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Abstract

Microwave beams have a broad range of applications in nuclear fusion, and
a rigorous mathematical modeling of their propagation in plasmas is of great
interest. In the mathematical framework of semiclassical methods, recent pro-
gresses in both code development (the IPP code WKBeam) and theory (Hage-
dorn wave packets) open the possibility to address and finally solve two open
problems: (I) the effects of plasma turbulence on wave beams and (II) the
efficient numerical simulation of cut-off reflections.

Zusammenfassung

Mikrowellenstrahlung hat viele Anwendungen in der Kernfusion, und eine rig-
orose Modellierung ihrer Ausbreitung in Plasmen ist von großem Interesse.
Im mathematischen Rahmen semiklassischer Methoden eröffnen die neuenten
Fortschritte sowohl in der Codeentwicklung (IPP-Code WKBeam) als auch in
der Theorie (Hagedorn-Wellenpakete) die Möglichkeit, zwei offene Probleme
letztendlich zu lösen: (I) die Auswirkungen von Plasma-Turbulenzen auf die
Strahlung und (II) die effiziente numerische Simulation von cut-off Reflexionen.

This work has been carried out within the framework of the EU-
ROfusion Consortium and has received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreement 633053. The views and opinions expressed herein
do not necessarily reflect those of the European Commission.
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Structure of this work

This work is structured in three parts: Part 0 provides a general introduction
to the treated topics, collocating them in the relevant applications and theory
context. Part I and Part II are reasonably self-contained and they can be
read independently. Each of the two parts has the same structure: Chapter 1
provides a heuristic introduction to the problem, Chapter 2 is dedicated to a
revision of the mathematical techniques used, while Chapters 3 and 4 contain
the theoretical and numerical results, respectively. The scheme below should
be of help to the reader.
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Part 0

Theory and applications: context
of this work





0.1 Controlled fusion for energy
production

One of the biggest challenges of our society is to confront the need of an
increasing amount of usable energy, overcoming the limitations of today avail-
able sources. Figure 0.1.1 shows how fossil fuels (e.g., coal, oil) still by far
provide the largest portion of the yearly energy production worldwide, and
despite their constant growth in the last four decades “alternative” sources
(e.g., wind, solar) did not affect this predominance.

Figure 0.1.1: World total primary energy supply by fuel.
Graphics: International Energy Agency [32].

The problems related to fossil fuels are well known (limited availability, envi-
ronmental damage), and major technological issues prevent renewable sources
from playing a major role in the above picture. Nuclear energy based on fis-
sion reactions is also subject to discussions and criticism - an analysis of which
is beyond the scope of the present work - mostly related to environmental
(radioactive waste) and safety (rare but large impact accidents) issues.
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0.1 Controlled fusion for energy production

Having these elements in mind, one could easily define a set of criteria that
an ideal energy source should satisfy: large (virtually unlimited) availability,
full control on the usability, low environmental impact, safety. None of the
today available sources seems to fulfill all of the criteria, making the search
of a new mean of energy production a fundamental challenge for our society.
Controlled thermonuclear fusion appears to reasonably satisfy the above re-
quirements, and for this reason its actual realization has been collecting the
efforts of the scientific community since the 1950s, still offering today a series
of open problems in different fields such as applied mathematics, physics and
engineering. In order to understand the complexity of the problem a short
introduction to the basic concepts of controlled fusion is given in this chapter,
which will help collocating this work in the larger applicative context.

0.1.1 Nuclear fusion power

The fact that the fusion of the nuclei of light elements can lead to the release of
large amounts of energy is a direct consequence of the mass-energy equivalence
formula, provided that the product of the reaction has a mass smaller than the
sum of the masses of the original elements. The acknowledgement of the actual
presence of this process in stars dates back to the first half of last century, and
it is at the origin of the idea of exploiting fusion reactions to produce energy.

(a) (b)

Figure 0.1.2: (a) An example of D-T fusion reaction. (b) Representation of
matter in the gas and plasma states in terms of organization of
the atoms. Graphics: IPP.

An example of reaction is represented in Figure 0.1.2a, involving two iso-
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0.1.2 Magnetic confinement

topes of hydrogen (deuterium and tritium, D-T), whose nuclei recombine into
an atom of helium-4, releasing a neutron which carries a large amount of energy.
This reaction is the strongest candidate for future fusion power plants, due to
the large cross-section, which makes fusion reactions more likely to happen.
Moreover the fueling atoms are available in nature (deuterium) or producible
in laboratory (tritium) in almost unlimited quantities [21]. In order to cre-
ate the conditions favorable to the realization of such reaction though, matter
needs to be in a specific state called plasma. Such state (see Figure 0.1.2b) is
reached by ionization of a gas, meaning that the negatively-charged electrons
of the atoms are stripped away from the positively-charged nuclei. The result
is a globally neutral compound of free charged particles, in which the high en-
ergy of the particles wins over the electric forces that normally would prevent
them from interacting, and fusion reactions are therefore possible. Matter in
the state of plasma is generally not present on the Earth surface, due to the
high temperatures required to reach such a state. Nevertheless, it is estimated
that around 99% of the presently known matter in the universe is in the state
of plasma, and plasmas are commonly produced artificially for a variety of
applications (e.g., lasers, neon lights, plasma screens). In order to reach the
conditions which trigger fusion reactions though, the temperatures and densi-
ties required are so high (see Figure 0.1.3a) that realizing them in a controlled
way is highly challenging.

0.1.2 Magnetic confinement

The need for high temperatures comes from the necessity to overcome electric
forces, while in order to maximize the likelihood of the nuclei interacting with
each other triggering a fusion reaction, a relatively high density is required.
Controlling on earth matter at temperatures of hundreds of millions degrees
Celsius constitutes one of the main problems of achieving controlled fusion,
but the electromagnetic properties of plasmas come to help: being constituted
by charged particles, a plasma can be shaped without the need of a physical
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0.1 Controlled fusion for energy production

(a) Various astrophysical and labora-
tory plasmas. Graphics: Wikipedia.

(b) Representation of charged particles
in a magnetic field. Graphics: IPP.

Figure 0.1.3

container, immersing it instead in a strong-enough magnetic field. As illus-
trated in Figure 0.1.3b, in presence of a magnetic field the charged particles
will move orbiting around the field lines, so that intuitively, if such lines are
closed, our plasma will be confined in the region delimited by such lines. This
basic idea is at the core of the presently most developed concepts of fusion de-
vices, tokamaks and stellarators, which are characterized by different concepts
of how to compensate the fact that - mostly due to drift forces that deviate
the particles trajectories - simple circular magnetic field lines fail to effectively
confine the plasma (see Figure 0.1.4).

Most of the existing experiments do not actually operate with fusion plasmas
(e.g., deuterium-tritium), but are rather dedicated to generate and study the
properties of a single-element (e.g., deuterium) plasma in temperature and
density regimes that are comparable to those of a fusion reactor. In order
to conduct such experiments huge amounts of energy are required, mostly for
heating the plasma and generating the strong confinement magnetic fields.
So far, none of the few actual fusion experiments conducted has reached the
goal of producing more energy than what is needed to operate the machine.
The tokamak ITER [34] - currently under construction as an international
collaboration between China, EU, India, Japan, Korea, Russia and USA -
should be able to achieve the goal of actually producing energy: a gain factor
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0.1.2 Magnetic confinement

(a) In a tokamak the magnetic field
lines generate a plasma character-
ized by nested magnetic flux sur-
faces, and such that the properties
of the plasma on different poloidal
sections are the same (axisymme-
try). A toroidal current is gener-
ated in order to achieve confinement
(pulsed operation).

(b) In a stellarator magnetic confine-
ment of the plasma is obtained
without introducing any toroidal
current (steady-state operation).
As a consequence, strong con-
straints on the magnetic field geom-
etry must be imposed in order to ac-
tually achieve confinement, and the
axisymmetric structure is lost.

Figure 0.1.4: An example of (a) tokamak and (b) stellarator, the most diffused
concepts of fusion devices nowadays. Graphics: IPP.

of 10 is foreseen, and in case of success the possibility of effectively using
controlled nuclear fusion as a source of energy will be established.

In the meanwhile, there are still a number of physics phenomena taking
place in the plasma whose understanding is crucial before taking further steps
towards fusion experiments: experimental campaigns are extremely costly, and
a theoretical understanding of such phenomena is more than just an entertain-
ing exercise. There is a strong need for reliable mathematical models and fast
numerical simulations of what goes on in a fusion device, and the variety of
physics phenomena involved makes plasma physics and fusion research an ideal
framework for the development of new mathematics and for the application
of existing techniques to new problems. A full overview of such possibilities
is out of the scope of the present work, which focuses on problems related to
electromagnetic high-frequency waves propagation. In the next chapter such
problems will be shortly presented, explaining their relevance to nuclear fusion
and introducing their basic mathematical formulation.
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0.2 Microwave beams in fusion
plasmas

As mentioned in the previous chapter, a plasma basically consists of charged
particles, and therefore it interacts with electromagnetic fields. A nuclear fu-
sion experiment is characterized by a variety of these fields, which are either
imposed externally (e.g., confinement field, electromagnetic heating sources
etc.), or generated by the plasma itself. This corresponds to a great variety
of wave phenomena within the plasma, whose mathematical modeling requires
different techniques according to the different physics regimes. A comprehen-
sive description of the “plasma wave zoo” is beyond the scope of this work,
and one can refer to the classics on the subject like Brambilla [8], Stix [88] or
Swanson [89]. This works focuses on electromagnetic waves which are:

• injected by an external source (wave guide / antenna system);

• in the electron cyclotron frequency range, i.e.,

ω ≈ ωce =
eB0

mec
,

so that the wave frequency ω is of the order of the electron cyclotron
frequency ωce, given in terms of the electron charge e, the intensity of
the confinement magnetic field B0, the electron mass me and the speed
of light in free-space c [6].

The main applications of these waves in fusion research are briefly presented,
followed by a brief introduction to the relevant equations and the possible
numerical approaches to their solution.
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0.2 Microwave beams in fusion plasmas

0.2.1 Short overview of the applications

Electron cyclotron waves have three main domains of application in fusion
research:

1. Resonant heating (ECRH). ECRH exploits the fact that EC waves
are absorbed at the electron cyclotron resonance, so that they transfer
their energy to the electrons, which then heat the ions as well by colli-
sions [6, 67]. Notice that electromagnetic radiation at lower frequencies
can be used to directly heat the ions (ICRH).

2. Current drive (ECCD). ECCD is also based on the mechanism of
resonant absorption, but the main goal is to deliver power at specific
locations in the electron phase-space, in order to tailor a local electric
current with the aim of suppressing local instabilities that arise during
operations [31]. Several physics studies are dedicated to the understand-
ing of this mechanism [104, 41, 106, 77, 36, and references therein], and
the precision of the beam on its target is a key element of the whole
machinery. The first part of this work is related to this application, as
the main goal is to provide a method able to predict how the propa-
gation through a turbulent plasma might spoil the beam structure and
determine a loss of precision.

3. Plasma diagnostics. Several diagnostic tools used in fusion experi-
ments in order to measure different quantities in the plasma [27] are
based on EC emission. Reflectometry [51, 45, 14, 28, and references
therein] is one of these: a wave beam is injected in the plasma, and gets
reflected when it reaches the so called cut-off density. The reflected sig-
nal is then compared to the injected one, and important properties of
the plasma (e.g., density, turbulence spectrum) can be deduced. Scan-
ning over the wave frequency allows one to access the plasma at different
radial positions, since waves with higher frequencies penetrate to regions
of higher electron density. The second part of this work is related to this

10



0.2.2 Formal mathematical description

type of applications, as an idea for a numerical method that efficiently
reconstructs reflected beams near the cut-off is presented.

0.2.2 Formal mathematical description

In general terms high-frequency electromagnetic waves in a stationary medium
can be described by means of an equation for the electric field of the form

P κ(x,−iκ−1∇)Eκ(x) = 0, x ∈ Ω ⊆ Rd, κ� 1, (0.2.1)

where Eκ : Ω→ Cm and the operator P κ = P κ(x,N) ∈ Cm×m is a symbol, i.e.,
a smooth function with all derivatives bounded by a polynomial in N ∈ Rd.
It is natural for the intended applications to consider the case of d ≥ 2 and a
domain of the form

Ω = R+ × Rd−1,

Σ = {(0, y) | y ∈ Rd−1}.
(0.2.2)

By an abuse of notation points on Σ will always be denoted by y. On the
hypersurface Σ - which typically represents an antenna / wave-guide system -
the incident field

Eκ
in(x)|Σ = Eκ

0 (y) (0.2.3)

is known from the experimental set-up, and in the applications the datum Eκ
0

is generally given in the form of a Gaussian beam (cf., Section 0.2.4).

From a mathematical point of view the condition (0.2.3) does not in general
determine a unique solution of equation (0.2.1). Additional conditions will be
provided for the specific cases treated in this work, depending on the solution
method and application. More generally one can refer to the literature on
scattering problems ([58] and references therein) or to works in microlocal
analysis ([17] and references therein). The two special cases of (0.2.1) treated
in this work are:
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0.2 Microwave beams in fusion plasmas

• In Part I, the wave equation

1

κ2
∇× (∇× Eκ)− εEκ = 0, x ∈ Ω ⊆ R3 Eκ = Eκ(x) ∈ C3,

is considered, where ε is an operator describing the medium. Electron
cyclotron waves in a magnetically confined plasma can be fully described
by means of an equation of this type, with ε = ε(x,−iκ−1∇) an integro-
differential operator.

• In Part II, the scalar Helmholtz equation

1

κ2
∆Eκ − V Eκ = 0, x ∈ Ω ⊆ R2 Eκ = Eκ(x) ∈ C,

is considered, where V = V (x) is a function accounting for the properties
of the medium. This is a simplified model, and it generally provides a
good test-case for new methods in wave propagation while still describing
interesting physics.

A precise definition of the terms appearing in the equations will be given later
in this work, at the moment of entering the details of each problem.

0.2.3 Different numerical approaches

In general analytic solutions for the problems introduced in the previous section
cannot be found, especially if non-trivial geometries and physics phenomena
are taken into account. Therefore, one needs to rely on numerical solutions,
which need to be accurate and fast, as the goal is to be predictive with respect
to unexplored experimental scenarios, or to be able to use the simulations to
have a real-time control on ongoing experiments. Two main classes of methods
can be identified, each with its advantages and limitations.
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0.2.3 Different numerical approaches

Full-wave methods

Numerical methods that rely on standard discretization techniques, like fi-
nite differences or finite elements, are often addressed in the plasma physics
community as “full-wave”. The full physics model is generally accounted for,
by discretizing Maxwell’s equations, which provide a complete description of
electromagnetic phenomena. This can be done in different forms (in time or
frequency domain) and in general if the discretization technique is chosen op-
portunely full-wave methods are able to reproduce accurately a solution of the
problem and its conservation laws. Several techniques have been implemented
in fusion-dedicated codes [37, 16, 1, 76, and references therein], which account
for the relevant geometry and plasma parameters. Usually full-wave methods
rely on:

1. Yee scheme [105] for Maxwell’s equations. This scheme is based on a stag-
gered grid, and it is an energy-preserving, variational multi-symplectic
scheme [87].

2. A suitable coupling with the current equation coming from the cold-
plasma model [15].

Direct discretization approaches present some limitations. In fact for typical
scenarios of electron cyclotron waves in fusion plasmas on has to deal with:

• Short wavelengths, typically of the order of the millimeter;

• Large propagation domains, up to the order of the meter.

• Integral operators with highly oscillatory kernels (arising in the kinetic
theory of plasma waves), e.g., the operator ε = ε(x,−iκ−1∇) mentioned
in Section 0.2.2.

The first two points imply that that a highly resolved large grid is necessary
in order to include the short scales. Moreover, no viable numerical method is
known that allows to solve the third point, so that full-wave methods cannot
account properly for resonant absorption. Nevertheless, for some problems
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0.2 Microwave beams in fusion plasmas

standard discretization is still the only (or the most) reliable method, and
more in general full-wave codes provide a solid tool for verification of other
numerical methods. This is particularly the case for diagnostic applications.

Semiclassical methods

Wave propagation problems in plasmas (but not only) are often treated with
another class of methods, namely, semiclassical methods [62, 20, 68, 101, 65,
and references therein]. The philosophy of this approach is to take advantage
of the presence of multiple scales in the physics model, which is a limitation
for full-wave methods: if the medium is slowly varying with respect to the
wavelength, one can identify the large “semiclassical” parameter κ, given by

κ =
ωL

c
� 1, (0.2.4)

where ω is the wave frequency, c is the speed of light in free-space and L denotes
the (large) typical scale of variation of the medium. The typical work-flow then
will be:

1. Make an ansatz on the solution as an asymptotic series [7] in (integers
or fractional) powers of the parameter κ;

2. Plug the ansatz into the original problem, and derive a new set of equa-
tions by separating the terms corresponding to different powers of κ;

3. Solve (a subset of) the new set of equations in order to reconstruct an
approximated solution of the original problem with a reminder of order
κq, for some q ∈ Q which depends on the specific method.

The idea is that the new set of equations is simpler and faster to solve than the
original problem, so that at the price of an approximation error, a gain in terms
of performance is obtained. The formulation of the ansatz should take into
account the physics that one wants to describe, and the same applies to the
order at which one decides to truncate the asymptotic series. The presentation
here is extremely simplified, and one can refer to the textbook by Martinez [52]
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0.2.3 Different numerical approaches

for a general treatment, and to [38, 54, 2, 95, and references therein] for a more
method-specific approach. In order to better understand the general idea, an
example of application of ray-tracing to a simple model is presented here.

Example 0.2.3.1 (Ray-tracing for Helmholtz in a linear medium). Consider
the 2d problem

1

κ2
∆uκ(x) + (1− x1)uκ(x) = 0, x = (x1, y) ∈ R+ × R,

and assume that the wave field is known on Σ = {(0, y), y ∈ R}, i.e.,

uκ(0, y) = uκ0(y).

The boundary datum uκ0 is taken Gaussian, namely,

uκ0(y) = A0e
−
(

y
w0

)2
+iκ y2

2R , A0, w0 > 0, R 6= 0.

The geometrical optics ansatz corresponds to look for a solution of the form

uκ(x) = aκ(x)eiκφ(x), aκ(x) ∼
∑
j≥0

κ−jaj(x),

so that the amplitude aκ is given by an asymptotic series (cf., [52, 7] as
described above. By substitution in the equation, and separation by powers of
κ one obtains the following recursive set of equations for the phase φ and the
amplitudes aj:

1− x1 − |∇φ|2 = 0, O(1),

2∇a0 · ∇φ+ a0∆φ = 0, O(κ−1),

2i∇aj · ∇φ+ aj∆φ = −∆aj−1, O(κ−j), j ≥ 2.

Usually the first two equations are solved, giving an approximation of the so-
lution with an error of O(κ−1).

The first equation - called eikonal equation - gives the phase φ. One can
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0.2 Microwave beams in fusion plasmas

define N = ∇φ and H = N2 − x1 − 1, and use the method of characteristics
to solve it. Specifically one solves the equations

ẋ(t) = ∂NH(x(t), N(t)), Ṅ(t) = −∂xH(x(t), N(t)), H = 0,

and then reconstruct the phase by means of the line integral

φ(x(t)) = φ(x(0)) +

∫ t

0

N(s)dx(s).

The initial condition for the position x(0) is taken on the boundary, while that
for the momentum N(0) is deduced by the phase of the boundary condition and
the dispersion relation N2 = 1 (plus some additional boundary condition not
specified here that selects the positive branch of the square root), so that for the
considered case

N(0) =

(√
1− y20/R2

y0/R

)
, x(0) =

(
0

y0

)
,

from which one can compute

N(t) =

(√
1− y20/R2 − t

y0/R

)
, x(t) =

(
2t
√
1− y20/R2 − t2

y0 + 2ty0/R)

)
.

The trajectories in position space x(t), called rays, are parabolas that intersect
each other, so that they cannot be inverted and the phase cannot be reconstructed
in the whole domain (cf., Figure 0.2.1a). In the case of a homogeneous medium
(e.g., no x1 multiplication in the equation), N(t) = N(0) for all t > 0, and
the rays are straight lines, which still intersect if 1/R 6= 0 (focused beam, cf.,
Figure 0.2.1b). In the simple case of zero initial phase (1/R = 0) the rays are
parallel lines, and the amplitude can be computed in the whole space, giving
solution is

uκGO(x) = uκ0(y)e
iκx1 +O(κ−1).

Even in this very simple case there is a substantial difference with respect to
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0.2.4 Diffracting wave beam solutions

the exact solution (cf., Section II.3.1), which translates into the fact that the
GO solution only describes the “near-field”, i.e., the error grows linearly with
x1, for large x1/w0.

Already for a simple problem ray-tracing does not reproduce correctly the
exact solution, but more sophisticated techniques can be derived in the same
spirit, in order to build more suitable approximations that include more physics.
For what concerns the applications of interest for this work, two main issues
arise for what concerns standard semiclassical methods (e.g., ray tracing, com-
plex WKB, beam tracing):

1. Smoothness of the medium. The assumption of the medium to be slowly
varying, or equivalently of L to be large, is not always met in the en-
visaged applications scenarios: a turbulent plasma might develop local
structures whose size is comparable to the wavelength, breaking the lim-
its of validity of the asymptotic expansion.

2. Caustics. Physics phenomena like focuses and turning points consti-
tute singularities for most semiclassical methods (see Figure 0.2.1). In
Example 0.2.3.1 caustics correspond to the non-invertibility of the char-
acteristic flow.

0.2.4 Diffracting wave beam solutions

For focused beams diffraction effects can be accounted for by several methods.
Wave beam solutions are of particular interest for what concerns the considered
wave problem. A wave beam is a monochromatic wave field localized around
a certain path, and a brief description of such solutions is given here, together
with the relevant boundary conditions.

Under certain assumptions on the medium - which will be clarified for the
specific cases treated later on in this work - paraxial techniques [69, 46, 62, 54,
49, and reference therein] can be used in order to obtain asymptotic solutions
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0.2 Microwave beams in fusion plasmas

(a) (b)

Figure 0.2.1: (a) In the case considered in Example 0.2.3.1, a non-zero phase
at the boundary determines rays which intersect one another (fo-
cus). Therefore, the phase cannot be reconstructed univocally at
each point in space. (b) In the case of a linear medium (cf., Sec-
tion II.3.2), the rays define parabolic trajectories. In the region
near the turning point the wave field cannot be reconstructed.

in the limit κ→ +∞ for the wave field of a beam in the form

Eκ(ω, x) =
∑
α∈M

eα
(
x,∇Sα(x)

)
Aα(x)e

iκSα(x)−κφα(x) +O(1/
√
κ), (0.2.5)

where for each component (or mode) α, the polarization is given by the cor-
responding eigenvector eα = eα(x,N) ∈ Cm, Aα = Aα(x) is the electric field
scalar amplitude, Sα = Sα(x) is the phase, and φα = φα(x) ≥ 0 is a non-
negative function which describes the power distribution in the beam cross-
section. Specifically, the wave field defined by equation (0.2.5) is exponentially
small where φα > 0, and thus concentrates near the zero-level set φα = 0, in
the limit as κ → +∞. One obtains that the zero-level set of φα is a curve
x = xα(τ) determined together with Nα(τ) = ∇Sα

(
xα(τ)

)
by Hamilton’s

equation of geometric optics (ray equations),

dxα
dτ

=
∂Hα

∂N
,

dNα

dτ
= −∂Hα

∂x
, Hα(xα, Nα) = 0, (0.2.6)

where the geometrical-optics HamiltonianHα = Hα(x,N) is defined for (x,N) ∈
Ω×Rd and depends on the considered wave operator. The curve x = xα(τ) in
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0.2.4 Diffracting wave beam solutions

the spatial domain Ω is called reference ray of the beam. Around the reference
ray the complex phase ψα = Sα + iφα is determined, in the form

ψα(x) = σα(τ) +Nα(τ) · x̃++
1

2
x̃ ·Ψα(τ)x̃,

where x̃ = x − xα(τ) is usually chosen orthogonal to dxα/dτ ; ordinary dif-
ferential equations for real-valued phase σα(τ), the symmetric matrix Ψα(τ),
and the amplitude aα(τ) = Aα

(
xα(τ)

)
are solved together with rays equa-

tions (0.2.6). The solution of such ordinary differential equations is sufficient
to reconstruct the beam wave-field within an error of O(1/

√
κ) via (0.2.5).

(a) (b)

Σ Σ

Figure 0.2.2: Example of wave beam in 3d, reconstructed according to equa-
tion (0.2.5) in free space. Panel (a) displays two contours of
the wave field (at ±0.3 of the launched peak amplitude). The
beam has an elliptical cross-section and curved phase fronts with
misaligned axes of curvature, with consequent rotation of the
cross-section (astigmatism). For the same beam, panel (b) shows
energy-flux lines, that define a twisted flux tube for the wave
energy.

As mentioned before, typically from the experimental setup the electric field
is known on a plane Σ ⊂ R3. Physically Σ represents a mirror in the wave-
guide system which launches the beam, and the Poynting flux (energy flux)
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0.2 Microwave beams in fusion plasmas

on Σ is such that the beam in injected into one of the two half-spaces defined
by the plane Σ. The phase and amplitude of the electric field yields the initial
conditions xα(0), σα(0), Ψα(0), and aα(0), if τ = 0 on Σ. The phase of the
initial condition also provides the component of Nα(0) parallel to the launching
plane Σ, and using the dispersion relation Hα(xα, Nα) = 0 and the Poynting
flux direction one reconstructs the full vector Nα(0).

