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Abstract

This thesis investigates the potential of deep neural networks for representations learning
from audio signals. First, it is shown that visual representations of audio signals, such
as spectrograms, consist of a variety of meaningful acoustic information due to the rich-
ness of their time-frequency information. Second, it is demonstrated that state-of-the-art
deep neural network-based methodologies are highly suitable for the task of representa-
tion learning from the generated spectra. In this regard, novel learning models based on
convolutional and recurrent neural networks are proposed. Furthermore, extensive exper-
iments are conducted to evaluate the practicability of the introduced techniques for a wide
range of audio recognition tasks, including analysis of acoustic environments, speech pro-
cessing, and health monitoring. Finally, it is shown that the developed systems are able to
learn meaningful and robust representations.

iii





Preface
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work, and enhanced by an introductory chapter and concluding remarks. It is hoped that
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ceeding this, the interested reader can find the full list of my pre-publications.
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1
Introduction

1.1 Motivation
We are constantly surrounded by dynamic audio events, some pleasant, such as singing
birds and babbling brooks, other less so, like the sound of a lawnmower on a Saturday
morning. From an early age, humans have the ability to recognise, filter, and understand
a rich variety of existing sounds, focusing on important details in the audio whilst chan-
neling out a large number of distractions. In the era of Artificial Intelligence (AI), it is
vital for machines to analyse and understand the acoustic environment with high preci-
sion. In this regard, machine learning systems for detection of acoustic events, e. g. for
autonomous-driving cars [1] and acoustic surveillance [2] or the application of Automatic
Speech Recognition (ASR) and emotion recognition systems for human-computer inter-
action [3, 4] are gaining in popularity. Likewise, research in the field of mobile health
and remote health monitoring based on acoustic information are showing strong improve-
ments [5–7]. For all these applications, there is a need for machine learning systems which
have robust performance and high accuracy in real-world conditions. In this regard, this
thesis not only investigates recent deep learning techniques for audio processing, but also
proposes novel machine learning paradigms, offering a solution for the aforementioned
problems.

1.2 Problem Statement
Despite recent rapid developments in the field of machine learning, current computer au-
dition systems are still unable to perform the task of audio understanding and analysis
with human-like precision. Furthermore, conventional machine learning methods were
restricted in their ability to process the input data in its raw format. For many years,
building machine learning systems required precise engineering and fundamental domain
knowledge to develop a feature extractor (e. g. OPENSMILE [8, 9]) which mapped char-
acteristics of the raw audio, such as amplitude and frequency, into meaningful feature

3



1. Introduction

vectors from which the machine learner could recognise patterns. This manual process of
feature engineering is tedious and time consuming due to the large amount of human in-
tervention needed. Such features are also highly task-dependent, i. e. they require human
expertise to select and design discriminative information for a given task [10]. However,
task-specific feature sets often show stronger performance in comparison with more gen-
eral feature vectors. As these features are fine-tuned for a specific domain, e. g. acoustic
features for affective computing, classification of emotions [11–13] and for music genre
classification [14], they may not perform well for other tasks which differ slightly and can
deteriorate the performance of the machine learning system [15].

1.3 Objectives
For the reasons mentioned above, there is a need for manual adjustment or re-engineering
of the feature sets for each new machine learning problem. Therefore, the research agenda
for this thesis consists of four main objectives:

I) To analyse whether pre-trained image classification Convolutional Neural Networks
(CNNs) are suitable for extracting meaningful and robust deep representations from
audio spectrograms.

II) To investigate whether deep feature quantisation can effectively reduce noisy repre-
sentations in the feature space.

III) To verify whether Deep Convolutional Generative Adversarial Networks (DC-
GANs) and recurrent autoencoders are able to learn meaningful deep representations
from audio data in an unsupervised manner.

IV) To test whether it is possible to learn both shift-invariant and long-term contex-
tual features from audio signals with Convolutional Recurrent Neural Networks
(CRNNs).

1.4 Contribution
In contrast to conventional expert-designed feature sets (known as hand-crafted features),
and with regard to the rapidly increasing amount of heterogeneous data, this thesis pro-
poses novel deep learning approaches for representation learning directly from audio,
hence eliminating the need for hand-crafted features. With respect to the scientific objec-
tives raised above, the main contributions of this thesis are the following:

• Introducing the novel DEEP SPECTRUM system1 [16], which is an open-source
Python toolkit with process parallelisation for rapid GPU-based deep feature ex-

1https://github.com/DeepSpectrum/DeepSpectrum
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1.5. Outline

traction from audio data utilising pre-trained CNNs. In this thesis, it is demon-
strated that the DEEP SPECTRUM features are highly effective for various audio
classification and recognition tasks.

• Demonstrating the efficacy of the Bag-of-Deep-Features (BODF) proposed for
quantising DEEP SPECTRUM representations obtained from real-world audio data.
It is shown that the quantisation step, which can be considered as a quasi-
filtering process, effectively compresses the feature space and eliminates noisy
representations, whilst providing better results in comparison with non-quantised
DEEP SPECTRUM features.

• Introducing AUDEEP2, a novel and highly effective deep architecture for fully un-
supervised representation learning from audio data with varying length using re-
current Sequence to Sequence Autoencoders (S2SAEs) [17, 18]. This approach
has been developed, since commonly used deep representation learning methods
such as CNNs, Restricted Boltzmann Machines (RBMs), or stacked autoencoders
generally require inputs of fixed dimensionality, and do not explicitly model the
sequential nature of acoustic data [10].

The deep learning systems introduced in this thesis are validated through extensive
experiments on a wide range of audio data, including acoustic sounds, rare audio events,
human speech and vocalisation, and medical datasets. Furthermore, DEEP SPECTRUM

and AUDEEP have been used as baseline systems for the 2018 edition of the Audio/Visual
Emotion Challenge and Workshop (AVEC) and the INTERSPEECH Computational Par-
alinguistics ChallengE (COMPARE).

1.5 Outline
This thesis is structured as follows:

Chapter 2 discusses the fundamental principles of Deep Neural Networks (DNNs) and
the key properties of CNNs and Recurrent Neural Networks (RNNs), which form the
basis of the higher level models described in the following chapters.

Chapter 3 analyses state-of-the-art representation learning approaches based on
pre-trained CNNs, Generative Adversarial Networks (GANs), autoencoders, and CRNNs.

Chapter 4 introduces the DEEP SPECTRUM system for rapid extraction of deep
representations from audio data utilising pre-trained CNNs.

2https://github.com/auDeep/auDeep

5

https://github.com/auDeep/auDeep


1. Introduction

Chapter 5 proposes a DCGAN structure, which is able to learn meaningful repre-
sentations from audio data in an unsupervised manner.

Chapter 6 introduces AUDEEP, a S2SAE, which is developed for unsupervised
learning of fixed-length representations from variable-length audio data.

Chapter 7 describes a CRNN approach for capturing shift-invariant, high-level
features and the long-term temporal context of audio data.

Chapter 8 evaluates the efficacy of the introduced deep representation learning
techniques for problems, such as acoustic scene classification, rare acoustic event
detection, and audio-based game genre classification.

Chapter 9 analyses the suitability and the performance of the BODF and
DEEP SPECTRUM representations for classification of in-the-wild human vocalisa-
tion and speech types, and sentiments.

Chapter 10 investigates the applicability of S2SAEs and DEEP SPECTRUM for
classification tasks within the health domain.

Chapter 11 concludes the thesis, discusses the limitations of the deep learning
methodologies introduced in previous chapters, and suggests avenues for future work.
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Background
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2
Deep Neural Networks

Before describing in detail the deep learning methodologies applied in this thesis for the
task of representation learning, this chapter will outline the neural network architectures
and models that form their basis. In particular, significant miscellaneous deep learning
criteria (cf. Section 2.1) and the key properties of two types of neural networks, CNNs
(cf. Section 2.2) and RNNs (cf. Section 2.3) will be discussed. Furthermore, four higher
level neural network models, which have been applied in the publications leading to this
thesis, are introduced. These models are based on pre-trained CNNs (cf. Section 3.1),
GANs (cf. Section 3.2), autoencoders (cf. Section 3.3), and CRNNs (cf. Section 3.4).

2.1 Fundamental Principles
An Artificial Neural Network (ANN) is a set of algorithms inspired by their biological
neural network counterpart, the mammalian nervous system [19]. An ANN is composed
of a complex network of interconnected elements, called neurons, an information high-
way that connects multiple input signals into a single output signal. A simple artificial
neuron is the McCulloch-Pitts neuron [19] that computes the weighted sum of its bias
input and the input signals and passes the result through a non-linear activation function
(cf. Figure 2.1). For a given McCulloch-Pitts neuron, let there be n inputs and bias b with
signals x0, . . . ,xn and the weights for each input w0, . . . ,wn. The input signal x0 is assigned
the bias value b, which sets the weight of the input signal x0 =+1 to w0 = b. The output
of the neuron is then:

y = f (
n

∑
i=0

wixi) (2.1)

where f is the applied activation function.

The information flow between the neurons is defined by the interconnections in an
ANN and the weight assigned to each neuron stores the information that the network
has acquired. A simple ANN is the Feedforward Neural Network (FFNN), in which the
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Figure 2.1: A single McCulloch-Pitts neuron with bias b and weights w1, . . . ,wn for input
signals x1, . . . ,xn.
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Figure 2.2: An MLP-FFNN with four layers, including one input layer with two neurons,
two hidden layers each with three neurons, and one output layer with one neuron. Bias
inputs are not depicted for clarity.

information flow is only possible in one direction (i. e. no cyclic connections are allowed):
first through the input nodes, then across the hidden units (if some available), and finally
through the outputs. An example of such a neural network is the Multilayer Perceptron
(MLP), which is typically organised into input, hidden, and output layers, each composed
of multiple perceptrons. The structure of an MLP with 2 hidden layers, each with three
hidden units is given in Figure 2.2.

An ANN composed of two or more hidden layers can be considered as a DNN. Typ-
ically, in DNNs, signals pass through multiple hidden layers and flow across a large
number of neurons before reaching the output layer. The structure of a DNN is given
in Figure 2.3. In the following sections, important characteristics of DNNs are briefly
described.

2.1.1 Network Training
Once a DNN has been structured for a specific application, it is ready for the training
process, which can be broadly categorised into supervised and unsupervised approaches.

• Supervised Training: The network has access to both input and output, i. e. the data
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Figure 2.3: A high-level structure of a DNN with three hidden layers.

is fully labelled. Hence, it is possible for the network to update the weights leading
to the neurons using backpropagation, i. e. by propagation of the error backwards
from the output layer to the hidden layer [19–23]. A loss function computes the
error given at the output layer using the difference between the network output and
the expected output at each output unit.

• Unsupervised Training: The network is provided with the inputs, but it has no
access to the desired target outputs, i. e. there is no label information available. In
this case, the neural network discovers regularities, patterns, or categories in the
input data and learns a distribution based on which a loss function determines the
likelihood between input and output signals.

2.1.2 Network Hyperparameters

In a DNN, hyperparameters determine the network structure and define the way in which
it is trained. Unlike the weights and biases of a DNN, hyperparameters are not model
parameters and cannot be directly trained from the input data. In the following, some
of the important hyperparameters related to network structure and training algorithm are
briefly introduced:

• Learning rate: Defines the rate at which the learning process reaches the local
minimum. The lower the learning rate, the slower is the training process, however,
the network converges smoothly. High learning rate speeds up the training at the
cost of convergence.
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(c) Overfitting

Figure 2.4: A graphical representation of the underfitting and overfitting problems. Fig-
ure 2.4a shows a linear function, which is not sufficient to fit the data points. Figure 2.4b
illustrates a polynomial of degree 5, which approximates the true function very accurate.
In Figure 2.4c, the trained model is overfitted to the data points for higher polynomial
degrees. The diagrams are generated using implementations provided in the scikit-learn
machine learning library [24]. The overfitting and underfitting are evaluated quantita-
tively by using a Cross Validation (CV). The MSE on the validation set is calculated; the
model generalises better for lower MSE values.

• Momentum: Is an addition to classic Stochastic Gradient Descent (SGD) algorithm,
which helps accelerating gradients vectors in the right directions, hence leading to
faster convergence [25–27]. It also assists in the prevention of oscillation at the
local minimum [25–27]. Many state-of-the-art deep learning models use SGD with
momentum for training [28–30].

• Batch size: Is the number of training samples utilised in one training iteration. Very
small batch size can lead to stochastic behaviour of the network and has a similar
effect as choosing high learning rate. Large batch size can generate more stable
results, but choosing a very large batch size can yield worse performance.

• Number of epochs: Is the number of iterations that the entire input data is passed
forward and backward through the neural network. The higher the number of
epochs is, the higher is the number of times the weights are changed in the network.
By increasing number of epochs, the trained model goes from underfitting (cf. Fig-
ure 2.4a) to a good fit (cf. Figure 2.4b), and then to overfitting (cf. Figure 2.4c).
There is no general rule to find the best number of epochs in a training process [19].
Underfitting means that the trained model is too general and can neither model the
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2.1. Fundamental Principles

input data nor generalise to new data. On the contrary, an overfitted model reflects
the errors in the input data on which it is trained, rather than accurately recognising
new data.

• Number of hidden layers and units: Defines the complexity of the neural network.
By adding one or more hidden layers, the network is able to extract higher-level
features from its input data [19]. The number of hidden units can be roughly set
to equal the number of input features. A small number of hidden units may be an
additional cause of underfitting [19].

2.1.3 Regularisation

Regularisation is a set of techniques used to avoid overfitting. It helps the network to train
a model from the input data which is more robust and can generalise better to unseen data.
In the following, some of the most important regularisation approaches are briefly intro-
duced. For detailed information, interested reader is referred to corresponding references.

• More data: The best regulariser is more data. If the training data is scarce, data
augmentation techniques can be applied. For audio data augmentation, methods
like Stochastic Feature Mapping (SFM) [31], which is inspired by the idea of voice
conversion [32–34], Vocal Tract Length Perturbation (VTLP) [35], time stretching,
or pitch shifting of audio signals have shown to be effective. For image data aug-
mentation, state-of-the-art approaches, such as GANs have shown their strength to
generate synthetic samples based on the training data [36, 37]. These methods can
also be applied on audio spectrograms.

• Dropout: Is one of the most popular and effective regularisation techniques to
cope with overfitting problems [38, 39]. Dropout reduces interdependent learning
amongst the neurons in the network by dropping units with their connections from
the neural network during training. In Figure 2.5, an example of a thinned neural
network produced after applying dropout has been shown.

• DropConnect: Is a generalisation of dropout [38, 39] for regularising large fully
connected layers and preventing “co-adaption” of units in a neural network [40].
The main difference between DropConnect [40] and dropout is that individual
weights in the network are deactivated instead of disabling neurons (cf. Figure 2.6).
Results provided by Wan et al. [40] on a range of datasets demonstrated that
DropConnect often outperforms dropout.

• Batch Normalisation (BN): Is a technique to normalise the internal representation
of the input data to boost the training of the neural networks [41]. Furthermore, BN
regularises the training model and reduces the need for dropout [38].
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Figure 2.5: The structure of a ‘thinned’ MLP-FFNN after applying dropout. Crossed
neurons and their connections (dashed arrows in grey) have been dropped.
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Figure 2.6: The structure of an MLP-FFNN after applying DropConnect. Individual
weights are set to zero (crossed dashed arrows), instead of units. In this case, a neuron
can remain partially active.

• Early stopping: Is a form of regularisation to minimise the potential overfitting
problems by early stopping the optimisation process if the performance of the net-
work has not improved for a given amount of epochs.

2.1.4 Activation Functions
Activation functions are mathematical functions that define the output of a neuron refer-
ring to its input value. Without an activation function, the output of the network would be
a linear function (polynomial of degree one), which is limited in its ability to learn com-
plex structures from an input signal (cf. Figure 2.4a). With linear activation functions, cu-
mulative back-propagated error signals either grow out of bounds, or shrink very fast [23].
Hence, differentiable non-linear activation functions are required to make backpropaga-
tion possible and learn robust representations from non-linearly separable data [42]. Some
of the most important non-linear activation functions are defined below:
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Figure 2.7: Sigmoid activation function and its derivative.

• Sigmoid: The sigmoid function is a popular activation function that often finds
application if a neuron’s output should be classified as one of two values. It is
defined as follows:

σ(x) =
1

1+ e−x (2.2)

This function is smooth and continuously differentiable, and its values range from
zero to one. Therefore, for the purposes of backpropagation, its derivative can be
determined as the following function:

σ
′(x) = σ(x)(1−σ(x)) (2.3)

Figure 2.7 shows the sigmoid function together with its derivative.

• Tanh: Certain characteristics of the sigmoid function can be seen as limiting, for
example, its range is restricted to positive values between zero and one. The tanh
activation addresses this limitation by scaling and shifting the sigmoid function, so
that the values are in the range of [−1,1]:

tanh(x) =
2

1+ e−2x −1 (2.4)

Its derivative is still easily computed as:

tanh′(x) = 1− tanh(x)2 (2.5)

Figure 2.8 shows the tanh function together with its derivative. The tanh activation
function is prominently applied in RNNs using Long Short-Term Memory (LSTM)
cells [43] or Gated Recurrent Units (GRUs) [44].
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Figure 2.8: Tanh activation function and its derivative.

• Rectified Linear Unit (ReLU): A ReLU [45] is a very simplistic, yet surprisingly
efficient activation function for introducing non-linearity to a neural network archi-
tecture. A ReLU is defined by the identity function for values equal to and above
zero and squashes all negative values to zero:

R(x) =
{

0 for x < 0
x for x≥ 0 (2.6)

This also means that not all neurons on a layer necessarily get activated all the time,
making computation both sparser and faster. The derivative of the ReLU is zero for
x < 0 and one for x≥ 0:

R′(x) =
{

0 for x < 0
1 for x≥ 0 (2.7)

ReLUs are one of the most popular activation functions used within modern neural
network architectures. They have a wide range of application within state-of-the-
art machine learning models. Networks trained for image recognition tasks, such as
AlexNet [28] or ResNet [46] use ReLUs as their activation functions. For the deep
learning models introduced in this thesis, ReLUs have been applied as activation
function in the hidden layers.

Figure 2.9 shows the ReLU function together with its derivative.

• Leaky ReLU: Leaky ReLUs [47] modify regular ReLUs by allowing a small non-
zero gradient for units with negative activations. This is done by multiplying acti-
vations below zero with a fixed, small factor α:

f (x) =
{

α x for x < 0
x for x≥ 0 (2.8)
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Figure 2.9: ReLU activation function and its derivative.

The derivative therefore becomes:

f ′(x) =
{

α for x < 0
1 for x≥ 0 (2.9)

Leaky ReLUs activations have been applied in the discriminator element of DC-
GANs [48]. Figure 2.10 shows the leaky ReLU function together with its derivative.

• Softmax: In contrast to the rest of the discussed activation functions, the softmax
function was specifically designed for multi-class classification problems and is
therefore used in the last layer of a neural network architecture. It transforms the
activations of the neurons on a single layer to class probabilities values between
zero and one, which sum up to one. The softmax activation of the j-th of K neurons
on the same layer is defined as follows:

σ(x) j =
ex j

∑
K
k=1 exk

for j = 1, . . . ,K. (2.10)

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are the first neural network architecture which
is considered for representation learning in this thesis. CNNs gained in popularity in
the machine learning community for their efficacy in solving visual recognition tasks,
such as image and video classification [28, 30, 46, 49] and action or face recognition [50–
54]. Classic CNNs make use of two distinct types of hidden layers: the eponymous
convolutional layers and pooling layers.
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Figure 2.10: Leaky ReLU activation function and its derivative.

Convolutional layers convolve their inputs with striding kernels of a specific small
size, resulting in feature maps. The parameters of each kernel are shared between con-
volutions with different parts of the input. As a result, the network is able to recognise
different features of the input, such as detecting edges, regardless of where they are lo-
cated in the original image.

Conversely, pooling layers reduce the number of neurons in feature maps by putting
together groups of adjacent neurons. Furthermore, they are commonly deployed to shrink
the input image size, in order to achieve shift-invariance [55]. Thus, the computational
load, the memory usage, and the number of trainable parameters can be reduced [56, 57].
In addition to limiting the risk of overfitting, a smaller input image size also improves
the tolerance towards location invariance [55, 57]. One of the most popular pooling ap-
proaches is max-pooling, through which small square regions of the feature maps are
reduced by the maximum activation in this region [56]. Conventional fully connected
layers are also often added after these two special layers, and, in the case of classification
tasks, a softmax layer can be used to complete the architecture. Figure 2.11 shows the
structure of a multilayer CNN.

Apart from the field of computer vision, CNNs have also been successfully applied
in other research areas. In Natural Language Processing (NLP), they have been used for
tasks, such as sentence classification [58, 59] or sentiment analysis [60–62], whilst they
also achieve state-of-the-art results in computer audition when applied to spectrograms,
for example in environmental sound [63, 64], or acoustic scene classification [65, 66].
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Figure 2.11: Architecture of a multilayer CNN. Kernels are convolved with the input
to create feature maps in the convolutional layers. Pooling is used as a dimensionality
reduction technique afterwards.

