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ON DOUBLE-RESOLUTION IMAGING AND DISCRETE
TOMOGRAPHY∗
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Abstract. Superresolution imaging aims at improving the resolution of an image by enhancing
it with other images or data that might have been acquired using different imaging techniques or
modalities. In this paper we consider the task of doubling, in each dimension, the resolution of
grayscale images of binary objects by fusion with double-resolution tomographic data that have been
acquired from two viewing angles. We show that this task is polynomial-time solvable if the gray
levels have been reliably determined. The problem becomes NP-hard if the gray levels of some pixels
come with an error of ±1 or larger. The NP-hardness persists for any larger resolution enhancement
factor. This means that noise does not only affect the quality of a reconstructed image but, less
expectedly, also the algorithmic tractability of the inverse problem itself.
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1. Introduction. Different imaging techniques in tomography have different
characteristics that strongly depend on the specific data acquisition setup and the
imaged tissue/material. Hence it is a major issue (and at the heart of current re-
search; see, e.g., [10, 14, 27, 34, 36, 39, 43]) to improve the resolution of an image by
combining different imaging techniques. In general it is, however, not clear, how this
can actually be performed efficiently. The present paper addresses this multimodal
approach from a basic algorithmic point of view in two different ways using a discrete
model of binary image reconstruction. First, we show that, indeed, the resolution
of binary objects can be efficiently improved if the data are reliable. We derive a
polynomial-time algorithm for double resolution that works correctly for exact data
(and can be extended to a heuristic for the more general case). On the other hand,
we show that noisy data in the low-resolution image do not simply reduce the quality
of the reconstruction but add additional complexity. Hence, intuitively speaking, and
in a sense that will be made mathematically precise later, it might not be possible
to compensate for the faultiness of low-resolution imaging efficiently by incorporating
other additional higher-resolution information (even if the latter is noise free).

More specifically, the results of the present paper are motivated by the task of
enhancing the resolution of reconstructed tomographic images obtained from binary
objects representing, for instance, crystalline structures, nanoparticles, or two-phase
samples [1, 3, 7, 46, 49]. The reconstructed tomographic image might contain several
gray levels, which, depending on the accuracy of the reconstruction, result from the
fact that low-resolution pixels may cover different numbers of black high-resolution
pixels. For turning the grayscale image into a high-resolution binary image we utilize
the gray levels and two additional high-resolution projections, which may have been
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Fig. 1. The superresolution imaging task DR. (a) Original (unknown) high-resolution image;
(b) the corresponding low-resolution grayscale image; (c) gray levels converted into block constraints;
(d) taken in combination with high-resolution row and column sum data. The task is to reconstruct
from (d) the original binary image shown in (a).

acquired by different imaging techniques or modalities (e.g., via scanning transmis-
sion electron microscopy [46]). More precisely, we study the task of reconstructing
binary m×n-images from row and column sums and additional constraints, so-called
block constraints, on the number of black pixels to be contained in the k × k-blocks
resulting from a subdivision of each pixel in the m/k × n/k low-resolution image.
We remark that we do not require that the X-ray data are taken from orthogonal
directions. In our context it suffices that the X-ray data have been taken with high
resolution according to the discretization of the low-resolution image.

Figure 1 illustrates the process. The example given in this figure also shows that
the block constraints can help to narrow down the solution space. In fact, the solution
shown in this figure is uniquely determined by the input (the row and column sums
and block constraints). The row and column sums alone do not determine the solution
uniquely and, of course, neither do the block constraints.

Apart from superresolution imaging [29, 33, 35, 37, 42, 47], and its particular
applications [8, 20, 40, 48] in discrete tomography [1, 17, 22, 25, 26, 28, 30, 32, 45],
the problems discussed in this paper are also relevant in other contexts.

From a combinatorial point of view, they can be viewed as reconstructing binary
matrices from given row and column sums and some additional constraints. Un-
expected complexity jumps based on the results of the present paper are discussed
in [5] and, to some extent, at the end of this section. Background information on
such problems involving different kinds of additional constraints can be found in [11,
sect. 4].

Other applications belong to the realm of dynamic discrete tomography [6, 5, 7,
49]. For instance, in plasma particle tracking, some particles are reconstructed at
time t. Between t and the next time step t+ 1 the particles may have moved to other
positions. The task is to reconstruct their new positions, again from few projections.
One way of incorporating additional prior knowledge about the movement leads to
block constraints of the kind discussed in this paper; see [6].

As the task of reconstructing a binary matrix from its row and column sums can
be formulated as the task of finding a b-matching in a bipartite graph, we remark
that our theorems can also be seen as results on finding b-matchings that are subject
to specific additional constraints. Related (but intrinsically quite different) results on
matchings subject to so-called budget constraints can be found, e.g., in [21].
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Fig. 2. Overview of complexity jumps for the problem of reconstructing a binary image from
row and column sums and additional 2× 2-block constraints.

For superresolution imaging the two main contributions of this paper are as fol-
lows. On the one hand, we show that reliable bimodal tomographic data can be uti-
lized efficiently, i.e., the resolution, in each dimension, can be doubled in polynomial
time if the gray levels of the low-resolution image have been determined precisely
(Theorem 2.1). On the other hand, the task becomes already intractable (unless
P = NP) if the gray levels of some pixels come with some small error of ±1 (Theo-
rem 2.3 and Corollary 2.5). This proves that noise does not only affect the quality of
the reconstructed image but also the algorithmic tractability of the inverse problem
itself. Hence the possibility of compensating noisy imaging by including bimodal in-
formation may in practice be jeopardized by its algorithmic complexity. While this
is not the focus of the present paper let us point out that, even in the presence of (a
reasonably restricted degree of) noise, the approach leading to Theorem 2.1 can, in
principle, be extended to a fast heuristic for doubling the resolution of such images in
each dimension. At present, however, we do not know how such an approach would
compare with other heuristics on real-world data.

From the perspective of discrete tomography, the contributions of this paper
can be interpreted as follows. It is well known that the problem of reconstructing
binary images from X-ray data taken from two directions can be solved in polynomial
time [16, 41]. Typically, this information does not determine the image uniquely
(see, e.g., [23] and the papers quoted there). Hence, one would like to take and utilize
additional measurements. If, however, we add additional constraints that enforce that
the solutions satisfy the X-ray data taken from a third direction, then the problem
becomes NP-hard, and it remains NP-hard if X-ray data from even more directions
are given [18] (see also [15] for results on a polyatomic version).

As it turns out, the case of block constraints behaves somewhat differently. The-
orem 2.3 and Corollary 2.5 show that the problem of reconstructing a binary image
from X-ray data taken from two directions is again NP-hard if we add several (but
not all) block constraints (which need to be satisfied with equality). However, and
possibly less expectedly, if we include all block constraints, then the problem becomes
polynomial-time solvable (Theorem 2.1). If, on the other hand, from all block con-
straints some of the data come with noise at most ±1, then the problem becomes
again NP-hard (Theorem 2.3 and Corollary 2.5). And yet again, if from all block
constraints all of the data are sufficiently noisy, then the problem is in P (as this is
again the problem of reconstructing binary images from X-ray data taken from two
directions). An overview of these complexity jumps is given in Figure 2.
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Fig. 3. Lattice points (left) and pixels (middle); right: pixel associated with its lattice point.

2. Notation and main results. Let Z, N, and N0 denote the set of integers,
natural numbers, and nonnegative integers, respectively. For k ∈ N set kN0 := {ki :
i ∈ N0}, [k] := {1, . . . , k}, and [k]0 := {0, . . . , k}. With 11 we denote the all-ones
vector of the corresponding dimension. The cardinality of a finite set F ⊆ Zd is
denoted by |F |.

In this paper we use Cartesian coordinates (rather than matrix notation) to rep-
resent pixels in an image. In particular, the two numbers i and j in a pair (i, j)
denote the x- and y-coordinates of a point, respectively. In the following we consider
grids [m]×[n]. The set {i}×[n] and [m]×{j} is called column i and row j, respectively.
Let, in the following, k ∈ N. Any set {(i− 1)k + 1, . . . , ik} × [n] is a vertical strip (of
width k). A horizontal strip (of width k) is a set of the form [m]×{(j−1)k+1, . . . , jk}.

Sets of the form ([a, b]× [c, d])∩Z2 with a, b, c, d ∈ Z and a ≤ b, c ≤ d, are called
boxes. For i, j ∈ N let Bk(i, j) := B(i, j) := (i, j)+[k−1]20. Defining for any k ∈ N and
m,n ∈ kN the set of (lower-left) corner points C(m,n, k) := ([m]× [n])∩ (kN0 + 1)2,
we call any box Bk(i, j) with (i, j) ∈ C(m,n, k) a block. The blocks form a partition

of [m]× [n], i.e.,
⋃̇

(i,j)∈C(m,n,k)Bk(i, j) = [m]× [n].
Let us remark that, as defined, all our images consist of lattice points. However,

the figures will be given in terms of pixels. Accordingly, the block Bk(i, j) will be
depicted as (i, j) + [0, k − 1]2; see Figure 3. The individual pixels are (p, q) + [0, 1]2,
p, q ∈ [2], i.e., are identified with the lattice point at their lower-left corner. Of course,
the fact that a point is or is not present in a solution is indicated by a black or a
white pixel, respectively.

