
Distributed-Memory Hierarchical Compression of
Dense SPD Matrices

Chenhan D. Yu∗, Severin Reiz†, and George Biros‡
∗Department of Computer Science

† Technical University of Munich, Germany
∗‡ Institute for Computational Engineering and Science
The University of Texas at Austin, Austin, Texas, USA
∗chenhan@utexas.edu, †s.reiz@tum.de, ‡gbiros@acm.org

Abstract—We present a distributed memory algorithm for the
hierarchical compression of symmetric positive definite (SPD)
matrices. Our method is based on GOFMM, an algorithm that
appeared in doi:10.1145/3126908.3126921. For many
SPD matrices, GOFMM enables compression and approximate
matrix-vector multiplication that for many matrices can reach
N logN time—as opposed to N2 required for a dense matrix.
But GOFMM supports only shared memory parallelism. In this
paper, we use the message passing interface (MPI) and extend
the ideas of GOFMM to the distributed memory setting. We
also propose and implement an asynchronous algorithm for
faster multiplication. We present different usage scenarios
on a selection of SPD matrices that are related to graphs,
neural-networks, and covariance operators. We present results
on the Texas Advanced Computing Center’s “Stampede 2”
system. We also compare with the STRUMPACK software
package, which, to our knowledge, is the only other available
software that can compress arbitrary SPD matrices in parallel.
In our largest run, we were able to compress a 67M-by-67M
matrix in less than three minutes and perform a multiplication
with 512 vectors within 5 seconds on 6,144 Intel “Skylake” cores.

I. INTRODUCTION

If K ∈ RN×N is a dense SPD matrix it requires O(N2)
storage and work for a matrix-vector multiplication (hereby
“matvec”). GOFMM [1] (reviewed in §II) constructs a matrix
K̃ (hereby “compression”) using O(N logN) entries from
K so that ‖K̃ −K‖ ≤ ε‖K‖ (for a user-defined ε > 0) and
a matvec with K̃ requires O(N logN) work. The constants
in the compression and multiplication complexity estimates
depend on ε. (Thus, the compression may not offer benefit
over a dense matvec.) The only required input to GOFMM
is a routine that returns a submatrix KIJ , for arbitrary row
and column index sets I and J . GOFMM belongs to the
class of hierarchical matrix (H-matrix in brief) approximation
methods [2]. Roughly speaking, we say that a matrix K̃ is
hierarchically low-rank [2], [3], if

K̃ = D + S + UV, (1)

where D is block-diagonal with every block being hierar-
chically low-rank, U and V are low rank, and S is sparse.
A matvec with K̃ requires O(N logN) work. The constant
in the complexity estimate depends on the rank of U and
V . It is critical to observe that this hierarchical low-rank

structure is not invariant to row and column permutations.
GOFMM appropriately permutes K using only entries from
K, before constructing the matrices U, V,D, and S.

Background and significance: Dense SPD matrices appear
in Cholesky and LU factorization [4], in Schur complement
matrices [5], in Hessian operators in optimization in simu-
lation [6] and machine learning [7], in kernel methods for
statistical learning [8], [9], and in N -body methods and inte-
gral equations [10], [2]. In many applications, the entries of the
input matrix K are given by Kij = K(xi, xj), where xi and xj
are points in D dimensions and K is a kernel function, for ex-
ample a Gaussian with bandwidth h: exp(−1/2h−2‖xi−xj‖).
For such problems, H-matrix methods (like N -body methods)
use clustering methods (typically trees) to define compressible
blocks of K and appropriately permute it. However, such
approach is not possible for arbitrary SPD matrices whose
entries are not defined by kernel functions or for which we
don’t have points. Examples include SPD matrices related
to graphs of social networks, protein/gene networks, fMRI
data, microarray data, Hessian operators (e.g., from neural
networks), maximum likelihood empirical covariance matrices,
and kernel methods for word sequences and graphs [11],
[12]. Furthermore, once a hierarchical approximation of K
is built, we can construct an approximate inverse for K [2].
Given the large number of applications and the increasing
data size, it is imperative that we develop fast, distributed-
memory algorithms for algebraic operations such as matrix
multiplication for generic dense SPD matrices.

Contributions: We introduce MPI-GOFMM for the com-
pression of arbitrary SPD matrices. Our method requires only
the ability to evaluate arbitrary entries from K. MPI-GOFMM
is the only distributed memory method that permutes the
matrix and allows for sparse direct interactions (S matrix in
Equation 1) to improve compression. The scheme is described
in §II-B and §III.

The novel algorithms in our work are summarized below:
• We introduce parallel algorithms for matrix-row nearest
neighbors, permutations, and sampling for compressing off-
diagonal blocks. We also extend the local essential tree idea
(which require points) to the fully algebraic case.
• MPI-GOFMM exploits the parallelism of tree-based algo-
rithms by runtime dependency analysis. MPI-GOFMM uses

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

https://dl.acm.org/citation.cfm?id=3126921

a task model that annotates reading/writing/communication
activities and provides a runtime system that enables dynamic
dependencies, communication overlapping, and nested paral-
lelism. Experimentally, it outperforms static scheduling and
OpenMP-based dynamic scheduling.
• We provide an asynchronous H-matrix multiplication algo-
rithm that can lead up to 2× improvement over a synchronous
scheme (§II-B) by avoiding expensive Alltoallv operations
and enabling high FLOP intensity.
• We describe and implement interfaces for: (1) in memory
evaluation of K, (2) out-of-core memory evaluation of K. We
also define an interface that allows the user to redistribute
any data related to the evaluation of Kij (§IV, §V, and
Appendix VII-A).
• We test the algorithm on PDE-constrained optimization
matrices, kernel matrices, inverse graph Laplacian matrices,
neural-network Hessians, and covariance matrices. We provide
weak and strong scaling results, compare the synchronous and
asynchronous version, and compare with STRUMPACK (which
doesn’t reorder the matrix) and ScaLAPACK, (the baseline
N2-distributed GEMM with no compression) (§V).

Limitations: Like GOFMM, we cannot simultaneously guar-
antee both approximation accuracy and work complexity. We
require the ability to evaluate in O(1) time arbitrary matrix en-
tries, which may not be possible in general. We can guarantee
that K̃ is symmetric but not its positivity. The compression
phase is quite expensive, mainly due to a memory-bound
pivoted QR but also due to dependencies and synchronizations.

Related work: The literature on H-matrix methods is vast.
For a review, see [1]. To our knowledge, there is no distributed-
memory algorithm that (1) supports permutations to expose
low-rank structure and (2) supports sparse direct evaluations
(FMM-like interactions). The only algorithm and software
that comes close is STRUMPACK [13], [14], [15], which
constructs an approximation K̃ without the sparse term S.
(As we will see in §V this creates approximation difficulties
for certain matrices). For dense matrices, STRUMPACK uses
the lexicographic ordering. If no fast matvec of K is available,
STRUMPACK requires O(N2) work for compressing a dense
SPD matrix, and O(N) work for the matvec. Regarding
distributed-memory parallelism, there is a lot of work for
kernel matrices for which we have points. For a review of
the state-of-the-art, see [16].

II. METHODS

Given an SPD matrix K ∈ RN×N and p processes, we aim
to construct a distributed H-matrix approximation K̃ such that

u = Kw ≈ K̃w, for w ∈ RN×r, (2)

can be computed with O(N logN) work and O(N/p logN)
time where K, u, and w are also distributed on p processes.
First, we review the key components of GOFMM in §II-A.
Second, we discuss how it can be parallelized in §II-B. Third,
we discuss the complexity of our algorithms in §III. For a
side-by-side comparison between GOFMM (shared memory al-
gorithms) and MPI-GOFMM (distributed memory algorithms),
see Algorithm VII.1 and VII.2 in Appendix VII-C.

Task Operations
Split(α) p = argmax ({dic|i ∈ α})

q = argmax({dip|i ∈ α})
[l, r] = medianSplit({dip − diq |i ∈ α})

ID(α) if α isleaf then J = α else J = [l̃r̃]
I=SampleFrom(N (α) \ α)
[α̃,Pα̃J]=[GEQP3(KIJ),K†

Iα̃
KIJ]

FindNear(α) for each node α isleaf then
Near(α) ∩ = {MortonID(i)|i ∈ N (α)}

FindFar(β,α) if β is parent of any node in Near(α) then
FindFar(l,α); FindFar(r,α);

else if MortonID(β) > MortonID(α) then
Far(α) ∩ = {β}

MergeFar(α) if α isleaf then return FindFar(root,α)
Far(α) = Far(l) ∩ Far(r)
Far(l)\ = Far(α) Far(r)\ = Far(α)

TABLE I Tasks invoked in the compression phase of GOFMM.

A. Geometric-Oblivious FMM Review

Following [1], GOFMM comprises two phases: compression
and evaluation. In the compression phase, an SPD matrix K
is compressed to K̃ recursively using a binary tree such that

K̃αα =

[
K̃ll 0

0 K̃rr

]
+

[
0 Slr
Srl 0

]
+

[
0 UVlr

UVrl 0

]
, (3)

where l and r are left and right children of treenode α. Each
node α contains a set of column indices (or row indices due to
symmetry) and the two children evenly split this set such that
α = l ∪ r. For example, task Split(α) in Table I uses an
approximate ball split that only requires pairwise distances dij .
In GOFMM, if a partition is computed by an induced distance
metric1 (not restricted to Euclidean distance) on matrix entries,
then we are likely to find low-rank (UVlr) and sparse (Slr)
structures in off-diagonal blocks.

Geometry-oblivious distance metric: While distances are
typically defined with domain-specific geometry information
(e.g. Euclidean distance embedded in ordering K), GOFMM
uses a class of “geometry-oblivious” distances that can be
defined and computed in O(1) using raw entries of a given
SPD matrix K. For example, the Gram-`2 distance dij =
Kii − 2Kij + Kjj and the Gram-angle distance (the angle
between underlying gram vectors using the cosine similarity)
dij = 1−K2

ij/(KiiKjj) can be computed using only matrix
entries. Throughout the paper, we use the second definition
(Gram-angle) to compute pairwise distances.

