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SUMMARY 

Phytic acid (PA) is the major storage form of phosphorus in cereal grains. However, it 

is considered as antinutrient in food and feed. Accordingly, several low phytic acid (lpa) 

rice (Oryza sativa L.) mutants have been generated through chemical or physical 

mutagenesis. Lpa mutant crops often exhibit inferior agronomic performance, e.g., low 

germination rate, decreased field emergence and reduced grain weight, and cross-

breeding of lpa mutants with commercial cultivars is being applied to improve the 

agronomic performance of lpa mutants. However, information regarding the impact of 

such crossing steps on the PA contents and the metabolite profiles of the resulting 

progeny rice seeds was missing. 

Therefore, in the first part of the study, three previously developed lpa rice mutants 

(Os-lpa-XQZ-1, Os-lpa-XS110-2 and Os-lpa-MH86-1) differing in mutation type were 

crossed with three commercial rice cultivars, and the PA contents in the resulting 

progenies were determined via targeted analysis for various generations (F4 to F8) 

grown at different locations. The results showed that the PA contents of the lpa 

progenies were differently expressed for the investigated mutation-types and were 

dependent on environment and/or PA contents of the crossing parents. Nevertheless, 

for all three mutants, the homozygous lpa mutant progenies always displayed 

significantly lower PA contents than the original wild-types subjected to the mutation. 

This demonstrated that the lpa trait, i.e. the significantly reduced content of phytic acid, 

remained nearly unaffected by the crossing step and was consistently expressed in lpa 

progenies over generations, independent from the environmental influence. This result 

fulfilled a first major prerequisite for the implementation of cross and selection breeding 

with commercial cultivars as part of the procedure to generate lpa rice seeds. 

The lpa rice mutant Os-lpa-MH86-1 was used as example to follow metabolic changes 

in lpa mutants induced by disruption of the putative sulfate transporter OsSULTR3;3 

gene. A non-targeted metabolite profiling approach enabled the analyses of a broad 

spectrum of low molecular weight rice constituents ranging from lipophilic (e.g. fatty 

acid methyl esters, free fatty acids, fatty alcohols and phytosterols) to polar (e.g. sugars, 

sugar alcohols, acids, amino acids and amines) metabolites. Multivariate and 

univariate analyses revealed that the mutation of OsSULTR3;3 resulted not only in a 
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pronounced reduction of the PA content, but also in increased contents of constituents 

from various classes, such as sugars, sugar alcohols, amino acids, phytosterols and 

biogenic amines, among them some nutritionally relevant compounds. In addition, 

statistical assessments of the metabolite profiling data demonstrated that this 

mutation-induced metabolite signature in lpa mutants was nearly unaffected by cross-

breeding of Os-lpa-MH86-1 with the commercial cultivar JH99, and was consistently 

expressed over several generations at the same field trial. This indicates that even for 

complex metabolic changes resulting from a mutation, cross-breeding can be 

employed as a tool to generate lpa progeny rice seeds stably exhibiting the mutation-

induced traits. 

To extend the scope of the applicability of cross-breeding as a tool to generate lpa 

progeny rice seeds exhibiting the mutation-specific metabolite signature, the Os-lpa-

MH86-1 mutant was crossed with another commercial rice cultivar JH218, showing 

distinct metabolic differences compared to JH99. By following the metabolite profiles 

of the F8 progenies of the two crosses Os-lpa-MH86-1 × JH99 and Os-lpa-MH86-1 × 

JH218 over three independent field trials, the OsSULTR3;3 mutation-induced 

metabolite signature was shown to be consistently expressed in homozygous lpa 

mutant progenies, independent from the crossing parent cultivars. The superimposition 

of the metabolite profiles of the homozygous lpa mutant progenies by the lipid profiles 

of the crossing parents did not hamper the mutation-induced metabolite signature 

determined by the polar constituents. The metabolite profiles of the homozygous lpa 

progenies were also shown to be strongly impacted by the environment. Tropical and 

subtropical growing locations resulted in clearly different metabolite patterns. However, 

for each individual field trial, the mutation-specific metabolite signature was maintained 

upon cross-breeding.  

The elaborated data are valuable and promising from a breeder’s point of view. They 

demonstrate that cross-breeding of lpa rice mutants with commercial cultivars does not 

compromise the intended phytic acid reduction as well as the mutation-specific 

metabolite signature of homozygous lpa mutant progenies. Therefore, cross-breeding 

is a useful strategy to generate lpa progeny rice seeds stably exhibiting the mutation-

induced metabolic traits. 
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ZUSAMMENFASSUNG 

Phytinsäure (PA) ist die Hauptspeicherform von Phosphor in Getreide. Sie gilt jedoch 

als antinutritive Substanz in Lebens- und Futtermitteln. Folglich wurden bereits 

zahlreiche Reismutanten (Oryza sativa L.) mit erniedrigten Phytinsäuregehalten (low 

phytic acid, lpa) mit Hilfe chemischer oder physikalischer Mutagenese erzeugt. Lpa 

Mutanten weisen häufig verminderte agronomische Leistungen auf, z. B. geringe 

Keimrate, verminderte Emergenz im Feldversuch und reduziertes Getreidegewicht. 

Lpa Mutanten werden daher mit kommerziellen Sorten gekreuzt, um ihre 

agronomischen Eigenschaften zu verbessern. Die Auswirkungen solcher 

Kreuzungsschritte auf die PA Gehalte und die Metabolitenprofile der resultierenden 

Nachkommen sind bisher allerdings nicht untersucht worden.  

 

Daher wurden im ersten Teil der Arbeit drei zuvor entwickelte lpa Reismutanten (Os-

lpa-XQZ-1, Os-lpa-XS110-2 und Os-lpa-MH86-1), denen unterschiedliche Mutations-

typen zugrunde lagen, mit drei kommerziellen Reissorten gekreuzt und die PA Gehalte 

der resultierenden Nachkommen mittels zielgerichteter Analyse über mehrere 

Generationen (F4 bis F8) und an verschiedenen Anbauorten untersucht. Die 

Ergebnisse zeigten, dass sich die PA Gehalte in den lpa Nachkommen der 

untersuchten Mutationstypen unterschieden und von der Umwelt und/oder den PA 

Gehalten der Kreuzungspartner beeinflusst wurden. Trotzdem zeigten die 

homozygoten lpa Mutanten aller drei Mutationstypen stets signifikant erniedrigte PA 

Gehalte im Vergleich zu den ursprünglichen Wildtypen, aus denen die Mutanten 

generiert worden waren. Dies zeigte, dass der lpa Phänotyp, d.h. der signifikant 

erniedrigte PA Gehalt, kaum vom Kreuzungsschritt beeinflusst und konsistent sowie 

unabhängig von Umwelteinflüssen in den lpa Nachkommen über Generationen 

ausgebildet wurde. Somit ist eine wesentliche Voraussetzung für den Einsatz der 

Kreuzungs- und Selektionszüchtung mit kommerziellen Sorten zur Entwicklung von lpa 

Reis erfüllt.  

 

Die lpa Reismutante Os-lpa-MH86-1 wurde exemplarisch verwendet, um die 

metabolischen Veränderungen in lpa Mutanten mit Störungen im Sulfattransporter 

OsSULTR3;3 Gen zu verfolgen. Ein nicht zielgerichteter Metabolite Profiling Ansatz 

ermöglichte die Analyse eines breiten Spektrums an niedermolekularen Verbindungen 
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in Reis, welches von lipophilen (z. B. Fettsäuremethylester, freien Fettsäuren, 

Fettalkohole und Phytosterole) bis hin zu polaren Verbindungen (z. B. Zucker, 

Zuckeralkohole, Säuren, Aminosäuren und Amine) reichte. Multi- und univariate 

Analysen zeigten, dass die Mutation von OsSULTR3;3 nicht nur zu einer deutlichen 

Reduktion des PA Gehalts führte, sondern auch zu erhöhen Gehalten an teilweise 

ernährungsphysiologisch relevanten Verbindungen aus verschiedenen Klassen, wie 

beispielsweise Zuckern, Zuckeralkoholen, Aminosäuren, Phytosterolen und biogenen 

Aminen. Darüber hinaus ergaben statistische Auswertungen der Daten, dass dieses 

mutationsbedingte Metabolitenprofil in lpa Mutanten durch die Kreuzung von Os-lpa-

MH86-1 mit der kommerziellen Sorte JH99 im selben Feldversuch über mehrere 

Generationen nahezu unverändert blieb. Dies verdeutlicht, dass Kreuzungszüchtung 

sogar im Fall komplexer metabolischer Veränderungen eingesetzt werden kann, um 

lpa Reis mit stabilen mutationsbedingten Eigenschaften zu erzeugen. 

 

Um den Anwendungsbereich von Kreuzungszüchtungen zur Erzeugung von 

Nachkommen aus lpa Reismutanten mit mutationsspezifischem Metabolitenprofil zu 

erweitern, wurde die Mutante Os-lpa-MH86-1 mit einer anderen kommerziellen 

Reissorte (JH218) gekreuzt, die im Vergleich zu JH99 deutliche metabolische 

Unterschiede aufwies. Das mutationsbedingte Metabolitenprofil von OsSULTR3;3 war 

in allen homozygoten lpa F8 Nachkommen der beiden Kreuzungen Os-lpa-MH86 1 × 

JH99 und Os-lpa-MH86 1 × JH218 in allen drei Feldversuchen unabhängig vom 

Kreuzungspartner nachweisbar. Die Überlagerung der Metabolitenprofile der 

homozygoten lpa Mutanten durch die Lipidprofile der Kreuzungspartner führte nicht zu 

einer Beeinträchtigung der mutationsspezifischen, metabolischen Signatur, die von 

polaren Inhaltsstoffen bestimmt wurde. Die Metabolitenprofile der homozygoten lpa 

Nachkommen wurden außerdem stark durch Umweltfaktoren beeinflusst. Tropische 

und subtropische Anbaugebiete führten zu deutlich unterschiedlichen 

Metabolitenprofilen, dennoch blieb für jeden individuellen Feldversuch die 

mutationsspezifische Signatur nach der Kreuzung erhalten. 

 

Die erarbeiteten Daten sind aus der Sicht von Züchtern wertvoll und vielversprechend. 

Sie zeigen, dass die Kreuzung von lpa Reismutanten mit kommerziellen Sorten die 

beabsichtigte Reduzierung der Phytinsäure sowie die mutationsspezifischen 
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Metabolitenprofile in homozygoten lpa Nachkommen nicht beeinträchtigen. Daher 

stellt Kreuzungs- und Selektionszüchtung eine nützliche Strategie dar, um lpa Reis mit 

konsistenten, mutationsbedingten metabolischen Merkmalen zu erzeugen. 
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1 INTRODUCTION AND OBJECTIVES 

Phosphorus (P) is an important element for plant growth and development. In cereal 

grains and legume seeds, up to 85% of P is stored in the form of phytic acid (PA, myo-

inositol-1,2,3,4,5,6-hexakisphosphate or InsP6) (Raboy, 2003). However, phytic acid is 

considered as an antinutrient in food and feed, since it may form indigestible salts of 

cations such as Zn2+ and Fe2+, and thus lead to a reduced bioavailability of these 

minerals for humans and monogastric animals (Kumar et al., 2010; Humer et al., 2015). 