For ε, k ∈ N0 with k ≥ 2 we define the task of (noisy) superresolution:
nSR(k, ε)

Instance:m,n ∈ kN,
r1, . . . , rn ∈ N0, (row sum measurements)

c1, . . . , cm ∈ N0, (column sum measurements)

R ⊆ C(m,n, k), (corner points of reliable
gray value measurements)

v(i, j) ∈ [k2]0, (i, j) ∈ C(m,n, k), (gray value measurements)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ [m]× [n], with∑
p∈[m]

ξp,q = rq, q ∈ [n], (row sums)

∑
q∈[n]

ξp,q = cp, p ∈ [m], (column sums)

∑
(p,q)∈Bk(i,j)

ξp,q = v(i, j), (i, j) ∈ R, (block constraints)

∑
(p,q)∈Bk(i,j)

ξp,q ∈ v(i, j) + [−ε, ε], (i, j) ∈ C(m,n, k) \R, (noisy block constraints)

or decide that no such solution exists.
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Fig. 4. Algorithm 1 applied to a phantom. (a) Low-resolution 100 × 100 grayscale image;
(b) magnification of the part contained in the red rectangle; (c) magnification of the corresponding
part of the 200× 200 high-resolution binary image obtained by the algorithm.

The numbers r1, . . . , rn and c1, . . . , cm are the row and column sum measurements
of the high-resolution binary m×n image, v(i, j) ∈ [k2]0 corresponds to the gray value
of the low-resolution k × k-pixel at (i, j) of the low-resolution m/k × n/k grayscale
image, and R is the set of low-resolution pixel locations for which we assume that
the gray values have been determined reliably, i.e., without error. The number ε is
an error bound for the remaining blocks. (While it may seem unusual to denote a
nonnegative integer by ε we chose this notation to indicate the specific role of ε of
quantifying an error.) The task is to find a binary high-resolution image satisfying
the row and column sums such that the number of black pixels in each block is the
gray value for the corresponding k×k-pixel low-resolution image. Clearly, a necessary
(and easily verified) condition for feasibility is that∑

q∈[n]

rq =
∑
p∈[m]

cp.

In the following we will assume without loss of generality that this is always the case.
Our special focus is on double-resolution imaging, i.e., on the case k = 2. For ε > 0

we define nDR(ε) :=nSR(2, ε). In the reliable situation, i.e., for ε = 0, we simply
speak of double resolution and set DR:=nSR(2, 0). (Then, of course, the set R can
be omitted from the input.)

In the present paper, we show that the resolution of any reliable grayscale image
can in fact be doubled in each dimension in polynomial time if X-ray data are provided
from two viewing angles at double resolution. In other words, we show the following.

Theorem 2.1. DR ∈ P.
Figures 4 and 5 illustrate the performance of the algorithm for DR applied to

two phantoms. The results have been obtained within a fraction of a second on a
standard PC.

In Figure 4, the original phantom is a binary 200 × 200 image of a crystalline
sample taken from [2]. It is assumed that the low-resolution grayscale image shown
in Figure 4(a) has been obtained by some imaging method and that double-resolution
X-ray information in the two standard directions is also available. Application of the
algorithm (see Algorithm 1) yields the binary image shown in Figure 4(c).

In Figure 5, the original phantom is a binary 100 × 100 image, for which the
low-resolution grayscale image shown in Figure 5(a) is available. From this image
and the row and column sums (counting the black pixels) of the original phantom the
algorithm returns the binary image shown in Figure 5(b).
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Fig. 5. Algorithm 1 applied to a phantom. (a) Low-resolution 50×50 grayscale image; (b) high-
resolution 100 × 100 binary image obtained by the algorithm; (c) high-resolution 100 × 100 binary
image minimizing the total variation.

The results shown in Figures 4 and 5 satisfy, of course, the row and column sums
and block constraints. However, in both cases the solutions are still not unique. This
can also be detected in polynomial time.

Theorem 2.2. For every instance of DR it can be decided in polynomial time
whether the instance admits a unique solution.

While the additional X-ray information (at double resolution) does, in general,
reduce the ambiguity, typically it will still not lead to uniqueness. Of course, a
standard way of dealing with nonuniqueness in practice is regularization [8, 9, 24, 38].
To illustrate the possibility of adapting a regularization scheme to our context, we
show in Figure 5(c) a binary solution minimizing the total variation. In fact, the
solution is obtained from Figure 5(a) by applying 15 so-called local switches, each of
which is strictly decreasing the value of the total variation functional

J(x) :=
∑
p∈[m]

∑
q∈[n]

||(∇x(1)p,q,∇x(2)p,q)T ||2,

where

(∇x)(1)p,q :=

{
ξp+1,q − ξp,q : p < m,
0 : otherwise,

(∇x)(2)p,q :=

{
ξp,q+1 − ξp,q : q < n,
0 : otherwise,

and || · ||2 denotes the Euclidean norm. See, e.g., [12] for some background informa-
tion. Of course, we obtain the same results for other p-norms (including the 1-norm),
because our images are binary.

We now turn to the task nDR(ε) where small “occasional” uncertainties in the
gray levels are allowed. First observe that a constant number of uncertainties does
not increase the complexity. However, if we allow a (as we will see, comparably small
but) nonconstant number of uncertainties the problem becomes hard.

Theorem 2.3. nDR(ε) is NP-hard for any ε > 0.

(For background material on complexity theory, see, e.g., [19].)
Further, the NP-hardness extends to the task of checking uniqueness.

Corollary 2.4. The problem of deciding whether a given solution of an instance
of nDR(ε) with ε > 0 has a nonunique solution is NP-complete.
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As it turns out, the problem nDR(ε) with ε > 0 remains NP-hard for larger block
sizes.

Corollary 2.5. nSR(k, ε) is NP-hard for any k ≥ 2 and ε > 0.

In other words, noise does not only affect the reconstruction quality. It also affects
the algorithmic tractability of the inverse problem.

The present paper is organized as follows. We deal with the case of reliable data
in section 3. Results on nDR(ε) and nSR(k, ε) involving noisy data are contained
in section 4. Section 5 concludes with some additional remarks on certain extensions
and an open problem.

3. Reliable data. In this section we discuss the task DR, i.e., k = 2 and ε = 0.
We remark that, in the following, our emphasis is on providing brief and concise ar-
guments for polynomial-time solvability rather than to focus on computationally or
practically most efficient algorithms. Recall, however, our comments on the compu-
tational performance of our algorithms and the effect of the additional information
for the example images depicted in Figures 4 and 5.

The main result of this section is Theorem 2.1. In its proof we show that DR
decomposes into five problems that can be solved independently. The five problems
are restricted single-graylevel versions of DR where each block is required to contain
the same number ν ∈ [4]0 of ones. In fact, we allow for restricted problem instances
(and in particular row and column sums) to be defined only on subsets

(1) G(I) :=
⋃

(i,j)∈I

B(i, j) ⊆ [m]× [n]

of the grid [m]× [n] given by means of some I ⊆ C(m,n, 2). Let

Πx(I) := {i ∈ [m] : ∃j ∈ [n] : (i, j) ∈ I}

and
Πy(I) := {j ∈ [n] : ∃i ∈ [m] : (i, j) ∈ I}

denote the projection of I onto the first and second coordinates, respectively.
Then, we define for ν ∈ [4]0 :

DR(ν)

Instance: m,n ∈ 2N,
I ⊆ C(m,n, 2), (a set of corner points)

rj+l ∈ N0, j ∈ Πy(I), l ∈ {0, 1}, (row sum measurements)

ci+l ∈ N0, i ∈ Πx(I), l ∈ {0, 1}, (column sum measurements)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ G(I) with∑
p:(p,j)∈G(I)

ξp,j+l = rj+l, j ∈ Πy(I), l ∈ {0, 1}, (row sums)

∑
q:(i,q)∈G(I)

ξi+l,q = ci+l, i ∈ Πx(I), l ∈ {0, 1}, (column sums)

∑
(p,q)∈B(i,j)

ξp,q = ν, (i, j) ∈ I, (block constraints)

or decide that no such solution exists.

Of course, the tasks DR(ν), ν ∈ {0, 4}, are trivial. In fact, the only potential
solution x∗ satisfying the block constraints is given by ξ∗p,q = ν/4, (p, q) ∈ G(I), and
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Fig. 6. Illustration of DR(1). (Left) Row and column sums and blocks B(i, j) with (i, j) ∈ I
in gray color. (Right) Solution defined by (2).

it is checked easily and in polynomial time whether this satisfies the row and column
sums.

The next lemma and corollary deal with DR(ν), ν ∈ {1, 3}. Their statements
and proofs use the notation σi(j) and ρj(i) for the number of blocks in the same
vertical strip as but below B(i, j) or in the same horizontal strip as but left of B(i, j),
respectively. More precisely, let

σi(j) := |({i} × [j]) ∩ I| and ρj(i) := |([i]× {j}) ∩ I|

for (i, j) ∈ I ⊆ C(m,n, 2).

Lemma 3.1.
(i) An instance I of DR(1) is feasible if and only if for every (i, j) ∈ I we have

rj + rj+1 = ρj(m) and ci + ci+1 = σi(n).

(ii) The solution of a feasible instance of DR(1) is unique if and only if for
every (i, j) ∈ I we have

rj · rj+1 = 0 and ci · ci+1 = 0.

(iii) DR(1) ∈ P.