Sparse corrections and neighbor search: GOFMM performs
hierarchical clustering of the matrix indices using a binary tree
and index distance dij . Ideally, indices in different clusters are
separated by large distances (Far-clusters) that correspond to
off-diagonal blocks, which in turn, can be low-rank approxi-
mated. However, a balanced spatial tree is prone to misclassifi-
cation on the cluster boundaries. Indices around the boundaries
exhibit high sensitivity, i.e., they cannot be approximated
accurately using a low-rank decomposition. These interactions
(pairs of indices) are discovered by neighbor search, forming
the sparse correction S in Equation 1 and Equation 3. We find

1As we already mentioned, the off-diagonal low-rank property is not invariant to
matrix permutation, and it strongly depends on the ordering of the columns (and rows).
Hence, a ordered distance metric is essential for matrix partition.

http://portal.nersc.gov/project/sparse/strumpack/

Task Operations FLOPS
N2S(α) if α isleaf then w̃α = Pα̃αwα 2msr

else w̃α = Pα̃[̃lr̃][w̃l; w̃r] 2s2r

S2S(β) ũβ =
∑
α∈Far(β)Kβ̃α̃w̃α 2s2r|Far(β)|

S2N(β) if α isleaf then uβ = P
ββ̃
ũβ 2msr

else [ũl; ũr]+ = P
[̃lr̃]β̃

ũβ 2s2r

L2L(β) uβ+ =
∑
α∈Near(β)Kβαwα 2m2r|Near(β)|

TABLE II Tasks N2S (nodes to skeletons), S2S (skeletons to
skeletons), S2N (skeletons to nodes), and L2L (leaves to leaves)
occur in GOFMM evaluation phase.

k-nearest neighbors N by an approximate randomized spatial
tree using the geometry-oblivious distance of K.

Low-rank approximation: GOFMM compresses the off-
diagonal blocks of node α with a nested interpolative decom-
position (task ID in Table I) [17]. A subset of s indices α̃ ⊂ α
is selected to construct a rank-s approximation such that

KIα ≈ KIα̃Pα̃β , or KI [̃lr̃] ≈ KIα̃Pα̃[̃lr̃] (4)

if node α has children l and r. Skeleton α̃ is computed by
rank-revealing QR factorization (GEQP3) to find columns α̃
that can capture the range of KIα. Here I is an index set that
contains all off-diagonal entries. GOFMM uses nearest neighbor-
based importance sampling to avoid the O(N2) compression
cost of KIα using standard algorithms (say QR). Using
neighbors as row samples, as opposed to uniform sampled
rows, produces more accurate skeletonizations [1], [16].

Once the index set α̃ has been determined, Pα̃α and Pα̃[̃lr̃]
are computed using TRSM using the upper triangular matrix
computed from GEQP3. For non-leaf nodes we greedily select
their skeletons α̃ from the node’s children’s skeletons l̃ ∪ r̃.
As a result, coefficient matrices have the following recursive
relation (known as the telescoping relation)

Pα̃α = Pα̃[̃lr̃]

[
Pl̃l

Pr̃r

]
. (5)

All skeletons (GEQP3) and coefficient matrices (TRSM) can be
computed with a postorder traversal, and the K blocks Kαβ

can be approximated by Pαα̃Kα̃β̃Pβ̃β .
Evaluation: The four tasks in Table II compute the matvec

of K̃. (See Appendix VII-C, and Algorithm VII.2 for more
details.) Task L2L computes direct matvecs (Slr and Srl
in Equation 3) stored in the near interaction lists Near(α).
These lists are defined using the nearest-neighbor information
N (computed by task FindNear(α) in Table I). Tasks
N2S, S2S, and S2N compute all approximate matvecs (UlVr
and UrVl) in far interaction lists Far(α) constructed with
FindFar(β,α), and MergeFar(α) §II-B. We discuss
how these lists are constructed in §II-B. The total interactions
are computed using a postorder traversal with N2S, an any-
order traversal with S2S, and a preorder traversal with S2N.

B. Distributed-Memory Parallelism

MPI-GOFMM is parallelized using MPI+OpenMP, following
the algorithms for distributed-memory treecodes described in
[18] and the task-based runtime scheduler design in [1]. The
latter will be generalized to perform out-of-order execution in

3rdKll Klp

Krr

1st 2nd

Kpl Kpp

Kqq

l r p q

u vlevel-1

level-2

level-3

Distributed
Tree

Local
Tree

Pββ
Pll

Prr

Klr

Krl

~

~

~

~

{0,4,8,…}
rank-0

{𝛂} {β} {θ} {π}

{1,5,9,…}
rank-1

{2,6,…}
rank-2

{3,7,…}
rank-3

Wr~

Wl
~

~

~

Kβ𝛂 W𝛂~
~ ~

~

Kβq

Krp

Kuθ

Prr
~

~Wu=[Pu𝛂W𝛂, PuβWβ]~

~~

~ ~

Pββ~

~~ ~ ~ ~

Puu~

Wp~

Wq~

Wθ
~

Kθu~
~

Pθθ
~

~~

Pθθ
~

Wπ~Kθπ~ ~

Fig. 1 A 4-processes distributed metric tree (right), and its algebraic
FMM compression (left): each color represents an MPI process.
Nodes and factors (with a single color) are local. Mixed-colored
nodes and factors above level-log(p) are distributed.

the distributed memory setting. We briefly describe the system
below. See Appendix VII-B for a discussion.

Runtime dependency analysis: To help exploit the par-
allelism of tree-based algorithms in different granularities,
MPI-GOFMM employs a self-contained runtime system. Lazy
symbolic tree traversals are performed ahead of execution
to annotate reading/writing/communication workloads of each
task (i.e., a workload defined at each tree node visit) without
performing any actual computation. Then, the runtime con-
structs a direct acyclic graph (DAG) by transforming into data
dependencies between tasks. Tasks satisfying all dependencies
are dispatched to computing resources according to EFT
(Earliest Finish Time) policy in an out-of-order manner. As
a result, the system can systematically handle thread binding,
communication overlapping, and nested parallelism.

Data distribution: Given p processes, MPI-GOFMM parti-
tions the matrix indices using a complete binary tree (see Fig-
ure 1). Any computation involving tree nodes and low-rank
factors (depicted with different colors in Figure 1) above the
log p level of the tree requires communication.

Since we do not control the data distribution of K, we only
repartition the ownership of the N matrix indices among an
array of p MPI processes. Depending on the application, it
may be possible (and desirable) to repartition data that are
required for the evaluation of Kij . For this reason, we provide
a repartitioning interface (see Appendix VII-A) assuming the
user provides an array with fixed-size memory per index. This
is conceptually equivalent to redistributing points, although the
data structure can contain anything. MPI-GOFMM only invokes
an opaque (i.e. black-box) callback function K(i, j) without
accessing the content in the data structure directly.

To describe our algorithms, we follow the notation inspired
by libElemental [19]. We use four possible index par-
titioning (with possible replications) among MPI processes:
[*] assume all processes have a copy of all indices; [CYC]
is the 1D cyclic partitioning, which we assume to be the
input partitioning; [IDS] (distributed tree partition) is the
repartitioning (permutation) for MPI-GOFMM; [LET] (tree
partition with local essential data dependencies) is a term that
comes from classical N -body methods and is a superset of
[IDS], i.e., the data for every index can be replicated in

Task DistSplit(α) : Split(α)
if size(α) = 1 then return [l,r]=Split(α)
else /** Above level-log(p) of the tree */
case rank(α) < 1

2
size(α) : case rank(α) ≥ 1

2
size(α) :

comm(l) = CommSplit(α) comm(r) = CommSplit(α)
[l,l̄]=Split(α) [r,r̄]=Split(α)
dest = rank(α) + 1

2
size(α) dest = rank(α)− 1

2
size(α)

Sendrecv(r̄, l̄, dest) Sendrecv(l̄, r̄, dest)
Task DistID(α) : ID(α)
if size(α) = 1 then return [α̃,Pα̃J]=ID(α)
else /** Above level-log(p) of the tree */
case rank(α) = 0 : case rank(α) = 1

2
size(α) :

Recv(r̃); ID(α) Send(r̃)
Task DistMergeFar(α) : MergeFar(α)
if size(α) = 1 then return MergeFar(α)
else /** Above level-log(p) of the tree */
case rank(α) = 0 : case rank(α) = 1

2
size(α) :

Sendrecv(Far(l),Far(r)) Sendrecv(Far(r),Far(l))
Far(α) = Far(l) ∩ Far(r) Far(α) = Far(l) ∩ Far(r)
Far(l)\ = Far(α) Far(r)\ = Far(α)

TABLE III Tasks invoked in GOFMM compression phase.

multiple MPI processes. In the following, we overload the
"=" operator to also denote repartitioning. In most cases we
implement this using several Alltoallv operations.

Tree partition: DistSplit(α) in Table III is the first
distributed-memory task we invoke in the compression phase
(Algorithm II.1), partitioning the metric tree shown in Fig-
ure 1. Given the initial order [CYC], DistSplit(α) re-
distribute indices to [IDS] order in a preorder traversal.
Different from the shared memory task Split in Table II,
DistSplit further redistributes indices for distributed nodes
above level-log p.

Each distributed tree node above level-log(p) has a unique
MPI sub-communicator for collectives. A node α is assigned
with communicator comm(α), where size(α) and rank(α)
denote the local MPI rank and size in comm(α). While
different tasks may be assigned according to rank(α), we
describe our distributed algorithms side-by-side as shown in
Table III. The left column shows algorithms for processes with
rank(α) < 1

2size(α), and the right column represents the
other group of processes. We use this algorithm format in the
remainder of this section.

While splitting a node α, processes are divided into two
subgroups comm(l) and comm(r) according to rank(α).
Task Split(α) is invoked to split the owned indices into
[c,c̄] using “geometry-oblivious” distance, where c can be
left (l) or right child (r). Indices l are kept by processes
with rank(α) < 1

2size(α), and r are kept by the other
group of processes. l̄ and r̄ are exchanged between “partner”
processes (with rank dest). We continue using recurrence
on the children nodes with the assigned sub-communicator.
After reaching level-log(p) the splitting continues without
communication until we reach the leaf level (i.e., number of
indices owned by α less than parameter m).

All nearest-neighbor: We compute κ-nearest neighbors
for each pivot in parallel (using the same distance metric
as DistSplit(α)) in Algorithm II.1. Neighbors will be
used for sampling and to find sparse corrections Sl and Sr.
Neighbors N are approximated iteratively using randomized

Algorithm II.1 DistCompress(K)

1: [Preorder] foreach node α do DistSplit(α)
2: N[*,CYC] = AllNearestNeighbors(K)
3: N[*,IDS] = N[*,CYC]
4: [Postorder] foreach node α do DistID(α)
5: [Anyorder] foreach leaf α do FindNear(α)
6: Symmetrize(Near)
7: IDS2LET(Near)
8: [Postorder] foreach α do DistMergeFar(α)
9: Symmetrize(Far)

10: IDS2LET(Far)

trees (see [20] for a summary and an implementation for the
geometric case). In each iteration, we create a randomized
metric tree by randomly assign p and q in task Split(α),
where the leaf node size is 4κ (larger than κ to reduce
the number of tree iterations). Exhaustive neighbor search is
performed on all indices that belong to the same leaf node
(by which generate κ candidates). Neighbor candidates are
redistributed from [IDS] back to [CYC] distribution. Finally,
we merge existing neighbors with the new candidates, trim the
list down to κ neighbors again, and iterate until we converge.