2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of ANN that aim at modelling sequential
data, such as continuous speech and text data [67, 68]. The structure of a standard RNN
is similar to a simple MLP model, yet introduces connections between hidden layers of
various time steps1.

These connections can be of three different forms. If the neurons are connected
to themselves between each time step, the connection type is direct. Neurons can
also be connected to neurons on the same (lateral) or different (indirect) hidden layer.
This enables the network to “learn from the past”, i. e. discovering temporal correla-
tions and dependencies in the data distribution. Training of RNNs can be achieved by
Backpropagation Through Time (BPTT), which is conceptually similar to ‘unrolling’ the
recurrent connections into a multilayer DNN consisting of copies of the network for each
time step.

Regular RNNs are comparably difficult to train, as the BPTT algorithm suffers from
vanishing and exploding gradients, which hinder the separation of correlating similarities
between data points by longer periods of time [69–71]. In order to tackle this problem,
an RNN architecture with Long Short-Term Memory (LSTM) cells is designed [43, 72].
LSTMs enforce constant error flow through the use of memory cells in combination with
gate units. A memory cell stores a hidden state, whilst multiplicative gate units control
how this state is influenced by the current input (input gate), as well as how it should
affect the current output (output gate). Figure 2.13 demonstrates this architectural concept
extended with forget gates, which were introduced to help LSTMs handle very long or
continuous sequences without pre-defined beginning and end. These gates facilitate the
network resetting its internal state at a certain time.

1A time step is an easy way to distinguish between the internal states of a neuron in an RNN.
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Figure 2.12: An RNN architecture with three different types of recurrent connections
(red arrows). Direct connections link a neuron to itself between time steps. Connections
between different neurons are called lateral connections when the neurons reside on the
same hidden layer, and indirect connections if they are on separate layers.
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Figure 2.13: Basic building block of the LSTM architecture. A memory cell stores a
hidden state, whereas different gated units regulate how this state should be affected by
the input (input gate), influence the output (output gate), or even be forgotten after certain
events (forget gate).
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3
Representation Learning

In this chapter, four higher level neural network models based on CNNs and RNNs are
introduced and their application areas are discussed. These models form the basis of
the deep representation learning methodologies applied in this thesis. In particular, pre-
trained CNNs (cf. Section 3.1), GANs (cf. Section 3.2), autoencoders (cf. Section 3.3),
and CRNNs (cf. Section 3.4) are investigated.

3.1 Pre-trained Convolutional Neural Networks
As described in Section 2.2, many state-of-the-art CNN architectures are deep, featur-
ing large amounts of trainable parameters. Whilst this allows them to perform very well
on sizeable amount of training data, e. g. for CNNs trained on the ImageNet corpus [73]
or Google’s [74] and Facebook’s [75] face recognition networks, they often fall behind
models using hand-crafted features [76] when applied to smaller datasets. A possible
solution to utilise the advantages of these deep networks when training data is sparse, is
transferring the knowledge learnt from large datasets [77, 78]. In such cases, the activa-
tions of the neurons extracted from the fully connected layers of pre-trained image CNNs
can be directly applied as off-the-shelf features for a diverse range of visual recognition
challenges, often outperforming hand-crafted feature sets [79].

Chen et al. [80] use feature vectors extracted from a CNN pre-trained on the CASIA-
WebFace dataset for unconstrained face recognition [81]. Marmanis et al. perform clas-
sification on observations of the earth by feeding features extracted from an ImageNet
pre-trained CNN into their own, smaller CNN classifier [82]. Venugopalan et al. propose
a deep end-to-end sequence-to-sequence model, which uses the outputs of both an action
and object pre-trained CNN as inputs for a stacked LSTM to translate videos to text [83].

Another approach that can often lead to even better results when using pre-trained
CNNs is to fine-tune their weights on the target dataset. This transfer learning method is
widely applied to various tasks, from visual emotion recognition [84] over cross-modal
retrieval [85] to medical applications, such as computer aided detection, or mammogram
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analysis. Kieffer et al. [86] further compare the efficiency of training a CNN network from
scratch and fine-tuning a pre-trained CNN for the task of histopathology classification.
Pre-trained CNNs are also used to initialise components of the fast and faster R-CNN
models used for object detection [29, 87].

Apart from visual recognition, pre-trained CNNs have also recently found applications
in computer audition. The author and his colleagues utilised image CNN descriptors ex-
tracted from spectrogram plots for audio-based recognition tasks [16, 62, 88]. Aytar et al.
train SoundNet – a deep CNN architecture providing sound representations – on unla-
belled video data collected in-the-wild by utilising the recognition power of established
visual CNNs [89]. The representations learnt by SoundNet have since been applied to
various tasks. Grinstein et al. made a foray into audio style transfer [90], whereas IBM
uses the features as part of their sports highlights system to detect excitation in the com-
mentator’s voice [91]. Hori et al. use SoundNet features in their multimodal attention
system that fuses audio and spatio-temporal features to generate video descriptions [92].
Researchers at Google have further investigated the effectiveness of traditional image
recognition CNN architectures for audio analysis. They train model variations on a large
dataset of 70 million automatically labelled YouTube videos and later evaluate the em-
beddings learnt by these models on the AudioSet [93] ontology for acoustic event classi-
fication [94].

3.2 Generative Adversarial Networks
The second representation learning technique investigated in this thesis utilised Genera-
tive Adversarial Networks (GANs). In 2014, Goodfellow et al. first introduced the GAN
framework [95]. In GANs, two different networks are trained simultaneously in a zero-
sum game-like manner. A Generator creates samples from a random distribution (typi-
cally a noise vector z), whereas a Discriminator is trained to distinguish these generated
samples from real data. This adversarial setting leads to the need of both models to con-
tinually increase their performance, until the samples produced by the generator become
indistinguishable from the real data distribution [95], or at least an equilibrium is reached,
in which both models cannot improve further.

In the framework proposed by Goodfellow et al. [95], a prior probability distribution
pz is characterised over the input noise variables z, which is then mapped into the data
space by a differentiable generator function G(z). In [95], G(z) is represented by an
MLP. In addition, a second MLP, with a differentiable discriminator function D(x), is
defined. D(x) calculates the probability that a given sample x was drawn from the data
distribution pdata, instead of the generator distribution pg. Afterwards, the discriminator
D is trained with backpropagation to maximise the probability of assigning the correct
label to both training examples and generated samples from G. At the same time, the
generator G is trained to minimise log(1−D(G(z))), i. e. to maximise the number of
generated samples which are misclassified by the discriminator. It has been demonstrated
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Figure 3.1: Basic concept of a GAN. The generator G constructs samples from noise
z according to the learnt distribution pg. The discriminator D is then tasked with dif-
ferentiating whether a sample was created by the generator or drawn from the real data
pdata.

that the minimax game has a global optimum at pg = pdata when the generator has learnt
to perfectly reproduce the real data distribution [96]. After the training process is finished,
the activations in the discriminator can be extracted as representations for the real training
examples [48]. Figure 3.1 illustrates the basic concept of the introduced GAN.

Chen et al. extend GANs from an information-theoretical point of view with
Information Maximising Generative Adversarial Networks (InfoGANs) [97]. InfoGANs
learn interpretable representations in an unsupervised manner by maximising mutual in-
formation between a set of latent variables and the generator distribution. The noise vector
is split up into a source of incomprehensible noise z and a set of latent variables, denoted
as latent code c. This code targets structured salient information of the data distribution,
e. g. for the MNIST database of handwritten digits [98], individual variables of c learn to
represent the digit kind, the width, or the rotation of the generated character.

Wasserstein-GANs [99] minimise an efficient approximation of the Earth Mover dis-
tance between generated and real data distribution in order to effectively combat a prob-
lem found with training of GANs. The problem they have addressed is that GANs require
balanced training of generator and discriminator and are quite sensitive to changes in the
network architecture [100].

Whilst the samples generated by a GAN are often indistinguishable from the real data
distribution by the human eye, Valle et al. showed that these fake samples carry a unique
signature that makes them easily identifiable using methods of statistical analysis and
pixel value comparison [101]. The samples also violate formal specifications that can be
learnt from the respective real data.

3.3 Autoencoders
Autoencoders are neural networks that are able to learn compressed and efficient data
coding by unsupervised training. The encoder part of the network maps the input data to a
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Figure 3.2: Illustration of a feedforward autoencoder. The encoder maps the inputs
x1, . . . ,xn to hidden representations. Afterwards, the decoder reconstructs x̃1, . . . , x̃n from
this representation. The accuracy of the representation is evaluated using an objective
function, such as the MSE.

hidden representation, normally of lower dimensionality, e. g. by stacking fully connected
layers that decrease in neuron count. The decoder part of the network then attempts to
reconstruct the input data from this compressed representation. The training goal of the
network is therefore to minimise the difference between the original data it receives as
input and the output it then reconstructs from the learnt coding. For this purpose, the
Mean Squared Error (MSE) is often used between the network inputs x1, . . . ,xn and the
reconstruction x̃1, . . . , x̃n

eMSE =
1
n

n

∑
i=1

(xi− x̃i)
2

as the objective function during the training process [102]. A simple form of an autoen-
coder is an MLP architecture having an input and output layer of the same size and hidden
layers in between (cf. Figure 3.2).

There is a range of autoencoders with the aim to learn richer representations and
prevent the networks from learning the identity function. Noteworthy are denoising, or
stacked denoising autoencoders [102, 103], in which the input data is intentionally cor-
rupted before being fed into the encoder network. The autoencoder is then trained to
reconstruct the original, clean data from the corrupted samples [102].

24



3.4. Convolutional Recurrent Neural Networks

3.4 Convolutional Recurrent Neural Networks
In a CRNN, local dependencies of the input signals are extracted by adopting a CNN,
whilst the global structures are obtained with recurrent layers. Such a system was first
proposed in [104] for text classification and then applied for image recognition [105–107],
and audio and music classification tasks [108–110]. CNN layers are able to learn high-
level, shift-invariant features, and help recurrent layers to learn robust spatial dependen-
cies from the visual inputs (e. g. from images for object recognition or spectrograms for
speech processing) [107, 108]. A CRNN system has less complexity compared to an
RNN-only approach, as the integrated CNN provides abstraction and reduces the overall
number of trainable parameters. Moreover, the long-term temporal context encoded by
recurrent layers can transfer more precise supervisions to the CNN layers during back-
propagation.

In the context of visual recognition, Wu et al. use a CNN in combination with a re-
current layer that operates as a conditional random field for real-time road object seg-
mentation [111]. Furthermore, Wehrmann et al. detect adult content in videos with
CRNNs [112].

Xu et al. achieved strong results for audio event detection using gated CNNs [113].
For the similar task, the authors in [114–117] successfully applied end-to-end CRNN ap-
proaches with state-of-the-art results. For the challenge of bird audio detection, CRNNs
have also been successfully applied [118, 119]. The CRNN approach proposed by Iqbal
et al. [120] extended the VGG13 [30] architecture, in which they initially averaged only
the frequency dimension instead of averaging across the spatial dimensions after the con-
volutions. Afterwards, they applied a bidirectional recurrent layer for each time step, in
order to learn the temporal dynamics of the input signals. Iqbal et al. achieved robust
results with their system for the task of general-purpose audio tagging [120].

CRNNs have also been used for a number of health care and wellbeing applications.
Gao et al. use them to grade nuclear cataracts (clouding of the lenses in the human
eye) [121], whereas Qin et al. reconstruct magnetic resonance images [122]. Furthermore,
Ma et al. build a deep CRNN architecture that learns to effectively represent patients’ elec-
tronic health records, in order to predict health risks more precisely [123]. Multimodal
activity recognition from data collected with wearable devices has also been performed
with CRNNs by Ordonez et al. [124].

In genomics, Qang and Xie have applied a convolutional bidirectional LSTM network
to DNA sequences for quantifying their function [125]. Pan et al. predict RNA-protein
sequences and structure binding preferences using a CRNN architecture [126].

The author of this thesis and his colleagues have successfully applied a CRNN with
Bidirectional Long Short-Term Memory (BLSTM) cells in the recurrent layers, for audio-
based recognition of echolalic vocalisation from children with an Autistic Spectrum Con-
dition (ASC) [127], and a CRNN with LSTM cells (with backward pass) in the recurrent
layers, for rare acoustic event detection [128].
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4

Deep Spectrum

To solve complex, real-world recognition tasks, machine learning systems should be given
a considerable amount of prior knowledge to compensate for data which is not available.
CNNs are able to combat this with currently established models [28,129–132]. Therefore,
as described in Section 3.1, it should be possible to transfer the knowledge of deep CNNs
that have been pre-trained on large-scale image datasets (e. g. ImageNet [73]) to computer
audition and vision related tasks, in which the data is scarce, such as medical image anal-
ysis [133–135], or text classification [59]. In order to make use of the robustness of pre-
trained CNNs for audio processing tasks, the author and his colleagues have developed
the DEEP SPECTRUM system1 [16], which is an open-source Python toolkit with process
parallelisation for rapid GPU-based deep feature extraction from audio spectrograms.

4.1 Characteristics

The DEEP SPECTRUM system has been successfully applied for medical audio process-
ing [16, 88, 136, 137], affective computing [4, 62], and human speech and vocalisation
tasks [88, 138]. It has also been used as a baseline system for the 2018 edition of the
Audio/Visual Emotion Challenge and Workshop (AVEC) [139]. A step-by-step tutorial on
how to perform feature extraction with DEEP SPECTRUM, and a complete documentation
of the DEEP SPECTRUM command line interface is provided on the GitHub repository
page.

4.2 Architecture

An overview of the DEEP SPECTRUM system is given in Figure 4.1. In the pre-processing
step, two-dimensional visual representations of the input audio files (e. g. spectrograms or

1https://github.com/DeepSpectrum/DeepSpectrum
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Figure 4.1: Illustration of the DEEP SPECTRUM system. Pre-trained CNNs are used to
obtain task-dependent representations from the audio spectrograms. A detailed descrip-
tion of the system architecture is given in Section 4.2.

mel-spectrograms) are created (cf. Figure 4.1a). This step is necessary as the CNN de-
scriptors use two-dimensional filters to process the input spectral representations (cf. Fig-
ure 4.1b). After forwarding the spectrograms through pre-trained CNNs, the activations
of the fully connected layers of each network are then extracted as feature vectors. These
high-level, shift-invariant features, denoted as DEEP SPECTRUM features, are used to
train a classifier (cf. Figure 4.1c). It is worth mentioning that the convolutional layers are
able to make strong assumptions about the locality of pixel dependencies, i. e. the more
local structures are available in the generated visual representations, the more robust are
the extracted DEEP SPECTRUM features.

4.2.1 Creation of Audio Plots

As the pre-trained CNNs accept two-dimensional images as input, the first step is to create
audio plots from the input audio signals. Using DEEP SPECTRUM it is possible to create
spectrograms, mel-spectrograms, or chromagrams, and their derivatives, which are then
sent through the CNNs to extract the DEEP SPECTRUM features. Spectrograms are com-
puted from Hanning windows of width w and overlap of α w, where 0 < α < 1 describes
the percentage of the overlapping window. The Hanning window helps to preserve both
the frequency resolution and the amplitude of a signal [140, 141].

Mel-spectrograms are calculated from the log-magnitude spectrum by dimensionality
reduction using a mel-filter with Nmel filterbanks equally distributed on the mel-scale
defined in eq. (4.1):

fmel = 2595 · log10

(
1+

fHz

700

)
, (4.1)

where fmel is the resulting frequency on the mel-scale computed in mels and fHz is the
normal frequency measured in Hz. The mel-scale is based on the frequency response of
the human ear that has better resolution at lower frequencies (as compared to a linear
representation). The mel-spectrogram is also displayed on this scale.
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Chromagrams are a mapping of the spectrogram bins into structures based around
pitch relationships, as defined by the western music tonality system. They also charac-
terise the pitch class content of audio signals over time [142]. Compared to spectrograms,
chroma features relate to the 12 pitch classes defined in the twelve-tone equal temper-
ament which are represented by attributes of pitch: C, C#, D, D#, E, F, F#, G, G# A,
A#, and B. Furthermore, the first order derivatives (deltas) of the mel-spectrograms and
chromagrams to incorporate more of the dynamics of the underlying features can be com-
puted.

For creation of all audio plots, implementations provided by the librosa2 Python li-
brary are used. The plots are also scaled and cropped to square images without axes and
margins to comply with the input needed by the pre-trained CNNs. The audio plots have
an intermediate size of 387× 387 pixels, and are then further scaled down to 227× 227
pixels for AlexNet (cf. Section 4.2.2.1) and 224× 224 pixels for VGG networks and
GoogLeNet (cf. Sections 4.2.2.2 and 4.2.2.3). Figure 4.2 shows the visual differences
between the mentioned audio plots extracted from a five second speech signal.

The author and his colleagues also demonstrated that alternative DEEP SPECTRUM

features will be extracted when the colour maps are changed for the same input audio
plots [16, 88]. Based on the findings in [4, 16, 62, 88], the DEEP SPECTRUM representa-
tions extracted from the audio plots with viridis colour map show stronger performance
than a group of other colour maps, including cividis, hot, magma, plasma, or vega20b.
The reason for this effect could be the spectrum of colour available with viridis – which
is a perceptually uniform sequential colour map, changing from blue (low range) to green
(mid range) to yellow (upper range) (cf. Figure 4.3) – covering a wide range of colours
available from the ImageNet training images.

4.2.2 Applied Pre-trained CNNs

To form suitable deep representations from audio plots (cf. Section 4.2.1), four pre-trained
CNNs, AlexNet [28], VGG16 and VGG19 [30], and GoogLeNet [144], are integrated in
the DEEP SPECTRUM system and can be applied as feature extractors. The architectures
of AlexNet and VGG networks are compared in Table 4.1. The structure of the inception
module used in GoogLeNet is shown in Figure 4.4.

4.2.2.1 AlexNet

AlexNet has 5 convolutional layers, in cascade with 3 fully connected layers [28]. An
overlapping max-pooling operation is applied to downsample the feature maps generated
by the first, second, and third convolutional layers. A ReLU non-linearity is used, as this
non-saturating function regularises the training, whilst improving the network’s general-

2https://librosa.github.io/librosa/
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Figure 4.2: Example mel-spectrogram, delta-mel-spectrogram, spectrogram, and chroma-
gram of a 5 second speech signal.

isation capabilities3. The fully connected layers fc6, fc7, and fc8, have 4 096, 4 096, and
1 000 neurons, respectively. The DEEP SPECTRUM features are then obtained from the
activations of the neurons in the fully connected layers.

4.2.2.2 VGG16/VGG19

Whilst the filter sizes change across the layers in AlexNet, VGG16 and VGG19 have
on the contrary a constant 3× 3-sized receptive field in all of their convolutional lay-
ers [30]. Both deep architectures consist of 2 more max-pooling layers in comparison
with AlexNet and have deeper fully connected layers in cascade. Similar to AlexNet, the
VGG architectures employ ReLUs for response normalisation, and the activations of the

3For more information regarding the activation functions, the interested reader is referred to Sec-
tion 2.1.4.
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(c) Plasma
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(d) Viridis

Figure 4.3: A mel-spectrogram plot of an audio sample from an individual snoring (file
id: train_0043.wav) from the MPSSC dataset [143] with four different colour maps, ci-
vidis, magma, plasma, and viridis. The colour bar to the right shows the colour changes
associated with increasing spectral energy.

fully connected layers can be obtained to form the deep representations.

4.2.2.3 GoogLeNet

In contrast to AlexNet and VGG networks, GoogLeNet uses inception modules in succes-
sion (cf. Figure 4.4). This module consists of a number of parallel convolutional layers
and a max-pooling layer. The outputs of all layers are concatenated to produce a single
output. The inception module thus collects multi-level features from every input on dif-
ferent scales. The DEEP SPECTRUM features are extracted from the activations of the last
pooling layer.
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4. Deep Spectrum

Table 4.1: Comparison between three pre-trained CNNs, AlexNet, VGG16, and VGG19,
for extracting DEEP SPECTRUM features. ch stands for channels and conv denotes con-
volutional layers.y

AlexNet VGG16 VGG19
input: RGB image

1 conv layer
size: 11; ch: 96; stride: 4

2 conv layer
size: 3; ch: 64; stride: 1

maxpooling
1 conv layer 2 conv layer

size: 5; ch: 256 size: 3; ch: 128
maxpooling

1 conv layer
size: 3; ch: 384

3 conv layer
size: 3; ch: 256

4 conv layer
size: 3; ch: 256

maxpooling
1 conv layer

size: 3; ch: 384
3 conv layer

size: 3; ch: 512
4 conv layer

size: 3; ch: 512
maxpooling

1 conv layer
size: 3; ch: 256

3 conv layer
size: 3; ch: 512

4 conv layer
size: 3; ch: 512

maxpooling
fully connected layer fc6, 4 096 neurons
fully connected layer fc7, 4 096 neurons

fully connected layer, 1 000 neurons
output: soft-max of probabilities for 1 000 object classes

y

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 5 × 5 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 × 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 × 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 × 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 3 × 3

Figure 4.4: An inception module used in the GoogLeNet architecture. Small 1× 1 con-
volutions are applied to reduce the dimensionality. To combine information found at
different scales, filters of different path sizes are concatenated.
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
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Figure 4.5: Generating BODF from high-dimensional DEEP SPECTRUM representations.