Proof. Clearly, for the feasibility of a given instance of DR(1) the conditions

rj + rj+1 = ρj(m) and ci + ci+1 = σi(n)

are necessary.
Now, suppose that the conditions are satisfied. For every (i, j) ∈ I and (p, q) ∈

B(i, j) we set

(2)

ai,j := i+ min

{
l ∈ {0, 1} : σi(j) ≤

l∑
h=0

ci+h

}
,

bi,j := j + min

{
l ∈ {0, 1} : ρj(i) ≤

l∑
h=0

rj+h

}
,

ξ∗p,q :=

{
1 : (p, q) = (ai,j , bi,j),
0 : otherwise.

Figure 6 gives an illustration.
By this definition we have satisfied all block constraints. A simple counting argu-

ment shows that the row and columns sums are also as required. In fact, for j ∈ Πy(I)
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and i ∈ Πx(I) we have

∑
p:(p,j)∈G(I)

ξ∗p,j = |{p : ((p, j) ∈ I) ∧ (ρj(p) ≤ rj)}| = rj ,

∑
p:(p,j)∈G(I)

ξ∗p,j+1 = |{p : ((p, j) ∈ I) ∧ (ρj(p) > rj)}| = ρj(m)− rj = rj+1,

∑
q:(i,q)∈G(I)

ξ∗i,q = |{q : ((i, q) ∈ I) ∧ (σi(q) ≤ ci)}| = ci,

∑
q:(i,q)∈G(I)

ξ∗i+1,q = |{q : ((i, q) ∈ I) ∧ (σi(q) > ci)}| = σi(n)− ci = ci+1.

This concludes the proof of (i).
To show (ii), we consider a solution x∗ to DR(1). Suppose that rj > 0 and

rj+1 > 0 for some j ∈ Πy(I). Then, there exist i, l ∈ [m] with ξ∗i,j = ξ∗l,j+1 = 1. By the
block constraints we have ξ∗i,j+1 = ξ∗l,j = 0. Applying a switch to ξ∗i,j , ξ

∗
l,j+1, ξ

∗
i,j+1,

and ξ∗l,j , i.e., setting ξ′i,j := ξ′l,j+1 := 0, ξ′i,j+1 := ξ′l,j := 1, and ξ′p,q := ξ∗p,q otherwise,
yields thus another solution. As the same argument holds also for the column sums
we have shown that the condition in (ii) is necessary. The condition is, on the other
hand, also sufficient since the 0-values of the row and column sums leave only a single
position (p, q) in each block B(i, j), (i, j) ∈ I, for which ξp,q can take on a nonzero
value (in fact, the value needs to be 1 to satisfy the block constraints).

We now turn to (iii). The algorithm checks the condition (i). If it is violated,
it reports infeasibility; otherwise, a solution is constructed through (2). Clearly, all
steps can be performed in polynomial time.

Corollary 3.2.
(i) An instance I of DR(3) is feasible if and only if for every (i, j) ∈ I we have

rj + rj+1 = 3ρj(m) and ci + ci+1 = 3σi(n).

(ii) The solution of a feasible instance of DR(3) is unique if and only if for
every (i, j) ∈ I we have

(2ρj(m)−rj)·(2ρj(m)−rj+1) = 0 and (2σi(n)−ci)·(2σi(n)−ci+1) = 0.

(iii) DR(3) ∈ P.

Proof. The results follow directly from the results for DR(1) in Lemma 3.1 as the
former are obtained from the latter by inversion and vice versa, i.e., by replacing rj+l
by 2ρj(m)− rj+l and ci+l by 2σi(n)− ci+l, (i, j) ∈ I, l ∈ {0, 1}, and, in the solutions,
all 1’s by 0’s and 0’s by 1’s.

Next we prove polynomial-time solvability of DR(2). To this end we need two
lemmas. The first can be viewed as dealing with a certain “two-color version” of
discrete tomography. The second deals with specific switches or interchanges (in the
sense of [41]).

Lemma 3.3. The problem, given m,n ∈ 2N, I ⊆ C(m,n, 2), and r′j , c
′
i ∈ N0,

(i, j) ∈ I, decide whether there exist nonnegative integers ζi,j , ηi,j , (i, j) ∈ I, such
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that ∑
p:(p,j)∈I

ζp,j = r′j , j ∈ Πy(I),

∑
q:(i,q)∈I

ηi,q = c′i, i ∈ Πx(I),

ζi,j + ηi,j ≤ 1, (i, j) ∈ I,

and, if so, determine a solution, can be solved in polynomial time.

Proof. We show that the problem can be formulated as a linear program involving
a totally unimodular coefficient matrix (for background material, see [44]).

We assemble the variables ζi,j , ηi,j for (i, j) ∈ I into a 2 · |I|-dimensional vector
and rephrase the constraints in matrix form Ax = r′, A′x = c′, and (E E)x ≤ 11,
where r′ contains the r′j ’s, c

′ contains the c′i’s, and E denotes the |I| × |I|-identity
matrix. The problem is then to determine an integer solution of {x : Mx ≤ b, x ≥ 0},
where

M :=


A 0
−A 0
0 A′

0 −A′
E E

 and b :=


r′

−r′
c′

−c′
11

 .

The submatrix

M ′ :=

 A 0
0 A′

E E


is totally unimodular as it is the node-edge incidence matrix of a bipartite graph (one
of the two parts of the partition is the set of the last |I| rows of M ′). But then M is
also totally unimodular as it results from appending a subset of rows of −M ′ to the
totally unimodular matrix M ′. In other words, {x : Mx ≤ b, x ≥ 0} is an integral
polyhedron, i.e., it coincides with the convex hull of its integral vectors. Hence, a
vertex of this polyhedron can be found in polynomial time by linear programming.

Next we study the structure of solutions in terms of the patterns of the blocks.
This will allow us to focus on special classes of solutions, which we will later call
reduced solutions. The problem of finding reduced solutions to a given instance of
DR will decompose into the five independent subtasks of solving instances of DR(ν),
ν ∈ {0, . . . , 4}. The concept of reduced solutions will also play a role in our proof of
Lemma 3.5 showing that DR(2) ∈ P.

Blocks in solutions are filled with zeros and ones. There are 16 such combinations.
By grouping the combinations that have the same row sums, we distinguish the nine
block types A1, A2, B1, B2, B3, C1, C2, D1, D2 shown in Figure 7. Some of the types
consist of several subtypes/combinations: type Ai and Ci consist of the two subtypes
Ai,i′ and Ci,i′ i, i

′ ∈ [2], respectively, while B3 consists of the subtypes B3,1, . . . ,B3,4.
For any given solution, we will later count the number of occurrences of the different
block types in each horizontal and vertical strip. The corresponding variables for the
horizontal strip [m]×{j, j+ 1} are indicated in Figure 7. For instance, αj counts the
number of occurrences of block type A1, while αj+1 counts the number of occurrences
of block type A2.

We introduce now the concept of local switches. It is based on the following
observation. If, for instance, a horizontal strip contains a block of type A1,i, i ∈ [2],
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Type A1

Var. αj+1

Var. αj

Type A2

A2,1 A2,2 B3,3 B3,4

A1,1 A1,2

(a)

Type B1

Var. βj

Type B2

Var. βj+1

Type B3

Var. β′j

B3,1 B3,2 B3,3 B3,4

B2,1

(b)

Type C1
Var. γj

Type C2
Var. γj+1

C2,1 C2,2 B3,3 B3,4

C1,1 C1,2

(c)

Type D1

Type D2

C2,1

C2,1

(d)

Fig. 7. Block types A1, A2, B1, B2, B3, C1, C2, D1, D2. The indicated variables αj , αj+1,
βj , βj+1, β

′
j , γj , γj+1 count the number of occurrences of the respective block type in the horizontal

strip [m]× {j, j + 1}. The block types in (d) are not further considered as they can be eliminated in
a preprocessing step. For referencing purposes, the figure also introduces the subtypes Ai1,i2 of Ai1 ,
B3,i3 of B3, and Ci1,i2 of Ci1 , i1, i2 ∈ [2], i3 ∈ [3].

and another one of type B2 we may replace them by a block of type A2,i and a block
of type B3,3, respectively, without changing the row and column constraints. Such a
change will be called a horizontal local switch of class 〈1〉. In a similar way we define
horizontal local switches of class 〈t〉, t = 2, . . . , 7, according to Table 1. Horizontal
local switches of class 〈7〉 affect only single blocks (blocks of type B3,4 are turned into
blocks of type B3,3).

The (similar) switches in the vertical strips, called vertical local switches, are
listed in Table 2.

A switch is called local if it is a horizontal or vertical local switch of some class 〈t〉,
t ∈ [7]. A solution is called reduced if no local switch of any class 〈t〉, t ∈ [7], can be
applied. Note that local switches are directed in the sense that they turn the types
of blocks listed in the second column of Tables 1 and 2 into the types given in the
respective third column of the tables. Oppositely directed switches, called reversed
local switches, will be used later when we discuss questions of uniqueness.

Lemma 3.4.
(i) Application of a local switch to a solution of a given instance of DR yields

again a solution of the same instance.
(ii) An instance of DR has a solution if and only if there is a reduced solution.

Proof. To prove (i) just observe that the local switches neither change the row
and column sums nor the number of ones contained in each block.
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Table 1
Horizontal local switches. The parameters i and i′ are elements of [2].

