARDIAN’s Dataset 4 (cf. Section 6.1). The mate-
rial comprised variable quality audio-video recordings of 32 participants! including
both female and male TD individuals and individuals later diagnosed with a COIL.
Moreover, the material covered individuals of the four different nationalities Austria,
Germany, Italy, or United Kingdom, each having one of the three different mother
tongues/family languages German, Italian, and English. In total, the dataset used
for the experiment on infant voice activity detection consisted of 4 903 vocalisations
from the included individuals’ pre-linguistic period, more precisely, from the indi-
viduals’ respective second half year of life. A detailed overview of the dataset is
given in Table 8.1.

!Participant identification codes (IDs) throughout this thesis are unique, i.e., one and the same
ID, such as ‘TDO01’, in different experiments implies one and the same participating individual.
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8 Infant voice activity detection

Table 8.1: Number of included vocalisations on the basis of the available audio-video
duration in format hh:mm:ss (two-digit hour number:two-digit minute number:two-
digit second number; seconds rounded down to integer values; sums calculated on the
basis of exact durations) as a function of age per participant for the experiment on
infant voice activity detection. This table includes information of Table 1 published
by Pokorny and colleagues [206] (DOI: 10.21437/Interspeech.2016-1341). ASD =
autism spectrum disorder; AT = Austria; DE = Germany; Eng = English; FXS
= fragile X syndrome; Gen = gender; Ger = German; ID = (unique participant)
identification code; I'T = Italy; Ita = Italian; L1 = mother tongue; Nat = nationality;
RTT = Rett syndrome; TD = typical development/typically developing; UK =

United Kingdom; ¢ = female; ¢ = male; - = no audio-video material available
D ‘ Gen | Nat/Ll ‘ Sth gth Aifh[month Olfolélf)e] L1th 1oth =
ASDO1 g IT/Ita - - - 00:034;13 00:32:47 00:33:56 00:??:56
ASDO2 | & IT/Ita - 001346  00:08:28 000455  00:04:53  00:08:45 | 00:33:50
ASDO3 | & IT/Ita - - - - - oo;éé:os oo:gécos
ASDO04 g IT/Ita - 00:031:09 - B 00:03:26 B 00:094:36
ASDO5 g IT/Tta - - - - h 00:037;39 00:057:39
ASDO06 e IT/Ita 00;010;47 . ) ) OO:ég:OB 00:012:14 00:3;:10
ASDO7 =4 IT/Ita - - 00:030:48 B - - 00:030:48
ASDO8 d IT/Tta - - N . 00;012;15 00:11330:34 00:11351:50
ASDO09 g IT/Tta - - - 00:22:10 00:023:02 B 00:32:13
ASD1O | @ IT/Ita 00:051:15 00:042:45 - 00:015:18 00:32:35 00:33:19 00:2@;14
ASD11 i IT/Ita 00:023:18 00:(1)$:38 00;2:49 00:(1);,:26 - 00:041:51 00:1401%03

5
ASD12 | @ /16| 000348 000748 - - - 00:03:07 | 00:13:45
ASD13 @ IT/Ita 00:3§:27 - - 3 ) 00:053:07 00:32:34
FXS01 g AT/Ger - B oo:?;m - B B 00:?;:05
RTTO1 9 AT /Ger - - - 00;11530;46 - - 00:11530:46
RTTO02 ? AT/Ger - - 00:143;53 01:10220:18 00:4112:05 - 02?0044:16
RTTO3 Q DE/Ger - 00?5673:45 00:2474%25 01?2233:21 00:15870:42 00:25403:36 041:35:251
RTTO4 | ¢ DE/Ger 00:?8:23 00:32:25 00:8;:35 00:12:28 00:83:47 00:?3:41 01?0603:21
RTT05 ? UK/Eng - 00:030:29 - 00:00:31 00:(1)(2):36 00:00:31 | 00:02:09
RTTO6 | ¢ UK/Eng - 00:;12:37 - 000401  00:0%:56 - 00128135
RTTO7 Q UK/Eng 00:085116 - - - - - 00:085:16
RTTO8 Q UK/Eng . 00:12106;34 00:072:26 00;?3;43 00:093;40 00:38:32 00:2534%57
RTTO09 Q UK/Eng 00;077;09 - 00;012:36 00;142;15 ) 00:173:28 00::1;5):30
TDO1 J AT /Ger - 00:35144 - - - - 00;3?;44
TDO2 G AT/Ger | o0 0636 - - 00:03:36  00:06:14  00:02:59 | 00:19:27
TDo3 g AT/Ger 00::1‘)3:07 00:38:39 00:3:55 . 00:043:39 00:33:03 01:10163:26
TD04 g AT/Ger 00:021;04 00;020;27 ) ) . 00:053:22 00:094:55
TDO05 4 AT /Ger - 00;1244%25 - 00;11670;40 - - 00?4028:06
TDO06 Q AT/Ger - 00;033;43 - 00;031:48 - - 00:065:32
TDo7 e AT/Ger 00:(1)2:01 - 00:013:19 - - 00:020:51 oo:}g:lz
‘TDo8 ? AT/Ger 01:21511:58 00:22:04 00:2132:02 00:21;2:02 00:12:07 00:11026;47 02:64841:01
TD03 ? AT/Ger 00:097:35 00:;12:54 00:%:22 00:13002:41 00:?}:46 0014112:18 01:35452;40
- 450 989 834 1194 653 792 2903
60 02:28:53 03:58:01 03:16:48 05:01:20 02:46:47 03:19:58 20:51:50



The mean vocalisation duration was 1.72s (£ 1.41s standard deviation), the
median duration was 1.33s. The shortest vocalisation had a duration of 150 ms.
The longest vocalisation had a duration of 21.31s, which was an extended sequence
of crying patterns by TDO03 in the 9*" month of life. The total duration of
infant vocalisations within the dataset was 2 hours, 20 minutes, and 19 seconds.
Consequently, vocalisation periods made up 11.2% of the total audio-video duration.

The number of studies on an automatic detection of infant vocal behaviour (e.g.,
[207]) not exclusively focussing on specific infant vocalisation types, such as crying,
is limited most likely due to the so far limited number of application areas for such
a detection paradigm. However, following an obvious trend in the highly researched
field of voice activity detection in general, namely the replacement of traditional
rule-based voice activity detection (e.g., [208, 209, 210, 211, 212, 213]) by machine
learning-based voice activity detection (e.g., [214, 215, 216, 217, 218, 219, 220, 221])
over the last years, in this experiment three different machine learning approaches,
namely an SVM, an RF, and HMMs as already outlined in Section 7.3, were
implemented and tested against a standard rule-based approach constituting
the experiment’s baseline. For separate detection model learning/optimisation
and detection performance evaluation, the experiment’s dataset was split into
a training/development and a test partition.  Partitioning was carried out
participant-independently in order to best possibly assign the material of two-thirds
of individuals per developmental outcome, gender, and mother tongue (e.g.,
three of the five female individuals later diagnosed with RTT stemming from
English-speaking families) to the training/development partition (22 participants),
and the remaining third to the test partition (10 participants). As there was only
material of one individual with a later FXS diagnosis available for this experiment,
FXS-associated vocalisations could not be used for both training/development
and testing. In order not to evaluate on a COI that is unknown to the detector,
the FXS-associated material was assigned to the training/development partition.
Dataset partitioning for this experiment is shown in Table 8.2.

As already specified in Section 7.1 and Subsection 7.3.1, this voice activity detec-
tion experiment was based on frames of 25 ms at a step size of 10 ms alongside each
included audio(-video) recording. Exactly the first half of audio frames of the train-
ing/development partition was designated to be the training partition, the second
half to be the development partition.

Baseline infant voice activity detection was performed using the ‘cVadV1’ com-
ponent of openSMILE (cf. Section 7.1), which provided a frame-wise decision on the
presence or absence of voice. This decision was made on the basis of fuzzy scores
derived from the current deviations from the mean long-term trajectories of three
pre-selected acoustic LLDs (voice detected if all three scores unequal zero), namely
energy, line spectral frequencies, and Mel spectra [222] (cf. Section 7.1).
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8 Infant voice activity detection

Table 8.2: Assignment of participants to training/development or test partition for
the experiment on infant voice activity detection. This table includes information of
Table 2 published by Pokorny and colleagues [206] (DOI: 10.21437 /Interspeech.2016-
1341). ASD = autism spectrum disorder; AT = Austria; DE = Germany; Dur =
available audio-video duration in format hh:mm:ss (two-digit hour number:two-digit
minute number:two-digit second number; seconds rounded down to integer values;
sums calculated on the basis of exact durations); Eng = English; FXS = fragile X
syndrome; Gen = gender; Ger = German; ID = (unique participant) identification
code; IT = Ttaly; [ta = Italian; L1 = mother tongue; Nat = nationality; RTT = Rett
syndrome; TD = typical development /typically developing; UK = United Kingdom;

# = number of; ¢ = female; & = male

Partition ‘ 1D ‘ Gen ‘ Nat/L1 ‘ ﬁu\fo[iixhiitric:;]s
ASDO1 g IT/Ita 00;41151;:56
ASDO02 d IT/Tta 00:13323:50
ASDO3 g IT/Ita oozéé;os
ASDO4 g IT/Ita 00;094:36
ASDO5 a IT/Ita 00;037:39
ASDO06 g IT/Ita 00:(2)é:10
ASDO7 F IT/Ita 00;030:48
ASDO8 g IT/Ita 00:11351:50
ASDO09 a IT/Tta 00:32:15
FXS01 g AT/Ger OO:?;:O5
RTTO1 Q AT/Ger 00:11530:46
Training/development | RTT02 Q AT/Ger 02?0044:16
RTTO3 Q DE/Ger 041;22:251
RTTO7 Q UK/Eng 00;085:16
RTTO8 Q UK/Eng 00;25345:57
RTTO09 Q UK/Eng 00;%2:30
TDO1 g AT/Ger 00:(2)2:44
TDO04 ¢ AT/Ger 00:094:55
TDO5 L4 AT/Ger 00?4028:06
TDO06 Q AT/Ger 00;065:32
TDO7 Q AT/Ger 00;13:12
TDOS Q AT/Ger 02?4841:01
S| laom
ASD10 @ IT/Ita bl
00:26:14
ASD11 d IT/Tta 00;14019:03
ASDI12 g IT/Ita oo;i’g;45
ASD13 a IT/Ita 00;32:34
RTTO04 Q DE/Ger 01 ?0603:21
Test RTTO5 Q UK/Eng oo;(l)i:o9
RTTO06 Q UK/Eng 00:12089:35
TDO02 g AT /Ger 00;:53:27
TDO3 B AT/Ger 01:101(;3:26
o TD09 ? AT/Ger 011?5:?2:40
z 06:2::3 17




All three investigated learning algorithms built on the same set of 100 acoustic
features as describes in Section 7.1. The features were partition-wisely standardised
to have zero-mean and unit variance.

For the SVM approach, a Gaussian kernel was employed. In order to decrease
training time, the detection model was trained on a representative subset of 125000
samples per class (no infant voice vs. infant voice). The kernel complexity parameter
C e {2719 ...,21%) and the kernel width v € {271°,... 219} were cross-validated
with regard to optimise the AED-ACC (cf. Subsection 7.3.1) on the development
partition.

Considering the same optimisation criterion as already applied for SVM pa-
rameter tuning (AED-ACC optimisation on the development partition), in the RF
approach, the number of trees T' € {50, 100,200,300}, the maximal tree depth
D € {5,10,15,20}, and the minimum number of samples per leaf M € {1,10,100}
were cross-validated.

For the HMM implementation, two states were used. One state modelled
the absence of infant voice, the other state modelled the presence of infant
voice in a frame. The HMM was designed to have a uniform prior distribution,
but a transition probability for both states of only 0.5% leading to a strong
a priori state blocking (of 99.5%) that was also observed within the training
data. As already mentioned in Section 7.3, the Viterbi algorithm was used to
perform state prediction and Gaussian mixture models (GMMs) were trained as
observational models by applying the expectation maximisation (EM) algorithm
(152, 139, 153, 29] and by cross-validating the number of components. Training
was performed based on a stratified subset of all (training) frames including infant
voice and the same number of frames without infant voice. As the full set of
100 features yielded a poor detection performance (in terms of a low AED-ACC
on the development set), greedy feature forward selection was carried out. In
doing so, a model was trained on each individual feature. Then, the feature
involved in the best performing model (again in terms of the best AED-ACC on
the development set) was selected. This procedure was iterated while keeping the
already selected features fixed. Thereby, eight features could be selected for the
final model until the detection performance started to gradually degrade. As an
alternative to the GMMs trained by means of EM, discriminative GMMs were
applied as observational models by means of large-margin training [223] based on
the reduced set of the eight selected features. In the following, the HMM using
GMNMs trained by means of EM is referred to as ‘HMM,e,” (generative HMM). The
HMM using discriminative GMMs is referred to as ‘HMMg;s” (discriminative HMM).

The performance of the employed approaches in terms of precision, recall,
AED-ACC, and the AEER (cf. Subsection 7.3.1) for both frame-based and
vocalisation-based infant voice activity detection is revealed in Table 8.3.
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8 Infant voice activity detection

Table 8.3: Frame-based and vocalisation-based infant voice activity detection per-
formance of a standard rule-based voice activity detector as the baseline approach, a
support vector machine (SVM) approach, a random forest (RF) approach, and both
a generative and a discriminative hidden Markov model (HMMge,; HMMy;s) ap-
proach in terms of precision, recall, acoustic event detection accuracy (AED-ACC),
and the acoustic event error rate (AEER). This table is based on Table 3 published
by Pokorny and colleagues [206] (DOI: 10.21437/Interspeech.2016-1341). Precision,
recall, and AED-ACC values are rounded to two decimal places. The AEER is
rounded to integers.

Measure Approach
Baseline | SVM | RF | HMM,., HMDMg;
Procision frame-based 0.15 0.19 0.11 0.18 0.20
vocalisation-based 0.11 0.11 0.07 0.17 0.26
Recall frame-based 0.59 0.56 0.79 0.66 0.60
vocalisation-based 0.89 0.88 0.96 0.89 0.74
frame-based 0.24 0.29 0.19 0.28 0.31
AED-ACC vocalisation-based 0.19 0.20 0.13 0.29 0.38
AEER frame-based | 90295 | 96846 | 45994 | 74172 87597
vocalisation-based 151 159 67 143 319

The results of this thesis’ experiment on automatic infant voice activity detec-
tion/segmentation in home video material yielded a very unclear picture of the
performance of the evaluated approaches with respect to the applied performance
measures. Obviously, the different employed approaches had different strengths
and weaknesses, i.e., there was not one specific approach that clearly outperformed
the other approaches. Whereas the RF approach achieved the highest recall as
well as the lowest AEER in both the frame-based and the vocalisation-based
evaluation scenario, respectively, the HMMyg;s approach performed best in terms of
reaching the highest precision as well as the highest AED-ACC again in both the
frame-based and the vocalisation-based evaluation scenario, respectively. The RF
approach caused a low number of FNs at the expense of a high number of FPs, the
HMMyg;s approach vice verca. Generally, all approaches tended to cause a relatively
high number of FPs leading to precision values ranging from only 0.11-0.20 in
the frame-based evaluation scenario and from 0.07-0.26 in the vocalisation-based
evaluation scenario. In contrast, the highest recall value was even 0.96 achieved
by the RF approach in the vocalisation-based evaluation scenario. However, the
highest AED-ACC combining both precision and recall within one measure was
only 0.38, achieved by the HMMy;s approach in the vocalisation-based evaluation
scenario. A good trade-off between all four evaluation measures was obtained
by the HMM,., approach. Finally, it needs to be mentioned that the rule-based
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detector representing the baseline for the experiment could absolutely keep up with
the applied machine learning approaches, especially with the SVM approach.

Currently, none of the evaluated detection approaches seems to be already
usable as a reliable input stage for a fully automatic infant vocalisation-based
classification system, but for supporting/semi-automatising the time-consuming
vocalisation segmentation process for infant vocalisation-based experiments.
However, the rather low detection performance of any of the applied approaches
might be attributed to the nature of the used audio data most of the time (88.2%)
does not containing an infant (target) vocalisation, but comprising a number of
background noise events including sequences of human voice, such as voice from
television or radio switched on during the recording, parental voice, or even voice of
children or infants other than the participating individual such as an older sibling,
a cousin, and/or an other playmate of the participant also present in the recorded
setting. This potential explanation for the poor overall detection performance
is supported by the fact that the applied rule-based detector, which represents
a tool for detecting human voice in general, thus, not explicitly for detecting
infant voice, achieved results comparable to the results of the machine learning
approaches. Another problematical aspect with respect to both the frame-based
and the vocalisation-based evaluation scenario might be the applied vocalisation
segmentation strategy relying on each vocalisation coming along with a vocal
breathing group and, therefore, causing vocalisation pauses/sequences of silence
occasionally being part of vocalisations (cf. Section 6.2). Finally, the AEER turned
out to be a measure that can be hardly interpreted and compared between the
different approaches, as its value range is not normalised to an upper limit of 1.