In addition, undigested phytate from the manure of monogastric animals contributes to 

water eutrophication in the environment (Abdel-Megeed et al., 2015). In order to 

minimize these disadvantageous effects, during the past years various low phytic acid 

(lpa) crops comprising maize, barley, rice, wheat and soybean have been obtained 

through genetic engineering and chemical/physical mutagenesis (Raboy, 2007). 

Rice (Oryza sativa L.) is one of the major cereals serving as staple food for a large part 

of the world’s population (FAO, 2017). Accordingly, there have been various attempts 

to produce lpa rice mutants. For example, five non-lethal lpa rice mutant lines have 

been developed with PA contents 35 to 65% lower than those of the corresponding 

wild-types (Liu et al., 2007). Lpa mutant crops often exhibit inferior agronomic traits, 

e.g., low germination rate, decreased field emergence and reduced grain weight, and 

cross and selection breeding of lpa mutants with commercial cultivars has been applied 

to improve the agronomic performance of lpa mutants (Zhao et al., 2008a). However, 

the impact of such crossing steps on the PA contents in the resulting progenies has 

not been investigated. A limited amount of information regarding lpa crossbred lines is 

only available for lpa soybean mutants (Spear et al., 2007; Averitt et al., 2017; Wiggins 

et al., 2018).  

Therefore, three previously developed lpa rice mutants differing in the type of mutation 

were crossed with three commercial rice cultivars, and the PA contents in the resulting 

progenies were determined for various generations grown at different locations. The 

first objectives of this study were: (i) to investigate the impact of cross-breeding of lpa 

rice mutants with commercial cultivars on the PA contents of the resulting progenies, 

and (ii) to assess the stability of the lpa trait in crossbred progenies over several 

generations with the consideration of environmental influence. 
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Induced mutations in lpa mutants have been shown to result not only in decreased 

contents of phytic acid, but also in changed levels of other metabolites. For example, 

a GC/MS-based metabolite profiling study revealed consistent changes of the contents 

of myo-inositol, raffinose, galactose and galactinol in lpa rice mutants compared to the 

wild-type cultivars (Frank et al., 2007). Therefore, the lpa rice mutant Os-lpa-MH86-1 

was employed as an example to investigate the metabolic changes induced by the 

mutation effect. In addition, the crossbred progeny rice seeds resulting from the cross 

of Os-lpa-MH86-1 with a commercial cultivar were subjected to a GC/MS-based 

metabolite profiling approach. The objectives of the second part of the present study 

were: (i) to observe the consistent metabolic changes in the Os-lpa-MH86-1 lpa 

mutants compared to the respective wild-types by following their compositions over 

several independent field trials; (ii) to investigate the impact of cross-breeding of Os-

lpa-MH86-1 with a commercial cultivar on the metabolite profiles of the resulting lpa 

mutant progenies, and (iii) to assess the stability of the mutation-specific metabolite 

signature in the lpa progenies from several generations harvested at the same field 

trial.  

It has been demonstrated that metabolite profiles of cereal grains, e.g. maize and 

barley, were influenced by both genetics and growing environment (Frank et al., 2012b; 

Lanzinger et al., 2015; Wenzel et al., 2015). Therefore, another commercial wild-type 

cultivar expected to exhibit a distinct metabolite profile was selected as additional 

crossing parent. In addition, progenies resulting from the two crosses were grown at 

three independent field trials, two of them in the subtropical and one in the tropical 

region. Based on the application of a GC/MS-metabolite profiling approach followed by 

multivariate and univariate statistical analyses, the objectives of this third part of the 

study were: (i) to investigate the impact of the crossing parent on the metabolite profiles 

of the resulting progenies, and (ii) to assess the stability of the metabolite signature of 

the homozygous lpa progenies in the light of environmental influence. 

 

This thesis is structured as follows: 

 Following these introductory remarks outlining the objectives of the study 

(Chapter 1), the background of the thesis is presented in Chapter 2. 

 Materials and methods, results of the studies and their specific discussions are 

presented in the three publications included in Chapter 3. 
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 An overall discussion highlighting key overarching aspects and the significance of 

the results in the light of existing literature knowledge is presented in Chapter 4. 
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2 BACKGROUND 

2.1 Low phytic acid crops 

2.1.1 Natural occurrence of phytic acid  

Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6, PA) is the major 

storage form of phosphorus in seeds of mature plants. Approximately, between 65 and 

85 % of total phosphorus in mature seeds is found in this compound (Raboy, 2003). 

The chemical structure of phytic acid is shown in Figure 1.  

 

                

Figure 1. Chemical structure of phytic acid. Numbers 1 to 6 refer to the carbon atoms in the 

myo-inositol backbone.  

 

Phytic acid typically occurs as mixed salts of the mono- and divalent cations K+, Mg2+, 

Ca2+, Fe2+ and Zn2+, which is referred to as phytate. In mature seeds, phytate is often 

deposited as globular inclusions (globoids) and is stored in protein storage vacuoles 

(Lott et al., 2000; Raboy, 2003). Generally, phytic acid contents increase significantly 

during seed development and reach the highest concentration in mature seeds (Reddy, 

2002). The distributions of phytic acid in crop seeds can be very different depending 

on species. For rice and wheat grains, more than 80 % of phytic acid was found in the 

aleurone layer, and only a small amount (approximately 10%) is stored in the embryo. 

On the contrary, almost 90% of the phytic acid is accumulated in the germ of maize 

grains (O'Dell et al., 1972). For legume seeds, such as common beans, most of the 

phytic acid (94 – 98 %) is located in the cotyledons (Ariza-Nieto et al., 2007). During 

seed germination, phytic acid is degraded by phytases into phosphate and myo-inositol 

(Ins) which are necessary for seedling growth (Raboy, 2003). 

P P O

OH

OH

O:

H

H

H

H

H

HP
P

P

P

P

P

1

2
3

4

5
6



 BACKGROUND 

5 

 

2.1.2 Biosynthesis of phytic acid  

The biosynthetic pathway leading to phytic acid is shown in Figure 2. The biosynthesis 

of phytic acid consists of three major steps: (i) Synthesis of myo-inositol (Ins) and myo-

inositol 3-phosphate, i.e. Ins(3)P1; (ii) conversion of Ins and/or Ins(3)P1 to InsP6 (phytic 

acid) and (iii) transportation and storage of phytic acid (Raboy, 2009; Sparvoli et al., 

2015).  

Synthesis of Ins(3)P1 and myo-inositol 

In the first step, glucose-6-phosphate is converted to Ins(3)P1 by myo-inositol 

3-phosphate synthase (MIPS). Then the conversion of Ins(3)P1 to free myo-inositol is 

catalyzed by myo-inositol-phosphate monophosphatase (IMP). This reaction can be 

reversed by catalysis of the myo-inositol kinase (MIK) (Raboy, 2009; Sparvoli et al., 

2015). 

Conversion of Ins and/or Ins(3)P1 to InsP6 

Ins acts as the initial substrate in the biosynthesis of phytic acid via two different routes: 

the lipid-dependent and the lipid-independent pathway (Figure 2). In the lipid-

dependent pathway, Ins is first converted to the lipid phosphatidylinositol (PtdIns) with 

Ins as the head-group. PtdIns is further phosphorylated via phosphatidylinositol 

kinases (PtdInsK) to generate PtdIns(4,5)P2 (Raboy, 2009). The hydrolysis of 

PtdIns(4,5)P2 is catalyzed by the PtdInsP-specific phospholipase C and results in 

Ins(1,4,5)P3 and diacylglycerol (Odom et al., 2000). Ins(1,4,5)P3 is sequentially 

phosphorylated to generate phytic acid, and these reactions involve three types of Ins 

polyphosphate kinases: inositol 1,4,5-trisphosphate kinase (IPK2), inositol 1,3,4-

trisphosphate 5/6-kinase (ITPK) and inositol 1,3,4,5,6 pentakisphosphate 2-kinase 

(IPK1) (Sparvoli et al., 2015). 

The lipid-independent pathway differs from the lipid-dependent pathway mainly in the 

step of generating InsP3 (Sparvoli et al., 2015). The lipid-independent route begins with 

the conversion of Ins to Ins(3)P1 catalyzed by myo-inositol kinase (MIK). Ins(3)P1 is 

expected to be converted to Ins(3,4)P2 and Ins(3,4,6)P3 by Ins phosphate kinases 

(Raboy, 2009). The subsequent steps of phosphorylation from Ins(3,4,6)P3 to phytic 

acid are similar to those in the lipid-dependent route. 
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Figure 2. Biosynthetic pathway of phytic acid in plant metabolism. MIPS, myo-inositol 3-

phosphate synthase; IMP, myo-inositol-phosphate monophosphatase; MIK, myo-inositol 

kinase; PtdInsS, phosphatidylinositol synthase; PtdIns, phosphatidylinositol; PtdIns4K, 

phosphatidylinositol 4-kinase; PtdIns5K, 1-phosphatidylinositol-4-phosphate 5-kinase; PtdInsP, 

phosphatidylinositol phosphate(s); ITPK, inositol 1,3,4-trisphosphate 5/6-kinase; IPK2, inositol 

1,4,5-trisphosphate kinase; IPK1, inositol 1,3,4,5,6 pentakisphosphate 2-kinase; MRP, 

multidrug-resistance-associated protein ATP-binding cassette. 

 

Transportation and storage of phytic acid 

After synthesis steps, phytic acid is transported by the multi-drug resistance associated 

protein (MRP) from the cytosol into vacuoles and stored as globoids (Sparvoli et al., 

2014).   

 

 

2.1.3 Generation of low phytic acid crops   

Phytic acid is considered as an antinutrient in food and feed, since it can form 

indigestible salts of cations such as Ca2+, Zn2+ and Fe2+, and thus lead to reduced 

bioavailability of these minerals for humans and monogastric animals (Kumar et al., 

2010; Humer et al., 2015). In addition, undigested phytic acid from the manure of 

monogastric animals contributes to water eutrophication in the environment (Abdel-

Megeed et al., 2015). Preliminary studies indicated that consumption of lpa grains and 

beans improves the utilization of mineral nutrients for humans (Mendoza et al., 1998; 

Petry et al., 2013) and livestock (Veum et al., 2002; Veum et al., 2016). Therefore, it is 

of importance to develop low phytic acid (lpa) crops with reduced phytic acid levels in 

seeds.  

In the past years, genetic engineering techniques have been applied to produce   

various lpa crops including rice (Feng et al., 2004; Kuwano et al., 2006; Ali et al., 2013), 

soybean (Nunes et al., 2006; Punjabi et al., 2018), maize (Shi et al., 2007) and wheat 

(Bhati et al., 2016). However, the development of genetically modified (GM) crops has 

raised concerns regarding food safety, environmental effects and socio-economic 

issues (Singh et al., 2006). Alternatively, mutation breeding, which is considered as a 

conventional breeding technique, has been applied to develop lpa mutant crops. 

During the mutation breeding process, seeds are subjected to physical mutagens (e.g., 

X-rays, -rays and ion beam) and/or chemical mutagens (e.g. sodium azide and 
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hydroxylamine), followed by the steps of mutation screening and mutant confirmation 

(Oladosu et al., 2016). 

The first documented mutant was barley (Stadler, 1928) and up to now, more than 

3200 crop mutants have been officially released worldwide (FAO/IAEA, 2018). 

