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Abstract

Robots catching an object is a challenging and frequently considered testbed to demon-
strate the performance of object tracking combined with motion planning in highly
dynamic environments. A successful catch relies on effective solutions in both track-
ing and planning. However, this thesis focuses on the latter, underdeveloped motion
planning problem. To manage the catching problem’s complexity, a preparatory con-
tribution in this thesis decouples the problem into two conceptual dimensions: Task
motion planning (task level) and robot motion planning (joint level) for a physical
distinction. Moreover, both dimensions are divided into four distinct temporal phases.

A novel parametrization is then derived to reduce the three-dimensional (3-D) catch-
ing problem to one dimension (1-D) on the ballistic flight path. Inversely, an efficient
dynamical system formulation allows for reconstruction of solutions from 1-D to 3-D.
Hence, the body of work in hybrid dynamical systems theory, in particular on the 1-D
bouncing ball problem, becomes available for robotic catching. Uniform Zeno asymp-
totic stability from the bouncing ball literature is adapted as an example and extended
to enable provable robust catching. A quantitative stability measure and the impor-
tance of the initial relative state between an object and end-effector are discussed. As
a result, constrained dynamic optimization maximizes convergence speed and enables
a quantitative success-oriented comparison of catching motions.

Catching motions are characterized by high velocities and accelerations, which re-
quire robot operation close to the velocity, torque and power limitations of motors
and gears. Not exceeding these limitations is vital for guaranteeing the validity of
the aforementioned success-oriented comparison in real applications. Hence, this thesis
proposes an augmented kinematic formulation for nonprehensile manipulation through
intermittent contacts occurring in catching, batting or juggling. In such scenarios, the
contact point with an end-effector is variable and is proposed to be modeled with ad-
ditional virtual joints at the end of the kinematic chain. While not in contact with
the manipulated part, these new joints are unconstrained with regard to velocity and
acceleration. An optimization-based, and thus tuning-free, comparison of differential
inverse kinematic approaches is conducted, given that the manipulation task’s path
or trajectory are known. Simulations reveal that the proposed augmentation enables
dynamically feasible acceleration variations at high velocities on and close to a given
path.

The feasible and optimal solutions at the task and joint level are ultimately validated
for two symmetrical robots autonomously playing throw and catch. This controllable
robot-robot scenario enables repeatable experimental results and a statistically signif-
icant number of trials per setting.
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Zusammenfassung

Robotern das Fangen von Objekten beizubringen, ist ein herausforderndes und doch
regelmäßig gewähltes Anwendungsbeispiel. Es dient gerne zur Funktionalitätsdemons-
tration in höchst dynamischen Umgebungen für Lösungsansätze, welche Objekterfas-
sung und Bewegungsplanung kombinieren. Vor dem Hintergrund, dass Forschung bis-
her ihren Fokus überwiegend auf die Objekterfassung legte, widmet sich diese Arbeit
vorrangig Fragestellungen der Bewegungsplanung mit einem Fokus auf robuster Auf-
gabenerfüllung. Um die Komplexität des Fangproblems zu bewältigen, unterteilt diese
Arbeit die Problemstellung zunächst anhand zweier konzeptioneller Dimensionen: die
Aufgabenbewegungsplanung (task level) und die Roboterbewegungsplanung (joint le-
vel) als physikalische Unterscheidung. Die beiden konzeptionellen Dimensionen werden
wiederum je in vier Phasen zur zeitlichen Differenzierung unterteilt.

Auf dieser Basis wird eine neuartige Parametrierung hergeleitet um das dreidimen-
sionale (3-D) Fangproblem auf eine Dimension (1-D) entlang der ballistischen Flugbahn
zu reduzieren. Um aus 1-D Lösungen wieder 3-D Lösungen zu rekonstruieren, wird zu-
gleich ein effizienter Bewegungsplaner vorgestellt, welcher auf der Echtzeitintegration
eines dynamischen Systems basiert. Infolgedessen erschließt sich der Forschungsbereich
zu hybriden dynamischen Systemen für robotisches Fangen. Hierbei ist vor allem der
nun mögliche Rückgriff auf existierende Beiträge zum eindimensionalen, prellenden Ball
ein Gewinn. Die beispielhafte Anpassung und Erweiterung uniformer, Zeno asympto-
tischer Stabilität prellender Bälle ermöglicht daraufhin erstmals nachweislich robustes
Fangen. Dieser Formalismus wiederum erlaubt das Aufstellen eines quantitativen Sta-
bilitätsmaßes und anhand dessen eine Diskussion der Bedeutung des Relativzustandes
zwischen Objekt und robotischem Fangwerkzeug (Endeffektor). Die Quantifizierung
des Stabilitätsmaßes kann dann in einem weiteren Schritt als Kostenfunktion einer
dynamischen Optimierung eingesetzt werden um die Konvergenzgeschwindigkeit bei
der Kontaktherstellung zu maximieren. Außerdem erlaubt diese Quantifizierung einen
erfolgsorientierten Vergleich verschiedener Fangbewegungen und -systeme.

Fangbewegungen erfordern im Allgemeinen hohe Bewegungsgeschwindigkeiten und
Beschleunigungen von ausführenden Robotern. Letztere müssen daher meist nahe ihrer
Geschwindigkeits-, Drehmoment- und Leistungsgrenzen betrieben werden. Diese Gren-
zen andererseits nicht zu überschreiten ist unabdingbar, um die Übertragbarkeit erfolgs-
orientierter Vergleiche bei der praktischen Umsetzung zu gewährleisten. Dafür schlägt
diese Arbeit einen erweiterten kinematischen Formalismus bei nicht-greifender Objekt-
manipulation für den Fall vor, dass diskontinuierliche Kontakte auftreten. In solchen
Szenarien ist der genaue Kontaktpunkt mit einem Endeffektor nicht entscheidend und
stellt somit bis zu zwei weitere Freiheitsgrade dar. Diese Freiheitsgrade können der kine-
matischen Kette eines Manipulators an ihrem Ende als virtuelle, angetriebene Gelenke
hinzugefügt werden. Solange kein Objektkontakt besteht unterliegen die neu gewonne-
nen virtuellen Gelenke keinen Geschwindigkeits- oder Beschleunigungsbeschränkungen.
Ein optimierungsbasierter Ansatz nutzt diese Unbeschränktheit beispielhaft um auf-



tretende Beschleunigungsvariationen bei zugleich hohen Bewegungsgeschwindigkeiten
entlang einer grob vorgegebenen Bahn zu bewältigen.

In einem letzten Schritt, wird die in ihrer Gesamtheit robuste Lösung robotischen
Fangens mit zwei symmetrischen Robotern verifiziert, welche autonom einander Ob-
jekte zuwerfen und zuverlässig fangen. Dieses kontrollierbare Robotikszenario erlaubt
reproduzierbare experimentelle Ergebnisse, sowie eine statistisch signifikante Anzahl an
Wiederholungen pro Systemkonfiguration.

viii



Contents

Notations xiii

1 Introduction 1
1.1 Challenges and Solutions to Robotic Object Manipulation . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Problem of Catching Fast Flying Objects 11
2.1 Static Catching and Dynamic Catching . . . . . . . . . . . . . . . . . . 11
2.2 Dynamic Throwing and Catching . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The Two Level Problem: Task Motion and Robot Motion . . . . 13
2.2.2 Four Phase Approach: Throwing, Acceleration, Tracking, Decel-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Task Motion Planning Problem . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Homogeneous Transformations . . . . . . . . . . . . . . . . . . . 16
2.3.2 Kinematics of Free Ballistic Flight . . . . . . . . . . . . . . . . . 17
2.3.3 General Catching Problem . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Collision Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Generalized Uncertainty Formulation . . . . . . . . . . . . . . . 25

2.4 Robot Motion Planning Problem . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Robot Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Robot Dynamics and Joint Constraints . . . . . . . . . . . . . . 27
2.4.3 Kinematic Redundancy . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching 31
3.1 Introduction and State of the Art . . . . . . . . . . . . . . . . . . . . . 31
3.2 One-Dimensional Hybrid Dynamics of the Bouncing Ball . . . . . . . . 35

3.2.1 Hybrid System Formulation . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Zeno Behavior in Robotic Catching . . . . . . . . . . . . . . . . 36
3.2.3 Relative Hybrid Bouncing Ball Dynamics in Robotic Catching . 37

3.3 Dimensionality Reduction of Translations in 3D Ballistic Catching . . . 38
3.3.1 Flight Path Angle Parametrization . . . . . . . . . . . . . . . . 39
3.3.2 Unicycle Formulation of Free Ballistic Flight . . . . . . . . . . . 40
3.3.3 Dynamical System Approach to Ballistic Motion Planning . . . 41

ix



Contents

3.4 Uniform Zeno Asymptotic Stability for Robotic Catching . . . . . . . . 42
3.4.1 Uniform Zeno Asymptotic Stability (UZAS) . . . . . . . . . . . 43
3.4.2 Maximal Zeno Time . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.3 Special Catching Task Problem Formulation . . . . . . . . . . . 45
3.4.4 Robustness Against Uncertain Restitution Behavior . . . . . . . 45
3.4.5 Maximized Distance Uncertainty Compensation . . . . . . . . . 47
3.4.6 Maximal Rebound Height and Limited End-Effector Domain . 48
3.4.7 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Motion Deviating from the Ballistic Flight Path . . . . . . . . . . . . . 56
3.5.1 Velocity Transformation at Collisions . . . . . . . . . . . . . . . 56
3.5.2 Acceleration Uncertainty . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Joint Trajectory Planning for Manipulation through Intermittent Contacts 61
4.1 Introduction and State of the Art . . . . . . . . . . . . . . . . . . . . . 61
4.2 Dynamically Unconstrained Nonprehensile Joints . . . . . . . . . . . . 63

4.2.1 Augmented Kinematics with Unconstrained Joints . . . . . . . . 64
4.2.2 Augmented Joint Constraints . . . . . . . . . . . . . . . . . . . 65

4.3 Offline Integrated Motion Planning at the Task and Joint Levels . . . . 65
4.3.1 Redundancy Parametrization with Cubic Hermite Splines . . . . 66
4.3.2 Maximized Catching Task Robustness . . . . . . . . . . . . . . 66
4.3.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Real-Time Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Inverse Differential Kinematics for Redundancy Resolution . . . 72
4.4.2 Maximized Distance to Constraints . . . . . . . . . . . . . . . . 73
4.4.3 Numerical Example: Method Comparison . . . . . . . . . . . . 74
4.4.4 Numerical Example: Flexibility of Solutions . . . . . . . . . . . 77
4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Experimental Evaluation 83
5.1 Symmetric Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Multi-Phase Robot Motion Planning for Ballistic Catching . . . . . . . 85

5.2.1 Throwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Three-Phase Catching . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Catching Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1 Catching Rigid Objects of Various Shapes . . . . . . . . . . . . 87
5.3.2 Feasibility and Flexibility of Solutions . . . . . . . . . . . . . . 89

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



Contents

6 Conclusions and Future Work 93
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . 96

A Appendix 99
A.1 Parameters and Constraints of the Experimental Setup . . . . . . . . . 99

Bibliography 101

xi





Notations

Abbreviations

AK augmented kinematics
COM center of mass
DOF degree of freedom
P1 first phase: acceleration of the throwing robot
P2 second phase: acceleration of the catching robot
P3 third phase: flight path tracking of the catching robot
P4 fourth phase: deceleration of the catching robot
POC point of contact
SK standard kinematics
SLHS simple Lagrangian hybrid systems
U1 uncertainty in the initial object state
U2 time-varying uncertainties
U3 uncertainty in the coefficient of restitution
UZAS uniform Zeno asymptotically stable

Conventions

Scalars, Vectors, and Matrices
Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted
by lower case letters in bold italic type, as the vector x is composed of elements xi.
Matrices are denoted by upper case letters in bold italic type, as the matrix M is
composed of elements Mij (ith row, jth column).

Subscripts and Superscripts

ȧ first time derivative d
dt
a (elementwise if a is a matrix)

ä second time derivative d2

dt2
a (elementwise if a is a matrix)

∇a gradient of function a
a−1 inverse of a
aT transpose of a
ar a at release time t = tr
a′ a at release time t = t′
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Notations

aO a of the (flying) object
aE a of the robot end-effector
‖a‖2 Euclidean norm of a

Variables

Scalars, Vectors, Constants

a number of virtually augmented prismatic joints
c vector of optimization variables
e coefficient of restitution
eN Poisson’s kinetic coefficient of restitution
eP Newton’s kinematic coefficient of restitution
f Rm → Rn map from joint space to task space
F normal force during impact
g gravitational constant
G(qm) Rm gravitational vector
h shortest distance between SE and SO

h R(3m+a) generalized constraint vector
Hi component-wise inverse distance function

h,h R(3m+a) lower and upper bound of generalized constraint vector
k weighting factor of the null-space projection
KP,KD control gains
k weighting factor of the null-space projection
` Rm vector of joint lengths
m number of degrees of freedom in the classic kinematic sense
n task dimension
p(x2) relative acceleration bound depending on sign(x2)
p R3 position of the origin of T w.r.t. T W

p̃ R4 homogeneous representation of p
p̄ R2 reduced planar representation of p
pi,pj R3 position in frame T j, with i, j ∈ {W, E, O}
pi,pj R3 position of the origin of T i or T j w.r.t. T W, with i, j ∈ {E, O}
pSE R3 position of a point on the end-effector surface w.r.t. T W

pSO R3 position of a point on the object surface w.r.t. T W

pij R3 position of the origin of T i w.r.t. T j, with i, j ∈ {W, E, O}
pH R4a polynomial coefficients of cubic Hermite spline
P impulse
Pc compression impulse
Pr restitution impulse
P Rm upper power limit
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q R(m+a) all joints
qa Ra virtual prismatic joints with a ∈ {1, 2}
qm Rm classic joints
q̇N Rm arbitrary joint velocities for projection into nullspace
Q,Q R(m+a) lower and upper bound of joint ranges
r object circumcircle
t time
t0 start of regarded time horizon
tf end of regarded time horizon (duration)
tr release time (throwing)
T ,T Rm lower and upper bound of torque limits
u horizontal object position in Cartesian space
û unit vector horizontal position in Cartesian space
uE horizontal end-effector position in Cartesian space
U0,min,U0,max auxiliary variables for calculating Zmax

v horizontal object position in Cartesian space
v̂ unit vector horizontal position in Cartesian space
V U → R≥0 Lyapunov function value
V − normal velocity before a collision
V + normal velocity after a collision
V ,V Rm lower and upper bound of joint velocity limits
w vertical object position in Cartesian space
ŵ unit vector vertical position in Cartesian space
wE horizontal end-effector position in Cartesian space
W energy part of the Lyapunov function
x R2 state vector
x̄1 maximal remaining rebound height
xrob

2 robust initial choice for x2(0)
xn Rn n-dimensional task vector with typically n ∈ {1, . . . , 6}
xa(0) . . .xf(0) R2 test cases for initial relative states
Z Zeno time
Zmax maximal Zeno time
Z̄max uppper bound of maximal Zeno time
α object flight path angle during ballistic flight
β auxiliary variable for calculating Zmax

γ relative acceleration between object and end-effector
γ∗ desired rel. acceleration between object and end-effector
γmin lower uncertainty bound on γ
γmax upper uncertainty bound on γ
γE end-effector acceleration on ballistic flight path
γO object acceleration on ballistic flight path
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Γ flight plane
δ auxiliary variable for calculating Zmax

θ orientation of the flight plane around ŵ
κ relation of acceleration uncertainty bounds and

coefficient of restitution (UZAS)
ν first time derivative of h (relative velocity)
ν− relative velocity before impact
ν+ relative velocity after impact
νc auxiliary variable for calculating Zmax

νE end-effector velocity along the ballistic flight path
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ρ Newton’s coefficient of restitution
σ auxiliary variable for calculating Zmax

τ Rm joint torque
ω R3 object rotation with elements ωu, ωv, ωw
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1 Introduction

Robots are preprogrammed machines that are capable to autonomously perform a set
of physical tasks based on predefined inputs. In their most prevalent role, which is the
manipulation of objects or parts, robots are equivalently referred to as manipulators.
Typical goals of manipulation are to change the state (e.g., position, orientation, or
velocity) of objects or to alter these objects (e.g., assembly, drilling, or welding). The
decision whether a robotic solution is favored over its human counterpart is mostly
driven by economical considerations. Beyond the per unit costs during a robot’s life-
cycle, such considerations may also include hazard potential, range of skills, manipula-
tion precision and repeatability, reliability, or continuity and speed of throughput per
workstation. Amongst these potentially relevant considerations, manipulation speed
(throughput) has one of the largest leverage effects. Moreover, as speed of available
manipulation solutions increases, the consequences of various types of uncertainties
can rise from negligible up to critical, which imposes new challenges to researchers and
applicants.

Today, a variety of commercial robotic systems outperforming humans in a subset of
their skills is available and continuously growing in number. The particular progress
robots have made in major human skill categories, however, differs substantially. For
example, endurance, strength, or precision can be directly scaled by using hardware
components of better quality, a larger size, or with more power. Such improvements
are mostly a matter of expense and component availability. Many of these components
have evolved over decades before their deployment to complex robotic systems. The
interaction of already widely deployed robotic systems with the environment typically
happens in highly controlled scenarios in which the states of all participants, both
manipulator and manipulated, are known with high precision. Uncertainties are min-
imized in advance whenever possible. Conversely, humans often outperform robots in
terms of dexterity or skill acquisition in dynamic and uncertain environments. Here,
the choice of hardware components plays an inferior role. Instead, completely new
and highly specialized methods developed from a deep understanding of a task or pro-
cess are needed to facilitate a robot’s fast, efficient and robust interaction with the
environment.

The most prominent example regarding the number of deployed robots is automotive
production. Without the need to rest, robots can operate almost constantly, do not
suffer from sickness or go on strike and, therefore, outperform humans even if they
output fewer units per time. Robots can lift and turn entire vehicle bodies or assume
weight-lifting duties when workers mount tires to a car. Precision can be scaled to
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1 Introduction

high absolute and relative accuracy benefiting machines from surgery robots [5, 30]
to welding robots. Alternatively, specialized feeding systems can enforce the pose of
manipulated objects. If sensing is required, ambient conditions can be adapted to the
sensor requirements. Moreover, objects can be beneficially placed relative to the sensor,
as the task is known in advance [44]. With high absolute accuracy comes high repeata-
bility and thus, errors become reproducible and can be eliminated permanently and
for all identical stations at once. In comparison, human workers must be trained indi-
vidually without guarantees of improvement. Arguably, humans increase uncertainty
with most of their actions but are naturally capable of compensating for uncertainties
quickly with subconscious adaptations to changing situations. For example, in house-
hold tasks where objects vary in pose or are hidden behind several other objects in
a cabinet. Preparing a meal with collaborators requires reactive decisions of the next
action from a large pool of yet unsolved skills ranging from peeling or cutting fruit and
vegetables to making a pizza dough [80].

In uncertain scenarios, the shape, position, velocity and acceleration of manipulated
objects is, at most, approximately known in advance. Therefore, the future object mo-
tion is only partially predictable. The main consequences of such uncertain dynamics in
robotic manipulation are unexpected, although nonetheless inevitable, collisions with
objects or the environment. Manipulation solutions with precisely planned contact
points at a particular instant are, therefore, not applicable. To teach robots new skills
or tasks, a significant body of research devotes itself to the reduction of environmental
uncertainty by proposing faster and more accurate perception methods. Some solu-
tions must even employ computing clusters to receive timely predictions and motion
plans [10, 11]. Still, some uncertainty always remains and must be solved by robust task
plans that compensate for collisions and uncertain contact points, states and times.

Given the inevitability of collisions during uncertain manipulation, a mixture of con-
tinuous (no contact) and discrete (at collisions) dynamics applies. Hence, a framework
suited to describe and control these different dynamics becomes necessary. Hybrid
dynamical systems [18, 34], intensively studied in the control literature, constitute a
suitable, albeit still evolving [62], framework. The application of hybrid control solu-
tions with the potential to be useful for solving manipulation problems is an engineering
challenge in itself. Many approaches, such as for impacting systems, are tailored to
linear problems of low dimensionality [64]. Other approaches build on assumptions like
constant acceleration [35], which does not hold in dynamic environments with moving
reference frames, for example, using a robot to catch an object by adapting the robot’s
motion to the object in flight.

After identifying a robust task plan in theory and simulation, the approach is de-
ployed in robotic systems. In this step, the displacement and motion of a series of
robot joints, with a manipulation tool at its end (end-effector), is planned to perform
the task. For tasks of low velocity and dexterity requirements, this step is inexpensive
as textbooks provide many real-time capable motion planners [88, 90]. With increasing
dynamic requirements, this step becomes more challenging. Two general approaches
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1.1 Challenges and Solutions to Robotic Object Manipulation

may be distinguished: offline and online motion planning. The advantage of offline
motion planning is the inferior role of a method’s computational complexity. If the
task is sufficiently known in advance, an almost globally optimal robot motion can
be planned, which allows for efficient exploitation of the available hardware. Or, the
offline planning process can include the right choice of hardware. Dynamically chal-
lenging tasks such as softly catching objects may even necessitate offline planning as
a basis. An immediate reaction to unexpected scenario changes and deviations is not
naturally envisaged. However, sophisticated and robust task plans may compensate
for a sufficient range of deviations to make offline motion planning sufficient. In con-
trast, online motion planning is tailored to react to deviations and disturbances during
operation. These methods typically plan the robot motion for a short time horizon or
single control cycle, including the time for perception and interpretation of the current
robot and environment state. Solutions are, therefore, at most locally optimal and can
run the robot into its constraints even though a feasible global solution likely existed.
As a result, methods attempting to unite the advantages of both approaches have been
proposed [66, 83].

1.1 Challenges and Solutions to Robotic Object
Manipulation

Due to its pervasiveness in robotics and beyond, the term manipulation has various
definitions [59]. This thesis applies the 2015 NASA definition: “Manipulation pertains
to making an intentional change in the environment or to objects that are being ma-
nipulated” [61, p. 13]. A robotics or control engineer attempting to teach a robot
manipulating objects might be able to become more precise, saying ‘to change object
states through selective contact’, i.e., to change an object’s position, orientation, ve-
locity, or rotation. Picking up and placing an object is a widely deployed example of
this definition. The machining of objects is not part of the manipulation definition in
this thesis but is sometimes used by engineers with other manipulation goals, which
can include but are not limited to welding, bending, drilling, cutting, and milling.

Various robotic systems solving basic manipulations tasks are already commercially
available. Nevertheless, a majority of tasks from production to everyday life still require
humans, who can handle unstructured situations naturally. The engineering solution
for handling similarly unstructured tasks are specialized robotic systems. The design of
these systems is a diverse challenge as expertise in various research fields is necessary.
One has to either select amongst various available methods and adapt or extend these
approaches. Or, one has to develop new methods. In this thesis, the following fields
are distinguished, whereas the requirements for each field scale with task complexity:
system architecture design, perception and prediction, task modeling and planning,
robot motion planning, robot control, and robot design. The relative importance of
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each field depends on the task. For example, autonomous household robots typically
face cluttered environments, demanding sophisticated perception, interpretation, and
navigation [44]. In physical human-robot interaction, the focus beyond sensing is also
on robot control to provide compliant and safe interaction [4, 25]. Robots that catch
objects are rather designed with stiff controllers for accurate trajectory tracking at high
velocities [83]. Moreover, catching causes inevitable collisions that must be considered
during task planning [84]. The following narrative provides a brief review of the fields as
distinguished in this thesis by highlighting a selection of goals, challenges, and exemplar
solutions.

System design for a single or set of tasks starts out most developing procedures
and typically requires several iterations. System design is devoted to the choice of
software and hardware architecture, including the definition of interfaces and intercon-
nections. At times, system design includes the environment in which a robot acts, for
example, when obstacles are removed or feeders provide objects in a predefined orien-
tation. Ideally, design iterations converge to a system architecture that decouples the
manipulation problem into well-separated subproblems that can be individually solved.
Therefore, system architecture design is a crucial step as it influences the resolvability
of all subsystems and subproblems.

Environment perception and prediction constitutes the first component in the
event chain and the basis for all subsystems described hereafter. Perception includes
sensor data processing ranging from force feedback [27, 68] to vision, both of which are
subject to quantization errors and noise. Hence, solutions in hardware and software
aim to keep uncertainty to a minimum. Scene interpretation is also part of the per-
ception procedure, which includes, for example, the classification and state estimation
of objects. Contributions in computational learning techniques, driven by increasing
computational power, have advanced the field of perception in recent years [44, 46]. A
major drawback of most learning-based solutions, however, is the absence of guarantees
regarding successful classification. Therefore, the reliability of information has become
an important challenge in perception [58]. As a result, solutions that depend on such
uncertain identification techniques typically face problems during failure analysis as it
is hard to determine whether a failure is due to perception problems or insufficient task
planning [46, 78].

In dynamic environments, the perception challenge extends to the prediction of future
environment states of, for example, moving or flying objects, walking humans, or other
moving obstacles. The time available for perception and prediction is often dictated
by the scenario at hand, for example, the time until a fast flying object reaches a
robot’s workspace or until a collision with an obstacle is inevitable. In such cases,
computational complexity becomes critical and demands highly efficient detection and
prediction methods, additional computational power, or reduced task speed. Therefore,
attempts to solve the complex challenge of perception and prediction sometimes mask
underlying questions in related fields that should instead be answered to provide robust
manipulation solutions. Against this backdrop, this thesis has a strong focus on the
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associated domain of task and robot motion planning. Hence, in the present research,
a throwing robot replaces the typically highly complex perception unit necessary to
quickly perceive and catch flying objects with bounded uncertainty. Moreover, such a
throwing robot allows the intentional introduction of additional uncertainty to verify
the explicitness of previously claimed robustness constraints.

Task modeling and planning in the context of manipulation refers to planning the
motion of the manipulator tool to interact with the environment or object to achieve
desired changes. This tool can be of any kind, from a screwdriver to a hammer or from
a humanoid hand to a simple plate, and is typically mounted at the end of a robot’s
kinematic chain. Therefore, the manipulator tool is commonly referred to as an end-
effector. Achieving the desired change in a robust manner can be a challenging task
as information from the perception step is fraught with uncertainty, at least to some
extent. A manipulation goal definition and resulting manipulation plan must explicitly
consider the potential magnitude of these uncertainties to guarantee successful task
execution. Otherwise, task failures can occur, for example, caused by neglected or
overlooked collisions [78], which cannot be conclusively explained.