This experiment was carried out without a prior audio normalisation, as (i) a
global normalisation, i.e., for example the normalisation of whole audio-video clips,
would have led to mainly setting the gain according to contained, distinct noise
events that usually had higher signal energy than infant (target) vocalisations, or
(i) a frame-wise normalisation would have led to setting background noise to the
maximum gain for a large number of frames of ‘silence’/frames without recorded
acoustic events. However, dependent on the scenario of application of the proposed
vocalisation-based infant developmental disorder recogniser, audio normalisation as
a data pre-processing step might make sense, for example in a clinical setting with
controllable recording conditions (cf. Section 11.2), and should be considered. Fur-
thermore, from a technical point of view, the length of the applied moving median
filter for raw detection data stream pre-processing (cf. Subsection 7.3.1) represents
an important design parameter for further experiments.
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Developmental disorder
recognition

A number of experiments were conducted in order to evaluate the basic feasibility
of an automatic vocalisation-based identification of individuals later diagnosed with
a COI vs. TD individuals. These experiments are dealt with in the following sec-
tions. They each refer to the second module of the proposed developmental disorder
recognition tool (cf. Figure 4.1 in Section 4.2) and, thereby, represent this thesis’
core experiments. Table 9.1 provides the corresponding experimental overview or
rather a preview of the upcoming sections.

For a better comparability of COl-related vocalisation atypicalities/specificities
across the different experiments, acoustic feature analysis in the framework of this
thesis (cf. Subsection 7.2.1) was decided to be carried out on the basis of a homo-
geneous vocalisation and feature (pre-)processing procedure, namely on the basis
of the unnormalised /unstandardised eGeMAPS features (cf. Section 7.1) extracted
from unnormalised vocalisation data only. This setup was chosen as both not apply-
ing audio normalisation to the vocalisation data in a pre-processing step and using
the eGeMAPS (not necessarily concurrently) more often led to a better classification
performance in terms of the applied performance measures (cf. Subsection 7.3.1),
compared to applying audio normalisation to the vocalisation data and using the
ComParE set, respectively, and (iii) the role/benefit of specific feature normalisa-
tion/standardisation strategies was heterogeneous throughout the conducted exper-
iments (cf. Sections 9.1-9.4 and Chapter 10). Moreover, the eGeMAPS’s reduced
complexity in contrast to the ComParE set and its systematic composition based
on relevance criteria also regarding clinical speech applications (cf. Section 7.1),
makes most eGeMAPS features more transparent and descriptive regarding their
relation to underlying (neuro-)physiological processes of speech production. Conse-
quently, eGeMAPS features were expected to reveal a meaningful information basis
for a clinically relevant understanding of vocalisation differences between individuals
with different COI and TD individuals.
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9 Developmental disorder recognition

Table 9.1: Overview of experiments carried out on developmental disorder recognition paradigms with regard to the
addressed research questions (RQs; cf. Section 4.2) as well as to the used data subset(s), acoustic feature set(s),
and classification approach(es), respectively. AD = atypical developmental/atypically developing; AQ = additional
(research) question; ASD = autism spectrum disorder; BLSTMNN = bidirectional long short-term memory neural
network; ComParE = Computational Paralinguistics and Emotion (set); eGeMAPS = extended Geneva Minimalistic
Acoustic Parameter Set; FXS = fragile X syndrome; LLD = low-level descriptor; MQQ = main (research) question; RTT
= Rett syndrome; SVM = support vector machine; TD = typical development/typically developing; # = number of

Experimentation on developmental disorder recognition

Sections 9.1 9.2 9.3 9.4
References [224] [225] [225], [226] [225]
Paradigms ASD vs. TD FXS vs. TD RTT vs. TD AD vs. TD,

FXS vs. RTT vs. TD

Addressed RQs

MQL & MQ5 & AQL

MQ2 & MQ6 & AQL

MQ3 & MQ7 & AQL

MQ4 & MQS & AQlL

Subset sizes
[# Participants]

20 (10 vs. 10)

6 (3 vs. 3)

6 (3 vs. 3),
8 (4 vs. 4)

12 (6 vs. 6),
12 (3 vs. 3 vs. 6)

Subset sizes
[# Vocalisations]

684 (259 vs. 425)

1164 (942 vs. 222)

3502 (2011 vs. 1491),
4678 (2199 vs. 2479)

4666 (2953 vs. 1713),
4666 (942 vs. 2011 vs. 1713)

Feature sets eGeMAPS, ComParE & eGeMAPS ComParE & eGeMAPS, ComParE & eGeMAPS
ComParE LLDs ComParE
Classifiers SVM, SVM SVM SVM
BLSTMNN
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9.1 Recognition of autism spectrum disorder

9.1 Recognition of autism spectrum disorder

In this thesis’ first feasibility experiment on an automatic, vocalisation-based COI
recognition, the two-class paradigm ASD vs. TD was investigated. Thereby, the
experiment focussed on the first of the three COI treated in this work and addressed
MQ1, MQ5, and AQ1 of this thesis (cf. Section 4.2). As already mentioned in
Chapter 6, the audio(-video) data constituting the basis for this experiment were
provided by cooperation partners from Sweden, namely by (i) Professor Dr. Sven
Bolte, director of the Center of Neurodevelopmental Disorders and head of the
Neuropsychiatry Division at the Department of Women’s and Children’s Health
of the Karolinska Institutet, Stockholm, by (ii) Associate Professor Dr. Terje
Falck-Ytter, also from the Department of Women’s and Children’s Health of the
Karolinska Institutet, and from the Department of Psychology at the Uppsala
University, as well as by (iii) Dr. Par Nystrom, also from the Department of
Psychology at the Uppsala University. Parts of the analysis in the framework of
this experiment were carried out by Raymond Brueckner, a colleague affiliated
with both the Machine Intelligence & Signal Processing group of the Technical
University of Munich, Germany, and Nuance Communications, Ulm, Germany.
Experiment-related procedures and findings were published in 2017 by Pokorny and
colleagues [224].

The dataset of this experiment comprised a total of 240 minutes of audio(-video)
material recorded in semi-standardised parent-child interaction settings under labo-
ratory conditions (cf. Chapter 6). It contained recordings of 10 Swedish individuals
in the 11*" month of life later diagnosed with ASD (5 females, 5 males) and record-
ings of 10 nationality-/family language-, age-, and gender-matched TD controls.
Each recording had an exact duration of 12 minutes. Within the provided material
a total of 684 vocalisations could be segmented. An overview of participants and
participant-specific numbers of included vocalisations is given in Table 9.2.

The mean duration of the included vocalisations was 2.01s at a standard devia-
tion of 2.31s. The median vocalisation duration was 1.39s. Vocalisation durations
ranged from 0.42s to 36.27s. The longest vocalisation was an extended sequence
of crying patterns of participant TD13. The median duration of the vocalisations
of individuals later diagnosed with ASD was 1.49s, the median duration of vocal-
isations of TD participants was 1.3s. At a value of p = 0.019 and a significance
level of o = 0.05, a significant difference in the vocalisation duration between the
participants with ASD and the TD participants was found using the Mann-Whitney
U-test (vocalisation durations were not normally distributed).

Due to the standardised recording time per participant across this dataset on the
one hand, and due to the more standardised recording setting (infants in physically
unrestricted position motivated by their parents for interaction/communication in
a closed room without external influencing factors) as compared to the home video
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9 Developmental disorder recognition

setting underlying the data used in the other experiments on developmental disorder
recognition (cf. Sections 9.2-9.4) on the other hand, the volubility/vocalisation rate
(VR) was calculated in this experiment as an additional, potentially meaningful eval-
uation measure predictive for an infant’s socio-communicative outcome and, thus,
for a later diagnosis of a COI (e.g., [95, 110, 112, 118, 227]; cf. Section 3.2). How-
ever, no significant difference in volubility between participants with ASD and TD
participants could be found using a paired t-test (vocalisation rates were normally
distributed; o = 0.05; p = 0.0922).

Table 9.2: Number of included vocalisations and vocalisation rate (VR) per partic-
ipant, per group, and in total for the experiment on automatic autism recognition.
This table is based on Table 1 published by Pokorny and colleagues [224] (DOI:
10.21437/Interspeech.2017-1007). The VR is rounded to two decimal places. ASD
= autism spectrum disorder; Gen = gender; ID = (unique participant) identification
code; L1 = mother tongue; Nat = nationality; SE = Sweden; Swe = Swedish ; TD
= typical development /typically developing; # = number of; ¢ = female; & = male

ID | Gen | Nat/L1 | # Vocalisations | VR [# vocalisations/minute]

ASD14 | ¢ | SE/Swe 10 0.83
ASD15 | & | SE/Swe 38 3.17
ASD16 | @ | SE/Swe 42 3.50
ASD17 | ¢ | SE/Swe 26 2.17
ASD18 | & | SE/Swe 19 1.58
ASD19 | ¢ | SE/Swe 31 2.58
ASD20 | & | SE/Swe 28 2.33
ASD21 | & | SE/Swe 9 0.75
ASD22 | & | SE/Swe 17 1.42
ASD23 | ¢ | SE/Swe 39 3.25
EASD ‘ MeanASD 259 2.16

TD12 g | SE/Swe 18 1.50
TD13 g | SE/Swe 45 3.75
TD14 g | SE/Swe 35 2.92
TD15 Q@ | SE/Swe 15 1.25
TD16 Q | SE/Swe 98 8.17
TD17 @ | SE/Swe 29 2.42
TD18 d | SE/Swe 29 4.92
TD19 Q@ | SE/Swe 52 4.33
TD20 g | SE/Swe 37 3.08
TD21 Q@ | SE/Swe 37 3.08
ETD | MeanTD 425 3.54
Yaspurp | Meanaspurp | 684 \ 2.85
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The analysis of the 88 eGeMAPS features revealed the value distributions of 54
acoustic feature to significantly differ between the vocalisations of individuals later
diagnosed with ASD and vocalisations of TD individuals. The top ten eGeMAPS
features according to the effect size estimate r (cf. Subsection 7.2.1) are given in
Table 9.3. These top ten features are mainly based on spectral LLDs, namely the
spectral slope, MFCCs, the Hammarberg index, and the alpha ratio. Class-specific
distribution visualisations of the acoustic feature with the highest differentiation
effect as well as of the three acoustic features with the highest differentiation effects
are shown in Figure 9.1.

Table 9.3: Top ten acoustic features to differentiate between vocalisations of in-
dividuals later diagnosed with autism spectrum disorder and typically developing
individuals, ranked according to the magnitude of the effect size estimate r, at given
p-values of the underlying Mann-Whitney U-tests. This table is based on Table 2
published by Pokorny and colleagues [224] (DOI: 10.21437/Interspeech.2017-1007).
r is rounded to three decimal places. Multiplicators of p-values are rounded to one
decimal place. amean = arithmetic mean; coeffVar = coefficient of variation; FO
= fundamental frequency; Idx.gemaps = extended Geneva Minimalistic Acoustic
Parameter Set-internal feature index [173]; MFCC = Mel-frequency cepstral coeffi-
cient; pctlR = percentile range; UVRg = unvoiced regions; VRg = voiced regions;
neither UVRg nor VRg = all regions

Rank ‘ r ‘ P ‘ Feature ‘ IdxXccemaps
1| 0.397 | 3.3-107% | amean yvg,(spectral slopeq-soo 1) 79
2| 0340 | 5.7-107 | coeffVar(MFCC 4) 30
31-0.337 | 1.2-107*® | mean length UVRyg 86
41 0337 | 1.2-107'8 | amean yyry(Hammarberg index) 78
51-0.336 | 1.7-10718 | amean uvrg(spectral slopesoo-1500 mz) | 80
6| 0293 | 1.7-10"" | amean yr,(FO0) 02
71-0.291 | 2.7-107 | amean yyr,(a ratio) 77
81 0.255 | 2.5-107 | VRg per second 83
9 0.254 | 3.1- 10_11 pCﬂRQO,gO, VRg(FO) 06

10 | -0.250 | 6.0 - 107 | coeffVar(MFCC 1) 24

As the material used for this experiment was recorded under laboratory condi-
tions with one and the same recording device, it was decided not to apply audio
normalisation to the vocalisation segments as a pre-processing step for experimen-
tation on the automatic classification of vocalisations. Moreover, also feature nor-
malisation /standardisation was not applied in this experiment.

In order to investigate this experiment’s binary vocalisation classification
paradigm ASD vs. TD, an infant independent three-fold cross-validation scheme
was applied. Therefore, participants with ASD and TD participants were pair-
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9 Developmental disorder recognition
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Figure 9.1: Comparison between vocalisations of individuals later diagnosed with
ASD and vocalisations of TD individuals by means of (a) probability density esti-
mates of the acoustic feature with the highest group differentiation effect (cf. Ta-
ble 9.3), and by means of (b) vocalisation distributions within the three-dimensional
space of the acoustic features with the three highest group differentiation effects (cf.
Table 9.3). This figure includes information of Figure 1 published by Pokorny and
colleagues [224] (DOI: 10.21437/Interspeech.2017-1007). A = amplitude; amean =
arithmetic mean; ASD = autism spectrum disorder; coeffVar = coefficient of varia-
tion; MFCC = Mel-frequency cepstral coefficient; PDE = probability density esti-
mate; TD = typical development /typically developing; UVRg = unvoiced regions;
* = real measurement unit not existent as feature values refer to the amplitude of
the digital audio signal
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9.1 Recognition of autism spectrum disorder

wisely split into three gender-matched and best possibly gender-balanced partitions
with the requirement to obtain both a ratio between the number of vocalisations per
class and an overall number of vocalisations as constant as possible across the three
partitions. As specified in Table 9.4, the first partition contained one pair of male
participants and two pairs of female participants, the second partition vice versa.
Finally, the third partition contained two participant pairs per gender.

Table 9.4: Class-matched pairing of participants and assignment of participant
pairs to partitions for the experiment on autism recognition. This table in-
cludes information of Table 1 published by Pokorny and colleagues [224] (DOTI:
10.21437/Interspeech.2017-1007). ASD = autism spectrum disorder; Gen = gender;
ID = (unique participant) identification code; L.1 = mother tongue; Nat = national-
ity; SE = Sweden; Swe = Swedish; TD = typical development /typically developing;
Voc = vocalisations; # = number of; ¢ = female; & = male

Participant pair
Partition Participant asp Participanttp b
ID | Gen | Nat/Ll | # Voc| ID | Gen | Nat/L1 | # Voc

ASD15 | & | SE/Swe 38 TD18 | & | SE/Swe 99 97

1 ASD17| ¢ |SE/Swe| 26 |TDI5| ¢ |SE/Swe| 15 | 41
ASD19 | ¢ |SE/Swe| 31 |TD19| ¢ |SE/Swe| 52 | 83
> 05 126 | 221
ASD16| ¢ [SE/Swe| 42 |TD16| ¢ |SE/Swe| 98 | 140
2 ASD20 | & |SE/Swe| 28 |TD20| & |SE/Swe| 37 | 65
ASD21 | & |SE/Swe| 9 |TDl14| & |SE/Swe| 35 | 44

P 79 170 | 249

ASDI4| ¢ [SE/Swe| 10 |TD17] ¢ [SE/Swe| 29 [ 39
5 ASD18 | & |SE/Swe| 19 |TD13| & |SE/Swe| 45 | 64
ASD22 | & |SE/Swe| 17 |TD12| o |[SE/Swe| 18 | 35
ASD23 | @ |SE/Swe| 39 |TD21| ¢ |SE/Swe| 37 | 76
s 85 129 | 214
Sioeus | | 259 | | 425 | 684

For each of the three validation runs, one partition was determined to be the
training partition, another one the development partition, and the remaining one
the test partition. Subsequent to parameter tuning/optimisation based on the de-
velopment partition, the training and the development partitions were merged to an
ultimate partition for training the classifier, which was then validated on the test
partition. Throughout the three-fold cross-validation procedure, each of the three
partitions was used as training partition, development partition, and test partition
exactly one time.

73



9 Developmental disorder recognition

For testing the automatic recognition of vocalisations of individuals later diag-
nosed with ASD vs. vocalisations of TD individuals, two basically different classifi-
cation approaches were employed, namely linear kernel SVMs on the one hand, and
BLSTMNNSs as a topical alternative on the other hand. The SVM approach was
based on the 88 eGeMAPS features calculated per vocalisation (over its individual
vocalisation length), whereas for the BLSTMNN approach — an approach for mod-
elling time series — LLD trajectories extracted on the basis of 10 ms time steps were
used for each vocalisation as already mentioned in Section 7.3. As the eGeMAPS
only comprises 25 LLDs [173], the BLSTMNN approach was decided to be based on
the 130 LLDs/ALLDs of the ComParE set [170].

SVM optimisation comprised the determination of the kernel complexity parame-
ter C € {1,1071,1072,1073,107*,107°} to achieve the best UAR on the development
partition. As already mentioned in Section 7.3, BLSTMNN training was performed
using the first-order gradient-based Adam optimisation algorithm. Cross-entropy
loss was found to work best when the posterior probabilities were averaged across
the full vocalisations. Following a patience-based procedure, training was stopped
when the UAR on the development partition did not improve for more than five
epochs. Subsequently, the best model was selected. In a grid search, a single-layer
network with eight cells was identified to be optimal for this experiment.

