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Abstract

This thesis investigates the use of advanced optimal control methods in aircraft system
identification with a focus on small, unmanned aerial vehicles.

The well established methods for aircraft dynamics characterization based on flight
test data have been collected in textbooks and discussed on numerous occasions. How-
ever, the advances in modern optimal control theory have not yet been fully incorpo-
rated into this process, although the two fields share many common properties. This
thesis shows the advantages of utilizing optimal control aspects when determining
aircraft model parameters from flight test data.

The parameter estimation problem is first formulated in an optimal control con-
text, both for deterministic and stochastic system descriptions. Then challenges are
discussed, which arise in real life applications. Next to the well known solutions to
standard issues, novel strategies are collected that improve several aspects of existing
procedures. Amongst the former are suitable cost function formulations, their analytic
derivatives and residual covariance estimation. The latter, novel ideas include an in-
terpolation approach that is adapted to the dynamic system at hand. This decreases
problem size and thus computation time. Further, a scaling strategy is presented that
allows for straight forward output weighting and eventually enables the direct use of
signals with different sampling frequencies. Besides, parallels are drawn between de-
sirable properties of the cost function Hessian and favorable properties of the resulting
parameter estimates in terms of its covariance and correlation.

Overall the application of optimal control methods to aircraft parameter estimation
problems, especially transcription using full discretization, has definitive advantages.
However, it also raises some issues, the most important of which is the a posteriori
computation of parameter covariance estimates. The standard methods cannot be ap-
plied to fully discretized formulations, which is why a novel uncertainty quantification
framework for constrained problems is developed.

All ideas that are presented in this work are implemented in an add-on to the op-
timal control toolbox FALCON.m, which is used to treat six representative examples.
Those comprise of two cases covering unstable aircraft, and two cases where a stochas-
tic treatment of the system is necessary. The most complex example case illustrates
parameter estimation for a nonlinear, stochastic, six degree of freedom model, where
the corresponding flight data was collected using the low-cost testbed SKYMULE.





Zusammenfassung

Die vorliegende Arbeit untersucht die Verwendung von Methoden der Optimalsteue-
rung zur Flugzeugsystemidentifikation. Der Fokus liegt hierbei auf kleinen, unbeman-
nten Flugsystemen.

Die gängigen Methoden zur Charakterisierung von flugdynamischen Eigenschaf-
ten basierend auf Flugtestdaten wurden bereits in einigen Fachbüchern zusammenge-
stellt, sowie bei einer Vielzahl von weiteren Gelegenheiten diskutiert. Jedoch haben die
aktuellsten Erkenntnisse im Bereich der Optimalsteuerungstheorie noch keinen Ein-
gang in diesen Prozess gefunden, obwohl die beiden Anwendungsfelder viele gemein-
same Merkmale aufweisen. Diese Dissertation zeigt die Vorteile auf, welche sich erge-
ben, wenn Aspekte der optimalen Steuerung verwendet werden, um Flugzeugmodell-
parameter basierend auf Flugtestdaten zu bestimmen.

Zunächst wird das Parameterschätzproblem im Kontext der Optimalsteuerung for-
muliert, was sowohl für deterministische wie auch stochastische Systembeschreibun-
gen erfolgt. Dann werden Herausforderungen diskutiert, welche sich bei der praktis-
chen Anwendung stellen. Neben den gängigen Lösungen für standardmäßig auftre-
tende Fragen, werden neuartige Strategien zusammengetragen, welche verschiedene
Aspekte etablierter Prozeduren verbessern. Erstere umfassen geeignete Formulierun-
gen der Kostenfunktion, ihre analytischen Ableitungen, sowie die Schätzung der Re-
siduenkovarianzmatrix. Letztere, neue Ideen beinhalten einen Interpolationsansatz,
welcher speziell an die Dynamik des betrachteten Systems angepasst ist. Dieser re-
duziert die Problemgröße und spart damit Berechnungszeit. Weiterhin wird eine Ska-
lierungsstrategie präsentiert, die es erlaubt die Systemausgänge gegeneinander zu ge-
wichten. Diese erlaubt schließlich die direkte Verwendung von Signalen mit unter-
schiedlicher Aufzeichnungsrate. Außerdem werden Parallelen aufgezeigt, zwischen
wünschenswerten Eigenschaften der Hessematrix der Kostenfunktion und vorteilhaf-
ten Eigenschaften der resultierenden, geschätzten Parameterkovarianzmatrix und -kor-
relationsmatrix.

Insgesamt hat die Anwendung von Optimalsteuerungsmethoden zur Flugzeugsys-
temidentifikation, speziell die Verwendung von vollständiger Diskretisierung, defini-
tive Vorteile. Allerdings werden auch einige Fragen aufgeworfen. Die Wichtigste ist
die nach der a posteriori Berechnung von Parameterkovarianzschätzungen. Die Stan-
dardvorgehensweisen sind nicht für die Verwendung bei vollständig diskretisierten
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Formulierungen geeignet, weswegen eine neuartige Herangehensweise zur Unsicher-
heitsquantifizierung in beschränkten Problemen entwickelt wurde.

Alle Ideen, welche im Rahmen dieser Dissertation präsentiert werden, sind in ei-
nem Add-On zum Optimalsteuerungswerkzeug FALCON.m implementiert, welches
benutzt wurde, um sechs repräsentative Beispiele zu behandeln. Diese beinhalten zwei
Fälle, welche sich mit instabilen Flugzeugkonfigurationen beschäftigen und zwei weit-
ere, in denen eine stochastische Systembeschreibung notwendig ist. Das komplexeste
Beispielproblem illustriert die Parameterschätzung für ein nichtlineares, stochastis-
ches, Modell mit sechs Freiheitsgraden, wobei die Datenerhebung hierfür mittels der
low-cost Plattform SKYMULE erfolgte.
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ŷ estimated output vector
Z concatenated measurements Z =[z1, . . . zN ]
z measurement vector
z measurement
Σ covariance of Gaussian prior parameter distribution
θ̂LS least-squares estimate of the parameter vector θ

θ̂MAP maximum a posteriori probability estimate of the parameter
vector θ

θ̂ML Maximum Likelihood estimate of the parameter vector θ

θ̂W LS weighted least-squares estimate of the parameter vector θ

XXVII



Misc

θ̂ estimated parameter vector
θprior mean of Gaussian prior parameter distribution
θ scalar parameter
θ parameter vector
ξ regressor in linear least-squares problems

Optimization Quantities

A Active Set
�lb lower bound on �

�ub upper bound on �

c̃ active constraint
ceq scalar equality constraint
ceq equality constraint
cineq scalar inequality constraint
cineq inequality constraint
d search direction in optimization problem
H Hamiltonian
J cost function value
L Lagrange term in optimal control cost function
L Lagrangian
�∗ optimum value of �
Z feasible region for an optimization problem
zzz optimization vector for numerical optimization problems
λ vector of Lagrange multipliers corresponding to equality con-

straints
λ Lagrange multiplier corresponding to equality constraints
µ vector of Lagrange multipliers corresponding to inequality

constraints
µ Lagrange multiplier corresponding to inequality constraint
φ Mayer term in optimal control cost function
ζ integration defect

Misc

�a augmented quantity
b span
Ci aerodynamic coefficient i
c̄ mean aerodynamic chord
δij Kronecker delta with δij = 1 if i = j and δij = 0 otherwise
[�](l,m) element of matrix � in l-th row and m-th column

XXVIII



Misc

ej unit vector in j-th dimension
[�](l) l-th element of vector �
h altitude in World Geodetic System 1984 (WGS84) coordinates
I� identity matrix with dimension �(
IR
)

B
tensor of inertia at reference point R in B system

n� Dimension of vector �
pstat static pressure
q̄ dynamic pressure[
~�×

]
operator to transform cross product into skew symmetric ma-
trix

Sref reference area
T matrix of eigenvectors
T static temperature
t eigenvector
Z base for the null-space

SZ base for the null-space built from solving the sensitivity equa-
tions

α angle of attack
β angle of sideslip
Θ vector of euler angles
Λ matrix of eigenvalues
λ eigenvalue
λ longitude in WGS84 coordinates
µ latitude in WGS84 coordinates
φ bank angle
ψ heading angle
ρ air density
θ pitch angle

XXIX





So far as Mathematics do not tend to make men more sober and
rational thinkers, wiser and better men, they are only to be

considered as an amusement, which ought not to take us off from
serious business.

Thomas Bayes, 1736 [Bay1736, p. 50]
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Introduction

1.1 Motivation and Background

The main motivation for this work will be illustrated first. This is done by highlighting
three aspects that are to play a fundamental role throughout this thesis. Namely these
three aspects are modeling, system identification and optimal control.

1.1.1 Why Modeling?

In modern aircraft projects, mathematical models that may be analyzed and simulated
become ever more important. Their application ranges from simple simulation tasks
in order to get a basic feeling for the aircraft, to training simulations, mission planning,
complex control design and optimization tasks.

Originally, simple, linear mathematical descriptions were mainly used to analyze
the aircraft’s flight mechanical characteristics in terms of natural frequencies and damp-
ing coefficients of the pertinent eigenmotions [MK2016, Ch. 1.1]. With this knowledge,
simple automatic control systems could be designed and tuned on ground, before go-
ing the last, costly step towards flight testing. Nowadays, complex, high fidelity, non-
linear, six degree of freedom models play a central role, allowing for more complex
control strategies and the possibility to reduce flight-test time. Much can already be
tested in simulations, thus eventually reducing development costs [SL2003, Ch. 2].

This extensive use of simulation models has as of yet not fully arrived in the cur-
rently growing Unmanned Aerial Vehicle (UAV) market. Here, much work has been
very “hands-on” so far: simple control strategies have been implemented and tuned
manually, in-flight. However, the importance of simulation models is being recog-
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nized, and their availability promises to make development efforts in this increasingly
important aviation sector more structured.

Additionally, in both worlds the large, commercial aircraft market, and the UAV
sector, many systems show a growing degree of automation. This is not only lim-
ited to the classical task of changing the flight mechanical characteristics via the inner
feedback loops, but also encompasses high level flight management functionalities.
Especially for these latter applications, the myriad of different combinations of scenar-
ios, aircraft states, environmental conditions, applicable procedures and actual piloting
tasks makes it impossible to test every possibility in flight. Thus, the only viable way
is to automate testing based on simulated aircraft behavior.

Another important application of aircraft simulation models is operator training.
It is not important if this “operator” is a commercial pilot flying the aircraft, or the
ground control crew steering a UAV. In both cases the respective personnel needs to
be well trained in order to safely and effectively perform their assigned tasks. This can
be achieved using high-fidelity simulation models, together with real Flight Control
System (FCS) hard- or software, and original input devices, combined in a realistic
flight training environment [SL2003, Ch. 2].

Closely related to operator training are aspects of mission planning. Any mission
that may achieve its goal on paper but is infeasible due to real-life limitations is bound
to fail before it even begins. By using realistic simulation models, the mission can be
simulated before its start in order to check its feasibility in terms of flight mechan-
ics (necessary turn radii, minimum/maximum climb angles, acceleration profiles . . . ),
flight performance (maximum flight time, necessary energy supply), and external dis-
turbances (wind, thermals, turbulences). If any one of these aspects is not to the full
satisfaction of the operator, he may freely adjust the respective mission parameters in
order to keep well within the aircraft’s limitations.

If this adjustment is not done manually, but left to an optimization algorithm, the
threshold towards the field of aircraft trajectory optimization is crossed. Using algo-
rithms from optimal control, complex high-level tasks may be solved. Classically, these
comprise time or fuel minimization problems, but may also encompass the computa-
tion of noise-minimal approach trajectories, or optimal airport arrival sequence deter-
mination; just to name very few examples from this huge field.

Depending on the application at hand, different levels of fidelity are used: a rather
basic 3-degree of freedom (DOF) model may suffice for trajectory and mission plan-
ning, whereas the development of an advanced FCS necessitates a very accurate flight
dynamics model. In order to be cost efficient, one often strives to use that model formu-
lation, which is as simple as possible, but still incorporates the characteristics, which
are most relevant for the task to be performed. This is because the development effort
and cost to formulate a model and determine its unknown parameters increase with
growing fidelity.
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In all of the listed applications, and for all the possible levels of model fidelity,
the results are futile, if the underlying simulation model does not represent reality
sufficiently well. It is thus imperative to have tools at one’s disposal, which may not
only be used to determine these models, but also to verify their quality by comparing
them to real system responses.

1.1.2 Why System Identification?

In the above scenarios, it is of utmost importance that the mathematical aircraft de-
scription represents the real system as closely as possible. This is true both for rather
simple models, with a limited number of parameters and for very complex, high fi-
delity models with many unknowns.

Rough approximations of the aircraft’s behavior are relatively easy to come by.
Many handbook methods are available for the preliminary determination of flight me-
chanical characteristics, based on geometry, airfoil information and the desired con-
figuration [Ros2008, Ros2006, Fin1978]. Some of them are even readily available as
computer programs [WV1979]. On the downside, these preliminary approximation
methods are seldom accurate enough to fulfill the fidelity requirements of the applica-
tions listed in the previous section.

More accurate results may be obtained through Computational Fluid Dynamics
(CFD) or wind-tunnel testing, which come at considerably higher costs though, and
also do not deliver perfect results without uncertainty. A lot of experience is necessary
to meaningfully apply CFD methods, and they only yield the most reliable results, if
checked against real data. As for wind-tunnel testing: although it provides an environ-
ment where many of the influencing variables may be designed independently just as
the analyst desires, several aircraft motions can only be replicated with great difficul-
ties and some not at all. Any dynamic effects, due to e.g. rotational rates are complex
to excite and to evaluate afterwards. Furthermore, the two approaches never consider
the real system, rather an abstract mathematical representation (CFD) or a scaled mod-
el (wind tunnel testing), which introduces further uncertainty when translating them
to a real-life setting.

A way to remedy some of those drawbacks is aerodynamic parameter estimation
based on flight test data. Admittedly, there are some disadvantages to this approach
as well.

First and foremost, the real system has to be available and ready for flight-testing.
Thus some basic FCS, together with suitable recording devices need to be installed,
which may be a show-stopper in the early stages of a development project.

What is more, the most accurate results for aerodynamic parameters are achieved,
if the flow conditions around the aircraft are well known. If the analyst wants to avoid
excessive post-processing to obtain these, special sensor equipment, such as flow vanes
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or multiple hole probes, is required. This may not be available, especially in UAV de-
velopment projects, putting further limits on the applicability of parameter estimation.

Further, the influencing factors for aerodynamic parameter estimation usually can-
not be excited independently, but have to adhere to flight mechanics: a change in angle
of attack will necessarily lead to a change in lift force and thus a change in climb angle.
In contrast, during wind-tunnel experiments, some of these kinematic links may be
broken up and the influencing factors analyzed independently.

Also, designing a suitable flight test program for parameter estimation, which reli-
ably excites all aspects of the system under investigation, necessitates at least as much
experience as successfully applying CFD or designing meaningful wind-tunnel exper-
iments.

Despite these disadvantages, the estimation of aerodynamic parameters from flight
test data is well-established in practice, and routinely applied in new development
programs, since it also comes with major advantages. One of these is closely related
to one of the aforementioned drawbacks: on the one hand, an operational version
of the real systems needs to be available; but on the other hand, experiments can be
conducted using the real system rather than some mathematical or scaled model. Thus,
results will be based on the real reaction of the aircraft under investigation instead of
theoretic predictions, or statements based on laboratory experiments.

Also, the final flight mechanical model, with all relevant subsystems, may directly
be used in parameter estimation. No transfer of coefficients, coordinate systems, or
units is necessary, which helps to reduce errors when converting test results into a
simulation model.

In addition, although the aircraft can only be excited while adhering to flight me-
chanics, it will not suddenly stop to obey the basic laws of physics during its operation.
Thus, even though only a subspace of independently influencing variables may be ex-
cited, one can be sure to cover the right subspace, since the data is collected during
real flight tests. And no time is spent on analyzing combinations of the independent
variables that do not appear in normal operation.

The last, and in many cases probably most pronounced, advantage is the cost and
necessary infrastructure involved when applying aerodynamic parameter estimation
rather than wind-tunnel testing or CFD analysis: If an implementation such as the one
developed during the work on this thesis is available, no additional software licenses
need to be procured (as would be the case for most CFD programs); and no additional
infrastructure such as a wind-tunnel needs to be available. Instead, the necessary re-
sources are: some time for the analysis; a consumer PC with a license for MATLAB

(which is one of the most widely used tools for control design in aerospace applica-
tions nowadays, and is thus probably available); and flight data.

The last aspect, namely the collection of flight data, may be an issue, since carefully
planned tests for the explicit purpose of parameter estimation are necessary. How-
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ever, flight testing is an integral part of any development project, which is why some
additional flight test time can usually be allocated to parameter estimation purposes.

Cost and the availability of specialized infrastructure may play only a secondary
role for huge commercial or military aircraft development projects, which are usually
funded by the government. In contrast, these aspects are critical for commercial Un-
manned Aerial System (UAS) projects: Development times are shorter, available bud-
get is smaller, and commonly no infrastructure or costly CFD licenses can be procured,
leaving aerodynamic parameter estimation as the only practicable way of obtaining
realistic simulation models.

Accordingly, the specific application aspects discussed here, will mostly be with
UAV cases in mind. However, all of the methods presented throughout this work are
applicable to parameter estimation for any size of aircraft, and most even to general
dynamic systems.

1.1.3 Why Optimal Control?

As mentioned before, aerodynamic parameter estimation from flight test data is a well-
established process that is routinely applied in aircraft development projects. How-
ever, most of the approaches go back to algorithms that have originally been devel-
oped in the 1970’s and 1980’s. The most important update during the last 30 years may
have been the use of growing computational power to consider not only linear, but
also non-linear model formulations. But the underlying solution algorithms are still
the same. Since good results have been obtained during the last three decades, this
should not be regarded as “bad” per se.

On the other hand, big advancements in the field of optimal control have been
made since the 1980’s. More and more computational power, available on standard
consumer PCs, have enabled the solution of non-linear programming problems of in-
creasing size. Now it is possible to tackle real-life optimal control tasks that result
in huge optimization problems. However, they are comparatively straight forward
to solve, if modern methods for their formulation are used. These methods also im-
prove the robustness of the solution, together with its convergence radius, while the
resulting, sizable problem stays manageable through the extensive exploitation of its
sparsity characteristics [Bet2010, BA2010].

It thus seems natural to combine the two fields, and to try to benefit from the ad-
vancements in optimal control, also in the field of parameter estimation.

Together with UAV applications, this constitutes the main motivation for this thesis.
The specific solution strategies and application aspects that have been adapted will be
detailed in the following sections.
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1.2 State of the Art

The following, first subsection refers to the main historical contributors to modern day
estimation theory. After that, a brief overview of optimization and optimal control is
given, and the section is concluded by some remarks on the state of the art of parameter
and state estimation and its aircraft applications.

The detailed mathematical background will be presented in the subsequent chap-
ter I “Preliminaries”.

1.2.1 Historical Perspective of Estimation Theory

No work on parameter estimation from observation data can be complete without ref-
erence to CARL FRIEDRICH GAUSS. His invention of the method of least-squares in his
work “Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambien-
tium” (“Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic
Sections” [Gau1857]) laid the foundation for many estimation approaches to follow in
the subsequent centuries. Not only did GAUSS use this method to solve linear least-
squares problems: the equations he dealt with in the observation of heavenly bodies
were inherently non-linear. In order to still obtain viable solutions, he developed an
iterative procedure, based on first order approximations [Gau1857], which allowed for
the solution of non-linear systems of equations; This approach is still at the heart of
many modern solution algorithms.

Next to the method of least-squares, probably the most important contribution of
GAUSS to modern estimation theory was the statement of the Gaussian or normal dis-
tribution. He based this distribution on the observation of measurement errors, for
which he postulated three simple assumptions

1. Small measurement errors are more likely than large measurement errors

2. The likelihood for the positive and negative value of an error has to be equal (i.e.
the distribution has to be symmetric)

3. If several observations are made, the most likely value of the quantity of interest
is to be the arithmetic mean of the observations

Subsequently GAUSS used fundamental probabilistic arguments along with some basic
calculus to arrive at the well-known definition of the normal distribution for some
zero-mean measurement error ∆, with a “measure of precision”1 h [Gau1857, Sec. 177]

φ(∆) = h√
π

exp
(
−h2∆2

)
The main importance of this distribution lies in the Central Limit Theorem (see Ap-
pendix A.4.9.2). It states that, independent of the type of distribution of a random

1 GAUSS’ measure of precision is related to the modern variance via σ2 = 1
2h2
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variable, its sample mean (for sufficiently large sample sizes) will be distributed ac-
cording to a Gaussian or normal distribution. Thus, even if one cannot explicitly state
the nature of the distribution of some random variable, as soon as an averaging process
is involved, one can always argue that the result will be normally distributed. Some
parallels to the engineer’s fondness of linearization in order to simplify problems can
be drawn: if no precise knowledge about a random component can be obtained, the
analyst may always use the normal hypothesis and afterwards check if it was justified.
GAUSS’ ideas are still at the core of many modern approaches, as will be illustrated
throughout this work, underlining the importance of his discoveries.

During the 18th and 19th century, other mathematicians published ideas, which are
still in use today: DANIEL BERNOULLI applied the idea of maximizing a probabil-
ity density in order to obtain the “most probable” value of the underlying, desired
quantity [Ber1777, Ken1961]. Due to some unfortunate assumptions, he encountered
technical difficulties, which eventually led to unsatisfactory results. Only in the begin-
ning of the 20th century, RONALD AYLMER FISHER re-invented the method of maximum
likelihood, and put it on a sound mathematical basis, which made it useful for real-life
applications. In a series of papers [Fis1912, Fis1922, Fis1925], he also introduced other
fundamental ideas of modern estimation theory, such as “efficient” and “consistent”
estimates, and investigated his method on the grounds of this theory.

Another early pioneer in probability theory was THOMAS BAYES, even though he
did not live to claim his fame. In his essay [Bay1763], which was posthumously pub-
lished by his friend RICHARD PRICE, he stated a theorem about conditional probabili-
ties that nowadays bears his name

Pr{A|B} = Pr{B|A}Pr{A}
Pr{B}

This seemingly simple formula can be found in many modern publications on statisti-
cal inference and lies at the core of a whole field entitled “Bayesian Statistics”. It allows
for a straightforward inclusion of prior knowledge about an event into the analysis and
is thus not only central to iterative estimation procedures, such as the Kalman filter. It
is also an important tool in parameter estimation, if prior knowledge about the param-
eters is to be used. Therefore, it is inevitable that this theorem will be employed at
numerous occasions throughout this work.

The last major theoretic breakthrough that needs to be mentioned for the com-
plete historic background of this work are the findings due to RUDOLF EMIL KÁLMÁN

[Kal1960, KB1961]. He considered parameters that were allowed to vary in time ac-
cording to a prescribed model, which incorporates a well-defined random component
on one side. On the other side, he considered randomly disturbed measurements of
linear combinations of those parameters, which can be used to correct propagated val-
ues. In this context, the border between parameter and state estimation is blurred, and
appears as merely two sides of the same problem. KALMAN’s approach to optimally
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combine propagated values with measurements provided a solution methodology that
was much-needed in the age of the space race. Although many other researchers at that
time looked into state estimation, KALMAN managed to link his name to the topic as
no other, by publishing his findings at the right time, and for a wide audience. This is
mainly due to its ease of implementation, and the readily available approximate solu-
tions even for non-linear model formulations [Sim2006, App. A]. The most prominent
application of the latter is probably in the field of sensor data fusion, where the ap-
plication due to SMITH, SCHMIDT, and MCGEE [SSM1962] was amongst the first, and
notably contributed to the fame of the Kalman Filter.

The choice of milestones in estimation theory and inferential statistic in the forego-
ing section is mainly motivated by the applications to follow in this work. For a more
comprehensive treatment of the historical aspects, see e.g. [Hal2008, Lai1974, Sor1970,
Sor1980, Sim2006].

1.2.2 Optimization and Optimal Control

The problem of achieving a goal while minimizing the cost associated with this achieve-
ment is probably as old as the mathematical tools that may be used to describe the task
and cost at hand. The field of optimization has grown to be very vast, with myriads of
different possible problem and cost formulations. This is why a restriction is in order:
the focus of this thesis will lie on cost and constraint functions that are continuously
differentiable almost everywhere, and feasible sets that may be described by (possibly
non-linear) algebraic equality and inequality constraints.

The two results that enable the structured search for solutions of those optimiza-
tion (and consequently optimal control) problems are the Karush-Kuhn-Tucker (KKT)
conditions on the one hand, and the Pontryagin maximum principle on the other.

The first are named after the publications by HAROLD W. KUHN and ALBERT W.
TUCKER [KT1951] and WILLIAM KARUSH [Kar1939], which provide first order neces-
sary conditions for optimality (under certain regularity conditions) in the presence of
inequality constraints. The KKT conditions extend the notion of Lagrange multipliers
to inequality constraints, and can eventually be exploited in the algorithmic search for
optima in inequality constraint cases. Only these results enabled the solution of large
scale, real-life optimization problems.

The second fundamental result in modern optimal control theory was another brain-
child of the cold war: During the 1940’s and 1950’s, on the west side of the Atlantic
Ocean, HESTENES, BELLMANN and ISAACS tried to solve a minimum time intercep-
tion problem, while LEV SEMYONOVICH PONTRYAGIN and his students investigated a
similar problem in the Soviet Union [Bit2017, Ch. 1]. The latter however, managed to
link their names to what is nowadays called “Pontryagin’s maximum (or minimum)
principle”, which was first made available for a large, English speaking audience in

8



Chapter 1: Introduction

[PBGM1962]. Therein, necessary conditions for optimality of a cost, subject to dynamic
system constraints are given, providing the mathematical tools to solve optimal control
problems.

With the advent of modern computers, both results have been brought together by
first suitably transcribing the optimal control task, and subsequently solving the result-
ing non-linear programming problem based on consequences of the KKT conditions.

The literature on this topic today is abundant. The aspects collected here are largely
based on the textbooks [Bet2010, BA2010, Ger2017, Ger2018, Ger2012] as well as the
doctoral theses [Rie2017, Bit2017].

1.2.3 Modern Estimation Theory

Similar to optimization and optimal control, the field of system identification and sta-
tistical parameter estimation is huge nowadays. The sheer number of disciplines that
routinely apply estimation in their respective fields, together with their discipline-
specific solutions is immense. This again necessitates the restriction to a narrower field,
namely parameter and state estimation in dynamic systems with aerospace applica-
tions. Still, an exhaustive overview over the topic is beyond the scope of this work;
rather its main sources will be mentioned briefly.

As illustrated already, the field of state estimation began to advance quickly with
the works of KALMAN, and its application to linear and non-linear systems. Further
notable contributions are due to RAUCH, TUNG, and STRIEBEL, who considered the
state estimation problem for linear systems from a maximum likelihood point of view
[RTS1965]. They provided one of the most used batch algorithms: the Rauch-Tung-
Striebel (RTS) smoother. It is able to not only include past, but also future measure-
ments in order to obtain the best possible state estimate (in a statistical sense).

Many of the results at the time were compiled by JAZWINKSI [Jaz1970], which
provides an exhaustive background on linear and non-linear filtering and smoothing.
Some ten years later, SORENSON’s book highlighted the close relation between state es-
timation, maximum likelihood and maximum a posteriori estimation on the one hand
and least-squares approaches on the other hand [Sor1980]. Also, it provides a sum-
mary of the historical development of estimation theory up to its publication date.

The most modern books on state and parameter estimation that have been con-
sulted here, are the ones by SIMON [Sim2006] and CRASSIDIS and JUNKINS [CJ2012].
Their focus lies mainly on state estimation, presenting the state of the art in a modern
vector-matrix notation with many optimization based arguments. Statistical aspects
are only considered when necessary.

One of the works on general system identification, which has been consulted for
this thesis, is the one by WALTER [WP1997], focusing on the identification of parametric
models. Since most aerospace applications are based on this type, it is especially rele-
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vant. It provides a good, albeit application independent, overview over system iden-
tification, illustrating advanced concepts that go beyond what is usually discussed in
aircraft parameter estimation.

Works that have not directly found their way into this thesis, but should be men-
tioned for an overview over the state of the art, are the books by LJUNG, which form
the basis for MATLAB’s own system identification toolbox [Lju2009, Lju2011]. Addi-
tionally, works that occur in most bibliographies in aircraft system identification are
due to EYKHOFF [Eyk1987], SODERSTRÖM and STOICA [SS1989], and GOODWYN and
PAYNE [GP1977].

Even though some arguments will need to be borrowed from frequency domain
approaches, the overall field will not be discussed. The reason for this is mainly its
inherent limitation to linear models. However, although the basic idea of consider-
ing the data in another domain seems fundamentally different, it is noteworthy that
some of the statistical basics to be illustrated in this work are also routinely applied
in frequency domain parameter estimation. Textbooks on the topic are available by
SCHOUKENS and PINTELON [SPR2012, PS2012], where actual aircraft and rotorcraft
applications are discussed by TISCHLER [TR2012].

1.2.4 Current Developments in Aircraft System Identification

The first attempts at numerically quantifying an aircraft’s characteristics date back to
the early 1920s, when a basic detection of frequencies and damping ratios was of inter-
est. Already then, GLAUERT [Gla1919] and NORTON [Nor1924a, Nor1924b] engaged
in the determination of stability and control derivatives.

During the 1940’s and early 1950’s, these aspects were investigated using frequency
domain approaches. Prominent names during this era were those of GREENBERG

[Gre1951], MILLIKEN [Mil1947], and SHINBROT [Shi1951].

Between the 1940’s until the early 1960’s most techniques were limited to frequency
response methods, or suffered from other limitations [Jat2015, Ch. 1]. With the ad-
vent of modern computers, it became possible to apply more advanced, oftentimes
maximum likelihood based methods, to identify more sophisticated models [CJ2012,
Ch. 4.4] [MK2016, Ch. 1]. Especially the works of ILIFF et al. [IP1969], TAYLOR and
ILIFF [TI1969], MEHRA [Meh1970, Meh1971], and GERLACH [Ger1971] are to be men-
tioned here.

During the 1980’s, many of the approaches that are still in use today were com-
piled by MAINE and ILIFF [MIM1985, MI1986, IM1985, Ili1989], and MULDER et al.
[MBI+1994] with a very complete overview over the mathematical background. Also,
they collected an extensive bibliography over the works in aircraft parameter estima-
tion up to 1986 [IM1986]; another one is available from the year 1996 by HAMEL and
JATEGAONKAR [HJ1996]. A list of parameter estimation activities at NASA Dryden
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Flight Research Center was compiled by WANG and ILIFF in [WI2004], the correspond-
ing summary of activities at the Deutsches Zentrum für Luft- und Raumfahrt (DLR)
was compiled by JATEGAONKAR [Jat2004].

Nowadays, the two main sources for theoretical background and applications ad-
vice for time-domain aircraft system identification are the works by MORELLI and
KLEIN [MK2016] as well as the book by JATEGAONKAR [Jat2006], respectively the sec-
ond edition [Jat2015]. Those two compile the current state of the art, with numerous
application examples, accompanying software, and extensive bibliographies for fur-
ther reading.

Publications on the application of system identification methods in aircraft de-
velopment projects appear on a regular basis in respective conference proceedings
and journals. As with most topics in the aerospace field, the American Institute of
Aeronautics and Astronautics (AIAA) and its web presence are one possible starting
point for research. They even dedicated two special sections in the Journal of Air-
craft to flight vehicle system identification [Jat2004, Jat2005], which illustrate many
applications. Further, the working group around MORELLI can look back on long
years of practical experience and regularly share their results (e.g. [MS2009, Mor2012a,
Mor2012b]). Their contribution to one of the aforementioned special sections is note-
worthy [MK2005], since it already contains many major topics to later appear in their
book, together with a detailed historical overview over aircraft system identification at
NASA Langley Research Center.

The vast number of papers and their diverse applications again prohibit an exhaus-
tive overview. Only some of the publications by BOTTASSO are mentioned here, due
to their close relation to what is to be presented in the remainder of this work: In
[BLM2009b, BLMM2010] the similarities between parameter estimation and trajectory
optimization are pointed out, and a special single-multiple shooting method is illus-
trated. The latter has already been discussed earlier in [BM2009].

After more than five decades of a numerous activities in the field of aircraft system
identification, the well-established methodologies can accomplish good results in a
wide area of fields [MK2016, Ch. 1]

◦ it is possible to determine the structure of aerodynamic model equations along
with the numerical values of the corresponding parameters, as well as uncer-
tainty bounds; one prerequisite for this is that the data has a certain quality.

◦ filtering techniques provide the means to distinguish between measurement noise
and external disturbances, such as atmospheric turbulences or modeling errors

◦ these filtering techniques, combined with parameter estimation approaches, can
be used to determine systematic instrumentation errors

◦ prior knowledge can be included in many estimation algorithms

◦ as a by-product the approaches developed in aircraft system identification allow
for the design of experiments with a maximum information content.
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However, despite the fact that standard approaches yield very good results, there
is still room for improvement. The following issues have been identified:

◦ Optimization has been understood to be a necessary step in most parameter es-
timation tasks. However, so far the capabilities of modern optimization and op-
timal control formulations are not fully exploited: the well-established solution
methodologies for dynamic system identification usually consider a single shoot-
ing formulation. In modern optimal control however, full-discretization has ad-
vanced to be the state of the art, but has of yet not been widely used for parameter
estimation tasks. Its increased robustness and better convergence properties may
however greatly benefit any system identification project.

Also, off-the-shelf tools such as the optimal control tool FSD optimAL CONtrol
tool for MATLAB (FALCON.m) [RBG+2018] may then be used for the solution of
parameter estimation tasks, with manageable additional implementation effort.

◦ The standard literature on flight vehicle system identification usually advises the
analyst to try to obtain time-synchronized sensor readings with equal sampling
frequencies. However, in many real-life scenarios, requirements on sensor equip-
ment are mainly driven by automatic control necessities. Equal sampling fre-
quencies are then of minor concern. This is especially true for Remotely Piloted
Aerial System (RPAS) applications. Due to tight budgets and short development
cycles often no explicit sensors for system identification purposes are installed.

So far, no mathematical rigorous treatment of signals showing different sampling
rates is available, at least to the best of the author’s knowledge. This issue is of
great concern, if raw sensor data is to be processed: typical sampling frequen-
cies for inertial sensors may be 50 to 100 times higher compared to e.g. Global
Navigation Satellite System (GNSS) data, resulting in a large imbalance of the
information content.

◦ One of the great advantages of the standard maximum likelihood approaches
is that no explicit weighting of the outputs is necessary to obtain meaningful
results, i.e. that manual tuning is reduced. Nonetheless, sometimes it might still
be interesting to force the algorithm to focus more on a specific set of signals.
This has not been possible so far, at least not without violating the underlying
statistics.

◦ Existing optimization algorithms are capable to incorporate constraints, however
mainly they are restricted to constraints on model parameters only. When using
a full discretization formulation, the complete system dynamics are formulated
as constraints. This has two major consequences: on the one hand more compli-
cated (path-) constraints, possibly including states and inputs, can be considered
in the optimization stage. On the other hand, extended use of constraints neces-
sitates their inclusion when determining parameter uncertainty estimates. Even
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though there exist approaches to overcome this challenge, they have not yet been
rigorously applied in flight vehicle system identification.

◦ As MORELLI states in [MK2016, Ch. 6.3], the maximum likelihood cost function
is often far from quadratic, with multiple local minima. This usually necessitates
very good initial parameter guesses, that already lie in the vicinity of the cor-
rect local minimum in order for gradient based optimization algorithms to yield
meaningful results. The computation of these initial guesses is often cumbersome
and very project specific.

All of these shortcomings of the current state of the art will be addressed in the
course of this work, and solutions will be proposed.

1.3 Objectives

As mentioned, the overall aim of this thesis is to bring the fields of optimal control and
parameter estimation closer together, with a special focus on UAV applications.

Currently, one can get the impression that for many scientists working in parameter
estimation, the optimization part of their work flow is merely a necessary means to an
end. On the other hand, some people in the field of optimization and optimal control
seem to consider parameter estimation a simple special case that may easily be solved
using their standard tools.

This thesis now attempts to show that both statements are not entirely true. Even
though the optimization part is an inevitable step in parameter estimation, it is more
than just a necessary tool to obtain a solution. If use is made of recent advancements in
the field of optimal control, more robust algorithms with larger convergence radii can
be obtained.

As to the optimization view on parameter estimation: although most problems do
come down to some sort of weighted least-squares problem, whose solution is quite
straight forward, this is not the complete picture. Numerical values for the parameter
estimates can only be half the result in parameter estimation. The necessary second
part are metrics to assess the quality of the result, such as parameter error covariances.
Quantifying and analyzing these is a routine step in parameter estimation, and it will
be shown that the tools used therein are also meaningful from an optimization point
of view.

Specifically, the thesis sets out to meet the following objectives:

◦ develop a unified mathematical description that contains both the standard meth-
ods as well as applied optimal control approaches for state and parameter esti-
mation

◦ show the applicability of advanced optimal control methods, namely the use of
full discretization, to parameter and state estimation
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◦ develop a unified framework for uncertainty quantification for all cases

◦ highlight both sides of the topic, i.e. the parameter estimation from an optimiza-
tion point of view and optimization from a parameter estimation point of view

◦ develop solutions to challenges that appear when actually applying the algo-
rithms to real life problems. These include interpolation approaches specifically
tailored to the task at hand, scaling approaches to make convergence more ro-
bust, and several practical methods for uncertainty quantification to choose from

◦ collect existing solutions to challenges in real-life application, such as derivative
determination, residual covariance estimation and sensitivity computations

◦ show the potential in the synergy between parameter estimation and optimal
control for future work in e.g. model validation, optimal input design, or optimal
control with parameter uncertainties.

◦ implement all of the above in a modular, easy to handle fashion that enables the
user to quickly get started with parameter estimation.

1.4 Contributions

The main contributions of this thesis to the field of parameter estimation and to optimal
control are to be illustrated next.

Identification of Optimal Control Methods Suitable for Parameter and
State Estimation

In the current literature, optimal control and parameter estimation are commonly
treated as two separate fields. This thesis investigates those aspects of direct optimal
control that may advantageously be applied in the context of flight vehicle system
identification.

Works both on optimization, optimal control, and estimation theory are abundant,
but only few highlight the commonalities between these fields. Some steps in this
direction have been taken [BLM2009b, BLMM2010], however not with the theoretical
depth as will be presented here.

Part I: “Preliminaries” assembles this background information, where every piece
is not new per se, but the overall collection, and its level of detail in both fields, has
not yet been assembled in one work. The main result of this part, next to providing
necessary background information, is the statement of a very generic state and param-
eter estimation task, formulated as an optimal control problem. At the same time, it is
shown how the formulations that commonly appear in the literature (smoothing state
estimation, output error parameter estimation, etc.) may be considered as special cases
of this general formulation.
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Application Details for Solution of Real-Life Parameter Estimation Problems
In this thesis, clear rules, algorithms and approaches are presented to overcome imple-
mentation considerations that arise from real-life applications.

Some of the issues that have to be solved in practical applications are: the determi-
nation of meaningful weighting matrices; the computation of cost function derivatives;
the proper scaling of parameters, states, outputs, and cost; the reduction of the prob-
lem size; If these aspects are not addressed properly, results may remain unsatisfactory
or computational times may increase beyond acceptable limits.

For some of these aspects, well-established solutions exist, whereas for others, new
approaches have been developed during the work on this thesis. All are collected
in Chapter 3 “Implementation Aspects of System Identification Using Optimal Control
Methods”, which will eventually help to make the aircraft system identification process
more efficient, streamline and robust.

New results to be presented are an argument why the cost function Hessian is ap-
proximately equal for given versus estimated residual covariance matrices (section 3.2).

Further, an efficient interpolation scheme for the solution of the dynamic system
equations is illustrated (section 3.9). It is able to reduce the problem size considerably,
while keeping approximation errors small. This speeds up computations in the early
trial-and-error phase when determining a proper model structure, thus enabling the
handling of large data-sets in the first place.

As with many other optimization problems, proper scaling is imperative. Two ap-
proaches to scaling the cost function are investigated (section 3.10), where an approach
to directly scale the residual covariance matrix is new. It may be used to account for
different sampling frequencies in the residual covariance matrix estimate; or simply
to have more weight on a specific output. Preliminary ideas have been published by
the author [GH2016]. Here, they are developed further by conducting a thorough in-
vestigation of the scaling approach, together with its consequences for gradient and
Hessian computations.

Mathematical Framework for Uncertainty Quantification in
Direct Optimal Control
It is imperative for any parameter estimation algorithm to provide means of uncer-
tainty quantification together with the actual estimates. This thesis presents a mathe-
matical framework that is capable of quantifying the estimation uncertainties, also for
the application of direct optimal control to parameter estimation.

Standard textbook approaches for aircraft parameter estimation cannot achieve this,
since they are in general not able to properly incorporate constraints on the optimiza-
tion variables. However, in direct optimal control the system’s dynamics are enforced
purely via constraints. To solve this issue, a new method is proposed that is able to
incorporate arbitrary constraints. At the same time, it contains the standard approach
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for unconstrained single-shooting as a special case.
The background on this is illustrated in section 3.5 “Unified Approach for Com-

putation of Parameter Uncertainties”. So far, parameter covariance estimates in flight
vehicle system identification have only been provided for the unconstrained case. In
other fields, there exist specific solution algorithms for multiple shooting formulations
[Boc1987], but this has not yet been transferred to the aerospace field.

Detailed Formulation of Estimation Problem in Optimal Control Framework
Eventually, the parameter estimation problem is formalized as a fully discretized opti-
mal control problem.

It is illustrated how standard methods for dynamic system identification for de-
terministic and stochastic systems constitute single shooting problems with a specific
cost function; the latter being based on statistical considerations. Then the formalism
is extended to a full discretization transcription technique for both deterministic and
stochastic system formulations. The details are presented in Chapter 4 “Application of
Optimization to Parameter Estimation Problems”, combining all building blocks that
have been discussed in the preceding chapters. Thus, the full array of optimal con-
trol tools becomes available for parameter estimation, including the use of high-end
off-the-shelf optimization algorithms and improved convergence radii of modern ap-
proaches.

Steps toward using full discretization in parameter estimation have been taken
in the past, by applying multiple-(together with single) shooting methods [BM2009,
BLM2009b]. In an overview chapter, SCHITTKOWSKI lists many different formulations
for parameter estimation in dynamics systems, with most examples being taken from
chemistry applications. On a side-note he also mentions full discretization as a possible
way for its solution. However, no more details are provided, and parameter estimation
is again merely presented as a curve fitting problem, thereby neglecting all statistical
interpretations [Sch2000].

To the best of the authors knowledge, using full-discretization for parameter esti-
mation in the aerospace field has not been investigated thoroughly; merely preliminary
results have been published by the author [GGBH2016].

Generic Approach for Initial Guess Improvement for Model Parameters
Most parameter estimation algorithms are iterative in nature. Thus, the quality of the
results crucially depends on meaningful initial model parameter guesses. Section 3.8
“Automatic Improvement of Initial Guesses During Initial Optimization Iterations”
shows two approaches to improve upon them. Both do not necessitate auxiliary in-
formation about the problem such as wind tunnel data, or previous estimation results.
Merely meaningful state information and a suitable model structure need to be avail-
able. The first method had been reported already, whereas the second, which is again
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closely related to the idea of full-discretization, has not yet been encountered.
Most of the examples in chapter 6 illustrate that applying these two approaches,

together with the larger convergence radius of fully discretized problems, they provide
a very high robustness against bad initial model parameter guesses. In most example
cases it was enough to provide a vector of zeros to obtain good results.

Implementation of an Integrated Parameter Estimation Tool
Finally, all of the aspects developed throughout the theoretic chapters of the thesis have
been implemented in an add-on to the MATLAB optimal control toolbox FALCON.m
[RBG+2018], which is being developed at the Institute of Flight System Dynamics. In
parameter estimation, no single algorithm will always perform perfectly. It was thus
realized that the overall goal of any implementation has to be to provide a large range
of possible solution methods, which may easily be interchanged.

The user is then able to apply different algorithms to the same problem definition,
with minimal changes in the source code, in order to see which performs best for the
problem at hand. The add-on is set-up such that

◦ all convenience features (interpolation, scaling, consideration of prior informa-
tion, initial guess improvement, . . . ) can be quickly de-/activated;

◦ all necessary features (derivative computation, determination of uncertainty es-
timates) are tightly incorporated;

◦ with the change of a few lines of code, the same problem definition may be solved
using standard or advanced optimal control methods.

1.5 Structure of the Thesis

The overall structure of the thesis is shown in figure 1.1. After this introduction, the
main text is split in three parts.

The first part I is dedicated to the necessary mathematical preliminaries in the fields
of optimization and optimal control, estimation theory and state estimation. The three
subsections of this part are relatively independent, merely some optimization aspects
will be used in the estimation chapters. Thus, readers familiar with the respective top-
ics may only browse through them cursorily, to get acquainted with the nomenclature
in use.

Chapter 2.1 summarizes the basics in continuous cost function optimization with
continuous algebraic constraints, using gradient based algorithms. Additionally, dis-
cretization and transcription methods to translate a continuous time optimal control
problem into a non-linear programming problem are discussed.

In Chapter 2.2, some basics in statistical estimation are summarized, and their use
illustrated for maximum likelihood, least-squares, and Bayesian estimation. These
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three estimators will also be the most frequently used ones during the remainder of
the thesis.

The first part is concluded by Chapter 2.3, which discusses the basics in linear
and non-linear state estimation. The most prominent state estimation algorithm in
this chapter is the Kalman filter, but also maximum likelihood state estimation (lead-
ing amongst others to the RTS smoother) will be considered. Towards the end of the
chapter it will be shown that the maximum likelihood state and parameter estima-
tion approach leads to a very general problem formulation that incorporates all of the
aforementioned estimation approaches as special cases.

The second part II then covers aspects that are necessary for the actual application
of the estimation algorithms. In this part, most of the contributions of this thesis will
be discussed in detail.

Chapter 3 illustrates some more general aspects that are helpful irrespectively of
the precise formulation of the problem. These aspects consider, amongst others, the
estimation of covariance matrices, determination of derivatives, a general approach
for uncertainty quantification, as well as specifically tailored interpolation and scaling
considerations.

Finally, four possible problem formulations are stated and discussed in Chapter 4.
They consider deterministic and stochastic systems, which are transcribed using single
shooting and full discretization approaches.

The third part III collects information on the actual process of aircraft system iden-
tification, together with RPAS application examples. Chapter 5 gives a brief overview
over the major steps in a typical project, which namely are planning and executing
experiments, preprocessing raw data, modeling, parameter estimation and model val-
idation.

The following Chapter 6 is dedicated to application examples and discusses three
different, independent scenarios. At first, Chapter 6.1 shows the performance of the
full-discretization approach for unstable aircraft models. Another example in Chap-
ter 6.2 considers the application to stochastic systems. The last, most complex example
shows an application using the low-cost flying testbed SKYMULE in Chapter 6.3. A full
six degree of freedom model of the aircraft is derived, purely based on the available,
low-cost sensor data.

A brief conclusion and possible future work is outlined in the last Chapter 7.
The appendices contain additional background information that is necessary for a

complete discussion, but would unnecessarily disrupt the flow of the text:

◦ Appendix A: layout conventions, matrix derivative rules, statistical basics
It is advised to at least browse through this appendix, since it assembles all back-
ground information that is assumed to be known in the main body of this text.

◦ Appendix C: statistical proofs e.g. for asymptotic characteristics of maximum
likelihood estimates
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◦ Appendix E: analytical forms for the gradient and Hessian of the cost functions
in use

◦ Appendix D: relation between discrete and continuous time process noise, equiv-
alence of maximum likelihood and minimum variance state estimation

◦ Appendix B: descent direction condition

◦ Appendix F: flight mechanics coordinate frames, designation rules

◦ Appendix G: complementary attitude filtering, additional SKYMULE figures
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It is remarkable that a science which began with the consideration
of games of chance should have become the most important

object of human knowledge.

Pierre-Simon Laplace, 1814 [Lap1814]

2

Mathematical Preliminaries

In the following, the mathematical basics for the application of optimal control meth-
ods to parameter estimation problems will be laid out. At first some basics of opti-
mization and optimal control will be illustrated, followed by a discussion of the fun-
damentals in estimation theory. The chapter is concluded by a presentation of some
state estimation concepts and their relation to optimization and estimation theory.

2.1 Basics of Optimal Control Theory

The solution to the estimation problems that will be discussed throughout this thesis
eventually come down to solving an optimization problem. This is why a basic discus-
sion of cost function optimization, together with some optimal control basics are to be
presented in this chapter. The field of optimization is huge, thus only the few aspects
necessary to understand the application of optimization in the parameter estimation
context are illustrated. For more in-depth treatment the interested reader may consult
the standard works on these topics, some of which are [Bet2010, Ger2017, Ger2018,
Ger2012, Bit2017, Rie2017, BA2010].

The overall goal will eventually be to determine values for the model parameters θ,
that are optimal with respect to some identification criterion. However, they are sel-
dom the only values that need to be incorporated in the optimization. In order to get
meaningful results, additional spurious parameters need to be considered. Commonly,
these include initial conditions, or bias terms. However, if methods from the field of
optimal control are to be used, complete state histories, and even auxiliary inputs may
be subject to optimization.
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In order to distinguish between these two groups of parameters, the model param-
eters will be denoted as θ, whereas the complete optimization vector is zzz. The latter
must not be confused with the measurement vector z, which will be introduced in
later chapters. Different typesetting and the context should make an easy distinction
possible.

2.1.1 Basics of Cost Function Optimization

The focus of this work will be restricted to problems of the following type [Bet2010,
Ch. 1]:
Find the

1. parameter vector zzz∗ ∈ Rnz of finite size nzzz,

2. such that the cost function J(zzz) is optimized

3. without violating a set of constraints, which are formulated as equality and in-
equality constraints

ceq(zzz) = 0 (2.1)

cineq(zzz) ≤ 0 (2.2)

where the inequality sign in above equation is to be understood element-wise.

A feasible point is one, where all constraints are satisfied. The set of all feasible
points is called the feasible region Z . If no constraints are imposed, i.e. if the feasible
region is equal to Rnz , the task is said to be an unconstrained problem.

The most general form of optimization problems to be considered here may be
summed up as 

min
zzz
J(zzz)

s.t.
ceq(zzz) = 0

cineq(zzz) ≤ 0

 (2.3)

Only minimization problems will be considered, since every maximization task can be
converted by multiplying the cost function with −1. A local minimum is a point, for
which it holds [Ger2017]

J(zzz) ≥ J(zzz∗) ∀zzz ∈ Z ∩ Uδ(zzz∗) ={zzz :‖zzz∗ − zzz‖ ≤ δ} (2.4)

i.e. a point in the feasible region Z , where, in a small neighborhood Uδ around zzz∗,
no smaller function value of J can be obtained. If no smaller function value can be
reached in the complete feasible region Z , the minimum is called global. In general,
global minima are hard to find, and most gradient-based optimization algorithms only
provide local minima.
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2.1.2 Unconstrained Optimization

First the unconstrained case is discussed, i.e. problems of the type

min
zzz
J(zzz) (2.5)

where the feasible region is the whole of Rnz . Then, necessary conditions for a local
minimum zzz∗ are [Bet2010, Ch. 1]

∂J

∂zzz

∣∣∣∣∣
zzz=zzz∗

= 0 (2.6)

(zzz∗ − zzz) ∂
2J

∂zzz2

∣∣∣∣∣
zzz=zzz∗

(zzz∗ − zzz)ᵀ ≥ 0 ∀zzz ∈ Uδ(zzz∗) ={zzz :‖zzz∗ − zzz‖ ≤ δ} (2.7)

whereas their sufficient version is

∂J

∂zzz

∣∣∣∣∣
zzz=zzz∗

= 0 (2.8)

(zzz∗ − zzz) ∂
2J

∂zzz2

∣∣∣∣∣
zzz=zzz∗

(zzz∗ − zzz)ᵀ > 0 ∀zzz ∈ Uδ(zzz∗) ={zzz :‖zzz∗ − zzz‖ ≤ δ} \ zzz∗ (2.9)

The first equation in both cases requires the gradient vector of J to be 0 at zzz∗. Since the
gradient points in the direction of the steepest ascend of J [Ger2017], a decrease of the
cost function is always possible in the direction −∂J

∂zzz (see also the following discussion
of the descent condition (2.16)). This is why it is intuitive that at any optimal point
according to equation (2.6) the cost function gradient has to vanish.

The second equation in both cases enforces a positive (semi-)definite Hessian of the
cost function in a small environment around the optimal zzz∗. This can be illustrated
using a second order Taylor expansion of J around the optimal point zzz∗

J(zzz) ≈ J(zzz∗) + ∂J

∂zzz

∣∣∣∣∣
zzz=zzz∗︸ ︷︷ ︸

=0

(zzz − zzz∗) +(zzz − zzz∗) ∂
2J

∂zzz2

∣∣∣∣∣
zzz=zzz∗

(zzz − zzz∗)ᵀ

= J(zzz∗) +(zzz − zzz∗) ∂
2J

∂zzz2

∣∣∣∣∣
zzz=zzz∗

(zzz − zzz∗)ᵀ
(2.10)

If in above equation the Hessian ∂2J
∂zzz2

∣∣∣
zzz=zzz∗

is positive (semi-)definite, the second term is
greater than (or equal to) zero and J(zzz∗) has to be a local minimum of J(zzz) with the
definition in (2.4).

2.1.2.1 Newton’s Method in Optimization

A common way to solve an unconstrained optimization problem is then to find a point
that satisfies equation (2.6). This can be achieved by applying Newton’s algorithm to
finding its root: linearize the gradient ∂J

∂zzz about the current estimate zzzi, and use the root
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of the linearization as the next iteration point [Bet2010] [MK2016, Ch. 6.1]

∂J

∂zzz

∣∣∣∣∣
zzz=zzzi+1

≈ ∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

+ ∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

(zzzi+1 − zzzi) != 0 (2.11)

zzzi+1 = zzzi −

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

(2.12)

This linear approximation to the gradient corresponds to a quadratic approximation of
the cost function; the gradient’s root is then equal to the approximation’s minimum.
The expression

di = zzzi+1 − zzzi (2.13)

is generally termed the search direction, i.e. the direction in the parameter space, in
which the next, better iterate is searched for. If Newton’s approach to root finding is
used, it is

di = −

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

(2.14)

Since in above approach, merely a root of the gradient is determined, it cannot be guar-
anteed that a minimum is approached rather than a stationary point or a maximum.
To avoid a cost function increase, it has to be enforced that d is a descent direction at zzzi,
i.e. there has to exist a ᾱ such that [Ger2017]

J(zzzi + αdi) < J(zzzi) ∀0 < α ≤ ᾱ (2.15)

At every iteration, the step along di (possibly reduced by a factor of up to ᾱ) must lead
to a cost function reduction.

A sufficient condition for di to be a descent direction is [Ger2017]

∂J

∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

di < 0 (2.16)

i.e. the directional derivative of the cost function along the search direction di has to
be strictly negative. The proof can be found in Appendix B. Geometrically, this means,
that the search direction and cost function gradient have to enclose an angle between
90◦ and 270◦. Thus the hyperplane through zzzi and perpendicular to ∂J

∂zzz

∣∣∣
zzz=zzzi

divides
the solution space Rnz into two half-spaces. Any descent direction needs to have at
least a small component in the negative gradient direction, i.e. needs to point into the
half-space opposite the gradient direction.

For search directions based on Newton’s algorithm, this results in [Bet2010]

− ∂J

∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

< 0 (2.17)
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Thus, for a Newton based optimization step, the Hessian matrix needs to be positive
definite in order to achieve a cost function reduction.

Close to the optimum, the Newton approach exhibits quadratic convergence [Bet2010,
Ch. 1]. Loosely speaking this means that at every iteration step, the number of signif-
icant figures of the solution roughly doubles, which is very desirable. A more mathe-
matically rigorous definition is [Ger2017, Def. 3.9.4]: the sequence of points zzzi is said
to converge quadratically against zzz∗ if there is a c > 0 such that

|zzzi+1 − zzz∗| ≤ c|zzzi − zzz∗|2 ∀i ∈ N (2.18)

i.e. |zzzi+1 − zzz∗| = O
(
|zzzi − zzz∗|2

)
(2.19)

i.e. at every iteration, the difference to the target value |zzzi+1 − zzz∗| is of the order of
magnitude of the difference in the last iteration, squared|zzzi − zzz∗|2.

However, quadratic convergence is only possible, if accurate information about the
matrix of second derivatives is available. In general, this can be challenging for com-
plex systems and cost functions, since computing first derivatives may already be very
cumbersome; or if done using finite differences, prone to numerical error. For second
order derivatives this problem grows even worse, which is why approximations to the
Hessian are very common. Most of these approximations lead to a decrease in the
convergence rate to a superlinear instead of quadratic convergence [Bet2010, Ch. 1].

However, for many of the parameter estimation algorithms to be discussed, a very
good analytic approximation to the Hessian is possible, see section 3.2. Thus, at least
close to the optimum, their convergence rate should be close to quadratic.

2.1.2.2 Stopping Criteria

Above iteration cannot go on forever, but meaningful abort criteria have to be defined.
From a theoretical point of view, the cost function gradient needs to be zero. However,
in numerical practice, this can usually not be achieved, due to the errors and approx-
imations involved in the solution of real-life problems. Nevertheless, criteria of the
form

∥∥∥∥∥∥∂J∂zzz

∣∣∣∣∣
zzz=zzzi

∥∥∥∥∥∥ ≤ ε (2.20)

together with a user-definable threshold ε are usually included in the optimization
algorithm [Ger2017, Ch. 3.6].

A downside of above criterion is its scale variance, i.e. when scaling the cost func-
tion, the norm of the gradient changes as well, even though the value of the optimiza-
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tion vector does not. Thus, other, often relative, criteria are introduced [GMW1982]

J(zzzi−1) − J(zzzi)
1 +|J(zzzi)|

≤ ε (2.21)

‖zzzi−1 − zzzi‖
1 +‖zzzi‖

≤
√
ε (2.22)∥∥∥∥∂J

∂zzz

∣∣∣
zzz=zzzi

∥∥∥∥
1 +|J(zzzi)|

≤ 3
√
ε (2.23)

For small, absolute values, these criteria lose their relative nature and become abso-
lute themselves [Ger2017, Ch. 3.6]. Usually, a subset of them is used, which has to be
fulfilled simultaneously, in order to determine when to stop the optimization process.

MORELLI provides some numerical values for the model parameters, which have
been successfully used in aircraft system identification [MK2016, Ch. 6.3]∣∣∣∣[θ̂i

]
(j)

−
[
θ̂i−1

]
(j)

∣∣∣∣ < 1×10−5 ∀j = 1 . . . nθ∥∥∥θ̂i − θ̂i−1

∥∥∥
2∥∥∥θ̂i

∥∥∥
2

< 1×10−3

∣∣∣∣∣∣
J
(
θ̂i

)
− J

(
θ̂i−1

)
J
(
θ̂i−1

)
∣∣∣∣∣∣ < 1×10−3

∣∣∣∣∣∣∣
∂J
(
θ̂i

)
∂
[
θ̂
]
(j)

∣∣∣∣∣∣∣ < 5×10−2 ∀j = 1 . . . nθ

The first criterion, being in terms of absolute model parameter values, is very applica-
tion dependent. That threshold given by MORELLI may be adequate for aerodynamic
parameter estimation, but may fail in other contexts, where the order of magnitude of
the respective parameters is different.

2.1.2.3 Globalization Strategies for Newton’s Method

As mentioned above, Newton’s method exhibits quadratic convergence close to the
optimum of the cost function. However, far away from it, the method might even
diverge, e.g. if the inherent quadratic approximation to the cost function is locally not
good enough. In these cases, precautions have to be taken in order to eventually find
the optimal point.

One of the methods, which is easiest to implement in this context is step-halving
[Jat2015, Ch. 4] [WP1997, Ch. 4.3]: if a full step in the search direction d does not yield
a decrease of the cost function, then a reduced step of 1

2α di might have the desired
effect.
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Algorithm 2.1: Newton Algorithm with Step Halving
Initialization:

I. initialize parameter values zzz0 from some other source

Main Part:
II. compute current cost function J(zzzi), gradient ∂J

∂zzz

∣∣∣
zzz=zzzi

, and Hessian ∂2J
∂zzz2

∣∣∣
zzz=zzzi

III. determine the parameter update

di = −

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

IV. increase the halving parameter sequentially α = 0, 1, 2, . . .

(a) if a cost function reduction was achieved

J
(

zzzi + 1
2α

di

)
< J(zzzi)

compute the new parameter values

zzzi+1 = zzzi + 1
2α

di;
and go to step V.

(b) if the maximum number of halving steps was exceeded, report to the user
and stop optimization

V. check convergence of the algorithm via any combination of criteria in sec-
tion 2.1.2.2. If no convergence was achieved, go to step II.

This can be checked sequentially for increasing α = 0, 1, 2, . . . until either a reduc-
tion in the cost function is achieved, or a maximum number of halving steps is ex-
ceeded. The latter would indicate more serious problems. In order to eventually come
close to the (theoretically) quadratic convergence of Newton’s method, it is desirable
to aim for α = 0 in this approach. The algorithm is illustrated in Algorithm 2.1, and
implemented as possible solver for the parameter estimation extension to FALCON.m
[RBG+2018].

An alternative would be a scalar line-search along the descent direction di. How-
ever, most cost functions arising in parameter estimation problems have a somewhat
quadratic form, which fits nicely with the basic assumptions in Newton’s method.
Thus the simple step-halving approach is often preferred over more complex line-
search approaches.

An idea that is different from Newton’s method would be a steepest descent ap-
proach: Consider the directional derivative ∂J

∂zzz

∣∣∣ᵀ
zzz=zzzi

v of the cost function J at zzzi in a
normalized direction v, with vᵀv = 1. Using the SCHWARZ inequality, the magnitude
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of the directional derivative is limited from above by [Sor1980, App. A.3]∂J
∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

v

2

≤

∂J
∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

(vᵀv)︸ ︷︷ ︸
=1

=
∂J
∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

 (2.24)

Thus the maximum rate of change in the cost function, is obtained in the direction of
the gradient ∂J

∂zzz

∣∣∣
zzz=zzzi

[Ger2017]. Together with the descent condition (2.16), it is then
clear that the negative gradient direction yields the “steepest descent”. This gives rise
to the idea of a search direction of the form

di = −β ∂J
∂zzz

∣∣∣∣∣
zzz=zzzi

with β > 0 (2.25)

This automatically satisfies the descent condition (2.16)

∂J

∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

di = −β ∂J
∂zzz

∣∣∣∣∣
ᵀ

zzz=zzzi

∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

< 0 (2.26)

but β has to be chosen small enough to keep the local approximations valid. Thus
a search direction can be determined, without having to compute a matrix of second
derivatives.

The approach has two major disadvantages

1. although it provides a search direction, it does not provide information about the
magnitude of the step, i.e. some line search along − ∂J

∂zzz

∣∣∣
zzz=zzzi

to determine a “good”
step size β is necessary

2. according to [Mar1963], the algorithm exhibits serious convergence issues close
to the minimum

Especially the second argument usually outweighs the benefit of the simplicity of the
approach. Also, in parameter estimation problems, good approximations to the Hes-
sian of the problem are available, with only minor additional computations.

A third possibility, namely the LEVENBERG-MARQUARDT algorithm, combines the
advantages of a pure Newton iteration with the steepest descent idea. Instead of solv-
ing for a Newton search direction, the modified system of equations∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

+ λiSi

di = − ∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

(2.27)

[Si](m,n) =


[

∂2J
∂zzz2

∣∣∣
zzz=zzzi

]
(m,n)

if m = n

0 otherwise
(2.28)

is considered. The matrix Si is a diagonal matrix with the same main diagonal elements
as the Hessian ∂2J

∂zzz2

∣∣∣
zzz=zzzi

.
LEVENBERG [Lev1944] first introduced the idea of having a damping factor λi in

the context of non-linear least-squares. His reasoning was based on the argument that
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in addition to minimizing the residuals, the iteration steps di should be minimized
as well, in order to keep the validity of the underlying Taylor approximation. MAR-
QUARDT [Mar1963] extended the idea further by realizing that this approach consti-
tutes a combination of the pure Newton step, with a steepest descent step [Jat2015,
Ch. 4]:

1. for λi → 0 the update step becomes the Newton step

2. for λi → ∞ the update step becomes a scaled steepest descent step

di ≈ − 1
λi

S−1 ∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

(2.29)

Additionally, since the properties of the gradient descent approach are not scale invari-
ant, MARQUARDT proposed the scaling matrix Si based on statistical considerations1

originating in least-squares estimation. However the idea was seen to work fine in
other contexts, too [Jat2006].

The ultimate goal is to drive the damping parameter λi to zero towards the end
of the optimization, in order to obtain the quadratic convergence of the Newton al-
gorithm. However, in the beginning a large damping parameter might be necessary
(making the step more steepest descent like) in order to achieve any cost function re-
duction at all. This may happen if the initial guess is outside the radius of convergence
of the pure Newton method.

Since Si is positive definite, there will eventually be a value for λi, which makes the

sum
(

∂2J
∂zzz2

∣∣∣
zzz=zzzi

+ λiSi

)
positive definite, and thus the descent condition (2.16) will be

satisfied. MARQUARDT then proposes a heuristic, but intuitively appealing approach
to choosing the damping parameter: The algorithm always tries to decrease λi, in order
to make it more Newton-like and thus exploit its quadratic convergence property. Only
if no cost function reduction can be achieved, the damping parameter is increased in
order to obtain a valid parameter update. The magnitude of the decrease/increase in λ
is controlled via the parameter ν [Mar1963] [CJ2012, Ch. 1]. The algorithm is summed
up in Algorithm 2.2.

1 In least-squares estimation above Hessian can be considered as covariance matrix of the parameters.
MARQUARDT then proposed to scale the Hessian, gradient and update step by the parameter standard

deviations using a matrix S̃ = diag
([

∂2J
∂zzz2

]− 1
2

(i,i)

)
, thus S̃−1S̃−1 = S [Mar1963]

(
S̃∂2J(zzzi)

∂zzz2 S̃ + λiInzzz

)
S̃−1

di = −S̃∂J(zzzi)
∂zzz

⇔
(

∂2J(zzzi)
∂zzz2 + λiS

)
di = − ∂J(zzzi)

∂zzz
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Algorithm 2.2: Levenberg-Marquardt Algorithm
Initialization:

I. initialize parameter values zzz0 from some other source

II. initialize the algorithm’s parameters to e.g. λ0 = 0.001 and ν = 10

Main Part:
III. compute current cost function J(zzzi), gradient ∂J

∂zzz

∣∣∣
zzz=zzzi

, and Hessian ∂2J
∂zzz2

∣∣∣
zzz=zzzi

IV. determine two parameter update values

λdi = −

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

+ λiSi

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

νdi = −

∂2J

∂zzz2

∣∣∣∣∣
zzz=zzzi

+ λi

ν
Si

−1
∂J

∂zzz

∣∣∣∣∣
zzz=zzzi

V. compare the cost function values for the two parameter updates

(a) if J(zzzi + νdi) ≤ J(zzzi): [“accept reduced λ”]
set zzzi+1 = zzzi + νdi

reduce λi+1 = λi

ν
and continue with step VI.

(b) if J(zzzi + νdi) > J(zzzi), but J(zzzi + λdi) ≤ J(zzzi): [“keep λ unchanged”]
set zzzi+1 = zzzi + λdi

keep λi+1 = λi and continue with step VI.

(c) if J(zzzi + νdi) > J(zzzi), and J(zzzi + λdi) > J(zzzi): [“increase λ”]
increase λi = λi · ν
go back to step IV.