End-effectors similar to human hands are a common choice as they can enable robust
grasping by form or force closure. The grasp can compensate minor pose estimation
errors and makes the object state precisely controllable. Opening and closing a grip-
per is, however, a time-consuming process that cannot be arbitrarily accelerated while
keeping the uncertainty compensation constant. For example, the closure time of a
gripper depends on the distance between the fingers and the object, whereas this dis-
tance also represents the potential range of pose uncertainty compensation. The faster
and the more dexterous a manipulation task becomes, the more challenging grasping
becomes.

Dynamic nonprehensile manipulation [55] explicitly addresses such dexterous and fast
tasks by exploiting, rather than merely tolerating, task dynamics [60]. End-effectors
in nonprehensile manipulation are typically generic, for example, a plate [39, 98] or
a box [84], and can be used for a range of tasks and objects [74]. The identification
and modeling of relevant task dynamics is much more challenging, though, whereas
solutions are potentially more robust and generic with learnings that can also advance
grasping manipulation.

Robot motion planning aims to generate robot motions at the joint level that
cause the end-effector to move as desired by the task planning solution. This task-level
approach also defines the operational requirements of the joint motion planner: offline,
online, or even real-time. For example, offline planning can be sufficient if the envi-
ronment is controllable and the task planner is robust [84]. Online approaches enable
reacting to the current environmental situation and are, therefore, more flexible and
extend the range of manipulable objects and object states. Real-time capable plan-
ners are even faster and typically consist of local, analytic inverse kinematic solutions,
which are computationally inexpensive. These planners can adapt to changing task
requirements in every time step.
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Particularly challenging in kinematic trajectory planning is the presence of kine-
matic and dynamic constraints that limit, for example, joint displacement range, joint
velocity, motor torque, and motor power. With the increasing speed and dexterity
requirements of a task, the robot must be operated closer to these limits. Standard
online and real-time planners, in particular, do not always identify a feasible ad-hoc
solution even though one is likely to exist when using a global solution mechanism
offline. Depending on the method, these fast but local planners usually reduce task
speed, deviate from the desired path, or violate constraints. Tasks that do not allow
for such relaxations, but still demand fast and precise end-effector motions at the edge
of a robot’s dynamic capabilities, must provide other means of scalability, such as the
degree of robustness or task duration, which are addressed in this thesis. Conversely,
kinematic trajectory planners can be adapted to specific tasks and, for example, initial-
ized with approximate task knowledge offline to provide close to optimal robot motions
online or in real-time [66, 83].

Robot motion control aims to track the desired joint motions generated in the
previous step. Motion controller candidates typically face noisy measurement data from
various types of transducers, which should be compensated. Moreover, the accuracy
requirements for kinematic trajectory tracking can vary during a task. For example,
position accuracy in pick and place tasks may only need to be high during environ-
ment interaction (pick or place action), whereas path deviations in between might be
acceptable.

The range of solutions is broad and well developed [88, 90]. Some robot motion
planners have the controller integrated or working at the position level (operational
space) such that motion planning and control reverse order in the event chain [45]. In
this thesis, the order is as described in this section and the joint controller is entirely
decoupled. Moreover, the motion controller is assumed to be provided with feasible
joint trajectories that do not violate any constraints while the trajectory is accurately
tracked.

Manipulator design strongly influences the range of tasks a robot can poten-
tially solve. The kinematic and dynamic model, with its respective constraints, varies
depending on the number, class (rotating or linear) and interconnection of joints (se-
rial or parallel), length and material of the joint connectors (links), or the size and
transmission of joint motors and gears. Manipulator design is, however, often not con-
sidered variable when designing manipulation solutions because the use of available
hardware is a precondition, especially in research laboratories. Instead, for example,
optimization-based task and motion planning methods are used to maximally exploit
robot capabilities. If a robot’s capability is still insufficient for handling a particular
task, advanced manipulation techniques from the field of dynamic and nonprehensile
manipulation can be adapted and enhanced [55, 60, 74, 83].
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Figure 1.1: System design for robot-robot throwing and catching based on robust open-loop
task planning and dynamically feasible robot motion planning.

1.2 Contributions

This thesis aims to expand the boundaries of the research field examining fast and
dexterous environment interaction. More precisely, the focus is on establishing contacts
in a fast and robust manner during robotic manipulation tasks. For this purpose, both
the manipulator and objects are considered to move with high absolute velocities in the
moment of contact. The critical role of scenario uncertainties is explicitly considered in
the modeling process, for example, uncertain object states or the inevitable occurrence
of collisions, which are particularly known for their highly state-sensitive prediction
models. Against this background, the task of catching a fast flying object without
grasping serves as an illustrative and challenging example throughout this work.

For the particular problem of catching fast flying objects, the robotic manipulation
system is designed in the context of the fields introduced in Section 1.1, and Figure 1.1
depicts a schematic overview of the system. Compared to most other catching systems
reported in the literature, this system lacks a component typical of such manipulation
tasks: perception using visual feedback. Instead, a throwing robot provides repeatable
flight trajectories. Similar to a visual perception system such as in [46], a throwing
robot introduces bounded, but undetectable, uncertainty. Moreover, robotic throwing
enables the intentional introduction of additional uncertainty, which helps to verify
the robustness bounds claimed in theory. Besides this uncertainty, the ballistic flight
trajectories cast by the throwing robot can be assumed to be similar. Therefore, the
research focus in this thesis is shifted from the perception and prediction problem to the
problem of fast object manipulation under uncertainty. As a result, sufficiently robust
task and robot motion planning allow for cyclic open-loop throwing and catching. With
this goal in mind, the remainder of the thesis contributes to the existing body of works
the following modeling approaches and methods:
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Figure 1.2: A dynamical system parametrization enables ballistic nonprehensile catching
with dynamically feasible offline motions using hybrid bouncing ball formalisms.

1. Generalized problem definition: A problem definition is formulated for catch-
ing (fast) flying objects of arbitrary shape and is independent of the robotic prob-
lem. In contrast to goal formulations in previous works defined as those which
exactly match the object state with a robot’s end-effector motion [78], in this
work, the formulation explicitly allows for provable uncertainty compensation,
i.e., robustness:

(i) The goal of catching arbitrarily shaped objects is defined by the shortest
distance and its time derivative between the object and catching device.

(ii) The large number of uncertainty sources in practical catching is reduced
to three representative uncertainty types, which must be compensated for
to achieve provably robust catching: (U1) uncertain initial relative states,
(U2) uncertain relative accelerations over time and (U3) uncertain state
resets at collisions.

The problem and uncertainty definitions were first published in the IEEE Trans-
actions on Robotics article [84].

2. Hybrid system stabilization for ballistic robotic catching: Ballistic robotic
catching is connected to hybrid control theory to enable convenient modeling and
stability analysis of the inevitable occurrence of collisions. Uncertainties, which
are mostly due to the limited knowledge of the object state, make ideal contact
transitions from no contact to continuous contact unlikely if both the object and
end-effector are rigid. Hence, collisions occur inevitably, a topic which has been
neglected in previous works.

(i) The gap between hybrid control theory and ballistic robotic catching is
closed with a dimensionality reduction. Under the assumption of ballistic
free flight, the occurring sequence of collisions can be parametrized as a
one-dimensional hybrid bouncing ball problem along the flight trajectory.
A real-time capable, task motion planner is proposed to reconstruct the de-
sired, full-dimensional end-effector motion. As a result, robust solutions for
the hybrid bouncing ball, well-studied in hybrid dynamical systems theory,
can be adapted and extended for object catching.
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(ii) As a consequence of the previous contribution (i), stability notions for the
one-dimensional set-valued bouncing ball problem are extended for object
catching. At first, robustness against an uncertain kinematic coefficient of
restitution is proven for a range of object states and relative accelerations.
Second, an analytical solution for the initial relative velocity is derived,
which maximizes distance uncertainty compensation and, therefore, signif-
icantly increases catching robustness. Third, an analytic prediction of the
maximal remaining rebound height for uncertain bouncing balls is derived,
which enables quantification of catching robustness with box-shaped end-
effectors of different heights.

(iii) Simulation studies have revealed that the proposed methods can compensate
for the significant offset in the relative acceleration. A full-dimensional
simulation with a rotating cube object demonstrates that this compensation
includes deviations neglected during dimensionality reduction.

The above contributions have been published in the IEEE Transactions on Robotics
article [84].

3. Feasible kinematic trajectories for manipulation with intermittent con-
tacts: Inspired by humans, who only approximately plan contact with objects,
the free choice of contact is formally introduced as two virtual joints at the end
of the robot’s kinematic chain. The major advantage of these two joints is their
unconstrained nature regarding velocity and acceleration. As object catching is
a highly dynamic task that demands potential catching robots operate close to
their limitations, these virtual joints can be a key to dynamically feasible robot
motions.

(i) A first approach parametrizes the additional redundancies gained with the
virtual joints offline. Constrained optimization then exploits these joints to
maximize task robustness while guaranteeing kinematic and dynamic feasi-
bility. Adaptations to online changes are not possible with this approach,
but experiments described in Chapter 5 reveal that the robustness is still
sufficient for reliable task execution.

(ii) A second approach formalizes the choice of weighting parameters for in-
verse differential kinematic trajectory planners. Two of which are compared
against each other and the kinematic formulation without the novel virtual
joints.

The first approach is part of the journal article [84] published in the IEEE Trans-
actions on Robotics, whereas the second approach has been published in the IEEE
Robotics and Automation Letters with [83].

4. Experimental demonstration of robust catching: A simple robotic system
consisting of two robots, each with only two actuated joints, is used as a testbed to
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demonstrate the catching robustness achieved with the aforementioned contribu-
tions. The experimental setup is distinctive due to the absence of visual feedback
or grasping devices. Extensive experiments have demonstrated that both are not
necessary components for reliable catching in the presence of uncertain object
states induced by a throwing robot. These experiments have also suggested that
the above methods might even allow simultaneous catching of multiple objects
with different shapes, such as spherical and polygonal.
The experimental material has been partially published in the IEEE Transactions
on Robotics article [84] and in the IEEE Robotics and Automation Letters arti-
cle [83]. Both articles have open-access videos available on the publisher’s home-
page.

1.3 Thesis Outline

After the introduction, the problem of catching fast flying objects is formulated in
Chapter 2, which includes an extensive review of the relevant dynamics. Here, how the
problem can be decoupled more efficiently compared to previous work is also discussed.

In Chapter 3, the inevitable occurrence of collisions is regarded at the task level and,
therefore, treated as independent from the robot motion planning challenge. Dimen-
sionality reduction through parametrization of the flight trajectory and efficient task
planning close the gap between ballistic catching and the hybrid bouncing ball problem
well-known in the hybrid control literature. Extensions proof and quantify robustness
regarding the uncertainty types defined in the previous chapter. Simulations at the
end of the chapter illustrate the contributions of this thesis to the wider research field.

Chapter 4 details the robot motion planning challenge imposed by the high operation
velocities in robotic catching. A novel kinematic notion enables formal exploitation of
the free choice of contact to achieve dynamically feasible robot motions offline and in
real-time.

Chapter 5 demonstrates, using the example of a robot-robot experiment, the signif-
icance of the contributions provided by this thesis.

Chapter 6 then provides a review of the achievements of the thesis and discusses
ideas for future extensions.
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2 The Problem of Catching Fast Flying
Objects

Catching fast flying objects is a complex challenge, as detailed in Chapter 1. In this
chapter, the problem of softly catching fast flying objects is divided into two conceptual
dimensions to enable clear references and focused discussions. In the first conceptual
dimension, two problem levels are distinguished, which are related to two physically
different challenges: task motion planning and robot motion planning. The second
dimension divides throwing and catching into four temporal phases characterized by
different goals and challenges at both levels. Then, the necessary mathematical and
physical background for both problem levels are reviewed. A novel generalized for-
mulation of the catching problem detailed in Section 2.3.3 and integration of various
uncertainties into three representative uncertainty types in Section 2.3.5 constitute a
research contribution, which is also presented in [84].

2.1 Static Catching and Dynamic Catching

Robots catching an object is a challenging and frequently considered testbed to demon-
strate the performance of object tracking combined with motion planning in highly
dynamic environments. A successful catch relies on effective solutions in both track-
ing and planning. Inversely, shortcomings of the proposed solutions, such as neglected
dynamic feasibility or inaccurate estimation of the object state, typically account for
failed attempts. The complexity of many proposed systems hinders an analytic deriva-
tion of the mixture of errors that lead to the observed failures. This research discusses
the inevitable occurrence of collisions as a critical, but often overlooked, shortcoming
of previous works.

Works focusing on the visual tracking and prediction problem before the actual catch
often implement static catching (hard catching) with a gripper [11, 46, 47, 52, 80], where
the goal is to track and predict the object flight trajectory with high precision and as
quickly as possible. The remaining time is then used to move the catching robot to a
reachable kinematic goal posture such that the gripper intercepts the flight path and
catches the object at the right moment [24]. This approach generates impact forces and
a rebound that can cause the object to bounce off the gripper in cases of uncertainty.
Thus, static approaches are limited to soft, relatively light objects or compliant end-
effectors to prevent permanent damage. For example, in [26], static catching was
used as a challenge for visual servoing with a stereo vision system in which the robot
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motion planning was based purely on visual information. At the end of the kinematic
chain, the robot is equipped with a bucket to catch a ball. In another approach,
online optimized intercepting motions at a kinematic level allowed for faster reactions
and, therefore, shorter flight distances [11]. A recent and significant leap forward
in tracking and predicting flight of objects was made in [46] where programming-by-
demonstration accurately predicted flight trajectories, including rotations for objects of
complex shapes. Moreover, the approach could predict the best static catching pose for
the gripper. In these static and grasping-based approaches, the contact time estimation
was crucial to close the gripper at the right time. Nevertheless, the focus on kinematic
interception leads to high impact forces if both the manipulator and object are not
specifically designed.

Dynamic catching (soft catching), in which the robot adapts to the motion of the
object [9, 41, 42, 85, 93], enables handling a wider range of objects and is less sensitive
to timing inaccuracies [78]. Without a gripper, the goal is formulated as a generic non-
prehensile [55, 74] catching task based on the fundamental dynamics [81] that model
continuous contact between a free-flying object and the robot end-effector. A very sim-
ple nonprehensile robot-robot (i.e., with only 1-DOF each) scenario for spherical objects
was simulated in [92] under the assumption of collision-free contact establishment.

Interestingly, one of the first catching systems accomplished the task dynamically
(velocity and acceleration matching) [41, 42] and not statically. In this early work, a
4-DOF robot with a gripper closed perpendicular to the flight direction to avoid object
impacts with the end-effector. The dynamic approach was necessary because vision
systems were still too imprecise to determine accurate arrival times. The grasping
end-effector also took a considerably long time to close. at about the same time, [17]
proposed a “mirror law” to generate the motion for a dynamic catch in combination
with a well-tuned PD-controller after the initial impact. Later, a single camera in a
robot’s hand was sufficient for successful interception [22, 52]. Here, the flight path was
followed to dissipate impact energy while the gripper closed. The related problem of
kinematic and dynamic feasibility was not formally treated in these works, except for
[48] in which static and dynamic catching were compared and robot dynamics received
attention.

More recent work has addressed some of the feasibility problems in dynamic catch-
ing. In [9], the goal definition was extended to match the acceleration of a thrown
basketball. In cases of kinematically or dynamically infeasible desired robot motions,
an indirect catch is introduced, i.e., a single controlled rebound before the actual catch.
In [67], the idea of direct and indirect catching was generalized to polygonal objects.
Kinematically feasible offline trajectories were generated in [78] as the basis for a Linear
Parameter Varying (LPV) approach. Asymptotic convergence to the object’s trajec-
tory was demonstrated with the LPV system definition. However, dynamic feasibility
was neglected, which was later considered responsible for some of the failed catching
attempts in the experimental evaluation.
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2.2 Dynamic Throwing and Catching

2.2 Dynamic Throwing and Catching

Majority of research related to catching objects with robots considers human throwers,
as reported in Section 2.1. Having a human involved for such a challenging but everyday
task is a motivating and attractive idea. A second glance, however, reveals disadvan-
tages from a scientific perspective, as experimental evaluation strongly correlates with
the particular individual. Of note, when proposed methods succeed at a rate of less
than 100%, identifying reasons for failures is difficult and often limited to educated
guessing. Reproducible failure scenarios, with a significant amount of trials, involving
particular (relative) object states or robot motions, are rarely reported. Only the triv-
ial case of an object flight that does not pass through a robot’s workspace sufficiently
centrally is frequently mentioned. In combination with neglected robot dynamics and
constraints, the applicability of the most often proposed methods for one’s own robot
is difficult to judge given the provided data, even for experienced roboticists.

As a consequence of the limitations imposed by uncertain human throwing, this re-
search uses a controllable robot-robot scenario to enable reproducible and statistically
significant results. Moreover, throwing and catching are performed nonprehensile and
dynamic. The nonprehensile approach combined with rigid objects and end-effectors
is sensitive regarding impacts, which in turn, are inevitable and sensitive regarding
state uncertainties of flying objects. Moreover, the absence of grasping requires a dy-
namic manipulation approach, which refers to the active consideration of the dynamics
of the manipulated (here, flying) object in all planning stages. For example, during
nonprehensile throwing, the robot motion must be planned such that the object has
a known position on the end-effector at the point of release. As a result, the effect
of uncertain object states and consequent impacts become visible and repeatable, as
these collisions are occasionally not compensated for by a gripper. From a user per-
spective, the dynamic approach, which includes the robot end-effector adapting to the
flight motion, provides supplemental advantages because potential impact forces re-
main low, preventing object damage. Furthermore, the potential interaction duration
during catching increases from a few milliseconds, which is typical for static catching,
to a few hundred, allowing the development of control strategies for the catch.

Hereafter, the problem of robot-robot throwing and catching is discussed along with
two conceptual dimensions. Two problem levels are distinguished in the first dimension
concerning two physically different challenges: task motion planning and robot motion
planning. Section 2.2.1 briefly characterizes both levels. The second dimension divides
throwing and catching into four temporal phases characterized by different goals and
challenges at both levels. Section 2.2.2 briefly characterizes these four phases (P1-P4).

2.2.1 The Two Level Problem: Task Motion and Robot Motion

Catching a thrown object demands a combination of several research fields in automatic
control and robotics. The challenges range from detecting the flying object to planning
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Figure 2.1: System design for robot-robot throwing and catching. On task level, a robust
open-loop motion for the end-effector is planned. On joint level, dynamically
feasible robot motions are generated to move the end-effector according to the
task plan.

the interaction for successful catching or performing the interaction with a real robot.
As this research resolves the perception challenge with a controllable environment by
using a throwing robot, planning the catching interaction and the robot motion are the
major subjects, which are distinguished as follows (see Figure 2.1 for an illustration):

• Task Level refers to the challenge of identifying an interaction with free flying
objects that leads to robust catching, independent of the catching agent1. Robust,
in this context, refers to the ability of repeatedly compensating for a significant
number of uncertainties in the environment (e.g., an uncertain object state) and a
set of environment parameters (e.g., object shape or material). The interaction is
performed with a catching device constituting the task system together with the
flying objects. The catching device can be, for example, a plate, box, or gripper
and is the only part of the task system that can be accelerated by the catching
agent, making it the input of the task system.

• Joint Level in the context of robust catching refers to a robot agent and the
challenge of planning a physically feasible motion for every joint of the robot. All
joint motions that might become necessary during operation must be guaranteed
to be feasible to achieve reliable task execution. At the joint level, feasibility
refers to staying within the limits of the joint range, joint velocity, and joint peak
torques. Moreover, it is characteristic for dynamic catching motions that high
velocities are combined with complex trajectories requiring operation close to the
defined limits. As a result, motor power limits must also be considered. Joint-
level planning can be based on different degrees of offline knowledge ranging from

1not necessarily a robot from the task level perspective
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Figure 2.2: Block diagram outlining the four phases for joint robot-robot throwing and
catching.

a completely known task plan to only approximate task knowledge. In the latter
case, the task plan adapts to updated environment knowledge within certain
bounds, enabling closed-loop catching if task and joint planners are real-time
capable.

2.2.2 Four Phase Approach: Throwing, Acceleration, Tracking,
Deceleration

For a focused discussion, this research distinguishes between four general robot motion
phases per each throwing and catching sequence, as visualized in Figure 2.2:

P1) A first robot throws an object. In this research, optimal control based motion
planning maintains dynamic feasibility and ensures dynamic fixation of the object
during acceleration. At nonprehensile release, limited and repeatable uncertainty
in the object state remains.

P2) A second robot accelerates from rest to the goal state, which is the initial state of
P3. Again, optimal control based motion planning is used to solve the boundary
value problem in the presence of kinematic and dynamic constraints.

P3) The second robot performs a decelerating motion on the ballistic flight path. Dy-
namic requirements that enable robust ballistic catching (Chapter 3) and feasible
motion planning (Chapter 4) are the major subjects of this research. Along with
the discussion, special attention is paid to the relative state between object and
end-effector at the start of the following motion.
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P4) The second robot must leave the ballistic flight path at some point while still in
motion. Again, optimal control based motion planning is used, but here, negative
relative acceleration in normal end-effector direction must be applied. Due to
kinematic and dynamic limitations of typical robots, a continuous contact at the
end of P3 is mostly not possible or not desirable from an efficiency (throughput)
perspective.

2.3 Task Motion Planning Problem

This section introduces fundamental models describing the task system. Section 2.3.1
introduces the relevant coordinate systems and their generalized relationships. Sec-
tion 2.3.2 defines the free-flight dynamics of rigid objects, for which Section 2.3.3 then
proposes a generalized problem definition. Section 2.3.4 discusses models for the in-
evitable occurrences of collisions. Finally, Section 2.3.5 formulates three representative
types of uncertainties, which aggregate the majority of the versatile uncertainties in
reality.

2.3.1 Homogeneous Transformations

In this section, common fundamental scenario descriptors [56, 88] are introduced on
task level and independent of a particular robotic kinematic structure.

Consider general rigid bodies, each with an orthogonal frame T attached to it. The
configuration of T with respect to a world frame T W is represented by the matrix
T ∈ SE(3) defined as

T =

[
R p
0T 1

]
∈ R4×4, (2.1)

whereas R ∈ SO(3) ∈ R3×3 is an orthonormal rotation matrix and p ∈ R3 is the
position of the origin of T in T W. The particular attachment of T to its respective
body may vary subject to the task need.

Two frame types beyond T W are considered in this research: object frames T O and
an end-effector frame T E. The origin of object frames T O is attached to the object’s
center of mass and the axes are aligned with the object’s principal axes of inertia. The
end-effector frame T E has the origin fixed on the end-effector surface, the first two
axes are parallel to the surface and the third axis is normal to the end-effector surface.
Ideally, the end-effector is later attached to the robot such that one of the first two axes
is also parallel to the last joint’s axis of rotation while the other axis is perpendicular
to it.

Furthermore, the configuration of a frame T j with respect to another frame T i is
denoted by

T i
j =

[
Ri
j pij

0T 1

]
, (2.2)

16
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whereas i, j ∈ {W, E, O} correspond to the world frame, robot’s end-effector frame and
object frame, respectively. In case of i = W descriptors are omitted in the remainder
of this work.

If (2.2) is known, the inverse configuration T j
i describing T i with respect to T j can

be derived. First, note that the orthonormal property of the rotation matrix allows for

Rj
i =

(
Ri
j

)T
. Then, the inverse configuration simply computes as

T j
i =

(
T i
j

)−1
=

[
Rj
i −R

j
ip

i
j

0T 1

]
, (2.3)

refer to [88] for details.

The configuration matrices (2.2)–(2.3) allow to change the frame of reference for
a position vector pi in T i with a single matrix multiplication to pj in T j. For this
purpose, the homogeneous representation of the position vector needs to be introduced
as

p̃ =

[
p
1

]
. (2.4)

With the help of (2.4) the change of the reference frame for a position vector is

p̃i = T i
jp̃

j and (2.5)

p̃j = T j
i p̃

i =
(
T i
j

)−1
p̃i. (2.6)

2.3.2 Kinematics of Free Ballistic Flight

Perceiving, estimating and describing the free flight of arbitrary objects is a challeng-
ing topic because occurring dynamics can range from chaotic behavior to quasi-linear
motions. For example, a partially filled and rotating bottle impedes an analytical pre-
diction of flight trajectories as the liquid state inside can barely be sensed or modeled.
In contrast, a rigid steel object in free flight may only be significantly influenced by
the constant gravitation while aerodynamic drag can be neglected.

In this thesis, the ballistic object flight of rigid objects is considered, allowing the
research to focus on task and robot motion planning for robotic catching. Therefore,
the mass-surface ratio is assumed to be sufficiently large, such that aerodynamic drag
can be neglected. A filled aluminum ball, cuboid and flask-shaped object meet this
assumption and are used as example objects in this research. Hence, free object flight
is considered a linear dynamical system describing the motion of the object frame T O
with respect to the world frame T W during free flight. Consider a world frame T W

defined by orthogonal unit vectors û, v̂, and ŵ, as depicted in Figure 2.3. The first two
unit vectors û and v̂ are parallel to the floor. The third unit vector ŵ is normal to the
floor and thus aligned parallel with the direction of gravity g. An object flying in T W
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û

v̂

ŵ

θ

α

Γ

T W

pO(t)

g

ν

Figure 2.3: Free object flight, where the object’s center of mass follows a ballistic trajectory
in the flight plane Γ.

has its center of mass and therefore the origin of T O at

pO(t) :=

u(t)
v(t)
w(t)

 (2.7)

with an orientation RO(t). Free flight translation under the assumption of negligible
aerodynamic drag is therefore described by the kinematic differential equation

ü = 0, v̈ = 0, ẅ = −g (2.8)

with the initial positions, typically specified at the release or measurement instant
t = tr, at

u(tr) = ur, v(tr) = vr, w(tr) = wr, (2.9)

and initial velocities

u̇(tr) = νr cos(αr) cos(θ), (2.10a)

v̇(tr) = νr cos(αr) sin(θ), (2.10b)

ẇ(tr) = νr sin(αr), (2.10c)

whereas νO(tr) = νr is the initial object velocity in flight direction (alongside the flight
path), the initial flight path angle with respect to the floor is denoted α(tr) = αr, and
θ specifies the orientation of the flight plane Γ around ŵ.