-Irradiation and chemical mutagenesis have been employed to generate lpa cereal 

grains and legume seeds, such as barley (Rasmussen et al., 1998; Dorsch et al., 2003), 

maize (Raboy et al., 2000; Shi et al., 2003; Cerino Badone et al., 2012), rice (Larson 

et al., 2000; Liu et al., 2007; Kim et al., 2008), soybean (Wilcox et al., 2000; Hitz et al., 

2002; Yuan et al., 2007), wheat (Guttieri et al., 2004) and common bean (Campion et 

al., 2009). These lpa mutant seeds exhibited significantly decreased levels of phytic 

acid compared to the corresponding wild-types, ranging from -30% to -90%. 

Correspondingly, remarkably increased contents of inorganic phosphorus were 

observed in lpa mutants (Sparvoli et al., 2015).  

Although a few lpa barley mutants showed comparable agronomic performance 

compared to the corresponding wild-types (Raboy et al., 2015), most lpa mutant crops 

exhibited inferior agronomic traits, e.g. low seed germination rate (Pilu et al., 2005), 

decreased field emergence (Meis et al., 2003) and reduced grain weight (Guttieri et al., 

2004; Zhao et al., 2008a), which limited the practical use of lpa cereal grains and 

legume seeds to breeders. To date, the challenge of breeding high-yielding lpa mutant 

crops still remains. 

 

 

2.1.4 Lpa mutation types and target genes 

Based on the affected steps of the biosynthetic pathway leading to phytic acid 

(Figure 2), lpa mutations are divided into three types as shown in Table 1 (Raboy, 2009; 

Ye et al., 2013; Sparvoli et al., 2015). For the Type 1 lpa mutants, mutations occur in 

the genes that are involved in the initial stage of the biosynthetic pathway, i.e., steps 

from glucose-6-phosphate to myo-inositol (Ins) and Ins(3)P1. This type of mutation was 

reported for the soybean mutants LR33 and Gm-lpa-TW-1 (Hitz et al., 2002; Yuan et 

al., 2007), as well as for the rice mutant Os-lpa-XS110-1 (Zhao et al., 2013), which 

exhibited decreased contents of phytic acid and a molar equivalent increase in the 

levels of inorganic phosphorus.  
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The mutations of the target genes in Type 2 lpa mutants can result in the perturbation 

of biosynthesis steps from Ins(3)P1 to phytic acid (Figure 2), and the decreases of 

phytic acid content are often accompanied by the accumulations of lower inositol 

phosphates (InsP3, InsP4 and InsP5). For example, the lpa soybean mutant Gm-lpa-

ZC-2 with the mutation of the IPK1 gene exhibited significantly increased levels of 

InsP3, InsP4 and InsP5, compared to the corresponding wild-type Zhechun no.3 (Yuan 

et al., 2007; Frank et al., 2009b). Similar results regarding the accumulation of lower 

inositol phosphates were observed in the ITPK mutant maize seeds (Shi et al., 2003) 

and the ITPK mutant rice seeds (Kim et al., 2014). 

The third type of lpa mutants is classified as the mutations affecting the transportation 

and storage of phytic acid to vacuoles. This type of lpa mutants, including the 

previously reported rice mutant Os-lpa-XS110-2 (Frank et al., 2007; Liu et al., 2007), 

the soybean mutant CX1834 (Gao et al., 2008) and the common bean mutant 

lpa1 (Panzeri et al., 2011), are characterized by a pronounced reduction of the phytic 

acid content, as well as increased levels of myo-inositol and inorganic phosphorus. In 

addition, no accumulation of lower inositol phosphates was detected for this type of lpa 

mutants.   

 

Table 1. Classification of lpa mutations, the affected steps in the biosynthetic pathway 

to phytic acid, and the target genes in lpa mutants. 

Mutation Type Perturbation in the pathway Target gene 

Type 1 Synthesis of Ins(3)P1 and Ins MIPS, IMP, MIK 

Type 2 Conversion of Ins and Ins(3)P1 to InsP6 2PGK, IPK2, ITPK, IPK1  

Type 3 Transportation and storage of InsP6 MRP 
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2.2 Metabolomics 

2.2.1 Definition 

The term ‘metabolome’ was introduced to the scientific community in 1998. It 

represents the set of all low-molecular-weight (typically < 1000 Dalton) metabolites in 

a biological system or biofluid (Oliver et al., 1998). The resulting discipline, which was 

referred to as ‘metabonomics’ (Nicholson et al., 1999), is therefore aiming to profile all 

small molecules in biological samples. Later, the term ‘metabolomics’ was introduced 

(Fiehn, 2002) and is most commonly used at present. 

Metabolite fingerprinting and metabolite profiling are two major approaches to 

metabolomics research (Lindon et al., 2007). Metabolite fingerprinting is often 

conducted via nuclear magnetic resonance (NMR) spectroscopy to obtain the 

unassigned NMR spectra of the investigated samples and to compare these 

‘fingerprints’ between different groups. This approach ignores the identification of 

individual metabolites, and it allows high throughput measurements for rapid screening 

and classification of the samples (Nicholson et al., 1999; Krishnan et al., 2005). In 

contrast, metabolite profiling focuses on identification and quantitation of a broad 

spectrum of individual metabolites in biological samples. Although this approach is 

time-consuming and more challenging, the obtained profiles are expected to provide 

more detailed information on the biological system or biofluid (Fiehn, 2002). 

 

 

2.2.2 Analytical techniques for plant metabolomics 

Plant metabolomes include a broad spectrum of constituents exhibiting diverse 

physiochemical properties. It is estimated that there might be up to 200,000 

metabolites occurring in the ‘plant kingdom’ (Fiehn, 2002; Goodacre et al., 2004) and 

5000 – 10,000 in specific species (Moritz et al., 2008). In addition, the concentrations 

of these constituents can vary over a wide range of magnitude (Wishart, 2011). Owing 

to this complexity, no single analytical technique is capable of covering the overall 

metabolome, and therefore several analytical technologies are used to complement 

each other. The two most commonly used technologies are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS) coupled to separation 

techniques, such as gas chromatography (GC), liquid chromatography (LC) and 
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capillary electrophoresis (CE) (Zhang et al., 2012; Larive et al., 2015; Jorge et al., 

2016).   

 

2.2.2.1 MS-based plant metabolomics  

GC/MS. One of the first reports on plant metabolomics focused on potato tubers 

(Roessner et al., 2000). Another pioneering study is the metabolite profiling of 

Arabidopsis thaliana leaves (Fiehn et al., 2000). Both studies were conducted using 

gas chromatography coupled to mass spectrometry (GC/MS). To date, GC/MS is still 

one of the most widely employed analytical technique in plant metabolomics studies 

(Jorge et al., 2015). For chromatographic separation, capillary columns with stationary 

phases of 100 % dimethylpolysiloxane or (5%-Phenyl)-methylpolysiloxane are often 

employed. As the most common hard ionization method, electron impact (EI) ionization 

is widely used in GC/MS to ionize the molecules before mass-spectrometric detection 

and analysis (Kopka et al., 2004; Lisec et al., 2006).  

After separation on the GC column, the molecules flow into a mass spectrometer via a 

transfer line and are bombarded by a fixed high-energy electron beam set to 70 eV 

(electron Volts) under a high vacuum environment. EI ionization generates highly 

reproducible fragmentation patterns and has minimal variability between different 

instruments, regardless of the manufacturer. This allows the construction of 

commercial GC/MS libraries containing tens of thousands of mass-spectral data, which 

enable the identifications of plant metabolites and the integration of metabolomics data 

worldwide. Single Quadruple (Q), Triple Quadruple (QQQ), Time-of-flight (TOF) and 

Ion Trap are the common mass analyzers in GC/MS. Generally, TOF mass analyzers 

exhibit higher mass accuracy and faster acquisition rate than Q, QQQ and Ion Trap 

(Kopka et al., 2004; Dunn et al., 2005; Lisec et al., 2006; Glauser et al., 2013; Jorge et 

al., 2015). An overview on the common mass analyzers is shown in Table 2.   

Despite the good reproducibility of GC/MS, a major limitation is the prerequisite of 

volatility and thermal stability of the analytes. Therefore, derivatization steps are very 

essential during the process of sample preparation (Kopka, 2006). Derivatization types 

typically include silylation, alkylation and acylation, among which the silylation method 

is predominantly employed for metabolite profiling of plant extracts. N-Methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) and methoxyamine hydrochloride are the 

most commonly used derivatization reagents (Lisec et al., 2006).   
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Table 2. Overview on the common mass analyzers for GC/MS. 

Mass analyzer 
Mass accuracy 

(ppm) a 
Mass resolution 

(× 103) b 
Scan rate 

(Hz) 
Reference 

Quadruple Low 3-5 2-10 (Douglas, 2009) 

Ion Trap 50-500 4-20 2-10 (March, 2009) 

Triple Quadruple 5-50 > 7.5 10-20 (Douglas, 2009) 

Time-of-flight 1-5 10-60 10-50 
(Guilhaus et al., 

2000) 
Quadruple-time-

of-flight 
1-5 > 60 >100 

(Douglas et al., 
2005) 

a Mass accuracy = (mass error) / (true mass) × 106; mass error = (true mass) – (measured 

mass). b Mass resolution is defined as the ability to distinguish peaks with similar m/z ratios in 

a mass spectrum. Mass resolution = m/m50, in which m refers to mass and m50 refers to the 

peak width at half of the peak height (Balogh, 2004).  

 

 

LC/MS. Lipid chromatography coupled to mass spectrometry (LC/MS) is an important 

complementary technique to GC/MS. It does not necessitate the derivatization step 

during sample preparation and is capable of analyzing primary and secondary plant 

metabolites of interest which are high-molecular-weight and thermolabile (Allwood et 

al., 2010). In most cases, reversed-phase (RP) octyl (C8) or octadecyl (C18) columns 

are used in LC/MS analysis for plant metabolomics studies. However, highly polar 

metabolites in plant extracts are not well retained on classical RP columns and elute 

along with the void volume (Dettmer et al., 2007; Allwood et al., 2010). As an alternative, 

hydrophilic interaction liquid chromatography (HILIC) is employed (Tang et al., 2016). 

Different from hard ionization (i.e. EI) in GC/MS, a typical soft ionization method used 

in LC/MS is electrospray ionization (ESI) (Fenn et al., 1989). This type of ionization 

can occur via protonation (ESI+) or deprotonation (ESI-) and leads to single and/or 

multiple ions (Kopka et al., 2004).  

Although the application of LC/MS technique in plant metabolomics exhibits several 

advantages, a lower reproducibility is often observed compared to GC/MS (t'Kindt et 

al., 2009). Another disadvantage is that the application of the ESI method in LC/MS 

could cause ion suppression effects, i.e. mutual interference between compounds, 

leading to reduced detection capability and repeatability, as well as to the non-
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detection of analytes or the under/over-estimation of their real concentrations 

(Antignac et al., 2005; Furey et al., 2013).    

CE/MS. For capillary electrophoresis coupled to mass spectrometry (CE/MS) analysis, 

metabolites are separated based on their charge-to-size ratios and electrophoretic 

mobility, followed by the detection and the quantification in the mass spectrometer 

according to the specific mass-to-charge (m/z) ratio (Ramautar et al., 2009; Jorge et 

al., 2015). CE/MS shows great advantages in analyzing polar and/or charged 

metabolites including amino acids, organic acids, sugar phosphates and nucleotides 

(Ramautar et al., 2017). Despite much less reports of CE/MS-based metabolomics 

studies compared to GC/MS and LC/MS, the advantages of this technique, such as 

simplicity of sample pre-treatment and low-consumption of organic solvents, will 

facilitate its increasing role in plant metabolomics research (Ramautar et al., 2018). 