VI. check convergence of the algorithm via any combination of criteria in sec-
tion 2.1.2.2. If no convergence was achieved, go to step III.

2.1.3 Constrained Optimization

Constrained optimization is necessary, whenever additional constraints on the opti-
mization parameters have to be considered. Here, those constraints will be formulated
as equalities and inequalities involving zzz.

2.1.3.1 Equality Constraints

The optimization problems involving equality constraints, which are treated here, have
the form  min

zzz
J(zzz)

s.t. ceq(zzz) = 0

 (2.30)
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Furthermore, the constraint gradients
∂[ceq ](l)

∂zzz

∣∣∣∣
zzz∗
, l = 1 . . . nceq at stationary points of

above problem are required to be linearly independent. The latter is commonly called
Linear Independence Constraint Qualification (LICQ) [Ger2017]. LICQ also implies
that the maximum number of equality constraints can be nzzz: then the solution is purely
determined by the equality constraints, and the problem essentially transforms into a
root finding task. For nceq < nzzz it remains an actual optimization problem.

The classic solution approach to problems of the above type is to define the La-
grangian [Bet2010, Ch. 1.8]

L(zzz,λ) = J(zzz) + λᵀceq(zzz) (2.31)

where the λl are termed Lagrange multipliers (not to be confused with the LEVEN-
BERG-MARQUARDT damping parameter of the foregoing section). This is then used as
a cost function for an unconstrained optimization problem in the extended optimiza-
tion vector

[
zzzᵀ λᵀ

]
min
zzz,λ

L(zzz,λ) (2.32)

Then the first order necessary conditions become

0 != ∂L(zzz,λ)
∂zzz

∣∣∣∣∣
zzz∗

= ∂J

∂zzz

∣∣∣∣∣
zzz∗

+
(
∂ceq

∂zzz

∣∣∣∣∣
zzz∗

)ᵀ

λ∗ (2.33)

0 != ∂L(zzz,λ)
∂λ

∣∣∣∣∣
λ∗

= ceq(zzz∗) (2.34)

By finding a solution to the unconstrained problem of equation (2.32), the constrained
problem of equation (2.30) can be solved [Bet2010, Ch. 1.8].

The second equation above illustrates the fact that at an optimal point, the equal-
ity constraints have to be fulfilled. The first equation states that at the optimum, the
cost function gradient may be non-zero, but it has to be a linear combination of the
constraint gradients. This can be interpreted geometrically: The equality constraints,
defined via the implicit functions [ceq](l)(zzz) = 0 l = 1 . . . nceq represent hypersurfaces

in Rnz , on which any feasible point has to lie. Now the constraint gradients
∂[ceq ](l)

∂zzz

∣∣∣∣
zzz∗

always point in the direction that is perpendicular to the local tangent plane. In order
to stay on the hypersurface, a feasible direction has to be in the tangent plane and thus
perpendicular to the local constraint gradient.(

∂[ceq](l)
∂zzz

∣∣∣∣∣
zzz∗

)ᵀ

d = 0 (2.35)

Eventually a feasible search direction needs to be perpendicular to all constraint gradi-
ents2 l = 1 . . . nceq .

2 A different interpretation is that feasible descent directions need to be located in the Null-Space
of the constraint Jacobian, a fact that will be relied on heavily when treating covariance estimates of
equality constrained estimation problems in section 3.5.

33



2.1 Basics of Optimal Control Theory

Example 2.1: 2D example for equality constraint optimization
Consider the following, linear programming problem with elliptical equality con-
straints  min

x1,x2
J = c1x1 + c2x2

s.t.
1
a2

1
x2

1 + 1
a2

2
x2

2 − 1 = 0


A graphical illustration can be seen in figure 2.1: At an optimal point ( ), the cost
function gradient can be completely compensated for by the constraint gradient and
the corresponding optimal Lagrange multiplier. Also, since these conditions are
merely necessary, not sufficient, there exists another stationary point ( ), where
the cost function gradient is completely compensated for, but which has a larger cost
function value.
At all other feasible points on the ellipse ( ), only parts of the cost function gradient
can be compensated for by the constraint gradient, and a feasible descent direction
d 6= 0 remains.

It has been realized before that any descent direction must have a small compo-
nent pointing in the negative gradient direction (see equation (2.16) and the following
paragraph). However, if the cost function gradient ∂J

∂zzz

∣∣∣
zzz∗

can be represented as a lin-

ear combination of constraint gradients
∂[ceq ](l)

∂zzz

∣∣∣∣
zzz∗

, it contains only directions that would

violate one or the other constraint. The negative gradient direction then also consists
only of those “forbidden” directions and no feasible descent direction can exist.

Lastly, it can be state that the sign of the Lagrange multipliers for equality con-
straints does not matter, since equating ceq(zzz) to zero amounts to the same as equating
−ceq(zzz) to zero. The difference will only be the gradient direction, which is compen-
sated for by a change in the sign of the Lagrange multiplier.

This set-up is illustrated in the simple example 2.1 and the accompanying figure 2.1.

2.1.3.2 Inequality Constraints

In this work, problems including inequality constraints are considered to be of the form min
zzz
J(zzz)

s.t. cineq(zzz) ≤ 0

 (2.36)

For these problems, the concept of an active set is fundamental [Bet2010, Ch. 1.9]
[Ger2017, Ch. 5]: Inequality constraints that are satisfied at their boundaries, i.e. as
equality constraints, are called active, as opposed to those, which are satisfied as strict
inequalities and consequently called inactive. The active set A(zzz) then contains those
indices for which the respective inequality constraint is active at point zzz

A(zzz) =
{
l
∣∣∣[cineq(zzz)](l) = 0

}
(2.37)
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∂J(zzz∗)
∂zzz

λ∗ ∂ceq(zzz∗)
∂zzz

λ > 0

∂J(zzz)
∂zzz

λ∂ceq(zzz)
∂zzz

d

d

∂J(zzz)
∂zzz

λ∂ceq(zzz)
∂zzz

λ < 0

ceq(zzz)

x1

x2

Figure 2.1: Illustration of equality constraint optimization: cost contour ( ) and elliptical
equality constraints ( ), optimal point ( ), stationary but non-optimal point ( ), and an
arbitrary, non-optimal, feasible point ( ).

At an optimal point zzz∗, the inequality constraints can thus be split into active and
inactive constraints. The inactive constraints may be dropped from the problem for-
mulation, since they are fulfilled anyway. For active inequality constraints, a reasoning
similar to that of the last section can be applied: at an optimal point, the cost function
gradient may be non-zero, but has to consist only of directions, which would violate
the constraints. Otherwise a change in the cost function, while still keeping all con-
straints, would be possible. In the inequality case, those directions are (as before) the
directions of the active inequality constraint gradients

∂J

∂zzz

∣∣∣∣∣
zzz∗

= −
∑

l∈A(zzz∗)
µ∗

l

∂[cineq](l)
∂zzz

∣∣∣∣∣
zzz∗

(2.38)

µ∗
l ≥ 0 ∀l ∈ A(zzz∗) (2.39)

However, in the inequality case, only one direction violates the constraint, the other
points into the feasible region. This fact manifests itself as above second condition on
the Lagrange multipliers3.

3 some authors define the inequality constraints and Lagrangian using a different sign convention,
as e.g. BETTS [Bet2010, Ch. 1.9]

cineq(zzz) ≥ 0

∂J

∂zzz

∣∣∣∣
zzz∗

=
∑

l∈A(zzz∗)

µ∗
l

∂[cineq](l)

∂zzz

∣∣∣∣∣
zzz∗
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Example 2.2: 2D example for inequality constraint optimization
Consider the following, linear programming problem with elliptical inequality con-
straints  min

x1,x2
J = c1x1 + c2x2

s.t.
1
a2

1
x2

1 + 1
a2

2
x2

2 − 1 ≤ 0


A graphical illustration can be seen in figure 2.2: At an optimal point ( ), the cost
function gradient is again compensated for by the inequality constraint gradient.
Furthermore, the accompanying multiplier obeys the sign constraint µ∗ > 0. The
second stationary point ( ) can be ruled out directly, since it is not possible to com-
pensate the cost function gradient using positive multipliers, as indicated by the
constraint gradient direction shown.
At all other feasible points within the ellipse ( ), the inequality constraint is inactive,
thus no explicit treatment is necessary. The corresponding multiplier is µ = 0.

Then a solution strategy is to apply the approach of the last section, together with
an active set strategy. This keeps track of the active and inactive constraints during the
iteration, and ensures the proper sign of the multipliers µ. As an illustration, exam-
ple 2.2 presents an adjustment of the foregoing case to include inequality constraints.
Figure 2.2 shows the corresponding graphical representation.

A simple example of an active set strategy for box constraint parameters will be
illustrated in section 2.1.3.4 and algorithm 2.3.

2.1.3.3 Combined Equality and Inequality Constraints and KKT Conditions

Combining the information of the last two subsections, the so-called Karush-Kuhn-
Tucker (KKT) Conditions arise [Ger2017, Ch. 5] [Bet2010, Ch. 1.12], which define the
necessary conditions for an optimal point of a problem that is constrained by equality
and inequality conditions:

Let zzz∗ be a local optimum of the standard optimization problem


min

zzz
J(zzz)

s.t.
ceq(zzz) = 0

cineq(zzz) ≤ 0


Let the functions J , ceq, and cineq be continuously differentiable, and the gradients
of the equality and active inequality constraints at zzz∗ be linearly independent (LICQ

This may affect the formulation of optimality conditions.

36



Chapter 2: Mathematical Preliminaries

∂J(zzz∗)
∂zzz

µ∗ ∂cineq(zzz∗)
∂zzz

∂J(zzz)
∂zzz

µ = 0

∂cineq(zzz)
∂zzz

∂J(zzz)
∂zzz

x1

x2

Figure 2.2: Illustration of inequality constraint optimization: cost contour ( ) and elliptical
equality constraints ( ), optimal point ( ), non-KKT point ( ), and an arbitrary, feasible
point ( ) with inactive constraint.

regularity condition)

0 =
nceq∑
l=1

αl

∂[ceq](l)
∂zzz

∣∣∣∣∣
zzz∗

+
∑

m∈A(zzz∗)
βm

∂[cineq](m)

∂zzz

∣∣∣∣∣
zzz∗

⇒ αl, βm = 0 ∀l = 1 . . . nceq ; m ∈ A(zzz∗)
(2.40)

Then there are multipliers λ∗ ∈ Rnceq and µ∗ ∈ Rncineq such that the following condi-
tions hold

(i) Sign Condition:

µ∗ ≥ 0 (2.41)

λ∗ 6= 0 (2.42)

(ii) Optimality Condition

∂J

∂zzz

∣∣∣∣∣
zzz∗

+
(
∂ceq

∂zzz

∣∣∣∣∣
zzz∗

)ᵀ

λ∗ +
(
∂cineq

∂zzz

∣∣∣∣∣
zzz∗

)ᵀ

µ∗ = 0 (2.43)

(iii) Complementary Condition4:

µ∗ᵀcineq(zzz∗) = 0 (2.44)

(iv) Feasibility Condition:

ceq(zzz∗) = 0 (2.45)

cineq(zzz∗) ≤ 0 (2.46)
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Above conditions are merely necessary for a local minimum in zzz∗. Sufficient condi-
tions exist, however since they usually incorporate second order derivatives of the cost
function and constraints they are often impractical for real-life approaches. This is not
a major drawback, since properly formulated problems only allow for local minima as
the solution to above conditions. Thus second order considerations are often neglected
with the argument, that the problem is “well-posed”.

2.1.3.4 Box Constraints

An interesting simplification arises, if the inequality constraints take the form of simple
box-constraints 

min
zzz
J(zzz)

s.t.
zzz ≤ zzzub

−zzz ≤ zzzlb

 (2.47)

Then the constraint gradients are simply +1 for upper bound constraints , and −1 for
lower bound constraints. The KKT conditions boil down to

0 =
[
∂J(zzz)
∂zzz

]
(j)

+ µ∗
j ·(±1) j = 1, . . . , nzzz (2.48)

⇒ µ∗
j =


−
[

∂J(zzz)
∂zzz

]
(j)

if [zzz](j) =[zzzub](j)[
∂J(zzz)

∂zzz

]
(j)

if [zzz](j) =[zzzlb](j)

0 otherwise

(2.49)

Checking, if the resulting multipliers obey the KKT sign condition µ∗
j ≥ 0 can then be

used in a simple active set strategy [Jat2006, Ch. 4], see algorithm 2.3. This algorithm
can easily be combined with any of the algorithms for unconstrained optimization
(section 2.1.2) in order to enable the consideration of box constraints.

For more complicated equality and inequality constraints, the workload to imple-
ment the necessary algorithmic details oneself is usually not justified, and it is com-
monly advised to use off-the-shelf algorithms [WP1997].

2.1.3.5 Remarks on Optimization

It is important to have a basic grasp of the concepts in use, in order to correctly apply
off-the-shelf algorithms. The mathematical details presented so far enable the analyst
to formulate an optimization problem, to implement solvers for simple tasks, and to in-
terpret the results. However, in order to set up an efficient algorithm for the solution of
complex, generic problems, the discussion of many more algorithmic details would be

4this condition implies, that for inactive constraints [cineq](i)(zzz
∗) < 0 i /∈ A(zzz∗) it follows that

[µ∗](i) = 0 and vice versa
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Algorithm 2.3: Active set algorithm for box constraint model parameters
Initialization:

I. initialize the active set A(zzz0), using the initial guess zzz0 and the parameter
bounds zzzlb, zzzub. If some parameter elements violate their boundaries, the con-
straints have to be enforced.

Main Part:
II. use the cost function gradient to check the KKT sign condition (2.49), and drop

those indices that violate it, i.e. drop an index j from the active set A(zzzi) if[
∂J(zzzi)
∂zzz

]
(j)
> 0 if [zzzi](j) =[zzzub](j)[

∂J(zzzi)
∂zzz

]
(j)
< 0 if [zzzi](j) =[zzzlb](j)

III. compute a parameter update [di](j) (using one of the algorithms for uncon-
strained optimization) for the reduced problem involving the “free” model pa-
rameters j /∈ A(zzzi) only; the fixed parameters stay at the respective bounds

[zzzi+1](j) =

 [zzzi](j) +[di](j) for j /∈ A(zzzi)
[zzzi](j) for j ∈ A(zzzi)

IV. check if any of the updated parameters violate their bounds. If so, set them to
the corresponding boundary value and include the respective index in the active
set A(zzzi+1) for the next iteration

necessary, which is beyond the scope of this thesis. Rather, the interested reader is re-
ferred to the respective literature, where those few works, which have been consulted
for this work are [Ger2017, Ger2012, GMW1982, BA2010]. Since cost function opti-
mization is an integral part of parameter estimation, the respective literature always
contains chapters on this topic, too [WP1997, Sor1980, MIM1985, MK2016, Jat2006].

Several software implementations are available for different platforms, e.g.

◦ We Optimize Really Huge Problems (WORHP) [Ste2018],

◦ Sparse Nonlinear Optimizer (SNOPT) [GWMS2018], or

◦ Interior Point Optimizer (IPOPT) [KML+2015].

The availability of these mature implementations makes it unnecessary to implement
them oneself, and further details regarding implementation aspects are omitted here.

2.1.4 Optimal Control

In the following section, the optimal control basics, necessary to understand its appli-
cation to parameter estimation problems are illustrated. The goal is not to give a full
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recapitulation of the necessary theoretical basics for optimal control in aircraft applica-
tions. For further details, the literature may be consulted [Bet2010, Ger2012, BA2010,
Bit2017, Rie2017]. Moreover, the focus lies on those aspects, which are necessary to
understand and use optimal control tools for parameter estimation purposes.

This entails certain simplifications compared to the most general optimal control
problem formulation:

◦ The time grid is fixed, i.e. initial t0 and final tf are fixed and not subject to opti-
mization

◦ In classical optimal control, different “phases” may arise, which may have their
own time grid, state, input, and parameter vector as well as path constraints.
These phases may even have different dynamic constraints, i.e. different under-
lying models. In general, these phases are linked together via specific constraints,
e.g. to preserve continuity of states.

In parameter estimation, those phases correspond to different maneuvers, which
have been executed to excite different aspects of the model. They also have their
own time grid, state, and input vector. However, the same model together with
the same parameters are used for all maneuvers. Also, maneuvers are executed
independently, rendering linking constraints unnecessary.

◦ Since inputs to the system were measured during experiments, in general they
are fixed and not subject to optimization. However, for some special cases, where
optimizable inputs will be considered, they are kept as part of the optimization
vector in the following sections.

◦ Since parameter estimation always considers measured outputs, an output equa-
tion of the form

y(t) = g(x(t) ,u(t) ,θ) (2.50)

is introduced. In the general considerations to follow, this output equation is
often incorporated implicitly into constraints or cost functions.

2.1.4.1 Basics

In general, optimal control problems are used to find the optimal, continuous control
trajectory u∗(t), and a set of optimal model parameters θ∗, together with the corre-
sponding state trajectory x∗(t), which drive a performance index J(u(t) ,x(t) ,θ) to an
extremal value. The optimization is to be subject to constraints in the form of system
dynamics and possibly further, algebraic path constraints. Explicit constraints on the
initial and final state may appear in the most general problem formulation, but are
usually not necessary in the parameter estimation context. This yields the following
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problem


min
u(t),θ

J(u(t) ,x(t) ,θ)

s.t.

.
x(t) = f(x(t) ,u(t) ,θ)

ceq(x(t) ,u(t) ,θ) = 0
cineq(x(t) ,u(t) ,θ) ≤ 0

 (2.51)

The cost function formulations considered here are of Bolza type [Bit2017]

J(u(t) ,x(t) ,θ) = φ(x(tf ) ,u(tf ) ,x(t0) ,u(t0) ,θ)

+
∫ tf

t0
L(x(t) ,u(t) ,θ) dt

(2.52)

where an explicit Mayer cost term on the initial and final conditions φ(◦) is considered,
along with a Lagrange cost term L(◦) that is integrated over time. Both cost terms can
be converted in the respective other form as is e.g. illustrated in [Bit2017] and [Bet2010].

2.1.4.2 The Indirect Method

The indirect method, based on PONTRYAGIN’s maximum principle [PBGM1962] is of-
ten too complicated to be applied in real-life problems. Nevertheless, for a complete
discussion and in order to understand the differences compared to the direct method,
the basic ideas are outlined here.

PONTRYAGIN’s maximum principle may be used to define a set of necessary con-
ditions for an optimal input trajectory u∗(t) and model parameter set θ∗. These may
then be solved numerically. A central quantity in PONTRYAGIN’s consideration is the
Hamiltonian [Bit2017]5

H
(
x,u,λ,µeq,µineq

)
= L(x,u) + λᵀf(x,u) + µᵀ

eqceq(x,u) + µᵀ
ineqcineq(x,u) (2.53)

In this formulation, the co-states λ(t) ,µeq(t), and µineq(t) are all functions of time.
PONTRYAGIN’s maximum principle, together with the consequences of optimality cri-
teria then state rules on how to determine the relationship between states, co-states
and several partial derivatives of the Hamiltonian, in order to eventually obtain the
optimal input trajectory u∗(t).

However the brute force application of this indirect method only leads to valid re-
sults for simple example cases. More often, it results in a two (or even multi-) point
boundary value problem involving a Differential Algebraic Equation (DAE), which
needs to be discretized and solved numerically [Bet2010, Ch. 4].

5 For simplicity, only the explicit dependency of the terms on inputs and states is considered, since
the problem can be easily transformed to incorporate parameters θ and explicit dependencies on time t

as additional states [Bit2017]
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BETTS [Bet2010, Ch. 4.3] gives three main reasons, why the indirect approach is not
generally used for the solution of practical optimal control problems

1. The computation of the necessary derivatives of the Hamiltonian is cumbersome
at best, if not impossible for real world applications. Also, they are highly prob-
lem specific, i.e. have to be re-computed every time a new problem is formulated.

The automatic differentiation approach of FALCON.m [RBG+2018], might alle-
viate this issue when applied to the Hamiltonian. However, the other disadvan-
tages of the indirect method have so far discouraged from using it to this end.

2. Analogously to inactive inequality constraints and their corresponding Lagrange
multipliers, the co-state µineq may be zero at times, when the corresponding path
constraint is inactive, and non-zero otherwise. However, the number and se-
quence of the switches between these constrained and unconstrained arcs is hard
to guess a priori, making the proper formulation of the resulting Non-Linear Pro-
gramming (NLP) problem almost impossible.

3. Lastly, this method is not robust. Initial guesses for the co-states have to be pro-
vided, which is very unintuitive, since these are not physical quantities. What
makes matters worse, is that the problem is quite sensitive to bad initial guesses
in these co-states.

These are the main reasons, why the indirect method is seldom encountered in
practice, which serve to motivate the use of a direct optimal control approach.

2.1.4.3 The Direct Method

In contrast to the indirect method, the direct method follows the following steps in
solving an optimal control problem [Bet2010]

1. convert the infinite dimensional optimal control problem into a problem with a
finite set of variables

2. solve the resulting non-linear programming problem
3. check that the solution to the finite dimensional problem approximates the infi-

nite dimensional task reasonably well.

Since in parameter estimation, phases are in general independent of each other, the
following remarks only focus on one phase, but can easily be extended to multiple
phase problems.

Above mentioned “discretize then optimize” [Bet2010, p. 178] approach first dis-
cretizes the states and controls on a discrete (not necessarily uniform) time grid

x(t0 + k∆tk) = xk ∀k = 0 . . . (N − 1) (2.54)

u(t0 + k∆tk) = uk ∀k = 0 . . . (N − 1) (2.55)

Then the state and input vectors can be included in the optimization vector to different
degrees, resulting in three commonly used problem formulations.
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Single Shooting
The simplest approach for the transcription and solution of the infinite dimensional
optimal control problem (2.51) is to ensure the dynamic constraint by propagating a
set of initial states x0 forward in time, using the current values of the controls uk. This
can be accomplished by any Runge-Kutta scheme, which transforms the continuous
time system into a discretized version. For one integration step, this yields

xk+1 = xk +
∫ tk+1

tk

f(x(τ) ,u(τ) ,θ) dτ

≈ Φf (tk, tk+1|xk,uk,uk+1,θ)
(2.56)

For two steps this would be

xk+2 = xk +
∫ tk+2

tk

f(x(τ) ,u(τ) ,θ) dτ

≈ Φf (tk, tk+1, tk+2|xk,uk,uk+1,uk+2,θ)
(2.57)

Extending this scheme to the solution to an initial value problem over an arbitrary
number of steps may then be formulated as

xk ≈ Φf (t0 . . . tk|x0,u0 . . .uk,θ) k = 1 . . . N (2.58)

Where the right hand side of above equation is to be interpreted as the numerical so-
lution of an initial value problem from time t0 to time tk, using the initial condition x0,
model parameters θ, and input sequence u0 . . .uk.

No restriction on explicit integration methods is strictly necessary. However, since
implicit methods necessitate the iterative solution of a non-linear root finding problem
for every time step, it is usually sensible to choose explicit methods in the shooting
cases in order to reduce computation times.

The vector of optimization variables, which the NLP solver may adjust in this case
is

zzz =



x0

u0
...

uN−1

θ


(2.59)

The path constraints appear as algebraic constraints, evaluated at the discretization
points tk. Eventually the discretized optimization problem becomes

min
zzz
J(x0 . . .xN−1,u0 . . .uN−1,θ)

s.t.
xk = Φf (t0 . . . tk|x0,u0 . . .uk,θ) k = 1, . . . , N − 1

ceq(xk,uk,θ) = 0 k = 0, . . . , N − 1
cineq(xk,uk,θ) ≤ 0 k = 0, . . . , N − 1

 (2.60)
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where the first constraint regarding the integration of the system equations is not ex-
plicitly enforced in the NLP problem, but directly evaluated, i.e. the intermediate xk

k = 0, . . . , N − 1 are computed based on the numerical integration scheme.
The solution strategy is then as follows [Bit2017]: At every NLP iteration

1. extract the initial condition, parameters and control history from the optimiza-
tion vector

2. solve the arising initial value problem using any numeric integration scheme

3. evaluate the constraints at the discretization points tk k = 0 . . . N − 1, as well as
the cost function

4. determine the gradients of the cost function and constraints; This can be achieved
analytically, using the chain rule and sensitivity equations (see section 3.3.3). Al-
ternatively, gradient information can be obtained numerically using finite differ-
ences [Bit2017, Fis2011].

5. provide cost function and constraint values, together with gradient information
to the NLP algorithm; at the next iteration, start from 1.

This approach is generally termed single shooting, due to the parallels with shooting
a cannonball at a specified target [Bet2010]: after the initial conditions – the cannons
elevation and azimuth – and the parameters – the cannonball’s shape and weight – are
fixed, nothing can be done about its trajectory anymore (in this example, no control
is possible after the shot). This thought experiment also illustrates one of the largest
shortcomings of the approach: small changes in the initial conditions, or controls ap-
plied early in the integration, may have a significant effect on the trajectory. Since path
constraints at later points in time depend on the initial condition through the recur-
sive numerical solution of the differential equation, this dependency may become very
non-linear [Bet2010], and thus pose serious problems for the NLP solver.

Nevertheless, single shooting has become the quasi standard for parameter estima-
tion in the aircraft context [Jat2006, MK2016]. This is for several reasons: In classical
applications, no path constraints and no constraints on the final state are considered,
i.e. the above mentioned very non-linear dependencies simply do not exist for most
parameter estimation problems. Next, the controls are usually considered fixed, since
they were measured during the experiment. Thus, only the model parameters θ shape
the trajectory throughout the complete time history. This dependency also becomes
more non-linear as the integration time progresses, however, together with the close
to quadratic maximum likelihood cost function (as will be shown in section 2.2.2) the
resulting problem is often treatable using a Newton-based solver.

The discussion of the details of this classical solution process in aircraft parameter
estimation is deferred to chapter 4, when all the necessary basics have been laid out.
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Multiple Shooting
One idea to overcome the problematic sensitivity on the initial conditions in the single
shooting case, is to break the problem into smaller integration intervals, i.e. to intro-
duce more “initial conditions” [Bet2010, Ch. 3.4] [Bit2017, Ch. 3.2]. Staying in above
picture this would mean to “catch” the cannonball mid-flight and to perform a new
shot. Then early changes in the trajectory only influence shorter segments, and the
resulting dependencies are less non-linear. However, it has to be made sure that in the
end, the starting and ending points of the segments are consistent.

This may be formulated more mathematically. IfM multiple shooting segments are
considered, the time grid is partitioned into M (not necessarily equal) segments

t0 = tk1 < tk2 < · · · < tkM+1 = tf (2.61)

0 = k1 < k2 < · · · < kM+1 = N − 1 (2.62)

i.e. the partitioning takes place at time instants tkl
, with the respective separation in-

dices kl l = 1 . . .M . The initial condition for every segment xkl
l = 1 . . .M are explicitly

included in the optimization vector

zzz =



xk1
...

xkM

u0
...

uN−1

θ


(2.63)

In order to keep the states continuous over segment borders, additional equality con-
straints have to be introduced for every segment [Bit2017, Ch. 3.2] [Bet2010, Ch. 3.4.]

ζMS

(
xkl

,xkl+1 ,ukl
. . .ukl+1 ,θ

)
= xkl+1 − Φf

(
tkl
. . . tkl+1

∣∣∣xkl
,ukl

. . .ukl+1 ,θ
)

=0

l = 1 . . .M−1
(2.64)

They enforce equality between the final integration step of the previous segment and
the initial condition at the current segment. These defect constraints may be violated in
the course of the optimization; however, they need to be fulfilled in the end for a valid
solution to the overall problem.

The multiple shooting problem to be solved is then

min
zzz
J(x0 . . .xN−1,u0 . . .uN−1,θ)

s.t.

Φf (tkl
. . . tk|xkl

,ukl
. . .uk,θ) = xk k = kl + 1 . . . kl+1

l = 1 . . .M
ceq(xk,uk,θ) = 0 k = 0 . . . N − 1

cineq(xk,uk,θ) ≤ 0 k = 0 . . . N − 1
ζMS

(
xkl

,xkl+1 ,ukl
. . .ukl+1 ,θ

)
= 0 l = 1 . . .M − 1


(2.65)
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Again, the first constraint is not directly enforced within the NLP solver, but explicitly
computed as part of the solution strategy. This strategy is very similar to that of the
single shooting case: the only difference is that in order to obtain the complete state
trajectory, one initial value problem is solved per segment and continuity is enforced
via additional equality constraints.

In addition to alleviating the problem with overly sensitive constraints, the multiple
shooting approach also has favorable consequences regarding the problem sparsity:
as the number of multiple shooting segments grows, the problem Jacobian becomes
sparser. Not only is this practical for the NLP solver, since decoupling of the opti-
mization parameters in general facilitates the problem solution; also there exist very
efficient solution algorithms for large, sparse optimization problems [Bet2010, Ch. 3,
Ch. 4].

Full Discretization
The idea of multiple shooting can be driven to an extreme, by taking as many shooting
segments, as there are discretization points [Bit2017, Bet2010]. The optimization vector
is then

zzz =



x0
...

xN−1

u0
...

uN−1

θ


(2.66)

and contains all states and all inputs at all time instants, together with the model pa-
rameters. The defect constraints become quite simple, since they only link two time
instants

ζk(xk,xk+1,uk,uk+1,θ) = xk+1 − Φf (tk, tk+1|xk,uk,uk+1,θ) = 0

k = 0 . . . N − 2
(2.67)

In the resulting optimization problem, the dynamic constraint is fully translated into
defect constraints and does not appear explicitly anymore.

min
zzz
J(x0 . . .xN−1,u0 . . .uN−1,θ)

s.t.
ceq(xk,uk,θ) = 0 k = 0 . . . N − 1

cineq(xk,uk,θ) ≤ 0 k = 0 . . . N − 1
ζk(xk,xk+1,uk,uk+1,θ) = 0 k = 0 . . . N − 2

 (2.68)

The complete problem can be presented to an NLP solver as is, no explicit treatment of
the dynamic constraints is necessary anymore.
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Furthermore, the inclusion of implicit integration methods is easily possible in the
defect constraints ζk: from the view of the NLP solver, the integration scheme is merely
an equality constraint linking xk, uk and xk+1, uk+1. Thus, by fulfilling this constraint
the lower level root-finding problem, which is necessary for implicit schemes, is auto-
matically solved by the NLP solver [Bit2017].

Obviously, with many time instants, and possibly large state and input vectors, the
problem size grows very quickly. However, as the problem size increases, it becomes
more and more sparse. Thus when using specially tailored sparse optimization algo-
rithms, the problem remains manageable.

Remarks on the Direct Method
The application of the direct method overcomes most of the problems that were listed
for the indirect method in section 2.1.4.2 [Bet2010, Ch. 4.14] [Bit2017, Ch. 3.2.4]

1. no derivatives of the Hamiltonian need to be formulated, i.e. the user does not
need to be familiar with PONTRYAGIN’s maximum principle.

2. gradient information is easy to supply, either analytically (via sensitivity equa-
tions and the chain rule) or via (sparse) numeric finite differences. In the former
case, it might even be possible to apply automatic differentiation algorithms, as
is e.g. done in FALCON.m [RBG+2018]

3. no initial information about constrained arcs is necessary if path inequalities are
present, since the NLP solver’s active set strategy can determine them automati-
cally through the corresponding multipliers

4. initial information about the Lagrange multipliers is easier to come by, as op-
posed to the necessary initial guess for the unphysical co-states in the indirect ap-
proach. For further information, see also the discussion on the relation between
co-states and Lagrange multipliers in [Bet2010, Ch. 4.2.] [Bit2017, Ch. 3.2.5.].

2.1.4.4 Further Aspects in Optimal Control

For the sake of completeness, further relevant aspects of optimal control are briefly
listed. However, they are not considered in detail, as they are not relevant for the
further understanding of this thesis. Additional information can be obtained in the
literature [Bet2010, Ger2017, Ger2018, Ger2012, Bit2017, Rie2017, BA2010].

Different Control and State Parameterization The time grid of the state and control
discretization need not necessarily be the same. It just has to be made sure, that all
necessary information for formulating the state integration is available. If the time
grids do not match between states and controls, commonly some sort of interpolation
is applied, to obtain the control values at the state discretization steps [Bit2017]. To
achieve this, linear interpolation or more advanced approaches like B-splines can be
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used [Ger2012]. This functionality is integrated in FALCON.m [RBG+2018] but will
only be used sparingly when considering auxiliary inputs to the estimation problem.

This idea can be taken further to even use different discretization intervals for sub-
sets of states, e.g. because one knows, that a certain subset has considerably “slower”
dynamic than another subset. BOTTASSO then shows, that different integration meth-
ods can be used for these subsets, by combining single and multiple shooting [BM2009,
BLM2009a]. In a similar manner, BITTNER combines multiple shooting with full dis-
cretization [Bit2017].

Choice of Integration Method It is intuitive, that the accuracy of the integration
scheme in use, together with the step size selection significantly influence the qual-
ity of the solution. Here, a multitude of choices is possible: several explicit and im-
plicit Runge-Kutta schemes are available, which differ in their truncation errors and
the number of intermediate stages. The possibility of including the intermediate inte-
gration stages as additional optimization variables even increases the number of pos-
sibilities of formulating the same problem [Bet2010, Bit2017].

In this work, a restriction is made to two major methods: in the full discretization
approach, a second order trapezoidal scheme is used; whereas for applications of the
single shooting method, a Runge-Kutta scheme (usually fourth order) is employed.

Independent Variables All of the above methods may also be formulated for inde-
pendent variables other than time, in order to e.g. solve partial differential equations.
However, since the main focus of this work is on parameter estimation from flight test
data, other independent variables are not discussed [Bet2010].

Path Constraints The proper inclusion of path constraints in an optimal control prob-
lem is not as easy, as it may seem when inspecting the foregoing sections. In the direct
method using full discretization, they are formulated as equality and inequality con-
straints on state and control variables. However, no guarantee can be given, that the
trajectory does not violate these constraints between the discretization points, which
necessitates further analysis of the problem (in order to show that it cannot happen for
the formulation at hand) or the result (in order to show that a violation did not happen
for that specific solution) [Bit2017].

Scaling Considerations Scaling is a crucial point in every optimization problem. It
is easy to construct simple problems, which become nearly impossible to solve, if the
optimization variables are scaled disadvantageously. Some main aspects here are the
numerical condition of the Hessian (or its approximation), and gradient, which can
seriously inhibit the solution process. Thus it is usually favorable, to scale the involved
parameters to a range between 0 and 1 as far as possible.
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Most off-the-shelf optimization algorithms incorporate some sort of automatic scal-
ing approach. However it can be more helpful to scale variables based on the ana-
lyst’s knowledge of the problem characteristics, rather than trusting some automatic
approach that cannot know the physics involved.

Sparsity Considerations Problems with several 100 000 optimization variables can
nowadays be solved on a consumer PC. However, this is only possible by making use
of the sparsity patterns of the constraints, cost function and their derivatives. Exploit-
ing this sparsity considerably reduces computational load. This is why at every step of
the process, this aspect should be taken into account in order to make the problem as
“sparse” as possible [Bit2017, Bet2010].
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2.2 Statistical Estimation

The following sections will discuss the basics of statistical parameter estimation. After
introducing some general concepts, and discussing possible estimator characteristics,
three parameter estimation approaches will be discussed in detail. Namely they are
maximum likelihood estimation, Bayesian estimation, and least-squares estimation.
The chapter is concluded by some remarks on estimated statistical characteristics of
parameter estimates.

2.2.1 Basics in Estimation Theory

The probability theoretic basics, which are necessary to understand the following chap-
ter, are summed up in Appendix A.4. There, a notational distinction between a random
variable x and its realization x was made in order to illustrate the conceptual differ-
ences. However, this will be dropped, since it is usually clear from the context, if a
random variable, or its realization is discussed.

Also, probability densities in Appendix A.4 have a superscript to indicate the ran-
dom variable px(x) in question. However, if it is clear from the context, which random
variable is meant, this will be omitted p(x).

2.2.1.1 Estimator Definition

The basics of modern estimation theory and statistical inference were laid by RONALD

AYLMER FISHER in the early 20th century [Fis1912, Fis1922, Fis1925]. The following
presentation of his main results follow a similar structure as in [MK2016, Ch. 4, Ch. 6],
[Jat2006, Ch. 4], and [HGH+2017, Ch. 4].

The overall problem to be considered is to infer the numerical values of a parameter
vector θ ∈ Θ ⊂ Rnθ , based on measurements z ∈ Rnz that are influenced by inputs
u ∈ Rnu (which are assumed to be perfectly known) and distorted by some random
component ω ∈ Rnω

z = z(θ, u,ω) (2.69)

To do so, an estimator is employed, which computes an estimate θ̂ using the inputs
uk and the realizations of the measurements zk for k = 0, . . . , N − 1. This estimator
can be any function that maps Z = [z0, . . . , zN−1] and U = [u0, . . . ,uN−1] to the set Θ
[MIM1985]

θ̂ : Rnz×N × Rnu×N → Θ (2.70)

The estimate θ̂ arises, when a specific set of samples is processed

θ̂ = θ̂(Z,U) (2.71)

50



Chapter 2: Mathematical Preliminaries

Example 2.3: Sample average as estimator for the mean
if z is a random number with mean µ, then the sample average over N samples (see
also (A.158))

z̄N = 1
N

N−1∑
k=0

zk

can be considered an estimator for the true mean µ.

Example 2.4: Sample variance as estimator for the variance
if z is a random number with mean µ and variance σ2, then the sample variance over
N samples (see also (A.159))

s2
z,N = 1

N

N−1∑
k=0

(zk − µ)2

can be considered an estimator for the true variance σ2. If the true mean µ is un-
known, the following provides an unbiased estimate of the variance, using the sam-
ple average z̄N as estimator for the mean [HGH+2017, Ch. 4]

s2
z,N = 1

N − 1

N−1∑
k=0

(zk − z̄N)2

Explicit dependency on the inputs U will usually be dropped for ease of notation.
Two widely used estimators are illustrated in examples 2.3 and 2.4. These are exam-

ples for linear (sample average) and non-linear (sample variance) algebraic relations
between the measurements and the estimate. However, other mathematical depen-
dencies are possible: most of the estimators employed in this work will be solutions to
optimization problems.

It is important to note, that the estimates θ̂ are a function of the random variable
Z and thus are themselves a random variable [MK2016, Ch. 4]. Therefore they can be
characterized by their statistical moments, where usually mean E

[
θ̂
]

and Covariance

Cov
[
θ̂
]

play the most important role. This holds true, even if the underlying true
parameters θ are assumed to be deterministic.

In order to meaningfully apply estimation algorithms based on above definition,
some more details need to be specified. MORELLI lists four aspects, that need to be
well defined [MK2016, Ch. 4]:

1. a model structure, relating the inputs u and parameters θ to the model outputs

2. a mathematical model for the measurement process, i.e. relating the random com-
ponent ω to the measurements z

3. a set of realizations of the measurement variables z0, . . . , zN−1

4. assumptions about the random component ω, and possibly prior knowledge on
the parameters θ; this is often provided in the form of a pdf in both cases
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2.2.1.2 Estimator Properties

An estimator can have several properties, the definition of which are given next, for
more details see [MK2016, Ch. 4], [Sor1980], [Jat2015, Ch. 4] or [MIM1985]. For asymp-
totic results, where the number of samples grows large, stochastic convergence con-
cepts are used, details of which can be found in appendix A.4.8.

linear An estimator is called linear, if the estimates θ̂ are affine in the measurements.

unbiased An estimator is called unbiased, if the expected value of θ̂ is equal to the
expected value of the true parameters θ, independent of the sample size N

E
[
θ̂
]

= E[θ] ∀N,θ (2.72)

In contrast, if it holds that

E
[
θ̂
]

= E[θ] + b(θ) (2.73)

the estimator is called biased with bias b(θ).
The bias is a systematic error of an estimator, which must not be confused with

random fluctuations when processing different sets of measurements. For a single es-
timation result there might well be a significant difference between θ and θ̂. However,
if this estimation was performed several times (using several data sets, i.e. several dif-
ferent realizations of the random component), the mean over all estimates for an un-
biased estimator would eventually be equal to the true parameter mean. The random
components would average out.

This cannot be achieved for a biased estimator, which is in general undesirable.

minimum mean square error An estimator is called minimum mean square error
(MSE) estimator, if it minimizes the MSE defined as

MSE = E
[(

θ̂ − θ
)ᵀ(

θ̂ − θ
)]

(2.74)

In general, the MSE includes influences of the parameter variances (random error) as
well as the parameter biases (estimator inherent, systematic error) [MK2016, Ch. 4].
For unbiased estimators with b(θ) = 0 the MSE reduces to the trace of the parameter
error covariance Cov

[
θ̂
]
, i.e. the sum of the individual parameter variances.

Obviously it is desirable to use unbiased estimators, with small resulting parameter
variances, thus yielding a small MSE. However, both aspects should be taken into ac-
count when evaluating different estimation algorithms: sometimes it may be favorable,
to trade a small bias for a major decrease in parameter variances. This is especially true
in cases, where an estimator might be unbiased, but yields estimates that are unusable
in practice, see [MIM1985, Sec. 4.2.1] for an example.
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efficient The obtainable covariance of the parameter estimates Cov
[
θ̂
]

for any unbi-
ased estimator is bounded from below via the so called Cramér-Rao inequality [GP1977,
Sor1980, WP1997]

Cov
[
θ̂
]

≥ F(θ)−1 (2.75)

where F(θ) is the Fisher information matrix defined as

F(θ) = E
[(
∂ ln p(Z|θ)

∂θ

)(
∂ ln p(Z|θ)

∂θ

)ᵀ]
(2.76)

See Appendix C.2 for a derivation of the Cramér-Rao inequality. The inequality sign in
the definition of the Cramér-Rao inequality is to be understood in the sense that the dif-
ference

(
Cov

[
θ̂
]

− F−1
)

is positive semi-definite. Alternatively, the Fisher information
matrix can be expressed as [GP1977, Sor1980, WP1997]

F(θ) = −E
[
∂2 ln p(Z|θ)

∂θ2

]
(2.77)

see Appendix C.1 for details6.
Although the expression p(Z|θ) plays a very important role in maximum likelihood

estimation (as will be illustrated in section 2.2.2) the Cramér-Rao bound in this form
provides a result that is valid way beyond that: it is a theoretical minimum for any kind
of unbiased estimator, which cannot be undercut.

The Cramér-Rao inequality is especially useful, if an estimator proves to actually
attain this lower bound

Cov
[
θ̂
]

= F(θ)−1 (2.78)

An estimator for which equation (2.78) holds is called efficient: It makes maximum
use of the available information by providing the lowest possible covariance Cov

[
θ̂
]

[Sor1980, Ch. 3]. Lower covariances can only be obtained by introducing an estimation
bias b(θ).

If an estimator can be shown to be efficient, and an approximation for the Fisher
information matrix was available, the parameter covariances can be estimated based
on equation (2.78). This is in general an important aspect of the validation step, since

6 The appearance of the natural logarithm in the Fisher information matrix might seem quite random.
However, when carefully studying the proofs in Appendix C, one can realize that its derivative

∂ ln p(x)
∂x

= 1
p(x)

∂p(x)
∂x

⇔ ∂p(x)
∂x

= p(x) ∂ ln p(x)
∂x

is used several times to translate the integral over a derivative ∂p(x)
∂x into an expectation of ∂ ln p(x)

∂x .
Furthermore, in section 2.2.2 it will be shown, that this logarithm makes it possible to easily compute
derivatives of the cost function analytically. These analytic expressions for gradient and Hessian greatly
improve the convergence properties of the necessary optimization.
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in addition to the parameter values, also their uncertainty can be quantified via their
covariance matrix.

Efficiency for finite data sets is often difficult to prove, whereas results for N → ∞
can be obtained more easily. An estimator for which the limit of equation (2.78) holds

F(θ) · Cov
[
θ̂
]

−−−→
N→∞

Inθ
(2.79)

is called asymptotically efficient. For real-life applications, an infinite amount of data is
impractical, however in aircraft system identification it is a valid assumption that the
data sets are “large enough” to justify above approximation.

consistent An estimator is called consistent if it holds for growingN [CS2011, Ch. 4.4]

θ̂(N) P r−−−→
N→∞

θ (2.80)

That is, for increasing sample size, the estimate converges in probability to the true
parameter value (see appendix A.4.8 for details on statistical convergence). This con-
cept is related to the concept of an estimation bias: a consistent estimator is also an
unbiased estimator. However, consistency only covers the limit case N → ∞, whereas
unbiasedness is valid independent of the sample size N .

normal An estimator is called normal, if estimates obtained from different sets of
samples are clustered around the true value with a normal distribution, i.e. if it holds
that

θ̂ ∼ N (θ,A) (2.81)

with covariance matrix Cov
[
θ̂
]

= A. Asymptotic Normality is given, if this behavior is
reached in the limit case [CS2011, Ch. 4.4]

θ̂
D−−−→

N→∞
r ∼ N (θ,A) (2.82)

In summary, an unbiased, minimum MSE/variance, (asymptotically) efficient and
consistent estimator is desirable. However, one should evaluate on a case to case basis,
if one or more of those properties might have to be sacrificed in order to improve
the overall result. As was mentioned before, one common trade-off is that between
parameter variance an estimator bias.

2.2.2 Maximum Likelihood Estimation

Maximum likelihood estimation is definitely the most widely used time-domain ap-
proach for parametric identification of dynamic aircraft systems. Its basics will be il-
lustrated in this chapter.
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The probability of obtaining the measurements Z given a set of parameters θ can
be described via the so called Likelihood function [MK2016, Ch. 4]

L(Z,θ) = p(Z|θ) (2.83)

which is the probability density function of the measurements Z given certain values of
the parameters θ. In many cases, the likelihood function can be stated to the extent that
it belongs to a certain family of distributions, which is parameterized by the unknown
parameter vector θ. The final task is then to “best” determine those parameters. Then,
L(Z,θ) describes the combined effect of random components of the process under in-
vestigation (unmeasurable disturbances) together with the uncertainties introduced by
measuring the quantities Z (measurement noise).

The basic idea of maximum likelihood estimation is now, to find those param-
eter values, that maximize this conditional probability, since “the probability of an
event occurring is directly proportional to the value of its probability density func-
tion” [Sim2006, p. 301]. For a given set of measurements Z the parameters are chosen
such that those Z are the most likely to occur [Sor1980, Ch. 5], i.e. are the most plausible.

θ̂ML = arg max
θ

p(Z|θ) = arg max
θ

L(Z,θ) (2.84)

The maximum of a probability density is commonly called a “mode”. If above proba-
bility density has more than one peak, i.e. is multi-modal, the uniqueness of the estimate
is not given anymore. However, in this work, most probability densities are considered
to be uni-modal.

The maximum likelihood approach must not be confused with maximizing p(θ|Z),
which would correspond to choosing the most plausible θ̂ given the measurements Z,
as is done in Bayesian estimation, which will be detailed in section 2.2.3. For this latter
formulation it is necessary that the prior distribution p(θ) is known, which is not the
case for a maximum likelihood estimator.

Since Z is made up of N separate measurements, Bayes’ rule (A.108) and the def-
inition of conditional probability densities (A.102) can be applied repeatedly to arrive
at [MK2016, Ch. 6.1]

L(Z,θ) = p(Z|θ) = p(zN−1|ZN−2,θ) p(ZN−2|θ)
= p(zN−1|ZN−2,θ) p(zN−2|ZN−3,θ) p(ZN−3|θ) = . . .

=
N−1∏
k=0

p(zk|Zk−1,θ)

(2.85)

with the abbreviations

Zk =
[

z0 . . . zk

]
ZN−1 = Z

p(z0|Z−1,θ) = p(z0|θ)
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MAINE and ILIFF call the following the Markov Criterion [MIM1985]

p(zk|Zk−1,θ) = p(zk|θ) (2.86)

that is, if the conditional probability of zk is independent of the previous measurements
Zk−1, then the likelihood function can be expressed as

L(Z,θ) =
N−1∏
k=0

p(zk|θ) (2.87)

In other words, the random components in the samples are required to be independent
and identically distributed (i.i.d.).

Instead of considering a maximization of equation (2.87) directly, commonly its
negative natural logarithm is used as cost function in an optimization approach. This
transformation does not change the location of local minima, since the natural loga-
rithm is strictly monotonically increasing [MK2016, Ch. 6.1]. Merely the numeric value
of the cost function is changed. Also the multiplication with −1 leads to a minimization
instead of a maximization task, which is more common in optimization.

JML(θ) = − ln(L(Z,θ)) = −
N−1∑
k=0

ln(p(zk|θ)) (2.88)

The explicit dependency of JML on Z is dropped, for ease of notation. The first, obvious
advantage of this transformation is that the logarithm of a product can be transformed
into a sum of logarithms, which will be easier to handle when computing derivatives
as the product rule does not have to be applied. Secondly, the probability density func-
tions considered here are of exponential nature, which will cancel with the logarithm.

A necessary condition for a minimum of the cost function is then (see section 2.1.2)

∂JML(θ)
∂θ

∣∣∣∣∣
θ=θ̂ML

= 0 (2.89)

which is often called the likelihood equation [CJ2012, Ch. 2].

2.2.2.1 Properties of Maximum Likelihood Estimates

First, a few interesting properties of a minimum of equation (2.88) are investigated:
The second order necessary condition for a local minimum involves the Hessian of
equation (2.88)

∂2JML(θ)
∂θ2

∣∣∣∣∣
θ̂ML

= −
N−1∑
k=0

∂2 ln(p(zk|θ))
∂θ2

∣∣∣∣∣
θ̂ML

(2.90)

Similar to the approach in [Jat2006, App. D], the strong law of Large Numbers (A.162)
may be used to arrive at

−N 1
N

N−1∑
k=0

∂2 ln(p(zk|θ))
∂θ2

∣∣∣∣∣
θ̂ML

N→∞−−−→
a.s.

NE

− ∂2 ln(p(zk|θ))
∂θ2

∣∣∣∣∣
θ̂ML

 =

=NFk

(
θ̂ML

)
= F

(
θ̂ML

) (2.91)

56



Chapter 2: Mathematical Preliminaries

Combining the last two equations one can see that for a sufficiently large N , the Hes-
sian of JML can be considered an approximation for the Fisher information matrix
F
(
θ̂ML

)
.

Furthermore, a maximum likelihood estimator exhibits favorable properties under
the following hypotheses [WP1997, Ch. 3.3.3] [CS2011, Ch. 4.4]

◦ the model structure M(θ) for data generation and parameter estimation is per-
fectly known (no so-called “characterization error”)

◦ the model structure is globally identifiable under the experimental conditions, i.e.

M(θ1) = M(θ2) ⇒ θ1 = θ2 (2.92)

If the model behaves in the same way for two parameters, this implies that the
parameters are the same.

◦ the perturbation and noise that arise in the description of the measurement pro-
cess can be modelled as i.i.d. random variable, possibly passed through some
shaping filter.

◦ the second derivative of the log-likelihood function w.r.t. θ exists and is continu-
ous in θ, thus enabling a second order series expansion

◦ the expected value of the first and second derivative of the log-likelihood func-
tion is bounded

If these aspects are given, it can be shown that the maximum likelihood estimator
is [MK2016, Ch. 6] [Sor1980] [WP1997, Ch. 3.3.3] [CJ2012, Ch. 2] [Jat2015, Ch. 3]

◦ asymptotically unbiased

◦ consistent

◦ asymptotically normal

◦ asymptotically efficient

See Appendix C.3 for detailed derivations. Especially the last property is advanta-
geous, since it provides an estimate for the parameter variances through the asymp-
totic version of the Cramér-Rao bounds (2.79). As shown above, an approximation for
the Fisher information matrix is readily available through the Hessian ∂2JML(θ)

∂θ2

∣∣∣
θ̂ML

.
Apart from above mentioned advantages, it has to be noted, that most of the proofs

rely heavily on the assumptions that the data samples are i.i.d. [Sor1980, Ch. 5], which
may not be so easily guaranteed in practice. Also, perfect knowledge of the model
structure, and its global identifiability are seldom given. Lastly above properties only
hold in the limit as N → ∞. Whereas this last aspect does not weigh so heavily in air-
craft applications, since typically the number of samples is very large, perfect knowl-
edge and identifiability pose a problem. Currently, this is mostly tackled by a trial- and
error procedure, in order to find a model structures that best suits the problem at hand.
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To summarize, WALTER notes on this topic that above mentioned properties merely
show that maximum likelihood estimators have favorable properties under idealized
conditions. However apart from some special cases (linear model structure and Gaus-
sian, i.i.d. measurement noise), few theoretical results are available for real-life appli-
cations [WP1997, Ch. 3.3.3].

Nevertheless, one advantage of the maximum likelihood approach is the arising
cost function structure. As will be shown, this is basically quadratic in nature, resem-
bling a non-linear, weighted least-squares formulation. This is an intuitive approach
to parameter estimation, if it was considered as a curve fitting problem. Thus, even ne-
glecting the statistical roots of these cost function formulations, they have an intuitive
appeal for the problem at hand. MAINE and ILLIF sum it up quite nicely [MIM1985,
Ch. 5, p. 59]:

“. . . even if some of the assumptions about the noise distribution are ques-
tionable, the estimators still make sense form a non-statistical viewpoint”

2.2.2.2 Solving the Maximum Likelihood Problem – The Output Error Method

So far, it has only been assumed that the samples zk are i.i.d. Some further assumptions
about the nature of the random component are necessary, in order to obtain a practical
estimation algorithm. Assuming

◦ the deterministic model output is only distorted by an additive random compo-
nent. This random component can often be interpreted as measurement noise.

◦ the additive random component is normally distributed, white, and has zero
mean and constant covariance.

eventually leads to the so-called Output Error Method (OEM) [Jat2015, Ch. 4]. Above
also implies that any input to the system needs to be considered as deterministic, and
perfectly known.

Mathematically speaking, the measurements can then be described as

zk = yk(θ) + vk (2.93)

v ∼ N (0,R) (2.94)

with the measurement noise covariance matrix R. The residuals rk, describing the
difference between the model output yk(θ) and measurements zk are then equal to
the measurement noise and are thus also normally distributed with zero mean and
covariance B = R

rk = zk − yk(θ) = vk (2.95)

r ∼ N (0,B) B = R (2.96)
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The assumption of Gaussian noise may be questioned here. However, a mathe-
matically non-rigorous justification can be based on the Central Limit Theorem (see
Appendix A.4.9.2): As soon as some sort of averaging is used in the sampling process,
the samples approach a normal distribution, independently of the underlying, true dis-
tribution [WP1997, Ch. 3]. Also, this assumption leads to a cost function formulation,
that closely resembles the least-squares cost function, which has yielded good results
over centuries.

Using the expression for a multivariate Gaussian distribution (A.120), above as-
sumptions can be used to express the conditional probability density p(zk|θ)

p(zk|θ) = 1√
(2π)nz |B|

exp
(

−1
2(zk − yk(θ))ᵀ B−1(zk − yk(θ))

)
(2.97)

Plugging p(zk|θ) in the expression for the negative log-likelihood function (2.88),
the overall cost for the output error method arises

JOEM(θ) = −
N−1∑
k=0

ln(p(zk|θ))

=
N−1∑
k=0

1
2(zk − yk(θ))ᵀ B−1(zk − yk(θ)) + N

2 ln|B| + Nnz

2 ln(2π)
(2.98)

The last term is a constant, which does not influence the location of the optimum of
above function and is thus usually discarded

JOEM(θ) = 1
2

N−1∑
k=0

(zk − yk(θ))ᵀ B−1(zk − yk(θ)) + N

2 ln|B|

= 1
2

N−1∑
k=0

rk(θ)ᵀ B−1rk(θ) + N

2 ln|B|
(2.99)

This is now the common formulation for the maximum likelihood cost function in the
OEM context. The solution of the arising optimization problem will be discussed in
part II.

Here, it has to be stressed, that this is only one way of formulating a maximum like-
lihood parameter estimation problem, although probably the most widely used. Al-
ternatives may for example involve: different probability distributions, non-constant
variance, or correlated measurement noise. Example 2.5 shows the use of a non-
Gaussian probability distribution.

The output error method in this form is the most widely applied approach for time-
domain aircraft system identification from flight data [Jat2015, Ch. 3], and will also be
at the heart of most discussions here.

2.2.2.3 Solving the Maximum Likelihood Problem – The Equation Error Method

Usually, the yk in the aircraft context are outputs of a dynamical system. Thus their
determination usually involves the solution of a system of differential equations, of-
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Example 2.5: Maximum Likelihood Estimation with Non-Gaussian Noise
This example is rather academic in nature. It is intended to illustrate that the maxi-
mum likelihood principle is valid beyond additive, Gaussian noise models.
Consider a measurement model of the form

zk = yk(θ) + ln vk

where the noise is assumed to be distributed according to a Weibull distribution,
with known and constant parameters λ > 0 and µ > 0

pv(v) = λµ ·(λv)µ−1 exp(−(λv)µ)
The residuals are then

rk(θ) = zk − yk(θ)
vk = exp(zk − yk(θ)) = exp(rk(θ))

Using the transformation of probability densities of A.93 the probability density of
the residuals is

pr(rk(θ)) = pv(exp(rk(θ)))

∣∣∣∣∣∣
∣∣∣∣∣∂ exp(rk(θ))

∂rk(θ)

∣∣∣∣∣
∣∣∣∣∣∣ = pv(exp(rk(θ))) · exp(rk(θ))

For a set of N samples, similar derivations as in the previous section 2.2.2.2 can be
performed to arrive at a negative log-likelihood cost function of the form

J = − ln p(Z|θ) = −
N−1∑
k=0

ln(pv(exp(rk(θ))) · exp(rk(θ)))

= −N ln(µλµ) −
N−1∑
k=0

µ · rk(θ) +
N−1∑
k=0

(λ exp(rk(θ)))µ

Thus a maximum likelihood estimate can be obtained by solving the following opti-
mization problem

min
θ
J = −

N−1∑
k=0

µ · rk(θ) +
N−1∑
k=0

(λ exp(rk(θ)))µ

ten formulated as initial value problem. If they were however the outputs of a static
system, they could be determined purely based on model parameter and input values.

The first case, in which a system may be considered as “static” arises, if the internal
dynamics may be neglected, e.g. because only steady state behavior is of interest. This
is easily accommodated in the output error formulation

zk = yk(uk,θ) + vk (2.100)

with the difference to the foregoing section being that yk(uk,θ) now does not arise
from the solution of an initial value problem, but algebraically relates parameters θ

and inputs u to the outputs.
The second case covers “quasi-static” formulations: if measurements (or results

from data post-processing) of the states and their derivatives were available, the need
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for the solution of a system of differential equations would be eliminated. The aug-
mented “outputs” in this case are a combination of state derivatives and original out-
puts

[ .
xᵀ

k yᵀ
k

]ᵀ
, whereas states and original inputs

[
xᵀ

k uᵀ
k

]ᵀ
may be interpreted as

“inputs” to the static system.

za
k =

 .
xk(xk,uk,θ)
yk(xk,uk,θ)

+
 vx

k

vk

 =
 f(xk,uk,θ)

g(xk,uk,θ)

+ va
k (2.101)

Some call this approach the “equation error method” [MK2016, Ch. 6.4] [Jat2006, Ch. 6].
However, since this is merely a special case of the output error method (where the in-
tegration of the system equations is circumvented) all of the respective considerations
may easily be applied and no special treatment of an equation error formulation is
deemed necessary in this work.

The downside of this approach is, that often no information about the state deriva-
tives is available. Sometimes, they may be obtained through post-processing approach-
es, as will be illustrated in section 3.8 as alternative to brute force finite differences.
However, the quality of the derivative estimates is often insufficient, especially if low-
cost sensors are used as is common for Remotely Piloted Aerial System (RPAS) appli-
cations.

2.2.2.4 Solving the Maximum Likelihood Problem – The Filter Error Method

Sometimes not all effects can be covered by a deterministic model formulation with
additive, white, Gaussian noise. In these cases there exists the possibility to consider a
random component within the model formulation, so-called process noise, leading to
Filter Error Methods (FEMs) [Jat2015, Ch. 1].

This approach is more complicated and can oftentimes be circumvented by an ad-
vantageously chosen model formulation, or comprehensive data-preprocessing. Also,
above mentioned “random component within the model structure” in aircraft applica-
tions is usually turbulent air, so the necessity of filtering approaches may be dropped,
if flight tests are conducted on days with calm air, preferably very early in the morning.

Once a random component within the model is considered, determining the system
outputs is not straightforward anymore. Usually a state estimation algorithm has to
be employed in order to reconstruct outputs based on measurements. In the case of
dynamic system identification, this is commonly done using a Kalman filter [MIM1985]
for state and output estimation.

Once the estimated outputs ŷk(θ) are determined, similar assumptions as in the
OEM case of section 2.2.2.2 may be employed, namely that the residuals describing the
difference between estimated model outputs ŷk(θ) and measurements zk are

◦ white (thus ensuring the Markov Criterion (2.86))

◦ normally distributed with
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◦ zero mean

◦ known covariance.

Expressing this mathematically leads to

rk = zk − ŷk(θ) (2.102)

rk ∼ N (0,Bk) (2.103)

Cov[rk, rj] = δikBk (2.104)

where the main difference to the result of section 2.2.2.2 is that the estimated system
outputs ŷk(θ) are used instead of yk(θ).

Especially stating that the residuals are white seems counter-intuitive, since the
Kalman filter offers the best possible state estimate, based on all past measurements.
Thus one might expect the residuals to be correlated in time. However, it can be shown,
that the linear Kalman filter is a whitening filter, which guarantees that the resulting
residuals are white [MIM1985, Ch. 7], if the propagated outputs ŷk|k−1 (θ) are used in
above equation, see chapter 2.3 and Appendix D.2 for details.

With these considerations in mind, the same approach as in section 2.2.2.2 can be
used to arrive at the cost function for the FEM

JF EM(θ) = 1
2

N−1∑
k=0

(
zk − ŷk|k−1 (θ)

)ᵀ
B−1

k

(
zk − ŷk|k−1 (θ)

)
+ 1

2

N−1∑
k=0

ln|Bk| (2.105)

Often, the time-dependency of the residual noise covariance is dropped to simplify the
problem. It is approximated using a constant B that represents an average over the
considered time span

JF EM(θ) = 1
2

N−1∑
k=0

(
zk − ŷk|k−1 (θ)

)ᵀ
B−1

(
zk − ŷk|k−1 (θ)

)
+ N

2 ln|B| (2.106)

Then the only difference to the OEM case is that the model outputs are estimated using
one of the state estimation approaches to be illustrated in chapter 2.3.

The unknowns of the problem may then be divided into three subsets: states, model
parameters, and noise covariance matrices [MK2016, Ch. 6]. Especially the last group
poses significant practical problems when algorithms are developed to automatically
estimate noise covariance matrix entries. It has to be carefully chosen which elements
are to be included: there exist formulations that include combinations of measurement
noise, process noise, or Kalman gain matrix elements. Also, strategies on how to coun-
teract the resulting convergence issues have to be incorporated.

One of the possible formulations has been applied to aircraft parameter estimation
in the presence of process noise. There, the elements of the process noise covariance
matrix are estimated as nuisance parameters, along with the aerodynamic characteris-
tics. However, in order to obtain useful convergence rates, artificial corrections of this
covariance matrix have to be introduced. Further, additional constraints have to be
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considered, in order to keep Kalman filter parameters meaningful [MI1981b] [Jat2015,
Ch. 5]. These aspects usually discourage from using the FEM in connection with pro-
cess noise covariance estimation, although there have been some successful applica-
tions [JP1989, JP1990].

Because of the difficulties just mentioned the focus in this work lies on state and
parameter estimation, for cases where the noise characteristics are given. This usually
means that they have to be tuned manually for good results. The resulting algorithm
then obtains estimates for the states using the Kalman filter, whereas model parameters
are estimated using a maximum likelihood based approach.

It seems tempting to replace the Kalman filter output estimate in above formulation
by a Rauch-Tung-Striebel (RTS) smoother result, using the algorithm of section 2.3.3.2.
This offers smoother state estimates with lower covariances, with only minor addi-
tional computations. However, a theoretical problem arises: the smoother residuals
will not be white anymore, which is a basic prerequisite for the derivations in this sec-
tion. This is probably the reason, why MAINE and ILIFF state, that “the direct use of
a smoother in [above cost function formulation] is simply incorrect” [MIM1985, p. 99].
On the other hand, the conditions under which the Kalman filter residuals can be con-
sidered “white” (perfectly known model, correct noise characteristics,. . . ) are hard to
meet in practice to begin with. This is why it will have to be considered on a case to
case basis, if above theoretical flaw might be accepted in favor of better state estimates.

In some simple example cases, that arose during the work on this thesis, an opti-
mization solution using a filter instead of a smoother was achieved in fewer iterations.
This may be, because the smoother “hides” the effect of parameter changes, making it
harder to determine their optimum value.

2.2.3 Bayesian Estimation

The fundamental difference between maximum likelihood methods, and Bayesian es-
timation is the treatment of the unknown parameters θ. So far, θ has been assumed to
be an unknown, but constant vector of model parameters. In the Bayesian approach,
it is considered to be the realization of a random variable, which can be characterized
by a probability density function p(θ) [CS2011, Ch. 2.4]. Here, a conundrum arises:
determining exactly this characterization of the parameters via p(θ) tends to be diffi-
cult, when the original task is to determine “good” numeric values for them [MIM1985,
Ch. 4]. In other words, knowledge of the result is necessary in order to be able to solve
the problem.

However, if the situation arises that knowledge about some of the parameters is
available, but cannot be fully trusted, i.e. is more or less “uncertain”. Then, the tools
to be presented next offer the possibility to include this information in the estimation
process.
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2.2.3.1 Estimator Definition

The basic idea of maximizing a probability density function remains the same, i.e. the
mode of a density function is considered to be the estimate. However, the probability
density function to be considered is now the posterior distribution p(θ|Z). Apply-
ing Bayes’ Theorem (A.108) to relate p(θ|Z) to p(Z|θ) via the joint distribution p(Z,θ)
yields [MIM1985, Ch. 4.1] [MK2016, Ch. 4]

p(θ|Z) = p(Z,θ)
p(Z) = p(Z|θ) p(θ)

p(Z) (2.107)

As is discussed in [MIM1985], the posterior distribution p(θ|Z) reflects the information
about the parameters after performing the experiment: It combines the prior infor-
mation (p(θ)) and the information gained by the experiment (p(Z|θ), p(Z)) and thus
constitutes the most information one can obtain about the parameters from a statistical
point of view.

Another way of looking at this is presented by CZADO: some prior knowledge, in
the form of the prior distribution p(θ), is adjusted to the “new knowledge” about θ,
which can be inferred from the data Z via the conditional probability p(Z|θ) (and the
marginal probability p(Z)) [CS2011, Ch. 2.4].

The maximum a posteriori probability (MAP) estimate according to MAINE, ILIFF

[MIM1985] is then the mode of above conditional probability density

θ̂MAP = arg max
θ

p(θ|Z) = arg max
θ

p(Z|θ) p(θ)

= arg min
θ

− ln p(Z|θ) − ln p(θ)
(2.108)

The second equality holds, since p(Z) is not a function of the parameters and thus does
not influence the maximizing argument.

If the parameters’ probability distribution p(θ) is continuous, and non-zero in a
neighborhood of the estimate θ̂MAP , the MAP estimator inherits the maximum likeli-
hood estimator’s properties, such as asymptotic consistency and efficiency [WP1997,
Ch. 3.5.1].

Other estimator definitions exist, which are optimal in the Bayesian sense (e.g. the
a posteriori expected value, Bayesian minimum risk [MIM1985, Ch 4.3]), however only
the MAP estimator will be treated here, due to its close relation to maximum likelihood
estimation. For different assumptions about the prior distribution, different relations
result, which will be discussed next.