Algebraic FMM compression (Algorithm II.1): With a
metric tree and neighbors N , we first redistribute N from
[CYC] to [IDS]. As a result, neighbors of a local node
α can be accessed as N[*,α]. Neighbors are used to
defining near interaction lists in task FindNear(α) (see
Table I); neighbors are also used as importance samples in
task DistID in Table III to improve the quality of the low-
rank compression.

Task DistID compresses the off-diagonal blocks of K
using a nested ID described in Equation 4 in a postorder
traversal. Different from its shared memory version ID defined
in Table II, skeleton α̃ is only computed on rank 0 for dis-
tributed tree nodes above level-log p. This requires gathering
right child’s skeleton r̃ from its local sibling.

Interaction lists: If we stop at skeletonization, we obtain
a hierarchical semi-separable (HSS) approximation of K,
where no sparse correction is introduced in the off-diagonal
blocks. To create a symmetric FMM approximation, we need to
further construct two interaction lists and redistribute indices
to [LET] distribution that satisfies all local essential data
dependencies required by the interaction lists.

List Near(α) is constructed by task FindNear (see Ta-
ble I) in an anyorder traversal. It is defined on leaf
nodes and contains only leaf nodes. For each neighbor i ∈
N[*,α], we add MortonID(i) (the same as the node
MortonID of its belonged leaf node) to Near(α) such that

Near(α)∩ = {MortonID(i)|i ∈ N[*,α]}. (6)

Notice that |Near(α)| determines the number of direct en-
try evaluations (sparsity of Slr and Srl). To control the
complexity, we use an user-defined parameter budget (b in
brief) introduced in [1] such that |Near(α)| < b(N/m).
When exceeding the budget (depending on how neighbors are
distributed over leaf nodes), we use a majority voting to shrink

Function Symmetrize(List=[Near/Far])
foreach node α and β ∈ List(α) do

pairs_sent_to[owner(β)] ∩ = pair(β, α)
Alltoallv(pairs_sent_to,pairs_received_from)
foreach rank p and pair(β, α) ∈ pairs_received_from[p] do

List(β)[p] ∩ = α
Function IDS2LET(List=[Near/Far])
foreach α and β ∈ List(α) do

List_sent_to[owner(β)] ∩ =(List=Near) ? β : β̃
Alltoallv(List_sent_to,List_received_from)
Function Redistribute(List=[Near/Far])
foreach rank p and α ∈ List_received_from[p] do

data_sent_to[p] ∩ = (List=Near) ? wα : w̃α
Alltoallv(data_sent_to,data_received_from)
foreach rank p and node β ∈ data_received_from[p] do

(List=Near) ? wβ : w̃β = data_received_from[p][β]

TABLE IV All-to-all communication for symmetrizing and redis-
tributing indices and data from [IDS] to [LET] order.

the list. This allows us to control the percentage of direct entry
evaluation in a finer granularity than solely depending on the
neighbor distribution.

List Far(α) is constructed in Algorithm II.1 with a pos-
torder traversal of task DistMergeFar. For nodes below
level-log p, task MergeFar described in Table I is called to
construct the list locally. For leaf nodes, FindFar(β,α) is
called to partially traverses the tree in preorder. Throughout the
recursion, argument α does not change, but β changes accord-
ing a preorder ordering of the tree nodes. The recursion contin-
ues to the left and right children (l and r). If β is an ancestor of
any leaf node in Near(α). This condition is checked by com-
paring MortonID(β) with {MortonID(i)|i ∈ Near(α)}.
Otherwise, the recursion terminates, and we append β to
Far(α) if MortonID(β) is larger. As a result, we only
preserve far interaction pairs in the upper triangular part, and
the lower part will be symmetrized later.

For an internal node α, interaction list Far(α) is merged
from Far(l) and Far(r). The merging process involves
point-to-point communication while visiting the distributed
tree nodes in the postorder traversal. Far(α) is computed
as a set intersection (∩) between Far(l) and Far(r) for
internal nodes. While α is distributed, Far(l) is owned by
rank 0 in comm(α), and Far(l) is stored on rank 1

2size(α).
These two ranks exchange their interaction lists, performing
set interaction and update their Far(l) and Far(r). Far(α) is
stored on rank 0, which handles all computation for α during
the evaluation.

Symmetrizing: Given that κ-nearest neighbors are not nec-
essarily symmetric, Near(α) can also be non-symmetric (i.e.
Slr 6= STrl). In a distributed-memory environment, we invoke
function Symmetrize(Near) (see Table IV) to ensure that
if β ∈ Near(α), then α ∈ Near(β). For each node α, we
must send a pair (α, β) to the rank that owns β (denoted as
owner(β)). This is done in two stages. We first pack all pairs
into p messages by traversing all interaction lists, and then
invoke Alltoallv to exchange and symmetrize the lists.
Similarly, we invoke Symmetrize(Far) in Algorithm II.1
after the far interaction lists were built. Notice that this
process not only symmetrizes but also splits a list into p
sublists according to their sources. With these sublists, we

Task DistN2S(α) : N2S(α)
if size(α) = 1 then return N2S(α)
else /** Above level-log(p) of the tree */
case rank(α) = 0 : case rank(α) = 1

2
size(α) :

Recv(w̃r); N2S(α) Send(w̃r)
Task DistS2N(α) : S2N(α)
if size(α) = 1 then return S2N(α)
else /** Above level-log(p) of the tree */
case rank(α) = 0 : case rank(α) = 1

2
size(α) :

[ũ
′
l; ũ

′
r] = P[̃lr̃]α̃ũα NOP

Send(ũ
′
r); ũl+ = ũ

′
l Recv(ũ

′
r); ũr+ = ũ

′
r

Task DistS2S(β)
foreach rank p and node α ∈ Far(β)[p] do ũβ+ = K

β̃α̃
w̃α

Task DistL2L(β)
foreach rank p and node α ∈ Near(β)[p] do uβ+ = Kβαwα

TABLE V Tasks involved in MPI-GOFMM evaluation phase.

Algorithm II.2 u[IDS,*]=DistEvaluate(w[IDS,*])

1: Redistribute(Near)
2: [Anyorder] for each leaf α do DistL2L(α)
3: [Postorder] for each node α do DistN2S(α)
4: Redistribute(Far)
5: [AnyOrder] for each node α do DistS2S(α)
6: [Preorder] for each node α do DistS2N(α)

can describe the point-to-point data dependencies and replace
later replace synchronous Alltoallv operators with several
asynchronous Isend and Irecv.

Local essential tree (LET): Recall that the tree nodes
(including indices and factors) in Figure 1 are distributed
among p processes. While interaction lists may contain tree
nodes from other processes, we must properly redistribute the
indices and factors from the tree order [IDS] to the local
essential tree order [LET] before the evaluation phase. For
example, Near(l) = {l,p} contains tree nodes from both
green and yellow processes. To evaluate submatrices Klp and
Kpl, we must redistribute indices carried by l and p. To
compute matvecs Klpwp and Kplwl, we must redistribute
weights wp and wl as well. Similarly, Far(θ) = {π,u}
contains tree nodes from all other processes (since node u is
distributed among blue and yellow processes). As a result, we
must also redistribute indices p̃i, ũ, skeleton weights w̃π , and
w̃u. In Table IV, function IDS2LET() redistributes indices
and skeletons, and function Redistribute() redistributes
weights and skeleton weights.

Evaluation (Algorithm II.2): Given weights w[IDS] ∈
RN×r (redistributed from CYC), matvec of K̃ involves
four steps: an anyoder traversal of task DistL2L, a
postorder traversal of task DistN2S, an anyorder
traversal of task DistS2S, and a preorder traversal of
task DistS2N. Different from the shared memory tasks listed
in Table II, tasks in Table V typically require communication.
In DistN2S and DistS2N tasks, computation on distributed
tree nodes above level-log(p) requires point-to-point commu-
nication using the local communicator. Nevertheless weights
w and skeleton weights w̃ must be redistributed from [IDS]
to [LET] order before the execution of all DistL2L and
DistS2S tasks. Function Redistribute() in Table IV

requires Alltoallv communication, which scales poorly on
distributed systems and also prevents out-of-order execution
between four steps.

Asynchronous message passing: To overlap communica-
tion with computation without reducing the maximum par-
allelism obtained from several traversals, Alltoallv in
Algorithm II.2 must be broken down into at least2 (p − 1)2

Isend and Irecv tasks handled by the runtime system. To
prevent blocking any worker (core), asynchronous messages
are received by periodic polling using Iprobe. This problem
is known as the dynamic sparse data exchange (DSDE) [21].
To prevent any rank from early termination before all messages
received, we modify the nonblocking-consensus solution of
DSDE to fit into our client-server base runtime system. We
use a distributed dependency graph (Figure 2) to explain this
distributed mechanism.

iSend and iRecv

Telescope
Skeleton Weights

Pack Skel
Weights

Telescope
Skeleton Potentials

Unpack Skel
Weights

Reduce
Skeleton Potentials

l

r

p

q

{𝛂}

u

{β}

{θ}

{π}

v

r

l

p

q

{𝛂}

{β}

{θ}

{π}

u

v

u

{β}
r

l

Fig. 2 Distributed dependency graph for process yellow during
evaluation (without DistL2L). The whole graph has four stages: an
upward pass to compute skeleton weights, packing skeleton weights
to p − 1 messages according to the far interaction list, exchanging
and unpacking messages, and finally a downward pass to compute
the aggregate far contribution.

Edges and nodes in Figure 2 denote all tasks and dependen-
cies required in each step to solely compute the process yellow
portion. Dimmed tasks do not participate in the evaluation
of process yellow. The leftmost tree denotes the upward
traversal of DistN2S tasks, and the rightmost tree denotes
the downward traversal of DistS2N tasks. In the middle,
the four circle nodes denote DistS2S tasks, and the three
star-shape tasks represent the incoming messages from process
blue, purple and green. In the following, we focus on the case
of DistS2S. Tasks DistL2L are implemented similarly.

In Table V, task DistS2S computes the reduction of the
far interaction list over p processes. For example, node β in
the middle of Figure 2 has three incoming edges carrying
skeleton weights w̃ from process blue, green, and yellow
(itself). Waiting for all messages to arrive inherently imposes
a global synchronization barrier. To resolve this bottleneck,
a DistS2S task must also be broken down into at least
p subtasks. Each subtask only depends on one incoming
message and contributes partly to the final lump sum. Recall
that we have split interaction list Far(β) into p sublists
Far(β)[0:p-1] during the symmetrization. By splitting task

2In the case that a single message size is large, we should further divide the message
into several sub-messages to reduce the critical path.