Figure 0.2.2 gives a representation of a Gaussian beam launched from a
plane Σ in free space.

In general the wave field (0.2.5) does not belong to L2(Rd), i.e., beams
are not finite-energy solutions. However, the restriction of the beam to a
plane orthogonal to the trajectory does belong to L2(Rd−1). Physically a beam
represents a steady injection of waves from some external source; the energy
flux is finite and bounded along the propagation path of the beam. This type
of solutions are successfully employed on modeling heating beams in fusion
devices [66, 20], retaining diffraction effects and focusing. Nevertheless, the
following limitations still hold:

I. In presence of short-scale density fluctuations, existing methods are not
applicable. The effect of such turbulent structures on the wave beam is
of great interest for the applications [96], and in Part I a method for this
problem is presented, based on a statistical approach.

II. For what concerns turning points, beam tracing methods fail in gen-
eral (see Section II.1.2 for more details), and the existing unfolding tech-
niques [18, 53] are difficult to apply in practice. Part II of this work is
dedicated to the derivation and implementation of a method for cut-off
reflections which is able to reconstruct the wave field near the turning
point.
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Part I

Numerical calculation of the
Wigner measure for wave beams in
turbulent plasmas





I.1 Scattered beams and general
idea of the method

In most applications of high-frequency electromagnetic waves in fusion plasmas
(cf., Chapter 0.2) it is crucial that the energy is deposited with extreme preci-
sion at its target. This means that any factor that could spoil the beam struc-
ture must be carefully taken into account, in order to prevent large amounts of
energy from being deposited in undesired regions, with all the possible direct
and indirect detrimental consequences for the plasma stability or the machine
components.

Fluctuations of the plasma electron density are among the factors that may
determine substantial modifications of the wave beam. In the last few years the
efforts of the scientific community to model this effect have grown, and a variety
of models and numerical tools have been developed [4, 64, 90, 40, 70, 33]. In fact
for the new generation of tokamaks (e.g., ITER) density fluctuations seem to
possibly determine important changes of the beam parameters (e.g., the beam
width [96]).

An accurate and efficient numerical simulation of the phenomenon under
physically relevant conditions cannot be achieved by existing beam-tracing
methods [65, and references therein]. On the side of standard discretization
techniques for Maxwell equations (e.g., finite differences, finite elements), the
number of wavelengths to resolve in the physical domain is a major computa-
tional obstacle, while fundamental assumptions on which most of semiclassical
methods rely (e.g., ray tracing, beam tracing), are not met in many scenarios
relevant for the applications.
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I.1 Scattered beams and general idea of the method

I.1.1 Presentation of the problem

Figure I.1.1a helps visualizing what the effect of density fluctuations on a wave
beam could be: the wave field, originated on the right-hand side, propagates
towards the left-hand side, and gets scattered by a turbulent layer, which one
can think of as characterized by a number of density blobs.

(a) (b)

Figure I.1.1: FDTD simulation of a wave beam in a plasma, in presence of
fluctuations of the electron density, with the full-wave code IPF-
FDMC [39]. (a) A wave beam is launched from the right-hand
side through a medium characterized by the presence of density
fluctuations localized in a strip. (b) Averaged wave beam, where
the average was performed on ∼ 103 independent samples of the
type of (a).

The actual picture is more complex, as the turbulent structures evolve in
time, so that in principle the dynamics of the medium should be coupled to
that of the wave field. This complexity is generally avoided though, by means
of some (physically motivated) assumptions that can be expressed synthetically
by the following inequalities:

τp = l/c� τc � τobs, (I.1.1)

where τp is the propagation time of the wave in the domain of interest (whose
size is denoted by l), τc denotes the correlation time of turbulence, and τobs is
the time window of experimental observation when the beam is active. The
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I.1.2 Stochastic trajectories

first inequality resumes what is typically called “frozen turbulence approxi-
mation”, and implies that the wave propagates fast enough from the antenna
not to see any variation in the medium. As for the second inequality, it ba-
sically means that the wave beam lives in the medium long enough that the
effect of a single turbulence snapshot is not representative of the whole exper-
iment duration. Intermittent events like the one represented in Figure I.1.1a
might still be relevant for some applications, but the average effect shown in
Figure I.1.1b provides more interesting information for ECCD and ECRH ap-
plications: several snapshots similar to that in Figure I.1.1a were generated, at
a time distance from one another greater than τc, so that they can be consid-
ered mutually independent, and the average beam was computed. In this way,
the (physical) time-evolving medium is treated (mathematically) as a random
medium, and what in principle should have been a time average is replaced by
an ensemble average over several independent realizations.

In this context the standard discretization techniques do not appear as the
ideal method to compute the average beam, as the already high computational
cost of one simulation should be multiplied by a number of realizations large
enough for it to be statistically significant (typically, about 103). This would
not be an issue for existing semiclassical methods (e.g., beam tracing, complex
geometrical optics), whose computational cost is way lower. Such methods
though are not applicable to the case of short-scale fluctuations (namely, of
the same order of magnitude as the wavelength), which are indeed possible
in the realistic scenarios. Wave propagation in random media can be success-
fully described by means of radiative transport models [35, 56, 75], where the
statistics of the medium is accounted for directly in the equation for the wave
field.

I.1.2 Stochastic trajectories

In this section the general idea of this Part is presented in a heuristic way,
in order to provide a visual understanding of the concepts formalized in the
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I.1 Scattered beams and general idea of the method

following chapters. As mentioned before, radiative transport models are com-
monly used to describe wave propagation in random media. In general terms,
the idea is to derive an equation for the average wave field in phase-space. As-
suming the random medium to be characterized by stochastic perturbations of
an equilibrium, the resulting equation will consists in three blocks, describing
respectively:

(i) the transport of the wave field in the unperturbed medium;

(ii) the effect of the random perturbations on the wave field;

(iii) (weak) dissipation due to resonant absorption.

In general the wave field has multiple components (modes), and the random
perturbations (turbulence) modify it in two ways:

1. by changing the momentum of each mode, which might result in a broad-
ening of the wave beam;

2. by coupling the different modes, with possible energy exchange among
them. This is called here cross-polarization scattering.

Both effects can be particularly detrimental for the intended applications, as
broadening reflects in a loss of localization in the power deposition, and cross-
polarization scattering might result in a loss of energy from the desired mode.
In order to facilitate the qualitative understanding of the proposed method,
the case of a scalar field in a non-dissipative medium is considered in the
discussion that follows. The main result of this Part though is obtained for the
general case of the multi-component field, and accounts for weak dissipation
(cf., Chapter I.3).

Quiet medium

In absence of the stochastic perturbation (quiet medium), the model roughly
described above reduces to an equation in phase-space describing the transport
of the wave field energy density. The field can be reconstructed by opportunely
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I.1.2 Stochastic trajectories

tracing a number of “rays”, which are trajectories obtained by solving certain
deterministic ODEs (cf., Figure I.1.2).

(a) (b)

Figure I.1.2: Example of deterministic rays. The momentum Nx (top) evolves
in time following the dynamics described by standard ODEs. The
projection of the rays in the physical 2d-space (bottom) is only
affected by the quiet medium (background gradient).

Random medium

In presence of perturbations of the medium, Monte-Carlo methods offer an
appropriate tool to solve the problem (cf., [43]). The method proposed here
consists in a representation of the field in terms of a number of phase-space
“particles”, which are initialized by a suitable sampling and whose dynamics
is described in terms of a stochastic process (cf., Figure I.1.3). The stochastic
variables will represent the momentum and the mode of the particle.

For the derivation of a radiative transport model for wave beams one can
refer to [101, 102], where a solution in the case of a scalar wave field is also
presented. For the case of multiple modes, no rigorously derived numerical
scheme has been developed yet. To this purpose, the following steps will be
undertaken in this work:

• definition of a suitable stochastic process for the multiple-modes problem;

• construction of a Monte-Carlo scheme based on the stochastic process.
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I.1 Scattered beams and general idea of the method

(a) (b)

Figure I.1.3: Example of stochastic particles. The momentum Nx (top) evolves
in time following the dynamics described by a stochastic process.
The projection in the physical 2d-space (bottom) is affected by
the random perturbations (not represented) of the quiet medium
(background gradient).

The first point is the main result of this work, and will be addressed in Chap-
ter I.3, followed by the definition and tests of the numerical scheme in Chap-
ter I.4. At last, in Section I.4.2 the implementation of the scheme in a code for
realistic simulations is presented. Before presenting the results an overview of
the radiative transport model for waves in plasmas derived by Weber [101] is
given in Chapter I.2.
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I.2 A radiative transport model for
wave beams

Linear electromagnetic waves in dispersive stationary media are described by
Maxwell’s equations in the frequency domain, which can be reduced to a
second-order equation for the wave electric field of the form of 0.2.1, i.e.,

∇× (∇× Eκ)(ω, x)− κ2Opκ(εκ(ω, ·))Eκ(ω, x) = 0, (I.2.1)

equipped with suitable boundary conditions. In equation (I.2.1) spatial coor-
dinates x ∈ Rd, d = 3, are normalized to the scale L of the medium inhomo-
geneity, κ = ωL/c� 1 is a large parameter, ω > 0 is the frequency and c is the
speed of light in free space. The unknown Eκ = Eκ(ω, x) is the electric field
Fourier-transformed in time and depends on the large parameter κ through the
equation. The dielectric operator Opκ(εκ(ω, ·)) accounts for the properties of
the medium. It is assumed to be the pseudo-differential operator [92, 52] ob-
tained by Weyl quantization of the matrix-valued symbol εκ =

(
εκij(ω, x,N)

)
,

which is a function of frequency ω, position x, and refractive index vector
N ; the latter plays the role of the coordinate dual to x in phase space and
is defined so that (ω/c)N is the wave vector. The matrix-valued function
εκ(ω, ·) is assumed to be a symbol [52] in the sense that εκ(ω, ·) belongs to C∞

and is bounded by a polynomial in N together with all its derivatives. The
Weyl quantization of a matrix-valued symbol A with semiclassical parameter
1/κ is the operator Opκ(A) acting on smooth rapidly decreasing vector-valued
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I.2 A radiative transport model for wave beams

functions u = u(x) as

Opκ(A)u(x) =
( κ
2π

)d ∫
eiκ(x−x

′)·NA
(
x+x′

2
, N
)
u(x′)dx′dN.

The symbol εκ, in particular, is referred to as dielectric tensor in the physics
literature. When εκ(ω, x,N) depends on N in a non-trivial way, the corre-
sponding operator is non-local and the medium is said to be spatially non-
dispersive. The use of Weyl symbol calculus for electromagnetic waves in
plasmas was initially proposed by Kaufman and McDonald [57, 55].

Equation (I.2.1), divided by κ2, can be written in terms of pseudo-differential
operators as

Opκ(Dκ(ω, ·))Eκ(ω, x) = 0, (I.2.2)

with Weyl symbol

Dκ(ω, x,N) = N2I−N ⊗N − εκ(ω, x,N), (I.2.3)

where I is the identity matrix.
In presence of turbulent fluctuations, the medium can no longer be consid-

ered stationary and equation (I.2.1) does not apply. Nonetheless, as introduced
heuristically in Chapter I.1, in a statistical representation of turbulence time-
evolving fluctuations are replaced by a time-independent random field, thus
recovering equation (I.2.1) with dielectric tensor of the form

εκ(ω, x,N) = ε0(x,N) +
1√
κ
η(x)δn(x) +

i

κ
ε1(x,N), (I.2.4)

where ε0, ε1 are smooth Hermitian matrices, η is a smooth matrix-valued func-
tion depending only on frequency and position, and δn is a random field. All
matrices ε0, ε1 and η in general have a residual dependence on the frequency ω
which is implied in the notation, but are independent of the large parameter κ.
One should notice the typical scaling ∝ 1/

√
κ of the random perturbation [75].

We have assumed that η is independent on N , i.e., the random perturbation
is spatially non-dispersive: this is in general a restrictive assumption, but it is
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I.2.1 Separation of the dispersion manifolds

sufficient for the envisaged applications and greatly simplifies the derivations
[56]. The first-order term is anti-Hermitian and accounts for weak dispersive
absorption.

I.2.1 Separation of the dispersion manifolds

With (I.2.3) and (I.2.4), the leading order term in Dκ as κ→ +∞ amounts to

D0(x,N) = N2I−N ⊗N − ε0(x,N), (I.2.5)

which is referred to as the semiclassical principal symbol of the operator (or
dispersion tensor in the physics literature). It is a Hermitian matrix and thus
it can be diagonalized pointwise,

D0(x,N)eα(x,N) = Hα(x,N)eα(x,N), (I.2.6)

with real eigenvalues Hα(x,N) and complex unit eigenvectors eα(x,N) labeled
by Greek index α ∈ {1, . . . , d}. The characteristic variety of equation (I.2.1)
is defined as

C = {(x,N) ∈ Rd × Rd | detD0(x,N) = 0}, (I.2.7)

and with plasma physics applications in mind, the following is assumed:

Assumption I.1. The characteristic variety of equation (I.2.1) is not empty
and

Cα = {(x,N) ∈ Rd × Rd : Hα(x,N) = 0},

is either an empty set or a smooth co-dimension-one surface in Rd×(Rd\{0}).
The set of indices α for which Cα 6= ∅ is denoted by M and the surfaces Cα are
well separated, i.e.,

∣∣Hα(x,N)−Hβ(x,N)
∣∣ ≥ cα,β, α, β ∈M, α 6= β,
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I.2 A radiative transport model for wave beams

for strictly positive constants cα,β > 0.

The fact that detD0 vanishes ensures the existence of propagative wave
modes labeled by α ∈M , and the surface Cα represents the dispersion manifold
of the mode α ∈M . Notice that since the characteristic variety is non-empty,
there is at least one index in M .

Assumption I.1 implies that all eigenvalues Hα for α ∈ M are simple and
isolated. Hence the eigenprojectors

πα(x,N) = eα(x,N)eα(x,N)∗

and the eigenvalues Hα depend smoothly on (x,N) [72, Chapter II, sec. 1].
Physically the separation of the eigenvalues excludes the possibility of linear

mode conversion [95]. Even though, as mentioned in Chapter I.1, some other
coupling of the modes will be introduced as a consequence of the medium per-
turbations, this coupling (cross-polarization scattering) should not be confused
with mode conversion. This is a strong assumption which might limit some
applications of the radiative transport model, but this will not be addressed
in this work.

I.2.2 Wigner measure in the semiclassical limit

In a quiet medium (δn = 0) and under assumption I.1, paraxial techniques can
be used in order to compute a wave beam solution (0.2.5) of equations (I.2.2)-(I.2.4),
as described in Section 0.2.4.

In general though, a solution of equations (I.2.2)-(I.2.4) amounts to a random
electric field E = Eκ(ω, x) since the equation contains the random coefficient
δn. In order to treat this term opportunely, the statistically averaged Wigner
function of the field is introduced, namely,

W κ(ω, x,N) =

∫
e−iκN ·sE

[
Eκ
(
ω, x+

s

2

)
Eκ
(
ω, x− s

2

)∗]
ds. (I.2.8)

Apart from the presence of the expectation-value operator E, this is the Wigner
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I.2.2 Wigner measure in the semiclassical limit

transform (as defined for instance by Gérard et al. [22]) applied to the elec-
tric field. Notice that the Wigner transform is invertible, therefore the self-
correlation of the electric field can be computed, and thus the average electric
energy density, from the knowledge of the Wigner matrix W .

On following Karal, Keller and McDonald [35, 56], a formal semiclassical
expansion of the Wigner function is obtained in the form (cf. Weber et al.
[102] for a sketch of the derivation)

W κ(ω, x,N) =
∑
α∈M

wα(x,N)πα(x,N) +O(κ−1). (I.2.9)

The leading order term is then diagonal on the basis of the polarization eigen-
projectors πα, which is the basis that diagonalizes the operator D0 (cf., equa-
tion I.2.6). The sum (I.2.9) spans only the indices that belong to M , i.e., that
corresponds to a propagation mode, cf. section I.2.1. In general the entries
of the Wigner matrices are tempered distributions [22], but is is sufficient to
restrict to cases in which the diagonal entries wα can be identified with mea-
sures. The measure corresponding to the distribution wα will be denoted by
wα(dx, dN) (the dependence on frequency of wα is implied). An equation for
the measures wα can be derived, called wave kinetic equation:{Hα, wα} = −2γαwα +

∑
β
Sαβ(w),

Hαwα = 0,
(I.2.10)

where {f, g} = ∇Nf · ∇xg − ∇xf · ∇Ng is the canonical Poisson bracket
associated to the Hamiltonian system

dxα
dτ

=
∂Hα

∂N
,

dNα

dτ
= −∂Hα

∂x
, (I.2.11)
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I.2 A radiative transport model for wave beams

γα = tr(ε1πα) is the absorption coefficient, and

Sαβ(w)(dx, dN) =

∫
Rd

[
σβα(x,N

′, dN)wβ(dx, dN
′)

− σαβ(x,N, dN ′)wα(dx, dN)
]
,

is referred to as the scattering operator. The cross section σαβ(x,N, dN
′) is

an (x,N)-dependent measure on Rd related to the probability of transition
from the state (x,N, α) to the state (x,N ′, β), so that it accounts for the
stochasticity of both the refractive index (momentum) and the wave mode
(cf., Chapter I.1). From the derivation [101, 102], one can observe that σαβ
satisfies automatically the important

Assumption I.2. For every point (x,N) fixed, the measure σαβ(x,N, dN ′) is
supported on Cβ ∩ {x} in the sense that∫

Rd

f(N ′)σαβ(x,N, dN
′) = 0,

for any function f ∈ C0(Rd) that vanishes when Hβ(x,N
′) = 0.

Physically assumption I.2 means that the new state (x,N ′, β) must sat-
isfy the dispersion relation of the new mode β. The scattering operator, in
agreement with the heuristic discussion in Chapter I.1, is responsible of two
different types of physics phenomena. On one side, due to scattering of the
refractive index vector N , a broadening of the beam in momentum space can
be produced. This is then translated into a spatial broadening of the beam
cross-section via the transport term {Hα, wα}, a mechanism which is referred
to as hypocoercivity [98]. On the other, due to the coupling of different polar-
ization modes, energy may be exchanged between different modes, determining
what is referred to as cross-polarization scattering. The measures wα provide
the average energy density carried by the wave field, which is - according to
the informal discussion of Chapter I.1 - a quantity of particular interest for the
envisaged fusion applications. The idea is to write a suitable boundary-value
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I.2.3 Boundary value problem for the wke

problem for equation (I.2.10), which is mathematically well posed and at the
same time describes correctly the envisaged physics applications.

I.2.3 Boundary value problem for the wke

Consider the hypersurface in the physical space, (cf. section 0.2.4)

Σ = {x = (y, z) ∈ Rd−1 × R | z = 0}, (I.2.12)

together with the domain Ω ⊂ Rd defined as

Ω = {x = (y, z) ∈ Rd−1 × R | z > 0}, (I.2.13)

so that Σ = ∂Ω. Let nΩ be the outward normal to Ω, so that nΩ = (0, . . . , 0,−1).
In what follows, the phase-space extension of Σ

Σ+ := {(y, z,Ny, Nz) ∈ Rd−1 × R× Rd−1 × R | z = 0, Nz > 0} (I.2.14)

is considered. If Hα is an eigenvalue of the dispersion tensor as defined in
Section I.2.1, then the group velocity of the corresponding wave mode α is
given by ∇NHα. It is assumed in the rest of this work that

∇NHα|Σ+ · nΩ < 0, α ∈M, (I.2.15)

which implies in particular that ∂NzHα|Σ+ > 0. Physically it means that on
Σ+ all wave modes propagate towards the interior of Ω.

In order to define a boundary value problem for (I.2.10), the following defi-
nitions are needed:

Definition I.1. Let µ(dy, dz) be a measure on Y × Z. Then:

(i) µ is continuous in z if there exists µz(dy) such that z 7→ µz(g) is contin-
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I.2 A radiative transport model for wave beams

uous ∀g ∈ C0(Y ), and

µ(f) =

∫
Y×Z

µz(f(·, z))dz

for every f ∈ C0(X × Y ).

(ii) If µ is continuous in z, then the restriction of µ on Σ = {(y, 0) | y ∈ Y }
is defined as

µ|Σ(g) = µ0(g)

for all g ∈ C0(Y ).

With these definitions, one can seek for measures w = (wα) on Rd×Rd×M ,
such that

• each wα is continuous in z in Σ+, so that the restriction w|Σ+ is well
defined;

• w = {wα} satisfies in the sense of distributions the constrained radiative
transport problem [101, 102]


{Hα, wα} = −2γαwα +

∑
β
Sαβ(w),

Hαwα = 0,

wα|Σ+ = w0
α.

(I.2.16a)

(I.2.16b)

(I.2.16c)

Equation (I.2.16c) provides the boundary conditions on the phase-space sub-
set Σ+ for each wα, and boundary data of the form

w0
α(y, dN) = fα(y,Ny)dNy × δnα(y,Ny)(dNz) (I.2.17)

are considered, where N = (Ny, Nz) with Ny ∈ Rd−1 its component tangent
to Σ and Nz normal to it. The positive function fα ∈ C∞(Rd−1 × Rd−1)

describes the beam cross-section in phase space and thus is rapidly decreasing
at infinity. The datum is singular only in the component Nz of the refractive
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I.2.4 Computation of physical quantities

index orthogonal to the plane Σ, with a Dirac measure centered on Nz =

nα(y,Ny) obtained by solving the local dispersion relation

Hα(y, 0, N) = 0, N = (Ny, Nz),

for Nz. It follows, in particular, that wα|Σ+ for y ∈ Σ is supported on the
dispersion manifold Cα. Notice that the condition (I.2.16c) is imposed on Σ+,
so that positive values of Nz are selected. Physically this means that the
boundary datum w0

α only provides the incident field: energy on Σ coming
from a reflection would have negative Nz, and therefore does not belong to
Σ+. Therefore, the formulation of (I.2.16c) is in agreement with the general
discussion of Section 0.2.2.

When the Hamiltonian Hα is such that the dispersion equation can be solved
analytically for one of the components of N globally over the relevant spatial
domain, the singular part of the solution wα can be factored out and the kinetic
equation (I.2.16) is therefore greatly simplified. For particularly simple models
of medium and without scattering one can even find analytic solutions [48].
For realistic situations however a global analytically solution of the dispersion
equation is not available. Rather then patching together local solutions, the
general problem (I.2.16) is addressed directly.

I.2.4 Computation of physical quantities

It is important to point out how the statistically averaged Wigner measure can
be used to reconstruct physical quantities which are of great interest for the
envisaged applications. In general, if U ⊆ Rd is a domain, the average value
of a certain observable f over a phase-space subset {(x,N) | x ∈ U , N ∈ V}
will be given as the integral of f over U ×V , weighted by the Wigner measure.
For a more detailed discussion on may refer to [101] or [43], while here some
examples are provided:
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I.2 A radiative transport model for wave beams

• The energy carried by the mode α in a region U ⊆ Rd is given by

Eα(U) =
( κ
2π

)d ∫
U×Rd

wα
4π

dx dN. (I.2.18)

• The power deposited in U by the wave mode α can be computed as

Pα(U) =
( κ
2π

)d ∫
U×Rd

cwα
4π

γα dx dN. (I.2.19)

A correct quantification of (I.2.19) in realistic scenarios is among the main
goals of the WKBeam code [101, 102] (cf., Section I.4.2), which computes a
numerical solution of the wave kinetic equation (I.2.16) by means of the method
presented in the next chapters.
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I.3 A numerical scheme for the
wave kinetic equation for wave
beams

The boundary-value problem (I.2.16) with singular data and constraints is not
easily addressed directly. In such situations it is usually more convenient to
introduce an artificial time-variable and consider an auxiliary Cauchy prob-
lem [43]. Specifically, a collection of time dependent measures u = {uα} is
considered, that solve the unconstrained Cauchy problem∂tuα + {Hα, uα} = −2γαuα +

∑
β
Sαβ(u),

uα|t=0 = u0α,
(I.3.1)

where the initial condition is obtained from the boundary datum (I.2.17) by
concentrating it on the initial plane Σ, namely,

u0α(dx, dN) = Cα(y,N)dy × δ(dz)× w0
α(y, dN), (I.3.2)

with x = (y, z), y ∈ Rd−1 and z ∈ R, being Cartesian coordinates such that
Σ = {z = 0} and δ(dz) the Dirac’s measure on R concentrated at z = 0. The
choice of the function Cα(y,N) is discussed in Section I.3.3.4. Throughout this
work the following assumption on the Hamiltonians and the coefficients of the
scattering operator are made:

Assumption I.3. For each α ∈M ,
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I.3 A numerical scheme for the wave kinetic equation for wave beams

1. The Hamiltonian field of Hα is complete on the considered domain.

2. The function
∑

β∈M
∫
Rd σαβ(x,N, dN

′) is bounded.

3. σαβ(x,N, dN ′)/
∑

β∈M
∫
Rd σαβ(x,N, dN

′) is a probability measure.

I.3.1 Definition of the stochastic process

The aim of this work is to derive a rigorous numerical scheme for the solution
of (I.3.1) and then apply it to the solution of (I.2.16). The natural framework
for this purpose appears to be that of Monte-Carlo methods for transport
equation based on jump Markov processes [43, 85].