2.2.3.2 Uniform Prior Parameter Distribution

If the prior parameter distribution p(θ) is assumed to be the uniform distribution be-
tween two boundaries θlb and θub, i.e. if the probability density can be written as

p
(
[θ](l)

)
=


1

[θub](l)−[θlb](l)
[θ](l) ∈

[
[θlb](l) ,[θub](l)

]
0 otherwise

l = 1, . . . , nθ (2.109)
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Then, as long as the parameters stay within their boundaries, the prior distribution is
merely a constant, and does not influence the location of the minimum of the MAP
estimate. This is called a non-informative prior [CS2011, Ch. 2.4], and it essentially
makes the estimate the same as the maximum likelihood estimate [MIM1985, Ch. 4],
with additional box constraints on the parameters. The estimator then maximizes both,
the a posteriori probability distribution, and the likelihood function.

A discussion on the necessity of box constraints on parameter estimates can be
found in section 3.4. An illustration on how they are incorporated into an optimization
algorithm is shown in section 2.1.3.4 and algorithm 2.3.

2.2.3.3 Constant Parameter

Another link to the maximum likelihood estimates of the last section is to think of
a (possibly unknown) constant θ as a discrete random variable, with the following
probability mass function m(θprior). For details on the relation between discrete and
continuous random variables, see Appendix A.4.1.

m(θprior) =

 1 θprior = θ

0 otherwise
(2.110)

For this type of random variable, it holds

E[θprior] = θ (2.111)

Cov[θprior] = 0 (2.112)

Although plugging this into the definition of the posterior probability (2.107) may not
be allowed when looking at it too mathematically rigorous7, but it makes for an intu-
itive link to maximum likelihood estimation

p(θprior|Z) = p(Z|θprior)
p(Z) m(θprior) =


p(Z|θ)
p(Z) θprior = θ

0 otherwise
(2.113)

Thus the only way to maximize the posterior density function is to chose the value
of the constant θ such, as to maximize the likelihood function p(Z|θ). Even though
the result is the same (i.e. the maximum likelihood estimator) the prior knowledge
involved is different, compared to the foregoing section 2.2.3.2: here, it is assumed,
that the parameters are constants, whereas in the last section, they were assumed to be
uniformly distributed.

7 mixing continuous and discrete random variables necessitate some more elaborate measure theo-
retic tools, like distributions in the sense of generalized functions
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2.2.3.4 Gaussian Parameter Distributions

Assuming that the prior parameter distribution is Gaussian with mean θprior and co-
variance Σ yields [MK2016, Ch. 4]

p(θ) = 1√
(2π)nθ |Σ|

exp
(

−1
2(θ − θprior)ᵀ Σ−1(θ − θprior)

)
(2.114)

Combining this with derivations similar to those of sections 2.2.2.2 and 2.2.2.4, the
resulting cost function is

JMAP (θ) = 1
2

N−1∑
k=0

rk(θ)ᵀ B−1rk(θ) + N

2 ln|B|

+ 1
2(θ − θprior)ᵀ Σ−1(θ − θprior) + 1

2 ln|Σ|
(2.115)

Thus a direct dependency of the cost on the parameters θ is introduced via a quadratic
penalty, in addition to the indirect dependency via the residuals r(θ).

Apart from its statistical interpretation, this may help to “regularize” the problem,
since the positive (semi-) definite matrix Σ is added to the Hessian of the cost function
in the maximum likelihood estimation

∂2JMAP (θ)
∂θ2 = ∂2JML(θ)

∂θ2 + Σ−1 (2.116)

From an optimization point of view, the second term helps to keep the Hessian “well
behaved” by always adding a positive definite term Σ−1. It thus aids in overcoming
intermediate problems when e.g. inverting the matrix of second derivatives. These
problems may arise due to an unfavorable intermediate choice of parameter values
by the optimization algorithm. In these cases, the quadratic parameter term “pulls”
the estimates towards the prior estimates, thus reducing the risk of numerical and
algorithmic problems, e.g. close to saddle points.

From a statistical point of view, the resulting MAP estimate will eventually lie be-
tween the pure maximum likelihood estimate and the prior estimate, where both in-
formation sources are used “optimally”, in the sense that they are combined according
to their covariances. Also the two limiting cases arise:

◦ for very “sure” prior estimates (i.e. very “small” Σ), the term related to the prior
estimates will dominate the optimization, and the result will lie very close to the
prior mean θprior.

◦ For very “unsure” prior estimates, with hardly any information, the inverse prior
covariance matrix will be negligible and the result will essentially be the maxi-
mum likelihood estimate.

In this framework, it is also easy to include information on only a subset of parame-
ters. If no prior information is available for a set of parameters, the corresponding rows
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and columns of Σ−1 are set to zero. Statistically speaking, this corresponds to an in-
finite variance of those parameters, thus no prior information is available [MIM1985].
From an optimization point of view, setting some rows and columns of Σ−1 to zero
removes the effect of the corresponding element from the cost function. Consequently,
only information based on the experimental data will be used to determine the value
of the respective parameter.

2.2.3.5 Statistical Properties of Bayesian Estimates

The MAP estimate converges to the maximum likelihood estimate for large sample
sizes. Thus it shares some of the favorable asymptotic properties of the maximum
likelihood estimator: namely asymptotic consistency and efficiency [CJ2012, Ch. 2.6].
Uncertainties in the parameter estimates may then be quantified based purely on the
use of the Fisher information matrix, as will be illustrated in section 2.2.5.

However, since these are only asymptotic properties, WALTER proposes to include
the prior information on the parameters if the number of samples is finite [WP1997,
Ch. 5.3.2]. The resulting inequality, which resembles the Cramér-Rao bounds [WP1997,
Ch. 5.3.2] [Sor1980], is however not usable in practice, since it involves the expectation
of the Fisher information over the complete parameter space E[F(θ)]. MAINE and ILIFF

propose the following approximation for a Gaussian prior [MIM1985, Ch. 5.4.]

Cov
[
θ̂MAP

∣∣∣Z] ≈

∂2JMAP

(
θ̂MAP

)
∂θ2

−1

=
∂2JML

(
θ̂MAP

)
∂θ2 + Σ−1

−1

(2.117)

Here, the Hessian of the maximum likelihood cost function is used as approximation
for E[F(θ)]. The validity of above approximation may be based on two intuitive argu-
ments:

As will be shown in section 3.2, ∂2JML

∂θ2 may very well be approximated as a sum
over the output sensitivities for all samples. Thus it grows with the sample size N
and will eventually dominate over the prior estimate (given that the experiment is
performed such as to actually collect new information about the parameters). This
illustrates once more the fact, that the MAP estimates converge towards the maximum
likelihood estimates.

Secondly, appendix A.4.7 illustrates, how two independent estimates θ̂1 and θ̂2 of
a parameter θ may be optimally combined to yield an estimate θ̂c with minimum pa-
rameter variances. The resulting covariance estimate is

Cov
[
θ̂c

]
=
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1

which is similar in form as the MAP covariance estimate. This underlines once more,
that the Bayesian approach can be considered as the “optimal” combination of prior
information and new information, introduced via the measurements in the maximum
likelihood part.

67



2.2 Statistical Estimation

2.2.3.6 Remarks on the Bayesian Approach

The Bayesian approach is not often encountered in aircraft parameter estimation, due
to the difficulty of obtaining the prior density p(θ) [Jat2015, Ch. 4]. Sometimes, prior
knowledge is available from other sources (wind-tunnel experiments, prior estima-
tions), however then also the chosen model formulation needs to be consistent with
this prior data in order for it to be useful.

Here, it is mainly interesting for two reasons: on the one hand, ill-posed problems
may be regularized by an “artificial” prior, in order to enlarge the radius of conver-
gence of the optimization algorithm in use. On the other hand, the fundamentals of
state estimation may also be formulated in the Bayesian sense, as will be shown in
chapter 2.3. The considerations of this chapter form the basis for this.

2.2.4 Least-Squares Estimation

The main aspects of the least-squares technique date back to C.F. GAUSS [Gau1857].
Here, they are here presented using modern vector matrix notation, mainly following
the presentation in [Sor1980, Ch. 2]. Similar ideas are illustrated in [MK2016, Jat2006,
CJ2012, Sim2006].

2.2.4.1 Non-Statistical Linear Problem and Its Solution

The basic setting in linear least-squares is as follows: Assume a scalar model that is
linear in the parameters

y = xᵀθ (2.118)

Considering a scalar, linear model is usually enough, since tasks involving multi-
dimensional outputs can be easily partitioned into several, independent, scalar sub-
problems, as long as the model is linear in the parameters.

Now the dependent variable y can only be observed with an additive error v resulting
in the measurements z. This observation is done multiple times, to arrive at a set of N
samples

zk = xkθ + vk k = 0 . . . N − 1 (2.119)

z =


z0
...

zN−1

 =


xᵀ

0
...

xᵀ
N−1

θ + v

=
[

ξ1 · · · ξnθ

]
θ + v

= Xθ + v

(2.120)

In the applications to be presented here, the sorting index k usually refers to time, but
in other applications this might not be true. The columns of the regressor matrix X
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are commonly referred to as “regressors” ξ, whereas its rows8 xᵀ
k represent the values

of the regressors at one sampling instant. The regressors are assumed to be perfectly
known, and errors are only allowed to enter via v. Furthermore, the approach pre-
sented here is only meaningful if N � nθ and if X has full column rank. A precondi-
tion for X to have full column rank is for the regressors to be linearly independent.

The fact that only linear relations of the dependent variable and the parameters
can be included may seem overly restrictive. However, since the regressors may be
any non-linear function of the independent variables, a great model variability is still
possible. Quite advanced approaches involving splines or radial basis functions can
be boiled down to linear least-squares problems with only slight restrictions.

Now a “good” parameter value θ̂LS is determined such, that the 2-norm of the error
vector is minimum, which results in the following cost function

JLS = 1
2eᵀe = 1

2(z − Xθ)ᵀ(z − Xθ) (2.121)

In order to find a minimum of this cost function, its gradient w.r.t. the parameter vector
is set to zero, and its Hessian is investigated further [Sor1980, Ch. 2] [MK2016, Ch. 5]

∂JLS

∂θ
!= 0 = −Xᵀ

(
z − Xθ̂LS

)
= −Xᵀz + XᵀXθ̂LS (2.122)

∂2JLS

∂θ2 = XᵀX (2.123)

From the second equation it follows that the Hessian in this case is always positive
definite, since X has full rank. Thus the resulting optimum is a minimum.

The first equation results in a linear system of equations, which can be solved for
the least-squares solution θ̂LS

(XᵀX) θ̂LS = Xᵀz

⇒ θ̂LS =(XᵀX)−1 Xᵀz
(2.124)

The first of above equations is commonly known as the “normal” equations. Here
the fact that X is assumed to have full column rank comes into play: only then is a
unique solution θ̂LS possible. Numerical issues may arise, not only if the regressors
ξ are perfectly linearly dependent, but also if they resemble each other too closely.
Then XᵀX will not be well conditioned and solving above linear system of equations
may become difficult. This situation may be interpreted as follows: the algorithm is
not able to map a variation in the response uniquely to one regressor, since there are
several combinations that may amount to almost the same effect [MK2016, Ch. 5.1].

8 A remark on notation is in order: even though the regressors are not to be confused with the states
of a dynamic system, they still fully describe the output of the model at one sampling instant. Due to
this close relation it was chosen to use the same symbol x (and its concatenated version X) both for
the states of dynamic systems in other chapters, and the regressors at one sampling instant in linear
least-squares problems.
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Despite an ill-conditioned matrix XᵀX, results may still be obtained, since there
exist numerically stable algorithms for the solution of least squares problems. Orthog-
onal decomposition methods such as the QR decomposition or the Singular Value De-
composition (SVD) may be employed, which do not necessitate the explicit inversion
of XᵀX.

The difference between measurements z and estimated model outputs ŷ are called
“residuals” r

ŷ = Xθ̂LS = X(XᵀX)−1 Xᵀz (2.125)

r = z − ŷ = z − Xθ̂LS

=
(
IN − X(XᵀX)−1 Xᵀ

)
z

(2.126)

It is interesting to note that according to the definition of the minimum via a root of the
cost function gradient (2.122), the residuals need to be orthogonal to all columns of the
regressor matrix X

Xᵀr = Xᵀ
(
IN − X(XᵀX)−1 Xᵀ

)
z = 0 (2.127)

Further, it can be verified that the matrix X(XᵀX)−1 Xᵀ is an orthogonal projection of
a vector in RN onto the subspace spanned by the columns of the regressor matrix X
[Sor1980, App. B] [CJ2012, Ch. 1].

Thus the measurement vector z is partitioned into two parts: the estimated mod-
el outputs ŷ are the projection of the measurements z onto the space spanned by the
regressor vectors ξi; the residuals are the projection of z onto a space orthogonal to
X [Sor1980, Ch. 2]. Figure 2.3 illustrates this. It also shows the geometrical necessity
of linear independence between the regressor vectors ξi: if they were not indepen-
dent, the example plane would degrade to a line and in two dimensions no mean-
ingful projection would be possible. This orthogonal projection characteristics were,
amongst others, used by KALMAN in his original derivation of the filter bearing his
name [Kal1960].

Sometimes it is known that the quality of some measurements is different from
that of other measurements. This can be taken into consideration by introducing a
positive definite, symmetric, weighting matrix W in the cost function. This leads to
generalized least-squares, whose solution can be obtained in exactly the same manner
as above [Sor1980, Ch. 2]

JW LS = 1
2(z − Xθ)ᵀ W(z − Xθ) (2.128)

θ̂W LS =(XᵀWX)−1 XᵀWz (2.129)

However, it is often difficult to determine reasonable values for the weighing matrix
when applying this approach.
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ξ1

ξ2

r

ŷ

z

z1

z2

z3

Figure 2.3: Illustration of the projection characteristics in least-squares: the measurement
vector z is projected onto the hyper-surface spanned by the regressor matrix X = [ξ1 ξ2] in
order to obtain the estimated model output ŷ = ξ1θ̂1 + ξ2θ̂2. The remaining residuals r are
then perpendicular to ŷ (and all regressors ξi)

2.2.4.2 Linear least-squares with Equality Constraints

Sometimes linear relationships between the model parameters are known, which may
be included in least-squares optimization. The problem to be solved can then be for-
mulated as  min

θ

1
2(z − Xθ)ᵀ W(z − Xθ)

s.t. Aθ = b

 (2.130)

where A is assumed to have full rank

rank(Aᵀ) < nθ (2.131)

i.e. the possible solutions are constrained to a linear subspace of Rnθ . One standard
way of going about this problem is the Lagrangian approach, as was illustrated in
section 2.1.3.1. However, a different approach can be taken, if a solution θeq to the
constraint equation was available

Aθeq = b (2.132)

It has to be emphasized that θeq is an arbitrary, but known parameter that solves the
linear constraint equation. Next, a basis for the null-space of A is needed, i.e. a full-
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rank matrix Z, such that

AZ = 0 (2.133)

Z ∈ Rnθ×(nθ−rank(Aᵀ)) (2.134)

All possible solutions to the equality constraint equation may then be expressed based
on the known solution θeq together with linear combinations of the columns of Z

θ = θeq + Zθfree (2.135)

since they automatically fulfill the constraint equation

Aθ = Aθeq + AZθfree = Aθeq = b (2.136)

Thus the admissible parameter space is built from an offset θeq together with the feasi-
ble directions in Z. Then a transformation of the cost function is possible, by using this
parameterization of the feasible space

JW LS = 1
2
(
z − Xθeq − XZθfree

)ᵀ
W
(
z − Xθeq − XZθfree

)
= 1

2
(
z̃ − X̃θfree

)ᵀ
W
(
z̃ − X̃θfree

) (2.137)

with z̃ = z − Xθeq

X̃ = XZ

Above cost function automatically includes only solutions, which fulfill the equality
constraints, and can thus be treated as unconstrained problem. Also, the parameter
dimension is reduced to the remaining degrees of freedom nθfree = nθ − rank(Aᵀ)
that are not constrained via Aθ = b. This constitutes the so-called null-space method
of quadratic programming with equality constraints [SS2011]. It searches for possible
solutions only in the reduced space of free directions, implemented in terms of the
null-space basis Z.

The solution to above reduced problem is then straight-forward

θ̂LS
free =

(
X̃ᵀWX̃

)−1
X̃ᵀWz̃

=(ZᵀXᵀWXZ)−1 ZᵀXᵀW(z − Xθeq)
(2.138)

The null-space basis Z has, per definition, nθ−rank(Aᵀ) linearly independent columns,
thus above matrix inversion poses no problem. The solution to the original, equality
constraint problem is then

θ̂LS
c = θeq + Zθ̂LS

free

= θeq + Z(ZᵀXᵀWXZ)−1 ZᵀXᵀW(z − Xθeq)
(2.139)

This illustrates, that the computational cost for solving an augmented problem in the
Lagrangian method is replaced by the computational cost of determining the null-
space of A, which may be significantly lower, if nθ − rank(Aᵀ) is small, i.e. if Z has
many more rows than columns.
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2.2.4.3 Statistical Interpretation

So far, the least-squares approach has only been presented from an optimization point
of view, with some geometric interpretations. However, under suitable assumptions
about the additive noise term, linear least-squares problems can be interpreted from a
statistical point of view, too.

Assume, the measurement noise is zero mean, with known covariance matrix

E[v] = 0 (2.140)

Cov[v] = R (2.141)

The assumption of zero mean does not pose a significant restriction, since a non-zero
mean can easily be included as bias term in the regressor matrix and estimated along
with the model parameters. Here, the complete noise vector for all time instants v =[
v0 · · · vN−1

]ᵀ
is considered, which also allows for noise that is correlated between

the samples.
With above assumption, it can be shown that the least-squares estimator (ordinary

and weighted) is unbiased [Sor1980, Ch. 2]

E
[
θ̂W LS

]
= E

[
(XᵀWX)−1 XᵀWz

]
=(XᵀWX)−1 XᵀW · E[Xθ + v]

=(XᵀWX)−1 XᵀWXθ = θ
(2.142)

E
[
θ̂LS

]
= E

[
(XᵀX)−1 Xᵀz

]
= · · · =(XᵀX)−1 XᵀXθ = θ (2.143)

In above derivation, it has been used that the regressor matrix X, the parameter vector
θ and the weighting matrix W are deterministic, and that the noise v has zero mean.

Furthermore, the parameter covariance matrix in the weighted least-squares case is
[Sor1980, Ch. 2]

Cov
[
θ̂W LS

]
= Cov

[
(XᵀWX)−1 XᵀW(Xθ + v)

]
= Cov

[
(XᵀWX)−1 XᵀWv

]
=(XᵀWX)−1 XᵀWRWX(XᵀWX)−1

(2.144)

and for ordinary least-squares (W = IN ) the following results

Cov
[
θ̂LS

]
=(XᵀX)−1 XᵀRX(XᵀX)−1 (2.145)

An interesting special case arises, if the weighting matrix in the weighted least-
squares case is chosen to be the inverse of the measurement noise covariance matrix
W = R−1

Cov
[
θ̂W LS

]
=
(
XᵀR−1X

)−1
XᵀR−1RR−1X

(
XᵀR−1X

)−1

=
(
XᵀR−1X

)−1 (2.146)

This results in the best, linear, unbiased estimator (BLUE), see [Sor1980] for details and
the corresponding proof of optimality. A further special case may be formulated for
white noise for which it holds that R = σ2

vIN

Cov
[
θ̂W LS

]
= Cov

[
θ̂LS

]
= σ2

v(XᵀX)−1 (2.147)
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This last case allows for an especially useful approach, since for large sample sizes,
the sample variance (A.159) of the residuals s2

r,N constitutes a good estimate for the
noise variance σ2

v . Thus it is possible to obtain the covariance matrix of the estimated
parameters without having to specify the noise characteristics.

2.2.4.4 Statistical Estimation With Equality Constraints

Using the same assumptions as above (zero-mean noise with known covariance) least-
squares estimation involving deterministic equality constraints may be treated in a
similar manner. First, the true, deterministic parameter vector is split in three parts
without loss of generality

θ = θeq + Zθfree + θ⊥ (2.148)

The first part solves the equality constraints, the second is built from the basis vectors
of the null-space of A, and the last, remaining part covers the parts which may not be
explained by the columns of Z, i.e. for which it holds Zᵀθ⊥ = 0. This last part would
actually violate the equality constraints, the consequences of which will be discussed
later. The measurements can then be expressed as

z = Xθ + v = Xθeq + XZθfree + Xθ⊥ + v (2.149)

Using this, the expected value of the constraint estimate (2.139) is

E
[
θ̂LS

c
]

= E
[
θeq + Z(ZᵀXᵀWXZ)−1 ZᵀXᵀW(z − Xθeq)

]
= θeq + E

[
Z(ZᵀXᵀWXZ)−1 ZᵀXᵀW

(
Xθeq + XZθfree + Xθ⊥ + v − Xθeq

)]
= θeq + Zθfree + Z(ZᵀXᵀWXZ)−1 ZᵀXᵀWXθ⊥ (2.150)

= θ +
(
Z(ZᵀXᵀWXZ)−1 ZᵀXᵀWX − Inθ

)
θ⊥

in above derivation, apart from simple matrix multiplications, it was only used that
the measurement noise is assumed to have zero mean, and that all components of the
parameter vector (θeq, θfree, θ⊥), as well as the regressor matrix X and null-space basis
Z are deterministic.

This shows, that the weighted least-squares estimator with equality constraints can
only be unbiased, if the true parameter also fulfills the equality constraints (i.e. θ⊥ = 0).
This intuitively makes sense, since if the true parameter is not located within the fea-
sible set of the optimization problem, the estimation bias will necessarily consist of
components perpendicular to this feasible set. This situation may arise, if the equality
constraints do not capture the real nature of the problem, but are wrongly specified by
the analyst.

The covariance of the estimate can be obtained by first computing the covariance
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in the free directions (using the decomposition (2.135) and estimation results (2.138))

Cov
[
θ̂LS

free
]

= Cov
[
(ZᵀXᵀWXZ)−1 ZᵀXᵀW(z − Xθeq)

]
=(ZᵀXᵀWXZ)−1 ZᵀXᵀW Cov[(Xθ + v − Xθeq)]︸ ︷︷ ︸

=R

WᵀXZ(ZᵀXᵀWXZ)−1

=(ZᵀXᵀWXZ)−1 ZᵀXᵀW · R · WᵀXZ(ZᵀXᵀWXZ)−1 (2.151)

Then the covariance of the constraint estimate can be determined

Cov
[
θ̂LS

c
]

= Cov
[
θeq + Zθ̂LS

free
]

= Z · Cov
[
θ̂LS

free
]

· Zᵀ (2.152)

Again considerable simplification can be achieved, if the weighting matrix W is
chosen to be the inverse of the measurement noise covariance matrix

Cov
[
θ̂LS

free
]

=
(
ZᵀXᵀR−1XZ

)−1
(2.153)

Cov
[
θ̂LS

c
]

= Z
(
ZᵀXᵀR−1XZ

)−1
Zᵀ (2.154)

Above equations first condense the unconstrained information matrix XᵀR−1X onto
the space of free directions via Z. This condensed information is then used to compute
the covariance matrix of the parameters in the free directions Cov

[
θ̂LS

free
]
. Thus the

uncertainty involved may only exist in those directions, that are not constrained. To
obtain the parameter error covariance matrix of the complete problem, Cov

[
θ̂LS

free
]

is
then mapped onto the original parameter space, again via Z. This mapping necessarily
introduces high correlations between the estimates of the original problem, which fits
intuition very well: linear equality constraints enforce linear relationships between
parameters, which have to be reflected in the correlations between their estimates.

2.2.4.5 Extension to Non-Linear Models

If there is no way to formulate the model in a linear fashion, one has to resort to non-
linear least-squares of the form

zk = yk(θ) + vk k = 0 . . . N − 1 (2.155)

JNLS = 1
2

N−1∑
k=0

(zk − yk(θ))ᵀ R−1
k (zk − yk(θ)) (2.156)

In the non-linear case, it is often not possible to decouple the output variables, thus
consideration of all outputs at once is necessary. In addition to weighting individual
sampling instants, it also becomes possible to weigh different output signals via the
elements of Rk. Here, the case is illustrated, where the outputs are weighted according
to the measurement noise covariance matrix, and more/less importance can be given
to sampling instants via the explicit time-dependency of Rk. It should be noted, that it
is usually challenging enough to determine proper values for the measurement noise
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covariance matrix at one point in time, not to mention its evolution throughout the
period of interest.

This problem can in general not be solved analytically, and one has to employ iter-
ative methods, as were presented in chapter 2.1 on cost function optimization.

2.2.4.6 Consideration of Prior Knowledge

The least-squares problem formulation allows for a straight forward way to include
prior knowledge on the parameters: they can be considered as additional, artificial
measurement [Sor1980, Ch. 2].

Assume, prior knowledge on the parameters is available in the form of its mean
θprior and covariance matrix Σ. Further assume that the prior estimate is statistically in-
dependent of the measurement noise. Then, using the identity θprior = θ +(θprior − θ),
the weighted least-squares approach can be modified

z̃ =


θprior

z0
...

zN−1

 =


Inθ

xᵀ
0
...

xᵀ
N−1

θ +


θprior − θ

v0
...

vN−1

 = X̃θ + ṽ (2.157)

Cov[ṽ] = R̃ =
 Σ 0

0 R

 (2.158)

Only the use of a weighted least-squares approach makes sense here, since otherwise
the knowledge about Σ would be lost. Choosing W = R̃−1 yields

JW LS = 1
2
(
z̃ − X̃θ

)ᵀ
R̃−1(

z̃ − X̃θ
)

= 1
2(θprior − θ)ᵀ Σ−1(θprior − θ) + 1

2(z − Xθ)ᵀ R−1(z − Xθ)
(2.159)

θ̂W LS =
(
Σ−1 + XᵀR−1X

)−1(
Σ−1θprior + XᵀR−1z

)
(2.160)

For a non-informative prior, i.e. Σ → ∞, the estimator of section 2.2.4.1 on weighted
least-squares can be obtained. The extension to non-linear least-squares is straight
forward, and results in the following cost function

JNLS = 1
2(θprior − θ)ᵀ Σ−1(θprior − θ) + 1

2

N−1∑
k=0

(zk − yk(θ))ᵀ R−1
k (zk − yk(θ)) (2.161)

which again needs to be solved iteratively.

2.2.4.7 Connection to Other Estimation Approaches

Comparing the cost function formulations of this section, with the output error for-
mulation presented in section 2.2.2.2, a close relationship between the two becomes
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evident: Under the following assumptions, the (non-) linear least-squares estimator is
a maximum likelihood estimator [Sor1980, Ch. 5] [CJ2012, Ch. 2]

◦ the noise v is additive

◦ the noise v is Gaussian, with known covariance R = B
◦ the parameters θ are unknown, but deterministic constants

Then, the negative log-likelihood function and Fisher information matrix become

− ln(L(θ)) = 1
2(z − Xθ)ᵀ R−1(z − Xθ) + N

2 ln|R| + Nnz

2 ln(2π) (2.162)

F(θ) = −E
[
∂2 lnL
∂θ2

]
= XᵀR−1X (2.163)

Now, the expression for the covariance of the parameters in the weighted least-squares
case (2.146) is actually equal to above Fisher information matrix. Thus it is shown,
that in this setting, the weighted least-squares estimator attains the Cramér-Rao lower
bound and is thus efficient, even in the non-asymptotic case [CJ2012, Ch. 2].

If prior knowledge on the parameters is to be included, the comparison should take
place with the cost functions arising in the Bayesian approach of section 2.2.3.4. Then
the least-squares estimator becomes a MAP estimator under the following additional
conditions [Sor1980, Ch. 5]

◦ the parameters θ are unknown, random constants (replacing above condition of
an unknown, deterministic constant)

◦ the parameters θ are Gaussian, with known mean and covariance

If the least-squares estimator can be considered to be a maximum likelihood /
MAP estimator, its favorable asymptotic properties (consistency, asymptotic normal-
ity, asymptotic efficiency) apply as well.

2.2.4.8 Comments on Least-Squares Estimation in Aircraft Parameter Estimation

In practical application, some of the basic assumptions of least-squares estimation are
often violated.

For instance, it is often very difficult to explicitly specify the measurement noise
covariance R. Then, to simplify computations, measurement errors are often assumed
to be white, i.i.d. noise. This assumption is widely spread, albeit seldom justified in
practice. The result is still an unbiased parameter estimate, but the covariance estimate
tends to be overly confident [MK2016, Ch. 5.1]. Some remedies to this will be pre-
sented in section 2.2.5, where the possibility to include noise coloring in the covariance
estimate is discussed.

Another violated assumption, at least in aircraft applications, is that of perfectly
known regressors. They are often functions of measured quantities, such as angle of
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attack, rotational rates, or velocity components. Those measurements can show signif-
icant noise influences. Application of ordinary least-squares techniques then lead to a
biased estimate [CJ2012, Ch. 2.7.3]. There exists an approach to take care of errors in the
regressors, namely “total least-squares”. However, it exhibits some disadvantageous
characteristics, which limit is practical applicability: total least-squares problems are
inherently worse conditioned compared to the respective ordinary least-squares prob-
lem. Furthermore, the parameter covariances are commonly larger, and the advantage
of the total least-squares approach is only useful, if the bias term of the ordinary case
becomes dominant in the result [CJ2012, Ch. 2.7.3].

Another problem arises with the regressors ξ: One wishes to have regressors, that
are as different from each other as possible, in order to have less numerical prob-
lems when inverting the information matrix XᵀX. Eventually this also results in only
weakly correlated parameter estimates. However, in aircraft applications, the typical
regressors (body rotational rates, control surface deflections) may not be excited inde-
pendently, since they are coupled via flight mechanics: It is impossible to, e.g. excite
aileron deflections without provoking a roll rate, which necessarily leads to correla-
tions of the respective parameters. This is not only problematic for linear least squares
estimation, but also for the more general, non-linear maximum likelihood case. This
effect has to be kept in mind, and investigated on a case by case basis.

In summary, one can conclude that even though some of the basic assumptions
of the least-squares estimator may be violated in practice, it is still a very important
approach in parameter estimation problems for aircraft. This is mainly due to two rea-
sons: On the one hand, its robust, simple an non-iterative nature allows for quick re-
sults. On the other hand, least-squares results are commonly used as initial guesses for
more advanced parameter estimation algorithms [Jat2015, Ch. 6]. Thus small system-
atic errors, introduced by violated assumptions, will be compensated for in later stages
of the parameter estimation process. It is then more important that initial guesses can
be obtained in a robust fashion, quick, and within reasonable limits of the final result.

2.2.5 Statistical Properties of Parameter Estimates

2.2.5.1 The Fisher Information Matrix

In all of the three discussed estimation approaches, it was shown that the cost function
Hessian presents a viable approximation or is equal to the respective Fisher informa-
tion matrix. Since all approaches are (asymptotically) efficient, its inverse may be used
as approximation to the parameter covariance matrix [Jat2015, Ch. 4].

Cov
[
θ̂
]

= F(θ)−1 (2.77)=
(

−E
[
∂2 ln p(Z|θ)

∂θ2

])−1

≈

∂2J
(
θ̂
)

∂θ2

−1

(2.164)
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WALTER illustrates the approximations, which are involved here in more detail, specif-
ically they are [WP1997, Ch. 5.3.1]

◦ often the efficiency of the estimators is only achieved asymptotically, whereas the
sample sizes are finite.

◦ F
(
θ̂
)−1

is used as approximation to the Fisher information at the true parameter
value F(θ)−1

◦ The Hessian of the cost function
∂2J
(

θ̂
)

∂θ2 is used as approximation for the Fisher in-
formation matrix F(θ)−1. However, this relation is based on some assumptions
about the noise (Markov criterion, known covariance), which are never fully sat-
isfied in reality.

The consequences of above approximations depend strongly on the case at hand, but
should always be kept in the back of one’s head. They can be alleviated somewhat if
[WP1997, Ch. 5.3.1]

◦ the number of samples is large

◦ the parameter’s influence on the output is close to linear

◦ the assumptions about the noise are correct (Markov-criterion, constant covari-
ance)

◦ the noise influence is small, i.e. the signal-to-noise ratio is large (JATEGAONKAR

proposes a ratio of 10 : 1 for aircraft applications [Jat2006, Ch. 2.5])

Further criticism on the Fisher information matrix as source of estimates for the pa-
rameter uncertainties results from the assumptions about the underlying noise process
[WP1997, Ch. 5.4]: The estimators, which are used here, are based on the assumption of
mutually independent realizations of the noise processes involved. In many practical
applications, this assumption does not hold. Especially, if the true model structure is
unknown, there results a structural, deterministic error, which is perfectly repeatable.

Nevertheless, the inspection of
∂2J
(

θ̂
)

∂θ2 is convenient, since it is computed as a by-
product of the optimization process anyway. This partly explains the fact that it is
probably the most widely used characterization method for parameter uncertainty.
Additionally, there are other interpretations, which are not based on notions of effi-
ciency, which underline its usefulness: In all of the discussed applications, the Fisher
information matrix is a quadratic function of the output sensitivities (see section 3.3 for
details). Output sensitivities relate the magnitude of a change in a model parameter
to a change in the actual output, i.e. if the output sensitivity is large, a small change
in a parameter entails significantly modified outputs. Parameter estimation routines
will then have less problems to accurately locate an estimate, since small changes will
significantly alter the response error. The opposite is true for small output sensitivities:
the estimation routine will be able to significantly change a parameter value, without
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modifying the model output too much, making accurate determination of its numerical
value harder.

Thus it makes sense, to investigate a quadratic function of the “amount of output
sensitivities accumulated over an experiment”, e.g. a sum of squared output sensitivi-
ties. This can be used to assess, if the algorithm had a chance of precisely determining
the parameter value [MK2016, Ch. 9]. Further merits of the Fisher information matrix,
presented from an optimization point of view will be illustrated in section 3.7.

2.2.5.2 Residual Coloring

It has been observed quite early in the history of aircraft parameter estimation that
the scatter in parameter estimates from different experiments do not fit well with the
covariance estimates based on the Fisher information matrix. The latter was often ob-
served to be too optimistic, which is why sometimes a fudge factor of 5 to 10 was used
in the uncertainty estimates.

MAINE and ILIFF traced this anomaly back to noise coloring [IM1977, MI1981a]: a
basic assumption is that the noise processes involved are white. However, this is not
true in real-life applications, especially if unmodeled dynamics remain. Then, a con-
siderable part of the residual power will be located in the frequency range of aircraft
rigid body motion.

This situation can nicely be illustrated for the general least squares case, of sec-
tion 2.2.4.3. It has been shown, that if the weighting matrix W was chosen as the
inverse of the noise covariance R, the best, linear, unbiased estimator (BLUE) results.
However, if a noise covariance R̂ is assumed that only covers parts of the true noise
characteristics

R = R̂ + ∆R ⇔ W = R̂
−1

(2.165)

the estimator covariance based on equation (2.144) is

Cov
[
θ̂W LS

]
=
(

XᵀR̂
−1

X
)−1

XᵀR̂
−1

RR̂
−1

X
(

XᵀR̂
−1

X
)−1

=
(

XᵀR̂
−1

X
)−1

+
(

XᵀR̂
−1

X
)−1

XᵀR̂
−1∆RR̂

−1
X
(

XᵀR̂
−1

X
)−1 (2.166)

Thus, the covariance estimate
(

XᵀR̂
−1

X
)−1

would be too optimistic, since the second

part in above equation is ignored. Nevertheless, the actual estimate is still unbiased,
as is also shown in section 2.2.4.3.

This is exactly what happens if residual coloring is ignored and the noise is wrongly
assumed to be white: the estimated noise matrix R̂ will be (block-) diagonal in general,
and any off-diagonal elements in ∆R, due to coloring, will be ignored.

MORELLI and KLEIN show how this effect may be incorporated a posteriori with
little additional computations [MK1997, MK2016]. They propose to estimate the resid-
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ual autocorrelation after the parameter estimates have been determined.

R̂
r
i = 1

N

N−1−i∑
k=0

(rk − r̄N)(rk+i − r̄N)ᵀ =
(
R̂

r
−i

)ᵀ
i = 0 . . . r (2.167)

where r implements a band-limitation on residual coloring, since only contributions
up to r samples in the past are considered. This autocorrelation can then be used
for a correction, by approximating the true noise covariance with the following band-
diagonal matrix

R ≈ Rcorr =



R̂
r
0 · · · R̂

r
r

... R̂
r
0

. . .

R̂
r
−r

. . . R̂
r
r

. . . ...
R̂

r
−r · · · R̂

r
0


(2.168)

This approximation may then be used in above equation 2.166 to correct the covariance
estimate which was based on the assumption of white noise.

Naturally, the question arises, why above approximation is not used as new weight-
ing matrix W for a new solution to the original problem. MORELLI and KLEIN state
that the approximated noise covariance matrix is large and often ill-conditioned for
typical flight test data, which inhibits convergence. Thus they propose to compute pa-
rameter estimates using generalized or ordinary least-squares, and merely correct the
covariance estimate in above fashion [MK2016, Ch. 5.2].

In this work, residual coloring will be treated along with the general uncertainty
quantification approach in section 3.5. There some remarks on its application to max-
imum likelihood estimation will also be presented. Alternatively, a correction factor
of 5 or 10 may be applied to the parameter standard error estimates in order to ac-
count for the overly confident covariance estimates when residual coloring is neglected
[MK2016, Ch. 5].

2.2.5.3 Parameter Characteristics

From the parameter covariance matrix, some very important statistical characteristics
of the estimates θ̂ can be extracted.

Parameter Standard Deviations
For one, the main diagonal elements of Cov

[
θ̂
]

are the variances of the parameter esti-
mates, i.e. their standard deviations can be extracted as [MK2016, Ch. 5]

σ
[[

θ̂
]
(j)

]
=
√[

Cov
[
θ̂
]]

(j,j)
(2.169)
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See the definition of the standard deviation in equation (A.69). Relating the stan-
dard deviations to the actual parameter value results in a relative standard deviation
[Jat2015, Ch. 10]

σrel

[[
θ̂
]
(j)

]
=
σ
[[

θ̂
]
(j)

]
[
θ̂
]
(j)

· 100% (2.170)

Large values of the relative standard deviation should be investigated closer. The two
most common explanations are that either the information content of the data with re-
spect to this particular parameter is too low, thus it cannot be determined very exactly.
Alternatively, if the numerical value of the particular parameter is small, its relative
standard deviation also grows rapidly. Both aspects are undesirable and should be cir-
cumvented, by either trying to collect more informative data, or by investigating, if the
respective parameter could be dropped from the model.

Parameter Correlation
The second quantity, which can be extracted from the parameter covariance matrix
Cov

[
θ̂
]

are the parameter correlation coefficients [MK2016, Ch. 5] [Jat2015, Ch. 11]

ρ
[[

θ̂
]
(i)
,
[
θ̂
]
(j)

]
=

[
Cov

[
θ̂
]]

(i,j)

σ
[[

θ̂
]
(i)

]
· σ
[[

θ̂
]
(j)

] (2.171)

They are the cross-variances of two parameter estimates, normalized with the respec-

tive standard deviations. The ρ
[[

θ̂
]
(i)
,
[
θ̂
]
(j)

]
describe the linear relation between the

two parameters, see equation (A.85).
Arranging the correlation coefficients in a matrix yields the correlation matrix, see

equation (A.86) [MK2016, Ch. 5]

Corr
[
θ̂
]

=


ρ
[[

θ̂
]
(1)
,
[
θ̂
]
(1)

]
· · · ρ

[[
θ̂
]
(1)
,
[
θ̂
]
(nθ)

]
... . . . ...

ρ
[[

θ̂
]
(nθ)

,
[
θ̂
]
(1)

]
· · · ρ

[[
θ̂
]
(nθ)

,
[
θ̂
]
(nθ)

]
 =



1
σ

[[
θ̂
]
(1)

] 0

. . .

0 1

σ

[[
θ̂
](

nθ

)]

Cov
[
θ̂
]


1
σ

[[
θ̂
]
(1)

] 0

. . .

0 1

σ

[[
θ̂
](

nθ

)]



(2.172)

Absolute values of the correlation coefficients close to 1 indicate that the respective
parameters might be linearly dependent on each other. In this case, the estimation
algorithm may have problems to find independent estimates of the parameters. This is
also an undesirable situation, and modification of the model formulation, or inclusion
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of prior knowledge can be remedies. Alternatively, new, more informative data can be
gathered, to make the effect of certain parameters more distinct, thus reducing their
correlation.

Since in aircraft applications many influencing factors are connected closely via
flight mechanics (e.g. aileron deflection cannot be investigated without the resulting
roll-rate), comparatively high correlations may appear. In one example, MORELLI ac-
cepts correlations that have an absolute value just below 0.9 [MK2016, Ex. 5.1], where
JATEGAONKAR states that correlations over 0.9 should be investigated, and those over
0.95 can be considered linearly dependent [Jat2015, Ch. 11].

Further Approaches for Uncertainty Quantification
Apart from a simple investigation of the Fisher information matrix, and the derived
parameter covariances, many more approaches to investigate the uncertainty in the
parameters exist. WALTER illustrates the use of confidence regions and cost contours.
However they quickly become cumbersome if the parameter space is of dimension
higher than four [WP1997, Ch. 5], since drawing point clouds cannot be achieved in
three dimensional space anymore. There exist possibilities to reduce the dimensions
involved (e.g. by projection on subspaces), or to investigate only principal compo-
nents. But all of these approaches require a large number of model runs, which is
another reason why they were not pursued further in this work.

Furthermore, WALTER illustrates approaches based on Monte-Carlo simulations,
the use of which could be part of a future work on this topic [WP1997, Ch. 5.2]. Their
merit lies in the fact that they characterize the uncertainty in the parameters for finite
sample sizes, and adapted to the estimation problem at hand.
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2.3 State Estimation

As soon as the system under investigation is not deterministic, simple integration
in time cannot be used to obtain the model outputs any longer. Moreover, filtering
approaches have to be employed to reconstruct a valid state and output trajectory
based on the available information. In the context of aircraft system identification,
the Kalman Filter has shown to yield appropriate results.

The next sections will lay out the basics necessary to understand state estimation
in the context of system identification. Most of the content will be based on ideas
commonly associated with KALMAN and RAUCH, TUNG, and STRIEBEL. However,
this is by no means intended to give an extensive overview over the topic. A good
starting point for further inquiries are [Sim2006, Jaz1970, CJ2012, RTS1965, Kal1960].

After some remarks on the naming convention in use, the following section will in-
troduce the basic ideas for linear systems. Subsequent sections will deal with the max-
imum likelihood interpretation of state estimation, smoothing, as well as non-linear
problems and the approximations necessary to solve them.

2.3.1 Notation

Propagation, Correction, Smoothing
Naming conventions for the presentation of state estimation topics differ greatly from
publication to publication. The basic problem being, that per time-step, usually two
state estimates are available: one that incorporates the information contained in past
measurements, the second incorporates the information at the current point in time as
well. The former is often termed the propagated or a priori state estimate, and is usually
given with its covariance matrix as quantity describing the uncertainty involved. The
latter is known as the corrected or updated state estimate, and is also computed with its
own covariance matrix.

Some authors use different accent characters, or superscripts to indicate the dif-
ference. However, here two time scales in the subscripts will be used, to indicate the
current time step (first part), and the time up until which measurements are processed
(second part). The advantage of this notation is that it may easily be extended to the
smoothing problem, where all information up to the last sample is incorporated.

This results in the following expression for the state estimate at time k, including
measurement information up until time l

x̂k|l (2.173)

Depending on the relation between k and l, there arise three different scenarios to be
investigated [MK2016, Ch. 4]:

1. k > l: in the prediction case, only measurement information until a point l in the
past is included, and the current state is merely predicted.
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2. k = l: in the filter case, all information, up to the current point in time is used, to
obtain the currently optimal state estimate

3. k < l: in the smoothing case, also future values are incorporated to improve the
current state estimate. This can only be achieved offline for a batch of data.

In a probabilistic framework, as e.g. JAZWINSKI presents it [Jaz1970], the current
state estimate can be based on the knowledge of the following conditional probability
density

p(xk|z0, . . . zl) = p(xk|Zl) (2.174)

Then, different approaches to arrive at an actual estimate can be taken. Two widely
used ones are

1. the “mode”, i.e. peak value of p(xk|Zl), resulting in a maximum likelihood state
estimate. This approach is related to the aspects illustrated in section 2.2.2 on
maximum likelihood estimation.

2. the conditional mean of p(xk|Zl)

For unimodal, symmetric distributions (as e.g. the Gaussian distribution) the mode
and mean are the same [Cox1963], thus the estimate is

x̂k|l = E[xk|Zl] (2.175)

The general estimation error is then

x̃k|l = x̂k|l − xk (2.176)

The accompanying covariance matrix is

Px
k|l = Cov[xk|Zl] = E[(xk − E[xk|Zl])(xk − E[xk|Zl])ᵀ|Zl]

= E
[(

xk − x̂k|l
)(

xk − x̂k|l
)ᵀ∣∣∣Zl

]
= E

[
x̃k|l x̃

ᵀ
k|l

∣∣∣Zl

]
= Cov

[
x̃k|l

∣∣∣Zl

]
= Px̃

k|l

(2.177)

The next to last equality is based on the assumption that the estimation error x̃k|l is
zero mean, as will be shown in the subsequent sections. Above shows, that with the
definition of the estimate as conditional mean, the state covariance Px

k|l and state esti-
mation error covariance Px̃

k|l are the same. The above applies to all cases, i.e. prediction
(k > l), filtering (k = l), and smoothing (k < l).

Indices in Difference Equations
The usual formulation for finite time difference equations over N samples will be

xk+1 = Φkxk + Γkuk k = 0 . . . N̄ − 1 (2.178)

where in order to keep notation short, the abbreviation

N̄ = N − 1 (2.179)

will be used.
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2.3.2 Linear Filtering

KALMAN first introduced the basic ideas for the discrete time filter based on orthogo-
nal projections [Kal1960]. Later, he published the continuous time equivalent together
with BUCY [KB1961]. Since it better fits in the overall setting of this work, the ba-
sic derivation of the Kalman filter will follow the thoughts as presented in [Jaz1970,
Sim2006, CJ2012], which rely on the minimization of estimation errors, as opposed to
orthogonal projection.

2.3.2.1 System Description

The system, which will be considered for the linear Kalman filter case, is a discrete
time, linear state space system, with two noise sources: measurement noise v at the
system’s output and process noise w at the system’s input.

xk+1 = Φkxk + Γkuk + Fkwk k = 0 . . . N̄ − 1 (2.180)

yk = Ckxk + Dkuk k = 0 . . . N̄ (2.181)

zk = Ckxk + Dkuk + Gkvk

= yk + Gkvk

k = 0 . . . N̄ (2.182)

The two noise terms are assumed to be white, zero-mean, uncorrelated with known
covariance matrices

E[wk] = 0 (2.183)

E[vk] = 0 (2.184)

Cov[wk,wk+l] = Qkδl (2.185)

Cov[vk,vk+l] = Rkδl (2.186)

Cov[wk,vk+l] = 0 (2.187)

where δl is the Kronecker delta with

δl =

 1 if l = 0
0 otherwise

(2.188)

Usually, it is assumed that the inputs to above system (2.180) - (2.182) are perfectly
known. The case, where the input measurements are distorted by white, zero-mean
noise of known covariance, can easily be covered, by treating it as an additional process
noise source.

Furthermore, the mean and covariance of the initial condition estimate is assumed
to be available, with

E[x0] = x̄0 (2.189)

Cov[x0] = Px
0 (2.190)
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It is assumed to be statistically independent of the noise processes (Cov[wk,x0] = 0,
Cov[vk,x0] = 0 ∀k = 0 . . . N̄ ).

Since we are mostly dealing with sampled data, above discrete time system de-
scription is well suited. However, a similar system may be formulated in continuous
time

.
x(t) = A(t) x(t) + B(t) u(t) + cF(t) cw(t) (2.191)

y(t) = C(t) x(t) + Du(t) (2.192)

zk = y(tk) + Gkvk k = 0 . . . N̄ (2.193)

E[cw(t)] = 0 (2.194)

Cov[cw(t) , cw(t+ τ)] = cQ(t) δ(τ) (2.195)

where δ(τ) is the Dirac impulse. It can be approximated in discrete time using the
following results (see Appendix D.1 for details)

Φk = exp(Ak ·(tk+1 − tk)) =
∞∑

j=0

(Ak∆tk)j

j! (2.196)

Γk =
∫ ∆tk

0
exp(Ak · τ) dτBk =

∞∑
j=0

Aj
k∆tj+1

k

(j + 1)! Bk (2.197)

Above representation of continuous time white noise is approximated with a discrete
time, white process noise term with

E[wk] = 0 (2.198)

Cov
[
wkwᵀ

k+l

]
≈ ∆tk cQ(tk) δl (2.199)

Fk = cF(tk) (2.200)

For details, see Appendix D.1. The above aims at approximating the effect of con-
tinuous time white noise cw on the continuous system, with a suitable discrete time
white noise sequence wk acting on the corresponding discrete time system. It may be
interpreted as follows: if the sampling time ∆tk grows, the continuous time white
noise has “more time to influence the system”, i.e. the outcome will be somewhat
“more uncertain”. This is reflected in the scaling of the discrete time covariance matrix
Cov

[
wkwᵀ

k+l

]
with the sampling time ∆tk. Thus it is ensured that the transition from

xk to xk+1 involves more uncertainty, the longer the considered time step.

A similar approach leads to relations for the measurement noise covariance ma-
trices for discrete and continuous time [CJ2012, Ch. 5.4]. This is not pursued further,
since only sampled outputs and thus only discrete time measurement noise is to be
considered. For the explicit treatment of continuous time filters, see [Jaz1970, Sim2006,
CJ2012], or the original work by KALMAN and BUCY [KB1961].
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2.3.2.2 Propagation

The first step during a Kalman filter iteration is to predict the current state estimate
x̂k|k and corresponding covariance matrix Px̃

k|k . This prediction is done by taking the
conditional expectation on both sides of the linear system equation (2.180)

E[xk+1|Zk] = ΦkE[xk|Zk] + ΓkE[uk|Zk] + FkE[wk|Zk]
= ΦkE[xk|Zk] + Γkuk

(2.201)

The second equality is due to the fact that the inputs uk (as well as all system matrices)
are considered to be deterministic, and the process noise wk has zero mean. Thus the
state propagation is

x̂k+1|k = Φkx̂k|k + Γkuk (2.202)

This can also be interpreted as using the “best available” estimate of the unknown
quantities: for the state xk this would be its corrected estimate x̂k|k , the input is as-
sumed to be known, and the best available guess for the process noise wk is its mean
E[wk] = 0 [MK2016, Ch. 4].

The estimation error during propagation can be quantified as

x̃k+1|k = x̂k+1|k − xk+1 =
=
(
Φkx̂k|k + Γkuk

)
−(Φkxk + Γkuk + Fkwk)

= Φkx̃k|k − Fkwk

(2.203)

Thus, if it held that E
[
x̃k|k

]
= 0, then above propagation equation guarantees that the

propagated error has zero-mean E
[
x̃k+1|k

]
= 0. This can again be shown by apply-

ing the expectation operator to both sides of the equation. The circumstances, under
which the Kalman filter yields estimates with zero-mean error, are illustrated in the
next section.

From above equation, the propagation of the corresponding covariance matrices
can be computed straight forward [MK2016, Ch. 4]

Px̃
k+1|k = Cov

[
Φkx̃k|k − Fkwk

∣∣∣Zk

]
= ΦkCov

[
x̃k|k

∣∣∣Zk

]
Φᵀ

k + FkCov[wk|Zk] Fᵀ
k (2.204)

− ΦkCov
[
x̃k|k ,wk

∣∣∣Zk

]
Fᵀ

k − FkCov
[
wk, x̃k|k

∣∣∣Zk

]
Φᵀ

k

Since the error at time-step k can at maximum contain influences of the (white) process
noise up to time-step k−1 (wk “hasn’t had the time to act yet”, see equation (2.180)). the
cross variances in above equation vanish Cov

[
x̃k|k ,wk

∣∣∣Zk

]
= Cov

[
wk, x̃k|k

∣∣∣Zk

]ᵀ
= 0.

Thus the covariance propagation becomes

Px̃
k+1|k = ΦkCov

[
x̃k|k

∣∣∣Zk

]
Φᵀ

k + FkCov[wk|Zk] Fᵀ
k

= ΦkPx̃
k|k Φᵀ

k + Q̃k

(2.205)
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with the abbreviation

Q̃k = FkQkFᵀ
k (2.206)

JAZWINSKI notes on the form of the covariance that it doesn’t explicitly depend on Zk,
which is why some authors equivalently use the covariance Cov

[
x̃k|k

]
, instead of its

conditional form Cov
[
x̃k|k

∣∣∣Zk

]
[Jaz1970, Ch. 7].

2.3.2.3 Correction

Whenever a measurement becomes available, the current state estimate can be cor-
rected. This does not have to happen at every sampling instant, however, the extension
of the following derivation to the more general case based on x̂k+l|k l > 1 is straight
forward.

The basic idea is to correct the state using linear feedback of the residuals, i.e. the
difference between the estimated model output, and the actual measurements

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk+1 − ŷk+1|k

)
(2.207)

Using equations (2.181) and (2.182) for measurements and estimated output, the esti-
mation error becomes

x̃k+1|k+1 = x̂k+1|k+1 − xk+1

= x̂k+1|k − xk+1

+ Kk+1
(

Ck+1xk+1 + Dk+1uk+1 + Gk+1vk+1︸ ︷︷ ︸
=zk+1

−
(
Ck+1x̂k+1|k + Dk+1uk+1

)
︸ ︷︷ ︸

=ŷk+1|k

)

=(Inx − Kk+1Ck+1) x̃k+1|k + Kk+1Gk+1vk+1 (2.208)

Based on above equation, its covariance matrix is

Px̃
k+1|k+1 =(Inx − Kk+1Ck+1) Px̃

k+1|k (Inx − Kk+1Ck+1)ᵀ + Kk+1R̃k+1Kᵀ
k+1

with R̃k+1 = Gk+1Rk+1Gᵀ
k+1 (2.209)

Again, the fact was used that Cov
[
x̃k+1|k ,vk+1

∣∣∣Zk

]
= Cov

[
vk+1, x̃k+1|k

∣∣∣Zk

]ᵀ
= 0, since

the white measurement noise at time k + 1 has not yet had a chance to act on the error
x̃k+1|k .

For a complete solution of the filtering problem, the gain matrix Kk+1 needs to be
determined. The reasoning here is based on minimizing the sum of the error variances
for the elements of the state vector. These are exactly the main diagonal elements of
the covariance matrix Px̃

k+1|k+1 , the sum of which can be expressed as its trace

min
Kk+1

nx∑
j=1

Cov
[[

x̃k+1|k+1
]
(j)

∣∣∣∣Zk+1

]
= min

Kk+1
tr
[
Px̃

k+1|k+1

]
(2.210)
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The first order necessary conditions for optimality (2.6) can then be used to deter-
mine Kk+1. Some matrix calculus results of section A.1 are necessary, especially equa-
tions (A.11) and (A.13)

∂tr
[
Px̃

k+1|k+1

]
∂Kk+1

=

= ∂

∂Kk+1
tr
[
(Inx − Kk+1Ck+1) Px̃

k+1|k (Inx − Kk+1Ck+1)ᵀ + Kk+1R̃k+1Kᵀ
k+1

]
= −Px̃

k+1|k Cᵀ
k+1 − Px̃

k+1|k Cᵀ
k+1 + 2Kk+1Ck+1Px̃

k+1|k Cᵀ
k+1 + 2Kk+1R̃k+1

= −2Px̃
k+1|k Cᵀ

k+1 + 2Kk+1
(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

) != 0

(2.211)

⇒Kk+1 = Px̃
k+1|k Cᵀ

k+1

(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

)−1
(2.212)

An intuitive interpretation for this form of gain is deferred to the end of section 2.3.3.1.
There, a different, but algebraically equivalent, form for the correction step will be
obtained based on maximum likelihood considerations. This form will be easier to
interpret.

The result, after substituting Kk+1 back into equation (2.209) can be formulated in
several different ways, all of which are algebraically equivalent, see [CJ2012, Ch. 5]

Px̃
k+1|k+1 =(Inx − Kk+1Ck+1) Px̃

k+1|k (Inx − Kk+1Ck+1)ᵀ + Kk+1R̃k+1Kᵀ
k+1

=(Inx − Kk+1Ck+1) Px̃
k+1|k

= Px̃
k+1|k − Px̃

k+1|k Cᵀ
k+1

(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

)−1
Ck+1Px̃

k+1|k

=
((

Px̃
k+1|k

)−1
+ Cᵀ

k+1R̃−1
k+1Ck+1

)−1

(2.213)

However, the first form is usually preferred: for symmetric, and positive definite Px̃
k+1|k

it also yields a symmetric and positive definite Px̃
k+1|k+1 per construction, while keep-

ing the number of matrix inversions small. The other formulations are either compu-
tationally more expensive, or their positive definiteness cannot be guaranteed in the
presence of numerical inaccuracies.

In order to investigate the properties of the estimation error, its propagation equa-
tion needs to be determined. Combining the corrected estimation error (2.208) with
its propagation equation (2.203) yields the one-step propagated x̃k+1|k and corrected
x̃k+1|k+1 estimation errors

x̃k+1|k = Φk(Inx − KkCk) x̃k|k−1 + ΦkKkGkvk − Fkwk (2.214)

x̃k+1|k+1 =(Inx − Kk+1Ck+1) Φkx̃k|k −(Inx − Kk+1Ck+1) Fkwk + Kk+1Gk+1vk+1

(2.215)

It was initially assumed, that an unbiased estimate of the initial state x̄0 was available,
which may now be used as9

x̂0|−1 = x̄0 (2.216)

9 the notation x̂0|−1 implies the state estimate before any measurements are available [Sor1980, Ch. 1].
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Then, the mean of the initial estimation error is

E
[
x̃0|−1

]
= E

[
x̂0|−1 − x0

]
= E[x̄0] − E[x0] = 0 (2.217)

By applying the expectation operator to both sides of equation (2.214) it can be shown
that the estimation error will be zero-mean for all times. If no unbiased estimate is
available, the mean of the estimation error will approach zero asymptotically, given
the system Φk(Inx − KkCk) is stable, i.e. has only eigenvalues within the complex unit
circle. This is usually given for the systems under consideration.

For proper initialization of the algorithm, a corresponding initial state covariance
matrix needs to be given, too

Px̃
0|−1 = Cov

[
x̃0|−1

]
= Px

0 (2.218)

Then the correction scheme of this section may be used to consider an initial mea-
surement z0, in order to correct the initial estimate x̂0|−1 with Px̃

0|−1 to eventually start
the iteration with x̂0|0 and Px̃

0|0 . If no initial measurement is available, the initial state
estimate may be used as corrected version, which may be interpreted as “infinitely
uncertain” measurement, yielding K0 = 0.

The Algorithm is summed up in Algorithm 2.4.

2.3.2.4 Characteristics

The Kalman filter as presented here exhibits some interesting characteristics [Sim2006,
Ch. 5.2]. Given the system (2.180) - (2.182) is the true description of the process under
investigation, the following hold

◦ if the noise processes w and v are zero-mean, uncorrelated, and white then the
Kalman filter is the best linear filter in the sense, that it minimizes the mean
squared estimation error x̃k|k . Linear in this context means, that it is a linear
combination of the measurements.

◦ In above derivations, no assumption about the shape of the noise processes’ prob-
ability density function (pdf) was necessary, i.e. they also hold for non-Gaussian
noise.

◦ if the noise processes w and v are Gaussian, then estimation errors and state
estimates are Gaussian, too, since they arise by linear combinations of Gaussian
random variables.

◦ one special form of residual, which is called innovation in the Kalman filter con-
text is based on the predicted outputs

rk+1|k = zk+1 − ŷk+1|k (2.219)
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Algorithm 2.4: Linear, discrete time Kalman filter
Initialization:

I. Initialize state and covariance estimates

x̂0|−1 = x̄0

Px̃
0|−1 = Px

0

II. if an initial measurement is to be considered (i.e. R̃0 is finite), perform initial
correction step

K0 = Px̃
0|−1 Cᵀ

0

(
C0Px̃

0|−1 Cᵀ
0 + R̃0

)−1

Px̃
0|0 =(Inx − K0C0) Px̃

0|−1 (Inx − K0C0)ᵀ + K0R̃0Kᵀ
0

x̂0|0 =(Inx − K0C0) x̂0|−1 + K0(z0 − D0u0)
otherwise set x̂0|0 = x̂0|−1 , and Px̃

0|0 = Px̃
0|−1

Main Part:
III. prediction step

x̂k+1|k = Φkx̂k|k + Γkuk

Px̃
k+1|k = ΦkPx̃

k|k Φᵀ
k + Q̃k

IV. correction step
(a) compute Gain

Kk+1 = Px̃
k+1|k Cᵀ

k+1

(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

)−1

(b) correct estimates
Px̃

k+1|k+1 =(Inx − Kk+1Ck+1) Px̃
k+1|k (Inx − Kk+1Ck+1)ᵀ + Kk+1R̃k+1Kᵀ

k+1

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk+1 − ŷk+1|k

)
V. increment k and iterate from step III. while k ≤ N̄ − 1

These innovations describe the part of the measurement, that cannot yet be ex-
plained by the filter and thus contains new information. In Appendix D.2 it is
shown, that they are zero-mean and white, with auto-covariance matrix

E
[
rk+1|k

]
= 0 (2.220)

Cov
[
rk+1|k , r

ᵀ
j+1|j

]
= δk−j

(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

)
(2.221)

Especially this last property of the Kalman filter is quite important in the context
of parameter estimation: if the innovations rk+1|k are used as the residuals rk+1 in an
estimation algorithm (as e.g. depicted in section 2.2.2.4), due to their whiteness and
zero-mean, the Markov-Criterion (2.86) holds. Then the application of the maximum
likelihood algorithms of section 2.2.2.4 becomes possible, with

rk+1 = rk+1|k = zk+1 − ŷk|k−1 (2.222)

Cov
[
rk+1|k

]
= Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1 = Bk+1 (2.223)
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A simple, second order system is illustrated in Example 2.6 and the accompanying
figure 2.4 to be found on pages 101 and 102. Additionally, the result of the respective
Rauch-Tung-Striebel (RTS) smoother is illustrated, which will be discussed in the next
sections.

2.3.3 Linear Maximum Likelihood State Estimation

For offline applications it can be interesting, to not only consider the measurements up
to a time tk+1 for correction, but to consider all available data up to the final time tN̄ ,
i.e. base the state estimation on

p(xk+1|ZN̄) (2.224)

which is then called “smoothing” [Jaz1970]. In this approach, all of the available data is
used to improve the state estimates at all times. A solution for such a state estimation
problem, which can be easily implemented on a digital computer, was presented by
RAUCH, TUNG, and STRIEBEL [RTS1965]. It is still widely used today. They base their
algorithm on the method of maximum likelihood and manipulations of above proba-
bility density according to Bayes’ law (A.108). At the same time, COX obtained similar
results based on a dynamic programming approach and the explicit solution of a two
point boundary value problem for linear systems [Cox1963, Cox1964].

Modern treatment of the topic is based on considering two filters, running forward
and backward in time, and optimally combining their results (see [Sim2006, CJ2012]).
Here, the maximum likelihood approach is illustrated as in the original publications
[RTS1965, Jaz1970]. This is done, because it fits nicely with the results derived in chap-
ter 2.2, despite the significant drawback of any maximum likelihood approach, as men-
tioned by JAZWINSKI: “We note that maximum likelihood estimation is of question-
able value unless the density function is unimodal and concentrated near the mode.”
[Jaz1970, p. 157]. For the applications considered here, this is given, but for other fields
this basic assumption might be questioned.

2.3.3.1 Maximum Likelihood Filtering

In order to illustrate some of the main principles employed by RAUCH et al. the filtering
step is re-derived, based on maximum likelihood considerations [RTS1965]. For the
solution of the smoothing problem, see the following section 2.3.3.2.

Instead of minimizing the trace of the state error covariance matrix as is done
in equation (2.210), consider the filtered estimate to be that value, which maximizes
p(xk+1|Zk+1). That is the filtered estimate is that state value x̂k+1|k+1 , which is the most
likely given the observations Zk+1 up to time k+1. Similar considerations as illustrated
in section 2.2.2 on maximum likelihood estimation, together with Bayes’ Theorem lead
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to

x̂k+1|k+1 = arg max
xk+1

p(xk+1|Zk+1) = arg min
xk+1

− ln p(xk+1|Zk+1)

= arg min
xk+1

J(xk+1)
(2.225)

J(xk+1) = − ln p(xk+1|Zk+1) = − ln p(xk+1,Zk+1)
p(Zk+1)

= − ln p(xk+1,Zk+1) + ln p(Zk+1)
(2.226)

In order to determine an optimal value of xk+1, the second term in above cost function
may be dropped, since it does not depend on xk+1. Using the definition of conditional
probability densities (A.106), above joint probability density can be further modified
to read [RTS1965]

p(xk+1,Zk+1) = p(xk+1, zk+1,Zk) = p(zk+1|xk+1,Zk) p(xk+1,Zk)
= p(zk+1|xk+1,Zk) p(xk+1|Zk) p(Zk)

(2.227)

This can be plugged in the expression for the cost function.
Then it is used that the zk+1 given xk+1 are statistically independent of past mea-

surements Zk, i.e.

p(zk+1|xk+1,Zk) = p(zk+1|xk+1) (2.228)

Above can be seen from the measurement equation (2.182)

zk = Ckxk + Dkuk + Gkvk

If the states xk are given, and the measurement noise is white, there remains nothing
that could depend on Zk. Additionally, p(Zk) does not offer any more information on
xk+1. Thus, the cost function to minimize is

J(xk+1) = − ln p(zk+1|xk+1) − ln p(xk+1|Zk) (2.229)

Now, assume that both of the above probability density functions describe Gaussian
random variables, then they can be characterized by their mean and covariance values.
This assumption is justified, if all involved processes are Gaussian, since the dynamics
are linear 10.

The first term of above equation can be characterized by using the system’s output
equation (2.182), retaining the as of yet unknown xk+1 [RTS1965]

E[zk+1|xk+1] = E[Ck+1xk+1 + Dk+1uk+1 + Gk+1vk+1|xk+1]
= Ck+1E[xk+1|xk+1] + Dk+1uk+1 + Gk+1E[vk+1]
= Ck+1xk+1 + Dk+1uk+1

(2.230)

10 see also the part about Gaussian variables in the Appendix, especially, equations (A.132) and (A.120)
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The corresponding covariance matrix is

Cov[zk+1|xk+1] = E

(Ck+1xk+1 + Dk+1uk+1 + Gk+1vk+1 − E[zk+1|xk+1])︸ ︷︷ ︸
=β

·βᵀ

∣∣∣∣∣∣∣xk+1


= Gk+1E

[
vk+1v

ᵀ
k+1

]
Gᵀ

k+1 (2.231)

= Gk+1Rk+1Gᵀ
k+1 = R̃k+1

With this, the distribution of zk+1|xk+1 is

zk+1|xk+1 ∼ N
(
Ck+1xk+1 + Dk+1uk+1, R̃k+1

)
(2.232)

JAZWINSKI argues a little differently to obtain the same result: He uses the transfor-
mation of probability densities (A.93) and the fact that vk+1 is Gaussian to arrive at
[Jaz1970, Ch. 5]

Gk+1vk+1 = zk+1 − Ck+1xk+1 − Dk+1uk+1 (2.233)

pzk+1|xk+1 (zk+1|xk+1)
(A.93)= pGk+1vk+1(zk+1 − Ck+1xk+1 − Dk+1uk+1) (2.234)

which is the same result as illustrated above: now the distribution of zk+1|xk+1 is di-
rectly defined via the probability density pzk+1|xk+1 (zk+1|xk+1) instead of mean and co-
variance N

(
Ck+1xk+1 + Dk+1uk+1, R̃k+1

)
.