 

FT-ICR/MS. Another MS-based technique is Fourier transform ion cyclotron resonance 

mass spectroscopy (FT-ICR/MS). The increasing popularity of this technique in 

metabolomics studies is attributed mainly to its ultra-high resolution (> 1,000,000), and 

the currently highest available mass accuracy (< 0.2 ppm) (Ghaste et al., 2016). These 

outstanding advantages also allow the reliable assignment of molecular formulas to 

the detected ions for the characterization of unknown metabolites (Brown et al., 2005). 

However, as a direct injection (DI) MS technique, the approach lacks prior 

chromatographic separation of sample constituents, making it difficult to distinguish 

isomeric molecules. The principles of FT-ICR/MS and its potential in metabolomics 

have been thoroughly summarized in a review (Moritz et al., 2013). Unfortunately, the 

high costs of FT-ICR/MS instruments so far limit a wider application of this promising 

technique in metabolomics research (Dettmer et al., 2007).  

 

 

2.2.2.2 NMR-based plant metabolomics 

Nuclear magnetic resonance (NMR) spectroscopy has been well established in plant 

metabolomics studies over the past years. Despite the lower sensitivity compared to 

MS, 1H-NMR spectroscopy enables the identification and quantification of metabolites 

in samples via a non-destructive way (Rolin et al., 2013). This technique requires few 

sample preparation steps (none at all in certain cases), and a high throughput analysis 

is achievable owing to the short acquisition time per sample (Kim et al., 2011). The 
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highly reproducible results obtained from NMR also facilitate the collaborative 

metabolomics data collection across different laboratories/research groups (Ward et 

al., 2010). In addition, NMR is also a powerful tool for structural elucidation of unknown 

metabolites (Boiteau et al., 2018). Hyphenated NMR techniques such as liquid 

chromatography LC-NMR (Spraul et al., 2015) as well as the so-called hybrid MS/NMR 

(Bingol, 2018) are expected to exhibit their usefulness for research in plant 

metabolomics in the near future. 

 

 

2.2.3 Workflow of metabolite profiling approach 

The methodological pipeline of metabolite profiling typically consists of sample 

collection, data acquisition via the analytical platform, data processing and metabolite 

identification, statistical analysis and biological interpretation of the results. This 

general workflow is illustrated in Figure 3. More detailed descriptions of each section 

in this workflow are given in the following chapters.    

 

 

Figure 3. Exemplary workflow of the metabolite profiling approach; adapted with permission 

from (Alonso et al., 2015) 

 

 

2.2.4. Feature detection and metabolite identification 

For each analyzed sample, the raw data acquired by MS-based metabolomics 

platforms/instruments are initially pre-processed to generate a data matrix of mass-to-
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charge (m/z) ratio versus retention time (RT) versus ion intensity (Dunn et al., 2011). 

This step is usually performed via vendor software coupled to the analytical 

instruments. In addition, some open-source tools are frequently used, e.g. XCMS 

(Smith et al., 2006) and MZmine (Katajamaa et al., 2006). Parameter setting of these 

feature-detecting tools showed a significant impact on the quality and the number of 

features that can be acquired (Yu et al., 2014). Therefore, the parameters of the 

feature-detecting tools are suggested to be case-specific. 

The metabolite identification is performed by comparing the retention times (RT) / 

retention indexes (RI) and spectral data of the detected features to those of authentic 

standards analyzed under the identical experimental conditions (Lisec et al., 2006). 

However, authentic standards are not always commercially available or too expensive. 

In this case, a variety of public available metabolomics databases, e.g. Golm 

Metabolome Database (Kopka et al., 2005), METLIN Metabolite Database (Smith et 

al., 2005), BioMagResBank (Ulrich et al., 2008), FiehnLib Library (Kind et al., 2009), 

MassBank (Horai et al., 2010) and MetaboLights Database (Haug et al., 2013), would 

be alternatives to assist in putative annotation of metabolites.   

The Metabolomics Standards Initiative (MSI) defined a standardized reporting of 

metabolomics-based metabolite identifications, in which the identification results were 

classified into four levels (Sumner et al., 2007). A detailed description of the 

classification is shown in Table 3. 

 

2.2.5 Data processing techniques for metabolomics 

2.2.5.1 Peak alignment  

Despite the good reproducibility of GC/MS analysis under optimized conditions, there 

are always some shifts in retention times for the same peaks over different sample 

batches, which can be due to the changes in the stationary phase of the capillary GC 

column, small variations in solvent compositions, gas flow and oven temperatures 

(Jonsson et al., 2004). Therefore, peak alignment should be performed to eliminate 

this variability. A number of alignment software packages which are free, such as 

Chrompare (Frenzel et al., 2003), MZmine (Katajamaa et al., 2006) and XCMS (Smith 

et al., 2006), as well as commercially available tools including MarkerLynx (Waters 

Corporation), MassHunter (Agilent Technologies) and Sieve (Thermo Fisher Scientific) 

have been summarized (Katajamaa et al., 2007). 
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Table 3. Classification of metabolomics-based metabolite identifications according to 

Sumner et al. (2007).  

Level Definition Description 

1 Identified compounds Two or more independent and orthogonal data 
(e.g., retention time and mass spectrum, 
retention time and NMR spectrum, accurate 
mass and isotope pattern) relative to the 
authentic compound analyzed under identical 
experimental conditions  

2 Putatively annotated 
compounds 

Without authentic compounds, only based on 
commercial and/or public spectral libraries 

3 Putatively characterized 
compound classes 

Based on physicochemical properties of a 
chemical class of compounds, or by spectral 
similarity to known compounds from a chemical 
class 

4 Unknown compounds Unidentified or unclassified, but can still be 
differentiated and quantified based on spectral 
data 

 

 

 

2.2.5.2 Data integrity check and missing value imputation  

Sometimes missing values (peak intensities) in MS-based metabolomics datasets can 

be observed, which are mainly due to the following reasons: (i) the metabolite is 

detected in one sample but is absent in another sample; (ii) the metabolite is detected 

in one sample but its concentration in another sample is lower than the limit of detection 

(LOD); (iii) the metabolite is detected but the data processing software coupled to the 

instrument does not report the detection. It is very essential to replace these missing 

values by substitutes to maintain the integrity of the datasets in the data processing 

pipeline prior to univariate and multivariate data analysis (Hrydziuszko et al., 2012; 

Armitage et al., 2015; Di Guida et al., 2016).  

To date, a number of methods for missing value imputation are available. Zero, Mean 

and Median Replacement correspond to replace the missing values with zero, average 

values and median values of the corresponding metabolites/features, respectively 

(Steuer et al., 2007). The method K-Nearest Neighbors (KNN) was initially developed 
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for the data matrix of gene expression (Troyanskaya et al., 2001). In metabolomics 

datasets, KNN was applied to find k nearest samples via Euclidean metric, and then 

the missing value is replaced by the average values of those ‘nearest neighbors’. The 

Random Forest (RF) imputation method is based on the machine-learning algorithm 

random forest (Stekhoven et al., 2012). This method builds a mathematical model 

using selected metabolites with no missing values, and then those missing values of 

the target metabolites are predicted by the established model (Wei et al., 2018). The 

computations of these methods were usually conducted by R package. Recently, a 

user-friendly and easily-accessible web tool MetImp (https://metabolomics.cc.hawaii.-

edu/software/MetImp/) was developed, including most of the commonly used methods 

of missing value imputation (Wei et al., 2018). The imputation performance of the 

different methods was evaluated using a GC/MS metabolomics dataset (Gromski et 

al., 2014). The results suggested that the Random Forest (RF) method was the most 

robust approach, while the Mean Replacement showed the poorest performance.  

 

2.2.5.3 Data filtering  

Data filtering is employed to remove the noise signals or low-quality variables in a 

metabolomics dataset. By comparing the mean or median values, those variables 

showing very low or close-to-zero intensities are regarded as baseline noise and could 

be discarded. Low-quality variables often exhibit very close values throughout the 

whole dataset. These variables could be selected and filtered based on their low 

standard deviations (SD). This data-processing step is strongly recommended for 

metabolomics datasets containing a large number of variables (typically > 1,000), 

which could significantly improve the statistical power in the downstream multivariate 

and univariate statistical analyses (Gentleman et al., 2004; Hackstadt et al., 2009; Xia 

et al., 2016). 

  

2.2.5.4 Data standardization and normalization 

The standardization, also referring to as Internal Standard (IS) Correction, is the step 

to reduce systematic bias between different measurements. Usually, the peak 

intensities of each metabolite in the dataset are standardized by correcting to the 

response of the single IS compound, or to the responses of multiple IS compounds 

corresponding to different chemical classes (Bijlsma et al., 2006).  
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In biological samples, the concentrations of metabolites can vary over a wide range of 

magnitude. From a biological point of view, metabolites exhibiting high contents are 

not necessarily more important than those showing low levels (Wishart, 2011). In order 

to improve the consistency of the overall dataset and, at the same time, to retain the 

meaningful biological variations, normalization of the dataset is always performed. 

Normalization methods are divided into two strategies, i.e., data transformation and 

data scaling. Log and cube root transformations are the two most frequently used 

transformation methods. For data scaling, a number of different methods including auto 

scaling, pareto scaling, range scaling and vast scaling are commonly utilized (Craig et 

al., 2006; Sysi-Aho et al., 2007). A typical example of the data normalization effects on 

the original data obtained from GC/MS metabolite profiling is shown in Figure 4 (Berg 

et al., 2006). 

It is noteworthy that there is no consensus which transformation and/or scaling 

methods are most suitable for metabolomics datasets. It is suggested to perform 

different methods separately or to combine the transformation and scaling methods to 

assess the “bell shape” of the Gaussian distribution for the normalized data (Xia et al., 

2016).  

 

 

2.2.6 Statistical analysis of metabolomics data 

2.2.6.1 Multivariate statistical analysis  

Mass spectrometry-based metabolomics studies often generate huge and complex 

data matrixes, which would be very difficult to be summarized and interpreted without 

appropriate statistical tools. Multivariate statistical methods are the most frequently 

utilized chemometric tools to summarize and visualize high-dimensional metabolomics 

data matrixes (Eriksson et al., 2004). This kind of pattern recognition method could be 

subdivided into two groups: unsupervised and supervised statistical methods.
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Figure 4. Effect of data normalization on the original data. Original data of experiment (A), and 

data after centering (B), autoscaling (C), pareto scaling (D), range scaling (E), vast scaling (F), 

level scaling (G), log transformation (H), and power transformation (I); adapted with permission 

from Berg et al. (2006). 
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Unsupervised statistical analysis, such as principal component analysis (PCA) and 

hierarchical clustering analysis (HCA), is often employed to generate an unbiased 

overview of the overall dataset with reduced dimensions, as well as to preliminarily 

explore the trends, clustering and outliers among the samples (Trygg et al., 2007). In 

addition, PCA is also regarded as a primary assessment of the necessity of conducting 

supervised statistical analysis (Worley et al., 2016).  

Partial least squares-discriminate analysis (PLS-DA) is one of the most extensively 

performed supervised statistical methods. Samples are classified into different groups 

prior to being subjected to dimensionality reduction algorithms. Therefore, compared 

to PCA, PLS-DA is usually more favorable to reduce less important sources of data 

variance and to exhibit better differentiation between classes (Barker et al., 2003). 