Both the SVM approach and the BLSTMNN approach were evaluated
vocalisation-wisely and infant-wisely (cf. Subsection 7.3.1). Infant-wise evaluation
was built upon the single classification decisions on the vocalisations of each in-
fant. In other words, a global decision on each infant was made on the basis of the
percentage of his or her vocalisations assigned to the ASD class against a defined
decision threshold. In order to classify an infant as an infant with a later diagnosis of
ASD, this threshold had to be exceeded. In this experiment, both (i) a threshold of
0.5 (majority voting), i.e., an individual was for example classified as an individual
later diagnosed with ASD in case that more than 50% of his or her vocalisations
were assigned to the class ASD, and (ii) decision threshold optimisation throughout
the 3-fold cross-validation procedure were tested. As to the latter strategy, in each
validation run the optimal decision threshold was determined on the basis of the
vocalisation-wise classification decisions obtained for the merged training and de-
velopment partitions and, subsequently, applied to the test partition. Optimisation
was based on the criterion to maximise the distance between the mean number of
vocalisations of individuals with ASD and the mean number of vocalisations of TD
individuals assigned to the class ASD, respectively. For the SVM approach, the op-
timised thresholds for partitions 1-3 were 0.33, 0.42, and 0.31, for the BLSTMNN
approach, 0.46, 0.44, and 0.39. Thus, on the basis of the data used for this ex-
periment, the excess of an infant’s percentage of vocalisations assigned to the class
ASD somewhere between 31% and 46% seems to be optimal for recognising that an
infant has ASD, while, at the same time, avoiding that a potential TD individual
gets misclassified.
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9.2 Recognition of fragile X syndrome

As can be seen in Table 9.5, in this experiment, the SVM approach and the
BLSTMNN approach achieved similar recognition results. The highest UAR for
vocalisation-wise classification was 0.645. It was achieved using SVMs. For infant-
wise classification both approaches performed at an UAR of 0.75 (related to #
individuals) when using the optimised decision thresholds. Eight of ten individuals
later diagnosed with ASD and seven of ten TD individuals were correctly classified.

Finally it needs to be mentioned that the BLSTMNN approach might not
have developed its full potential in this experiment due to the number of vocali-
sations/instances available for model training, which was — from a machine learning
point of view — rather low.

Table 9.5: Cross-validation results of the experiment on autism recognition in form
of class-specific numbers of vocalisations (in-)correctly classified as class ASD or
TD (confusion matrices), and in form of mean and standard deviation (SD) of
the unweighted average recall (UAR) for vocalisation-wise and infant-wise eval-
uation, respectively, for both the SVM and the BLSTMNN approach. This ta-
ble is based on Tables 3 and 4 published by Pokorny and colleagues [224] (DOL:
10.21437/Interspeech.2017-1007). UAR values are rounded to three decimal places.
ASD = autism spectrum disorder; BLSTMNN = bidirectional long short-term mem-
ory neural network; opt = optimised; SVM = support vector machine; TD = typical
development /typically developing; Th = (decision) threshold

Approach
SVM BLSTMNN
dassifiedes | AQD TD | ASD  TD
ASD 131 128 104
TD 83 [ 141
Evaluation mode ‘ Measure
.. . mean 0.645 0.629
Vocalisation-wise | UAR 3D 0.033 0.020
ThO.S Thopt Th0.5 Thopt
) mean | 0.694 0.750 | 0.708 0.750
Infant-wise | UAR oy | 5 048 0,083 | 0110 0.083

9.2 Recognition of fragile X syndrome

The second experiment on an automatic COI recognition conducted in the frame-
work of this thesis dealt with the binary classification task FXS vs. TD. Thus, this
experiment was intended to give answers to MQ2, MQ6, and AQ1 (cf. Section 4.2).
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9 Developmental disorder recognition

Parts of the analysis of this experiment were carried out by Maximilian Schmitt
from the Chair of Embedded Intelligence for Health Care and Wellbeing, University
of Augsburg, Germany. Procedures and findings related to this experiment are
currently prepared for publication by Pokorny and colleagues [225].

The dataset used for this experiment consisted of retrospective home video
recordings taken from GUARDIAN’s Dataset 4 (cf. Section 6.1). As specified in
Table 9.6, it comprised the material of three male participants later diagnosed with
FXS and three male TD controls. All participants stem from German-speaking fam-
ilies. The recordings were made over the participants’ respective second half year of
life. Within the available video duration of almost 4 hours, 1164 vocalisations, of
which 942 were produced by participants with FXS, could be segmented.

Table 9.6: Number of included vocalisations on the basis of the available audio-video
duration in format hh:mm:ss (two-digit hour number:two-digit minute number:two-
digit second number; seconds rounded down to integer values; sums calculated on
the basis of exact durations) as a function of age per participant for the experiment
on FXS recognition. AT = Austria; DE = Germany; FXS = fragile X syndrome;
Gen = gender; Ger = German; ID = (unique participant) identification code; L1 =
mother tongue; Nat = nationality; TD = typical development/typically developing;

d = male; - = no audio-video material available
Age [month of life

ID Gen Nat/Ll 7th 8th ggtl[ 10th ] llth 12th E
85 62 88 45 127 257 664

FXS01 | @ | AT/Ger | g0 1601 00:05:30 00:17:05 00:05:45 00:15:02 00:30:07 | 01:29:32
4 25 1 30

FX802 | & | DE/Ger i 00:00:29 - 00:02:55 i 00:01:35 | 00:05:00
7 117 20 83 21 248

FX803 | & | DE/Ger i 00:01:24  00:10:49  00:03:10 00:15:16  00:02:45 | 00:33:25
5 85 73 205 90 210 279 942

FXS 1 00:16:01  00:07:24 00:27:55 00:11:51  00:30:18  00:34:28 | 02:07:59
36 22 12 70

TDOL | & | AT/Ger | 10439 00.05:44 . - - 00:03:16 | 00:13:40
9 4 21 5 39

TDO2 | & | AT/Ger | 0 06.36 i ) 00:03:36  00:06:14 00:02:59 | 00:19:27
32 20 11 4 46 113

TDO3 | & | AT/Ger | 109007 00:00:30 00:11:55 - 00:03:39  00:22:03 | 01:06:26
5 7 42 11 4 25 63 222

O | 00:30:24 00:15:24 00:11:55 00:03:36  00:09:54  00:28:19 | 01:39:34

5 162 115 216 94 235 342 1164

FXSUTD | 00:46:25 00:22:49  00:39:50 00:15:27  00:40:12  01:02:47 | 03:47:33

The vocalisations included in this experiment had a mean duration of 2.33s
with a standard deviation of 1.95s, and a median duration of 1.76s. The shortest
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9.2 Recognition of fragile X syndrome

vocalisation had a duration of 232ms. The longest vocalisation was an extended
sequence of crying patterns produced by participant TD03 and had a duration
of 21.32s. Neither the durations of vocalisations produced by participants with
FXS nor the durations of vocalisations produced by TD controls were normally
distributed. The vocalisations of participants with FXS had a median duration
of 1.9s, the vocalisations of TD participants a duration of 1.21s. At a value of
p="T7.1-10"'2, a significant difference in the duration of vocalisations between par-
ticipants with FXS and TD participants was found using the Mann-Whitney U-test.

The class-specific distribution analysis of the 88 eGeMAPS features revealed
the distributions of 59 features to significantly differ between the vocalisations of
participants later diagnosed with FXS and the TD participants. Table 9.7 lists the
top ten acoustic features according to the effect size estimate r. Seven of ten of
these features are based on an energy/amplitude related LLD, namely on loudness.
Figure 9.2 presents class-specific distribution visualisations of both the top and the
top three acoustic features.

Table 9.7: Top ten acoustic features to differentiate between vocalisations of individ-
uals later diagnosed with fragile X syndrome and typically developing individuals,
ranked according to the magnitude of the effect size estimate r, at given p-values of
the underlying Mann-Whitney U-tests. r is rounded to three decimal places. Mul-
tiplicators of p-values are rounded to one decimal place. amean = arithmetic mean;
FS = falling slope; Idx.gemaps = extended Geneva Minimalistic Acoustic Parameter
Set-internal feature index [173]; pctl = percentile; pctlR = percentile range; RS =
rising slope; SD = standard deviation; UVRg = unvoiced regions; VRg = voiced
regions; neither UVRg nor VRg = all regions

Rank ‘ r ‘ P ‘ Feature ‘ IdXecqeMaPs
1{-0.348 | 1.4-107% | pectlyg(loudness) 13
21 -0.335 | 3.6-1073° | amean(loudness) 11
3 1-0.330 | 1.8- 1072 | petlso(loudness) 14
4 1-0.328 | 4.5-107% | petigo(loudness) 15
51-0.305 | 2.4-107% | pctlRoy go(loudness) 16
6 | -0.301 | 8.4-107% | equivalent sound level 88
71-0.295 | 7.5-1072* | SDgg,(loudness) 18
8 [-0.293 | 1.7- 1072 | meanpss(loudness) 19
9 -0.292 | 2.1-1072% | amean yyry(spectral flux) | 81

10 | -0.286 | 1.8 - 10722 | amean yr,(spectral fluz) | 67

For the automatic recognition of vocalisations produced by participants with
FXS vs. vocalisations produced by TD participants, amplitude normalisation of vo-
calisation segments as well as different strategies for normalising feature values to
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Figure 9.2: Comparison between vocalisations of individuals later diagnosed with
FXS and vocalisations of TD individuals by means of (a) probability density esti-
mates of the acoustic feature with the highest group differentiation effect (cf. Ta-
ble 9.7), and by means of (b) vocalisation distributions within the three-dimensional
space of the acoustic features with the three highest group differentiation effects (cf.
Table 9.7). amean = arithmetic mean; FXS = fragile X syndrome; pctl = percentile;
PDE = probability density estimate; TD = typical development /typically develop-
ing; * = real measurement unit not existent as feature values refer to the amplitude
of the digital audio signal

the interval [0, 1], namely infant-dependent normalisation, age-dependent normali-
sation, and global normalisation (cf. Section 7.2), were tested. In this experiment,
the features of both the ComparE set and the eGeMAPS were employed.
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9.2 Recognition of fragile X syndrome

Due to the small number of only three participants later diagnosed with FXS
and three gender-matched TD participants available for this classification experi-
ment, leave-one-speaker-pair-out cross-validation was applied without using a train-
ing split as development partition, i.e., in each of three validation runs the classifier
was trained on the basis of vocalisations/instances of two participants with FXS and
two TD participants and, subsequently, optimised and tested on the instances of the
remaining participant pair. As specified in Table 9.8, pairing of participants with
FXS and TD participants was carried out according to the number of vocalisations
available per participant, namely in a way to pair the participant with FXS with
the highest number of vocalisations with the TD participant with the highest num-
ber of vocalisations, the participant with FXS with the second highest number of
vocalisations with the TD participant with the second highest number of vocalisa-
tions, and finally, the participant with FXS with the lowest number of vocalisations
with the TD participant with the lowest number of vocalisations. Throughout the
cross-validation procedure, each participant pair was used as test partition exactly
one time.

Table 9.8: Assignment of class-matched participant pairs to partitions for the ex-
periment on FXS recognition. AT = Austria; DE = Germany; FXS = fragile X
syndrome; Gen = gender; Ger = German; ID = (unique participant) identification
code; L1 = mother tongue; Nat = nationality; TD = typical development /typically
developing; Voc = vocalisations; # = number of; & = male

Participant pair
Partition Participantpxs Participanttp b
ID [ Gen [ Nat/Ll [ # Voc | ID | Gen | Nat/L1 | # Voc

FXS01 | & | AT/Ger | 664 | TDO03 | & | AT/Ger | 113 7T

FXS02 | & | DE/Ger 30 TD02 | & | AT/Ger 39 69

FXS03 | & |DE/Ger | 248 | TDOl| & | AT/Ger 70 318

M| wol Do =

\ | 942 | | 222 | 1164

In order to obtain a best possibly balanced number of instanced per participant
within the training partition for each validation run, upsampling (integer multipli-
cation) of instances according to the number of instances of the participant with
the highest number of instances within the respective training partition was tested.
Partitioning did not play a role for both infant-dependent and age-dependent feature
normalisation. In contrast, global normalisation was meant to be applied to all in-
stances, thus, also to the instances of the test partition, according to the calculated
range (respective minimum and maximum) of feature values within the training
partition of each validation run. In this experiment, linear kernel SVMs were em-
ployed. The complexity parameter C' was optimised € {10,1,107*,1072,1073,107*}
to achieve the best UAR on the test partition.
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9 Developmental disorder recognition

Table 9.9: Cross-validation results of the experiment on fragile X syndrome recog-
nition in form of the mean unweighted average recall (UAR) of the three validation
runs and the globally calculated UAR based on the gathered predictions of the whole
dataset for both vocalisation-wise and infant-wise evaluation and different system
configurations regarding audio normalisation, used feature set, feature normalisation
strategy (infant-dependent, age-dependent, or normalisation over all instances), and
upsampling of the training set. UAR values are rounded to three decimal places.
ComParE = Computational Paralinguistics and Emotion (set); eGeMAPS = ex-
tended Geneva Minimalistic Acoustic Parameter Set; v/ = applied; X = not applied

Evaluation mode Au{iio ) Feature Feat.ure. Upsampling Measure
normalisation set normalisation UARmean [ UARglobal

X ComParE infant X 0.668 0.725
X ComParE infant v 0.672 0.758
X ComParE age X 0.664 0.671
X ComParE age v 0.674 0.700
X ComParE all X 0.496 0.469
X ComParE all v 0.482 0.488
X eGeMAPS infant X 0.506 0.507
X eGeMAPS infant v 0.449 0.561
X eGeMAPS age X 0.604 0.623
X eGeMAPS age v 0.606 0.623
X eGeMAPS all X 0.500 0.499
Vocalisation-wise X eGeMAPS all v 0.412 0.430
v ComParE infant X 0.625 0.676
v ComParE infant v 0.625 0.697
v ComParE age X 0.645 0.652
v ComParE age v 0.662 0.709
v ComParE all X 0.492 0.480
v ComParE all v 0.441 0.492
v eGeMAPS infant X 0.539 0.559
v eGeMAPS infant v 0.569 0.684
v eGeMAPS age X 0.647 0.682
v eGeMAPS age v 0.666 0.698
v eGeMAPS all X 0.500 0.499
v eGeMAPS all v 0.463 0.538
X ComParE infant X 0.667 0.588
X ComParE infant v 0.667 0.730
X ComParE age X 0.667 0.588
X ComParE age v 0.833 0.745
X ComParE all X 0.500 0.500
X ComParE all v 0.667 0.781
X eGeMAPS infant X 0.500 0.500
X eGeMAPS infant v 0.500 0.765
X eGeMAPS age X 0.667 0.781
X eGeMAPS age v 0.667 0.781
X eGeMAPS all X 0.500 0.500
Infant-wise X eGeMAPS all v 0.333 0.368
v ComParE infant X 0.500 0.572
v ComParE infant v 0.667 0.826
v ComParE age X 0.667 0.588
v ComParE age v 0.667 0.588
v ComParE all X 0.500 0.500
v ComParE all v 0.500 0.695
v eGeMAPS infant X 0.667 0.560
v eGeMAPS infant v 0.500 0.739
v eGeMAPS age X 1.000 1.000
v eGeMAPS age v 1.000 1.000
v eGeMAPS all X 0.500 0.500
v eGeMAPS all v 0.500 0.572
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9.3 Recognition of Rett syndrome

(Classification performance was evaluated vocalisation-wisely, and infant-wisely
(related to # vocalisations) by applying majority voting over the participant-specific
vocalisation-wise class predictions (cf. Subsection 7.3.1). On the one hand, the mean
UAR of the three validation runs, on the other hand, the global UAR based on the
predictions gathered over all three validation runs, were calculated. Table 9.9 reveals
the achieved results for different configurations of the classification system.

The best UAR achieved for vocalisation-wise FXS vs. TD recognition was a
globally calculated UAR of 75.8% for the classification system (i) processing un-
normalised audio sequences, (ii) using the infant-dependently normalised ComParE
features, and (iii) applying training partition upsampling. The mean UAR of the
three validation runs for the same configuration was 67.2%, representing the sec-
ond highest mean UAR achieved for vocalisation-wise classification. For infant-wise
recognition, both a mean and a globally calculated UAR of even 100% were achieved
for the classification system (i) processing normalised audio sequences, (ii) using the
age-dependently normalised eGeMAPS features, and (iii) applying as well as not
applying training partition upsampling. Thus, based on the strategy to assign each
participant to the class, which was predicted for the majority of his or her vocalisa-
tions, all six participants were correctly assigned. In this classification experiment,
neither system configuration options on audio normalisation and training partition
upsampling, nor the decision for a specific feature set in combination with the choice
for infant-dependent or age-dependent feature normalisation turned out to systemat-
ically influence the classification performance. However, feature normalisation over
all instances led to the classifier performing around chance level (UAR = 50%) for
most configurations.