The continuous-time stochastic process

{(X(t),N (t), a(t)); t ≥ 0} ⊆ Rd × Rd ×M

is considered, namely, a one-parameter family of random variables

(X(t),N (t), a(t)) ∈ Rd × Rd ×M,

where (X(t),N (t)) takes values in the geometrical optics phase space Rd ×
Rd, and a(t) models the polarization mode, varying on a finite set M , cf.
assumption I.1. In particular, it will be a jump process defined in terms of

• a bounded and positive-definite function λ : Rd × Rd ×M → R;

• a family of probability measures {Π(x,N, α; dN ′, β)} on the set Rd×M ,
parametrized by points (x,N, α) ∈ Rd × Rd ×M ;

• a collection of complete vector fields over Rd × Rd parametrized by M ,
that is, a map b : Rd×Rd×M → Rd×Rd such that b(·, α) is a complete
C1 vector field.

For any sequence of points {Tj ≥ 0; j = 1, 2, . . .}, the following notation is
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I.3.1 Definition of the stochastic process

introduced,

x±j = lim
t→T±

j

X(t), N±
j = lim

t→T±
j

N (t), α±
j = lim

t→T±
j

a(t), (I.3.3)

when the limits exist.
The jump process is defined by the following conditions [43]:

1. There is a sequence of “time of jumps” 0 < T1 < . . . < Tj < . . . extracted
from a Poisson distribution of parameter λ̄ = supλ.

2. For any t ∈ [Tj, Tj+1), a(t) = α+
j ∈ M is constant, while (X(t),N (t)) is

the solution of the ordinary differential equation

d

dt
(X(t),N (t)) = b(X(t),N (t), α+

j ),

(X(Tj),N (Tj)) = (x+j , N
+
j ).

(I.3.4)

The solution of (I.3.4) exists for all t since by hypothesis b(·, α+
j ) is com-

plete, and X,N ∈ C1([Tj, Tj+1)).

3. At time Tj, j ≥ 1, a “jump” occurs with probability

Pj = λ(x−j , N
−
j , α

−
j )/λ̄ ≤ 1.

4. If a “jump” occurs, then

a) x+j = x−j ;

b) α+
j = β with β extracted from the discrete probability distribution

pj(β) =

∫
Rd

Π(x−j , N
−
j , α

−
j ; dN

′, β);

c) N+
j is extracted from the probability measure

ρj(dN
′) = Π(x−j , N

−
j , α

−
j ; dN

′, α+
j ).
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I.3 A numerical scheme for the wave kinetic equation for wave beams

Otherwise the process is continuous at Tj.

Remark I.3.1.1. The notation Ck
b (Rd × Rd ×M) for k ≥ 0 will refer to the

space [Ck
b (Rd × Rd)]m where m is the cardinality of the finite set of modes M

and Ck
b is the space of Ck-functions bounded with all derivatives up to the order

k. Analogously one can define Ck
0 (Rd × Rd ×M), where Ck

0 is the space of
Ck-functions of compact support. Hence for f ∈ Ck

b (Rd × Rd ×M) one can
write f(x,N, α) = fα(x,N) depending on the context. Analogously, a time
dependent measure ut over Rd × Rd ×M is identified with the collection of
measures {uα(t);α ∈M, t ≥ 0}.

I.3.2 Statement of the results

In order to establish a link between the stochastic process and equation I.3.8,
the concepts of infinitesimal generator and probability law of the stochastic
process need to be introduced. The definitions are here recalled, following
Lapeyre et al. [43].

Definition I.2. The infinitesimal generator of the process is defined as the
operator

A : C1
b (Rd × Rd ×M) −→ C0

b (Rd × Rd ×M),

f 7−→ Af,

given by [43]

(Af)(x,N, α) = lim
h→0+

1

h

[
Ex,N,α

[
f
(
X(h),N (h), a(h)

)]
− f(x,N, α)

]
, (I.3.5)

where Ez[Z(t)] is the conditional expectation of the random variable Z(t) given
that Z(0) = z.

42



I.3.2 Statement of the results

Definition I.3. The probability law of the process is defined as

µt : Bd × Bd ×M −→ [0, 1],

(Bx, BN , α) 7−→ P(X(t) ∈ Bx,N (t) ∈ BN , a(t) = α),

where Bd is the σ-algebra of Borel sets in Rd and P indicates the joint proba-
bility.

In virtue of Riesz-Markov-Kakutani representation Theorem [74, Theorem
2.14] the measure µt can be identified with a continuous linear functional on
C0(Rd × Rd ×M), whose action on a test-function f is given by

µt(f) =
∑
α∈M

∫
Rd×Rd

f(x,N, α)µt(dx, dN, α), (I.3.6)

This can also be expressed in term of the stochastic process in the form

µt(f) =
∑
α∈M

∫
Rd×Rd

Ex,N,α[f(X(t),N (t), a(t))]µ0(dx, dN, α), (I.3.7)

where µ0 is the probability law of (X(0),N (0), a(0)). The following result
relates the infinitesimal generator to the probability law of a process at a
given time.

Proposition I.3.1 (proposition 2.3.2 of Lapeyre et al. [43]). The probability
law {µt, t ≥ 0} of a continuous-time Markov process satisfies

µt(f) = µ0(f) +

∫ t

0

µs(Af)ds, ∀f ∈ C1
b (Rd × Rd ×M), (I.3.8)

where µ0 is the probability law of (X(0),N (0), a(0)).

Moreover, if the measures µt are absolutely continuous with respect to
the Lebesgue measure, that is, there exists a function p(t, ·) ∈ L1 such that
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I.3 A numerical scheme for the wave kinetic equation for wave beams

µt(dx, dN, α) = p(t, x,N, α)dx dN , and p is sufficiently regular, then
∂p

∂t
= A∗p, t > 0,

p|t=0 = p0

(I.3.9)

for suitable initial condition, where A∗ is the formal adjoint of A.
The idea is to use these results to build a solution of (I.3.1), by exploiting

the fact that equation (I.3.8) amounts to a weak formulation of problem (I.3.1)
with γα = 0, with the elements that characterize the process (λ, Π, b) being
opportunely defined in terms of σαβ and Hα:

• The advecting field is taken as

b(x,N, α) = (∇NHα(x,N),−∇xHα(x,N)) . (I.3.10)

• As total cross-section, one can take

λ(x,N, α) =
∑
β

∫
Rd

σαβ(x,N, dN
′). (I.3.11)

• The family of probability measures is taken as

Π(x,N, α; dN ′, β) =
σαβ(x,N, dN

′)

λ(x,N, α)
. (I.3.12)

In view of assumption I.3, b, λ and Π satisfy the requirements of Section I.3.1.
For the infinitesimal generator the following result will be proven in Sec-

tion I.3.3.1:

Theorem I.1. The infinitesimal generator of the described process acts on
f ∈ C1

b (Rd × Rd ×M) as Af = b · ∇f + λ [J f − f ] , where

J f(x,N, α) =
∑
β∈M

∫
Rd

f(x,N ′, β)Π(x,N, α; dN ′, β).
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With b, λ, and Π defined in equations (I.3.10)-(I.3.12), the formal adjoint of
the infinitesimal generator computed in Theorem I.1 amounts to

A∗fα = −{Hα, fα}+
∑
β∈M

Sαβ(f), f = {fα}, (I.3.13)

which is the same operator entering the wave-kinetic equation (I.3.1). There-
fore, equations (I.3.8) and (I.3.9) correspond to the weak and the strong formu-
lation of problem (I.3.1) with γα = 0. In order to account for weak dissipation
(i.e., γα 6= 0), one can define from µt a new measure µ̃t. If f ∈ Cb(Rd×Rd×M)

and

Fγ(X(t),N (t), a(t)) := e−2
∫ t
0 γ(X(s),N (s),a(s))dsf(X(t),N (t), a(t)), (I.3.14)

the action of µ̃t on f is given by

µ̃t(f) = E0,µ0 [Fγ(X(t),N (t), a(t))]

:=
∑
α∈M

∫
Rd×Rd

Ex,N,α [Fγ(X(t),N (t), a(t))]µ0(dx, dN),
(I.3.15)

The following will be proven in Section I.3.3.2

Proposition I.3.2. Let µ̃t be as defined in (I.3.15)-(I.3.14). Then, for every
f ∈ C1

b (Rd × Rd ×M) and for every t > 0,

µ̃t(f) = µ̃0(f) +

∫ t

0

µ̃s(Af − 2γf)ds. (I.3.16)

Notice that if µ̃t is absolutely continuous with respect to the Lebesgue mea-
sure, with a C1 Radon-Nikodym derivative p̃(t, x,N), then

∂p̃

∂t
= A∗p̃− 2γp̃, t > 0,

p̃|t=0 = p̃0,

(I.3.17)

where the right-hand side corresponds to the operator entering the wave kinetic
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I.3 A numerical scheme for the wave kinetic equation for wave beams

equation.
From the last presented result one can construct a weak solution of prob-

lem (I.3.1) from the measure µ̃t obtained from the probability law of the process
µt, exploiting the linearity of the infinitesimal generator A.

Corollary 1. Let µ̃t be as defined in (I.3.15), where µt is the law of the
process with advecting field b, total cross-section λ, and Π defined by equations
(I.3.10)-(I.3.12). Then for every non-negative measure u0 such that C :=

u0(Rd × Rd ×M) <∞, the rescaled measure

ut = Cµ̃t,

is non-negative and it satisfies

ut(f) = u0(f) +

∫ t

0

us(Af − 2γf)ds, (I.3.18)

which means that ut is a weak solution of (I.3.1) with initial condition u0.

At last, the weak solution ut of (I.3.1) is used to construct a solution of the
wave kinetic equation (I.2.16). First the dispersion relation is addressed. Un-
der assumption I.2, the stochastic process preserves the characteristic variety
of the operator, i.e., the dispersion relation of the individual modes. More
specifically, as it will be proven in Section I.3.3.3,

Theorem I.2. If the cross-section σαβ satisfies assumption I.2, any sample
trajectory {(X(t),N (t), a(t)); t ≥ 0} with

(X(0),N (0), a(0)) ∈ C =
⋃
α

Cα,

satisfies H(X(t),N (t), a(t)) = 0 for every t > 0 almost surely.

Thanks to all the previous results, one can finally find a solution of (I.2.16).
If Σ, Ω and Σ+ are as defined in (I.2.12)-(I.2.14), then:
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Definition I.4 (Solution of (I.2.16)). A measure w = w(dx, dN, α) on Rd ×
Rd ×M is a weak solution of (I.2.16) if:

(a) w satisfies (I.2.16a) in the sense of distributions in Ω×Rd×M . Specif-
ically,

w(Af − 2γf) = 0, ∀f ∈ C1
0(Ω× Rd ×M).

(b) The dispersion relation (I.2.16b) is satisfied in the weak form

w(Hf) = 0 ∀f ∈ C0(Rd × Rd ×M).

(c) w is continuous z in a neighborhood of Σ+ in Ω̄ × Rd−1 × R+, and the
boundary condition (I.2.16c) is satisfied in the sense that

wα|Σ+(g) = w0
α(g), α ∈M, g ∈ C0(Σ+).

The main result of this section can now be stated. This allows one to
construct a weak solution of the boundary value problem (I.2.16) for the wave
kinetic equation, and a proof is provided in Section I.3.3.4:

Theorem I.3. Let the coefficients Hα, σαβ and γα of the wave kinetic equa-
tion (I.2.16a) be such that

1. Hα and σαβ satisfy assumptions I.2 and I.3.

2. There exists z∗ > 0 such that, being

U = {(y, z,Ny, Nz) ∈ Rd−1 × R× Rd−1 × R | z < z∗, Nz > 0},

σαβ = 0, ∇xHα = 0 and ∂NzHα > 0 in U for all α, β ∈M .

3. The absorption coefficients are bounded from below, i.e., γα ≥ Γ > 0,
α ∈M .

Let ut be the solution constructed in Corollary 1 with initial condition u0 given
in the form (I.3.2). Then,
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I.3 A numerical scheme for the wave kinetic equation for wave beams

(i) For every f ∈ Cb(Rd × Rd ×M), the function t 7→ ut(f) is in L1(R+),
and the map

f 7−→ w(f) =

∫ +∞

0

ut(f)dt

defines a non-negative measure w(dx, dN, α) on Rd × Rd ×M .

(ii) The measure w(dx, dN, α) is a solution of the radiative transport model (I.2.16)
in the sense of Definition I.4.

Remark I.3.2.1 (Physics interpretation). The assumptions in Theorem I.3
are compatible with the typical experimental setup of the physics applications
envisaged by this work: σαβ = 0 and ∇xHα = 0 in U translate into the fact
that the antenna / wave-guide system Σ is located in free-space, which is the
case for electron-cyclotron waves. In particular, by definition of U , the whole
half-space {z ≤ 0} is fully located in free-space, which excludes closed orbits
and eigenmodes. The assumption on the hamiltonian flow ∂NzHα > 0 implies
that there is a non-zero energy flow in the direction orthogonal to Σ, and
selects a direction of propagation for the wave, which is therefore injected into
Ω. The assumption on the coefficients γα is common for this type of problems,
and it ensures some coercivity property of the wave operator on the side of
Maxwell’s equations [81]. In the practical numerical applications γα is not
strictly positive, being usually set to zero in a large portion of the domain. The
beam parameters though are such that it points at a resonant surface, where
its energy is completely absorbed, so that the first statement in Theorem I.3
is still valid. Therefore, the necessary restrictions for the derivation on the
mathematics side do not affect the possibility to apply this result to realistic
plasma physics scenarios.

I.3.3 Proof of the results

Proofs of the results stated in Section I.3.2 are reported here in details.
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I.3.3.1 Computation of the infinitesimal generator

Theorem I.1 will be addressed first, by directly computing the infinitesimal
generator as defined in (I.3.5). The notion of transition semigroup of a jump
Markov process will be used, defined as follows:

Definition I.5. Given a jump Markov process {V (t); t ≥ 0}, its transition
semigroup Qt is defined as the conditional probability

Qt(v;B) = Pv (V (t) ∈ B) ,

where B is a measurable set and Pv is the probability of B conditioned to the
initial condition V (0) = v. The transition semigroup defines an operator, also
denoted as Qt, that acts on a measurable function f as

(Qtf)(v) := Ev [f(V (t)] =

∫
f(v′)Qt(v; dv

′).

The family of operators {Qt, t ≥ 0} has the semigroup property, which means

(Qt+sf)(v) = (Qt(Qsf))(v), (I.3.19)

In order to proceed with the proof one needs to further characterize the
process, in particular for what concerns its momentum component N (t). The
idea is to decompose N as the sum of a pure jump process and a continuous
one. In order to achieve this, one can define a process {Ñ (t); t ≥ 0} as

- Ñ (0) = N (0);

- For t ∈ [Tj, Tj+1), where (Tj)j≥1 are the times of the jumps,

Ñ (t) = Ñ (0) +

j∑
κ=1

(N+
k −N

−
k ),

where N−
j and N+

j denote the value of the process N at t = Tj before
and after the jump, respectively (cf., (I.3.3)), where the jumps are given
as in the previous section.
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I.3 A numerical scheme for the wave kinetic equation for wave beams

The process Ñ (t) is therefore a pure jump process, and it is built in such a
way that the process

N(t) = N (t)− Ñ (t)

is C0(R+) and N(0) = 0.
All the ingredients necessary to prove Theorem I.1 have now been defined,

and the proof will be preceded by some intermediate steps. Consider, for every
x ∈ Rd the pure jump process in Rd ×M ,

(Ñ (t), a(t)) := π
(
(X(t), Ñ (t), a(t))

)
,

where x = X(0) and the projection π is defined as

π : Rd × Rd ×M −→ Rd ×M

(x,N, α) 7−→ (N,α).

The following holds:

Lemma I.3.1. Consider, for every x ∈ Rd, the process
{
Ñ (t), a(t)

}
defined

above. Then,

(i) The transition semigroup of the process is given by

Qt(x,N, α;A,α
′) = e−λ̄t

(
δN(A)δα,α′

+ λ(x−1 , N
−
1 , α

−
1 )Π(x

−
1 , N

−
1 , α

−
1 ;A,α

′)t

+ (λ̄t)2Q̃t(x,N, α;A,α
′)
)
, (I.3.20)

where A ⊆ Rd is a measurable set, (x−1 , N−
1 , α

−
1 ) is defined in (I.3.3) and

Q̃0 is bounded.

(ii) The infinitesimal generator of the process acts on a function f ∈ C1
b (Rd×

Rd ×M) as Ãf = λ [J f − f ] , where λ = λ(x,N, α) and

J f(x,N, α) =
∑
β

∫
Rd

f(x,N ′, β)Π(x,N, α; dN ′, β) (I.3.21)
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Proof. The two points are proven separately:

(i) Let {Tn}n∈N0 be the times of jump of the whole process {(X(t),N (t), a(t))},
with T0 = 0. Recalling the definition of Qt, for a measurable set A ⊆
Rd ×M , and for every t > 0, one has:

Qt(x,N, α;A,α
′) = Px,N,α(Ñ (t) ∈ A, a(t) = α′)

=
∑
n≥0

P(Tn < t, Tn+1 ≥ t)

× Px,N,α(Ñ (t) ∈ A, a(t) = α′ | Tn < t, Tn+1 ≥ t)

= e−λ̄t
∑
n≥0

(λ̄t)n

n!
Px,N,α(Ñ+

n ∈ A,α+
n = α′),

where the second step follows from the definition of the sequence (Tn) in
section I.3.4. One can compute the first two terms of the series, namely:

(n = 0) - No jumps occur, so that the corresponding term in the above series
reads

Px,N,α(N ∈ A,α = α′) = δN(A)δα,α′ .

(n = 1) - Recalling the definitions in (I.3.3) and the definition of Ñ , one has

λ̄Px,N,α(Ñ+
1 ∈ A,α+

1 = α′)t

= λ̄
λ(x−1 , N

−
1 , α

−
1 )

λ̄
Px,N,α(N+

1 ∈ A,α+
1 = α′)t

= λ(x−1 , N
−
1 , α

−
1 )Π(x

−
1 , N

−
1 , α

−
1 ;A,α

′)t,

where Π is the probability measure that defines the whole process
{(X(t),N (t), a(t))}. Notice that by the definition given in (I.3.3),
the dependency on t and x of the expression obtained above is
hidden in the points x−1 , N−

1 , α−
1 .
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(n ≥ 2) - The remaining terms of the series provide

∑
n≥2

(λ̄t)n

n!
Px,N,α(Ñ+

n ∈ A,α+
n = α′)

= (λ̄t)2
∑
n≥0

(λ̄t)n

(n+ 2)!
Px,N,α(Ñ+

n+2 ∈ A,α+
n+2 = α′)

:=
(λ̄t)2

2
Q̃t(x,N, α;A,α

′),

and one can observe that by definition Q0 is finite.

(ii) By definition of infinitesimal generator, one has to compute the limit

lim
h→0+

1

h

[
EN,αf

(
Ñ (h), a(h)

)
− f(N,α)

]
,

where Ex,N,α denotes the conditional expectation with respect to X(0) =

x, Ñ (0) = N and a(0) = α. Being Qt the transition semigroup as
computed in point (i),

1

h

[
Ex,N,αf

(
x, Ñ (h), a(h)

)
− f(x,N, α)

]
=

1

h

∑
β

∫
Rd

Qt(x,N, α, dN
′, β)[f(x,N ′, β)− f(x,N, α)]

=

(
1

h

∑
β

∫
Rd

[f(x,N ′, β)− f(x,N, α)]δN(dN ′)δα,β

+ λ(x−1 , N
−
1 , α

−
1 )
∑
β

∫
Rd

[f(x,N ′, β)− f(x,N, α)]Π(x−1 , N−
1 , α

−
1 ; dN

′, β)

+
1

h
(λ̄h)2

∑
β

∫
Rd

[f(x,N ′, β)− f(x,N, α)]Q̃h(x,N, α; dN
′, β)

)
e−λ̄h

The first term is zero, while the last one goes to zero for h → 0+. The
limit h→ 0+ of the second term gives λ [J f − f ], as from the definitions
in (I.3.3) one can observe that (x−1 , N

−
1 , α

−
1 )→ (x,N, α) for h→ 0+.
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I.3.3 Proof of the results

Given now a function f ∈ C1
b (Rd ×Rd ×E), one can perform, for small t, a

Taylor expansion of f around Ñ (t),

f(x,N (t), a(t)) = f
(
x, Ñ (t) + N(t), a(t)

)
= f

(
x, Ñ (t), a(t)

)
+ N(t) ·

∫ 1

0

∇Nf(x, σÑ (t) + (1− σ)N(t), a(t))dσ.

(I.3.22)

thanks to the fact that N ∈ C0 and N(0) = 0 for how it was constructed.

Lemma I.3.2. Let T1 be the time of the first jump of {(X(t),N (t), a(t)); t ≥
0}. Then for every f ∈ C1

b (Rd × Rd ×M),

lim
h→0+

1

h
Ex,N,α

{
[f (x,N (h), a(h))− f(x,N, α)]1{T1≤h}

}
= Ãf(x,N, α).

Proof. Thanks to the splitting discussed above, one can write

1

h
Ex,N,α

{
[f (x,N (h), a(h))− f(x,N, α)]1{T1≤h}

}
=

1

h
Ex,N,α

{[
f
(
x, Ñ (h), a(h)

)
− f(x,N, α)

]
1{T1≤h}

}
+

1

h
Ex,N,α

{[
N(t) ·

∫ 1

0

∇Nf(x, σÑ (t) + (1− σ)N(t), a(t))dσ
]
1{T1≤h}

}
.

One can now treat the limits of the two factors separately. For the first term,
Lemma I.3.1 can be applied, from which it follows that

lim
h→0+

1

h
Ex,N,α

{[
f
(
x, Ñ (h), a(h)

)
− f(x,N, α)

]
1{T1≤h}

}
= Ãf(x,N, α).
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I.3 A numerical scheme for the wave kinetic equation for wave beams

For what concerns the second one, its absolute is bounded by

1

h

∣∣∣∣Ex,N,α{[N(t) · ∫ 1

0

∇Nf(x, σÑ (t) + (1− σ)N(t), a(t))dσ
]
1{T1≤h}

}∣∣∣∣
≤1

h
| sup
x,N,α

|∇Nf(x,N, α)|Ex,N,α
{
|N(h)|1{T1≤h}

}
|

≤1

h
sup
x,N,α

|∇Nf(x,N, α)|Ex,N,α{|N(h)|2}1/2Px,N,α(T1 ≤ h)1/2

≤CP(T1 ≤ h)1/2,

where Px,N,α is the conditional probability with respect to initial values x, N
and α, C is a constant, and Hölder’s inequality was used to bound the L1-norm
in the second line with the product of L2-norms in the third one. The last term
in the former expression goes to zero as h→ 0+, which concludes the proof.

Proof of Theorem I.1. One needs to compute the limit

lim
h→0+

1

h
[Ex,N,αf (X(h),N (h), a(h))− f(x,N, α)] .

By standard properties of the conditional expectation,

1

h
[Ex,N,αf (X(h),N (h), a(h))− f(x,N, α)] =

1

h
Ex,N,α

{
[f (X(h),N (h), a(h))− f(x,N, α)]1{T1>h}

}
(i)

+
1

h
Ex,N,α

{
[f (x,N (h), a(h))− f(x,N, α)]1{T1≤h}

}
(ii)

+
1

h
Ex,N,α

{
[f (X(h),N (h), a(h))− f(x,N (h), a(h))]1{T1≤h}

}
, (iii)

where T1 is the time of the first jump of the process. First of all, observe that
for Lemma I.3.2, (ii) tends to Ãf = λ[J f − f ] as h→ 0+. For what concerns
(iii), it is bounded in absolute value by

1

h
sup
x,N,α

|∇xf(x,N, α)| · Ex,N,α
{
|X(h)− x|2

}1/2 · Px,N,α(T1 ≤ h)1/2.

As X(t) is continuous, |X(h) − x| goes to zero for h → 0+, and therefore the
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I.3.3 Proof of the results

above expression is bounded by C · Px,N,α(T1 ≤ h)1/2 for some constant C,
which goes to zero for h → 0+. For (i), observe that as there are no jumps
in the interval we are looking at, a(t) is constant and equals to α, while X(t)

and N (t) are solution of(
Ẋ(t), Ṅ (t)

)
= b (X(t),N (t), α)

(X(0),N (0)) = (x,N).

Therefore,

1

h
Ex,N,α

{
[f (X(h),N (h), a(h))− f(x,N, α)]1{T1>h}

}
=

1

h

∫ h

0

b(X(s),N (s), α) · ∇x,Nf (X(s),N (s), α) ds Px,N,α(T1 > h),

which converges to b(x,N, α) · ∇x,Nf(x,N, α) as h → 0+, since Px,N,α(T1 >
h)→ 1.

I.3.3.2 Solution of the time-dependent kinetic equation

Proposition I.3.2 can now be proved. Together with Corollary 1 it establishes
a correspondence between the Cauchy problem (I.3.1) and the Fokker-Plank
equation (I.3.8).

Proof of Proposition I.3.2. Consider the stochastic process {V (t),W (t); t ≥
0}, where

1. V (t) =
(
X(t),N (t), a(t)

)
is the process defined in the previous section;

2. W (t) is defined as

Ẇ (t) = 2γ(V (t)), W (0) = 0, (I.3.23)

and such that it is continuous for all t > 0, which implies

W (t) = 2

∫ t

0

γ(V (s))ds.
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I.3 A numerical scheme for the wave kinetic equation for wave beams

Notice that the hypothesis γ ≥ Γ > 0 implies that W (t) ≥ 0. With anal-
ogous techniques to those used in the proof of Theorem I.1 one can com-
pute the infinitesimal generator Aγ of {V (t),W (t)}, which acts on functions
ϕ ∈ C1

b (Rd × Rd ×M × [0,+∞)) as

Aγϕ(v, w) = Aϕ(v, w) + 2γ(v)
∂ϕ

∂w
(v, w). (I.3.24)

Proposition I.3.1 implies that the probability law νt of the process {V (t),W (t)}
satisfies

νt(ϕ) = ν0(ϕ) +

∫ t

0

νs(Aγϕ)ds,

where the action of νt on a test function ϕ is given by

νt(ϕ) = E0,ν0 [ϕ(V (t),W (t))].