Solving (2.8) with the initial conditions (2.9)-(2.10) by integration results in

pO(t) :=

u(t)
v(t)
w(t)

 =

 ur + (t− tr)νr cos(αr) cos(θ)
vr + (t− tr)νr cos(αr) sin(θ)

wr + (t− tr)νr sin(αr)− 1
2
g(t− tr)2

 . (2.11)
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The velocity of the object’s center of mass is therefore

ṗO(t) :=

 u̇(t)
v̇(t)
ẇ(t)

 =

 νr cos(αr) cos(θ)
νr cos(αr) sin(θ)

νr sin(αr)− g(t− tr)

 , (2.12)

which allows to compute the object velocity in flight direction by

νO(t) =

√
ṗT

O(t)ṗO(t) (2.13)

and the flight path angle by

α(t) = tan−1

(
ẇ(t)√

u̇2(t) + v̇2(t)

)
. (2.14)

The object rotation ω :=
[
ωu ωv ωw

]T
during free flight is constant as no acceler-

ating forces are encountered. Hence, the orientation change is

ṘO(t) = RO(t)S(ω), where S(ω) =

 0 −ωw ωv
ωw 0 −ωu
−ωv ωu 0

 , (2.15)

which can be solved, for example, by numeric integration given an initial RO(tr).
During free flight, a rotation θ exists such that the velocity in v̂-direction becomes

zero. This research assumes henceforth without loss of generality that

θ = 0 (2.16)

and v = v̇ = 0 hold at all times allowing planar treatment in the plane of flight Γ. The
respective center of mass position of the planar system is denoted

p̄O(t) :=

[
u(t)
w(t)

]
=

[
ur + (t− tr)νr cos(αr)

wr + (t− tr)νr sin(αr)− 1
2
g(t− tr)2

]
(2.17)

and object velocities alongside the ballistic flight path simplify to

˙̄pO(t) :=

[
u̇(t)
ẇ(t)

]
=

[
νr cos(αr)

νr sin(αr)− g(t− tr)

]
. (2.18)

Remark 2.1. Assuming θ = 0 and v = v̇ = 0 during free flight is mild because no
acceleration due to gravity occurs in v̂-direction. In the presence of collisions, assuming
v̇ = 0 is only mild for spherical objects. Due to the poor predictability of polygonal
collisions, instantaneous changes of v̇ may occur. Motion in this direction, however,
may be easily countered with a box-like end-effector design and the explicit consideration
of uncertain collisions.
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SO

SE SE

h
h

SO

Figure 2.4: Distance measure h between object surface SO and end-effector surface SE.
Rotations of the object lead to bounded uncertainty in h for identical distances
between the object center of mass and SE.

2.3.3 General Catching Problem

Consider a generalized object with surface SO and a robot catching end-effector with
desired catching surface SE (Figure 2.4) on the ballistic path introduced with Sec-
tion 2.3.2. The catching surface SE can be of various types, e.g., a simple plate, the
palm of a gripper, or the bottom of a box, as discussed later in this thesis. The distance
between SO and SE is then defined as

h := min
pSO
∈SO,pSE

∈SE

∥∥pSO − pSE∥∥ , (2.19)

where pSO and pSE are points on the object and end-effector surface, respectively.
Initially, surfaces SO and SE are disjoint such that the object is above the end-effector:
h > 0. The time derivatives of h are the relative velocity

ν := d
dt
h (2.20)

and the relative acceleration
γ := − d2

dt2
h. (2.21)

Hence, the goal of catching an arbitrarily shaped, fast flying rigid object corresponds
to

h(t→∞) = 0 and ν(t→∞) = 0, (2.22)

where γ > 0 must hold.2

In contrast to the distance definition for nonprehensile manipulation in [56], the ap-
proach (2.19) always selects the closest point on SO instead of measuring the distance
to the object’s center of mass. Object rotation, thus, causes considerable uncertain-
ties to the distance measurement and its derivatives. These uncertainties, however,

2In practice, one may replace the asymptotic formulation in (2.22) with a finite time goal depending
on the individual setup. Section 3.4.3 discusses this issue by means of Zeno behavior resulting
in (3.37).
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are formally considered as defined in Section 2.3.5 and analyzed by a simulation in
Section 3.5.2. The clear advantage of formulation (2.19) is that the occurrence of col-
lisions simplifies to the condition h = 0 and ν < 0, which is the key for closing the
gap between spatial catching and the one-dimensional hybrid bouncing ball detailed
in Chapter 3. Most importantly, this approach shifts object orientation and rotation
from the formal relative description to the scenario uncertainties ultimately leading to
intuitive solutions that are easy to implement.

Another major difference in this thesis to existing catching work is the goal definition
(2.22). Previous work on dynamic catching has typically targeted an exact match of an
object and end-effector velocity at an interception point [52, 78]. Such a goal cannot
be achieved formally in practice as some uncertainty always remains. Achieving (2.22),
however, is more realistic as this condition is not immediately violated in the presence
of uncertainties and may encompass the inevitable sequence of collisions.

2.3.4 Collision Modeling

A collision is an omnipresent phenomenon that appears when two bodies contact (h = 0
in (2.19)). In a robotic context, popular examples are non-negligible ground impacts
of walking robots or batting and catching robots in the field of dynamic manipulation.
Prior to such contact, the contact points on the surfaces of each body converge with
a non-zero relative velocity, which persists to some extent at the instant of contact.
Hence, reacting forces and torques inevitably occur, which modify the motion of the
affected bodies, also referred to as a collision. During such collisions, the contacting
bodies are subject to elastic or plastic deformation, or both, accompanied by dissipa-
tion of energy [36]. The forces are comparably high as the contact duration is typically
very brief, i.e. in the order of a few milliseconds. This short duration together with
the large force magnitudes constitute a modeling problem highly sensitive to param-
eter uncertainty. Bodies (objects) that are not spherical or experience multi-contact
collisions, as in the first strike of a game of pool, have particularly challenged, and still
test, many researchers.

In this section, common classification criteria and collision models are reviewed and
briefly discussed in the context of object catching. The basis of many works up until
today has constituted Routh’s work [73], which proposes a graphical, impulse-based
analysis. An updated and extensive introduction to the field of non-smooth mechanics
is included in Brogliato’s book [15]. Coutinho [23] and Brach [13] provide alternatives
to Brogliato’s book for further reading and with more focus on impacts. The literature
review conducted by Gilardi and Sharf [33] categorizes and reviews the topic more
concisely, whereas Stewart [91] provides a rather extensive mathematical view combined
with illustrative examples.
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Line of Impact

COM

COM

POC

Figure 2.5: Impact classification and modeling depends on the center of mass (COM) lo-
cations with respect to the line of impact. The line of impact represents the
normal direction in the point of contact (POC).

Figure 2.6: Impacts between spherical objects with equal mass distribution and a plate are
always central. Impacts between cuboids or other objects with unequal mass
distribution and a plate are rarely central.

Impact Classification

Consider two bodies colliding at one point, as depicted in Figure 2.5. In this case,
there exists an infinitesimal contact surface defining a tangential contact plane3 with a
respective normal, i.e.,the line of impact. Velocities at the point of contact, before and
after impact, can be separated into a normal velocity parallel to the line of impact and
one (2D) or two (3D) tangential velocities perpendicular to the line of impact.

If the center of mass for both objects are positioned on the line of impact, a central or
collinear impact applies. In this case, the normal velocity component is decoupled and,
therefore, does not influence tangential velocities or rotation, and vice versa. Colliding
rigid spherical objects with equal mass distribution always constitute a central impact.
The same applies for the collision of such objects with a plate, as in the left example of
Figure 2.6, that can be assumed to have a comparably infinite mass, for example, a ball
bouncing on a floor or table. In both of these special cases for spherical objects, the
impact modeling problem is no longer sensitive to the relative center of mass position.

3If the contact point of one of the bodies is an ideal vertex, the contact plane may be defined by the
second object [96]. The rare problem of double-vertex impacts is neglected.
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2.3 Task Motion Planning Problem

Hence, impact modeling and the prediction of an impact outcome are simpler and much
more reliable.

If the center of mass for one or both objects are not positioned on the line of impact,
an eccentric impact applies. In this case, the normal velocity may induce or reduce
tangential velocity and rotation, or vice versa. Here, a small change in the relative
center of mass position may cause large variations in the post-impact state of both
colliding objects. For most of the non-spherical objects, as in the two right-hand
examples in Figure 2.6, eccentric impacts are the rule rather than the exception. For
example, throwing a dice repeatedly with the same result is almost impossible, whereas
the same task is rather simple using a partially elastic ball, such as a basketball [8].

Further classification regards the velocities at the impact point. A direct impact
applies, if the initial contact velocity of both bodies is aligned with the line of impact,
i.e., there are no tangential velocity components. If one or both velocities are not
aligned with the line of impact, an oblique impact applies. Sometimes, tangential
impacts [96] are defined in addition to complementing the previous two definitions
with the mostly theoretical case of no velocity components in the normal direction.

Energy Loss

The goal of impact modeling is to predict the post-impact states of colliding bodies
based on pre-impact states and other parameters. The particular selection of these
other parameters provides a distinction between the large number of proposed tech-
niques, including the common examples of the geometry of bodies, material properties,
contact duration and friction [36].

Two phases in the deformation process during one collision event are distinguished
as compression and restitution. The compression phase begins when the bodies contact
and persists until the maximum deformation is reached. The restitution phase starts at
the moment of maximum deformation and continues until the bodies separate. Energy
is lost depending on the aforementioned parameters the define a collision system, for
example, in non-recoverable deformation, sound or heat [8]. Typically, a coefficient of
restitution 0 ≤ e ≤ 1 is defined to describe this loss of energy. The following terms
have been established to describe the range of possible energy loss and deformation:

• Perfectly elastic (e = 1), where no energy is lost.

• Perfectly plastic (e = 0), where all energy is lost and deformation is permanent.

• Partially elastic (0 < e < 1), with partial energy loss, but without significant
permanent deformation.

• Partially plastic (0 < e < 1), with partial energy loss and permanent deformation.

As such, perfect elasticity is of a rather theoretical nature, whereas partial elasticity
or plasticity constitute the most common cases. Nevertheless, nearly perfect plasticity

23
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might also be achieved in practical scenarios, for example, by covering a body with
slow recovery foam [57].

Impact Models

Modeling impacts is a complex challenge characterized by large forces acting over a
very brief time duration. Also, other physical phenomena occur, for example, vibra-
tions, inner-body strain, locally varying persistent and non-persistent deformations,
and several types of friction. All these phenomena can cause a considerable amount
of energy loss and a change of the post-impact state in the system of colliding bodies.
Most work aiming for precise impact modeling, therefore, is limited to rigid bodies
because otherwise, expensive simulations of inner-body processes, e.g., using finite ele-
ment methods [6, 7], are necessary. Nevertheless, previous research has demonstrated
that models based on the rigid body assumption are sufficiently precise to describe a
significant amount of real systems [96].

During the very brief impact duration, a normal force F acts along the line of impact.
Due to its nearly instantaneous nature, this contact force is typically associated with
an infinitesimally short time integral (Dirac’s delta function)

P = lim
∆t→0

∫
F (t)dt , (2.23)

termed as an impulse. By definition, this integral is finite.
The total impulse P during an impact can be separated into a compression impulse

Pc and restitution impulse Pr. The loss of energy during an impact may then be
represented according to Poisson’s law of restitution with the kinetic coefficient of
restitution defined by

eP =
Pr

Pc

. (2.24)

Considering that P = Pc +Pr, this approach asserts that impulse gained during restitu-
tion does not exceed the impulse generated during compression. This law is widely ap-
plied to frictional impacts in combination with Coulomb’s law of friction using Routh’s
graphical impulse analysis [73]. Jia extended the impulse analysis to three-dimensions
using virtual springs and a system of differential equations including impulse and energy
terms [43].

A second, common model follows Newton’s law of restitution, which defines a kine-
matic coefficient of restitution

eN =
V +

V −
, (2.25)

where V − and V + are the normal velocities before and after a collision at the contact
point. These velocities are defined along the line of impact. Although a simple de-
scription of the complex impact process, the model (2.25) is often sufficiently accurate,
especially in cases of direct and central impacts, e.g., a vertically bouncing ball. In the
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presence of complex bodies, however, situations may be created in which Newton’s law
violates conservation of energy principles [96].

This research applies Newton’s law (2.25) for its simplicity and to build on its wide
spread use in control theory. Knowing that this model is imprecise when describing im-
pacts of arbitrarily shaped objects, the coefficient of restitution is considered uncertain,
which is also reflected in the use of

ρ := eN (2.26)

with ρ ∈ [0, 1). The rare situations in which energy principles are violated (ρ ≥ 1), are
neglected hereafter.

2.3.5 Generalized Uncertainty Formulation

In a catching scenario, various uncertainties occur and are difficult to measure or pre-
dict. Nonetheless, boundedness can be assumed, and the following three types are
distinguished to account for these uncertainties:

U1) Uncertainty in the initial state h(0) and ν(0) defined with (2.19) and (2.20) due to,
for example, imprecise object state estimation including orientation and rotation
gained from real-time vision or based on the repeatable, open-loop robot throws
as in this research.

U2) Time-varying uncertainties in γ(t) defined with (2.21) due to, for example, ob-
ject rotation, neglected aerodynamic drag, imprecise robot motions, and object
motions deviating from the ballistic path. Errors in the estimation of h and ν
for t > 0 as a consequence of U1 lead to translational object motion in parallel
to SE (perpendicular to h), which in turn affects the relative acceleration.

U3) Collisions in catching are inevitable due to U1 and U2. The outcome of such col-
lisions is unpredictable and thus, the kinematic restitution ρ defined with (2.25)-
(2.26), which acts perpendicular to SE, must also be considered as uncertain.

From the problem formulation defined in Section 2.3.3 and uncertainties U1-U3, it fol-
lows that catching an arbitrarily shaped, fast-flying rigid object is similar to stabilizing
a one-dimensional bouncing ball with considerable uncertainties. Thus, this research
concentrates on generating robustness against U1-U3 generally, instead of calculating
scenario-specific bounds for all uncertainties.

Remark 2.2. The acquisition and forward projection of an object orientation RO(t)
and rotation ṘO(t) defined with (2.15), is an expensive perception challenge. Therefore,
given uncertainties U1-U3 and the distance definition (2.19), the object orientation
RO(t) is neglected throughout all task planning stages hereafter. Instead, U1 and U2
account for the range of possible orientations and rotations. The distance variation due
to unknown orientations is naturally bounded and rotations are assumed to be bounded.
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2.4 Robot Motion Planning Problem

This section introduces fundamental models describing the robot motion. Section 2.4.1
presents geometric transformations for describing a manipulator configuration. Sec-
tion 2.4.2 briefly reviews manipulator dynamics and constraints that must be met to
guarantee accurate robot motions. Section 2.4.3 reviews the concept of kinematic re-
dundancy, which provides the basis for Chapter 4.

2.4.1 Robot Kinematics

A manipulator is an articulated robotic structure consisting of a series of connected
rigid bodies. The connections are called joints. These joints can either be directly
controllable with a motor (actuated, active) or can be unactuated (passive). Passive
joints are influenced indirectly through the motion of active joints, external forces, and
the dynamics of connected rigid bodies. Together, active and passive joints constitute
the kinematic chain of a manipulator. An extensive discussion of the various types of
kinematic chains is provided in in [88].

Consider a manipulator with m joints, also referred to as an m degrees of freedom
(DOF) robot. The state of this m-DOF robot is represented by its joint displacements
qm ∈ Rm, which can be angles in case of revolute joints or distances in case of linear
joints. At one end, the manipulator is attached to the environment, where the world
frame T W may also be defined. At the other end, an end-effector (tool, gripper) is
attached to the manipulator with its respective frame T E. The relation between the
two frames, depending on a particular configuration qm, may then be expressed with
a transformation

TW
E (qm) = TW

1 (q1)T 1
2(q2) . . .Tm−1

m (qm)Tm
E , (2.27)

as introduced in (2.2). The final multiplier Tm
E defines the end-effector frame T E with

respect to the end of the kinematic chain and is often included in the final transforma-
tion Tm−1

m (qm). If the end-effector device is exchanged, the pose Tm
E might also change.

Moreover, it should be noted that the computation of

Tm−1
m (qm) =

[
Rm−1
m (qm) pm−1

m (qm)
0T 1

]
(2.28)

is not unique and conventions for its computation exist, for example, the Denavit-
Hartenberg Convention [88].

Combining the kinematic transformation (2.27) with (2.2)-(2.18) enables the com-
putation of the relative pose of an object with regard to the end-effector

T E
O(qm, t) = T E

W(qm(t))TW
O (t) (2.29)

in robotic scenarios. As a result, the distance h defined in (2.19) and its derivatives
can be simulated.

26



2.4 Robot Motion Planning Problem

2.4.2 Robot Dynamics and Joint Constraints

The kinematic definitions in Section 2.4.1 only describe the end-effector configuration
concerning the world frame in a geometric way. The manipulator’s mass and inertia
are disregarded. A body of work on robotic catching settles for this limitation of
mass negligence to simplify robot motion planning [10, 17, 78]. Experiments such as
in [78], however, have demonstrated that neglecting any mass-related properties might
be overly restrictive in the case of dynamic catching. Therefore, this research considers
the joint space dynamic model

M(qm)q̈m +C(qm, q̇m)q̇m +G(qm) = τ , (2.30)

with the inertia matrix M ∈ Rm×m, Coriolis matrix C ∈ Rm×m, gravitational vector
G ∈ Rm and the input torque τ ∈ Rm. An extensive derivation of the joint space
dynamic model is detailed in [88]. External forces acting on the robotic manipula-
tion system and frictional energy loss in the joints are neglected during robot motion
planning in this thesis. For collision modeling, as described in Section 2.3.4, negligible
object mass equals a theoretically infinite mass of the end-effector.

Having planned a task motion for an end-effector such that the task goal is robustly
achieved within pre-defined limits, it is crucial to repeatedly accurate perform this
end-effector motion with a manipulator. Failure in this regard renders void any guar-
antees made at the task level. The following constraints must be maintained to achieve
repeatedly accurate manipulator motions:

• Joint range limits originate in the kinematic structure of a robot manipulator.
For commercial manipulators, these limits are provided by the manufacturer.
Their purpose includes, but is not limited to, avoiding that subsequent parts in
the kinematic chain hit the robot itself or preventing cables from twisting. For
all joints, a lower and upper bound for their range may be defined aggregated in
Q and Q, respectively:

Q ≤ qm ≤ Q. (2.31)

• Joint velocity limits depend on the actuation hardware. Manufacturers of clas-
sical actuators, for example, linear motors or motors connected to gears, specify
these upper (positive) and lower (negative) limits hereafter aggregated in V and
V , respectively, such that

V ≤ q̇m ≤ V (2.32)

must hold. Violating these velocity limits during robot motion planning usually
causes unpredictable deviations of the end-effector from its desired trajectory.

• Joint torque limits also depend on the actuation hardware and must not be
exceeded so as to avoid task trajectory degeneration or actuator damage. Upper
and lower torque limits are aggregated in T and T , respectively, such that

T ≤ τ ≤ T (2.33)
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must hold. Moreover, the limitation of joint torque indirectly limits joint accel-
eration through (2.30).

• Motor power limits can also become relevant during fast manipulation tasks
such as dynamic catching. As dynamic catching requires quick joint motions close
to the limits (2.32) while the end-effectors follows the free flight trajectory, motor
power limits are often more restrictive than the peak torque limits (2.33). The
variable P represents these power limits in

q̇mτ ≤ P . (2.34)

Similar to the previous two limit types, violating the power limits during robot
motion planning usually causes unpredictable deviations of the end-effector from
its desired trajectory. Due to the use of lossy gears and a power consideration
at a load-side mechanical level, large frictional effects support deceleration at
high velocities on the motor side of the gears. The negative peak torque limit is,
therefore, in practice more restrictive in most relevant situations than a negative
power limit.4

2.4.3 Kinematic Redundancy

Consider a task given by xn ∈ Rn, where n denotes the number of variables necessary to
describe the task, for instance, an end-effector motion. Here, the task space related to
n can be of a lower dimension than the operational space. For example, a task that only
defines a planar end-effector position in 3D space has (n = 2) as one translation and
all orientations are not specified. Thus, the concept of kinematic redundancy describes
the relative situation between such an n-dimensional task and an m-DOF manipulator
meant to perform this task. In case of (n = m), no redundancy exists. In case of
(n < m), the kinematic structure provides redundancy regarding the particular task
xn.

Now, let f : Rm → Rn describe the map from joint space to task space. Then,
given the previously introduced manipulator configuration qm, the (n ×m) Jacobian
is defined as J(qm) = ∂f(qm)/∂qm. The differential kinematic equation is

ẋn = J(qm)q̇m. (2.35)

Hence, this Jacobian enables calculation of the resulting end-effector velocity in task
space given a manipulator joint configuration and velocity.

An important property of (2.35) in case of redundancy is the existence of a null space
set N (J) of possible joint velocities q̇m that result in the same task space velocity ẋn,

4Most robot motions generated in this research directly profit from these frictional effects during
deceleration. Adding the overly restrictive negative power limit without including adequate friction
in the dynamic model would result in empty solution spaces for the robot motion planners presented
in this research.
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given a particular Jacobian J . The dimension of this null space set for non-singular
Jacobians is dim(N (J)) = m−n. As the present research only considers methods that
aim for feasible motions internally, the critical issue of singular configurations does
not need to be covered here. For extensive analysis and discussion of singularity and
methods solving related problems refer to [88].

As a consequence of the introduced null space, an (m × m) projection matrix P
exists such that JP q̇N = 0 holds for arbitrary q̇N ∈ Rm. The kinematic equation
(2.35) can, therefore, be modified to

ẋn = J(qm)(q̇m + P q̇N ) (2.36)

without changing the resulting task space velocities.
The goal of robot motion planning, however, is to solve the inverse problem of (2.35)

or (2.36) to identify a joint space motion

q̇m = J−1(qm)ẋn (2.37)

and make use of the redundancy to fulfill additional sub-tasks.

2.5 Summary

Catching flying objects with a robotic manipulator is a testbed frequently considered
when evaluating high-performance perception and motion planning solutions. Static
catching and dynamic catching can be distinguished, whereas hard impacts character-
izes static approaches and dynamic approaches follow the object flight for some time
to achieve softer contacts. The complexity of the catching challenge demands a clear
structure and definition of the overall problem as given by the general catching problem
formulation detailed in this chapter. Moreover, it is essential to identify accurately sub-
problems that are ideally decoupled. For some subproblems, adequate solutions may
already exist, but for the others, extensions or new approaches are necessary, which
constitute the focus for the remainder of this research.

Two conceptual dimensions are introduced in this chapter to efficiently discuss the
interconnectivity of the robotic catching problem: two levels and four phases. The task
planning level focuses on the relative system between the catching device (end-effector)
and flying objects. The second conceptual dimension considers time and divides both
levels into four phases: throwing, catching acceleration, flight trajectory tracking and
deceleration.

At the task level, the inevitable occurrence of impacts in a catching process is explic-
itly considered, while the particular robot structure (manipulator) is disregarded. A
novel problem definition enables explicit and efficient uncertainty treatment by using
the shortest distance between the object’s surface and end-effector’s surface. The joint
level planning focuses on the robot motion, which must provide a reliable performance
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2 The Problem of Catching Fast Flying Objects

of the desired task plan. Reliable task performance might be achieved by guaranteeing
that all crucial constraints of motors and gears are not violated. The formal concept
of relative redundancy in a manipulator structure regarding the desired task provides
the leverage point for the remainder of this research to realize flexible and reliable task
motions.
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3 Robust Hybrid Bouncing Ball in Ballistic
Robotic Catching

This chapter addresses the gap between current academic catching robots and their fu-
ture in industrial applications, specifically, reliable task execution. A novel parametriza-
tion is derived to reduce the three-dimensional catching problem from 3-D to 1-D on the
ballistic flight path. Inversely, a real-time capable dynamical system formulation allows
reconstruction of solutions from one dimension to three dimensions. Hence, the body
of work on hybrid dynamical systems theory, in particular the one-dimensional bounc-
ing ball problem, becomes available for robotic catching. Uniform Zeno asymptotic
stability (UZAS) from the bouncing ball literature is adapted to enable the associated
notion for an exact tight bound on the maximal Zeno time. Using explicit and finite
maximal Zeno time, a special catching task problem for robotics is formulated to over-
come weaknesses of the general catching goal with a potentially infinite time horizon.
Moreover, an extension of the maximal Zeno time proposes a closed-form for desirable
initial object states relative to the end-effector motion such that distance uncertainty
compensation is maximized. Another extension, commencing from UZAS, proposes a
bound on the maximal rebound height, which is potentially less conservative if generic
box-like end-effectors are used as presented in Chapter 5. Finally, the uncertainty con-
tribution of object shapes is discussed and evaluated based on a realistic simulation
example.

3.1 Introduction and State of the Art

The fundamental problem of catching is to bring a fast flying object to rest by inter-
action with a robot end-effector. Previous work, however, has focused on perception
and prediction of object flight [31, 46], well-timed interception [11] of ballistic flight or
precise matching of the object state with a gripper [78]. Thus far, no ballistic catch-
ing approach has formally included the inevitable appearance of impacts, which are
caused by uncertain knowledge of the object state. A preliminary analysis [85] has
demonstrated via simulation and experiments that uncertain object states may lead
to unfavorable relative motions if pure velocity matching is pursued. A reachability
analysis also indicated that proper treatment of relative acceleration has the potential
to perform graspless catching on ballistic trajectories. These results are in line with the
findings of Schaal et al. [81] and more recently, Ronsse et al. [71] and Reist et al. [69]
who revealed that negative acceleration has a focusing effect on manipulation with re-
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3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching

bounds. In this chapter, the treatment of relative acceleration in robotic catching is
formalized by a Lyapunov-based stability analysis of the fundamental hybrid system
dynamics, which expresses the problem of convergence to a fixed point.