9.3 Recognition of Rett syndrome

In the framework of this thesis, feasibility investigations on an automatic recognition
of vocalisations produced by individuals later diagnosed with RTT vs. vocalisations
produced by TD individuals were dealt with in two sub-experiments. Addressing
MQ3, MQ7, and AQ1 (cf. Section 4.2), both of these sub-experiments are treated
in this section. Moreover, in order to give answer to AQ2, a closer look at auditory
atypicalities of RTT-associated early vocalisations and their manifestation in the
acoustic signal domain is taken in Subsection 9.3.1. Analyses in the framework of
the first sub-experiment on automatic RTT recognition were partly conducted by
Maximilian Schmitt from the Chair of Embedded Intelligence for Health Care and
Wellbeing, University of Augsburg, Germany. Procedures and findings related to
this first sub-experiment on RT'T recognition are currently prepared for publication
by Pokorny and colleagues [225]. The second sub-experiment on RTT recognition
was published in 2016 by Pokorny and colleagues [226].
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9 Developmental disorder recognition

Same as the previously dealt with experiment on automatic FXS recognition
(cf. Section 9.2), also the experiments of this thesis focussing on early vocalisations
in RTT were based on material taken from GUARDIAN’s Dataset 4.

Table 9.10 overviews the dataset used for the first sub-experiment on RTT recog-
nition. It comprised home video recordings from the respective second half year of
life of 3 female participants from German-speaking families, later diagnosed with
RTT, and 3 gender- and family language-matched TD controls, with a total audio-
video duration of more than 14 hours. Altogether, 3502 segmented vocalisations, of
which 2011 stem from the participants with RTT, were included in the experiment.

Table 9.10: Number of included vocalisations on the basis of the available
audio-video duration in format hh:mm:ss (two-digit hour number:two-digit minute
number:two-digit second number; seconds rounded down to integer values; sums
calculated on the basis of exact durations) as a function of age per participant for
the first sub-experiment on RTT recognition. AT = Austria; DE = Germany; Gen
= gender; Ger = German; ID = (unique participant) identification code; L1 =
mother tongue; Nat = nationality; RT'T = Rett syndrome; TD = typical develop-

ment /typically developing; ¢ = female; - = no audio-video material available
Age [month of life

ID Gen 1\Ia't/L1 7th 8th ggth[ 10th ] 11th 12th b
149 149

RTTOL | ¢ | AT/Ger - - 00:13:46 - - 00:13:46
21 138 120 46 325

RTTO02 | ¢ | AT/Ger | o)1) 4g 42:53  01:02:18  00:19:05 ) 02:19:04
142 370 276 325 180 244 1537

RTTO3 | ¢ | DE/Ger | o) /)5 00:57:45 00:44:25 01:23:21 00:57:42  00:50:36 | 05:35:27
- 163 370 414 594 226 244 2011

RTT | 00:56:23  00:57:45 01:27:18  02:39:25 01:16:48 00:50:36 | 08:08:18
232 97 90 30 82 108 689

TDOo8 © | AT/Ger | 10158 00:32:04 00:16:02 00:16:02  00:15:07 00:12:47 | 02:44:01
9 48 84 101 51 48 341

TDO9 | @ | AT/Ger | o0 0735 00:28:54  00:18:22  00:30:41 00:11:46  00:18:18 | 01:55:40
78 183 4 26 84 36 461

TD10 © | AT/Ger | 1007.00  00:29:15 00:05:30 00:08:13 00:14:59 00:00:31 | 01:14:40
5 319 328 178 207 217 242 1491

TD | 01:26:43 01:30:14 00:39:55 00:54:57 00:41:53 00:40:38 | 05:54:22
- 482 693 592 801 443 486 3502

RTTUTD | (9.93.07  02:27:59 02:07:13  03:34:22 01:58:42 01:31:14 | 14:02:40

The vocalisations of this first sub-experiment on RTT recognition had a mean

duration of 1.72s with a standard deviation of 1.32s. The median vocalisation
duration was 1.35s. Vocalisation durations ranged from 186 ms to 16.86s with the
longest vocalisation being an extended sequence of canonical babbling realisations
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9.3 Recognition of Rett syndrome

produced by participant TDO08. Class-specific vocalisation durations were not nor-
mally distributed. The median durations of vocalisations produced by participants
with RTT and TD participants were 1.35s and 1.39s, respectively. By applying
the Mann-Whitney U-test, vocalisation durations were found to differ significantly
between the class RTT and the class TD (a = 0.05; p = 0.0068).

By means of feature analysis based on the eGeMAPS, 79 of 88 acoustic features
were identified to significantly differ in value distributions between vocalisations of
participants with RTT and vocalisations of TD participants. The top ten eGeMAPS
features according to the effect size estimate r are listed in Table 9.11, distribution
visualisations of the feature with the highest class differentiation effect, i.e., the
arithmetic mean over voiced regions of the spectral flux, and of the three features
with the highest class differentiation effects are presented in Figure 9.3. The top
two features were related to the LLD spectral flux. Six of the top ten features were
related to the energy/amplitude-based LLD loudness.

Table 9.11: Top ten acoustic features to differentiate between vocalisations of in-
dividuals later diagnosed with Rett syndrome and typically developing individuals,
ranked according to the magnitude of the effect size estimate r, at given p-values of
the underlying Mann-Whitney U-tests. r is rounded to three decimal places. Mul-
tiplicators of p-values are rounded to one decimal place. amean = arithmetic mean;
FS = falling slope; Idx.qemaps = extended Geneva Minimalistic Acoustic Parameter
Set-internal feature index [173]; pctl = percentile; pctlR = percentile range; RS =
rising slope; SD = standard deviation; UVRg = unvoiced regions; VRg = voiced
regions; neither UVRg nor VRg = all regions

Rank ‘ r ‘ P ‘ Feature ‘ IdxeqeMAPS
1]-0.604 | 5.2-107%° | amean yg,(spectral fluz) 67
2| -0.596 | 1.6 - 107%™ | amean(spectral fluz) 21
3| -0.566 | 2.2 - 10726 | pctlRyg go(loudness) 16
4 1-0.562 | 7.9-1072* | mean gg,(loudness) 17
51-0.559 | 1.4-1072% | petlgg(loudness) 15
6 | -0.553 | 1.2- 10723 | mean ps;(loudness) 19
71-0.544 | 1.2-1072%" | amean(loudness) 11
8 1-0.536 | 1.5-107%° | equivalent sound level 88
9 [-0.513 | 1.5-107292 | SDpg,(loudness) 18

10 | 0.437 | 2.4-107" | amean yygr,(Hammarberg index) | 78

The procedure for testing the automatic vocalisation classification paradigm
RTT vs. TD in this sub-experiment was chosen the same as in the experiment on
FXS recognition (cf. Section 9.2), i.e., (i) the dataset was divided into three parti-
tions of class-matched participant pairs grouped according to the class-wisely ranked
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Figure 9.3: Comparison between vocalisations of individuals later diagnosed with
RTT and vocalisations of TD individuals by means of (a) probability density esti-
mates of the acoustic feature with the highest group differentiation effect (cf. Ta-
ble 9.11), and by means of (b) vocalisation distributions within the three-dimensional
space of the acoustic features with the three highest group differentiation effects (cf.
Table 9.11). A = amplitude; amean = arithmetic mean; pctlR = percentile range;
PDE = probability density estimate; RT'T = Rett syndrome; TD = typical devel-
opment/typically developing; VRg = voiced regions; * = real measurement unit not
existent as feature values refer to the amplitude of the digital audio signal

numbers of available vocalisations per participant (see Table 9.12), (ii) leave-one-
speaker-pair-out cross-validation was applied, (iii) audio normalisation was tested,
(iv) both the ComParE features and the eGeMAPS features were employed, (v)
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9.3 Recognition of Rett syndrome

three different strategies to normalise features to the interval [0, 1] were tried out,
namely infant-dependent normalisation, age-dependent normalisation, and normal-
isation over all instances according to the determined feature value ranges within
the training partition, (vi) training set upsampling was tested, and (vii) linear ker-
nel SVMs were employed as classifier and optimised for the complexity parameter
C € {10,1,1071,1072,1073,107*} to achieve the best UAR on the test partition.

Table 9.12: Assignment of class-matched participant pairs to partitions for the first
sub-experiment on RTT recognition. AT = Austria; DE = Germany; Gen = gender;
Ger = German; ID = (unique participant) identification code; L1 = mother tongue;
Nat = nationality; RTT = Rett syndrome; TD = typical development/typically
developing; Voc = vocalisations; # = number of; ¢ = female

Participant pair
Partition Participantgrr Participanttp ¥

ID | Gen | Nat/L1 [ # Voc| ID | Gen | Nat/L1 | # Voc

RTTO1 | @ | AT/Ger | 149 |TD09 | ¢ | AT/Ger | 341 490

RTT02 | @ | AT/Ger | 325 |TDI10| @ | AT/Ger | 461 786

RTT03 | @ | DE/Ger | 1537 | TDO8 | @ | AT/Ger | 689 | 2226

M| wo| D]

\ | 2011 | [ 1491 | 3502

Same as in the experiment on FXS recognition, the performance of the classifica-
tion system was evaluated vocalisation-wisely, and infant-wisely in terms of a class
majority voting over the infant-specific vocalisation-wise predictions. As perfor-
mance measures, again the mean UAR of the three validation runs and the globally
determined UAR, which is based on the predictions of the whole dataset gathered
throughout the cross-validation process, were calculated. The respective results for
different classification system configurations are given in Table 9.13.

For vocalisation-wise classification, the best mean UAR of 86.1% as well as the
best global UAR of 87.9% were achieved for (i) applying audio normalisation, (ii)
using the eGeMAPS, (iii) normalising the feature values infant-dependently, and
(iv) not upsampling the training partitions in each validation run. Keeping this
configuration with the only difference not to apply training set upsampling, led to
the respective second best mean and global UAR. The respective third and fourth
best results were achieved when using the just described configurations that led to
the top two mean and global UAR values, but leaving out audio normalisation as a
pre-processing step. The best mean UAR achieved for infant-wise classification was
83.3%, the best global UAR for infant-wise classification was 84.5%. These results
were obtained for diverse configurations, namely the same configurations that also
led to the top three vocalisation-wise results and when setting the system not to
apply audio normalisation, to use the eGeMAPS, and to normalise features across
all test instances of a validation run.
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9 Developmental disorder recognition

Table 9.13: Cross-validation results of the first sub-experiment on Rett syndrome
recognition in form of the mean unweighted average recall (UAR) of the three val-
idation runs and the globally calculated UAR based on the gathered predictions of
the whole dataset for both vocalisation-wise and infant-wise evaluation and differ-
ent system configurations regarding audio normalisation, used feature set, feature
normalisation strategy (infant-dependent, age-dependent, or normalisation over all
instances), and upsampling of the training set. UAR values are rounded to three
decimal places. ComParE = Computational Paralinguistics and Emotion (set);
eGeMAPS = extended Geneva Minimalistic Acoustic Parameter Set; v/ = applied;

X = not applied

Evaluation mode Audio ) Feature Fcatlurc. Upsamplin Measure
normalisation set normalisation p ping UARmean [ UARglobal

X ComParE infant X 0.328 0.356
X ComParE infant v 0.278 0.293
X ComParE age X 0.437 0.389
X ComParE age v 0.419 0.421
X ComParE all X 0.388 0.399
X ComParE all v 0.389 0.425
X eGeMAPS infant X 0.770 0.832
X eGeMAPS infant v 0.705 0.814
X eGeMAPS age X 0.500 0.539
X eGeMAPS age v 0.404 0.521
X eGeMAPS all X 0.700 0.674
Vocalisation-wise X eGeMAPS all v 0.699 0.665
v ComParE infant X 0.329 0.372
v ComParE infant v 0.279 0.304
v ComParE age X 0.424 0.380
v ComParE age v 0.401 0.402
v ComParE all X 0.310 0.281
v ComParE all v 0.296 0.340
v eGeMAPS infant X 0.861 0.879
v eGeMAPS infant v 0.843 0.863
v eGeMAPS age X 0.494 0.347
v eGeMAPS age v 0.339 0.372
v eGeMAPS all X 0.565 0.535
v eGeMAPS all v 0.590 0.564
X ComParE infant X 0.333 0.386
X ComParE infant v 0.333 0.386
X ComParE age X 0.500 0.423
X ComParE age v 0.500 0.423
X ComParE all X 0.333 0.419
X ComParE all v 0.333 0.537
X eGeMAPS infant X 0.833 0.845
X eGeMAPS infant v 0.667 0.808
X eGeMAPS age X 0.500 0.728
X eGeMAPS age v 0.500 0.728
X eGeMAPS all X 0.833 0.845
Infant-wise X eGeMAPS all v 0.833 0.845
v ComParE infant X 0.333 0.386
v ComParE infant v 0.333 0.386
v ComParE age X 0.500 0.423
v ComParE age v 0.500 0.423
v ComParE all X 0.167 0.155
v ComParE all v 0.167 0.155
v eGeMAPS infant X 0.833 0.845
v eGeMAPS infant v 0.833 0.845
v eGeMAPS age X 0.500 0.349
v eGeMAPS age v 0.167 0.231
v eGeMAPS all X 0.667 0.688
v eGeMAPS all v 0.667 0.614
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9.3 Recognition of Rett syndrome

Generally, in this first sub-experiment on the automatic recognition of RTT vs.
TD, the best classification performances were achieved when using the eGeMAPS
features infant-dependently normalised, irrespective of the settings for audio
normalisation and training set upsampling.

For this thesis’ second sub-experiment on the automatic recognition of RTT,
the dataset of the first sub-experiment on RTT recognition was extended for mate-
rial from the respective second half year of life of another participant pair, namely
of another female individual with RTT from a German-speaking family and an-
other gender- and family language-matched TD control, taken from GUARDIAN’s
Dataset 4. Thus, the second sub-experiment on RTT recognition was based on home
video recordings of four participants with RTT and four TD controls with a total
audio-video duration of almost 17 hours. As specified in Table 9.14, within the
available material, 4 678 target vocalisations could be segmented, of which 2 199 vo-
calisations were produced by participants with RTT. Compared to the dataset used
for the first sub-experiment on RTT recognition, here the number of vocalisations
per class was more balanced. However, it needs to be mentioned that the newly
added participant RT'T04 did not receive a later diagnosis of typical RTT, but of a
special variant of RT'T, namely the relatively milder PSV/Zappella variant of RTT
that is, amongst other variations from the course of typical RTT, characterised by
a comparably better recovery of speech-language capabilities after regression [88].

The vocalisations building the basis for this second sub-experiment on RTT
recognition had a mean duration of 1.66s at a standard deviation of 1.31s, and
a median duration of 1.32s. Vocalisation durations ranged from a minimum of
300 ms to a maximum of 26.62s. The vocalisation with the maximum duration was
a sequence of isolated nasal sounds in different modulations by participant TD11.
Class-specific vocalisation durations were not normally distributed. Therefore,
the Mann-Whitney U-test was applied to check the RTT- and TD-associated
vocalisation duration distributions for a potential difference. The median duration
of vocalisations produced by participants with RTT was 1.35s, the median duration
of vocalisations produced by TD participants was 1.3s. The class-specific duration
distributions differed significantly at a value of p = 5.7 - 10~%.

In this second sub-experiment on RTT recognition, again linear kernel SVMs
were employed. However, compared to the first RTT recognition experiment,
this time the system configuration was more straightforward, namely (i) no audio
normalisation was applied to the vocalisation segments, (ii) the comprehensive
ComParE set was used only, and (iii) feature normalisation/standardisation was
only tested infant-dependently. Feature values were optionally, on the one hand,
normalised to the interval [0, 1], on the other hand, standardised to have a mean of
zero and unit variance.
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Table 9.14: Number of included vocalisations on the basis of the available
audio-video duration in format hh:mm:ss (two-digit hour number:two-digit minute
number:two-digit second number; seconds rounded down to integer values; sums
calculated on the basis of exact durations) as a function of age per participant for
the second sub-experiment on RT'T recognition. This table is based on Table 1 pub-
lished by Pokorny and colleagues [226] (DOI: 10.21437/Interspeech.2016-520). AT =
Austria; DE = Germany; Gen = gender; Ger = German; ID = (unique participant)
identification code; L1 = mother tongue; Nat = nationality; RT'T = Rett syndrome;
TD = typical development/typically developing; ¢ = female; - = no audio-video
material available

Age [month of life
ID Gen Nat/Ll 7th 8th ggth[ 10th ] llth 12th E
150 150
RTTOL | ¢ | AT/Ger i - 00:13:46 - - 00:13:46
138 120 46 304
RTT02 | ¢ | AT/Ger . ) 42:53  01:02:18  00:19:05 ) 02:04:16
363 273 323 180 243 1382
RTTO3 ? DE/Ger B 00:57:45 00:44:25 01:23:21 00:57:42 00:50:36 | 04:53:51
73 26 57 73 68 66 363
RITO4 | ¢ | DE/Ger | g0 1003 00.04:25 00:08:35 00:15:28 00:08:47 00:12:41 | 01:00:21
- 73 389 468 666 294 309 2199
RTT | 00:10:23 01:02:10 01:35:53 02:54:54 01:25:36  01:03:17 | 08:12:15
231 97 89 30 78 106 631
TDo8 © | AT/Ger | 419058 00:32:04  00:16:02 00:16:02 00:15:07 00:12:47 | 02:44:01
9 48 84 102 51 48 342
TDO09 | @ | AT/Ger | o070 00.08:54  00:18:22  00:30:41 00:11:46  00:18:18 | 01:55:40
78 183 4 26 84 36 461
TD10 © | AT/Ger | 4007.00  00:29:15 00:05:30 00:08:13 00:14:59  00:00:31 | 01:14:40
35 137 109 714 995
b @ | AT/Ger | 4017.00 - ) 00:27:33  00:19:16  01:42:00 | 02:45:51
- 353 328 177 345 322 954 2479
T 1 01:43:43 01:30:14  00:39:55 01:22:30  01:01:10  02:22:38 | 08:40:13
- 426 717 645 1011 616 1263 4678
RTTUTD | 01.54:06 02:32:24 02:15:48 04:17:25 02:26:46 03:25:56 | 16:52:28

Adapted to the dataset of this sub-experiment comprising vocalisations of four

participants with RTT and four TD participants, a four-fold leave-one-speaker-pair-
out cross-validation procedure was carried out. Therefore, first of all, each par-
ticipant with RTT was paired with a TD participant according to the class-wisely
ranked numbers of infant-specific vocalisations, i.e., the participant with RTT with
the highest number of vocalisations was paired with the TD participant with the
highest number of vocalisations, the participant with RTT with the second highest
number of vocalisations was paired with the TD participant with the second highest
number of vocalisations, and so forth. Then, for each of the four validation runs,
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9.3 Recognition of Rett syndrome

the dataset was split into a training partition of vocalisations of two participant
pairs, a development partition containing the vocalisations of another participant
pair, and a test partition containing the vocalisations of the remaining participant
pair. Throughout the cross-validation procedure, the vocalisations of each partici-
pant pair were used for testing exactly one time. Participant pairing and dataset
partitioning are itemised in Table 9.15.