Class Turns Into Illustration

〈1〉 (A1,i,B2) → (A2,i,B3,3)

〈2〉 (A2,i,B1) → (A1,i,B3,3)

〈3〉 (B1,B2) → (B3,3,B3,3)

〈4〉 (C2,i,B2) → (C1,i,B3,3)

〈5〉 (C1,i,B1) → (C2,i,B3,3)

〈6〉 (A1,i,C1,i′ )→ (A2,i,C2,i′ )

〈7〉 (B3,4) → (B3,3)

Let us now turn to (ii). Suppose the given instance has a solution x∗. The local
switches of class 〈t〉, t ∈ [7] \ {6}, increase the number of blocks B(i, j) of type B3,3,
i.e.,

ξ∗i,j = ξ∗i+1,j+1 = 1 and ξ∗i+1,j = ξ∗i,j+1 = 0.

The process of applying local switches of class 〈t〉, t ∈ [7]\{6}, thus needs to terminate
since the number of blocks in each problem instance is finite. Further, note that
local switches of class 〈6〉 applied in horizontal strips increase the number of blocks
of type A2. The vertical switches of that class do not decrease the number of such
blocks, but increase the number of blocks which are of type A1,2 or A2,2. Hence, after
finitely many switches, a given solution is converted into a reduced one.

Lemma 3.5. DR(2) ∈ P.
Proof. Our general strategy is as follows. First we show that a given instance is

feasible if and only if there exists a specific reduced solution that contains only three
block types. Then we give a polynomial-time algorithm that finds such a solution or
determines infeasibility.

By rearranging the rows and columns, if necessary, we may assume that

rj ≥ rj+1 and ci ≥ ci+1, (i, j) ∈ I.

Now, first suppose that the given instance has a solution. Then, by Lemma 3.4
there exists a reduced one. In the following, we consider such a reduced solution.

The potential block types, and corresponding variables βj , βj+1, and β′j counting
the number of occurrences of the respective block types in the horizontal strip [m]×
{j, j+ 1} of a reduced solution, are shown in Figure 7(b). Block types counted by the
same variable have equal row sums.
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Table 2
Vertical local switches. The parameters i and i′ are elements of [2].

Class Turns Into Illustration

〈1〉 (B3,2,Ai,1) → (B3,3,Ai,2)

〈2〉 (B3,1,Ai,2) → (B3,3,Ai,1)

〈3〉 (B3,2,B3,1) → (B3,3,B3,3)

〈4〉 (B3,2,Ci,2) → (B3,3,Ci,1)

〈5〉 (B3,1,Ci,1) → (B3,3,Ci,2)

〈6〉 (Ci′,1,Ai,1) → (Ci′,2,Ai,2)

〈7〉 (B3,4) → (B3,3)

Consider now, for fixed (i, j) ∈ I, the blocks in G(I)∩ ([m]×{j, j+1}). Counting
the block types, any solution needs to satisfy

2βj + β′j = rj ,
2βj+1 + β′j = rj+1,

which implies

βj − βj+1 = (rj − rj+1)/2.(3)

As the solution is reduced no horizontal local switch of class 〈3〉 can be applied, hence,
it is impossible that both βj > 0 and βj+1 > 0. This, together with rj ≥ rj+1 and (3),
implies

βj+1 = 0, βj = (rj − rj+1)/2, and β′j = rj+1.

(Note that by βj+1 = 0 there is no block of type B2. As no horizontal local switch of
class 〈7〉 can be applied, there is neither a block of type B3,4.)
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Type B1 Type B3,3Type B3,1

Fig. 8. The three potential block types in solutions of DR(2) instances considered in the proof
of Lemma 3.5. Values 1 and 0 are indicated in black and white, respectively.

The same argument applies to the other horizontal strips, and a similar argument
holds for the vertical strips (which, in particular, rules out blocks of type B3,2). Hence,
we conclude that, due to reduction, DR(2) amounts to the task of assigning one of
the three block types B1,B3,1,B3,3 shown in Figure 8 to each of the blocks B(i, j),
(i, j) ∈ I, such that, in particular, the number of type B1 and type B3,1 blocks in
each horizontal and vertical strip, respectively, equals some prescribed cardinality.

Now, we introduce 0/1-variables ζi,j , ηi,j , λi,j , (i, j) ∈ I, that are one if and only
if B(i, j) is of types B1, B3,1, B3,3, respectively. Then we ask for 0/1-solutions that
satisfy ∑

p:(p,j)∈I

ζp,j = (rj − rj+1)/2, j ∈ Πy(I),

∑
p:(p,j)∈I

(ηp,j + λp,j) = ρj(m)− (rj − rj+1)/2, j ∈ Πy(I),

∑
q:(i,q)∈I

ηi,q = (ci − ci+1)/2, i ∈ Πx(I),

∑
q:(i,q)∈I

(ζi,q + λi,q) = σi(n)− (ci − ci+1)/2, i ∈ Πx(I),

ζi,j + ηi,j + λi,j = 1, (i, j) ∈ I.
Eliminating λi,j = 1−ζi,j−ηi,j , (i, j) ∈ I, we see that the 0/1-solutions of this system
are in one-to-one correspondence with the 0/1 solution of

(4)

∑
p:(p,j)∈I

ζp,j = (rj − rj+1)/2, j ∈ Πy(I),

∑
q:(i,q)∈I

ηi,q = (ci − ci+1)/2, i ∈ Πx(I),

ζi,j + ηi,j ≤ 1, (i, j) ∈ I.
As we assume that our DR(2) instance is feasible (hence containing two ones in each
block), we have rj + rj+1 = 2ρj(m) and ci + ci+1 = 2σi(n) for every j ∈ Πy(I) and
i ∈ Πx(I). Hence, if a solution to (4) is expanded, replacing the ζ∗i,j , η

∗
i,j , 1−ζ∗i,j−η∗i,j ,

(i, j) ∈ I, by the respective block types, then, indeed∑
p:(p,j)∈G(I)

ξ∗p,j = 2 · (rj − rj+1)/2 + ρj(m)− (rj − rj+1)/2 = rj ,∑
p:(p,j)∈G(I)

ξ∗p,j+1 = ρj(m)− (rj − rj+1)/2 = rj+1,∑
q:(i,q)∈G(I)

ξ∗i,q = 2 · (ci − ci+1)/2 + σi(n)− (ci − ci+1)/2 = ci,∑
q:(i,q)∈G(I)

ξ∗i+1,q = σi(n)− (ci − ci+1)/2 = ci+1
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for every j ∈ Πy(I) and i ∈ Πx(I). Any 0/1-solution to (4) thus provides a solution to
the given DR(2) instance. Since 0/1-solutions to (4) can be found in polynomial time
(see Lemma 3.3), we have, hence, determined a solution to our instance in polynomial
time. Note that this solution is reduced as it does not contain blocks of type B2,
B3,2, and B3,4.

It remains to consider the case that the given DR(2) instance is infeasible. Then
one of the previous steps must fail: either (4) admits no 0/1-solution or the expanded
“solution” does not satisfy all row and column sums. Both can be detected in poly-
nomial time (see also Lemma 3.3).

Let us now turn to the task of solving DR. Suppose, we are given a feasible
instance of DR that does not contain any block constraints of the form v(i, j) = ν,
ν ∈ {0, 4}, and whose row and column sums satisfy

(5) rj ≥ rj+1 and ci ≥ ci+1, (i, j) ∈ C(m,n, 2).

We call such an instance a proper instance.
In the following, we consider for fixed j ∈ [n] ∩ (2N0 + 1) the horizontal strip

[m]× {j, j + 1}. We set

v
(1)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 1}|,
v
(2)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 2}|,
v
(3)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 3}|.

Let us now consider a solution of the proper instance. A count of the block
types of the solution in that strip (the variables for the block types are indicated in
Figure 7), yields

αj + 2βj + β′j + γj + 2γj+1 = rj ,

αj+1 + 2βj+1 + β′j + 2γj + γj+1 = rj+1,

αj + αj+1 = v
(1)
j ,(6)

βj + βj+1 + β′j = v
(2)
j ,(7)

γj + γj+1 = v
(3)
j .(8)

From the system we obtain

αj + βj − βj+1 + γj+1 = rj − v(2)j − v
(3)
j ,(9)

−αj − βj + βj+1 + γj = rj+1 − v(1)j − v
(2)
j − v

(3)
j .(10)

We will show that for reduced solutions, the variable values of αj , αj+1, βj , β
′
j ,

βj+1, γj , γj+1 are uniquely determined and can actually be computed from the data

(i.e., from rj , rj+1, v
(1)
j , v

(2)
j , and v

(3)
j ). This will then allow us to split the task into

instances of DR(ν), ν ∈ [3].
We begin with a simple observation.

Lemma 3.6. Any reduced solution to a proper instance of DR satisfies βj+1 = 0.

Proof. Suppose there is a reduced solution with βj+1 > 0. As we cannot apply
any further horizontal local switch of class 〈t〉, t ∈ {1, 3, 4}, we need to have αj =
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βj = γj+1 = 0, hence, by (6) and (8), αj+1 = v
(1)
j , and γj = v

(3)
j . Using (9) and (10)

we obtain

rj = v
(2)
j + v

(3)
j − βj+1,

rj+1 = v
(1)
j + v

(2)
j + 2v

(3)
j + βj+1,

which imply rj < v
(2)
j + v

(3)
j ≤ rj+1, a contradiction to (5).

Given a proper instance, we distinguish three cases.
• Case 1: Every reduced solution satisfies βj > 0.