4.2.3 Bag-of-Deep-Features
The author and his colleagues proposed BODF, which is a quantised representation of
high-dimensional DEEP SPECTRUM features [88]. The main goal for the quantisation step
is to compress the feature space and increase its to noise related adverse and confounding
effects.

In order to form BODF, fixed length histogram representations of the time-continuous
DEEP SPECTRUM features are generated using OPENXBOW4, an open-source toolkit for
the generation of Bag-of-Words representations [145]. This is achieved by first identifying
a set of ‘deep audio words’ from given training data, and then bagging the original feature
space, with respect to the generated codebook, to form the histogram representation. The
histogram shows the frequency of each identified deep audio word in a given audio in-
stance [145–148]. It is worth noting that the audio words do not represent words in their
semantic meaning, but rather fragments of the audio signal defined by features [146].
The codebook can be the result of, e. g. a clustering algorithm [149], or a random sam-
pling5 of low-level descriptors [150]. The histogram finally describes the distribution of
the codebook vectors over the whole audio segment [145]. The overall structure of the
quantisation process is depicted in Figure 4.5.

In [88], the efficacy of BODF has been demonstrated for soundscape classification
of audio recorded in real-world environments. The dataset for the experiments in [88]
have been sourced from YouTube with Cost-efficient Audio-visual Acquisition via Social-
media Small-world Targeting (CAS2T) toolkit for efficient large-scale big data collec-
tion [151]. However, the main drawback of using BODF is that it does not consider the
temporal dependencies of the audio signals (e. g. continuous speech), as the frame-level
DEEP SPECTRUM feature vectors for the time-series are mixed up to build a clip-level
feature vector.

4https://github.com/openXBOW/openXBOW
5The sampling step in OPENXBOW is done with a defined random seed.
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5

Deep Convolutional Generative
Adversarial Networks

Deep Convolutional Generative Adversarial Networks (DCGANs) are a type of GANs
which use CNNs in the generator and discriminator (for more detailed information re-
garding GANs, the reader is referred to Section 3.2). Both the generator and discriminator
consist of convolutional layers, but unlike CNNs they do not have any pooling layers. DC-
GANs have been first introduced by Radford et al. [48] and have been applied for image
classification tasks with state-of-the-art results [48]. In this chapter, the methodology ap-
plied by the author and his colleagues to utilise DCGANs for unsupervised representation
learning from audio data will be described [152].

5.1 Characteristics

For the task of unsupervised representation learning for acoustic scene classification [1],
the author and his colleagues have introduced a DCGAN architecture (cf. Section 5.2)
based on the structure and results reported by Radford et al. [48, 152].

The DCGAN structure proposed by Radford et al. [48] adheres to various limitations.
First, all pooling layers are replaced with fractional-strided convolutions for the generator
and strided convolutions for the discriminator [153]. Second, Batch Normalisation (BN)
is applied in all layers of both the generator and the discriminator, except for the last layer
of the generator and the first layer of the discriminator. These two layers are excluded, in
order to allow the model to learn the correct mean and scale of the data distribution [41,
48]. Third, no fully connected layers are included on top of the convolutional layers.
Fourth, a ReLU activation is applied in the hidden layers of the generator, and leaky
ReLU is used for the hidden layers of the discriminator [47]. Finally, hyperbolic tangent
and softmax activations are used for the output layer of the generator and discriminator,
respectively.
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Figure 5.1: Illustration of the DCGAN architecture with NDCGAN
layer = 2 and NDCGAN

maps = 32
applied for generating spectrograms with hypothetical dimensions 128× 128. A 100 di-
mensional Gaussian noise is projected and reshaped to a spatial convolutional represen-
tation. In every convolutional layer below the output layer, the spatial representations are
halved. The convolutional layer directly below the output layer has NDCGAN

maps feature maps.
The number of the feature maps is then doubled in each further layer. The discriminator
mirrors the CNN architecture of the generator. The number of convolutional layers in
both generator and discriminator is equal.

5.2 Architecture
The DCGANs architecture applied by the author and his colleagues [152] has a less com-
plex architecture (NDCGAN

layer = 2 and NDCGAN
maps = 32) than the DCGAN proposed by Radford

et al. [48], who use NDCGAN
layer = 4 and NDCGAN

maps = 64. NDCGAN
layer denotes the number of con-

volutional layers in the generator and discriminator CNNs, and NDCGAN
maps is the number of

the feature maps in the output layer of the generator.
This simpler structure for audio analysis has been applied for three main reasons.

First, the amount of audio data employed for the DCGAN experiment in this thesis
(cf. Section 8.1.1) is much less than the image data used in Radford et al.’s experi-
ments [48]. Second, for the decreased amount of training data, the number of free pa-
rameters is reduced. Third, in [152], grey-scale spectrograms with one channel have been
used, whilst Radford et al. train their DCGANs on colour images with three channels.

For the introduced DCGAN (cf. Figure 5.1), both the generator and discriminator
comprise of an equal number NDCGAN

layer of convolutional layers with a fixed stride of two.
The output layer of the generator and the input layer of the discriminator have the spatial
dimensions of the input spectrograms that should be processed and contain NDCGAN

maps fea-
ture maps. In each layer, directly below the layer in the generator or on top of the layer in
the discriminator, the number of the feature maps is doubled and the spatial dimensions
are halved. A 100-dimensional uniform noise distribution is applied as input to the gener-
ator, where it is projected to the dimensionality required by the first convolutional layer.
The discriminator mirrors the architectural properties of the generator and therefore it has
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Table 5.1: Mathematical symbol of the hyperparameters for the DCGAN, and the range
of each hyperparameter.

Symbol Range Description

NDCGAN
layer N+ Number of convolutional layers in the generator and discriminator

CNNs

NDCGAN
maps N+ Number of feature maps in the output layer of the generator, and the

input layer of the discriminator

an input layer with spatial dimensions of the spectrogram [152].
Feature matching has been introduced as an effective technique to improve GAN sta-

bility [154]. Using feature matching, the generator is trained to produce activations in
an intermediate layer of the discriminator that are similar to those produced by the real
training examples. In [152], the author and his colleagues applied this training approach
instead of the conventional objective function for the generator. After the training process
is finished, the activations of the convolutional layers in the discriminator are obtained as
the deep representation of an input spectrogram. To reduce the dimensionality of this rep-
resentation, the activations of each feature map are max-pooled onto a 4× 4 spatial grid
and then flattened and concatenated to form a single vector [48]. This final representation
can then be directly applied for training of a classifier.
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6
Recurrent Sequence-to-Sequence

Autoencoders

Acoustic sequences are typically varying length signals; this highlights a major drawback
for CNNs-based representation learning methodologies introduced in Chapters 4 and 5,
which generally require inputs of fixed dimensionality. Whilst these networks are very
effective to learn high-level local structures from the spectrograms, their ability to learn
the long-term temporal context from input audio signals is limited [155, 156]. More-
over, many DNN systems applied for representation learning, including RBMs or stacked
autoencoders, do not explicitly account for the inherent sequential nature of audio sig-
nals [10]. Sequence to sequence learning with RNNs has been first proposed in machine
translation [44,157,158]. S2SAEs have been used for unsupervised pre-training of RNNs
with state-of-the-art results on image recognition or text classification tasks [159]. Vari-
ational autoencoders have been employed to learn representations of sentences and to
create new sentences from the latent space [160, 161]. Furthermore, Weninger et al. used
denoising recurrent autoencoders to learn variable-length representations of audio for re-
verberated speech recognition [162].

In this chapter, the important characteristics and the structure of the RNN-based
S2SAE proposed by the author and his colleagues are introduced [17, 18]. This method-
ology is developed to learn fixed-length representations from variable-length audio data
with sequential nature. This approach has shown its strength in various audio recognition
tasks (cf. Sections 8.1 and 10.1) [152, 163] and has been applied as a baseline system
for the well-known 2018 edition of the INTERSPEECH Computational Paralinguistics
ChallengE (COMPARE) [164].

6.1 Characteristics
The developed S2SAE is built of LSTM [43] cells or GRUs [44], and can be directly
trained on spectrograms, which are viewed as time-dependent sequences of frequency
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Figure 6.1: High-level structure of the proposed S2SAE for deep representation learning.
The autoencoder training is entirely unsupervised.

vectors. Fully unsupervised autoencoder training, and the ability to account for the tempo-
ral dynamics of input sequences are two of the key strengths of the proposed S2SAE. The
author and his colleagues have also published AUDEEP1, an open-source Python toolkit
for unsupervised feature learning utilising the proposed S2SAE [17, 18]. A step-by-step
tutorial on how to perform representation learning with AUDEEP, and a complete docu-
mentation of the AUDEEP command line interface is provided on the GitHub repository
page.

6.2 Architecture
A high-level overview of the proposed deep representation learning system using S2SAE
is given in Figure 6.1. First, visual representations are generated from audio signals
(cf. Figure 6.1a). A similar procedure for audio plots creation, as described in Sec-
tion 4.2.1 is applied. A sequence to sequence autoencoder is then trained on the generated
audio plots (cf. Figure 6.1b). Afterwards, the learnt representation of each input instance
is extracted as its feature vector (cf. Figure 6.1c). Finally, if instance labels are available,
a classifier can be trained and evaluated on the obtained features (cf. Figure 6.1d).

The structure of the S2SAE is based on the recurrent encoder-decoder model first in-
troduced for machine translation [44,157]. A high-level architecture of the autoencoder is
depicted in Figure 6.2. Audio plots (cf. Section 4.2.1) are considered as a time-dependent
sequence of frequency vectors that describe the power spectral density in the frequency
bands across the audio plots’ frames. The number of frames in an audio plot depends on
the length of the input audio sample, therefore these sequences may have varying length.

The process of reconstructing of the input sequences is done in three steps. First,
the input frequency vector sequence is fed to a multilayered encoder RNN that updates its
hidden state in each time step based on the input frequency vector. Hence, the final hidden
state of the encoder RNN contains information about the entire input sequence, and can
be considered as a fixed-length representation of the input audio plot. This representation,
i. e. the final hidden state of the encoder RNN, is then forwarded across a fully connected
layer. Afterwards, a multilayered decoder RNN aims to reconstruct the input sequence

1https://github.com/auDeep/auDeep
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Figure 6.2: A high-level overview of the recurrent autoencoder utilised in the proposed
S2SAE. The activations of the fully connected layer between the decoder and encoder
units are extracted as the learnt representations.

Table 6.1: Mathematical symbol of the hyperparameters for the S2SAE, and the range of
each hyperparameter.

Symbol Range Description

NS2SAE
layer N Number of recurrent layers in the encoder and decoder RNNs

NS2SAE
unit N Number of recurrent units in each encoder and decoder RNNs layer

Tcell {LST M,GRU} Type of cells in the encoder and decoder RNNs

Denc {B,U} Direction of the encoder (B: bidirectional, U: unidirectional)

Ddec {B,U} Direction of the decoder (B: bidirectional, U: unidirectional)

based on the information contained in the transformed representation and the decoder
RNN input.

The encoder RNN has Nlayer recurrent layers, each of which contains equal number
Nunit of uni- (Denc = U) or bidirectional (Denc = B) GRU [44] or LSTM [43] recurrent
cells. The input audio plots are normalised between [−1,1] before being fed to the encoder
RNN, and the hidden state of each recurrent cell is initialised with zeros. The final hidden
states of the cells are concatenated into one vector. This vector is then forwarded across a
fully connected layer with hyperbolic tangent activation (the activation functions used in
this thesis are described in Section 2.1.4).

In the final step, the decoder RNN has the same number of recurrent layers and units
as the encoder RNN. However, it is possible to choose its direction (Ddec) regardless of
the encoder RNN. The task of the decoder RNN is a frame-wise reconstruction the input
spectrogram. A linear projection layer (cf. Figure 6.2) with weights shared throughout
time steps is applied after the decoder RNN, in order to project its outputs to the required
dimensions. The reason behind using the projection layer is to match the output dimen-
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sions of the decoder RNN and the spectrogram frequency vectors.
During the training phase, the network attempts to minimise the Root Mean Squared

Error (RMSE) between the decoder RNN output and the target sequence. Dropout is
applied to the inputs and outputs of the recurrent layers, but not to the hidden or fully
connected layers [38]. After the autoencoder training is finished, the activations of the
fully connected layer are obtained as the deep representation of the input sequence. The
number of the features (NS2SAE

f eat ) for each input spectrogram after the training process is:

NS2SAE
f eat =


NS2SAE

layer ·N
S2SAE
unit , if Ddec = U and Tcell = GRU

2 ·NS2SAE
layer ·N

S2SAE
unit , if Ddec = B and Tcell = GRU

or Ddec = U and Tcell = LST M

4 ·NS2SAE
layer ·N

S2SAE
unit , if Ddec = B and Tcell = LST M

The representations learnt by the S2SAE can be extensive, containing several thou-
sands of dimensions. Whilst this is still lower than the dimensionality of raw audio sig-
nals, a classification algorithm may struggle to process such large feature vectors [165].
There is also a linear relationship between the number of the learnt representations and
the number of the hidden layers and recurrent units. Increasing each of these factors can
quickly lead to issues with training time and the ‘curse of dimensionality’, which refers
to the challenge of finding structure in data embedded in a high dimensional space [166].
Hence, it is recommended to apply dimensionality reduction methods to the obtained rep-
resentations before forwarding them to a classifier.

The author and his colleagues have performed a comparative study of the fol-
lowing archetypal feature selection approaches for large feature spaces [165]: (i) a
Principal Component Analysis (PCA) [167], (ii) a filter-based feature selection using
Canonical Correlation Analysis (CCA) [168], (iii) a Correlation-based Feature Selec-
tion (CFS) [169], and (iv) a wrapper-based feature selection with Sequential Forward
Selection (SFS) [170], and a Competitive Swarm Optimisation (CSO) [171–173].

As the detailed comparison between the mentioned dimensionality reduction meth-
ods is beyond the scope of this thesis, the interested reader is referred to [165] or the
corresponding references of each method.

44



7
Convolutional Recurrent Neural

Networks

Uniquely, the CNN-based and S2SAE methodologies proposed in Chapters 4 to 6 are
individually able to learn hierarchically robust visual features, and the long-term temporal
context from the input audio. However, these methods are not able to observe both of these
representations simultaneously. This problem is addressed in this chapter by introducing
a deep Convolutional Recurrent Neural Network (CRNN) approach for audio processing.

7.1 Characteristics
A CRNN, which is a combination of a CNN and an RNN, has shown to be able to learn
local dependencies of the input signal by adopting convolutional layers, whilst obtaining
the global structures with recurrent layers [104, 106, 107]. Based on the structure and the
results provided by Lim et al. [116] and Cakir et al. [117, 119], the author and his col-
leagues have proposed a CRNN utilising LSTM cells with backward pass in the recurrent
layers for detection of rare acoustic events [128] and a CRNN with BLSTM cells in the
recurrent layers for classification of different, rare vocalisations from children with an
ASC [127]. In the following section, the architecture of the introduced CRNN is given.

7.2 Architecture
Motivated by the systems presented in both [116, 117], the author and his colleagues
implemented a CRNN composed of four main components. First, log mel-spectrograms
are extracted from the audio recordings (cf. Figure 7.1a). These samples are then fed as
input into the convolutional layers to extract high-level spectral features (cf. Figure 7.1b).
Afterwards, recurrent layers are applied to learn the long-term temporal context from the
obtained features (cf. Figure 7.1c). Finally, a FFNN with softmax activation is used to
classify the input data (cf. Figure 7.1d).
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Figure 7.1: Illustration of the proposed CRNN approach composed of convolutional and
recurrent neural networks for feature extraction and a feed forward network to generate
the final predictions. A detailed account of the procedure is given in Section 7.2.

Table 7.1: Mathematical symbol of the hyperparameters for the CRNN, and the range of
each hyperparameter.

Symbol Range Description

NCRNN
layer N Total number of layers in the CRNN, including CNN, RNN, and feed-

forward layers

NRNN
unit N Number of recurrent units in each RNN layer

NFFNN
unit N Number of units in the fully connected layer

7.2.1 Creation of Log Mel-Spectrograms

Several studies have shown the effectiveness of log mel-filterbank energy coefficients for
speech recognition [174,175], and Sound Event Detection (SED) [116,117,176]. A major
advantage borne by these features in comparison to simple spectrograms is the filtering
of frequency components with log scale filterbanks, which is based on the frequency
response of the human ear that has better resolution at lower frequencies.

For the introduced CRNN, mel-filterbanks are extracted as following. First, the mel-
spectrograms are divided into frames of width w ms and overlap of 0.5w ms from the log-
magnitude spectrum by dimensionality reduction using a mel-filter. Nmel mel-filterbanks
are then applied equally spaced on the mel-scale. Afterwards, log operation is taken on
the power spectrograms. The reason behind this step is that the perceptual loudness of
an audio signal is approximately logarithmic [177]. Finally, the log mel-spectrograms are
then divided into chunks of a desired time step τ . At this stage, this visual representation
of the input audio signal is ready to be fed into the CNN (cf. Section 7.2.2).

7.2.2 Convolutional Layers

The log mel-spectrograms are fed into a convolutional layer with 2D filters. As depicted
in Figure 7.2, the frequency time convolution is followed by non-overlapping pooling to
ensure no shrinking in time. Subsequently, a 1D convolution along the spectral domain
is applied, which is then followed by max pooling along the frequency domain. ReLU
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Figure 7.2: The structure of the 2D CNN applied for extracting high-level features from
the input log mel-spectrograms.

activation is used in the convolutional layers [45], and BN [41] is applied between them.
Furthermore, a dropout with a probability of p can be applied to all layers to add regu-
larisation and also to minimise potential overfitting problems caused by non-overlapping
max pooling [38]. The convolutional layers, however, are capable of effectively capturing
short-term temporal context. In order to achieve longer temporal modelling, the outputs
from the CNN are forwarded to an RNN with either LSTM or BLSTM cells.

7.2.3 Recurrent Layers
The activations emerging from the CNN are passed to a network comprising of two RNN
layers. Each RNN layer consists of NRNN

unit hidden units with either LSTM or BLSTM
cells. Hyperbolic tangent has been used as the activation function, and a dropout with a
probability of p can be applied to each layer for regularisation. In the final step, RNN
features are extracted for each time step, which are passed on to the fully connected layer
to obtain prediction results. The structure of the BLSTM-RNN applied in the CRNN
approach for classification of ASC vocalisations is given in Figure 7.3 [127].

7.2.4 Fully Connected Layer
The features returned for each time step from the RNN layers are fed into a fully con-
nected FFNN comprising of a single fully connected layer with NFFNN

unit hidden units,
matching the depth of the input features. BN is applied to the output, so that the mean
is close to 0 and standard deviation is close to 1. The activation function used is ReLU,
which adds the desired non-linearity to activations. The updated features are further fed
into the output layer to obtain the predictions.
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Figure 7.3: The BLSTM-RNN structure applied in the CRNN approach. Two hidden
layers, one in the forward direction ( f ) and another one in the backward direction (b) are
used. For all input CNN features (It+τ ) during the time step (τ), the returned outputs from
each layer are then concatenated (Ot+τ ).
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8

Acoustic Sounds and Game Audio

In this chapter, applications of the introduced deep representation learning techniques for
problems, such as acoustic scene classification (cf. Section 8.1), rare acoustic event de-
tection (cf. Section 8.2), and audio-based game genre classification (cf. Section 8.3), will
be discussed. First, in Section 8.1, a novel combination of features learnt using both a
DCGAN (cf. Chapter 5) and a recurrent S2SAE (cf. Chapter 6) will be introduced. Each
of the representation learning algorithms is trained individually on spectral features ex-
tracted from acoustic sounds. This system is evaluated on the TUT Acoustic Scenes 2017
dataset [1]. Afterwards, in Section 8.2, the problem of rare acoustic event detection will
be addressed. A CRNN approach will be applied and evaluated on the TUT Rare Sound
Events 2017 [1]. Finally, in Section 8.3, the DEEP SPECTRUM system (cf. Chapter 4) will
be utilised to solve an audio-based game genre classification problem. For this task, the
author and his colleagues have introduced a new database containing 1 566 recordings of
300 individual games from 6 different genres.