The problem of a ball bouncing on a table under a constant gravitational field is
highly related to catching with rebounds. As a generic example for a process that is
of a partially continuous (flow) and discrete (jump) nature, the bouncing ball is not
only an illustrative example but has also motivated a body of work. A commonly
revisited problem is stabilizing the ball on a periodic orbit in the example of robotic
juggling [12, 15, 17, 69–72, 76, 79, 82, 94, 99]. One approach is to use measure differen-
tial equations [15] to model and analyze this problem. Most of the juggling approaches,
however, have applied a Poincaré map approach [15, 17, 69, 71, 72, 99] to address the
problem of periodic stability. These Poincaré map approaches have modeled the con-
tinuous phase with the parabolic solution in the world coordinates and then analyzed
the implications of intermittent contacts with a , mostly periodically, moving table.
Thereby, the work in [69, 71] confirmed Schaal’s early observation in [82] of the signif-
icant influence of table acceleration on orbital stability behavior.

Today, progress in hybrid dynamical system theory has enabled a unified treatment
of partially continuous and partially discrete problems. An extensive overview of the
hybrid dynamical system framework used in the following and related stability for time-
invariant hybrid systems is presented in [12, 34, 79] and includes applications of this
framework on the juggling problem.

For the graspless robotic catching examined in this thesis, the fundamental underly-
ing problem of making the ball converge to a fixed point on the table or end-effector [56]
differs from juggling. The main difference is the occurrence of Zeno behavior, which
is the unique ability of hybrid systems to exhibit an infinite number of discrete events
during finite periods. The literature on Zeno behavior often focuses on conditions for
its existence [19, 38, 101] for general, and even nonlinear, hybrid systems and how
this existence correlates to asymptotic stability [1, 35, 63]. The generality of these
approaches, however, hinders explicit calculations of Zeno limit points or finite Zeno
time for particular initial conditions. The works [49, 64] constitute significant im-
provement towards an explicit consideration of Zeno behavior in real-world robotics.
Following the work of Goebel et al. [35], they demonstrate general Zeno stability for a
non-autonomous bouncing ball system with set-valued relative acceleration. Concen-
trating on the relative dynamics between the constraint and ball, the authors derive a
necessary and sufficient condition for uniform Zeno asymptotic stability (UZAS) in [64]
with a ratio between acceleration and the kinematic coefficient of restitution. The
success guarantee and extensions presented in this chapter build on this ratio and the
sophisticated Lyapunov function introduced for their proof. The contributions of this
chapter are as follows:
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(i) Dimensionality reduction closes the gap between ballistic catching and the related
hybrid control theory, enabling the transfer of (future) progress in hybrid control
theory to robotic catching.

(ii) As a consequence of contribution (i), work on uniform Zeno asymptotic stability
(UZAS) and maximal Zeno time [64], both for the one-dimensional set-valued
bouncing ball problem, is extended for robotic catching:

(a) to proof robustness against an uncertain kinematic coefficient of restitution,

(b) to derive a closed-form solution that maximizes the distance uncertainty
compensation, which significantly increases catching robustness, and

(c) to predict the maximal remaining rebound height of an uncertain hybrid
bouncing ball.

(iii) The generality of the presented robustness, represented by the three types U1-
U3, covers most of the practical uncertainty sources without the need to identify
individual magnitudes.

(iv) The explicit consideration of inevitable Zeno behavior in realistic robotic catching
enables reformulation of the general catching goal (2.22) with an infinite time
horizon as a finite time horizon problem to suit realistic robotic scenarios.

(v) A simulation study reveals that a significant offset in the relative acceleration,
which results from previously neglected deviations of the object from its ballistic
path, is covered by the set-valued approach.

When continuous contact between an object and unilateral constraint, both with
state uncertainty, is to be established, a sequence of collisions during finite time in-
evitably applies. This is the case because the individual uncertainties neither allow for
precise distance measurement nor for precise relative velocity measurement or estima-
tion, which ultimately causes at least small rebounds. Building on this fundamental
observation, the methods and discussions presented in this chapter contrast previous
work, which has typically aimed for ideal (i.e., without any rebounds) transitions into
continuous contact by velocity matching. As such, these previous works lack formulat-
ing conditions that must be fulfilled to guarantee asymptotic stability (i.e., convergence)
during this non-instantaneous transition. The hybrid dynamical system framework
briefly reviewed in Section 3.2 is well suited to formulate the stability problem for a
decoupled one-dimensional bouncing ball, including the notion of Zeno behavior.

Robotic catching is governed by two distinct types of problems: the relative motion
between an object and end-effector on the one hand, and the kinematic motion of the
robot on the other. The dynamics and constraints of both problems differ and make
the overall solution highly complex. Therefore, Section 3.3 first presents a dimension-
ality reduction to decouple these two problems with an efficient interface. Based on
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3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching

the assumption of a ballistic trajectory and a known object state, the object motion
in the direction of the ballistic path (direction of flight) is also known. Combined with
an initial end-effector state and acceleration on this path, one-dimensional bouncing
ball dynamics in the flight direction can be mapped to the bouncing ball problem,
which has been extensively researched by the hybrid systems and control community.
Given an end-effector trajectory, the ballistic bouncing ball’s stability, convergence
and robustness can be analyzed. Alternatively, a one-dimensional end-effector trajec-
tory can be designed to achieve certain stability or robustness goals. A dynamical
system motion planner, with the end-effector acceleration as input, presented in subse-
quence, efficiently reconstructs the three-dimensional end-effector trajectory from the
one-dimensional solution by once again using the ballistic assumption. This dimen-
sionality reduction and reconstruction has been published in [84].

In particular, related work on uniform Zeno asymptotic stability for a set-valued
bouncing ball and an exact tight bound on the maximal Zeno time [64] are proposed
as a basis to formalize catching robustness (Section 3.4). The first of three extensions
addresses uncertainty in the restitution behavior. In brief, it is derived that a trajec-
tory of the unilateral constraint, which provides UZAS for a particular coefficient of
restitution, is also UZAS for all coefficients smaller than this particular value. More-
over, the maximal Zeno time associated with trajectory and coefficient of restitution
is also valid as an upper bound for all lower values of the coefficient of restitution.
Hence, a single catching motion potentially leads to robust catching for a range of
object materials. The second extension proposes a beneficial relative initial velocity
based on task parameters such as coefficient of restitution, acceleration bounds and
desired maximal Zeno time (maximal possible tracking duration: P3). The presented
closed-form relative velocity maximizes the compensation of distance uncertainty. The
third extension derives a bound on the maximal remaining rebound height for UZAS
solutions. A numeric example in Section 3.4.7 illustrates possible interpretations of the
robustness extensions and provides a basis for the experimental validation detailed in
Chapter 5. UZAS in the context of robotic catching and its presented extensions have
been published in [84].

The final part of this chapter is devoted to an evaluation of dynamics this research
neglected in the process of dimensionality reduction. Uncertain knowledge of the object
state not only reflects in imprecise distance estimation but also in the ballistic trajectory
deterioration. In Section 3.5, this deterioration is considered to cause motions perpen-
dicular to the expected flight trajectory. Errors in the end-effector orientation as in
Chapter 5, rotating objects, or non-spherical object shapes can significantly influence
such perpendicular motions at collisions. Considering the one-dimensional bouncing
ball, these deviations cause an offset in the actual relative acceleration, which is quan-
tified with a realistic physical simulation. Parts of the uncertainty evaluation have been
published in [84].
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3.2 One-Dimensional Hybrid Dynamics of the Bouncing Ball

3.2 One-Dimensional Hybrid Dynamics of the Bouncing
Ball

In this section, the one-dimensional hybrid dynamics of a bouncing ball are derived
starting with a general definition of the selected hybrid system framework (Section 3.2.1).
Moreover, the relation to other frameworks is discussed briefly. Section 3.2.2 provides
a short introduction of the so-called Zeno behavior, which is a unique property of
hybrid dynamical systems and crucial when contacts are to be robustly established.
Section 3.2.3 formulates the hybrid bouncing ball dynamics such that the acceleration
of a unilateral constraint can be considered as input to this system.

3.2.1 Hybrid System Formulation

The hybrid system formulation presented in the following originates from the framework
[34], which contains a recommendable introduction to the topic of hybrid dynamical
systems. This formulation is widely used in the current hybrid systems literature
and is especially common when impulsive systems are regarded, as is the case in this
thesis. Findings from [34] also demonstrate that other frameworks for hybrid systems
[14, 16], still in use for other problem settings such as hybrid automata [65, 87], switched
systems [50], sampled data [28] and networked control systems [95], can be cast as a
hybrid system of the following form with hybrid dynamics defined thereafter.

Definition 3.1. A hybrid system is described by the 4-tuple

H := (C,F ,D,G) , (3.1)

where C is a subset of the Euclidean space describing the continuous domain, F is a
set-valued mapping describing the continuous dynamics, D is a subset of the Euclidean
space describing the discrete domain, and G is a set-valued mapping describing the
discrete dynamics.

Hybrid systems H allow for a combined treatment of physical systems governed by
both continuous and discrete dynamics. Hybrid phenomena can have various sources
in Definition 3.1, such as the multi-valuedness of the mappings F and G. However,
hybrid phenomena usually come from the geometry of sets C and D [34], as it is the
case in this thesis.

Definition 3.2. A hybrid dynamical system is described by

ẋ ∈ F(x), x ∈ C, (3.2)

x+ ∈ G(x), x ∈ D, (3.3)

where the constrained differential inclusion (3.2) constitutes the continuous-time dy-
namics and the constrained difference inclusion (3.3) constitutes the discrete-time dy-
namics.
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3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching

While (3.2)-(3.3) represent the most general formulation for hybrid dynamical sys-
tems, many physical systems can be sufficiently described by first-order (differential)
equations. In such cases, set-valued mappings and differential inclusions are replaced
by equations:

ẋ = f(x), x ∈ C, (3.4)

x+ = g(x), x ∈ D, (3.5)

with the respective 4-tuple denoted as

H = (C,f ,D, g) . (3.6)

The reduced formulation (3.4)-(3.6) is what will be used in the remainder of this thesis.
For the sake of an efficient notation, H and the 4-tuple (C,f ,D, g), hereafter, always
refer to the hybrid bouncing ball dynamics defined in Section 3.2.3.

3.2.2 Zeno Behavior in Robotic Catching

Independent of how the state of a flying object is determined, uncertainty concerning
the true object state remains. Hence, establishing continuous contact between a rigid
object and rigid catching device is usually the result of a sequence of (micro) collisions.

Remark 3.3. It is possible to achieve contact without a sequence of collisions when
either the object or the catching device allows for permanent deformation, e.g., a sand
bag. As a consequence of deformable components, however, it becomes challenging to
apply similar amounts of kinetic energy at the throwing stage. Moreover, the assump-
tion of ballistic flight trajectories does not hold for many types of deformable objects.

One subclass of hybrid systems enabling modeling of collision sequences in mechan-
ical systems is simple Lagrangian hybrid systems (SLHS). In [63], SLHS are formally
introduced and the conditions for local stability are derived. A property special to
hybrid systems, and in particular to SLHS, is the occurrence of an infinite number of
collisions in a finite amount of time. In the context of hybrid dynamical systems, the
term Zeno behavior 1 refers to this property. The presence of a Zeno equilibrium [49] is
necessary for the existence of Zeno behavior.

Definition 3.4. Zeno equilibria AZ are points of a hybrid system H = (C,f ,D, g) for
which

AZ = {x ∈ D : g(x) = x,f(x) 6= 0} , (3.7)

holds.

1According to Aristotle [77] and Simplicius [89], Zeno of Elea was a pre-Socratic Greek philosopher,
who formulated several paradoxes closely related to the described property of hybrid dynamical
systems.

36



3.2 One-Dimensional Hybrid Dynamics of the Bouncing Ball

Hence, Zeno equilibria are fixed points of the discrete dynamics but are not fixed
points of the continuous dynamics. Similar to equilibrium points of traditional dynam-
ical systems, Zeno equilibria can be stable or unstable. Only if Zeno equilibria are
stable, can one observe Zeno behavior. In the stable case, it is also common to speak
of Zeno solutions or Zeno executions of hybrid systems. Section 3.2.3 introduces the
well-studied, one-dimensional hybrid bouncing ball as the SLHS describing the relevant
underlying dynamics for catching fast flying objects.

3.2.3 Relative Hybrid Bouncing Ball Dynamics in Robotic Catching

In order to analyze the transition into continuous contact, relative system states are
defined using the distance definition (2.19) and its time derivative (2.20):

x :=

[
h
ν

]
. (3.8)

The relative dynamics of the hybrid bouncing ball are described by

ẋ = f(t,x) :=

[
x2

−γ(t)

]
. (3.9)

These continuous dynamics, however, fail to describe the entire system behavior be-
cause collisions with the end-effector surface occur when h = 0 in Figure 2.4. For
collisions between the object and end-effector evaluated in this thesis, the common New-
tonian restitution model is selected based on considerations outlined in Section 2.3.42.
This model is an instantaneous damped inversion of the arrival speed described by a
coefficient of restitution ρ ∈ [0, 1). Such restitution constitutes the discrete dynamics

x+ = g(x) :=

[
0
−ρx2

]
. (3.10)

In order to allow a combined stability analysis of the continuous and discrete dy-
namics, formulate the hybrid bouncing ball dynamics H = (C,f ,D, g) in the form of
(3.4)-(3.6) as

C ={x : x1 ≥ 0}, (3.11)

D ={x : x1 = 0,x2 ≤ 0}, (3.12)

ẋ =f(t,x) for all x ∈ C, t ∈ [0,∞), (3.13)

x+ =g(x) for all x ∈ D, (3.14)

where (C,f) describe the continuous domain and dynamics (flow) and (D, g) describe
the discrete domain and dynamics (jump). Note that this is a non-autonomous system
because γ(t) is a time-varying function.

2The inaccuracy of this model is largely compensated for by the robustness against U3. This robust-
ness is gained by the UZAS notion detailed in Section 3.4.1.
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Figure 3.1: Flow set (3.11) and jump set (3.12) of the hybrid bouncing ball H with states x1

as the height of the ball and x2 as its velocity. The cones illustrate the influence
of the γ-sign on the vector field (3.13) in phase space. The dashed line indicates
the jump map (3.14).

Figure 3.1 visualizes the flow- and jump-sets described in (3.11) and (3.12). The
cones depict the vector field resulting from (3.13) in phase space depending on the
sign of γ. Directions for γ ≤ 0, illustrated by the dotted quadrants of the cones, are
prevented hereafter to avoid trajectories never reaching D.3 For γ > 0, the system is
guaranteed to hit the end-effector at some point, but a time-varying γ might still lead
to increasing velocities x2(tc) between impacts and thus, unstable behavior. Section 3.4
addresses stability for γ > 0 and its relation to the coefficient of restitution ρ.

As revealed by results presented in the remainder of this thesis, success in open-loop
nonprehensile catching corresponds to finding accelerations γ(t) for t ≥ 0 that provide
asymptotic stability with respect to the compact set

A := {x : x1 = 0,x2 = 0} , (3.15)

for a large set of initial relative states. A desirable, asymptotically stabilizing one-
dimensional solution γ∗(t) can directly be applied to a ballistic catch using the dynam-
ical system parametrization derived in Section 3.3.3. Conditions for γ∗(t) to become
asymptotically stabilizing are discussed in Section 3.4.

3.3 Dimensionality Reduction of Translations in 3D
Ballistic Catching

This section presents an approach to close the gap between the well-known hybrid
bouncing ball problem from the theory of hybrid dynamical systems and the robotic

3Negative values γ ≤ 0 are, however, needed to further reduce impact velocities. The magnitude of
the uncertainty in x must be known in this case. Otherwise, relative velocity may change from
negative to positive values without a collision, cf. Figure 3.1.

38



3.3 Dimensionality Reduction of Translations in 3D Ballistic Catching
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û

v̂
ŵ
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Figure 3.2: Left: A hybrid bouncing ball with an accelerated end-effector acting as a uni-
lateral constraint. Right: Two-dimensional ballistic trajectory after rotation
around ŵ such that v̂ is normal to the flight plane. The release point is given
at time t = tr < 0.

challenge of robustly catching fast-flying objects on their ballistic trajectories. Given
that the initial object state is known, Section 3.3.1 first derives a novel parametrization,
which formulates the acceleration of the end-effector as input to the robotic catching
system. The parametrization builds on the assumption that the object center of mass
follows a ballistic trajectory. This assumption applies for rigid objects with a sufficiently
large mass-surface ratio such that the influence of aerodynamic drag is small. Hence,
given a translational object state at one time instance and despite the uncertainties
described in Section 2.3.5, the path on which the object’s center of mass travels is
predictable and independent of shape. A large range of parts in industrial production
processes fulfills this property.

Based on Section 3.3.1, Section 3.3.3 proposes a novel dynamical system motion
planner, which requires only three of six states to describe the translational motion:
Two positions and the velocity in flight direction instead of three Cartesian positions
and velocities each.

3.3.1 Flight Path Angle Parametrization

In this section, a parametrization is derived for the flight path angle α, which describes
the vertical direction in the plane of flight Γ. Based on the parabolic equations of
ballistic flight (2.17), it is shown that the flight path angle α can be expressed as a
function of the horizontal position u and a set of constant scenario parameters P to
describe the one-dimensional motion on the ballistic path. The dotted line in Figure 3.2
represents such a ballistic path in Γ under the assumption of θ = 0, as discussed
in Section 2.3.2. This path is uniquely defined for free object flight if the object’s
position and velocity vector are known at one time instance, i.e. the initial object state.
Therefore, to define the path, the release at tr < 0 with object position (ur,wr), object
speed νr, and object flight path angle αr are taken as given: P := {tr,ur,wr, νr,αr}.
Uncertainties at tr map to U1 and are, thus, included, whereas the object orientation
RO(t) is neglected during all task planning stages considering Remark 2.2.
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The object position for t > tr is according to (2.17)

u(t) = ur + νr(t− tr) cosαr, (3.16)

w(t) = wr + νr(t− tr) sinαr − 1
2
g(t− tr)2. (3.17)

For the parametrization along the ballistic trajectory, substitute the time of flight by
the u-coordinate, which identifies the object state uniquely. Solving (3.16) for t gives

t(u) =
u− ur

νr cosαr

+ tr , (3.18)

which is only a function of constants and the position u. Hence, velocities for a partic-
ular object trajectory can be expressed in terms of constants P and u by

ẇ(u) = νr sinαr − g
u− ur

νr cosαr

, (3.19)

u̇ = νr cosαr . (3.20)

The flight path angle after release may be denoted by α(t) for t > tr or, using (3.18)-
(3.20), in the parametrized form

α(u) = tan−1

(
ẇ(u)

u̇

)
= tan−1

(
tan(αr)− g

u− ur

ν2
r cos2 αr

)
, (3.21)

which results in a negative α for the catching situation in Figure 3.2.
Using the aforementioned parametrization in terms of u, the object acceleration in

flight direction is given by

γO(u) = −g sin (α(u)) . (3.22)

The velocity of a free flying object in flight direction (2.13) under assumption (2.16)
and parametrization (3.19) is given by

νO(u) =

√
u̇2 + (ẇ(u))2. (3.23)

See also Figure 3.2 for direction and sign conventions.

3.3.2 Unicycle Formulation of Free Ballistic Flight

The parametrization derived in Section 3.3.1 enables an efficient description for free
ballistic flight in the flight plane Γ by the states

ξO :=

νO

u
w

 =

[
νO

p̄O

]
. (3.24)
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The state change of an object during free ballistic flight, motivated by a unicycle, is
described by the nonlinear dynamical system

ξ̇O =

 γO(ξ2)
ξ1 cos (α (ξ2))
ξ1 sin (α (ξ2))

 =

−g sin (α(ξ2))
ξ1 cos (α (ξ2))
ξ1 sin (α (ξ2))

 (3.25)

with α (ξ2) from (3.21), which can be solved in real-time by numeric integration subject

to an initial state ξO(0) =
[
νO(0) u(0) w(0)

]T
and the constant scenario parame-

ters P . In comparison to (3.25), a unicycle may have one more state such that the
change of α becomes an input. Here, however, the parametrized angle α (ξ2) reflects
the ballistic property.

3.3.3 Dynamical System Approach to Ballistic Motion Planning

The focus is, however, on the motion an end-effector T E has to perform on the ballistic
path in order to stabilize a nonprehensile catch. Therefore, a second pair of variables
is defined

p̄E(t) =

[
uE(t)
wE(t)

]
, (3.26)

and respectively for end-effector velocity νE and acceleration γE. The latter two vari-
ables are defined on the ballistic path and are thoroughly discussed in the following. As
d
dt
νE = γE, the acceleration γE is the input to the robotic catching system and νE(t0)

is an initial speed on the path that needs further discussion.
Having parametrized the ballistic flight path, it remains to derive a motion planner,

which can generate the desired end-effector trajectory on the ballistic path in real-time
with the end-effector acceleration as input. Therefore, a dynamical system motion
generator for P3 is presented to reconstruct an end-effector trajectory

ξ :=

νE

uE

wE

 =

[
νE

p̄E

]
(3.27)

that applies solutions γ∗(t) to the relative hybrid bouncing ball system H.
A stabilizing relative acceleration γ∗(t) on the ballistic path of an object in the û-

ŵ-plane is tracked with an end-effector motion described by the nonlinear dynamical
system

ξ̇ =

 γE(t, ξ2)
ξ1 cos (α (ξ2))
ξ1 sin (α (ξ2))

 , ξ0 = ξ(t = 0), (3.28)

with acceleration γE(t, ξ2) = γO(ξ2) − γ∗(t) and α from (3.21) evaluated at ξ2 = uE.
Hereby, the first state ξ1 = νE is the one-dimensional end-effector velocity on the
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ballistic path, whereas the other two states determine the position of the end-effector
in the plane of flight, cf. Figure 3.2.

The initial end-effector state is defined

ξ0 =

 νO(0) + x2(0)
u(0) + (x1(0) + r) cos(α(0))
w(0) + (x1(0) + r) sin(α(0))

 (3.29)

using (3.16), (3.17), (3.21) and (3.23). The scalar r denotes the radius of the object
circumcircle and therefore ensures that object and end-effector are initially disjoint.4

Note also that (3.29) is based on the assumption of sufficiently small (x1(0) + r), which
allows to assume γO(uE) u γO(u) in the remainder of this article. For a given initial
end-effector state ξ0, the desired end-effector trajectory ξ(t) thus results from a numeric
integration of (3.28) with input γ∗(t).

Section 3.4 analyzes and discusses the influence of γ on bouncing ball dynamics and
thus on robotic catching. The choice of the relative initial state x(0) is crucial for
the success of an open-loop catch and will be discussed in Section 3.4.5. As a result,
Section 4.3.2 proposes an optimization-based motion planner for robotic catching that
finds γ∗(t) while taking dynamic limitations of the robot into account.

3.4 Uniform Zeno Asymptotic Stability for Robotic
Catching

This section reviews the notion of uniform Zeno asymptotic stability (UZAS, [64]) in
Section 3.4.1, including its potential for robotic catching. Enabled by UZAS, Sec-
tion 3.4.6 proposes a novel, provable, upper bound on the maximal remaining rebound
height for bouncing ball systems that fulfill the UZAS property. Upon fulfillment of
the UZAS property, the notion of an exact tight bound on the maximal Zeno time
from [64] also becomes applicable, as presented in Section 3.4.2. Starting from the
bound on the maximal Zeno time, Section 3.4.4 proves robustness for a bounded set of
uncertain restitution behavior. In the presence of provably stabilizable Zeno dynamics,
Section 3.4.3 reduces the general catching problem formulation with its infinite time
horizon to a special catching task problem formulation with a finite time horizon. The
last extension of maximal Zeno time notion is derived in Section 3.4.5 and encompasses
the initial relative velocity between the object and catching device, which potentially
maximizes the robustness against initial distance uncertainties. A realistic numeric
simulation motivated by the experiments presented in Chapter 5 and a summarizing
discussion is provided at the end of this section.

4If a range of differently sized objects should be caught with the same setup, choose r from the
largest possible object at the cost of increasing U1.
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3.4 Uniform Zeno Asymptotic Stability for Robotic Catching

3.4.1 Uniform Zeno Asymptotic Stability (UZAS)

Consider the hybrid dynamical system H from (3.11)–(3.14) with set-valued accelera-
tion

γ(t) ∈ [γmin, γmax] , where 0 < γmin ≤ γmax. (3.30)

Or et al. then proved the following theorem in [64].

Theorem 3.5 (Or et al. [64, Th. 1]). The origin of a bouncing ball H with set-valued
acceleration (3.30), possesses uniform Zeno stability if and only if

ρ2 <
γmin

γmax

(3.31)

holds.

The detailed proof can be found in [64], whereas parts important for this thesis are
highlighted in the following. As a result, a novel view on the robustness problem,
formulated with U1-U3, becomes available and will turn out practical for quantizing
robustness in object catching.

The proof relies on a sophisticated Lyapunov function V : U → R≥0 with U =
{x ∈ R2 : W (x) > 0} defined by

V (x) = κx2 +
√
W (x), where W (x) =

1

2p(x2)
x2

2 + x1,

with p(x2) =

{
γmax if x2 ≤ 0
γmin if x2 > 0

and κ =

(
1√

2γmax

− ρ√
2γmin

)
1

1 + ρ
. (3.32)

Interestingly this piecewise defined Lyapunov function is continuous and continuously
differentiable on domV even though kinetic energy is deducted instantaneously from
the hybrid bouncing ball system at every collision:

V (g(x)) = V (x) (3.33)

for all x ∈ D. Furthermore, by verifying that

〈∇V (x),f〉 ≤ −κγmin (3.34)

holds for all x ∈ C\{0}, one concludes that V (x) is a strictly decreasing Lyapunov
function. Therefore the origin is uniform Zeno asymptotically stable (UZAS).

For the bouncing ball follows from (3.30) robustness with respect to uncertain rel-
ative acceleration (see U2) as visualized with single flow periods in Figure 3.3. From
(3.31) follows robustness with respect to uncertain restitution behavior (see U3). Fur-
thermore, it becomes possible to establish continuous contact with a single open-loop
acceleration γ(t) for a range of initial states x(0) ∈ C∪D, which relates to U1. Hereby,
γ(t) might even be chosen constant. As a result, given a sufficiently small U1 provided
by the repeatable robot throw, online replanning of catching motions might become
obsolete as well as real-time measurements of the object state.
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Figure 3.3: Flow and jump sets of the hybrid bouncing ball H over a single period starting
at x(0). The acceleration γ satisfies (3.30) and (3.31). Any fast or slowly
varying acceleration within the bounded set leads to a lower rebound height
than a single switch from the lower to the upper bound at the maximum height
(γ = −p(x2)), which is the “most unstable solution” [64].