• Case 2: There is a reduced solution satisfying βj = 0, and in any such solution
we have αj > 0.

• Case 3: There is a reduced solution satisfying βj = αj = 0.

Lemma 3.7. Given a proper instance of DR. Then,

Case 1 ⇔ v
(3)
j ≤ rj+1 < v

(2)
j + v

(3)
j ,

Case 2 ⇔ v
(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j ,

Case 3 ⇔ v
(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v

(1)
j + v

(2)
j + 2v

(3)
j ,

and in all cases the variable values of αj , αj+1, βj , β
′
j , βj+1, γj , γj+1 are uniquely

determined by the data.

Proof. By Lemma 3.4, a proper instance has a reduced solution. Hence, one of
the disjoint Cases 1–3 occurs. Once we have established the implications “⇒” the
reverse implications follow, because the stated intervals for the rj are disjoint (thereby
uniquely specifying the case).

Hence it suffices to prove the implications ⇒. Let us begin with Case 1. As
we cannot apply any further horizontal local switch of class 〈t〉, t ∈ {2, 5}, we must

have αj+1 = γj = 0, hence, αj = v
(1)
j and γj+1 = v

(3)
j . Equation (10) implies βj =

v
(2)
j +v

(3)
j −rj+1. As 0 < βj ≤ v(2)j , we thus have v

(3)
j ≤ rj+1 < v

(2)
j +v

(3)
j . Further, (7)

yields β′j = rj+1 − v(3)j . Hence, all values of the variables are uniquely determined.

In Case 2, as βj+1 = βj = 0, we have β′j = v
(2)
j and, as we cannot apply any

further horizontal local switch of class 〈6〉, we need to have γj = 0, hence, γj+1 = v
(3)
j .

Equation (10) implies αj = v
(1)
j + v

(2)
j + v

(3)
j − rj+1. As 0 < αj ≤ v

(1)
j , we thus have

v
(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j . Further, (6) yields αj+1 = rj+1 − v(2)j − v

(3)
j .

Hence, again, all variables are determined.

In Case 3, as βj+1 = βj = αj = 0, we have β′j = v
(2)
j and αj+1 = v

(1)
j .

Equation (10) implies γj = rj+1 − v
(1)
j − v

(2)
j − v

(3)
j . As 0 ≤ γj ≤ v

(3)
j we thus

have v
(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v

(1)
j + v

(2)
j + 2v

(3)
j . Further, (8) yields γj+1 =

v
(1)
j + v

(2)
j + 2v

(3)
j − rj+1, and all variable values are determined.

We are now prepared to give a proof of Theorem 2.1.

Proof of Theorem 2.1. We show that the task of finding a solution to a given
problem instance can be decomposed into five independent subtasks of solving in-
stances of DR(ν), ν ∈ {0, . . . , 4}. The subtasks are then polynomial-time solvable by
Lemma 3.1, Corollary 3.2 and Lemma 3.5 (and trivially for DR(0) and DR(4)). The
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key step in our proof is to deduce from the data the row and column sums for the
particular subtasks. This deduction is possible for reduced solutions.

We start with some preprocessing if necessary. First, if the problem instance
contains block constraints of the form v(i, j) = ν, ν ∈ {0, 4}, we need to have ξi,j =
ξi+1,j = ξi,j+1 = ξi+1,j+1 = ν/4. In this case, we fix the values of these variables,
reduce the row and column sums accordingly, and consider only the remaining blocks.
For notational convenience, we assume from now on that our instance does not contain
such block constraints.

Second, by possibly rearranging the rows and columns, we assume that (5) holds.
Suppose, the problem instance is feasible, hence proper. (We return to the infea-

sible case later.) The instance has a solution and, hence, by Lemma 3.4, a reduced
one. Thus, considering a horizontal strip [m]×{j, j+ 1} with j ∈ [n]∩ (2N0 + 1), one
of the Cases 1, 2 or 3 needs to occur. Which of the cases occurs is, by Lemma 3.7,
determined by the data, simply by testing whether we have

(11)

v
(3)
j ≤ rj+1 < v

(2)
j + v

(3)
j , or

v
(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j , or

v
(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v(1)j + v

(2)
j + 2v

(3)
j .

In all three cases we know the unique values of the αj , αj+1, βj , βj+1, β
′
j , γj , and

γj+1. Therefore we know for each ν ∈ [3] the row sums∑
p:(p,j)∈G(I(ν))

ξp,j and
∑

p:(p,j)∈G(I(ν))

ξp,j+1

with
I(ν) := {(i, j) ∈ C(m,n, 2) : v(i, j) = ν}

for G(I(ν)) according to (1). In particular, we have

(12)

∑
p:(p,j)∈G(I(1))

ξp,j = αj ,
∑

p:(p,j)∈G(I(1))

ξp,j+1 = αj+1,

∑
p:(p,j)∈G(I(2))

ξp,j = 2βj + β′j ,
∑

p:(p,j)∈G(I(2))

ξp,j+1 = β′j ,∑
p:(p,j)∈G(I(3))

ξp,j = γj + 2γj+1,
∑

p:(p,j)∈G(I(3))

ξp,j+1 = 2γj + γj+1.

Similarly, we obtain the individual vertical constraints. We can therefore de-
compose the reconstruction problem into the three independent subproblems DR(ν),
ν ∈ [3], which, by Lemma 3.1, Corollary 3.2, and Lemma 3.5, are solvable in polyno-
mial time.

It remains to consider the case that the given instance of DR is infeasible. In
this case, the decomposition into the subproblems needs to yield either an infeasible
subproblem or the returned “solution” needs to violate one of the constraints. As
both are detected in polynomial time, the proof of this theorem is concluded.

Note that the above proof is constructive. A corresponding polynomial-time al-
gorithm for solving DR is summarized in Algorithm 1.

We also remark that the solutions returned by the proposed algorithm are always
reduced. This is easily seen by (i) verifying that the values αj , αj+1, βj , βj+1, β

′
j ,
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Algorithm 1 Compute a solution to DR.

1: I(ν) := {(i, j) ∈ C(m,n, 2) : v(i, j) = ν}, ν ∈ [4]0.
2: Solve DR(0) with I := I(0) by filling the B2(i, j), (i, j) ∈ I, with zeros.
3: Solve DR(4) with I := I(4) by filling the B2(i, j), (i, j) ∈ I, with ones.
4: Reduce the row and column sums accordingly.
5: Determine the row and column sums for the DR(ν) instances, ν ∈ [3]

(row sums according to (11), (12); column sums analogously).
6: Solve DR(1) with I := I(1) according to (2).
7: Solve DR(2) with I := I(2) according to Lemma 3.5.
8: Solve DR(3) with I := I(3) according to Corollary 3.2.
9: if the returned ξ∗p,q, (p, q) ∈ [m]× [n], satisfy all constraints then

10: return ξ∗p,q, (p, q) ∈ [m]× [n].
11: else
12: return “Instance is infeasible.”
13: end if

γj , and γj+1, j ∈ [n], in each of the three cases in (11) (and, correspondingly, for
the variables in the vertical strips) do not allow an application of any of the local
switches of class 〈t〉, t ∈ [6], because for each of the local switches there is always a
corresponding variable of value zero; and (ii) by noting that the proposed algorithm
for DR(2) returns, by definition, only solutions where no local switch of class 〈7〉 can
be applied.

Now we turn to uniqueness.

Proof of Theorem 2.2. By Theorem 2.1, either infeasibility is detected or a re-
duced solution of an instance is determined in polynomial time. We can thus assume
that the problem instance has a solution.

Clearly, a solution is unique if and only if (Condition 1) there is only one reduced
solution, and (Condition 2) every solution is a reduced solution.

The solution returned by the algorithm is reduced. Any two reduced solutions
define the same instances of the subproblems DR(ν), ν ∈ [3], because the problem
instances are defined by means of (11), i.e., the definition depends only on the partic-

ular values of the r1, . . . , rn, and c1, . . . , cm (note that v
(1)
j , v

(2)
j , v

(3)
j can be directly

determined from the input). Hence, there is only one reduced solution if and only if
the solution to each of the subproblems DR(ν), ν ∈ [3], is unique.

The conditions in Lemma 3.1(ii) and Corollary 3.2(ii) and, hence, uniqueness for
the instances of DR(1) and DR(3), can be checked in polynomial time. For DR(2)
we have, by the linear program considered in Lemma 3.3, a basic feasible solution
v∗ of the linear program, i.e., a vertex of the feasible region, at our disposal. Now
we minimize the linear objective function f(x) = xT v∗ over the same feasible region,
which again can be done in polynomial time. The solution v∗ is unique if and only
if f(x∗) = v∗T v∗. (Note that multiple solutions contain the same number of ones as
this is given by the sum of the row and column sums, respectively.) Hence uniqueness
for DR(2), and therefore Condition 1, can be checked in polynomial time.

Suppose now that the reduced solution x∗ returned by the algorithm is unique
among all reduced solutions, i.e., Condition 1 is satisfied. We have shown in Lemma 3.4
that every solution can be reduced by applying a sequence of local switches. Reversing
the sequence and the local switches, we thus see that Condition 2 holds if and only
if there is no reversed local switch that can be applied to x∗. There are O(m2n2)
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possible pairs of blocks that need to be checked to form a reversed local switch,
hence, Condition 2 can also be checked in polynomial time.