8.1 Acoustic Scene Classification

Machine learning algorithms for audio processing typically operate on expert-designed
feature sets extracted from the raw audio signals. Arguably among the most widely used
features are mel-band energies and features derived from them, such as Mel-Frequency
Cepstral Coefficients (MFCCs). Both feature spaces are widely used in acoustic scene
classification [178–180], with the former being employed in the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2017 Challenge baseline system [1],
and the later being the low level feature space used by the winners of the DCASE 2016
acoustic scene classification challenge [181]. In this section, the DCGAN and S2SAE
approaches introduced in Chapters 5 and 6 have been used for deep unsupervised repre-
sentation learning from acoustic data [18].
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Figure 8.1: An overview of the weighted decision-level fusion system of n learnt repre-
sentation vectors for an audio recording. A detailed description of the fusion method is
given in Section 8.1.1.

8.1.1 Data and Procedure
The proposed deep learning system is composed of two components for unsupervised rep-
resentation learning: i) a DCGAN, and 2) a S2SAE. First, the activations of the discrimi-
nator for the DCGAN and the activations of the fully connected layer between the decoder
and encoder units of the S2SAE are extracted (cf. Section 8.1.1.1). As shown in Fig-
ure 8.1, separate classifiers are trained on the individual feature sets, and the resulting
prediction probabilities are fused [152]. For the decision-level fusion, the predictions and
confidence scores are first calculated individually on the DCGAN and S2SAE represen-
tations. Afterwards, the decisions are weighted regarding to predetermined weights and
fused to obtain the final classification results. The weights for n representations are opti-
mised in the following manner. First, all combination of weights w1, . . . ,wn ∈ [0,1] with
∑

n
i=1 wi = 1 are tested in steps of 0.1. For example, for two representations the weights

combinations for (w1,w2) would be: (0.0,1.0),(0.1,0.9),(0.2,0.8), . . . ,(1.0,0.0). Af-
terwards, the weights with which the highest classification result can be achieved are
selected.

8.1.1.1 Representation Learning

First, as introduced in Section 4.2.1, mel-spectrograms are extracted from raw audio
files. The challenge corpus (cf. Section 8.1.1.2) contains audio samples which have been
recorded in stereo [1]. In such datasets, there may be instances in which important in-
formation related to the class label has been captured in only one of the two channels.
Following the winners of the DCASE 2016 acoustic scene classification challenge [181],
mel-spectrograms are extracted from each individual channel, as well as from the mean
and difference of the two channels. Separate sets of mel-spectrograms are extracted for
different parameter combinations, each containing one mel-spectrogram per audio sam-
ple. Representations are then learnt independently on different sets of mel-spectrograms.
Afterwards, a DCGAN and recurrent S2SAE are trained on these spectra. After DCGAN
and autoencoder training, the learnt representations of the mel-spectrograms are extracted
to be used as feature vectors for the corresponding instances. This step is repeated for the
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obtained mel-spectrograms from each audio channel (left and right), and the mean and
difference between them.

8.1.1.2 Database

As mentioned, the proposed system is evaluated on the TUT Acoustic Scenes 2017 dataset
from the DCASE 2017 acoustic scene classification challenge [1]. This dataset contains
binaural audio samples from 15 acoustic scenes recorded at distinct geographical loca-
tions. For each location, between 3 and 5 minutes of audio were recorded and then split
into 10 second segments. The development set for the challenge contains 4 680 instances,
with 312 instances per class, and the evaluation set contains 1 620 instances.

A four-fold CV setup is provided by the challenge organisers for the development set.
In each fold, roughly 75 % of the samples are used as the training split, and the remaining
samples are used as the evaluation split. Samples from the same original recording are
always included in the same split. The experiments are conducted on the development
set only, as there is a remarkable mismatch in recording conditions between the partitions
which causes observable confounding effects [152]. This is evidenced by the lack of
relationship between the development and evaluation scores in the 2017 challenge1. For
further details on the challenge data and the CV setup, the interested reader is referred
to [1].

8.1.1.3 Multilayer Perceptron Classifier

An MLP with two hidden fully connected layers (NMLP
layer = 2) with ReLU activation, and

a softmax output layer is applied for classification. The hidden layers contain 150 units
each (NMLP

unit = 150), and the output layer contains one unit for each class label (i. e. 15
neurons for all 15 classes). Training is performed using cross entropy between the ground
truth and the network output as the objective function, with dropout applied to all layers
except the output layer [38].

8.1.1.4 Common Experimental Settings

The S2SAEs, DCGANs, and MLP are trained using the Adam optimiser [182]. Autoen-
coders are trained for 50 epochs in batches of 64 samples with an initial learning rate of
0.001, and 20 % dropout is applied to the outputs of each recurrent layer. Furthermore,
gradients with absolute value above 2 are clipped [157]. The DCGANs are trained for 10
epochs in batches of 32 examples, and an initial learning rate of 0.0002 and momentum
β1 = 0.5 is applied. The MLPs used for classification are trained for 400 epochs without
batching or gradient clipping, and 40 % dropout is applied to the hidden layers.

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-
classification-results
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Both the autoencoders and MLPs are trained using the Adam optimiser with an initial
learning rate of 0.001 [182]. Autoencoders are trained for 50 epochs in batches of 64
samples, and 20 % dropout is applied to the outputs of each recurrent layer. Furthermore,
gradients with absolute value above 2 [157] are clipped. The MLPs used for classifica-
tion are trained for 400 epochs without batching or gradient clipping, and 40 % dropout
is applied to the hidden layers. Features are standardised to have zero mean and unit vari-
ance during MLP training, and the corresponding coefficients are used to transform the
validation data.

8.1.1.5 Hyperparameter Optimisation

Both representation learning systems contain a wide range of adjustable hyperparameters,
which prohibits an exhaustive analysis of the parameter space. For DCGAN, previous
work is consulted extensively to guide parameter selection [48]. Based on the results
reported by Radford et al. [48], who use NDCGAN

layer = 4 and NDCGAN
maps = 64, a less complex

DCGAN architecture with NDCGAN
layer = 2 and NDCGAN

maps = 32 is applied in this section.
For the S2SAE, suitable values for the hyperparameters are selected in stages, using

the results of the preliminary experiments to bootstrap the process. During these ex-
periments, it has been observed that very similar parameter choices lead to comparable
performance on spectrograms extracted from different combinations of the audio channels
(mean, difference, left and right). Therefore, hyperparameter optimisation is performed
on the mean-spectrograms only, and the resulting parameters are used for other spectro-
gram types [18].

In the first development stage, a suitable autoencoder configuration is selected, i. e.
the optimal number of recurrent layers NS2SAE

layer , the number of units per layer NS2SAE
unit ,

and either unidirectional or bidirectional encoder and decoder RNNs. In this phase, au-
toencoders are trained on mel-spectrograms extracted with window width w = 160 ms,
window overlap 80 ms, and Nmel = 320 mel-frequency bands, without amplitude clip-
ping. NS2SAE

layer ∈ {1,2,3}, NS2SAE
unit ∈ {16,32,64,128,256,512}, and all combinations of

uni- or bidirectional encoder and decoder RNNs are evaluated. The highest classifica-
tion accuracy was achieved when using NS2SAE

layer = 2 layers with NS2SAE
unit = 256 units, a

unidirectional encoder RNN, and a bidirectional decoder RNN [18].
The second stage served to optimise the window width w, which was used for the

mel-spectrogram extraction. The autoencoder configuration determined in the first stage
is applied, and set Nmel = 320. The window width w is evaluated between 0.04 and 360 ms
in steps of 40 ms. For each value of w, the window overlap is chosen to be 0.5w. As shown
in Figure 8.2a, classification accuracy quickly rises above 84 % for w> 100 ms, and peaks
at 85.0% for w = 200 ms and w = 280 ms. For larger values of w, classification accuracy
drops again. As a larger window width may blur some of the short-term dynamics of
the audio signals, w = 200 ms is chosen. Accordingly, the window overlap is set to be
100 ms [18].

In the third and final optimisation stage, various numbers of mel-frequency bands
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Figure 8.2: Classification accuracy on the development set for different FFT window
widths (a), and different numbers of mel-frequency bands (b). In Section 8.1.1.5, a de-
tailed description of the experiments leading to these results is given.

Nmel ∈ {40,80,160,320,640} are tested, the results of which are shown in Figure 8.2b.
Classification accuracy rises with larger values of Nmel until it reaches 85.0 % for Nmel =
320. Increasing Nmel beyond 320 does not improve performance further. Therefore,
Nmel = 320 is chosen to reduce the computational time [18].

8.1.2 Results

Four sets of spectrograms are extracted from the mean and difference of channels, and
from the left and right channels individually [152]. On each set of spectrograms, a
DCGAN and a S2SAE are trained, and the learnt representations are extracted as fea-
tures for the audio instances. This results in four individual feature sets for each ap-
proach, herein identified by the spectrogram type from which they have been obtained
(i. e. ‘mean’, ‘difference’, ‘left’, and ‘right’). The highest individual classification accu-
racies are achieved from the ‘right’ feature set (84.5 %) for the DCGAN and the ‘mean’
feature set (86.0 %) for the S2SAE (cf. Table 8.9).

For each of the 8 individual feature sets (4 for DCGAN and 4 for S2SAE), a classi-
fier is trained and the resulting prediction probabilities are fused in two steps. First, the
results on DCGAN-features and S2SAE-features are combined with separately optimised
weights. The resulting prediction probabilities (one for DCGAN and one for S2SAE) are
then fused with optimised weights [152].

In the first fusion step, accuracies of 86.4 % and 88.5 % are achieved on the fused
DCGAN and S2SAE predictions, respectively (cf. Table 8.9). In the final step, the high-
est classification accuracy of 91.1 % is obtained on the fused prediction probabilities of
DCGAN and S2SAE [152].
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Table 8.1: Comparison of the classification results of the proposed DCGAN and S2SAE
systems with the challenge baseline. Four different feature sets of spectrograms are ex-
tracted from the mean (M) and difference (D) of channels, and from the left (L) and
right (R) channels separately. The highest accuracy is obtained after fusing the prediction
probabilities of DCGAN and S2SAE. CV: Cross Validation.

System Features CV Accuracy [%]

Baseline [1] 200 (per frame) 74.8

Proposed: DCGAN

Mean (M) 3 072 84.1
Left (L) 3 072 83.4
Right (R) 3 072 84.5
Difference (D) 3 072 83.5
Fused (M + L + R + D) 86.4

Proposed: S2SAE

Mean (M) 1 024 86.0
Left (L) 1 024 84.9
Right (R) 1 024 84.0
Difference (D) 1 024 82.0
Fused (M + L + R + D) 88.5

Proposed: DCGAN + S2SAE 91.1

8.1.3 Conclusions
This section analysed the effectiveness of using deep unsupervised representation learning
algorithms for the task of acoustic scene classification. In this regard, a novel combina-
tion of features generated using a DCGAN and a S2SAE was proposed. Results pre-
sented indicate that fusing the prediction probabilities of each classifier trained on each
representation, it is possible to improve upon the challenge baseline of 74.8 % to 91.1 %,
representing an improvement of 16.3 percentage points. This result indicates that the two
techniques complement each other for the task of acoustic scene recognition. Further,
it was demonstrated that adversarial networks learn strong representations from spectral
features. Both DCGAN and S2SAE are data driven approaches, and their capability for
unsupervised representation learning should be tested on bigger datasets. In the future
work, a more extensive parameter search should be conducted. Furthermore, it might be
beneficial to conduct early fusion experiments, as the learnt representations might also
complement each other.
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8.2 Rare Acoustic Event Detection
Monitoring systems using audio microphones, in addition to video sensors, are becoming
increasingly popular [183]. Audio is especially useful when video fails to effectively
detect an event. The process of detecting an event using the audio modality is described as
Sound Event Detection (SED). The goal of SED is to recognise individual sounds in audio,
including the estimation of onset (beginning of an event) and offset (end of an event) for
distinct sound event instances [1]. Real-world audio introduces various challenges for
the automatic detection of sound events, such as overlapping of other sounds with the
target event, or the variability of acoustic events belonging to the same sound class [1]. A
detection system would be faced with additional difficulties if the target sound events are
rare [1].

Rare Sound Event Detection (RSED), as evidenced by the recent IEEE AASP Chal-
lenge on DCASE 2017, is a growing field of acoustic classification research [1]. Such
a system has many benefits in surveillance and smart home systems, including intru-
sion detection based on the sound of glass breaking, or car collision detection. This
need has given rise to research interest in developing better techniques for audio event
detection, including both monophonic [184] and polyphonic sound events [176, 185].
Monitoring systems need to be able to focus on the specific alarm of interest with
high accuracy. Since these sounds rarely occur simultaneously, it is useful to ex-
plore monophonic SED techniques for such a task. SED has seen use of Non-negative
Matrix Factorisation (NMF) [186] for source separation, and Hidden Markov Mod-
els (HMMs) [184] and Support Vector Machines (SVMs) [187] for acoustic modelling.
However, recent deep learning approaches, especially CRNNs, have shown to be more
effective [64, 114, 176, 188]. Therefore, in this section, the CRNN approach introduced
in Chapter 7 is applied for the task of RSED [128].

8.2.1 Data and Procedure
All experiments are performed on the TUT Rare Sound Events 2017 corpus [1]. The focus
of this task is the detection of rare sound events in artificially created mixtures [1]. The
experiments rely on the CRNN introduced in Chapter 7. First, log mel-spectrograms are
extracted from the input audio recordings with a window width of w = 46 ms and overlap
0.5w = 23 ms, and Nmel = 128 mel-filterbanks are applied to the frequency component
of each frame [128]. The log mel-spectrograms are put into chunks with time step τ

(e. g. τ = 5 means that 5 short-time spectra each with w = 46 ms are put together) to be
fed into the convolutional layers with 2D filters. Afterwards, the extracted shift-invariant
CNN features are forwarded through the LSTM-RNN layers for temporal modelling. The
information flow in the recurrent layers is in a backward direction, and LSTM cells are
used. Lim et al. showed that using unidirectional recurrent cells, in which the information
is passed in the backward direction, it is possible to achieve a better performance than
using other recurrent cells for the mentioned acoustic task [116]. The structure of the
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Figure 8.3: Two backward RNN-LSTM layers, each with 128 hidden units (ht+τ ). Out-
puts (Ot+τ ) are returned for all inputs (It+τ ) during the time step (τ).

LSTM-RNN is given in Figure 8.3. In the final step, a FFNN is used to obtain the final
predictions for the acoustic events.

8.2.1.1 TUT Rare Sound Events 2017 Dataset

TUT Rare Sound Events 2017 corpus consists of audio recordings from 15 different ev-
eryday acoustic scenes (home, park, train, etc.), some of which are mixed with isolated
recordings from one of the three different target sound event classes, namely, Babycry,
Glassbreak, and Gunshot [1]. The isolated recordings are divided into segments, and rel-
evant target classes are selected by a human annotator. Mixing is performed by adding
a segment to the 30-second long background acoustic scene sample with a random time
offset. The normal length of a target event is < 2.5 s, thus enforcing the idea of ‘rare’
(cf. Table 8.2). There is also a big gap between positive and negative labels in the dataset
(cf. Table 8.3).

The following parameters are used for generating the training partition: Event Pres-
ence Probability (EPP): 0.9, Mixtures Per Class (MPC): 1 000, Event to Background Ra-
tio (EBR): {-6,0,6} dB. EPP signifies the ratio of the audio clips containing the event to
the total number of clips. MPC denotes the total files per each class (with and without
events), and EBR stands for event to background ratio.

The total duration of the training set used is 25 hours, which is twice the size of the
development set with the parameters EPP: 0.5, MPC: 500, and EBR: {-6,0,6} dB. The
evaluation set has the same parameters as that of the development partition, but contains
isolated recordings from a different source.
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Table 8.2: Statistical data on sound event duration.

Class Babycry Glassbreak Gunshot

Partition dev test dev test dev test

Mean 2.41 s 1.85 s 1.36 s 0.72 s 1.43 s 1.04 s
Max 5.10 s 4.24 s 4.54 s 1.82 s 4.40 s 3.68 s
Min 0.66 s 0.78 s 0.26 s 0.30 s 0.24 s 0.30 s
Median 2.33 s 1.67 s 1.29 s 0.70 s 1.21 s 0.76 s
SD 0.98 s 0.83 s 0.75 s 0.30 s 0.86 s 0.83 s

Table 8.3: Contrast between the positive and negative labels in the dataset.

Target Event Positive [%] Negative [%]

Babycry 4.13 95.87
Glassbreak 2.47 97.53
Gunshot 2.47 97.53

8.2.1.2 Network Hyperparameters

For all the three binary classifiers, similar hyperparameters, except for the batch size
and number of epochs, have been applied (cf. Table 8.4). The hyperparameter search is
done in the following manner. First, the regularisation is turned off, and Adam optimiser
with different learning rates lr ∈ {0.1,0.01,0.001,0.0001} are tested [182]. Binary cross-
entropy is used as loss function. The highest learning rate that decreases the loss in the
first few epochs is chosen as the starting learning rate for the network. In the experiments,
lr = 0.001 provided the best results. Overfitting is then monitored closely by observing
the behaviour difference between training and validation losses. Gradually, regularisation
including dropout is introduced to minimise the overfitting problem [38]. A dropout rate
of 30 % was shown to be effective. Contrarily, if the model is underfitting, an extra layer
is added. The training is performed for a minimum of 100 epochs and then stopped after
witnessing no improvement in validation loss for 15 epochs. The hyperparameter settings
used in the final configuration are given in Table 8.4.

8.2.1.3 Sliding Ensemble Approach

If an activity is detected for n frames, then not detected, for example for two subsequent
frames, and afterwards detected again, it is highly possible that the predictions from those
two frames are noisy. In order to cope with such short noisy frames, the sliding ensemble
approach proposed by Lim et al. [116] is applied. The goal of this method is to average
the overlapping predictions and obtain smoother outputs [116]. A window size equal to
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Table 8.4: Hyperparameters for the CRNNs for each subtask, together with their approach
identifiers. NCNN

layer : number of convolutional layers; NRNN
layer : number of recurrent layers;

NRNN
unit : number of recurrent units in each RNN layer; NFFNN

unit : number of units in the fully
connected layer; lr : learning rate; lrd : learning rate decay.

Parameters Babycry Glassbreak Gunshot

NCNN
layer 2 2 2

NRNN
layer 2 2 2

NRNN
unit 128 128 128

NFFNN
unit 128 128 128

lr 0.001 0.001 0.001
lrd 0.01 0.01 0.01
dropout 0.3 0.3 0.3
epochs 115 118 100
batch size 48 56 64

the number of time steps τ > 1 and with overlap of a time step τ = 1 is used to obtain
temporal probability sequence. Fixed thresholding is applied to estimate the presence of
an event and the onset time. A threshold of 0.8 for Babycry and Glassbreak, and 0.5 for
Gunshot is applied for event presence in an entire audio clip. If an event is present in an
audio recording, the peak is then calculated and a certain number of frames is checked
before the peak; the first frame with p > 0.5 is determined to be the onset [128].

8.2.2 Results
The evaluation of the classification performance is done using event-based Error Rate
(ER) [189], and can be calculated as follows:

ER =
S+D+ I

N
(8.1)

where S (substitutions) stands for the events in system output with correct temporal posi-
tion but incorrect class label, I (insertions) for the events in system output that are neither
correctly detected nor are substitutions (S), D (deletions) for the events in ground truth
that are neither correct nor substituted, and N for the total number of events in the ground
truth [189]. These evaluation metric is computed using the SED-eval-toolbox provided in
the DCASE 2017 challenge [1].

Three sets of experiments have been performed to evaluate the robustness of the ap-
plied CRNN. First, the effect of using log mel-spectrograms with their first order deriva-
tives (∆) is analysed (cf. Experiment 1 in Table 8.6). Second, it is investigated to what
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Table 8.5: Final models comprising of weighted average ensembles. t(τ) denotes the
number of time steps (τ) used for input chunks.

Target Event Time Step Ensemble

Babycry (t(5)+ t(9)+ t(50))/3
Glassbreak t(3)
Gunshot (t(3)+ t(5))/2

Table 8.6: The CRNN results on the development partition of the TUT Rare Sound Events
2017 using all three experiments introduced in Section 8.2.2 compared with the baseline
system. The best overall result is highlighted with a light grey shading.

Erro Rate (ER)
System Babycry Glassbreak Gunshot Average

Baseline [1] 0.67 0.22 0.69 0.53

Experiment 1: Effect of Features

log mel-spectra + ∆ 0.19 0.08 0.26 0.18

Experiment 2: Frame Concatenation t (τ)

t(3) 0.38 0.19 0.41 0.33
t(5) 0.36 0.20 0.37 0.31
t(9) 0.29 0.18 0.38 0.28

Experiment 3: Sliding Ensemble

w/o sliding ensemble 0.24 0.17 0.36 0.22
with sliding ensemble 0.18 0.09 0.24 0.17

extent frame concatenation can affect the results (cf. Experiment 2 in Table 8.6). Third,
the effect of using sliding ensemble is analysed [116], which combines the probabilities
of time steps t(τ) with overlap of one time step and averages the probabilities (cf. Exper-
iment 3 in Table 8.6). In Table 8.5, the time step ensembles applied for the target events
are given. The final model for each target event uses an average of the weights from the
models trained with different time steps τ .