However, data variations that are uncorrelated to pre-defined group labels are also 

present in PLS-DA scores, which would lead to difficulties in identifying biological 

markers if the within-group variation is relatively high (Worley et al., 2013; Mastrangelo 

et al., 2015). In this regard, orthogonal partial least squares-discriminate analysis 

(OPLS-DA), another supervised statistical method, is more powerful in separating 

different sample groups by incorporating the Orthogonal Signal Correction (OSC) filter 

(Bylesjo et al., 2006; Wiklund et al., 2008). An illustration of the difference between 

PLS-DA and OPLS-DA models is shown in Figure 5. 

 

 

 

Figure 5. Geometrical illustration of the difference between PLS-DA and OPLS-DA models. 

The OPLS-DA model is rotated compared with the PLS-DA model. The class variation is found 

in the predictive component tp, and the variation within each class is observed in the first y-

orthogonal components to; adapted with permission from Wiklund et al. (2008). 
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The disadvantage of the supervised statistical method is the high probability of over-

fitting, which aggressively forces separations between biological samples. As a result, 

the good classification between groups is obtained sometimes by chance (Westerhuis 

et al., 2008). Therefore, rigorous validation procedures, such as cross-validation and 

permutation test, are very essential to evaluate the reliability and robustness of the 

established (O)PLS-DA models (Triba et al., 2015).  

 

2.2.6.2 Univariate statistical analysis 

Univariate statistical analysis is a classic statistical approach to compare the individual 

metabolites from different groups. Prior to the statistical analysis, the statistical 

properties of the metabolites need to be assessed. Based on results of normality test 

(e.g. Shapiro-Wilk and Jarque-Bera tests) and homogeneity test of variances (e.g. 

Levene’s and Bartlett’s tests) for the metabolomics derived-data, parametric tests such 

as Student’s t-test and ANOVA with post hoc test are performed for those metabolites 

exhibiting a normal distribution and homogeneity of variance. Otherwise, the non-

parametric Mann-Whitney test (for two-group comparison) and the Kruskal-Wallis test 

(for multiple-group comparison) are conducted (Korman et al., 2012; Vinaixa et al., 

2012). 

The parallel application of univariate statistical analysis to single metabolites has the 

advantage of being easy to use and to interpret. However, this method can lead to 

considerable false positive results if multiple tests are performed in parallel for 

hundreds of metabolites. For example, the p-value threshold of 0.05 implies that there 

is 5% possibility to obtain a false positive result of the statistically significant difference 

between compared samples, which is acceptable for a single metabolite test. However, 

the number of false positive result will drastically increase to 100, when 2,000 variables 

from a metabolomics dataset are simultaneously subjected to univariate statistical 

analysis (Vinaixa et al., 2012). Therefore, multiple testing correction methods need to 

be considered as a fundamental principle of the univariate statistical analysis of the 

metabolomics derived-data (Storey et al., 2003; Broadhurst et al., 2006).  

One of the solutions of this multiple-testing problem is the False discovery rate (FDR) 

correction, which computes the p-corrected value (also referred to as q-value) for each 

tested metabolite (Pike, 2011). An FDR-adjusted, p-corrected value of 0.05 means that 

only 5% of test results with a statistically significant difference will be false positive, 

which considerably reduces the possibilities of false positive cases. Bonferroni 
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correction is another approach to handle the multiple-testing problem, by strictly 

controlling the false positive rate at the expense of false negative rate (Broadhurst et 

al., 2006; Vinaixa et al., 2012).  

 

 

2.2.7 Application of plant metabolomics 

In recent years, metabolomics studies in various fields of plant science research have 

been extensively reported, such as the investigation of plant responses to 

environmental impact, the exploration of phytochemical diversities of plant species, the 

evaluation of postharvest quality of horticultural plants, the substantial equivalence 

assessment of genetically modified (GM) crops and the assistance in plant breeding 

research (Shulaev et al., 2008; Beckles et al., 2012; Kusano et al., 2012; Herrmann et 

al., 2013). In the following, some examples of metabolomics studies in plant research 

are presented. 

 

2.2.7.1 Metabolic changes in response to stress 

The GC/MS-based metabolite profiling approach has been applied to investigate the 

drought stress-induced metabolic changes in barley grains obtained from different 

genotypes, including both drought resistant and susceptible cultivars (Lanzinger et al., 

2015; Wenzel et al., 2015). Different metabolic responses were observed in the 

seedling roots of wild, semi-wild and cultivated soybean lines under salt stress (Li et 

al., 2017). Metabolite profiling via FT-ICR/MS revealed comprehensive rearrangement 

of the leaf metabolome of poplars grown under high UV-B radiation. Several hundred 

metabolites were up- and down-regulated over various pathways, including increased 

levels of flavonoids, anthocyanins and polyphenols, and decreased levels of steroids 

(Kaling et al., 2015). In addition to these abiotic stresses, metabolite profiling was also 

employed to study the metabolic changes of plants induced by biotic factors. For 

example, by comparing the metabolite profiles of citrus fruits from both healthy and 

symptomatic trees suffering from greening disease, citric acid, nobiletin, malic acid and 

phenylalanine were identified as the metabolic biomarkers for the citrus trees infected 

with the specific bacterium Candidatus Liberibacter (Hung et al., 2018).  
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2.2.7.2 Exploration of phytochemical diversities 

Several metabolomics-based studies have revealed the diversities of phytochemical 

compositions of plants. For red and blue potato tubers, significant differences in the 

profiles of anthocyanins and other polyphenols were observed via LC/MS metabolite 

profiling (Oertel et al., 2017). Similarly, different metabolite profiles were reported for 

red, black and colorless rice grains (Frank et al., 2012a; Kim et al., 2015) as well as for 

several onion cultivars with different colors (Bottcher et al., 2018). Metabolic variation 

between the two major rice subspecies, japonica and indica, was investigated based 

on the complementary LC/MS and GC/MS platforms, and correlations between 

metabolic phenotype and geographic origin of the rice seeds were revealed (Hu et al., 

2014). The obtained information on phytochemical characteristics in plants resulting 

from biodiversity may provide useful information to breeders for generating novel plant 

cultivars.  

 

2.2.7.3 Evaluation of postharvest quality  

The postharvest qualities of fruits and vegetables, including visual, textural, flavor and 

compositional qualities, are crucial determinants of profitability for producers and of 

acceptability by consumers (Brasil et al., 2018). A number of metabolomics-based 

studies were conducted to understand the impact of postharvest treatment on the 

qualities of fruits and vegetables. The metabolite profiles of apple fruits from two 

varieties were observed to respond differently to low oxygen storage condition, which 

were reflected by differently changed levels in both the volatile compounds (e.g. ethyl 

acetate, ethyl propanoate and ethyl tiglate) and non-volatile compounds (e.g. proline, 

glycine, serine and palmitic acid) (Brizzolara et al., 2017). The metabolic changes of 

banana during postharvest senescence at five stages were elucidated by 1D and 2D 

NMR-based metabolite profiling approaches (Yuan et al., 2017). Similar metabolomics-

based studies on postharvest quality evaluation were also carried out for fruits such as 

grapes (Toffali et al., 2011), peaches (Lauxmann et al., 2014) and kiwi (Lim et al., 2017) 

as well as for vegetables such as tomatoes (Luengwilai et al., 2012), radish roots 

(Jahangir et al., 2014) and lettuce (Garcia et al., 2016).  

  

2.2.7.4 Safety and authenticity assessment of plant-derived food 

Metabolite profiling techniques are also useful for safety and authenticity assessments 

of plant-derived foods. The kernels of transgenic and non-GM maize were subjected 
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to a GC/MS-based metabolite profiling approach, and the results indicated that the 

environmental factors (growing location and season) contributed to much higher 

numbers of significant differences (up to 42%) in metabolite levels than the genetic 

modification (up to 4%) (Frank et al., 2012b). To reveal the unintended metabolic 

changes induced by the mutation, metabolite profiling was employed to compare the 

metabolic differences between low phytic acid (lpa) mutant seeds and the 

corresponding wild-types both for rice (Frank et al., 2007) and soybean (Frank et al., 

2009b). For the authenticity assessment, a metabolic approach based on large-scale 

sample size was applied to study the differences of metabolite compositions of carrots 

produced via conventional or organic agricultural systems. The OPLS-DA model 

established on the basis of the metabolite profiling data was shown to successfully 

distinguish the origin of the agricultural systems of the harvested carrots (Cubero-Leon 

et al., 2018). An FT-ICR/MS-based metabolomics study on 18 Chardonnay white wines 

revealed that the wines could be discriminated according to the concentrations of SO2 

added to the must during the winemaking process. In addition, there was a correlation 

between the wine metabolomics picture and the type of stopper used (Roullier-Gall et 

al., 2017). 
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3. RESULTS 

3.1 Publication I 

Zhou, C. G.; Tan, Y. Y.; Goßner, S.; Li, Y. F.; Shu, Q. Y.; Engel, K. H. 

Impact of cross-breeding of low phytic acid Rice (Oryza sativa L.) mutants with 

commercial cultivars on the phytic acid contents.  

Eur. Food Res. Technol. 2019, 245, 707-716 

Reprinted with permission from Springer Nature (Copyright 2018). 

Phytic acid (PA) is the major storage form of phosphorus in rice (Oryza sativa L.) seeds.  

Owing to its antinutritional properties, a number of low phytic acid (lpa) rice mutant 

lines have been obtained via mutation breeding. To improve the agronomic 

performance (e.g. grain yield and seed viability) of the lpa rice mutants, cross and 

selection breeding with commercial cultivars is applied. To investigate the impact of 

such cross-breeding steps on the PA contents of the resulting progenies, three 

previously developed lpa rice mutants, i.e. Os-lpa-XQZ-1, Os-lpa-XS110-2 and Os-lpa-

MH86-1, carrying different mutation targets were crossed with the three commercial 

rice cultivars JX081, JH218 and JH99. The crossbred progenies of generations F4 to 

F8 grown at different field trials were subjected to a high-pressure ion chromatography 

(HPIC)-based approach for determination of the PA contents. The results revealed the 

impact of mutation types, PA contents of the crossing parents and the environmental 

conditions on the PA contents in homozygous lpa mutant progenies. However, despite 

the variability of the PA contents, the lpa trait was consistently expressed in 

homozygous lpa progenies over several generations harvested from different growing 

locations. From an agronomic point of view, the study demonstrated that a major 

prerequisite for the commercial production of elite lpa cultivars via cross and selection 

breeding is being fulfilled. 

 

Candidate’s contribution: Implementation of a High Pressure Ion Chromatography 

(HPIC) method for the analysis of phytic acid in rice; quantitation of phytic acid in all 

investigated rice samples; statistical assessment of the elaborated analytical data and 

of the agronomic performance data provided by the cooperation partner, writing and 

revision of the complete manuscript and of the Supplementary Material. 
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3.2 Publication II 

Zhou, C. G.; Tan, Y. Y.; Goßner, S.; Li, Y. F.; Shu, Q. Y.; Engel, K. H.  

Stability of the Metabolite signature resulting from the OsSULTR3;3 mutation in low 

phytic acid rice (Oryza sativa L.) seeds upon cross-breeding.  

J. Agric. Food Chem. 2018, 66, 9366-9376.  

Reprinted with permission from American Chemical Society (Copyright 2018). 