4. Data uncertainty. In the proof of Theorem 2.3 we use a transformation
from the following NP-complete problem (see [13]):

1-In-3-SAT

Instance: Positive integers S, T, and a set C of S clauses over T variables
τ1, . . . , τT , where each clause consists of three literals involving
three different variables.

Task: Decide whether there exists a satisfying truth assignment for C that
sets exactly one literal true in each clause.

For a given instance of 1-In-3-SAT we will construct a circuit board that contains
an initializer, several connectors, and clause chips. A truth assignment is transmitted
through the circuit board, the clause chips ensure that the clauses are satisfied.

The structure of our proof is in some ways similar to the proof from [18] that
establishes the NP-hardness of the task of reconstructing lattice sets from X-rays
taken in three or more directions. However, we need to deviate from [18] in several key
aspects, because the block constraints do not give a direct way of controlling points
over large distances, and the elimination of “unwanted solutions” inside individual
blocks seems also problematic. A fundamental difference to [18] is, for instance, that
we encode the Boolean values for the variables by specific types of blocks, and the
satisfiability of the clauses is verified via row and column sums. At first glance it
seems that part of the variable assignment information is lost after verification, but
it turns out that we can recover it from “redundant” information in our encoding.

Key ideas of the proof of Theorem 2.3. Before we start with the detailed proof,
we illustrate the general ideas by means of an example. Suppose, the instance I of
1-In-3-SAT is given by I := (S, T, C) := (1, 4, {τ1 ∨ ¬τ2 ∨ τ3}). We will define an
instance I ′ of nDR(ε) such that there is a solution for I ′ if and only if there is one
for I. To this end, we construct a circuit board contained in the box [34]× [34]. With
each (p, q) ∈ [34] × [34] we associate a variable ξp,q. Again, the figures will show the
associated pixels (p, q) + [0, 1]2; see Figure 3.

The circuit board consists of three major types of components: An initializer,
connectors, and clause chips. The initializer and the connectors are rather similar.
The initializer contains for every variable τt, t ∈ [T ], a so-called τt-chip, the connectors
contain for every variable a ¬τt-chip. The clause chips are more complex as they
consist of two collectors, two verifiers, and a transmitter.

Figure 9(a) shows the circuit board for our instance.
The gray areas indicate blocks that are set to zero via block constraints. By

setting to zero suitable row and column sums we make sure that nonzero components
ξ∗p,q are only possible in the white bold-framed boxes. The nonzero row and column
sums are shown on the top and on the right of the figure.

The bold-framed 2 × 2 boxes are Boolean chips, which are, according to their
position on the circuit board, further classified into τt and ¬τt-chips, t ∈ [T ]. In these
chips we will encode the respective Boolean values for the variables τt and ¬τt, t ∈ [T ].
All blocks, except for those set to zero, are allowed to contain at most two ones. The
blocks containing the ¬τt-chips are required to contain precisely two ones.

In each clause chip there are two strips playing a special role. One is a horizontal
strip containing a so-called horizontal verifier, the other is a vertical strip containing
a so-called vertical verifier (see rows 25 and 26, and columns 9 and 10 in Figure 9(a)).
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Fig. 9. Transformation from 1-In-3-SAT for the instance I := (S, T, C) := (1, 4, {τ1∨¬τ2∨τ3}).
(a) The circuit board. By setting to zero suitable blocks and row and column sums we make sure that
the nonzero components ξ∗p,q of a solution are only possible in the bold-framed boxes within the white
blocks in the clause chip, connectors, and the initializer. (b) A solution x∗ (nonzero components ξ∗p,q
are depicted as black pixels), representing the solution (τ∗1 , τ

∗
2 , τ
∗
3 , τ
∗
4 ) = (True,True,False,False)

of I.

Type 2Type 1 Type 3 Type 4

Fig. 10. The four possible types of blocks for τt- and ¬τt-chips, t ∈ [T ]. In τt-chips, the types 1
and 2 represent the Boolean values True and False, respectively. (Note that the block types 1–
4 correspond to the previously introduced types B1, B3,1, B3,3, and B3,4, respectively. The new
labeling is more concise in the present context as no grouping of different blocks into a single type
is required anymore.)

A key property of our construction is that the truth assignments will be in one-to-
one correspondence with the solutions of the constructed nDR(ε) instance if the row
and column sum constraints related to the verifiers are left unspecified. The row
and column sum constraints related to the verifiers will then ensure that the truth
assignments are in fact satisfying truth assignments.

We can already begin to see how a truth assignment for our particular instance
I will provide a solution for I ′. Utilizing the type 1 and type 2 blocks shown in
Figure 10, we set each τt-chip, t ∈ [T ], of the initializer to type 1 if τ∗t = True,
otherwise we set it to type 2.

Let us, as an example, consider t = 1 and the sequence of Boolean chips marked
A, B, C, D, and E in Figure 9(a); see also Figure 11. The chips A and B lie in the
same vertical strip, and since A is of type 1, B needs to be of type 2 in order to satisfy
the column sums in the vertical strip. Chip C must be of type 1 to satisfy the row
sums in the horizontal strip. Then, the remaining points in the two vertical strips
intersecting chip C are uniquely determined by the column sums. In particular, the
point of the transmitter in a row intersecting D must be 0. Now, chip D needs to
contain two ones since the vertical strip containing chip D contains four ones, two of
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Fig. 11. The chain of reasoning (vertical transmission) for deducing the types of the Boolean
chips marked A, B, C, D, and E from Figure 9.

which need to be contained in chip E via block constraints. Hence, we conclude from
the row sums that D is of type 1. Considering now the vertical strip intersecting D
we see that chip E is of type 2, and therefore, together with chip A, satisfies the row
sums in the horizontal strip. Thus, the τ1-chips are consistently of type 1, and the
¬τ1-chips are of type 2. Note that we have satisfied all row and column sums for the
strips intersecting one of the chips A,B,C,D, and E. Moreover, the block constraints
in these chips are also satisfied.

Turning to the Boolean chips for t = 2, we conclude with a similar reasoning that
the τ2- and ¬τ2-chips are consistently of type 1 and type 2, respectively. We have now
satisfied the block constraints for the τ2- and ¬τ2-chips, Additionally, we satisfied the
row and column sums for the strips intersecting one of these chips. Clearly, we have
not violated any of the previously satisfied constraints as there is no row or column
that intersects both a Boolean chip for t = 1 and t = 2.

We say that we have deduced the types of the Boolean chips for t ∈ {1, 2} by
vertical transmission, because in our previous chain of arguments we started by con-
sidering the vertical strip containing the respective Boolean chip of the initializer (see
also Figure 11).

Note that such a vertical transmission does not directly work for the assignment
False of the variables τ3, τ4 since the column sums do not allow us to deduce a
unique solution for the respective ¬τt-chip. Hence for the Boolean chips for t ∈ {3, 4}
we resort to horizontal transmission to deduce the types of the respective τt- and
¬τt-chips. In this way we conclude that the τt- and ¬τt-chips are consistently type 2
and type 1, respectively.

Figure 9(b) shows the solution that we obtain by the previous arguments. All
constraints, in particular, also the row and column sums in the verifiers, are satisfied.
We will later see in general that there is a single one in each of the two verifiers of
the s-clause chip, s ∈ S, if and only if exactly one of the three literals appearing in
the sth clause is True.

Now, consider the reverse direction for the proof, i.e., suppose a solution x∗ to
our instance I ′ of Figure 9(a) is given. Note that if we can ensure that the types of
the Boolean chips in the initializer are either 1 or 2 then by the previous arguments
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Fig. 12. The general layout of the circuit board (here for S = 3). Nonzero components ξ∗p,q of
a solution will be possible at most for (p, q) contained in the white area.

we have a satisfying truth assignment for I by setting τ∗t := True, t ∈ [T ], if and
only if the corresponding τt-chip of the initializer is of type 1.

The respective block, row, and column sum constraints allow only the four pos-
sible types of blocks for the Boolean chips of the initializer shown in Figure 10. The
types 3 and 4, however, are ruled out by the following “global” argument: Suppose,
for some t ∈ [T ], the τt-chip of the initializer is of type ` ∈ {3, 4}. By horizontal trans-
mission, we then conclude that the ¬τt-chips need to be of type 1 (by transmitting, as
before in a unique way, through each clause chip). By vertical transmission, however,
we conclude that the ¬τt-chips are of type 2, which is a contradiction.

We remark that effectively we utilize the noisy block constraints at three different
places in our construction. They are needed, because we can neither prescribe the
exact number of ones in the τt-chips of the horizontal or the vertical collectors, nor in
the (s, t)-configurations that are introduced later and which involve the transmitters
(see also Figures 13, 14, and 15).

Having illustrated the key ideas behind the construction, we now turn to the
formal proof.

Proof of Theorem 2.3. Let in the following I := (S, T, C) denote an instance of
1-In-3-SAT. We will define an instance I ′ of nDR(ε) such that there is a solution
for I ′ if and only if there is one for I. The circuit board will be contained in the box

[m]× [n] := [S(6T + 2) + 2T ]2.

With each (p, q) ∈ [m] × [n] we associate a variable ξp,q. Figure 12 illustrates the
general layout of the construction.