3.4.2 Maximal Zeno Time

The UZAS condition (3.31) from Theorem 3.5 formulates cases, where the general
catching goal (2.22) can be achieved as t→∞ and therefore where a finite Zeno time
Z exists. Consequently, the notion of a maximal Zeno time [64] at particular time t′

becomes also applicable, whereas the abbreviations for the relative height x1(t′) =: h′

and relative velocity x2(t′) =: ν ′ are used.

Theorem 3.6 (Or et al. [64, Th. 2]). If Theorem 3.5 holds, all solutions are Zeno and
their maximal Zeno time is given by

Zmax(h′, ν ′) =

{
ν′+σU0,min

γmin
for ν ′ ≥ νc

ν′+U0,max(1+βδ)

γmax
for ν ′ < νc

(3.35)
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where

U0,max =
√

(ν ′)2 + 2γmaxh′

U0,min =
√

(ν ′)2 + 2γminh′

νc = −
√

2γminh′

σ2 − 1
, δ =

γmax

γmin

β = 2ρ
1 + ρ

1− ρ2δ
, σ =

√
1 + 2β + δβ2. (3.36)

Proof. See proof in [64, Th. 2].

An upper bound on the Zeno time for bouncing ball systems was also discussed before
the aforementioned referenced contribution. In [37], a more conservative bound was
derived, which was, shown in [64] to be never a tight bound. In contrast, Theorem 3.6
states a provably exact tight bound on the Zeno time of the set-valued bouncing ball
under any initial condition.

3.4.3 Special Catching Task Problem Formulation

In practice, the general formulation (2.22) with t → ∞, evaluated at t = 0 s, requires
consideration of acceleration changes in phases P3 and P4, which leads to large δ-values.
Sizeable values for Zmax and small valid ranges for ρ result. After convergence, however,
the relative acceleration must only be negative (γ > 0) to maintain contact. Here, it is
therefore proposed to limit the time horizon to the tracking phase P3 with controllable
relative acceleration. By accounting for the finite convergence time property of Zeno
behavior the following conjecture reformulates the general catching goal (2.22).

Conjecture 3.7. Subject to a deceleration phase that ensures to maintain continuous
contact with an object that has been established earlier, a catch is considered successful
if, and only if,

h(t→ tf) = 0 and ν(t→ tf) = 0 (3.37)

is fulfilled.

Hence, successful catching becomes predictable for initial relative states that fulfill
Zmax(x(0)) < tf , also subject to U1-U3.

3.4.4 Robustness Against Uncertain Restitution Behavior

The tight bound on the maximal Zeno time (3.35) could also be solved for h′(Zmax, ν ′).
Assuming a constant Z̄max, a piecewise quadratic parabola results, which encloses a
convex area

XZ̄max
:=
{
x ∈ C ∩ D|Zmax < Z̄max

}
(3.38)
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with the (h′ = 0)-axis of the state space. Moreover, the maximal Zeno time (3.35)
depends on the coefficient of restitution ρ. In order to show that a set XZ̄max

, found for
a particular ρ, also applies for all lower values of ρ, the following Lemma and Corollary
prove that Zmax strictly increases as ρ ∈ [0, 1) increases.

Lemma 3.8. If Theorem 3.5 is fulfilled, the function

β = 2ρ
1 + ρ

1− ρ2δ
(3.39)

from (3.36) with δ = γmax

γmin
is positive and strictly increasing as ρ ∈ [0, 1) increases.

Proof. In order to proof the Lemma, the inequality ∂β
∂ρ
> 0 must be shown to hold in

the domain of ρ. Therefore, consider the derivative of (3.39) with respect to ρ:

∂β

∂ρ
=

2 (δρ2 + 2ρ+ 1)

(1− δρ2)2 . (3.40)

Since Theorem 3.5 is fulfilled, it is 0 ≤ δρ2 < 1. Hence, the inequality ∂β
∂ρ

> 0 and

1− ρ2δ > 0 in the denominator of (3.39) always holds.

With the help of Lemma 3.8, the following Corollary can be derived from Theo-
rem 3.6.

Corollary 3.9. If Theorem 3.5 is fulfilled, the tight bound on the Zeno time Zmax from
(3.35)-(3.36) strictly increases as ρ ∈ [0, 1) increases.

Proof. Considering that the multiplication of two positive strictly increasing functions
results again in a positive strictly increasing function and in view of Lemma 3.8, it is
sufficient to show that Zmax > 0 and ∂

∂β
Zmax > 0 hold. The earlier is true for (3.35)

because due to U0,min > |ν ′|, U0,max > |ν ′|, σ > 1, and δ > 1 it is

σU0,min ≥ |ν ′| and (3.41)

U0,max(1 + βδ) ≥ |ν ′| (3.42)

in the designated domain. Moreover, the derivatives compute as

∂

∂β
Zmax =

{
(2+2δβ)U0,min

γminσ
for ν ′ ≥ νc

δU0,max

γmax
for ν ′ < νc

. (3.43)

Hence, the second condition ∂
∂β
Zmax > 0 also holds, which completes the proof.
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The physical interpretation of (3.38) and Corollary 3.9 in the context of catching is
as follows. If successful catching can be guaranteed with a particular restitution ρ and
catching motion, then this guarantee also applies to all lower restitutions under the
same motion. As a result, objects of various materials can be caught simultaneously
with a single strategy and, therefore, without re-planning. The resulting potential
to overcome the problem of difficult and imprecise estimation of an object-dependent
restitution behavior is even more important. Only a worst-case bound of the coefficient
of restitution must be known or assumed in a sufficiently conservative way.

3.4.5 Maximized Distance Uncertainty Compensation

Following the observation that XZ̄max
is enclosed by a downwardly opened, piecewise

quadratic parabola intersecting the (h′ = 0)-axis, the question arises as to what initial
relative state xrob(0) in XZ̄max

maximizes catching robustness. The best option for a
nominal initial state, however, depends on the expected magnitude in each dimension of
U1. Nonetheless, the following corollary provides an orientation for potentially effective
nominal initial relative velocities. Generally speaking, the following corollary returns
the velocity x2(0) for which the piecewise quadratic parabola reaches the maximal
x1(0)-value.

Corollary 3.10. Assume condition (3.31) is satisfied, then the nominal initial relative
velocity

xrob
2 (0) = −γminZmax

2β + δβ2
, (3.44)

with

δ =
γmax

γmin

β = 2ρ
1 + ρ

1− ρ2δ
, (3.45)

from (3.36) maximizes the range of x1(0) for which (3.37) holds, Zmax = tf − t0 is
the duration of P3 and β is calculated based on the maximum expected restitution in
h-direction.

Proof. First, rearrange the first case in (3.35) to become a function of Zmax and ν given
by

h =
(1− σ2)ν2 − 2γminZmaxν + (γminZmax)2

2σ2γmin

. (3.46)

Then, take the derivative

dh

dν
=

(1− σ2)ν − γminZmax

σ2γmin

, (3.47)
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where setting (3.47) equal to zero results in

ν =
γminZmax

1− σ2
= −γminZmax

2β + δβ2
. (3.48)

Considering that σ2 > 1, a second derivative d2h
dν2

will always be negative and thus (3.48)
is a maximum.5 Steps (3.46)-(3.48) repeated for the second case in (3.35) result in

h =
(1− (1 + βδ)2)ν2 − 2γmaxZmaxν + (γmaxZmax)2

2 (1 + βδ)2 γmax

, (3.49)

again taking the derivative

dh

dν
=
− (2βδ + β2δ2) ν − γmaxZmax

(1 + βδ)2 γmax

. (3.50)

Then, replace γmax = δγmin leads to

dh

dν
=
−(2β + β2δ)ν − γminZmax

(1 + βδ)2 γmin

. (3.51)

Finally, setting (3.51) equal to zero results again in

ν = −γminZmax

2β + δβ2
=
γminZmax

1− σ2
, (3.52)

which completes the proof.

As a result, a relative velocity according to Corollary 3.10 for motion planning of
future catching robots is recommended, as the knowledge of object states is inevitably
imprecise (U1). Hence, a negative offset for x2(0), besides providing the necessary nega-
tive relative acceleration (γ > 0), is suggested as a primary measure to increase success
in robotic catching, as well as for existing robots. If reliable success is achieved, one
may further reduce impact velocities with velocity matching x2(0) → 0, as considered
in previous dynamic catching approaches of a lower success rate.

3.4.6 Maximal Rebound Height and Limited End-Effector Domain

Besides the stability of system H, knowing a bound on the rebound height after an
arbitrary point in time t′ subject to (3.30)–(3.31) is useful in the process of predicting
success or failure in robotic catching. The following corollary offers an easily applicable
answer.

5Note that (3.48) is directly related to νc in (3.36), e.g., by inserting the first case of (3.35) into
(3.48) and resolving for ν.
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Corollary 3.11. If the acceleration γ(t) of the hybrid bouncing ball system H satisfies
(3.30) and (3.31) for all t > t′, then the maximum possible rebound height for all t > t′

is limited by

x̄1(h′, ν ′) =

 h′ + (ν′)2

2γmin
for ν ′ ≥ 0

max

[
h′,

ρ2((ν′)2+2γmaxh′)
2γmin

]
for ν ′ < 0

(3.53)

based on the relative state x(t′) =:
[
h′ ν ′

]T
.

Proof. Due to (3.30), the ball reaches the highest point at zero relative velocity (x2 = 0)
in every rebounding cycle. Furthermore, due to the UZAS property, in every consec-
utive cycle the highest point x1(x2 = 0) is smaller than in the previous one. Hence,
in order to compute x̄1, it is sufficient to calculate the first x1(x2 = 0) after t′ in the
presence of the worst-case acceleration scenario given by p(x2) in (3.32).

The first case in (3.53) represents the rising phase, i.e. ν ′ ≥ 0. Here, simply the
current height h′ is added to the height that could be gained by transforming the
current kinetic energy into potential energy under the smallest possible acceleration.

In the falling case ν ′ < 0, a collision occurs before the next peak height is reached.
Denoting the first post-impact velocity after t′ as ν+, the gain of height is already know
from the previous step with h′ = 0 as

x̄1 =
(ν+)2

2γmin

. (3.54)

With the restitution law ν+ = −ρν− the relation to the pre-impact state becomes

x̄1 =
(−ρν−)2

2γmin

. (3.55)

Finally, the maximum possible velocity of ν− is the kinetic energy of ν ′ in addition to
the velocity gained by transforming h′ into kinetic energy under the largest possible
acceleration

ν− = −
√

(ν ′)2 + 2γmaxh′. (3.56)

Inserting (3.56) in (3.55) results in the second line of (3.53), considering that x̄1 must
never be smaller than the current height h′.

For acceleration ratios (3.31) close to one, Theorem 3.5 and Corollary 3.11 are not
restrictive because nearly the full range of the coefficient of restitution ρ is allowed.
Vice versa, the restrictions on ρ become tight if a large range of accelerations γ must
be covered.

In nonprehensile robotic catching, it will later be shown that convergence speed
improves as γmin increases, which can also be concluded from (3.34). Large acceleration,
however, may only be provided in P3 (tracking) because P4 (deceleration) is typically
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Figure 3.4: Left: Kinematic model for m actuated rotational degrees of freedom. The û-ŵ-
frame coincides with the robot base. Right: Unactuated, box-like end-effector
with height hmax.

governed by comparably little acceleration. Under typical conditions the Zeno time
may lie in P4, illustrated with a numerical example in Section 3.4.7.Due to the small
lower acceleration bound γP4

min a restrictively large range of accelerations may apply.
So far, the end-effector has been assumed planar like a plate. However, even if (3.37)

holds and no form or force closure is used, the object may start to roll or slide on the
end-effector after entering P4. Therefore, a box-like end-effector design as depicted
in Figure 3.4 is proposed to prevent objects from falling off. Moreover, such motions
parallel to SE have an additive or subtractive effect (depending on the direction) on
the relative acceleration between object and end-effector, see Section 3.5. Contact with
the box walls may even induce additional velocity. In order to prevent the object from
losing contact with SE, motion planning in P4 must pursue sufficiently large negative
relative acceleration.

In case of spherical objects and in view of Corollary 3.11, a box-like end-effector may
even enable successful catching if

x̄1(h′, ν ′) < hmax at t′ = tf , (3.57)

holds, whereas hmax denotes the box height reduced by the object radius.

3.4.7 Numerical Example

Consider a relative initial state x(0) =
[
0 0.9

]T
at start of P3, which means the hybrid

bouncing ball H defined in (3.11)–(3.14) is initially in contact and has positive velocity.
The restitution is chosen ρ = 0.35. In P3, the robot moves according to (3.28) with
the goal to apply γ∗ = 25 ms−2. In P4, the goal is to maintain previously established
contact with γ > 4 ms−2. Two acceleration patterns are simulated to represent U2 in
the presence of these goals. Both are depicted in the lower plot of Figure 3.5. The
solid line shows a simulation of noisy acceleration by means of a high frequent sine
function between 20 ms−2 and 30 ms−2 in P3 and between 4 ms−2 and 20 ms−2 in P4.
The dotted line depicts a simulation of the “most unstable acceleration” [64] that is
γ = −p(x2) using the previously mentioned bounds.
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Figure 3.5: Height of a bouncing ball over time with initial state x(0) = [0 0.9]T and
restitution ρ = 0.35. The dashed lines in the upper plot indicate the respective
upper bound x̄1 from (3.53), which is decreasing. The Lyapunov function (mid-
dle) based on (3.32) is continuous and decreasing to zero in finite (Zeno) time.
Dynamics after the Zeno time are not considered. The upper acceleration bound
γmax drops at tf = 0.1 s, which accounts for limited robot tracking capabilities.

The first two plots of Figure 3.5 show the simulation result for height and Lyapunov
function value (3.32) over time for a sequence of impacts. The fast variations of γ,
which intend to simulate noise, are not visible in the two upper plots, which is due to
the low pass property of the double integrating flow. Moreover, the Lyapunov function
value decreases faster during t < 0.1 s, which is in line with (3.34) and thus confirms
that large γmin is desirable.

In addition, the first plot also displays the evaluation of Corollary 3.11 with dashed
lines. For this evaluation, uncertainty U2 and the drop in relative acceleration at
t = 0.1 s is taken into account by γP3

max = 30 ms−2 and γP3
min = 4 ms−2, which reduces to

γP4
max = 20 ms−2 and γP4

min = 4 ms−2 for t > 0.1 s. At the example of a maximum rebound
height hmax = 5 mm, indicated by the horizontal line in the first plot of Figure 3.5, one
can see that (3.53) already holds from t = 0.1 s. The simulated Zeno time here is at
t = 0.34 s in the most unstable case. Limiting the analysis to only those solutions that
have Zeno times that lie in P3 might thus be overly restrictive.
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Figure 3.6: Contours indicating the maximal Zeno time (3.35) for Example 1 acceleration
bounds in P3

(
γ(t) ∈ [20, 30] ms−2

)
subject to the initial relative state x′ = x(0)

and ρ = 0.35. All initial states below the solid contour fulfill Zmax < tf = 0.1 s.
The dash-dotted contour indicates the trend of the Zmax < tf contour as ρ
decreases.

Maximal Zeno Time

For the above example, Figure 3.6 visualizes the maximal possible Zeno time (3.35) at
the start of P3 (t0 = 0) depending on the initial relative state x(0). The solid contour
indicates Zmax = 0.1 s, which allows to conclude that all initial relative states enclosed
by this contour and the horizontal axis fulfill (3.37), and thus lead to continuous contact
already in P3. The dash-dotted contour indicates the effect of U3, which illustrates
that (3.35) is monotonically decreasing as ρ decreases as proven with Corollary 3.9.
Vice versa, the admissible U1 fulfilling Zmax < tf increases.

Maximal Remaining Rebound Height

Consider again the aforementioned example with restitution ρ = 0.35 and the same
range of potential initial relative states as in Figure 3.6. A simulation now calculates
how the relative object state x evolves until tf = 100 ms based on the “most unstable”
acceleration pattern illustrated in Figure 3.5. At time t = tf , Corollary 3.11 is evaluated

for all x(tf) =
[
hf νf

]T
using γP4

max = 20 ms−2 and γP4
min = 4 ms−2. Figure 3.7 illustrates

the results.

Similar to the previous maximal Zeno time example, negative relative velocities turn
out advantageous, as rebounds remain comparably small with respect to distance un-
certainties.

3.4.8 Discussion

This section reviews uniform Zeno asymptotic stability (UZAS) and provides a basis
for extensions that lead to provable robustness in catching. Here, the robustness for
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Figure 3.7: Contours indicating the maximal possible rebound height (3.53) for the accel-
eration bounds

(
γ(t) ∈ [20, 30] ms−2

)
at the end of P3 (t′ = tf) and subject to

ρ = 0.35. All initial states below the solid contour fulfill x̄1(hf , νf) = 0 mm (Zeno
solutions). The dash-dotted contour depicts the x̄1(hf , νf) < 5 mm contour.

catching originates in the set-valued conditions that must hold for maintaining UZAS.
Extensions such as the tight bound on the maximal Zeno time or estimation of the max-
imal remaining rebound height rely on UZAS and, therefore, benefit from the generality
provided by the set-valued formulation. The proposed maximal distance uncertainty
compensation further and actively exploits the maximal Zeno time. These extensions
are particularly important for robotic catching because the time a robot is capable of
tracking a ballistic flight trajectory is typically very brief. Hence, this section proposes
replacing the global problem of successful catching with the goal of establishing con-
tinuous contact before the tracking phase ends, subject to mild requirements for the
subsequent deceleration phase. The set of initial relative states from which continu-
ous contact could be established in the tracking phase is, however, relatively small.
Therefore, as a second approach, the notion of the maximal remaining rebound height
is introduced. Together with the proposition of a box-shaped end-effector, success also
becomes possible when small rebounds remain at the end of the tracking phase.

The two most important properties of the UZAS conditions are the formulation
for set-valued relative acceleration (3.30) and the inequality condition (3.31), which
relates the coefficient of restitution with the acceleration bounds. UZAS regarding set-
valued acceleration enables mapping or compensating for a variety of uncertainties in
a generalized way, for example:

• inaccurate robot motions,

• erroneous prediction of the object acceleration in the ballistic scenario due to
inaccurate estimation of the initial object state, e.g., by visual perception systems
or a throwing robot, and
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• negligence of the end-effector orientation during motion planning, which results
in motions perpendicular to the ballistic flight trajectory after impact (see also
Section 3.5).

The individual identification of these exemplary sources of uncertainty is time-consuming
and expensive.

The inequality condition (3.31) for UZAS allows for the use of a simple Newto-
nian restitution model (2.25) without losing generality as UZAS holds for all ρ ∈[
0
√

γmin

γmax

)
. This set-valued condition for the coefficient of restitution is of a gen-

eralizing nature because it maps to a range of objects (material and shape) without
requiring precise restitution models for each combination of object and end-effector.
Moreover, the generalized range of objects for which UZAS holds is inversely propor-
tional to the acceleration uncertainty. In the extreme case of no acceleration uncer-
tainty in the relative system between an object and unilateral constraint, any collision
not inducing energy in the direction of flight results in UZAS. Inversely, substantial
acceleration uncertainty requires sizable energy dissipation at collisions (small ρ) to
guarantee UZAS. Given this discussion on UZAS, robust catching no longer requires
expert knowledge in the large field of modeling impact dynamics, which is known for
being sensitive regarding inaccurate modeling. Only impacts that induce energy in
the direction perpendicular to the unilateral constraint (ρ > 1) might not be rigorously
covered by the theory presented in this section. Nevertheless, increasing the robustness
against U1-U3 generally considering (3.30) and (3.31) can also be expected to increase
the robustness if more complex objects are to be caught.

Furthermore, UZAS is proven using a sophisticated Lyapunov function that is always
continuous, even when velocity resets at collisions. The flow condition (3.34) in the
proof should be afforded special attention, as it strictly requires the Lyapunov function
to be decreasing. The upper bound −κγmin on the right-hand side of the inequality
only depends on the upper and lower acceleration bounds and the coefficient of restitu-
tion. The physical conclusion from (3.34), beyond its role in the proof, is that catching
robustness generally increases as γmin increases. Moreover, this upper bound on the
decrease of the Lyapunov function directly relates to the finite convergence time prop-
erty of UZAS. Chapter 5 considers this observation and demonstrates how it can be
used for robustification in robotic catching systems.

As UZAS is enabled for ballistic robotic catching (see Section 3.3.3), the maximal
Zeno time notion from [64] also becomes applicable. The analytic solution for calculat-
ing the maximal Zeno time reviewed in Theorem 3.6 states an exact tight bound given
a coefficient of restitution, acceleration bounds and an initial relative object state. In
contrast, traditional stability and convergence notions typically state if and how fast the
system states converge to a desired value as t→∞. Alternatively, the finite time until
a state is guaranteed to remain within a certain proximity to a desired value is taken
as a measure. Thus, both of these traditional approaches are ill-suited for describing
the finite time problem of establishing continuous contact. The main disadvantage of
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the infinite time horizon formulation is that not only the acceleration bound from the
tracking phase (P3), but also from the deceleration phase (P4) must be considered.
The latter (P4) is characterized by a much lower value γmin than in P3. Hence, a union
of the acceleration bounds from P3 and P4 covers large acceleration uncertainties re-
sulting in small γmin

γmax
and, therefore, large Zmax. Enabled by the explicit consideration

of Zeno behavior and motivated by these observations, the proposed special catching
task formulation enables the reduction of the success quantification to the controllable
tracking phase. In this context, the condition Zmax ≤ tf is considered as a success
indicator.

As a result, a convex set XZ̄max
can be implicitly formulated collecting all states

guaranteed to have a maximal Zeno time less than or equal to Z̄max := tf , subject to a
particular restitution ρ. Considering the typically short tracking phases (P3) in robotic
catching, this formulation is later demonstrated useful in quantifying the robustness of
catching systems and, therefore, making these systems comparable for the first time.
The interpretation of XZ̄max

is extended with Corollary 3.9 . By proving that the
maximal Zeno time Zmax strictly increases as the coefficient of restitution ρ increases,
XZ̄max

also becomes valid for all ρ below a reference value. The resulting tolerance
regarding the coefficient of restitution is crucial for practical catching situations in
which identifying impact models is expensive and error-prone.

Nonetheless, the maximal Zeno time can still be quite large and, therefore, a box is
used rather than a flat end-effector, resulting in two benefits: (i) catching can be suc-
cessful even if small bounces remain and (ii) the balancing challenge after establishing
continuous contact simplifies. While the latter is addressed in Chapter 5, a closed-form
solution of the first benefit is derived with Corollary 3.11. The numerical evaluation
with results depicted in Figure 3.7 demonstrates that the range of potentially successful
object states significantly increases. The convexity known from XZ̄max

, however, is lost.

The simulation results of both approaches, maximal Zeno time and maximal re-
maining rebound height, indicate that catching is more robust when the initial relative
velocity is negative instead of zero. This observation is in contrast to previous work,
which has typically targeted zero relative velocity without validation of this goal defini-
tion. Corollary 3.10 rigorously refines the described observation, suggesting a relative
velocity maximizing the distance uncertainty that can be compensated for by a partic-
ular catching motion. The resulting suggestion (3.44) is based on a desired maximal
Zeno time, acceleration bounds and an upper bound on the coefficient of restitution. If
reliable success is achieved based on Corollary 3.10, one may then conceive of further
reducing impact velocities with velocity matching x2(0) → 0, as considered in most
previous dynamic catching approaches of a lower success rate.
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3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching

3.5 Motion Deviating from the Ballistic Flight Path

So far, the velocity components of the object perpendicular to the distance measure h
have been neglected during parametrization and stability analysis. But, such parallel
motions slowly begin for t > 0 and become non-negligible in magnitude when the
end-effector must move away from the ballistic path with the start of P4. In the
case of non-spherical objects, the first collision in P3 may induce significant motions
perpendicular to h. These two major issues related to motions perpendicular to h are
considered here. Section 3.5.1 briefly discusses the problem of unpredictable velocity
transformation when non-spherical objects collide with the unilateral constraint. Then,
Section 3.5.2 addresses the effect of motions perpendicular to the ballistic flight path
on the relative acceleration.

3.5.1 Velocity Transformation at Collisions

Rotation or velocities perpendicular to hmay be transformed into velocity in h-direction
at collisions, whereas the outcome of such collisions with objects of an arbitrary shape
is barely predictable. Even coefficients of restitution ρ > 1 in h-direction are likely
to occur. On the other hand, frictional losses tend to be higher for polygonal, com-
pared to spherical, objects . Therefore, calculations from the previous section cannot
quantitatively predict success or failure for arbitrarily shaped objects. Nonetheless,
Theorem 3.6 and Corollary 3.10 enable analysis of the qualitative effect of many vari-
ables. The object state after collisions, or at least h and ν, must be measurable to
regain explicitness lost through impacts. Taking such measurements is a challenge,
especially for small rebounds, and are thus beyond the scope of this thesis.

3.5.2 Acceleration Uncertainty

Rotation or velocities perpendicular to h are the major source of U2, including errors
and unmodeled changing tilt angles of the end-effector. The presented theorems and
corollaries all rely on only the boundedness of relative acceleration γ(t), which includes
robustness against U2. These theorems explicitly do not require knowledge of a par-
ticular acceleration pattern. Therefore, the goal here is to conduct a case study of the
influence of previously neglected effects on the range of occurring relative accelerations.

3.5.3 Numerical Example

Consider a cube-object starting above the end-effector as depicted in Figure 3.8 and Fig-
ure 3.9. Four scenarios are simulated where the end-effector motion is always planned
for constant γ∗(t) = 25 ms−2. Motions described in this second issue thus cause all the
deviations of relative acceleration in the upper plots. The initial absolute part velocity
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(a) (b)

Figure 3.8: Simulation results to evaluate the influence on the relative acceleration in h-
direction of motions perpendicular to h. The motion perpendicular to h has
a magnitude of 1.4 ms−1 for which it remains within the previously assumed
acceleration bounds.