Task MySend(TAR,TAG,List=[Near/Far]) : SendTask
/** Isend(data_sent_to,TAR,TAG) is handled

by SendTask during after packing. */
Override RecvTask::Pack(data_sent_to) :

foreach node α ∈List_recevied_from[TAR] do
data_sent_to ∩ = (List=Near) ? wα : w̃α

Task MyRecv(SRC,TAG,List=[Near/Far]) : RecvTask
/** Recv(data_received_from) is handled

by Listener::Listen() before unpacking. */
Override RecvTask::Unpack(data_received_from) :

foreach node α ∈List_sent_to[SRC] do
(List=Near) ? wβ : w̃β = data_received_from[β]

Function Listener::Listen(terminaton_signal)
while in the runtime epoch do

[SRC,TAR]=Iprobe(ANY_SRC_TAG)
if task=msg_tasklist.find[SRC](TAG) then

Recv(data_received_from,SRC,TAG)
task.Unpack(data_received_from)

else StealAndConsumeFromOthers()
if termination_signal then

Ibarrier(&request) only once
if Test(request) then return

Function AsyncRedistribute(List=[Near/Far])
foreach rank p do msg_tasklist.insert(pair(SRC,TAG))
foreach rank p do MySend(p,AUTOTAG,List)
foreach rank p do MyRecv(p,AUTOTAG,List)

TABLE VI Tasks and functions for asynchronous communication
and redistribution: List_sent_to and List_received_from
are inherited from IDS2LET(List) in Table IV.

DistS2S accordingly, the data required by each subtask only
depends on one message to arrive. To address the possible
concurrent write on factor ũ, we use a mutex (or an atomic
update) to resolve the race condition.

Message tasks: To handle asynchronous message passing,
we introduce message tasks and listeners in Table VI. Function
AsyncRedistribution() simultaneously creates a pair
of SendTask (with Isend) and RecvTask (with Recv).
By overriding SendTask::Pack(), child class MySend
can generate Read-After-Write (RAW) dependencies from
other normal tasks during the dependency analysis phase. Sim-
ilarly, child class MyRecv can result in RAW dependencies by
overriding RecvTask::Unpack(). During the execution
epoch, the former is dispatched to normal workers while all
incoming dependencies are satisfied (i.e. SendTask is treated
as normal tasks), but the latter can only be picked up and
consumed by listeners.

Listener: To implement non-blocking periodic polling,
each normal worker (thread) can be promoted to consume
RecvTask tasks. Function Listener::Listen() de-
scribes how listeners perform non-blocking periodic polling
to consume both RecvTask and normal tasks. A listener
constantly probes for messages and check if their [SRC,TAG]
match any RecvTask task in the list. If so, messages will
be received and unpacked by the listener. Otherwise, listeners
behave the same as normal workers, trying to dispatch a
normal task from its own ready queue or steal one from
others. Finally the task (either a RecvTask or normal one)
will be executed to release other dependent tasks. Notice that
increasing the number of listeners may potentially reduce the
time of receiving and unpacking messages (given sufficient
bandwidth). Listeners can still consume normal tasks even
there is no incoming message. As a result, we typically use

several listeners (half of the total workers) as default.
Listeners terminate while reaching a global consensus on

variable termination_signal. This signal is set by nor-
mal workers while all tasks in the local dependency graph
are completed. While the signal is set on a process, the first
reacting listener will issue an asynchronous distributed barrier
(Ibarrier) and periodically test for global consensus. This
guarantees all incoming message will be received and handled
before global termination.

III. COMPLEXITY ESTIMATES

The complexity analysis of MPI-GOFMM is based on the
work for high dimensional kernel matrices presented in [16],
[22], [23]. One minor difference is that the symmetry is not
enforced in those works—whereas we do so in MPI-GOFMM.
This difference changes the constants but not the asymptotics.
The analysis below is only for the synchronous scheme for the
matrix multiply. Here, we assume that Kij can be evaluated
with O(1) work. Let D = log(N/m) be the tree depth, n =
N/p be the number of indices owned per MPI process in
[CYC] and [IDS] distribution, ts be the latency, tw be the
reciprocal of the bandwidth, κ be the number of neighbors,
s be the maximum rank of the skeletonization, and b be the
“budget” parameter. For simplicity, let m ≥ s and s/m =
O(1). Parallel tree partition and skeletonization take

(ts + tw) log2 p logN + twκn log p+ s3
(n
m

+ log p
)

(7)

time and O(κn+ s2(n+ log p)) space.
The size of the interaction lists is decided by κ neighbors

and b. As a result, we have upper bounds

|Near(α)| = O(b(N/m)), |Far(α)| = O(Db(N/m)) (8)

in the worst case3. With the upper bound of the list size,
we now estimate the worst case complexity on redistributing
indices from [IDS] to [LET] (to satisfy all distributed data
dependencies introduced by the interaction lists). This cost is

tsp+ twDbn2 (9)

with additional storage of size Dbn2 per process.
We now compare asynchronous and synchronous evalua-

tion. Algorithm II.2 involves four Alltoallv calls with
complexity shown in (9). For simplicity, we assume the total
direct evaluation computed in tasks DistL2L and DistS2S
are bounded as bN2. All low-rank approximations including
DistN2S and DistS2N takeO(2sN). The total communica-
tion and work for asynchronous and synchronous evaluation
are the same. While bN2 direct evaluations can be embar-
rassingly parallel after Alltoallv, the main advantage of
asynchronous evaluation is to overlap communication and re-
solve the diminishing parallelism in DistN2S. With sufficient
budget, communication can be hidden. We observe up to 2.5×
speedup comparing to synchronous evaluation in §V.

3Given that the neighbors we compute are unsymmetric, the near interaction list can
be 2× longer after symmetrization in the worst case.

IV. EXPERIMENTAL SETUP

Implementation and hardware: MPI-GOFMM is imple-
mented in C++ with MPI (MPI_THREAD_MULTIPLE is
required) and OpenMP. MPI-GOFMM’s only dependencies are
multi-threaded BLAS/LAPACK and MPI (we used the Intel
MPI library). We conducted our experiments on the TACC’s
“Stampede 2” system. Each node has two 24-core, Intel Xeon
Platinum 8160 “Skylake” processors, which have two AVX-
512 units. Thus, theoretical peak per node is roughly 4.3
TFLOPS in single precision. We estimate this metric according
to the base frequency (1.4Ghz), AVX512 vector length (16
floats), FMA throughput per core/cycle (dual issue, i.e., 4
flops), and the number of physical cores per node (48 cores
divided into two sockets). For the out-of-core experiments,
the input data is striped (distributed over 30 stripes with 1MB
stripe size) and stored on mounted disks ($SCRATCH partition
on “Stampede 2”). All runs are performed in single precision.

Test matrices: K01 is a forward 2D Poisson operator and
K02 is a 2D regularized inverse Laplacian squared, resembling
the Hessian operator of a PDE-constrained optimization prob-
lem. K04, K07 are kernel matrices using 6D points with Gaus-
sian and Laplacian kernel functions. K11 is an inverse squared
1D variable coefficient Poisson problem operator, and K12 is
a 2D advection-diffusion operator on a regular equidistant grid
in lexicographic numbering. G03 is a graph Laplacian of size
N = 89400 called “denormal” from UFL. H02 is (roughly)
a 100k-by-100k matrix, which is the Gauss-Newton Hessian
operator of a three-layer fully connected neural network with
a ReLU nonlinearity with topology 784 × 100 × 200 × 10
with batch size 10k (MNIST dataset). H03 is (roughly) a
266k-by-266k matrix, which is the Gauss-Newton operator
of a three-layer fully connected neural network with a ReLU
nonlinearity with topology 784 × 256 × 256 × 1 and batch
size 60k (the MNIST dataset). C01 and C02 are shifted
empirical covariance matrices by sampling 33k points in 100k
dimensions (C01) and 66k points in 500k dimensions (C02).
In both C01 and C02, the points are generated by a normal
distribution with a covariance that is an hierarchical matrix, so
in some sense, C01 and C02 can be considered as synthetic
algorithm verification cases. All matrices but H03, C01, and
C02 use a combination of stored matrices and evaluation. The
cost of evaluation for on entry of H03 is linear to the batch
size (60k); the cost of one entry of C01 and C02 is linear to
the sample size.

For the weak and strong scaling experiments, we use a
kernel matrix from a high-energy physics point set (SUSY)
and a synthetic dataset (normally distributed points in 6D). In
these experiments, since we wish to isolate the performance
of MPI-GOFMM, we loaded points from disk and used them
only for the kernel evaluation. We did not use them for
repartitioning or sampling. In this case, every Kij evaluation
costs O(1) cost, the evaluation of a Gaussian kernel using
points xi and xj .

Parameters and approximation error: Like GOFMM, our
algorithm allows different distance metrics: Gram-`2, Gram-
angle, and geometric-`2. For compression, we set parameters

http://yifanhu.net/GALLERY/GRAPHS/indexAll.html
https://archive.ics.uci.edu/ml/datasets/SUSY

m (leaf node size), s (maximum rank), τ (accuracy tolerance
used to adaptively select the rank), and κ (number of neighbors
used for S and for sampling). The relative error ε2 is computed
by a Frobenius norm towards a (sampled) exact matvec.

V. EMPIRICAL RESULTS

We conduct a number of experiments (#1–#46) to illustrate
the scalability, absolute efficiency (as the ratio of the theoret-
ical peak in GFLOPS) and the capability of MPI-GOFMM to
deal with large-scale SPD matrices. We discuss how our out-
of-order task-based scheduling can improve the performance
by overlapping computation with communication. In all, we
report results from 45 experiments organized as follows:
scaling experiments (Figure 3 and Figure 4); comparisons
with ScaLAPACK and STRUMPACK (Table VII); out-of-core
experiments (Table VIII). All experiments are indexed using
#experiment_id in the figures and tables.

192-core 384 768 1536 3072 6144

Neighbor Tree Skeletonization

192-core 384 768 1536 3072 6144

GFLOPS Sync Async

12%14%16%

26%27%29%29% 27% 26%

16% 14% 12%

60s
44s

38s
23s

27s
12s

18s
10s

13s
6s

10s
4s

52s
19s

210s

28s
12s

110s

16s
8s

55s

9s
5s

30s

5s
3s

17s

4s
2s
9s

#01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12

120s (y-axis) 40s (y-axis)

90s (y-axis) 30s (y-axis)

Fig. 3 Strong scaling (runtime in seconds as a function of the
number of cores) of MPI-GOFMM applied to a 5M-by-5M Gaussian
kernel matrix generated by dataset SUSY. Left: Compression time
and break down into three phases: neighbor search, tree creation, and
skeletonization. Right: Matrix-matrix multiplication of kernel matrix
with 5M-by-512 matrix for both synchronous kernel (light brown) and
asynchronous version (dark brown). (6,144 Skylake cores correspond
to 128 Stampede-2 nodes.) As mentioned, the y-axis denotes time in
seconds, but the scales of the two figures are different. We annotate
the scale in the middle of each figure. For the multiplication phase,
we further provide absolute efficiency measured as the ratio between
achieved GFLOPS and theoretical peak (≈4.3 TFLOPS).