For f ∈ C1
b (Rd × Rd ×M), consider now a test function ϕ of the form

ϕ(v, w) = e−wf(v),

which is in C1
b since w ∈ [0,+∞). Then the above equation for νt implies that

E0,ν0

[
e−2

∫ t
0 γ(V (s))dsf(V (t))

]
= ν0(f) +

∫ t

0

E0,ν0

[
e−2

∫ s
0 γ(V (s′))ds′

(
Af(V (s))− 2γ(V (s))f(V (s))

)]
ds.

(I.3.25)

With the choice ν0 = µ0 × δ0, the last expression above amounts to

µ̃t(f) = µ̃0(f) +

∫ t

0

µ̃s(Af − 2γf)ds,

which concludes the proof.

Proof of Corollary 1. In view of Proposition I.3.1, µ̃t satisfies equation (I.3.16)
for every f ∈ C1

b (Rd × Rd ×M). If one chooses in particular f = C · g, where
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I.3.3 Proof of the results

C = u0(Rd × Rd ×M) and g ∈ C1
b (Rd × Rd ×M), one obtains, in view of the

linearity of the operator A,

ut(g) = u0(g) +

∫ t

0

us
(
(A− 2γ)g

)
ds. (I.3.26)

Since µ̃ is non-negative, and C > 0, then ut = Cµ̃t is also non-negative.

Notice that (I.3.26) amounts to a weak formulation of problem (I.3.1), in
view of the definitions (I.3.10)-(I.3.12). Therefore, a direct correspondence
between the weak formulation of (I.3.1) and (I.3.8) is established. If in addition
ut = (uα,t) is absolutely continuous with respect to the Lebesgue measure, one
can show that

A∗uα,t = −{Hα, uα,t}+
∑
β

Sαβ(uβ,t),

where with an abuse of notation uα,t also denotes the Radon-Nikodym deriva-
tive of the measure uα,t with respect to the Lebesgue measure. This gives a
correspondence between (I.3.1) and (I.3.17).

I.3.3.3 Conservation of the dispersion manifold

The considered stochastic process is a combination of Hamiltonian dynamics
and a jump process. Under assumption I.2, the trajectories of the process
enjoy the same energy conservation property as the underlying Hamiltonian
system, provided that one accounts for the jumps properly. This property is
critical for the construction of a solution of (I.2.16).

Proof of Theorem I.2. Let {Tj; j > 0} be the sequence of the time of the
jumps, with T0 = 0. The result is proved by induction over the intervals
[Tj, Tj+1):

(i) H(X(0),N (0), a(0)) = 0 from the hypothesis of the Theorem. Then, for
t ∈ [0, T1), a(t) = a(0) and (X(t),N (t)) are obtained by integration of
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I.3 A numerical scheme for the wave kinetic equation for wave beams

Hamilton equations with Hamiltonian H, so that

H(X(t),N (t), a(t)) = 0, t ∈ [0, T1).

(ii) Assume now that the result holds for t < Tj. In particular, this means
that

H(X−
j , Nj, α

−
j ) = 0.

By definition of the stochastic process X+
j = X−

j , while N+
j and α+

j are
drawn from the probability distribution (I.3.12). Assumption I.2 implies
that

(X+
j , N

+
j , α

+
j ) ∈ C, (I.3.27)

By the same argument used for (i) one can show that H(X(t),N (t), a(t))

is constant for t ∈ [Tj, Tj+1), and (I.3.27) implies that it is zero, which
concludes the proof.

I.3.3.4 Solution of the radiative transport model for beams

At last, a solution of (I.2.16) can be constructed.

Proof of Theorem I.3. The two points can be proven:

(i) The assumption γ ≥ Γ > 0 implies that∫ t

0

γ(X(s),N (s), a(s))ds ≥ Γt,

from which, being Fγ as in (I.3.14) for f ∈ Cb(Rd×Rd×M), one obtains

∣∣Ex,N,α[Fγ(X(t),N (t), a(t))]
∣∣ ≤ e−2Γt‖f‖∞.
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I.3.3 Proof of the results

Therefore, recalling that

ut(f) =
∑
α∈M

∫
Rd×Rd

Ex,N,α[Fγ(X(t),N (t), a(t))]u0(dx, dN, α),

one gets the estimate

|ut(f)| ≤
∑
α

∫
Rd×Rd

∣∣Ex,N,α[Fγ(X(t),N (t), a(t))]
∣∣u0(dx, dN, α)

≤
∑
α

∫
Rd×Rd

e−2Γt‖f‖∞u0(dx, dN, α) = C‖f‖∞e−2Γt,

(I.3.28)

so that t 7→ ut(f) is in L1(R+) for every f ∈ Cb(Rd×Rd×M). The same
inequality implies that the map f 7→ w(f) as defined in the statement is
a continuous linear functional on C0 ⊂ Cb, and therefore it defines a mea-
sure on Rd×Rd×M in virtue of Riesz-Markov-Kakutani representation
theorem (see for example [74, Theorem 2.14]).

(ii) The three different points in Definition I.4 can be proven separately:

(a) Consider a test function f ∈ C1
0(Ω × Rd ×M), so that u0(f) = 0,

as u0 is localized on Σ by the definition given in (I.3.2). Moreover,
estimate (I.3.28) implies that

lim
t→∞

ut(f) = 0,

and point (i) ensures that the integral in the definition of w(f) is
well defined, so that the limit for t→∞ of equation (I.3.18) gives

w(Af − 2γf) = 0,

which means that w satisfies (I.2.16a) in the sense of distributions.

(b) For what concerns the dispersion relation, since u0 satisfies (Hu0)(f) =
0, the initial condition {X(0),N (0), a(0)} of each trajectory, sam-
pled from the measure u0, necessarily belongs to {H(x,N, α) = 0}.
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I.3 A numerical scheme for the wave kinetic equation for wave beams

As a consequence, in virtue of Theorem I.2, H is constant and equal
to zero along the trajectories that originate at such points. But now
(cf., [43, p.35]), for f ∈ C∞

0 (Rd × Rd ×M),

ut(Hf) =
∑
α

∫
Rd×Rd

Ex,N,α[H(X(t),N (t), a(t))

×Fγ(X(t),N (t), a(t))]u0(dx, dN, α),

which is zero as H(X(t),N (t), a(t)) = 0 for every t ≥ 0. Therefore,

w(Hf) =

∫ +∞

0

ut(Hf)dt = 0,

and w satisfies the dispersion relation (I.2.16b) in the sense of dis-
tributions.

(c) Consider, for f ∈ C∞
0 (U ×M),

ut(f) =
∑
α′∈M

∫
Rd×Rd

Ex′,N ′,α′ [e−2
∫ t
0 γ(X(s),N (s),a(s))ds

× f(X(t),N (t), a(t))]u0(dx
′, dN ′, α′),

so that the integrand is localized in U . The assumption σαβ = 0

in U implies that the trajectories of the markers are deterministic,
and denoting

x = (y, z) ∈ Rd−1 × R, N = (Ny, Nz) ∈ Rd−1 × R,

the assumption ∇xHα = 0 leads to the following analytic expres-
sions

X(t) = (Y (t), Z(t)) = (y′ + V y
α (N)t, z′ + V z

α (N)t),

N (t) = (Ny(t),Nz(t)) = (N ′
y, N

′
z) = N ′,

a(t) = α′,

(I.3.29)
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where (V y
α (N), V z

α (N)) = (∇NyHα(N), ∂NzHα(N)). Notice that the
assumption ∂NzHα > 0 implies V z

α > 0. In particular the trajecto-
ries in U are straight lines, constant in N , so that

(X(t),N (t), a(t)) ∈ U ×M

⇒ (X(s),N (s), a(s)) ∈ U ×M, ∀s < t, (I.3.30)

as U contains the whole half-space {z < 0}, and V z
α (N) > 0. By

reductio ad absurdum one can prove that (I.3.30) implies

(X(s),N (s), a(s)) /∈ U ×M

⇒ (X(t),N (t), a(t)) /∈ U ×M ∀t > s, (I.3.31)

so that if a trajectory exits U ×M at a time t = t∗ (i.e., if Z(t∗) ≥
z∗), it cannot enter it again. In particular this implies that one
can plug the analytic expressions (I.3.29) in the expression for ut
for all t > 0, as the trajectories originate at points in U and f

localizes the integrand. Recalling that u0 = (u0α)α∈M , where u0α is
given by (I.3.2), one can write

ut(f) =
∑
α∈M

∫
e−ψ(t,y

′,z′,N,α)f(y′ + V y
α (N)t, z′ + V z

α (N)t, N, α)

× V z
α (N)dy′ × δ(dz′)× w0

α(y
′, dN),

where the notation

ψ(t, y′, z′, N, α) = 2

∫ t

0

γ(y′ + V y
α (N)s, z′ + V z

α (N)s, α)ds

was introduced to simplify the expression. At this point one can
perform the change of coordinates

y = y′ + V y
α (N)t, z = z + V y

α (N)t,
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which returns

ut(f) =
∑
α∈M

∫
e−ψ̃(t,y,z,N,α)f(y, z,N, α)V z

α (N)

× dy × δV z
α (N)t(dz)× w0

α(y − V y
α (N)t, dN),

where ψ̃ simply denotes ψ in the new coordinates. Plugging this
last expression in the definition of w one obtains

w(f) =

∫ +∞

0

ut(f)dt

=
∑
α∈M

∫ +∞

0

∫
e−ψ̃(t,y,z,N,α)f(y, z,N, α)

× V z
α (N)dy × δV z

α t(dz)× w
0
α(y − V y

α (N)t, dN)× dt

=
∑
α∈M

∫ +∞

0

∫
e−ψ̃(τ/V

z
α (N),y,z,N,α)f(y, z,N, α)

× dy × δτ (dz)× w0
α(y − V y

α (N)/V z
α (N)τ, dN)× dτ,

where in the last step the change of coordinate

τ = V z
α (N)t

was applied. One can observe that the integrand is absolutely in-
tegrable (cf., [91, Corollary 1.7.23] and therefore one can apply
Fubini’s theorem and exchange the order of integration. Defining

vτ,z(f) =
∑
α∈M

∫
Rd−1

e−ψ̃(τ/V
z
α (N),y,z,N,α)f(y, z,N, α)

× w0
α(y − V y

α /V
z
α (N)τ, dN)× dy,
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one can write

w(f) =

∫
R+×R

vτ,z(f)δτ (dz)dτ =

∫
R+×R

vτ,z(f)δz(dτ)dz

=

∫
R+×R+

vτ,z(f)δz(dτ)dz

where the last step follows from the fact that τ > 0 by construction.

Consider now Ũ = U ∩ Ω̄, where

Ũ = U ∩ Ω̄ = {(y, z,Ny, Nz) ∈ U | z ≥ 0}.

Ũ is a neighborhood of Σ+ in Ω̄×Rd−1×R+, and for test-functions
f ∈ C∞

0 (Ũ ×M) one can define

w̃z(f) = vz,z(f), z ≥ 0. (I.3.32)

The calculation above shows that

w(f) =

∫
R+

w̃z(f)dz,

and moreover w depends smoothly on z, which proves the continuity
of w in z in Ũ , according to Definition I.1. This implies that the
restriction of w to Σ+ is well defined, namely, given g ∈ C0(Σ+×M),

w|Σ+(g) = w̃0(g).

Looking at a single component wα acting on gα = g(·, α), one gets

wα|Σ+(g) =

∫
Rd−1×R+×Rd−1

gα(y,N)w0
α(y, dNy, dNz)× dy,

which is exactly the weak formulation of the boundary condition I.2.16c.
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I.3.4 Definition of the numerical scheme

From the results and the discussion of the previous section, the structure of a
numerical scheme suitable for the solution of the wave kinetic equation emerges
naturally. The scheme can be resumed in the following steps:

S.1 The sequence {Tj, j ≥ 0} of the times of the jumps is taken as that of a
Poisson process of parameter λ̄ = supx,N,α λ(x,N, α).

S.2 A number Nm of markers are sampled according to (I.2.16b) and (I.2.16c)
(or equivalently, to the initial condition of (I.3.1)).

S.3 Each marker {(Xi(t),Ni(t), ai(t))} follows, for t ∈ [Tj, Tj+1), the dynam-
ics prescribed by the Hamiltonian Hα, with α = ai(Tj) (cf., I.3.4).

S.4 The trajectory of each marker is weighted by a factor

gi,α = exp

(
−2
∫ Tj+1

Tj

γα(X(s),N (s))ds

)
, α = a(Tj).

S.5 At the time t = Tj+1 a jump occurs as described in Chapter I.3, and the
new values α+

j+1 andN+
j+1 are extracted from the density σαβ(x,N ; dN ′)/λα.

S.6 The procedure is iterated in the interval [Tj+1, Tj+2) with the new initial
condition.

Remark I.3.4.1 (Numerics.). Some steps in the procedure are non-trivial from
the implementation point of view:

• Whether an event occurs, is decided comparing the probability of that
event with a random number extracted from a uniform distribution over
[0, 1].

• Sampling from non-trivial distributions is done using Metropolis-Hastings
algorithm [13].
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I.4 Verification of the scheme and
implementation in the WKBeam

code

The scheme presented in Section I.3.4 has been designed for being ultimately
implemented in WKBeam [101, 102], a code for simulations of electron-cyclotron
beams in fusion plasmas, which takes into account realistic axisymmetric ma-
chine geometries (e.g., ASDEX-Upgrade [97], ITER [34], TCV [93], TORPEX
[94]). Before this step (cf. Section I.4.2.2), a stand-alone test model was de-
veloped in order to perform verification studies in a simpler framework, which
still retains the structure of the general problem.

I.4.1 Stand-alone test model

In order to test the scheme, the analysis is focused on the following problem:
∂uα
∂t

(t, x, y) + {Hα, uα}(t, x, y) =
∑
β∈M

S̃αβ(u)(t, x, y), x, y ∈ R, t ∈ [0, T ),

uα(0, x, y) = u0α(x, y), α ∈M,

(I.4.1)
where x represents the position, y is the associated momentum and α, β model
the polarization mode, varying over a finite set M . The Poisson bracket on
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I.4 Verification of the scheme and implementation in the WKBeam code

the left-hand side is given by

{f, g} = ∂f

∂y

∂g

∂x
− ∂f

∂x

∂g

∂y
.

For what concerns the scattering operator

S̃αβ(u)(t, x, y) =
∫
R
σαβ(x,N

′, N)uβ(t, x,N
′)dN ′

− σαβ(x,N,N ′)uα(t, x,N)]dN ′,

the cross-sections σαβ are taken in the form

σαβ(x, y, y
′) = σαβ(x, y − y′) = sαβe

−L2
c(y−y′)2 ,

where sαβ are constants that quantify the scattering intensity and Lc plays
the role of a correlation length of the fluctuations of the medium. Under these
assumptions, the scattering operator actually acts as a convolution, so that a
pseudo-spectral solver can be used to build a highly resolved reference solution.
A reconstruction of the measure of the stochastic process from the Monte-Carlo
data is obtained through the kernel density estimation (KDE) [80].

I.4.1.1 Single mode

First of all, the case of a single polarization mode is considered, so that one
is left with one equation and the indexes α, β can be omitted. A simple
advection model is considered, where the Hamiltonian H is such that the
associated Hamiltonian field is

b = (∂yH,−∂xH) = (−1, 0).

A Gaussian initial condition is considered,

u0(x, y) = a0 exp

[
−(x− x0)2

a2x
− (y − y0)2

a2y

]
,
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where the amplitude a0 and the widths ax, ay are fixed and specified in Ta-
ble I.4.1, together with the scattering intensity s and the correlation length
Lc.

Quantity Symbol Value
Parameters of the model
Hamiltonian field b = (∂yH,−∂xH) (−1, 0)
Scattering intensity s 8
Correlation length Lc 3

Initial condition
Amplitude a0 2
Width (ax, ay) (0.3, 1)

Parameters of the numerical scheme
Number of markers Nm 5 · 10−5

Table I.4.1: Parameters of the numerical test for a single propagation mode.

In this case an analytic approximation of the solution can be found in the
form

u(t, x, y) ≈ U0(x+ t) exp

[
−(y − y0)2

ãy(t)2

]
, (I.4.2)

for some function U0 independent of y, valid asymptotically in the limit ayLc →
∞, where

ãy(t) = ay

√
1 + C/a2yL

2
c ,

with C = (s
√
π)/Lc. In fact equation (I.4.1), with the assumptions above,

amounts to
∂tu− ∂xu = f ∗ u− Cu,

where f = f(y) = s exp(−L2
cy

2) and C =
∫
R f(y)dy. Fourier transforming in

y gives
∂tû− ∂xû = (f̂ − C)û,

which can be solved with the method of characteristics, giving

û(t, x, η) = û0(x+ t, η) exp
(
(f̂ − C)t

)
.
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Substituting the expressions for f̂ and û0 in this last expression, one gets

û(t, x, η) = exp

(
−(x+ t− x0)2

a2x
−
a2yη

2

4
+ iηy0

)
exp

(
C
(
e
− η2

4L2
c − 1

)
t

)
.

Normalizing η to the width of the initial condition ay, the argument of the
second exponential can be approximated, in in the limit ayLc →∞, as

C

(
exp

(
− η2

(ayLc)2

)
− 1

)
t ≈ −C η2

(ayLc)2
t,

where with an abuse of notation η denotes now the normalized variable. The
expression (I.4.2) follows by substituting this last approximation in the expres-
sion for û and by application of the inverse Fourier transform.

In Figure I.4.1 the initial condition (right-most contours in each figure)
evolves towards the left-hand side, being scattered in the y-direction. One
can observe a good qualitative agreement between the reference solution (left)
and the one obtained with the presented scheme (right). The black curves in
the plot are parametrized by

y(t) = y0 ± ãy(t),

and they match the contours u(t, x, y) = e−1 in both cases, showing good
agreement between the Monte-Carlo solution and the analytic approximation.

I.4.1.2 Multiple modes

The case of two different polarization modes is now considered, namely, α ∈
M = {0, 1}. In absence of analytic solutions for this case, the only comparison
will be with the pseudo-spectral solution. Again, a Gaussian initial conditions
of the form

u0α(x, y) = a0,α exp

[
−(x− x0)2

a2x,α
− (y − y0)2

a2y,α

]
, α ∈M
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I.4.1 Stand-alone test model

(a) Reference solution. (b) Monte-Carlo (KDE).

Figure I.4.1: Contours of the solution, propagating towards the left-hand side,
at different times. The black curves refer to the analytic solution,
and match the contours u = e−1 at any time. Note that the
solution follows the Hamiltonian field (−1, 0) in the x-direction,
while scattering determines a broadening in the y-direction.

is considered. In what follows the choice a0,0 = 1 and a0,1 = 0 is made, so
that the whole energy belongs initially to the mode α = 0. This choice implies
that the solution for the mode α = 1, being zero at t = 0, is initially affected
by Monte-Carlo noise. This kind of initial condition is also relevant from the
point of view of the main application to waves in fusion plasmas, as typically
waves with a selected polarization mode are used in the experiments. The
Hamiltonians Hα are chosen in such a way that the Hamiltonian vector fields
bα are

b0 = (∂yH0,−∂xH0) = (−1,−1/2),

b1 = (∂yH1,−∂xH1) = (−1,+1/2),

so that the free propagation of the two modes is visibly different. The matrix
of scattering coefficients has non-zero off-diagonal entries, so that there is a
non-zero probability of energy exchange between the two modes. A summary
of the parameters is reported in Table I.4.2.

In Figure I.4.2 good qualitative agreement between the Monte-Carlo solution
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Quantity Symbol Value
Parameters of the model
Hamiltonian fields b0 = (∂yH0,−∂xH0) (−1,−1/2)

b1 = (∂yH1,−∂xH1) (−1,+1/2)

Scattering matrix s = (sαβ)

(
1 0.5
0.5 2

)
Correlation length Lc 1.5

Initial condition
Amplitudes (a0,0, a0,1) (1, 0)
Widths (ax,0, ay,0) (0.3, 1)

(ax,1, ay,1) (0.3, 1)

Parameters of the numerical scheme
Number of markers Nm 10−6

Table I.4.2: Parameters of the numerical test for two propagation modes.

(right) and the reference one (left) can be observed, for both the initialized
mode (α = 0, top row) and the secondary one (α = 1, bottom row). The
contours represent the solution in phase-space at different times, where the
propagation is towards the left-hand side. The mode α = 1 is absent at t = 0,
while it appears due to cross-polarization scattering for t > 0. Both modes
follow the corresponding Hamiltonian field (grey lines), and scatter in the
y-direction.

I.4.1.3 Convergence of the scheme

In order to perform a more quantitative analysis of the scheme, its convergence
is now analyzed. This is done by computing the scaling of the error with
respect to the number of markers sampled for the Monte-Carlo solution. In
order to do that, a measure is associated to both the reference solution and
the Monte-Carlo one, in the following way:

• For the reference pseudo-spectral solution uPSα ,

µPSα,t (Ω) =

∫
Ω

uPSα (t, x, y)dx dy. (I.4.3)
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I.4.1 Stand-alone test model

(a) Reference solution, mode α = 0. (b) Monte-Carlo (KDE), mode α = 0

(c) Reference solution, mode α = 1. (d) Monte-Carlo (KDE), mode α = 1

Figure I.4.2: Contours of the solution, propagating towards the left-hand side,
at different times. The “secondary” mode appears for t > 0 due to
scattering, which determines also a broadening in the y-direction.

• For the Monte-Carlo solution corresponding to Nm markers,

µNm
α,t (Ω) =

Nm∑
i=1

δ(Xi(t),Yi(t))(Ω)δa(t)(α), (I.4.4)

where (Xi(t), Yi(t)) are the coordinates of the i-th marker at the time
t and δz denotes the Dirac measure centered at z. The measure µNm

α,t

counts the markers which at the time t belong to the mode α and are
located in Ω.
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For a fixed value of t, the error on each individual mode is defined as

εα,t(Nm) := max
K

∣∣µNm
α,t (K)− µPSα,t (K)

∣∣ ,
where K runs over the cells of the dual grid of the pseudo-spectral solution.
Analogously, one can define the error on the total energy as

εt(Nm) := max
K

∣∣∣∣∣∑
α

(µNm
α,t (K)− µPSα,t (K))

∣∣∣∣∣ .
Figure I.4.3 shows how the error decays, as expected for a Monte-Carlo scheme,

(a) Single mode, s = −0.57. (b) Multiple modes, s = −0.52.

Figure I.4.3: Convergence tests at t = 1. (a) Convergence of the scheme in
the case of one polarization mode. (b) Convergence for the case
of two polarization modes, where the error was computed on the
total energy. In both cases s represents the slope of the best linear
fit in logarithmic scale, so that εt goes to zero as N s

m.

as 1/
√
Nm, in both the single mode and multiple modes cases, where left-

advection was considered for all modes and the error on the total energy was
considered (sum of the two modes). The expected convergence rate is achieved
also if one considers the modes separately, provided that the statistics of each
mode is sufficiently good, which is the case in this test-model for large values
of t (cf., Figure I.4.4).
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Figure I.4.4: Convergence for the two modes considered separately, at t = 2.
Here the convergence rate (cf., I.4.3) is s = −0.58 for the mode
α = 0 and s = −0.59 for the mode α = 1, with s defined as in
Figure I.4.3.

I.4.2 Implementation in WKBeam

After the successful verification of the scheme and its convergence in the pre-
sented stand-alone test model, some realistic application of the wave kinetic
equation and its solution can be showed, in the framework of the WKBeam code.
This code is devoted to simulate the behaviour of electron-cyclotron beams in
nuclear fusion relevant scenarios. Although, the scheme actually implemented
in the physics code presents some differences with respect to the one derived
in this work and used in the tests so far. Those differences will be motivated
and analyzed before we presenting the actual application of WKBeam.

I.4.2.1 Heuristic approximation of the scheme

An example of numerical solution of the wave scattering problem based on the
wave kinetic equation can be found in [82], where a single polarization mode
propagating in an idealized tokamak is considered. The numerical scheme used
in the cited work presents some differences with respect to the one described
in this manuscript: instead of drawing a certain sequence of random times for
the jumps, the scattering events are “accumulated” at the end of intervals of
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fixed size. A generalization of such heuristic scheme to the case of multiple
polarization modes would be the following:

S’.1 The interval [0, T ) is divided in sub-intervals [Tj, Tj+1) of fixed size ∆t.

S’.2 A number Nm of markers are sampled (cf., S.2).

S’.3 Each marker {(Xi(t),Ni(t), a(t))} follows, for t ∈ [Tj, Tj+1), the Hamil-
tonian Hα (cf., S.3).

S’.4 The trajectory of each marker is weighted by a factor

gi,α = exp

(
−2
∫ Tj+1

Tj

γα(X(s),N (s))ds

)
, α = a(Tj),

as in S.4.

S’.5 At the time of the jump Tj+1, the number of scattering events in the
interval is extracted from a Poisson process of parameter λ̄∆t. For each
of such events, it is decided whether scattering actually occurs, and the
new values a(T+

j+1) and N (T+
j+1) are decided as in S.5.

S’.6 The procedure is iterated (cf., S.6).