The second conditional probability density in the cost function (2.229) describes the
propagated state. Its mean and covariance are, with the definitions in section 2.3.1

E[xk+1|Zk] = x̂k+1|k (2.235)

Cov[xk+1|Zk] = Px̃
k+1|k (2.236)

xk+1|Zk ∼ N
(
x̂k+1|k ,Px̃

k+1|k

)
(2.237)

Together with the definition of the multi-dimensional Gaussian distribution (A.120),
the non-constant parts of above cost function (2.229) eventually evaluate to

J(xk+1) = − ln p(zk+1|xk+1) − ln p(xk+1|Zk) = . . .

= 1
2(zk+1 − Ck+1xk+1 − Dk+1uk+1)ᵀ R̃−1

k+1(zk+1 − Ck+1xk+1 − Dk+1uk+1)

+ 1
2
(
xk+1 − x̂k+1|k

)ᵀ(
Px̃

k+1|k

)−1(
xk+1 − x̂k+1|k

)
+ c (2.238)

where c is a constant that does not depend on xk+1.

It is interesting to note that above cost function formulation can also be obtained,
if the propagated state is considered as prior knowledge in a weighted least-squares
problem, as was illustrated in section 2.2.4.6. The model that corresponds to above
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quadratic cost function is x̂k+1|k

zk+1 − Dk+1uk+1


︸ ︷︷ ︸

zfilt

=
 Inx

Ck+1


︸ ︷︷ ︸

Xfilt

xk+1 +
 x̂k+1|k − xk+1

Gk+1vk+1


︸ ︷︷ ︸

vfilt

(2.239)

Cov

 x̂k+1|k − xk+1

Gk+1vk+1

 =
 Px̃

k+1|k 0
0 R̃k+1


︸ ︷︷ ︸

W−1
filt

(2.240)

which shows the close relationship between least-squares estimation, maximum likeli-
hood estimation, and Kalman filtering, if the noise terms are assumed to be Gaussian.
Applying the weighted least-squares solution of sections 2.2.4.1 and 2.2.4.3 eventually
yields the corrected state estimate

x̂k+1|k+1 =
(
Xᵀ

filtWfiltXfilt

)−1
Xᵀ

filtWfiltzfilt

=
[ Inx Cᵀ

k+1

] (Px̃
k+1|k

)−1
0

0 R̃−1
k+1

 Inx

Ck+1

−1

[ Inx Cᵀ
k+1

] (Px̃
k+1|k

)−1
0

0 R̃−1
k+1

 x̂k+1|k

zk+1 − Dk+1uk+1


=
((

Px̃
k+1|k

)−1
+ Cᵀ

k+1R̃−1
k+1Ck+1

)−1
(2.241)((

Px̃
k+1|k

)−1
x̂k+1|k + Cᵀ

k+1R̃−1
k+1(zk+1 − Dk+1uk+1)

)
Using some matrix identities, it can be shown that above expression is actually equal
to the filtering step (2.207) using the gain matrix Kk+1 from (2.212), details can be seen
in Appendix D.4.

In contrast to the expression obtained in equation (2.207) before, this result is some-
what more intuitive to interpret. Consider the two limiting cases [CJ2012, Ch. 2]

◦ high uncertainty in propagation [ R̃k+1 finite; Qk, Px̃
k+1|k → ∞]

If the propagated result is considered to be very unreliable, the process noise
covariance matrix, and consequently the propagated state covariance matrix be-
come very “large” (in some matrix sense). This can happen for model formula-
tions that are badly adapted to the task at hand, or for significant, unmeasurable
disturbances. Then the corrected state can be approximated by

x̂k+1|k+1 ≈
(
Cᵀ

k+1R̃−1
k+1Ck+1

)−1(
Cᵀ

k+1R̃−1
k+1(zk+1 − Dk+1uk+1)

)
(2.242)

This is essentially the weighted least-squares solution to

zk+1 − Dk+1uk+1 = Ck+1xk+1 + Gk+1vk+1

Cov[Gk+1vk+1] = R̃k+1
(2.243)

i.e. the state estimate is computed purely based on measurement information.
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◦ high uncertainty in measurement [ Qk, Px̃
k+1|k finite; R̃k+1 → ∞]

If the measurements are considered to be very unreliable, i.e. if their covariance
matrix is “large”, the corrected state can be approximated by the propagated state

x̂k+1|k+1 ≈ x̂k+1|k (2.244)

i.e. the state estimate is solely based on the propagation as obtained by the model.

2.3.3.2 Marginal Maximum Likelihood State Estimation

The same approach as was used in the last section to re-derive the filtering equation for
the Kalman filter can be used to obtain a smoothed state estimate based on all available
measurements. RAUCH et al. consider an overall cost function J , which relates the state
estimates to the true states. Based on the form of this cost function, several estimator
formulations are possible (which, for linear systems and Gaussian noise result in the
same estimates [RTS1965]). If the cost function J can be separated into a sum, where
every term is only related to a state estimate at one time

J
(

XN̄ , X̂N̄
∣∣N̄ ) =

N̄∑
k=0

J
(

xk, x̂k
∣∣N̄ ) (2.245)

then the cost function is “separable” with respect to sampling instants, and there exists
the chance to obtain a recursive relation linking two time steps. Maximum likelihood
arguments, as illustrated before, can then be based on p(xk|ZN̄)

x̂k
∣∣N̄ = arg max

xk
p(xk|ZN̄) = arg min

xk
− ln p(xk|ZN̄) (2.246)

The solution to above problem, according to RAUCH et al. is called the “marginal max-
imum likelihood estimate (MMLE)” of the state. It is based on the marginal probability
density p(xk|ZN̄), as opposed to the joint probability density p(XN̄ |ZN̄) of the next sec-
tion [RTS1965].

In order to eventually obtain a recursive algorithm, RAUCH et al. do not only con-
sider the conditional probability density of one point in time, but the joint conditional
probability density of two consecutive points in time, where information about x̂k+1

∣∣N̄
will be assumed given [RTS1965]{

x̂k
∣∣N̄ , x̂k+1

∣∣N̄ } = arg min
xk,xk+1

− ln p(xk,xk+1|ZN̄) (2.247)

Again, applying Bayes’ Theorem yields{
x̂k
∣∣N̄ , x̂k+1

∣∣N̄ } = arg min
xk,xk+1

(− ln p(xk,xk+1,ZN̄) + ln p(ZN̄))

= arg min
xk,xk+1

− ln p(xk,xk+1,ZN̄) = arg min
xk,xk+1

J(xk,xk+1)
(2.248)
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Where it was used in the second equality that p(ZN̄) does not influence the maximiza-
tion w.r.t. the states and may thus be neglected. The main idea when further simpli-
fying the joint probability density p(xk,xk+1,ZN̄) is then based on separating the mea-
surements in two parts: the first part contains the measurements up to time k, whose
information will eventually be contained in the filtered estimate x̂k|k and covariance
matrix Px̃

k|k . The information of the second part of the measurements {zk+1, . . . , zN̄}
will be contained in a smoothed estimate x̂k+1

∣∣N̄ . Combining the the two respective
probability densities results in a cost function formulation, which can be optimized for
the smoothed state estimate x̂k

∣∣N̄ at time k.
Repeated application of the definition of conditional probabilities (A.106) yields

p(xk,xk+1,ZN̄) = p(xk,xk+1,Zk, zk+1, . . . , zN̄)
= p(xk,xk+1, zk+1, . . . , zN̄ |Zk) p(Zk)
= p(xk+1, zk+1, . . . , zN̄ |xk,Zk) p(xk|Zk) p(Zk)

(2.249)

Now, RAUCH et al. argue that the joint probability density of xk+1, zk+1, . . . , zN̄ given
the states xk at time k, is independent of the measurements Zk up to time k.

p(xk+1, zk+1, . . . , zN̄ |xk,Zk) = p(xk+1, zk+1, . . . , zN̄ |xk) (2.250)

This consequently allows for the following, final modifications [RTS1965] [Jaz1970,
Ch. 7]

p(xk,xk+1,ZN̄) = p(xk+1, zk+1, . . . , zN̄ |xk) p(xk|Zk) p(Zk)
= p(zk+1, . . . , zN̄ |xk,xk+1) p(xk+1|xk) p(xk|Zk) p(Zk)
= p(zk+1, . . . , zN̄ |xk+1) p(xk+1|xk) p(xk|Zk) p(Zk)

(2.251)

The last equality is again due to the independence of zk+1, . . . , zN̄ on xk, if conditioned
on xk+1. The resulting cost function is then (dropping p(Zk) since it does not influence
the estimate)

J(xk,xk+1) = − ln p(xk+1|xk) − ln p(xk|Zk) − ln p(zk+1, . . . , zN̄ |xk+1) (2.252)

Again assuming Gaussian distributions, the probability densities can be characterized
by their mean and covariance alone. Namely, for the first of above terms this is (keep-
ing the system definition (2.180) in mind) [RTS1965] [Jaz1970, Ch. 7]

E[xk+1|xk] = E[Φkxk + Γkuk + Fkwk|xk] = ΦkE[xk|xk] + Γkuk + FkE[wk]
= Φkxk + Γkuk

(2.253)

Cov[xk+1|xk] = E

(Φkxk + Γkuk + Fkwk − E[xk+1|xk])︸ ︷︷ ︸
=β

·βᵀ

∣∣∣∣∣∣∣xk


= FkE[wkwᵀ

k] Fᵀ
k = FkQkFᵀ

k = Q̃k

(2.254)

xk+1|xk ∼ N
(
Φkxk + Γkuk, Q̃k

)
(2.255)
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Again, JAZWINSKI argues that the rule about the transformation of probability densi-
ties (A.93) may alternatively be used to arrive at

Fkwk = xk+1 − Φkxk − Γkuk (2.256)

pxk+1|xk (xk+1|xk) (A.93)= pFkwk(xk+1 − Φkxk − Γkuk) (2.257)

which, for Gaussian random variables, is equivalent to the result above,
The second term in above cost function describes the result of the filtered state

estimate from section 2.3.3.1

E[xk|Zk] = x̂k|k (2.258)

Cov[xk|Zk] = Px̃
k|k (2.259)

For now, we are primarily interested in a solution of the optimization problem w.r.t.
xk, thus the third term does not need to be specified, since it does not depend on xk.
The cost function to be minimized then becomes

J(xk,xk+1) = 1
2(xk+1 − Φkxk − Γkuk)ᵀ Q̃−1

k (xk+1 − Φkxk − Γkuk)

+ 1
2
(
xk − x̂k|k

)ᵀ(
Px̃

k|k

)−1(
xk − x̂k|k

)
+ c(zk+1, . . . , zN̄ ,xk+1)

(2.260)

Now a recursion equation for x̂k
∣∣N̄ can be obtained. First, assume that the estimate

x̂k+1
∣∣N̄ = E[xk+1|zN̄ ] is available. Then the gradient of J

(
xk, x̂k+1

∣∣N̄ ) w.r.t. xk may be
set to zero

0 !=
∂J
(

x̂k
∣∣N̄ , x̂k+1

∣∣N̄ )
∂x̂k

∣∣N̄ =

= −Φᵀ
kQ̃−1

k

(
x̂k+1

∣∣N̄ − Φkx̂k
∣∣N̄ − Γkuk

)
+
(
Px̃

k|k

)−1
(

x̂k
∣∣N̄ − x̂k|k

) (2.261)

⇒ x̂k
∣∣N̄ =

(
Φᵀ

kQ̃−1
k Φk +

(
Px̃

k|k

)−1
)−1

(
Φᵀ

kQ̃−1
k

(
x̂k+1

∣∣N̄ − Γkuk

)
+
(
Px̃

k|k

)−1
x̂k|k

) (2.262)

Realizing, that the structure of above equation is exactly the same as the maximum
likelihood filtering result (2.241) of the foregoing section, a derivation completely anal-
ogous to that in Appendix D.4 can be performed. This results in the following back-
wards recursion in corrector form

x̂k
∣∣N̄ = x̂k|k + Mk

(
x̂k+1

∣∣N̄ −
(
Φkx̂k|k + Γkuk

))
(2.202)= x̂k|k + Mk

(
x̂k+1

∣∣N̄ − x̂k+1|k

) (2.263)

Mk = Px̃
k|k Φᵀ

k

(
ΦkPx̃

k|k Φᵀ
k + Q̃k

)−1

(2.205)= Px̃
k|k Φᵀ

k

(
Px̃

k+1|k

)−1 (2.264)
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Algorithm 2.5: Linear Rauch-Tung-Striebel (RTS) smoother
Initialization:

I. Initialize smooth state and covariance estimates at the end of the considered
batch using the Kalman Filter results

x̂N̄
∣∣N̄ = E[xN̄ |ZN̄ ]

Px̃
N̄
∣∣N̄ = Cov

[
x̃N̄
∣∣N̄ ]

Main Part:
II. recursively compute smoothed state and covariance backwards in time

(a) compute Gain

Mk = Px̃
k|k Φᵀ

k

(
ΦkPx̃

k|k Φᵀ
k + Q̃k

)−1

= Px̃
k|k Φᵀ

k

(
Px̃

k+1|k

)−1

(b) correct estimates

x̂k
∣∣N̄ = x̂k|k + Mk

(
x̂k+1

∣∣N̄ − x̂k+1|k

)
Px̃

k
∣∣N̄ = Px̃

k|k + Mk

(
Px̃

k+1
∣∣N̄ − Px̃

k+1|k

)
Mᵀ

k

III. decrement k and iterate from step II. while k >= 0

It is interesting to note that (in contrast to pure forward filtering), the gain Mk does
not depend on the smoother covariance, it only depends on the covariances obtained
during the forward pass. This would allow to compute and store only the smoother
gain during the forward pass, if only the smoothed state is of interest [CJ2012, Ch. 6.1].

Determining the smoothed state error covariance estimate is more intricate com-
pared to the formulations discussed so far. A detailed derivation may be found in
appendix D.5, where only the resulting, final backwards recursion for the smoother
covariance estimate is shown here

Px̃
k
∣∣N̄ =Px̃

k|k + Mk

(
Px̃

k+1
∣∣N̄ − Px̃

k+1|k

)
Mᵀ

k (2.265)

The algorithm constitutes a backwards recursion and thus needs to be initialized
at the end of the considered time span. However, there the forward filter result with
x̂N̄
∣∣N̄ and Px̃

N̄
∣∣N̄ is readily available.

A summary of the algorithm for linear, discrete time dynamic systems can be found
in Algorithm 2.5. This is commonly called the RTS smoother, an example for which is
given in Example 2.6.
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Example 2.6: Comparison of Kalman Filter and RTS-smoother
Consider the second order, discrete dynamic system

xk+1 = Φxk + Buk + wk

yk = Cxk + Duk + vk

with the following definitions

A =
 0 1

−ω2
0 −2ζω0

 B =
 0
K


C =

 C1 0
0 C2

 D =
 5

15


Φ = exp(A∆t) Γ = A−1(exp(A∆t) − Inx) B

Cov
[
wkwᵀ

k−l

]
= Qδl Cov

[
vkvᵀ

k−l

]
= Rδl

The corresponding numerical values are

Parameter Value Parameter Value Parameter Value

ω0 5 rad
s

t0 0s x0
[

3 −20
]ᵀ

ζ 0.2 ∆t 0.01s x̄0
[

2 −15
]ᵀ

K 25 tend 15s Px
0 diag

([
1 100

])
C1 2 Q diag

([
0.001 0.1

])
C2 3 R diag

([
1 7

])
The estimation results, when subject to a doublet input, are illustrated in figure 2.4
for a linear, discrete Kalman Filter and a RTS smoother. The estimated state trajecto-
ries and estimation errors are plotted, along with the 3σ confidence bounds.
Since the model and all noise characteristics are perfectly known, both algorithms
manage to track the true state trajectory very good. The RTS result is smoother, and
its covariance is always lower than the Kalman filter equivalent. This illustrates the
fact that it uses more samples (i.e. more information) to obtain a result. Only at the
very last sample, it can be seen how the RTS smoother is initialized with the Kalman
filter result, i.e. there the estimate and confidence bounds are equal.
The solution obtained by solving the quadratic problem to be illustrated in sec-
tion 2.3.3.3 is not shown, since it is numerically equivalent to the RTS-solution (nu-
merical difference is the range of 1×10−14).
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Figure 2.4: Example for Kalman Filter and RTS-Smoother based state estimation;
comparison of states and the respective estimates (subplot 1 and 2) as well as the estimation
errors (subplot 3 and 4), given a doublet control input (subplot 5)
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Figure 2.5: Illustration of a modal trajectory ( ) as the peak of (non-symmetric) state pdf
over time; an expected value trajectory ( ) is shown for comparison.

2.3.3.3 Joint Maximum Likelihood State Estimation

In the last section, a recursive solution based on the joint conditional probability den-
sity p(xk,xk+1|ZN̄) was given. If the defining cost function cannot be divided into
separate parts for the respective estimates, or one does not aim for such a formulation,
the same arguments may be extended to the joint conditional probability density of all
states, eventually resulting in joint maximum likelihood estimation (JMLE)

p(x0 . . .xN̄ |ZN̄) = p(XN̄ |ZN̄) = p(XN̄ ,ZN̄)
p(ZN̄) (2.266){

x̂0
∣∣N̄ . . . x̂N̄

∣∣N̄ } = arg max
x0...xN̄

p(XN̄ |ZN̄) = arg min
x0...xN̄

− ln p(XN̄ ,ZN̄)

= arg min
x0...xN̄

J(XN̄)
(2.267)

The sequence
{

x̂0
∣∣N̄ . . . x̂N̄

∣∣N̄ } is sometimes called the modal trajectory, since it con-

stitutes the trajectory of maxima or modes of the underlying pdf [Jaz1970, p. 156]. Fig-
ure 2.5 illustrates this: as the state pdf progresses over time, its mode forms a trajectory,
which may be used as state estimate. In contrast, another state estimate could be based
on the mean, which is also shown. In figure 2.5 the two are distinct, since the example
pdf is not symmetric. For a Gaussian distribution the two would coincide.

Again, applying the definition of conditional probabilities (A.106) to the joint prob-
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ability distribution yields [RTS1965]

p(XN̄ ,ZN̄) = p(ZN̄ |XN̄) p(XN̄) (2.268)

Now, if the measurement noise is considered to be white, the conditional probability
density of zk is independent, both of the states and measurements at all other times
{zj,xj} ∀j 6= k [Jaz1970, Ch. 5]

p(ZN̄ |XN̄) = p(z0 . . . zN̄ |x0 . . .xN̄) =
N̄∏

k=0
p(zk|x0 . . .xN̄) =

N̄∏
k=0

p(zk|xk) (2.269)

Additionally, Bayes’ Theorem can be recursively applied to the second part of equa-
tion (2.268), eventually resulting in

p(XN̄) = p(xN̄ |XN̄−1) p(XN̄−1) = p(xN̄ |XN̄−1) p(xN̄−1|XN̄−2) p(XN̄−2) = . . .

=
N̄−1∏
k=0

p(xk+1|Xk) · p(x0) =
N̄−1∏
k=0

p(xk+1|xk) · p(x0) (2.270)

The last equality arises from the assumption that all processes considered here are
Markov (see Appendix A.5.4), i.e. the probability density of xk+1 only depends on
the realization of its direct predecessor xk. The joint probability of all states and all
measurements may then be expressed as

p(XN̄ ,ZN̄) =
N̄∏

k=0
p(zk|xk) ·

N̄−1∏
k=0

p(xk+1|xk) · p(x0) (2.271)

The expressions for above probability densities have been derived in the last sections,
where p(zk|xk) involves the system’s output equation (see (2.230) and (2.232)), and the
system’s propagation equation (see (2.253) and (2.254)) is reflected in p(xk+1|xk). The
distribution of the initial condition is assumed to be known, too x0 ∼ N (x̄0,Px

0).
Eventually, the negative log-likelihood function based on above considerations can

be determined. Here, only the terms that depend on any of the states are kept, and it is
assumed that the noise covariances R̃k, Q̃k, and Px

0 have full rank [RTS1965]. The case
of singular covariance matrices is treated in subsection 2.3.5.2

J(XN̄) = − ln p(XN̄ ,ZN̄) = −
N̄∑

k=0
ln p(zk|xk) −

N̄−1∑
k=0

ln p(xk+1|xk) − ln p(x0)

= 1
2

N̄∑
k=0

(zk − Ckxk − Dkuk)ᵀ R̃−1
k (zk − Ckxk − Dkuk)

+ 1
2

N̄−1∑
k=0

(xk+1 − Φkxk − Γkuk)ᵀ Q̃−1
k (xk+1 − Φkxk − Γkuk)

+ 1
2(x0 − x̄0)ᵀ(Px

0)−1(x0 − x̄0)

(2.272)

JAZWINKSI gives an interpretation of above cost function, which also makes it mean-
ingful from a non-statistical point of view: “Roughly speaking, we want to pass the
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solution of [the system’s difference equation], as closely as possible, through the ob-
servations.” [Jaz1970, Ch. 5, p. 151]. As will be illustrated later, this interpretation even
holds in the case of a non-linear system model. COX’ interpretation is somewhat more
statistical: using the minimum of above cost function as estimate for the state trajectory
“... corresponds to choosing the XN̄ of the most probable (least unlikely) of all possi-
ble sequences of states given the observation and the a priori distribution” [Cox1963,
p. 36].

Another interesting fact about above cost-function formulation is the role of x̄0 and
Px

0: as the number of samples grows, their influence on the cost function becomes
smaller and smaller. Thus, for the quality of the final result the accuracy of the esti-
mates of the initial statistics are of minor importance. This is good news, since they are
often difficult to determine.

For linear systems, above is a cost function that is quadratic in the state estimate,
which can thus be solved analytically. The corresponding weighted least squares mea-
surement equation can be formulated as

x̄0

z0 − D0u0
...

zN̄−1 − DN̄−1uN̄−1

zN̄ − DN̄uN̄

−Γ0u0
...

−ΓN̄−1uN̄−1


︸ ︷︷ ︸

zJMLE

=



Inx

C0
. . .

CN̄−1

CN̄

Φ0 −Inx

. . . . . .

ΦN̄−1 −Inx


︸ ︷︷ ︸

XJMLE


x0
...

xN̄−1

xN̄

+



x̄0 − x0

G0v0
...

GN̄−1vN̄−1

GN̄vN̄

F0w0
...

FN̄−1wN̄−1


︸ ︷︷ ︸

vJMLE

(2.273)

with corresponding noise covariance

Cov[vJMLE] =



Px
0

R̃0
. . .

R̃N̄

Q̃0
. . .

Q̃N̄−1


(2.274)

In section 2.2.4.6 it was shown, how different information sources may be optimally
combined in the linear least-squares context. Here the three sources of information
for the state estimates can be identified as follows: the first row of above problem
corresponds to prior information on the initial state; the second block represents infor-
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mation obtained through the measurements; and the last block links the state estimates
via the system dynamics.

Eventually, the resulting state estimate can be computed using the weighted least-
squares approach of section 2.2.4.3, with weighting matrix WJMLE = Cov[vJMLE]−1



x̂0
∣∣N̄
...

x̂N̄−1
∣∣N̄

x̂N̄
∣∣N̄

 =(Xᵀ
JMLEWJMLEXJMLE)−1 Xᵀ

JMLEWJMLEzJMLE (2.275)

The corresponding state covariance estimates are

Cov





x̂0
∣∣N̄
...

x̂N̄−1
∣∣N̄

x̂N̄
∣∣N̄



 =(Xᵀ
JMLEWJMLEXJMLE)−1 (2.276)

Above is in general a fully dense matrix, which also covers covariances between state
estimates at different sampling instants. The nx × nx-blocks on the main diagonal
of above covariance matrix correspond to the commonly considered state covariance
matrices Px̃

k
∣∣N̄ .

Since the result of JMLE is numerically identical to the solution obtained using
the recursive RTS smoother (both in state and covariance estimate), it is not explicitly
shown in example 2.6 and figure 2.4.

In their publication, RAUCH et al. show this equivalence of JMLE and their recur-
sive formulation analytically for linear, discrete time systems. However, they also state
that for the general, nonlinear case the two solutions should be expected to differ
[RTS1965]. A more detailed proof of the equivalence of RAUCH et al.’s solution and
the solution to above joint maximum likelihood state estimation problem for linear,
discrete time systems can be found in [CJ2012, Ch. 6.4.1].

RAUCH et al. also state, that above formulation is the discrete version of a problem
stated earlier by BRYSON and FRAZIER [BF1963]: They formulate the cost function in
continuous time (essentially replacing above sums with the respective integrals) and
solve it using the indirect method. This eventually leads to a Two-Point-Boundary
Value problem, as is illustrated in section 2.1.4.2 for general optimal control problems.
The formulation here is then the discrete time equivalent using full discretization,
which retains the advantages of the direct method (robustness, no need for derivatives
of Hamiltonian, versatility, . . . ).
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2.3.4 Non-Linear Filtering

Since no system is truly linear, non-linear extensions to state estimation have to be
found. Unfortunately, the few results that are available for non-linear filtering are
in general too complex to be of practical use. This makes approximations necessary,
which are often problem-specific. The main focus of this work will lie on the Ex-
tended Kalman Filter (EKF), which is widely used in aircraft applications, and non-
linear JMLE, which together with the optimal control point of view is a novel approach.
The EKF was first published on the context of position and velocity determination for a
circumlunar vehicle [SSM1962] and has since been applied successfully in many other
areas.

The basic idea behind the EKF is to linearize the system equations around the last
corrected state update, and then to apply the standard Kalman filter equations to this
linearized system. The details that will be presented in the next subsections are based
on the derivations in [Sim2006, CJ2012].

2.3.4.1 Extended Kalman Filter - System Description

Many different system descriptions for the EKF are available, e.g. a complete, continu-
ous time formulation, a hybrid continuous discrete formulation, or, as considered here,
a fully discrete system formulation [Sim2006, Ch. 13.2.1. & 13.2.2]. The complete dis-
crete formulation is selected, due to its rather simple covariance propagation. It results
in one algebraic expression, rather than the numerical solution to a matrix-valued Ri-
catti equation. Furthermore, due to the sampled nature of the available data, a discrete
time approach is more intuitive.

Thus the system is

xk+1 = dfk[xk,uk,wk] k = 0 . . . N̄ − 1 (2.277)

yk = gk(xk,uk,0) k = 0 . . . N̄ (2.278)

zk = gk(xk,uk,vk) (2.279)

The noise terms are characterized the same way as in equations (2.183) - (2.187), i.e.
they are assumed to be zero mean, white noise processes with known covariance ma-
trices. Furthermore, the distribution of the initial condition is assumed to be known
x0 ∼ N (x̄0,Px

0), see (2.189) and (2.190).
df [ ] describes the non-linear, discrete system equation, which results as the integra-

tion of the non-linear continuous time system f( ) over one time step. This integration
may be approximated through one step of any explicit Runge-Kutta numerical integra-
tion scheme, see Appendix D.3 for details.

The non-linear, discrete system equations are closely related to the state integration
schemes used in the section on optimal control 2.1.4. Repeated, iterative application of
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the discrete dynamic system may be used to make up an integration scheme

xk = Φf (t0 . . . tk|x0,u0 . . .uk−1)
= dfk−1

[
dfk−2

[
. . . df0[x0,u0] . . . ,uk−2

]
,uk−1

] k = 1 . . . N̄ (2.280)

The fundamental difference is that the discrete system only describes the evolu-
tion through one time step, whereas the integration scheme may be used for a whole
interval. Thus only for one time-step it holds

xk+1 = Φf (tk, tk+1|xk,uk) = dfk[xk,uk] (2.281)

2.3.4.2 Extended Kalman Filter - Application

Linearizing the system equation (2.277) at the current state estimate x̂k|k , and the mean
of the process noise term E[wk] = 0 yields

xk+1 = dfk

[
x̂k|k ,uk,0

]
+ ∂ dfk

∂x

∣∣∣∣∣wk=0
x̂k|k

(
xk − x̂k|k

)
+ ∂ dfk

∂w

∣∣∣∣∣wk=0
x̂k|k

wk + h.o.t.

= dfk

[
x̂k|k ,uk,0

]
+ Φk

(
xk − x̂k|k

)
+ Fkwk + h.o.t.

= Φkxk +
(

dfk

[
x̂k|k ,uk,0

]
− Φkx̂k|k

)
+ Fkwk + h.o.t.

= Φkxk + ũk + w̃k

(2.282)

In above derivation, the following abbreviations were used

Φk = ∂ dfk

∂x

∣∣∣∣∣wk=0
x̂k|k

(2.283)

Fk = ∂ dfk

∂w

∣∣∣∣∣wk=0
x̂k|k

(2.284)

ũk = dfk

[
x̂k|k ,uk,0

]
− Φkx̂k|k (2.285)

w̃k = Fkwk + h.o.t. (2.286)

In this way, the non-linear system can be transformed into a linear system, where the
deterministic part of the non-linearity is “hidden” in the deterministic input ũk, and
the linearization errors are attributed to an increase in process noise via w̃k [Sim2006].

Similarly, the output equation (2.278) is linearized at the predicted state estimate
x̂k+1|k , and the mean of the measurement noise term E[vk+1] = 0

zk+1 = gk+1

(
x̂k+1|k ,uk+1,0

)
+ ∂gk+1

∂x

∣∣∣∣∣vk+1=0
x̂k+1|k

(
xk+1 − x̂k+1|k

)
+ ∂gk+1

∂v

∣∣∣∣∣vk+1=0
x̂k+1|k

vk+1 + h.o.t.

= gk+1

(
x̂k+1|k ,uk+1,0

)
+ Ck+1

(
xk+1 − x̂k+1|k

)
+ Gk+1vk+1 + h.o.t.

= Ck+1xk+1 +
(
gk+1

(
x̂k+1|k ,uk+1,0

)
− Ck+1x̂k+1|k

)
+ Gk+1vk+1 + h.o.t.

(2.287)

= Ck+1xk+1 + ỹk+1 + ṽk+1
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The following abbreviations were used

Ck+1 = ∂gk+1
∂x

∣∣∣∣∣vk+1=0
x̂k+1|k

(2.288)

Gk+1 = ∂gk+1
∂v

∣∣∣∣∣vk+1=0
x̂k+1|k

(2.289)

ỹk+1 = gk+1

(
x̂k+1|k ,uk+1,0

)
− Ck+1x̂k+1|k (2.290)

ṽk+1 = Gk+1vk+1 + h.o.t. (2.291)

Again, the non-linearity is “hidden” in a deterministic feed-through-type of term ỹk+1,
and the linearization errors in the output are attributed to an increase in measurement
noise via ṽk+1 [Sim2006].

Now, the linear Kalman filter (see algorithm 2.4) of the last section can be applied
to the system

xk+1 = Φkxk + ũk + w̃k (2.292)

zk+1 = Ck+1xk+1 + ỹk+1 + ṽk+1 (2.293)

Using equations (2.283) - (2.285), the propagation step becomes

x̂k+1|k = Φkx̂k|k + ũk

= Φkx̂k|k +
(

dfk

[
x̂k|k ,uk,0

]
− Φkx̂k|k

)
= dfk

[
x̂k|k ,uk,0

] (2.294)

The correction step is very similar to the linear case, shown in equations (2.288) - (2.290)

x̂k|k = x̂k+1|k + Kk+1
(
zk+1 − ŷk+1|k

)
= x̂k+1|k + Kk+1

(
zk+1 −

(
Ck+1x̂k+1|k +

(
gk+1

(
x̂k+1|k ,uk+1,0

)
− Ck+1x̂k+1|k

)))
= x̂k+1|k + Kk+1

(
zk+1 − gk+1

(
x̂k+1|k ,uk+1,0

))
(2.295)

The propagation and correction of the state covariance matrix, as well as the com-
putation of the Kalman gain are all based on the linearized system. Thus, the same
equations as in the linear case result. The algorithm is summed up in Algorithm 2.6.

2.3.4.3 Extended Kalman Filter - Consquences for Characteristics

There are some difficulties that arise from the linear approximation of the non-linear
dynamics:

1. even if the linearization errors could be treated as “random” process noise, as-
suming they are white is in general not possible.

2. the increase in process and measurement noise due to the linearization errors
Cov[h.o.t.] is difficult to quantify numerically.
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Algorithm 2.6: Discrete time, extended Kalman filter
Initialization:

I. Initialize state and covariance estimates
x̂0|−1 = x̄0

Px̃
0|−1 = Px

0
II. if an initial measurement is to be considered (i.e. R̃0 is finite), perform initial

correction step

C0 = ∂g0
∂x

∣∣∣∣∣v0=0
x̂0|−1

G0 = ∂g0
∂v

∣∣∣∣∣v0=0
x̂0|−1

K0 = Px̃
0|−1 Cᵀ

0

(
C0Px̃

0|−1 Cᵀ
0 + R̃0

)−1

Px̃
0|0 =(Inx − K0C0) Px̃

0|−1 (Inx − K0C0)ᵀ + K0R̃0Kᵀ
0

x̂0|0 = x̂0|−1 + K0
(
z0 − g0

(
x̂0|−1 ,u0,0

))
otherwise set x̂0|0 = x̂0|−1 , and Px̃

0|0 = Px̃
0|−1

Main Part:
III. linearize for prediction

Φk = ∂ dfk

∂x

∣∣∣∣∣wk=0
x̂k|k

Fk = ∂ dfk

∂w

∣∣∣∣∣wk=0
x̂k|k

IV. prediction step
x̂k+1|k = dfk

[
x̂k|k ,uk,0

]
Px̃

k+1|k = ΦkPx̃
k|k Φᵀ

k + Q̃k

V. linearize for correction

Ck+1 = ∂gk+1
∂x

∣∣∣∣∣vk+1=0
x̂k+1|k

Gk+1 = ∂gk+1
∂v

∣∣∣∣∣vk+1=0
x̂k+1|k

VI. correction step
(a) compute Gain

Kk+1 = Px̃
k+1|k Cᵀ

k+1

(
Ck+1Px̃

k+1|k Cᵀ
k+1 + R̃k+1

)−1

(b) correct estimates
Px̃

k+1|k+1 =(Inx − Kk+1Ck+1) Px̃
k+1|k (Inx − Kk+1Ck+1)ᵀ + Kk+1R̃k+1Kᵀ

k+1

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk+1 − gk+1

(
x̂k+1|k ,uk+1,0

))
VII. increment k and iterate from step III. while k ≤ N̄ − 1
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3. if Gaussian noise was assumed, in the linear case all random terms stay Gaus-
sian. This is no longer true in the EKF case, since a non-linear transformation of
Gaussian noise is in general no longer Gaussian.

Although these aspects violate some of the basic assumptions in the derivation of the
linear Kalman filter (white noise processes and known covariance matrices), the overall
EKF approach has been found to work well in practice.

Furthermore, the notion of increasing the noise processes’ covariances to cover lin-
earization errors, can be extended to include modeling deficiencies and computational
errors, too. SORENSON puts it nicely: “it is naive at best to assume that any physi-
cal system can be modeled precisely, so it is necessary to account for model errors”
[Sor1980, p. 24]. Thus increased process noise can be a useful, albeit artificial method
to cover these aspects [Jaz1970, Ch. 8]. Assuming the true system df true

k is modeled
using the formulation dfk, then the true evolution of the system can be written as

xk+1 = df true
k [xk,uk,wk] (2.296)

= dfk[xk,uk,wk] +
(

df true
k [xk,uk,wk] − dfk[xk,uk,wk]

)
where the error term df true

k − dfk may be treated as additional process noise source.
However, the difficulty of quantifying its covariance remains, together with the fact
that in general, systematic modeling errors cannot be characterized as random and
white.

2.3.5 Non-Linear Maximum Likelihood State Estimation

Also the presented maximum likelihood state estimation approaches may be extended
to non-linear systems. The final solution may be based on similar linearization ideas
as shown in the last section, or on consideration of the non-linear dynamics directly.

2.3.5.1 Non-Linear Marginal Maximum Likelihood State Estimation

Using a similar approach as illustrated in section 2.3.4, i.e. linearizing the system equa-
tions about the current estimate and treating the non-linear part as artificial input, can
be used to derive the extended version of the RTS smoother, the Extended Rauch-
Tung-Striebel (ERTS) smoother. Using the backward recursion (2.263) together with
the linearized EKF system (2.282) yields

x̂k
∣∣N̄ = x̂k|k + Mk

(
x̂k+1

∣∣N̄ −
(
Φkx̂k|k + ũk

))
(2.285)= x̂k|k + Mk

(
x̂k+1

∣∣N̄ − dfk

[
x̂k|k ,uk,0

])
(2.294)= x̂k|k + Mk

(
x̂k+1

∣∣N̄ − x̂k+1|k

) (2.297)
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This is based on the same reasoning as for the EKF: The corrected state estimate x̂k|k is
assumed to be “good enough” to justify a linear treatment of the error between true
and estimated state trajectory. The resulting state recursion is exactly the same as
in the linear case. The smoother gain and covariance equation stay the same as in
equations (2.264) and (2.265), since they are based on the linear systems to begin with.
Thus the ERTS smoother comprises of the same equations as are summed up in Algo-
rithm 2.5.

When it comes to the applicability of the ERTS smoother, the same limitations and
difficulties as mentioned in section 2.3.4.3 apply, i.e. linearization errors are not white,
their covariance is difficult to specify, and the error probabilities are non-Gaussian.

2.3.5.2 Non-Linear Joint Maximum Likelihood State Estimate

In the derivation of the joint probability density function for all states and measure-
ments (2.271), the only assumption was, that the generating process be Markovian (see
Appendix A.5.4 for a definition). Even the most general dynamic system description,
in the form of a first order difference equation (as e.g. the system in equation 2.277) has
this property, since it only depends on the last state, and the realization of the process
noise [Jaz1970].

In the development of the joint maximum likelihood cost function for linear sys-
tems in section 2.3.3.3, the following probability densities needed to be specified:
p(zk|xk), p(xk+1|xk), and p(x0). Two different cases will be treated here, to illustrate
the approach in the non-linear case: first, purely additive Gaussian process noise with
non-singular covariance is treated; then a more general setting is investigated, where
the process noise is allowed to enter non-linearly.

Additive Gaussian Process Noise
If one is to assume purely additive process and measurement noise, the system be-
comes

xk+1 = dfk[xk,uk] + Fkwk

yk = gk(xk,uk) + Gkvk

Then, the same joint-pdf and cost function as in equations (2.271) and (2.272) may be
used for non-linear systems as well

p(XN̄ ,ZN̄) =
N̄∏

k=0
p(zk|xk) ·

N̄−1∏
k=0

p(xk+1|xk) · p(x0)

J(XN̄) = −
N̄∑

k=0
ln p(zk|xk) −

N̄−1∑
k=0

ln p(xk+1|xk) − ln p(x0)

Assuming Gaussian distributions, the necessary conditional probability densities can
be characterized by their means and covariances alone: Based on the computational
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rules for conditional expectations (A.113) - (A.117), the development for zk|xk in equa-
tions (2.230), (2.232), and the development for xk+1|xk in equations (2.253), (2.254), the
desired means and covariances are

E[xk+1|xk] = E
[(

dfk[xk,uk] + Fkwk

)∣∣∣xk

] (A.116)= dfk[xk,uk] (2.298)

Cov[xk+1|xk] = Cov
[(

dfk[xk,uk] + Fkwk

)∣∣∣xk

]
= FkQkFᵀ

k = Q̃k (2.299)

E[zk|xk] = E[(gk(xk,uk) + Gkvk)|xk] = gk(xk,uk) (2.300)

Cov[zk|xk] = Cov[(gk(xk,uk) + Gkvk)|xk] = GkRkGᵀ
k = R̃k (2.301)

E[x0] = x̄0 (2.302)

Cov[x0] = Px
0 (2.303)

Above results can again be obtained using the transformation of probability densi-
ties (A.93) and the assumption of Gaussian process and measurement noise

pzk|xk (zk|xk) = pGkvk(zk − gk(xk,uk)) (2.304)

pxk+1|xk (xk+1|xk) = pFkwk

(
xk+1 − dfk[xk,uk]

)
(2.305)

For now, assume Q̃k to be non-singular. Furthermore, assume R̃k to have full rank.
Then the joint maximum likelihood estimation problem, assuming Gaussian densities,
is similar to equation (2.272) [Jaz1970, Ch. 5]

min
XN̄

J(XN̄) (2.306)

J(XN̄) = − ln p(x0) −
N̄∑

k=0
ln p(zk|xk) −

N̄−1∑
k=0

ln p(xk+1|xk)

= − ln p(x0) −
N̄∑

k=0
ln pGkvk(zk − gk(xk,uk))

−
N̄−1∑
k=0

ln pFkwk

(
xk+1 − dfk[xk,uk]

)
= 1

2(x0 − x̄0)ᵀ(Px
0)−1(x0 − x̄0)

+ 1
2

N̄∑
k=0

(zk − gk(xk,uk))ᵀ R̃−1
k (zk − gk(xk,uk))

+ 1
2

N̄−1∑
k=0

(
xk+1 − dfk[xk,uk]

)ᵀ
Q̃−1

k

(
xk+1 − dfk[xk,uk]

)

(2.307)

Other than a model formulation having the Markov property, and only additive, Gaus-
sian noise sources, no constraints apply. This makes this approach very versatile.

Non-Linearly Entering Process Noise
A more general formulation was developed by FRIEDLAND and BERNSTEIN [FB1966],
which relaxes the requirements on the transition probability distributions (Gaussian,

113



2.3 State Estimation

and additive). Here, their results are presented for non-additive, Gaussian process
noise, and additive, Gaussian measurement noise, where process and measurement
noise sources are independent11

xk+1 = dfk[xk,uk,wk]
yk = gk(xk,uk) + Gkvk

At first, assume that there exists a non-singular transformation

wk = df−1
k [xk,uk,xk+1] (2.308)

Then the theorem about the transformation of probability densities (A.93) can be used
to arrive at an expression for the transition probability density p(xk+1|xk)

p(xk+1|xk) = pwk

(
df−1

k [xk,uk,xk+1]
)∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂xk

∣∣∣∣∣
∣∣∣∣∣∣ (2.309)

Here attention has to be paid to the fact that
∣∣∣ |�|

∣∣∣ is the absolute value of the determinant,
not a norm. In the first equality, it is used that wk and xk are independent

pwk(wk) = pwk|xk (wk|xk) (2.310)

The second equality uses the inverse function theorem (A.15).
Now, instead of explicitly computing the inverse of the system dynamics df−1

k ,
FRIEDLAND et al. propose to introduce the process noise terms as optimization vari-
ables and the system dynamics as equality constraint in the optimization problem
[FB1966]  min

x0,w0,...
xN̄−1,wN̄−1,xN̄

J(x0,w0 . . .xN̄−1,wN̄−1,xN̄)

s.t. xk+1 = dfk[xk,uk,wk]

 (2.311)

J(x0,w0 . . .xN̄−1,wN̄−1,xN̄) = − ln p(x0) −
N̄∑

k=0
ln pGkvk(zk − gk(xk,uk))

−
N̄−1∑
k=0

ln
pwk(wk)

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣


= 1
2(x0 − x̄0)ᵀ(Px

0)−1(x0 − x̄0) (2.312)

+ 1
2

N̄∑
k=0

(zk − gk(xk,uk))ᵀ R̃−1
k (zk − gk(xk,uk))

+ 1
2

N̄−1∑
k=0

wᵀ
kQ−1

k−1wk −
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣

Some special cases are worth mentioning:
11 for their fully general case (with both noise sources possibly non-additive and correlated with an

arbitrary, but known, probability density), see [FB1966].
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Independent Process Noise Jacobian If the Jacobian ∂ df−1
k

∂wk
does neither depend on

the states xk nor on the process noise wk, the last term in above equation does not
depend on the optimization variables and may be dropped.

This is e.g. the case for purely additive process noise, with a full-rank Fk. In this
case, by using

wk = F−1
k ·

(
xk+1 − dfk[xk,uk]

)
(2.313)

the process noise terms can be eliminated as optimization variables and the cost func-
tion formulation of the previous section arises.

Singular Transformation FRIEDLAND et al. show that the above formulation in equa-

tion 2.309 is also valid, if the Jacobian ∂ df−1
k

∂wk
is singular, either because of an unfavor-

able choice of states xk, or because nw < nx [FB1966]. The only prerequisite is that
the system equation can be partitioned in one part that is influenced by process noise
df I

k(xk,uk,wk) (for which a non-singular transformation exists) and a second part that
is purely deterministic df II

k (xk,uk). By using the approach via the inclusion of the sys-
tem equations as equality constraints, the second part of the dynamics df II

k will be ful-
filled anyway, and for the first part, the transformation can be performed as illustrated
above. Then the respective term in the cost function is

−
N̄−1∑
k=0

ln

∣∣∣∣∣∣∣
∣∣∣∣∣∣∂

df−1
k

I

∂wk

∣∣∣∣∣∣
∣∣∣∣∣∣∣ (2.314)

Conclusion
As mentioned in the context of joint maximum likelihood state estimation for linear
models, above cost function also has its merits from a non-statistical point of view.
The goal of the optimization problem can be interpreted as follows: on the one hand a
solution is passed as closely as possible through the observations. On the other hand,
the system’s dynamics are to be fulfilled “as good as possible”, by minimizing the
energy of a random input. Both the measurement noise and the process noise terms are
weighted by matrices according to the “trust” one puts in the respective information.
A more statistical interpretation is that above is “... the problem of finding the most
likely random input after making noisy observations of the output” [Cox1963, p. 96].
This idea has been used by BACH, together with a cost function similar to the above,
for Flight Path Reconstruction (FPR) problems (see section 5.2 for further details on
FPR). However, he then uses arguments based on variational calculus and an adjoint
equation rather than full-discretization to eventually find a solution to the non-linear
smoothing problem [Bac1982, BW1985].

The measurement noise terms are closely related to the residuals, as illustrated in
the context of parameter estimation using the output error method in section 2.2.2.2.
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In contrast, the process noise terms are closely related to integration defects in the full
discretization approach to the solution of optimal control problems, see section 2.1.4.3.

Above results, can be extended to non-linearly entering measurement noise and
singular transformations thereof, too. However, in this work it was decided to only
consider additive measurement noise, since this provides a realistic enough setting:
additive, white, Gaussian measurement noise is the standard approach to modeling
random sensor errors and has yielded good results over decades. The case of singu-
lar transformations of the measurement noise is disregarded, since this would mean
perfect measurements or perfectly correlated noise sequences, which is unheard of in
real-life problems.

2.3.6 Joint Parameter and State Estimation

Some authors consider the problem of parameter estimation as a special case of the
problem of state estimation [CJ2012, Sim2006], amongst which the first were [KO1963,
Cox1964]. The former problem has been discussed at length in the foregoing sections.
Parameter estimation may then be incorporated by augmenting the system with a
model, describing the parameters’ evolution

xa
k+1 =

 xk+1

θk+1

 =
 dfk[xk,uk,θk,wk]

dfθ
k

[
xk,uk,θk,w

θ
k

]  k = 0 . . . N̄ − 1 (2.315)

zk = gk(xk,uk,θk) + Gkvk k = 0 . . . N̄ (2.316)

with the following definition of the white noise processes involved

wk,wθ
k ,vk+1 ∼ N

0,


Qk 0 0
0 Qθ

k 0
0 0 Rk+1


 (2.317)

x0,θ0 ∼ N

 x̄0

θprior

 ,
 Px

0 0
0 Σ

 (2.318)

Above formulation makes some assumptions, which are usually well justified: process
and measurement noise are considered to be independent; so are the process noise
contributions for the states and parameters. The same is true for the distributions of
the initial conditions. The last assumption is that all noise processes are Gaussian,
which can be questioned in general, but yielded good application results in the past.

In contrast to the approaches illustrated in Chapter 2.2, above formulation is also
able to accommodate time-varying parameters. Application of an EKF, and an ERTS
smoother to above system is straightforward. Alternatively, similar manipulations as

116



Chapter 2: Mathematical Preliminaries

in sections 2.3.3 and 2.3.5 using the augmented state vector yield

p(Xa
N̄ ,ZN̄) =

N̄∏
k=0

p(zk|xa
k) ·

N̄−1∏
k=0

p
(
xa

k+1

∣∣∣xa
k

)
· p(xa

0)

=
N̄∏

k=0
p(zk|xk,θk) ·

N̄−1∏
k=0

p(xk+1,θk+1|xk,θk) · p(x0,θ0) (2.319)

=
N̄∏

k=0
p(zk|xk,θk) ·

N̄−1∏
k=0

p(xk+1|xk,θk) ·
N̄−1∏
k=0

p(θk+1|xk,θk) · p(x0) · p(θ0)

The last equality results from the assumption that the process noise terms driving the
system are independent for xk and θk; so are the distributions of the initial conditions.

The resulting optimization problem is
min

xa
0 ,wa

0 ,...
xa

N̄−1,wa
N̄−1,xa

N̄

J
(
xa

0,w
a
0 . . .x

a
N̄−1,w

a
N̄−1,x

a
N̄

)

s.t.
xk+1 = dfk[xk,uk,θk,wk]
θk+1 = dfθ

k

[
xk,uk,θk,w

θ
k

]

 (2.320)

J
(
xa

0,w
a
0 . . .x

a
N̄−1,w

a
N̄−1,x

a
N̄

)
=

= 1
2(x0 − x̄0)ᵀ(Px

0)−1(x0 − x̄0) + 1
2(θ0 − θprior)ᵀ Σ−1(θ0 − θprior)

+ 1
2

N̄∑
k=0

(zk − gk(xk,uk,θk))ᵀ R̃−1
k (zk − gk(xk,uk,θk)) + 1

2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
+ 1

2

N̄−1∑
k=0

wᵀ
kQ−1

k−1wk −
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣

+ 1
2

N̄−1∑
k=0

wθ
k
ᵀ(Qθ

k−1
)−1

wθ
k −

N̄−1∑
k=0

ln

∣∣∣∣∣∣∣
∣∣∣∣∣∣∂

df−1
k

θ

∂wθ
k

∣∣∣∣∣∣
∣∣∣∣∣∣∣

(2.321)

This is the most general problem formulation to be used in this work.
The term ln

∣∣∣R̃k

∣∣∣ = ln|GkRkGᵀ
k| has thus far been neglected, since the measurement

noise covariance matrix Rk was considered to be given. Then, the term would be a
constant, irrelevant to the maximization. However, here it is included for the sake of
completeness, and to provide a link to section 3.1 on covariance estimation. It stems
from a similar reasoning as was presented in section 2.2.2.2 to arrive at the pure out-
put error cost function. As will be elaborated in the end of section 3.1, the covariance
estimation approach is only viable on the output side of the problem, thus the corre-
sponding term involving ln|Qk| is still neglected.

Here the estimation of states and parameters is combined in one, huge optimization
problem. In contrast to that, the “classical” approaches illustrated in section 2.2.2.4
solve the state estimation part iteratively, and determine the parameter values in a
disconnected maximum likelihood setting.

Several interesting special cases may be derived:
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Linear Gauss-Markov Parameter Model If no special knowledge on the evolution of
the parameters is available, linear Gauss-Markov models pose a very flexible way of
modeling parameter variation

θk+1 = dfθ
k

[
xk,uk,θk,w

θ
k

]
= Φθ

k

(
θk − θconst

k

)
+ wθ

k (2.322)

Prior knowledge can be incorporated through the state transition matrix Φθ
k and forc-

ing term θconst
k . This formulation may be used to implemented a colored noise behavior

of the parameters, and to limit the bandwidth of parameter changes.
If no prior knowledge is available, a pure random walk model may be used

Φθ = Inθ
θconst

k = 0

θk+1 = θk + wθ
k (2.323)

Constant Random Parameter If the parameter vector is a random constant, all avail-
able knowledge enters the estimation problem via the parameters’ initial condition

wθ
k = 0 ⇒ θk+1 = θk = θ (2.324)

This formulation is closely related to the maximum a posteriori probability (MAP) esti-
mate of section 2.2.3.4. The difference is that in addition to the parameters, state values
are estimated as well.

Constant Parameter If one is to assume that the parameter vector θ is a constant, this
can formally be expressed via

E
[
θ̃
]

= θ (2.325)

Cov
[
θ̃
]

= 0 (2.326)

The relation between maximum likelihood and MAP estimates resulting from this is
similar to what had been discussed in section 2.2.3.3 in the context of Bayesian parame-
ter estimation. Then, all of the above probability densities only make sense if evaluated
at θ.

Still, slight differences exist compared to section 2.2.2.4, since states and parameters
are estimated in one problem, instead of using a Kalman filter for state and a maximum
likelihood estimator for parameter estimation.

Deterministic System If the system under consideration is deterministic, i.e. the pro-
cess noise term vanishes

wk = 0 (2.327)

the problem reduces to that of chapter 2.2. To be fully compatible with the results of
chapter 2.2, the initial states x0 can be integrated in the parameter vector. Then, only
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the assumptions about the prior distribution of the parameters decide, if a maximum
likelihood problem arises (constant θ) or a MAP estimate results (other prior distribu-
tions, e.g. θ ∼ N (θprior,Σ)).

Conclusion Above special cases are summarized in table 2.1. Due to the excessive ad-
ditional complexity that would be added by considering non-linearly entering process

noise via ln
∣∣∣∣∣
∣∣∣∣∂ df−1

k

∂wk

∣∣∣∣
∣∣∣∣∣, the exact formulation is mentioned for the sake of completeness

in table 2.1, but will not be pursued further. For most practical cases, the influence
of the non-linearity may be incorporated in the process noise covariance, which needs
to be tuned manually anyways. Also, optimization vector components are given for
every formulation, in addition to the governing probability density and the resulting
cost function.

Most commonly uncertainty quantification is based on parameter covariance ap-
proximations via the inverse of the Fisher information matrix, the pro’s and con’s of
which were already discussed in section 2.2.5. Meaningful results can be obtained for
the most general state and parameter estimation problem, too, but its discussion is
deferred to section 3.5. Some more aspects, especially the proper treatment of active
constraints, are necessary to present them with the suitable level of detail.
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2.3
State

Estim
ation

Table 2.1: Possible state and parameter estimation formulations;
‖x‖A = xᵀAx is used for brevity;
terms due to non-linearly entering process noise are shown in gray and will be dropped from here on

case probability density
cost function
optimization vector

general p(Xa
N̄ ,ZN̄) = p(x0) · p(θ0) ·

N̄∏
k=0

p(zk|xk,θk) ·
N̄−1∏
k=0

p(xk+1|xk,θk) ·
N̄−1∏
k=0

p(θk+1|xk,θk)

J(zzz) = 1
2‖x0 − x̄0‖(Px

0
)−1 + 1

2‖θ0 − θprior‖Σ−1 + 1
2

N̄∑
k=0

‖zk − gk(xk,uk,θk)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
+ 1

2

N̄−1∑
k=0

‖wk‖Q−1
k

+ 1
2

N̄−1∑
k=0

∥∥∥wθ
k

∥∥∥(
Qθ

k

)−1−
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣−

N̄−1∑
k=0

ln

∣∣∣∣∣∣∣
∣∣∣∣∣∣∂

df−1
k

θ

∂wθ
k

∣∣∣∣∣∣
∣∣∣∣∣∣∣

zzz =
(
xa

0,w
a
0 . . .x

a
N̄−1,w

a
N̄−1,x

a
N̄

)
linear
Gauss-Markov
parameter
model

p(Xa
N̄ ,ZN̄) = p(x0) · p(θ0) ·

N̄∏
k=0

p(zk|xk,θk) ·
N̄−1∏
k=0

p(xk+1|xk,θk) ·
N̄−1∏
k=0

p(θk+1|θk)

J(zzz) = 1
2‖x0 − x̄0‖(Px

0
)−1 + 1

2‖θ0 − θprior‖Σ−1 + 1
2

N̄∑
k=0

‖zk − gk(xk,uk,θk)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
+ 1

2

N̄−1∑
k=0

‖wk‖Q−1
k

+ 1
2

N̄−1∑
k=0

∥∥∥wθ
k

∥∥∥(
Qθ

k

)−1−
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣

zzz =
(
xa

0,w
a
0 . . .x

a
N̄−1,w

a
N̄−1,x

a
N̄

)
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constant
random
parameter
(Gaussian
prior)

p(XN̄ ,θ,ZN̄) = p(x0) · p(θ) ·
N̄∏

k=0
p(zk|xk,θ) ·

N̄−1∏
k=0

p(xk+1|xk,θ)

J(zzz) = 1
2‖x0 − x̄0‖(Px

0
)−1 + 1

2‖θ − θprior‖Σ−1 + 1
2

N̄∑
k=0

‖zk − gk(xk,uk,θ)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
+ 1

2

N̄−1∑
k=0

‖wk‖Q−1
k

−
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣

zzz = (θ,x0,w0 . . .xN̄−1,wN̄−1,xN̄)

constant
deterministic
parameter

p(XN̄ ,ZN̄) = p(x0) ·
N̄∏

k=0
p(zk|xk,θ) ·

N̄−1∏
k=0

p(xk+1|xk,θ)

J(zzz) = 1
2‖x0 − x̄0‖(Px

0
)−1 + 1

2

N̄∑
k=0

‖zk − gk(xk,uk,θ)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
+ 1

2

N̄−1∑
k=0

‖wk‖Q−1
k−1

−
N̄−1∑
k=0

ln

∣∣∣∣∣∣
∣∣∣∣∣∂

df−1
k

∂wk

∣∣∣∣∣
∣∣∣∣∣∣

zzz = (θ,x0,w0 . . .xN̄−1,wN̄−1,xN̄)

deterministic
system [ MAP ]
(Gaussian
prior)

p(θ,ZN̄) = p(θ) ·
N̄∏

k=0
p(zk|θ)

J(zzz) = 1
2‖θ − θprior‖Σ−1 + 1

2

N̄∑
k=0

‖zk − gk(xk,uk,θ)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
zzz = (θ,x0 . . .xN̄) [single shooting: zzz =(θ,x0)]

deterministic
system [ OEM ]
(constant
parameter)

p(θ,ZN̄) =
N̄∏

k=0
p(zk|θ)

J(zzz) = 1
2

N̄∑
k=0

‖zk − gk(xk,uk,θ)‖R̃−1
k

+ 1
2

N̄∑
k=0

ln
∣∣∣R̃k

∣∣∣
zzz = (θ,x0 . . .xN̄) [single shooting: zzz =(θ,x0)]
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On two occasions I have been asked, “Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come

out?” [. . . ] I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

Charles Babbage, 1864 [Bab1864, Ch. 5, p. 67]

3

Implementation Aspects of System
Identification Using Optimal Control
Methods

In the actual application of parameter estimation algorithms, many implementation
issues and possible pitfalls arise that have not yet been discussed. The following chap-
ter collects details on those, hints at possible challenges, and proposes solutions to
tackle these. Most of the following approaches are applicable to different formula-
tions of the problem, formulated as a single shooting problem, or using full discretiza-
tion. The main difference will be the components of the optimization vector zzz. In the
single shooting-case, it will mainly consist of model parameters θ (and possibly ini-
tial conditions x0), whereas for fully discretized problems, zzz will additionally include
state variables at all time instants xk k = 0 . . . N̄ , and possibly process noise inputs wk

k = 0 . . . N̄ .
The remainder of the chapter is structured as follows: first some aspects regarding

the cost function and its derivatives are treated (estimation of residual covariance; gra-
dient and Hessian determination; sensitivity computations). Then aspects concerning
uncertainty quantification are illustrated (parameter covariance at a constrained solu-
tion; framework for covariance computation using full discretization; singular infor-
mation matrix), before implementation aspects of the optimization part are discussed
(initial guess improvement; interpolation; scaling).

It has to be noted that the estimates are always extremal points of an optimization
problem. This may lead to some confusion in the notation, since estimated parameters
ẑzz are at the same time optimal solutions zzz∗. In the remainder of this work, these two
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3.1 Estimation of Residual Covariance

notations are interchanged rather freely, depending on the context: If interpretations
stem from an estimation point of view �̂ will be used, whereas for optimization-based
arguments �∗ is sometimes more practical.

3.1 Estimation of Residual Covariance

In the foregoing chapters, it was often assumed that all covariance matrices of the prob-
lem were known, or may be specified explicitly. For many real-life applications this is
cumbersome at best, if not impossible. Thus, whenever there is a possibility to obtain
reasonable values otherwise, it is usually preferred. In the case of maximum likeli-
hood (or maximum a posteriori probability (MAP)) estimation, some of the covariance
matrices may actually be estimated along with the actual parameters of the problem.

Unfortunately, for reasons that will be elaborated in the end of this section, this
approach may only be used for covariances on the “output-side” of the problem, i.e.
the residual covariance matrix B (in contrast to process noise that acts on the input
side). Depending on the problem formulation, this may be:

◦ the covariance of the residuals zk − yk of the deterministic output error problem
as illustrated in section 2.2.2.2, which only consists of measurement noise

◦ the covariance of the residuals zk − ŷk of the filter error problem as illustrated in
section 2.2.2.4 (if B is assumed to be constant over all sampling instants, or if its
average may be used); it then incorporates effects of both process and measure-
ment noise

◦ the covariance of the residuals zk − ŷk of the joint state and parameter estimation
problem of section 2.3.6, which is dominated by the measurement noise covari-
ance R̃k = GkRkGᵀ

k (again this works only if it is considered to be constant for
all sampling instants, or if its average may be used)

Similar arguments as were used to determine the actual parameter values may be
used to estimate B. Namely, an extremal point of the cost function is considered an
estimate for it. To do so, the parameter vector is first partitioned in two disjoint sets
corresponding to optimization and covariance parameters [MIM1985]

zzztotal =
 zzz

zzzB

 (3.1)

J
(
zzztotal

)
= 1

2

N−1∑
k=0

(zk − yk(zzz))ᵀ B
(
zzzB
)−1

(zk − yk(zzz)) + N

2 ln
∣∣∣B(zzzB

)∣∣∣ (3.2)

where zzzB represents the independent elements of B. Only the upper/lower triangu-
lar part of B needs to be considered, since it is symmetric by definition. Thus only∑nz

l l = l(l+1)
2 independent elements remain. In the case of combined parameter and

state estimation, above expression represents only that part of the cost function, which
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Chapter 3: Implementation Aspects of System Identification Using OCM

is relevant for covariance estimation. Whereas for output error estimation, this is the
complete cost function1.

Trying to minimize above cost function directly leads to problems due to the strong
interdependence between zzz and zzzB [Jat2006, Ch. 4V]. To circumvent this one can realize
that both the derivatives with respect to the optimization parameters zzz as well as the
covariance parameters zzzB will have to vanish at the optimum. For a fixed value of zzz,
the stationary point of J w.r.t. zzzB may be stated analytically: The gradient ∂J

∂zzzB is zero,
if the gradient ∂J

∂B is zero, since ∂B
∂zzzB only contains information about the distribution

of the parameters within B. Thus, only the stationary point of J w.r.t. B needs to
be determined. Using the fact that for a scalar a it holds a = tr[a], the cost function
derivative becomes

∂J

∂B = ∂

∂B tr[J ]

= ∂

∂B tr
[

1
2

N−1∑
k=0

(zk − yk(zzz))ᵀ B−1(zk − yk(zzz)) + N

2 ln|B|
] (3.3)

Now, the trace is a linear operator, and using its cyclic permutation property yields
[MK2016, Ch. 6.1]

∂J

∂B = 1
2
∂

∂B tr
[
B−1

N−1∑
k=0

(zk − yk(zzz))(zk − yk(zzz))ᵀ
]

+ ∂

∂B

(
N

2 ln|B|
)

︸ ︷︷ ︸
=tr
[

N
2 ln|B|

] (3.4)

Appendix A.1 lists some useful equalities for matrix derivatives, where equations (A.9)
and (A.10) may be used to eventually arrive at [MIM1985, Ch. 5] [WP1997, Exam-
ple 3.4] [GP1977, Ch. 5.4] [CJ2012, Ch. 2]

∂J

∂B = −1
2B−1

(
N−1∑
k=0

(zk − yk(zzz))(zk − yk(zzz))ᵀ
)

B−1 + N

2 B−1 != 0 (3.5)

⇒ B̂ = 1
N

N−1∑
k=0

(zk − yk(zzz))(zk − yk(zzz))ᵀ = 1
N

N−1∑
k=0

rk(zzz) rk(zzz)ᵀ (3.6)

This resembles the estimate for the sample variance (A.160) closely and is often called
the “maximum likelihood variance estimate”.

The stationary point of J w.r.t. zzz can in general not be stated analytically, and has
to be determined numerically. This leads to the following two-step optimization algo-
rithm, which also overcomes above mentioned problems due to the strong interdepen-
dence of zzz and zzzB [MIM1985] [MK2016, Ch. 6.1] [Jat2015, Ch. 4]:

1. compute an estimate of the covariance matrix B̂i for the current value of the pa-
rameters zzzi and consider it as constant, independent of zzzi for this step

1 If the covariance matrix B were known, the cost function simplifies further, since N
2 ln

∣∣B(zzzB)∣∣ will
be constant and may thus be dropped. The task then reduces to a weighted, non-linear least-squares
problem as illustrated in section 2.2.4.5 [WP1997, Example 3.4].

127



3.1 Estimation of Residual Covariance

2. compute a parameter update ∆zzzi using the current estimate of the covariance
matrix B̂i

3. set zzzi+1 = zzzi + ∆zzzi and iterate from 1. until convergence

Not only is this approach of estimating B interesting for an unknown covariance
matrix. It may also add more flexibility to the solution algorithm: during the iteration,
when parameters are possibly far away from their optimum, the resulting model defi-
ciencies are automatically included in B̂. This may improve convergence of the overall
approach, compared to a fixed B, which does not take the current characteristics of the
residuals into account.

Above two steps can be combined by plugging the maximum likelihood estimate
of the covariance matrix (3.6) back into the expression for the cost function (3.2). Again,
using the trace and its cyclic permutation property leads to [MIM1985, Ch. 5]

J(zzz) = tr[J(zzz)] = 1
2 tr
[

N−1∑
k=0

(zk − yk(zzz))ᵀ B̂−1(zk − yk(zzz))
]

+ N

2 ln
∣∣∣B̂∣∣∣

= 1
2 tr
[
B̂−1N

1
N

N−1∑
k=0

(zk − yk(zzz))(zk − yk(zzz))ᵀ
]

︸ ︷︷ ︸
= N

2 tr
[
B̂−1B̂

]
+N2 ln

∣∣∣B̂∣∣∣

= Nnz

2 + N

2 ln
∣∣∣B̂∣∣∣

(3.7)

Dropping the constant term results in

Ĵ(zzz) = N

2 ln
∣∣∣B̂∣∣∣ (3.8)

Optimizing above formulation directly leads to the same result as the two step ap-
proach mentioned before. Sometimes, an even simpler form of cost function is used,
that solely considers the determinant of B̂

J̃(zzz) = exp
( 2
N

· Ĵ
)

=
∣∣∣B̂∣∣∣ (3.9)

Ĵ(zzz) = N

2 ln
(
J̃
)

(3.10)

However, since a non-linear transformation is applied, above formulation of J̃ is not
compatible with the combined state and parameter estimation formulations of sec-
tion 2.3.6. There, the separate contributions due to process noise wk, and prior infor-
mation θprior, x̄0 appear as summand of the cost function, which would need to be
incorporated in the non-linear transformation. The additional complexity then dis-
courages from its application.