Strong scaling: In Figure 3 (#1, #2, #3, #4, #5, #6, #7, #8,
#9, #10, #11, and #12), we use the high-energy physics 18-D
point dataset SUSY in order to evaluate matrix entries using a
Gaussian kernel. Using this matrix, we perform strong scaling
experiments using up to 6,144 Skylake cores (128 compute
nodes, using one MPI process per node and 48 OpenMP
threads). The compression phase on the left is memory-bound;
thus, we only report runtime of different stages in seconds (y-
axis). The bar charts reveal the scaling trend. We also report
the raw values (in seconds) below the labels. The multiplica-
tion phase with 512 right-hand sides is compute-bound. For
this phase, we report the absolute floating point arithmetic
efficiency computed as the ratio of the achieved GFLOPS over
the theoretical peak (4.3 TFLOPS per node §IV). We do not
report GFLOPS performance for the compression phase since
it is mostly memory-bound due to a pivoted QR factorization
during the most time-consuming phase—skeletonization. The

pivoted QR can be done either with GEQP3 (default) or with
the more recent HQRRP [24] (roughly 1.5× faster than GEQP3
but still achieving less than 10% peak performance).

Comparing #1 to #6, we also observe that the neighbor
search efficiency (gray bars) degrades 59%—mainly due to
the Alltoallv redistribution on neighbor candidates from
[IDS] to [CYC] partitioning §II-B. Overall tree partition,
interaction lists, and symmetrization (yellow bars) degrade
by 69%. Building symmetry interaction lists require several
Alltoallv steps and are expensive. Skeletonization (yellow
bars) is the most scalable part of the compression phase despite
the fact that its GFLOPS is not as high as the multiplication
phase. Skeletonization only involves point-to-point communi-
cation within each tree node, which can be overlapped by other
tasks such as importance sampling, GEQP3, TRSM, or caching.
As a result, the performance only degrades by 23%. Overall,
the compression efficiency degrades by 41%, while increasing
core numbers from 192 to 6,144 in our strong scaling results.

48 96 192 384 768 1536 3072 6144

Neighbor Tree Skeletonization

48 96 192 384 768 1536 3072 6144

GFLOPS Sync Async

27%25%23%
28%32%

36%39%

49%49%

39% 36%
32% 28%

23% 25% 27%

8s
6s

14s
8s

18s
9s

21s
11s

27s
13s

18s
7s

21s
4s

95s

23s
6s

95s

24s
7s

102s

27s
11s

101s

31s
15s

104s

33s
15s
84s

#13 #15 #16 #18 #19 #20 #22 #23 #24 #25 #26 #27
22s
3s

98s

45s
19s

107s

31s
16s

10s
5s

#14 #17 #21 #28

120s (y-axis) 40s (y-axis)

90s (y-axis) 30s (y-axis)

Fig. 4 Weak scaling (runtime in seconds vs cores) of MPI-GOFMM
applied to Gaussian kernel matrices generated synthetically with
point clouds in 6-D. Left: Compression time and break down into
three phases: neighbor search, tree creation, and skeletonization.
Right: Matrix-matrix multiplication of kernel matrix with N -by-512
matrix for both synchronous kernel (light brown) and asynchronous
version (dark brown). We also report the exact timings in the
embedded table; the first row is the experiment index; the second
row is the time for the synchronous mode (using alltoallv();
the third row is the asynchronous mode using schemes described in
§II-B, Table VI). The grain size is 524k points per MPI process.
The largest problem size involves the multiplication of the 67M-by-
67M kernel matrix by the 67M-by-512 matrix of random vectors.
We report results for this problem in #20 and #28. We also report
the absolute efficiency (as opposed to the performance in 48 cores)
of the asynchronous matrix-matrix multiplication case (i.e., observed
FLOPS over peak FLOPS).

Weak scaling: In Figure 4 (experiments #13, #14, #15,
#16, #17, #18, #19, #20, #21, #22, #23, #24, #25, #26, #27,
and #28), we perform weak scaling experiments on synthetic
Gaussian kernel matrices with up to 128 MPI processes (6,144
cores). The MPI-GOFMM parameters are adjusted to keep the
accuracy fixed to about 1E-2. Here we also keep the bandwidth
fixed. An alternative would be to scale the bandwidth based
on some theoretical regression criterion, but since is rather
complex and depends on the application, we have opted for
keeping the bandwidth fixed. One potential artifact is that
|Near(α)| may double in the worst case after the symmetry
interaction list is built. As a result, the multiplication time

https://archive.ics.uci.edu/ml/datasets/SUSY

Sca STRUMPACK MPI-GOFMM
case LAPACK ε2 Compress Mult ε2 Compress Mult

29 K04 4.1 2E−1 224.6 7.5 2E−5 1.7 0.09
30 K07 4.0 4E−2 23.2 1.3 1E−4 1.5 0.04
31 K07 4.0 2E−2 15.9 3.3 1E−4 1.5 0.04
32 K11 4.1 1E−2 93.6 2.2 8E−6 1.5 0.04
33 K12 4.1 1E−1 222.6 4.3 7E−5 1.6 0.05
34 G03 2.8 1E−1 33.6 2.1 7E−5 1.4 0.04
35 H02 4.0 9E−2 19.6 5.3 7E−4 11.7 0.57

TABLE VII Comparison between ScaLAPACK, STRUMPACK, and
MPI-GOFMM for several different matrices. All results are on four
Stampede-2 nodes. All the matrices are roughly 100K-by-100K. We
report the time to do a dense matrix-matrix multiplication with
ScaLAPACK (no approximation), and then the accuracy, compres-
sion time and multiplication time for STRUMPACK and MPI-GOFMM
respectively. For STRUMPACK we used the lexicographic ordering for
K04; for K07 we used both lexicographic (run # 30) and geometry-
based permuted (run # 31). The permutation doesn’t help that much,
and we think this is because STRUMPACK does not include sparse
corrections. Notice that with the exception of run #34, MPI-GOFMM
(compression + evaluation) is faster than ScaLAPACK.

may not reveal the weak scaling efficiency, because the actual
computed FLOPS do not scale linearly with N even when the
budget is controlled. Another potentially biasing factor is that
the Gaussian kernel bandwidth is fixed for all experiments.
As a result, as we add more points the support of the kernel
becomes narrower, which makes the matrix easier to compress.
To somewhat compensate for this potentially positive bias,
we provide the absolute efficiency (in blue) (as opposed to
normalizing to the performance observed with 48 cores).

From #13 to #20, efficiency (gray bars) degrades 51%
in neighbor search, 81% in tree partition and building the
symmetry interaction lists. We observe that the synchronous
multiplication algorithm does not scale that well and this is
due to the Alltoallv(), which scales poorly even with 32
MPI processes (#17). In contrast, our asynchronous multipli-
cation algorithm that avoids Alltoallv() achieves better
performance—it is 2× faster for most of our experiments.
For example, for run #26–#27 Alltoallv() (which is
part of the synchronous multiplication) requires 12.2, and 6.1
seconds respectively, which is almost as much as the time
required for the asynchronous scheme. Skeletonization only
loses 8% in efficiency; since it dominates the compression
runtime, the compression phase achieves 72% efficiency in our
weak scaling experiments. Observe that the runtimes of #19,
#27 and #28 reduce—somewhat unexpectedly. One possible
explanation is that the matrix is more compressible and that the
communication patterns more local. Overall, our method can
maintain roughly 20% of peak performance (for the specific
matrix) in the weak scaling experiments.

Comparison with other software: In Table VII, we
compare MPI-GOFMM to ScaLAPACK and STRUMPACK.
We compare with ScaLAPACK to benchmark MPI-GOFMM
against a dense GEMM. The combined compression and
evaluation should be faster than the GEMM. Indeed, for
matrices of size ∼100k MPI-GOFMM achieves significant
speedups ScaLAPACK for ∼2k right-hand sides for five digits
of accuracy.

Cache Nested %N2 ε2 Compress Mult GFLOPS
K01, N=262,144

36 - - 5.0% 2E-1 639.6 1005.6 2
37 x - 5.0% 1E-1 1477.0 1.0 1108

K02, N=147,456
38 - - 1.0% 5E-5 3.9 0.4 324
39 x - 1.0% 4E-5 4.0 0.3 434

C01, N=100,000
40 - - < 0.1% 5E-6 119.4 1.7 1762
41 - x < 0.1% 4E-6 74.3 1.7 2998
42 x x < 0.1% 6E-6 72.7 0.1 1018

C02, N=500,000
43 - - < 0.1% 3E-6 2359.6 21.1 1238
44 - x < 0.1% 5E-6 1623.3 20.7 1828
45 x x < 0.1% 4E-6 1790.0 0.4 1532

H03, N=266,496
46 x x 2.0% 1E-3 551.2 3.8 973

TABLE VIII Out-of-core experiments. All experiments were done
on four Stampede-2 nodes (192 Skylake cores) for different matrices.
We report timings for matrix-matrix multiplication with a N -by-
512 random matrix. We report compression rate (%N2), that is
the percentage of matrix samples required for compression and
multiplication as a percentage of N2 (dense exact matrix cost). We
also report the relative error of our approximation ε2, the wall-
clock time (in seconds) for compression and multiplication, and
GFLOPS per node. For each matrix, we also consider three different
setups defined by combinations of “caching” and “nesting”. By
“caching” we refer to storing (in RAM) an entry Kij every time is
computed/loaded from the disk. For the cases in which computation is
required to obtain Kij (cases C01, C02, and H03), nesting indicates
that further parallelism was exploited in the Kij evaluation.

STRUMPACK [13] constructs an HSS representation in
O(N logN) work using a randomized ID explained in [15].
We present a comparison with STRUMPACK because besides
MPI-GOFMM it is the only distributed-memory library that
can compress dense matrices. STRUMPACK is more general
than MPI-GOFMM: it supports sparse matrices and matrix-
free peeling. For dense matrices, STRUMPACK differs from
MPI-GOFMM in three main ways: (1) it does not permute
the input matrix; (2) it is an HSS and not an FMM, i.e., it
does not include sparse corrections; and (3) it compresses off-
diagonal blocks differently. Although we allowed ranks up to
6400 on off-diagonals in STRUMPACK, it was still hard to
achieve the target accuracy. It seems that sparse corrections
(which MPI-GOFMM is using) are needed for some instances.
Let us remark that STRUMPACK has not been designed for this
problem, the main design and optimization have been targeted
towards the factorization of sparse matrices. Additionally, in
runs #29-30 we applied geometric permutation, a memory-
intensive operation that is done beforehand and cannot be per-
formed by STRUMPACK directly. In the #34 run (H02 matrix
related to neural networks), the multiplication is only 7× faster
than ScaLAPACK, and the compression is quite expensive. In
this case, using MPI-GOFMM would be advantageous only if
we had even more right-hand sides or if we want to compute
an approximate factorization of H02.