The steps in italic highlight the differences between the heuristic scheme and
the rigorous one. This modified version of the scheme is the one actually im-
plemented in WKBeam: the first version of the code, previous to this work, was
limited to a single polarization mode, and previous works in the field (e.g., [82])
have been taken into account in the choice of the numerical scheme to imple-
ment. At the moment of extending the code to account for cross-polarization
scattering, it was decided to test the heuristic scheme first, in order not to
alter the original structure of the code. Therefore, the modified scheme de-
scribed in this section was implemented. Numerical tests have been performed
on the modified scheme, implementing it in the same stand-alone test model
introduced in the previous section: a convergence study was portrayed in the
exact same way as described in Section I.4.1.3, giving the same results for a
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choice of ∆t = 10−2 [23, Figure 2]. Moreover, a scan over different values of
∆t was performed, looking at the scaling of the following quantities:

1. The error of the approximated scheme with respect to the rigorous one,
as a function of ∆t, at different fixed values of t (Figure I.4.5a);

2. The error of both schemes with respect to the pseudo-spectral solution,
as a function of t, for different values of ∆t (I.4.5b).

For both tests the error is defined as for the convergence, with reference solution
given by that obtained with the rigorous scheme in point 1., and the pseudo-
spectral one in point 2. No significant divergence between the two schemes
appears for values of ∆t up to 10−1. In conclusion, the two schemes agree
if the parameter ∆t is small enough so that, up to selecting this parameter
carefully, the heuristic scheme can be used without major drawbacks.

(a) Comparison between the heuristic
scheme and the exact one: the er-
ror εt at a fixed time t is expressed
as a function of ∆t. Different values
of t are represented. For all times
considered the error is comparable to
the sampling error (t = 0 case).

(b) Comparison of both schemes with
the reference pseudo-spectral solu-
tion: the error ε∆t at a fixed value
of ∆t is expressed as a function of t.
For all considered cases the heuristic
scheme is comparable to the rigorous
one.

Figure I.4.5: Tests for the heuristic scheme at different values of ∆t.

I.4.2.2 Application to the WKBeam code

Finally the application of the wave kinetic equation to nuclear-fusion-relevant
problems can be shown. A case of propagation of electron-cyclotron waves in
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a fusion plasma is presented, where “fusion plasma” denotes a plasma magnet-
ically confined in a toroidal axisymmetric device (tokamak) (cf., Chapter 0.1
or [103] for more details). Axisymmetry ensures that the properties of the
plasma are the same on each poloidal plane, so that the plasma equilibrium
can be represented on a two-dimensional poloidal plane (characterized by a
fixed value of the toroidal angle ϕ). Such plane is described by the coordinates
(ρ, θ), where ρ plays the role of a radial coordinate and θ is the poloidal angle
(cf., Figure I.4.6).

Figure I.4.6: Magnetic flux surfaces in a
poloidal section of a tokamak
machine. Note that the radial
coordinate ρ =

√
ψ, where ψ is

the so called magnetic poloidal
flux, the contours of which are
the flux surfaces represented in
the figure. The surface ρ = 1
is the separatrix, as it is the
last closed flux surface and it de-
limits the region in which the
plasma is confined.

For fusion relevant simulations, a high-frequency beam propagating through
a turbulent plasma is considered. As discussed in Chapter I.1, turbulence is
modeled as a set of random perturbations of a background density profile, over
which an ensemble average is performed, so that the averaged beam is described
by the radiative transport model presented in Chapter I.2. The Hamiltonians
in the transport term are derived from the cold-plasma model [88], and a
derivation of the form implemented in the code can be found in [101]. For
what concerns turbulence, it enters the equations through the scattering cross-
section, which is determined from the two-points spatial correlation function
of the density fluctuations. This is assumed to be of the form

E[δne(x), δne(x′)] = ne(ρ)
2F 2(ρ, θ)e−

1
2
(x−x′)TA(x−x′), (I.4.5)
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where ρ and θ are evaluated at (x+x′)/2. The matrix A contains information
about the geometry of the turbulence, namely, the correlation length in the
directions parallel and perpendicular to the magnetic field, which are given
as an input. The envelope F is also an input parameter, for the choice of
which the code allows maximum freedom. The value of F in the so called edge
region - namely, in the neighborhood of the ρ = 1 surface - is one of the most
influential factors in determining the relevance of scattering, for what concerns
the possible broadening of the beam and cross-polarization effects. It is also
the most uncertain element in the state-of-the-art understanding of fusion
plasmas, and intensive work is currently being done on both the experimental
and theoretical sides to have more reliable data for what concerns turbulence
in the edge region.

In the example that is presented here, a standard scenario of the tokamak
ITER [34] is considered. For the envelope F the chosen model was extrapolated
from experimental data taken from other machines (cf., [107]), and it is repre-
sented in Figure I.4.7a, together with the background density and temperature
profiles:

F (ρ, θ) = F (ρ) =


0.02 ρ < 0.95

0.18(ρ− 0.95)/(0.05) + 0.02 0.95 ≤ ρ < 1

0.2 ρ ≥ 1.

For what concerns the beam, an O-mode electron-cyclotron wave is considered
[6], carrying 1.0 MW of power, injected from the upper-launcher (cf., [29]),
propagating through the plasma and being absorbed at the resonance ω =

ωce(x). The beam is injected with angles of 20◦ and 46.8◦ in the toroidal and
poloidal direction, respectively, which is a configuration designed for ECCD.
The beam is therefore not axisymmetric, and the problem is posed on the full
three-dimensional domain. The propagation is affected by the fluctuations,
which determine both a significant broadening of the O-mode beam and a
small energy transfer to the X-mode [6], which is reflected at the cut-off. In
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(a) (b)

Figure I.4.7: (a) Fluctuations envelope as a function of ρ. (b) Background
density (red) and temperature (blue) profiles.

Figure I.4.8: Power deposition profile of the scattered beam, compared to the
case where fluctuations are not taken into account. About 1% of
the power is lost due to cross-polarization scattering.

Figure I.4.9 one can see a projection of the beam on the poloidal plane, and
broadening can be clearly observed comparing the two cases of a turbulent and
a quiet plasma (panel (b) and (a), respectively). Cross-polarization scattering
instead is pretty small in this case (about 1 % of the injected power), and it is
not visible in Figure I.4.9. The scattered power can be computed comparing
the amount of power absorbed at the resonance (cf., equation (I.2.19)), to
the injected power. Figure I.4.8) shows the power deposition profiles of a
scattered beam and one propagating through a quiet plasma, together with a
quantification of the fraction of absorbed power. Observe that in the scattered
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case about 1% of the injected power is not absorbed at the resonance, providing
evidence of a transfer of energy to the secondary mode (X-mode) due to cross-
polarization scattering.

The value of these results from a physics point of view is purely qualitative,
as part of the input parameters used for the calculation are not proven to
reflect the actual physical conditions of ITER future operations. For more
physically relevant applications of the code - and therefore, of the numerical
scheme - one can refer to [83, 84].

Figure I.4.9: Beam visualization in the poloidal plane (left) and zoom on the
beam (right). The O-mode beams propagate towards the core and
are absorbed at the resonance. Bottom row: turbulent plasma.
The beam broadens significantly and a fraction of power is scat-
tered to X-mode, which is reflected at its cut-off (not visible).
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I.5 Conclusions and related
projects

The results of this part lead to a rigorously derived and verified numerical
scheme to solve a radiative transport model for wave beams in a random
medium. The scheme (with some variations) is successfully implemented in
the physics code WKBeam. Verification studies (benchmark) have been carried
in order to determine the limits of validity of the approximations underlying the
mathematical model behind WKBeam. Experimental validation of the code
is part of the ongoing EUROfusion Enabling Research Project “Experimental,
numerical and theoretical investigation of the physics of radio-frequency waves
scattering by turbulent structures” (RFSCAT, Swiss Plasma Center, EPFL
Lausanne).

Benchmark of the WKBeam code

For what concerns verification, a direct correspondence between the physics in-
put and the validity conditions of the model in their mathematical formulation
is not that easy to establish. A more practical way to deal with the problem is
to compare the numerical results obtained from the radiative transport model
with some other reliable solution, for different values of some critical parame-
ters.

• Fluctuations level (reference publication: [39]).
The derivation of (I.2.16) (cf., [35, 56, 101]) assumes the so called Born
scattering approximation [5], which limits the applicability of the radia-
tive transport model with respect to the amplitude of the density fluc-
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tuations. In order to quantify the limits of validity of the Born approx-
imation, an extensive benchmark of WKBeam with the finite-differences
time-domain code IPF-FDMC [37] was done by Köhn: in the 2018 pa-
per [39], it is shown how the radiative transport model can be trusted
with fluctuations levels up to about 50% of the background density, which
includes ITER nominal parameters.

• Separation of dispersion manifolds (reference publication: [84]). Assump-
tion I.1 is crucial for the derivation of (I.2.16). On the other side, pre-
liminary studies on cross-polarization scattering in the work by Snicker
et al. [84] show that∫

σαβ(x,N,N
′)dN ′ ∝ e−(nα−nβ)

2

,

with nα as in Section I.2.3. This means that the effect is exponentially
suppressed by the distance between the dispersion manifolds. Therefore
cross-polarization scattering appears to be relevant only in the region
where the modes degenerate. On the other hand by Assumption I.1
|nα−nβ| must be bounded away from zero for the wave kinetic equation
to be valid. This reflects in the first benchmark results: WKBeam tends to
overestimate the effect, with respect to IPF-FDMC. The results obtained
so far show how anyway this effect should not be significant in ITER-like
scenarios [84].
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Validation of WKBeam: the RF-SCAT project
The possibility to validate WKBeam

with experimental data emerged in
the context of the still ongoing EU-
ROfusion Enabling Research project
RFSCAT. The goal of the interna-
tional collaboration coordinated by
the SPC of EPFL, Lausanne, is to
provide an experimental quantifica-
tion of wave beam broadening due
to scattering by density fluctuations
in the tokamak TCV, with param-
eters that should reflect an ITER-
relevant scenario. Direct measure-
ments of these quantities has never
been possible so far, while indirect
measures have been attempted on the
tokamak D-IIID [9, 10]. Reference
publications: [12, 11].

WKBeam simulation of the exper-
imental setup at TCV [93] for the
RF-SCAT project.
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Part II

Reconstructing wave beams with
Hagedorn packets





II.1 Reflected beams and general
idea of the method

Section 0.2.3 provided a bried description of the singularities (caustics) which
limit the applicability of semiclassical methods for reconstructing the wave-
field in situations often encountered in the theory of electromagnetic waves
in a plasma. The focus of this part will be on the special case of cut-off
reflections, which is of great interest for plasma physicists: as mentioned in
Section 0.2.1, reflectometry is a major diagnostic tool in fusion experiments,
as it allows a direct access to the plasma and it makes it possible to deduce
important properties (e.g., density, turbulence spectrum) of the plasma itself
by comparing the signal of the reflected wave to the injected field. For this
reason it is a priority to model properly the mechanism of cut-off reflections
from a mathematical and numerical point of view, providing fast and reliable
simulations of such phenomena.

On the side of Maxwell’s equations the mechanism of cut-off reflections is
well understood, and accurate numerical solutions can be computed, paying
the price of a high cost in terms of computational resources, for the reasons
mentioned in Section 0.2.3. On the other hand, semiclassical analysis has not
yet succeeded in providing a solid alternative: beam-tracing methods break
in certain situations, while traditional caustic unfolding methods [18, 53] are
difficult to apply under realistic conditions, leaving the problem of finding a
fast numerical solution for reflected beams open.
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II.1.1 Presentation of the problem

Following what announced in Section 0.2.2, in this part a special case of (0.2.1)
will be considered as working example. The domain

Ω = R+ × Rd−1

is considered, and
Σ = {(0, y) | y ∈ Rd−1}

will denote the hypersurface which on the applications side represents an an-
tenna / wave-guide system. With an abuse of notation, y ∈ Σ will be used in
what follows, implying of course that (0, y) ∈ Σ. The equation considered in
this part reads

1

κ2
∆Eκ − V Eκ = 0, in Ω ⊆ Rd, (II.1.1)

where V ∈ C∞(Rd) and κ � 1. The incident electric field is known on Σ, as
discussed in Section 0.2.2, and it is expressed as

Eκ
in(x)|Σ = Eκ

0 (y), y ∈ Σ. (II.1.2)

Again, this condition does not identify a unique solution of (II.1.1), and addi-
tional conditions will be given in the next chapters for the specific considered
cases.

A bounded solution Eκ : Ω→ C of (II.1.1) is a scalar wave beam propagating
in a medium whose characteristics are described by means of the potential V .
One observes that for V ≥ c > 0, the operator

κ−2∆− V

is coercive on H1(Ω), which implies that no wave propagation can occur. This
suggests the following definition:

88



II.1.2 Limitations of beam-tracing methods

Definition II.1 (Cut-off points). The set of points

Ωp := {x ∈ Ω | V (x) < 0}

is called propagation region. Analogously, the evanescence region is defined as

Ωev := {x ∈ Ω | V (x) > 0}.

The set of points separating the two is called cut-off region, namely,

Γ := {x ∈ Ω | V (x) = 0},

and its points are called cut-off points.

Cut-off points are of great interest as wave beams get reflected in their
vicinity. Most semiclassical methods fail to reconstruct the field near the cut-
off region, as discussed more in detail for beam-tracing in what follows.

II.1.2 Limitations of beam-tracing methods

A brief description of wave beams was given in Section 0.2.4, and the features
exposed there can be used in order to build efficient numerical schemes that
reconstruct a wave beam solution. Beam tracing (BT), or paraxial WKB
approximation (pWKB) [61, 62], is among the most used methods for problems
of wave propagation in plasma physics. In particular, the code TORBEAM [65] is
based on the numerical solution of BT equations for electron-cyclotron waves
in tokamaks, and it is successfully employed in current-drive calculations in
several situations (e.g., [71, 99]). In [86] some reflectometry applications are
presented, but the applicability of the method to this class of problems is
limited to some particular cases. A qualitative description of these limitations
is given in what follows, while a more detailed discussion on the topic can
be found in [50]. Similar methods were developed in different branches of
mathematical physics as well, and one can refer to [69, 3, 63, 46] and references

89



II.1 Reflected beams and general idea of the method

therein for an overview.

Figure II.1.1: Sketch of the geometrical setup for building the beam tracing
solution: a system of coordinates (s, v1, v2) is defined locally on
the reference ray R = {v1 = v2 = 0}. The beam is localized in a
neighborhood of R (dotted lines), and the phase and amplitudes
are described by ODEs in the local coordinates.

The main idea of beam tracing is to exploit the fact that wave beams are
localized around a certain curve, which is referred to as reference ray and is
usually identified with the beam axis (see Figure II.1.1 for a sketch). This
means that, together with the usual short-wavelength approximation, a scale
length is introduced also in the direction transverse to that of propagation.
Both conditions are expressed in terms of the large parameter κ, namely,

λ/L ≈ κ−1 � 1, w/L ≈ κ−1/2 � 1,

where λ is the wavelength and w denotes the transverse beam width. Con-
sidering an ordering in semi-integer powers of the parameter κ amounts then
to expanding the beam parameters around the above mentioned central tra-
jectory (from which the name paraxial WKB). The result of this procedure
is a set of ordinary differential equations describing the beam in terms of the
reference ray, a local system of coordinates around it, and the evolution of the
phase and amplitudes in this system of coordinates.

As long as the reference ray is smooth, and its length is finite, a coordinate
system that covers a beam of width w = o(κ−1/2) can always be constructed,
in the semiclassical limit κ → ∞. However, given a finite κ, this might not
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II.1.2 Limitations of beam-tracing methods

(a) Reference rays corresponding to
wave beams launched at x1 = 0 with
different injection angles, in presence
of a cut-off at x1 = 1. The ini-
tial point of the ray is the one with
x2 < 0. The curvature radius de-
creases as the angle increases, un-
til the parabolic trajectory degener-
ates into two overlapped segments
for ϑ = 90◦.

(b) Analytic solution for the case of
panel (a) with injection angle ϑ =
80◦. The incident and reflected
branches of the wave beam interfere
near the turning point, and in the
interference region the beam tracing
local coordinates cannot be defined
in a sufficiently wide neighborhood
of the reference ray (white dashed
line).

Figure II.1.2: The plots refer to equation (II.1.1) with d = 2 and linear poten-
tial V (x) = x1 − 1, which presents a cut-off at x1 = 1.

be possible. The possibility of defining the local coordinates is key in order to
build the beam tracing solution, and one could try to express this heuristically
in terms of the radius of curvature of the reference ray Rray, namely,

w/Rray ≈ κ−1/2 � 1,

where w denotes again the beam width. In fact beam tracing provides a good
approximation of the wave solution in a strip of width w around the reference
ray: in case of small Rray the above ordering might break, and regions where
the local coordinates are not well defined arise (see Figure II.1.2). In what
follows the idea of how to overcome this difficulty is introduced in a heuristic
manner, and its formal presentation is contained in the following chapters.
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II.1 Reflected beams and general idea of the method

II.1.3 Unfolding the singularity in time

In order to avoid the issues related to the overlapping of the incoming and
reflected wave shown in Figure II.1.2, which obstructs the possibility of op-
portunely defining local coordinates around the reference ray, the idea is to
avoid such overlapping by introducing an extra nonphysical dimension to the
problem. One can refer to this additional variable as “time”, but it must not
be confused with physical time. A similar idea for wave propagation problems
in plasmas is presented in [73].

Figure II.1.3: Time-dependent reference rays (cf., Figure II.1.2a).

This procedure leads to the formulation of an evolution problem, to be solved
with a method in some way similar to beam tracing, where the solution is
opportunely approximated around a curve (again, usually the beam axis). The
curve will depend on the newly introduced time variable, so that the critical
region is “unwrapped” in the direction of the extra nonphysical dimension,
as shown in Figure II.1.3. Specifically, the following initial value problem is
considered:

i

κ

∂uκ

∂t
+

1

κ2
∆uκ − V uκ = 0, t ∈ R, x ∈ Rd,

uκ(0, x) = uκ0(x), x ∈ Rd,

(II.1.3a)

(II.1.3b)
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II.1.3 Unfolding the singularity in time

where uκ0 ∈ L2(Rd). In general the solution uκ of this Schrödinger equation
is in C1(R, L2(Rd)). The choice of uκ0 plays a key role here, as it determines
the possibility of a successful reconstruction of (II.1.1)-(II.1.2) from that of
(II.1.3). In particular, it emerges that uκ0 should have the following properties:

1. The corresponding solution uκ is such that t 7→ uκ(t, x) is in L1(R) for
every x ∈ Rd. In this way one can define

Eκ(x) =

∫ ∞

−∞
uκ(t, x)dt, (II.1.4)

and observe that (at least formally) it satisfies Helmholtz equation (II.1.1).
This follows by formal integration of (II.1.3a) and commuting the Helmholtz
operator with the integral.

2. Being I ⊆ R an interval such that

Eκ
in(x)|Σ =

∫
I

uκ(t, x)|Σdt,

then the correct boundary condition is reconstructed, namely,

Eκ
0 (y) =

∫
I

uκ(t, x)|Σdt. (II.1.5)

The ideas expressed above can be synthesized in three points which one
needs to address in order to reconstruct a solution of the original stationary
problem:

• Solve the initial value problem for a given general initial datum.

• Use the general solution to find the right initial condition.

• Integrate in time the solution of the initial value problem for each point
in space to reconstruct the desired stationary solution.

For what concerns the first point, the idea is to use the method of Hagedorn
wave packets [25, 26] in order to build an approximation of the solution. An
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II.1 Reflected beams and general idea of the method

overview of the main features of this method is given in the next chapter, while
the possibility of a successful solution of the other two points will be explored
in Chapter II.3.
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II.2 Hagedorn wave packets

This chapter is dedicated to illustrate the method based on the work of Hage-
dorn [25, 26] and its further developments [47, 19, 44]. The techniques il-
lustrated here are used in the method proposed in this work to solve prob-
lem (II.1.1)-(II.1.2). Hagedorn’s method was originally developed to solve
problems in quantum mechanics, which are expressed in the form of Schrödinger-
type equations like (II.1.3) with initial condition u0 ∈ L2(Rd) and regular
potential V ∈ C∞(Rd).

II.2.1 Gaussian wave packets

An efficient way of building an approximated solution of (II.1.3) is to look for
solutions which depend on a finite number of parameters, whose evolution is
then described by an opportunely derived set of equations. One can consider,
for example, a Gaussian packet of the form

ψκ(t, x) = a(t) exp

[
iκ

(
1

2
(x− q(t)) ·Ψ(t)(x− q(t))

+ p(t) · (x− q(t)) + S(t)

)]
, (II.2.1)

where a(t) > 0 is the amplitude, q(t) ∈ Rd and p(t) ∈ Rd represent the position
and momentum of the center of mass of the packet respectively, S(t) describes
the phase and Ψ(t) ∈ Cd×d is a real-symmetric complex matrix with positive
definite imaginary part. In the semiclassical limit κ → ∞, one can describe
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II.2 Hagedorn wave packets

the evolution of the parameters by means of the following set equations,

q̇ = 2p,

ṗ = −∇V (q),

Ψ̇ = −2Ψ2 −D2V (q),

ȧ

a
= −trΨ,

Ṡ = pq̇ − p2 − V (q)

where the dot denotes the derivative with respect to t and D2 is the Hessian
matrix. With this choice of the parameters the following holds (cf., [47], II.4.4):

Theorem II.1 (cf., [47], II.4.4). Consider the Gaussian wave packet defined
above. If the smallest eigenvalue of =Ψ(t) is bounded from below, and if
V ∈ C3(Rd) and ∂3V is bounded, then

‖ψκ(t, x)− uκ(t, x)‖L2(Rd) ≤ c0tκ
−1/2,

where uκ(t) is an exact solution of (II.1.3) with Gaussian initial data uκ(0, x) =
ψκ(0, x), and c0 is a constant depending only on the bounds in the assumptions.

This implies in particular that the Gaussian wave packet is an exact solution
of Schrödinger equation in the case of a polynomial potential of degree ν ≤ 2.

II.2.2 Matrix decomposition and Hagedorn’s
parametrization

An important step in the development of Hagedorn’s work on approximated
solutions of problem (II.1.3) is the recognition of the advantages implied by a
decomposition of the width matrix Ψ into two complex matrices with certain
properties, as stated in the following:
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II.2.2 Matrix decomposition and Hagedorn’s parametrization

Lemma II.2.1 (Symplectic decomposition, cf., [47], V.1). Let Q,P ∈ Cd×d

satisfy the so called symplecticity relations

QtP − P tQ = 0,

Q∗P − P ∗Q = 2iI,
(II.2.2)

being I the identity matrix. Then, Q and P are invertible and C = PQ−1 is
complex symmetric with positive definite imaginary part

=C = (QQ∗)−1.

Conversely, every complex symmetric matrix with positive definite imaginary
part can be written as C = PQ−1, where P and Q satisfy the symplecticity
relations (II.2.2).

One refers to (II.2.2) as symplecticity relations as they are equivalent to

Y tJY = J, Y =

(
<Q =Q
<P =P

)
, J =

(
0 −I
I 0

)
.

Assuming =Ψ to have positive definite imaginary part, the matrix Ψ in (II.2.1)
admits a symplectic decomposition. This leads to a simpler formulation of the
equations describing the parameters of the packet itself. In particular, consider
the following normalized d-dimensional Gaussian

ϕκ0 [q, p,Q, P ](x) =
κd/4√

πd/2 detQ
exp

[
iκ

2
(x− q) · PQ−1(x− q)

+ iκp · (x− q)
]
,

(II.2.3)

where q, p ∈ Rd, and the matrices Q,P ∈ Cd×d satisfy (II.2.2). One can then
consider the classical equations of motions associated with problem (II.1.3),

q̇ = 2p,

ṗ = −∇V (q),
(II.2.4)
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II.2 Hagedorn wave packets

their linearization around the curve (q(t), p(t)),

Q̇ = 2P,

Ṗ = −D2V (q)Q,
(II.2.5)

where D2V (q) is the Hessian matrix, and the classical action

S(t) =

∫ t

0

(
|p(s)|2 − V (q(s))

)
ds. (II.2.6)

Then Theorem II.1 translates into the following result, providing a handy
representation of Gaussian wave packets which exploits Hagedorn’s matrix
decomposition:

Theorem II.2 (cf., [24] or [47], V.1). Let V be a quadratic potential, and let
(q(t), p(t), Q(t), P (t)) for t ∈ [0, T ] be a solution of (II.2.4)-(II.2.5) and S(t)

as in (II.2.6). If Q(0) and P (0) satisfy the symplecticity relations (II.2.2),
then

1. Q(t) and P (t) satisfy (II.2.2) for all t ∈ [0, T ];

2. The Gaussian wave packet written as

uκ(t, x) = eiκS(t)ϕκ0 [q(t), p(t), Q(t), P (t)](x). (II.2.7)

is an exact solution of equation (II.1.3).

Remark II.2.2.1 (Branch of the square root). The branch of the square root in
the factor

√
detQ must be selected in such a way that the function A 7→

√
detA

on complex matrices is holomorphic in a neighborhood of the space of real
matrices (cf., [30], Section 3.4). This choice implies the continuity of Q(t).

Notice that (II.2.7) is equivalent to (II.2.1), with a(t) = κd/4(πd detQ(t))1/2

and Ψ(t) = PQ−1. The symplectic decomposition though notably simplifies
the associated ODEs: the equations for the matrices P and Q are linear, result-
ing in a significant advantage with respect to the formulation in Section II.2.1,
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II.2.3 Hagedorn semiclassical wave packets

where the matrix Ψ obeyed a non-linear equation of Riccati type. This result is
the starting point of Hagedorn’s idea to build a high-order asymptotic solution
of problem (II.1.3).