(a) (b)

Figure 3.9: Simulation results to evaluate the influence on the relative acceleration in h-
direction of object rotation. In (c), the rotation of 20 rad s−1 about one object
axis does not violate the acceleration bounds, except for the moment when the
nearest edge of the object switches. In (d), the rotation of 40 rad s−1 about one
object axis leads to permanent violation of the acceleration bounds.
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3 Robust Hybrid Bouncing Ball in Ballistic Robotic Catching

in h-direction is νO = 3.5 ms−1 and the initial relative velocity is ν(0) = −0.3 ms−1. In
the translational scenario illustrated in Figure 3.8, the relative velocity perpendicular
to h has a comparably large magnitude of 1.4 ms−1. As depicted in the acceleration
plots, the deviation from γ∗ in this simulation is at most ±5 ms−2. Hence, the con-
servative choice of acceleration bounds used in the example described in Section 3.4.7
covers a notably large range of unmodeled velocities perpendicular to h. The rotational
scenarios in Figure 3.9 illustrate the effect of rotation on the relative acceleration γ(t).
Considering (2.19) and its derivatives, the closest vertex can switch, resulting in a veloc-
ity jump and thus, very large relative acceleration instants. Therefore, non-spherical
parts temporarily violate (3.31) in such cases. Rapid rotations, as demonstrated in
scenario (b) of Figure 3.9 and high velocities perpendicular to h potentially lead to
permanent violations.

3.6 Summary

Robotic catching represents the challenge of establishing fast contact while neither
the object nor a robot end-effector have to slow down from natural or desired high
operation velocities. Such a task requires manipulation planning in the presence of
a complex combination of uncertainties, which may not be easily neglected. Hence,
establishing contact provably robust demands a provable compensation of a non-zero
set of uncertainties. At the example of robotic catching, this chapter handles the overall
complexity by dividing the problem of establishing fast contact into two distinct types of
problems: the relative motion between an object and end-effector on the one hand (task
level), and the kinematic motion of the robot on the other (joint level). The different
dynamics and constraints of both problems can thus be individually addressed with
suitable methods.

When continuous contact between an object and unilateral constraint, both with
state uncertainty, is to be established, as on task level during catching, a sequence
of collisions during finite time inevitably applies. This is the case because the sum
of all uncertainties neither allows for precise distance measurement nor for precise
relative velocity measurement or estimation, which ultimately causes at least small
rebounds. Building on this fundamental observation, the methods and discussions
presented in this chapter contrast previous work, which has typically aimed for ideal
(i.e., without any rebounds) transitions into continuous contact by velocity matching.
As such, these previous works lack formulating conditions that must be fulfilled to
guarantee asymptotic stability (i.e., convergence) during this non-instantaneous contact
transition. The hybrid dynamical system framework briefly reviewed in Section 3.2 is
well suited to formulate the stability problem for a decoupled one-dimensional bouncing
ball by including the notion of Zeno behavior.

The gap between these one-dimensional considerations and the three-dimensional
catching problem is addressed by dimensionality reduction and a real-time capable
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dynamical system motion planner, respectively. After reduction to one dimension,
the relative bouncing ball is formulated as a hybrid dynamical system with set-valued
acceleration as an input. The variety of practical uncertainties reduces to a combi-
nation of three classes of uncertainties in the one-dimensional case: (U1) initial state
uncertainty when the end-effector starts tracking the ballistic path, (U2) dynamic un-
certainties represented by the set-valued acceleration input and (U3) uncertainty in
the collision model. Quantifiable robustness against these three types of uncertainty is
achieved with extensions based on uniform Zeno asymptotic stability and an associated
exact tight bound on the maximal Zeno time.

A first extension demonstrates that the maximal Zeno time strictly increases as the
coefficient of restitution increases, and the practical conclusion is that if catching can be
guaranteed for a particular material combination of an object and end-effector, the same
catching motion will also be successful in situations with more energy loss at collisions.
This result is not limited to the catching example and has the potential to overcome
the expensive identification of collision models in other contact situations. The second
extension addresses potential users because it proposes a desirable initialization of the
relative velocity such that potential distance uncertainties are maximally compensated.
Moreover, this extension reveals that robustness against state uncertainty relies on
small, but intentional, impacts, which requires objects to be not too fragile. The last
extension formulates a bound on the maximal rebound height given the current relative
state. As in practice, the end-effector might be a large box rather than a flat plate, and
the maximal rebound height can be associated with the box’s height to enlarge the set
of potentially successful initial relative states.

The main limitation of the proposed dimensionality reduction for ballistic catching
are the neglected motions perpendicular to the ballistic flight path. These deviating
motions act with an offset on the relative acceleration input of the one-dimensional
model and can thus cause violations of previously assumed bounds on the relative
acceleration. A realistic simulation of the object and end-effector evaluates the potential
offset to provide an idea of how large the acceleration set should be assumed in the one-
dimensional analysis. Moreover, the simulation allows illustration of the acceleration
effect of rotating polygonal objects when the object edge closest to the end-effector
switches.

As this chapter has shown, contacts can be established fast and provably robust in the
presence of considerable state uncertainties and without the need for precise collision
modeling. The methods and results presented in this chapter may also find applications
beyond the particular problem of object catching. For example, the convergence criteria
for UZAS also apply in the presence of large relative velocities. Hence, an appropriate
negative relative acceleration, similar to what was presented in this chapter, may enable
fast and robust picking of static objects with no need to adapt or reduce the end-effector
velocity before contact is established.
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4 Joint Trajectory Planning for Manipulation
through Intermittent Contacts

This chapter introduces the notion of additional, dynamically unconstrained joints.
These virtual joints become available with nonprehensile dynamic manipulation via
intermittent contacts. The redundancies gained with the new joints are exploited to
enable faster end-effector motions of existing robots on, or close to, a known trajec-
tory or path. Two concepts to resolve these redundancies are presented here. In
the first concept, a constrained dynamic optimization resolves the redundancy using a
parametrization with Hermite splines. The Hermite splines allow for an intuitive and
efficient limitation of the search space and are, therefore, well suited for optimization-
based offline motion planning, which also guarantees the maintenance of all joint con-
straints. In the second concept, inverse differential kinematic trajectory planners are
compared unbiased and tuning-free based on weight optimization. From formulation
until evaluation, particular attention is afforded to the infinite velocity and acceleration
potential of the new virtual joint notion. A planar catching experiment presented in
Chapter 5 demonstrates how the new joints enable fast, accurate and still flexible task
execution with a formerly non-redundant robot.

4.1 Introduction and State of the Art

Repeatable success of robotic manipulation depends on robust solutions in percep-
tion, modeling and control. Robustness alone, however, is only a necessary criterion
for the practical applicability of individual manipulation solutions, also referred to as
primitives. Only in combination with efficiency (for example, throughput, range and
cost) can gaps between academic and commercial interests be bridged. As an example,
throwing and catching parts has the potential to increase the efficiency of industrial
object transport. Nonetheless, published work regarding this problem has so far been
forced to make trade-offs between robustness and efficiency when designing and con-
ducting experiments.

Given a manipulation primitive candidate, typically formulated in Cartesian task
space, experiments with redundant manipulators are carried out using one of many
available inverse kinematic algorithms. Within this step from simulation to experiment,
constraints on joint ranges, velocities, accelerations and torques of the manipulator
joints must be met to maintain robustness claims made in task space. In the object
transport example, this final step becomes challenging when a robot manipulator is
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4 Joint Trajectory Planning for Manipulation through Intermittent Contacts

required to catch a fast flying part. Solutions to the catching problem have recently
advanced from static interception of the flight trajectory [11, 46] to an adaptation of
the end-effector velocity [9, 78, 85]. For provably robust catching, the manipulator end-
effector might even have to follow the flight trajectory for some time with a particular
acceleration pattern relative to the part. Thus far, these adapting approaches have
had to reduce the end-effector velocity leading to impacts with the part [9, 78], which
can cause damage. Alternatively, redundancy is resolved offline [85]. Thus, a key to
further improvement is the ability to solve the inverse kinematic problem in real-time
while operating close to, or even beyond, classical manipulator constraints.

The field of nonprehensile dynamic manipulation [55, 56] is well suited to address
insufficient manipulator dynamics. Unlike grasping approaches [46], a generic nonpre-
hensile end-effector provides a large potential contact area. This area can augment
the kinematics by additional virtual prismatic joints for those manipulation primitives
based on impacts or transitions into continuous contact. Most importantly, these vir-
tual joints are unconstrained with respect to velocity or acceleration. After a transition
into continuous contact, such as in catching, work on nonprehensile rolling manipula-
tion [53, 75] becomes applicable. Further examples of manipulation with intermittent
contacts besides catching are juggling [54, 69, 72, 81] and batting [2, 32, 86].

A body of work already exists for resolving redundancies with joint constraints,
including limitations on velocity and acceleration. The most common approach is the
use of a weighted pseudo-inverse that locally minimizes joint velocities in real-time.
In the presence of joint displacement limits, the weights are usually formulated joint
dependent [20], or the gradient of a cost function is projected into the null space of
the inverse kinematic solution [51]. When a joint still moves close to a limit, the
pseudo-inverse approaches can no longer guarantee accurate task execution, which can
be countered by iterative joint velocity saturation [29]. The dynamic scaling of joint
trajectories [40] or the task [3] is also practical to accurately track a path. If the task
is known a priori, optimal control methods in combination with trajectory deformation
are applicable [66, 84], which no longer allow for real-time acceleration changes.

In the field of robotic manipulation, performing particular tasks with the same agility,
speed and precision as humans is still an open problem. By actively considering the
nonprehensile nature as similar to the way humans approach many such challenging
tasks, standard robots can be made capable of solving these tasks with the same or
even better reliability. Two approaches are presented in this chapter to exploit the
nonprehensile nature of tasks with intermittent contacts. The contributions are as
follows:

(i) The notion of additional, dynamically unconstrained joints is introduced. These
virtual joints become available with nonprehensile dynamic manipulation via in-
termittent contacts. Modified constraint definitions are subsequently presented to
represent the unconstrained velocity and acceleration potential of the new joints.
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(ii) The redundancies gained with the new joints are parametrized offline and ex-
ploited using constrained optimization to maximize task robustness while guar-
anteeing kinematic and dynamic feasibility.

(iii) The redundancies gained with the new joints are used to enable fast end-effector
motions on, or close to, a known path with real-time acceleration input.

(iv) Inverse differential kinematic trajectory planners are compared unbiased and
tuning-free based on weight optimization in the example of catching fast flying
objects.

After introducing the novel notion of virtual joints, which has been published in [83],
an optimization-based offline approach that integrates the task and joint level motion
planning problem is presented. For this purpose, parametrizing the novel redundancy
with cubic Hermite splines is proposed. A dynamic optimization with linear and non-
linear constraints then enables maximization of task goals while the resulting robot
motion is guaranteed to be kinematically and dynamically feasible. The design of the
optimization problem is demonstrated to be highly flexible because physical scenario
parameters, such as task duration or end-effector acceleration, can easily be added to
the set of optimization variables. In the challenging example of robotic catching, it is
revealed that even a 2-DOF manipulator can be enabled to exactly follow a fast ballistic
flight trajectory for more than 100 ms. This integrated offline redundancy resolution
approach has been published in [84].

The second approach builds on standard inverse differential kinematic methods to
reliably operate robots at high velocities subject to potential real-time feedback. The
assumption of an approximately known reference task path or trajectory enables an
automated offline optimization of design parameters, which are crucial for maintaining
feasibility during operation. The proposed cost function, motivated by [100], maxi-
mizes the normalized distance to each constraint. Subject to a sufficiently large virtual
joint, significant deviations from the reference path or trajectory become possible. In
the example of robotic catching, two common inverse differential kinematic methods
are compared unbiased as the optimization approach overcomes the need for heuris-
tic parameter tuning. This approach has been published in [83] and was motivated
by [21, 97].

4.2 Dynamically Unconstrained Nonprehensile Joints

For dexterous tasks such as catching objects, roboticists frequently encounter the chal-
lenging problem that motions planned for an ideal end-effector at the task level cannot
be performed with the available robots [78]. The main problem is that manipulability
mainly increases with the number of joints. These additional joints, i.e., motors and
gears, however, add significant additional weight and inertia which must be moved by
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`m

qm+1

qm+2

qm

manipulation
contacts possible

various

Figure 4.1: In nonprehensile dynamic manipulation, a generic planar end-effector (e.g. [9,
85]) at the end of the kinematic chain increases redundancy. For manipulation
with intermittent contacts, such as catching or batting, these additional virtual
prismatic joints provide unlimited velocity and acceleration potential.

the previous actuators in the kinematic chain. Hence, torque and power requirements
also increase. As a result, solutions to challenging tasks such as catching, which require
dexterous motions at high velocities, often exceed these physical limits when deployed
in real robots. Success and failures during experimental validations, therefore, cannot
be reliably associated with solutions at a task level.

As such, Section 4.2.1 first introduces the extension of classical kinematics with
virtual nonprehensile prismatic joints for manipulation through intermittent contacts.
Then, Section 4.2.2 formulates the constraints for the augmented system, which must
hold to guarantee that tasks are accurately performed in experiments.

4.2.1 Augmented Kinematics with Unconstrained Joints

Let an n-dimensional manipulation task xn ∈ Rn be solved with a manipulator that
has m Degrees of Freedom (DOF) denoted by qm ∈ Rm. Furthermore, assume the
manipulation task requires part and end-effector to come into contact in a (temporarily)
nonprehensile way. Then, there mostly exists an area, instead of a single point, on the
end-effector that is eligible for the contact, see Figure 4.1. This circumstance may be
reflected if qm is augmented with a additional (prismatic) joints denoted by qa ∈ Ra,
which leads to

q =

[
qm

qa

]
. (4.1)

These augmented joints are typically located at the end of the kinematic chain and are
limited to a ∈ {1, 2}.
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In terms of joint constraints, the m traditional joints qm and the a augmented virtual
joints qa reveal major differences. While not in contact with the manipulated part, the
augmented joints provide – in a kinematic sense – infinite velocity and acceleration
capabilities. Around the predicted contact time, velocity equality constraints may be
employed to control the tangential friction effect at the collision. Alternatively, the
manipulation task is robust to tangential disturbances [85]. Thus, unconstrained joint
velocity applies throughout the task. The latter scenario is assumed hereafter.

4.2.2 Augmented Joint Constraints

Accurate tracking of a task xn(t) with a manipulator is only possible if the joint space
trajectory stays within the manipulator constraints

Q ≤ q ≤ Q (joint ranges) (4.2a)

V ≤ q̇m ≤ V (velocity limits) (4.2b)

T ≤ τ ≤ T (torque limits). (4.2c)

Recalling the unconstrained velocity potential of the augmented joints introduced in
Section 4.2.1, the velocity limits (4.2b) and torque limits (4.2c) are thus of dimension
m, whereas the joint limits (4.2a) are of dimension (m + a). The torque limits (4.2c)
relate to acceleration limits using the dynamic equation

M(qm)q̈m +C(qm, q̇m)q̇m +G(qm) = τ , (4.3)

with the inertia matrix M ∈ Rm×m, the Coriolis matrix C ∈ Rm×m, the gravitational
vector G ∈ Rm, and the input torque τ ∈ Rm.

The constraints (4.2) are collected in a generalized constraint vector. By defining

h =
[
qT q̇T

m τT
]T

and therefore h ∈ R(3m+a), the constraints (4.2) become briefly

h ≤ h(t) ≤ h, (4.4)

where the lower and upper bounds are denoted hT =
[
QT V T T T

]
and h

T
=[

Q
T
V

T
T

T
]
, respectively. The constraint definition (4.4) can be extended to meet

additional limitations, e.g., motor power limits.

4.3 Offline Integrated Motion Planning at the Task and
Joint Levels

The main goal of the proposed virtual kinematic augmentation is to increase a robots
degree of redundancy without changing its dynamics through the additional mass.
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The new virtual joints can then be exploited to perform a main (primary) task in the
presence of several secondary tasks, i.e., maintaining kinematic or dynamic constraints.
For a focused evaluation of the newly proposed virtual joints, this section is limited
to resolving redundancy that originates in such virtual joints. The following approach
addresses this problem by first introducing a parametrization of the virtual redundancy
(Section 4.3.1), which is then jointly resolved with the task level of the catching problem
in an optimization program described in Section 4.3.2. A realistic numeric example
in Section 4.3.3 evaluates the effectiveness of the proposed approach based on the
experiments described in Chapter 5.

4.3.1 Redundancy Parametrization with Cubic Hermite Splines

The first concept concentrates on the redundancy originating in the novel augmented
notion presented in Section 4.2.1. Hence, this section assumes that the solution to
the inverse kinematic problem (2.37) of the classical m-DOF manipulator is known.
Moreover, in the context of robust object catching and a controlled environment, as
provided by a robotic throw, the task can be assumed to be sufficiently well-known for
offline motion planning. Therefore, this concept approaches the redundancy resolution
problem with a parametrization of the augmented joints qa to fulfill a task robustly.

The newly introduced redundancy is resolved using a normalized cubic Hermite spline

qn+a(t, tf ,p
H) = 1

t3f

(
2pH

4a−3 − 2pH
4a−2 + tfp

H
4a−1 + tfp

H
4a

)
t3

− 1
t2f

(
3pH

4a−3 − 3pH
4a−2 + 2tfp

H
4a−1 + tfp

H
4a

)
t2 + pH

4a−1t+ pH
4a−3, (4.5)

on the interval t ∈ [0, tf ] with 0 and tf being the start and end of P3, respectively. The
vector pH ∈ R4a collects the polynomial coefficients. With the Hermite spline (4.5),
the virtual joints are described intuitively as the coefficients

pH =
[
qa(0) qa(tf) q̇a(0) q̇a(tf)

]T
(4.6)

are the displacement and the velocity of qa at start and end of P3, respectively.

4.3.2 Maximized Catching Task Robustness

P3 (cf. Figure 2.2) is highly crucial for nonprehensile catching, in which the robot end-
effector follows the ballistic flight path of the ball. Theorem 3.5 has defined which range
of the relative acceleration γ(t) stabilizes a bouncing ball on this ballistic path. The
dynamical system motion generator (3.28) with initial state (3.29) allows reconstruction
of the three-dimensional end-effector motion. Not that a beneficial choice of x(0) was
proposed in Section 3.4.5.

The redundancy parameters pH, the final time (duration) tf of P3, and the shape of
γ(t) are still undefined at this point. In the following, these remaining design parame-
ters are chosen while being implicitly constrained by (4.2). In order to solve the offline
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ξ̇ = φ(ξ, γ)

∫
dt d

dt

Augmented
differential

inverse kinematics

Robot dynamics
τ = M(qm)q̈m + . . .

Constraint eval.
h(q, q̇m, τ ) ≤ 0

γ

ξ̇ξ ξ̈

ξ0

τq, q̇, q̈

Robot
(P3)

qm+a(t,p
H)

Figure 4.2: A block diagram visualizing the generation of the workspace motion by (3.28)
based on γ and ξ0. Using the augmented differential inverse kinematics together
with pH, the motion translates into joint space and the constraints for the
dynamic optimization problem (4.7) are obtained.

motion planning problem the constrained dynamic optimization problem

minimize
pH,tf ,γ(t)

− κγmintf (4.7)

s.t. (4.3) using (3.28)− (3.29) and (4.5),

h− h(q, q̇m, τ ) ≤ 0, h(q, q̇m, τ )− h ≤ 0,

is formulated. Additional constraints might be added depending on particular exper-
imental setups [84]. The chosen cost function partially originates in (3.34), which
quantifies the convergence speed of the Zeno behavior that inevitably occurs during
any non-ideal contact transition. The proposed multiplication of the quantified con-
vergence speed with tf intends to maximize robustness. The most important property
of this cost function is its independence from the initial relative state x(0), which ac-
counts for the use in an uncertain environment. Nonetheless, it should be noted that
a desired x(0) needs to be chosen for initializing the integration of (3.28) with (3.29)
during constraint handling.

Figure 4.2 visualizes the three main parts required to evaluate the constraints of
(4.7) in practice:
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û

ŵ `1

`m

q1

qm

qm+1`m
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Figure 4.3: Left: The kinematic model for m actuated rotational degrees of freedom. The
û-ŵ-frame coincides with the robot base. Right: An unactuated, box-like end-
effector with height hmax and prismatic joint as “virtually” actuated DOF qn+1.

(i) Generation of the workspace motion (Cartesian positions, velocities and acceler-
ations) based on the input acceleration γ and initial end-effector state ξ0. Here,
the offline calculation allows for solving the integration problem with variable
step-size solvers, which provide high and reliable accuracy. For the typically very
brief duration of P3, however, the propagating errors of fixed step-size solvers are
also negligible. Therefore, this part can readily be used in real-time.

(ii) Translation from the workspace into joint space motion, including redundancy
resolution, for instance, using (4.5). Given a parametrization pH for the aug-
mented joints, a standard inverse kinematic problem remains, which can be solved
with one of the many existing methods (see [88, 90]).

(iii) Evaluation of kinematic and dynamic constraints at the joint level.

The acceleration γ(t) must be parametrized and constraints must be evaluated at
discrete time steps to solve the problem as a static optimization problem with one of the
many available solvers. The particular parametrization pattern used for the input γ(t)
depends highly on the method selected to solve the problem (4.7) numerically. Typical
approaches are constant, piecewise constant and piecewise linear parametrization.

4.3.3 Numerical Example

Scenario

The realistic planar scenario of a robot dynamically catching objects is regarded in
its most critical phase, i.e., P3, where the robot has only m = 2 actuated DOFs (see
Figure 4.3). Considering the given path or trajectory at the task level, as discussed
in Chapter 3, this system has no redundancy, except for the choice between overarm
and underarm configuration. Hence, the robotic system does not provide any degree
of freedom that could be used to fulfill constraints at the joint level. However, the
task of catching objects is exceedingly challenging for robots, as high velocities and
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Table 4.1: Bounds on the optimization variables.

Symbol pH
1 pH

2 pH
3 pH

4 tf γ
Unit m m ms−1 ms−1 s ms−2

Upper 0.015 0.015 2 2 0.25 45
Lower 0 0 −2 −2 0.05 15

large accelerations occur. The dynamic feasibility required to maintain robustness
guarantees made at the task level can then only be achieved by task downscaling, e.g.,
catching from a very short range.

The virtual kinematic augmentation (4.1), here with one prismatic joint (a = 1)
at the end of the kinematic chain, adds redundancy to the motion planning problem
on joint level as the end-effector orientation can be neglected. The newly gained re-
dundancy is then parametrized with the Hermite spline (4.5). The desired relative
acceleration γ is considered constant for t ∈ [0, tf ]. The acceleration uncertainty is
∆γ = 10 m s−2, which defines the lower and upper acceleration bounds as γmin = γ−∆γ
and γmax = γ + ∆γ, respectively. The dynamic constraints are evaluated at N equally
distributed discrete points in time tk = tfk

N−1
, k = 0, 1, . . . N − 1. The release point on

the throwing side is given by

ur = u(tr) = −1.77 m

wr = w(tr) = 0.52 m

αr = 37◦

νr = 4.5 m s−1,

which complies with the experimental setup presented in Chapter 5. The optimization
variables are constrained by the values in Table 4.1. The inequality constraints h from
(4.4) are discretized over time with N = 50.

Results and Discussion

Solving1 (4.7) for the previously described scenario then results in κγmintf = 0.12, a
constant relative acceleration γ∗(t) = 39.5 m s−2 and P3 duration tf = 0.101 s. For the
augmented DOF the optimization returns

pH =
[
0.013 m 0.003 m −0.57 m s−1 0.055 m s−1

]
.

The torques and velocities required to perform the P3 motion on the time interval
t ∈ [0, tf] are depicted in Figure 4.4. While the motion based on the augmented
kinematics stays within the limits, a following motion with the standard kinematics
would be dynamically infeasible. The most significant difference is observed at the

1Here using Sequential Quadratic Programming (SQP) in MATLAB.
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tion. While the motion governed by the augmented kinematics (AK) stays
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Figure 4.5: Resulting exploitation of nonprehensile augmented DOF q3.

beginning of the following motion because here the desired velocity is the highest.
In the second half, the dynamic requirements become smaller and stay within the
constraints. This is owed to the fact that the desired relative acceleration results in a
decreasing desired velocity. In the presented scenario, the dynamic requirements at the
start of P3 are generally only met at very few points by the standard kinematics in the
robot’s workspace. The plot in Figure 4.5 illustrates how the AK exploit the virtual
DOF to achieve dynamic feasibility. Figure 4.6 shows the maximal Zeno time based on
Theorem 3.6, but here with the optimized γ and tf . In comparison to Figure 3.6, the
Zeno times with respect to the initial relative state have generally decreased.

The main drawback of the proposed optimization is the convergence of (4.7) to a
feasible solution. The complex set of constraints makes it difficult to initialize the
optimization program with optimization parameters that already fulfill all constraints.
However, standard solvers, like the SQP method provided with MATLAB, can solve
the feasibility problem jointly with the optimization problem. Moreover, considering
the offline nature of the optimization-based motion planner, a large randomized set of
initializations within the parameter bounds (see Table 4.1) can be evaluated efficiently
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Figure 4.6: Contours indicating the maximal Zeno time (3.35) for acceleration bounds γ(t) ∈
[29.5, 49.5] m s−2 in P3 with the same scale as in Figure 3.6, but doubled ∆γ for
increased robustness. The solid contour marks Zmax = 0.101 s in view of (3.37).
A further result of the optimization compared to Figure 3.6 is the reduction of
the maximum occurring Zeno time from 0.28 s to 0.22 s in the depicted subspace.

with a parallelized algorithm. For the particular numeric example above, a total of
100 randomly distributed initializations converged 52 times to feasible solutions. The
computation takes 414 s on a 3.9 GHz Intel Core i3-7100 with two physical cores and
four threads. The number of successfully converging optimization runs scales with the
requirements on task level. Amongst all task parameters, the desired initial end-effector
velocity ξ1(0) from (3.29) on the ballistic path appears most critical in this context.

4.3.4 Discussion

This section proposes a novel, optimization-based motion planning approach that in-
tegrates the task and joint level problem of robotic catching. The main contribution
of this approach is overcoming the generation of task plans that cannot be deployed
in real robots because dynamic and kinematic limitations are neglected. Violations of
such limitations were considered responsible for a sizable number of catching failures
in the past. Successful integration originates, on the one hand, in the robust task-level
approach represented by the cost function in (4.7) and, on the other hand, in the virtual
joint augmentation proposed in Section 4.2.1.

