

Traffic state estimation at signalized intersections based on connected vehicles

Universitätstagung Verkehrswesen 2018

Obergurgl, 24.09.2018

M.Sc. Eftychios Papapanagiotou

M.Sc. Eftychios Papapanagiotou | Technical University of Munich | Chair of Traffic Engineering and Control | eftychios.papapanagiotou@tum.de

Content

M.Sc. Eftychios Papapanagiotou (TUM) | Chair of Traffic Engineering and Control | eftychios.papapanagiotou@tum.de

Research goal

Optimal traffic state **estimation and prediction** for traffic **signal control** by capitalizing on the new sensing and communication capabilities from **connected environments** in urban areas.

Turnings

Methodolog	Contributions	Conclusions	Outlook

Methodology

Extended Observer based on (Extended) Kalman Filter

Filter step ("Predict" and "Correct")

Measurement Update ("Correct")

Measurement vector: $\vec{z}_k = [z_k^{*queue \ length_cv}, z_k^{*arrival \ rate_cv}, z_k^{departure \ rate_cv}]^T$

*Comert, G. (2016). Queue length estimation from probe vehicles at isolated intersections: Estimator for primary parameters. European Journal of Operational Research 252, 502-521.

Research goal	Methodology	Contributions	Conclusions	Outlook

Contributions

Potential of new data

Conclusions

Simulations with limited and imperfect measurements

- Demonstrate the working principles of the developed Extended Observer
- Demonstrate the **potential and limitations** of the developed Extended Observer

Simulation example

Simulation example

Preliminary simulations results

10

Research goal	Methodology	Contributions	Conclusions	Outlook

Conclusions

Research goal Methodology Contributions Conclusions Outlook 150 Jahre culture of excellence excellence

Conclusions

Extended Observer (based on Extended Kalman Filter):

- Utilizes **imperfect measurements** from low number Connected Vehicles (**low penetration rates**)
- Provides **improved estimation** in comparison to relying solely on the measurements
- Provides an **intuitive way for tuning** the filter ("should I trust the measurements or the model more?")

But:

- Tuning (Q, R) is very critical in Kalman filtering
- Biased measurements or biased model can lead to reduced performance

150 Jahre	Outlook	Conclusions	Contributions	Methodology	Research goal
culture of excellen					

Introduction	Methodology	Contributions	Conclusions	Outlook	150 Jahre	
					excellence	ТПП

Outlook

- Compare with estimation from **loop** detectors
- Test different data availability combinations
- Evaluate the **impact** on signal control
- Derive **requirements** for connected environments
- Add another layer: "**Continuous**" filter (every 3 seconds)

"Science fiction is sexier than science facts" (Dr. S. Shladover, UC Berkeley, MFTS 2018, Ispra, 11.06.2018)