II.2.3 Hagedorn semiclassical wave packets

For quadratic potentials in one dimension the basis of Hermite functions plays
an important role in building approximated solutions of wave problems. Such
functions can be constructed applying the so called ladder (or raising and
lowering) operators to the eigenfunctions of the harmonic oscillator (see for
example [47], III.1). The idea of Hagedorn is to generalize this procedure to
higher dimensions, building similar operators in the multidimensional case as
well, and taking the Gaussian (II.2.3) as starting point.

The multidimensional ladder operators are defined as follows. Given a multi-
index k = (k1, . . . , kd) ∈ Nd

0,

R = (Rj) = i

√
κ

2

(
P ∗(x− q)−Q∗

(
− i

κ
∇x − p

))
L = (Lj) = −i

√
κ

2

(
P T (x− q)−QT

(
− i

κ
∇x − p

))
,

(II.2.8)

where R is the raising operator and L the lowering. The reason behind this
terminology is that one can build recursively the so called Hagedorn functions
by subsequent application of them. In particular, the k-th Hagedorn function
is obtained by the k-fold application of the raising operator to the normalized
Gaussian function ϕκ0 ,

ϕκk =
1√
k!
(R)kϕκ0 , k ∈ Nd

0. (II.2.9)

Equivalently, being 〈j〉 = (0, . . . , 1, . . . , 0) the j-th unit vector, the following
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II.2 Hagedorn wave packets

recursive relation holds:

ϕκk+〈j〉 =
1√
kj + 1

Rjϕ
κ
k,

so that the operator R “raises” the multi-index k. Conversely, one can “lower”
the index through the action of the operator L, which is,

ϕκk−〈j〉 =
1√
kj
Ljϕκk. (II.2.10)

It is possible to characterize the Hagedorn functions in terms of products of the
Gaussian ϕκ0 with a multivariate polynomial of degree |k| (see [44], Proposition
2), and one can verify that in the one-dimensional case they are equivalent to
shifted and scaled Hermite functions. Most notably, Hagedorn functions are a
powerful tool for building an accurate approximation of solutions of (II.1.3).
First of all, a result analogous to Theorem II.1 for a quadratic potential holds:

Theorem II.3 (cf., [47], V.2). Let V be polynomial of degree ν ≤ 2, and let
(q(t), p(t), Q(t), P (t)) be a solution of (II.2.4)-(II.2.5) and S(t) as in (II.2.6).
Then, if Q(0) and P (0) satisfy (II.2.2), the Hagedorn wave packet

ψκk (t, x) = eiκS(t)ϕκk[q(t), p(t), Q(t), P (t)](x) (II.2.11)

is a solution of (II.1.3) for every multi-index k.

Moreover, the collection of Hagedorn functions has the following property,
which makes it suitable for building approximated solutions in a variety of
cases:

Theorem II.4. The functions ϕκk = ϕκk[q, p,Q, P ](x) form a basis of L2(Rd).

In conclusion an important remark on the case of non-quadratic potentials
can be done. In virtue of Theorem II.4, one can represent the solution of
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II.2.3 Hagedorn semiclassical wave packets

Schrödinger equation (II.1.3) in the basis of Hagedorn functions as a series

uκ(t, x) = eiκS(t)
∑
k∈Nd

0

ak(t)ϕ
κ
k(t, x),

where ϕκk(t, x) = ϕκk[q(t), p(t), Q(t), P (t)](x) with parameters satisfying (II.2.4)-(II.2.5),
and action integral given by (II.2.6). Assuming a certain regularity of the po-
tential (cf., [26], Theorem 3.6) one can determine a finite number of coefficients
ck(t) such that the truncated series

uκK(t, x) = eiκS(t)
∑
k∈K

ck(t)ϕ
κ
k(t, x), (II.2.12)

with K ⊂ Nd
0 a finite multi-index set, is an approximation of the exact solution

of (II.1.3) of asymptotic order O(κ−N/2) with arbitrary N (see [26, 47] for
possible ways of determining the coefficients ck).
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II.3 Reconstructing wave beams:
formulation and numerics

The results recalled in the previous chapter are the basis on which the method
presented in this Part is built. The ideas expressed heuristically in Chap-
ter II.1 can be now given a more precise formulation, in virtue of the method
of Hagedorn wave packets introduced in the previous chapter.

The discussion in Section II.1.3 shows how the key point of the whole idea
is to select the right initial condition for (II.1.3): if the corresponding solution
satisfies certain properties, then the possibility to successfully reconstruct a
solution of (II.1.1) follows immediately. This leads to the formulation of the
following problem:

Problem II.1. [Selecting the initial condition] Choose the initial condition uκ0
in (II.1.3b) in such a way that, being uκ the corresponding solution of (II.1.3a),
the function t 7→ uκ(t, x) is in L1(R) for every x ∈ Ω, and the desired boundary
value (II.1.2) is reconstructed, which is,∫

I

uκ(t, x)|Σdt = E0(y), y ∈ Σ, (II.3.1)

where I ⊆ R is an interval such that integrating uκ over it the incident field
Eκ
in is selected at points on Σ.

After this problem is solved, a simple time-integration of uκ would provide
a solution of (II.1.1) satisfying the right boundary condition (II.1.2). No at-
tempt is made to obtain rigorous results in general, but a solid theoretical
statement can be done in the case of a two-dimensional Helmholtz equation
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II.3 Reconstructing wave beams: formulation and numerics

with constant or linear potential. For more general potentials the analysis is
limited to the Poynting flux of the reconstructed solution and numerical tests
(cf., Chapter II.4), for which an asymptotic reference solution can be computed
based on the results presented in this chapter. A more complete analysis of
the general problem, on both the theoretical and numerical side, will be object
of future work.

II.3.1 Helmholtz equation in 2d with constant
potential

The simplest case of problem (II.1.1) with d = 2 is here considered, namely,
that of a constant potential V (x) = −1. This corresponds on the physics
side to wave beams propagating in free-space, and it can be formulated as the
following boundary value problem:

1

κ2
∆Eκ(x) + Eκ(x) = 0, x ∈ Ω = R+ × R,

Eκ|Σ = Eκ
0 Σ = {(0, y) | y ∈ R},

BconstEκ|Σ = 0.

(II.3.2a)

(II.3.2b)

(II.3.2c)

The boundary datum Eκ
0 is assumed to be in Wκ(R)), where

S ←↩Wκ(R) = F−1
κ (C∞

b (B1(0))) (II.3.3)

is the subspace of S of functions whose semiclassical Fourier transform is
smooth and bounded on the unit sphere, equipped with the topology

φj → φ inWκ(R)⇔ φ̂j → φ̂ in C∞
b (B1(0)).

Even though this is not the most general setting for problem (II.3.2), it is
sufficient in view of the intended applications of this work.

Let f ∈ S(R2) be a function such that y 7→ f(x1, y) is in Wκ(R) for every
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II.3.1 Helmholtz equation in 2d with constant potential

x1 ∈ R+, then the action of Bconst on f is given by

Bconstf = F−1
κ

(
∂x1f − iκ(1−N2

y )
1/2f

)
, (II.3.4)

with Fκ the semiclassical Fourier transform in y and Ny the corresponding
conjugate variable. The following holds:

Proposition II.3.1. Problem (II.3.2) admits a unique solution Eκ ∈ C∞
b (Ω),

such that y 7→ Eκ(x1, y) is in Wκ(R) for every x1 ∈ R+. The solution is

Eκ(x1, y) = F−1
κ

[
eiκ(1−N

2
y )

1/2x1Êκ
0 (Ny)

]
(II.3.5)

with Êκ
0 (Ny) = Fκ(Eκ

0 (y)).

Proof. If a solution Eκ ∈ C∞
b of (II.3.2a) exists, than its spectrum can be

written as

Êκ(x1, Ny) = A1(Ny)e
iκ(1−N2

y )
1/2x1 + A2(Ny)e

−iκ(1−N2
y )

1/2x1 . (II.3.6)

Condition (II.3.2c) implies that A2 = 0, and therefore from (II.3.2b) one can
deduce that A1(Ny) = Êκ

0 (Ny), which defines univocally the solution.

The formulation given here is consistent with the heuristic one provided in
the form of (II.1.2). Looking at (II.3.6) in fact, one can identify the incident
field Eκ

in as the first term on the right hand side, and the boundary operator
Bconst ensures that the Eκ

in|Σ = Eκ
0 .

The associated initial value problem reads
i

κ

∂uκ

∂t
+

1

κ2
∆uκ + uκ = 0, t ∈ R,

uκ(0, x) = uκ0(x), x = (x1, y) ∈ R2,

(II.3.7a)

(II.3.7b)

which admits a unique solution uκ ∈ C1(R, L2(R2)) for every uκ0 ∈ L2(R2).
For initial data uκ0 ∈ S problem (II.3.7) is also well-posed, and in general the
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II.3 Reconstructing wave beams: formulation and numerics

solution uκ is such that uκ(t, ·) ∈ S(R2) for every t. The following holds,
providing a solution of Problem II.1 for this particular case:

Theorem II.5. There exists uκ0 ∈ S(R2) such that, being uκ the corresponding
solution of (II.3.7a),

1. For every x ∈ R2,
∫
uκ(t, x)dt is defined in the sense of oscillatory

integrals.

2.
∫ +∞
−∞ uκ(t, x)dt = Eκ(x) for every x ∈ Ω, with Eκ the unique solu-

tion (II.3.5) of (II.3.2).

Proof. Consider an initial condition of the form

uκ0(x1, y) = Eκ
0 (y)v

κ(x1),

where Eκ
0 ∈ Wκ(R) is the boundary condition of (II.3.2) and vκ ∈ S(R) is such

that its Fourier transform satisfies

supp(v̂κ) b {Nx1 > 0},∫
R
v̂κ(Nx1)dNx1 = 1.

(II.3.8)

Its Fourier transform ûκ0(Nx1 , Ny) is therefore supported in

U0 := {(Nx1 , Ny) | Nx1 > 0, N2
y ≤ 1}.

The Fourier transform with respect to (x1, y) of the corresponding solution
of (II.3.7a) reads

ûκ(t, Nx1 , Ny) = Êκ
0 (Ny)v̂

κ(Nx1)e
−iκ(1−|N |2)t, (II.3.9)

with N = (Nx1 , Ny). In the sense of oscillatory integrals, one has∫
ûκ(t, Nx1 , Ny)dt =

2π

κ
Êκ

0 (Ny)v̂
κ(Nx1)f

∗δ0, (II.3.10)
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II.3.1 Helmholtz equation in 2d with constant potential

where f ∗δ is the pull-back of the Dirac delta distribution by the function

f : U0 −→ R

N 7−→ 1− |N |2.
(II.3.11)

With these definitions, and reminding that N satisfies the dispersion relation
|N |2 − 1 = 0, one has (cf., [30], Theorem 6.1.5)

f ∗δ0 =
1

2Nx1

δ(Nx1 −
√
1−N2

y ),

where the last expression should be interpreted as a distribution that acts on
a test-function ϕ as

〈f ∗δ0, ϕ〉 =
1

2Nx1

∫ +1

−1

ϕ
(√

1−N2
y , Ny

)
dNy.

Therefore, one can write the integral of (II.3.9) as∫
ûκ(t, Nx1 , Ny) =

π

κNx1

Êκ
0 (Ny)δ(Nx1 −

√
1−N2

y ).

To conclude the proof it is sufficient to use an analogous argument to compute
the Fourier transform Êκ(Nx1 , Ny) of the unique solution of (II.3.2) found in
Proposition (II.3.1), which returns the same quantity as the right hand side of
this last equation.

The following observations link the results above to the idea of building a
method based on the theory of Hagedorn wave packets:

1. The initial condition uκ0 satisfying the requirements of Proposition II.5 is
in S(R2), so that it can be decomposed in the L2(R2)-basis of Hagedorn
functions.

2. The numerical tests in the next Chapter follow this idea in order to re-
construct Gaussian boundary data: the initial condition for Schrödinger
equation is taken in the form of the fundamental Hagedorn function (II.2.3)
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with diagonal matrices P and Q such that the part in y coincides with
Eκ

0 and the function vκ1 is also Gaussian, with parameters chosen in order
to satisfy (II.3.8).

II.3.2 Helmholtz equation in 2d with linear
potential

In this section a cut-off point is introduced in the equation, and a potential
V (x) = x1 − 1 and d = 2 is considered, for which one can formulate the
following boundary value problem:

1

κ2
∆Eκ(x)− (x1 − 1)Eκ(x) = 0, x ∈ Ω = R+ × R,

Eκ|Σ = BlinEκ
0 , Σ = {(0, y) | y ∈ R}.

(II.3.12a)

(II.3.12b)

The boundary datum Eκ
0 is assumed to be in Wκ(R)) (cf., (II.3.3), and the

boundary operator Blin acts on a function f ∈ Wκ(R) as

Blinf = F−1
κ

(
Ai(−κ2/3(1−N2

y ))g
κ(Ny)f̂(Ny)

)
(II.3.13)

where f̂(Ny) = Fκ(f(y)), and

gκ(Ny) = 2
√
πκ1/6(1−N2

y )
1/4ei

2
3
(1−N2

y )
3/2−iπ

4 . (II.3.14)

The following holds:

Proposition II.3.2. Problem (II.3.12) admits a unique solution Eκ ∈ C∞
b (Ω),

such that y 7→ Eκ(x1, y) is in Wκ for every x1 ∈ Ω. The solution can be
expressed as

Eκ(x) = F−1
κ (c(Ny)Ai(−ϕ(x1, Ny))) (II.3.15)

where Ai is the Airy function,

ϕ(x1, Ny) = κ2/3(1− x1 −N2
y ), (II.3.16)
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II.3.2 Helmholtz equation in 2d with linear potential

and
c(Ny) = gκÊκ

0 (Ny), (II.3.17)

with gκ given by (II.3.14).

Proof. In general bounded solutions of (II.3.12a) satisfy (II.3.15)-(II.3.16) (cf.,
[30], 7.6), and it is immediate to verify that condition (II.3.12b) implies (II.3.17).

Notice that the boundary operator (II.3.13) is consistent with the more
heuristic formulation given in Chapter II.1, in the form (II.1.2). To this pur-
pose a stationary phase argument can be used, to approximate the Airy func-
tion in the limit ϕ→∞ as

Ai(−ϕ) ∼ 1

2
√
π
ϕ−1/4

(
e−i 2

3
ϕ3/2+iπ

4 + ei
2
3
ϕ3/2−iπ

4

)
. (II.3.18)

One can identify incident and reflected branches of the wave field, which corre-
spond to the first and second exponential on the right hand side, respectively,
so that

Êκ
in(x1, Ny) = c(Ny)

1

2
√
π
ϕ−1/4e−i 2

3
ϕ3/2+iπ

4 . (II.3.19)

Substituting c(Ny) as given in (II.3.17) and evaluating Êκ
in on Σ one obtains,

after inverse Fourier transform, Eκ
in(0, y) = Eκ

0 (y).
The associated Schrödinger equation takes the form

i

κ

∂uκ

∂t
+

1

κ2
∆uκ − (x1 − 1)uκ = 0, t ∈ R,

uκ(0, x) = uκ0(x), x = (x1, y) ∈ R2,

(II.3.20a)

(II.3.20b)

and the rest of this section is dedicated to prove the analogous to Proposi-
tion II.5 for this case:

Theorem II.6. Given uκ0 ∈ S(R2), being uκ the corresponding solution of (II.3.20a),
the map t 7→ uκ(t, x) is in L1(R) for every x ∈ R2. Moreover, there exists uκ0
such that time integration of uκ reconstructs the unique solution (II.3.15)-(II.3.17),
i.e.,

∫ +∞
−∞ uκ(t, x)dt = Eκ(x) for every x ∈ Ω.

109



II.3 Reconstructing wave beams: formulation and numerics

The proof here will be divided into two three steps, due to the lengthy
calculation: first of all the solution of (II.3.20) for a general initial condition
uκ0 ∈ S(R2) will be computed, followed by the computation of the reconstructed
beam. The existence of the desired uκ0 will follow by comparison with the exact
solution of (II.3.12).

Solution of the initial value problem

After Fourier transform with respect to both spatial variables of equation (II.3.20a)
one gets

i

κ

(
∂

∂t
− ∂

∂Nx1

)
ûκ(t, Nx1 , Ny) + (1−N2

x1
−N2

y )û
κ(t, Nx1 , Ny) = 0, (II.3.21)

where the double hat denotes the Fourier transform with respect to (x1, y) and
(Nx1 , Ny) are the corresponding conjugate variables. A solution can be found
by means of the method of characteristics, which in this case can be integrated
analytically: 

dNx1

dt
= −1

dNy

dt
= 0,

=⇒

Nx1(t) = Nx1,0 − t

Ny(t) = Ny,0,
(II.3.22)

being Nx1,0 and Ny,0 the starting points. The total time derivative of ûκ will
then satisfy

d

dt
ûκ (t, Nx1(t), Ny(t)) =

∂ûκ

∂t
− ∂ûκ

∂Nx1

= iκ
(
1−Nx1(t)

2 −Ny(t)
2
)
ûκ (t, Nx1(t), Ny(t)) ,

which can be solved analytically, giving

ûκ(t,Nx1(t), Ny(t)) = ûκ0(Nx1,0, Ny,0) exp

(∫ t

0

1−Nx1(s)
2 −Ny(s)

2ds

)
= ûκ0(Nx1,0, Ny,0) exp

(
iκ(1−N2

y,0)t− iκ(N2
x1,0

t− t2Ny,0)− iκ
t3

3

)
.
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II.3.2 Helmholtz equation in 2d with linear potential

After substitution of (II.3.22) one finally gets

ûκ(t, Nx1 , Ny) = ûκ0(Nx1 + t, Ny)

× exp

(
iκ(1−N2

y )t− iκ(N2
x1
t+ t2Nx1)− iκ

t3

3

)
.

(II.3.23)

For each fixed (Nx1 , Ny) the above expression is a function of t which is in
L1(R), as follows from the fact that both uκ0 and the exponential multiplying
it are in S, which proves the first statement in Proposition II.6.

Reconstructed wave beam

The time integral of (II.3.23) can be computed, in order to obtain a “recon-
structed wave beam”, which can be then compared to equation (II.3.15). One
gets∫ +∞

−∞
ûκ(t,Nx1 , Ny)dt

=

∫ +∞

−∞
ûκ0(s,Ny) exp

(
iκ(1−N2

y )(s−Nx1)− iκ
s3 −N3

x1

3

)
ds

= C(Ny) exp

(
−iκ(1−N2

y )Nx1 + iκ
N3
x1

3

)
,

(II.3.24)
where s = Nx1 + t and

C(Ny) =

∫ +∞

−∞
ûκ0(s,Ny) exp

(
iκ(1−N2

y )s− iκ
s3

3

)
ds. (II.3.25)

Proof of Theorem II.6. The time integrability of the solution of (II.3.20a) was
already shown above, so that the second part of the statement is left. The
Fourier transform with respect to (x1, y) of (II.3.15 yields

Êκ(Nx1 , Ny) = c(Ny) exp

(
−iκ(1−N2

y )Nx1 + iκ
N3
x1

3

)
, (II.3.26)

where c(Ny) is given by (II.3.17). A comparison with (II.3.24) shows that
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II.3 Reconstructing wave beams: formulation and numerics

an exact matching between the reconstructed solution and the exact one is
obtained if C(Ny) = c(Ny), that is∫ +∞

−∞
ûκ0(s,Ny) exp

(
iκ(1−N2

y )− iκ
s3

3

)
ds = c(Ny), (II.3.27)

so that the problem of the existence of uκ0 as in the statement is reduced to
the possibility to invert the expression in (II.3.27). But of course the map

S(R2) −→Wκ(R),

g(σ, η) 7−→ f(η) =

∫
R
g(σ, η)dσ

is surjective, as for every f ∈ Wκ(R) one can take g(σ, η) = f(η)h(σ), where
h ∈ S(R) has unit integral.

Some observations can be made here also, in relation to the idea of having
uκ0 in the form of (superposition of) Hagedorn wave packets.

1. The initial condition uκ0 found in Proposition II.6 is in S(R2), so that it
can be decomposed in the L2(R2)-basis of Hagedorn functions.

2. If one looks for an initial condition uκ0 of the form

uκ0(x1, y) = vκ1 (x1)v
κ
2 (y),

equation (II.3.27) can be written as∫ +∞

−∞
v̂κ1 (s) exp

(
iκ(1−N2

y )− iκ
s3

3

)
dsv̂κ2 (Ny) = c(Ny).

The right hand side contains a factor Êκ
0 (Ny), so that the choice

vκ2 (y) = Eκ
0 (y)

reduces the problem to that of finding vκ1 only, which is possible according
to the same argument used in the proof of Proposition (II.6).
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II.3.3 Description of the algorithm

3. For what concerns the numerical tests in the next Chapter, Gaussian
boundary data will be considered. The initial condition for Schrödinger
equation is taken in the form of the fundamental Hagedorn function (II.2.3)
with diagonal matrices P and Q such that the argument of point 2 ap-
plies, and the function vκ1 is also taken Gaussian, with suitable parame-
ters in order to satisfy (II.3.27) with a certain accuracy.

The initial data uκ0 identified in Proposition II.6 also satisfies the require-
ments as formulated in Problem II.1. This will be shown heuristically, looking
at the profile of the wave packet uκ(t, x) as a function of time, evaluated at a
point x∗ = (0, y) ∈ Σ. One can distinguish two passages of the wave packet

Figure II.3.1: Wave packet uκ(t, x∗), with x∗ = (0, 0), corresponding to a so-
lution of (II.1.3) with initial condition uκ0 given by (II.2.3), orig-
inating at x∗ and propagating towards the r.h.s. orthogonal to
Σ = {(0, y) | y ∈ R}.

through the point x∗, corresponding in chronological order to the incident and
reflected contribution to the wave field. Integrating the wave packet over an
interval I ⊆ R which accounts for the first passage only, will return the incident
field Eκ

in whose spectrum is defined in (II.3.19).

II.3.3 Description of the algorithm

In the previous sections problem (II.1.1) was formulated with more precision
in some particular cases. Moreover for linear and constant potentials rigor-
ous results were presented concerning the general idea of reconstructing wave
beams with wave packets in presence of a cut-off point. These results though
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II.3 Reconstructing wave beams: formulation and numerics

are not very handy on the practical side, as in particular they only provide a
proof of existence of a solution of (II.1).

Going back to the general idea of using Hagedorn wave packets, three main
steps can be identified to reconstruct wave beams:

• Choose of the initial condition for the initial value problem.

• Solve of the ODEs describing the evolution of the parameters which
define Hagedorn packets.

• Integrate the wave packet solution in time for all points in the spatial
domain.

These are the building blocks of the numerical scheme presented here and used
for the numerical tests in the next chapter.

Choice of the initial condition

This is the main point of the whole method, as emerges already from the
formulation of Problem II.1, for which in general an analytic solution cannot
be found explicitly. A more practical way of choosing the initial condition uκ0

of (II.1.1) is described here. In particular this is based on the choice of uκ0
that admits a separation of variables, so that the factor depending on y can be
taken equal to the boundary condition Eκ

0 in (II.1.2). The part in x1 will be
partially determined by the boundary conditions as well, in order to select the
right direction of propagation (cf., sections II.3.1 and II.3.2). Nevertheless, it
will also depend on some free parameters (a1, . . . , an), so that one can write

u0[a1, . . . , an](x) = v[a1, . . . , an](x1)E0(y), (II.3.28)

At this point one can reformulate Problem II.1 as an optimization problem, in
the following way:
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II.3.3 Description of the algorithm

Problem II.2 (Optimal initial condition). Find parameters a1, . . . , an ∈ R
that minimize the functional

F (a1, . . . , an) :=

∥∥∥∥∫
R
u[a1, . . . , an](t, x)dt

∣∣
Σ
− E0(y)

∥∥∥∥
L2(Rd−1)

, (II.3.29)

where u[a1, . . . , an](t, x) is the solution of Schrödinger equation with initial
condition (II.3.28).

For example, in the case of a Gaussian boundary condition E0, it is reason-
able to build the initial condition u0 by assuming it to be Gaussian in the x1
direction as well, depending on parameters like amplitude, width and radius of
curvature. More details will be provided in the next chapter, when presenting
the numerical experiments.

This procedure produces an optimal initial condition, such that the error of
the correspondent stationary solution at the boundary is minimal. Such an
error still exists though, and and its propagation in the whole spatial domain
is a point one has to be careful about.

Solution of the ODEs

The solution of Schrödinger equation is found via the method of Hagedorn
wave packets. In general, using the expansion in the Hagedorn basis, one can
identify parameters (q, p,Q, P ) such that

u0(x) ≈
∑
k∈K

ckϕ
κ
k[q, p,Q, P ](x),

for some finite set of multi-indexes K. For the case of Gaussian beams, which
covers a large set of interesting applications, this reduces to

u0(x) ∝ ϕκ0 [q, p,Q, P ](x).
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II.3 Reconstructing wave beams: formulation and numerics

The corresponding solution of (II.1.3) will be then given by evolving the pa-
rameters (q, p,Q, P ) according to

q̇ = 2p, ṗ = −∇V (q),

Q̇ = 2P, Ṗ = −D2V (q)Q,

(II.3.30a)

(II.3.30b)

and by multiplication by a factor exp (iκS(t)), where

S(t) =

∫ t

0

(
|p(s)|2 − V (q(s))

)
ds. (II.3.31)

In some of the cases treated in this work (i.e., constant and linear potentials)
the ODEs can be solved analytically.

Time integration

Once the wave packet solution of (II.1.3) is found, one needs to compute∫ +∞

−∞
uκ(t, x)dt

for every x ∈ Ω in order to reconstruct the stationary solution of (II.1.1).
Notice that at each point in space the solution is computed independently.
This is a useful feature of this method, as in many applications one is interested
in the field in a limited subset of the whole physical domain.