Out-of-core (OOC) experiments: For matrices that cannot
be fully loaded into memory or efficiently computed on the
fly, our method currently support two specific OOC formats
implemented using Linux’s mmap() (memory mapped) func-
tionality. In Table VIII, we report results on dense matrices

mapped using mmap in all MPI processes. Notice that we
tested MPI I/O, but it did not perform as well as mmap() due
to the random access pattern. Dense matrices are fully mapped
by all processes. Matrices C01, C02, and H03, require storing
data, and the evaluating entry Kij is expensive. In particular,
these matrices can be formed by writing K = I + JJT . We
only store J and we compute the matrix entry on the fly.

Further, to reduce I/O costs or/and redundant computation
during the multiplication phase, we can optionally cache all the
“visited” entries of K, assuming we have sufficient memory.
Caching shifts K(i, j) evaluation overhead to the compression
phase, which partially overlaps with skeletonization. As a
result, the one-time compression cost will be higher, but
multiplication can be much faster. Other than caching, for C01,
C02, and H03, we also allow exploiting nested parallelism
in evaluating an entry Kij or submatrix KIJ . In all three
cases, Kij can be computed by GEMM_TN. To fully exploit
the parallelism, we use the approach in [25] to systematically
generate subtasks and temporary buffers for the reduction.

For K02 (which is only 81GB), mmap performs almost
as well as in-memory access (compare #29 to #34). As a
result, caching in #39 does not significantly reduce the matrix
multiplication time. The effect of caching stands out for K01
(256GB) in #37, which delivers 1, 000× speedup comparing
to #36. Notice that K01 (256GB) is quite large and does
not fit in the memory of a single node. As a result, the
compression time reflects the I/O costs (mostly latency). We
choose to cache all required submatrices (about 5% of the
whole matrix) in #37, which shifts multiplication time to the
compression phase. Notice that the compression time of #37 is
lower than the sum of compression and multiplication cost in
#36. This is because the caching process is partially overlapped
with the skeletonization phase, which further provides higher
parallelism to be exploited.

In the evaluation of Kij for C01 and C02, most of the time
spent on evaluating Kij (using GEMM_TN) and not on reading
J . This can be observed from the achieved performance in
terms of GFLOPS per node. #41 achieves higher GFLOPS
than #40 because of the extra nested parallelism provided by
the GEMM_TN subtasks. A 512-by-512 submatrix evaluation
in #40 is encapsulated as a 512 × 33K × 512 GEMM task.
It takes roughly 0.2 seconds on a Skylake core running in
near its peak performance. This huge task results in a longer
critical path and increases the difficulty of scheduling. (The
worst case scheduling scenario is more likely to happen
with highly heterogeneous tasks). #41 splits the huge tasks
into smaller 512 × 512 × 512 subtasks, trading extra buffer
space with parallelism. As a result, we can observe roughly
1.5× performance gain in #41. With caching, #42 has much
shorter evaluation time, but its GFLOPS drop without these
computational intensive evaluations. For a larger case, matrix
C02 (132GB, 10× bigger), we observe 12× to 13× longer
multiplication time in #43 and #44. The extra runtime is
contributed to the high mmap latency. For square submatrix
evaluation, mmap takes roughly 10% of the evaluation time
in #40 and #41, but its portion increases to 20% in #43

and #44. The mmap (I/O) latency may dominate the runtime
subcolumn evaluations in the compression phase (mainly used
in tree partition). As a result, we observe more performance
degradation in the compression phase.

Finally, we present our results on compressing a Gauss-
Newton Hessian related to a three-layer full connected percep-
tron. Each column of J requires a full (or partial) feed-forward
step on the whole mini batch. Submatrix KIJ is evaluated
as a J (:,I)TJ (:,J) if the whole Jacobian matrix is stored.
Different from #35 where the whole system is stored, here
#46 in Table VIII we only store the full Jacobian matrix and
compute the entries on the fly just like covariance matrices.
Although the compression cost is higher, this allows us to
approximate a larger problem. In the evaluation phase with all
required submatrices cached, our method is able to get 3-digit
of accuracy in 3.8s using 4 MPI processes and reaching 23%
of peak performance.

VI. CONCLUSIONS

MPI-GOFMM is quite capable of approximating a wide
range of dense SPD matrices. Although we have not dis-
cussed heterogeneous architectures, we remark that the orig-
inal GOFMM was ported on KNL, GPUs, and ARM architec-
tures. Similar extensions for MPI-GOFMM should be relatively
straightforward. However, the GOFMM acceleration was done
only in the evaluation phase, not the compression [1].

In all, the compression phase remains a challenge. The
pivoted QR eats up cycles, and the dependencies create
synchronization bottlenecks. Perhaps one ought to consider
alternative methods that have worse complexity on a sequential
machine but scale better and can easier utilize heterogeneous
architectures. Nevertheless, assuming that the evaluation of
Kij is fast, compression can be still quite efficient. For
example, it only takes 150 seconds to compress a 67M-by-
67M matrix. The I/O performance using mmap is somewhat
disappointing and unpredictable—especially in light that MPI
I/O was even slower. We believe that for practitioners is
important to provide the OOC capability since access to a
large number of nodes may be difficult.

We evaluated our algorithms on several datasets, including
covariance matrices and neural-network Hessians. We believe
we are the first to find that the Hessian of multi-layer fully
connected feed-forward networks is hierarchically compress-
ible. There is much more to be said and done about this, but
this is beyond the scope of this paper.

Fast H-matrix factorization algorithms are our ultimate goal.
Here we focused on building an H-matrix approximation of an
arbitrary SPD matrix. Our future work will deal with integrat-
ing distributed fast factorization algorithms into MPI-GOFMM
to enable fast solvers and preconditioners.

ACKNOWLEDGMENT

This material is based upon work supported by AFOSR
grants FA9550-12-10484; by NSF grant CCF-1725743; by
the Technische Universität München;and by a gift from Qual-
comm Foundation. Computing time on the Texas Advanced
Computing Centers was provided by an allocation from TACC.

REFERENCES

[1] C. D. Yu, J. Levitt, S. Reiz, and G. Biros, “Geometry-oblivious FMM for
compressing dense SPD matrices,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017, p. 53.

[2] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, 1st ed.,
ser. Springer Series in Computational Mathematics 49. Springer-Verlag
Berlin Heidelberg, 2015.

[3] M. Bebendorf, Hierarchical Matrices. Springer, 2008.
[4] L. Grasedyck, R. Kriemann, and S. Le Borne, “Parallel black box-LU

preconditioning for elliptic boundary value problems,” Computing and
visualization in science, vol. 11, no. 4, pp. 273–291, 2008.

[5] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle
point problems,” Acta numerica, vol. 14, no. 1, pp. 1–137, 2005.

[6] K. R. Muske and J. W. Howse, “A Lagrangian method for simultaneous
nonlinear model predictive control,” in Large-Scale PDE-constrained
Optimization: State-of-the-Art, ser. Lecture Notes in Computational
Science and Engineering, L. Biegler, O. Ghattas, M. Heinkenschloss,
and B. van Bloemen Waanders, Eds. Springer-Verlag, 2001.

[7] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, “On the use of
Stochastic Hessian Information in Optimization methods for Machine
Learning,” SIAM Journal on Optimization, vol. 21, no. 3, pp. 977–995,
2011.

[8] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, pp. 1171–1220, 2008.

[9] A. Gray and A. Moore, “N-body problems in statistical learning,”
Advances in neural information processing systems, pp. 521–527, 2001.

[10] Greengard, L., “Fast Algorithms For Classical Physics,” Science, vol.
265, no. 5174, pp. 909–914, 1994.

[11] N. Cancedda, E. Gaussier, C. Goutte, and J. M. Renders, “Word
sequence kernels,” Journal of Machine Learning Research, vol. 3, pp.
1059–1082, Mar. 2003. [Online]. Available: http://dl.acm.org/citation.
cfm?id=944919.944963

[12] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in ICML, vol. 2, 2002, pp. 315–322.

[13] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, “An
efficient multicore implementation of a novel HSS-structured multi-
frontal solver using randomized sampling,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. S358–S384, 2016.

[14] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-memory
package for dense hierarchically semi-separable matrix computations
using randomization,” ACM Transactions in Mathematical Software,
vol. 42, no. 4, pp. 27:1–27:35, Jun. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2930660

[15] P.-G. Martinsson, “Compressing rank-structured matrices via random-
ized sampling,” SIAM Journal on Scientific Computing, vol. 38, no. 4,
pp. A1959–A1986, 2016.

[16] W. B. March, B. Xiao, C. D. Yu, and G. Biros, “ASKIT: An Efficient,
Parallel Library for High-Dimensional Kernel Summations,” SIAM
Journal on Scientific Computing, vol. 38, no. 5, pp. S720–S749, 2016.
[Online]. Available: http://dx.doi.org/10.1137/15M1026468

[17] N. Halko, P.-G. Martinsson, and J. Tropp, “Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Review, vol. 53, pp. 217–288, 2011.

[18] W. B. March, B. Xiao, C. Yu, and G. Biros, “An algebraic parallel
treecode in arbitrary dimensions,” in Proceedings of IPDPS 2015,
ser. 29th IEEE International Parallel and Distributed Computing
Symposium, Hyderabad, India, May 2015. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.86

[19] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Transactions on Mathematical Software
(TOMS), vol. 39, no. 2, p. 13, 2013.

[20] B. Xiao and G. Biros, “Parallel algorithms for nearest neighbor search
problems in high dimensions,” SIAM Journal on Scientific Computing,
vol. 38, no. 5, pp. S667–S699, 2016.

[21] T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable communication
protocols for dynamic sparse data exchange,” ACM Sigplan Notices,
vol. 45, no. 5, pp. 159–168, 2010.

[22] W. B. March, B. Xiao, S. Tharakan, C. D. Yu, and G. Biros, “A kernel-
independent FMM in general dimensions,” in Proceedings of SC15, ser.
The SCxy Conference series. Austin, Texas: ACM/IEEE, November
2015. [Online]. Available: http://dx.doi.org/10.1145/2807591.2807647

[23] ——, “Robust treecode approximation for kernel machines,” in
Proceedings of the 21st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Sydney, Australia, August 2015, pp. 1–10.
[Online]. Available: http://dx.doi.org/10.1145/2783258.2783272

[24] P.-G. Martinsson, G. Quintana Orti, N. Heavner, and R. van de Geijn,
“Householder QR factorization with randomization for column pivoting
(HQRRP),” SIAM Journal on Scientific Computing, vol. 39, no. 2, pp.
C96–C115, 2017.