The selected cost function maximizes the decrease of the Lyapunov function value of
the underlying hybrid bouncing ball problem independent of particular initial relative
states. As demonstrated in the numerical example, the optimization leads to a general
decrease of Zeno times, which results in an increase of initial relative states that fulfill
the catching condition (3.37). As a result, this approach does not require explicit
modeling of the various types and sources of uncertainties and is hence, generally
applicable beyond particular experimental setups.
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4 Joint Trajectory Planning for Manipulation through Intermittent Contacts

Subject to a controlled environment that allows for approximate prior knowledge of
the ballistic flight trajectory, such as using a throwing robot, the robust approach en-
ables offline planning. Therefore, an extensive search across the parameter space can be
performed to identify robust solutions at the very limit of a robot’s capabilities by opti-
mal exploitation of the newly introduced virtual prismatic joint. The numeric example
in Section 4.3.3 demonstrates the significance of the virtual joint by enabling a realistic
non-redundant 2-DOF robot to follow a fast trajectory through its workspace without
any constraint violation. Furthermore, given this parameter search, the parametriza-
tion of the virtual joint with a cubic Hermite spline is highly efficient as it allows for a
tight and intuitive limitation of the search space regarding positions and velocities.

Nonetheless, the assumption of a controlled environment and, therefore, sufficient
knowledge of the ballistic flight trajectory prevents the application of this offline ap-
proach beyond a well-calibrated robot-robot scenario. Hence, larger deviations of a
robotic or human throw or disturbances during flight cannot be compensated for despite
the underlying task motion planner (3.28) being real-time capable. Thus, Section 4.4
proposes an alternative approach based on inverse differential kinematic planners that
can operate in real-time.

4.4 Real-Time Motion Planning

This section compares real-time capable redundancy resolution methods to enable ac-
celeration changes on the ballistic flight path during operation. Section 4.4.1 reviews
two standard inverse differential kinematic algorithms, known to be real-time capable.
The performance of these algorithms regarding constraints at the joint level strongly de-
pends on the initial kinematic configuration and selected weighting matrices. As such,
Section 4.4.2 proposes an offline optimization approach that automates the search for
these weighting matrices by defining tuning goals for the algorithms. Both algorithms
are compared unbiased for a realistic catching scenario in Section 4.4.3. The favored
algorithm is then further analyzed in Section 4.4.4 with respect to online changing
acceleration inputs.

4.4.1 Inverse Differential Kinematics for Redundancy Resolution

Most robot motion planning problems include a manipulator that is redundant in regard
to the task its end-effector is supposed to perform. Therefore, redundancy resolution
is a recurring topic for roboticists, to which Section 2.4.3 provides a brief introduction.
This section reviews two standard inverse differential kinematic algorithms, known to
be real-time capable. With the help of a pseudo-inverse

JW = W−1JT
(
JW−1JT

)−1
(4.8)
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redundancy may be resolved by
q̇ = JW ẋn, (4.9)

which locally minimizes the joint velocities according to a symmetric positive definite
weighting matrix W ∈ R(m+a)×(m+a). Additional objectives, for example respecting
the limited range of the augmented joints, are included by extending (4.9) to

q̇ = JW ẋn + k (Im+a − JWJ)∇w(q), (4.10)

which optimizes a secondary objective function w(q) by projecting its gradient

∇w =
∂w(q)

∂q
(4.11)

into the null space of the Jacobian. The factor k ∈ R weights the secondary task in
relation to the primary, velocity minimizing, task, whereas positive or negative signs
result in maximization or minimization, respectively. Note that the joint trajectory
planners (4.9) and (4.10) lead to different solutions for every possible initial configu-
ration q0. Hence, the choice of q0 is at least as important as the tuning of W and
k to find feasible joint trajectories through the entire task. In practice, such tuning
often turns out unsuitable and unintuitive in the presence of acceleration or torque
constraints. Therefore, Section 4.4.2 formulates a constrained optimization problem to
find W , k and q0 automatically based on a nominal task trajectory.

4.4.2 Maximized Distance to Constraints

Given a nominal task trajectory x∗n(t) with t ∈ [t0, tf ], an initial joint configuration
qm(t0), and an initial guess for qa(t0), W and k, the desired joint trajectory follows
from numeric differentiation and integration of (4.9) or (4.10). Hence, defining a vector
of optimization variables

c =
[
qT

a (t0) diag (W )T k
]T

, (4.12)

the constraint vector in (4.4) becomes h(x∗n(t), c), whereW is chosen a diagonal matrix.
Note here that other task parameters can easily be added to c, e.g. the starting point
x(t0) in the manipulator workspace.

In order to ensure that the joint trajectory not only stays within the constraints, but
also keeps a distance to each constraint, an inverse distance function

Hi (hi(x
∗
n(t), c)) =

(
h̄i − hi

)2(
h̄i − hi

)
(hi − hi)

(4.13)

similar to [100] is used. Note that with (4.13) the value Hi becomes infinite when the
i-th element of the vector h reaches one of its constraints. Further constraint violations
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(i.e. hi < hi or hi > hi) result in (4.13) becoming negative. With the help of (4.13) a
dynamic optimization problem is formulated as follows:

minimize
c

∫ tf

t0

N∑
i=1

Hi (hi(x
∗
n(t), c)) dt (4.14)

s.t. Hi ≥ 0 ∀ i ∈ {1, 2, . . . ,N} , t ∈ [t0, tf ] .

This automation of finding an appropriate parametrization c offline for a real-time
capable pseudo-inverse kinematic planner yields the following two major benefits: (i)
optimization (4.14) implicitly penalizes large velocities, which prevents singular Jaco-
bians J ; and (ii) optimization (4.14) maximizes the distance to all joint constraints.
Therefore, other dynamically challenging tasks xn(t) with t ∈ [t0, tf ] can potentially be
executed when close to the nominal task x∗n(t). Simulations described in the following
section evaluate this potential flexibility.

4.4.3 Numerical Example: Method Comparison

Consider the translational task xn ∈ R2 of tracking a ballistic flight path in the ver-
tical plane. Therefore, the first element xn,1 and the second element xn,2 denote the
horizontal and vertical displacement, respectively. Furthermore, as this example fo-
cuses on the joint trajectory planning, not the catching problem, it is further assume
without loss of generality that object and end-effector have the same initial position
xn,O(t0) = xn(t0) and velocity ẋn,O(t0) = ẋn(t0), whereas ν0 := ‖ẋn(t0)‖2. Part dimen-
sions are neglected for the same reason. Hence, the dynamical system motion planner
(3.28)-(3.29) simplifies to

ξ̇ =

−g sin (α(ξ2))
ξ1 cos (α(ξ2))
ξ1 sin (α(ξ2))

+

−γ∗(t)0
0

 , ξ0 =

 ν0

xn,1(0)
xn,2(0)

 , (4.15)

where for now the input γ∗(t) = 0. The purpose of the input γ∗(t) will become clear in
Section 4.4.4. The dynamical system (4.15) ensures that an end-effector velocity ξ1 and
its respective acceleration ξ̇1 only act along the object’s ballistic path. Solving (4.15)
numerically is computationally inexpensive and thus suits well to potentially process
real-time feedback, e.g. from analogue distance sensors integrated in the end-effector.

Scenario

Three inverse kinematic methods are compared in simulation:

S1) The non-redundant (m = 2, a = 0) overarm solution of a 2-DOF manipulator.
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Figure 4.7: Segment of the part flight trajectory that must be followed by the end-effector
(Q3 = 1.5 cm) for a controlled catch. The edge of the end-effector [85] compen-
sates for post-impact motion normal to the flight path.

S2) The virtually redundant (m = 2, a = 1) overarm solution of a 2-DOF manipulator
using the pseudo-inverse (4.8) with a diagonal weighting matrix and optimiza-
tion (4.14).

S3) The virtually redundant (m = 2, a = 1) overarm solution of a 2-DOF manipulator
using the pseudo-inverse with gradient projection (4.10), optimization (4.14), and
w(q) = −1

2
(q3 −Q3/2)2/(Q3 −Q3

)2.

The three approaches are evaluated for the same task with two exploitable end-effector
lengths Q3,a = 1.5 cm and Q3,b = 5 cm, referred to as S1a, S1b, S2a, S2b, S3a, and S3b,
respectively. The displacements of the joints q1 and q2 are considered unconstrained.
The end-effector acceleration along the ballistic path is set to equal the part acceleration
γ∗ = 0. Here, only a short segment of tf = 60 ms (t0 = 0) is considered with a large
initial part velocity of ν0 = 4.2 ms−1 and nominal position x∗0 =

[
0.13 m 0.56 m

]
in the

manipulator workspace, see Figure 4.7. Together with a flight path angle α0 = −39◦,

this corresponds to a zero-height throwing point of xn =
[
−2.15 m 0 m

]T
. All other

parameters and constraints are collected in Table A.1, whereas velocity and peak torque
constraints are considered symmetric.

Results and Discussion

The left column of Figure 4.8 displays velocities and torques, which the given task
requires using the well-known 2-DOF overarm inverse kinematics (S1). Horizontal
lines, as in all plots that follow, highlight constraints. The length of the virtual joint
is added to `2. Obviously both velocity and torque limits are violated several times,
which potentially leads to inaccurate tracking of the desired end-effector trajectory.
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Figure 4.8: Simulation results for non-redundant robot (S1), redundancy resolution with
weighted pseudo-inverse (S2), and with gradient projection (S3). Solid lines
refer to augmentation with the shorter virtual joint Q3,a = 1.5 cm and the

dashed lines to a larger joint Q3,a = 5.0 cm.
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Figure 4.9: The effect on required joint torque and joint exploitation when applying various
relative accelerations γ∗ ∈ {−g, 0g, g, . . . , 6g} between part and end-effector.

The middle column in Figure 4.8 shows how the augmented virtual joint is exploited

using (4.9) with the optimization result2 c∗S2a =
[
0.015 31.0 21.6 177.7

]T
and c∗S2b =[

0.041 81.2 65.7 163.5
]T

. In comparison to S1, torque requirements are significantly
reduced and velocity constraints are met. An increase from 1.5 cm to 5.0 cm in the
exploitable end-effector size also shows benefits. For example, the lowest value of the
joint velocity (S2a) q̇2 increases from −5.67 rad s−1 to −5.14 rad s−1.

The right column in Figure 4.8 shows how the augmented virtual joint is exploited
using (4.10) with the optimization result c∗S3a =

[
0.015 31.0 21.6 177.7 0

]
and

c∗S3b =
[
0.041 93.0 73.9 160.4 0.085

]
. For the short end-effector Q3,a the optimiza-

tion (4.14) returns the same result (k = 0) as in the previous case S2a. For the longer
end-effector Q3,b the optimization returns a small k = 0.085. For example, the lowest
value of the joint velocity q̇1 in S2b increases from −5.26 rad s−1 to −5.22 rad s−1. In
both cases, convergence problems of (4.14) are observed. This is mainly due to the
textbook-choice of w(q), which produces large velocities in the null space to force the
third joint to its range center. Such behavior is not necessarily advantageous, see also
[20]. Because of the above observations, the following discussion is limited to S2a and
S2b.

4.4.4 Numerical Example: Flexibility of Solutions

Referring to the introduction of this section, the goal is to provide joint motion planning
on, or close to a given path to enable real-time acceleration input. Hence, the following
question arises: Given an optimization-based pseudo-inverse solution S2a or S2b, to
what extent does such a solution apply for varying accelerations γ∗? As an example,
choosing γ∗ = g would cause a relative acceleration of g between part and end-effector.
Figure 4.9 illustrates the effect of varying γ∗ ∈ [−g, 6g] in steps of g at the example of q3

and τ1 for S2a. Using the nominal solution of c∗ as above for γ∗ = 0, joint trajectories

2using the standard SQP solver of MATLAB
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stay within constraints for γ∗,S2a ∈ [−0.1g, 4.9g] and γ∗S2b ∈ [−1.1g, 5g]. Accelerations

γ∗ > 5g violate the torque limit T 1 and accelerations γ∗ < 0.1g (or −1.1g) violate the
constraint Q3. Further simulations show that all positive initial velocities ν0 < 4.2 ms−1

also meet the constraints.
Manipulation systems in less structured environments may also require executing

a primitive starting at several points in the manipulator workspace, e.g. catching of
human throws [78]. Hence, an area around x∗n(0) is sought for which the solution c∗

stays within all constraints. For this purpose, a simulation is performed for various
initial positions on a line (Figure 4.7):

xn(0) ∈ X0(x∗n(0), I) =
{
x|x2 = x∗n,2(0) +

(
d− x∗n,1(0)

)
, d ∈ I ⊂ R

}
. (4.16)

The flexibility with respect to xn(0) (length of the one-dimensional set I) highly de-
pends on the degree of exploitation of q3, whereas the influence on velocity and torque
requirements is almost negligible. For Q3,a the set of feasible d around x∗1(0) is much

smaller than 1 cm. For Q3,b the feasible set becomes I = {d|0.12 ≤ d ≤ 0.21} cm.
Hence, one could partition a space of potential initial states and calculate an opti-
mal parametrization for each part offline. Or, as in this particular case of planar part
catching, one-dimensional manifolds for several sets X0. Alternatively, another offline
optimization run could exploit the larger end-effector to follow the fast flight trajectory
longer (larger tf) up to 85 ms instead of 60 ms.

Besides the re-computation of c in less structured environments, the proposed ap-
proach is also limited by numerical integration. In a real-time scenario, such integration
uses fixed step-size solvers that cannot provide the reliable accuracy of variable step-
size solvers. The same problem applies to our task planner that has to perform similar
integrations when solving (4.15) in real-time. For the above described scenario with
tf = 60 ms the Euclidean workspace error remains in the negligible order of 10−6 m
using the Runge-Kutta method with a fixed step-size of 1ms. If numerical errors reach
non-negligible magnitudes, closed-loop differential inverse kinematic planners (e.g. [88])
should be used instead.

Hence, the simple method (5) with offline optimized weights is already well suited
for kinematic trajectory planning in the presence of dynamically unconstrained non-
prehensile joints. Even with short, virtual prismatic joints, trajectories that are highly
unfeasible in the classical sense may now be executed with relative accelerations on
the ballistic path that change in real-time. Therefore, the optimization based pseudo-
inverse method in this letter potentially enables fast and truly soft [78] ballistic catching
with low impact velocities, if an appropriate task level controller for input γ∗ is found.

4.4.5 Discussion

Two inverse differential kinematic methods are compared in regard to exploiting the
new virtual prismatic joints for ballistic catching of fast flying objects. Both methods
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are real-time capable and thus, enable online changes to the end-effector acceleration on
the ballistic flight path. Given both algorithm’s dependence on the tuning of weighting
parameters, approximate task knowledge is used in optimization. Specifically, the
optimization problem automates the search for the weighting parameters such that the
normalized distance to all constraints is maximized. This optimization is performed
one time before operation based on a reference flight trajectory. Online deviations from
the assumed reference are possible, whereas the feasible deviation extent depends on
the method and distance from the constraints.

First, the effectiveness of the two inverse differential kinematic methods is verified
and then compared. Recall that the null space projection method (4.10) is an extension
of the standard pseudo-inverse method (4.9)-(4.8) and is typically selected to handle
secondary tasks beyond the primary task of joint velocity minimization. The numeric
example in Section 4.4.3 demonstrates the effectiveness of both methods, as expected.
Moreover, the challenging example demonstrates that the additional design freedom of
the null space method, here denoted as k, does not generally outperform the standard
pseudo-inverse method when using the optimization (4.14) for an unbiased compari-
son. Of note, when a desired trajectory requires operation close to the kinematic and
dynamic limits of the (virtual) joints, the null space projection generates large joint
velocities, which cause joint velocity limit violation. However, the poor performance
of the null space method is strongly related to the textbook selection of the secondary
objective function w(q).

Compared to the parametrization approach based on Hermite splines described in
Section 4.3, the two main advantages of the inverse differential kinematic planners in
this research are their (i) real-time capability and (ii) flexibility to cover a range of
fast motions without changing design parameters. The first advantage (i) originates
from the computationally inexpensive sole requirement of integrating (4.9) or (4.10)
numerically. The drawback of such integration might be the propagation of numeric
errors, which is irrelevant, however, for the typically short duration of ballistic catch-
ing. A numeric example in Section 4.4.4 demonstrating the integration error resulting
in less than 10−6 m Euclidean workspace error, supports this claim. In the case of
non-negligible integration errors, correctional algorithms are available (see [88]). The
second advantage (ii) originates from the general formulation regarding the task xn. As
discussed in Section 4.4.4, offline simulations reveal that a large range of accelerations
on the ballistic flight path starting at high velocities can be covered if the end-effector is
sufficiently large (here, 5 cm). Similar observations apply for varying starting positions
xn(t = 0). Requiring simulations to quantify the range of feasible variations, however,
can be considered as a drawback of the inverse differential kinematic methods. More-
over, practical applications of both methods at the very limit of a robot’s kinematic and
dynamic capabilities have demonstrated that the Hermite spline approach can cover
slightly more challenging motions (i.e., a higher velocity at the start of P3 or longer
duration of P3 at the same speed). See [97] for a more comprehensive evaluation and
discussion of inverse differential kinematic approaches, including the conclusion that
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most singularity avoidance approaches are ultimately unsuitable for catching due to
violation of the primary task, e.g., the well-known damped least-square method.

From the methods and discussion presented here, several performance improvements
are possible through minor changes. The possibility to include additional scenario pa-
rameters in the parameter vector c is the most important. As an example, a robotic
object throw could be represented by (parts of) the object state at the release time.
An optimized reference trajectory through the workspace of the catching robot thus
allows increased flexibility or catching from longer distances. Moreover, due to the flex-
ibility discussion, the workspace of the catching robot could be separated for multiple
parametrization sets. Combined with existing advanced solutions in object detection
[46], flight trajectory prediction and with online capable P2/P4 trajectory planners
[66], robust nonprehensile catching of human throws could become possible.

4.5 Summary

Teaching robots to take over tasks regularly performed by humans primarily depends
on understanding how humans approach such tasks on many levels such as percep-
tion, prediction, interaction planning or joint motion planning. Most of the known
approaches follow this order, which frequently results in low attention to the final step
of deploying solutions to real robotic systems. Such an approach in unproblematic for
many manipulation problems because the manipulation speed can simply be slowed
until feasible robot motions are found, e.g., pick and place tasks. Tasks governed by
naturally high operation velocities, however, fail in this case because velocity, torque
or power limits are exceeded, for example, when robots are meant to catch fast flying
objects. Hence, the main motivation for the methods presented in this chapter is over-
coming the generation of task plans that cannot be deployed to real robots because
dynamic and kinematic limitations are neglected.

Based on the observation that humans do not plan for an explicit contact point with
their hand or tool during fast manipulation, a novel kinematic notion for dynamic non-
prehensile object manipulation is presented. The new notion applies to manipulation
via intermittent contacts and allows augmentation of traditional kinematics with up
to two virtual prismatic joints. The virtual nature of the proposed joints entails ad-
ditional degrees of freedom characterized by unconstrained velocity and acceleration
capabilities. The only limitation that must be considered is the joint range.

Two approaches resolve the redundancy gained by the proposed virtual joints. The
first approach is tailored to robust nonprehensile catching with known (differential) in-
verse kinematics of the traditional kinematic chain. Cubic Hermite splines parametrize
the virtual, dynamically unconstrained degrees of freedom and enable intuitive and
highly efficient search space limitations regarding positions and velocities. An offline
optimization program then finds a parametrization that maximizes the decrease of the
Lypunov function value of the underlying hybrid bouncing ball problem (recall proof
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of Theorem 3.5). Additional scenario parameters such as flight trajectory shape or
the robot’s design can easily be added as optimization variables to increase robustness
further or reduce dynamic requirements for the traditional active joints. As demon-
strated with a numeric example in Section 4.3.3, this first approach leads to a general
decrease of Zeno times. As a result, the set of initial relative states that fulfill the
catching condition (3.37) becomes larger and thus robustness increases. Specifically,
this first approach does not require explicit modeling of the various types and sources
of uncertainties and is hence, generally applicable beyond particular experimental en-
vironments. Moreover, the numeric example demonstrates the significance of virtual
joints by enabling a realistic non-redundant 2-DOF robot to follow a fast trajectory
through its workspace without any constraint violation. Nonetheless, the assumption
of a controlled environment and, therefore, sufficient knowledge of the ballistic flight
trajectory prevents the application of this offline approach beyond a well-calibrated
robot-robot scenario. Hence, larger deviations of a robotic or human throw or distur-
bances during flight cannot be compensated for despite the underlying task motion
planner (3.28) being real-time capable.

To overcome some of the disadvantages of the first approach, two inverse differential
kinematic methods are compared regarding the exploitation of the new virtual pris-
matic joints. Both methods are real-time capable and thus, enable online changes to
the end-effector acceleration on the ballistic flight path. Given both algorithm’s de-
pendence on the tuning of weighting parameters, approximate task knowledge is used
for searching these parameters. Specifically, an optimization problem is formulated to
automate this search by maximizing the normalized distance to all constraints. This
optimization is performed one time before operation based on a reference flight trajec-
tory. Online deviations from the assumed reference are possible, whereas the feasible
deviation extent depends on the method and distance from the constraints. The nu-
meric example in Section 4.4.3 demonstrates the effectiveness of both methods as a
range of fast motions can be covered without re-computing design parameters. As a
future extension, partitioning the robot’s workspace and computing different weighting
parameters could increase flexibility. Nevertheless, requiring simulations to quantify
the range of feasible variations, can be considered as a drawback of the inverse differen-
tial kinematic methods. Moreover, the challenging example reveals that the additional
design freedom of the null space method not generally leads to an out-performance of
the standard pseudo-inverse method when using the optimization (4.14) for an unbi-
ased comparison. Finally, practical applications of both methods at the very limit of a
robot’s kinematic and dynamic capabilities have demonstrated that the Hermite spline
approach can cover slightly more challenging motions.

From the methods and discussion presented in this chapter, several performance
improvements are possible through minor modifications. Amongst these possibilities,
including additional scenario parameters in the parameter vector c is the most im-
portant, for example, the object state at the release time. An optimized reference
trajectory through the workspace of the catching robot can then allow increased flex-
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ibility or catching from longer distances. Combined with existing advanced solutions
in object detection [46], flight trajectory prediction and with online capable P2/P4
trajectory planners [66], robust nonprehensile catching of human throws could become
possible.
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5 Experimental Evaluation

This experimental evaluation focuses on robot-robot throwing and catching as a demon-
stration scenario without any visual feedback involved. Such blind robot-robot throw-
ing and catching provide a compelling challenge to evaluate both contribution areas
in this thesis, namely robust catching with explicit success bounds and robot motion
planning at high speed during intermittent manipulation. Thereby, the robotic throw
enables repeatedly inducing a variety of flight trajectories, which allows for testing
success claims made in previous chapters. The high operation velocity during catching
poses an adequate challenge for the proposed robot motion planners. Moreover, as
both robots are designed to execute both tasks, i.e., throwing and catching, with the
same end-effectors, test sequences longer than described in other related works become
possible, allowing for statistically significant approach comparisons. Furthermore, the
experiment demonstrates the potential generality of robust nonprehensile catching re-
garding the manageable range of object shapes.

The chapter commences with Section 5.1 to introduce the symmetric experimental
setup used for the experiments. Section 5.2 briefly describes the complementary task
and motion planning approaches for throwing in Section 5.2.1. Then, Section 5.2.2
states the acceleration and deceleration strategy before and after the critical tracking
of the ballistic flight path. Experimental results are reported in Section 5.3, which is
divided into two parts. First, the feasibility of the proposed motion planning approaches
is verified. Second, multiple object shapes and different relative initial states between
the object and end-effector are evaluated with a statistically significant number of task
executions. Section 5.4 then summarizes the results of this chapter.

5.1 Symmetric Experimental Setup

Two 2-DOF robots that are symmetrically mounted in a vertical plane serve as basis
for the experiments. Figure 5.1 visualizes the setup and Table A.1 summarizes the
robots’ kinematic and dynamic parameters that are also used for the optimizations in
the previous chapters. Four simple high-gain PD-controllers robustly operate the total
four robot joints at 1 kHz. By letting the joint displacement error and joint velocity
error be e and ė, respectively, the control law is

τ = KPe+KDė (5.1)
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Throwing Free Object Flight Three-Phase Catching

(Sec. 5.2.1) (Sec. 5.2.2)

Figure 5.1: Experimental setup with two symmetrical robots acting in a common vertical
plane. Each robot has two actuated rotational degrees of freedom and is capable
of performing both the throwing and catching task without a hardware change.
The pictures illustrate, from left to right, the throwing motion, free object flight
and catching motion.

with KP = 12000 and KD = 100. The joints consist of RE40 Maxon DC motors, MR
Maxon (type L) 1024-bit encoders, and HFUC Harmonic Drive 1:100 gears. Hence,
the joint displacement on the load side is measured with an accuracy of 1.5 · 10−5 rad.

Highly simple, non-actuated, box-like end-effectors are mounted at the end of the
kinematic chain, which is the major difference compared to grasping based catching.
Due to this simplistic setup, the timely interception of an object’s flight trajectory, with
appropriate gripper orientation), is no longer sufficient for successful catching. Hence,
a P3 catching motion leads to (partial) failure if the occurring uncertainties U1-U3
are not sufficiently compensated. For example, any state-of-the-art static catching
approach is likely to result in a success rate of 0% with such a setup. Moreover, objects
and the end-effector are likely to be damaged by the resulting collisions due to high
relative velocities.

Selecting the described robot-robot scenario also enables the exclusion of human
throwers and complex vision systems as potential sources for failed catching attempts.
Moreover, robotic throws are repeatable, except for uncertainties, which can be assumed
bounded. Given that no significant in-flight perturbations occur, experimental catching
success can then be linked with critical parameters discussed in theory and simulations
in previous chapters, e.g., relative acceleration or initial relative states. Offline motion
planning and open-loop operation can even become sufficient for successful catching.

Due to the robustness considerations derived in this research, no visual feedback is
required during operation. Nonetheless, a non-recurring calibration of the release angle
αr and velocity νr must be performed. The first reason for this calibration is the non-
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prehensile throwing approach in which the ball does not immediately leave the box, but
briefly slides along the edge of the box. During this sliding, the revolute joints perform
a small angular overshoot, which depends on various parameters. However, even for a
simple PD-controlled robot, the error in the release angle αr (here approximately 3◦)
does not differ notably between trials. Second, the experimental setup is not perfectly
symmetrical and requires a difference in the release velocity νr of 2% depending on
the direction. This velocity is modified using standard dynamic trajectory scaling [40].
The remaining uncertainties and inaccuracies must be compensated for by a robust
catch.