More details on the actual implementation of the numerical scheme will be
given in the next chapter.

II.3.4 Conservation of the Poynting flux and error
propagation

A quantity of interest from both the physical and mathematical point of view
is the beam energy flux through a certain surface (Poynting flux). For prob-
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lem (II.1.1), considering the surface {x1 = x∗1}, such quantity is given by

PEκ(x∗1) :=
1

κ

∫ +∞

−∞
=
(
Ēκ∂x1E

κ
)
|x1=x∗ dy. (II.3.32)

The following classical result holds:

Theorem II.7. Let Eκ be a C2(Ω) solution of Helmholtz equation (II.1.1)
satisfying Eκ(x1, ·) ∈ S(R). Then the Poynting flux (II.3.32) is constant.

Proof. The field Eκ satisfies

1

2iκ
Ēκ∆Eκ +

iκ

2
V |Eκ|2 = 0,

− 1

2iκ
Eκ∆Ēκ − iκ

2
V |Eκ|2 = 0.

(II.3.33)

Summing the two, and using the identity,

Ēκ∆Eκ − E∆Ēκ = 2i∇ ·
(
=Ēκ∇Eκ

)
, (II.3.34)

one gets

∇ ·
(
1

κ
=Ēκ∇Eκ

)
= 0.

Integration with respect to y leads to

∂x1PEκ(x1) = 0,

which concludes the proof.

It is therefore reasonable to check whether the proposed method of Hagedorn
wave-packets provides a solution of (II.1.1) that retains this property. The
following holds:

Proposition II.3.3. Let uκ = uκ(t, x) = ψκ0 (t, x) be the Hagedorn wave-packet
as given in (II.2.11), with (q(t), p(t), Q(t), N(t)) solution of (II.3.30a)-(II.3.30b)
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and S(t) given by (II.3.31). Then u satisfies

i

κ

∂uκ

∂t
(t, x) +

1

κ2
∆uκ(t, x)− Vmod(t, x)uκ(t, x) = 0, (II.3.35)

where the modified potential has the form

Vmod(t, x) = V (q(t)) +∇V (q(t)) · (x− q(t))+
1

2
(x− q(t)) ·D2V (q(t))(x− q(t)).

(II.3.36)

Proof. Denoting by a(t) the amplitude factor in (II.2.11), which is

a(t) =

√
κ

π
(detQ(t))−1/2,

and Ψ = PQ−1, one has

∆uκ =
(
−κ2p2 − 2κ2p ·Ψ(x− q)− κ2(x− q) ·Ψ2(x− q) + iκtrΨ

)
uκ,

(II.3.37)
where trΨ is the trace of the matrix Ψ, and

∂uκ

∂t
=

(
ȧ

a
+ iκ

(
Ṡ + ṗ · (x− q)− p · q̇

)
+
iκ

2
(x− q) · Ψ̇(x− q)− iκq̇ · A(x− q)

)
uκ.

(II.3.38)

In the above expressions the time dependence of the parameters q, p,Q, P and
S is implied, and the dot indicates the derivative with respect to t. It follows
that

i

κ

∂uκ

∂t
+

1

κ2
∆uκ =

{
i

κ

ȧ

a
+

i

κ
trΨ

− (Ṡ − p · q̇ + p2)

− (ṗ− q̇Ψ+ 2pΨ) · (x− q)

− (x− q) · (Ψ2 +
1

2
Ψ̇)(x− q)

}
uκ.
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Using the formula
d

dt
detQ = detQtr(Q−1Q̇),

together with the equations for the parameters (q, p,Q, P ) and S given in
(II.2.4)-(II.2.6), one gets

ȧ

a
= −trΨ,

Ṡ − p · q̇ + p2 = −V (q),

ṗ− q̇Ψ+ 2pΨ = −∇V (q),

1

2
Ψ̇ + Ψ2 = −1

2
D2V (q),

from which it follows that

i

κ

∂uκ

∂t
+

1

κ2
∆uκ = Vmodu

κ,

and the proof is concluded.

In the case of a quadratic potential V equation (II.3.35) reduces to the stan-
dard Schrödinger equation (II.1.3a), coherently with Theorem II.3. For the
general case, the Hagedorn wave-packet also satisfies a Schrödinger-type equa-
tion, with a time-dependent potential which is the quadratic approximation of
V in the neighborhood of the trajectory q(t). This result comes to hand for
the derivation of the following result on the Poynting flux for the Hagedorn
solution of Helmholtz equation:

Proposition II.3.4. Let Ẽκ be the field reconstructed from the Hagedorn
packet uκ(t, x) = ψκ0 (t, x), that is,

Ẽκ(x) =

∫ +∞

−∞
u(t, x)dx.

Then the Poynting flux of Ẽκ as defined in (II.3.32) satisfies

∂PEκ

∂x1
= − iκ

2

∫ +∞

−∞

(∫ +∞

−∞
(Vmod − V )

(
¯̃Eκuκ − Ẽκūκ

)
dt

)
dy. (II.3.39)
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Proof. From Proposition II.3.3 it follows that

1

κ2
∆Ẽκ −

∫ +∞

−∞
Vmodu

κ dt = 0.

By simple algebraic passages, and multiplying by (−iκ) ¯̃Eκ, one obtains

1

iκ
¯̃Eκ∆Ẽκ − iκV |Ẽκ|2 + iκ ¯̃Eκ

∫ +∞

−∞
(Vmod − V )uκ dt = 0.

By summing the above expression to its complex conjugate, and using the
identity (II.3.34), equation (II.3.39) follows immediately by integrating with
respect to y all the resulting terms.

Remark II.3.4.1. The right hand side of (II.3.39) can actually be estimated,
using the fact that, being uκ in the form of the Hagedorn packet ψκ0 ,

|(Vmod − V )uκ| ≤ c0κ
−3/2.

As a consequence, the x1-derivative of the Poynting flux is O(κ−1/2).

The above result is also consistent with the results on Hagedorn packets in
the case of a quadratic potential:

Corollary 2. If the potential V is quadratic, then the Poynting flux of the
field reconstructed with the method of Hagedorn wave-packets is constant.

Proof. This follows immediately observing that the modified potential Vmod
defined in (II.3.36) is the second order truncation of the Taylor expansion of
V around the trajectory q(t).

It is therefore possible to quantify exactly the variation of the Poynting flux
the x1-axis for the wave field reconstructed using the fundamental Hagedorn
packet ψκ0 . This is constant equal to zero only in the case of quadratic po-
tentials, and traces some limits of applicability of the method of Hagedorn
wave-packets, in the sense that one cannot expect it to provide a satisfactory
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solution (namely, whose flux is conserved) if the difference between the po-
tential and its quadratic approximation is too large. Notice that this can be
hopefully improved by including higher order wave packets in the approxima-
tion of the solution of Schrödinger equation. Proposition II.3.4 also provides
a solid test for the numerical experiments that will be presented in the next
chapter, where the scheme introduced below is implemented. In particular, for
the case of quadratic potentials conservation of the Poynting flux is expected,
while the identity in (II.3.39) can be used to understand the behaviour of the
Hagedorn solution for the non-quadratic cases.

II.3.5 Asymptotic solution for smooth increasing
potentials

In this section Problem (II.1.1) is formulated for a class of potentials which
are close to the typical profiles that one finds in the intended applications
framework. In particular, V is chosen in the form V (x) = a(x1) − 1, with
a ∈ C∞(R) such that

a′(x1) > 0,

lim
x1→−∞

a(x1) = 0,

lim
x1→+∞

a(x1) = a∞ > 1.

(II.3.40)

This class of potentials produces a cut-off for Helmholtz equation at points
which are solutions of the algebraic problem a(x1) = 1. The properties of a
listed in (II.3.40) imply that there is a unique cut-off point in R+. The notation

aNy = 1−N2
y

will be used in what follows, together with the concept of turning point xNy ,
which is defined as the solution of the non-linear algebraic problem

a(x1) = aNy .
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Notice that if Ny = 0 the turning point coincides exactly with the cut-off point.

The following boundary value problem is considered:
1

κ2
∆Eκ(x)− (a(x1)− 1)Eκ(x) = 0, x ∈ Ω = R+ × R,

Eκ|Σ = BgenEκ
0 Σ = {(0, y) | y ∈ R},

(II.3.41a)

(II.3.41b)

with boundary datum Eκ
0 ∈ Wκ(R)) (cf., (II.3.3)). The boundary operator

Bgen acts on a function f ∈ Wκ(R) as

Bgenf = F−1
κ

(
Ai

(
3κ

2
σ0

)
gκ(Ny)f̂(Ny)

)
(II.3.42)

with the multiplier gκ defined as

gκ(Ny) = 2
√
π

(
3κ

2
σ0

)1/6

eiκσ0−iπ
4 , (II.3.43)

where the notation
σ0 =

∫ xNy

0

(aNy − a(x1))1/2dx1

is introduced.

No attempt is made here to make rigorous statements on the well-posedness
of (II.3.41), and one may refer to the classical textbook of Wasow [100] for
similar problems. The analytic part for this class of problems is restricted to
the following asymptotic result:

Proposition II.3.5. Let V be a potential of the form V (x) = a(x1) − 1,
where a satisfies (II.3.40). Then, for every κ and Ny there exists a real-valued
function ϕ = ϕ(x1, Ny) such that, for every c ∈ S,

Eκ(x) = F−1
Ny 7→y (c(Ny)Ai(−ϕ(x1, Ny))) , (II.3.44)

satisfies
1

κ2
∆Eκ − (a(x1)− 1)Eκ = O(κ−4/3) (II.3.45)
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in the semiclassical limit κ→∞. Moreover, the choice

c(Ny) = gκ(Ny)Ê
κ
0 (Ny) (II.3.46)

implies that (II.3.44) satisfies the boundary condition (II.3.41b).

A brief discussion on the reminder follows the numerical tests for which this
asymptotic solution is used as a reference solution (cf., II.4.6.1). The following
result will be used for the proof of the main proposition:

Lemma II.3.1. Let a = a(x1) satisfy (II.3.40). Consider the equation

ρ′(x1)
2ρ(x1) = κ2(a(x1)− aNy), (II.3.47)

with condition
ρ(xNy) = 0. (II.3.48)

Then the function

ρ(x1) =


−
(
3κ

2

∫ xNy

x1

(aNy − a(s))1/2ds
)2/3

, x1 ≤ xNy ,(
3κ

2

∫ x1

xNy

(a(s)− aNy)
1/2

)2/3

x1 > xNy

(II.3.49)

satisfies (II.3.47)-(II.3.48).

Proof. Consider first the region of space x1 ≤ xNy . The properties of a imply
that int this region a(x1)− aNy < 0, so that any function ρ satisfying (II.3.47)
is also negative, and therefore one can write it for convenience as

ρ(x1) = −ϕ(x1),

for some positive function ϕ(x1). From (II.3.47) one obtains

ϕ(x1)
1/2ϕ′(x1) = κ(aNy − a(x1))1/2 ⇒

2

3

(
ϕ(x1)

3/2
)′
= κ(aNy − a(x1))1/2,
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from which

2

3

(
ϕ(x1)

3/2 − ϕ(0)3/2
)
= κ

∫ x1

0

(aNy − a(s))1/2ds.

The condition (II.3.48) implies then that

ϕ(0)3/2 = −3κ

2

∫ xNy

0

(aNy − a(s))1/2ds,

from which it follows that

ϕ(x1)
3/2 = −3κ

2

∫ xNy

x1

(aNy − a(s))1/2ds.

As for s ∈ [x1, xNy ], x1 ∈ [0, xNy ], the integrand is positive, in the complex
plane one has

ϕ(x1) = ei
2π
3
+i 4nπ

3

[
3κ

2

∫ xNy

x1

(aNy − a(s))1/2ds
]2/3

,

which has its only real root for n = 1:

ϕ(x1) =

[
3κ

2

∫ xNy

x1

(aNy − a(s))1/2ds
]2/3

.

which coincides with the first part in (II.3.49), recalling that ρ = −ϕ. An anal-
ogous argument can be used in the region x1 > xNy , imposing the continuity
of the function ρ at x1 = xNy , in order to conclude the proof.

Proof of Proposition II.3.5. Consider Eκ as in (II.3.44), with ϕ = −ρ, where
ρ is given by (II.3.49). Notice that a′ > 0 implies ρ′ 6= 0. Applying Helmholtz
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II.3.5 Asymptotic solution for smooth increasing potentials

operator to Êκ one obtains

1

κ2
Êκ′′ − (N2

y + V (x1))Ê
κ

=
1

κ2
c(Ny)

(
ρ′′Ai′(ρ) + (ρ′)2Ai′′(ρ)− κ2(a− aNy)Ai(ρ)

)
=

1

κ2
c(Ny)(ρ

′)2
(

ρ′′

(ρ′)2
Ai′(ρ) + Ai′′(ρ)− ρAi(ρ)

)
=
ρ′′

κ2
c(Ny)Ai

′(ρ),

where the second equality follows from Lemma II.3.1 and the last one is a
result of the fact that Ai satisfies Airy equation

F ′′(ρ)− ρF (ρ) = 0.

From (II.3.49) one can observe that ρ′′ ∼ κ2/3, while the term c(Ny)Ai
′(ρ) is

bounded in κ, so that

ρ′′

κ2
c(Ny)Ai

′(ρ) = O(κ−4/3),

which proves the first part of the statement. The fact that the choice of c(Ny)

as in (II.3.46) implies that (II.3.44) satisfies the boundary condition (II.3.41b)
is of immediate verification.

Using the asymptotic expansion of the Airy function given in (II.3.18) one
can show, with exactly the same argument as in Section II.3.2, that the bound-
ary operator (II.3.41b) selects the incident branch of the wave field on Σ, so
that the datum Eκ

0 corresponds to the incident part only.

Remark II.3.5.1 (Linear potential). In the proof of Proposition II.3.5 the
only constraint needed on a is a′(x1) > 0. Therefore the result can also be
applied to the case of a linear potential, namely, a(x1) = x1. In this case the
solution is exact, and it coincides with the one found in Section II.3.2.

On the side of the associated Schrödinger equation, as well as for what
concerns the reconstructed wave beam, no comment will be made here. Some
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II.3 Reconstructing wave beams: formulation and numerics

numerical tests will be performed by means of the scheme introduced in the
next section, and the asymptotic solution computed above will serve as a
reference solution.
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II.4 Numerical experiments on
Helmholtz equation in 2D

In this chapter the method presented in the previous sections is applied to
a two-dimensional Helmholtz equation (II.1.1) with different potentials. This
should be looked at as a motivation to continue developing both theoretical
and computational aspects of the method. In particular, in the future it will be
interesting to study its applicability to more general cases of problem (0.2.1), in
order to also cover more realistic scenarios which are relevant in the framework
of fusion research.

II.4.1 Boundary conditions for Gaussian beams

To test the method of Hagedorn wave packets, a two-dimensional Helmholtz
equation was chosen as test model. A particular interest is devoted to Gaussian
beams, which are employed in the vast majority of the envisaged applications.
Therefore, with respect to problem (II.1.1)-(II.1.2) in two dimensions (d = 2),
a Gaussian boundary condition is considered, namely,

Eκ
0 (y) = exp

(
iκN0,y(y − y0)−

1

2
A0(y − y0)2

)
, (II.4.1)

being N0,y the y-component of the refractive index vector, y0 the center on the
y-axis, and A0 ∈ C. One can write A0 as

A0 =
2

κw2
y

+ i
κ

Ry

,
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II.4 Numerical experiments on Helmholtz equation in 2D

where wy and Ry represent the beam width and radius of curvature of the
phase front in the y-direction, respectively.

Remark II.4.1.1. In the previous chapter the boundary datum was assumed
to belong to Wκ(R) as defined by (II.3.3). Gaussians do not belong to this
space, so that in the applications the evanescent tails, corresponding to the
part of the spectrum N2

y > 1, are cut. The numerical error introduced by this
procedure can be neglected in the considered cases.

In order to find a solution of this boundary-value problem, the initial-value
problem (II.1.3) is introduced, where the initial condition is taken in the form

uκ0(x) = a

√
κ

π

(κ
2
wx1wy

)−1/2

exp

(
iκN0,x1(x1 − x0,1)−

(x1 − x0,1)2

κw2
y

)
E0(y),

where the center on the x1-axis x0,1 is arbitrary, and the refractive index vector
component N0,x1 is such that N0 = (N0,x1 , N0,y) satisfies the dispersion relation

−|N0|2 − V (x) = 0. (II.4.2)

In general, given the potential V and Ny, there will be two solutions of (II.4.2)
for Nx1 , and the correct branch must be selected consistently with the bound-
ary conditions (cf., Chapter II.3). The parameters a and wx1 are positive
scalars which are determined by the optimization step as described in sec-
tion II.3.3, namely, minimizing the functional

F (a, wx1) :=

∥∥∥∥∫
R
uκ[a, wx1 ](t, x)dt

∣∣
Σ
− E0(y)

∥∥∥∥
L2(R)

, (II.4.3)

where uκ(t, x) is the solution of (II.1.3) with initial condition uκ0 .

Remark II.4.1.2 (Initial refractive index). The only constraints on the choice
of the initial refractive index N0 is arbitrary are the dispersion relation and
the boundary condition (precisely, the definition of the incident field). Once
one of the components is chosen, the other is therefore univocally determined.
As N0 points in the direction of propagation, one can introduce the notion of
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II.4.1 Boundary conditions for Gaussian beams

injection angle ϑ (cf., Section II.1.2), as the angle between the vector N0 and
the y-axis. In this way N ∝ (sinϑ, cosϑ).

II.4.1.1 Solution in the Hagedorn form

Again, one can write uκ0 as

uκ0(x) = a

√
κ

π

(κ
2
wx1wy

)−1/2

exp

(
iκN0 · (x− x0)−

1

2
(x− x0) · A(x− x0)

)
,

where A ∈ C2×2. Following the standard description of Gaussian wave packets,
one can express A as

A = κφ− iκS,

where φ and S, defined as

φ =

 2
κw2

x1

0

0 2
κw2

x1

 , S =

(
0 0

0 1
Ry

)
(II.4.4)

are the so called width and curvature matrices, respectively. More interest-
ingly, one can show that the matrix (i/κ)A is Hermitian with positive definite
imaginary part, so that in virtue of Lemma II.2.1 one can write A = −iκPQ−1,
where the matrices Q and P satisfy the symplecticity relations (II.2.2). One
can find such decomposition, which gives

Q =

(√
κ
2
wx1 0

0
√

κ
2
wy

)
, P =

i
√

2
κw2

x1

0

0 i
√

2
κw2

x1

−
√

κ
2

wy

Ry

 . (II.4.5)

Thanks to this the initial condition uκ0 can be rewritten as

uκ0(x) = a

√
κ

π
(detQ)−1/2 exp

(
iκN0 · (x− x0) +

iκ

2
(x− x0) · PQ−1(x− x0)

)
,

so that actually
uκ0(x) = aϕκ0 [x0, N0, Q, P ](x)
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II.4 Numerical experiments on Helmholtz equation in 2D

is expressed in the Hagedorn form. This means that the Hagedorn wave packet

uκ(t, x) = aeiκS(t)ϕκ0 [x(t), N(t), Q(t), P (t)](x) (II.4.6)

is an approximation of the solution of (II.1.3), which is exact for the case of a
quadratic potential, being (x(t), N(t), Q(t), P (t)) solution of (II.3.30) and S(t)
given by (II.3.31).

This is the solution computed in the numerical experiments presented in
this chapter, and it is then compared to the analytic solution (exact or asymp-
totic) of Helmholtz equation as computed for the various cases in the previous
chapter. In the future more elements of the L2-basis {ϕκk} can be added to
the Hagedorn solution to increase the accuracy of the approximation for the
non-quadratic cases (cf., equation (II.2.12)).

II.4.2 Details on the implementation

The numerical tests that follow this section are the result of a prototype-
implementation of the scheme presented in section II.3.3. The code is written
in Python, and there was so far no real effort to optimize its performance.
Here are some details concerning the different building blocks of the scheme
as presented in the previous chapter.

Optimization of the initial condition

As in general it is not possible to solve Problem II.2 analytically, which is, to
find minima of the functional (II.4.3), a routine for numerical optimization is
used. So far the choice was to use the scipy routine scipy.optimize.minize

[79]. It gives the possibility to choose among different minimization algorithms,
and the Nelder-Mead [59] algorithm is the one picked for the simulations in-
cluded in this work.

Notice that the optimization procedure actually requires to solve (II.1.3)
at each step with a different initial condition, and to integrate the solution
in time, until convergence. The fact that this procedure can be performed
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II.4.2 Details on the implementation

independently at each point in space, allows one to restrict the calculations for
this step to points on Σ.

Solution of the ODEs

For the case of constant and linear potentials the ODEs can be integrated ana-
lytically (cf., sections II.4.3 and II.4.4. When no analytic solution is available,
the order 5 Runge-Kutta integrator dopri5 from the scipy.integrate.ode

class is used [78].

Time integration

In general it is not possible to time-integrate the solution uκ of (II.1.3) ana-
lytically, so that some quadrature formula is necessary in order to reconstruct
the stationary field. First of all a finite time interval where the wave packet is
localized needs to be identified and discretized. Then the choice so far was to
use a standard trapezoid formula, and currently one can choose between two
different implementations, each with its advantages and disadvantages:

• Using numpy The first possibility is to allocate the whole wave packet,
evaluated on an array t and a grid (x1, y) into a multidimensional numpy

array, and then use the routine numpy.trapz [60] to integrate along the
dimension corresponding to t. This method is pretty fast, as it exploits
the optimized operations of numpy, but highly memory-consuming. This
procedure could be parallelized in the future, by subdividing the wave
packet array among different CPUs. This has not been attempted so far.

• Performing a swipe in time The second possibility is to run a swipe
over time, and deposit the contribution to the integral at points on the
grid at each discrete time tj. More precisely, for each time tj the quantity

∆t

2
(u(tj, xk) + u(tj+1, xk))

is added to the value of the integral at each point xk on the spatial grid.
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II.4 Numerical experiments on Helmholtz equation in 2D

This way of proceeding is more time-consuming, but on the other side
it uses way less memory than the first one. It also seems suitable for
parallelization, by assigning time sub-intervals to different CPUs. This
possibility has not been explored yet.

The use of a simple trapezoid rule does not appear optimal: in case of very
high frequency, smaller integration steps are required, so that in the case of
large computations one might want to improve performance. One could dig in
the direction of quadrature formulas specifically designed for highly oscillatory
functions, or look for clever approximations of the integrand such that analytic
calculations can be done. That said, as briefly mentioned above, parallelization
is also a practicable way.

II.4.3 Numerical tests I: constant potential

The simplest scenario that can be considered is that of an electromagnetic
wave propagating in free space. In terms of equations, problem (II.3.2) - and
therefore (II.3.7) - is being considered. In this case (II.4.6) is an exact solution
of (II.3.7). The ODEs describing the parameters are trivial to integrate, giving

x(t) = x0 + 2N0t, N(t) = N0,

Q(t) = Q+ 2Pt, P (t) = P,

(II.4.7a)

(II.4.7b)

and the action integral amounts to

S(t) =

∫ t

0

(
|N(s)|2 − V

(
x(s)

))
ds

= (|N0|2 + 1)t = 2t,

(II.4.8)

as N0 must satisfy the dispersion relation which in this case has the form

|N |2 = 1.
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II.4.3 Numerical tests I: constant potential

The central trajectory of the beam is a straight line, whose direction is given
by the initial refractive index vector (and therefore, by the injection angle
ϑ). For simplicity scenarios of perpendicular propagation (ϑ = 90◦) will be
considered. As mentioned above, in this simple framework some interesting
phenomena can already be observed. In particular, the choice of a finite radius
of curvature Ry will produce a focused beam, the focus being a caustic, which
for example the standard WKB-method (ray tracing) fails to resolve. Other
methods (e.g., beam tracing, wave kinetic equation) are able to reconstruct the
field in the focus region, but still this is a first test for the method of Hagedorn
wave packets applied to wave beams.

Quantity Symbol Value
Semiclassical parameter κ 2.36 · 102
Beam center x0 (0, 0)
Refractive index N0 (1, 0)
Beam width wy 0.18
Injection angle ϑ 90◦

Integration time-step ∆t 5 · 10−3

Spatial domain (x1, y) ∈ [0, 1.3]× [−π, π]
Number of points in x1 nptx 1024
Number of points in y npty 2048

Table II.4.1: Parameters common to all simulations for the case V (x) = −1.
Different scenarios will be considered, corresponding to different
choices of the radius of curvature Ry.

Two different scenarios will be analyzed in what follows, corresponding to
different choices of the radius of curvature Ry. The parameters which are
common to all simulations are reported in Table II.4.1. Note that the beam
parameters (κ and the beam width wy) are chosen as the typical parameters
of the electron-cyclotron beams in ASDEX-Upgrade [97, 50].
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II.4 Numerical experiments on Helmholtz equation in 2D

II.4.3.1 Non-diffracting wave beam: 1/Ry = 0

The first case considered is the simplest one, where no caustic is present and the
beam parameters are such that diffraction does not alter the beam structure.
This case is characterized by wave fronts with zero curvature, corresponding
to the choice 1/Ry = 0. As Ry appears always at the denominator in the
equations, the terms containing it are neglected in this case.

Optimal initial condition and reconstructed boundary profile

The optimization routine reconstructs the boundary conditions with param-
eters given in Table II.4.1 and Ry = 109, returning the optimal parameters
a and wx1 for the initial wave packet u0, which are reported in Table II.4.2,
together with the L∞-norm error they produce at the boundary. The recon-
structed boundary condition together with the difference with the designed
launched beam are represented in Figure II.4.1a-II.4.1b.