Table 9.15: Class-matched pairing of participants and assignment of participants to
training, development, and test partitions at given class proportions of the respec-
tive numbers of vocalisations (RTT/TD) for the four-fold leave-one-speaker-pair-out
cross-validation procedure applied in the second sub-experiment on RTT recogni-
tion. This table is based on Table 2 published by Pokorny and colleagues [226] (DOLI:
10.21437 /Interspeech.2016-520). AT = Austria; DE = Germany; Gen = gender; Ger
= German; ID = (unique participant) identification code; L1 = mother tongue; Nat
= nationality; RTT = Rett syndrome; TD = typical development/typically devel-
oping; Voc = vocalisations # = number of; ¢ = female

Participant pair
Partition Participantgrr Participanttp ¥
ID | Gen | Nat/L1 [ # Voc| ID | Gen | Nat/L1 | # Voc

1 RTTO1 | @ | AT/Ger | 150 |TD09 | ¢ | AT/Ger | 342 492

2 RTT02 | @ | AT/Ger | 304 |TDI10| @ | AT/Ger | 461 765

3 RTT03 | @ | DE/Ger | 1382 | TD11| @ | AT/Ger | 995 | 2377

4 RTT04 | @ | DE/Ger | 363 |TDO8| ¢ | AT/Ger | 681 | 1044

)y 2199 2479 | 4678

Run Training Development Test

1 RTTO1, RTTO03, TD10, TD11 RTT02, TD09 partition 4
1532/1456 304 /342 363/681

9 RTTO03, RTT04, TD09, TD11 RTTO01, TDOS8 partition 2
1745/1337 150/681 304/461

3 RTTO1, RTTO02, TD0S8, TDO09 RTT04, TD10 partition 3
454/1023 363/461 1382/995

4 RTTO02, RTT04, TDO08, TD10 RTTO03, TD11 partition 1
667/1142 1382/995 150/342

In a first step, in each validation run, SVM training was carried out on the
basis of the respective training partition. Then, SVM optimisation was done by
determining the complexity parameter C' € {1,107',1072,1073,107%,107°} that led
to the best UAR on the respective development partition. Subsequently, the training
partition and the development partition were merged to obtain an ultimate partition
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9 Developmental disorder recognition

for model training using the previously determined C'. This model’s classification
performance was, finally, evaluated on the basis of vocalisations in the respective test
partition. Training partitions of class-imbalanced numbers of vocalisations exceeding
a ratio of 3 : 2, were upsampled using Weka’s implementation of the synthetic
minority oversampling technique (SMOTE [228]). This procedure was necessary for
the training partitions used in the third and the fourth validation run as well as for
the merged training and development partition used in the third validation run.

Classification performance in this second sub-experiment on RTT recognition was
evaluated vocalisation-wisely and based on the mean UAR of the single validation
runs only. Respective results are given in Table 9.16.

Table 9.16: Cross-validation results of the second sub-experiment on RTT recog-
nition in form of class-specific numbers of vocalisations (in-)correctly classified as
class RTT or TD (confusion matrices), and in form of mean and standard devia-
tion (SD) of the unweighted average recall (UAR) for different feature normalisa-
tion/standardisation options. This table is based on Tables 3 published by Pokorny
and colleagues [226] (DOI: 10.21437/Interspeech.2016-520). UAR values are rounded
to three decimal places. RTT = Rett syndrome; TD = typical development /typically
developing

No fgatu}re
normalisation/ Feature Feature
standardisation normalisation standardisation
classifjed as RTT TD RTT TD RTT TD
RTT 549 613 807
TD 1239 1240 615 871
Measure
mean 0.594 0.765 0.498
UAR SD 0.114 0.234 0.009

According to the mean UAR, the three tested classifier configurations, namely (i)
classification without prior feature normalisation/standardisation, (ii) classification
on the basis of normalised feature values, and (iii) classification on the basis of stan-
dardised feature values, were identified via one-sided z-tests to lead to significantly
different performances at a significance level of @ = 0.001. Yielding a mean UAR of
76.5% at a standard deviation of 23.4%, the best (vocalisation-wise) classification
performance in this second sub-experiment on RTT recognition was achieved when
applying feature normalisation. In contrast, when applying feature standardisation,
the classifier did not perform better than chance. Using the feature standardisa-
tion option, about two-thirds of vocalisations produced by TD participants were
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incorrectly assigned to the class RTT. Classification without applying neither fea-
ture normalisation nor feature standardisation, led to a mean UAR of 59.4% at a
standard deviation of 11.4%. In this configuration, vocalisations produced by TD
participants were about equally assigned to the TD and the RTT class.

9.3.1 How atypical does Rett syndrome sound?

In addition to this thesis’ feasibility investigations on an automatic pre-linguistic
vocalisation-based recognition of RTT, early RTT-associated vocalisation atypi-
calities were studied by examining auditory Gestalt perception of RTT-associated
pre-linguistic vocalisations in relation to the vocalisations’ acoustic signal-level
representations. Referring to AQ2, the procedure treated in this subsection was
intended to contribute to an objectification of the repeatedly described intermittent
character of typical vs. atypical early vocalisations in RTT (cf. Section 3.2, and,
e.g., [95, 119]). Thereby, the used approach may, on the one hand, help to sys-
tematically characterise auditory vocalisation atypicalities associated with RTT in
order to increase the sensitivity of healthcare professionals but also of caregivers for
specific patterns in early vocalisations pointing to potential adverse developmental
trajectories. On the other hand, by underpinning the feasibility of an automatic
vocalisation-based RTT recognition, an approach like the one dealt with in this
subsection, may pave the way for the generation of an objective acoustic model
of early vocalisation atypicality, as a start, associated with RTT, but then also
associated with other COI. Study-related procedures and findings were published
in 2018 by Pokorny and colleagues [229].

Taken from GUARDIAN’s Dataset 4, the corpus of this study comprised 88
clips of home video recordings showing participant RTT04 within the second half
year of life. The same clips were also included in the dataset for the second
sub-experiment on automatic RTT recognition. As already specified, RTT04, a
female individual from a German-speaking family, received a later diagnosis of
the PSV of RTT. By including only the material of one participant (exclusively
recorded with a single recording device), the homogeneity of recording quality as
well as of intrinsic voice parameters throughout the whole dataset was guaranteed.
The decision for building the study on a participant with the PSV of RTT instead
of a participant with typical RT'T was motivated by the a priori expectation of a
higher number and a broader range of different types of pre-linguistic vocalisations
produced by an individual with a normally milder course of the disease (also)
regarding speech-language capacities. As depicted in Table 9.17, within the
available audio-video duration of 1 hour and 21 seconds, a number of 363 target
vocalisations of participant RTT04 were segmented. The amplitudes of vocalisation
segments were not normalised in this study.
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The 363 included vocalisations had a mean duration of 1.82s at a standard devi-
ation of 1.33s. The median vocalisation duration was 1.44s. Vocalisation durations
ranged from 450 ms to 12s. The longest vocalisation comprised a pattern of vowel-
like sounds and vowel glides.

The annotation of the included vocalisations according to recording background
quality (cf. Section 6.3) yielded 58% of vocalisation (210) related to the best quality
class Q1, 3% of vocalisations (10) related to the second best class Q2, 34% of vo-
calisations (125) related to the second worst class Q3, and 5% of vocalisations (18)
related to the worst quality class Q4.

Table 9.17: Number of included vocalisations on the basis of the available
audio-video duration in format hh:mm:ss (two-digit hour number:two-digit minute
number:two-digit second number; seconds rounded down to integer values; sums cal-
culated on the basis of exact durations) as a function of infant age for the study on
auditory atypicalities in RTT-associated vocalisations. This table includes informa-
tion published by Pokorny and colleagues [229] (DOI: 10.1016/j.ridd.2018.02.019).
DE = Germany; Gen = gender; Ger = German; ID = (unique participant) identifi-
cation code; L1 = mother tongue; Nat = nationality; RT'T = Rett syndrome; ¢ =
female

Age [month of life]

7th 8th 9th 10th llth 12th by

ID Gen | Nat/L1

73 26 o7 73 68 66 363
00:10:23  00:04:25 00:08:35 00:15:28 00:08:47 00:12:41 | 01:00:21

RTT04 | ¢ | DE/Ger

In order to acoustically characterise potential auditory patterns of vocalisation
atypicality, on the one hand, the 6 373 features of the comprehensive ComParE set
were extracted from each vocalisation. No feature normalisation/standardisation
strategy was applied in this study. On the other hand, in the framework of a
listening experiment, the vocalisations were independently rated for atypicality by
five professionals in the fields of speech-language development and/or developmental
psychology /physiology. In detail, the listeners had to rate whether they perceived a
presented vocalisation as (i) typical, (ii) atypical, or whether they (iii) did not know.
In case a vocalisation was rated ‘atypical’ by a listener, he or she was further asked
to specify whether the perceived atypicality was predominantly associated with the
vocalisation’s (a) rhythm, (b) timbre, and/or (c) pitch, and/or with (d) an other, not
listed auditory vocalisation attribute (multiple selections possible). The listeners
were allowed to replay a vocalisation as often as they needed to come to a decision.
For later intra-rater reliability evaluations, 10% of randomly selected vocalisations
were presented twice throughout the listening experiment. The presentation
order of vocalisation duplicates was randomised fulfilling the only constraint not
to allow for one and the same vocalisation to be presented directly after one another.
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In this study, auditory Gestalt perception of atypicality in pre-linguistic RTT-
associated vocalisations was evaluated by calculating an information factor and an
atypicality factor for each vocalisation as a function of the ratings for ‘do not know’
and ‘atypical’ of the five listeners (1) on the respective vocalisation according to
Equations 9.1 and 9.2. Whereas the information factor was intended to reflect the
listeners’ level of certainty to give an answer on a vocalisation unequal to ‘do not
know’ (an information factor of 0 means that all five listeners rated for ‘do not know’,
an information factor of 1 means that all five listeners rated either for ‘typical’ or
‘atypical’), the atypicality factor was used to indicate a kind of degree of atypicality
based on the proportion of ratings on a vocalisation for ‘atypical’ (an atypicality
factor of 0 means that none of the five listeners rated for ‘atypical’, an atypicality
factor of 1 means that all five listeners rated for ‘atypical’).

5
1
information factor =1 — (5 Z ‘do not know ’l) (9.1)

=1

5

. 1 g s 1
atypicality factor = R ZZI atypical’, (9.2)

To begin with, the intra-rater reliability for the listening experiment was
reflected by an average Cohen’s kappa of 0.66 considering the three main rating
options (‘typical’, ‘atypical’, and ‘do not know’). In 83.2% of cases, vocalisation
duplicates were rated consistently. In contrast, a very low inter-rater reliability
for the experiment reflected by an overall Fleiss” kappa of 0.2 indicates that even
professionals in the relevant field did not share a common concept of (a)typicality
in pre-linguistic vocalisations. This finding, once again, motivates the utilisation
of objective, computer-assisted pre-linguistic vocalisation information retrieval
approaches — like the one primarily followed throughout this thesis — for an
automatic and intelligent classification/recognition of early COI-related phenomena
in the speech-language domain.

As can be seen in Figure 9.4a, 211 of the 363 vocalisations were rated unequal
to ‘do not know’ by all 5 listener, i.e., they had an information factor of 1. Among
these 211 vocalisations, 93 vocalisations were consentaneously rated as ‘typical’
(atypicality factor = 0; see Figure 9.4c). In contrast, only 9 vocalisations were
consentaneously rated as ‘atypical’ (atypicality factor = 1; see Figure 9.4b). No
vocalisation had an information factor of 0. However, for three vocalisations
only one listener came to a decision for either ‘typical’ or ‘atypical’. More
than half of the vocalisations (186) were rated ‘atypical’ by at least one listener
(atypicality factor > 0; see Figure 9.4b).
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Figure 9.4: Histograms giving absolute numbers of vocalisations as a function
of (a) the information factor, (b) the atypicality factor, and (c) the information
factor and the atypicality factor in combination, reflecting the rating results of
the listening experiment on atypicality in Rett syndrome-associated vocalisations.
This figure is based on Figure 1 published by Pokorny and colleagues [229] (DOI:
10.1016/j.ridd.2018.02.019). # = number of
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9.3 Recognition of Rett syndrome

Both the information factor and the atypicality factor were identified to have
fair [230] positive correlations with the vocalisation duration. The Spearman’s rank
correlation coefficients (rg) were 0.38 and 0.36, respectively. These correlations
might indicate that (i) pre-linguistic vocalisations need to have a certain duration in
order to contain enough auditory information for a listener to give a definite rating,
and (ii) RTT-associated vocalisation atypicality comes out more clearly in specific
vocalisation types associated with a longer duration, such as crying sequences or
more complex, syllabic vocalisation types. Furthermore, also the specification of
auditory attributes to characterise vocalisation atypicality generally depends on the
vocalisation duration, as for example, a vocalisation’s rhythm can not be perceived
in too short vocalisations.

No relation was found between the vocalisations’ recording background quality
and the information factor (r¢ = —0.16) as well as between the recording back-
ground quality and the atypicality factor (rg = —0.04).

Auditorily perceived atypicality in RTT-associated vocalisations reflected by the
atypicality factor was, on the one hand, analysed for relations with the specified
auditory vocalisation attributes ‘thythm’, ‘timbre’, ‘pitch’, and ‘other’, and, on the
other hand, with the acoustic vocalisation characteristics in form of the extracted
signal-level features. Therefore, correlations between the atypicality factor, i.e., the
proportion of listeners that rated for 'atypical’ on a vocalisation, and the respective
proportion of listeners that rated for a specific attribute!, as well as between the
atypicality factor and the values of each of the 6 373 acoustic features were calculated.
The respective Spearman’s rank correlation coefficients with respect to the four
auditory attributes as well as to the ten acoustic features with the highest correlation
with the atypicality factor are given in Table 9.18.

At a correlation of rg = 0.876, vocalisation atypicality was predominantly spec-
ified by the listeners to be related to the auditory attribute ‘timbre’. The fact that
the proportion of listeners that rated for the option ‘other’ yielded the second high-
est correlation with the atypicality factor might suggest that the pre-determined
categories were not sufficient for characterising the full range of RTT-associated
vocalisation atypicality. In the acoustic domain, vocalisation atypicality was pre-
dominantly related to features based on spectral LLDs, namely on RASTA-filtered
auditory spectral bands on the one hand, which might reflect the predominance in
the listeners’ selection for the auditory attribute ‘timbre’ to characterise perceived
atypicality, and based on the energy-related LLD loudness on the other hand, which
potentially reflects the high proportion of selections for an ‘other’; not listed auditory
attribute to characterise atypicality.

'Positive correlations between the atypicality factor and the proportion of listeners that rated
for the particular auditory attributes were expected a priori as — defined by the experimental design
of the listening experiment — the specification of an attribute was only required in case of rating a
vocalisation as ‘atypical’.
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Table 9.18: Auditory attributes and top ten acoustic features in correlation with
Rett syndrome-associated vocalisation atypicality as given by the atypicality factor
ranked according to the magnitude of Spearman’s rank correlation coefficients rg.
rg-values are rounded to three decimal places. audSpecB = auditory spectral band;
FO = fundamental frequency; LregQerr = linear regression quadratic error; pctl
= percentile; MFCC = Mel-frequency cepstral coefficient; QregQerr = quadratic
regression quadratic error; Rfilt = relative spectral transform (RASTA)-filtered; SD
= standard deviation

Rank ‘ rg ‘ Auditory attribute

1| 0.876 | timbre
2| 0.715 | other
3| 0.585 | rhythm
4 | 0.535 | pitch
Rank rg Acoustic feature
1| -0.522 | pctly(audSpecB pan 12)
2| 0.517 | pctlog(F0)
3| -0.509 | pctly(MFCC 1)
4| 0.506 | QregQerr(loudness)
5| 0.506 | SD(loudness)
6 | -0.504 | pctly(audSpecB g 11)
7| 0.502 | range(loudness)
8 | -0.500 | pctly (audSpecB gan 20)
9| 0.499 | LregQerr(loudness)
10 | -0.493 | pctly (audSpecB pan 19)

Finally, it needs to be mentioned that features with potential specific non-linear
relations with the atypicality factor might have not been identified on the basis of
Spearman’s rank correlation analysis.