 

To investigate the potential impact of the cross-breeding of lpa mutants with 

commercial cultivars on the metabolite profiles of the resulting progenies, the 

previously generated lpa rice mutant Os-lpa-MH86-1, resulting from the disruption of a 

putative sulfate transporter gene OsSULTR3;3, was crossed with the commercial rice 

cultivar JH99. A non-targeted metabolite profiling approach enabling the analyses of a 

wide spectrum of low molecular weight rice constituents was employed to investigate 

the impact of the cross-breeding step on the metabolite profiles of the progenies, and 

to assess their stability over several generations. The results of the statistical 

assessments revealed that the mutation-induced metabolic changes in the lpa mutant 

was not hampered by cross-breeding with a commercial cultivar, and that the mutation-

specific metabolite signature was consistently observed in homozygous lpa mutant 

progenies of generations F4 to F7. The results underline that cross-breeding of lpa 

mutants with commercial cultivars could be used as a suitable tool to generate lpa 

progenies maintaining metabolic traits induced by mutation. 

 

Candidate’s contribution: Performance of the complete sample work-up sequence 

required for the analysis of the rice samples; independent performance of the GC/MS-

based metabolite profiling for all investigated rice samples; implementation of quality 

control analyses for the metabolite profiling; multivariate and univariate statistical 

assessments of the elaborated metabolite profiling data; interpretation of the results 

via pathway analyses; statistical assessment of the agronomic performance data 

provided by the cooperation partner; writing and revision of the complete manuscript 

and of the Supporting Information. 
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3.3 Publication III 

Zhou, C. G.; Tan, Y. Y.; Goßner, S.; Li, Y. F.; Shu, Q. Y.; Engel, K. H.  

Impact of crossing parent and environment on the metabolite profiles of progenies 

generated from a low phytic acid rice (Oryza sativa L.) Mutant.  

J. Agric. Food Chem. 2019, 67, 2396-2407 

Reprinted with permission from American Chemical Society (Copyright 2019). 

It is well known that metabolite profiles of cereal grains can be influenced by both 

genetics and environment. To investigate these phenomenon, the lpa rice mutant Os-

lpa-MH86-1, which has been reported to exhibit complex metabolic alterations induced 

by the OsSULTR3;3 mutation, was crossed with two commercial rice cultivars JH99 

(indica) and JH218 (japonica) with different genetic backgrounds. In addition, the field 

trials for the resulting progenies of generation F8 from the two crosses were performed 

at three growing locations, two of them in the subtropical and one in the tropical region. 

The crossbred progenies as well as the progenitor lpa mutant, the two crossing parents 

and the original wild-type were all subjected to a GC/MS metabolite profiling, followed 

by multivariate and univariate statistical analyses. The results revealed a strong impact 

of environment on the metabolite profiles of rice seeds. However, for each individual 

field trial, despite an influence of the crossing parents on the lipid profiles of the 

generated lpa progenies, the mutation-induced metabolite signature was consistently 

expressed in the homozygous lpa mutant progenies for both crosses. The elaborated 

molecular data are promising from a breeder’s point of view. They demonstrate that 

independent from the subspecies and/or cultivar of the crossing parents and 

independent from the environmental influence, cross and selection breeding could be 

a useful strategy to produce lpa rice seeds stably exhibiting the mutation-induced 

metabolic traits. 

Candidate’s contribution: Performance of the complete sample work-up sequence 

required for the analysis of the rice samples; independent performance of the GC/MS-

based metabolite profiling for all investigated rice samples; implementation of quality 

control analyses for the metabolite profiling; multivariate and univariate statistical 

assessments of the elaborated metabolite profiling data; interpretation of the results 

via pathway analyses; writing and revision of the complete manuscript and of the 

Supporting Information
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4. DISCUSSION 

The objectives of the studies underlying this dissertation were to investigate the 

stability of both the reductions of phytic acid (PA) contents and the mutation-induced 

metabolite signature in homozygous low phytic acid (lpa) mutant progenies obtained 

by crossing lpa rice mutants with commercial wild-type rice cultivars. Overarching key 

aspects that were crucial for the respective study design and that were taken into 

account in the interpretation of the elaborated data will be discussed in the following 

sections. 

 

4.1 Methodology 

Phytic acid analysis 

Early methods employed for the analysis of phytic acid were based on the formation of 

Fe3+–phytate precipitates and colorimetry-based approaches (Heubner et al., 1914; 

McCance et al., 1935). These were later replaced by ion-exchange methods (Harland 

et al., 1977) and high performance liquid chromatography (HPLC) ion-pair methods 

(Lehrfeld, 1994). Nowadays high-pressure ion chromatography (HPIC) is one of the 

most frequently employed approaches for the simultaneous determination of PA and 

of lower inositol phosphates (InsP2 – InsP5). After simple sample preparations 

(extraction, centrifugation and filtration), the extract is directly subjected to ion 

chromatography. The separation of PA and InsP2 – InsP5 is performed by a linear 

gradient elution, and the detection is achieved by an ultraviolet absorbance detector 

after post-column derivatization. The HPIC method exhibits high sensitivity and good 

capability in separating and analyzing PA as well as stereoisomers (excluding 

enantiomers) of InsP2 – InsP5 (Chen et al., 2003; Chen, 2004). 

In the present study, an HPIC-based approach (Oates et al., 2014) was adapted for 

the determination of PA contents in the rice seeds. This method would have also 

allowed to obtain quantitative information on the contents of InsP2 – InsP5, as 

demonstrated in a parallel study on the contents of inositol phosphates in progenies of 

soybean lpa mutants (Goßner et al., 2019). The potential accumulation of lower inositol 

phosphates is of interest, since they have been shown to possess important 

physiological functions, e.g., Ins(1,3,4,5)P4 regulates the immune cell development 
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(Sauer et al., 2010), as well as nutritional properties, e.g., no inhibitory effect on the 

absorption of minerals was observed for InsP4 and InsP5 compared to phytic acid 

(Lonnerdal et al., 1989; Sandberg et al., 1999). However, in the rice lpa mutant types 

investigated in this thesis such an accumulation of lower inositol phosphates was not 

observed, which is in line with previously reported results (Frank et al., 2007; Zhao et 

al., 2016). 

 

Metabolite profiling 

The GC-metabolite profiling approach applied in this study is based on the principles  

of a methodology originally developed using rice as model crop (Frenzel et al., 2002). 

It comprises the preparation of extracts containing lipophilic and polar rice constituents 

and their subsequent fractionation, employing transesterification and solid phase 

extraction for the lipophilic metabolites and selective hydrolysis of silylated derivatives 

for the polar constituents. The resulting four fractions are subsequently subjected to 

GC/MS, a platform which offers high chromatographic resolution (separation of peaks), 

sufficient reproducibility of peak retention times, and the possibility to use commercially 

available mass spectral data bases. This technique allows the simultaneous detection, 

identification and relative quantification of a broad spectrum of low molecular weight (< 

1000 Da) rice constituents, ranging from lipophilic to hydrophilic metabolites for both 

major (e.g. fatty acid methyl esters and sugars) and minor (e.g. free fatty acids and 

free amino acids) compound classes (Frenzel et al., 2002). 

This untargeted GC-based metabolite profiling approach has also been shown to be 

suitable for the analysis of other crops, e.g. maize, soybean, mung bean and barley. 

Investigations employing this methodology have not only been used to investigate lpa 

crops (Frank et al., 2007; Frank et al., 2009b), but have also covered a wide range of 

topics, e.g., influence of farming practices (conventional vs. organic farming) on 

metabolite profiles of maize (Röhlig et al., 2010), metabolic changes during the 

sprouting of mung beans (Na Jom et al., 2011) and the malting of barley (Frank et al., 

2011), metabolic differences between colored rice (Frank et al., 2012a), and metabolic 

responses of barley to drought stress (Lanzinger et al., 2015; Wenzel et al., 2015).  

Despite the broad applicability and the good reproducibility of the employed GC/MS-

based metabolite profiling, some limitations of this method should be noted. The 

applied fractionation steps, on the one hand, deliver very useful information regarding 

the contributions of specific classes of metabolites. For example, in the studies 
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performed for this thesis, the fractionation greatly assisted in assigning the roles of 

metabolite classes regarding the impact of crossing partner and environment and 

pinpointed those metabolite classes contributing to the differentiation of wild-types and 

lpa rice mutants. On the other hand, the procedure is time-consuming, and this 

hampers its application as high-throughput screening of metabolic phenotypes. 

In addition, the scope of metabolites covered by GC is inherently limited to those that 

are volatile or that can be easily transformed into volatile derivatives (Kopka et al., 

2004). Important secondary metabolites (e.g. flavonoids and alkaloids) are not 

accessible to analysis via this technique. Liquid chromatography coupled to mass 

spectrometry (LC/MS) would be an important complementary technique covering this 

gap and enabling the analysis of high-molecular weight and/or thermolabile 

metabolites (Allwood et al., 2010). Therefore, the application of alternative analytical 

platforms might extend the scope of metabolites analyzed in this study and thus allow 

to make correlations to other quality and nutrition-related parameters of the lpa rice 

mutants that might be affected by the mutation and/or the cross-breeding step.  

 

Statistical assessments 

The utilization of appropriate statistical tools is a crucial step in interpreting the huge 

and complex data matrices resulting from the metabolite profiling. In the present study, 

the unsupervised multivariate method of principal component analysis (PCA) was 

employed as initial step to generate an unbiased overview of the metabolomics-data 

matrices with reduced dimensions. In order to identify the individual metabolites 

contributing to the differentiations of metabolite phenotypes between the wild-types 

and the lpa mutants, the supervised multivariate statistical assessment of partial least 

squares-discriminate analysis (PLS-DA) was attempted. However, due to the 

significant variations in metabolite profiles of rice seeds resulting from generation 

effects and from the environmental impact, the models of the generated PLS-DAs were 

always shown to be over-fitted. Therefore, orthogonal partial least squares-

discriminate analysis (OPLS-DA) was used as another supervised statistical tool. As a 

result, the metabolite profiling data with pronounced variations that are uncorrelated to 

pre-defined group labels (e.g. wild-type and lpa mutant) were filtered by the Orthogonal 

Signal Correction (OSC) and were reflected in the OPLS-DA score plot along the 

Orthogonal Component axis (y-axis) (Bylesjo et al., 2006). The established models 

proved to be robust and not over-fitted by permutation tests and cross-validations. 
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Finally, the metabolites exhibiting high Variable Importance in Projection values for the 

Predictive Component (VIP_ pred) of the OPLS-DA model were selected, followed by 

univariate analyses. These metabolites were further mapped in simplified biosynthetic 

pathways to illustrate their contributions to the mutation-induced metabolite signature 

of the lpa mutants and their progenies. 

 

4.2 Lpa mutation-types 

During the past years, several lpa rice mutant lines have been developed via mutation 

breeding (Larson et al., 2000; Rutger et al., 2004; Liu et al., 2007; Kim et al., 2008; Kim 

et al., 2014). They differ in the achieved percentage reductions of phytic acid contents, 

ranging from –11.8% to –68.8%, as well as in the mutation targets. Reductions in the 

concentrations of phytic acid in induced lpa mutants have been reported to occur via 

three routes: (i) mutations in genes directly involved in the biosynthesis of phytic acid 

(Zhao et al., 2008b); (ii) mutations perturbing transportation and storage of phytic acid 

in plant tissues (Xu et al., 2009); and (iii) mutations in genes involved in a cross-talk 

between sulfate and phosphate homeostasis (Zhao et al., 2016). In order to cover 

these different types of mutation, the three previously developed lpa rice mutants Os-

lpa-XQZ-1, Os-lpa-XS110-2 and Os-lpa-MH86-1 carrying the respective mutation 

targets were employed.  