Quantity Symbol Value
Amplitude factor a 1.4447
Packet width (x1-direction) wx1 0.0899
L∞-norm error ∼ 10−4

Table II.4.2: Optimal wave-packet parameters and corresponding L∞-norm er-
ror at the boundary, for the case of a straight beam (Ry →∞).

Wave packet dynamics

The wave-packet, whose parameters in this case can be computed analytically
(cf., (II.4.7)-(II.4.8)), is subject only to diffraction effects. The absence of
curvature (1/Ry = 0) and the large value of κ result in a pretty simple dy-
namics, with no focusing and no significant diffractive broadening, as shown
in Figure II.4.1c.
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II.4.3 Numerical tests I: constant potential

Reconstructed wave beam

Time integration of the wave packet provides the reconstructed wave beam,
as shown in Figure II.4.1d. This can be compared to the exact solution of
Helmholtz equation, and the corresponding error (absolute value of the dif-
ference) is shown in Figure II.4.1e. Notice that the scheme does not produce
any additional error to the one at the boundary (cf., Figure II.4.1b), whose
structure is simply translated through the whole domain. It is not surprising
in this case, as the Hagedorn wave packet is an exact solution of Schrödinger
equation, and therefore no error propagation is expected.
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Constant potential, 1/Ry = 0

(a) (b)

(c)

(d)

(e)

Figure II.4.1: Non-diffracting beam (1/Ry = 0) (a) Launched beam and recon-
structed boundary data, and (b) difference between the two. (c)
Wave packet at different times. (d) Reconstructed wave beam
and (e) absolute value of the difference with respect to the exact
solution.



II.4.3 Numerical tests I: constant potential

II.4.3.2 Focused beam: Ry = 0.5

The case of a focused beam faces the method proposed in this work with a
caustic - the focal point - which sees standard ray-tracing methods fail. Being
the method of Hagedorn wave packets similar in many aspects to beam tracing,
it is not surprising that this singularity can be reproduced without problems.

Optimal initial condition and reconstructed boundary profile

In this case the optimization routine is aimed to reconstruct the boundary
condition with Ry = 0.5. It returns the values a and wx1 for the optimal initial
wave packet u0 reported in Table II.4.3, together with the L∞-norm error they
produce at the boundary (cf., Figure II.4.2a-II.4.2b).

Quantity Symbol Value
Amplitude factor a 5.5040
Packet width (x1-direction) wx1 0.0233
L∞-norm error ∼ 10−2

Table II.4.3: Optimal wave-packet parameters and corresponding L∞-norm er-
ror at the boundary, for the case of a focused beam (Ry = 0.5)

Wave packet dynamics

The wave packet dynamics is represented by the snapshots in Figure II.4.2c. A
narrowing of the packet in the vicinity of the focus can be observed, as one can
expect looking at the analytic solution of the ODEs (II.4.7)-(II.4.8), keeping
in mind that now a non-zero term 1/Ry is present in the expression for the
matrices (cf., (II.4.5)).

Reconstructed wave beam

The reconstructed focused beam is represented in Figure II.4.2d. It is again
interesting to notice that the structure of the error at the boundary is con-
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II.4 Numerical experiments on Helmholtz equation in 2D

served in the whole domain, as one can notice comparing Figure II.4.2b to
Figure II.4.2e.

In absolute terms, the accuracy of the reconstructed boundary condition is
significantly lower than in the previous case. This reflects in a higher error on
the reconstructed beam in the whole domain. This is due to the oscillating
tails of the profile, determined by the effect of the non-trivial curvature radius,
and can be fixed in the future with a more efficient implementation of the
algorithm to increase resolution on the y-axis. For the scope of this work, it
is sufficient to notice how the error in the whole spatial domain is of the same
order of that at the boundary.
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Constant potential, Ry = 0.5

(a) (b)

(c)

(d)

(e)

Figure II.4.2: Focused beam (Ry = 0.5) (a) Launched beam and reconstructed
boundary data, and (b) difference between the two. (c) Wave
packet at different times. (d) Reconstructed wave beam and (e)
absolute value of the difference with respect to the exact solution.
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II.4.4 Numerical tests II: linear potential

The second scenario considered is that of a linear potential V (x) = x1 −
1, namely, (II.3.12). The wave beam is reflected at a cut-off located at the
position x1 = 1. Again, the Hagedorn packet (II.4.6) is an exact solution
of the associated Schrödinger equation (II.3.20). The ODEs describing the
parameters can be integrated analytically, giving

x1(t) = x0,1 + 2N0,x1t− t2, Nx1(t) = N0,x1 − t,

y(t) = y0 + 2N0,yt, Ny(t) = N0,y,

Q(t) = Q+ 2Pt, P (t) = P,

(II.4.9a)

(II.4.9b)

(II.4.9c)

and the action integral is given by

S(t) =

∫ t

0

(
|N(s)|2 − V

(
x(s)

))
ds

= (|N0|2 + 1)t− 2N0,x1t
2 +

2t3

3
.

(II.4.10)

In this case the dispersion relation is given by |N |2− 1− x1 = 0, so that if for
instance one chooses x0,1 = 0, then one has |N0|2 = 1 and therefore the action
can be rewritten as

S(t) = 2t− 2N0,x1t
2 +

2t3

3
.

This will be the case for all the tests presented here. In particular this im-
plies that it is sufficient to give the injection angle ϑ as an input (cf., Re-
mark II.4.1.2), and N0 will be given by

N0 = (sinϑ, cosϑ). (II.4.11)

The central trajectory of the beam in the considered case is a parabola, which
reaches its maximum x̄ = (x0,1 +N2

0,x1
, y0 + 2N0,x1N0,y) at t = N0,x1 . This can
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II.4.4 Numerical tests II: linear potential

be expressed in terms of the angle ϑ as well, giving

x̄1 = sin2 ϑ, ȳ = y0 + sin 2ϑ. (II.4.12)

Being y0 also a free parameter, we choose y0 = − sin 2ϑ, so that the turning
point will be at ȳ = 0 and the reflected beams will present symmetry with
respect to the x1-axis independently from the injection angle ϑ.

Quantity Symbol Value
Semiclassical parameter κ 2.36 · 102
Beam center x0 (0,− sin 2ϑ)
Refractive index N0 (sinϑ, cosϑ)
Beam width wy 0.18
Phase front curvature 1/Ry 0

Integration time-step ∆t 5× 10−3

Spatial domain (x1, y) ∈ [0, 1.2]× [−π, π]
Number of points in x1 nptx 1024
Number of points in y npty 2048

Table II.4.4: Parameters common to all simulations, for the case of a linear
potential V (x) = x1 − 1. Different scenarios are identified with
the choice of the injection angle ϑ.

Different scenarios will now be considered, corresponding to different choices
of the angle ϑ.

II.4.4.1 Small angle (BT validity limit): ϑ = 60◦

The first case considered corresponds to a scenario which is still included within
the limits of validity of beam-tracing [50], being the radius of curvature of the
beam central trajectory large enough with respect to the transversal beam
width, so that no significant interference pattern occurs.
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Optimal initial condition and reconstructed boundary profile

The minimization routine returns the value a and wx1 which characterize the
optimal initial wave packet. Such values are reported in Table II.4.5, together
with the error on the launching condition (boundary value of the incoming
branch of the wave beam). The launched beam profile, and its reconstruction
with the Hagedorn packets method, are presented in Figure II.4.3a-II.4.3b.

Quantity Symbol Value
Amplitude factor a 5.8229
Packet width (x1-direction) wx1 0.0193
L∞-norm error ∼ 10−2

Table II.4.5: Optimal wave-packet parameters and corresponding L∞-norm er-
ror at the boundary on the launching condition, for the case of
an injection angle of 60◦.

Wave packet dynamics

The wave packet is entirely described by equations (II.4.9)-(II.4.10): the center
of the packet follows the parabolic trajectory in (II.4.9a), which is represented
by the white line in Figure II.4.3c, while the evolution of its amplitude, width
and curvature is described by the other above mentioned equations.

Reconstructed wave beam

As a consequence of the packet dynamics, the reconstructed beam is reflected
at the cutoff (cf., Figure II.4.3d), being the turning point as described in
II.4.12. The error with respect to the exact solution is in the whole domain of
the same order of magnitude as at the boundary, as one can observe comparing
Figures II.4.3b and II.4.3e.

In this case as well the value at the boundary is reconstructed with low ac-
curacy. This is due to the fact that the beam is Gaussian on a plane which has
a positive angle with respect to the domain boundary, so that the projection
on the {x1 = 0} axis presents the oscillating tails that can be observed in
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II.4.4 Numerical tests II: linear potential

Figure II.4.3a. This issue can be fixed by implementing a suitable coordinate
transformation, but at present it is sufficient to observe again how the error in
the whole domain is of the same order as the one at the boundary.
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Linear potential, ϑ = 60◦

(a) (b)

(c)

(d) (e)

Figure II.4.3: Injection angle ϑ = 60◦. (a) Launched beam and reconstructed
boundary data, and (b) difference between the two. (c) Wave
packet at different times and trajectory of the wave packet center
(white line). (d) Reconstructed wave beam and (e) absolute
value of the difference with respect to the exact solution.
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II.4.4.2 Larger angle (BT breaks): ϑ = 80◦

A case of injection angle close to normal to the cutoff is also considered. As
mentioned in section II.1.2, this is a critical case for beam tracing methods,
due to the presence of an interference region (cf., Figure II.1.2).

Optimal initial condition and reconstructed boundary profile

The optimal initial wave packet amplitude and width are reported in Ta-
ble II.4.6, together with the error on the launching condition, whose recon-
struction is shown in Figure II.4.4a-II.4.4b.

Quantity Symbol Value
Amplitude factor a 6.9099
Packet width (x1-direction) wx1 0.0184
L∞-norm error ∼ 10−2

Table II.4.6: Optimal wave-packet parameters and corresponding L∞-norm er-
ror at the boundary on the launching condition, for the case of
an injection angle of 80◦.

Wave packet dynamics

The wave packet follows the dynamic described by equations (II.4.9)-(II.4.10),
as shown in Figure II.4.4c, where the parabolic center trajectory is represented
with a white line. The dynamics induces a strong curvature of the phase fronts
and broadening of the wave packet in the x1-direction.

Reconstructed wave beam

The time integration successfully reconstructs the beam in the whole domain,
including the region where the injected and reflected branches interfere (cf.,
Figure II.4.4d). The wave packets method overcomes the limitations of beam
tracing, and it is suitable for a broader range of reflectometry applications.
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Linear potential, ϑ = 80◦

(a) (b)

(c)

(d) (e)

Figure II.4.4: Injection angle ϑ = 80◦. (a) Launched beam and reconstructed
boundary data, and (b) difference between the two. (c) Wave
packet at different times and trajectory of the wave packet center
(white line). (d) Reconstructed wave beam and (e) absolute
value of the difference with respect to the exact solution.



II.4.4 Numerical tests II: linear potential

II.4.4.3 Perpendicular injection: ϑ = 90◦

As a last test-case, an injection angle of 90◦ is considered, corresponding to
a wave beam perpendicular to the cutoff, with phase fronts parallel to it. In
this case the beam is reflected in such a way that the incoming and reflected
branches are overlapped in the whole domain. Beam tracing methods fail to
reconstruct the beam at any point in the domain in this case.

Optimal initial condition and reconstructed boundary profile

The optimal initial condition parameters are reported in Table II.4.7, together
with the error on the launching condition (cf., Figure II.4.6a-II.4.6b).

Quantity Symbol Value
Amplitude factor a 7.0418
Packet width (x1-direction) wx1 0.0184
L∞-norm error ∼ 10−4

Table II.4.7: Optimal wave-packet parameters and corresponding L∞-norm er-
ror at the boundary on the launching condition, for the case of
an injection angle of 90◦.

An issue arises for this case, due to the broadening of the packet in the
x1-direction (cf., Figure II.4.6c). As shown in Figure II.4.5, if one looks at
the time-profile of the wave packet at a fixed position, the two peaks - corre-
sponding to the incoming and reflected components, respectively - are slightly
overlapped. One must be careful selecting the time interval to integrate on
during the optimization step, in order to isolate the incoming branch as much
as possible.

Wave packet dynamics

Equations (II.4.9)-(II.4.10) describe the wave packet, whose center follows
the straight line (degenerate parabola) represented by the white line in Fig-
ure II.4.6c. Notice the strong broadening in the x1-direction, which is due
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II.4 Numerical experiments on Helmholtz equation in 2D

Figure II.4.5: Wave packet as a function of time at a fixed position in space
x = (0, 0).

to the extremely small beam-width resulting from the optimization step (cf.,
Table II.4.7). Also here the phase fronts develop a strong curvature.

Reconstructed wave beam

The wave field is successfully reconstructed even in this limit reflectometry
test, as shown in Figure II.4.6d. The propagation of the boundary error in the
domain could be explained by the discussion around Figure II.4.5.
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Linear potential, ϑ = 90◦

(a) (b)

(c)

(d)

(e)

Figure II.4.6: Injection angle ϑ = 90◦. (a) Launched beam and reconstructed
boundary data, and (b) difference between the two. (c) Wave
packet at different times and trajectory of the wave packet center
(singular parabola, white line). (d) Reconstructed wave beam
and (e) absolute value of the difference with respect to the exact
solution.



II.4 Numerical experiments on Helmholtz equation in 2D

II.4.5 Numerical tests III: non-quadratic potential

In the numerical tests presented in the previous two sections the Hagedorn
wave packet is an exact solution of Schrödinger equation with the considered
(constant or linear) potential. That means that the only sources of error
were the optimization of the initial condition and numerical errors related to
the quadrature of the time integral. If the potential is non-quadratic, the
Hagedorn wave packet does not satisfy the Schrödinger equation exactly, and
a new source of error is introduced. This section is aimed to explore its impact
on the reconstructed wave beam, having Propositions II.3.3 and II.3.4 in mind.

II.4.5.1 Model: smooth increasing potential

The Helmholtz equation with a potential of the form V (x) = a(x1) − 1 is
considered here (cf., (II.3.41)), with

a(x1) = αc

(
1

2
+

1

π
arctan

(
x− xp
L

))
, (II.4.13)

where αc > 1, and parameters L and xp. The function a = a(x1) has the
properties listed in (II.3.40), and as discussed in Section II.3.5 a cut-off point
for the associated Helmholtz equation exists, solution of a(x1) = 1. This type
of potential is often used to describe electron density profiles in fusion plasmas,
and L represents the scale of variation of the medium. For the simulations
below αc = 2 is taken, which implies a cut-off at x1 = xp = 1. Two cases are
presented, corresponding to two choices of L, in order to show the behaviour
of the method in relation to certain properties of the medium. The potentials
V corresponding to the different choices of L are shown in (cf., Figure II.4.7).
For the numerical test presented here, the common parameters are listed in
Table II.4.8.
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(a) (b)

Figure II.4.7: Potential profiles V defined in (II.4.13), with parameters αc = 2,
xp = 1 and (a) L = 0.5, and (b) L = 0.09.

Quantity Symbol Value
Semiclassical parameter κ 2.36 · 102
Beam center x0 (0, 0)
Refractive index N0 (1, 0)
Beam width wy 0.18
Phase front curvature 1/Ry 0
Injection angle ϑ 90◦

Integration time-step ∆t 5 · 10−3

Spatial domain (x1, y) ∈ [0, 1.]× [−π, π]
Number of points in x1 nptx 2048
Number of points in y npty 2048

Table II.4.8: Parameters of the simulation for the case of the non-quadratic
potential defined in (II.4.13).



II.4 Numerical experiments on Helmholtz equation in 2D

II.4.5.2 Slowly varying medium: L = 0.5

The first case considered corresponds to the choice L = 0.5, which corresponds
to the potential in Figure II.4.7a.

Optimal initial condition and reconstructed boundary profile

The optimal parameters returned by the optimization routine are listed in
Table II.4.9, together with the corresponding L∞-norm error on the incident
field evaluated at boundary (cf., Figure II.4.8a-II.4.8b).

Quantity Symbol Value
Amplitude factor a 5.7508
Packet width (x1-direction) wx1 0.0189
L∞-norm error ∼ 10−4

Table II.4.9: L = 0.5 - Optimal wave-packet parameters and corresponding
L∞-norm error at the boundary on the launching condition.

Wave packet dynamics

The ODEs describing the wave packet parameters are integrated numerically,
and the resulting dynamics is illustrated in Figure II.4.8c. One can observe
the packet significantly spreading in the x1-direction.

Reconstructed wave beam

The accuracy of the reconstruction is not satisfactory in this case, as one can
observe in Figure II.4.8d-II.4.8e. The approximation error on the solution of
Schrödinger equation here seems to play a role: the reconstructed solution
presents a qualitative agreement with the analytic one (cf., Figure II.4.9), but
still a significant error is introduced. Using a higher order Hagedorn functions
in the approximation will help solving this issue, as one can expect by the
results recalled in Chapter II.2.
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Non-quadratic potential (II.4.13), L = 0.5

(a) (b)

(c)

(d)

(e)

Figure II.4.8: (a) Launched beam and reconstructed boundary data, and (b)
difference between the two. (c) Wave packet at different times
and trajectory of the wave packet center (white line). (d) Re-
constructed wave beam and (e) absolute value of the difference
with respect to the exact solution.



II.4 Numerical experiments on Helmholtz equation in 2D

Figure II.4.9: Asymptotic solution of Helmholtz equation in the case L = 0.5
(cf., Section II.3.5).

II.4.5.3 Rapidly varying medium: L = 0.09

In this second case considered here the potential V has a steeper profile, cor-
responding to a larger deviation from its quadratic approximation. For this
reason the ability of the method of Hagedorn wave packet to reconstruct the
correct wave beam is compromised, and a large error is to be expected in the
region of large variation of the potential.

Optimal initial condition and reconstructed boundary profile

The optimization step is run as in the previous test-cases, providing parameters
for the initial condition which are expressed in Table II.4.10, together with the
L∞-norm error of the reconstructed boundary values with respect to data of
the problem (cf., Figure II.4.11a-II.4.11b).

Quantity Symbol Value
Amplitude factor a 4.5693
Packet width (x1-direction) wx1 0.0276
L∞-norm error ∼ 10−4

Table II.4.10: Optimal wave-packet parameters and corresponding L∞-norm
error at the boundary on the launching condition.
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II.4.5 Numerical tests III: non-quadratic potential

Wave packet dynamics

For what concerns the evolution of the parameters which define the wave
packet, in this case numerical integration of the ODEs is necessary. The re-
sulting wave packet is illustrated in Figure II.4.11c.

Reconstructed wave beam

The time integral in this case does not reconstruct the correct wave beam,
as one can clearly see in Figure II.4.11d-II.4.11e. The reconstructed profile
is clearly very different from what one can expect, namely, the asymptotic
solution as computed in Section II.3.5 shown in Figure II.4.10c. The large
difference with respect to the reference solution confirms the qualitative obser-
vation. The next section is dedicated to an analysis of the Poynting flux for
the different cases presented here, based on the results of Section II.3.4. This
will clarify how the failure of the method for this specific test-case is related
to the mentioned results. The inaccuracy of the reconstructed solution though
is localized in the region near the cut-off. A closer look to the solution on
the “antenna plane” (i.e., the {x1 = 0} line), accounting for both the incident
and reflected branches, shows how the beam profile at this location is recon-
structed successfully, as it appears from Figure II.4.10a-II.4.10b. Therefore
the reflected branch is correctly reproduced, and the error appears localized in
a precise region of space (cf., Section II.4.6) and does not propagate.
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(a) (b)

(c)

Figure II.4.10: L = 0.09. (a) Beam profiles on the ”antenna plane” Σ = {x1 =
0}, corresponding to the Hagedorn and reference solution. Both
the incoming and reflected branch are accounted for. (b) Dif-
ference between the two. (c) Asymptotic solution of Helmholtz
equation (cf., Section II.3.5).



Non-quadratic potential (II.4.13)

(a) (b)

(c)

(d)

(e)

Figure II.4.11: (a) Launched beam and reconstructed boundary data, and (b)
difference between the two. (c) Wave packet at different times
and trajectory of the wave packet center (white line). (d) Re-
constructed wave beam and (e) absolute value of the difference
with respect to the exact solution.



II.4 Numerical experiments on Helmholtz equation in 2D

II.4.6 Conservation of the Poynting flux

The results in Section II.3.4 provide useful information about the wave beam
reconstructed with the method of Hagedorn wave packets. This information
can be used as a diagnostic tool for the numerical tests presented in the pre-
vious sections. In particular, one expects that:

• The Poynting flux (II.3.32) is constant for the case of a constant or linear
potential, being exactly zero for the latter.

• In the general case the identity (II.3.39) is satisfied instead.

II.4.6.1 Constant and linear potential

In Figure II.4.12 the Poynting flux (II.3.32) is plotted as a function of x1 for
two of the tests presented above, namely, the constant case with large Ry and
the linear case with ϑ = 90◦. We can observe how the flux is constant, up to
small oscillations whose amplitude can be reduced by increasing the resolution
in both t and y. This confirms that for these cases the Hagedorn method is
able to provide a correct numerical solution.

(a) (b)

Figure II.4.12: Poynting flux as a function of x1 for the case of (a) constant and
(b) linear potential, corresponding to the solutions represented
in Figure II.4.1 and II.4.6, respectively.
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II.4.6 Conservation of the Poynting flux

II.4.6.2 Non-quadratic potential, L = 0.09

In the case of the non-quadratic potential (II.4.13) with short variation scale
the numerical results (cf., Section II.4.5.3) were not at all satisfactory, and the
structure of the Poynting flux confirms the fact that the reconstructed solu-
tion does not constitute a good solution of Helmholtz equation: a significant
variation of the flux is present, as one can observe in Figure II.4.13a.

(a) (b)

Figure II.4.13: (a) Poynting flux of the reconstructed wave beam in the case
of the non-quadratic potential V defined in II.4.13, with L =
0.009. The flux is not constant along the x1-axis, and the re-
constructed beam is not a solution of Helmholtz equation. (b)
Third derivative of V . Notice that the large values of ∂3V de-
termine a larger variation in PE.

From a qualitative comparison between Figures II.4.13a, II.4.11e and II.4.7 it
emerges that region where the numerical method fails coincides with the region
where the potential starts increasing. In particular, in this region the differ-
ence between V and its quadratic approximation is large, as one can deduce
observing the profile of the third derivative of V shown in Figure II.4.13b. To
confirm the correlation between the inaccuracy of the numerical solution and
the estimate on the variation of the Poynting flux given in equation (II.3.39),
one may look at Figure II.4.14, where it is shown how both left- and right-hand
side of (II.3.39) are non-trivial and they add to zero.
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(a) (b)

Figure II.4.14: (a) The identity in (II.3.39) is verified with a certain accuracy
(resolution dependent) by the Hagedorn solution in the case of
a non-quadratic potential of the form (II.4.13). (b) Left- and
right-hand side of (II.3.39) (LHS and RHS, respectively).

Remark II.4.6.1 (Exact solution). The reference solution used for this case is
given by the asymptotic solution of the corresponding Helmholtz equation given
in (II.3.44). The approximation error can actually be reabsorbed, and following
the approach of Wasow [100] one can build an exact solution of (II.3.41a) in
the form [42]

Eκ(x) = F−1

{
A
[
Aκ0(x1, Ny)Ai(−ϕ(x1, Ny))

+ κ−2/3Aκ1(x1, Ny)Ai
′(−ϕ(x1, Ny))

]
.

(II.4.14)

For the case of interest to this work though, the asymptotic solution (II.3.44)
is sufficiently accurate, and the analysis of the Poynting flux - which is con-
served by the reference solution - fully explains the large difference with the
reconstructed solution. Such difference comes therefore from the error in the
Hagedorn solution of Schrödinger equation, which can be reduced in the future
by constructing a more accurate approximation by adding higher-order wave
packets.
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II.5 Conclusions and outlook

In this part some initial results for the method of Hagedorn wave packets to
reconstruct wave beams have been presented, in particular for what concerns
wave beam solutions of Helmholtz equation in two dimensions. From the point
of view of the envisaged applications, the presented results provide indeed
motivation to pursue the research in the direction traced in this work. A
possible agenda for future work is sketched in what follows.

Development of the theory

The results of Chapter II.3 are limited to Helmholtz equation in 2d, and a com-
plete statement could be done for the case of constant and linear potentials
only. The only result for the more general case of a smooth increasing poten-
tial (cf., Proposition II.3.4) clearly indicates that more complex and realistic
problems cannot be solved by means of a single wave packet. Therefore, using
the approximation results presented in Chapter II.2, one could investigate how
the approximation error on the solution of Schrödinger equation propagates to
the reconstructed beam.

The next step would be to generalize the results obtained for Helmholtz
equation to more physically relevant problems (for instance, equation I.2.1).

Development of the numerics

On the numerics side, so far no major effort was made to optimize the im-
plementation. All steps - optimization of the initial condition, solution of the
ODEs, time integration - can be addressed again with the intent of improving
quality and efficiency. The Python prototype code is probably not the ideal
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II.5 Conclusions and outlook

framework for optimal implementation, and in the future the method could be
implemented in a compiled language. Fortran would be the natural choice, for
compatibility reasons with most of the codes used in the fusion community.
In particular, the analogies between the method of Hagedorn wave packets
and beam tracing make it eligible for an implementation in the framework of
TORBEAM [65]: one could equip the beam tracing code with a reflectometry-
dedicated module, which implements the method of Hagedorn wave packets in
a framework that allows for realistic tokamak simulations.
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