9.4 Cross-syndrome recognition

Addressing the remaining, not so far treated main research questions (MQ)4 and
(MQ)8, and one more time the additional research question (AQ)1 (cf. Section 4.2),
this thesis’ final experiment was split into two sub-experiments both differing from
the previous experiments on developmental disorder recognition as they considered
scenarios more relevant for a potential real-world /clinical application, namely sce-
narios processing more than one COI in one and the same classification paradigm.
In the first sub-experiment, a classifier was trained and evaluated on the two-class

96
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task to recognise whether a vocalisation/vocalisations was/were produced by a
TD individual, or by an atypically developing (AD) individual, i.e., an individual
later diagnosed with one of different possible COI. In the second sub-experiment,
the classifier was not only employed to differentiate between TD and AD, but to
differentiate between TD and more than one specific developmental disorders in
a multi-class paradigm. Parts of the analyses of these two sub-experiments were
carried out by Maximilian Schmitt from the Chair of Embedded Intelligence for
Health Care and Wellbeing, University of Augsburg, Germany. Experiment-related
procedures and findings are currently prepared for publication by Pokorny and
colleagues [225].

The dataset used for this thesis’ sub-experiments on cross-syndrome recognition
was composed from the data already used for the experiment on FXS recognition
(cf. Section 9.2) and the first sub-experiment on RTT recognition (cf. Section 9.3).
Thus, it contained vocalisations from the respective second half year of life of
three male individuals later diagnosed with FXS, three female individuals later
diagnosed with RTT, and six gender-matched TD controls, all of which coming
from German-speaking families.  Altogether, cross-syndrome recognition was
based on almost 18 hours of retrospective home video material containing 4 666
target vocalisations. A dataset overview is given in Table 9.19. For the first
sub-experiment on cross-syndrome recognition, the participants with FXS and the
participants with RTT were pooled together to represent a group of AD individuals
as to be classified vs. the six TD individuals. Retaining the TD class represented by
the group of three female and three male TD controls, in the second sub-experiment
on cross-syndrome recognition, the individuals with FXS and the individuals with
RTT were kept separate in order to investigate the three-class paradigm FXS
vs. RTT vs. TD. The reason for this thesis’ cross-syndrome experimentation only
reusing data from the previous experiments on the genetically-caused COI FXS and
RTT, and not from the experiment on automatic ASD recognition was that, the
ASD dataset differed from the datasets of the other experiments on developmental
disorder recognition in essential aspects, namely audio-video material was collected
prospectively under (semi-)standardised conditions, and the participants came from
Swedish-speaking families.

The mean duration of the 4666 vocalisations included in the sub-experiments
on cross-syndrome recognition was 1.87s at a standard deviation of 1.52s. The
median vocalisation duration was 1.44s. Vocalisation durations within the dataset
ranged from 186 ms to 21.32s. The dataset’s longest vocalisation was the extended
sequence of crying patterns produced by participant TDO03, which had already been
the longest vocalisation included in the experiment on FXS recognition. Neither
the durations of the vocalisations of the participants with FXS, the participants
with RTT, and the TD participants, nor the durations of the vocalisations of the
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Table 9.19: Number of included vocalisations on the basis of the available
audio-video duration in format hh:mm:ss (two-digit hour number:two-digit minute
number:two-digit second number; seconds rounded down to integer values; sums
calculated on the basis of exact durations) as a function of age per participant for
cross-syndrome recognition. AD = atypical development /atypically developing; AT
= Austria; DE = Germany; FXS = fragile X syndrome; Gen = gender; Ger =
German; ID = (unique participant) identification code; L1 = mother tongue; Nat =
nationality; RTT = Rett syndrome; TD = typical development /typically developing;

9 = female; & = male; - = no audio-video material available
Age [month of life

ID Gen Nat/Ll 7th 8th ggtl’[ 10th ] llth 12th 2
85 62 88 45 127 257 664
FXS01 | o | AT/Ger | 101601 00:05:30 00:17:05 00:05:45 00:15:02 00:30:07 | 01:20:32
4 25 1 30
FX802 | o | DE/Ger . 00:00:29 - 00:02:55 - 00:01:35 | 00:05:00
7 117 20 83 21 248
FX803 | & | DE/Ger - 00:01:24  00:10:49  00:03:10 00:15:16  00:02:45 | 00:33:25
5 85 73 205 90 210 279 942
FXS | 00:16:01  00:07:24 00:27:55 00:11:51  00:30:18  00:34:28 | 02:07:59
149 149
RTTOL | ¢ | AT/Ger . - - 00:13:46 - - 00:13:46
21 138 120 46 325
RTT02 | ¢ | AT/Ger | 1) .48 il 42:53  01:02:18  00:19:05 i 02:19:04
142 370 276 325 180 244 1537
RITO3 | ¢ | DE/Ger | o) 1) a5 00:57:45 00:44:25 01:23:21 00:57:42  00:50:36 | 05:35:27
5 163 370 414 594 226 244 2011
RTT | 00.56:23  00:57:45 01:27:18  02:39:25 01:16:48 00:50:36 | 08:08:18
5 248 443 619 634 436 523 2053
AD | 01:12:24  01:05:10 01:55:13  02:51:16 01:47:06  01:25:05 | 10:16:17
36 22 12 70
TDOL | & | AT/Ger | 000130 00:05:44 - i - 00:03:16 | 00:13:40
9 4 21 5 39
TDO2 | o | AT/Ger | ) .36 - - 00:03:36  00:06:14  00:02:59 | 00:19:27
32 20 11 4 46 113
TDO3 | & | AT/Ger | o) 10.07  00:00:39 00:11:55 i 00:03:39  00:22:03 | 01:06:26
232 97 90 80 82 108 689
TDOS | ¢ | AT/Ger | o)1) 5e 00:32:04  00:16:02 00:16:02 00:15:07 00:12:47 | 02:44:01
9 48 84 101 51 48 341
TDO9 | @ | AT/Ger | o0 0735 00:28:54  00:18:22  00:30:41  00:11:46  00:18:18 | 01:55:40
78 183 4 2% 84 86 461
TD10 | @ | AT/Ger | o)07.00 00:20:15 00:05:30 00:08:13 00:14:59 00:09:31 | 01:14:40
- 396 370 189 211 242 305 1713
TD | 01:57:08  01:45:38 00:51:51  00:58:33  00:51:47 01:08:57 | 07:33:56
5 644 313 308 895 678 828 4666
ADUTD | 3.00:32  02:50:48 02:47:04 03:49:50 02:38:54  02:34:02 | 17:50:13
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participants with FXS and the participants with RTT merged together to represent
the group of AD participants, were normally distributed. The median durations
of vocalisations produced by the group of AD participants vs. the group of TD
participants were 1.44s vs. 1.39s. The participants with FXS produced vocalisa-
tions with a median duration of 1.9s, the participants with RTT of 1.35s. Using
the Mann-Whitney U-test, duration distributions of the vocalisations produced by
AD participants and the vocalisations produced by TD participants were identified
to differed significantly at p = 0.0026. Moreover, also the class-specific duration
distributions in the three-class scenario FXS vs. RTT vs. TD were found to bear
significant differences at p = 1.8 - 107*! via the Kruskal-Wallis test. Post-testing
by means of the Mann-Whitney U-test revealed significant differences between all
of the three class-specific vocalisation duration distributions, namely between FXS
and TD at p = 6.2 - 1072¢, between RTT and TD at p = 0.0456, and between FXS
and RTT at p = 9.9-10~%.

Table 9.20: Top ten acoustic features to differentiate between vocalisations of in-
dividuals later diagnosed with a developmental disorder and typically developing
individuals, ranked according to the magnitude of the effect size estimate r, at given
p-values of the underlying Mann-Whitney U-tests. r is rounded to three decimal
places. Multiplicators of p-values are rounded to one decimal place. amean =
arithmetic mean; FS = falling slope; Idx.qemaps = extended Geneva Minimalistic
Acoustic Parameter Set-internal feature index [173]; pctl = percentile; pctlR = per-
centile range; RS = rising slope; SD = standard deviation; VRg = voiced regions;
neither UVRg (= unvoiced regions) nor VRg = all regions

Rank ‘ r ‘ P ‘ Feature ‘ Idx.cemars
1]-0.545 | 1.1-107°% | amean yr,(spectral fluz) | 67
2| -0.542 | 3.4-1073% | amean(spectral fluz) 21
31-0.523 | 6.4- 10729 | petlgo(loudness) 15
4 [ -0.519 | 1.7-1072™ | pctlRq go(loudness) 16
5| -0.515 | 6.7- 107%™ | amean(loudness) 11
6 | -0.512 | 4.7-1072%® | mean gg,(loudness) 17
71 -0.512 | 6.8-10726% | meanpg,(loudness) 19
8| -0.494 | 8.6 - 107250 | equivalent sound level | 88
9| -0.484 | 8.3-1072% | SDpg,(loudness) 18

10 | -0.432 | 1.5- 107" | pctlso(loudness) 14

In the first sub-experiment on cross-syndrome recognition, i.e., the experiment
on the differentiation of vocalisations produced by AD individuals and vocalisations
produced by TD individuals, the analysis of the 88 eGeMAPS features via the
Mann-Whitney U-test revealed the feature value distributions of 81 features to
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Figure 9.5: Comparison between vocalisations of individuals later diagnosed with a
developmental disorder and vocalisations of TD individuals by means of (a) prob-
ability density estimates of the acoustic feature with the highest group differenti-
ation effect (cf. Table 9.20), and by means of (b) vocalisation distributions within
the three-dimensional space of the acoustic features with the three highest group
differentiation effects (cf. Table 9.20). A = amplitude; AD = atypical develop-
ment /atypically developing; amean = arithmetic mean; pctl = percentile; PDE =
probability density estimate; TD = typical development/typically developing; VRg
= voiced regions; * = real measurement unit not existent as feature values refer to
the amplitude of the digital audio signal

significantly differ between the two classes. The top ten acoustic features according
to the effect size estimate r are given in Table 9.20. Moreover, class-specific
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distribution visualisations of the feature with the highest differentiation effect as
well as of the top three features as spanning a three-dimensional feature space,
are shown in Figure 9.5. Same as in the experiment on RTT recognition, the top
two features were based on the LLD spectral flux. Furthermore, similar to both
the experiment on RTT recognition and the experiment on FXS recognition, a
high proportion of the top ten features — here seven of ten — were related to the
LLD loudness. However, this is not very surprising as the dataset used for this
sub-experiment on cross-syndrome recognition was composed from the datasets
used for the FXS recognition experiment and the RTT recognition experiment.

A similar picture was registered for the second sub-experiment on cross-
syndrome recognition, in which the three-class paradigm FXS vs. RTT vs. TD was
dealt with. The Kruskal-Wallis test in combination with subsequent Mann-Whitney
U post-testing revealed that the distributions of all of the 83 eGeMAPS features
significantly differed between at least 2 class pairs. The distributions of 57 features
significantly differed between all three class constellations. Table 9.21 lists the ten
acoustic features with the highest mean feature ranks according to the effect size
estimates r of all three class pair specific distribution differences. Again, class-
specific distributions of the top feature as well as of the top three features in the
multi-dimensional feature space are shown in Figure 9.6. Same as in the experiment
on RTT recognition and in the first sub-experiment on cross-syndrome recognition,
the top two features were related to the LLD spectral flux. Additionally, here the
sixth highest ranked feature was spectral flux-related too. Furthermore, again a
high proportion of the top ten features — here four of ten — was based on loudness.
Two top ten features were related to MFCCs. The eighth rank was achieved by
the equivalent sound level — a feature which has already been among the top ten
features in all previous (sub-)experiments on developmental disorder recognition
based on retrospective home video material taken from GUARDIAN’s Dataset 4.

Both the automatic vocalisation-based recognition of atypical vs. typical develop-
ment and the three-class paradigm FXS vs. RTT vs. TD were investigated similarly
to the procedure that has already been used for the experiment on FXS recognition
(cf. Section 9.2) and the first sub-experiment on RTT recognition (cf. Section 9.3).
Thus, (i) for each of the two sub-experiments on cross-syndrome recognition the
dataset was split into partitions for subsequent leave-one-speaker-group-out cross-
validation. In case of the two-class paradigm AD vs. TD, six partitions were created
each containing one class-matched participant pair (see Table 9.22). The three-class
paradigm FXS vs. RTT vs. TD was investigated on the basis of three partitions
each containing a participant quadruple of one male participant with FXS, one
female participant with RT'T, and one male and one female TD participant (see Ta-
ble 9.23). Grouping in either paradigm was carried out gender-matched according to
the class-wisely ranked numbers of available vocalisations per participant. In both

101



9 Developmental disorder recognition

Table 9.21: Top ten acoustic features to differentiate between vocalisations of individuals later diagnosed with FXS,
individuals later diagnosed with RTT, and TD individuals, in ascending order according to their mean feature rank
over the three class pair specific Mann-Whitney U-tests on the basis of the effect size estimate r, at given p-values of
the underlying global three-class Kruskal-Wallis tests as well as of the individual two-class Mann-Whitney U post-tests.
The mean feature rank is rounded to integers. Multiplicators of p-values are rounded to one decimal place. amean
= arithmetic mean; coeffVar = coefficient of variation; FXS = fragile X syndrome; Idx.qemaps = extended Geneva
Minimalistic Acoustic Parameter Set-internal feature index [173]; MFCC = Mel-frequency cepstral coefficient; pctl =
percentile; pctlR = percentile range; RTT = Rett syndrome; TD = typical development /typically developing; UVRg
= unvoiced regions; VRg = voiced regions; neither UVRg nor VRg = all regions

Rank ZQQW p p p p Feature HQN@Q&S>~UM
ran FXSvs. RTT vs. TD FXSvs. TD RTT vs. TD FXSvs. RTT
1 9129-1073 | 4.0-1071% | 5.3-107%* | 3.8-107%" | amean yry(spectral fluz) | 67
2 11 | 3.2-107'7 1.0-107128 | 1.0- 1071 | 6.5-1073% | amean yyr,(spectral fluz) | 81
3 131210710 | 53.10719 | 3.7-107% | 4.2-107°° | petlyg(loudness) 13
4 13]23-107200 | 3.7-107 | 2.0-107 | 1.5-107% | petlso(loudness) 14
5 14 [ 1.2-1072™ | 4.1-107132 | 6.2-10725% | 2.6 - 10710 | pctlRog go(loudness) 16
6 15 25-107%2 | 1.5-1071%0 | 2.6 - 1072 | 1.9-107°7 | amean(spectral fluz) 21
7 16 | 4.6 - 107120 25-107% | 1.1-107% | 7.1-107%° | amean(MFCC 4) 29
8 18 | 1.4-107%3% | 2.8-107121 | 3.2-1072% | 3.6 - 1071 | equivalent sound level 88
9 20|14-10% |64-10% | 1.7-107% | 42-10720 | amean yp,( MFCC 4) 75
10 22 | 1.4-107' 1 6.7-107% | 1.5-107"%1 | 8.8-107™ | coeffVar(loudness) 12
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Figure 9.6: Comparison between vocalisations of individuals later diagnosed with
FXS, individuals later diagnosed with RTT, and TD individuals by means of (a)
probability density estimates of the acoustic feature with the best mean rank ac-
cording to its differentiation effect for all three group constellations (FXS-TD, RTT-
TD, FXS-RTT; cf. Table 9.21), and by means of (b) vocalisation distributions within
the three-dimensional space of the acoustic features with the three best mean ranks
according to their differentiation effects for all three group constellations (cf. Ta-
ble 9.21). A = amplitude; amean = arithmetic mean; FXS = fragile X syndrome;
pctl = percentile; PDE = probability density estimate; RTT = Rett syndrome;
TD = typical development /typically developing; UVRg = unvoiced regions; VRg =
voiced regions; * = real measurement unit not existent as feature values refer to the
amplitude of the digital audio signal
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scenarios (ii) audio normalisation was tested, (iii) the ComParE and the eGeMAPS
features were tried out, (iv) feature normalisation to the interval [0, 1] was carried
out infant-dependently, age-dependently, and globally as a function of the feature
value distributions within the respective training partition, (v) upsampling of the
training set was tested, and (vi) linear kernel SVMs were used as classifier with
the complexity parameter C' optimised € {10,1,1071,1072,107%,107*} to achieve
the best UAR on the test partition. As SVMs actually represent a two-class dis-
crimination approach, for the three-class paradigm, final decisions were generated
by combining single binary one-vs.-rest decisions (cf. multi-class classification in
Python’s machine learning library scikit-learn? [231]).