[25] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-
Orti, and R. van de Geijn, “SuperMatrix: a multithreaded runtime
scheduling system for algorithms-by-blocks,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, ser. PPoPP ’08. New York, NY, USA: ACM, 2008,
pp. 123–132. [Online]. Available: http://doi.acm.org/10.1145/1345206.
1345227

http://dl.acm.org/citation.cfm?id=944919.944963
http://dl.acm.org/citation.cfm?id=944919.944963
http://doi.acm.org/10.1145/2930660
http://dx.doi.org/10.1137/15M1026468
http://dx.doi.org/10.1109/IPDPS.2015.86
http://dx.doi.org/10.1145/2807591.2807647
http://dx.doi.org/10.1145/2783258.2783272
http://doi.acm.org/10.1145/1345206.1345227
http://doi.acm.org/10.1145/1345206.1345227

class KernelMatrix<T,TPARAM> : VirtualMatrix<T>
virtual operator T K(i,j) return K(X (i),X (j))
virtual function SendIndices(ids,dest,comm)

Send(ids,dest,comm)
Send(X ′ = X(ids),dest,comm)

virtual function RecvIndices(ids,src,comm)
Recv(ids,src,comm)
Recv(X ′,src,comm)
X.Insert(ids,X ′)

virtual function BcastIndices(ids,root,comm)
Bcast(ids,root,comm)
Bcast(X ′ = X(ids),root,comm)
X.Insert(ids,X ′)

virtual function RequestIndices(ids[1:p])
Alltoallv(ids[1:p])
for i=1:p then X ′[i]= X(ids[i])
Alltoallv(X ′[1:p])
for i=1:p then X.Insert(ids[i],X ′[i])

TABLE IX MPI-GOFMM API to define the evaluation of Kij: Five
virtual methods define the API for MPI-GOFMM. These functions need
to be implemented by the user. Only the first one is required. The
remaining four are optional to support data repartitioning (all four
must be implemented by the user if repartitioning is to take place).
The implementation above is an example of how these functions would
be implemented for the case of a Kernel Matrix.

VII. APPENDIX

Here we give details on the MPI-GOFMM API, the runtime
systems, the distributed memory algorithms, and the differ-
ences between GOFMM and MPI-GOFMM.

A. The matrix definition API

The MPI-GOFMM API requires a user-defined function
K(i,j) that returns entry Kij given matrix indices i and j.
One complication is that the user-provided evaluation Kij may
require MPI communication. We assume that such evaluation
requires two memory blocks, one for index i and one for j.
We further assume that the evaluation of Kij can take place in
a single MPI process. However, the memory blocks for i and j
may reside in different MPI processes and thus evaluating Kij

may require MPI communication. This communication can
add up and slow down the overall computation—sometimes to
unacceptable levels. For this reason, we provide an (optional)
API so that the data can be repartitioned (redistributed) to
be favorable to the MPI-GOFMM algorithm. This API con-
sists of four methods: SendIndices(), RecvIndices(),
BcastIndices(), RequestIndices(). These allow
MPI-GOFMM guided, user-implemented, data repartitioning
that are invoked by MPI-GOFMM in order to minimize the
communication costs associated with evaluating Kij .

The only required method is the user-defined K(i,j),
which inherits the abstract base class VirtualMatrix<T>.
Operator T K(i,j), defined as a pure virtual function, is
instantiated to return entry Kij with type T. In Table IX, we
give an example in which K is a kernel matrix and K(i,j)
is defined by K(xi, xj), where the points xi and xj have
type TPARAM. For a dense column-major matrix (defined in-
memory or using mmap from the disk), K(i,j) is simply
instantiated to return K[i+j*N].

The remaining four methods are used to redistribute data
required to evaluate Kij . Again, taking a kernel matrix as
an example, we can repartition the point dataset in order

to minimize communication. Functions SendIndices(),
RecvIndices() use only point-to-point communication,
whereas BcastIndices(), RequestIndices() involve
collective communication. Except for RequestIndices,
all other three methods can take arbitrary communicators.
RequestIndices uses the same communicator that was
assigned to invoke MPI-GOFMM. These methods are called
automatically during the compression phase and provided all
required arguments for users to perform the communication.
If there is no communication required, these methods will still
be called but return immediately.

For the kernel matrix example, we assume that the points X
are distributed in the [CYC] (1D cyclic) order. That is, MPI
process q only holds

X[CYC] = {xi|mod(i,p) = q}. (10)

During the repartitioning, we insert xj to X for each received
xj /∈ X[CYC]. In MPI-GOFMM, index matching is imple-
mented with a hashmap that records the offset to the dense
matrix X . For an unseen xj , index j is first inserted into the
hashmap as a pair of j and X.col(). Then xj is inserted
from the back of X .

In practice, SendIndices and RecvIndices appear in
tasks DistSplit and DistID where indices and skeletons
are exchanged between two partner ranks (q and mod(q +
p/2,p)) in the same communicator. BcastIndices is used
in task DistSplit to broadcast the centroid and the two
farthest points (indices). Finally, RequestIndices is used
in Algorithm II.1 to handle all-to-all repartitioning introduced
by the neighbors and interaction lists.

B. Dependency Analysis
MPI-GOFMM performs a runtime dependency analysis to

exploit dynamic data dependencies. In Table X, we take
tasks DistID and DistS2N as examples to illustrate
how MPI-GOFMM instantiates tasks and performs depen-
dency analysis. A normal task of MPI-GOFMM must inherit
the abstract base class Task. For example, we instanti-
ate DistID with parameter type DistNode. There are
three member functions must be instantiated: the constructor,
DependencyAnalysis(), and Execute(). The first two
functions are called during the symbolic traversal (in this
case, a post-order traversal) to provide the parameter (tree
node), estimate the execution cost (according to its flops and
mops), and perform dependency analysis. The last function
Execute(), performing the actual computation, is invoked
by a worker (thread) assigned by the runtime system when all
the dependencies are satisfied.

Most of the MPI-GOFMM tasks take tree nodes as pa-
rameters. As a result, we choose to annotate the read/write
activities in the granularity of tree nodes. Tree nodes (both
shared memory Node and distributed memory DistNode)
defined in Table ?? inherit class ReadWrite (defined in
Table ??) to record the Read/Write activities. Each task must
annotate these activities on each node by calling function
ReadWrite::DependencyAnalysis() during the sym-
bolic execution (a symbolic tree traversal in MPI-GOFMM).

class Task
deque<Task*> in, out;
Lock lock;
TaskStatus status=ALLOCATED;
volatile int n_dependencies_remaining=0;
string name;
float cost = 1.0;
virtual void DependencyAnalysis()=0;
virtual void Execute(Worker *worker)=0;
class DistID<DistNode,T> : Task
DistNode *node;
function DistID(DistNode *node)

this->node = node
this->name = string("DistID")
this->cost = estimated from flops and mops
DependencyAnalysis()

function DependencyAnalysis()
node->DependenOnChildren(this)

function Execute(Worker* worker)
DistID<DistNode,T>(node) defined in Table III

class DistS2N<DistNode,T> : Task
DistNode *node;
function DistS2N(DistNode *node)

this->node = node
this->name = string("DistS2N")
this->cost = estimated from flops and mops
DependencyAnalysis()

function DependencyAnalysis()
node->DependenOnParent(this)

function Execute(Worker* worker)
DistS2N<DistNode,T>(node) defined in Table V

TABLE X The pseudo code of task DistID and DistS2N. Tasks
DistID are instantiated and created during the post-order symbolic
traversal of Algorithm II.1. Tasks DistS2N are instantiated and
created during the preorder symbolic traversal of Algorithm II.2.

For example, in Table X task DistIDTask will read
skeletons l̃, r̃ and write α̃. This can be annotated by
DistNode::DependOnChildren(), which encodes ac-
tivities on node α and its children l and r. Similarly, task
DistS2N will read w̃α and write w̃l, w̃r, and the activities
can be annotated by DistNode::DependOnParent()
during the preorder symbolic traversal in Algorithm II.2.
With these records, dependencies between tasks can be re-
solved by tracking the Read/Write sets (inherited from class
ReadWrite) for each node.

Following [25], we present class ReadWrite in Table ??
to perform runtime dependency analysis. When a task per-
forms a read operation on a tree node, the pointer of the
task is inserted to the read queue of this tree node (the
read queue is inherited from class ReadWrite). Then for
every task that previously modified (or “wrote”) the tree node
and still in its write queue, we add a Read-After-Write
(RAW) dependency (a direct edge in the dependency graph)
with the new task (named as tar in Table X). This is done by
calling function DependencyAdd(src,tar), which insert
task tar to the out queue of task src and insert task src
to the in queue of task tar. Similarly, tasks that write the
node create Write-After-Read (WAR) dependencies for every
task in the read queue. After all WAR dependencies are
generated, both read and write queues are flushed, and the
last write task is inserted to the write queue. Independent tasks
(with no incoming edges after the dependency analysis) are
detected and directly enqueued to one of the ready queue by

class Node : ReadWrite
Node* parent, lchild, rchild;
function DependOnChildren(Task* tar)

if lchild then lchild->DependencyAnalysis(R,tar)
if rchild then rchild->DependencyAnalysis(R,tar)
this->DependencyAnalysis(RW,tar)
tar->TryEnqueue()

function DependOnParent(Task* tar)
this->DependencyAnalysis(R,tar)
if lchild then lchild->DependencyAnalysis(RW,tar)
if rchild then rchild->DependencyAnalysis(RW,tar)
tar->TryEnqueue()

class DistNode : Node
DistNode *child;
Comm comm;
function DependOnChildren(Task* tar)

if CommSize(comm)<2 then
lchild->DependencyAnalysis(R,tar)
rchild->DependencyAnalysis(R,tar)

else child->DependencyAnalysis(R,tar)
this->DependencyAnalysis(RW,tar)
tar->TryEnqueue()

function DependOnParent(Task* tar)
this->DependencyAnalysis(RW,tar)
if CommSize(comm)<2 then

lchild->DependencyAnalysis(RW,tar)
rchild->DependencyAnalysis(RW,tar)

else child->DependencyAnalysis(RW,tar)
tar->TryEnqueue()

TABLE XI Definition of classes Node and DistNode. A shared
memory tree node has type Node, which inherits class ReadWrite
to perform dependency analysis. Class Node also carries pointers
parent, lchild, and rchild to access factors or indices car-
ried by the parent and children. A distributed memory tree node
DistNode inherits Node and further carries a local communicator
and a unique pointer child to access the children.

class ReadWrite
deque<Task*> read, write;
function DependencyAnalysis([R/W/RW],Task* tar)

if activity is R of RW then
read.push_back(tar)
foreach src : write do DependencyAdd(src,tar)

if activity is W of RW then
foreach src : read do DependencyAdd(src,tar)
DependencyCleanUp()
write.push_back(tar)

function DependencyCleanUp()
read.clear()
write.clear()

function DependencyAdd(Task* src, Task* tar)
src->lock.Acquire()
src->out.push_back(tar)
src->lock.Release()
tar->lock.Acquire()
tar->in.push_back(src)
if src->status!=DONE then

tar->n_dependencies_remaining ++
tar->lock.Release()

TABLE XII Definition of class ReadWrite: Each MPI-GOFMM
tree node inherits class ReadWrite to track all Read/Write ac-
tivities. Member function DependencyAnalysis() shows how
we encode read/write activities to data dependencies between tasks.
Member function DependencyCleanUp() flushes all activities
such that the object can perform another round of analysis.

function Task::TryEnqueue(). These independent tasks
are the source nodes of the dependency graph.