Both formulations are valid cost functions for maximum likelihood estimation and
aid to solve the same problem. Also, their gradients and Hessians are closely con-
nected, as will be seen in section 3.2. The choice of cost function eventually depends
on the numerical properties of the solution algorithm, and the actual problem at hand.
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As was already mentioned, this idea for covariance estimation may only be applied
on the output side of the problem. If process noise elements wk are determined directly
during combined state and parameter estimation, their covariance matrix Q cannot be
estimated along with their numerical values: The cost function would involve the de-
terminant of Q, a minimum of which can always be achieved by perfectly correlating
two noise sequences. Then the covariance matrix estimate 1

N

∑N−1
k=0 wkwᵀ

k will have lin-
early dependent rows/columns, and its determinant will be at its absolute minimum of
zero. Some simple tests have shown that the Non-Linear Programming (NLP) solvers
in use find this undesired solution quite robustly, thus showing that the approach of
this section cannot work for process noise covariance estimation.

This section showed, how good covariance estimates can be obtained, based on the
maximum likelihood idea. The approach relieves the analyst from having to specify
them explicitly, while still keeping the other aspects of the problem unchanged.

3.2 Computation of Derivatives

The arising NLP problems will exclusively be solved using gradient based optimiza-
tion algorithms (see section 2.1 for details). Convergence properties of these algorithms
are greatly improved, if analytic gradients and Hessians of the cost function are sup-
plied [WP1997, Bet2010].

Most of the derivatives of the cost functions in table 4.1 are straight forward to com-
pute, since they are merely weighted sums of squares. Also the cost function formu-
lations themselves are very modular in the sense that the influences of process noise,
outputs, and prior information are separated in distinct terms.

Only the dependency of the cost function gradient on the optimization parameters
via the model outputs is more involved. It appears in a term of the form

J(zzz) = 1
2

N−1∑
k=0

(zk − yk)ᵀ B−1(zk − yk) + 1
2

N−1∑
k=0

ln|B| (3.11)

possibly together with other summands incorporating the effect of prior knowledge or
process noise.

In order to obtain meaningful results, the first step is to apply the chain rule, while
keeping the layout convention illustrated in appendix A.1.1 in mind

∂J

∂zzz
=

N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ
∂J

∂yk

(3.12)

The terms ∂yk(zzz)
∂zzz represent the output sensitivities, which indicate, how sensitive an

output is to a change in a certain parameter. More details on their computation will be
presented in section 3.3.
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3.2 Computation of Derivatives

Taking the second derivative of the gradient results in the Hessian

∂2J

∂zzz2 =
N−1∑
k=0

N−1∑
l=0

(
∂yk(zzz)
∂zzz

)ᵀ
∂2J

∂yk∂yᵀ
l

(
∂yl(zzz)
∂zzz

)
+

N−1∑
k=0

ny∑
m=1

∂2[yk(zzz)](m)

∂zzz2

[
∂J

∂yk

]
(m)

(3.13)

The second part of above equations, involving second order output sensitivities, is of-
ten neglected. This simplification is justified, since for the cost functions in use, the
higher order term is multiplied by the residuals r(zzz) = zk − ŷk(zzz), as will be seen in
the following section. This difference will be small near an optimum (and of zero mean
if the statistical background is valid), thus the approximation gets better the closer the
optimization is to the final result [MK2016, Ch. 6.2]. It greatly simplifies computa-
tion, since higher order derivatives are costly to compute, and if done numerically, are
prone to round-off errors. Eventually, the Hessian is approximated as [GP1977, Ch. 5.4]
[Jat2015, Ch. 4]

∂2J

∂zzz2 ≈
N−1∑
k=0

N−1∑
l=0

(
∂yk(zzz)
∂zzz

)ᵀ
∂2J

∂yk∂yᵀ
l

(
∂yl(zzz)
∂zzz

)
(3.14)

If mixed second derivatives vanish ∂2J
∂yk∂yᵀ

l
= 0 k 6= l, the formulation simplifies fur-

ther

∂2J

∂zzz2 ≈
N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ
∂2J

∂yk
2

(
∂yk(zzz)
∂zzz

)
(3.15)

3.2.1 Derivatives for Constant Residual Covariance Matrix

If the covariance matrix B is known and constant, the cost function gradient is

∂J

∂yk

= −B−1(zk − yk(zzz)) (3.16)

⇒ ∂J

∂zzz
= −

N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ

B−1(zk − yk(zzz)) (3.17)

Together with the approximation of the Hessian (3.14), the matrix of second derivatives
becomes

∂2J

∂yk∂yᵀ
l

= B−1 · δkl =

 B−1 for k = l

0 otherwise
(3.18)

⇒ ∂2J

∂zzz2 =
N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ

B−1
(
∂yk(zzz)
∂zzz

)
(3.19)

3.2.2 Derivatives for Combined Residual Covariance and Parameter
Estimation

If the covariance matrix is estimated along with the parameters (using its maximum
likelihood estimate (3.6)), the simplified cost function of equation (3.8) may be used for
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derivative computations. Details on the derivation of the gradient expression can be
found in Appendix E. It results in

∂Ĵ

∂yk

= −B̂−1(zk − yk(zzz)) (3.20)

⇒ ∂Ĵ

∂zzz
= −

N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ

B̂−1(zk − yk(zzz)) (3.21)

It is noteworthy, that the result is the same as in the case of a constant residual covari-
ance matrix, i.e. the same as if B̂ was independent of the model outputs.

The gradient of the simplified cost function J̃ =
∣∣∣B̂∣∣∣ of equation (3.9) arises via the

chain rule

∂J̃

∂Ĵ
=
∂ exp

(
2
N

· Ĵ
)

∂Ĵ
= 2
N

exp
( 2
N

· Ĵ
)

= 2
N

∣∣∣B̂∣∣∣ (3.22)

∂J̃

∂yk

= ∂J̃

∂Ĵ
· ∂Ĵ
∂yk

= − 2
N

∣∣∣B̂∣∣∣ B̂−1(zk − yk(zzz)) (3.23)

⇒ ∂J̃

∂zzz
= − 2

N

∣∣∣B̂∣∣∣N−1∑
k=0

(
∂yk(zzz)
∂zzz

)ᵀ

B̂−1(zk − yk(zzz)) (3.24)

Details on the derivation of the Hessian in this case can be found in Appendix E,
the result is

∂2Ĵ

∂yk∂yᵀ
l

= − 1
N

(
B̂−1rlr

ᵀ
kB̂−1 + B̂−1rᵀ

l B̂−1rk

)
+ B̂−1δkj (3.25)

None of the elements of the term in parenthesis grows with sample size N , thus for
largeN the first part of above equation will shrink. Furthermore, close to the optimum,
the residuals rl and rk will be small themselves. Additionally, in some cases it might
be necessary to store the complete Hessian, which quickly becomes unfeasible for large
problems, if all elements are considered, since it is of dimension(N · ny)2.

Eventually, neglecting the first term, the Hessian can be approximated as

∂2Ĵ

∂yk∂yᵀ
j

≈ B̂−1δkj (3.26)

which is the same expression as resulted from a constant, known residual covariance
matrix B and is commonly found in textbooks on the topic [Jat2015, Ch. 4]. Above
argument (using a correct derivative and inspecting the terms to eventually obtain a
tractable Hessian approximation) has not yet been encountered by the author. How-
ever, it underlines that the common approximation is a valid one.

For the simplified cost function this becomes

∂2J̃

∂yk∂yᵀ
j

= ∂2J̃

∂Ĵ
2 · ∂Ĵ

∂yk

· ∂Ĵ
∂yj

ᵀ

+
(
∂J̃

∂Ĵ

)2
∂2Ĵ

∂yk∂yᵀ
l

(3.27)
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which shows another decisive disadvantage over the original formulation: Due to the
first term in above formulation, the Hessian will in general be fully dense and may
not as easily be reduced to its main diagonal elements. Thus for large problems, if the
Hessian is to be used, the computational burden for this formulation is considerably
larger compared to simply using Ĵ .

This section showed, how the analytic gradient and Hessian of different cost func-
tions formulation w.r.t. the model outputs may be computed. Also, it was shown that
the resulting cost function gradient has the same form for pre-defined and estimated
residual covariance. Further, a novel argument was presented, why the cost func-
tion Hessian may be computed in the same manner for both cases as well. Thus, no
algorithmic changes are necessary whether the residual covariance matrix is defined
explicitly or estimated from the data. Together with the output sensitivities, which are
to be discussed in the next section, this forms the basis for an analytic determination
of gradient and Hessian w.r.t. the optimization parameters. This greatly improves the
convergence properties of the underlying NLP solvers.

3.3 Output Sensitivities

In all cases to be discussed, the notion of “sensitivities” is central. In general, they
give a hint at how the output or state trajectory would respond to a change in any
of the parameters, be it a model parameter, or a state or input at any point in time.
This information, together with the results of the last section, is then used to compute
gradient and Hessian information.

When useful, the output sensitivities will be abbreviated as

y
zzzSk = ∂yk

∂zzz
(3.28)

One output sensitivity term [yzzzSk](l,j) = ∂[yk](l)(zzz)
∂[zzz](j)

has three influencing dimensions:

1. the sample index k = 0, . . . , N − 1,
2. the index of the output l = 1, . . . , ny,
3. the index of the parameter j = 1, . . . , nzzz.

They essentially describe, how a change in an optimization parameter influences the
model outputs at different times. Thus the output sensitivity may describe how chang-
ing a model parameter [θ](j̃) =[zzz](j) may influence the l-th output at time k (this would
be captured in [yzzzSk](l,j) ). For fully discretized problems, the sensitivities may also con-
tain measures on how changing a state at one point in time tn, [xn](j̃) = [zzz](j), may
influence the outputs at another point in time.

In above sections on the computation of the cost function derivatives, it was as-
sumed that output sensitivities can be determined, which is now elaborated in more
detail.
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3.3.1 Numeric Determination

The brute-force method to determine output sensitivities is via numeric, finite differ-
ences. The definition of the partial derivative with respect to one element of [zzz](j) j =
1 . . . nzzz is

∂yk(zzz)
∂[zzz](j)

= lim
h→0

yk(zzz + ej · h) − yk(zzz)
h

(3.29)

∂yk(zzz)
∂[zzz](j)

= lim
h→0

yk(zzz) − yk(zzz − ej · h)
h

(3.30)

∂yk(zzz)
∂[zzz](j)

= lim
h→0

yk(zzz + ej · h) − yk(zzz − ej · h)
2h (3.31)

Approximating the limit case with a small, finite h, forward, backward or central finite
differences arise [Bet2010, Ch. 1] [Jat2006, Ch. 4] [MK2016, Ch. 6.3]

∂yk(zzz)
∂[zzz](j)

≈ yk(zzz + ej · h) − yk(zzz)
h

(3.32)

∂yk(zzz)
∂[zzz](j)

≈ yk(zzz) − yk(zzz − ej · h)
h

(3.33)

∂yk(zzz)
∂[zzz](j)

≈ yk(zzz + ej · h) − yk(zzz − ej · h)
2h (3.34)

In order to actually compute those sensitivities, the model has to be evaluated once
(twice for central finite differences) per parameter with perturbed values. This ap-
proach is very flexible, since only model evaluations are involved, and no information
about the internal structure of the model is necessary. However this flexibility comes at
the cost of nzzz + 1 for forward/backward, and 2nzzz model evaluations for central finite
differences. Usually, despite the additional computations, central finite differences are
preferred, because of their significantly lower approximation error [MK2016, Ch. 6.3].

Nevertheless, the additional computations are the greatest downside of the ap-
proach, since it might take considerable additional time, if nzzz becomes large. Also,
round-off errors are very common since h has to be chosen very small, and thus some
differences might fall below a computers numerical resolution, distorting the result.

For the choice of h, some authors propose relative perturbations, e.g. MORELLI and
KLEIN mention that 1% of a parameters nominal value works well for many aircraft
applications [MK2016, Ch. 6.3]. Thus for the part of the optimization parameter vector
pertaining to aerodynamic coefficients they advise to use

h = 0.01 ·[zzz](j) = 0.01 ·[θ](j̃) (3.35)

as perturbation for the computation of ∂yk(zzz)
∂[zzz](j)

. If the nominal value is too close to zero,
the relative is replaced by an absolute perturbation.
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3.3.2 Analytic Determination - Static Models

For static systems, i.e. systems that can be modeled as purely analytically depending
on inputs and parameters

yk = h(uk,zzz) (3.36)

computing analytic output sensitivities might be cumbersome but is straightforward.

y
zzzSk = ∂yk

∂zzz
= ∂h(uk,zzz)

∂zzz
(3.37)

Problems may arise with dependencies that are not differentiable (e.g. saturations) or
lookup table formulations. These pose problems for numerical differentiation, too, but
are hidden behind the finite difference approach. Especially the cumbersome differen-
tiation by hand can be circumvented by using automatic differentiation algorithms, as
is done in the simulation model builder of FALCON.m [RBG+2018].

3.3.3 Analytic Determination - Dynamic Models

For dynamic systems in the form of first order ordinary differential equations (ODEs),
the computation of analytic output sensitivities is not as straightforward anymore.
A possible solution can be obtained via the sensitivity equations [CJ2012, Ch. 3.3]
[Jat2006, Ch. 4] [Ger2018, Ch. 5.2] [WP1997, Ch. 4.3].

They are based on an initial value problem with a system of first order ODEs in the
form

.
x = f(x,u,θ) x(t0) = x0 (3.38)

yk = g(xk,uk,θ) (3.39)

k = 0, . . . , N − 1 tk ∈{t0, . . . tN−1}

Applying the chain rule, the individual influences on the output sensitivities due to a
variation in states, inputs or model parameters can be stated as

y
zzzSk = ∂yk

∂zzz
= ∂g(xk,uk,θ)

∂xk

· ∂xk

∂zzz
+ ∂g(xk,uk,θ)

∂uk

· ∂uk

∂zzz
+ ∂g(xk,uk,θ)

∂θ
· ∂θ

∂zzz

= ∂g(xk,uk,θ)
∂xk

· x
zzzSk + ∂g(xk,uk,θ)

∂uk

· u
zzzSk + ∂g(xk,uk,θ)

∂zzz
· θ

zzzS
(3.40)

Both, u
zzzSk and θ

zzzSk consist of matrices that are mainly zero. Only at those indices, where
the respective parameters (uk or θ) are located within the optimization vector zzz, an
identity matrix is to be found. Assuming the following structure for zzz

zzz =
[

θᵀ xᵀ
0 uᵀ

0 · · · xᵀ
N−1 uᵀ

N−1

]ᵀ
(3.41)
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they are

θ
zzzS =

[
Inθ

0
]

(3.42)

θ x0 u0 xk uk xk+1 xN−1 uN−1

u
zzzSk =

[
0 0 0 · · · 0 Inu 0 · · · 0 0

] (3.43)

If none of the inputs uk are part of the optimization vector zzz (i.e. all inputs at all time
instants are perfectly known), the input sensitivity vanishes u

zzzSk = 0 ∀k and the for-
mulation simplifies to

y
zzzS = ∂g(xk,uk,θ)

∂xk

· ∂xk

∂zzz
+ ∂g(xk,uk,θ)

∂θ
· ∂θ

∂zzz

= ∂g(xk,uk,θ)
∂xk

· x
zzzS + ∂g(xk,uk,θ)

∂θ
· θ

zzzS
(3.44)

This is the common case for standard approaches in system identification, since all
inputs are measured and thus not subject to optimization. Only if process noise inputs
are part of the problem, the input sensitivities y

wSk will have to be considered explicitly.
Again, the computation of the partial derivatives of g may be quite cumbersome,

but are straightforward. This only leaves the determination of the state sensitivities
x
zzzS = ∂x

∂zzz . Taking the derivative with respect to time, and assuming sufficient differen-
tiability, the order of differentiation can be interchanged to arrive at

d

dt
x
zzzS = d

dt

∂x

∂zzz
= ∂

∂zzz
dx

dt
= ∂f(x,u,θ)

∂zzz
=

= ∂f(x,u,θ)
∂x

· ∂x

∂zzz
+ ∂f(x,u,θ)

∂u
· ∂u

∂zzz
+ ∂f(x,u,θ)

∂θ
· ∂θ

∂zzz

= ∂f(x,u,θ)
∂x

· x
zzzS + ∂f(x,u,θ)

∂u
· u

zzzS + ∂f(x,u,θ)
∂θ

· θ
zzzS

(3.45)

with the definitions of u
zzzS and θ

zzzS as in above equations (3.42) and (3.43). Again, for
perfectly known inputs u

zzzS = 0 the expression simplifies to

d

dt
x
zzzS = ∂f(x,u,θ)

∂x
· ∂x

∂zzz
+ ∂f(x,u,θ)

∂θ
· ∂θ

∂zzz

= ∂f(x,u,θ)
∂x

· x
zzzS + ∂f(x,u,θ)

∂zzz
· θ

zzzS
(3.46)

This now is a linear(!) time-variant matrix-valued ODE, which can be integrated along
with the system equations using any numerical integration method. The initial condi-
tion of the state sensitivity equation is given by

x
zzzS0 = ∂x0

∂zzz
(3.47)

which is zero, if the initial conditions x0 are not subject to optimization, and is struc-
tured similarly to θ

zzzS and u
zzzS otherwise.
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The solution to the state sensitivity equation thus consists of a transient of ∂x0
∂zzz ,

which abates according to the linearized system equations (homogeneous part of the
solution). The other part of the solution is influenced by a forcing term (∂f

∂u
· u

zzzS + ∂f
∂zzz

θ
zzzS),

which covers the direct dependency of the system matrix on the optimization variables
(particular part of the solution). It is noteworthy that even for non-linear systems, the
state sensitivity ODE remains linear, but time-varying. Furthermore, the differential
equations for different entries of zzz, i.e. different columns of x

zzzS are independent [WP1997,
Ch. 4.3].

The analytic determination of the partial derivatives of the system and output equa-
tions might be cumbersome and suffer from the same difficulties as in the case of static
systems, see section 3.3.2. Furthermore, integrating a matrix-valued ODE in time can
be computationally expensive. However, for large numbers of parameters this ap-
proach is faster compared to numeric finite differences. The greatest advantage is that
the results are analytically correct and no approximations are involved. This last aspect
is especially useful if the optimization algorithm, which is used to solve the estimation
problem, is sensitive to the quality of the computed gradient, as is e.g. the case for
quasi-Newton approaches [WP1997, Ch. 4.3].

The foregoing section illustrated, how to determine state and output sensitivities,
either numerically, or by explicitly integrating the matrix valued sensitivity differential
equations. The results may then be used to eventually determine analytic expressions
for cost function gradient and Hessian. Furthermore, they play an important role in
the determination of parameter covariances.

3.4 Consequences of Constrained Parameter Estimation
on Uncertainty Quantification

If constraints on the parameter estimates are to be considered, the question arises on
how to incorporate those in the uncertainty quantification process, i.e. how to formu-
late the Fisher information matrix in these cases. GORMAN and HERO developed an
approach to do so in the case of maximum likelihood estimation [GH1990].

A “constraint Fisher information matrix” is derived, based on the Jacobian of the
active equality constraints c̃, and the unconstrained Fisher information matrix. Here, c̃

comprises of all constraints that are active at the final solution, i.e. equality constraints
(including integration defects) and active inequality constraints (bounds on optimiza-
tion parameters, path constraints, etc.). The details of their work are beyond the scope
of this thesis, only their main results will be illustrated and linked to the corresponding
content in section 2.2.4.4 on weighted least squares estimation.

GORMAN and HERO first consider the constraint Jacobian ∂c̃
∂zzz

∣∣∣
zzz∗

, which may be used
to define the tangent hyperplane T (zzz∗) onto the hyper-surface spanned by the con-
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straints c̃

T (zzz∗) =
{

zzz ∈ Rnz : ∂c̃

∂zzz

∣∣∣∣∣
zzz∗

(zzz − zzz∗) = 0
}

(3.48)

Then, an orthogonal projection matrix is built, which projects any direction in Rnz onto
that tangent hyperplane, i.e. all vectors are mapped onto the free directions that are not
constrained via c̃ [GH1990, Remark 2]

Pc̃ = Inzzz − ∂c̃

∂zzz

∣∣∣∣∣
ᵀ

zzz∗

(
∂c̃

∂zzz

∣∣∣∣∣
zzz∗

∂c̃

∂zzz

∣∣∣∣∣
ᵀ

zzz∗

)†
∂c̃

∂zzz

∣∣∣∣∣
zzz∗

(3.49)

where A† indicates the Moore-Penrose pseudo inverse. This is then used to project
the rows and columns of the unconstrained Fisher information matrix onto that hyper-
plane [GH1990], computing the pseudo-inverse of the result and then project it back
onto the original parameter space

F−1
constr. = Pc̃(Pᵀ

c̃FPc̃)† Pᵀ
c̃ (3.50)

GORMAN and HERO give an intuitive geometrical interpretation [GH1990]: The
Fisher information matrix for the unconstrained case is related to the expected value
of the Hessian of the negative log-likelihood function. It thus can be interpreted as the
average curvature of the log-likelihood function (see section 2.2.2.1). If the parameter
space is now equality-constrained to be a hypersurface in Rnz , only certain constrained
trajectories of the parameters are possible, and thus the average curvature changes. By
projecting the rows- and columns of the Fisher information matrix onto the tangent
plane of this hyper-surface, this change in curvature is taken into account.

This result is closely related to equality constrained least-squares estimation as was
illustrated in section 2.2.4.4: Consider a linear approximation of the active equality
constraints c̃ at the final solution of the estimation problem

c̃(zzz) ≈ c̃(zzz∗) + ∂c̃

∂zzz

∣∣∣∣∣
zzz∗

(zzz∗ − zzz) = 0 (3.51)

If Z then is a basis for the null-space of ∂c̃
∂zzz

∣∣∣
zzz∗

it is shown in Appendix C.4 that GORMAN

and HERO’s constrained Fisher information matrix may also be expressed as2

F−1
constr. = Z(ZᵀFZ)−1 Zᵀ (3.52)

This is the same result as that of section 2.2.4.4. The reason is that the weighted least-
squares estimator is a maximum likelihood estimator, thus the results for the covari-
ance estimate need to be equivalent.

Above formulation involving Z has a few computational advantages over the ex-
plicit use of the projection approach: the expression for the condensed Fisher infor-
mation matrix ZᵀFZ has in general full rank, i.e. no pseudo inverse needs to be com-
puted. Furthermore, it has the size of the free directions, which may be considerably

2 A proof for the special case of ortho-normal Z can be found in [SN1998].
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Example 3.1: Covariance matrix modification for fixed parameters
If a parameter element [zzz](j) is fixed, the corresponding constraint gradient is

∂[c̃](l)
∂zzz

= ej

A null-space basis can be constructed as

Z =
[

e1 · · · ej−1 ej+1 · · · enzzz

]
The condensed Fisher information matrix ZᵀFZ then only consists of the free el-
ements, and Z(ZᵀFZ)−1 Zᵀ will consist only of zeros in the j-th row and column.
This can be interpreted such that there is no uncertainty in the respective parameter,
which is intuitive, since it had been fixed a priori.

smaller than the original, unconstrained problem, making its inversion computation-
ally cheaper.

Also, above constrained Fisher information matrix F constr. is densely populated,
which may lead to difficulties for large problems. However, the formulation via the
null-space basis Z allows for an economical way to store that information, in the small-
er matrix (ZᵀFZ)−1 and the null-space basis Z. Relevant sub-matrices are only com-
puted if necessary. All these aspects will come in very handy, when treating estimation
in a full discretization setting, since then the problems will become very large, but only
few free directions in the parameter space will remain. This leaves the formulation via
the null-space matrix the only feasible way. Two simple example cases (example 3.1
and example 3.2) are used to illustrate the consequences of a constrained Fisher infor-
mation matrix.

The necessity of considering constraints in uncertainty quantification is obvious for
fully discretized problems, where the system dynamics are incorporated as equality
constraints. However, the consideration of inequalities on the model parameters θ

may be inadvisable according to WALTER: If the inequality constraints are active in the
final solution, the model structure M(θ) is at the boundary of its valid domain and
thus may be unsuitable for the task at hand. Reformulating the model may be a more
promising way, compared to enforcing inequality constraints [WP1997, Ch. 3.6.1].

If these inequality constraints are inactive at the final solution, the question has
to be raised as to why the additional computational load was introduced in the first
place. However, as with many aspects in system identification, absolute statements
are difficult: Sometimes, inequality constraints may actually help convergence, e.g. to
prevent unstable models at intermediate stages of the optimization. Then also inactive
inequality constraints may be of use.

This section presented the basis for including constraint information in maximum
likelihood estimation. The original result by GORMAN and HERO was summed up,
and a relation to what has been elaborated in the context of weighted least-squares
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Example 3.2: Covariance matrix modification for equal parameters
If two parameter elements are constrained to be equal, the corresponding constraint
gradient is

[c̃](l) =[zzz](i) −[zzz](j) = 0
∂[c̃](l)
∂zzz

= ei − ej

A null-space basis is then

Z =
[

e1 · · · ei−1 ei+1 · · · ej−1 ei + ej ej+1 · · · enzzz

]
The unit vector in one of the two directions (here ei) does not appear in Z, whereas
the other one is replaced by the sum of the unit vectors (here ei + ej). In the con-
densed Fisher information matrix ZᵀFZ the “information” w.r.t. [zzz](i) and [zzz](j) is
then summed up, before inverting it and projecting it back to the original param-
eter space.
This eventually leads to a constrained parameter covariance matrix F−1

constr., whose
i-th and j-th rows and columns are equal, i.e. where the uncertainty in the i-th and j-
th parameter are equal, and [zzz](i) and [zzz](j) are perfectly (positively) correlated, which
again fits intuition.

estimation has been shown. This result is at the heart of the next section, when it is
shown how it may be used to compute parameter uncertainties if a full-discretization
approach is used for the solution of the estimation problem.

3.5 Unified Approach for Computation of Parameter Un-
certainties

It has been pointed out a few times already that to properly assess the quality of esti-
mated parameter values, a measure for the uncertainty involved should be presented.
Despite the errors introduced when using the inverse of the Fisher information matrix
to this end (as discussed in section 2.2.5), it still remains one of the easiest and best
accessible means of evaluating the uncertainty of the estimates. Its computation has
been illustrated for some special cases (maximum likelihood model parameter estima-
tion section 2.2.5; MAP model parameter estimation section 2.2.3.5).

Here, the major challenge lies in the fact that the standard textbook approaches
for uncertainty quantification in aircraft system identification are not capable of taking
constraints into account. However, when using full discretization, the dynamic system
characteristics are enforced purely via constraints. Thus for a meaningful application
to parameter estimation, a new approach was necessary. This latter is “unified” in the
sense that it is on the one hand able to yield meaningful results for fully discretized
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Solution to estimation problem in the form of optimized zzz∗

Optimization vector zzz∗[
θ̂ x̂0 ŵ0 . . . x̂N̄ ŵN̄

] Optimization vector zzz∗[
θ̂ x̂0

]

Approximate Solution as Weighted
Least-Squares (WLS) (sec. 2.2.4.3) in zzz∗

Compute Output Sensitivities (sec. 3.3)
y

x0
Sk, y

θSk

Compute unconstrained covariance of
Weighted Least-Squares (WLS) solution

Cov[zzz∗]

Compute cost function Hessian (sec. 3.2)

∂2J
∂zzz2 ≈

∑N̄
k=0

[
y

x0
Sᵀ

k
y
θSᵀ

k

]
∂2J

∂yk
2

[
y

x0
Sk

y
θSk

]

Take effect of constraints
into account (sec. 3.4)

F−1
constr. = Z(ZᵀFZ)−1 Zᵀ

Assume the Estimator is “efficient”
Cov[zzz] ≈ F(zzz)−1 ≈

(
∂2J
∂zzz2

)−1

Extract model parameter covariances
Cov[θ]

Extract state and process
noise covariances (sec. 3.5.3)

Cov[xk], Cov[wk]

Propagate state covariances (sec. 3.5.5)
Cov[xk]

NOVEL APPROACH

(FULL DISCRETIZATION)
CLASSIC APPROACH

(SINGLE SHOOTING)

Figure 3.1: Classic and novel approach to uncertainty quantification in dynamic system iden-
tification

problems. On the other hand, it actually contains the standard textbook solutions as
special cases, if applied to a single shooting formulation.

Figure 3.1 contrasts the novel, and the classical approach. The classic approach re-
lies on explicitly solving the sensitivity equations, computing the cost function Hessian
and using its inverse as approximation to the model parameter covariances. Most of
the computations are part of the optimization iteration anyway, so the additional effort
to obtain model parameter covariances is small.

The novel approach, developed during the work on this thesis, follows a different
argument: first, the estimation problem is locally approximated as a WLS problem
at the final estimation result zzz∗. Then the methods of section 2.2.4.3 on least squares
estimation may be used to obtain the unconstrained Fisher information matrix of the
complete optimization vector. Lastly, the approach of the last section will be used to
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properly take any active constraint into account. Since the novel approach is able to
explicitly consider constraints both on states, process noise, and model parameters, it is
very well applicable to fully discretized problems. After the theoretical development,
algorithm 3.1 will summarize the key steps.

The main steps to be illustrated in the following subsections are

1. approximate the state and parameter estimation task as weighted least squares
problem and determine its parameter covariance matrix (section 3.5.1)

2. formulate the linearized regressor matrix for different problem statements (sec-
tion 3.5.2)

3. use the result of the last section to obtain the constrained parameter covariance
matrix using a null-space basis of the constraint Jacobian (section 3.5.3)

4. present ways to analytically determine this null-space basis (section 3.5.4)

5. show that the classical methods for uncertainty quantification are contained in
the novel approach, if the problem is formulated in a special way (section 3.5.5)

3.5.1 Unconstrained Covariance of the Optimal Solution

The following section presents the solution for one experiment only. Extensions to the
simultaneous consideration of multiple experiments are straight-forward, but consid-
erably complicate the notation, which would be detrimental to understanding the basic
ideas. Also, the last sample N − 1 will again be indicated by N̄ to keep the notation
shorter.

Even though the most general cost function formulation in table 2.1 involves an
augmented state vector including the time-varying model parameters, here we will
consider the case of random, but time-invariant parameters as the most general for-
mulation. The reason is, that this is the most complex problem to treat notation-wise,
since time-varying parameters may easily be included in an augmented state vector.

In this most general case, the optimization vector consists of model parameters,
states at all points in time, as well as process noise inputs3

zzz =
[

θᵀ xᵀ
0 wᵀ

0 · · · xᵀ
N̄

wᵀ
N̄

]ᵀ
(3.53)

Then, one can realize that all of the cost functions in table 2.1 are a combination of
several weighted least-squares cost functions, apart form the logarithmic term on the
output side of the problem. However, this term is only relevant if the residual covari-
ance is to be estimated and does not influence gradient computations (see section 3.2

3 So far, only explicit system formulations xk+1 = dfk[xk, uk, wk, θ] k = 0 . . . , N̄ − 1 have been
considered when discussing process noise. Then, a process noise term wN̄ at the end of the period
of interest cannot influence the state trajectory. Now, implicit schemes are easily incorporated in the
formulation of integration defects ζk(xk, x̂k+1, uk, uk+1, wk, wk+1, θ). This may result in a noticeable
effect of wN̄ , which is why it is included in the optimization vector.
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for details), which is why it is disregarded for the first-order expansion used here. Thus
for this section, the cost function is considered to consist of weighted least-squares
terms only

J(zzz) = 1
2(θprior − θ(zzz∗))ᵀ Σ−1(θprior − θ(zzz∗)) + 1

2(x̄0 − x0(zzz∗))ᵀ(Px
0)−1(x̄0 − x0(zzz∗))

+ 1
2

N̄∑
k=0

(zk − gk(zzz∗))ᵀ R̃−1
k (zk − gk(zzz∗)) + 1

2

N̄∑
k=0

wk(zzz∗)ᵀ Q−1
k wk(zzz∗) (3.54)

= 1
2βᵀ



Σ−1

(Px
0)−1

R̃−1
0

. . .

R̃−1
N̄

Q−1
0

. . .

Q−1
N̄





θprior − θ(zzz∗)
x̄0 − x0(zzz∗)
z0 − g0(zzz∗)

...
zN̄ − gN̄(zzz∗)
0 − w0(zzz∗)

...
0 − wN̄(zzz∗)


︸ ︷︷ ︸

=β

=(za − ya(zzz∗))ᵀ W(za − ya(zzz∗))

za =
[

θprior
ᵀ x̄0

ᵀ zᵀ
0 · · · zᵀ

N̄
0ᵀ · · · 0ᵀ

]ᵀ
(3.55)

ya(zzz∗) =
[

θ(zzz∗)ᵀ x0(zzz∗)ᵀ g0(zzz∗)ᵀ · · · gN̄(zzz∗)ᵀ w0(zzz∗)ᵀ · · · wN̄(zzz∗)ᵀ
]ᵀ

(3.56)

In above equation the expressions θ(zzz∗), x0(zzz∗) and wk(zzz∗) are to be interpreted as
“extract the relevant elements from the complete optimization vector zzz∗”. Thus it is
shown how the problem actually is a weighted least squares formulation for an aug-
mented measurement vector za and the augmented, non-linear model outputs ya(zzz∗).

In order to eventually apply the methods of section 2.2.4.3 to obtain the covariance
of zzz∗, the augmented, non-linear output equations are linearized around the optimum
estimate zzz. This is directly done in the context of an augmented residual vector va

va = za − ya(zzz) ≈ za − ya(zzz∗) − ∂ya

∂zzz

∣∣∣∣∣
zzz∗

(zzz − zzz∗) = z̃a −
[
X ∂

∂zzz

]
δzzz (3.57)

where the augmented measurements za and the model outputs at the linearization
point ya(zzz∗) are collected in z̃a = za − ya(zzz∗); and the partial derivatives of the aug-
mented output ∂ya

∂zzz

∣∣∣
zzz∗

are contained in the regressor matrix
[
X ∂

∂zzz

]
. A similar idea is often

used to motivate the Gauss-Newton optimization algorithm via this “quasi lineariza-
tion” [Jat2015, Ch. 4].

To have a link to the original cost function formulation, it is instructive to consider
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the elements (i.e. rows) of va

va ≈ z̃a −
[
X ∂

∂zzz

]
δzzz =



θprior − θ(zzz∗)
x̄0 − x0(zzz∗)
z0 − g0(zzz∗)

...
zN̄ − gN̄(zzz∗)

−w0(zzz∗)
...

−wN̄(zzz∗)



−



∂θ
∂zzz

∣∣∣
zzz∗

∂x0
∂zzz

∣∣∣
zzz∗

∂g0
∂zzz

∣∣∣
zzz∗

...
∂gN̄

∂zzz

∣∣∣
zzz∗

∂w0
∂zzz

∣∣∣
zzz∗

...
∂wN̄

∂zzz

∣∣∣
zzz∗



δzzz (3.58)

which are directly related to prior information on model parameters θprior and initial
values x̄0, as well as the original measurements zk and the process noise terms wk.

In summary, above cost function, and linearized measurement equation may now
be interpreted as a weighted least squares problem (see section 2.2.4.3) with

◦ “measurements” z̃a

◦ “regressor matrix”
[
X ∂

∂zzz

]
◦ “residuals” va with covariance matrix

Cov[va] =



Σ
Px

0

R̃ᵀ
0

. . .

R̃ᵀ
N̄

Q0
. . .

QN̄



(3.59)

◦ and cost function

J ≈
(
z̃a −

[
X ∂

∂zzz

]
δzzz
)ᵀ

Cov[va]−1
(
z̃a −

[
X ∂

∂zzz

]
δzzz
)

(3.60)

The solution to above linearized WLS problem is (see section 2.2.4.3)

δzzz∗ =
([

X ∂
∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

])−1[
X ∂

∂zzz

]
ᵀCov[va]−1 z̃a︸ ︷︷ ︸

=0

= 0 (3.61)

The second part here is zeros, because it actually is the gradient of the original cost
function, which was used to find zzz∗ in the first place. This was to be expected: a
problem, which stems from an approximation around the optimum, should have its
own optimal solution at zero.
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More interesting is the approximation to the covariance of zzz, which may also be
obtained from the weighted least-squares solution, see section 2.2.4.3

Cov[δzzz] =
([

X ∂
∂zzz

]
ᵀ · Cov[va]−1 ·

[
X ∂

∂zzz

])−1
= F(zzz)−1 (3.62)

Since the weighted least-squares estimator is unbiased and efficient, above also consti-
tutes the inverse of the Fisher information matrix, which is hinted at in the last equal-
ity. The above may be used to eventually quantify the uncertainty in zzz, since for these
considerations, the solution to the optimization problem zzz∗ may be considered deter-
ministic

Cov[zzz] = Cov[zzz∗ + δzzz] = Cov[δzzz] (3.63)

In summary, the last section presents a way to obtain an estimate for the unconstrained
covariance matrix of the optimization parameters at the optimum. This was achieved
by a linear approximation of the problem, which resulted in a WLS formulation, for
which an uncertainty estimate could be obtained. This serves as a basis, which will be
expanded by considering constraints in section 3.5.3.

3.5.2 Elements of the Linearized Regressor Matrix

Depending on the elements contained in zzz, and the terms considered in the cost func-
tion, the regressor matrix

[
X ∂

∂zzz

]
may take on special forms. The most general formula-

tion is again that, which includes model parameters, states and process noise terms in
the optimization vector,

zzz =
[

θᵀ xᵀ
0 wᵀ

0 · · · xᵀ
N̄

wᵀ
N̄

]ᵀ
(3.64)

and uses prior information on initial conditions, and model parameters in the cost
function. Then

[
X ∂

∂zzz

]
has the following form

[
X ∂

∂zzz

]
=



∂θ
∂zzz

∣∣∣
zzz∗

∂x0
∂zzz

∣∣∣
zzz∗

∂g0
∂zzz

∣∣∣
zzz∗

∂g1
∂zzz

∣∣∣
zzz∗

...
∂gN̄

∂zzz

∣∣∣
zzz∗

∂w0
∂zzz

∣∣∣
zzz∗

∂w1
∂zzz

∣∣∣
zzz∗

...
∂wN̄

∂zzz

∣∣∣
zzz∗



=



Inθ
0

0 Inx 0
∂g0
∂θ

∣∣∣
zzz∗

∂g0
∂x0

∣∣∣
zzz∗

∂g0
∂w0

∣∣∣
zzz∗

0 0
∂g1
∂θ

∣∣∣
zzz∗

0 ∂g1
∂x1

∣∣∣
zzz∗

∂g1
∂w1

∣∣∣
zzz∗

. . .
... . . . . . . . . . 0

∂gN̄

∂θ

∣∣∣
zzz∗

0 ∂gN̄

∂xN̄

∣∣∣
zzz∗

∂gN̄

∂wN̄

∣∣∣
zzz∗

0 0 Inw

0 0 0 Inw

... . . . . . . . . .

0 0 0 Inw



(3.65)
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If no process noise is to be considered, the w terms are removed from the optimiza-
tion vector and regressor matrix

zzz =
[

θᵀ xᵀ
0 · · · xᵀ

N̄

]ᵀ
(3.66)

[
X ∂

∂zzz

]
=



∂θ
∂zzz

∣∣∣
zzz∗

∂x0
∂zzz

∣∣∣
zzz∗

∂g0
∂zzz

∣∣∣
zzz∗

∂g1
∂zzz

∣∣∣
zzz∗

...
∂gN̄

∂zzz

∣∣∣
zzz∗


=



Inθ
0

0 Inx 0
∂g0
∂θ

∣∣∣
zzz∗

∂g0
∂x0

∣∣∣
zzz∗

0
∂g1
∂θ

∣∣∣
zzz∗

0 ∂g1
∂x1

∣∣∣
zzz∗

. . .
... . . . . . . 0

∂gN̄

∂θ

∣∣∣
zzz∗

0 ∂gN̄

∂xN̄

∣∣∣
zzz∗


(3.67)

Further simplifications may be obtained, if prior information on model parameters
and initial conditions are not to be considered

[
X ∂

∂zzz

]
=



∂g0
∂zzz

∣∣∣
zzz∗

∂g1
∂zzz

∣∣∣
zzz∗

...
∂gN̄

∂zzz

∣∣∣
zzz∗

 =



∂g0
∂θ

∣∣∣
zzz∗

∂g0
∂x0

∣∣∣
zzz∗

0
∂g1
∂θ

∣∣∣
zzz∗

0 ∂g1
∂x1

∣∣∣
zzz∗

. . .
... . . . . . . 0

∂gN̄

∂θ

∣∣∣
zzz∗

0 ∂gN̄

∂xN̄

∣∣∣
zzz∗

 (3.68)

Residual Coloring
The same considerations as already presented in section 2.2.5.2 on residual coloring
may be incorporated in the present framework, too. If the covariance of the augmented
noise vector Cov[va] is wrongly specified, it may be corrected by using sample auto
covariance estimates Rcorr. The adjusted parameter covariance is then

Cov[zzz] =
([

X ∂
∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

])−1

[
X ∂

∂zzz

]
ᵀCov[va]−1 · Rcorr · Cov[va]−1

[
X ∂

∂zzz

]
([

X ∂
∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

])−1

(3.69)

The downside of this formulation is the considerable size of the matrices involved.
Currently, straight forward application of the residual coloring approach is only pos-
sible, for the standard single shooting formulation. This yields essentially the same
results as proposed in [MK1997]. Otherwise, the inversion of very large, dense matri-
ces becomes necessary, thus making it impossible to obtain results within reasonable
computational times.

Further work may find advantageous formulations of above equation or good ap-
proximations thereof, making computations possible for practical problems.

3.5.3 Constrained Covariance of the Optimal Solution

In order to fully characterize the uncertainty of a solution, possible equality constraints
need to be taken into account. To do so, a linear approximation is used. Consider the
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concatenation of all equality and active inequality constraints, as well as integration
defects (see section 2.1.4.3 for details)

c̃(zzz∗) =


ceq(x∗

k,w
∗
k,θ

∗) k = 0 . . . N̄
cineq(x∗

i ,w
∗
i ,θ

∗) i ∈ A(zzz∗)
ζk

(
x∗

k,x
∗
k+1,w

∗
k,w

∗
k+1,θ

∗
)

k = 0 . . . N̄ − 1

 = 0 (3.70)

which is then linearized at the optimum point

c̃(zzz∗) = c̃(zzz∗) + ∂c̃

∂zzz

∣∣∣∣∣
zzz∗
δzzz = 0 (3.71)

as was shown in the preceding section, the solution to the overall problem is δzzz∗ = 0,
which then also ensures that the constraints are kept.

Now the results of section 3.4 (on constraints in maximum likelihood estimation),
respectively section 2.2.4.4 (on constrained linear least squares estimation) may be used
to incorporate the effects of c̃. Let Z be a basis for the null-space of ∂c̃

∂zzz

∣∣∣
zzz∗

∂c̃

∂zzz

∣∣∣∣∣
zzz∗

· Z = 0; Z 6= 0 (3.72)

then the constraint covariance is according to equation (3.52) of the last section

Cov[zzz]constr = Z
(
ZᵀCov[zzz]−1 Z

)−1
Zᵀ (3.62)= Z(ZᵀF(zzz) Z)−1 Zᵀ (3.73)

Again, one can see that first the “information” in the problem is condensed onto the
remaining degrees of freedom, i.e. the null-space of the constraint Jacobian. Then the
corresponding covariance in the free directions is computed and projected onto the
original parameter space.

The result is the covariance of the complete optimization vector zzz. Thus, even if
the system under consideration was deterministic, the resulting, propagated states are
random variables! The reason for this is that the parameter estimates are computed
from measurements, which themselves are random variables. This is especially true
for the model parameters θ, but also extends to the states x: either because they are
directly part of the optimization vector (full-discretization case), or because they are
propagated, based on “random” model parameter estimates θ̂ (single-shooting case).

The structure of Cov[zzz]constr may vary, again depending on the elements that are
directly included in zzz. For the most general case, with model parameter, state, and
process noise components, it has the following structure

Cov[zzz]constr = Cov





θ

x0

w0
...

xN̄

wN̄




=



Pθ Pθx0 Pθw0 · · · PθxN̄ PθwN̄

Px0θ Px
0 Px0xN̄ Px0wN̄

Pw0θ Pw
0

... . . . ...
PxN̄θ PxN̄x0 Px

N̄

PwN̄θ PwN̄x0 · · · Pw
N̄


(3.74)
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From this, the other cases are derived by omitting the respective rows and columns.
The implementation developed during the work on this thesis only extracts the main
diagonal blocks of above matrix for further analysis. They contain the model param-
eter covariance, as well as state and possibly process noise covariances, after the esti-
mation has finished. Thus, these covariances represent the “posterior” information, i.e.
they combine possible prior uncertainty (Σ, Px

0, R, Q) with measurement and system
information to arrive at the above uncertainty estimate.

Necessarily, model parameters, states and process noise at different points in time
(i.e. the off-diagonal blocks) will show significant correlation: only their combined ef-
fect leads to the resulting trajectory, thus they will be linked via the system dynamics.
It is a possible point for future research, if this information can be meaningfully used
to assess the quality of an estimate.

Above covariance matrix Cov[zzz]constr may become very large, and is always densely
populated. However, as was mentioned before, by only storing the condensed in-
formation matrix ZᵀCov[zzz]−1 Z together with the null-space basis Z all relevant sub-
matrices may be computed when desired, using only a fraction of the memory neces-
sary to store the complete Cov[zzz]constr.

The last section thus completes the theoretic considerations by properly incorpo-
rating constraints into the aircraft system identification process. The approach illus-
trated so far is now capable of computing parameter covariances for all cases that are
considered in this work, which is one of the major contributions of the author. It is
well adjusted to using full discretization for parameter estimation by ensuring that the
same mechanisms are employed for the solution of the system equations (via equality
constraints) and the determination of uncertainty estimates (via the null-space of the
constraint Jacobian). One remaining question, namely how to efficiently compute the
null space basis of the constraint Jacobian, will be addressed next.

3.5.4 Determination of the Null-Space Basis of the
Constraint Jacobian

To actually compute the null-space basis of the constraint Jacobian, two solutions are
possible. Either, one can use a brute force, numeric approach and use a computer
program to determine Z, or one can exploit the special structure of the problem and
determine at least some parts of Z analytically, before resorting to numerical methods.

The implementation that was developed during the work on this thesis checks that
a valid null space basis was found by inspecting the largest magnitude entry of the
product

(
∂c̃
∂zzz

∣∣∣
zzz∗

· Z
)
. In all examples that are considered here, this value was in the region

of machine precision ε. The software issues a warning if it is larger than ε×104, which
may hint at some problems with the model or data at hand.
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3.5.4.1 Numeric Determination

When actually determining the null-space basis, one can make use of the fact that typ-
ically, in parameter estimation problems, the number of remaining degrees of freedom
is considerably smaller than the size of the optimization vector zzz; at least for deter-
ministic systems without process noise inputs wk, which fortunately constitute the
majority of cases. Additionally, the constraint Jacobian in fully discretized problems is
commonly sparse [Bit2017], which can be utilized in the search for the null-space basis.

The Singular Value Decomposition (SVD) explicitly contains an ortho-normal null-
space basis as part of the right singular matrix (see appendix A.2.1 or [BIG2003] for
background on the SVD.)

∂c̃

∂zzz

∣∣∣∣∣
zzz∗

=
[

U1 U2

] Σ 0
0 0

 Vᵀ
1

Zᵀ

 (3.75)

Unfortunately, for practical cases it cannot be computed directly in MATLAB, since the
svd function cannot handle sparse matrices (at least in the version R2016b which was
used for the implementation at hand), which is why a detour via the eigenvalue de-
composition was implemented. The idea is to compute the nzzz −nc̃ smallest magnitude
eigenvectors of

(
∂c̃
∂zzz

∣∣∣ᵀ
zzz∗

∂c̃
∂zzz

∣∣∣
zzz∗

)
via MATLAB’s eigs function.

∂c̃

∂zzz

∣∣∣∣∣
ᵀ

zzz∗

∂c̃

∂zzz

∣∣∣∣∣
zzz∗

=
[

∗ Z
] Σ2 0

0 0

 ∗
Zᵀ

 (3.76)

The null space of ∂c̃
∂zzz

∣∣∣
zzz∗

can have at maximum dimension nzzz − nc̃ (if ∂c̃
∂zzz

∣∣∣
zzz∗

has full rank,
i.e. if the Linear Independence Constraint Qualification (LICQ) holds) and eigs is
capable of exploiting the sparsity of ∂c̃

∂zzz

∣∣∣
zzz∗

in order to compute a pre-defined number
of eigenvectors. Those associated with eigenvalues at 0 then constitute the null-space
basis.

Above approach is especially appealing, if there are few degrees of freedom, and
many constraints: the null-space can be computed numerically in a straight forward
manner, and no information about the exact form of the constraints is necessary. Thus
relatively arbitrary problems may be solved, with e.g. path constraints that are only
active at certain sampling instants, which otherwise have to be considered explicitly.

3.5.4.2 Analytic Determination

The analytic solution to the problem of finding a null-space basis of the constraint Ja-
cobian is based on the fact that in parameter estimation problems most of the active
constraints will be related to integration defects. Thus the focus of this section will be
on finding an analytic null-space basis SZ for the integration defects ζ, before incorpo-
rating the remaining constraints separately.
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Deterministic Problem Formulation
First, consider a deterministic problem formulation, i.e. the integration defect at one
point in time only depends on adjacent state, and (fixed) input values, as well as model
parameters. Then, the derivatives of the integration defects at the optimum zzz∗ are4

0 = ∂

∂z̃zz
ζk

(
x∗

k,x
∗
k+1,uk,uk+1,θ

∗
)

= ∂ζk

∂xk

∂xk

∂z̃zz
+ ∂ζk

∂xk+1

∂xk+1

∂z̃zz
+ ∂ζk

∂θ

∂θ

∂z̃zz

= ∂ζk

∂xk

x
z̃zzSk + ∂ζk

∂xk+1

x
z̃zzSk+1 + ∂ζk

∂θ
θ
z̃zzS

(3.77)

For ease of notation, the explicit evaluation point at zzz∗ of the Jacobians, i.e. �|zzz∗ is
dropped. Above derivatives are taken w.r.t. an optimization vector z̃zz, which does not
necessarily have to correspond to the zzz of the original problem. Suitably choosing z̃zz
will provide a proper basis for the null-space, which will be shown further down.

Above equation relates the state and parameter sensitivities via the (possibly im-
plicit) numerical integration scheme that was chosen to discretize the problem. Now
this can be stacked vertically to arrive at



∂ζ0
∂θ

∂ζ0
∂x0

∂ζ0
∂x1

∂ζ1
∂θ

∂ζ1
∂x1

∂ζ1
∂x2

∂ζ2
∂θ

∂ζ2
∂x2

∂ζ2
∂x3

... . . . . . .
∂ζN̄−1

∂θ

∂ζN̄−1
∂xN̄−1

∂ζN̄−1
∂xN̄





θ
z̃zzS

x
z̃zzS0
x
z̃zzS1
x
z̃zzS2
x
z̃zzS3

...
x
z̃zzSN̄


= 0 (3.78)

However, the matrix on the left is exactly the constraint Jacobian ∂c̃
∂zzz

∣∣∣
zzz∗

of the integration
defects. Thus the solution to the sensitivity equations actually contains a basis for the
null-space of the constraint Jacobian!

This basis can be extracted, if the elements of the optimization vector z̃zz are chosen
to match the number of degrees of freedom of the constraint Jacobian: Since the LICQ
hold for any reasonable parameter estimation problem formulation, this number of
degrees of freedom is equal to the number of columns minus the number of rows of
∂c̃
∂zzz

∣∣∣
zzz∗

. The integration defects have (N − 1)nx rows and the optimization vector has
Nnx + nθ elements, leaving nx + nθ degrees of freedom.

One choice for z̃zz that comes to mind is related to the single shooting approach,
i.e. only considering the model parameters θ and initial conditions x0 as part of the
optimization vector z̃zz. Thus their sensitivities θ

z̃zzS and x0
z̃zzS only contain identity and

4 This constitutes an alternative to solving the sensitivity equations of section 3.3: here the integration
is performed first (via the defect equations), before taking derivatives; whereas in section 3.3 derivatives
are taken first, before solving the resulting matrix-valued ODEs using a numerical integration scheme.
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zero matrices, and above system can be transformed into a linear system of equations
with full rank. This is done by bringing the first two columns (related to θ and x0) to
the right

z̃zz =
[

θ x0

]
(3.79)

∂ζ0
∂x1
∂ζ1
∂x1

∂ζ1
∂x2
∂ζ2
∂x2

∂ζ2
∂x3
. . . . . .

∂ζN̄−1
∂xN̄−1

∂ζN̄−1
∂xN̄





x
z̃zzS1
x
z̃zzS2
x
z̃zzS3

...
x
z̃zzSN̄


=



−∂ζ0
∂θ

− ∂ζ0
∂x0

−∂ζ1
∂θ

0

−∂ζ2
∂θ

...
...

−∂ζN̄−1
∂θ

0


 θ

z̃zzS
x0
z̃zzS


︸ ︷︷ ︸
=Inx+nθ

(3.80)

Thus one choice for the null-space basis SZ, and consequently the solution to equa-
tion (3.78), can be constructed by augmenting the solution to above system of equations
with θ

z̃zzS and x0
z̃zzS as follows

θ
z̃zzS

x
z̃zzS0
x
z̃zzS1
x
z̃zzS2
x
z̃zzS3

...
x
z̃zzSN̄


︸ ︷︷ ︸

=SZ

=



Inθ

Inx

∂ζ0
∂x1
∂ζ1
∂x1

∂ζ1
∂x2
∂ζ2
∂x2

∂ζ2
∂x3
. . . . . .

∂ζN̄−1
∂xN̄−1

∂ζN̄−1
∂xN̄



−1

Inθ
0

0 Inx

−∂ζ0
∂θ

− ∂ζ0
∂x0

−∂ζ1
∂θ

0

−∂ζ2
∂θ

...
...

−∂ζN̄−1
∂θ

0


(3.81)

which from here on out will be referred to as SZ, i.e. that part of the null-space related
to the integration defects, which may be constructed from the sensitivities. Above
(non-ortho-normal) basis for the null-space of the constraint Jacobian may be com-
puted quite efficiently, possibly more efficiently than using the numeric eigenvector
approach, especially if the number of degrees of freedom becomes large.

The basic approach of section 3.4 to incorporate constraints in the uncertainty quan-
tification is based on an arbitrary null-space basis. Different choices of Z then corre-
spond to different subsets of optimization parameters (or linear combination thereof)
onto which the information is first condensed via ZᵀF(zzz) Z. The numeric approach
chooses this subset of optimization parameters such that an ortho-normal basis Z re-
sults. The analytic approach presented here, explicitly chooses θ and x0 for a different
version of Z.

Consideration of Process Noise
If process noise is to be included explicitly in the problem formulation, a similar ap-
proach as described above for the deterministic case may be applied. However, the
number of degrees of freedom, which directly relates to the dimension of the null-
space basis in this case, is considerably larger. Every process noise entry in the defect
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constraints will be an additional degree of freedom, increasing the null-space dimen-
sion to nθ + nx +Nnw.

Relying on the numeric approach via the SVD of ∂c̃
∂zzz

∣∣∣
zzz∗

may then fail due to the
sheer size of the problem. Fortunately, the approach via the sensitivity equations may
be extended to provide an analytic way to compute the null-space basis in the presence
of explicitly considered process noise terms.

As before, the sensitivities are computed via the integration defects, now taking
process noise elements into account

0 = ∂

∂z̃zz
ζk

(
x∗

k,x
∗
k+1,uk,uk+1,w

∗
k,w

∗
k+1,θ

∗
)

= ∂ζk

∂xk

∂xk

∂z̃zz
+ ∂ζk

∂xk+1

∂xk+1

∂z̃zz
+ ∂ζk

∂wk

∂wk

∂z̃zz
+ ∂ζk

∂wk+1

∂wk+1

∂z̃zz
+ ∂ζk

∂θ

∂θ

∂z̃zz

= ∂ζk

∂xk

x
z̃zzSk + ∂ζk

∂xk+1

x
z̃zzSk+1 + ∂ζk

∂wk

w
z̃zzSk + ∂ζk

∂wk+1

w
z̃zzSk+1 + ∂ζk

∂θ
θ
z̃zzS

(3.82)

For ease of notation, the explicit evaluation point at zzz∗ of the Jacobians, i.e.�|zzz∗ is again
dropped.

The concatenated sensitivity equations then become



∂ζ0
∂θ

∂ζ0
∂x0

∂ζ0
∂w0

∂ζ0
∂x1

∂ζ0
∂w1

∂ζ1
∂θ

∂ζ1
∂x1

∂ζ1
∂w1

∂ζ1
∂x2

∂ζ1
∂w2

... . . . . . .
∂ζN̄−1

∂θ

∂ζN̄−1
∂xN̄−1

∂ζN̄−1
∂wN̄−1

∂ζN̄−1
∂xN̄

∂ζN̄−1
∂wN̄





θ
z̃zzS

x
z̃zzS0
w
z̃zzS0
x
z̃zzS1
w
z̃zzS1
x
z̃zzS2
w
z̃zzS2

...
x
z̃zzSN̄
w
z̃zzSN̄



= 0

(3.83)

θ x0 w0 xk wk xk+1 xN̄ wN̄

with w
z̃zzSk =

[
0 0 0 · · · 0 Inw 0 · · · 0 0

] (3.84)

Since the matrix on the left is again the constraint Jacobian (including the process noise
contributions), the solution to the sensitivity equations is again a basis for the null
space of ∂c̃

∂zzz . The increased number of degrees of freedom manifests itself in the solution
to the sensitivity equations: in addition to θ and x0, the wk k = 0 . . . N̄ are chosen as
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elements of z̃zz, again with known sensitivities.

z̃zz =
[

θ x0 w0 w1 · · · wN̄

]
(3.85)

∂ζ0
∂x1
∂ζ1
∂x1

∂ζ1
∂x2
. . . . . .

∂ζN̄−1
∂xN̄−1

∂ζN̄−1
∂xN̄





x
z̃zzS1
x
z̃zzS2

...
x
z̃zzSN̄

 = (3.86)


−∂ζ0

∂θ
− ∂ζ0

∂x0
− ∂ζ0

∂w0
− ∂ζ0

∂w1

−∂ζ1
∂θ

0 − ∂ζ1
∂w1

− ∂ζ1
∂w2

...
... . . . . . .

−∂ζN̄−1
∂θ

0 − ∂ζN̄−1
∂wN̄−1

−∂ζN̄−1
∂wN̄





θ
z̃zzS
x0
z̃zzS

w
z̃zzS0
w
z̃zzS1

...
w
z̃zzSN̄


︸ ︷︷ ︸

=Inx+nθ+N·nw

where only the x
z̃zzS are computed via this equation; the w

z̃zzS contain zero and identity
matrices only and are directly incorporated in the right-hand side. Eventually, equa-
tion (3.84) and the solution to (3.86) may be combined to arrive at the null-space basis
in this case

SZ =
[

θ
z̃zzSᵀ x

z̃zzS
ᵀ
0

w
z̃zzS

ᵀ
0

x
z̃zzS

ᵀ
1

w
z̃zzS

ᵀ
1

x
z̃zzS

ᵀ
2

w
z̃zzS

ᵀ
2 · · · x

z̃zzS
ᵀ
N̄

w
z̃zzS

ᵀ
N̄

]ᵀ
(3.87)

The interpretation of the foregoing paragraph may be extended to the case incorporat-
ing process noise inputs, i.e. choose a subset of optimization parameters as degrees of
freedom and condense information onto those parameters.

The last two paragraphs illustrated, how solutions to the problem of finding a null-
space basis for the integration defect Jacobian can be constructed analytically. This
was done for both cases with and without the explicit consideration of process noise.
Admittedly, the additional computations are not as minor as in the standard single-
shooting case, but they are not excessive either: in FALCON.m [RBG+2018], the value
of the constraint Jacobian at the optimum is directly available as part of the solution.
Then it is only necessary, to extract the parts related to integration defects, assem-
ble them in the above illustrated linear systems of equations and solve for the null-
space SZ. Care has to be taken to exploit the sparsity of the problem, since matrix sizes
may become too large to handle on a standard consumer PC otherwise.

The connection between the null-space basis of the constraint Jacobian and the so-
lution to the sensitivity equations may have been investigated in the past. However,
its use in the context of uncertainty quantification for aircraft system identification is
new, and a major contribution of this work. Only in this way is it possible to actually
compute covariances of states and parameters for real-life problem sizes, where the
brute force numeric approach is bound to fail due to the sizes of the matrices involved.
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Consideration of Remaining Constraints
The set of active constraints at the optimal solution of an estimation problem may

not only comprise of integration defects. This makes it necessary to modify the null
space basis SZ, which was determined in the last paragraphs, in order to take those
auxiliary constraints into account, too. The latter may consist of active path constraints,
optimization parameter bounds, known relations between parameters etc.

Let caux be the vector of remaining, non-defect constraints with the Jacobian ∂caux

∂zzz .
Then a transformation E of SZ of the last section is sought, such that SZ is mapped to
the null space of ∂caux

∂zzz , i.e.

∂caux

∂zzz
· SZ · E = 0 (3.88)

Since ∂c̃
∂zzz , of which ∂caux

∂zzz is a part, will have full rank (LICQ!), E necessarily reduces the
column dimension of SZ.

The arbitrary nature of caux makes it impossible to define general algorithms to
analytically compute its null space basis ZG, and leaves its numeric determination as
the only practical way. However, most of the active constraints at an optimum will
be related to integration defects, thus the dimension ncaux of the remaining auxiliary
constraints caux should be small. Further, the ∂caux

∂zzz will have only few non-zero ele-
ments: they commonly only link optimization variables at one sampling instant (path
constraints) or model parameters. Thus the all-zero columns of ∂caux

∂zzz may also be dis-
regarded in the search for ZG, further reducing the sizes of the matrices involved.

As was noted above, E needs to transform SZ such that it lies in the null-space of
∂caux

∂zzz , i.e. only consists of linear combinations of the columns of ZG

SZE = ZGV

⇔
[

SZ ZG

] E
−V

 = 0
(3.89)

where V is the representation of SZE in terms of the null space basis of ∂caux

∂zzz . The
desired transformation E is then the top part of the null-space of the compound matrix[

SZ ZG

]
. Again, this will in general have to be determined numerically, but should

stay tractable, due to the reduced sizes, which have been elaborated above.
The overall approach to include auxiliary constraints can be interpreted as finding

a basis for the intersection of

◦ the null-space of the integration defect constraint Jacobian SZ on the one hand,

◦ and the null-space of the auxiliary constraint Jacobian ZG on the other hand.

For large problems, solving two sub-steps (integration defects first; then modify to
include auxiliary constraints) may be considerably easier compared to the numerical
solution of the overall problem as was illustrated in section 3.5.4.1.
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This was the last missing part, which was necessary to determine uncertainty mea-
sures when using full discretization in parameter estimation. This novel approach is
now able to consider arbitrary constraints on states, model parameters and possibly
process noise, which constitutes a major advantage over the methods in use so far. Al-
gorithm 3.1 sums up the key points to obtain an uncertainty estimate from a solved
estimation problem.

3.5.5 Link to Standard Approaches

For every novel approach it is reassuring, if it can be linked meaningfully to well estab-
lished methods. This is the goal of the following section, i.e. to provide a link between
the textbook methods for single shooting, and the formulation via the null-space of the
constraint Jacobian presented here.

The standard textbook methods are usually formulated for deterministic systems,
where the model parameters θ and possibly the initial values x0 are to be determined.
Using the approach developed in this section the “condensed” covariance matrix in
the free directions is

(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

. Since the system is considered

to be deterministic, no process noise contributions are considered and the
[
X ∂

∂zzz

]
of

equation (3.67) arises

[
X ∂

∂zzz

]
=



Inθ
0

0 Inx 0
∂g0
∂θ

∂g0
∂x0

0
∂g1
∂θ

0 ∂g1
∂x1

. . .
... . . . . . . 0

∂gN̄

∂θ
0 ∂gN̄

∂xN̄



with the corresponding augmented noise covariance (assuming a constant residual
covariance matrix)

Cov[va] =



Σ
Px

0

B
. . .

B


(3.90)

For this deterministic model formulation, an analytic null-space basis is provided via

154



Chapter 3: Implementation Aspects of System Identification Using OCM

Algorithm 3.1: Uncertainty quantification in parameter estimation using full dis-
cretization

I. extract the Jacobian matrices of the output equation gk(xk,uk,wk,θ) to assem-
ble the linearized regressor matrix

[
X ∂

∂zzz

]
(see section 3.5.2 for possible formula-

tions)

II. assemble prior covariances Σ, Px
0, process noise covariances Qk and measure-

ment noise covariances R̃k (pre-defined, or estimated) to obtain the augmented
noise vector covariance Cov[va] (equation (3.59))

III. compute the unconstrained covariance of the optimization vector (equa-
tion (3.62))

Cov[zzz]−1 =
[
X ∂

∂zzz

]
ᵀ · Cov[va]−1 ·

[
X ∂

∂zzz

]
= F(zzz)

IV. determine a null space basis for the active constraint Jacobian

◦ Either use the numeric approach (section 3.5.4.1) via the eigen decomposi-
tion of

(
∂c̃
∂zzz

∣∣∣ᵀ
zzz∗

∂c̃
∂zzz

∣∣∣
zzz∗

)
◦ or use the analytic construction (section 3.5.4.2)

(a) extract the integration defect Jacobian matrices ∂ζk

∂xk
, ∂ζk

∂xk+1
, ∂ζk

∂wk
, ∂ζk

∂wk+1
,

∂ζk

∂θ
at the optimal solution from FALCON.m

(b) assemble the linear system of equations (eq. (3.81) for deterministic
systems or eq. (3.86) for stochastic descriptions)

(c) solve the system and assemble the null space basis of the integration
defect constraints SZ

(d) possibly adjust for auxiliary, non-defect constraints caux

V. modify the unconstrained covariance to take constraints into account (equa-
tion (3.73))

Cov[zzz]constr = Z
(
ZᵀCov[zzz]−1 Z

)−1
Zᵀ

= Z
(
Zᵀ
[
X ∂

∂zzz

]
ᵀ · Cov[va]−1 ·

[
X ∂

∂zzz

]
Z
)−1

Zᵀ

VI. extract and store covariances for model parameters Cov[θ], states Cov[xk] and
possibly process noise terms Cov[wk]
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equation (3.81)

SZ =



θ
z̃zzS

x
z̃zzS0

...
x
z̃zzSN̄

 =



Inθ
0

0 Inx

x
θS1

x
x0S1

...
x
θSN̄

x
x0SN̄


Now it can be realized that large parts of the product

[
X ∂

∂zzz

]
Z actually consist of the

discrete output sensitivities (see section 3.3)

[
X ∂

∂zzz

]
Z =



Inθ
0

0 Inx 0
∂g0
∂θ

∂g0
∂x0

0
∂g1
∂θ

0 ∂g1
∂x1

. . .
... . . . . . . 0

∂gN̄

∂θ
0 ∂gN̄

∂xN̄





Inθ
0

0 Inx

x
θS1

x
x0S1

...
x
θSN̄

x
x0SN̄



=



Inθ
0

0 Inx

∂g0
∂θ

∂g0
∂x0

∂g1
∂θ

+ ∂g1
∂x1

x
θS1

∂g1
∂x1

x
x0S1

...
∂gN̄

∂θ
+ ∂gN̄

∂xN̄

x
θSN̄

∂gN̄

∂xN̄

x
x0SN̄


=



Inθ
0

0 Inx

y
θS0

y
x0S0

y
θS1

y
x0S1

...
y
θSN̄

y
x0SN̄



(3.91)

Eventually, the condensed covariance is(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

=

=



βᵀ ·



Σ−1

Px
0

−1

B−1

. . .