In Os-lpa-XQZ-1, the mutation of a homolog of the 2-phosphoglycerate kinase (2-PGK) 

gene, which is directly involved in the biosynthetic step from InsP1 to InsP2, was shown 

to be responsible for the lpa phenotype (Zhao et al., 2008b; Sparvoli et al., 2015). The 

PA contents in this progenitor lpa mutants ranged from 4.32 mg/g to 7.5 mg/g, and 

they showed percentage reductions from –11.8% to –46.6% at different field trials (Liu 

et al., 2007; Frank et al., 2009a).  

In Os-lpa-XS110-2, the mutation was attributed to a single base pair change (C/G–T/A 

transition) of the multi-drug resistance-associated protein ABC transporter gene 5 

(OsMRP5). The OsMRP5 mutation in Os-lpa-XS110-2 induces the PA reductions by 

triggering a disturbance in tissue compartmentation of PA and/or its transport and 

storage to the vacuole (Xu et al., 2009; Sparvoli et al., 2014). The previously reported 

ranges for the PA contents and the percentage reductions observed in Os-lpa-XS110-2 
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lpa mutants were 4.0 mg/g to 6.6 mg/g and –33.8% to –63.5%, respectively (Frank et 

al., 2007; Liu et al., 2007; Frank et al., 2009b). 

In Os-lpa-MH86-1, γ-irradiation resulted in a one base pair deletion in a putative sulfate 

transporter gene (OsSULTR3;3). This gene was shown to play a role in the cross-talk 

between sulfate and phosphate homeostasis and/or signaling (Zhao et al., 2016). The 

Os-lpa-MH86-1 lpa mutants exhibited significantly lower levels of PA (5.1 mg/g to 6.7 

mg/g) as well as pronounced percentage reductions (–35.1% to –43.9%) compared to 

the corresponding wild-types MH86 at different field trials (Liu et al., 2007; Zhao et al., 

2016).  

The employed three lpa mutants represent different principles of PA reductions. The 

complexities of the underlying mechanisms gradually increase in the order Os-lpa-

XQZ-1, Os-lpa-XS110-2 and Os-lpa-MH86-1. This was reflected in the different 

dependencies of the phytic acid contents of the generated homozygous lpa mutant 

progenies on parameters, such as crossing partner and environmental conditions. 

 

Previously reported metabolic changes in lpa rice mutants had been limited to changes 

in the levels of a few metabolites related to the biosynthesis of phytic acid, e.g. myo-

inositol, galactose and raffinose (Frank et al., 2007; Frank et al., 2009b). The lpa 

mutant Os-lpa-MH86-1 was the first example of an lpa rice mutant, in which the 

mutation of a putative sulfate transporter gene OsSULTR3;3 resulted in a broad 

spectrum of metabolic changes compared to the corresponding wild-type (Zhao et al., 

2016). These changes comprised not only reduced contents of the sulfur-containing 

amino acid cysteine, but also increased contents of phytosterols, sugars, sugar 

alcohols, acids and amino acids. As examples, the metabolites that showed 

significantly different levels in the lpa mutant Os-lpa-MH86-1 and the corresponding 

wild-type MH86 rice seeds harvested at the field trial Hangzhou in 2011 are listed in 

Table 4. 

The complex changes in the metabolite profile of the lpa mutant Os-lpa-MH86-1 are 

similar to those reported in plants grown under phosphorus deficiency and/or sulfate 

starvation, e.g. decreased level of cysteine, increased levels of glucose, fructose, 

sucrose, serine, glycine and GABA (Table 4) (Nikiforova et al., 2006; Hammond et al., 

2008).  
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Table 4. Contents of phytic acid (mg/g of dry matter) and relative peak intensities of 

selected metabolites in wild-type MH86 and lpa mutant Os-lpa-MH86-1 harvested in 

Hangzhou 2011. a,b,c 

metabolite MH86  
Os-lpa-
MH86-1 

  metabolite MH86  
Os-lpa-
MH86-1 

 

phytic acid 11.4 ± 0.1  6.6 ± 0.1 *  glycine 6.1 ± 0.4  7.2 ± 0.6  

phosphoric acid 56.2 ± 1.6  616 ± 7.7 *  alanine 19.8 ± 0.5  27.1 ± 0.8 * 

citric acid 46.7 ± 1.4  168 ± 19.3 *  serine 12.2 ± 0.2  18.5 ± 0.7 * 

          valine 5.5 ± 0.2  6.8 ± 0.4 * 

glucose 19.5 ± 0.3  33.5 ± 0.2 *  leucine 2.6 ± 0.2  3.6 ± 0.4 * 

fructose 8.4 ± 0.1  16.3 ± 0.2 *  isoleucine 6.0 ± 0.3  9.6 ± 0.6 * 

sucrose 1538 ± 38.3  1798 ± 23.2 *  threonine 3.6 ± 0.2  4.9 ± 0.3 * 

trehalose 4.5 ± 0.2  9.3 ± 0.4 *  cysteine 0.6 ± 0.1  0.4 ± 0.1  

myo-inositol 10.3 ± 0.3  11.0 ± 0.9   aspartic acid 31.5 ± 1.4  39.9 ± 0.8 * 

sorbitol 2.4 ± 0.1  7.9 ± 0.1 *  asparagine 72.8 ± 1.3  76.8 ± 2.9  

mannitol 4.0 ± 0.0  8.0 ± 0.1 *  lysine 3.1 ± 0.7  4.8 ± 1.1  

          ornithine 0.5 ± 0.1  0.8 ± 0.3 * 

ß-sitosterol 188 ± 3.2  226 ± 16.1 *  citrulline 0.4 ± 0.1  0.5 ± 0.1  

stigmasterol 48.1 ± 0.9  63.2 ± 4.9 *  tryptophan 5.1 ± 0.1  7.7 ± 0.4 * 

campesterol 61.6 ± 1.4  72.1 ± 4.4 *  GABA d 3.1 ± 0.3  11.3 ± 1.0 * 
a The Table is based on the metabolite profiling data elaborated by Zhao et al. 2016 (permission 

from John Wiley & Sons, Copyright 2016). b The phytic acid contents are expressed in mg/g 

dry matter. All other metabolites are expressed as relative peak intensities, i.e. metabolite peak 

intensity / internal standard peak intensity × 100. c Values represent means ± standard 

deviations resulting from the analysis of three aliquots of freeze-dried flour. Asterisks represent 

statistically significant differences (Benjamini-Hochberg adjusted-p < 0.05) between the wild-

type and the corresponding lpa mutant. d γ-aminobutyric acid. 

 

It is noteworthy that the mutation-induced metabolite signature observed in the Os-lpa-

MH86-1 lpa mutant from the field trial Hangzhou 2011 was also consistently expressed 

at other field trials (Hainan 2012, Hainan 2013 and Jiaxing 2013). Accordingly, a clear 

separation in the PCA score plot of metabolite profiling data between the wild-type 

MH86 and the Os-lpa-MH86-1 lpa mutant from different field trials was achieved (Zhao 

et al., 2016; Figure 6). These results suggested that Os-lpa-MH86-1 would be an ideal 

lpa mutant candidate to investigate the impact of cross-breeding with commercial rice 

cultivars on the stability of a mutation-induced metabolite signature in homozygous lpa 

mutant progenies.  
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Figure 6. PCA score plot of metabolite profiling data of combined fractions I-IV of the wild-type 

MH86 (black) and the Os-lpa-MH86-1 lpa mutant (blue) harvested at the field trials Hangzhou 

2011 (diamonds), Hainan 2012 (triangles), Hainan 2013 (squares) and Jiaxing 2013 (circles). 

The Figure is based on the metabolite profiling data elaborated by Zhao et al. 2016 (permission 

from John Wiley & Sons, Copyright 2016). 

 

4.3 Crossing parents 

In the present study, the two commercial rice cultivars Jiaxian 081 (JX081) and Jiahe 

218 (JH218) were used as crossing parents. They are known to exhibit good 

agronomic performance with yields of 8-9 tons/ha and meet the Chinese national 

quality standards. In addition, another wild-type rice cultivar JH99, the restorer line of 

the hybrid cultivar Jiayou 99, was employed.  

Results of preliminary studies showed that these commercial rice cultivars differed in 

their phytic acid contents. JX081 consistently exhibited the highest PA contents at 

several field trials, followed by JH218 and JH99. Therefore, they were considered 

suitable to investigate the impact of the phytic acid content of the crossing partner on 

the phytic acid contents and the percentage phytic acid reductions, respectively, in the 

homozygous lpa progenies obtained after cross-breeding with lpa mutants. For the Os-

lpa-XQZ-1 lpa mutant there was no consistent correlation between the PA contents of 

the crossing parents (JX081 and JH218) and those of the corresponding homozygous 

lpa mutant progenies. On the contrary, for Os-lpa-XS110-2 the same order of 

differences in PA contents between the two crossing parents JX081 and JH218 were 

also observed between the corresponding lpa progenies. This phenomenon was even 

more pronounced for the lpa progenies resulting from the Os-lpa-MH86-1 lpa mutant.  
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Considering the simple and direct disruption of the biosynthetic flow to phytic acid in 

the Os-lpa-XQZ-1 mutant, it is not surprising that the PA contents in the homozygous 

lpa progenies were rather stable upon cross-breeding. On the contrary, the complex  

mechanism underlying the PA reduction in Os-lpa-MH86-1 is reflected in the increased 

susceptiblity of the PA content to that of the crossing parent, compared with Os-lpa-

XQZ-1 and Os-lpa-XS110-2. This is also in line with the reported significantly changed 

expression levels of genes involved in phosphate and sulfate homeostasis (Zhao et al., 

2016). 

 

Rice cultivars are classified into the two subspecies indica and japonica according to 

their geographical distribution, plant architecture and physiological features (Ikehashi, 

2009). The rice seeds from these two subspecies are varying largely in genetic 

backgrounds (Garris et al., 2005; Zhang et al., 2011) as well as in metabolic 

compositions (Lou et al., 2011; Hu et al., 2014). Therefore, both an indica (JH99) and 

a japonica (JH218) rice type were selected as crossing parents. 

The results revealed that the lipid profiles of the crossing parents had a significant 

impact on the lipophilic constituents of the resulting lpa mutant progenies. A number of 

individual lipophilic metabolites were shown to exhibit higher levels in JH99 compared 

to JH218. Accordingly, the homozygous lpa mutant progenies resulting from JH99 also 

exhibited higher levels of these lipophilic metabolites than the lpa progenies from 

JH218. This demonstrated that for the Os-lpa-MH86-1 lpa mutant the lipophilic 

constituents of the crossbred lpa progenies are dependent on the lipid profiles of the 

crossing parent. 

However, despite the fact that substantial metabolic differences were observed 

between the crossing parents JH99 and JH218, the data do not allow to conclude 

whether the distinctions of metabolite profiles in the lpa progenies result from the 

inherent differences between the rice subspecies indica and japonica, or whether they 

just reflect individual differences between the two rice cultivars selected for this study. 