The CRNN results on the development set using all three experiments compared with
the baseline system are given in Table 8.6. The best configuration on the development
partition is used to obtain the evaluation results, which are shown in Table 8.7.

The results show that for all three sets of experiments, the proposed CRNN outper-
forms the baseline system by a wide margin on the development partition (cf. Table 8.6).
Using the best functioning system on the development set (Exp3: Sliding Ensemble), it is
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Table 8.7: The CRNN results on the evaluation partition of the TUT Rare Sound Events
2017 using the best performing system on the development set (cf. Table 8.6) compared
with a CNN-only approach and the baseline results. The best overall result is highlighted
with a light grey shading.

Erro Rate (ER)
System Babycry Glassbreak Gunshot Average

Baseline (FFNN) [1] 0.80 0.38 0.53 0.57

CNN with a FFNN 0.48 0.27 0.56 0.43

Experiment 3: Sliding Ensemble

with sliding ensemble 0.21 0.19 0.41 0.27

also possible to outperform the baseline on the evaluation set and achieve strong results
for all events (cf. Table 8.7) [128]. The event Glassbreak has the best performance regard-
less of the network configuration. It is most likely because of the nature of the event that
the frequency component, at the moment when a glass breaks, is impulsive and distinct
in comparison to the background sounds. Therefore, a short time step is effective for this
problem. However, sometimes other events with similar onset frequencies get confused.
The event Gunshot is also an impulsive sound and requires short time step analysis. How-
ever, in a Gunshot event, there are usually several vibrations between the onset and the
offset, hence, relatively longer time step works effectively for this task. In the case of
Babycry, the event lasts for longer periods and so requires the use of longer time step
frames [128].

The improvement achieved by using sliding ensemble during post-processing can be
explained by the noise in the posterior probabilities of the event classes, which is obtained
from the output layer of the CRNN. There are instances in which the posterior probability
has a high peak for a single frame (w = 46 ms) compared to the frames before and after.
This is not very realistic, since none of the three rare target events occur for only 46 ms and
disappear completely afterwards. If this noisy posterior probability exceeds the defined
threshold, the corresponding event is deemed to be present in the audio clip. This noise
can lead to false positives and increase the error rate. Therefore, sliding window method
helps to smooth these singularities and provide a better detection performance [116].

8.2.3 Conclusions

In this section, the problem of rare sound event detection was addressed. A deep learn-
ing approach using a combination of CNNs and RNNs was applied to model the spatial
and temporal properties inherent in sound events. The outputs from the CRNN were
smoothed with sliding ensemble and then a fixed threshold was applied to obtain final
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temporal probabilities and to detect the precise onset of the events. It can be concluded
that the application of ensembles with different time steps leads to stronger predictions
and removes unwanted noise from input audio signals. The CRNN approach has less
complexity compared to an RNN-only system, as the applied 2D-CNN provides abstrac-
tion and reduces the overall number of trainable parameters. Moreover, the inclusion of
LSTM cells leads to more accurate onset predictions, and the results showed that long
term temporal properties are efficiently modelled as compared to the individual architec-
tures (cf. CNN and Baseline FFNN in Table 8.7) [128]. As part of future work, it might be
beneficial to experiment with more time step ensembles and larger amount of synthesised
data, as these factors were shown to be very effective for the proposed task [116].
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8.3 Audio-Based Game Genre Classification
Video games are an interactive audio-visual and tactile medium, with the soundscape
playing a key role in the overall gaming experience [190]. The development of game audio
can be considered as the result of a series of technological, economic, ideological, social,
and cultural pressures [191]. Further, elements such as genre and audience expectations
often shape gameplay audio [191].

Key audio events in games include: vocalisations of game characters, sound ef-
fects relating to gameplay, ambient effects relating to atmosphere, and the music of the
game [192]. The mix of these events within a particular game depends on gameplay me-
chanics and is highly related to the genre [190]. For example, action and shooting games
such as the Call of DutyTM series will contain loud, sudden events including punches and
gunshots; sports games such as the FIFA football series tend to have ongoing commen-
tary voice-overs; racing games such as the ForzaTM series contains a substantial amount
of car noises including heavy accelerations and screeching brakes; finally, classic arcade
games such as Super MarioTM have chiptune-based (8-bit synthesised electronic music)
accompanying sounds.

Given the links between the audio content of a video game and its genre [190, 192]
and the growing influence of AI in game development [193, 194], this section explores
different machine learning based acoustic detection paradigms for the task of Video Game
Genre Classification. As well as being a challenging machine learning task, this work has
many potential real-world applications, for example:

• Development of a remote and unobtrusive tool to automatically monitor game us-
age. Such a tool could allow parents to better track their child’s video game habits
monitoring total play-time and check if the game is age appropriate [195]. Any
such tool should of course be developed under a clear ethical framework ensuring
that it has the goal of monitoring strictly for health and wellness purposes, whilst
maintaining and protecting privacy [196].

• General activity monitoring, e. g. in smart homes. An analogous example are apps
that collect TV-viewing data for advertisers using a smartphone’s microphone; ac-
cording to a recent report in the New York Times2, there are at least 250 such apps
currently on the market.

• First step towards SHAZAM3 for game audio which can, e. g. identify game genres,
game’s name, game walkthroughs, or game tutorials based on a short audio sample
played and using the microphone on a device.

• As a simple objective aid for game designers to boost the decision making process
for choosing the proper game sound of new games and to validate that the game has

2Retrieved November 06, 2018, from https://nyti.ms/2E7Iins
3https://www.shazam.com/
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a suitable soundscape for a particular genre.

• Aiding the automatic generation of game genre-specific music tracks.

• Monitoring of games on YouTube and other social media platforms. As well as
aiding the automatic segmentation of gameplay clips posted on social media into
semantically meaningful chunks.

• Automatic social media-based game retrieval system.

In this section, a new video game corpus, Game Genre by Audio + Multimodal Ex-
tracts (G2AME), collected by the author and his colleagues will be introduced [197].
G2AME is a collection of 1 566 audio clips taken from 300 different video games and
grouped into six genres.

The classification paradigms explored for the G2AME corpus have been adopted
from techniques successfully used in other acoustic-detection tasks. The baseline sys-
tem is based on acoustic feature sets which are extracted from audio clips of differ-
ent video games using the OPENSMILE toolkit [8]. These feature sets are primarily
used in computational paralinguistics-based recognition tasks [198, 199]. However, they
have also been used for movie genre classification [200], and music genre classifica-
tion [201, 202]. The efficacy of these standard acoustic feature sets is compared with
state-of-the-art DEEP SPECTRUM features (cf. Chapter 4) [16] and their quantised repre-
sentation BODF [88]. A detailed description of these systems can be found in Chapter 4
and Section 4.2.3 [197].

Pre-trained CNNs have been chosen for the deep feature extraction from audio data
for the following reasons: first, because of the richness of the time-frequency information
in spectrograms, which are fed as input images into the pre-trained CNNs, local structures
relating to properties, such as loudness, pitch, rhythm, and spectral energy distribution are
inherently present, and are in turn readable for the CNNs. This is verified by the strong
performance of the DEEP SPECTRUM features in a range of audio tasks, e. g. [4,16,18,62,
136]. Second, fine-tuning or training a new deep learning model on the G2AME dataset,
in which data quantity is limited, may highly increase the risk of overfitting to the training
data [197].

8.3.1 Data and Procedure

To evaluate the G2AME corpus (cf. Section 8.3.1), experiments to predict 6 game gen-
res have been performed, including conventional and state-of-the-art machine learning
approaches. In total, three sets of features have been extracted from the dataset: i) hand-
crafted acoustic feature sets (cf. Section 8.3.1.2), ii) DEEP SPECTRUM features (cf. Sec-
tion 8.3.1.3), and iii) BODF (cf. Section 8.3.1.4).
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Table 8.8: The distribution of audio clips in the G2AME corpus across the six genres. The
number of 5 s clips per genre is denoted in parentheses.

Genre Videos (5 s Clips)

ACS 258 (3096)
ARP 205 (2460)
FHT 330 (3960)
RCG 296 (3552)
SPT 266 (3192)
SWB 211 (2532)

∑ 1 566 (18792)

8.3.1.1 G2AME Corpus

The Game Genre by Audio + Multimodal Extracts (G2AME) dataset contains 1 566
unique gameplay videos of 300 individual games. Each recording is converted to 16 kHz
wav files cut into chunks of one minute in length. The total net playtime of G2AME is 26
hours of gameplay. Further, each clip is cut to 12 individual 5 second chunks which are
later used as a basis for feature extraction and classification in the non-BODF systems.
This results in a total of 18 792 audio chunks (cf. Table 8.8).

Using the popular online shopping platform Amazon4 as a guide, the games and ac-
cording audio clips are categorised into six different genre groups:

(i) Action or Shooter (ACS) games; 258 instances picked from games such as Battle-
field 1, Assassin’s Creed, Dark Souls, Diablo, or Call of Duty.

(ii) Arcade or Platform (ARP) games; 205 instances picked from games such as Sonic
the Hedgehog, Donkey Kong, Golden Axe, Pac-Man, or Super Mario Brothers.

(iii) Fighting (FHT) games; 330 instances picked from games such as Mortal Kombat,
Street Fighter, or Tekken.

(iv) Racing (RCG) games; 296 instances picked from games such as Forza, Gran Tur-
ismo, or Need For Speed.

(v) Sports (SPT) games; 266 instances picked from games such as FIFA, NBA, MLB,
Pro Evolution, or WWE2.

(vi) Simulation or World Building (SWB) games; 211 instances picked from games such
as Age of Empires, Minecraft, Tropico, Warcraft, or The Sims.

4www.amazon.com
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Two different versions of the same game are treated as one game, e. g. the football
games FIFA 16 and FIFA 15 are both considered examples of the FIFA game. Each
genre contains clips from 50 distinct video games. For the used Cross Validation (CV)
scheme, each of the 10 folds contains instances of 5 distinct games from every genre. This
provides a ‘game independence’, ensuring that the machine learning algorithms do not
focus on recognising specific games instead of their respective genres. For the machine
learning experiments in this work, it is focused strictly on an audio-based approach for
the following reasons:

• Practical use in a game monitoring application; the genre can be recognised from
the distance, such as in a personal assistant device, with no need to see or analyse
the screen content. Furthermore, audio processing, in general, is often considered
more lightweight than visual processing, and hence it is potentially better suited for
real-time classification in embedded devices.

• Audio is an essential part of video games that helps to enhance the gaming expe-
rience. In this regard, music, which is not visible, plays a key role in establishing
atmospheric difference between various game genres. Audio also provides instant
feedback to the player’s inputs such as shooting a gun. This is an important factor
to get a better analysis of player’s gaming behaviour.

• Classification of the game genres is potentially more reliable from the audio modal-
ity. For example, role playing games, such as Dark Souls, Witcher 3, or Fallout 4
are often visually diverse making it harder to infer the genre. Audio also gives
cues about the visually invisible objects, monsters, animals, or persons in a game-
play (e. g. a person behind a wall, or a monster hidden in bushes). Obtaining such
information can improve the performance of a game analysis toolkit.

8.3.1.2 Acoustic Feature Sets

The conventional, expert-designed acoustic feature sets are extracted, which are used for
the INTERSPEECH 2009 Emotion Challenge (IS09) [198] and the INTERSPEECH 2010
Paralinguistic Challenge (IS10) [199], with 384 and 1 582 features, respectively. For full
information on the extraction and formation of these feature sets, the interested reader is
referred to corresponding references, as well as to [203].

8.3.1.3 DEEP SPECTRUM Features

Using the DEEP SPECTRUM system, deep features are extracted from visual representa-
tions of audio data, including spectrograms, mel-spectrograms, chromagrams, and their
temporal transitions (deltas). These audio plots have shown to be highly effective for var-
ious audio-based classification tasks [65, 204, 205]. The complete process of extracting
DEEP SPECTRUM features is introduced in Chapter 4. For the sake of reproducibility,
following configurations are provided to generate the deep representations.
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8.3.1.3.1 Audio Plots All audio plots are computed from Hanning windows of width
w = 16 ms and overlap of 8 ms samples. The mel-spectrograms are calculated from the
log-magnitude spectrum by dimensionality reduction using 128 mel-filterbanks equally
spaced on the mel-scale. The chromagrams are extracted using the default implementa-
tion provided by the librosa Python library [206]. Video games are often accompanied
by scores or soundtracks, hence, chromagrams might be able to capture some genre spe-
cific musical characteristics. Furthermore, the first order derivatives (deltas) of the mel-
spectrograms and chromagrams are computed. For more information about the audio
plots, the interested reader is referred to Section 4.2.1.

To highlight the audio similarities and differences that potentially exist between the
game genres, the visual representations of audio samples contained in the six different
classes are depicted in Figure 8.4. These samples are taken from an exemplar game within
each genre.

For the spectrogram plots, three different colour mappings are also used: viridis, hot,
and Vega20b. It is during testing (cf. Section 8.3.2) that the optimal colour map for the
spectral and chroma features is identified.

8.3.1.3.2 CNN-Descriptors To form suitable feature representations from the plots
described before, the activations of the 4 096 neurons on the second fully connected layer
(fc7) of AlexNet [28] and VGG16 [30], and the activations of the 1 024 neurons on the
last pooling layer of GoogLeNet [144] are extracted as feature vectors, because of their
robustness for audio classification tasks [4, 16, 62].

8.3.1.4 Bag-of-Deep-Features

The extracted DEEP SPECTRUM representations are quantised using OPENXBOW [145]
to form the BODF. In order to achieve this, fixed length histogram representations of each
audio recording are generated. As described in Section 4.2.3, this is done by identifying a
set of ‘deep audio words’ from some given training data, and then quantising the original
feature space, with respect to the generated codebook, to form the histogram representa-
tion. The histogram shows the frequency of each identified deep audio word in a given
audio instance [145–147]. The features are then normalised to [0,1] and a codebook with
fixed size from the training partition is random sampled. Afterwards, each input feature
vector (from training and evaluation partitions) is assigned to a fixed number of its clos-
est vectors from the codebook. Finally, the logarithmic term-frequency weighting to the
generated histograms are used.

For the experiments, the codebook size (cs) and the number of assigned codebook
words (cw) are optimised with cs ∈ {100,200,500,1000}, cw ∈ {1,10,20,50,100,200}.
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(a) Alice: Madn. Ret. (ACS) (b) Dr. Robotnik (ARP) (c) AquaPazza (FHT)

(d) Daytona USA (RCG) (e) Cricket (SPT) (f) Cossacks (SWB)

Figure 8.4: Example spectrograms, mel-spectrograms, delta-mel-spectrograms and chro-
magrams (left-to-right and top-to-bottom) of audio samples contained in the six different
classes of the G2AME corpus.

8.3.2 Results

In order to predict the class labels for the audio instances in the G2AME corpus, the
feature sets are evaluated using 10-fold CV with linear SVM classifier. The evaluation
measure is Unweighted Average Recall (UAR) with the 6-class chance level being 16.7 %
UAR for all experiments. The open-source linear SVM implementation provided in the
scikit-learn machine learning library is used [24]. Feature standardisation is applied to
the conventional acoustic feature sets. For the DEEP SPECTRUM features, both standard-
isation and normalisation have been found to negatively impact classifier’s performance.
The built-in balancing option of the SVM classifier is used to counteract the slight imbal-
ance of the dataset. Using the 10 fold CV setup, the classifier’s complexity parameter is
optimised in 10 steps, equally spaced on a logarithmic scale between 10−9 and 100.

An extensive series of experiments has been conducted to evaluate the performance of
the extracted feature sets using the proposed classifiers.

First, the performance of the acoustic feature sets is evaluated in Section 8.3.2.1.
The classification results are then obtained for the DEEP SPECTRUM features (cf. Sec-
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Table 8.9: Performance of the SVM classifier using different OPENSMILE audio func-
tionals on the G2AME corpus. UAR on concatenated folds is provided. Mean and stan-
dard deviation are reported in parentheses.

Acoustic feature set C UAR [%]

IS09 10−6 49.6 (49.2 ± 4.1 %)

IS10 10−6 55.2 (54.7 ± 4.5 %)

tion 8.3.2.2). Afterwards, the effect of quantising the best performing DEEP SPECTRUM

feature sets for each CNN-descriptor is evaluated (cf. Section 8.3.2.3). In Section 8.3.2.4,
model (late) fusion is performed on the DEEP SPECTRUM and acoustic feature sets.
Finally, the best classification result is compared with human performance (cf. Sec-
tion 8.3.2.5). Moreover, statistical T-tests are performed, comparing the results from
acoustic feature sets with the best DEEP SPECTRUM results and the overall best perfor-
mance in a pairwise fashion to determine if they are statistically different. The null-
hypothesis is rejected at a significance level of p < 0.05. For each comparison, the p-
values can be found in Table 8.13. The results of the CV are checked for normality using
a Shapiro-Wilk test [207, 208].

8.3.2.1 Acoustic Feature Sets

It can be observed that the larger feature set (IS10) with 1 582 features outperforms the
smaller one (IS09) with 384 features (cf. Table 8.9) reaching a maximum UAR of 55.2 %.
It is shown that there is statistically significant difference between these two feature sets
(cf. Table 8.13).

8.3.2.2 DEEP SPECTRUM Features

The comparison of different feature plots as a basis for DEEP SPECTRUM extraction
(cf. Table 8.11) indicates that chromagrams – in contrast to their relevance to music anal-
ysis – do not provide suitable input for ImageNet pre-trained CNNs. This is partially ex-
plained by the inherent “unnatural” look of these plots and the lack of local dependencies
between the pixels, leading to an inability to extract informative structural features using
the CNN models. Conversely, applying mel-spectrograms slightly improves performance
for both AlexNet and GoogLeNet. Using the deltas, however, the performance drops for
all CNNs. The overall best performance is achieved by AlexNet features extracted from
mel-spectrograms with a UAR of 59.9 %.
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Table 8.10: Performance of the SVM classifier using DEEP SPECTRUM features extracted
from spectrogram plots with different colour maps by three CNN-descriptors on the
G2AME corpus. UAR on concatenated folds is provided. Mean and standard deviation
are reported in parentheses.

UAR [%] AlexNet GoogLeNet VGG16

hot 58.1 (57.5 ± 3.2 %) 55.3 (54.7 ± 4.6 %) 58.8 (57.9 ± 4.0 %)
Vega20b 55.2 (54.7 ± 3.8 %) 52.3 (51.5 ± 4.1 %) 55.7 (54.8 ± 4.2 %)
viridis 58.6 (57.9 ± 3.7 %) 54.7 (54.0 ± 3.8 %) 58.3 (57.6 ± 3.1 %)

Table 8.11: Performance of the SVM classifier using best performing DEEP SPECTRUM

features on the G2AME corpus from Table 8.10. UAR on concatenated folds is provided.
Mean and standard deviation are reported in parentheses.

UAR [%] AlexNet (viridis) GoogLeNet (hot) VGG16 (hot)

spectrograms 58.6 (57.9 ± 3.7 %) 55.3 (54.7 ± 4.6 %) 58.8 (57.9 ± 4.0 %)
mel-spectrograms 59.9 (59.2 ± 4.7 %) 58.3 (57.6 ± 4.1 %) 58.7 (57.8 ± 4.2 %)
~∆mel-spectrograms 56.5 (55.7 ± 4.9 %) 54.8 (53.9 ± 4.5 %) 55.2 (54.3 ± 4.6 %)
chroma 46.2 (45.4 ± 4.1 %) 46.2 (45.3 ± 3.1 %) 47.6 (46.6 ± 2.9 %)
~∆chroma 41.1 (40.3 ± 3.6 %) 38.7 (37.9 ± 2.4 %) 41.1 (40.3 ± 2.9 %)

8.3.2.3 Bag-of-Deep-Features

For the BODF representations, the best performing feature plots for each CNN are chosen,
i. e. mel-spectrograms for both AlexNet and GoogLeNet, and regular spectrograms for
VGG16. The BODF parameters codebook size cs and number of assigned codebook
words cw as well as the SVM’s complexity parameter C. The results in Table 8.12 show
a maximum UAR of 66.9 % achieved by BODF with cs = 500 and cw = 25 formed from
DEEP SPECTRUM features and GoogLeNet mel-spectrograms as CNN-descriptor. It is
also shown that there is statistically significant difference between GoogLeNet BODF
system and the other tested approaches (cf. Table 8.13). A confusion matrix for this
system is displayed in Figure 8.5b.

8.3.2.4 Fusion Experiments

In addition to the quantisation method employed in Section 8.3.1.4, late fusion is also
performed on the different chunk-level feature representations. The best performing
DEEP SPECTRUM features are fused with each of the three audio functional feature sets
and also all four of them are concatenated together. Note that an early fusion was also
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Table 8.12: Performance of the SVM classifier using BODF representations of the best
DEEP SPECTRUM features on the G2AME corpus. cs: codebook size; cw: number of
assigned codebook words; C: SVM classifier’s complexity. UAR on concatenated folds is
provided. Mean and standard deviation are reported in parentheses. The best classification
result is highlighted with a light grey shading.