B−1





Inθ
0

0 Inx

y
θS0

y
x0S0

y
θS1

y
x0S1

...
y
θSN̄

y
x0SN̄


︸ ︷︷ ︸

=β



−1

=
 Σ−1

Px
0

−1

+
N̄∑

k=0

 y
θS

ᵀ
k

y
x0Sᵀ

k

B−1
[

y
θSk

y
x0Sk

]−1

(3.92)

which is exactly the same expression as in section 2.2.3.5 on uncertainty quantification
for Bayesian MAP estimation using a Gaussian prior. Thus it holds

(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

=
 Cov[θ] Cov[θ,x0]

Cov[x0,θ] Cov[x0]

 (3.93)
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which provides the desired linke between the null-space based methods illustrated
here, and the standard methods. If prior information is not available, the above reduces
to

(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

=
 N̄∑

k=0

 y
θS

ᵀ
k

y
x0Sᵀ

k

B−1
[

y
θSk

y
x0Sk

]−1

(3.94)

which is exactly the expression used in the computation of the Hessian according to
section 3.2. Section 2.2.2 shows, that this may be used as approximation of the Fisher in-
formation matrix. Thus, the approach via the approximation as a linearized, weighted
least-squares problem, together with the null-space method to incorporate integration
defect constraints actually contains the two textbook approaches as special cases.

It was noted before that even if the system under consideration is assumed to be
deterministic, the propagated states will themselves be random variables. A link to
the standard methods used in aircraft system identification may be established by
considering the states to be a function of the model parameters and initial values
xk = xk(θ,x0). A first order Taylor expansion around the estimates then yields

xk(θ,x0) ≈ x̂k

(
θ̂, x̂0

)
+ ∂x̂k

∂θ

(
θ − θ̂

)
+ ∂x̂k

∂x0
(x0 − x̂0) (3.95)

= x̂k

(
θ̂, x̂0

)
+
[

∂x̂k

∂θ
∂x̂k

∂x0

] θ − θ̂

x0 − x̂0

 (3.96)

Since the estimates θ̂, x̂0 are considered to be unbiased, the resulting estimation error
has zero mean ( at least to first order)

E
[
xk(θ,x0) − x̂k

(
θ̂, x̂0

)]
=
[

∂x̂k

∂θ
∂x̂k

∂x0

]
E

 θ − θ̂

x0 − x̂0

 = 0 (3.97)

Now, the model parameter error θ − θ̂ and state estimation errors for all samples
xk(θ,x0) − x̂k

(
θ̂, x̂k

)
may be stacked vertically, and their covariance computed

Cov




θ − θ̂

x0(θ,x0) − x̂0
(
θ̂, x̂0

)
...

xN̄(θ,x0) − x̂N̄

(
θ̂, x̂0

)



 =


Inθ

0
∂x̂0
∂θ

∂x̂0
∂x0

...
∂x̂N̄

∂θ

∂x̂N̄

∂x0


︸ ︷︷ ︸

=SZ

Cov

 θ − θ̂

x0 − x̂0

 · SZᵀ (3.98)

The matrices on the left and right are exactly the solutions to the sensitivity equations

SZ =
[

θ
z̃zzS x

z̃zzS0 · · · x
z̃zzSN̄

]
, see equation (3.81). Thus the multiplication of the con-

densed covariance with the null-space basis of equation (3.73) corresponds to a prop-
agation of the parameter and initial value uncertainties, which again relates standard
methods to the null-space method developed here.
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Similar ideas may be used to obtain the output covariances, using the output sen-
sitivities instead

Cov




y0(θ,x0) − ŷ0
(
θ̂, x̂0

)
...

yN̄(θ,x0) − ŷN̄

(
θ̂, x̂0

)

 =


∂ŷ0
∂θ

∂ŷ0
∂x0

...
∂ŷN̄

∂θ

∂ŷN̄

∂x0


︸ ︷︷ ︸

=β

Cov

 θ − θ̂

x0 − x̂0

 · βᵀ (3.99)

The only difference then may arise, if the interpolation approach illustrated in sec-
tion 3.9 is used. Then the interpolated output sensitivities on the fine measurement
grid (see e.g. equation (3.129)) have to be used in above equation.

The last section provided a link between the novel approach based on the null space
basis of the constraint Jacobian, and the standard methods for single shooting problem
formulations. It was shown, that the classic approach is actually contained within the
null space formulation as a special case, thus reassuring the correctness of the basic
idea. The two major steps when taking constraints into account via Z, have their coun-
terpart in the classic method:

1. “condensing” the information on the free directions via

Cov[x0,θ] =
(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

corresponds to solving the sensitivity equations and computing the cost function
Hessian as approximation to the overall Fisher information matrix

2. “projecting” the condensed covariance SZ · Cov[x0,θ]−1 · SZᵀ corresponds to a
propagation of the parameter and initial state uncertainty to obtain uncertainty
estimates for all states xk

Further, the validity was checked for some simple numeric examples: the model
parameter covariances Cov[θ] were computed using the null space approach and the
classical formulation. The two results were equal to within the expected tolerance.

Only if a filter is used in combination with the single-shooting method, some differ-
ences arise: the filter sees the model parameters as deterministic constants, and com-
putes state and output covariances based on this. It could be modified to to include
model parameter uncertainties, too, but then two filter implementations would be nec-
essary: one to be used in the estimation process, and one for covariance computations.

3.6 Nearly Singular Information Matrix

All of the approaches to compute approximate parameter uncertainties sooner or later
involve the inversion of a matrix, which is quadratic in some sensitivity. This matrix
can often be interpreted as a Hessian of the problem or its approximation. Now, there
may arise situations, where the Hessian is nearly singular, and thus its inverse is not
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easily computed. The following section discusses situations, how this may arise, and
possible remedies.

At the heart of many of the following arguments lies the covariance approximation
via a linearization of the problem

Cov[zzz] = Cov[δzzz] =
([

X ∂
∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

])−1
(3.100)

Thus many of the arguments used in linear least-squares estimation may be applied
here, too.

MORELLI and KLEIN list several aspects that may result in an ill-conditioning of
the Hessian [MK2016, Ch. 6.3]. The first would be over-parameterization, i.e. having
too many model parameters to estimate, for the limited amount of information in the
data. Then the estimates cannot be computed with sufficient accuracy.

Another problem is called “misspecification of the model” [MK2016, Ch. 6.3], i.e.
the setting where several model parameters have more or less the same effect on the
output. Then the respective columns of the concatenated output sensitivities

[
X ∂

∂zzz

]
may

be almost linearly dependent, which yields problems when inverting the Hessian. This
is equivalent to having almost linearly dependent regressors in linear least-squares
problems. A special case of this arises, if a parameter is to describe the influence of
a quantity, which was constant during the experiment. Then the corresponding col-
umn of the concatenated output sensitivities

[
X ∂

∂zzz

]
will be almost linearly dependent

on possible bias parameters. Similarly, if a parameter does not significantly influence
the outputs, the corresponding column in the concatenated output sensitivities will be
close to zero, thus complicating the inversion of the Hessian.

If a nearly singular information matrix appears during the iterative solution of the
optimization problem, this may be tolerated. Common solution algorithms such as the
Levenberg-Marquardt algorithm 2.2 are able to cope with singular Hessians. Alterna-
tively, a rank deficient inverse may be used, where only eigenvalues of the Hessian,
that are significantly larger than zero are involved in the actual inversion [MK2016,
Ch. 6.3]. This idea closely resembles the pseudo-inverse (see Appendix C.4), where not
only singular values at zero, but also those smaller than a pre-defined threshold are
neglected in the inversion.

More problematic is a nearly singular information matrix as final result of the op-
timization process, because it basically invalidates the result: Either has the model
been misspecified, or there is not enough information for a certain subset of param-
eters [MIM1985, Ch. 5.3]. Both of which should be carefully questioned and might
necessitate the collection of new data, or a different model formulation. As will be
discussed in section 3.7, ill-conditioning of the Hessian will result in large covariance
estimates, which can be used as an indication for near-singularity.

Another method of regularization, at least w.r.t. the model parameters, is inherent
to Bayesian estimation with a Gaussian prior: Then, there is always a positive definite
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matrix that is added to the concatenated, squared, output sensitivities in computing the
Hessian, see equation (2.116). Thus its conditioning is improved for those parameters,
where there might not be enough information in the data to determine them accurately.

Overall, although the Hessian of the problem should not be singular from an op-
timization point of view, it may happen in real-life application. The foregoing section
lists some possible reasons for this, which may help to overcome the issue. Alter-
natively, arguments are presented as the basis for a reasoning, why the situation is
tolerable.

3.7 An Optimization View on Parameter Uncertainties

One of the overall goals of this thesis is to bring the fields of parameter estimation and
optimal control closer together. After an estimation has been performed, it is often
instructive to inspect the parameter covariances, which is now illuminated from an
optimization point of view.

The general discussion on parameter uncertainties in section 2.2.5 was based on
statistical considerations, the Fisher information matrix and the notion of efficiency. In
the applications discussed here, these parameter covariances are computed from the
inverse of the cost function Hessian. The remainder of this section now investigates
the desirable statistical properties of parameter estimates (low standard deviations,
low pair-wise correlations) from an optimization point of view.

The content of this section is easiest understood, if only model parameters θ0, and
possibly initial conditions x0 are considered as elements of the optimization vector.
The arguments may be extended to the full-discretization case. However, instead of
considering the complete parameter covariance, the condensed version in the free di-
rections

(
Zᵀ
[
X ∂

∂zzz

]
ᵀCov[va]−1

[
X ∂

∂zzz

]
Z
)−1

should then be considered. Since this signifi-
cantly complicates notation and may hide the key points here, the focus will lie on the
interpretation of the classic single shooting case.

Most of the discussion to follow will be based on the fact that the Fisher information
matrix is approximated as the cost function Hessian

Cov[zzz∗] = F(zzz∗)−1 ≈
(
∂2J(zzz∗)
∂zzz2

)−1

(3.101)

Since the Hessian is necessarily symmetric, its eigendecomposition may be used in
above expression

∂2J(zzz∗)
∂zzz2 =

[
t1 · · · tnzzz

]
λ1

. . .

λnzzz




tᵀ1
...

tᵀnzzz

 =


t̃
ᵀ
1
...

t̃
ᵀ
nzzz

Λ
[

t̃1 · · · t̃nzzz

]

= TΛTᵀ =
nzzz∑

j=1
λjtjt

ᵀ
j

(3.102)
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zzz

J

zzz

0∂
J

∂
zz z

Figure 3.2: Two cost functions and their gradients with high ( ) and low ( ) curva-
ture for several realizations of the underlying noise process; an exemplary threshold is given,
below which the cost function ( ) is considered to not change significantly, and/or its gra-
dient ( ) is considered to be “small enough”

where tj denotes the j-th column of T, and t̃j the j-th row.
Now, from an optimization point of view, it is desirable to have a high curvature

of the cost function at the optimum, since this leads to a well-defined minimum. Fig-
ure 3.2 illustrates this: the higher the curvature, the “better defined” is the minimum,
i.e. the smaller is the parameter range, for which the cost function may be considered
“to not change significantly anymore” by the optimization algorithm in order to stop
the iteration. Also, random variations in the cost function, due to different realizations
of the underlying noise process have a lower influence on the resulting minimum, if
the curvature is higher (and thus the gradient steeper).

In general, the signed curvature of a function f(x) is defined as [MV2003, Ch. 5]

κ(x) =
d2f(x)

dx2(
1 + df(x)

dx

) 3
2

(3.103)

This can be applied to a quadratic approximation of the cost function, at the optimum,
in the direction v, where v is assumed to be of unit length

J(γ,v) ≈ J(zzz∗) + 1
2(γv)ᵀ ∂

2J(zzz∗)
∂zzz2 (γv) (3.104)
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The first and second derivatives, in the direction v w.r.t. the scalar argument γ are now

dJ(γ,v)
dγ

= γvᵀ∂
2J(zzz∗)
∂zzz2 v (3.105)

d2J(γv)
dγ2 = vᵀ∂

2J(zzz∗)
∂zzz2 v (3.106)

which may be combined to obtain the curvature

κJ(γ,v) ≈
d2J(γv)

dγ2(
1 + dJ(γ,v)

dγ

) 3
2

(3.107)

Evaluating this at the optimum (i.e. γ = 0) can then be used to investigate the cost
function curvature in different directions v

κJ(0,v) ≈ vᵀ∂
2J(zzz∗)
∂zzz2 v = vᵀ

 nzzz∑
j=1

λjtjt
ᵀ
j

v (3.108)

From above equation, and the ortho-normality of the eigenvectors, it can be seen, that
the cost function curvature is at maximum equal to the largest eigenvalue of the Hes-
sian λmax for v = tmax, where tmax is the corresponding eigenvector. The inverse is
also true, i.e. the smallest curvature λmin results for v = tmin. Thus for a well-defined
minimum, it is in general desirable to have eigenvalues, that are as large as possible.

Now, relating the eigenvalues and eigenvectors of the Hessian to the parameter
covariance estimate yields

Cov[zzz∗] ≈
(
∂2J(zzz∗)
∂zzz2

)−1

= TΛ−1Tᵀ =
nzzz∑

j=1

tjt
ᵀ
j

λj

(3.109)

From this, variances and cross variances may be extracted

Cov
[
[zzz∗](k) ,[zzz

∗](l)
]

≈
nzzz∑

j=1

[tj](k)[tj](l)
λj

= t̃
ᵀ
kΛ−1t̃l (3.110)

Var
[
[zzz∗](k)

]
= Cov

[
[zzz∗](k) ,[zzz

∗](k)

]
≈

nzzz∑
j=1

[tj]2(k)

λj

= t̃
ᵀ
kΛ−1t̃k (3.111)

which may then be combined to obtain the correlation coefficient

ρ
[
[zzz∗](k) ,[zzz

∗](l)
]

=
Cov

[
[zzz∗](k) ,[zzz∗](l)

]
√

Var
[
[zzz∗](k)

]√
Var

[
[zzz∗](l)

]

≈
∑nzzz

j=1
[tj ](k)[tj ](l)

λj√∑nzzz
j=1

[tj ]2(k)
λj

√∑nzzz
j=1

[tj ]2(l)
λj

= t̃
ᵀ
kΛ−1t̃l√

t̃
ᵀ
kΛ−1t̃k

√
t̃
ᵀ
l Λ−1t̃l

(3.112)

MORELLI and KLEIN present a similar approach for detection of data-collinearity in
linear least-squares estimation [MK2016, Ch. 5.5], however the ideas behind that are
now generalized to the solution of non-linear estimation problems.
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As mentioned before, comparatively large eigenvalues are desirable from an opti-
mization point of view. They also influence the parameter variance estimates in a pos-
itive manner: equation (3.111) shows, that if the Hessian’s eigenvalues are large, only
small terms will be summed up to yield the parameter variance estimate [MK2016,
Ch. 5.5]. Also, if the Hessian is well-conditioned, i.e. if the relation between the largest
and smallest eigenvalue is close to 1, the cross-variances between the parameters will
be close to zero, due to the orthogonality of the eigenvectors

λmax

λmin

≈ 1 ⇔ λmax ≈ λmin ≈ λ

Cov
[
[zzz∗](k) ,[zzz

∗](l)
]

≈ 1
λ

t̃
ᵀ
kInzzz t̃l =


1
λ

if k = l

0 otherwise
(3.113)

If on the other hand, one eigenvalue λj is considerably smaller than the rest, this
will lead to high variances for those parameters Var

[
[zzz∗](k)

]
, where the corresponding

element of the eigenvector [tj](k) is significantly non-zero. To quantify this adverse
effect, MORELLI and KLEIN present the condition index

λmax

λj

≥ 1 (3.114)

where the condition index of the smallest eigenvalue is known as the Hessian’s con-
dition number [MK2016, Ch. 5.5]. Again, they present this in the context of linear
least-squares estimation, but it can be applied to non-linear problems, too. As a rule of
thumb MORELLI and KLEIN mention that condition indices in the range 100-1000 may
indicate data collinearity problems, and that in some cases problems already arose with
condition indices lower than 100 [MK2016, Ch. 5.5].

If a tj has several elements, that are significantly different from zero, they will con-
tribute significantly in the correlation coefficient via the

∑nzzz
j=1

[tj ](k)[tj ](l)
λj

term in equa-
tion (3.112) [MK2016, Ch. 5.5]. To quantify the influence of an eigenvalue λj on the
k-th parameter variance estimate, MORELLI and KLEIN mention the variance propor-
tion5 [MK2016, Ch. 5] for linear least squares problems which is generalized here

πk,j =
[tj ]2(k)

λj∑nzzz
i=1

[ti]2(k)
λi

=
[tj ]2(k)

λj

Var
[
[zzz∗](k)

] (3.115)

MORELLI and KLEIN then state that if one eigenvalue is comparatively small, and if
several variance proportions are larger than 0.5, this might indicate a data collinearity
problem [MK2016, Ch. 5.5]. The variance proportions thus offer another possibility of
analyzing a result, and to detect possible problems.

Thus, favorable properties of the optimization problem, in terms of eigenvalues
and eigenvectors, map to favorable properties of the estimation problem. Then, even

5 the original equation in the first edition [KM2006] misses the squares for the [tj ]2(k), which is cor-
rected in [KM2018]
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if the underlying theoretical basics for statistic interpretations may be questioned, it
may still make sense to have a look at parameter variances and correlations in order to
detect problems with the resulting optimization problem.

This discussion provides a further beneficial link between the fields of optimiza-
tion and parameter estimation. Although MORELLI and KLEIN discussed many of the
above ideas in the context of data collinearity in regression analysis, here it is shown
how these concepts may be extended to the general estimation case. Further, basing the
discussion on the cost function curvature has not yet been encountered by the author.

3.8 Automatic Improvement of Initial Guesses During
Initial Optimization Iterations

The availability of meaningful initial guesses is crucial in any iterative optimization
procedure: only if the initial guess is in the region of attraction of the desired optimum,
the NLP solver will provide meaningful results. Thus, any additional effort to provide
“good” initial guesses, or to improve upon existing ones is worth the effort.

Two approaches will be illustrated that are capable of improving upon the initial
parameter guess θ0, which helps to make the overall process more robust against dis-
advantageously chosen initial model parameters. Then, for some cases even an initial
guess in the form of the zero-vector may eventually yield good results. Both of the
approaches require an auxiliary source for aircraft state information mxk k = 0 . . . N̄ ,
which can be the result of a Flight Path Reconstruction (FPR) step (see section 5.2),
or direct measurement of the states. This auxiliary state information is then used in-
stead of integrated states, until the model parameters θ are considered “good enough”
so that the propagated states actually provide a benefit in the solution of the overall
problem.

3.8.1 Sensitivity Computation Using Measured States

The first approach is based on an idea by TYLOR and ILIFF [TI1972]. They consider
the case of linear dynamic models and the classic single shooting approach based on
solving the system equation, computing output sensitivities and applying a Newton-
Raphson algorithm to find the best model parameter estimates. Their proposition is to
initially compute the output sensitivities y

zzzS of equations (3.46) and (3.44) based on mx

rather than the solution of the system equation, i.e. propagated x

d

dt
x
θS = ∂f(mx,u,θi)

∂x
· x

θS + ∂f(mx,u,θi)
∂θ

(3.116)

y
θS = ∂g(mxk,uk,θi)

∂xk

· x
θS + ∂g(mxk,uk,θi)

∂θ
(3.117)
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These are then used for computing the cost function gradient and Hessian (see sec-
tion 3.3.3). The propagated solution x̂k+1 to the system equation is only used in the
computation of the residuals, which enter the gradient and actual cost function terms.

The reasoning behind this is that these “measured” sensitivities will be closer to
the final solution, compared to those, that are computed based on a (possibly diverg-
ing) solution of the system equation, using bad initial parameter guesses. Thus the
corresponding update step can put the parameter vector in close proximity to the final
solution, independent of the quality of the initial guess [MK2016, Ch. 6.3]. This effect
is more pronounced, the “more convex” the cost function is.

In their original report [TI1972] TYLOR and ILIFF state, that they apply this correc-
tion only in the first iteration. However, depending on the problem at hand, it might be
of use to do several iterations using above approach, to make the most of the auxiliary
state information.

3.8.2 Equation Error Approach

The second, novel approach is also based on using measured mx instead of propagated
states, but is closer related to the full discretization parameter estimation point of view.
The basic idea behind it is to minimize a cost function that is quadratic in the integra-
tion defects (using measured mx), purely by adjusting the model parameter values θ.
Since the trajectory is then necessarily close to the measured states, the “improved”
model parameters are more likely to yield a valid state trajectory when being used in
the propagation.

If all state variables were known in a fully discretized optimal control problem,
only the model parameters θ remain free and can thus be used to fulfill one (possibly
implicit) integration step (see the discussion of equation (2.56))

mxk+1 = Φf (tk, tk+1| mxk,
mxk+1,uk,uk+1,θ) (3.118)

Combining this with the output equations, an augmented measurement and model
output vector can be built

z̃k =
 mxk+1

zk

 =
 Φf (tk, tk+1| mxk,

mxk+1,uk,uk+1,θ)
gk(mxk,uk,θ)

+ ṽk = ỹ(θ)k + ṽk (3.119)

where the first part of ṽ acts on the system dynamics in a fashion comparable to pro-
cess noise; and the second part can be identified as measurement noise. Forming a
quadratic cost function then resembles a relaxation approach to the fully discretized
problem, where instead of exactly fulfilling the equality constraints, they have been
included as quadratic cost via terms involving(mxk+1 − Φf (tk, tk+1|◦,θ)).

If the interpolation scheme of section 3.9 is used, there will be fewer state val-
ues mxk, than measurement zk and output yk values. However, this can be tackled
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with the covariance scaling of section 3.10.2, or by simply considering states and out-
puts separately in the quadratic cost.

Above is a static system, which can be solved using the equation error approach
illustrated in section 2.2.2.3, because the state integration has been circumvented by
using the measured states instead. Also, the output sensitivities simplify considerably,
since no integrations are involved

∂ỹk

∂θ
=
 ∂Φf(tk,tk+1| mxk,mxk+1,uk,uk+1,θ)

∂θ
∂gk(mxk,uk,θ)

∂θ

 (3.120)

where the derivative of Φf (tk, tk+1|◦) depends on the scheme in use. For example in
the case of trapezoidal integration, this yields

∂Φf (tk, tk+1| mxk,
mxk+1,uk,uk+1,θ)
∂θ

= (3.121)

tk+1 − tk
2

(
∂f(mxk,uk,θ)

∂θ
+ ∂f(mxk+1,uk+1,θ)

∂θ

)

An approach with some similarities to the one above has been reported in [Jat2015,
Ch. 4], with the big difference being its treatment in continuous time. This in turn
necessitates measurements (or numerical approximations) of the state derivative, in-
troducing more uncertainty. In contrast, here the discretized state equations are used
directly, avoiding the computation / measurement of state derivatives.

For both of the approaches it is paramount to have a reliable, auxiliary source for
state information at one’s disposal, in connection with a suitable model structure. If
this can be considered given, especially the second approach has seen to be very robust:
errors do not propagate by solving the system equation, since every sampling instant
is considered independently.

Apart from being robust, this also alleviates correlations between parameters of
the state and output equation that may have a comparable effect when the system
is propagated: e.g. in a linear system, input and output gains influence the output
in the same way, and are thus often almost perfectly correlated. However, in above
approach, they appear at different places in the equations, and thus an independent
determination may be possible.

The downside is, that the integration defects can probably not be driven to zero,
thus the system equation will not be fulfilled, and a subsequent estimation using the
methods illustrated earlier can in general not be avoided. However, having a robust
method for the improvement of disadvantageously chosen initial parameter guesses
at ones disposal, is definitely worth the additional implementation effort. Especially
since above problem is well behaved, and should converge to meaningful results with-
in few iterations, in addition to the justified hope of ending up within the region of
attraction of the final result.
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BOCK briefly describes a similar approach of using the model parameters θ to im-
prove the “consistency” of the problem (i.e. the degree to which the equality discretiza-
tion constraints are fulfilled) [Boc1987, Ch. 2], however he only discusses problems
that are then linear in the parameters. The approach as illustrated here, is applicable to
general, non-linear systems. For linear systems, the problem is easy enough to almost
guarantee convergence to good starting values. Unfortunately this cannot be said for
general, non-linear problems.

In summary, especially the equation error approach, which has in this form not
been encountered in aircraft system identification, provides a robust means to improve
upon initial parameter guesses. In most of the examples to be illustrated in chapter 6,
this approach was used, together with θ0 = 0, to obtain meaningful parameter esti-
mates. Apart from its robustness, a further advantage is that the model structure to be
used in the actual estimation is directly incorporated. No translation of auxiliary ini-
tial parameters to the model formulation at hand is necessary. This may be necessary
if other sources were to be used, that do not fully comply with the desired structure.

3.9 Efficient Interpolation of Large Sample Sizes

In common flight data analyses, the sample size can grow very large. It is not un-
common to have between ten and fifteen outputs to match, at a sample rate of 50Hz
to 100Hz and for several maneuvers simultaneously, each maneuver lasting around
10 to 60 seconds or even longer. The resulting large sample sizes then result in very
large optimization problems and consequently comparatively long computation times.
Then, the inevitable testing of different model structures becomes quite cumbersome:
the analyst has to wait comparatively long before being able to make an informed de-
cision whether to discard or investigate the current model formulation further. Here,
an approach is illustrated that is able to reduce the problem size, while still producing
reasonable results.

3.9.1 Interpolation via B-Splines

A possibility to obtain results faster while still getting meaningful results in the trial
and error phase of determining a suitable model formulation is proposed next. The
main idea is to compute the model outputs on a rather coarse grid first, before effi-
ciently interpolating them onto the finer measurement grid. This is possible, since all of
the approaches treated here only consider a model output, nowhere is it ever required
to integrate the state equations of the underlying dynamic system on the measurement
time grid. The idea was first introduced in the master’s thesis [Gno2016], which was
co-supervised by the author.

For the actual implementation, B-splines of a given order n are used, details on
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which can be found in appendix A.3. The basis for interpolation is a function, defined
in terms of a knot sequence t (and thus spline basis function tB

n
j (t)) and coefficient

vector α

tS
n(t) =

∑
j

αj tB
n
j (t) αj ∈ R (3.122)

Now, if the spline representation of a data-set of the l-th output[yk](l) k = 0 . . . N − 1
using the knot sequence t is sought, the coefficients αj have to follow

[yk](l) = tS
n(tk) =

∑
j

αj tB
n
j (tk) k = 0, . . . , N − 1 (3.123)

which can be noted in matrix form as
tB

n
0 (t0) tB

n
1 (t0) . . .

tB
n
0 (t1) tB

n
1 (t1)

... . . .



α0

α1
...

 = Aα =


[y0](l)(zzz)

...
[yN−1](l)(zzz)

 (3.124)

Due to the local support of the B-spline functions, the matrix A has a band-diagonal
structure and can be stored efficiently. If the knot sequence for the B-spline functions is
chosen to contain exactly Nknots = N knots, above equation has a unique solution for
α, since A ∈ RnN ×nN .

Returning to the introductory idea of computing the model outputs on a coarse
grid, before interpolating them onto the measurement grid to be used in the cost func-
tion, the approach is now as follows: Given the time-grid of measurement points
t0, . . . tN−1 a coarser grid ct0, . . .

ctcN−1 with cN < N , together with a suitable knot se-
quence ct and spline order n is defined. Then, the values of the l-th output on the
coarse grid [cyk](l) and the values of the l-th output on the fine grid [yk](l) can both be
expressed via the same coefficient vector cα of the coarse grid


ctB

n
0 (ct0) . . . ctB

n
cN−1(ct0)

... . . . ...
ctB

n
0

(
ctcN−1

)
. . . ctB

n
cN−1

(
ctcN−1

)



cα0
...

cαcN−1

 = cA cα =


[cy0](l)(zzz)

...[
cycN−1

]
(l)

(zzz)


(3.125)

ctB
n
0 (t0) . . . ctB

n
cN−1(t0)

... . . .

ctB
n
0 (tN−1) . . . ctB

n
cN−1(tN−1)




cα0
...

cαcN−1

 = A cα =


[y0](l)(zzz)

...
[yN−1](l)(zzz)

 (3.126)

with the two collocation matrices cA ∈ RcN×cN and A ∈ RN×cN based on the same
B-spline basis functions of the knot sequence associated with the coarse grid ct. The
matrices arise by evaluating the ctB

n
j (t) once on the coarse time grid ctk and a second

time on the fine time grid tk. The relation between the outputs on the different grids is
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then 
[y0](l)

...
[yN−1](l)

 = A · cα = A · cA−1


[cy0](l)

...[
cycN−1

]
(l)

 (3.127)

which is merely a linear mapping.
Furthermore, the collocation matrices A and cA are valid for all outputs that were

measured on the same grid, i.e. no separate interpolation matrices have to be deter-
mined for the separate outputs. Only if several maneuvers are to be considered simul-
taneously, each needs its own interpolation matrices.

Thus incorporating the interpolation scheme for all outputs at all sampling instants
comes down to modifying the model outputs using a constant factor[

y0(zzz) · · · yN−1(zzz)
]

=
[

cy0(zzz) · · · cycN−1(zzz)
]

cA−ᵀAᵀ (3.128)

Since the collocation matrices are constant, the output sensitivities are interpolated in
the same fashion, where the biggest remaining challenge is to get the indexing right.
One possibility is to consider one optimization variable at a time[

∂y0
∂[zzz](j)

(zzz) · · · ∂yN−1
∂[zzz](j)

(zzz)
]

=
[

∂ cy0
∂[zzz](j)

(zzz) · · · ∂ cycN−1
∂[zzz](j)

(zzz)
]

cA−ᵀAᵀ

j = 1 . . . nzzz

(3.129)

Thus the spline interpolation approach may be incorporated, by simply adjusting mod-
el outputs and output sensitivities, after having integrated them on the coarse grid. All
other aspects as illustrated so far are then still valid.

Finally, since both A and cA are sparse, not only is this approach memory-saving,
but above equations can also be solved efficiently. An example for the sparsity patterns
of the two matrices can be seen in figure 3.3.

3.9.2 Knot Sequence Determination Using Model Dynamics

Additionally, interpolation accuracy can be improved by an advantageous choice of the
knot sequence ct, which constitutes an advancement over the approach presented in
[Gno2016]. The basic idea is to chose the knots such, that they are more densely located
on the time grid, where higher resolution is necessary, and knot distances are increased
where lower resolution may be tolerated. This can be achieved by employing ideas
similar to those used in mesh-refinement for optimal control problems as illustrated in
[Bit2017], where density functions are used to determine the necessity for finer/coarser
meshes.

A first, intuitive idea would be to base the necessity for denser grid points on a
“measure of activity” in the system in the form of the state derivatives .

x, i.e. to make

169



3.9 Efficient Interpolation of Large Sample Sizes

0 100 200 300

0

100

200

300

400

500
0 100 200 300

0

100

200

300

Figure 3.3: Example sparsity patterns for A (left) and Ã (right)

the grid more dense depending on a norm of .
x. However, if many states are to be

considered simultaneously, each having a different order of magnitude (e.g. velocity
vs. rotational rate), the choice of proper scaling and norm quickly becomes challenging.
This is why a different approach was pursued here: the time discretization of a variable
step-size solver will be used to generate a density function for knot placement.

The so-called RUNGE-KUTTA-FEHLBERG class of algorithms exploit the character-
istics of multi-step integration schemes to efficiently generate two estimated results of
the same integration step. By comparing those two results, the following conclusions
can be drawn:

◦ the integration step size may be increased, if the two results coincide with a very
small error

◦ the integration step size should be kept constant, if the two results agree with a
tolerable error

◦ the integration step size should be decreased, if the two results do not agree at
the desired level

A widely used example of this approach is the DORMAND-PRINCE method [SBB+2010],
also implemented in MATLAB’s ode45 solver. Further details can be found in the rele-
vant textbooks on numerical methods.

These algorithms produce a time-grid, which is adapted to the dynamics of the
model under investigation: the integration steps are smaller, if higher accuracy is nec-
essary and are larger, if less accuracy may be tolerated. This is exactly what is needed
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in order to find an appropriate knot sequence, which is why the proposed approach is
as follows:

1. Do one forward simulation in time, using a variable step size solver belonging
to the RUNGE-KUTTA-FEHLBERG class using the initial model parameters θ0 to
generate the sequence of integration times tRKF

k k = 0 . . . N − 1
2. interpolate this sequence using the desired number of samples cN to obtain the

less dense sequence of integration times ctRKF
k k = 0 . . . cN − 1

3. determine a suitable knot sequence ct from ctRKF
k k = 0 . . . cN − 1, which is in

turn used to determine the collocation matrices cA and A

Even though the forward simulation increases the computational work load when de-
termining the knot sequence, this is only done once in the beginning and is far out-
weighed by the reduction in computational time during the optimization iteration.
Also, the knot sequence will be determined on the basis of an initial guess θ0 of the
model parameters. However for any parameter estimation to be successful, those pa-
rameters should have reasonable values, which is why the approximation of the de-
sired density in the time grid is still assumed to be valid. If necessary, “bad” initial
guesses may be improved upon by using the approaches of section 3.8.

An illustration can be found in figure 3.4: The variable step size integration time
steps tRKF

k k = 0 . . . N − 1 (blue), are plotted over the normalized sample number k
N

.
Then fewer cN normalized sample numbers

ck
cN

are distributed uniformly on the x-axis,
and used to interpolate the original integration step times tRKF (dashed orange). This
eventually yields the thinned-out integration time sequence ctRKF on the y-axis. The
figure shows, that at around 0.5s, 1.5s, and 2.5s, the integration step size had to be
reduced in order to keep the error small. At these time instants, also the new knot
sequence is denser than for the rest of the time.

For a few example simulation maneuvers, performed in the lateral plane of a sim-
ulation model for a small scale RC model, an approximation for the error using the
spline interpolation approach can be seen in figure 3.5. The reference solution is ob-
tained using an 8th order integration scheme on the fine grid. In the left column, knot
sequences for reduction factors

cN
N

are generated uniformly over the maneuver time
span, whereas in the right column they are generated using above described approach.
Integration errors can be considered small overall, amounting to about 4% of the max-
imum amplitude in the respective signals. Furthermore, with the same reduction fac-
tors, a major decrease of the error compared to the baseline solution can be achieved.

To sum it up, this approach can be used to trade the possibly computationally costly
determination of model outputs for an efficient interpolation of the outputs onto the
time grid of the measurements. The advantages of this approach are comparable to
those of variable step-size solvers: while keeping the accuracy high, computational
costs can be reduced considerably. At the same time, the approach generates model
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Figure 3.4: Normalized sample instant over simulation time for variable step size solution
( ) and interpolated grid ( ) for knot generation

outputs on the complete measurement grid, with only small errors. This is of great
benefit especially in the beginning of the identification process, when many possible
model formulations have to be considered, their parameters determined, and the re-
sults assessed. The interpolation approach, in connection with this novel knot deter-
mination scheme, thus improves the applicability of full discretization to parameter
estimation problems. This marks another contribution of this thesis.

The price to pay, from an optimization point of view, is that the interpolation scheme
links outputs (and thus eventually states) at several time instants together. This is op-
posed to the basic idea of full-discretization, which tries to decouple states at different
points in time. If the Hessian of the problem were to be used, it would show a denser
structure, with broader “bands” on its main diagonal. However, due to memory limita-
tions, for the problems treated here, the analytic Hessian can only be used in the single
shooting cases. For the full-discretization formulation, the solver’s internal Hessian
approximation scheme is employed, thus this effect is left to the NLP solver imple-
mentation to cope with.

172



Chapter 3: Implementation Aspects of System Identification Using OCM

0 2 4 6 8 10 12 14
0

2

4

6 ·10−2
∆

v
| n

o
r

m

0 2 4 6 8 10 12 14
0

2

4

6 ·10−2

∆
v
| n

o
r

m
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Figure 3.5: Comparison of interpolation errors compared to 8th order integration scheme with
uniform (left) and adapted (right) knot sequence for different reduction factors. Values are
normalized with maximum data range

(
max[ŷk](j) − min[ŷk](j)

)
.

3.10 Scaling Considerations

For every numeric optimization, scaling is of utmost importance. If some of the opti-
mization variables exhibit largely different orders of magnitude, convergence is not
easily achieved. In addition to scaling states, model parameters and possibly pro-
cess noise variables (which is directly implemented in FALCON.m [RBG+2018]), the
following section presents different scaling approaches for the maximum likelihood
problem, which are especially tailored to the ideas presented so far.

3.10.1 Residual Scaling

One very intuitive approach would be to scale the experiment’s outputs and measure-
ments, in order to bring them to roughly the same order of magnitude. If, instead of
considering the real measurements and outputs, versions that are scaled with a con-
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stant, full-rank matrix D ∈ Rny×ny are taken into account, the residuals are

scaledrk = Drk = D(zk − yk(zzz)) = scaledzk − scaledyk(zzz) (3.130)

In order to be consistent with the statistic considerations leading to the maximum like-
lihood approach in the first place, the residual covariance matrix needs to be scaled,
too.

scaledrk ∼ N (0,DBDᵀ) (3.131)

Cov[scaledri, scaledrj] = δijDBDᵀ = δij · scaledB (3.132)

The residual part of the cost function may take on different forms, depending on the
cost function in use. For standard maximum likelihood eq. (3.2) this is

scaledJ(zzz) = 1
2

N̄∑
k=0

· scaledrk(zzz)ᵀ · scaledB−1
scaledrk(zzz) + N

2 ln|scaledB|

= 1
2

N̄∑
k=0

rk(zzz)ᵀ Dᵀ(DBDᵀ)−1 Drk(zzz) + N

2 ln|DBDᵀ|

= 1
2

N̄∑
k=0

rk(zzz)ᵀ B−1rk(zzz) + N

2 ln|DBDᵀ|

= 1
2

N̄∑
k=0

rk(zzz)ᵀ B−1rk(zzz) + N

2 ln|B| +N ln|D|

(3.133)

For the other cost function formulations (parameter and covariance estimation eq. (3.8),
modified parameter and covariance estimation eq. (3.9)), similar results can be ob-
tained

scaledĴ(zzz) = N

2 ln
∣∣∣∣ ˆ̃B∣∣∣∣ = N

2 ln
∣∣∣DB̂Dᵀ

∣∣∣ = N ln|D| + N

2 ln
∣∣∣B̂∣∣∣ (3.134)

scaledJ̃(zzz) =
∣∣∣∣ ˆ̃B∣∣∣∣ =

∣∣∣DB̂Dᵀ
∣∣∣ = |D|2 ·

∣∣∣B̂∣∣∣ (3.135)

Thus this scaling approach constitutes merely a level shift for J and Ĵ , which does
neither influence the first nor the second derivative. For J̃ this approach equals a mul-
tiplication with a constant factor. In all of the above cases, the locations of the station-
ary points of the cost functions do not change, thus the scaling does not influence the
estimates.

In summary, using a constant scaling matrix D for the outputs has no benefit. It can
serve to shift the cost function value to more tractable regions, if it had been very small
or large before. Additionally, if J̃ is considered, it can be used to alter the numerical
values of the gradient and Hessian, which might improve the convergence properties
of the optimization algorithm. However, only one scalar value is available for tuning
the whole problem, which is easily introduced without going through the trouble of
scaling residuals.
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3.10.2 Direct Covariance Scaling

Another approach is to directly scale the estimated covariance matrix, which is novel
in the context of aircraft system identification. This is obviously only meaningful, if it
is estimated from the data, using the approach illustrated in section 3.1. It provides a
scaling possibility, based on some statistic considerations. Instead of using the maxi-
mum likelihood estimate of the covariance matrix, equation (3.6), a version scaled with
a full-rank matrix W ∈ Rny×ny is used

ˆ̃B = W

 1
N

N̄∑
k=0

rkrᵀ
k

Wᵀ = WB̂Wᵀ (3.136)

The cost function then becomes

scaledJ(zzz) = 1
2

N̄∑
k=0

rk(zzz)ᵀ W−ᵀB̂−1W−1rk(zzz) + N

2 ln
∣∣∣B̂∣∣∣+N ln|W| (3.137)

However, in this formulation, when using the expression for the estimated covariance
matrix, the first term of the cost function cannot be dropped anymore, merely simpli-
fied to arrive at

scaledJ(zzz) = tr

1
2

N̄∑
k=0

rk(zzz)ᵀ W−ᵀB̂−1W−1rk(zzz)
+ N

2 ln
∣∣∣B̂∣∣∣+N ln|W|

= 1
2 tr
[
W−ᵀB̂−1W−1N

1
N

N−1∑
k=0

rk(zzz) rk(zzz)ᵀ
]

+ N

2 ln
∣∣∣B̂∣∣∣+N ln|W|

= N

2 tr
[
W−ᵀB̂−1W−1B̂

]
+ N

2 ln
∣∣∣B̂∣∣∣+N ln|W|

(3.138)

The derivations for the scaled versions of the first and second order derivatives w.r.t.
the model outputs can be found in Appendix E. The cost function gradient with respect
to the model outputs is

∂ scaledJ

∂yk

=
(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1 − B̂−1

)
rk (3.139)

For W = Iny above expressions equals the result as was obtained in equation (3.7), and
equation (3.16) for the unscaled case. The second order derivatives become

∂2
scaledJ

∂yk∂yᵀ
l

= 1
N

(
−W−ᵀB̂−1rlr

ᵀ
kW−ᵀB̂−1 − W−ᵀB̂−1rᵀ

l B̂−1W−1rk

+ B̂−1rlr
ᵀ
kB̂−1W−1B̂W−ᵀB̂−1 + B̂−1rᵀ

l B̂−1W−1B̂W−ᵀB̂−1rk

− B̂−1W−1rlr
ᵀ
kB̂−1W−1 − B̂−1W−1rᵀ

l W−ᵀB̂−1rk

+ B̂−1W−1B̂W−ᵀB̂−1rlr
ᵀ
kB̂−1 + B̂−1W−1B̂W−ᵀB̂−1rᵀ

l B̂−1rk

− B̂−1rlr
ᵀ
kB̂−1 − B̂−1rᵀ

l B̂−1rk

)
+
(
W−ᵀB̂−1W−1 − B̂−1W−1B̂W−ᵀB̂−1 + B̂−1

)
δkl

(3.140)

∂2
scaledJ

∂yk∂yᵀ
l

≈
(
W−ᵀB̂−1W−1 − B̂−1W−1B̂W−ᵀB̂−1 + B̂−1

)
δkl (3.141)
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Both expressions for first and second order derivatives have been checked using com-
plex step finite differences. The approximation in the second equation is based on the
same reasoning as was mentioned in the section on the estimation of the covariance
matrix: the first term will shrink with the number of samples N and can thus be ne-
glected. Again, for W = Iny , above expressions are the same as obtained before.

Using this formulation, the estimates will differ from the estimates obtained using
an unscaled version of the residual covariance estimate. However, the basic problem
is still a maximum likelihood estimation problem, merely the way the residual covari-
ance estimate is computed differs.

A scaling of this sort was used in the publication [GH2016] by the author to account
for different numbers of samples: parts of the measurement vector zk originated from
a Global Navigation Satellite System (GNSS) receiver, whereas other parts originated
from an Inertial Measurement Unit (IMU). Since the IMU had a far higher sampling
rate, and the estimation was done on its discretization grid, the missing GNSS values
had to be accounted for, which was done by scaling the residual covariance matrix.
Here, the consequences of this scaling idea are investigated in more detail, especially
their effect on the cost function derivatives.

An alternative solution is due to WALTER, who proposes to assume B to be diago-
nal, which then leads to a cost function [WP1997, Example 3.4]

J(zzz) =
ny∑

j=1

Mj

2 ln
Mj−1∑
k=0

(
[yk](j) −[zk](j)

)2
(3.142)

That is, to only use the Mj valid samples per output, and consider all outputs sepa-
rately.

The novel scaling approach developed here allows for the assumption of a diagonal
residual covariance matrix to be dropped, by accounting for missing samples through
a scaling of B: First, set the residuals to 0 for invalid measurements

[rk](j) =

[yk](j) −[zk](j) if [zk](j) is valid

0 otherwise
j = 1, . . . , ny (3.143)

Then account for the lower number of samples through scaling of the covariance matrix
using the number of valid samples per output Mj

W =


√

N
M1

0
. . .

0
√

N
Mny

 (3.144)

Above corrects the fact that in the maximum likelihood estimate of the covariance ma-
trix (3.6), all elements are divided by the total number of samples N , whereas for the
lower frequency signals, only Mj valid samples are available. Further, the square root
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caters to the fact that W is multiplied from the left and from the right. In this way,
elements of the covariance matrix related to outputs with Mi < N are scaled up and
thus their weighting corrected.

In summary, this novel direct covariance scaling approach offers the possibility to
consider an output weighting, based on statistical considerations. Together with the
detailed inspection of the consequences regarding cost function derivatives, this con-
stitutes another of the main contributions of this thesis. The idea is especially appeal-
ing when simultaneously considering measurement signals of different sampling rate.
However, it may also be applied if more weight is to be put on a specific output for
other reasons. Additionally, with this scaling approach all outputs may be influenced
independently of each other, where the pure residual scaling of the last section is re-
duced to a mere scalar weighting.
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[...] our knowledge can be only finite, while our ignorance must
necessarily be infinite.

Karl Raimund Popper, 1963 [Pop2002]

4

Application of Optimization to
Parameter Estimation Problems

From the foregoing chapters it is obvious, that there exist many ways to actually for-
mulate a parameter estimation problem. In this part, the four main formulations of
this work will be discussed:

1. Case I: single shooting formulation for deterministic systems
The optimization vector consists of the model parameters and initial conditions.
This constitutes the standard case as is widely used in the literature

2. Case II: full-discretization formulation for deterministic systems
The optimization vector consists of model parameters and all state values at all
integration time steps. This will be the main formulation used in this thesis

3. Case III: single shooting formulation for stochastic systems using an iterative
state estimation algorithm
The optimization vector again only consists of model parameters and initial con-
ditions. This formulation (and its extensions to also estimate noise covariances)
is known as “Filter Error Method (FEM)” and is commonly used in the literature
if a stochastic treatment of the system cannot be avoided.

4. Case IV: full-discretization formulation for stochastic systems based on Bayesian
estimation
The optimization vector consists of model parameters, as well as state values and
process noise inputs at all integration time steps. This formulation is the exten-
sion of the full-discretization approach to stochastic systems, using an explicit
process noise input.

179



Table 4.1: Possible formulations of the parameter estimation problem from an optimal control point of view.

case process
noise

measurement
noise

residuals state integration optimization
variables zzz1

constraints

case I
sec. 4.1

not
considered

exclusive
noise source

measurement
noise; predefine or
estimate covariance

single shooting θ, x0 possibly box constraints
zzzlb ≤ zzz ≤ zzzub

case II
sec. 4.2

not
considered

exclusive
noise source

measurement
noise; predefine or
estimate covariance

full discretization θ, xk

k = 0 . . . N̄
possibly box constraints

zzzlb ≤ zzz ≤ zzzub

integration defects
ζk(xk,xk+1,θ) = 0

possibly path constraints
ceq(zzz) = 0; cineq(zzz) ≤ 0

case III
sec. 4.3

predefine
covariance

predefine
covariance

state estimation
residuals;
predefine or
estimate covariance

single shooting
(using iterative
state estimation)

θ, x0 possibly box constraints
zzzlb ≤ zzz ≤ zzzub

case IV
sec. 4.4

predefine
covariance

predefine or
estimate
covariance

not considered full discretization
(with explicit
process noise
terms wk)

θ, xk, wk

k = 0 . . . N̄
possibly box constraints

zzzlb ≤ zzz ≤ zzzub

integration defects
ζk(xk,xk+1,wk,wk+1θ) = 0
possibly path constraints
ceq(zzz) = 0; cineq(zzz) ≤ 0

1If states x or process noise w are part of the optimization vector, it is inherently assumed that they appear once per maneuver
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Table 4.1 sums up the main characteristics of the four possible formulations, which
were implemented for this work. The first three columns contain information about
the treatment of noise sources within the problem. Those denoted “process noise” /
“measurement noise” indicate, how the respective noise sources are treated and which
information about them is necessary, i.e. if their covariance needs to be pre-specified, or
may be estimated. The next column “residuals” indicates if the residuals play a major
role in the problem formulation, and what they represent in the respective case. The
last three columns sum up information about the optimal control aspects, i.e. which
transcription method is employed, what the contents of the optimization vector are,
and which type of constraints may be incorporated.

Case I and case III constitute the standard approaches commonly discussed in the
literature for deterministic and stochastic systems respectively. The formulations of
case II and case IV are two of the main contributions of this thesis.

Even though those four problem formulations are fundamentally different, some
similarities exist

Fixed Inputs In all cases, the measured controls u are fixed and thus not subject to
optimization, which is probably the largest difference compared to classical optimal
control. Merely in the case of state and parameter estimation using full discretization,
process noise inputs w may appear in the optimization vector.

Treatment of Maneuvers In the application of parameter estimation for aircraft, usu-
ally several maneuvers are considered simultaneously. They are typically designed to
excite different aspects of the aircraft’s dynamic characteristics. From the optimal con-
trol point of view, these maneuvers are treated as different, disconnected “phases” of
the problem.

Cost Function Some different cost function formulations have been discussed, which
are summed up in table 2.1. Further, their derivatives can be computed analytically
(gradient) or approximated very well (Hessian), using analytic or finite-difference ap-
proximations of the output sensitivities [WP1997, Ch. 4]. See sections 3.2 and 3.3 for
details. The different parts of the cost functions (measurements, prior information)
may be combined with the formulations of table 4.1 rather freely, with the exception of
the process noise term, which only makes sense in case IV.

Problem Convexity The arising problem is in general non-convex, i.e. local minima
may exist that do not represent the best possible parameter estimates. This problem
can be alleviated, if good initial guesses can be produced (see section 3.8), and if suit-
able experimental conditions were chosen. The latter need to show the effects of the
parameters sufficiently well (see section 5.1) [WP1997, Ch. 4].
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4.1 Case I: Single Shooting with Deterministic Dynamic System

Consideration of Parameter Bounds The statistical considerations that may lead to
the necessity of including model parameter bounds in the estimation problem were
discussed in section 3.4. There, the necessary adjustments of the Fisher information
matrix for constrained results are also shown.

From an optimization point of view, including equality and inequality constraints
on parameters along with other optimization variables is straight forward, since the
model parameters θ usually form a part of the optimization vector zzz.

4.1 Case I: Single Shooting with Deterministic Dynamic
System

One of the two classical approaches, as illustrated in detail in the standard literature
on the topic [MK2016, Jat2006], is summed up in the first row “case I” in table 4.1:

It considers a pure output-error formulation, based on a deterministic system, i.e.
treatment of process noise is not possible. This makes the residuals equal to the mea-
surement errors, for which a Gaussian distribution is assumed.

The optimal control problem is then transcribed into a NLP problem by using a
single shooting scheme, where the only free optimization parameters are the model
parameters θ, and possibly the initial conditions x0 of the maneuvers under consider-
ation.

All aspects necessary for the solution of this problem have been discussed already

◦ If measurements of the states are directly available (or may be reconstructed),
an efficient approach to improve upon initial model parameter guesses may be
employed, see section 3.8. In many of the examples to be presented in chapter 6,
the necessity to specify initial model parameter guesses θ0 could be circumvented
using this approach.

◦ At the i-th iteration, using the current model parameter value θi and initial value
x0i, the model outputs may be computed by solving the system equations for-
ward in time. To this end, one of the integration method’s mentioned in ap-
pendix D.3 may be used.

◦ This integration may be performed on a coarse grid, which is then interpolated
onto the measurement grid using the approach of section 3.9. This may help
to save time during the trial an error phase when determining a suitable model
structure.

◦ With the outputs yk available, an estimate of the residual covariance matrix B̂
may be computed according to section 3.1; alternatively the residual covariance
may be fixed a priori.

◦ If so desired, the estimated covariance matrix may be scaled, using the approach
illustrated in section 3.10.2 to e.g. incorporate different sampling rates.
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Chapter 4: Application of Optimization to Parameter Estimation Problems

◦ Cost function derivatives w.r.t. model outputs ∂J
∂yk

are computed using the deriva-
tives of section 3.2

◦ The cost function gradient ∂J
∂zzz and Hessian ∂2J

∂zzz2 are eventually determined with
the aid of the output sensitivities y

zzzSk (section 3.3). They may be computed nu-
merically from finite difference approximations, or analytically by solving the
sensitivity differential equations

◦ With the gradient and Hessian information, the solution algorithms for uncon-
strained optimization, as illustrated in section 2.1.2, may be used to determine a
parameter update zzzi+1 = ∆zzzi + zzzi

◦ In the implementation that was developed for this work, the consideration of
simple box constraints on the optimization parameters zzz is possible by employing
the active set strategy of section 2.1.3.4. More complicated constraints cannot be
enforced using the implementation at hand.

◦ In a post-processing step, parameter uncertainties are computed based on the
cost function Hessian, which involves the residual covariance matrix and output
sensitivities w.r.t. model parameters and initial guesses, see sections 2.2.5 and 3.2.

◦ These parameter uncertainties may then be used as illustrated in section 3.5.5.
There, a scheme was derived to use state and output sensitivities to propagate
model parameter and initial value uncertainties in time, to eventually obtain state
and output covariances at all sampling instants.

This procedure is often used iteratively with different model structures, to eventu-
ally find that, which best describes the data.

4.2 Case II: Full Discretization with Deterministic Dy-
namic System

This approach, as summed up in the row “case II” of table 4.1, is based on the classical
approach as illustrated in the last section 4.1: the considered output error formulation,
with a purely deterministic system, and the possible cost functions are the same. How-
ever, the transcription method that is used to obtain a NLP problem relies on full dis-
cretization rather than single or multiple shooting as was done in [BM2009, BM2009].

The most noteworthy steps in the solution are

◦ The improvement step for initial model parameter guesses of section 3.8 is inde-
pendent of the transcription method and may thus be employed in this case as
well.

◦ From the current value of the optimization vector zzz, model parameters θ as well
as state values xk are extracted; Using these, output values yk as well as con-
straint values (integration defects, path constraints, box constraints etc.) may be
computed.
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4.2 Case II: Full Discretization with Deterministic Dynamic System

◦ The optimization framework FALCON.m is able to compute most of the relevant
derivatives automatically, and if desired analytically. It provides Jacobians of the
model and output equation and, together with the integration scheme in use, it
is able to assemble them to obtain the constraint Jacobian to be provided to the
NLP solver.

◦ FALCON.m is also able to compute simple, analytic cost function derivatives
automatically. However, the formulations used here are too complex, which is
why cost function derivatives w.r.t. model outputs are computed manually using
the results of section 3.2. FALCON.m then takes care of the application of the
chain rule in order to map those to derivatives w.r.t the original optimization
vector, which is then supplied to the NLP solver.

◦ The states (and thus also the corresponding outputs) in the optimization vector
may be located on a rather coarse time grid. Using the interpolation method-
ology of section 3.9, they may be interpolated onto the measurement time grid
to obtain residuals and eventually evaluate the cost function and its derivatives.
In contrast to the approach of the foregoing section 4.1, the state values on the
coarse grid are now directly incorporated in the optimization vector, rather than
being numerically integrated on this coarse grid.

◦ Covariance estimation (section 3.1) and scaling (section 3.10.2) may be performed
exactly as in case I

◦ FALCON.m then passes the discretized problem, together with the cost function
gradient, and constraint Jacobian to the underlying NLP solver which takes care
of the actual solution of the optimization problem.

◦ Optimization parameter uncertainty now needs to be computed while taking
constraints into account. The methodology to do so, has been introduced in sec-
tion 3.5.

This changes the characteristics of the problem compared to the single shooting
transcription:

◦ Here, the size of the optimization vector zzz is comparable to that of the number
of integration steps times the state dimension; However, the problem Jacobian is
extremely sparse, which keeps the overall task tractable.

◦ Most of the optimization parameter values are constrained via the integration
defects, so the number of remaining degrees of freedom of the problem is small
(in the same order of magnitude as in the single shooting case)

◦ constrained optimization is necessary, in order to take care of integration de-
fects and possibly further constraints. Here, off-the-shelf NLP solvers (e.g. In-
terior Point Optimizer (IPOPT), Sparse Nonlinear Optimizer (SNOPT)) are to be
favored over custom implementations due to the maturity of those algorithms
compared to anything an analyst might develop himself [WP1997].
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◦ Constraints on model parameters can be easily included as constraints on the
optimization vector zzz. Still this should be done with the same care as always, see
section 3.4 for a discussion.

◦ Furthermore, path constraints on outputs or (possibly non-linear) functions of
states and inputs may be incorporated, both in the estimation as well as the un-
certainty quantification.

◦ Since explicit integration of the system equations is avoided, also the sensitivity
equations do not need to be solved. The information they contain is directly
incorporated via the integration defects and Jacobian matrices.

Using full discretization may increase the radius of convergence of a problem con-
siderably, compared to the standard, single shooting approach: For bad initial model
parameter guesses, the single shooting approach can drift significantly during the time
span under investigation. This may prohibit a meaningful convergence if the differ-
ence between measured and propagated outputs is too large. This issue is alleviated
when using full discretization: using every propagation time step as “node” stabilizes
the procedure numerically, and offers more freedom to the solver to keep the solu-
tion closer to the measured values. BOCK discusses this aspect for a multiple shooting
approach [Boc1987, Ch. 2], which can readily be extended to full discretization.

Another advantage of the full discretization formulation is that it is directly appli-
cable to unstable models. The standard, single shooting approach may very well lead
to numerical problems and fail to converge if the system under consideration is unsta-
ble, which is why several artificial stabilization approaches are illustrated in [Jat2015,
Ch. 9]. The full discretization approach does not suffer from this drawback, and mean-
ingful results may be obtained, as is illustrated in the examples of chapter 6.1.

Lastly, the direct inclusion of path and optimization vector constraints offer some
advantages over the standard methods in use: Using constraints, the state trajectory
may be forced to lie in physically reasonable regimes, where the true solution is known
to be located. The NLP solver is thus forced to look for model parameters only in
meaningful regions. This type of constraint on outputs or states should typically only
be active during the earlier iterations, when model parameter values are still far from
their optimum. Thus, the consequences on parameter uncertainty will in general not
need to be considered at the final solution.

However, the approaches illustrated here are also capable of incorporating the ef-
fects of active path constraints at the optimum. This may for example be necessary, if
unit quaternions are used to parameterize an aircraft’s attitude: they only yield a valid
attitude representation if they are of unit length. This needs to be explicitly enforced,
both in the estimation as well as uncertainty quantification process. So far, approx-
imate methods using feedback or normalization have been used, however, now this
constraint can directly be considered.

These advantages are bought at the expense of larger problems, and possibly longer
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computation times. However, the very efficient model evaluation algorithms within
FALCON.m, together with the interpolation approach of section 3.9, make it possible
to obtain meaningful results within an acceptable amount of time, even for rather large
problems.

4.3 Case III: Single Shooting with Stochastic Dynamic
System

The formulation of case I is definitely the most widely used one for parameter estima-
tion in the aircraft context. Nevertheless, sometimes process noise influences cannot be
ignored and have to be considered explicitly in the problem formulation, which leads
to joint parameter and state estimation problems.

Again, there exists a classical approach, which is summed up in the row “case III” of
table 4.1. Here, the arising problem is solved by applying an iterative state estimation
algorithm in order to obtain a solution to the stochastic system. The model parameters
and possibly initial values are then estimated using similar ideas as in “case I”. The
problem is thus transcribed using a single shooting formulation, based on a stochastic
filter.

This is also an output-error formulation: in the definition of the probability density
to maximize, the only random component to be considered are the residuals

rk|k−1 = zk − ŷk|k−1 (4.1)

which are derived in equation (2.219) of section 2.3.2.4 on state estimation. The output
error approach is possible, since a Kalman filter for a linear, discrete time, dynamic
system yields white residuals rk|k−1 . Then the derivations of section 2.2.2.2 can also
be applied to stochastic systems treated with a Kalman filter, resulting in the same
cost function formulations as before. The difference is that the random component
in the residuals combines influences due to measurement and process noise. As was
noted already in section 2.2.2.4, the use of smoothing algorithms for state estimation
is questionable from a theoretic point of view, since the residuals may not be white
anymore. However, for specific cases, algorithms like the Rauch-Tung-Striebel (RTS)
smoother may provide superior results despite this theoretic flaw.

The same is true for non-linear state estimation involving Extended Kalman Filter
(EKF) or Extended Rauch-Tung-Striebel (ERTS) smoother algorithms: then it cannot
be guaranteed, that the residuals are white. Nevertheless, good results have been ob-
tained in this case, too [GH2016], which justifies the application of the output error cost
functions. The quadratic nature of the cost function seems to enable good results, even
if some of the statistical assumptions are violated.
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Again, most of the necessary steps have already been discussed, the most notewor-
thy aspects now are

◦ At each iteration, model parameters θ and initial values x0 are extracted from the
optimization vector. Model outputs are then computed using an iterative state
estimation approach using these initial conditions and model parameters. In this
work, only situations are considered, where the process and measurement noise
covariance matrices are defined a priori, and possibly tuned manually for good
results.

◦ Application of the interpolation approach of section 3.9 is possible. However,
then the measurements have to be interpolated onto the coarser grid for the iter-
ative state estimation step. This is necessary, since the minimum allowable time
step width between two measurements is the integration step width, i.e. if there is
more than one measurement per integration step, the state estimation algorithms
as presented here are not able to handle these.

This is a considerable drawback, since interpolation of measurement data (in-
volving measurement noise!) has a smoothing effect [MK2016], which thus alters
the measurement statistics for the state estimation. Care has to be taken, to even-
tually verify the results with all samples considered.

◦ As has been mentioned, the residuals now contain influences both of process and
measurement noise. This leads to a situation, where it is more complex to pre-
define the residual covariance matrix. Thus, the possibility to estimate it from
the data (see section 3.1) is quite useful.

It would be possible to extract the residual covariance information from the inter-
nal workings of the state estimation algorithm via equations similar to eq. (2.221)

Cov
[
rk|k−1

]
= CkPx̃

k|k−1 Cᵀ
k + GkRkGᵀ

k

However, the additional complexity in the implementation at hand was circum-
vented by approximating Cov

[
rk|k−1

]
via an average residual covariance for all

samples, either pre-defined or estimated from the data.

◦ If the residual covariance is estimated, it may then be scaled, using the approach
illustrated in section 3.10.2

◦ Since the cost function in use is the same as before, its derivatives w.r.t. model
outputs are computed using the derivatives of section 3.2.

◦ To eventually obtain the cost function gradient and Hessian w.r.t. the optimiza-
tion parameters the output sensitivities (section 3.3) remain to be determined.
Since state estimation already involves first order Jacobians of the system and
output equation, analytically solving the sensitivity equations of the filter solu-
tion would necessitate second order derivatives of the system and output equa-
tions. Furthermore, the sensitivities of the state error covariance needs to be con-
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sidered, too. These facts discourage from an analytical solution, which is why the
output sensitivities for this case are computed using numeric finite differences.

◦ Using Hessian and gradient information, the same unconstrained optimization
algorithms (section 2.1.2) and active set strategy for box constraints (2.1.3.4) as
for case I may be used to actually solve the problem

◦ Optimization vector covariances may be computed using the same approach as
in case I, i.e. using the resulting output sensitivities and the estimated residual co-
variance matrix in the approximation of the Fisher information matrix according
to sections 2.2.5 and 3.2

◦ State covariance matrices are directly supplied by the state estimation algorithm,
see sections 2.3 and the discussion in the end of section 3.5.5 for details.

Here, it is assumed that both process, as well as measurement noise covariances are
pre-defined. There exist approaches, that estimate the involved noise characteristics
along with the model parameters, see e.g. [Jat2006, Ch. 5]. However, the restrictions
this imposes (only steady-state, linear Kalman filters can be easily treated; for non-
linear approaches the complexity grows fast) and the necessary, heuristic corrections
(pseudo-constraint optimization for Kalman Gain; F-correction for revised residual co-
variance matrix [Jat2006, Ch. 5.IV.B]) discourage from their application.

4.4 Case IV: Full Discretization with Stochastic Dynamic
System

The last case to be treated is summed up in the row “case IV” of table 4.1. It considers
the problem of combined state and parameter estimation in a full-discretization set-
ting rather than employing an explicit state estimation algorithm. To transcribe the
estimation into an NLP problem, the process noise terms are explicitly introduced as
optimization variables, resulting in the largest, but most general problem formulation
to be discussed here.

The price to pay for this very versatile formulation is an increased optimization
parameter vector zzz, increased complexity in the integration defects ζk(. . . ) = 0, and
additional terms in the cost function, which punish too much process noise activity.
The advantages of this formulation from a theoretical point of view, is that it shows
interesting connections between state estimation, parameter estimation, and optimal
control approaches. It is also closely related to the idea of “inverse simulation” (see sec-
tion 5.5.3 for details), i.e. having a feedback controller track the measurements with the
final parameter estimates and evaluating the control effort. Here, this may be achieved
by explicitly trying to minimize additional control inputs (=̂ process noise) when try-
ing to follow the measurements, rather than by constructing a feedback loop.
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A practical advantage is, that since all information about the state trajectory is now
contained in the optimization vector, very creative constraints may be formulated, e.g.
to enforce a passive system (e.g. dissipating energy), or to enforce certain characteris-
tics only on parts of the trajectory (e.g. ground contact).

In the light of the foregoing discussion, there are a few noteworthy aspects

◦ At each iteration, after extracting states xk, model parameters θ, and process
noise terms w from the current optimization vector zzz, output values yk as well
as constraints (integration defects, path constraints, box constraints etc.) may be
computed.

Again, FALCON.m takes care of the Jacobian matrices, applying the chain rule
and eventually providing cost function and constraint values as well as their an-
alytic derivatives to the NLP solver in order to have accurate derivative informa-
tion.

◦ Cost function derivatives w.r.t. model outputs are computed using the deriva-
tives of section 3.2; derivatives w.r.t. process noise terms are simple due to the
quadratic nature of the corresponding cost function term. Again, this is neces-
sary since the automatic derivative computation is not able to cope with large
vector matrix computations in the cost function. FALCON.m then takes care of
mapping the derivatives correctly to eventually obtain those w.r.t. the optimiza-
tion parameters.

◦ Application of the interpolation methodology of section 3.9, is straight-forward.

◦ Covariance estimation (section 3.1) and scaling (section 3.10.2) may be performed
for the measurement covariance matrix. However, estimation of the process noise
covariance using the methods of section 3.1 is bound to fail, since the NLP solver
will minimize its determinant by making two process noise signals perfectly cor-
related.

◦ If only parts of the process noise vector are to be considered (e.g. because some
states can be considered as deterministic), the use of singular process noise ma-
trices is included in the implementation. Then, to compute the weighed process
noise contribution to the cost function, only the full-rank parts of Q are inverted
and the remainder is set to zero. The corresponding process noise terms are fixed
at zero and removed from the problem, thus reducing its size.

◦ Further, process noise inputs may be introduced on a third grid (in addition to
the measurement and state time grids), which may be even coarser than the state
time grid. The choice of grid points follows similar ideas as illustrated in sec-
tion 3.9, i.e. the density of the state time grid is used to determine process noise
grid points. Thus, whenever the integration step size is smaller, also more pro-
cess noise variability is possible.

To evaluate model outputs and constraints, w is then interpolated onto the state
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time grid by FALCON.m [RBG+2018]. This approach may help to further reduce
the problem size. However, it also effectively limits the bandwidth of the process
noise inputs, which may be undesirable. If lower process noise bandwidth can be
tolerated, reducing the number of process noise samples has another advantage:
the same amount of “information” will always be used, resulting in a better “in-
formation per sample” ratio, which may help to make the problem more convex,
and thus easier to solve.