 

4.4 Environmental variability 

The PA contents in rice seeds are significantly influenced by the growing environment 

(Perera et al., 2018). For example, increases in the levels of PA from 4 % to 31 %, 
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were observed for rice seeds grown in controlled environment facilities at higher 

temperature (daily mean temperature 33 °C vs. 22 °C) (Su et al., 2014). In addition, 

there was also a pronounced impact of growing environment on the metabolite profiles 

of rice seeds (Huo et al., 2017). Therefore, in order to investigate the environmental 

influence on the PA contents as well as on the metabolite profiles of the homozygous 

lpa mutant progenies, the rice plants were grown at three field trials (Jiaxing 2014, 

Wuxi 2014 and Hainan 2015). The climate conditions of these three locations were 

distinct due to the significant geographic differences. Jiaxing (latitude 30°45′ N) and 

Wuxi (31°29′ N) are located in the subtropical zone and Hainan in the tropical zone 

(latitude 18°30′ N). Therefore, the rice plants grown in Hainan were exposed to higher 

temperature and longer sunshine duration in the course of cultivation.  

Again, the PA contents in the homozygous lpa mutant progenies were expressed 

differently depending on mutation types in response to the impact factor growing 

environment. For Os-lpa-XQZ-1, the variations of PA contents in homozygous lpa 

mutant progenies were rather low in light of the environmental influence. This variability 

was increased for the Os-lpa-XS110-2 progenies, and was most significantly 

expressed for the lpa progenies resulting from the Os-lpa-MH86-1 lpa mutant. The 

different variabilities of PA contents for three mutation-types in response to 

environments were similar to those in response to the crossing parents, which further 

confirmed that the susceptibilities of PA contents in crossbred lpa mutant progenies 

are correlated with the complexities of the mechanisms underlying the lpa mutations. 

Growing environment has been shown to be the most predominant factor driving the 

variations of the metabolite profiles of cereal grains such as rice (Zhang et al., 2016), 

maize (Frank et al., 2012b) and barley (Wenzel et al., 2015). Similarly, in the present 

study the environment had a far more pronounced influence on the metabolite profiles 

of homozygous lpa mutant progenies than the crossing parent and the mutation-type. 

The most remarkable differentiations of metabolite profiling data in the PCA score plot 

were observed between the rice seeds harvested from the tropical zone (Hainan) and 

those from the subtropical zone (Jiaxing and Wuxi), irrespective of the mutation-type 

or the genetic background inherited from the different crossing parents. In addition, the 

separation of metabolite profiles between rice seeds still remained significant in the 

light of environmental impact, even when only the field trials Jiaxing and Wuxi from the 

same climate zone were considered. Univariate analysis demonstrated that different 

growing environments induced changed levels of a broad spectrum of metabolites in 
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crossbred progenies both for wild-type and lpa mutants, ranging from lipophilic 

metabolites, e.g. fatty acid methyl esters and free fatty acids, to polar metabolites such 

as sugars, sugar alcohols, organic acids and amino acids. 

 

4.5 Agricultural significance of the elaborated data 

Phytic acid contents 

From a breeder’s point of view, it would be an essential requirement that despite the 

observed fluctuations of the phytic acid contents in the lpa mutant progenies the 

intended lpa trait, i.e. the significant reduction of the content of phytic acid compared 

with the original wild-type, remained unaffected. Figure 7, showing the distributions of 

the phytic acid contents in all rice seeds samples investigated in this study, 

demonstrates that this crucial prerequisite is fulfilled.  

 

 

Figure 7. Distributions of the phytic acid contents in all rice samples investigated in this study  

 

The data encompass the phytic acid contents in the original wild-types, the commercial 

wild-type cultivars employed as crossing parents, the progenitor lpa mutants, the 

homozygous wild-type and the homozygous lpa mutant progenies of generations F4 to 

F8, harvested at four different field trials (Jiaxing 2013, Jiaxing 2014, Wuxi 2014 and 

Hainan 2015). The data demonstrate that the obtained homozygous lpa mutant 

progenies always exhibited significantly lower levels of phytic acid than the original 

wild-types, independent from mutation types, cross-breeding steps, generations, 

crossing parents or environmental conditions. The phytic acid contents in the lpa 

progenies were in a similar order of magnitude as in the progenitor lpa mutants. 
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Similarly, a parallel study on soybeans also showed that after crossing the lpa soybean 

mutants TW-1-M-lpa (mutation of the D-myo-inositol 3-phosphate synthase gene 1, 

MIPS1) and ZC-lpa (mutation of the inositol 1,3,4,5,6-pentakisphosphate 2-kinase, 

IPK1) with commercial wild-type cultivars, the lpa trait was still consistently expressed 

in the resulting homozygous lpa mutant progenies over several generations at different 

field trials (Goßner et al., 2019).  

 

For future developments of lpa rice mutants, another aspect might be of relevance. In 

this study, the percentage reductions of PA contents in lpa rice mutants with single 

mutation targets ranged from -19.5% to -46.3%. For lpa mutants carrying double 

mutation targets, much more pronounced PA reductions have been reported. For 

example, double lpa soybean mutants with two IPK1 mutation targets on 

chromosomes 6 and 14 showed drastic PA reductions between 79% and 88% (Vincent 

et al., 2015). Another double lpa mutant generated by crossing of two single lpa 

soybean mutants ZC-lpa (IPK1 mutation) and TW-1-M-lpa (MIPS1 mutation) exhibited 

up to 87% of PA reductions (Goßner et al., 2019).  

The development and the investigation of double lpa rice mutants have never been 

reported. It is foreseeable that the generation of double lpa mutants of rice by crossing 

of two single lpa rice mutants could be an efficient way to generate rice seeds exhibiting 

PA contents at only very low levels. 

 

Metabolite profiles 

The OsSULTR3;3 mutation-induced metabolite signature (i.e., increased levels of 

sugars, sugar alcohols, organic acids, amino acids, and biogenic amines) was nearly 

unaffected by the crossing-breeding of Os-lpa-MH86-1 lpa mutant with the commercial 

rice cultivar JH99. Despite the variations in the levels of lipophilic constituents 

depending on generations, the mutation-specific metabolite signature was consistently 

observed in homozygous lpa mutant progenies of generations F4 to F7 at the same 

field trial Jiaxing 2013.  

The results revealed that the growing environment played a more important role in 

driving the variability of the metabolite profiles of crossbred progenies than the 

mutation-type and the crossing parents. As a result, the absolute levels of a broad 

spectrum of metabolites, ranging from lipophilic to polar constituents (e.g. 

hydrocarbons, fatty acid methyl esters, free fatty acids, sugars, sugar alcohols, organic 
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acids and amino acids), were increased or decreased in crossbred progenies 

depending on the different field trials (i.e. Jiaxing 2014, Wuxi 2014 and Hainan 2015), 

irrespective of the mutation effect and the genetic backgrounds of the crossing parents. 

Notwithstanding the significant metabolic changes in crossbred progenies resulting 

from environmental impact, for each field trial the OsSULTR3;3 mutation-induced 

metabolic differences were consistently observed between the homozygous wild-type 

and the corresponding homozygous lpa mutant progenies of generation F8 for both the 

crosses Os-lpa-MH86-1 × JH99 and Os-lpa-MH86-1 × JH218. In addition to the 

mutation-induced metabolic changes mainly in polar metabolites, the lipophilic 

compositions in lpa progenies were shown to be influenced by the lipid profiles of the 

crossing parents. The lpa progenies resulting from the crossing parent with lipid-

enriched profiles also exhibited higher levels of individual lipophilic constituents. 

However, this did not compromise the mutation-specific metabolic differentiations 

between the wild-type and the lpa mutant progenies for each cross. As a result, a 

superimposition effect was observed for the overall metabolite profiles of the crossbred 

lpa mutant progenies, i.e. the impact of mutation effect on polar metabolites and of the 

crossing parents on lipophilic metabolites. 

The stability of the mutation-induced metabolite signature in lpa mutants is depicted in 

Figure 8. For each metabolite investigated at individual field trials, the boxplots for the 

wild-types represent the data resulting from both the original wild-type MH86 as well 

as the homozygous wild-type progenies of the two crosses; those for the lpa mutants 

represent the data from both the progenitor lpa mutant Os-lpa-MH86-1 and the 

homozygous lpa progenies of the two crosses. All listed metabolites exhibited 

statistically significantly different levels between wild-type and lpa mutant rice seeds at 

each field trial, and these differences are in good agreement with the results previously 

reported in the progenitor lpa mutant Os-lpa-MH86-1 (Zhao et al., 2016). This key 

result demonstrated that the OsSULTR3;3 mutation-specific metabolite signature, 

including increased levels of nutritionally relevant compounds (e.g. γ-aminobutyric 

acid), was not affected by the crossing-breeding of Os-lpa-MH86-1 mutant with 

different commercial rice cultivars, and was consistently expressed over several 

generations as well as under different environmental conditions. 
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Figure 8. Boxplots of the metabolites contributing to the mutation-specific metabolite signature 

of lpa mutants. For each metabolite, the relative peak intensity (i.e., metabolite peak 

intensity/internal standard peak intensity ×100) of wild-type (black) represents the mean value 

of original wild-type MH86 and homozygous wild-type progenies of two crosses; the relative 

peak intensity of lpa mutant (blue) represents the mean value of Os-lpa-MH86-1 and 

homozygous lpa mutant progenies of two crosses. All metabolites exhibited statistically 

significantly different (Benjamini–Hochberg adjusted-p < 0.05) levels between wild-type and 

lpa mutant rice seeds at each field trial.
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Of course, it is noteworthy that the results obtained in the present study should not be 

unconditionally extrapolated to any other lpa mutants. Other mutation-types might 

result in different effects upon cross-breeding and might be differently impacted by the 

crossing partner or by the environmental conditions. Nevertheless, the elaborated 

metabolite profiling data are encouraging for breeders. The mutants investigated in this 

study cover the main types of mutation presently known for lpa rice mutants. Even for 

such complex metabolic changes as induced in Os-lpa-MH86-1 by the lpa mutation, 

cross-breeding could be employed as a tool to generate progeny rice seeds stably 

exhibiting the mutation-specific metabolite signature.  

 

4.6 Agronomic performance 

One of the reasons for crossing induced lpa mutants with commercial cultivars is to 

overcome potential agronomic deficiencies (Zhao et al., 2008a). Therefore, it would 

have been valuable to have comprehensive data regarding parameters such as 

germination rate, field emergence and yield for the generated homozygous lpa 

progenies. Unfortunately, for each cross and each generation only a low number of 

rice plants were obtained which did not allow an appropriate evaluation of the 

agronomic performance of the lpa mutant progenies. The limited data available 

indicated that after cross-breeding with the commercial rice cultivars, no significant 

improvements in thousand grain weights and seed setting ratios were observed for the 

lpa rice mutants. However, these results should only be considered as preliminary. 

Agronomic data obtained from large-scale field trials would be necessary to elaborate 

robust data allowing to draw valid conclusions.  

Such agronomic data on the lpa progenies are definitely required in follow-up studies. 

In addition to the results elaborated in this thesis, i.e. that the lpa trait is stably inherited 

and the mutation-specific metabolite signature is consistently expressed in crossbred 

lpa mutant progenies, the demonstration of good agronomic performance would be 

another important cornerstone to demonstrate the usefulness of cross-breeding of 

progenitor lpa mutants with commercial cultivars to develop promising elite lpa rice 

cultivars. 
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