5.2 Multi-Phase Robot Motion Planning for Ballistic
Catching

In P1 and P2, the throwing and catching robot accelerate from a resting position to
a dynamic goal state. In P4 the catching robot decelerates from a dynamic state to
a resting position. These three phases, surrounding the flight path tracking in P3,
demand the solution of two-point boundary value problems of the same dynamical
system (robot) with different nonlinear constraints. The method of choice here is the
formulation of a constrained optimal control problem

minimize
τ

1
2

∫
τTτdt (5.2)

s.t. (4.3), h(q, q̇, τ ) ≤ 0, h(1,4)(t, q, q̇, τ ) ≤ 0,

h0(q, q̇, t0, tf) = 0

that penalizes large absolute torques quadratically. This approach allows to account for
the appearance of large rotational velocities that require operation close to the motor
velocity limits or to the peak torque limits of the gears. Indicated by the different
superscripts of h, P1 and P4 require task-dependent nonlinear constraints, which are
described in the following.

5.2.1 Throwing

For throwing acceleration (P1), the goal state of the robot is determined by the desired
release state of the ball. As the throw is performed without grasping, the relative
acceleration in normal end-effector direction must always be negative in this phase.
The calculation for this relative normal acceleration is explained in [85] and contained
in h(1,4). The Shannon-juggler [81] end-effector design is improved from a V-shape to
the shape depicted in Figure 5.2 to fix the ball in tangential direction. This design
exploits centripetal forces during the rotational acceleration to fix a spherical object in
a known position relative to the end-effector. Stopping at the release instant t = tr is
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Figure 5.2: An end-effector design that reduces contact surface with the ball and thus avoids
jamming. Spherical objects are automatically driven to the depicted throwing
position, whereas cuboids must be placed manually.

realized by resetting the desired joint velocities to q̇d = 0. The desired joint angles are
kept constant for t ≥ tr, respectively. Hence, the stopping procedure of the throwing
robot is entirely reliant on the high gain PD-controller reacting to the reset in the
desired joint states. The resulting throwing motion is visualized in the left picture of
Figure 5.1.

5.2.2 Three-Phase Catching

Catching is divided into the three phases (P2)-(P4), as proposed in Section 2.2.2. Of
these three phases, the flight path tracking (P3) is the most crucial with regard to
successful object catching. Therefore, Chapter 3 and Chapter 4 focus on P3 and the
transitions from P2 and to P4. For phases P2 and P4, standard optimal control based
joint motion planning (5.2) is performed offline, with linear and nonlinear constraints
and motivated as follows:

(P2) For catching acceleration, the goal state of the robot is determined by the desired
robot state at the beginning of the subsequent tracking motion (P3) based on the
choice of the initial state in (3.28) using inverse kinematics. Unlike throwing, no
normal acceleration constraint regarding the end-effector applies for this phase.

(P3) The desired end-effector motion in P3 is planned according to Chapter 3 and
translated into joint motion using the methods proposed in Chapter 4.

(P4) For catching deceleration, the initial state is the last state of the path tracking
motion, which does not change due to the offline P3 computation. The final
state of this phase is the resting position from which the throwing motion begins
accelerating in the subsequent step. During this phase, relative acceleration in
the normal end-effector direction must be kept negative (h(1,4)) to maintain stable
bouncing and then continuous contact with the ball.
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Table 5.1: Experimental Sets

Symbol h(0) ν(0) Object hmax Success
Unit m ms−1 - m -

xa(0) 0.020 −0.46 Ball 0 75/80
xb(0) 0.035 −0.46 Ball 0 38/80
xc(0) 0.020 0 Ball 0 43/80
xd(0) 0.035 −0.46 Ball 0.005 75/80
xe(0) 0.020 −0.68 Ball 0 80/80
xf(0) 0.020 −0.68 Cuboid 0 78/80

xa(0) xb(0) xc(0) xd(0) xe(0) xf(0)
0%

50%

100%

S
u
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Figure 5.3: Successful trials out of 80 for each test set from Figure 3.6, Figure 3.7, and
Figure 4.6. See Table 5.1 for details.

5.3 Catching Experiments

The experimental evaluation is divided into two parts. First, Section 5.3.1 confirms
the dynamic feasibility of the offline motion planner and compares the robustness of
different initial configurations and object shapes using offline planned throwing and
catching motions. Then, Section 5.3.2 evaluates the method proposed in Section 4.4 as
an alternative, which allows for real-time reactions with dynamically feasible plans for
the robots’ joint motions.

5.3.1 Catching Rigid Objects of Various Shapes

This experiment intends to validate the presented formalism concerning catching suc-
cess. Moreover, this study utilizes the repeatability provided by a robot-robot ex-
periment to evaluate the numerical robustness quantifications from Section 3.4.7 and
Section 4.3.3. Thus, the six test sets xa−f(0) listed in Table 5.1 are performed based
on the realistic simulation examples used in previous chapters. As a reference, each
test set is additionally marked in Figure 3.6, Figure 3.7 and Figure 4.6. Note that
calibration and throwing motion are the same for all trials and sets. The statistical
results are presented in Figure 5.3 and each result is based on 80 sequential trials per
set, 40 in each direction. Slow motion examples of typical catches (success and failure)
are provided with the media attachment of [84].
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Figure 5.4: Tiny mean joint errors during P3 of ten xa(0)-trials verify dynamic feasibility.
The shaded areas indicate three times the standard deviation. A worst case
Euclidean error in the workspace of less than 3 mm results from these errors.

The first three sets xa−c(0) have not undergone cost optimization (4.7) and are based
on the numerical example in Section 3.4.7 using a low edge1 box. Nevertheless, the
implementation of (4.7) is used to identify a dynamically feasible joint trajectory. Fig-
ure 5.4 illustrates the small joint displacement errors. The initial relative velocity for
the sets xa−b(0) is selected according to Corollary 3.10, whereas xc(0) represents veloc-
ity matching, which is a common choice in the literature. Comparing the encouraging
results of xa(0) with the inferior results of xc(0), the increased robustness from using
Corollary 3.10 becomes apparent. Moreover, the robustness quantification (3.35)-(3.37)
correctly predicts a significantly worse performance for xb(0) compared to xa(0) be-
cause the maximal Zeno time of xb(0) is longer than the P3 duration. Hence, the
experiment emphasizes the suitability of (3.35)-(3.37) to determine the range of po-
tentially successful initial relative states for particular catching motions. Nonetheless,
even in the controlled environment used here, various uncertainty factors exist, which
prevent exact predictions of success and failure.

Test set xd(0) compared to set xb(0) validates Corollary 3.11 and, therefore, eval-
uates the influence of the box height on catching robustness. Noting that the initial
relative state xd(0) fulfills the rebound height condition (3.57), but not the catching
condition (3.37), the correctly predicted improvement supports the use of Corollary 3.11
to explore the effect of box height on catching success. Furthermore, the experiments
validate a beneficial effect of using the cost function (4.7), which originated from the
proof of Theorem 3.5.

Test set xe(0) evaluates the optimized P3 motion, as described in Section 4.3.3.
Considering Corollary 3.10, the reduced initial relative velocity ν(0) = −0.68 ms−1

accounts for the changes in γ, ∆γ and tf . Also, the results in Table 5.1 reveal that
the the optimized solution improved the already promising results from xa(0) to a

1Low edge box: edge heights of less than or equal to the distance between an object’s center of mass
and its farthermost point on SO.
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0.00 s 0.02 s 0.05 s 0.10 s 0.25 s

Figure 5.5: Frames illustrating the successful catch of a single cuboid and the successful
simultaneous catch of a ball and a cube.

sequence of 80 successful catches without failure. The improvements are mainly due
to the increased relative acceleration. Hence, it is inferred here that the presented
approach sufficiently compensates for the occurring uncertainties U1-U3 in case of a
rigid ball object.

The cuboid depicted in Figure 5.2 is used in set xf(0) to evaluate the potential
generalizability to arbitrary object shapes. The same robot motions as in the previous
set xe(0) are used here, which provides the most substantial robustness against the
unpredictable collision effects. In contrast to the ball experiments, an operator must
relocate the cuboid after every catch to the throwing position depicted in Figure 5.2
because the end-effector design automates relocation for spherical objects only. The
result is 78 successful catches in a sequence of 80 using a low edge box. The frames
in Figure 5.5 illustrate a successful cuboid catch. Due to these promising results,
the Zeno-based approach is believed to constitute a suitable basis for future rigorous
robustness claims in catching arbitrarily shaped objects.

5.3.2 Feasibility and Flexibility of Solutions

This section aims to verify the dynamic feasibility and flexibility claimed in Section 4.4.
Offline solving of two-point boundary value problems serves as a joint motion planner
to reliably move the robot from rest to the start of the tracking phase at t0 and from
the end tf to a resting position. The ball in Figure 5.6 is thrown in a repeatable way
by another robot as illustrated in Figure 5.1, which relates to the assumption of an
approximately known path.

For the fast trajectory tracking experiment, the motion planner (4.15) is imple-
mented, where the initial states and c∗S2a are identical to the simulation in Section 4.4.3.
The desired input of relative acceleration during tracking of the ballistic trajectory is
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Figure 5.6: Exploitation of the virtual nonprehensile joint q2+1 (c.f. Figure 4.7) of length
Q3,a during flight trajectory tracking illustrated by three frames taken at ap-
proximately 0 ms, 30 ms and 60 ms. Ball and end-effector have approximately
the same initial velocity of v0 = 4.2 ms−1.

Figure 5.7: Mean joint errors of ten trials of flight trajectory tracking, where the shaded
areas indicate twice the standard deviation. From these errors results a worst
case Euclidean error in the workspace of less than 2 mm.

divided into the two parts

γ∗ =

{
0 for t ∈ [0, 30) ms,

4g t−30 ms
30 ms

for t ∈ [30, 60] ms,
(5.3)

whereas the first half was also assumed in the off-line optimization that resulted in
c∗S2a. In the second half, the ramp simulates an input varying in real-time that requires
the robot to decelerate such that the relative acceleration between object and end-
effector increases to γ∗(tf ) = 4g. Such variation was not considered during the off-line
optimization (4.14), but lies well within the bounds discussed in Section 4.4.4.

Figure 5.6 and the multimedia attachment in [83] illustrate the resulting exploitation
of the virtual nonprehensile joint qm+1. Note that only the end-effector position (n = 2)
and not its orientation is part of the task planner. Preliminary experiments in [85] have
revealed that this approach can be sufficient for nonprehensile catching.

Based on ten trials, Figure 5.7 depicts the errors of the two actuated joints q1 and
q2 during the tracking phase. The notably low values of these joint errors relate to
workspace errors below 2 mm and thus confirm dynamically feasible trajectory plan-
ning by (4.9) and (4.14). Note that, especially from t = 30 ms, where the unforeseen
acceleration starts, no negative effects on the tracking performance occur.
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x∗0 x∗0 x∗0

x∗0 x∗0 x∗0

Figure 5.8: Tracking fast ballistic trajectories with a long (Q3,b) nonprehensile end-effector,
acceleration γ∗ = 0 ms−2 for t ∈ [0, 60] ms and v0 = 4.2 ms−1. Frames are taken
at approximately 0 ms, 30 ms and 60 ms. The upper row shows the reference
motion (d = 0.13 cm), whereas the lower row reveals accurate tracking from
a different starting point (d = 0.21 cm) while using the same c∗S2b (see also
Figure 4.7).

Figure 5.8 illustrates the flexibility regarding the initial state. Here, a nonprehensile
end-effector of length Q3,b enables tracking of fast trajectories from different initial
points without re-computation of c∗S2b. As a result, future work in nonprehensile ma-
nipulation with intermittent contacts might now be able to maintain in experiments
the stability and robustness claims made at the task level.

5.4 Summary

Taking the final development step in robotics from a simulative verification to an ex-
perimental proof of concept is frequently far from satisfactory regarding reliable task
execution. Typically, a considerable gap remains between the proposed methods and
their usefulness in practice. One common reason for this gap in the context of dexterous
manipulation is that the kinematic and dynamic capabilities of participating robots are
not considered in all planning stages. Another reason for limited experimental success
in manipulation are unrewarding goal formulations that do not consider the environ-
ment state to be inherently uncertain. Therefore, the experimental results presented in
this chapter intend to demonstrate that the methods proposed in previous chapters in
their entirety are sufficient to solve robotic catching with non-negligible uncertainties
robustly.
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First, the kinematic and dynamic feasibility of the offline approach is evaluated,
which provides the necessary basis for robust task execution. Here, sufficient accu-
racy can be confirmed by joint errors that lead to a maximal Euclidean end-effector
deviation of 2 mm. In the subsequent experiments, various relative initial states are
compared with statistically significant 80-trial sets. The results demonstrate that an
initial negative relative velocity according to Corollary 3.10 for the tracking phase P3
increases catching robustness compared to velocity matching pursued in previous works.
Moreover, Corollary 3.11 correctly predicts the increased chance of success when the
height of the catching box is increased. The generality of the approach is emphasized
in the example of simultaneously catching two objects with different shapes. However,
the offline task and robot motion planning restricts the results to a controlled setting
as typical for industrial applications.

The second evaluation addresses the real-time capable motion planner that intends
to close the gap between the controlled setting in this research and existing vision-
based solutions. This motion planner enables real-time acceleration changes on the
known or predicted flight path at typical (high) velocities. Furthermore, the second
motion planner resolves the inverse kinematic problem in a dynamically feasible way
for a considerable set of flight paths and acceleration profiles.

In addition to the implementations presented in this chapter, a selection of state-of-
the-art flight tracking and prediction methods could be added to catch objects thrown
by humans. The real-time method derived in this research is also ready to realize closed-
loop catching. Capacitive sensors or the rapidly evolving radar sensors might be able
to provide necessary measurements for optimally controlling the inevitable sequence of
collisions.
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Catching flying objects with robotic manipulators is a challenging task that demands
fast and effective solutions in several robotic research fields. Therefore, robots catching
an object is a frequently considered testbed to demonstrate object tracking perfor-
mance combined with motion planning in highly dynamic environments. The brief
time for perception and the presence of fast flight motions typically limit measure-
ment accuracies for the shape, pose and velocities of manipulated objects. Hence, the
object motion prediction after one or several measurements contains significant uncer-
tainty. The main consequence of such uncertain dynamics in robotic manipulation are
unintended collisions with other objects or the environment. Nevertheless, such colli-
sions are inevitable, especially when continuous contacts are to be established. Each
of these collisions, in turn, introduces additional uncertainty because collisions cause
state changes highly sensitive to an object’s shape, pose and velocity.

6.1 Conclusions

The main body of research related to robots catching objects, as reviewed in Chapter 2,
neglects the inevitable occurrence of impacts for establishing contact at high velocities.
Moreover, the proposed motion planners often overlook the limited dynamic capabilities
of robotic manipulators. Each of these simplifications alone impedes formal guarantees
of reliable and successful task execution, i.e., robustness. Chapter 2 to Chapter 4
address the resulting gap between theoretic research and practical applicability, as
demonstrated by the experiments described in Chapter 5.

The complex problem of catching fast flying objects with a robotic manipulator is
formally defined and structured in Chapter 2. The introduction of two conceptual di-
mensions, i.e., two physical levels and four temporal phases, efficiently decouples the
robotic catching problem. The first level refers to task planning, which focuses on
the relative system between a catching device (end-effector) and flying objects, while
robot dynamics are mostly ignored. Introducing the shortest distance between an end-
effector and object surface as a key parameter, together with its two time derivatives,
has proven most generic for task level considerations. The proposed distance definition
enables aggregation of the various sources of uncertainties within three representative
uncertainty types. Compensating for these uncertainty types, which also include the
implications of impacts, constitute a major focus of this research, as addressed in Chap-
ter 3. The second level refers to robot motion planning, which focuses on the reliable
performance of the task plan. Here, the challenge lies in providing real-time flexibility
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to the task planner, while operating the robot close to its dynamic capabilities, but
without ever exceeding these limits. Chapter 4 focuses on this second level. Moreover,
four phases separate both levels into four time intervals, each of which has different
requirements for both levels. These four phases are throwing, catching acceleration,
flight trajectory tracking and deceleration.

Chapter 3 focuses on robust catching at the task level, which is related to the general
problem of establishing continuous contact between an object and unilateral constraint.
The state uncertainties of both, the object and unilateral constraint, inevitably cause
a sequence of collisions during finite time. This is the case because the sum of all
uncertainties neither allows for precise distance measurement nor for precise relative
velocity measurement or estimation, which ultimately causes at least small rebounds.
Building on this fundamental observation, the methods and discussions presented in
Chapter 3 contrast previous work, which has typically aimed for ideal (i.e., without any
rebounds) transitions into continuous contact by velocity matching. As such, these pre-
vious works lack formulating conditions that must be fulfilled to guarantee asymptotic
stability (i.e., convergence) during this non-instantaneous contact transition. Building
on the control theoretic hybrid dynamical system framework has proven suitable to
formulate the stabilization problem for a decoupled one-dimensional bouncing ball by
including the notion of Zeno behavior.

The gap between these one-dimensional considerations and the three-dimensional
catching problem is addressed by dimensionality reduction and a real-time capable dy-
namical system motion planner, respectively. After reduction to one dimension, the
relative bouncing ball is formulated as a hybrid dynamical system with set-valued ac-
celeration as an input. As a main result of the dimensionality reduction, the variety
of practical uncertainties reduces to a combination of three classes of uncertainties in
the one-dimensional case: (U1) initial state uncertainty when the end-effector starts
tracking the ballistic path, (U2) dynamic uncertainties represented by the set-valued
acceleration input and (U3) uncertainty in the collision model. Quantifiable robust-
ness against these three types of uncertainty is achieved with extensions based on
uniform Zeno asymptotic stability and an associated exact tight bound on the max-
imal Zeno time. The main limitation of the proposed dimensionality reduction for
ballistic catching are the neglected motions perpendicular to the ballistic flight path.
These deviating motions act with an offset on the relative acceleration input of the
one-dimensional model and can thus cause violations of previously assumed bounds on
the relative acceleration. A realistic, three-dimensional simulation in Section 3.5 and
the experiments in Chapter 5, however, indicate that typical flight motions unlikely
trigger such violations.

A first extension to the UZAS notion demonstrates that the maximal Zeno time
strictly increases as the coefficient of restitution increases. The practical conclusion
from this result is that if establishing contact can be guaranteed for a particular mate-
rial combination of an object and end-effector, the same catching motion will also be
successful in situations with more energy loss at collisions. This result is not limited
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to the catching example and has the potential to overcome the expensive identification
of collision models in other contact situations. A second extension addresses potential
users because it proposes a desirable initialization of the relative velocity such that
potential distance uncertainties are maximally compensated. Moreover, this extension
reveals that robustness against state uncertainty relies on small, but intentional, im-
pacts, which requires objects to be not too fragile. A last extension formulates a bound
on the maximal rebound height given the current relative state. As in practice, the
end-effector might be a large box rather than a flat plate, and the maximal rebound
height can be associated with the box’s height to enlarge the set of potentially successful
initial relative states.

Chapter 4 focuses on the dynamically feasible motion planning for a robotic manip-
ulator to robustly perform the task level plan. A fast dynamic manipulation task, such
as catching, is characterized by naturally high operation velocities, which cause stan-
dard state-of-the-art approaches to exceed velocity, torque or power limits. Hence, the
main motivation for the methods presented in Chapter 4 is overcoming the generation
of task plans that cannot be deployed to real robots because dynamic and kinematic
limitations are too challenging or even neglected.

Based on the observation that humans do not plan for an explicit contact point with
their hand or tool during fast manipulation, a novel kinematic notion for dynamic
nonprehensile object manipulation is presented. This notion generally applies to ma-
nipulation via intermittent contacts and allows augmentation of traditional kinematics
with up to two virtual prismatic joints. The virtual nature of the proposed joints entails
additional degrees of freedom characterized by unconstrained velocity and acceleration
capabilities.

Two approaches resolve the redundancy gained by the proposed virtual joints. The
first approach is tailored to establishing nonprehensile contact fast and robust, as re-
quired for nonprehensile catching. Cubic Hermite splines parametrize the virtual, dy-
namically unconstrained degrees of freedom and enable intuitive and efficient search
space limitations regarding positions and velocities. An offline optimization program
then finds a parametrization that maximizes the decrease of the Lypunov function
value of the underlying hybrid bouncing ball problem derived in Chapter 3. Additional
scenario parameters such as flight trajectory shape or the robot’s design can easily
be added as optimization variables to increase robustness further or reduce dynamic
requirements for the traditional active joints. This first approach is demonstrated to
result in a general decrease of Zeno times. In addition, the set of initial relative states
that fulfill the catching condition (3.37) becomes larger and thus robustness increases.
Specifically, this first approach does not require explicit modeling of the various types
and sources of uncertainties and is hence, generally applicable beyond particular exper-
imental environments. Nonetheless, the assumption of a controlled environment and,
therefore, sufficient knowledge of the ballistic flight trajectory prevents the application
of this offline approach beyond a well-calibrated robot-robot scenario. Hence, larger
deviations of a robotic or human throw or disturbances during flight cannot be com-
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pensated for with this first approach, despite the underlying task motion planner (3.28)
being real-time capable.

To overcome some of the disadvantages of the first approach, two inverse differential
kinematic methods are compared regarding the exploitation of the new virtual pris-
matic joints. Both methods are real-time capable and thus, enable online changes to
the end-effector acceleration on the ballistic flight path. Given both algorithm’s de-
pendence on the tuning of weighting parameters, approximate task knowledge is used
for searching these parameters. Specifically, an optimization problem is formulated to
automate this search by maximizing the normalized distance to all constraints. This
optimization is performed one time before operation based on a reference flight trajec-
tory. Online deviations from the assumed reference are possible, whereas the feasible
deviation extent depends on the method and distance from the constraints. A numeric
example demonstrates the effectiveness of both methods as a range of fast motions can
be covered without re-computing weighting parameters. Nevertheless, requiring simu-
lations to quantify the range of feasible variations, can be considered as a drawback of
the inverse differential kinematic methods. Moreover, the challenging example reveals
that the additional design freedom of the null space method not generally leads to an
out-performance of the standard pseudo-inverse method when using automated weight
optimization for an unbiased comparison.

Chapter 5 presents an experimental validation of robust catching using the methods
proposed in previous chapters. First, the kinematic and dynamic feasibility of the
offline approach is approved. In the subsequent step, various relative initial states
are compared in nonprehensile robot-robot throwing and catching with statistically
significant 80-trial sets. This experiment contrast previous work because the robot
throw enables repeatable testing for specific degrees of uncertainty. As such, the explicit
robustness bounds, previously claimed in theory and simulation, can also be validated
in practice. Findings demonstrate that an initial negative relative velocity during the
transition to tracking phase P3 increases catching robustness compared to velocity
matching as pursued in previous works. The generality of the approach is emphasized
in the example of simultaneously catching two objects with different shapes. The
second evaluation demonstrates that the real-time motion planner enables end-effector
operations on the known or predicted flight path at typical high velocities. Furthermore,
the real-time motion planner resolves the inverse kinematic problem in a dynamically
feasible way for a considerable set of flight paths and acceleration profiles.

6.2 Directions for Future Research

The contributions provided by this research make it possible to robustly establish con-
tacts in dynamic environments with high operation velocities within controlled settings.
Thus, pursuing the following research directions is recommended to alleviate restric-
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tions for robust catching and beyond this, for dynamic manipulation environments in
general:

• Improve catching robustness: Thus far, provable robustness in this research
is limited to catching spherical objects, whereas the provided experiments in-
dicate that generalizations to arbitrary object shapes do exist. Moreover, the
methods applied in this research readily enable closing the control-loop for catch-
ing at task level. This motivates further research to minimize the Zeno times of
the hybrid bouncing ball system with an uncertain but controllable relative grav-
itational field as input. Achieving performant real-time sensing of the relative
motion constitutes a strong enabler in this context. Here, one may profit from
the currently rapid progress in radar sensor development, which is mainly driven
by the demands of the automotive industry. Alternatively, the fast measurement
from analogue capacitive sensors can be used at short-range.

• Set-valued impact modeling: The classic impact modeling literature focuses
on the accurate prediction of post-impact states regarding the pre-impact situ-
ation. Motivated by the set-valued bouncing ball models used in this research
and the cited references, the field of dynamic manipulation is likely to benefit
from developing set-valued impact models based on well-defined uncertainty in
the pre-impact state measurements.

• Kinodynamically optimized manipulators for dynamic manipulation:
A typical characteristic of dynamic manipulation is the requirement for large ac-
celerations at the end-effector, which are often paired with fast motions, such as
in the catching scenario used in this research. Thus, the kinematic and dynamic
design of manipulators should be rethought to avoid constraint violations. Ex-
tending the set of optimization variables with kinematic parameters, such as link
lengths, and including the related changes of the dynamic model seems a promis-
ing way to increase the action space of manipulators for dynamic manipulation
tasks, for example, to increase the throwing range.

• Extension towards fast picking: The problem of catching fast flying objects
may be considered a general challenge to establishing fast and robust contacts.
Thus, the methods applied in this research, with suitable extensions, might show
useful for quickly grasping resting objects. Most relevant here are the stability
conditions of the relative system between an object and end-effector, and the
exploitation of the free choice of contact as part of the robot motion planning.
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A Appendix

A.1 Parameters and Constraints of the Experimental
Setup

Table A.1: Parameter and constraint values for 2-DOF

Symbol Value Quantity
`1 0.315 m Length of 1st link
`2 0.320 m Length of 2nd link
ρ 0.35 Coefficient of restitution
r 0.015 m Ball radius
g 9.81 m s−2 Gravitational constant
∆γ 10 m s−2 Acceleration range
αr 37◦ Release angle
tr −0.534 s Release time
ur −1.770 m Hor. release position
wr 0.525 m Vert. release position
νr 4.50 m s−2 Release velocity
x1(0) 0.02 m Initial relative height
x2(0) −0.68 m s−1 Initial relative velocity
τ1,max 54 Nm Peak torque limit joint 1
τ2,max 38 Nm Peak torque limit joint 2
˙̄qmin 0.4 rad s−1 Min. rot. speed at transition
˙̄qmax 6.5 rad s−1 Max. rot. speed
P 120 W Max. motor power
qmin 0◦ Box open in flight dir.
qmax 90◦ Box open in flight dir.
q3,max 0.015 m Tangential box size
hmax 0.005 m Normal box size (height)
N 50 Constraint evaluations
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