◦ The computation of the optimization vector covariance, taking the effect of con-
straints into account, is detailed in section 3.5.3 and 3.5.4

The main characteristics are the same as in “case II” of section 4.2, with the ob-
vious extensions where process noise is now explicitly involved. Also, the basic sta-
tistical considerations are very similar to what is done in case III, as was illustrated
in chapter 2.3 on state estimation: now, instead of iteratively maximizing local likeli-
hoods (“maximum likelihood filtering” as illustrated in section 2.3.3.1 and [RTS1965]),
a global maximum likelihood estimate for all states at once (“joint maximum likelihood
estimation (JMLE)” as shown in section 2.3.3.3 and [RTS1965]) is computed.

A difference is, that measurement and process noise appear explicitly in the cost
function formulation. Thus there is no need to consider residuals, combining their
effect.

The downside of the approach is the considerably larger problem size. However,
carefully evaluating, which process noise inputs are really necessary, together with the
possibility to reduce the number of process noise samples, may help to keep the size of
the optimization vector tractable. Thus the approach may not be suited for pure state
estimation with large state and process noise vectors over long time spans. Rather, it
offers additional freedom in the formulation of parameter estimation problems, where
including some few process noise terms is beneficial.

Also, having explicit values for the w at ones disposal opens new possibilities for
future work: their whiteness may be explicitly enforced by punishing correlation in
time in the cost function; alternatively inspection of the spectral characteristics of w

may give hints on model deficiencies;
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Applied Aircraft System Identification
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System Identification is the “. . . determination, on the basis of
observation of input and output, of a system within a specified
class of systems to which the system under test is equivalent;”

Lotfi Aliasker Zadeh, 1962 [Zad1962]

5

The Aircraft System Identification
Process

The process of system identification here, is split into five steps, which will be illus-
trated in the following sections. Their relationship is illustrated in figure 5.1, which is
loosely based on [Jat2015, Fig. 1.5]. Although originally discussed for aircraft system
identification for large commercial or military applications, they are also valid for the
Remotely Piloted Aerial System (RPAS) cases to be the main focus of this work.

The initial activities are related to the design and execution of experiments (chap-
ter 5.1). In system identification for aircraft, this is usually the most expensive step,
since flight testing is a rather complex procedure. It necessitates various specialists, the
aircraft, operating resources, and, if available, special flight testing equipment. Thus
the experiments should be carefully planned in order to minimize the number of nec-
essary iterations at this stage. Although flight testing for RPAS tends to be cheaper,
most of the aspects of experiment design are still important.

After the experiments had been conducted and data gathered, the time consuming
step of data pre-processing follows, where a major activity is Flight Path Reconstruc-
tion (FPR) (chapter 5.2). Here, data-logs have to be time-synchronized, screened, and
the actual maneuver sequences extracted. A first, rough estimate of the data quality
may be obtained in order to provide immediate feedback, if some tests need to be re-
peated. If non-negligible disturbances were acting on the aircraft (wind or turbulence),
it is possible to obtain estimates for them, together with estimates for possible sensor
errors, based on kinematic relationships.

Next, a mathematical model needs to be set up, that describes the aircraft’s flight
dynamics and is compatible with the estimation algorithms (chapter 5.3). Then the ac-
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tual parameter estimation (chapter 5.4) takes place, by choosing a model structure,
choosing an identification criterion, and an optimization algorithm. These compo-
nents, together with an initial guess for the optimization parameters, are eventually
used to obtain the actual parameter estimates.

The quality of the results is assessed in the model validation step (chapter 5.5).
Hardly ever is the analyst able to get it right the first time, which leads to many itera-
tions of the validation and parameter estimation step using different model structures,
initial guesses and identification criteria.

Each of these steps will be illustrated in the following chapters. However, since the
focus of this work is on parameter estimation techniques, the discussion will be quite
general, but references for further reading are given.
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Chapter 5: The Aircraft System Identification Process

5.1 Experiment

A basic truism in system identification is, that “the identified model can only cap-
ture behavior that is exhibited by the system and embodied in the measured data”
[MK2016, p. 324], or as WALTER puts it: “... a badly designed experiment may ruin any
attempt at analyzing the data collected from the system” [WP1997, p. 285]. Although
modern post-processing and parameter estimation algorithms are very capable at ex-
tracting reasonable results from seemingly unusable data, it is always preferable to
have good quality data as a basis for further analysis.

For aircraft system identification this means that specific flight tests are inevitable,
since data collected under normal operation conditions is in general not informative
enough. The overall goal in experiment design is thus to increase the information
content in the data, subject to practical constraints, such as safety, operational or finan-
cial limits. Data quality is one of the major limiting factors of the scope and accuracy
of model development and parameter estimation [Jat2015, Ch. 2], which is why time
spent on its improvement is usually well invested.

This translates to three distinct steps [MK2016, Ch. 9]:

1. define the flight condition and aircraft configuration

2. define the inputs for the identification maneuvers

3. specify the instrumentation and data acquisition system

During these steps, practical constraints have to be considered [MK2016, Ch. 9]

◦ input/output amplitudes are commonly limited. On the one hand to ensure va-
lidity of model structures, on the other hand for safety reasons.

◦ hardware limits are present in the form of sensor range/resolution, bandwidth
for data storage, and sensor availability

◦ limited experimentation time

◦ regulatory aspects, e.g. for RPAS operations currently beyond visual line of sight
(BVLOS) operation is strictly regulated, so is the flight above certain altitudes
above ground

5.1.1 Test Condition

In aircraft system identification applications, a test point is usually defined as one point
in the envelope, i.e. commonly a wing-level trim point with a pre-defined velocity
(Mach or airspeed) and altitude, together with a specific aircraft configuration (center
of gravity (c.g.) position, settings of high-lift devices) [Jat2015, Ch. 2]. Typically, local
models at these envelope points are used to approximate the global functional depen-
dencies of the aerodynamic forces and moments in the form of multivariate Taylor
expansions in the states and controls [MK2016, Ch. 3].
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The number of possible test points grows quickly with several speeds, altitudes
and configurations. However, in RPAS applications it is limited by current legislation:
if no explicit provisions are taken, flight activities are limited to several tens to some
hundred meter above ground, which essentially reduces the test point selection to an
airspeed selection, and the definition of aircraft configurations. Also, some combina-
tions may be disregarded, since they do not arise in normal operations: If high lift
devices are available, they will usually not be used at cruise speed, it is thus often
enough to consider them for approach velocities.

5.1.2 Input Design

To complete a test point definition, the actual maneuver to be performed needs to be
chosen. It has to be defined which control effector to use, how long the maneuver is to
last, and which input form to use [MK2016, Ch. 9]. These choices all have one funda-
mental idea at heart: the aircraft’s pertinent modes are to be excited independently and
sufficiently; whenever one particular mode is treated, excitement of the others should
be minimized as far as possible [Jat2015, Ch. 2].

Two approaches have to be distinguished when designing experiments for aircraft
system identification: the case without an a priori model, and the case where some
prior knowledge is available. The former is rather uncommon, since in the design
phase of the aircraft usually some rough estimates of its control characteristics can be
computed.

If some prior knowledge about the model is available, a more mathematically exact
description of “data information content” may be achieved via the Fisher information
matrix F(θprior). For (asymptotically) efficient estimators, the latter is directly related
to the obtainable parameter uncertainties via the Cramér-Rao inequality, see the dis-
cussion on statistical properties of estimates in section 2.2.5. It presents a theoretical
lower limit on the parameter covariance for any estimator, and can thus be examined
for the merit of an input sequence independent of the algorithm to be used [MK2016,
Ch. 9] [Jat2015, Ch. 2]. The downside of the use of the Fisher information matrix is
its dependency on prior parameter values and noise covariance definition: In order to
generate “good” input signals for parameter estimation, parameter estimates need to
be available [Jat2015, Ch. 2].

Further, certain boundaries must not be violated during maneuver execution: In-
puts are usually constraint by mechanical or software limitations, whereas output lim-
its are based on safety considerations (over-speed, acceleration limits,. . . ) and model
validity arguments (small perturbations for linear modeling) [MK2016, Ch. 9]. If au-
tomated systems are used, actuator bandwidth also puts limits on the realizable input
signals for high frequencies.

Lastly, correlation between influencing quantities should be as small as possible, to
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Chapter 5: The Aircraft System Identification Process

avoid the problem of data-collinearity [MK2016, Ch. 5]. Data-collinearity in general
describes the problem of two or more influencing signals being too similar, so that the
estimation algorithm has difficulties attributing an effect uniquely to one or the other.
The result would be a close-to-singular Hessian matrix, as was discussed in section 3.6.
This may happen due to an active automatic control system that e.g. moves control
surfaces proportionally to body angular rates, or may be inherent to flight mechanics
(control surface deflections usually lead to body angular rates of quite similar signal
shape). Nevertheless, inputs should be designed such, that influencing quantities ap-
pear as independently as possible: by moving control surfaces in different manners; by
exciting them one by one, where feasible; by turning an automatic control system off
where possible, or reduce gains where it cannot be fully deactivated. All these aspects
are true both for identification of large commercial or military aircraft and for RPAS
projects.

5.1.2.1 Optimal Inputs

If exact, mathematical maximization of the input signal’s information content is sought,
some scalar function the Fisher information matrix Ψ(F(θprior)) is commonly used.
Possible choices are based on norm-like expression involving the trace or determinant
of F(θprior) [WP1997, Ch. 6.1]. The different possible cost functions then have geo-
metric interpretations: some minimize the volume of the confidence ellipsoid, defined
via the corresponding parameter covariances; some minimize the sum of squares of
its semi-major axes; others focus on minimizing the largest semi-major axis [WP1997,
Ch. 6.1] [Jat2015, Ch. 2].

Depending on the model formulation and optimality criterion chosen, the aris-
ing optimal control problem may be solved semi-analytically [Meh1974], via Dynamic
Programming [Mor1990], full discretization using the direct method of optimal con-
trol [HGH2019], or any other fitting approach.

However, for all cases the approach relies heavily on the prior parameter values, as
was mentioned before. Ideas exist to alleviate this by considering the complete prior
distribution and using expectations of the cost function or minimax-optimality, which
however significantly complicates the solution process [WP1997, Ch. 6.4].

5.1.2.2 Standard Inputs

Some input shapes have proven their merit in the past, where the necessary prior
knowledge is limited to a rough estimate of the dominant frequency of the eigenmo-
tion to be excited. This is easier to come by compared to a complete set of aerodynamic
parameters as is necessary for the strictly “optimal” inputs of the last section.

The basic idea is then to design the experiment such, that the majority of its fre-
quency content is centered at the assumed natural frequency fn = 1

Tn
. Further, the
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Figure 5.2: Example step inputs, designed for a nominal frequency of 1Hz. The power spectral
densities are computed using the Discrete Fourier Transform as approximation of the Fourier
integral.

inputs are close to symmetric about a trim condition, in order to minimize the devia-
tion from the pre-defined trim point [MK2016, Ch. 9].

The resulting inputs are a combination of step functions, defined via the ratio of
their durations. Some advice on how to choose the base step duration is given in
[MK2016, Ch. 9] and [Jat2015, Ch. 2] and summed up next: A doublet, or 1-1 input
consists of two steps in opposite directions of the same duration. Often the step time
is chosen as

∆t1 1 = 1
2Tn = 1

2fn

(5.1)

It has a distinct frequency peak just below the frequency of the corresponding square
wave, but also contains the adjacent frequencies, which is favorable if the frequency
to be excited is not perfectly known [MK2016, Ch. 9]. An example can be seen in the
topmost subplot of figure 5.2.

To broaden the frequency spectrum, more pulses with different lengths can be in-
cluded. In this way, the well-established 3-2-1-1 input arises, which is designed such,
that the width of the 2 pulse corresponds to half the period of the expected natural
frequency to excite

∆t3 2 1 1 = 1
4Tn = 1

4fn

(5.2)
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The other pulses then add spectral content to the left and right, which makes it even
more robust to uncertainties compared to the doublet input [MK2016, Ch. 9]. It can be
seen in the last subplot of figure 5.2.

A problem with the 3-2-1-1 input is the potentially long first pulse, which may drive
the aircraft considerably from the trim condition. This may be alleviated by using a 2-
1-1 sequence, where good results have been obtained with a pulse width of roughly
35% of the natural period.

∆t2 1 1 = 0.7
2 Tn = 0.7

2fn

(5.3)

The price to pay is a somewhat poorer frequency content [MK2016, Ch. 9], see the
center subplot of figure 5.2.

Other input shapes exist for special purposes, such as the push-over-pull-up, or
roller coaster maneuver (which serves to excite lift and drag characteristics over a
wide range of angle of attack), steady-heading sideslip (to investigate lateral stabil-
ity), level-turn (to discern between q and .

α influences), or the windup-turn (for data
compatibility analysis). For more details, consider the respective sources [MK2016,
Jat2006, Mul1986], which also give quite extensive practical advice on how to tune and
conduct these especially tailored maneuvers.

5.1.2.3 No Prior Knowledge

If the methods of obtaining preliminary information are deemed unsatisfactory, inputs
can be designed that are independent of the system characteristics. In that case, the
approach entails exciting a broad range of input frequencies, in order to be sure to
cover the characteristic ones.

Frequency sweeps, i.e. sine waves with linearly or exponentially increasing fre-
quency, are used to this end, due to their broad, and adjustable frequency spectrum.
Two examples for linear and exponential sweeps can be seen in the two top plots of fig-
ure 5.3, along with the corresponding power spectra. The disadvantage of frequency
sweeps is their comparatively long duration of 30 s - 90 s, which poses practical prob-
lems. Especially for RPAS applications, flying straight for around 30 s usually brings
the aircraft out of view of the pilot, which complicates test execution and may be illegal
under local BVLOS regulations.

Some of the downsides of a frequency sweep can be alleviated by using a multi-
sine signal, i.e. the superposition of sine waves of different amplitude, frequency, and
phase. They can be designed to cover a wide range of frequencies as well, and their
execution time is usually shorter. However, they necessitate an automatic flight con-
trol system and an approach to determine the phase angles. This can be achieved by
optimization for an optimum peak or crest-factor [MK2016, Ch. 9] [Mor2012b], or by
using heuristic phase distributions like the “Schroeder sweep” [MK2016, Ch. 9].

199



5.1 Experiment

0 10 20 30 40 50
−1

−0.5
0

0.5
1

lin
ea

r
sw

ee
p

0 0.5 1 1.5 2 2.5 30
5

10
15
20

|P
|

0 10 20 30 40 50
−1

−0.5
0

0.5
1

ex
po

ne
nt

ia
ls

w
ee

p

0 0.5 1 1.5 2 2.5 30
5

10
15
20

|P
|

0 10 20 30 40 50
−1

−0.5
0

0.5
1

t[s]

m
ul

ti
-s

in
e

0 0.5 1 1.5 2 2.5 30
5

10
15
20

f [Hz]

|P
|

Figure 5.3: Example sinusoidal inputs, designed for a nominal frequency range of 0.5Hz to
2Hz. The power spectral densities are computed using the Discrete Fourier Transform as ap-
proximation of the Fourier integral.

An example, using the same overall test time as the sweep examples can be seen
in figure 5.3. The power spectral density shows distinct spikes at the excitation fre-
quencies, along with some other frequency content due to finite data-lengths and the
resulting leakage.

5.1.3 Flight Testing for System Identification

MORELLI and KLEIN list a number of recommendations for practical flight testing for
system identification [MK2016, Ch. 9], similar considerations can be found in [Jat2015,
Ch. 2].

It has become evident in practice, that “first time right” is pretty much impossible,
i.e. iterations will always occur. Mainly this is due to the fact, that for a new system, one
has to gather some experience first, before meaningful experiments can be conducted.
Thus MORELLI and KLEIN recommend to plan for these iterations from the start.

Also, to reduce the number of necessary maneuvers at a test point, certain control
surface effects can be considered together. For example, if ailerons are always used
asymmetrically, it may be possible to consider them as one control effector. The same
is true for symmetric use of high-lift devices.
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Maneuver repetition for each maneuver and at each test point is desirable, since
random disturbances may make a data set unusable. A bare minimum of two repeti-
tions (for identification and validation purposes) is recommended, where three or four
repetitions allow for some robustness against random disturbances. Also, reversing
the sign of the amplitude may be a good means to vary input shapes.

During the maneuver execution, it is advisable to keep the desired trim point for a
short time before initiating the actual maneuver (∼ 2 s for larger aircraft, less for RPAS),
and to allow for some time after the actual excitation to record the free response of the
system (∼ 5 s for larger aircraft, less for RPAS) [Jat2015, Ch. 2].

For RPAS applications several aspects make manual flight testing for system iden-
tification purposes difficult: Most pilots are trained to keep the system airborne, and it
goes against their nature to excite a characteristic motion in a pure feed-forward man-
ner. Thus the actual input shapes will seldom correspond to what the analyst defined
beforehand. Also, for small systems, visibly determining its state at some 100 meters
away and precisely conducting a system identification maneuver is a challenging task
at best. Thus these tests usually necessitate an automatic system, which, depending
on its fidelity, may conduct a subset of the necessary steps (trimming the aircraft, pure
feed-forward maneuvers, maneuvers with feedback control in the secondary inputs).
An example system, co-developed by the author is illustrated in [KGH2018].

5.1.4 Data Acquisition System

For RPAS applications, the specification of dedicated flight test instrumentation for sys-
tem identification is difficult: often no specific additional equipment can be installed.
This is due to the usually tight cost structure and short development cycles on the
commercial drone market. Thus the analyst will have to cope with the standard sensor
suite installed on the aircraft. Fortunately, this is quite comprehensive in most cases
due to the high degree of automation of currently available products.

Nevertheless, even if one cannot influence the choice of sensors, it is still crucial
to know their characteristics. The main aspects to be aware of are illustrated next
[MK2016, Ch. 9] [Jat2015, Ch. 2].

5.1.4.1 Sampling Rate

SHANNON’s sampling theorem states a theoretical lower limit: if the sampling fre-
quency fs is at least twice as large as the highest frequency of interest, perfect recon-
struction is theoretically possible [MK2016, Ch. 9] [Jat2015, Ch. 2]. However this result
has seen to be over-confident in practice, which is why a factor of 25 is commonly
advised [MK2016, Ch. 9]

fs = 25fmax (5.4)
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For aircraft, the characteristic frequencies additionally scale with the square root of the
geometric model scale [MK2016, Ch. 9]

fmax,RP AS = 1√
s
fmax (5.5)

Thus for a RPAS, which is a rough 1:10 scale model of a conventional aircraft with
eigenfrequencies just below 2Hz, a sampling frequency of at least

√
10 · 25 ≈ 80Hz

would be advisable.

5.1.4.2 Signal Conditioning

When it comes to the actual data recording process, simultaneous sampling of all sig-
nals of interest is favorable. This can seldom be guaranteed in RPAS projects, which
necessitates pre-processing of the digital data. On the one hand, signals with low sam-
ple rates can either be included directly, using the direct covariance scaling approach
of section 3.10.2. Alternatively, they may be interpolated to higher sampling rates.
Here, the problem with interpolation is twofold: it has a smoothing effect, which may
be undesired; and it introduces dependent information that was not independently
collected, thereby invalidating some of the assumptions in statistical estimation.

On the other hand, if sampling does not occur simultaneously, explicitly determin-
ing time-shifts between the signals becomes necessary. Otherwise the time delay may
be attributed to a phase lag due to the characteristics of the dynamic system [MK2016,
Ch. 9]. This reduces the requirement of simultaneous sampling at a common rate to at
least accurately time-tagging all signals.

5.1.4.3 Sensor Installation Locations

For all sensors, it is not only in the interest of system identification, but also important
for guidance and control, that they measure the quantity they were designed to mea-
sure. For air data sensors this means, that they should be located in the airflow where
it is unobstructed by the aircraft, if possible. Accelerometers should be placed as close
to the aircraft c.g. as possible in order to avoid measurement of virtual accelerations
due to lever-arm effects [MK2016, Ch. 9]. If this is not possible, at least the installation
location needs to be known accurately, to compensate for these lever arm effects. Also,
the effect of structural vibration on measured accelerations should be minimized.

Further, it is important to measure the control surface deflections as close to the ac-
tual control surface as possible. Even though there is a kinematic link between the pilot
controls and the control surface, this link includes many unknowns such as hysteresis
elements, friction, flexible rods and cables etc.

The same is true for automatically controlled aircraft, which usually applies to
RPAS: whereas the command signal to an actuator is easily obtained, this does not
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necessarily correspond to the actual control surface deflection. In-between are the ac-
tuators dynamics and the physical link to the surface, which is why direct measure-
ment of the control surface deflection should be preferred, where it is available. If it is
not possible to measure control surface deflections, at least pre-processing the control
commands using an assumed feedforward model of the actuator dynamics is advis-
able (see section 5.3.2.4 for an example). Otherwise, actuator dynamics will be lumped
together with the aircraft’s inherent damping and eigenfrequency, which may be un-
desired.

5.2 Flight Path Reconstruction

The first step after recording data should always be to perform a first sanity check by
answering questions of the following type

◦ are inputs consistent with the modeling conventions in use?

◦ do positive control surface deflections lead to negative rotational rates?

◦ does a north velocity component lead to an increase in latitude?

◦ is the acceleration in body z-direction during steady, wing-level flight roughly
−9.81 m/s2?

◦ does a positive rate lead to a positive change in the corresponding attitude angle?

◦ are the orders of magnitude of the signals consistent with the assumed units?

◦ . . .

Those checks involve plotting of many quantities, and usually do not take much time.
However, they may save the analyst considerable trouble in later stages.

What is particular for flight vehicle system identification, is that the kinematic rela-
tionship between certain measurement data can be used to reconstruct a kinematically
consistent trajectory, and even estimate some sensor error parameters. This is espe-
cially attractive for the estimation algorithms discussed so far: most of them inherently
assume a minimum of corruption from systematic errors like biases, scale factors, or
time lags, which can all be corrected based on kinematic relationships.

The basic idea in all cases is that measured accelerations, when integrated, should
be consistent with measured velocities, which in turn, when integrated, should roughly
match measured positions. The same is true for rotational rate, and possible attitude
measurements. These relations can then be used to estimate systematic sensor errors,
together with the aircraft’s states by minimizing the differences between integrated
and measured quantities [Jat2015, Ch. 10] [MK2016, Ch. 10]. The approach is appli-
cable both for large aircraft and for RPAS, where in the latter case the larger random
errors of the usual low-cost sensors need to be taken into account.
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5.2.1 Commonly Used Kinematic Relationships

A short summary of the naming convention used at Institute of Flight System Dy-
namics (FSD) can be found in appendix F. More detailed derivations of the kinematic
relationships will be found in section 5.3. Here, only the main results necessary for
FPR are illustrated.

The velocity of an arbitrary point on the aircraft, given the velocity at the reference
point, can be determined using the Euler derivative [Hol2018a](
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where it is assumed, that the aircraft is a rigid body.
Its acceleration can be determined based on the same rigid-body assumption, and

repeated application of the Euler derivative [Hol2018a]. This is used to determine the
acceleration at the Inertial Measurement Unit (IMU) installation location in the body
fixed frame. Neglecting earth’s rotational rate and the transport rate (to be discussed
in section 5.3.1.1) this yields(
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In above equations, no model for the aircraft’s forces and moments (aerodynamic,
gravitational and thrust) are necessary, since the measured accelerations and rotational
rates may be used directly [Jat2015, Ch. 10].

Also, the same attitude propagation equations, as will be detailed in section 5.3.1.2
may be used, assuming the pitch angle stays well below the singularity at 90◦
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Position propagation equations are also the same as will be presented in detail in
section 5.3.1.3


.
λ

R

.
µR

.
h

R


W GS84

=



(
vR

K

)E

O

(Nµ+hR) cos µR(
uR

K

)E

O

Mµ+hR

−
(
wR

K

)E

O

 (5.11)

204



Chapter 5: The Aircraft System Identification Process

Often the lateral position states are not directly used, since they do not influence the
aircraft’s dynamics. Only altitude has an influence on air density and thus dynamic
pressure [MK2016, Ch. 10.1]. However, in order to check the correctness of the postu-
lated model, it may make sense to include them, in order to avoid errors in the assumed
coordinate systems.

The above are all purely kinematic, perfectly known relationships, i.e. there are no
aspects that necessitate a model of the aircraft. Collecting them, a non-linear system of

equations of the form .
x = f(x,u) may be built. Then, velocity
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are considered to be inputs. This model

is then at the heart of a state estimation problem.

5.2.2 Sensor Models and Error Estimation

The relations in the last section are purely kinematic. However, some modeling effort
cannot be avoided when solving the FPR problem. Sensor errors may be treated as
deterministic and constant, or may be included as additional states in the problem,
and thus be allowed to vary in time. The former is often a good approximation, if the
considered time span is short (e.g. short flight time in RPAS applications; considering
only individual maneuvers), whereas the latter might make more sense for longer time
segments, but this choice is in general problem specific.

Here, sensor error terms will be considered to be constant, and deterministic. Addi-
tionally, random measurement noise will be included. Usually, an approach involving
a bias term ∆i, scale factor error Ki,1 . . . Ki,ni

and white, Gaussian measurement noise
ni will be used to relate a measured, physical input quantity i to the measurement
output o as [MK2016, Ch. 10.4]

o =(Ini
+ diag(Ki,1 . . . Ki,ni

)) i + ∆i + ni (5.12)

If the respective quantity serves as an input u to the system (e.g. acceleration, rotational
rate), above sensor error model may be solved for i

i =(Ini
+ diag(Ki,1 . . . Ki,ni

))−1(o − ∆i − wi)
=
(
Ini

+ diag
(
K̃i,1 . . . K̃i,ni

))
o + ∆̃i + ñi

(5.13)

where the tilde-quantities are introduced to facilitate the model.
It can be noted, that the random error terms will play two different roles: if the

respective quantity enters the system as an input u, the random error will affect the
system as if it were process noise [MK2016, Ch. 10.4]. If, however, the respective quantity
is to be found on the output side of the system, the random error will act as measurement
noise.
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Above equation (5.12) represents the most generic sensor error model to be used in
this work. Despite its simplicity it has served well, as will be illustrated in chapter 6
and is mentioned in [MK2016, Ch. 10.4]. For some sensors it is not possible to consider
bias and scale factor separately, then often the Ki,j are set fixed at 0. This may arise
in cases, when the physical quantity has rather large values, not centered around zero
(e.g. airspeed); then, a small scale factor may have a similar effect as a bias term, which
introduces large correlations between these two error sources and thus makes their
independent determination difficult [Jat2015, Ch. 10].

The input quantities i represent the physical quantity to be measured, such as

◦ Magnetometer
the three axis magnetic field vector in body fixed coordinates (using eq. (5.37) for
the rotation matrix MBO)(

~b
)

B

(
µR, λR, hR

)
= MBO ·

(
~b
)

O

(
µR, λR, hR

)
(5.14)

where the dependency of the latter on the position may be dropped if flights were
conducted within a small area

◦ Accelerometer
accelerometer measurements, i.e. combination of acceleration and gravity(

~aIMU
K

)II

B
+ MBO(~g)O (5.15)

◦ Global Navigation Satellite System (GNSS)
GNSS velocity, corrected for the installation location of the GNSS antenna(

~vGNSS
K

)E

O
= Mᵀ

BO

((
~vR

K

)E

B
+
(
~ωOB

K

)
B

×
(
~rR,GNSS

)
B

)
(5.16)

in this context, the second term, i.e. the lever arm influence is sometimes ne-
glected. GNSS position is considered directly, without correcting for the lever
arm.

Combining the kinematic relations of section 5.2.1 with above sensor error mod-
els, yields a system of nonlinear differential equations of the form .

x = f(x,u,θ,w)
with an output equation z = g(x,u,θ) + v. Although, generally the process noise term
here enters non-linearly, the system may very well be approximated using additive w,
which then is in agreement with the problem formulations used here. All deterministic
sensor errors to be estimated are collected in θ, all random errors on the input side in
w and all random errors on the output side are collected in v.

5.2.3 Wind and Flow Angle Estimation

For aircraft system identification, the knowledge of flow quantities (angle of attack,
angle of sideslip, aerodynamic velocity) is paramount, since they are the main influ-
encing factors for the acting aerodynamic forces. If the flight tests were conducted in
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calm weather conditions, the influence of wind may be neglected, and the aerodynamic
quantities may be computed from their kinematic counterparts.

However, due to the small inertia of the aircraft, and the comparatively slow cruise
speeds, even small wind components may have considerable effects in RPAS applica-
tions. This is way it often makes sense to estimate at least some wind components. This
can be achieved by extending the FPR model with wind states, and including them in
the measurement models for aerodynamic quantities, such as dynamic pressure.

The most unreliable estimates are obtained for vertical wind components, so they
are often set to 0. Then, assuming a random walk behavior for the wind estimates
yields a the following propagation equation( .

uR
W

)E

O
= wW,u (5.17)( .

vR
W

)E

O
= wW,v (5.18)( .

wR
W

)E

O
= 0 (5.19)

More complicated models, possibly related to the DRYDEN atmosphere may be in-
cluded in a similar fashion, but above simple formulation has served well [GH2016].
Wind rotational rates, due to a changing wind profile over the extension of the aircraft
are assumed to be zero.

Dynamic pressure at the installation location of the Pitot probe is then(
~vP IT OT

A

)E

B
=
(
~vR

K

)E

B
− MBO

(
~vR

W

)E

O
+
(
~ωOB

K

)
B

×
(
~rR,P IT OT

)
B

(5.20)

q̄ = ρ

2

∥∥∥∥(~vP IT OT
A

)E

B

∥∥∥∥2

2
(5.21)

where the lever arm correction is small compared to the nominal values of the other
quantities, thus often neglected [MK2016, Ch. 10.3].

If one is so fortunate as to have angle of attack and angle of sideslip sensors aboard
the aircraft, the respective flow quantities at the installation locations are (ignoring
possibly different installation locations of the two) [MK2016, Ch. 10.3](

~vF LOW
A

)E

B
=
(
~vR

K

)E

B
− MBO

(
~vR

W

)E

O
+
(
~ωOB

K

)
B

×
(
~rR,F LOW

)
B

(5.22)

α = atan2
((
wF LOW

A

)E

B
,
(
uF LOW

A

)E

B

)
(5.23)

β = atan2
((
vF LOW

A

)E

B
,

√
(uF LOW

A )E
B

2
+(wF LOW

A )E
B

2
)

(5.24)

Dynamic pressure, and flow quantities may be subjected to the same error model (5.12),
involving bias and scale factor error as before.

In this setup, the horizontal wind components are part of an augmented state vec-
tor. The state estimation algorithm will then be able to reconstruct the wind data, based
on the available measurements. The main information source for this is the difference
between kinematic velocities and the measured aerodynamic velocities.
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5.2 Flight Path Reconstruction

5.2.4 Solving the Flight Path Reconstruction Problem

The resulting FPR problem is then one of combined state and parameter estimation,
and may be tackled with the approaches illustrated in chapters 2.2 and 2.3, respectively
the problem formulations of section 4.3 and 4.4. Alternatively, non-linear smoothing
solutions have been obtained using a cost function including measurement and pro-
cess noise inputs, together with calculus of variations to solve this problem [Bac1982,
BW1985]. Some authors note that if the stochastic part is not too dominant (e.g. be-
cause high quality sensors are used), it may be neglected and deterministic methods
may be used [Jat2015, Ch. 10] [MK2016, Ch. 10.1]. In RPAS applications with often low-
cost sensors, the random components tend to be significant, which makes a stochastic
treatment almost inevitable.

Irrespective of the solution methodology, the results for the FPR problem formu-
lated in this section will consist of

◦ a set of deterministic sensor error parameters, to correct the measurements with,

◦ a kinematically consistent state trajectory, possibly to be used as initial guess for
the states when applying the full discretization methods of chapter 4.2

◦ an estimate for the horizontal wind components during the maneuvers

All these can be used in the subsequent parameter estimation. Sometimes these recon-
structed measurements are even used instead of real data in the subsequent parameter
estimation step, if the corresponding sensors are impractical, or not available [MK2016,
Ch. 10.2]. However, using this kind of “artificial measurements” may introduce resid-
ual coloring, since they were not obtained independently. This violates some basic
assumptions in the estimation approach. The severity of this, possibly rather academic
issue, has to be investigated on a case to case basis.

As with all parameter estimation algorithms, a suitable initial guess for the deter-
ministic parameters is necessary. Very often it is possible, to obtain bias estimates from
steady state conditions before take-off, whereas scale factor errors are often small, so
an initial value of 0 can be a good guess.

Three major difficulties remain, however. The first is the determination of the pro-
cess and measurement noise covariance matrices. Physically, they represent the sen-
sor noise characteristics, and may thus be extracted from data-sheets or laboratory
calibrations. However, during real-life operations, other factors, such as vibration or
flexibility of the aircraft may increase the noise level, which is why the original noise
characteristics may offer a good starting point, but manual tuning of covariance matri-
ces is often inevitable. Unfortunately, there are no hard guidelines, on how the results
should look, rather some experience is necessary to assess them correctly.

Good results have been achieved, by setting the process noise terms to zero, i.e. only
integrating the inertial quantities in time. There will be some drift in the solution (due
to uncorrected biases and integration of noise), but in this way a rough comparison of
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the resulting attitudes and velocities with measured data is possible. These integration
results offer valuable clues as to the correctness of the postulated model: it will be
directly evident if signs or axes in the measurements are wrongly considered. Then the
noise covariances can be slowly increased, to create a better match between propagated
and measured data.

The second problem is closely related to the first: the choice of process noise co-
variances for the wind states is not evident at all. Its value may be rather large to
allow comparatively large changes per sampling instant, if flow angle measurements
are available. Then the algorithm will be able to estimate relatively high frequency
fluctuations of the wind vector. This is possible, since reliable information about its
direction and magnitude is available at all times by considering the difference between
kinematic and aerodynamic velocities.

If, on the other hand, no flow angle sensors are available, only very low frequency
changes in the wind vector are possible to estimate. If the process noise covariance
is then set too large, the estimation algorithm quickly starts to compensate for other
estimation errors with wind components. This happens, since a Pitot probe only yields
information about the magnitude of the aerodynamic velocity vector, and no reliable
information about its direction is available.

The last problem is due to the rotational acceleration information, which is neces-
sary to properly integrate the measured accelerations. Angular acceleration sensors
are still very uncommon, and usually too big, heavy and too costly to be integrated

in RPAS. Thus different means of obtaining
( .
~ω

OB

K

)B

B
are needed. Some numerical ap-

proaches will be briefly discussed in section 5.4. The increased uncertainty, which is
introduced via these approaches, needs to be included in the corresponding process
noise covariance matrix. This can be carried so far as to completely ignore rotational
rate measurements, and purely include their effect via an increase in the acceleration
measurement covariance. An example application of this approach can be found in
[GH2016].

5.3 Modeling

All of the estimation algorithms that have been presented here can be formulated in-
dependently of the model at hand. Nevertheless, successful application hinges on un-
derstanding the estimation approaches as well as a thorough understanding of the
governing principles of the system to be identified [CJ2012, Ch. 1]. For this reason,
the basic model equations to be used in the applications in chapter 6, will be illustrated
next. They are mainly based on the application of the translational and rotational forms
of NEWTON’s second law [MK2016, Ch. 2]. Again, this is presented with RPAS applica-
tions in mind, thus the common simplifications and model assumptions are illustrated.
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5.3 Modeling

5.3.1 Rigid Body Aircraft Equations of Motion

Models will come in the form of a system of non-linear, first order, ordinary differential
equations, together with an algebraic, non-linear output equation

.
x = f(x,u,θ) + w (5.25)

y = g(x,u,θ) (5.26)

For aircraft applications, the rigid body states usually comprise of components re-
lated to linear and angular velocity, attitude and position. Further subsystem states
may appear, too, depending on the fidelity of the model. Inputs are the control surface
deflections, together with power settings for the propulsion system, and secondary
inputs to change the aircraft configuration (landing gear, high-lift devices). The pa-
rameter vector mainly consists of aerodynamic parameters, together with nuisance
variables for e.g. sensor errors. Above system can in general only be solved numer-
ically, which is usually done with the aid of Runge-Kutta methods (see Appendix D.3
for a short summary).

The following subsections mainly follow the notation as is common at the FSD, see
appendix F for details. Also, most of the following derivations are based on [Hol2018a,
Hol2018b], further details can be found in [SL2003, ER1996, BAL2010] or the books
dedicated to aircraft system identification [MK2016, Jat2006].

The following presentation is not intended as an in-depth illustration of flight me-
chanic modeling. Moreover it presents the necessary basics, which will be used in the
applications in chapter 6. It will be based on the following assumptions, which are
similar to those used in [MK2016, Ch. 3]

◦ the earth is considered inertial, i.e. Newton’s law is eventually formulated in the
Earth-Centered-Earth-Fixed (ECEF) frame

◦ the aircraft is a rigid body
◦ the aircraft mass and mass distribution is quasi-constant, i.e. it may be subject to

temporal changes, however these are not explicitly considered in the conserva-
tion of momentum

◦ earth curvature is negligible (“flat-earth”)
◦ gravitational acceleration is fixed, i.e. constant in direction and magnitude

5.3.1.1 Translational and Rotational Kinematics

The basis for all kinematic considerations in the aircraft context is the Euler derivative
for time derivatives in rotating frames. The time derivative with respect to theA-frame
of a vector (~v)B given in the B frame then consists of a direct part, and a term due to
the rotation of the A frame versus the B frame [CJ2012, Ch. 3](

d

dt

)A

(~v)B =
( .
~v
)B

B
+
(
~ωAB

K

)
B

×(~v)B (5.27)
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Repeated application of above equation to first obtain the velocity, then the accel-
eration of an arbitrary point on the aircraft leads to an expression for the inertial accel-

eration
(
~aP

K

)II
. Then, assuming a quasi-steady mass distribution, and considering the

aircraft to be a rigid body, the conservation of linear momentum leads to the follow-
ing equation for the velocity propagation based on the sum of all acting forces in the
reference point R [Hol2018a] [CJ2012, Ch. 3]

∑ ~F
R

m
=
( .
~v

R

K

)EB

+ ~ωIE
K ×

(
~ωIE

K × ~rR
)

+ ~ωIE
K ×

(
~vR

K

)E

+ ~ωIB
K ×

(
~vR

K

)E
+
( .
~ω

IB

K

)B

× ~rRG + ~ωIB
K ×

(
~ωIB

K × ~rRG
) (5.28)

The following quantities are related in above equation

◦ ∑ ~F
R

: the sum of all forces acting at the aircraft (A/C) reference point

◦ m: the total mass of the A/C

◦ ~rRG: position of the A/C c.g. relative to the A/C reference point

◦ ~rR: position of the A/C reference point w.r.t the origin of the coordinate system

◦
(
~vR

K

)E
: linear velocity of the A/C reference point with respect to the ECEF frame

◦
( .
~v

R

K

)EB

: change in the velocity with respect to the ECEF frame;

derivative taken in the body-fixed frame

◦ ~ωIB
K : rotational rate of the A/C versus inertial space

◦ ~ωIE
K : earth’s rotational rate

◦
( .
~ω

IB

K

)B

: change in rotational rate of the A/C versus inertial space;

derivative taken in the body-fixed frame

For system identification purposes, a flat, non-rotating earth can be assumed (earth
rotation ~ωIE

K ≈ ~0; transport rate ~ωEO
K ≈ ~0), since the travel distances usually stay small,

especially for RPAS. Then the following simplifications arise [Hol2018a]

~ωIB
K ≈ ~ωOB

K ≈ ~ωEB
K (5.29)∑ ~F
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(5.30)

With the aid of the Euler derivative, the assumptions of quasi-steady mass distri-
bution and a rigid body aircraft, the conservation of angular momentum leads to a
differential equation for the propagation of the rotational rates, based on the sum of all
acting moments in the reference point R [Hol2018a] [CJ2012, Ch. 3]
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Again, with the assumption of a flat, non-rotating earth, above equation may be sim-
plified

∑
~M

R
=
(
IR
)( .
~ω

OB

K

)B

+ ~ωOB
K ×

[(
IR
)
~ωOB

K

]
+m~rRG ×

[( .
~v

R

K

)EB

+ ~ωOB
K ×

(
~vR

K

)E
] (5.32)

(
IR
)

denotes the total tensor of inertia at the A/C reference point, see section 5.3.2.3 for
details.

Here it is decided to formulate the equations of motion at a body-fixed reference
point R. The equations would simplify, if the c.g. was to be used as reference point,
however this might not be fixed (due to fuel consumption or different payload weights),
which complicates the computations at other stages. Considering the equations of mo-
tion at the body fixed reference point R necessitates a simultaneous solution of the
translational and rotational equations, since both depend linearly on the derivatives( .
~v

R

K

)EB

and
( .
~ω

OB

K

)B

. For the solution, it is necessary to define the operator [~r×],
which translates a cross product into a matrix-vector multiplication according to

~r1 × ~r2 =


y1z2 − y2z1

x2z1 − x1z2

x1y2 − x2y1
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y2

z2

 =[~r1×]~r2 = −[~r2×]~r1 (5.33)

Then it is possible to assemble the following linear system of equations [Hol2018a]
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~α2 =
∑

~M
R

− ~ωOB
K ×

[(
IR
)
~ωOB

K

]
−m~rRG × ~ωOB

K ×
(
~V

R

K

)E

(5.36)

which can be solved for the time derivatives of velocity and rotational rate. Here,
above equations will be formulated in the body fixed B-frame.

5.3.1.2 Attitude Kinematics

Commonly, aircraft attitude is represented by Euler angles ΘBO. The transformation
matrix from local North-East-Down (NED) to body fixed coordinates, MBO is then
parameterized by heading angle ψBO, pitch angle θBO, and bank angle φBO [Hol2018a]

MBO

(
ΘBO

)
= Mx

(
φBO

)
My

(
θBO

)
Mz

(
ψBO

)
(5.37)

ΘBO =
[
φBO θBO ψBO

]ᵀ
(5.38)
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The time derivatives of the Euler angles depend on the body-fixed rotational rates(
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Above equation illustrates the biggest downside of using Euler angles for attitude rep-
resentation: the singularity at pitch angles of θBO = 90◦. This could be circumvented
by using unit-quaternions for attitude representation, see e.g. [CJ2012, Ch. 3], which is
however seldom done for system identification tasks, because

◦ Flight testing for system identification should not lead to pitch angles close to
above mentioned singularity.

◦ Euler angles are more intuitive, which helps interpreting the results, detecting
dependencies and separating the equations of motion in lateral and longitudinal
subsystems.

◦ In order for quaternions to be a valid attitude representation, they need to be of
unit length, necessitating additional effort.

5.3.1.3 Position Kinematics

To complete the necessary set of rigid body states, position information needs to be
included. Common approaches for RPAS applications are to consider either a local,
Cartesian navigation frame, or to propagate position based on World Geodetic System
1984 (WGS84) coordinates.

The first version can easily be achieved using the velocity in the local NED frame
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where the last component is the negative change in altitude −
.
h =

( .
zR

K

)N

N
.

Propagation of the WGS84 coordinates necessitates the computation of the radii of
curvature of the meridian Mµ and prime vertical Nµ [Hol2018a]

Nµ = a√
1 − e2 sin2 µR

(5.42)

Mµ = Nµ
1 − e2

1 − e2 sin2 µR
(5.43)
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The change in WGS84 position is then described using the components of the velocity

in NED coordinates
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Since only altitude has an influence on flight dynamics (via the corresponding change
in density), which is significant enough to retain, the lateral position states are often
discarded. At a maximum they may be used to check if the position propagation based
on the estimated model velocity agrees with the measured position.

5.3.2 Subsystem Modelling

After having the kinematic equations of motion in place, the only thing remaining is to
determine the acting forces

∑ ~F
R

and moments
∑ ~M

R
, which drive the translational

and rotational equations of motion. The main contributions usually considered in
RPAS applications are due to aerodynamics, gravity, propulsion, and possibly ground
reaction forces. Since the main goal in aircraft system identification, as presented here,
is the determination of a suitable aerodynamic model, this aspects is treated in more
detail in section 5.3.4, whereas the other subsystems will be briefly illustrated next.

Obtaining subsystem parameters is often difficult. Sometimes the manufacturer
does not want to provide them, because they are proprietary, and sometimes the man-
ufacturer does not know them himself. Thus, even if a detailed modeling was the-
oretically possible, the lack of information often makes it necessary to find suitable
abstractions, with fewer, easy to estimate parameters. Common approximations then
include first and second order lag elements, or mass-spring-damper combinations. A
good rule of thumb is to use subsystem parameters, where available, and to make
simple assumptions otherwise. Building high-fidelity models with a huge number of
unknown parameters is of no use, if they cannot be reasonably determined.

5.3.2.1 Engine Modeling

Appropriately incorporating propulsion effects is crucial, since the aerodynamic drag
cannot be estimated accurately otherwise [Jat2015, Ch. 2]. For many engines (com-
bustion and electric), a first order lag behavior between the engine command and the
rotational rate is a good approximation.

.
ω = − 1

T
ω + 1

T
ωcmd (5.45)

In contrast to that, e.g. a fully physical approach for an electrical propulsion neces-
sitates values for three to five electrical constants for the actual Brushless DC (BLDC)
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motor and a set of gains for the engine speed controller, resulting in many more param-
eters whose values are often not easy to come by. Accurately modeling a combustion
engine is even more challenging.

5.3.2.2 Propeller Modeling

In propeller modeling reliable information is also difficult to obtain, especially for
RPAS applications. Further, it is not possible to estimate propulsion and aerodynamic
parameters simultaneously, since only their combined effect is visible in the system
reaction. Thus, their parameters are highly correlated, making an independent deter-
mination impossible.

This also leads to the effect that deficiencies in the propulsion model will inevitably
be compensated for by aerodynamic effects. Eventually, the overall system outputs
then may match the measurements, which is a mixed blessing: on the one hand, the
overall system performance may represent the measured values very well. On the
other hand, however, the predictive capability of the model may be restricted, since
propulsion model deficiencies can only be meaningfully compensated in domains,
where data is available. For other domains, it cannot be guaranteed that the model
is still reasonable.

A well-established way to formulate propeller effects is by considering non dimen-
sional coefficients, similar to those used in fixed wing aerodynamics [DAS2014]

CT = 4π2T

ρω2d4 (5.46)

CQ = 4π2Q

ρω2d5 (5.47)

CP = 8π3P

ρω3d5 = 2πω
ω

4π2Q

ρω2d5 = 2πCQ (5.48)

J = VA2π
ωd

(5.49)

where CT , CQ, and CP are thrust, torque and power coefficient respectively. In order
to obtain a dimensionless thrust coefficient, similarly to aerodynamic coefficients, a
representative velocity squared (ω2d2), reference area (∼ d2) and density (ρ) are used.
For the torque coefficient an additional representative length enters the equation. J is
termed the advance ratio and as relation between axial and radial velocity is related to
the local angle of attack at the propeller blade.

A large data-base, for many commercially available propellers is provided by the
University of Illinois at Urbana-Champaign [BDAS2018], where Thrust and Power co-
efficients are logged as function of the advance ratio for different rotational speeds. The
findings collected there have also been published [Bra2005, BS2011, Det2014, DAS2014].

In order to be compatible with the equations of motion, propulsion forces and mo-
ments need to be translated from the propeller’s coordinate system P and installation
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location P to the reference point R, and the body fixed frame B
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 (5.51)

The second equality in both cases showcases the use of thrust and torque coefficients,
while neglecting radial components, i.e. the influence of non-axial inflow will not be
considered.

5.3.2.3 Weight and Balance Modeling

Since most current RPAS systems rely on an electrical propulsion system, weight and
balance considerations are comparatively easy: no fuel is consumed, which would
change the aircraft weight, inertia and c.g. If so desired, only additional mass due to
changes in payload may be considered.

The overall c.g. and inertia may then be computed as weighted sum, and using
the parallel axis theorem. Considering nm elements (one of which is the empty aircraft
structure), the common c.g. in body fixed coordinates is

m =
nm∑
i=1

mi (5.52)

(
~rRG

)
B

= 1
m

nm∑
1=1

mi ·
(
~rRGi

)
B

(5.53)

where the mi are the masses of the components, and
(
~rRGi

)
B

are the position vectors
from the body fixed reference point R to the respective i-th element c.g.

The overall inertia at the common c.g. is then [ER1996]

(
IG
)

B
=

nm∑
i=1

MBBi

(
IGi

)
Bi

Mᵀ
BBi

−mi

[(
~rGGi

)
B

×
][(
~rGGi

)
B

×
]

(5.54)

where

◦ the MBBi
describe a rotation from the i-th element’s body fixed coordinate frame

to the aircraft’s body-fixed frame,

◦
(
IGi

)
Bi

is the i-th element’s tensor of inertia at its c.g., noted in its own body fixed
frame and

◦
[(
~rGGi

)
B

×
]

is the skew symmetric matrix that would result from a cross-product
with the vector from the common c.g. to the element’s c.g. according to (5.33).
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Elements that are only modeled as point-masses simply have
(
IGi

)
Bi

= 0.
To include the effects of inertia and weight in the equations of motion, the resulting

forces and moments at the fix reference point R have to be considered as

(
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)
B

=
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)
B

= MBO(~g)O m = MBO
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0
0
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 (5.55)
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where the fact is used that the mass properties of a body do not result in a moment at

the body’s c.g., i.e.
(
~M

G

G

)
B

= ~0.

5.3.2.4 Actuator Modeling

Actuators in use in RPAS projects are commonly electro-mechanical servo actuators.
Based on a similar reasoning as was applied in section 5.3.2.1, considering the actuator
as a second order lag element is often a good approximation. .

x
.
v

 =
 0 1

−ω2
0 −2ζω0

 x

v

+
 0
K · ω2

0

xcmd (5.57)

In addition, most actuator controllers are tuned to have no steady-state error and to be
well damped, resulting in K ≈ 1 and ζ ≈ 1√

2 , thus reducing the actuator parameters to
be determined to its natural frequency. As in the determination of propulsion models,
determining ω0 from flight data is bound to fail, since it will in general be strongly
correlated with the respective damping and control effectiveness parameters.

Above model can be extended with limits on actuator velocity and position, if they
are known. Those limits translate directly to limits on the optimization vector in the full
discretization approach, since actuator states are directly available as its components.
To incorporate further effects would in general necessitate models for aerodynamic
hinge moments at the control surfaces, and knowledge of the internal workings of the
actuator and its controller, which is again hard to come by.

5.3.2.5 Further External Forces

Depending on the RPAS configuration to be investigated, several other forces and mo-
ments may influence its behavior, such as ground reaction forces, or forces appearing
during a characteristic start or landing. Although not necessarily important for flight
dynamics identification, a complete simulation of the system for engineering purposes
may necessitate modeling these aspects as well, in order to e.g. fully test the flight
control system from start to landing.

Many of these effects can be modeled using simple mass-spring-damper systems,
which exert a force upon the aircraft as soon as some condition is fulfilled. For example,
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ground reaction forces for vertical take-off vehicles may be modeled as spring-damper
combinations, that exert forces as soon as one (or several) characteristic points of the
aircraft pass the local ground plane. In the same manner, a landing in a net, or a
catapult-start may be included in the simulation. Spring and damper coefficients can
then be tuned by hand to roughly reproduce the true behavior, since in these cases
perfectly reproducing reality is often not necessary.

5.3.3 Environment Modeling

In order to fully describe an aircraft’s behavior, models for the environment are neces-
sary, too. Fortunately, for RPAS applications, these tend to be very simple.

5.3.3.1 Gravity

Gravity does change both with the location on the WGS84 ellipsoid and the altitude
above it, for which there exist very sophisticated models. However, for RPAS applica-
tions, due to the short traveling distances and low altitudes, gravity may be assumed
to be constant.

5.3.3.2 Atmosphere

Especially aerodynamic forces depend heavily on the atmospheric conditions in the
forms of pressure, density, temperature, and wind. The first three may be computed
based on the International Standard Atmosphere (ISA), which is a model for their
change with altitude [Hol2018b]. Again, some simplifications for RPAS applications
are in order: the difference between geopotential and geometric altitude is neglected,
and only the lowest atmosphere layer, the troposphere, is considered due to the gener-
ally low altitudes of RPAS operations.

International Standard Atmosphere (ISA) temperature is assumed to vary linearly
in the Troposphere

T (h) =(TMSL + ∆T ) + γT rh (5.58)

TMSL = 288.15 K is the norm temperature at mean sea level, ∆T an offset to account
for local conditions and γT r = −6.5 × 10−3 K/m the temperature decrease with altitude.
Pressure varies according to

pstat(h) =(pstat,MSL + ∆pstat)
(

1 + γT r

TMSL

h
) nT r

nT r−1
(5.59)

with pressure at mean sea level pstat,MSL = 1.013 25 × 105 Pa, an offset to account for
local conditions ∆pstat, and the polytropic exponent of the troposphere nT r = 1.235.
Density may then be computed from the ideal gas law

ρ = pstat(h)
T (h) ·R

(5.60)
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with the gas constant for dry air R = 287.05 J/kg/K.

Dynamic atmosphere influences are combined in the influence of wind
(
~vR

W

)E
,

which is simply included in the aerodynamic velocity

(
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)E
=
(
~vR

K

)E
−
(
~vR

W

)E
(5.61)

5.3.4 Aerodynamics

The main goal in aircraft system identification is to find suitable models to describe
aerodynamic effects. These models are based on non-dimensional derivatives for forces
and moments in the aerodynamic reference frame, leading to expressions of the form
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Attention has to be paid to the way how the non-dimensional coefficients are obtained,
e.g. some authors use the half-span b

2 instead of b in the moment equations.
Above coefficients are then a function of a large number of independent variables.

MORELLI and KLEIN give the result of a dimensional analysis, resulting in 13 influ-
encing factors [MK2016, Ch. 3]. Since usually only a limited amount of information is
“spread out” over all parameters to be estimated, reducing their number improves the
information per parameter ratio. Thus a small number of parameters should always
be the goal. This also lies at the heart of the principle of parsimony: “Given two models
fitted to the same data with nearly equal residual variances, choose the model with the
fewest parameters”[MK2016, p. 145].

Coming back to above thirteen influencing factors, common simplifications (A/C
mass & inertia are larger than that of the surrounding air; fluid properties change
slowly; quasi-steady flow) lead to a dependency mainly on flow conditions, control
surface deflections, rotational rates as well as Mach and Reynolds numbers. For RPAS
applications, those latter are often neglected, too, which eventually yields [MK2016,
Ch. 3]

Ci = Ci


∥∥∥∥(~vA
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 i = D,Q,L, l,m, n (5.64)

where δj represents control surface deflections and
(
~ωAB

A

)∗
are non-dimensional rota-
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tional rates [MK2016, Ch. 3]
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Some authors also include dependencies on temporal changes of angle of attack and
angle of sideslip .

α∗ and
.
β

∗
, but the corresponding parameters are often strongly corre-

lated with body rotational rates, and will be omitted here.
Estimating the full functional dependency of an aerodynamic coefficient on the re-

maining influencing factors is still close to impossible, which is why these dependen-
cies are parameterized further. The probably most widely used approach is to consider
a Taylor series expansion around a reference condition [MK2016, Ch. 3]
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(5.66)

where the Ciδj
δj represent the effect of control surface deflections. For a conventional

configuration, this would be elevator, aileron and rudder deflections. Power controls,
like throttle setting, propeller rotational rate or thrust coefficient CT (J) may also be in-
cluded, as they may change the flow condition on the wings, thus influencing aerody-
namics. This approach is especially appealing, if the effects of e.g. propeller downwash
cannot be modeled adequately [MK2016, Ch. 5.1]. The Ci0 lumps together the actual
coefficient at the reference condition, and the effect of all base values, such as α0.

Above model can be extended by either strictly following the Taylor series argu-
mentation, and extending the model with selected higher order polynomial terms. Al-
ternatively, regressors may be chosen, which do not follow the strict Taylor series form,
but which are intuitively appealing, such as “signed squares” of the form sign(β) β2. As
long as these new regressors contribute with a significantly different shape compared
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to the ones already in the model, i.e. as long as they do not introduce correlations,
many effects can be modeled in this way.

If an aerodynamic model for the whole flight envelope is desired, several different
test points (see section 5.1.1) may be investigated separately, and afterwards combined
via interpolation. If the models obtained in this way still do not perform as desired, a
next step can be to include even more non-linear models. Possible extensions are to use
spline functions or generic lookup tables to make above coefficients of the linear model
explicitly dependent on the flow conditions via α and/or β. However, this introduces a
large number of new parameters, contradicting the principle of parsimony, and should
only be done as a last resort [MK2016, Ch. 3]

Similar Considerations are true for multi-point aerodynamic models: it is possi-
ble to implement above model not only once, at the aerodynamic reference point, but
several times, e.g. for the main wings, horizontal and vertical tail, and body. This may
make the model more versatile, however it also introduces strong correlations between
the parameters: for example a pitching motion

(
qAB

A

)∗
6= 0 will change the local angle

of attack at the horizontal tail. Then the local lift coefficient at the tail Ctail
Lα together

with the respective lever arm, will have exactly the same effect on aircraft motion as
the pitch damping coefficient at the wing Cwing

mq This makes their independent determi-
nation impossible.

The foregoing discussion only hints at the myriad of possibilities to formulate aero-
dynamic models. Finding the most suitable formulation for the system at hand is
the most challenging task in aircraft system identification and usually comprises of
a lengthy trial and error phase. In the application chapter 6, those final models will
be presented in detail, however most of them are implemented on the basis illustrated
here, together with as few non-linear extensions as possible.

As with all other forces and moments, the resulting aerodynamic effects have to be
translated to the aircraft reference point in body fixed coordinates(
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(5.68)

5.3.5 Decoupling Longitudinal and Lateral Motion

In flight testing for aircraft system identification it is commonly made use of the fact
that lateral and longitudinal aircraft motion are well decoupled. Thus maneuvers to ex-
cite characteristic longitudinal (short-period, phugoid) and lateral motion (roll-motion,
spiral-motion, Dutch roll) are often conducted and analyzed independently of each
other. However, due to slight control inputs in the respective other axis, it might be
necessary to have an acceptable model for this other axis, too.

For example, maneuvers to excite the phugoid motion commonly last relatively
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long. During this time, it is not uncommon that the pilot needs to use the aileron in
order to keep the wings of the aircraft level. During parameter estimation for this ma-
neuver, the lateral dynamics will need to be considered, in order to avoid divergence
of the model and measurements.

This coupling may be removed, if instead of the model lateral states, the measured
or reconstructed states are used, i.e. instead of propagating the lateral states, their mea-
sured counterpart is used as input to the system. The same may be applied for the lon-
gitudinal motion. An example separation may be achieved using the following state
and input vectors, with the correspondingly separated system equations
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where uδ lumps together the original control surface and power inputs. Above system
formulations enable the analyst to treat lateral and longitudinal modeling completely
separate [MK2016, Ch. 3] [Jat2015, Ch. 3]. For the final result consistency of the com-
plete model has to be investigated, however. A downside of this is that depending on
the quality of the measured/reconstructed quantities, a considerable amount of ran-
dom error is fed to the system by considering possibly noisy state measurements as
inputs.

5.4 Parameter Estimation

The actual parameter estimation step has been discussed in detail in the first chapters
of this work. In summary, the cost function considerations in chapter 2.2, are combined
with the problem formulations in chapter 4, a model based on the flight mechanic
modeling of chapter 5.3, and the implementation considerations in chapter 3. The
arising optimization problem may eventually be solved using the methods illustrated
in chapter 2.1.

However, one major issue in the application has as of yet not been discussed: The
initialization of the algorithm with a suitable initial model parameter guess θ0. This
may either be based on experience, a different data source, or non-iterative estimation
methods such as linear least-squares. The focus here will lie on that last possibility,
since it is the most versatile, and may easily be adapted to new model structures. Also,
in RPAS application, other data-sources are often limited to preliminary design tools,
which may not be compatible with the model structure at hand, since Computational
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Fluid Dynamics (CFD) models or wind-tunnel campaigns are too costly or not avail-
able.

In order to apply linear least-squares methods, first an estimate of the aerodynamic
forces and moments needs to be computed from flight test data. Then, the parameters
of a linear model structure may be determined non-iteratively. Even though the re-
striction to linear models may seem like a drawback, this formulation for aerodynamic
models is most of the time able to cover the most important flight dynamic charac-
teristics of an aircraft. Even if non-linear terms turn out to be necessary, having good
initial values for the linear parts available, and initializing the non-linear parameters
with zero, is often enough to end up in the region of convergence of the iterative opti-
mization algorithm.

To get started, the aerodynamic forces and moments may be derived from the trans-
lational and rotational propagation equations (5.30) and (5.32).∑ ~F
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The values on the right hand side are usually measured directly (velocity, attitude an-
gles, rotational rates) or may be derived from measured quantities (temporal change

in velocity
( .
~v

R

K

)EB

may be determined from acceleration measurements and gravity).

The only quantity that is usually not measured is angular acceleration
( .
~ω

IB

K

)B

,

which needs to be determined numerically from body rotational rates
(
~ωIB

K

)B
. Since

the measurement of those is quite noisy, direct application of finite differences often
yields unusable results. Better estimates for rotational acceleration may be based on
one of the following approaches [MK2016, Ch. 11]

◦ Fit a smoothing spline to the rotational rate measurements, to get rid of the noise;
this smoothing spline may then be differentiated analytically.

◦ use (smoothing) local polynomial approximation to rid the data of noise; then
use the derivative of the polynomial as estimate for the angular acceleration

◦ Translate the rotational rate measurements to the frequency domain; then high
frequency content (dominated by noise) larger than a break frequency to be cho-
sen manually may be ignored; The remaining Fourier coefficients can then be
used to compute a smoothed estimate of the actual rotational rates, which essen-
tially is a sum of sines and cosines of different frequency. Then an analytic time
derivative may be computed, and used as smoothed rotational acceleration, see
[MK2016, Ch. 11] for details on this “global Fourier smoothing”.

Although above approaches provide superior results compared to direct finite differ-
ences, the inaccuracies introduced into the overall process via the numerical deter-
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mination of angular accelerations often limit the obtainable quality of the parameter
estimates via linear least-squares. Thus it makes sense to use these quantities only
as initial values for iterative methods, especially in RPAS applications where data is
collected using low-cost sensors with high noise levels.

After determining all quantities on the right hand sides of above propagation equa-
tions, together with the inertial characteristics of the aircraft under investigation, the
sums of forces and moments are available. Then, known forces and moments originat-
ing in other subsystems (propulsion, weight and balance) need to be determined, us-
ing flight data and/or reconstruction results (see section 5.2 for details) and the corre-
sponding subsystem models. Eventually, those subsystem contributions are subtracted
from the total forces and moments to only retain the aerodynamic effects.

From these, together with geometric data and the dynamic pressure at the aerody-
namic reference point, the aerodynamic coefficients CD, CQ, CL, Cl, Cm, and Cn may be
obtained from their definitions in equations (5.62) and (5.63). These can then be used
as “measurements” in a linear least-squares problem, where the regressors are depen-
dent on the respective model in use. Example 5.1 illustrates the resulting ordinary
least-squares problem for the roll moment coefficient.

Since the regressors are built from measured, noisy data, the resulting estimates are
biased, and inefficient [MK2016, Ch. 5.1]. The severity of this increases with the noise
level of the data, however the estimates are often good enough as an initial guess.

Initial states at the beginning of each maneuver can easily be obtained from averag-
ing the first few measured samples. In the approaches based on full discretization, as
illustrated in chapter 4, an initial guess for the state and output trajectory needs to be
provided, too. The simplest approach would be, to use the initial guess for the mod-
el parameters θ0, together with the initial conditions x0, and propagate the dynamic
system in time. To give the full discretization approach a “running start”, one can also
choose to use measured or reconstructed states as initial guess for the state trajectory.
Thus the outputs will already be in close vicinity of the measurements at the beginning
of the optimization.

Unfortunately, the initial model parameter guesses, determined in the above fash-
ion, may sometimes turn out to be too inaccurate. Symptoms of this can be either
divergence of the state propagation (if single-shooting is used), or divergence of the
optimization algorithm as a whole. Possible remedies are then

◦ The use of Filter Error Methods (FEMs), which numerically stabilize the state es-
timate and may thus be used to overcome intermediate divergence of the state
propagation. If the complexity of a complete stochastic treatment is to be avoided,
this may only be applied initially, to improve upon the initial model parameter
guess so far as to enable meaningful application of the single-shooting approach.

◦ The use of the full-discretization approach, which is numerically more stable. If
additionally, measured states are used as initial guess in the optimization vector,
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Example 5.1: Least-squares Roll Moment Estimation
Assuming values for the roll moment coefficient Cl at sampling instants
k = 0 . . . N − 1 are computed via the approach illustrated in section 5.4. Further as-
suming a model structure of the form

Cl = Cl0 + Clββ̃ + Clp

(
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)∗
+ Clr

(
rAB

A

)∗
+ Clξ ξ̃ + Clζ ζ̃

The primary purpose of Cl0 is not to cover possible aircraft asymmetry, but to
cover biases introduced in the computation of Cl. Also, the constant (trim) parts
are removed from all regressors (denoted by the �̃), as already mentioned in sec-
tion 2.2.4.8, to avoid correlation with the bias term Cl0. The maneuver is assumed
to start in a trimmed condition, i.e. the rotational rate terms do not have a constant
part.
The resulting ordinary least-squares problem can then be solved using
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the algorithm exhibits a relatively strong robustness against unfavorable initial
model parameters θ0.

◦ The approaches illustrated in section 3.8 may be used to improve upon the ini-
tial model parameter guess to enable meaningful state propagation in the first
place. In the applications to be illustrated in chapter 6, those were used exclu-
sively, together with initial model parameters set to zero; still meaningful results
could be obtained. Unfortunately, as is often the case in system identification,
this may not be enough in all possible applications. However, combining the
improvement ideas of section 3.8 with the approach illustrated in this section,
a very robust way to obtain initial parameter guesses for flight vehicle system
identification may be constructed.

5.5 Model Validation

As WALTER puts it: “It would be naive to consider that [θ̂] resulting from the optimiza-
tion procedure corresponds to the only model worthy of consideration.” [WP1997,
p. 5]. No model will cover all of the effects present in reality, thus a thorough mod-
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el validation should be performed after any estimation process. Usually, two main
aspects are investigated: the parameter uncertainty as obtained from the estimation
algorithm, and the performance of the model in reproducing measured outputs.

One of the biggest problems in model validation is nicely illustrated by WALTER, in
whose book the respective chapter is called “Falsification” [WP1997, Ch. 7]: In general
it is seldom the case, that the analyst can definitely confirm all of the aspects of the
previously developed model. More often than not, the best thing one can do is to not
reject the model at hand. Some of the possible approaches, which have found to work
well in RPAS applications, are illustrated next.

5.5.1 Engineering Judgement

The simplest way of checking the validity of a model is to ensure, that the estimated
parameter values are within reasonable bounds. In many cases, even though no hard
boundaries for a parameter can be stated, some intuitive interpretation is possible.
Thus, at least the order of magnitude or the sign of a parameter can be checked imme-
diately after the estimation has finished [WP1997, Ch. 7].

A second aspect is the model’s predictive capability, i.e. its performance when ex-
posed to a data-set that was not part of the estimation process (different input shape,
different operation condition, . . . ). This test is passed, if the outputs of the model for
this complementary data-set are still “close enough” to the measurements [WP1997,
Ch. 7]. According to WALTER this test can also be used to discriminate between dif-
ferent model complexities: very complex models, with a large number of parameters,
often perform very badly for complementary data-sets [WP1997, Ch. 7]. This can hap-
pen due to interactions between the parameters and their consequences, that have not
been excited in the original data-set. With a growing number of parameters, the num-
ber of possibly adverse interactions naturally grows, too.

Next, linear approximations in some representative operating points can give use-
ful insights. Even if the exact frequencies, damping ratios, and modal shapes of the
eigenmotions may not be known, it can at least be checked, that the identified model
exhibits the usual aircraft characteristics (short period, dutch roll, roll motion, . . . ). If
any of those modes do not appear, this might not be a reason to reject the model, but
may highlight room for improvement.