UAR [%] cs cw C 10-fold CV

AlexNet mel-spectrograms (viridis)
1 000 200 10−6 66.7 (66.0 ± 4.3 %)

1 000 100 10−5 66.6 (64.7 ± 4.7 %)

GoogLeNet mel-spectrograms (hot)
500 25 10−5 66.9 (66.3 ± 4.0 %)

500 100 10−6 66.3 (64.8 ± 4.2 %)

VGG16 spectrograms (hot)
1 000 100 10−6 65.1 (64.6 ± 6.4 %)

1 000 50 10−6 64.8 (64.2 ± 5.5 %)

Table 8.13: p-values for T-test scores comparing 10-fold CV results of different config-
urations. Except for AlexNet vs. VGG16 and VGG16 vs. IS10 the difference between
other feature sets is statistically significant.

GoogLeNet BODF (66.9) AlexNet (59.9) VGG16 (58.8) IS09 (49.6) IS10 (55.2)

GoogLeNet BODF (66.9) 1.0 4 ·10−4 4 ·10−4 5 ·10−8 2 ·10−5

AlexNet (59.9) - 1.0 0.522 1 ·10−4 4.9 ·10−2

VGG16 (58.8) - - 1.0 2 ·10−4 0.128
IS09 (49.6) - - - 1.0 0.014
IS10 (55.2) - - - - 1.0

attempted, however, initial analysis revealed that this approach was not suitable.
The late fusion scheme uses the trained and optimised SVM models obtained in Sec-

tions 8.3.2.1 and 8.3.2.2 and combines their predictions by majority vote. These results
(cf. Table 8.14) further indicate that the different feature sets are not complementary.

8.3.2.5 Comparison with Human Performance

To gain perspective into how well the best classification approach performed (cf. Ta-
ble 8.12), human classification tests have been conducted through the browser-based
crowdsourcing platform iHEARu-PLAY5 [209].

For the perception task, the human raters were presented with one 5 s clip (picked
at random) for each file. A total of 12 individuals (7 male, 5 female, average age 27.3,
non-professional gamers) completed the full classification task on the iHEARu-PLAY
platform. The average per rater decision time was 3.31 s. The best human performance

5https://www.ihearu-play.eu
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Table 8.14: Performance of late fusion using a linear SVM classifier on the G2AME cor-
pus. A majority vote is employed using the best individual models obtained during previ-
ous experiments. UAR on concatenated folds is provided. Mean and standard deviation
are reported in parentheses.

UAR [%]
Late fusion 10-fold CV

DEEP SPECTRUM + IS09 56.0 (55.4 ± 4.0 %)

DEEP SPECTRUM + IS10 58.3 (57.7 ± 4.2 %)

all features combined 57.8 (57.4 ± 4.5 %)

was 63.8 % UAR, which is 3.1 percentage points less than the best classification result.
The confusion matrix for this prediction is given in Figure 8.5a.

Whilst the raters’ scores gives a reference baseline on which to gauge the machine
learning approaches, it should be noted that due to the differing amounts of training, as
well as the CV paradigm used in the machine learning approaches, such a comparison
should not be considered like-for-like. In addition, the models were trained on a large
amount of data (cf. Table 8.8) which the raters did not have access to. However, given
the prevalence of video games in today’s society [192,210], one cannot say that the raters
received no training. Further, the terminology associated with each genre label would
have helped the raters form preconceptions of what a ‘typical’ audio clip from a particular
genre should sound like. Despite these factors, the stronger performance of the deep
learning approach indicates the suitability of using machine learning for the task of audio-
based video game genre classification.

8.3.3 Conclusions
This section explored machine learning paradigms for the task of audio-based video genre
classification. Potential real-world applications of such a system were listed. In Sec-
tion 8.3.1.1, the novel G2AME dataset was presented, which includes 1 566 unique game-
play samples taken from 300 individual video games. In Sections 8.3.2.2 and 8.3.2.3,
the efficacy of the deep learning paradigms proposed by the author and his colleagues
have been analysed and compared with the performance of the baseline system in Sec-
tion 8.3.2.1. The results in Section 8.3.2 indicated that BODF, a combination of
DEEP SPECTRUM features and Bag-of-Audio-Words (BOAW), are well suited to the task
of audio-based game-genre classification. This system achieved the strongest UAR of
66.9 % an improvement of 3.1 percentage points over humans performing the same task.
Statistical T-tests were also performed to compare the results obtained from various fea-
ture sets in a pairwise manner. It was demonstrated that there are statistically significant
differences between the overall best result and the results obtained from other proposed
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Figure 8.5: Confusion matrices from the human performance and our best classification
result.

feature vectors (cf. Table 8.13).
An in-depth analysis of the results reveals that Racing games, which normally feature

a substantial amount of automotive noises, were the easiest to recognise. Simulation and
World Building games, which showed a high confusion with Action or Shooter genre,
were the most difficult to analyse.

For the future work, it is of great interest to grow the G2AME dataset. The visual-
based, linguistic-based (YouTube comments), and multimodal classification should also
be considered. Given the complexity of video game labels, other future work should
include advanced clustering techniques, whilst associating each video game with a set of
genre labels, rather than applying the current method of assigning each a single label in a
multimodal framework.

74



9

In-the-Wild Speech, Vocalisations, and
Sentiment

The growing amount of multimedia material publicly available online, including pro-
duced content and non-acted personal home videos, represents an untapped wealth of
data for research purposes. For example, Gemmeke et al. introduced AudioSet, which is
a large-scale dataset of 2.1 million human-labelled 10-second audio clips obtained from
YouTube videos [93]. Perception and classification of such in-the-wild audio record-
ings is a particular challenging aspect of computer audition. These audio samples typ-
ically contain a variety of confounding effects, such as non-stationary noise and less
than ideal microphone placements. In this regard, this chapter analyses the suitability
and the performance of the novel Bag-of-Deep-Features (BODF) for classification of
in-the-wild human vocalisation and speech types (cf. Section 9.1) [88], and sentiments
(cf. Section 9.2) [62]. The datasets on which the experiments are conducted have also
been sourced from YouTube [88, 151, 211].

9.1 In-the-wild Speech and Vocalisation

In order to minimise the time and computational cost for processing high-dimensional
features, and reduce the amount of noisy representations extracted from real-world au-
dio data, it is beneficial to compress the feature space [145]. In this regard, this sec-
tion investigates the applicability and the efficacy of utilising BODF representations
(cf. Section 4.2.3) for various in-the-wild speech and vocalisations datasets. Furthermore,
the results obtained from BODF representations will be compared with non-quantised
DEEP SPECTRUM features, and two baseline systems using MFCCs and conventional
acoustic feature sets [8, 151, 198].
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9.1.1 Data and Procedure

First, mel-spectrograms are created from chunked audio recordings in the corpus (cf. Sec-
tion 4.2.1). They are then forwarded through various image classification CNNs (cf. Sec-
tion 4.2.2) to extract the DEEP SPECTRUM features (cf. Chapter 4). Afterwards, BODF
are created by quantising the DEEP SPECTRUM features (cf. Section 4.2.3). In the fi-
nal step, a classifier has been trained on both DEEP SPECTRUM features and BODF to
analyse the efficacy of the generated features.

9.1.1.1 Dataset

The corpus introduced in [151], which has been used for the experiments in this section,
includes the following six real-world audio databases containing different human speech
and vocalisation types:

1. Freezing: 785 recordings picked from videos in which the speech is produced by
an individual shivering with cold.

2. Intoxication: 1 221 language independent recordings picked from videos in which
the speech is produced under the influence of drugs.

3. Screaming: 564 recordings picked from videos in which people are screaming when
they are scared.

4. Threatening: 1 093 language independent recordings picked from videos in which
the speech is perceived by the annotators to be of a threatening manner.

5. Coughing: 3 659 recordings picked from videos in which people are coughing dur-
ing a conversation or a talk.

6. Sneezing: 529 recordings picked from videos in which people are sneezing during
a conversation or a talk.

These datasets are based on the concept of acoustic surveillance [2]. The first four
topics are related to audio-based surveillance for security purposes in noisy public places.
The latter two topics, related to the monitoring of everyday activity – in terms of, e. g.
personal health – in common, relatively quiet environments, such as home or office [2].
All corpora offer a two-class classification problem, i. e. they have a target class, e. g.
freezing or intoxication and a ‘normal speech’ class which contains audio samples that
are not affected by the target class. All audio data is mono at a rate of 44.1 kHz. For full
details on the construction of theses datasets the interested reader is referred to [151]. The
specifications of each database is given in the Table 9.1.
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Table 9.1: Specifications of each database. ltotal: the total length of the data set; lmin and
lmax: the minimum and maximum lengths of the audio recording; SD: standard deviation;
n: the number of all audio recordings in each set. s : the number of 0.5 s segments, i. e.
the number of frames of input mel-spectrograms, denoted in parentheses. cratio: the class
ratio for each data set (target class:‘normal speech’).

Train Evaluation

Tasks ltotal lmin/lmax SD n (s) cratio ltotal lmin/lmax SD n (s) cratio

Freezing 75.9m 2.0s/29.4s 5.8s 614 (8813) 2 : 1 22.4m 2.0s/28.6s 5.9s 171 (2595) 1.1 : 1

Intoxication 139.7m 2.0s/29.9s 6.5s 1069 (16200) 0.9 : 1 16.7m 2.0s/24.8s 5.3s 152 (1930) 1.8 : 1

Screaming 53.6m 2.0s/29.9s 7.6s 375 (6192) 1.2 : 1 22.0m 2.1s/29.9s 5.5s 189 (2505) 1.4 : 1

Threatening 106.6m 2.0s/29.8s 7.4s 652 (12360) 6 : 1 45.8m 2.0s/29.2s 5.2s 441 (5271) 0.6 : 1

Coughing 94.3m 0.5s/28.8s 3.5s 2088 (10336) 2.9 : 1 63.9m 0.5s/23.2s 2.7s 1571 (6935) 2.2 : 1

Sneezing 6.7m 0.5s/8.0s 1.3s 238 (691) 0.9 : 1 9.2m 0.5s/9.3s 1.4s 291 (967) 1 : 1

∑ 476.8m – – 5036 (54592) −− 180m – – 2815 (19933) −−

9.1.1.2 Deep Spectrum Features

The DEEP SPECTRUM features are extracted in three stages (cf. Chapter 4). First, as
described in Section 4.2.1, mel-spectrograms with a window width of w = 0.5 s and an
overlap of 0.25 s are extracted from the chunked audio contents. They are then forwarded
through four different architectures of pre-trained CNNs, including AlexNet [28], VGG16
and VGG19 [30], and GoogLeNet [144]. In the third and final step, the activations of
AlexNet’s seventh layer (fc7), VGG16’s and VGG19’s second fully connected layer, and
the activations of the last pooling layer of GoogLeNet are extracted as large feature vector
for each input mel-spectrogram. In Figure 9.1, the audio similarities and differences that
potentially exist between different classes in the corpora are highlighted by showing an
example mel-spectrogram from each target class.

9.1.1.3 Bag-of-Deep-Features

The same procedure as introduced in Section 8.3.1.4 is applied for generating BODF
features [88]. For the experiments, the size of the codebook (cs) and the number of
assigned codebook words (cw) are optimised with cs ∈ {10,20,50,100,200,500,1000},
cw ∈ {1,10,25,50,100,200,500} and evaluated on the evaluation partition using a linear
SVM classifier. For this purpose, the classifier’s complexity parameter (C) is optimised
on a logarithmic scale between 10−9 and 100 with a factor of 10. The best performing
codebook is then applied for evaluation on the test set.
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(a) Freezing
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(b) Intoxication
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(c) Screaming
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(d) Threatening
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(e) Coughing
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(f) Sneezing

Figure 9.1: Example mel-spectrograms extracted from the target classes contained in the
six different corpora. Relatively high f0 of the Threatening class, wide band spectra for
Coughing and Sneezing classes,and narrow band spectra for the Freezing, Intoxication,
and Screaming classes, can be observed.

9.1.1.4 Baseline Features

The DEEP SPECTRUM and BODF features are compared with two strong baseline feature
sets introduced in [151]: (i) the INTERSPEECH 2009 Emotion Challenge feature set
(IS09) with a total number of 384 features, and (ii) a 39-dimensional MFCC feature set.

9.1.1.4.1 The INTERSPEECH 2009 Emotion Challenge feature set (IS09) This
feature set contains 384 features [198]. The total number of attributes is obtained by
multiplying 16 Low-Level Descriptors (LLDs) × 2 (as the delta coefficients of the LLDs
are also included) × 12 statistical functionals. In detail, the 16 LLDs in IS09 set are:
Root Mean Square (RMS) frame energy, pitch frequency (normalised to 500 Hz), Zero-
Crossing-Rate (ZCR) from the time signal, Harmonics-to-Noise Ratio (HNR) by autocor-
relation function, and 12 MFCCs [198]. To each LLD, the delta coefficients are addition-
ally computed. Afterwards, 12 functionals, including mean, standard deviation, minimum
and maximum value, kurtosis, skewness, relative position, and range as well as two linear
regression coefficients with their MSE are applied on a chunk basis. Therefore, the each
feature vector per chunk contains 16×2×12 = 384 attributes [198].
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9.1.1.4.2 Mel-Frequency Cepstral Coefficients Using OPENSMILE [8, 9], a 39-
dimensional MFCC representation is extracted from the audio signals with a Hanning
window of width w = 25 ms and overlap 10 ms. Subsequently, 12 MFCCs from 26 mel-
frequency bands obtained from the FFT power spectrum are computed. Afterwards, a
cepstral liftering filter with a weight parameter of 22 is applied. Finally, 12 delta, 12
acceleration coefficients, and 3 logarithmic energies are appended to the MFCC. The fre-
quency range of the mel-spectrum is set from 0 to 8 kHz.

9.1.2 Results

First, the classification results for the non-quantised DEEP SPECTRUM features are ob-
tained. The robustness of quantising the representations (BODF) for all four CNN-
descriptors is then evaluated (cf. Section 9.1.2.2). Finally, early (feature) and late
(model) fusion experiments for various combinations of the CNN-descriptors are per-
formed (cf. Section 9.1.2.3).

9.1.2.1 Classifier and Evaluation Metric

To predict the class labels, a linear SVM classifier is trained. The evaluation metric is
UAR, as this measure gives equal weight to all classes. For the classifier, the open-source
linear SVM implementation provided in the scikit-learn machine learning library [24]
is used. For the DEEP SPECTRUM features, standardisation and normalisation are not
applied, as they have been found to negatively impact classifier performance. Moreover,
a SVM is preferred over DNN as a classifier for two reasons: first, BODF is a sparse
feature representation and SVMs are effective at handling sparse data [212, 213], and
second, the datasets are too small to train a DNN.

9.1.2.2 Performance of the Representations

For the non-quantised DEEP SPECTRUM (nqDS) features, majority voting is applied to
obtain the prediction for a complete audio recording from its chunk-level results. It is
shown that the results – despite being strong – are behind the best baseline feature and
almost all BODF results (cf. Table 9.2) [88].

The results in Table 9.2 show that quantisation improves the results for all CNN-
descriptors. The results also demonstrate the strength of the BODF outperforming the
best baseline results for the acoustic surveillance databases Freezing, Intoxication, Threat-
ening, and Screaming. It is observed that BODF worked best on longer audio chunks, as
opposed to shorter ones from the Coughing and Sneezing datasets. It is assumed that
this effect is due to the lack of discriminating information in the shorter chunk spec-
trograms leading to weaker DEEP SPECTRUM representations. It is worth noting that for
both Coughing and Sneezing, BODF consistently outperforms DEEP SPECTRUM features
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Table 9.2: Classification results of each paralinguistic task from the baseline paper [151]
by the functionals (Func.) of the IS09 feature set, and BOAW representations, compared
with the results from the non-quantised DEEP SPECTRUM features (nqDS) and BODF
representations. For the non-quantised DEEP SPECTRUM features, majority voting is used
to obtain the prediction for a whole audio recording from its chunk-level results. The
chance level for each task is 50.0 % UAR. The best result for each corpus is highlighted
with a light grey shading.

UAR [%]
IS09 [151] MFCCs [151] AlexNet VGG16 VGG19 GoogLeNet

Func. BOAW BOAW nqDS BODF nqDS BODF nqDS BODF nqDS BODF

Freezing 70.2 67.5 65.6 62.5 70.4 71.3 72.9 67.9 69.1 67.3 71.6

Intoxication 64.7 72.6 66.7 60.3 61.9 58.2 64.7 55.4 71.3 63.1 73.6

Screaming 89.2 97.0 94.0 94.9 98.5 96.8 96.7 94.7 98.2 89.8 94.3

Threatening 73.8 66.3 67.0 72.2 76.4 70.7 73.9 70.6 70.3 70.5 77.3

Coughing 95.4 96.7 97.6 94.3 95.3 94.5 95.3 94.2 95.2 91.0 92.0

Sneezing 79.3 76.4 79.8 74.0 74.6 71.8 74.9 76.8 79.4 64.0 71.8

adding evidence to the assumption that quantisation improving system robustness, while
compressing the feature space [88].

9.1.2.3 Early and Late Fusion

Both early and late fusion schemes are applied to the features and the models obtained
from the proposed BODF, in order to investigate their complementarity [88]. For early
(feature-level) fusion, the DEEP SPECTRUM features extracted from the chunked (0.5 s)
audio recordings using the mentioned CNN-architectures are combined. Afterwards,
BODF representations of those features are built analogous to the non-fusion systems
outlined in Section 9.1.1.3. A linear SVM is used for the classification task, and its cost
parameter is optimised on a logarithmic scale between 10−9 and 100 with a factor of
10. The late fusion scheme combines the predictions of the best BODF models for each
dataset obtained in previous experiments in a majority vote.

The results achieved by different configurations of these two fusion schemes on all
six databases are displayed in Table 9.3. For Sneezing and Coughing, results are slightly
improved over non-fusion systems but still do not reach the baseline performance in Ta-
ble 9.2. In addition, small performance boosts of the early fusion models over non-fusion
systems was observed for the Intoxication and Screaming datasets. Moreover, a larger
increase in UAR was noticed for the Freezing dataset using a late fusion system of BODF
models based on the DEEP SPECTRUM features obtained from AlexNet, VGG16, and
GoogLeNet. However, as there is no consistent pattern, it is difficult to interpret the
differences between the early and late fusion results of the CNN models. It is shown
that the early fusion of all features for all tasks, except for Screaming, leads to stronger
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Table 9.3: Performance of early and late fusion strategies for the CNN-descriptors using
linear SVM classifiers on the databases. UAR is used as the measure. For early fusion, the
linear SVM classifier’s complexity parameter is optimised on a logarithmic scale between
10−9 and 100 with a step size of 10. For late fusion, a majority vote is employed on the
test set using the best individual models obtained during previous experiments. AlexNet is
denoted as A., VGG16 as V16, VGG19 as V19, and GoogLeNet as G. The fusion results
for each corpus which are better than the results given in Table 9.2 are highlighted with a
light grey shading. The chance level for each task is 50.0 % UAR.

UAR [%]
Early fusion Late fusion

A.+V16 A.+V19 A.+G. V16+G. V19+G. All A.+V16+V19 A.+V16+G. A.+V19+G. V16+V19+G. All

Freezing 69.2 71.3 68.4 74.1 70.4 71.2 70.4 76.3 70.4 71.2 68.5

Intoxication 65.7 73.0 67.1 68.4 67.8 73.8 68.3 67.7 68.8 63.9 60.9

Screaming 98.5 99.1 97.8 97.1 99.1 98.2 98.0 98.0 98.2 98.2 98.9

Threatening 74.8 72.8 76.0 73.2 72.3 73.1 73.1 76.3 75.2 72.2 68.9

Coughing 96.0 95.5 95.4 95.6 95.3 96.5 96.3 96.3 95.2 95.2 95.3

Sneezing 76.3 77.7 76.3 75.6 78.0 79.8 77.0 77.7 79.1 79.8 74.1

performance than combining all models by late fusion. Based on these findings, it can
be assumed that fusing high-level CNN features can lead to stronger performance than
fusing the predictions of the trained models.

9.1.3 Conclusions

Despite representation learning with DNNs having shown superior performance over
expert-designed feature sets in a range of machine learning recognition tasks, such ap-
proaches have not been widely explored within the domain of noisy, in-the-wild audio
classification. In this regard, the results (cf. Tables 9.2 and 9.3) indicate that state-of-the-
art image classification CNNs are capable of providing strong feature sets on real-world
audio recognition [88]. Further, the strength of bagging the DEEP SPECTRUM features
as a means of reducing the noise present in the feature space was demonstrated. It was
shown that using BODF, it is possible to improve upon almost all results obtained from
the non-quantised DEEP SPECTRUM features, whilst compressing the feature space and
increasing the real-time capability of the applied machine learning system. The results
give strong evidence that the quantising step, when bagging deep features, can be consid-
ered as a quasi-filtering process which, in general, improves system robustness. Finally,
it was shown (cf. Table 9.3) that both early and late fusion can still increase the BODF
classification results. These findings imply that features and models obtained from the
applied CNN-descriptors are in most cases complementary.