We define the instance I ′ of nDR(ε) by specifying the row sums r1, . . . , rn, the
column sums c1, . . . , cm, and the block constraints. For notational convenience we
define the block constraints via a function f : C(m,n, 2)→ {(=, 0), (=, 2), (≈, 1)}. In
this notation, f(i, j) = (=, ν), ν ∈ {0, 2}, denotes the block constraint

∑
(p,q)∈B(i,j)

ξp,q = ν,
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while f(i, j) = (≈, 1) signifies the block constraint∑
(p,q)∈B(i,j)

ξp,q ∈ 1 + ([−ε, ε] ∩ Z).

The set R of reliable block constraints for I ′ is then

R := {(i, j) ∈ C(m,n, 2) : f(i, j) 6= (≈, 1)} .

The different components of the circuit board are placed at specific positions. For
a more compact definition of these positions we set

as := (6T + 2)(s− 1) + 1, s ∈ [S + 1].

Turning to the definition of the initializer, we remark that the initializer is con-
tained inside the box (aS+1, 1) + [2T − 1]20. We will specify the row and column sums
when the corresponding connectors are introduced. In terms of the block constraints
we define for every (u, v) ∈ [T − 1]20 :

f(aS+1 + 2u, 1 + 2v) :=

{
(≈, 1) : u+ v = T − 1,
(=, 0) : otherwise.

The block B(aS+1 + 2(T − t), 2t− 1), t ∈ [T ], will be called τt-chip (of the initializer).
For an illustration of an initializer, see the bottom right [8]× [8]-box in Figure 9(a).

We define S + 1 connectors. Each connector is contained inside a box (as, as) +
[2T − 1]20 with s ∈ [S+ 1]. In terms of block constraints we define for every s ∈ [S+ 1]
and (u, v) ∈ [T − 1]20,

f(as + 2u, as + 2v) :=

{
(=, 2) : u+ v = T − 1,
(=, 0) : otherwise.

For the row and column sums we define for every s ∈ [S + 1] and l ∈ [2T − 1]0,

ras+l := cas+l :=

{
3 : l ∈ 2N0,
1 : otherwise.

The block B(as+2(T − t), as+2(t−1)), s ∈ [S+1], t ∈ [T ], will be called ¬τt-chip (of
the sth connector). For an illustration of a connector, see the bottom left [8]× [8]-box
in Figure 9(a).

Next we define the S clause chips. Each clause chip is contained in a box
(as, as + 2T ) + [6T + 1]20 with s ∈ [S]. The box (as, as + 2T ) + [2T − 1]0 × [4T − 1]0
is a (vertical) collector, the box (as + 2T, as + 2T ) + [1]0 × [4T − 1]0 is a (verti-
cal) verifier, the box (as + 2T + 2, as + 2T ) + [4T − 1]20 is a transmitter, the box
(as + 2T + 2, as + 6T ) + [4T − 1]0 × [1]0 is a (horizontal) verifier, and the box
(as + 2T + 2, as + 6T + 2) + [4T − 1]0 × [2T − 1]0 is a (horizontal) collector. For
an illustration of a clause chip, see the top left [26]× [26]-box in Figure 9(a) depicted
in dark gray.

For s ∈ [S] we define the row sums of the horizontal and the column sums of the
vertical verifiers (we will call these row and column sums verifier sums) by

ras+6T := cas+2T+1 := 1,

ras+6T+1 := cas+2T := 0.
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The remaining row and columns sums for the transmitters (meeting also certain ver-
ifiers and collectors) are for s ∈ [S] and l ∈ [T − 1]0 defined by

ras+2T+4l := cas+2T+4l+2 := 0,

ras+2T+4l+1 := cas+2T+4l+3 := 2,

ras+2T+4l+2 := cas+2T+4l+4 := 1,

ras+2T+4l+3 := cas+2T+4l+5 := 0.

Note that sums for the rows and columns meeting the collectors are already defined
as there is a transmitter or connector for each row and column meeting a collector
(see also Figure 12). We have thus completed our definition of the row and column
sums of our instance and continue now with the remaining block constraints.

For the vertical collector, we define for every s ∈ [S] and t ∈ [T ], vt ∈ (2Z + 1) ∩
{3− 4t, 3− 4t+ 1, . . . , 4(T − t) + 1},

f(as + 2(T − t), as + 2T + 4t− 3 + vt) :=

{
(≈, 1) : vt ∈ {−1, 1},
(=, 0) : otherwise.

The box (as + 2(T − t), as + 2T + 4t− 3) + [1]0 × [1]0, t ∈ [T ], will be called a τt-chip
(of the sth vertical collector).

Similarly, for the horizontal collector we define for every s ∈ [S], t ∈ [T ], ut ∈
(2Z + 1) ∩ {3− 4t, 3− 4t+ 1, . . . , 4(T − t) + 1},

f(as + 2T + 4t− 1 + ut, as + 6T + 2t) :=

{
(≈, 1) : ut ∈ {−1, 1},
(=, 0) : otherwise.

The box (as + 2T + 4t− 1, as + 6T + 2t) + [1]0 × [1]0, t ∈ [T ], will be called a τt-chip
(of the sth horizontal collector).

Note that the τt-chips, t ∈ [T ], of the collectors are not contained in blocks. In
fact, each such τt-chip intersects two blocks (which, in turn, are allowed to contain
at most two ones). For any t ∈ [T ] we will also refer to the τt- and ¬τt-chips on the
circuit board as Boolean chips.

For the empty space above the vertical collector, i.e., for s ∈ [S] and (u, v) ∈
[T − 1]20, we define

f(as + 2u, as + 6T + 2v) := (=, 0).

Now we turn to the block constraints for the clause-dependent part of chip, i.e.,
the verifiers and the transmitters.

With Us and Ns, s ∈ [S], we denote the indices of the variables that appear
unnegated and, respectively, negated in the sth clause. For instance, for τ1 ∨¬τ2 ∨ τ3
(regarded as the first clause) we have U1 = {1, 3} and N1 = {2}.

Depending on whether a given variable τt appears negated, unnegated, or not at
all in the sth clause, we will distinguish three different types of verifier and transmis-
sion parts forming a so-called (s, t)-configuration. Formally, for s ∈ [S] and t ∈ [T ]
we refer to the sets of points

(as + 2T, as + 2T ) +

 {(1, 4t− 2), (4t, 4t− 3), (4t− 1, 4T )} : t ∈ Us,
{(1, 4t− 3), (4t− 1, 4t− 2), (4t, 4T )} : t ∈ Ns,
{(4t− 1, 4t− 2), (4t, 4t− 3)} : otherwise,

as an (s, t)-configuration. Figure 13 gives an illustration.
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Fig. 13. The three possible (s, t)-configurations (depicted as bold-framed 1×1 boxes) for (a) t ∈
Us, (b) t ∈ Ns, and (c) t ∈ [T ] \ (Us ∪Ns).

For the three different types of (s, t)-configurations, we need to set different blocks
to zero. The formal definition is as follows.

For the vertical verifiers we define for every s ∈ [S], t ∈ [T ], and v ∈ [2],

f(as+2T, as+2T+4t−2v) :=

{
(≈, 1) : ((t ∈ Us) ∧ (v = 1)) ∨ ((t ∈ Ns) ∧ (v = 2)),
(=, 0) : otherwise.

Similarly, for the horizontal verifiers we define for every s ∈ [S], t ∈ [T ], and
u ∈ [2],

f(as+2T+2+4t−2u, as+6T ) :=

{
(≈, 1) : ((t ∈ Us) ∧ (u = 2)) ∨ ((t ∈ Ns) ∧ (u = 1)),
(=, 0) : otherwise.

For the transmitters we define for every s ∈ [S] and u ∈ [2T − 1] :

f(as + 2T + 2 + 2u, as + 2T + 2(u− 1)) :=

{
(≈, 1) : (u ∈ 2N0 + 1) ∧ ((u+ 1)/2 ∈ Us),
(=, 0) : otherwise,

f(as + 2T + 2 + 2(u− 1), as + 2T + 2u) :=

{
(≈, 1) : (u ∈ 2N0 + 1) ∧ ((u+ 1)/2 ∈ Ns),
(=, 0) : otherwise.

The remaining block constraints in the transmitter are set to zero, i.e., for every
s ∈ [S], (u, v) ∈ [2T − 1]20 with u− v 6∈ {−1, 1} we set

f(as + 2T + 2 + 2u, as + 2T + 2v) := (=, 0).

Outside the initializer, connectors, and clause chips we set everything to zero, i.e.,
for every (i, j) ∈ ([m]× [n]) ∩ C(m,n, 2) with

(13) (i, j) 6∈ ((aS+1, 1) + [2(T − 1)]20) ∪ ((aS+1, aS+1) + [2(T − 1)]20)

∪
⋃
s∈[S]

(
((as, as) + [2(T − 1)]20) ∪ ((as, as + 2T ) + [6T + 1]20))

)
we set f(i, j) := (=, 0).

This concludes the formal definition of the instance I ′. We shall now show that I ′
admits a solution if and only if the 1-In-3-SAT instance I admits a solution.

Let G ⊆ [m] × [n] denote the set of points of the Boolean chips and (s, t)-
configurations, (s, t) ∈ [S]× [T ].
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Fig. 14. Horizontal transmission of a type 2 block. (a,b,c) Transmission through the three
differently structured (s, t)-configurations. (d,e) Transmission through a connector. Type 3 and 4
blocks are transmitted in the same way (only the initial block, indicated by the arrow tail, is replaced
by the respective type 3 or 4 block).