C. GOFMM and MPI-GOFMM Comparison

In Algorithm VII.1 and Algorithm VII.2, we summarize

Algorithm VII.1 Side-by-side comparison between GOFMM (left) and MPI-GOFMM compression (right)

1: [Preorder] for each node α do Split(α)
2: N = AllNearestNeighbors(K)
3: NOP
4: [Postorder] foreach node α do ID(α)
5: [Anyorder] foreach leaf α do FindNear(α)
6: foreach α and β ∈ Near(α) do Near(β)∩ = α
7: NOP
8: [Postorder] foreach α do MergeFar(α)
9: foreach α and β ∈ Far(α) do Far(β)∩ = α

10: NOP

11: [Preorder] foreach node α do DistSplit(α)
12: N[*,CYC] = DistAllNearestNeighbors(K)
13: N[*,IDS] = N[*,CYC]
14: [Postorder] foreach node α do DistID(α)
15: [Anyorder] foreach leaf α do FindNear(α)
16: Symmetrize(Near)
17: IDS2LET(Near)
18: [Postorder] foreach α do DistMergeFar(α)
19: Symmetrize(Far)
20: IDS2LET(Near)

Algorithm VII.2 Side-by-side comparison between GOFMM (left) and MPI-GOFMM evaluation (right)

1: NOP
2: [Anyorder] foreach leaf α do L2L(α)
3: [Postorder] foreach node α do N2S(α)
4: NOP
5: [AnyOrder] foreach node α do S2S(α)
6: [Preorder] foreach node α do S2N(α)

7: (Async)Redistribute(Near)
8: [Anyorder] foreach leaf α do DistL2L(α)
9: [Postorder] foreach node α do DistN2S(α)

10: (Async)Redistribute(far)
11: [AnyOrder] foreach node α do DistS2S(α)
12: [Preorder] foreach node α do DistS2N(α)

compression and evaluation phase of GOFMM (left) and
MPI-GOFMM (right) to highlight their differences. All com-
ponents and tasks can be found in Table II, Table I, Table V,
Table III, Table IV, and Table VI.

Traversals: MPI-GOFMM uses a complete binary tree data
structure to cluster the row and column index sets of K.
If we’re using p MPI processes, the tree from root to level
log p−1 is shared among the p processes the remaining p sub-
trees are local in each MPI process. Every MPI process locally
stores information for log p tree nodes from the distributed part
of the tree in vector<DistNode*>. The local tree nodes
(belong to the local subtree) are stored as vector<Node*>
in breadth-first traversal order. A top-down traversal will first
visit all log p distributed tree nodes and then visit all the
local nodes in the lexicographic order. A bottom-up traversal
reverses this operation. A local node has both lchild and
rchild pointers to it children DistNode inherits Node and
stores a local MPI communicator.

Compression: In Algorithm VII.1, we state the origi-
nal shared memory version of GOFMM on the left and the
distributed memory version on the right. Except for three
additional redistributing steps at line 13, line 17, and line 20,
the rest of the execution flows are almost the same. The tree
is traversed in the same order, but the involving tasks are
different. For example, instead of calling the shared memory
splitter Split in Table I, MPI-GOFMM calls the distributed
memory splitter DistSplit in Table III. Most of the changes
happen in the distributed tree nodes above level-log p. The
operations performed on the local tree nodes below level-log p
remain the same. This observation can also be applied to other
distributed tasks including DistID and DistMergeFar.

The main difference between the compression phase of
GOFMM and MPI-GOFMM is the all-to-all repartitioning per-
formed at line 13, line 17, and line 20. While neighbors N
are computed and stored in parallel, an additional step at
line 13 is required to repartition the neighbor pairs from 1D

cyclic [CYC] to the MPI-GOFMM tree order [IDS]. This
is because the neighbors are approximated with a tree-based
algorithm. Also, notice that interaction lists of MPI-GOFMM
can contain remote tree nodes stored on other processes. As
a result, additional Alltoallv operations are required to
symmetrize both near and far interaction lists using function
Symmetrize(). Essential matrix indices and corresponding
factors are redistributed by function IDS2LET() that con-
structs the local essential tree (the [LET] order).

Evaluation: The side-by-side comparison of the evaluation
phase is presented in Algorithm VII.2. The main difference
is the all-to-all redistribution performed at line 7 and line 10.
These two steps redistribute weights w and skeleton weights w̃
from the MPI-GOFMM tree order [IDS] to the local essential
order [LET]. Different from shared memory tasks N2S and
S2N, distributed memory tasks DistN2S and DistS2N han-
dle additional communication using the local communicator
for distributed tree nodes above level-log p. Different from
tasks S2S and L2L, tasks DistS2S and DistL2L are
split into p subtasks to facilitate asynchronous communica-
tion (AsyncRedistribute()). While each subtask only
depends on one message from a remote process, the whole
evaluation phase is free from global synchronization barriers.

VIII. ARTIFACT

A. Abstract

The artifact description comprises the source code, datasets,
and installation instruction on a GitHub repository that can be
used to reproduce results for this SC’18 paper. We also provide
all hardware and software configuration in §VIII-B.

B. Description

MPI-GOFMM approximates arbitrary SPD matrices using a
distributed memory algebraic FMM with geometry-oblivious
techniques. The only requirement is the capability to evaluate
any matrix element Kij in the distributed environment in
nearly O(1) time. Note that we do not require all the entries,
only the ability to evaluate them. The K(i, j) API is defined
in VII-A.
• Program: MPI-GOFMM is developed in C++14 employing

a self-contained runtime system (using OpenMP threads) for
shared-memory parallelism and MPI for distributed-memory
parallelism (MPI_THREAD_MULTIPLE is required).

• Hardware: We conducted experiments on TACC (Texas
Advanced Computing Center) Stampede2 (48 cores on two
sockets, i.e. 24 cores/socket, 2.1GHz (1.4-3.7GHz), Intel
Xeon Platinum 8160 “Skylake”).

• Compilation: MPI-GOFMM and all software (includ-
ing GOFMM, ScaLapack, and STRUMPACK) are com-
piled with intel-17 -O3. All BLAS/LAPACK rou-
tines use Intel MKL (-mkl=parallel). OpenMP uses
OMP_PROC_BIND=spread.

• Datasets: We use datasets and the MATLAB scripts
(datasets/spdmatrices.m) provided by GOFMM to
generate K01, K02, K04, K07, K11, K12, and G03 matri-
ces. Neural-network related matrices and covariance matri-
ces can be can be generated using python numpy scripts.
(/path_to_repo/datasets/*.(m/py), provided in
the repository). We provide the sources in §IV (i.e. URLs)
for all real-world datasets we use in the experiments (e.g.
MNIST60K and SUSY5M).

• Output: The executable of MPI-GOFMM reports execution
time, total FLOPS of the compression and evaluation phases,
and accuracy ε2 of the first 10 entries and averaged over 100
sampled entries.

• Experiment workflow: git clone repository; generate
datasets with the Matlab/Python scripts; and run test scripts.
How delivered: https://github.com/ChenhanYu/hmlp. To re-

produce results see /artifact/sc18gofmm. The software
comprises code, build, and evaluation instructions, and is
provided under GPL-3.0 license.

Hardware dependencies: To reproduce timings one should
use the TACC Stampede2 system. Notice that we report ab-
solute GFLOPS (Giga Floating Points Operations per Second)
and the ratio to the theoretical peak performance in the paper.
To approximately reproduce the same results on a different
environment, one should seek a platform that has similar
capabilities. The theoretical peak in single precision is 4,300
GFLOPS per MPI node.

Software dependencies: Compilation of MPI-GOFMM
requires MPI-3.0, a generic parallel C/C++ compilers
that support c++14 features (-std=c++14) and OpenMP
(-fopenmp for GNU or -qopenmp for Intel compilers).
MPI-GOFMM also requires the full functionality of BLAS and
LAPACK routines.

Linux and Unix: If environment variables CC, CXX,
MKLROOT (or OPENBLASROOT) are all set up properly, then
users only have to set USE_MPI=true in the set_env.sh
before the compilation. Otherwise, you must export the proper
values for all variables: the required region of set_env.sh
first. Compiler vendor is detected by environment variables
CC and CXX and cmake is used for compilation.

export USE_MPI = true
export CC = ${CC} % icc or gcc
export CXX = ${CXX} % icpc or g++

cmake will automatically look for proper MPI support. Upon
failure in auto detection, users must set up the related flags

${MPI_CXX_INCLUDE_FLAGS}
${MPI_CXX_COMPILE_FLAGS}
${MPI_CXX_LIBRARIES}
${MPI_LINK_FLAGS}

manually in CMakeLists.txt.

C. Installation

Given the repository URL, you should be able to clone the
release branch. The first step is to

source set_env.sh

to set up targeting architecture, compilers, environment vari-
ables, BLAS/LAPACK library. If no error occurs, use the
following instructions for standard cmake compilation.

mkdir build
cd build
cmake ..
make install

Execution: Once the compilation (make install) is
completed, directory /build/bin should contain at least the
following files and directories:

artifact_sc18gofmm.x % executable
/datasets % MATLAB/python
sbatch_artifact_sc18gofmm_default.sh
run_artifact_sc18gofmm_default.sh

Executing run_artifact_sc18gofmm_default.sh
will invoke the executable (artifact_sc18gofmm.x) on
a small 5K-by-5K matrix. Notice that if you need to submit a
task using slrum, then use the sbatch file we provide. By
default, we use TACC setting, and the executable is run by
ibrun tacc_affinity. To execute with custom settings,
change the corresponding variables in the script and edit other
options in the bash script appropriately. To reproduce other ex-
periments in this paper, you must first generate datasets using
the MATLAB/python scripts we provide in /datasets.

https://github.com/ChenhanYu/hmlp

	Introduction
	Methods
	Geometric-Oblivious FMM Review
	Distributed-Memory Parallelism

	Complexity Estimates
	Experimental Setup
	Empirical Results
	Conclusions
	References
	Appendix
	The matrix definition API
	Dependency Analysis
	GOFMM and MPI-GOFMM Comparison

	Artifact
	Abstract
	Description
	Installation