In the future work, the efficacy of using BODF with other deep architectures, such as
ResNet [46], Inception-v3 [144], and Inception-v4 [214] should be considered. It is highly
recommended to explore the benefits of fine-tuning the pre-trained networks on larger in-
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the-wild databases like AudioSet [93], YouTube-8M [215], or datasets for Acoustic Scene
Classification and Sound Event Detection challenges [1, 178, 216].
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9.2 Audio-Based Sentiment Analysis

Expressing emotions and sentiment is a central part of human communication [217]. We
do this by laughing and smiling out of happiness, yawning out of boredom, or crying out
of sadness. Some of those actions are performed quietly, so one can only recognise them
via visual information, but other actions such as laughing or crying are audible [218].

In this section, an audio-based sentiment analysis is performed on movie reviews
posted to YouTube [211]. This is essentially a polarity classification task [219], in which
videos are assigned to a positive or negative class based on whether or not the presenter
liked or disliked the movie they are reviewing. This task is generally achieved in a mul-
timodal framework, which combines linguistic, speech, and visual cues. However, given
the promising results recently published for speech-based emotion recognition using ei-
ther BOAW [148] or DEEP SPECTRUM features [4], this section discusses the suitability
of these representations for sentiment recognition [62].

9.2.1 Data and Procedure

The experiments for the sentiment analysis are performed on the audio modality of the
Movie Review Dataset introduced by Wöllmer et al. [211]. First, the DEEP SPECTRUM

features and MFCCs are extracted from the input audio files, as described in Section 9.1.1.
Afterwards, BODF and Bag-of-MFCCs representations are created from each feature set
using OPENXBOW [145]. Finally, the quantised feature sets are classified and the results
are analysed.

9.2.1.1 Movie Review Dataset

The Movie Review Dataset, collected by Wöllmer et al. [211], consists of 359 YouTube
clips in which people express their opinion on a selection of movies they have previously
watched. The author and his colleagues used only the audio data from this dataset for the
sentiment analysis [62]. The sentiment of the speaker in each recording is expressed as
integer annotations on a 1–6 Likert scale, with 1 the negative and 6 the positive end of the
sentiment spectrum. Based on this, the clips are separated into positive and negative, with
average scores above 3 assigned to positive sentiment. The dataset is divided into three
partitions: train, development (Devel.), and test. The statistics about each partition of the
dataset is given in Table 9.4.

9.2.1.2 Bag-of-Deep-Features

Power spectrograms with Hanning windows of width w = 16 ms and overlap 8 ms are
extracted using Python’s matplotlib [220]. These spectrogram plots are then forwarded
through AlexNet and the activations of its penultimate fully connected layer (fc7) with
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Table 9.4: Distribution, average length and SD of all recordings from the Movie Review
Dataset between train, development (Devel.), and test sets.

Statistics Train Devel. Test ∑

# Videos 215 72 72 359
# Positive videos 125 42 42 209
# Negative videos 90 30 30 150
Average length (m:s) 2:32 2:27 2:30 2:31
SD (m:s) 0:40 0:41 0:44 0:41

4 096 neurons are obtained as feature vectors. These representations are then quantised us-
ing OPENXBOW to form the BODF. The same procedure as introduced in Section 8.3.1.4
is applied for creating BODF representations [88]. The codebook size (cs) and the num-
ber of assigned codebook words (cw) are optimised with cs ∈ {500,1000,2000,4000},
cw ∈ {1,10,20,50}.

9.2.1.3 Bag-of-MFCCs

The feature extraction toolkit OPENSMILE [8] is used to extract a 39-dimensional
MFCC representation from the input audio signals with a Hanning window of width
w = 25 ms and overlap 10 ms. A detailed account on the MFCC features is given in Sec-
tion 9.1.1.4. Afterwards, the features are quantised using OPENXBOW. Finally, the
codebook size (cs) and the number of assigned codebook words (cw) are optimised with
cs ∈ {2000,4000,8000}, cw ∈ {1,10,20,50}.

9.2.2 Results
The constructed BODF (cf. Section 9.2.1.2) and Bag-of MFCCs (cf. Section 9.2.1.3)
are used for training a linear SVM, and input normalisation is applied. The imbalance
of the datasets is counteracted by adjusting the weights for the two classes accordingly,
i. e. 1.4 for negative and 1.0 for positive instances. Training and evaluating that system
is performed using Weka’s [221] LibLINEAR wrapper with the L2-regularised L2-loss
solver [212]. Classifier’s complexity parameter (C) is optimised on a logarithmic scale
between 10−4 and 100 with a factor of 10. For the best configurations on the development
set, the features are then evaluated on the test set. All results for various configurations
are given in Table 9.5.

The results in Table 9.5 indicate that, for the binary task of audio-based sentiment
analysis, the unconventional DEEP SPECTRUM features perform slightly better than the
standard and robust MFCCs features [222, 223]. The best overall classification result is
obtained using DEEP SPECTRUM features quantised with cs = 500 and cw = 1. For the
MFCC features, the best results are observed for a codebook with cw = 10, i. e. when
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Table 9.5: Comparison of the classification results using BODF and Bag-of-MFCCs for
the task of audio-based sentiment analysis. Different combinations of codebook size (cs)
and multi-assignment degree, or codebook words (cw) are evaluated. The SVM’s cost
parameter C is optimised on the development (Devel.) partition. The chance level is
50.0 % UAR. The best result for each feature set is highlighted with a light grey shading.

UAR [%] cw = 1 cw = 10 cw = 20 cw = 50

Feature Space cs C Devel. Test C Devel. Test C Devel. Test C Devel. Test

Bag-of-MFCCs 2 000 100 71.7 68.1 10−1 68.6 70.3 10−1 67.7 70.3 10−4 69.3 62.9

Bag-of-MFCCs 4 000 10−2 71.9 72.2 10−2 68.9 72.2 10−2 68.9 69.8 10−2 67.2 69.8

Bag-of-MFCCs 8 000 10−2 71.2 68.9 10−2 71.7 73.1 100 69.3 66.5 10−5 66.2 67.7

BODF 500 10−4 69.5 74.5 10−6 74.3 71.0 10−5 74.3 70.5 10−5 69.5 71.0

BODF 1 000 10−2 74.5 55.8 10−4 74.8 68.6 10−5 74.3 70.5 10−6 71.9 69.8

BODF 2 000 10−4 75.3 64.1 10−4 70.7 68.6 10−5 73.1 70.5 10−5 71.9 71.0

BODF 4 000 10−3 69.5 64.5 10−4 70.7 72.2 10−5 71.9 70.5 10−5 71.9 71.0

creating histogram representations from a codebook with the cs between 2 000 and 8 000,
ten suitable vectors are found for each feature vector from the quantised space. However,
no assumption can be made about the codebook size cs within the mentioned range.

9.2.3 Conclusions
Using an existing corpus of movie reviews collected from YouTube, the suitability of the
BODF proposed by the author and his colleagues [88] and state-of-the art Bag-of-MFCC
features for audio-based sentiment analysis were analysed. Presented results indicate
that the DEEP SPECTRUM based systems [16, 88] consistently outperform the equivalent
MFCC system. Given the strong performance of DEEP SPECTRUM features in the related
task of emotion classification [4], this finding is not unexpected. This result adds to the
growing evidence in the literature that feeding spectrogram representations through pre-
trained image CNNs produces salient features suitable for audio classification tasks.

Future work could include fusing information from the different modalities present in
the Movie Review Dataset to further improve on the DEEP SPECTRUM results, as well as
performing cross-corpus multimodal sentiment analysis using reviews of different gen-
res and cultures. It may also be beneficial to fuse the deep representations with expert-
designed features developed for the INTERSPEECH’s emotion challenge, as this feature
set has been shown to be highly effective in capturing emotion related features [198,199].
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Health Monitoring

The human body produces a wide range of acoustic sounds that directly and indirectly
reflect developments and changes in our physical and mental states. Such acoustic data
is complex and rare in nature, exhibiting strong interconnections. In this chapter, the
suitability of the deep learning methodologies proposed by the author and his colleagues,
for learning meaningful representations from scarce medical data will be analysed. In
particular, in Section 10.1, the proposed Sequence to Sequence Autoencoder (S2SAE)
(cf. Chapter 6) will be applied for classification of abnormal heart sounds [163], and
in Section 10.2, the DEEP SPECTRUM system (cf. Chapter 4) will be utilised to classify
various snore sounds [18].

10.1 Abnormal Heart Sound Classification

Computer audition techniques have the potential to produce supporting technologies for
cardiologists and general practitioners to help increase the clinical efficacy of ausculta-
tion, thus helping to reduce the high societal burden associated with heart diseases [224].
Moreover, advances in mobile and wearable recording and sensing devices are increasing
the reliability and feasibility of remote diagnostic and monitoring solutions [225].

In this section, it will be investigated whether state-of-the-art computer audition
paradigms can be applied to classify heart sounds. In particular, the suitability of the
introduced S2SAE (cf. Chapter 6) [17, 18] for the mentioned task will be explored [163].
The performance of this RNN-based system will be compared with two non-deep ap-
proaches, a conventional acoustic feature set [226] and a Bag-of-Audio-Words (BOAW)
approach [227].

All three approaches are verified on the Heart Sounds Shenzhen (HSS) corpus, a novel
database of 422.82 minutes of heart sound recordings collected from 170 participants
(cf. Section 10.1.1.1).
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Table 10.1: Class distribution per partition.

Partition normal mild moderate/severe ∑

Train 84 276 142 502
Devel. 32 98 50 180
Test 28 91 44 163

10.1.1 Data and Procedure
The experiments are performed in three steps on the HSS corpus which has recently
been made available through the 2018 edition of the INTERSPEECH COMPARE [164].
First, power spectrograms are generated from heartbeat recordings. Subsequently, recur-
rent S2SAEs are used for unsupervised representation learning from the extracted mel-
spectrograms. Finally, a classifier is trained on the learnt representations to predict the
labels of the heartbeat recordings. The obtained results are also compared with two other
feature sets.

10.1.1.1 Heart Sound Dataset

The HSS corpus contains 845 recordings (with 30 seconds on average) representing
422.82 minutes. The heart recordings were collected using the electronic stethoscope
from one of four locations: (i) the auscultatory mitral area, (ii) the aortic valve ausculta-
tion area, (iii) the pulmonary valve auscultation area, and (iv) the auscultatory area of the
tricuspid valve. The recordings were collected from 170 independent subjects (55 female
and 115 male), from mostly older individuals (ages range from 21 to 88 with the mean age
being 65.4 years, and standard deviation of 13.2 years) with varying health conditions, in-
cluding coronary heart disease, heart failure, arrhythmia, hypertension, hyperthyroid, and
valvular heart disease [163].

The corpus has been categorised into three classes: (i) normal, (ii) mild, and (iii)
moderate/severe, as diagnosed by specialists in heart diseases. These classes are divided
into participant-independent training, development, and test sets with 502, 180, and 163
audio instances, respectively (cf. Table 10.1). The gender and age classes are evenly
distributed.

10.1.1.2 Spectrogram Creation

First, the power spectra of heartbeat audio samples are generated using periodic Han-
ning windows of width w ms and overlap 0.5w ms. Subsequently, Nmel log-scaled mel-
frequency bands are computed from the spectra. These representations have previ-
ously been shown to be effective for heart sound classification [228]. Finally, the mel-
spectrograms are normalised in [−1,1], as the outputs of the autoencoder are constrained
to this interval. Furthermore, important acoustic cues related to the class label may be
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obscured by background noise during the recording of the heartbeats. Hence, it is inves-
tigated whether removing some background noise from the spectrograms improves sys-
tem performance. This is achieved by clipping amplitudes below four certain thresholds,
−30 dB, −45 dB, −60 dB, and −75 dB [163].

10.1.1.3 Recurrent Autoencoders

The detailed description of the applied S2SAE is given in Chapter 6. The Adam optimiser
is used to train the autoencoders with an initial learning rate of 0.001 [182] for 64 epochs
in batches of 256 samples. A dropout of 20 % has been applied to the outputs of each
recurrent layer [38]. Moreover, gradients with absolute value above 2 are clipped [157].
As described in Chapter 6, suitable values for the hyperparameters are selected in three
stages.

First, the number of recurrent layers NS2SAE
layer and Gated Recurrent Units (GRUs)

NS2SAE
unit in each RNN layer are optimised with NS2SAE

layer ∈ {2,3,4}, NS2SAE
unit ∈

{64,128,256,512}. All combinations of bidirectional or unidirectional encoder and de-
coder RNNs are evaluated. The highest Unweighted Average Recall (UAR) was achieved
when using NS2SAE

layer = 2 and NS2SAE
layer = 256 GRUs with a unidirectional encoder RNN and

a bidirectional decoder RNN.
Second, using the autoencoder configuration specified in the first stage, the window

width w for spectrogram creation is evaluated between 80 and 360 ms with a step size of
40 ms. It was observed that the windows size w = 320 ms provided the strongest UAR.
It is speculated that using window sizes shorter than w < 320 ms result in weaker rep-
resentation due to the lack of discriminating information in the shorter audio segments.
For larger values of w > 320 ms, it was observed that the classification accuracy dropped
again. This could have been caused by the larger window width blurring the short-term
dynamics of the heartbeat sounds.

In the final optimisation stage, various numbers of mel-frequency bands Nmel ∈
{16,32,64,128,256} were tested. With larger values of Nmel , the UAR rises until it stops
increasing for Nmel > 128. For this reason, Nmel = 128 is chosen to reduce the amount of
data which the system has to process.

10.1.1.4 ComParE Acoustic Feature Set

Further results presented are based on the INTERSPEECH 2016 COMPARE feature
set [229]. This feature set includes a range of prosodic, spectral, cepstral, and voice
quality LLDs contours, to which statistical functionals such as the mean, standard devi-
ation, percentiles and quartiles, linear regression descriptors, and local minima/maxima
related descriptors are applied to produce a 6 373 dimensional static feature vector. For
the full description of this feature set, the interested reader is referred to [230].
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10.1.1.5 Bag-of-Audio-Words

Bag-of-Audio-Words (BOAW), which have been computed using the toolkit
OPENXBOW [227], are also tested. BOAW involve the quantisation of acoustic
LLDs to form a sparse fixed length histogram (bag) representation of an audio clip.

All BOAW representations were generated from the 65 LLDs and corresponding
deltas in the COMPARE feature set (cf. Section 10.1.1.4) [230]. Prior to quantisation,
the LLDs were normalised to zero mean and unit variance. All codebooks were learnt us-
ing OPENXBOW random sampling setting with codebook size (cs) 250, 500, and 1 000.

10.1.2 Results
In order to predict the class labels for the audio instances in the HSS corpus, a linear SVM
classifier is trained using the Sequential Minimal Optimization (SMO) algorithm [231]
implemented in Weka 3.8.2 [221]. Features were scaled to zero mean and unit variance,
using the parameters from the training set. The complexity hyperparameter of the SVM
(C) is optimised on a logarithmic scale between 10−6 and 10−1 with a factor of 10 for the
deep learning, COMPARE, and BOAW approaches. The SVM complexity that performs
the strongest on the development set is applied to train the final classifier with the fusion
of the training and development sets. For the BOAW results on the test set, the codebook
is learnt again from the fused data. Due to small imbalances in the class distribution of
the data (cf. Table 10.1), all classification systems are evaluated using the UAR metric.

The strongest development set UAR, 50.3 % (cf. Table 10.2), was achieved using a
system based on the COMPARE feature set and a SVM complexity of C = 10−4. However,
this system had a noticeable drop in performance on the HSS test partition indicating
possible overfitting. For the conventional (non-deep) approaches, the strongest test set
partition UAR, 47.2 % (cf. Table 10.2) was achieved using a BOAW approach with cs =
500, and C = 10−3.

For the deep recurrent approach, the learnt representations achieved a weaker perfor-
mance than the conventional feature sets on the development partition. This could be
due to the small amount of data for training the autoencoders. When comparing with the
conventional approaches on the HSS test set, the learnt representations achieve equivalent
performance. Moreover, an early fusion of the four learnt deep feature vectors obtain the
highest UAR, 47.9 % (cf. Table 10.2) on the test set. This result indicates the promise of
deep representation learning for abnormal heart sound classification.

10.1.3 Conclusions
Technologies based on state-of-the-art computer audition systems have the potential to aid
the diagnosis of cardiovascular disorders. In this regard, the presented results indicated
the potential of deep learning to learn meaningful representations from Phonocardiogram
(PCG) recordings. It was shown that fusing all deep representations after amplitude
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Table 10.2: A comparison of the UARs of the S2SAE system with a COMPARE feature
set and a BOAW approach. The chance level is 33.3 % UAR. The best result is highlighted
with a light grey shading.

UAR [%]
System Dimensionality C Devel. Test

COMPARE 6 373 10−6 41.1 44.8
10−5 44.5 45.6
10−4 50.3 46.4
10−3 44.5 40.4
10−2 43.2 41.7

BOAW 250 10−3 43.1 43.4
500 10−3 42.3 47.2

1 000 10−2 43.7 41.0

S2SAE: Individual Feature Sets

-30 dB 1 024 2 ·10−2 32.8 40.0
-45 dB 1 024 5 ·10−4 38.4 40.6
-60 dB 1 024 6 ·10−2 39.6 45.2
-75 dB 1 024 8 ·10−3 36.9 41.7
Fused 4 096 4 ·10−3 35.2 47.9

clipping, it is possible to outperform the conventional acoustic features for the task of
abnormal heart sound classification. In future work, PCG databases assembled for the
Computing in Cardiology (CinC) Challenge 2016 [232] should be considered to provide
further training material for the S2SAE.

91



10. Health Monitoring

10.2 Snore Sound Recognition

Snoring can be a marker of Obstructive Sleep Apnea (OSA) [233] which, after insom-
nia, has the highest prevalence of all sleep disorders, affecting approximately 3–7 % of
the middle-aged men and 2–5 % of the middle-aged women [234–236] in the general
population. OSA is characterised by repetitive episodes of partial, or complete collapses
of the upper airway during sleep, causing impaired gaseous exchanges and sleep dis-
turbance [237]. OSA can lead to an increased risk of cardiovascular and cerebrovascular
diseases [238,239]. An integral part of successful treatment is locating the site of obstruc-
tion and vibration [240], which was the subject of the INTERSPEECH 2017 COMPARE
Snoring sub-challenge [5]. The challenge requires participants to identify four different
sources of vibration from audio snore samples: epiglottis (E), oropharyngeal lateral walls
(O), tongue (T), and velum (V).

An audio perspective on the analysis of snoring has made use of, among others, ampli-
tude [241], frequency [242], and wavelet features [243]. In this section, the applicability
of DEEP SPECTRUM (cf. Chapter 4) to extract robust representations for the task of snore
sound recognition will be analysed [16].

10.2.1 Data and Procedure

For the deep learning experiments the Munich-Passau Snore Sound Corpus (MPSSC)
has been used. In the first experimental stage, spectrograms are extracted from each
snore sound (cf. Figure 10.1). Subsequently, AlexNet and VGG19 are used to extract the
DEEP SPECTRUM features (cf. Section 10.2.1.3). After obtaining the deep representa-
tions, early and late fusion experiments have been performed (cf. Section 10.2.1.4). Fi-
nally, the obtained results are analysed and compared with the provided baselines in Sec-
tion 10.2.2.

10.2.1.1 Munich-Passau Snore Sound Corpus

The INTERSPEECH 2017 COMPARE Snoring sub-challenge is based on the MPSSC,
which contains 828 snore samples from four classes. Each one of these classes relates to
one source of vibration. For the challenge, the corpus has been split equally into training,
development, and test partitions [5]. The classes have uneven distribution, with substan-
tially more V samples (cf. Table 10.3). Therefore, upsampling of the data is performed, by
replicating samples from the O, T, and E classes proportional to their relative frequency.
The same upsampling factors as those used in the challenge baseline system are applied.
This results in all classes having approximately the same number of audio recordings. For
a detailed description of the corpus and the class distributions the reader is referred to [5].
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10.2. Snore Sound Recognition

Table 10.3: Class distribution per partition. V: velum, O: oropharyngeal lateral walls, T:
tongue base, E: epiglottis.

Partition V O T E ∑

Train 168 76 8 30 282
Devel. 161 75 15 32 283
Test 155 65 16 27 263
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Figure 10.1: Representative spectrograms for the different types of snore sounds using
the best performing colour map viridis. Each one of the four classes relating to the point
of vibration (V: velum, O: oropharyngeal lateral walls, T: tongue base, E: epiglottis) pro-
duces a unique spectral image. The samples from which these spectrograms have been
extracted are given in parentheses.
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10.2.1.2 Spectrograms Creation

Hanning windows of width w = 16 ms and overlap 8 ms are used, and the power spectral
density on the dB power scale is computed. The impact of three ‘standard’ spectrogram
colour mappings is analysed to find a good representation of the snore samples: jet which
is the default colour map of matplotlib [220] and varies from blue (low range) to green
(mid range) to red (upper range); gray which is a sequential grey-scale mapping which
varies from black (low range) to grey (mid range) to white (upper range); and finally,
viridis which is a perceptually uniform sequential colour map, varying from blue (low
range) to green (mid range) to yellow (upper range). Example plots as used by the final
system for each class of the Snoring sub-challenge are shown in Figure 10.1. It is worth
noting that, even with the human eye, some clear distinctions between the spectrograms
of different classes can be made.