Claim 1: In any solution x∗ of I ′ we have ξ∗p,q = 0 for every (p, q) ∈ ([m]× [n])\G.
To see this, we first remark that the claim holds for all points outside each clause

chip since the only blocks there that are not set to zero are the Boolean chips of the
initializer and connectors. For the points inside a clause chip, we need to distinguish
three cases since there are three differently structured (s, t)-configurations, in which
different blocks are set to zero. They are shown in Figure 13. In all three cases the
points outside the corresponding Boolean chips in the two collectors and the (s, t)-
configuration are either set to zero by block constraints or by zeros of suitable row or
column sums. This shows the claim.

Claim 2: In any solution x∗ of I ′ every τt- and ¬τt-chip, t ∈ [T ], is of one of the
types from {1, 2, 3, 4} shown in Figure 10.

For this, consider a fixed index t ∈ [T ]. Each τt-chip is contained in a horizontal
or vertical strip that, except for a ¬τt-chip, contains no other points of G. Since by
the block constraints each ¬τt-chip contains two ones, and since the respective row
or column sums in the strip sum up to four there need to be exactly two ones also in
each τt-chip. The row and column sums enforce that no two ones are in the rightmost
column and upper row of the box of each τt-chip. Hence, there are at most the four
possibilities shown in Figure 10.

Claim 3: In any solution x∗ of I ′ all the τt-chips (for a given t ∈ [T ]) are either
of type 1 or type 2.

To show this, consider again a fixed index t ∈ [T ]. Let V0, . . . , V4S+2 ⊆ G denote
the sequence with (i) V0 = V4S+2 is the τt-chip of the initializer, (ii) V1 is the ¬τt-chip
of the (S + 1)th connector, (iii) V4s+1 is the ¬τt-chip of the (S − s+ 1)th connector,
(iv) V4s−2 is the τt-chip of the (S − s+ 1)th horizontal collector, (v) V4s−1 is the set
of points in the transmitter of the (s, t)-configuration of the (S − s+ 1)th clause, and
(vi) V4s is the τt-chip of the (S − s+ 1)th vertical collector, s ∈ [S]; see Figure 11 for
the case S = 1 and Figure 12 again for the general layout.

By horizontal transmission (see Figure 14) and Claim 2, we have the following
implication: if a τt-chip of V2l, l ∈ [2S]0, is of type 2, 3, or 4, then the τt-chip of V2l+2

is of type 2, and the points of V2l+1 are also uniquely determined.
By vertical transmission (see Figure 15) and Claim 2, we have the following

implication: if a τt-chip of V2l, l ∈ [2S + 1], is of type 1, 3, or 4, then the τt-chip of
V2l−2 is of type 1, and the points of V2l−1 are also uniquely determined.

Hence, if we start at an arbitrary τt-chip and perform vertical and horizontal
transmissions that meet at some Boolean chip we obtain a contradiction unless the
τt-chip was of type 1 or 2.
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Fig. 15. Vertical transmission of a type 1 block. (a,b,c) Transmission through the three differ-
ently structured (s, t)-configurations. (d,e) Transmission through a connector. Type 3 and 4 blocks
are transmitted in the same way (only the initial block, indicated by the arrow tail, is replaced by
the respective type 3 or 4 block).

Types 1 and 2 can be associated with Boolean values. In τt-chips, and in particular
those of the initializer, we associate with type 1 the value True and with type 2 the
value False.

Claim 4: There is a one-to-one correspondence between the (not necessarily sat-
isfying) truth assignments for I and the solutions x∗ to the I ′′-variant of I ′ that
allows violation of the verifier sums, i.e., of the column sum constraints ci = 1 for the
vertical verifiers or the row sum constraints ri = 1 for the horizontal verifiers.

By construction, there is neither a horizontal nor a vertical strip that intersects
the Boolean chips for two variables τi1 , τi2 , with i1 6= i2. The arguments from Claim 3
are thus independently valid for each t ∈ [T ]. We can, hence, consider an arbitrary
(not necessarily satisfying) truth assignment for I, fill in the corresponding types
in the initializer, and extend them to yield a solution to the I ′′-variant of I ′ with
unspecified verifier sums. Vice versa, the chip types in the initializer of a solution
to I ′′ yield a truth assignment for I. We have already seen in the proof of Claim 3
that the type of each τt-chip, t ∈ [T ], in the initializer determines all ones in the
corresponding ¬τt-chips and (s, t)-configurations, s ∈ [S]. Hence, the correspondence
is indeed one-to-one.

Claim 5: The satisfying truth assignments of I are in one-to-one correspondence
with the solutions of I ′.

This can now be seen by observing that the τt-chip, t ∈ [T ], of the sth horizontal
and vertical collector, s ∈ [S], contributes a one to the horizontal and also to the
vertical verifier in the sth clause chip if and only if the τt-chip is True (is of type 1)
with t ∈ Us or the τt-chip is False (is of type 2) with t ∈ Ns; see Figures 13, 15(a),
(b), (c), and 14(a), (b), (c). The verifier sums thus ensure that exactly one literal in
the sth clause is True. This, together with Claim 4, proves the claim.

By Claim 5, I ′ admits a solution if and only if I admits a solution.
Finally, we note that the transformation runs in polynomial time.

In section 2 we remarked that nDR(ε) can be viewed as a version of DR where
small “occasional” uncertainties in the gray levels are allowed. Reviewing the proof
of Theorem 2.3, the term “occasional” can be quantified as meaning “of the order of
the square root of the number of blocks.” More precisely, of (S(3T + 1) + T )2 blocks
on the circuit board, there are S(6T + 3) + T with uncertainty.

Let us further remark that the arguments in the above proof do not rely on the
particular value of ε > 0 in the noisy block constraints. These constraints can be
replaced by any other types of block constraints, certainly as long as they allow for 0,
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1, and 2 ones to be contained in each of the corresponding blocks. By this observation
it is possible to adapt our proof to several other contexts where the reconstruction
task involves other types or combinations of block constraints; see [5].

Finally, note that the transformation in the proof of Theorem 2.3 is parsimonious
(see Claim 5 in the above proof). Hence the problem of deciding whether a given
solution of an instance of nDR(ε) with ε > 0 has a nonunique solution is NP-complete
(which proves Corollary 2.4); for an NP-hardness proof of Unique-1-in-3-SAT see
[18, Lem. 4.2].

Proof of Corollary 2.5. We use a transformation from nDR(ε). Let

I := (m,n, r1, . . . , rn, c1, . . . , cm, R, v(1, 1), . . . , v(m− 1, n− 1))

denote an instance of nDR(ε). Note that n and m are even.
We set m′ := mk/2 and n′ := nk/2. For (i, j) ∈ ([m]× [n])∩C(m,n, 2) and l ∈ [k]

we define

r′k
2 (j−1)+l

:=

{
rj+l : l ∈ [2],
0 : otherwise,

c′k
2 (i−1)+l

:=

{
ci+l : l ∈ [2],
0 : otherwise,

v′(k(i− 1)/2 + 1, k(j − 1)/2 + 1)) := v(i, j),

and
R′ := {(k(i− 1)/2 + 1, k(j − 1)/2 + 1) : (i, j) ∈ R}.

This gives the instance

I ′ := (m′, n′, r′1, . . . , r
′
n′ , c′1, . . . , c

′
m′ , R′, v′(1, 1), . . . , v′(m′ − k + 1, n′ − k + 1))

of nSR(k, ε). Clearly, the instance I of nDR(ε) admits a solution if and only if the
instance I ′ of nSR(k, ε) admits a solution (by filling/extracting the 2× 2-blocks of I
into/from the k × k-blocks of I ′). This is a polynomial-time transformation, proving
the corollary.

5. Final remarks. Recall that in the proof of Theorem 2.1 we have made ex-
tensive use of the concept of local switches. Each such switch involves four points.
Figure 16 shows, on the other hand, two solutions of a DR instance that differ by 20
1×1-pixels. It is easily checked that these are the only solutions for the given instance.

(a) (b)

Fig. 16. An example of a large switching component (in the sense of [31]) for an instance
of DR. The solutions shown in (a) and (b) are the only two solutions for that instance. Both
solutions are reduced.
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(Note that we used such a structure in the proof of Theorem 2.3.) Hence, there is no
sequence of small switches transforming one solution into the other. The existence of
such large irreducible switches is well known for the NP-hard reconstruction problem
from more than two directions [31] (and would follow independently from P 6= NP).
The problem DR, however, admits large switches albeit is polynomial-time solvable.

In addition to the block constraints our computational tasks rely only on row
and column sums, i.e., projection data from two viewing angles. For more than two
viewing directions we obtain the NP-hardness of nSR(k, ε) for any k ≥ 2 and ε > 0
directly from the construction in [18]. The NP-hardness of the corresponding variants
of nSR(k, 0) for k ≥ 2, can also be derived from [18]. First the construction is thinned
out so as to make sure that each block contains at most one element of the grid of
candidate points. Then, a second copy with inverted colors is interwoven by applying
a translation by (1, 1)T or (1,−1)T . This ensures that each nonempty block contains
exactly one one.

The complexity status of nSR(k, 0) remains open for k 6∈ {1, 2}. We conjecture
that the problem is NP-hard for larger k.

Also, it would be interesting to analyze the effect of the results of the present
paper on the “degree of ill-posedness” of the underlying problem (see [4]).

Acknowledgment. We are grateful to the anonymous referees for their valuable
comments on a previous version of the paper.
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