Table 9.22: Assignment of class-matched participant pairs to partitions for the ex-
periment on the recognition of AD. AD = atypical development/atypically devel-
oping; AT = Austria; DE = Germany; FXS = fragile X syndrome; Gen = gender;
Ger = German; ID = (unique participant) identification code; L1 = mother tongue;
Nat = nationality; RTT = Rett syndrome; TD = typical development/typically
developing; Voc = vocalisations; # = number of; ¢ = female; & = male

Participant pair
Partition Participantap Participanttp b
ID | Gen | Nat/L1 [ # Voc| ID | Gen | Nat/L1 | # Voc

1 FXS01 | & | AT/Ger | 664 | TD03 | & | AT/Ger | 113 7
2 FXS02 | & | DE/Ger 30 TD02 | & | AT/Ger 39 69
3 FXS03 | & | DE/Ger | 248 | TD01l | & | AT/Ger 70 318
4 RTTO1 | @ | AT/Ger | 149 | TD09 | ¢ | AT/Ger | 341 490
5 RTT02 | @ | AT/Ger | 325 | TD10| ¢ | AT/Ger | 461 786
6 RTT03 | @ | DE/Ger | 1537 | TDO8 | ¢ | AT/Ger | 689 | 2226
> ] | 2953 | | 1713 | 4666

Same as already in previous experiments, also the classification performance
evaluation of the cross-syndrome recognition tasks was carried out vocalisation-
wisely, and infant-wisely based on class majority voting over the infant-specific
vocalisation-wise predictions. Performance measures were again the mean UAR of
all validation runs and the global UAR determined at once from the entirety of
all predictions gathered throughout the cross-validation process. The results for
the two-class paradigm AD vs. TD and the three-class paradigm FXS vs. RTT vs.
TD for different classification system configurations are given in Table 9.24 and
Table 9.25, respectively.

http://scikit-learn.org/ (as of 11 October 2018)
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9 Developmental disorder recognition

Table 9.24: Cross-validation results of the experiment on recognising atypical devel-
opment in form of the mean unweighted average recall (UAR) of the three validation
runs and the globally calculated UAR based on the gathered predictions of the whole
dataset for both vocalisation-wise and infant-wise evaluation and different system
configurations regarding audio normalisation, used feature set, feature normalisation
strategy (infant-dependent, age-dependent, or normalisation over all instances), and
upsampling of the training set. UAR values are rounded to three decimal places.
ComParE = Computational Paralinguistics and Emotion (set); eGeMAPS = ex-
tended Geneva Minimalistic Acoustic Parameter Set; v/ = applied; X = not applied

Evaluation mode Au{iio ) Feature Feat.ure. Upsampling Measure
normalisation set normalisation UARmean [ UARglobal

X ComParE infant X 0.660 0.521
X ComParE infant v 0.660 0.534
X ComParE age X 0.627 0.590
X ComParE age v 0.634 0.606
X ComParE all X 0.584 0.605
X ComParE all v 0.611 0.623
X eGeMAPS infant X 0.465 0.478
X eGeMAPS infant v 0.460 0.475
X eGeMAPS age X 0.550 0.552
X eGeMAPS age v 0.578 0.593
X eGeMAPS all X 0.657 0.726
Vocalisation-wise X eGeMAPS all v 0.616 0.668
v ComParE infant X 0.564 0.416
v ComParE infant v 0.604 0.481
v ComParE age X 0.625 0.586
v ComParE age v 0.626 0.603
v ComParE all X 0.482 0.494
v ComParE all v 0.539 0.529
v eGeMAPS infant X 0.488 0.527
v eGeMAPS infant v 0.460 0.495
v eGeMAPS age X 0.505 0.497
v eGeMAPS age v 0.564 0.495
v eGeMAPS all X 0.545 0.609
v eGeMAPS all v 0.530 0.573
X ComParE infant X 0.750 0.550
X ComParE infant v 0.750 0.550
X ComParE age X 0.667 0.604
X ComParE age v 0.667 0.604
X ComParE all X 0.667 0.712
X ComParE all v 0.667 0.690
X eGeMAPS infant X 0.500 0.500
X eGeMAPS infant v 0.500 0.488
X eGeMAPS age X 0.667 0.695
X eGeMAPS age v 0.667 0.807
X eGeMAPS all X 0.750 0.834
Infant-wise X eGeMAPS all v 0.667 0.801
v ComParE infant X 0.583 0.505
v ComParE infant v 0.667 0.384
v ComParE age X 0.583 0.505
v ComParE age v 0.667 0.604
v ComParE all X 0.417 0.436
v ComParE all v 0.667 0.681
v eGeMAPS infant X 0.583 0.613
v eGeMAPS infant v 0.500 0.513
v eGeMAPS age X 0.500 0.500
v eGeMAPS age v 0.583 0.468
v eGeMAPS all X 0.667 0.827
v eGeMAPS all v 0.583 0.759

106



9.4 Cross-syndrome recognition

Table 9.25: Cross-validation results of the multi-class experiment on fragile X and
Rett syndrome recognition in form of the mean unweighted average recall (UAR) of
the three validation runs and the globally calculated UAR based on the gathered
predictions of the whole dataset for both vocalisation-wise and infant-wise evaluation
and different system configurations regarding audio normalisation, used feature set,
feature normalisation strategy (infant-dependent, age-dependent, or normalisation
over all instances), and upsampling of the training set. UAR values are rounded
to three decimal places. ComParE = Computational Paralinguistics and Emotion
(set); eGeMAPS = extended Geneva Minimalistic Acoustic Parameter Set; v/ =
applied; X = not applied

Evaluation mode Audio ) Feature Fcat.uro. Upsampling Measure
normalisation set normalisation p p UARmean | UARgiobal

X ComParE infant X 0.278 0.291
X ComParE infant v 0.287 0.299
X ComParE age X 0.312 0.306
X ComParE age v 0.307 0.317
X ComParE all X 0.277 0.240
X ComParE all v 0.305 0.270
X eGeMAPS infant X 0.419 0.521
X eGeMAPS infant v 0.355 0.519
X eGeMAPS age X 0.336 0.381
X eGeMAPS age v 0.310 0.373
X eGeMAPS all X 0.373 0.351
Vocalisation-wise X eGeMAPS all v 0.314 0.310
v ComParE infant X 0.298 0.310
v ComParE infant v 0.308 0.316
v ComParE age X 0.308 0.309
v ComParE age v 0.309 0.320
v ComParE all X 0.223 0.204
v ComParE all v 0.250 0.238
v eGeMAPS infant X 0.432 0.462
v eGeMAPS infant v 0.262 0.404
v eGeMAPS age X 0.319 0.294
v eGeMAPS age v 0.300 0.279
v eGeMAPS all X 0.333 0.262
v eGeMAPS all v 0.234 0.252
X ComParE infant X 0.333 0.333
X ComParE infant v 0.326 0.333
X ComParE age X 0.444 0.358
X ComParE age v 0.333 0.333
X ComParE all X 0.301 0.315
X ComParE all v 0.314 0.327
X eGeMAPS infant X 0.433 0.570
X eGeMAPS infant v 0.412 0.570
X eGeMAPS age X 0.425 0.581
X eGeMAPS age v 0.347 0.510
X eGeMAPS all X 0.544 0.570
Infant-wise X eGeMAPS all v 0.322 0.261
v ComParE infant X 0.333 0.333
v ComParE infant v 0.333 0.333
v ComParE age X 0.444 0.358
v ComParE age v 0.333 0.333
v ComParE all X 0.338 0.257
v ComParE all v 0.338 0.333
v eGeMAPS infant X 0.433 0.512
v eGeMAPS infant v 0.226 0.374
v eGeMAPS age X 0.336 0.273
v eGeMAPS age v 0.336 0.333
v eGeMAPS all X 0.417 0.296
v eGeMAPS all v 0.222 0.243
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9 Developmental disorder recognition

For the automatic vocalisation-wise recognition of AD vs. TD, a best mean UAR
of 66% was achieved when (i) not normalising the amplitudes of the vocalisation
segments, (ii) using the ComParE feature set, and (iii) applying infant-dependent
feature normalisation. If training set upsamping was applied or not did not
make a difference. The same configuration also led to the best mean UAR for
infant-wise classification, which was 75%. However, (i) again not applying audio
normalisation, but (ii) using the eGeMAPS, (iii) normalising features over all
instances according to the feature distributions within the respective training set,
and (iv) not applying training set upsampling, also yielded in a mean UAR of 75%
for infant-wise classification and in a second best mean UAR for vocalisation-wise
classification of 65.7%. This configuration led to both the best global UAR of
72.6% for vocalisation-wise classification and the best global UAR of 83.4% for
infant-wise classification.

The classification performance for the three-class paradigm FXS vs. RTT vs. TD,
i.e., a classification scenario with the chance level at UAR = 33.3% as compared to
50% for the two-class paradigms, was as follows: Vocalisation-wisely evaluated, the
best mean UAR was 43.2%. The underlying classification system was configured
to (i) apply audio normalisation, (ii) use the eGeMAPS, (iii) infant-dependently
normalise the acoustic features, and (iv) not apply training set upsampling. The
same configuration with the only difference not to apply audio normalisation, led
to the second best mean UAR of 41.9% and to the best global UAR of even 52.1%
for vocalisation-wise classification. This system configuration also represented the
first of the three configurations that yielded the second best global UAR for infant-
wise classification, namley 57%. The other two configurations that also achieved a
global UAR of 57% only differed from the first configuration in one setting each,
namely, on the one hand, in the option on training set upsampling to be changed
from ‘not applied’ to ‘applied’, and, on the other hand, in the feature normalisation
strategy to be changed from the infant-dependent mode to the normalisation over
all instances according to the feature distributions within the respective training
set. This latter configuration, i.e., the system (i) not applying audio normalisation,
(ii) using the eGeMAPS, (iii) normalising features over all instances, and (iv) not
applying training set upsampling, also achieved the best mean UAR at 54.4% in the
infant-wise evaluation scenario.
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10

Feasibility of early recognition

Employing the method of intelligent vocalisation analysis (Chapter 7) in context
of a novel, highly interdisciplinary approach (Chapter 5), this thesis aimed to
evaluate the feasibility of a fully automatic pre-linguistic vocalisation-based tool
to enhance an earlier identification of infants with a currently ‘late recognised’
developmental disorder, in particular, with ASD, FXS, or RTT (see Figure 4.1).
For this purpose, eight MQs and three AQs were addressed (cf. Section 4.2) in eight
(sub-)experiments (Part III). On the one hand, differences between vocalisations of
individuals with different developmental outcomes in terms of acoustic signal-level
characteristics were investigated (MQ1-MQ4). Moreover, acoustic features with the
highest class differentiation effects were identified (AQ1). On the other hand, the
automatic classification of vocalisations according to the developmental outcomes
of the infants that produced the vocalisations was tested for different COI-vs.-TD
paradigms and a COI-vs.-COI-vs.-TD paradigm using different classification system
configurations (MQ5-MQ8). An overview of both the LLDs related to the top
ten acoustic features per paradigm and the best paradigm-specific recognition
performances for vocalisation-wise and infant-wise classification in terms of either
the highest mean or globally determined UAR is given in Table 10.1.

Feature analyses in the framework of this thesis revealed that high differenti-
ation effects between vocalisations produced by individuals with different devel-
opmental outcomes were obtained via features related to spectral LLDs, such as
spectral flux, spectral slope, MFCCs, the Hammarberg index, or the alpha ratio.
However, the respective highest number of identified top ten acoustic features for
(i) the differentiation paradigm ASD vs. TD and for (ii) all other investigated dif-
ferentiation paradigms were not spectral-related, but based on (i) F0, and (ii) the
energy /amplitude-related LLD loudness. Moreover, another energy-related feature
—the equivalent sound level — was also among the ten features with the highest differ-
entiation effects for each paradigm except for the paradigm ASD vs. TD. Loudness,
spectral flux, and the equivalent sound level were identified to represent top LLDs
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10 Feasibility of early recognition

Table 10.1: Overview of top feature analysis and classification results from this
thesis” experiments on developmental disorder recognition in form of the low-level
descriptors (LLDs) related to the top ten acoustic features, and the highest (mean*
or global**) unweighted average recall (UAR) for vocalisation-wise and infant-wise
classification per paradigm. LLDs are ranked according to the number of occurrence
within the top ten acoustic features (per LLD given in brackets). In case of an equal
number of occurrence, LLDs are ranked according to the magnitude of the effect
size estimate r. UAR values are rounded to three decimal places. AD = atypical
development /atypically developing; ASD = autism spectrum disorder; FXS = fragile
X syndrome; MFCC = Mel-frequency cepstral coefficient; RTT = Rett syndrome;
TD = typical development /typically developing; UVRg = unvoiced regions; VRg =
voiced regions; # = number of; © = related to # individuals

. Top UAR
Paradigm | Top 10 feature LLDs Vocalisation-wise | Infant-wise
FO (2)
Spectral slope 0-500Hz (1)
MFCC 4 (1)
Mean length of UVRg (1)
ASD vs. TD | Hammarberg index (1) 0.645* 0.750*-°
Spectral slope 500-1500 Hz (1)
Alpha ratio (1)
# continuous VRg per second (1)
MFCC 1 (1)
Loudness (7)
FXS vs. TD | Spectral flux (2) 0.758%* 1.000%-**
Equivalent sound level (1)
Loudness (6)
. Spectral flux (2)
RIT vs. TD Equivalent sound level (1) 0.879% 0.845™
Hammarberg index (1)
Loudness (7)
AD vs. TD | Spectral flux (2) 0.726** 0.834**
Equivalent sound level (1)
Loudness (4)
FXS vs. RTT vs. TD if;étéaﬁ;‘ 3) 0.521%* 0.581%*
Equivalent sound level (1)

for vocalisation differentiation in the paradigms FXS. vs. TD, RTT vs. TD, AD
vs. TD, and FXS vs. RTT vs. TD, but not in the paradigm ASD vs. TD. This
might, on the one hand, indicate that pre-linguistic vocalisations of individuals with
ASD differ from pre-linguistic vocalisations of TD individuals in an other way than
pre-linguistic vocalisations of individuals with FXS or RTT do in terms of acoustic
signal-level characteristics, or, on the other hand, reflect the fact that investigations
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on the paradigm ASD vs. TD were based on an autonomous set of semi-standardised
laboratory recordings of participants from Swedish-speaking families and investiga-
tions on the other paradigms were based on a shared pool of home video recordings
of participants from German-speaking families.

Basically, the signal-level features identified in the framework of this thesis to
best allow for a differentiation between individuals with different developmental
outcomes, seem to acoustically underpin previous findings on vocalisation atyp-
icalities in connection with COI (cf. Section 3.2), such as FO peculiarities and,
generally, peculiarities in the (melodic) modulation contour of early ASD-related
vocalisations (e.g., [107, 108, 115, 113]), or such as inspiratory, pressed, and/or
high-pitched crying-like early phonation patters in early vocalisations of individuals
with RTT (e.g., [120, 95, 119]).

Best recognition performances in terms of either the mean or the globally deter-
mined UAR for the different two-class paradigms, i.e., paradigms with the chance
level at UAR = 50%, ranged from 64.5% (ASD vs. TD) to 87.9% (RTT vs. TD)
in the vocalisation-wise evaluation scenario and from 75.0% (ASD vs. TD) to 100%
(FXS vs. TD) in the infant-wise evaluation scenario. For the three-class paradigm
FXS vs. RTT vs. TD, thus, a paradigm with the chance level at UAR = 33.3%,
the highest UAR in the vocalisation-wise evaluation scenario was 52.1%, in the
infant-wise evaluation scenario 58.1%.

Most of the top recognition performances were obtained when using the
eGeMAPS features as against the ComParE features (cf. Section 7.1). The audio
pre-processing strategy of amplitude normalisation did not yield an advantage in
many cases. Certainly, the usefulness of audio normalisation highly depends on
the audio quality of the underlying dataset. Distinct performance differences were
registered as a function of the different applied feature normalisation strategies (cf.
Section 7.2). However, no feature normalisation strategy clearly outperformed the
others. Only the testing of feature standardisation in the second sub-experiment on
RTT recognition caused the classification system not to perform better than chance.
At last, not surprisingly for SVM-based classification systems, the configuration
option whether to apply or not to apply training set upsampling was without effect
in many cases.

In the course of experimentation of this thesis building on different datasets
of COI- and TD-associated pre-linguistic vocalisations, an additional vocalisation
parameter of potential predictive value for an infant’s developmental outcome
was found, namely the vocalisation duration. Considering the datasets used for
the experiment on ASD recognition (cf. Section 9.1), the experiment on FXS
recognition (cf. Section 9.2), and the second sub-experiment on RTT recognition
(cf. Section 9.3), pre-linguistic vocalisations of TD individuals turned out to be
significantly shorter than pre-linguistic vocalisations of individuals with ASD, FXS,
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10 Feasibility of early recognition

or RTT. In contrast, dataset statistics relating to the first sub-experiment on
RTT recognition yielded RTT-associated vocalisations to be significantly shorter
than TD-associated vocalisations. However, vocalisations of individuals with RTT
and the significantly longer vocalisations of individuals with FXS pooled together
to represent a set of vocalisations of AD individuals were in turn significantly
longer than vocalisations of TD individuals according to the dataset used for the
cross-syndrome recognition sub-experiments (cf. Section 9.4).

In conclusion, this thesis could raise evidence for acoustic information in pre-
linguistic vocalisations bearing potential to reflect the integrity of the young nervous
system and to predict an individual’s developmental trajectory. The automatic
acoustic feature-based classification of pre-linguistic vocalisations according to the
developmental outcomes of the infants that produced the vocalisations with respect
to the presence or absence of a COI, was successfully! tested. Therefore, the basic
feasibility of a fully automatic developmental disorder recognition tool as proposed
in Figure 4.1 could be demonstrated. Responding to AQ3, fair achievements were
made for the automatic detection of infant vocalisations alongside variable quality
real-world audio recordings as needed for a vocalisation-based classification system’s
audio input pre-selection stage (cf. Chapter 8).