10.2.1.3 DEEP SPECTRUM Features

At this stage, the DEEP SPECTRUM features are evaluated for all combinations of CNN-
descriptors and spectrogram colour maps, resulting in 12 different configurations (cf. Ta-
ble 10.4). Features are extracted from spectrograms of three different colour maps by us-
ing fc6/fc7 activations of both AlexNet and VGG19 (cf. Section 4.2.2). The LibLINEAR
library with the L2-regularised L2-loss dual solver [212] is used via the Weka machine
learning toolkit [221], and the SVM complexity parameter C ∈ [10−6,10−1] is optimised
on the development partition. For each configuration, two best results of adjusting C are
presented. The performance of the configurations is scored using UAR, as specified in the
challenge baseline [5].

10.2.1.4 Fusion

Finally, the effects of three different fusion scenarios on the proposed system are evalu-
ated: First, the DEEP SPECTRUM features extracted from the spectrograms of the different
colour maps are fused to investigate whether a specific mapping contains important infor-
mation that cannot be found in the others. Second, fusion of the different CNN layers
used for feature extraction is performed. Third, descriptors of different CNN architec-
tures are fused to analyse whether they complement each other. Therefore, there are three
models left which have to be evaluated: (i) fusing features extracted from AlexNet’s fc7
layer for all three colour maps (Colour-Map Fusion), (ii) combining the features extracted
from both of AlexNet’s fully connected layers fc6 and fc7 (Layer Fusion), and (iii) fusing
features extracted from fc7 of AlexNet and VGG19 (CNN Fusion). The best performing
colour map viridis is used for layer and CNN fusion [16].

In all of these scenarios, both feature and decision-level fusions are evaluated. Fea-
ture level fusions are performed by concatenation and classification via linear SVM, and
decision-level fusions by majority voting of the best non-fused linear SVM configura-
tions, i. e. the optimal value for C determined during development is used.
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Table 10.4: Results for the snore sub-challenge using linear SVM on four different CNN-
descriptors (AlexNet fc6, AlexNet fc7, VGG19 fc6, and VGG19 fc7) extracted from spec-
trograms with three different colour maps (gray, jet, and viridis). UAR % is used as mea-
sure and C is optimised on the development partition. The chance level is 25.0 % UAR.
On the test set, only five trials were allowed to be uploaded. The best result on the test set
is highlighted with a light grey shading.

UAR [%] UAR [%]
CNN-descriptor C Devel. Test CNN-descriptor C Devel. Test

AlexNet fc6 AlexNet fc7

gray
10−1 39.7 –

gray
10−1 38.2 –

10−3 42.0 – 10−2 38.2 –

jet
10−4 36.2 –

jet
10−2 37.4 –

10−6 36.8 – 10−4 38.8 –

viridis
10−4 43.5 –

viridis
10−3 47.4 63.3

10−5 41.6 – 10−4 44.8 67.0

VGG19 fc6 VGG19 fc7

gray
10−3 28.4 –

gray
10−2 29.9 –

10−4 30.7 – 10−3 31.5 –

jet
10−2 31.2 –

jet
10−1 31.7 –

10−3 31.4 – 10−2 31.3 –

viridis
10−4 38.5 –

viridis
10−2 39.5 –

10−5 37.4 – 10−3 39.0 –

Table 10.5: Comparison of fusion strategies for the DEEP SPECTRUM system. Different
colour mappings, layers, and CNN architectures all on both feature (feat.) and decision
(dec.) level are fused. Linear SVM is used for feature-level fusion (optimising C on
the development partition) and the best SVM models obtained during development of
the non-fusion configurations are used. For a detailed description of which colour maps,
layers, and CNN architectures are fused the reader is referred to Section 10.2.1.4.

UAR [%]
Fusion Model devel test

feat. dec. feat. dec.

Colour-Map Fusion 38.1 42.2 – –
Layer Fusion 43.8 46.1 – 63.8
CNN Fusion 44.7 46.4 57.4 62.0
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Figure 10.2: Confusion Matrix of the best classification on the test set instances using
AlexNet’s fc7 and viridis as colour map. V : velum, O: oropharyngeal lateral walls, T :
tongue base, E: epiglottis.

10.2.2 Results

The results of the experiments, across all 12 combinations of spectrogram colour maps,
pre-trained CNNs, and extraction layer used to form the different deep spectrum repre-
sentations, are shown in Table 10.4. Best results are achieved with features extracted
from AlexNet’s fc7 layer and the spectrogram colour map viridis. With C = 10−4, a UAR
of 44.8% is achieved on the development, and a UAR of 67.0% on the test partition,
outperforming the challenge’s baseline system (cf. Table 10.6). The confusion matrix of
classification labels on the test set for this best performing system is displayed in Fig-
ure 10.2.

Analysing the results produced by the different fusion configurations (cf. Table 10.5),
it can be seen that fusing features extracted from spectrograms of different colour maps
decreases performance for both feature and decision-level fusion compared to only using
the best colour map. While fusing features extracted from different layers reduces per-
formance for early fusion, decision-level fusion produces results similar to the respective
single layer configuration. The performance decrease might be caused by the increased
feature size. Lastly, fusing the best performing features from AlexNet and VGG19 pro-
duces similar results: decreased performance for feature-level fusion and performance
similar to the non-fusion model for decision-level fusion.

The evaluation also shows two characteristics of interest from the extracted
DEEP SPECTRUM features. First, the features extracted from AlexNet perform better than
those of VGG19. This is the opposite of the results presented for the ImageNet task, in
which VGG19 drastically outperforms AlexNet [30]. Second, the choice of colour map in
the spectrogram creation step has an observable impact on the performance of the entire
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Table 10.6: Comparison of the DEEP SPECTRUM based approach with the challenge base-
line (functionals), and the end-to-end approach (CNN & LSTM) used in the baseline pa-
per. The best result on the test set is highlighted with a light grey shading.

UAR [%]
Model Ref. Devel. Test

Baseline CNN & LSTM [5] 40.3 40.3
Baseline functionals [5] 40.6 58.5
Baseline COMPARE BOAW + SVM [5] 44.2 51.2
Baseline (Late fusion) [5] 43.4 55.6
Deep Spectrum Table 10.4 44.8 67.0

system: in all but one configuration (AlexNet fc6) viridis increases UAR, while a simple
grey-scale mapping leads to improvements over the standard jet map only for AlexNet fc6.
Since both nets are predominantly trained on a large corpus of natural images, it seems to
be intuitive that the choice of colour map for an artificial image like a spectrogram plot
would impact the models’ ability to extract useful features.

10.2.3 Conclusions
This work proposed a method for classifying snore sounds that relies on the ability of
large, deep pre-trained CNNs to extract useful information from spectrograms. Using
the DEEP SPECTRUM system for feature extraction, and linear SVM as a classifier, it
was possible to substantially outperform the baseline for the snoring sub-challenge which
utilises classic knowledge-based audio features. In comparison to the baseline features,
the DEEP SPECTRUM system relies solely on spectral information and large, deep CNNs’
ability to infer a higher level representation of arbitrary input images. In the experi-
ments, it was found that both the choice of colour map for the spectrogram plots, and the
pre-trained CNN used for feature extraction have a substantial impact on performance.
Further research should investigate segmenting the audio files into chunks of equal length
prior to generating the spectrograms, in this way providing input, for example for recur-
rent networks with LSTM cells. It might also be beneficial to fuse the DEEP SPECTRUM

representations with conventional acoustic feature sets, as such features have had success
in the past [164, 198, 199, 226, 244, 245].

97





Part V

Concluding Remarks

99





11
Concluding Remarks

11.1 Summary
The research presented in this thesis was oriented towards addressing four scientific
objectives, which were formulated based on the existing challenges in the field of audio
processing (cf. Section 1.3): I) whether pre-trained image classification CNNs can
extract meaningful representations from audio spectrograms, II) whether quantising deep
features can efficiently reduce noisy representations in the feature space, III) whether
DCGANs and autoencoders are suitable for unsupervised representation learning from
audio data, and IV) whether both shift-invariant, high-level features, and the long-term
temporal context of audio signals can be captured with CRNNs.

The first objective was addressed by introducing the DEEP SPECTRUM system, with
which it was possible to learn highly robust and meaningful representations from audio
data and achieve state-of-the-art results for challenging audio tasks, including game
genre classification (cf. Section 8.3), in-the-wild speech and vocalisations classification
(cf. Section 9.1), and snore sound recognition (cf. Section 10.2). The results also indi-
cated that the CNNs utilised in DEEP SPECTRUM, despite being exclusively pre-trained
on the ImageNet corpus [73], are highly effective for learning representations from audio.

To validate the second objective, the author and his colleagues introduced the BODF,
which are fixed length histogram (quantised) representations of the time-continuous
DEEP SPECTRUM features. The feature quantisation process can be considered as a
low-pass filtering operation, which effectively compresses the feature space and elimi-
nates noisy representations. In Sections 8.3 and 9.1, it was found that using BODF, it is
possible to get stronger representations than the DEEP SPECTRUM and other competitive
feature sets for a variety of audio recognition tasks. In Section 9.2, the BODF showed
higher performance in comparison with the state-of-the-art Bag-of-MFCC features for
audio-based sentiment analysis.
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For the third objective, a DCGAN structure and a S2SAE were introduced. Both of these
approaches are completely unsupervised, hence eliminating the need for expert-designed
features. For the DCGAN, the activations of the discriminator, and for the S2SAE, the
activations of the fully connected layer were extracted as representations of the input
audio signals. It was then shown that using these representations, it is possible to achieve
state-of-the-art results for the task of acoustic scene classification (cf. Section 8.1). It
was also found that the fusion of the prediction probabilities obtained from the DCGAN
and S2SAE can further improve the results in a classification paradigm. Furthermore, the
results in Section 10.1 indicate the suitability of the S2SAE for medical data.

The final objective was addressed by showing that the introduced CRNN architecture is
able to achieve state-of-the-art results for the task of rare acoustic event detection (cf. Sec-
tion 8.2). It could also be demonstrated that the inclusion of LSTM cells leads to more
accurate onset predictions and the results indicated that long term temporal properties are
efficiently modelled, compared to the individual architectures using MLPs or a CNN with
a FFNN (cf. Section 8.2).

11.2 Limitations
Although the deep learning approaches introduced throughout this thesis are highly
effective as a means of learning valuable representation from a wide variety of audio
data, there are three major limitations that should be highlighted for these methods.

Lack of transparency in deep architectures. In recent years, the relative opacity of
DNNs has been a major discussion topic [246, 247]. To what extent this issue matters
in the long term remains an open question [248], which can be addressed depending on
the application area and the robustness of the utilised DNNs [249]. This question may
not be of high relevance, as long as a deep computer audition system, for example for
the task of game genre classification (cf. Section 8.3), is self-contained and performs
robustly. However, the opacity of DNNs becomes problematic in various decision-
making processes related to ethical, legal, and quality control issues, for example, in
the event of misclassification of an abnormal heart sound (cf. Section 10.1) which
may have serious health implications for the affected patient. Currently, there is no
specific way to fully understand or trace back the reasoning behind the decision made
by DNNs. Furthermore, to solve more complex tasks, deeper networks (e. g. by adding
more hidden layers and neurons to the network) have been developed [144, 214, 250].
With huge degrees of freedom and high complexity of these networks, the quality of
being debuggable deteriorates, which makes it almost impossible for non-experts to
analyse the networks structure, gradients, weights, and interconnections between neurons.

The need for more data. Unlike human beings, who are able to learn abstract relation-
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ships from only a few trials, DNNs lack the mechanism to learn abstractions through
explicit limited definitions [249]. Instead, these networks work best when trained
with thousands or even millions of data samples. Lake et al. emphasised in various
works, that humans are much more efficient at learning complex rules as compared to
DNNs [251, 252]. This statement was substantiated in Section 8.3, as a human annotator
– without having access to the training data, and in much less time – has achieved a
classification UAR almost as good as the best performing machine learning system,
which was a DNN. To address problems where the training data is limited, e. g. for
the abnormal heart sound classification task described in Section 10.1, the author has
demonstrated that unsupervised representation learning with S2SAEs can help to prevent
overfitting [163]. However, it should be indicated that the contemporary non-deep
approaches showed almost equivalent performance as the applied S2SAE, and consume
less computational time and resources. In various experiments throughout this thesis, a
common pattern can be seen: where the training data is scarce, the performance of DNNs
is almost similar to (or just slightly better than) non-deep approaches (e. g. see results
in Sections 8.3, 9.1, 9.2 and 10.1).

Hyperparameter search. Representation learning systems, e. g. the introduced DCGAN
(cf. Chapter 5) and S2SAE (cf. Chapter 6) contain a wide range of adjustable hyper-
parameters, which prohibits an exhaustive analysis of the parameter space. Exploring
the architectures of such deep systems and finding good performing configurations is an
art. In case of S2SAE, practical experiences with autoencoders and a certain amount of
theoretical knowledge in the field of audio signal processing is required to set parameters
for: i) spectrogram creation: window width and number of mel-filterbanks, and ii)
autoencoder training: number of recurrent layers, number of recurrent units, type of
recurrent cells, direction of the decoder and encoder RNNs, learning rate, and dropout.

The above mentioned limitations were the most related ones to the DNN architectures
introduced throughout this thesis. A broader and a more general discussion related to this
topic is provided in [249].

11.3 Outlook
With respect to the limitations mentioned above, the DNNs should be reconceptualised,
i. e. not be considered as the only technique to solve machine learning problems,
but more as an effective tool amongst other possible techniques. Having said this,
however, conventional machine learning systems often reach their limit for solving more
complex computer audition problems, such as speech processing or rare event detection
(cf. Section 8.2). Hence, as indicated, deep structures are crucial, but with the premise
that there is enough data available to train such system (cf. Section 11.2). For the future
work, following possibilities should be considered more intensively.
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Attention-based learning mechanism. An attention paradigm, which is originally
inspired by the visual attention mechanism found in humans, decides which part of the
input signals should be used to generate output, instead of processing the entire sequences
of input. Following Graves [253] who proposed the attention mechanism to build a
neural network that creates convincing handwriting from a given text, and with respect to
the attention-based neural machine translation model proposed by Bahdanau et al. [254],
future works should consider building an attention mechanism in the introduced S2SAE
(cf. Chapter 6). This means, that the decoder RNN decides on which part of the
input sequence it should focus. With this attention mechanism, the encoder RNN is
relieved from encoding all information in the whole input sequence of spectrograms
(cf. Section 6.2) into a fixed-length vector. Having this mechanism integrated within the
introduced S2SAE, the network might then be able to process longer and noisier inputs,
whilst extracting more robust representations.

Holistic audio understanding. Motivated by the humans auditory sensors, future
computer audition systems should be able to obtain a higher level semantic understanding
across multiple audio domains, including acoustic environment, speech, music, and
other sound events. This degree of understanding goes beyond the detection of an
audio event (cf. Section 8.2) or recognition of various audio classes as well as their
respective attributes that appear in an audio segment (e. g. classification paradigms
discussed in Sections 8.1 and 9.1). The ideal goal should be to understand the inter-
relations between each event (e. g. by creating an ontology tree), and evaluate their
relative importance (e. g. by utilising an attention mechanism). Schuller [255] drew
the vision of holistic evolutionary audio understanding to simultaneously analyse a
real-life audio stream in terms of recognising various speakers and their states and traits,
acoustic environments, as well as other sound sources. For realisation of this vision,
a combination of an audio decomposition component and unsupervised representation
learning techniques could be highly beneficial. The audio decomposition component
would then have three main tasks: i) source separation, i. e. decomposing input audio
stream into separate different audio sources, e. g. by using NMF or Non-negative Tensor
Factorisation (NTF) [256–259], ii) speaker diarisation, i. e. the process of tagging the
input audio of various speakers with each speaker’s turn information to determine ‘who
is speaking when’, e. g. by utilising RNNs [260, 261], and iii) audio diarisation, which is
a higher level abstraction of speaker diarisation to other sound sources, e. g. background
noise types or musical instruments [262]. Afterwards, unsupervised representation
learning methods, such as S2SAEs can be applied to extract valuable features from
decomposed audio segments [18]. These representations can then be sent to a classifier
to predict the labels. Finally, an interpreter component can put the label information
together and prepare the system output.

Big data and model robustness. In order to increase the robustness of machine learning
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models, future work should also aim to harness the so called five Vs (value, variety, ve-
locity, veracity, and volume) of the big data era [263–265]. Real-world data sourced from
social multimedia (e. g. AudioSet [93] for audio and YouTube-8M [215] for video) should
be used to provide volume and variety. To check the veracity of the data, cooperative
and semi-supervised active learning algorithms can be applied [266, 267]. Such large
quantities of data can advance research in (unsupervised) representation learning, domain
adaptation, or training noise robust models. In recent years, deep learning has shown to
be highly effective for such big data dimensions. In particular, to learn representations
from data of various modality, Ngiam et al. [268] and Srivastava et al. [269] introduced
novel multimodal representation learning approaches, which should be further considered
for future work. To address the Velocity factor, there is a need for machine learning
systems for large-scale processing of the mass of produced data. Such a system should
be able to extract valuable features in a short time period. This thesis contributes to
a realisation of this factor by introducing DEEP SPECTRUM, which facilitates process
parallelisation for rapid GPU-based deep feature extraction (cf. Chapter 4). Finally, the
last and probably the most important V that should be taken into account when working
with big data is its Value, i. e. using the collected data to solve real-world problems and
help towards building robust computer audition models for holistic audio understanding.
In this way, a good starting point would be to introduce more challenges similar to the
ImageNet Large Scale Visual Recognition Challenge [270], but instead aimed at solving
audio classification problems.
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Acronyms

ACS Action or Shooter

AI Artificial Intelligence

ANN Artificial Neural Network

ARP Arcade or Platform

ASC Autistic Spectrum Condition

ASR Automatic Speech Recognition

AVEC Audio/Visual Emotion Challenge and Workshop

BLSTM Bidirectional Long Short-Term Memory

BN Batch Normalisation

BOAW Bag-of-Audio-Words

BODF Bag-of-Deep-Features

BPTT Backpropagation Through Time

CAS2T Cost-efficient Audio-visual Acquisition via Social-media Small-world Targeting

CCA Canonical Correlation Analysis

CFS Correlation-based Feature Selection

CinC Computing in Cardiology

CNN Convolutional Neural Network

COMPARE Computational Paralinguistics ChallengE
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Acronyms

CRNN Convolutional Recurrent Neural Network

CSO Competitive Swarm Optimisation

CV Cross Validation

DCASE Detection and Classification of Acoustic Scenes and Events

DCGAN Deep Convolutional Generative Adversarial Network

DNN Deep Neural Network

DSD Deceptive Speech Database

EBR Event to Background Ratio

EPP Event Presence Probability

ER Error Rate

FFT Fast Fourier Transform

FFNN Feedforward Neural Network

FHT Fighting

GAN Generative Adversarial Network

GEMEP Geneva Multimodal Emotion Portrayals

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HNR Harmonics-to-Noise Ratio

HSS Heart Sounds Shenzhen

ICA Independent Component Analysis

ILSVRC ImageNet Large Scale Visual Recognition Challenge

InfoGANs Information Maximising Generative Adversarial Networks

kNN k-Nearest-Neighbour
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Acronyms

LLD Low-Level Descriptor

LSTM Long Short-Term Memory

MFCC Mel-Frequency Cepstral Coefficient

MI Mutual Information

MLP Multilayer Perceptron

MPSSC Munich-Passau Snore Sound Corpus

MPC Mixtures Per Class

MRMR Minimum-Redundancy-Maximal-Relevance

MSE Mean Squared Error

NLP Natural Language Processing

NMF Non-negative Matrix Factorisation

NTF Non-negative Tensor Factorisation

OSA Obstructive Sleep Apnea

PCA Principal Component Analysis

PCG Phonocardiogram

PCM Pulse Code Modulation

RBM Restricted Boltzmann Machine

RCG Racing

ReLU Rectified Linear Unit

RMS Root Mean Square

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RSED Rare Sound Event Detection

S2SAE Sequence to Sequence Autoencoder

SD Standard Deviation
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Acronyms

SED Sound Event Detection

SFM Stochastic Feature Mapping

SFS Sequential Forward Selection

SGD Stochastic Gradient Descent

SMO Sequential Minimal Optimization

SPT Sports

SVM Support Vector Machine

SWB Simulation or World Building

UAR Unweighted Average Recall

VTLP Vocal Tract Length Perturbation

ZCR Zero-Crossing-Rate
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