Further motivation for the proposed automatic recognition tool is provided by
the AQ2-related finding that there seem to be acoustically manifesting auditory
atypicalities within at least a proportion of pre-linguistic vocalisations of an indi-
vidual with a ‘late recognised’ developmental disorder such as RTT, but human
listeners — even if they are professionals in the fields of speech-language develop-
ment and/or developmental psychology/physiology — are hardly able to consistently
recognise these atypicalities (cf. Subsection 9.3.1).

10.1 Limitations

Even though knowledge gained in the framework of this thesis appears to be highly
promising for the implementation and practical application of a fully automatic,
pre-linguistic vocalisation-based developmental disorder recognition tool, the gen-
erated results have to be interpreted carefully due to a number of methodological
shortcomings.

One of the main drawbacks of this thesis reducing the generalisability of its
experimental findings is the critically small number of available participants for
the different (sub-)experiments, especially for the (sub-)experiments including
participants with FXS or RTT. Certainly, this is not surprising as FXS and RTT
are rare diseases with a current mean age of diagnosis not before toddlerhood and

IClassification performance was above chance level.
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10.1 Limitations

the acquisition of audio(-video) recordings — usually, in the best case, home video
recordings — from an affected individual’s prodromal period poses a challenging
task. Furthermore, this thesis’ claim to minimise additional factors potentially
influencing early verbal behaviour and, therefore, to exclusively use gender-
and family language-matched datasets for developmental disorder recognition
experiments, did not make the recruiting of participants easier. Anyway, the used
datasets were not only characterised by small numbers of participants, but also by
unbalances among the numbers of available vocalisations per participant and un-
balanced numbers of instances per class. These imbalances were most probably due
to the different amount of material/durations of audio-video recordings available
per participant, but might to a certain extent also be phenotype-related. For all
(sub-)experiments except for the experiment on ASD recognition, the unbalanced
number of available vocalisations per month of participant age, necessitated to
pool vocalisations from all over the participants’ respective second half year of life
together considering the interval from the seventh to the end of the twelfth month
of life as one discrete age point. Thereby, a broad range of vocalisation types was
contained and mixed up in the individual datasets reflecting different processes and
phases of early vocalisation development (cf. Section 3.1). Certainly, a sufficient
number of realisations provided, the isolated analysis of particular, age-specific
vocalisation types, such as canonical babbling, would have been of additional
interest. Anyway, the factors ‘dataset size’ and ‘dataset balance’ significantly
determined a priori considerations on suitable classification system configuration
options as well as on classifier evaluation strategies, and limited the proper use
of specific, state-of-the-art machine learning approaches, such as deep learning
algorithms currently representing a highly popular and powerful methodology for
classification in larger sample sizes.

Another dataset-related limitation in connection with all experiments of this the-
sis except for the experiment on ASD recognition, is the use of home video material
as the basis for retrospective acoustic analyses at the signal level (cf. Section 5.1).
Central issues with respect to home video material are that (i) recordings are non-
standardised regarding both recording setting and recording quality, (ii) a broad
range of acoustic background noise events has to be expected, (iii) recordings were
not made for the purpose of later scientific analyses and primarily show infants in
interactive, non-distress situations?, therefore, the absence of a specific behaviour of
interest within the material does not necessarily mean that this behaviour is absent
at all, and (iv) reliable investigations on the rate of occurrence of specific behavioural
patterns, such as volubility measures, are impossible.

2For example, parents usually tend to stop recording when their children fall into a negative
mood and/or start to behave somehow ‘peculiarly’. Consequently, specific atypical behavioural
patterns representing potential predictors for developmental trajectories might be underrepresented
in home videos datasets.
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10 Feasibility of early recognition

Nevertheless, the scientific analysis of home video material not only provides a
unique opportunity to retrospectively ‘observe’ or ‘listen to’ infants in their natural
environments; for now, it still represents one of the best available approaches
for studying early behaviour in individuals with ‘late recognised’ developmental
disorders (e.g., [144, 145, 146, 147, 148, 27, 26]).

Generally, the results generated in the framework of this thesis can hardly
be discussed in context of previous work as comparable (detection/recognition)
studies focussing on signal-level characteristics of pre-linguistic verbal behaviour
in ASD, FXS, or RTT to the best of my knowledge do not exist. Moreover,
the thesis-internal comparability of results — especially of feature analysis results
— from the different (sub-)experiments is limited due to (i) the experiment on
ASD recognition having been based on an external dataset of semi-standardised
laboratory recordings (cf. Chapter 6) vs. the remaining experiments having been
based on GUARDIAN’s (home video) Dataset 4 (cf. Section 6.1), and (ii) the reuse
of one and the same recordings of participants in different (sub-)experiments.

As a final remark, it needs to be mentioned that conclusions from the reported
absolute numbers of features significantly differing between the value distributions
of class-specific vocalisations per paradigm have to be drawn with caution as no
alpha error correction strategy [176] was applied for multiple feature testing in the
framework of this thesis.
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Implications

Although methodological limitations suggest to interpret the generated experimen-
tal results with caution (cf. Section 10.1), this thesis outlines the potential of a
novel approach based on pre-linguistic vocalisation acoustics and machine learn-
ing to enable an earlier identification of individuals with currently ‘late diagnosed’
developmental disorders facilitating an earlier treatment. Thereby, this work may
build the basis for future research to increase the reliability of the proposed auto-
matic developmental disorder recognition tool and to fit its requirements to realistic
healthcare-relevant application scenarios.

11.1 Technical perspectives

From an engineering point of view, the collection of more data is an essentially re-
quired next step. So far, the basic technical feasibility of pre-linguistic vocalisation-
based COI recognition was demonstrated on the basis of small datasets mainly using
linear kernel SVMs. Follow-up experiments should be carried out on more compre-
hensive datasets in order to (i) generate results with higher reliability, (ii) allow
for generalisations with regard to infants’ different family language/cultural back-
grounds, (iii) extend the approach to other ‘late recognised’ developmental disorders
in the context of multi-class paradigms, and to (iv) allow for alternative, more pow-
erful machine learning tools, such as sophisticated deep learning algorithms [29].
Apart from the careful selection and configuration of an algorithm for the
classification step, also the preceding steps of the intelligent vocalisation analysis
procedure (cf. Chapter 7), i.e., the feature extraction step and the feature processing
step, should be more intensively focussed on in future work. The capabilities of
feature sets other than the two applied openSMILE standard sets, the ComParE
set and the eGeMAPS, should be evaluated. Alternatively, a special feature
set optimised for the acoustic differentiation of developmental outcome-specific
vocalisation patterns could be compiled on the basis of the findings of this
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thesis’ feature analysis efforts. The appliance of promising feature processing
techniques, such as the transformation of extracted acoustic features into the bag-
of-words representation using the open-source tool kit openXBOW! [232], could
be tested. The bag-of-words approach was originally applied for text document
information retrieval [233], but has proven its value in intelligent vocalisation anal-
ysis applications, such as speech emotion recognition (e.g., [234]), over the last years.

Finally, as constituting the crucial audio input pre-selection procedure for the
proposed fully automatic developmental disorder recognition tool, intensive engi-
neering efforts need to be made to attain an adequate performance for robust infant
voice activity detection in real-world settings.

11.2 Clinical perspectives

Provided that essential technical improvements as suggested in the previous
Section (11.1) were made, there are two major healthcare-related application
scenarios in which the proposed pre-linguistic vocalisation-based developmental
disorder recognition tool could be implemented, namely a home scenario and a
clinical scenario. In matters of the underlying training and evaluation datasets,
both scenarios were experimentally addressed in the framework of this thesis,
though a greater focus was placed on the home scenario due to the accessibility of
larger datasets of home video material as compared to laboratory recordings (more
or less related to the medical specificities of the studied disorders). Certainly, an
implementation in either scenario depends on the healthcare system as well as on
the clinical and technological infrastructure available. Automatic developmental
outcome prediction in both the home scenario and the clinical scenario could be
provided area-wide as an early screening procedure, or, specifically, for infants at
heightened risk for adverse developmental outcomes, such as preterms or individuals
from families with predispositions for specific diseases.

The home scenario requires parents/caregivers to prospectively collect audio or
audio-video data from their children while being awake in natural settings. Data
could be recorded, for example, using a standard video camera, an audio recorder,
or even a smartphone. Then, these data could be brought along to the physician’s
office in the course of the next paediatric routine examination. In a first step, the
physician would need to transfer the data to his or her computer, e.g., via a USB
port, a memory card reader, or Bluetooth. In a second step, the included audio
tracks would be automatically segmented for infant target vocalisations. The final
step would then comprise the automatic analysis of the set of detected/pre-selected
target vocalisations in order to recognise the presence or absence of a (specific)

Thttps://github.com/openXBOW/ (as of 17 September 2018)
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11.2 Clinical perspectives

developmental disorder in the recorded infant. On the basis of the recognition tool’s
output decision, the physician could subsequently inform the parents/caregivers
about a suspicion of a certain developmental disorder, advice them correspondingly,
and potentially initiate a diagnostic cascade.

Alternatively, the fully automatic infant vocalisation segmentation and develop-
mental disorder recognition tool could be directly integrated in an audio recording
device that is commercially available or provided for parents by a healthcare insti-
tution for home use. As exemplified in Figure 11.1, the tool could potentially be
even implemented as a smartphone application — a so-called ‘BabbleApp’ — that
can be downloaded and installed by interested parents or by parents specifically
worried about their children’s developmental outcomes. Besides providing the core
functions of audio recording, vocalisation segmentation, and vocalisation analysis,
the ‘BabbleApp’ could offer some additional useful features for parents/caregivers,
such as (i) reminders to record their children during specific age periods of special
interest from a speech-language developmental point of view or to perform long-
term recordings from time to time, (ii) instructions to record or not to record their
children in specific settings, or (iii) warnings not to start a recording in case of a
detected insufficient audio background quality. In this scenario of an ‘intelligent’
home recording device, the parents/caregivers would have the opportunity to seek
for a specialist as soon as the tool would advice them to do so.
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Figure 11.1: Demonstration of using a hypothetical smartphone application — the
‘BabbleApp’ — for a fully automatic infant voice activity detection alongside recorded
audio input information and the classification of the detected vocalisations according
to the expectable developmental outcome of the infant that produced the vocalisa-
tions in order to alert parents/caregivers in case of the suspicion of a developmental
disorder. FXS = fragile X syndrome
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In the clinical scenario, both data acquisition again in the form of audio or
audio-video recording and the automatic processing of the recorded material
could be automatically carried out at the physician’s office or a special clinical
laboratory, for example during an ambulant paediatric routine examination or in
the framework of an examination procedure to specifically assess individuals at
heightened risk for developmental disorders. An inpatient setting would allow for
a (24-hour) long-term recording. As compared to the home scenario, the clinical
scenario would have the advantage of controllable audio recording conditions and a
(semi-)standardisable recording setting, such as a physician-parent-child interaction
setting. The disadvantage would be the artificial environment most probably more
and more influencing (spontaneous) infant vocalisation behaviour with increasing
age and potentially causing a higher proportion of fussy or crying vocalisations.

In both the home scenario and the clinical scenario the proposed developmental
disorder recognition tool would generate its final decision on the basis of a set
of vocalisations available from an individual. This approach corresponds to the
infant-wise system operation mode as evaluated in the framework of this thesis
in addition to the vocalisation-wise operation mode. However, in many cases,
especially in the clinical scenario, the recognition tool would have to handle very
small sets of only a few single available vocalisations.

Finally, it should be emphasised that the suspicion of an infant to have a develop-
mental disorder represents a highly sensitive issue for parents/caregivers. Therefore,
healthcare professionals and parents/caregivers that might use a tool like the one
proposed in this thesis in future need to keep in mind that the underlying classifica-
tion system is based on a probabilistic model allowing for misclassification (FPs and
FNs). A potential earlier recognition of a developmental disorder would, however,
be beneficial in many cases due to specific therapeutic programs, or at least avoid
exhausting diagnostic odysseys and enable an earlier symptomatic treatment. Nev-
ertheless, assuming that the methodology presented in this thesis will someday lead
to a reliable earlier identification of individuals with a currently ‘late recognised’
developmental disorder, the need for adapted or novel intervention strategies comes
with it.

11.3 Multi-domain fingerprint modelling

By reason of an automatic early recognition of currently ‘late diagnosed’ devel-
opmental disorders exclusively based on pre-linguistic vocalisations to be basically
feasible, disorder-specific acoustic characteristics in infant vocal behaviour may be
considered as speech-language domain-related neurofunctional markers to (at least
partly) reflect the integrity of the developing nervous system. However, also other de-
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11.3 Multi-domain fingerprint modelling

velopmental domains have proven their value to capture disorder-related behavioural
patterns usable for the prediction of atypical developmental trajectories, such as the
motor domain (e.g., [235, 236, 92, 237, 238]). Consequently, a fully automatic infant
behaviour classification model that simultaneously processes input information from
different developmental domains might very likely outperform models that consider
information from a single domain.

Level of peculiarity
A

Domain

Age

Figure 11.2: Proposed fingerprint model for an automatic recognition of develop-
mental disorders on the basis of age-specific peculiarity distributions over different
developmental domains, such as the motor domain and the speech-language domain,
captured by domain-specific, recording-derived parameters. Motor parameters are
exemplarily derived from a depth channel recording, a pressure distribution record-
ing, and a body-part acceleration recording of an infant in supine position. Speech-
language parameters are exemplarily derived from acoustic descriptors of recorded
pre-linguistic vocalisations. The basic concept of this figure is based on Figure 1
published by Marschik and colleagues [134] (DOI: https://doi.org/10.1007/s11910-
017-0748-8). Colour code: green = optimal /marginally peculiar; orange = moder-
ately peculiar; red = highly peculiar. a, b, ¢, ... = parameter indices; M = total
number of motor parameters; N = total number of speech-language parameters

e
s1o1owered 10J0JN

Speech-language parameters

A potential concept of a respective model is illustrated in Figure 11.2. It can be
denominated as a multi-domain fingerprint model as it builds upon the assumption
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that each developmental disorder has its characteristic fingerprint in terms of an
age-specific peculiarity /symptom distribution over different developmental domains
of interest. Respective fingerprint information could be modelled as a kind of level of
peculiarity calculated for age-domain constellations on the basis of domain-specific,
recording-derived parameters.

Once the fingerprints of different developmental disorders would have been
identified, i.e., the model would have been initialised with fingerprint information
derived from a set of respective training data, decisions on new data could be made
by means of probabilistic fingerprint comparisons. From an application perspective,
the suggested model should ideally manage to cope with missing data as in clinical
real-world settings not all domain-related parameters might necessarily be available
at each age (cf. [134]). Furthermore, the model, so far described to process
recording-derived ‘online’ knowledge only, could be combined with comprehensive
collections of additional, non-recording-derived ‘offline’ knowledge about (e.g.,
genomic) specificities of different developmental disorders, similar as provided
by the Research Domain Criteria (RDoC) Initiative? of the National Institute of
Mental Health (NIMH). In a clinical setting, the fingerprint model would then
have to be set up with metadata of an individual, such as age, gender, weight,
pregnancy- and birth-related information, or information about the medical history
of the individual’s family, before the actual collection of ‘online’ data, i.e., the
multi-domain recording was started.

From 2015 to 2018, GUARDIAN’s Dataset 3 (see Table 6.1) was generated by the
Research Unit iDN — interdisciplinary Developmental Neuroscience, at the MUG,
Austria, with the intention to enable the initialisation of a fingerprint model as de-
scribed before [134]. It contains both comprehensive metadata and multi-domain
recordings of neurotypical participants. Therefore, the dataset allows to define the
fingerprint of TD that includes information on each derived parameter’s range of nor-
mality reflecting neurotypical variability, and represents an optimal training set to
initialise a model for atypicality recognition. In order to capture neuro-behavioural
adaptations and neuro-functional changes that typically occur around the third
month of postnatal life [239, 240], the participants were recorded (7 times) in a
bi-weekly interval with the first recording at 4 weeks and the last recording at 16
weeks of post-term age, each time for 5 minutes while lying awake and unstimu-
lated in supine position in a cot. Spontaneous vocal behaviour was recorded with
a microphone. Spontaneous motor behaviour was recorded using (i) standard high-
definition (HD) camcorders, (ii) Microsoft Kinect sensors, (iii) a pressure-sensitive
mat placed between mattress and sheet, and (iv) motion sensors attached to differ-
ent body parts. Subsequently, all recordings were synchronised among each other
to allow for sensor fusion-derived model parameters.

2https://www.nimh.nih.gov /research-priorities /rdoc/index.shtml (as of 20 September 2018)
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11.3 Multi-domain fingerprint modelling

Currently, the dataset is about to be extended at the University Medical Center
Gottingen, Germany, for participants at heightened risk for ASD.

In the scientific community, there is an ever growing belief that a multi-domain
fingerprint model will substantially enhance the automatic earlier identification of
individuals with currently ‘late recognised’ developmental disorders in order to fulfil
the requirements for operating as a screening tool. Building upon this thesis and
current trends in technological development such a solution might be close and
realistically achievable in the near future.
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