Lastly, the benefit of simply “taking the model for a ride” should not be underesti-
mated: especially for system identification for aerial vehicles, a lot can be learned by
connecting a real-time version of the model with a joystick and a visualization system.
After only a few attempts, the analyst usually gets a good “feeling” for the system, i.e.
can immediately tell, if the identified model resembles an aircraft or not. Also, it is rel-
atively easy to bring the model into extreme conditions, to check that the formulation,
together with the estimated parameter values, does not break down. Plus, it is fun.

226



Chapter 5: The Aircraft System Identification Process

5.5.2 Residual Analysis

Investigating the properties of the remaining residuals can often lead to important in-
sights into the validity of the assumptions made during the estimation process. Es-
pecially the assumption of “white, Gaussian” noise can be checked by plotting the
residuals’ auto-correlation functions and histograms. More mathematically rigorous
testing is based on the following

◦ Testing for Normality
Formal tests for normality of the residuals are based on histogram plots, or on an
empirical density, which are then compared to the nominal values of a Gaussian
probability density function (pdf) [MK2016, Ch. 5] [WP1997, Ch. 7.2].

◦ Testing for Independence
Formal tests for independence are based on empirical auto-correlation functions,
and comparing their values with thresholds to determine sufficient “whiteness”
[WP1997, Ch. 7.2] [MK2016, Ch. 5]

A problem in RPAS estimation is that model quality is seldom good enough to cap-
ture all deterministic effects. Then, even for acceptable results, the remaining residuals
often are neither perfectly “white” nor “Gaussian”. Nevertheless, inspecting them is
always a good idea, since they may contain hints on how to improve a model: by inves-
tigating any underlying, deterministic part, and visually comparing it to the available
regressors, conclusions may be drawn on how to advantageously extend the model
formulation.

5.5.3 Inverse Simulation

Another potential approach for model validation is based on the idea of having a feed-
back controller, together with the identified plant, track the measured trajectory. JATE-
GAONKAR states, that a proportional integral controller is oftentimes well suited for
this task. The necessary control effort can then be used as indicator of model quality,
i.e. if only slight additional control action is necessary, the model is able to reproduce
the measurements sufficiently well [Jat2015, Ch. 11].

The illustrated optimal control view on system identification allows for an intuitive
formulation of the above problem in the presented stochastic estimation framework.
The above problem may be formulated using a system model of the form xk+1

∆uk+1

 =
 dfk

[
xk,uk + ∆uk, θ̂

]
∆uk

+
 wk

wu
k

 k = 0, . . . , N̄ (5.71)

for the fixed, estimated θ̂, together with the original output equation and the cost func-
tions discussed at several places in this thesis. If the process noise covariance is then
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chosen to be (together with suitable boundaries on ∆u)

Cov

 wk

wu
k

 =
 0 0

0 Qu

 (5.72)

a problem arises that considers the model states as deterministic, but models the ad-
ditional control effort, which is necessary to match the outputs, as random walk. This
corresponds to a stochastic model formulation, which may be solved using full dis-
cretization as in the problem formulation “case IV” of section 4.4.

Thus choosing suitable gains for a feedback loop is replaced by finding a suit-
able Qu, which allows the system to track the outputs well. However, almost no ad-
ditional implementation effort is necessary, since the tools for parameter estimation in
a stochastic systems are available anyways. Furthermore, some more freedom may
be provided to the estimation algorithm by using a non-zero process noise covariance
for w, which turns the task into a state estimation problem with fixed model param-
eters θ̂. Also the random walk assumption for the additional control input may be
revised, and more complicated approaches implemented. For example a low-pass fil-
ter may be used to limit the bandwidth of ∆u. Still the same reasoning may be applied:
the “quantity” of additional control effort and process noise is used to determine, if a
model structure and the parameter estimates θ̂ are adequate. This shows, that using
optimal control for parameter estimation, as is advertised in this thesis, has another
big advantage: it naturally includes model validation formulations, which otherwise
would need to be implemented separately.

Of course, the above problem may also be solved using an iterative state estimation
algorithm together with a single shooting approach (“case III” in section 4.3). However,
then it will be difficult to enforce boundaries on ∆u, which may result in unfeasible
additional control effort ∆u.
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How insidious Nature is when one is trying to get at it
experimentally

Albert Einstein, 1915 [Föl2015]

6

Application Examples

The following sections show applications of the algorithms developed in this thesis.
First, two examples illustrate the superior performance of the novel full discretization
approach when applied to unstable aircraft models. Both examples are based on simu-
lation results: the first is a de-stabilized short period approximation of the DeHavilland
DHC-2. The second is a linear longitudinal model of the F16 with aft c.g.

The following two examples show applications in the presence of process noise.
The first covers the lateral directional motion of the DeHavilland DHC-2. The second
example is based on real flight test data of the DLR research aircraft HFB 320.

The last two examples are chosen to illustrate the full capabilities of the algorithms
developed here. Real flight test data, collected with a model aircraft using solely low-
cost sensors, is analyzed, and a full 6-degree of freedom (DOF) non-linear simulation
model is built in a first step. The capability of the full discretization approach to treat
stochastic systems is used to estimate wind conditions along with the aerodynamic
parameters. In a second step, a slight reformulation of the model enables the presented
algorithms to perform an inverse simulation for model validation purposes without
further implementation efforts.

Usually, the Non-Linear Programming (NLP) solver IPOPT will be used to obtain a
solution to the underlying optimization problem. Only in some cases SNOPT showed
superior performance. If IPOPT was used, it is noteworthy that it seemed to yield bet-
ter results, if the initial conditions x0 were estimated along with the model parameters.
This “additional freedom” enabled smoother convergence to meaningful results, even
in cases where the x0 were perfectly known.

All computations were performed on a consumer PC with an 8th generation In-
tel i5 CPU using MATLAB 2016b.
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6.1 Unstable Aircraft Identification

In [Jat2015] the complete ninth chapter is dedicated to unstable aircraft identification.
The major problem with parameter estimation for unstable systems is twofold:

Firstly, in order to perform any sort of experiment, an automatic control system
to artificially stabilize the plant is necessary. This inevitably introduces strong cor-
relations between input and output quantities, which makes the problem of data-
collinearity very prominent [Jat2015, Ch. 9]. Thus certain parameters cannot be esti-
mated independently.

In order to obtain informative data suitable for parameter estimation, it is usually
necessary to excite the characteristic motion of the system (see section 5.1.2 on input
design). Again, this is prohibited by the automatic control system, which necessarily
alters the system characteristics and may even hide parts of the dynamics.

The second major problem is of methodological nature: the standard approach as
illustrated in section 4.1 uses a single shooting transcription method. Thus, even for
small perturbations around the true trajectory, an unstable system will necessarily di-
verge. This divergence may pose serious problems for a classical single shooting for-
mulation, especially if the divergence is fast enough as to result in numerical problems.

The simplest way to overcome this problem is to estimate the parameters of the air-
craft in a closed loop with the control system. However, the exact internal workings of
the controller need to be known for this approach. Furthermore, correlations between
estimated parameters may be increased in this way.

In [Jat2015] different other approaches are illustrated, most of which use some sort
of artificial stabilization (either by explicitly introducing an artificial stabilization or by
using a Kalman filter), or are based on equation error methods, where no integration
needs to be performed. Only on a side-note JATEGAONKAR mentions, that another
approach of overcoming the issue of a divergent system is to use a multiple shooting
method [Jat2015, Ch. 9]. Then, the problems can be kept at bay, if the segments are kept
small enough.

Here, it will now be illustrated, how full discretization (as an extension to multiple
shooting) essentially overcomes this problem without additional programming effort.
Thus the original system needs not be altered or artificially stabilized. The standard
algorithms as are applied for stable systems may directly be used.

Another advantage of using a full-discretization approach manifests itself in the
computation of uncertainties: The problem of a divergent system is not only restricted
to the state equations, but the sensitivity equations are unstable, too, since they are
based on a linearization of the dynamic system under investigation. Thus solving the
sensitivity equations in order to determine estimated parameter covariances suffers
from the same problems of divergence and possible numerical inaccuracies. However,
the novel covariance estimate of section 3.5.3 offers a solution here: the proposed ana-
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lytic method of determining a null-space basis of the constraint Jacobian may already
alleviate the problem, since it solves the sensitivity equations in one shot, rather than
iteratively. Alternatively, the numerical approach via the Singular Value Decomposi-
tion (SVD) is independent of the stability of the system. Thus the analyst is able to
compute uncertainty estimates in the same manner as for stable systems.

6.1.1 Unstable DeHavilland DHC-2 Short Period

The first example to be discussed is taken from [Jat2015, Ch. 9], where a short-period
approximation of the de Havilland DHC-2 “Beaver” is artificially made unstable.

6.1.1.1 Model Formulation

The system formulation is .
w
.
q

 =
 Zw u0 + Zw

Mw Mq

 w

q

+
 Zη

Mη

 η
.
x = Ax + Bu

(6.1)

where u0 is the body-x component of the trim-velocity, w is the body-z velocity com-
ponent, q describes pitch rate and η elevator deflection. The parameters Zw, Zq, and Zη

describe the influences of aforementioned signals on the acceleration in body-z direc-
tion, whereas Mw, Mq, and Mη quantify their influence on the pitching acceleration.

The outputs of the system are


w

q

az

 =


1 0
0 1
Zw Zq


 w

q

+


0
0
Zη

 η
y = Cx + Du

(6.2)

where in addition to w and q the acceleration in body-z direction az is assumed to be
measured.

6.1.1.2 Data Gathering

The simulated measurement data is directly taken from the supplementary material of
[Jat2015] in order to enable a direct comparison. The data had been generated using a
proportional controller in order to stabilize the system for simulated flight tests. This
controller puts the eigenvalues of the closed loop system approximately where the
original, stable short period approximation of the DHC-2 was. The resulting elevator
deflection, when using a multi-sine as reference command, is shown in the bottom plot
of figure 6.1. This is then used for parameter estimation of the (unstable) bare-airframe.
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Figure 6.1: DUT multisine for unstable DHC-2 short period estimation; measurements z ( ),
estimated ŷ ( ) and true outputs y ( ); inputs u ( ) are shown in the bottom plot

In contrast to the example in [Jat2015], a small amount of measurement noise is
added to the outputs, since the algorithm as used here cannot cope with “perfect” data:
The estimated residual covariance matrix would be zero and could not be inverted in
the cost function formulation. For realistic cases, this does not pose a problem, since
perfect outputs are never achieved. However, for academic examples as this one, a
small amount of white, Gaussian noise needs to be added, which then also fulfills the
statistical assumptions about the problem. Here, a signal to noise ratio of 1:50 was
assumed, in order to keep close to the original, perfect data.

The resulting measurements, as used in the estimation are shown in the three first
plots of figure 6.1.

6.1.1.3 Results

As in [Jat2015], the trim speed u0 = 44.57m/s was assumed to be given and the value of
Zq was fixed at its nominal value, since otherwise too large correlations would prohibit
a meaningful estimation. Especially the strong correlation with Zη posed a problem.
The initial conditions x0 were estimated along with the model parameters.

Measurements of all states were available, thus the initial parameter guesses could
be set to zero, before applying the equation-error based method to improve upon them,
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Figure 6.2: true ( ) and estimated ( ) parameter values with estimated 1σ bound and
initial guesses after refinement ( ); numerical values of the estimated parameters and standard
deviations are given as lables, true parameter values are written on top of the respective bar

as illustrated in section 3.8.

The output match that was obtained by estimating the remaining, free parameters
using the full discretization approach (see section 4.2 for details) can be seen in fig-
ure 6.1. The true and estimated outputs show a perfect match: they cannot be visually
discerned.

Figure 6.2 shows a comparison between estimated, and true parameter values. Ad-
ditionally, the initial parameter guesses after applying the refinement approach are
illustrated as dots. The refinement step already gives the right tendencies without any
prior knowledge. The overall algorithm is then able to almost perfectly estimate the
parameter values despite the original absence of a meaningful initial parameter guess.
All estimated standard deviations are very small, below 6 %. Since this is a simulated
example, a comparison with the true parameter values is possible, which also shows
an almost perfect agreement between the estimated values (y-labels in figure 6.2) and
their true counterparts (atop the respective bars in figure 6.2). The eigenvalues of the
estimated system (6.9360×10−1 and −5.7997) agree to within 0.5% with the true eigen-
values (6.9343×10−1 and −5.8250) further underlining the close to perfect match.

The only downside of the results obtained here, are the exceedingly large correla-
tions between the parameters pertaining to the pitch rate equation, as shown in fig-
ure 6.3. However, this merely illustrates one of the big problems with unstable aircraft
identification: the proportional controller that was used to generate the example data-
set makes it difficult to independently estimate the pitching moment coefficients. Since
this example is intended to illustrate the capability to treat unstable systems, no further
measures are taken to try to reduce these correlations, as this would entail collecting
more informative data.

Since fixing Zq at its nominal value is not realistic, a test was performed with a value
that was 20 % off. The output match and parameter characteristics do not change sig-
nificantly, merely a different estimated value of Zη results. The algorithm thus accounts
for the altered Zq through adjusting Zη. This verifies the strong correlation between the
two, which prohibited meaningful results in the first place: virtually the same results
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Figure 6.3: Absolute values of the correlation matrix; largest absolute values are printed atop
the respective bar

are obtained although Zq is fixed at a largely different value.

Above presented results are the same, as were obtained by JATEGAONKAR using
approaches especially tailored to unstable system identification [Jat2015, Ch. 9]. The
big difference here is that no special provisions were necessary to treat this system.
Merely convergence of the algorithm took somewhat longer compared to simple ex-
amples using stable systems, where about 8 s is still considered acceptable. Also, a little
more effort was necessary to find settings of the optimization algorithm that enabled
this convergence (scaling, tolerances etc.). Other than that, no additional implementa-
tion of special methods was necessary.

6.1.2 F16 Longitudinal Motion

A second example is based on an unstable, linear model of the longitudinal motion of
an F16. Depending on the location of the c.g., the F16 model exhibits stable, or unstable
longitudinal characteristics.

6.1.2.1 Model Formulation

The model which is used here, is based on a linearization of a non-linear simulation
model with a c.g. position at 1.2075m from the aircraft reference point. It is taken from
[Lei], which in turn is based on [SL2003, NOG+1979].

234



Chapter 6: Application Examples

The model is formulated in the standard manner for linear, longitudinal systems
∆
.
V

∆ .
γ

∆ .
α

∆ .
q

 =


XV −g cos γ0 Xα − g cos γ0 Xq

−ZV
g

V0
sin γ0

g
V0

sin γ0 − Zα −Zq

ZV − g
V0

sin γ0 Zα − g
V0

sin γ0 Zq + 1
MV 0 Mα Mq




∆V
∆γ
∆α
∆q



+


Xη XδT

−Zη −ZδT

Zη ZδT

Mη MδT


 ∆η

∆δT


(6.3)

with states representing velocity V , climb angle γ, angle of attack α and pitch rate q.
The inputs are elevator deflection η and throttle setting δT . The dimensional coeffi-
cients, relating the states to the acceleration in body-x and body-z direction X , and
Z and the pitching acceleration M are treated as the parameters of the system. The
system is then

∆ .
x = A∆x + B∆u = A(x − x0) + B(u − u0) (6.4)

y = C(∆x + x0) (6.5)

where ∆ indicates deviations from the known trim values.The trim conditions γ0 = 0◦,
V0 = 160.27 m/s, α0 = 4◦, trim inputs η0 = −0.0076, δT,0 = 0.2 as well as the grav-
itational acceleration g = 9.806 65 m/s2 are given constants of the problem. Also,
the pitching moment due to throttle inputs and due to velocity changes are zero, i.e.
MV = MδT

= 0, and are thus not considered as parameters.
The matrix C is used for unit conversion to make interpretation easier.

6.1.2.2 Data Gathering

In order to conduct simulated flight tests, the model needs a stabilizing feedback con-
troller. Based on the work conducted in [Lei], a Linear Quadratic Regulator (LQR)
approach with full state feedback was chosen to achieve this. It is designed to follow γ

and V commands. For stationary accuracy, the system is augmented with two integral
error states eγ and eV and the reference command input r

.
eV
.
eγ

∆ .
x

 =
 0 I2 0

0 A



eV

eγ

∆x

+
 0

B

∆u +
 −I2

0

 Vcmd − V0

γcmd − γ0

 (6.6)

∆ .
xa = Aa∆xa + Ba∆u + Br∆r (6.7)

Then the LQR gain matrix is computed based on the solution to the following quadratic
Riccati equation [SL2003, Ch. 5]

0 = Aᵀ
aP + PAa + Q − PBaR−1Bᵀ

aP (6.8)

K = R−1Bᵀ
aP (6.9)
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Figure 6.4: Input-Output data for unstable F16 parameter estimation; measurements z ( ), estimated ŷ ( ) and true outputs y ( ); inputs
u ( ) are shown in the bottom two plots
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The weighting matrices for the states Q and inputs R were chosen as

Q =



0.8
50

1
0

0
0


R =

 1
1



The resulting stable, closed loop dynamics are then

u = −K∆xa + u0 (6.10)

∆ .
xa =(Aa − BaK) ∆xa + Br∆r (6.11)

The focus, when designing this controller, was not laid on very good performance, or
real-life applicability. It was merely intended to provide a stable plant, which may be
used for simulated flight tests.

Outputs of the closed loop system consist of the original outputs, together with the
control inputs to the original system

 y

u

 =
 0 C

0 −K

 e

∆x

+
 Cx0

u0

 (6.12)

the first part y of above output equation will be used as outputs for the unstable sys-
tem identification, whereas the second part will serve as inputs to the plant whose
parameters are to be estimated.

With this closed loop stable system, different simulated maneuvers are conducted,
in order to gather data for parameter estimation. Although the controller was designed
purely based on the linear system description, non-linear input limits were imple-
mented during simulation, to enforce throttle settings in the range [0, 1].

The resulting outputs y and inputs to the original system u can be seen in figure 6.4.
The types of maneuvers are indicated at the top of the figure, together with the main
reference command. They consist of four multi-step maneuvers in γcmd with different
step widths and step sequences, one climb maneuver, one acceleration-deceleration
and a push-over-pull-up maneuver. White, Gaussian noise with covariance matrix

Cov[v] =


(0.5 m/s)2

(0.15◦)2

(1.0◦)2

(1.0 ◦/s)2

 (6.13)

was added to the outputs to eventually obtain the simulated measurements z.
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Figure 6.5: True ( ) and estimated ( ) parameter values with estimated 1σ bound and
initial guesses after refinement ( ); numerical values of the estimated parameters and standard
deviations are given as lables, true parameter values are written on top of the respective bar

6.1.2.3 Results

Then the full discretization estimation approach, summed up in section 4.2, was ap-
plied. Model parameter estimates and outputs have been obtained after roughly 50 s,
numerically determining the null space of the constraint Jacobian took another 10 s.
The resulting output match is also part of figure 6.4, and again no difference between
true and estimated outputs can be seen.

As in the foregoing example, measurements of all states were available. Thus all
initial model parameter guesses could be set to zero, before using the equation error
based approach of section 3.8 for initial guess refinement. The actual state measure-
ments used in this step were first smoothed using a moving average filter. Figure 6.5
shows a comparison between true parameters, estimated parameters with their esti-
mated standard deviation, and initial parameter guesses after the refinement step. The
initial refinement already finds parameter values, that are in close proximity to the fi-

Table 6.1: Comparison of estimated and true eigenvalues for the unstable F16 example

λtrue λest rel. difference [%]
−1.972 −1.969 0.1450

6.313×10−1 6.313×10−1 0.0003
−1.301×10−2 ± i 1.023×10−1 −1.310×10−2 ± i 1.024×10−1 0.1656
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Figure 6.6: Absolute values of the correlation matrix; largest absolute values are printed atop
the respective bar

nal/true values. Also, most of the estimated standard deviations are very good, well
below 5 %. Table 6.1 shows a comparison between true and estimated eigenvalues,
whose magnitude agrees to within 0.2%, further underlining the almost perfect match.

Only those parameters pertaining to the body-x direction X , and thus to the veloc-
ity differential equation cannot be well estimated: their values are comparatively far
away from the truth, and their estimated standard deviations are considerably larger
than for the rest of the parameters. This can be attributed to the automatic controller
in place: It implements a velocity control, which effectively hides those dynamics
(namely the phugoid motion), and thus makes the estimation of the respective pa-
rameters more difficult.

Overall, the results are consistent in the sense that large estimated standard devia-
tions appear in estimates where the differences between estimated and true parameters
are large, too. Additionally, the initial guess refinement in those cases does not work
as well as for the other parameters. Thus, at least for this academic simulation exam-
ple, it can be concluded that the uncertainty estimates in the form of the parameter
covariance matrix are quite reliable.

The estimated absolute values of the correlation coefficients between the parame-
ter estimates are shown in figure 6.6. The relatively similar signal shapes for angle of
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attack α and pitch rate q lead to correlations between the parameters describing their
influence on the evolution of the states (Zα, Zq, Xα, Xq, Mα, Mq). The feedback control
then also correlates the elevator input with these signals, leading to somewhat higher
correlations of the control derivatives (Xη, Zη, Mη). However, overall only two correla-
tion coefficients exceed 0.85.

6.1.3 Conclusion – Unstable Aircraft Identification

The last two examples illustrated the application of the methods developed in this the-
sis to parameter estimation and uncertainty quantification for unstable systems. Clas-
sic approaches as illustrated in [Jat2015, Ch. 9] necessitate additional implementation
effort or approximations. Here, meaningful results could be obtained by merely using
the tools that were implemented for standard, stable aircraft descriptions. The addi-
tional robustness of full discretization, together with the novel, especially tailored un-
certainty computation approach may readily be used directly with unstable systems.
Merely convergence of the NLP solver was not as monotonous and took longer com-
pared to stable examples of similar complexity.

For the example involving the DHC-2, quite similar results could actually be ob-
tained using the implementation of the standard, single shooting method. A version of
it was developed during the work on this thesis, as alternative to the full discretization
transcription method. Apparently, the instability was not too severe to prohibit com-
puting estimates and their covariances using the classical single shooting approach.

However, for the F16 example, this is not true anymore. Integration of both the state
and sensitivity equations quickly resulted in deviations of several orders of magnitude,
making the calculation of reasonable results impossible. However, as illustrated in
this section, the application of the estimation approach using full discretization (see
section 4.2), together with the null-space method to obtain parameter covariances (see
section 3.5) does not suffer from those same problems.

A minor drawback of the novel approach, to be kept in mind when interpreting
results, is due to the nature of unstable systems: small changes (e.g. due to round-
off errors or model re-formulations) may have considerable influence on the results,
both with respect to parameter and uncertainty estimates. This can hardly be avoided
because it is inherent to the system at hand, not due to the estimation algorithm. A
symptom of this is that uncertainty estimates that were computed using the numeric
null space approach of section 3.5.4.1 may differ notably from their counterpart com-
puted with the analytic approach of section 3.5.4.2. Although the results in both cases
are qualitatively the same, the differences in the numerical values cannot solely be ex-
plained by round-off errors.
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6.2 Parameter Estimation in Stochastic Systems

The following two subsection take up two example cases, that JATEGAONKAR presents
to illustrate the application of the FEM [Jat2015]. They will be solved using the novel
stochastic problem formulation transcribed via full discretization, as was summarized
in section 4.4.

6.2.1 DHC-2 Lateral Directional Motion with Process Noise

The first case, which is illustrated in [Jat2015, Ch. 5.11.1], treats the lateral directional
motion of a DeHavilland DHC-2. Since this is a simulated example, additional infor-
mation such as the true outputs and parameters are available for comparison.

6.2.1.1 Model Formulation

The model is the following

 .
p
.
r

 =
 Lp Lr

Np Nr

 p

r

+
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Nξ Nζ Nv


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ζ
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 b.p
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 (6.14)

.
x = Ax + Bu + bx (6.15)

with states x representing roll rate p and yaw rate r. The inputs to the system are
aileron deflection ξ, rudder deflection ζ and the side component of the velocity in body
fixed coordinates v. The latter is assumed to be known from data post-processing. Pa-
rameters to be estimated are again the dimensional derivatives of above system equa-
tion. The output equation is
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(6.16)

y = Cx + Du + by (6.17)

where in addition to the states, and the lateral acceleration ay, measurements of the
state derivatives .p, .r are assumed to be available.

One major difference in comparison with the original example is, that the same bias
parameters b.p and b.r are used on the input (eq. (6.15)) and output side (eq. (6.17)) of the
model, where JATEGAONKAR introduces two different sets of bias terms. However,
it was found that only extremely correlated estimates of the two could be obtained,
which is why the model was simplified in this manner.
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6.2.1.2 Data Gathering

Since the accompanying material of [Jat2015] does not provide the true process noise
sequence, data was generated instead of using the provided record, in order to have
the true w available for comparison. This was done using the same inputs u as in
[Jat2015], which can be seen in the three bottom plots of figure 6.7. In addition to
that, a white noise sequence was generated using MATLAB’s randn function and the
following covariance matrix

Cov[wk] = Q =


(
2.83 rad/s2

)2 (
2.83 rad/s2

)2

 (6.18)

which is used as process noise input w and may be seen in figure 6.8. Since the exact
inner workings of JATEGAONKAR’s data-generation process are not known, above pro-
cess noise covariance was tuned manually, to obtain a result that is visually comparable
to his original data-set.

Similarly, the measurement noise covariance matrix was chosen to achieve an effect
that seemed realistic for the output values at hand

R =



(
4.79 ◦/s2

)2 (
4.79 ◦/s2

)2 (
0.20 m/s2

)2

(0.57 ◦/s)2

(0.57 ◦/s)2


(6.19)

The resulting measurements are shown in the top plots of figure 6.7.

6.2.1.3 Results

It was found, that the close to quadratic nature of the problem agrees well with SNOPT
as solver for the resulting NLP problem. IPOPT was also able to find the same solution,
but more iterations and thus longer computational times were necessary.

In order to reduce the number of optimization variables, the process noise samples
were thinned out to 80 % of their original number. FALCON.m [RBG+2018] then inter-
polated them onto the state time grid to correctly incorporate their effect at every inte-
gration time step. This effectively reduces the possible process noise bandwidth, but
reduced optimization time considerably, and the adverse effects of the limited band-
width were not noticeable.

Since state measurements were available, the initial model parameters could be ob-
tained using the improvement approach of section 3.8. In order to obtain reasonable
results in this step, a moving average filter was applied to the states and an initial
guess of θ0 = 0 was used. Figure 6.9 then shows the true parameter values, the fi-
nal estimates, and the initially improved guess. Again, the improvement approach is
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Figure 6.7: Measurements z ( ), estimated ŷ ( ) and true outputs y ( ); Control inputs
u ( ) are shown in the three bottom plots, where the side component of body fixed kinematic
velocity vector v is used as additional pseudo-control; the shaded areas indicate the 3σ output
bounds, but are almost too small to be visible
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Figure 6.8: Estimated ŵ ( ) and true process noise sequence w ( ) with estimated 3σ
bound

able to provide initial parameter values that are already close to the solution, giving
the NLP solver a good chance of finding valid estimates. In general, the agreement
between estimated and true values is very good, considering the significant amount
of process noise acting on the system. In some cases, the difference between true and
estimated parameters is larger, however in those cases the uncertainty estimates indi-
cate this nicely. The worst parameter estimates are those of Nξ and Yξ, where in the
latter case even the sign is incorrect. However, for both the estimated relative standard
deviation is very high, thus they could be identified as problematic also if their true
values were unknown. Correlations, which can be seen in figure 6.10, are very small
overall, thus independence of the parameter estimates is ensured.

The estimates of the bias parameters are not shown. They are far off from the true
values, and have immense estimated uncertainties. This is accepted, since they repre-
sent only nuisance parameters, whose value will not be used further.

Overall, the model performs very well, which can also be seen when comparing
the eigenvalues of the system, see table 6.2. This underlines that the characteristic
motion is correctly reproduced, which can also be seen when comparing the true and
estimated trajectory in figure 6.7. Visually, there is no difference to be seen. Further, it
is noteworthy, how well the algorithm is able to reproduce the random process noise

Table 6.2: Comparison of estimated and true eigenvalues for lateral directional motion of
DHC2 with process noise

λtrue λest rel. difference [%]
−5.5764 −5.5833 0.1243
−0.9556 −0.9652 0.9989
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Figure 6.9: true ( ) and estimated ( ) parameter values with estimated 1σ bound and
initial guesses ( )

sequence, which can be seen in figure 6.8: all major trends are replicated very well, and
only minor differences compared to the true sequence remain. It was found that thin-
ning out the number of process noise samples had a favorable influence on the number
of optimization iterations. Probably this is because the same amount of “information”
is used to determine fewer parameters, yielding a better defined optimum.

Uncertainty estimates are computed, both for model outputs (figure 6.7) and pro-
cess noise (figure 6.8). They are relatively small, which is probably due to the model
structure: since derivative information was assumed to be available, a lot of informa-
tion can be presented to the algorithm, which in turn results in “sure” estimates.

Overall the algorithm yields very good results: the time-series of figure 6.7 are
strongly corrupted by random inputs. So much so that it is difficult to discern reactions
to the deterministic inputs from consequences of the acting process noise. However,
in this idealized setting, the algorithm is still able to yield meaningful results. The
standard approach would be to use iterative state estimation together with a single
shooting formulation for the parameter estimation problem (see section 4.3). Although
computations are more involved when using the novel full discretization transcription,
and take longer compared to this standard approach, the results are very good. Despite
this downside, the novel approach provides valuable additional possibilities, such as
the straight forward inclusion of further constraints. These additional algorithmic pos-
sibilities can definitely be worth the computational cost. Admittedly, the circumstances
in this example are idealized (perfectly white noise; known process noise covariance;
perfectly known model structure). However, the very good results give reason to hope
that acceptable estimates may still be obtained under less ideal conditions.
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Figure 6.10: absolute values of the correlation matrix for DHC-2 lateral motion estimation
with process noise; largest absolute values are printed atop the respective bar

6.2.2 HFB 320 Longitudinal Motion with Process Noise

The second case, which is illustrated in [Jat2015, Ch. 5.11.2], treats the longitudinal
motion of the HFB 320 research aircraft. A non-liner model for the longitudinal mo-
tion of this twin-engine, ten-seat business jet is formulated, and subsequently used for
parameter estimation based on real flight test data.

6.2.2.1 Model Formulation

The non-linear model formulation is directly taken from [Jat2015, Ch. 5.11.2]. Since the
model itself is rather simple, it is not necessary to use the full extent of the notation
introduced in section 5.3. Rather, the model is noted in a simpler fashion, borrowing
from [Jat2015, Ch. 5.11.2].

Table 6.3: constants for HFB320 longitudinal estimation with process noise

Sref c̄ σT

(
xP sin σT +zP cos σT

)
Iy

30.0 m2 2.43 m 3.00◦ −7.0153 × 10−6 N−1 s−2

g Iy V0 m ρ

9.806 65 m s−2 9.1389 × 104 kg m2 104.67 m s−1 7472 kg 0.7920 kg m−3

246



Chapter 6: Application Examples

The following differential equations are used to connect the longitudinal states
V (true airspeed), α (angle of attack), θ (pitch angle), q (pitch rate), with their deriva-
tives and the inputs η (elevator deflection) and T (thrust force)

.
x =



.
V
.
α
.
θ
.
q

 =


− q̄Sref

m
CD + g sin(α− θ) + T

m
cos(α + σT )

− q̄Sref

mV
CL + q + g

V
cos(α− θ) − T

mV
sin(α + σT )

q
c̄q̄Sref

Iy
Cm + T

xP sin σT +zP cos σT

Iy

 = f(x,u,θ) (6.20)

The other quantities are dynamic pressure q̄ = ρ
2V

2, air density ρ, wing reference area
Sref , gravitational acceleration g, mass m, inertia around the body y-axis Iy, engine
installation angle σT , mean aerodynamic chord c̄ and the coordinates of the propulsion
reference point w.r.t. the c.g. (xP , zP ). The aerodynamic coefficients are modeled as

CD = CD0 + CDV
V

V0
+ CDαα (6.21)

CL = CL0 + CLV
V

V0
+ CLαα (6.22)

Cm = Cm0 + CmV
V

V0
+ Cmαα + Cmq

c̄q

2V0
+ Cmηη (6.23)

with reference velocity V0.
The output equation is
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= g(x,u,θ) (6.24)

where the force coefficients in the body fixed frame relate to the aerodynamic coeffi-
cients in the aerodynamic frame according to

CX = CL sinα− CD cosα (6.25)

CZ = −CL cosα− CD sinα (6.26)

The geometric data may be found in table 6.3. The parameters to be estimated are the
aerodynamic derivatives

θaero =
[

CD0 CDV CDα . . .

CL0 CLV CLα . . .

Cm0 CmV Cmα Cmq Cmη

] (6.27)
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6.2.2.2 Data Gathering

According to [Jat2015, Ch. 5.11.2] the data was collected during a flight test campaign
with only small input perturbations. Since the changes in altitude were very small,
density ρ was considered to be constant, see table 6.3.

The inputs were designed to first investigate the short period by using a 3-2-1-1
input, after which the phugoid is excited via a step change. Both are executed using the
elevator as primary control, which may be seen in the next to last subplot of figure 6.11.
The acting thrust force, probably computed via a propulsion model during the data
post-processing step, serves as second input and may be seen in the last subplot of
figure 6.11. It further shows the aircraft’s reaction in the states, and rotational and
linear accelerations.

6.2.2.3 Results

The data was then analyzed using the approach illustrated in section 4.4 on full dis-
cretization for stochastic system descriptions. The true value of the process noise co-
variance matrix was unknown, since the example is based on real flight test data. It
was assumed to be

Q =



(
1.13 m/s2

)2

(0.440 ◦/s)2

(0 ◦/s)2 (
0.315 ◦/s2

)2

 (6.28)

The numerical values are roughly based on results presented in [Jat2015, Ch. 5.11.2],
where elements of Q are estimated along with the model parameters. Those are then
divided by the sample time 0.1 s to obtain the above values.

A major difference arises in the covariance associated with the pitch angle θ: in
contrast to the original example it is assumed to be deterministic here, i.e. the corre-
sponding process noise covariance element is zero. This not only reduces the number
of optimization variables (since wθ,k = 0 ∀k), but also improves convergence in this
special case. The reason is probably that the information in the measurements of both
θ and q are used to determine a meaningful time series for q (and consequently wq).
Otherwise, additional uncertainty would be introduced, while not having enough in-
formation at ones disposal to determine the corresponding wθ signal.

Results were obtained after roughly one minute of computations. The arising out-
put estimates can be seen in figure 6.11 along with the inputs and measurements. The
record contains some turbulence influence, which is most obvious in the first 4 s, where
considerable changes in the states are present, while the inputs are relatively constant.
Also, the velocity measurement shows fluctuations over the complete time history that
are not directly related to other states or inputs. However, the algorithm is able to track
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Figure 6.11: Measurements z ( ), estimated outputs ŷ ( ) and control inputs u ( );
3σ bounds of the outputs are indicated as shaded areas but are barely visible
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Figure 6.12: Estimated process noise for HFB 320 longitudinal motion example

these turbulence influences very well, yielding the overall nearly perfect fit. Figure 6.11
also contains estimated 3σ bounds for the outputs, however they are very small and
nearly indiscernible here.

Figure 6.12 shows the estimated process noise signals, together with their estimated
3σ bounds. The process noise signals have again been thinned out to only retain 60 %
of the original number of samples. A consequence of this is the same as before: more
information is used per process noise sample, which improves convergence. Although
the estimated w sequences are not perfectly white, and still contain some minor de-
terministic influences, the overall shape of the w signals is deemed satisfactory for the
case at hand.

Actual model parameter estimates are shown as bar plot in figure 6.13, together
with the estimated standard deviations. These can overall be considered to be very
good, most of them lie below 4 %, where only CmV , CLV , and CL0 have estimated stan-
dard deviations that are somewhat larger. This may hint at identifiability problems.
Figure 6.13 further shows the results as obtained by JATEGAONKAR, where a close
agreement between the two sets can be stated. The differences are mostly below 7 %
of JATEGAONKAR’s values. Only the CmV estimates differ largely, further confirming
above suspicion for this parameter.

The last aspect illustrated by figure 6.13 are the improved initial guesses shown
as orange dots. Again, they were obtained using the novel equation error approach
illustrated in section 3.8 together with θ0 = 0. They already give the right tendencies
and are thus perfectly suited as starting values for an iterative procedure.
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Figure 6.13: JATEGAONKAR’s result ( ) and parameters values estimated here ( )
with estimated 1σ bound and improved initial guesses ( ); numerical values of the estimated
parameters and standard deviations are given as lables, JATEGAONKAR’s parameter values are
written on top of the respective bar

To conclude this example, figure 6.14 illustrates the correlation coefficients between
the model parameter estimates. It further underlines the suspected identifiability is-
sues mentioned above: considerable linear dependencies between the 0- and V - deriva-
tives exist, i.e. the estimation algorithm is not able to properly discern between bias and
velocity influences. This is probably due to insufficient variability in the V measure-
ment. However, a very similar result was originally obtained by JATEGAONKAR. Thus
the problem may be attributed to the information content and model structure, rather
than the estimation algorithm.

6.2.3 Conclusion – Parameter Estimation in Stochastic Systems

The two foregoing examples illustrated the use of the full discretization approach in
connection with a stochastic system formulation. First, the two obvious disadvantages
of using full discretization for stochastic systems have to be mentioned: The first is
related to the choice of the process noise covariance matrix Q, which has to be set a
priori. So far, no clear guidelines could be found on how to determine a meaningful
value. In contrast, the standard FEM offers an automatic way to compute Q. Unfortu-
nately it is not easily possible to integrate this automatic Q determination in the novel
approach, since it actively alters some of the optimization steps (heuristic F-correction;
adjustment of θi to keep (I − KC) positive definite [Jat2015, Ch. 5]). Here this would
mean to interfere with the internal workings of the NLP in use, which is not practical.
Future research into the applicability of “adaptive filtering” [CJ2012, Ch. 5.7] [Jaz1970,
Ch. 8.11] may be more promising in solving this issue. The second disadvantage is the
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Figure 6.14: absolute values of the correlation matrix for HFB 320 longitudinal motion esti-
mation with process noise; largest absolute values are printed atop the respective bar

significantly longer computational time necessary to obtain a result, which is due to
the increased size of the problem.

However, these are counterbalanced by the advantages of the method, such as ex-
plicit availability of a process noise estimate w. This may be used for analysis after
the estimation, or to enforce additional constraints during the estimation (e.g. enforce
energy dissipation, enforce whiteness, . . . ). The easy incorporation of arbitrary con-
straints, not only in the estimation but also in the uncertainty determination process
is another big advantage over classical methods. In some cases, they may even make
convergence to meaningful results possible, which is otherwise impossible: closeness
to measurements may be enforced by using constraints at early optimization stages,
when model parameters are still far from their final values. Also, using full discretiza-
tion tends to be more robust, which is a big advantage if no meaningful initial model
parameter guesses may be obtained. These aspects have to be weighed carefully, when
deciding which of the two methods to use.
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(a) Airframe with RC controller and telemetry base
station

(b) Flight Control System (FCC) based on STM-
discovery board and custom sensor shield

Figure 6.15: The SKYMULE testbed

6.3 Skymule

The following subsections are dedicated to full, non-linear system identification for
a small, low-cost RPAS, which is based on the commercially available model aircraft
SKYMULE. They are intended to show the full potential of the advertised parameter
estimation techniques using optimal control methods. The airframe was chosen be-
cause of its comparatively large interior, which was used to install a full sensor suite
mainly using low-cost MEMS components:

◦ MEMS IMU with 3-DOF gyroscopes, accelerometer, and magnetometer

◦ auxiliary MEMS magnetometer (not used here)

◦ static pressure sensor

◦ GNSS receiver

◦ dynamic pressure probe

◦ 2.4 GHz transceiver for telemetry link

A first prototype, based on a different airframe, is described in [GH2016], where it was
used for FPR experiments by the author. The testbed at hand (figure 6.15) is described
in detail in [Bar2016], a semester thesis which was supervised by the author.

6.3.1 SkyMule Non-Linear Parameter and Wind Estimation

The first application, based on flight data collected with the SKYMULE, is a parameter
estimation task for a full 6-DOF, non-linear simulation model of the aircraft. To do so,
first the model will be postulated, then the data gathering and preprocessing steps will
be illustrated, before estimation results are shown and discussed.
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6.3.1.1 Model Formulation

The non-linear model is largely based on what was discussed in section 5.3:

◦ the equations of motion are formulated for a flat, non-rotating earth, with respect
to a fixed reference point (section 5.3.1.1)

◦ attitude kinematics are formulated in terms of Euler angles (section 5.3.1.2)

◦ position kinematics are formulated in WGS84 coordinates (section 5.3.1.3)

◦ the engine dynamics are approximated as first order lag (section 5.3.2.1)

◦ actuator dynamics are approximated as second order lag (section 5.3.2.4)

◦ propeller data is taken from [BDAS2018], by choosing one that is similar (three
blades, comparable diameter and pitch), and implementing thrust and torque
coefficient as lookup table over the advance ratio (section 5.3.2.2)

◦ weight and balance modeling is based on assumed mass and inertia properties
(section 5.3.2.3)

◦ environmental conditions are implemented with constant gravity, and ISA (sec-
tion 5.3.3)

After a lengthy trial and error phase, the following aerodynamic model parameters
were found to perform well, while still being adequately identifiable

θaero =
[

CD0 CDα CDα2 . . .

CQβ CQζ . . .

CL0 CLα CLq . . .

Clβ Clp Clr Clξ . . .

Cm0 Cmα Cmq Cmη . . .

Cn0 Cnβ Cnp Cnr Cnζ

]
(6.29)

Further, according to the scheme presented in section 5.2 on sensor modeling and flight
path reconstruction, the following sensor error parameters were introduced
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) and a temperature
and pressure offset to account for non-standard ISA conditions (∆T , ∆pstat).

During data-preprocessing it was noted that wind effects cannot be neglected: flight
tests were conducted at velocities between 15 m/s and 20 m/s, whereas comparing kine-
matic and aerodynamic velocities indicated wind velocities of about 4 m/s. Thus the
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model was augmented with a simple random-walk description for wind velocity and
direction  .

V W
.
χW

 =
 wVW

wχW

 (6.31)

where the corresponding process noise covariance matrix was tuned manually to

Q =
 (1 m/s)2

(10◦)2

 (6.32)

The resulting model then relates the following states, inputs, and outputs
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u =
[
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(6.34)
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6.3.1.2 Data Gathering

The flight data stems from a test performed in August 2017, using a semi-automatic
maneuver injection system: the pilot trimmed the aircraft, before a pre-defined auto-
matic maneuver was started via the telemetry link. The software in use was an early
prototype of what was presented in [KGH2018]. Since automatically generated sig-
nals were added to the pilot’s inputs, he could still influence the execution. Further,
the fail-safe system allowed for an immediate overtake, in case something unexpected
happened.

Several maneuvers were conducted to excite both the longitudinal and lateral di-
rectional motion of the aircraft. During data pre-processing, actuator positions and
engine rotational rates were precomputed based on the resulting control inputs and
the respective models. They then served as inputs to the non-linear simulation model.
This was possible, since these subsystem models do not depend on flight mechanic
quantities: they are implemented as simple low-pass filters. The result is a size reduc-
tion of the state vector, since actuator and engine states are eliminated.

Figure 6.16 shows the main signals of the longitudinal motion for the five respec-
tive maneuvers. They were designed to excite the short period motion (“3211”) and
phugoid (“PULSE”), mainly using the elevator input. The off-axis response, i.e. the
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Figure 6.16: Longitudinal motion stemming from maneuvers in the longitudinal plane; mea-
surements z ( ), model outputs y ( ), outputs not considered in the estimation ( ), and
control inputs u ( )
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Figure 6.17: Lateral motion stemming from maneuvers in the lateral plane; measurements
z ( ), model outputs y ( ), outputs not considered in the estimation ( ), and control
inputs u ( )
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aircraft’s reaction in the lateral plane, is shown for completeness in figure G.1 in the
appendix.

Figure 6.17 illustrates the lateral signals resulting from maneuvers that were in-
tended to excite the lateral directional motion. They were designed to excite the dutch-
roll (rudder “DOUBLET”) and roll motion (aileron “121”). Again, the off-axis response
is shown in figure G.2 in the appendix. In all figures one can see the effect of the safety
pilot still having some control: the automatic part of the control signals are perfect
square waves, however they are added to the pilot’s control inputs, which distorts
them to a certain extent.

The collected data consists almost exclusively of raw measurement data from mag-
netometer, GNSS receiver as well as inertial and air data sensors. The different sam-
pling rates may be seen in the density of the respective signals: the GNSS experimental
data (∼ 5 Hz) is a lot less dense when compared to inertial, magnetometer and dynamic
pressure data (∼ 100 Hz); static pressure data is in between (∼ 70 Hz).

Overall, the data quality is acceptable for low-cost sensors: clear trends are visi-
ble during the maneuvers, but the noise level is comparatively high. Only gyroscope
measurements seem to be very good, with hardly any random measurement noise.
In contrast, accelerometer readings are of poor quality to the point of being useless.
The reason for is not only sensor noise, but also significant contributions due to struc-
tural vibrations: at certain time instants clear patterns from high frequency oscillations
are visible. This hints at a very unfavorable choice of installation location for the ac-
celerometer. Even though the quality of its measurements might not be fit for control
purposes, the basic trends in the signals are still observable. This is why the measured
accelerations still provide additional information that was considered in the estimation
process.

The only signals in the figures that do not correspond to raw data are those of the
estimated attitude angles φ̂

BO
, θ̂

BO
, and ψ̂

BO
. They stem from a complementary filter

using inertial and magnetometer data only, which is illustrated in appendix G.1. How-
ever, these attitude estimates are not used in the actual estimation process (indicated
by the dashed lines in the figures), they are merely presented for comparison.

6.3.1.3 Results

This example case is too complex to find meaningful initial parameter guesses solely
based on the initial guess improvement method of section 3.8. Next to the obvious
increase in complexity when treating full 6-DOF non-linear models, two other probable
reasons have been identified: Firstly, the approach relies heavily on the availability of
meaningful state measurements. However, in this example, attitude estimates stem
from a complementary filter, which was not fine-tuned. The remaining estimation
errors in the Euler angles complicate the application of the initial guess improvement.

Secondly, especially the initial guess for the force derivatives relies heavily on mea-
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sured accelerations and correctly computed forces of the aircraft’s subsystems. How-
ever, as was already noted, acceleration measurements are of very low quality, and the
propulsion model is quite basic. These aspects make a meaningful determination of
initial force coefficients very difficult.

Nevertheless, a set of initial values that allowed for good final results was found,
after a lengthy trial and error period. In this process, the model was split in lateral
and longitudinal models (employing the approach detailed in section 5.3.5), and each
was treated separately. Then different model formulations were tested, some param-
eters were tuned manually, and the initial guess improvement method was employed
for the sub-models. Especially matching the lateral directional motion turned out to
be difficult. Eventually a good initial model parameter guess was obtained, both for
aerodynamic and sensor error parameters. The latter were then kept constant during
the actual estimation process.

The final output match for the dominant directions of the longitudinal and lateral
maneuvers can be seen in figures 6.16 and 6.17. The off-axis results are shown in fig-
ures G.1 and G.2 in the appendix. These results were obtained after roughly 30 min of
computations, and another 5 min were spent on uncertainty quantification. These may
seem rather long, however, after a few minutes it was usually apparent, if the opti-
mization had a chance of converging to meaningful results, or if it should be aborted
and started anew with different initial guesses or another model structure.

Overall, the output match can be considered to be very good, especially consid-
ering the low-cost sensors in use. Especially the match of the rotational rates is very
promising: both in the lateral and longitudinal plane, all major influences are captured
very well, with only minor residuals remaining. These may be due to unmodeled dy-
namics, or atmospheric disturbances that could not be captured by the wind estimate.
Two major spikes, one in the roll rate

(
pOB

K

)
B

of the last aileron 1-2-1 maneuver, and

the other in the pitch rate
(
qOB

K

)
B

of the first 3-2-1-1 maneuver remain, which cannot
be properly explained using the linear model introduced here. Also, the overall match
of the roll rate

(
pOB

K

)
B

, although being acceptable, is worse compared to the fit that
was achieved for yaw and pitch rate. However, these aspects are considered a minor
drawback that mainly arises with relatively large, abrupt inputs and is thus tolerated.

Resulting model attitudes confirm this picture: The magnetometer readings
(
bR

x

)
B

,(
bR

y

)
B

, and
(
bR

z

)
B

, which are the main source of direct attitude information, are matched
very well. Only during those maneuvers, where there is some unexplained rotational
rate remaining, the magnetometer match tends to degenerate, e.g. during the lateral
maneuvers, where not all of the roll rate

(
pOB

K

)
B

may be replicated. When comparing
the model attitudes with the estimates of the complementary filter no clear conclusion
can be drawn: the main trends are captured, and often the picture is consistent with
that of the magnetometer data. However, especially the pitch angle θBO shows a sig-
nificant offset during the 3-2-1-1 maneuvers, although the pitch rate

(
qOB

K

)
B

is matched
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Figure 6.18: Wind estimate for longitudinal maneuvers in SKYMULE example; “measure-
ments“ z ( ) stem from simple difference between kinematic and aerodynamic velocity, and are
not considered in estimation, i.e. are not compared with outputs ŷ ( ); process noise driving
the random walk wind model ( ) is shown in the bottom plot; 3σ bounds are given as shaded
areas, boundaries are a darker shade of grey

almost perfectly. Since the fit with the
(
~b

R

x

)
B

is acceptable here, this may hint at slight

inconsistencies of the complementary filter rather than model deficiencies.

As was mentioned before, accelerometer data is quite unreliable. Nevertheless,

whenever there is significant excitation, this is visible in
(
~f

R
)II

B
, and matched well by

the model.

Velocity information is mainly due to GNSS velocity
(
~vR
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)E

O
and dynamic pressure

data q̄. For the former the results are good in the lateral directions
(
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)E

O
,
(
vR

K

)E

O
, and

they remain acceptable in the vertical direction
(
wR

K

)E

O
. Some deficiencies may be seen

in the vertical velocity, which manifest themselves also to a certain extend in the alti-
tude hR and static pressure pstat during the longitudinal maneuvers. Probably, this is
due to shortcomings in the propulsion model, which adversely influence the longitu-
dinal parameters of the lift and drag equations. However, without more data at further
trim speeds, this reaction will be difficult to capture. The velocity graphs also show the
effect of direct covariance scaling (section 3.10.2): despite the fact that there is 20 times
fewer samples of the GNSS signals, they are still equally well matched compared to
the inertial information and air data.

As was mentioned in the first section, wind influences needed to be considered, too.
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Figure 6.19: Wind estimate for lateral maneuvers in SKYMULE example; “measurements“
z ( ) stem from simple difference between kinematic and aerodynamic velocity, and are not
considered in estimation, i.e. are not compared with outputs ŷ ( ); process noise driving the
random walk wind model ( ) is shown in the bottom plot; 3σ bounds are given as shaded
areas, boundaries are a darker shade of grey

In order to achieve this, a stochastic, random-walk model for the wind was included,
which necessitated the use of the stochastic full discretization approach of section 4.4.
However, the problem size did not increase drastically, since only two process noise
terms (wVW

, wχW
) were considered. Additionally, those were thinned out to contain

40 % of the number of measurement samples, using the same idea as illustrated for
the two examples in section 6.2. Using fewer samples for the wind effectively reduces
the bandwidth of the signals. This is advantageous here, since we would like to avoid
compensating for high frequency model deficiencies with the wind estimate.

Figures 6.18 and 6.19 show the resulting noise sequences and wind estimates. The
“measurements” here are approximations based on the difference between kinematic
and aerodynamic velocity
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√

−2q̄
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0

 (6.36)

Wind magnitude and course are then extracted from the above result. Many errors are
contained in this approximation: attitude estimates stem from a complementary filter;
flow angle are disregarded; no sensor errors are considered in the air data signals;
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Clp[−2.41×101 ± 1.80%]
Clr[2.29 ± 6.19%]

Clξ[−5.54 ± 1.65%]
Cm0[−9.72×10−1 ± 1.49%]

Cmα[−7.32 ± 1.63%]
Cmq[−4.23×102 ± 1.57%]

Cmη[9.30 ± 1.43%]
Cn0[−2.37×10−1 ± 0.64%]

Cnβ [2.62 ± 0.66%]
Cnp[−1.53 ± 2.66%]
Cnr[−2.29 ± 2.16%]
Cnζ [−1.19 ± 0.64%]

Figure 6.20: Parameter estimates ( ) with estimated 1σ bound and initial guesses ( );
numerical values of the estimated parameters and standard deviations are given as labels;

density is computed from static pressure and temperature, whose quality is hard to

assess. Thus the above
(
~vR

W

)E

O
may only indicate rough trends.

Nevertheless, the resulting estimates lie at least in the same regions. Considering
the noise in the measurements, this match is more than acceptable. The corresponding
noise sequences cannot be described as “white”, but together with the resulting wind
estimates, the final result is good enough: The overall goal was not to perfectly repro-
duce the acting wind sequence, but to consider atmospheric influences in order to help
the algorithm determine better parameter estimates.

The driving process noise was limited to its assumed 3σ bound, which was actu-
ally attained at several time instants. Even though statistical considerations here are
more than questionable, the result seems to justify this choice of boundary. This be-
havior may be used as indication for possible model deficiencies: at those times when
a process noise sequence attains its limit, the algorithm might try to compensate for
effects that cannot be reproduced with the model by driving the wind signals to an ex-
treme. The model behavior at those instants should then be scrutinized further. Here,
the estimate is accepted in the light of the overall quality of the sensor data and the
performance of the model.

262



Chapter 6: Application Examples

CQβCQζ Clβ Clp
Clr Clξ

Cn0CnβCnp
CnrCnζ CQβ

CQζ

Clβ

Clp

Clr

Clξ

Cn0
Cnβ

Cnp

Cnr

Cnζ

0

0.2

0.4

0.6

0.8

1
0.88

0.85

0.96

0.89

CD0
CDα

CDα2CL0
CLα

CLq
Cm0

Cmα
Cmq

Cmη CD0
CDα

CDα2
CL0

CLα

CLq

Cm0
Cmα

Cmq

Cmη

0

0.2

0.4

0.6

0.8

1
0.88

0.96

Figure 6.21: Absolute values of the correlation matrices in the lateral and longitudinal plane
for the SKYMULE example; largest absolute values are printed atop the respective bar
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Another detail that the figures 6.18 and 6.19 illustrate is the treatment of constraints
in the uncertainty determination process. At those times, when the process noise terms
are at their boundaries, their uncertainty is zero, as illustrated in example 3.1 of sec-
tion 3.4. By using the novel null space uncertainty quantification approach of sec-
tion 3.5, this information is then used for the covariance computations of all other
optimization parameter elements.

Figure 6.20 shows the resulting parameter values, initial guesses as well as esti-
mated standard deviations. Especially the overall very low standard deviations, with
a maximum of just below 8 %, are noteworthy here. With few exceptions, also the
parameter correlations of figure 6.21 underline the quality of the result. Only the cor-
relations ρ[Clξ,Clp] and ρ[Cmη,Cmq] are very large, which is unfortunately often the case
for RPAS models: their small inertia leads to a very quick reaction to a control surface
deflection. Then the signal shapes for the control input, and the resulting rotational
rate are too similar, introducing rather strong correlations between the two. However,
both parameters are necessary for a meaningful model, which is why this exceedingly
large correlation is accepted here.

6.3.2 Model Validation Through Inverse Simulation

The algorithms presented in this thesis may naturally be extended to model valida-
tion through inverse simulation. This section formulates and solves the corresponding
problem for the SKYMULE results.

6.3.2.1 Model Formulation

The model to be used is very similar to that, which was used for parameter estimation,
with two major differences: The wind signals, which have been determined together
with the aerodynamic parameters, are now treated as inputs to the system. Secondly,
the model is augmented with four ∆-states, each modeled as random walk, to imple-
ment the additional control effort, which is necessary to track the trajectory.


∆
.
ξ

∆ .
η

∆
.
ζ

∆ .
ω

 =


w∆ξ

w∆η

w∆ζ

0

 (6.37)

It was found that the additional ∆ω only varied very little, thus the corresponding
process noise covariance element was set to zero. The effect is, that only its initial
condition will be estimated, resulting in one constant ∆ω per maneuver. In order to
keep a good balance between following the trajectory, and minimizing control effort,
above ∆-states and process noise elements were limited. This corresponds to limits
on the additional control effort (state limits) and limits on its first derivative (process
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noise limits). If not bounded, the algorithm might try to chase every last measurement
noise sample, which is undesired.

The resulting states are

x =
[ (

uR
K

)E

B

(
vR

K

)E

B

(
wR

K

)E

B

(
pOB

K

)
B

(
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K

)
B

(
rOB

K

)
B

. . .

φBO θBO ψBO λR µR hR . . .

∆ξ ∆η ∆ζ ∆ω
]ᵀ (6.38)

and the nominal inputs to the system are

u =
[
ξl ξr η ζ ωl ωr VW χW

]ᵀ
(6.39)

The inputs that actually act on the aircraft’s dynamics incorporate the effect of the delta
states

uact =
[
ξl −Kξ · ∆ξ ξr +Kξ · ∆ξ η +Kη · ∆η ζ +Kζ · ∆ζ . . .

ωl + ∆ω ωr + ∆ω VW χW

]ᵀ (6.40)

The factors Kξ = Kη = Kζ = 0.70 rad are used to map the normalized delta states
to actual control surface deflections. This effectively bypasses the actuator dynamics,
by adding the additional control effort directly to the control surface position signals.
However, for model validation purposes, this was accepted, especially since incorpo-
rating actuator dynamics would drastically increase the model (and thus problem) size.
At the same time, the additional insight to be gained by considering actuator dynamics
is expected to be minor.

The outputs and measurements are exactly the same as were considered in the es-
timation step (equation (6.35)), and all model parameters θ are fixed at the resulting
values of the last section. Thus the only remaining free elements of the optimization
vector are the states and process noise controls. This essentially transforms the prob-
lem into an optimal control problem without model parameters that has a cost function
rooted in statistical considerations.

6.3.2.2 Results

The problem has been solved with the methods as illustrated in case IV of section 4.4.
The initial conditions x0 were estimated to provide more freedom to the algorithm.
To reduce problem size and bandwidth in the additional control efforts, the number
of process noise samples was again reduced to 60 %, still the computation took com-
paratively long with just over 80 min. This may partly be attributed to the rather strict
convergence criteria in use.

Figures 6.22 and 6.23 show a comparison of the measurements, original trajectory
of the last section, and inverse simulation result. Figures 6.24 and 6.25 illustrate the
∆-states and the associated process noise signals. The off-axis response, i.e. lateral
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Figure 6.22: Inverse simulation results for longitudinal plane; measurements z ( ), estimated
model outputs y (considered / unconsidered ), and control inputs u ( ); Corre-
sponding inverse simulation results ( ) are shown on top
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Figure 6.23: Inverse simulation results for lateral plane; measurements z ( ), estimated model
outputs y (considered / unconsidered ), and control inputs u ( ); Corresponding
inverse simulation results ( ) are shown on top
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motion data for maneuvers conducted to excite the longitudinal plane and vice versa,
may be found in figures G.3 and G.4 in the appendix.

The output fit was already very good after the original estimation. Now, the addi-
tional control effort is mainly used to make the trajectory follow smaller oscillations.
These are probably rooted in unsteady air, which, together with the small inertia of
the SKYMULE, lead to notable effects. This tracking of smaller oscillations is most no-
table in the longitudinal motion (figure 6.22) during the two “PULSE” maneuvers: the
elevator, which originally only showed small variation throughout large parts of the
maneuver, is now used to almost perfectly track the pitch rate signal. The additional
control effort, which is necessary to achieve this, may be seen in the two bottom plots
of figure 6.22, or magnified in the ∆η plots of figure 6.24. For the pulse maneuvers,
its magnitude is small enough to be acceptable. The situation is slightly different for
the short-period motion, i.e. the 3-2-1-1 maneuvers. Here the tracking of the pitch rate
is not as perfect, and it comes at a somewhat higher elevator activity. Sometimes the
∆η signal is even at its boundary, indicating that the algorithm has trouble to perfectly
follow the measured trajectory. Nevertheless, this “optimal tracking” of the pitch rate,

and consequently the attitude via the magnetometer readings
(
~b

R
)

B
, is considered

good enough to accept the longitudinal rotational dynamics part of the model.

When it comes to the vertical velocity and altitude match, the model validation
step confirms the suspicions that were expressed in the parameter estimation section:
The model is not capable, not even with optimized additional control effort, to track

neither the GNSS measured
(
wR

K

)E

O
and hR nor their air data counterparts q̄ and pstat.

Again, this is probably due to the rather crude propulsion model, which then disad-
vantageously influences drag and lift characteristics.

In the lateral plane, almost perfect tracking can be achieved for the yaw rate, with
acceptable additional rudder deflections, even if they are somewhat larger than the
corresponding elevator inputs. This cannot be said for the roll rate, where tracking is
still acceptable, but notably worse compared to

(
rOB

K

)
B

and
(
qOB

K

)
B

. This again con-
firms the suspicion that the roll motion is not as well modeled as the other parts of the
rotational dynamics. The inverse simulation experiment actually shows that this is not
only the case for the obvious deficiency when it comes to the large amplitude spike in
the 1-2-1 maneuver (figure 6.23). Also for the remainder of the maneuvers the quality
of the tracking of

(
pOB

K

)
B

is not as high as for the other rotational rates.

The match of the magnetometer readings for the lateral maneuvers is improved
through inverse simulation: more minor oscillations can be replicated, leading to small-
er errors in the rotational rates and consequently smaller attitude errors. Nevertheless,
the roll rate deficiencies also show their effect here, their overall match is not as good
as for the longitudinal case. North and east velocities are mapped very well, although
some discrepancies remain. This is probably due to errors in heading and bank, and to
a somewhat lesser extend due to lift and drag characteristics that are slightly off.
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Figure 6.24: Additional control inputs for maneuvers in longitudinal plane; ∆-states ( ),
representing additional control inputs and process noise w ( ), representing their deriva-
tives

6.3.3 Conclusion – Skymule

The last two sections illustrated, how the algorithms detailed in this thesis may be
applied to full, non-linear 6-DOF RPAS identification. They illustrated most of the
novel ideas:

◦ both problems used the stochastic full-discretization formulation of section 4.4;
in the first formulation, the stochastic part represented atmospheric influences,
whereas in the second example it was used to account for additional control in-
puts in an inverse simulation setting.

◦ Initial model parameter guesses were partly computed based on the improve-
ment approaches of section 3.8;

◦ the residual covariance estimate (section 3.1) was scaled to account for different
numbers of samples using the approach of section 3.10.2;
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Figure 6.25: Additional control inputs for maneuvers in lateral plane; ∆-states ( ), repre-
senting additional control inputs and process noise w ( ), representing their derivatives

◦ when testing different model formulations, the interpolation approach of sec-
tion 3.9 helped to keep computation times short

◦ uncertainty quantification was only possible by using the novel approach of sec-
tion 3.5

The very good estimation results show, how the novel approaches developed in this
thesis may be applied in a very challenging, realistic scenario. Especially the increased
robustness due to using full discretization is of great importance. Together with the
initial guess improvement step it enabled convergence to meaningful results in the
first place, although this part of the process was not as straight forward as for simpler
examples.

Further, the implementation that was developed facilitated the analysis greatly:
merely few lines of coded needed to be altered in order to test different model formu-
lations, initial guesses, versions of the cost function and estimation algorithms. With
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this powerful tool at hand, the analysis could focus on the actual data, model and esti-
mation process, rather than considering low-level implementation aspects.

Admittedly, the model still shows room for improvement, especially in the param-
eters of the longitudinal plane. However, this is to be considered a problem of the
data, rather than of the estimation algorithm in use. A first step could be to collect
more flight data by exciting the longitudinal motion at other trim speeds. If this does
not lead to the desired improvements, further investigations of the propulsion system
(e.g. laboratory and/or wind-tunnel experiments to characterize its behavior) will def-
initely be beneficial. Lastly, approximated mass and inertia properties could be mea-
sured directly. All these inaccuracies are currently compensated for by the estimated
aerodynamic parameters, a problem which would be alleviated if the respective as-
pects were better known. The roll motion also shows some deficiencies, but they are
minor compared to the effects of an improved thrust, drag and lift model, which is
why these aspects should be addressed first.

Although a discussion of the deficiencies of the model has to be included for a seri-
ous presentation of the results, its overall quality is still very good: The overall output
fit is absolutely satisfactory, model parameters have favorable statistical properties,
and the inverse simulation showed a generally good agreement with only few aspects
that cannot be replicated properly with the model at hand. Merely the match of the es-
timated and complementary-filtered attitudes is observed not to be adequate at times.
However, since this happens both in the estimation and in the inverse simulation case,
the reason for this is probably insufficient tuning of the complementary filter, rather
than an inadequate model.

To summarize, improving the model’s quality has to entail the collection of further
data, rather than adjusting the model structure or improving the estimation algorithm.
The latter performed remarkably well considering the problem size, model complexity
and high noise levels in the data.
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The most probable value of the unknown quantities will be that
in which the sum of the squares of the differences between the

actually observed and the computed values multiplied by
numbers that measure the degree of precision is a minimum.

Carl Friedrich Gauss, 1857 [Gau1857]

7

Conclusion and Outlook

This last chapter sums up the main findings of this thesis, and lists possible topics for
future research.

7.1 Summary and Conclusion

The thesis at hand was intended to bring the two fields of optimal control and pa-
rameter estimation closer together. The successful application of the newly developed
approaches to several examples of increasing complexity shows that this original goal
was successfully met.

In order to be able to utilize any arising synergies, chapter 2 first gathered the nec-
essary theoretical basics from optimal control theory, statistical estimation, and state
estimation. In doing so, a common notational framework was set up that allowed the
consideration of optimal control as well as parameter estimation aspects. This collec-
tion of fundamentals then enables the identification of those aspects of modern optimal
control theory that may be used advantageously for parameter estimation. First and
foremost, using full discretization to transcribe the resulting problem into a Non-Linear
Programming (NLP) problem was found to be most valuable in terms of robustness
and straight forward incorporation of constraints.

After having the basics in place, chapter 3 continued to discuss those challenges that
appear in real-life application of optimal control and parameter estimation. Many well
established routines were collected that help to overcome these difficulties, namely
an approach to estimate the residual covariance matrix from the measured data (sec-
tion 3.1); expressions for the cost function’s first and second derivatives (section 3.2);
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and methods to compute analytic output sensitivities (section 3.3); Next to those well-
established approaches, some of this thesis’ main contributions are assembled in chap-
ter 3.

The first to be mentioned is an approach to reduce problem size and thus com-
putation time. It is based on spline interpolation and the numeric, variable step-size
solution to non-linear differential equations (section 3.9). The novel idea is not only
applicable in the context of full discretization but also when using the standard single
shooting approach. In both cases computation times can be drastically reduced, which
is of great benefit in the early stages of the parameter estimation process when many
different model formulations are tested and compared.

Further, a new scaling scheme is devised, which enables weighting of different out-
puts. This in turn may be used to simultaneously consider data sources with different
sampling frequencies (section 3.10), both in fully discretized and single shooting prob-
lems. The scaling approach may thus be used to integrate the flight path reconstruction
step more tightly with the actual model parameter estimation by directly using raw
measurement data without lengthy preprocessing. This had not been possible before.

The combination of optimal control methods and parameter estimation does not
only offer many advantages, such as increased robustness, direct applicability to un-
stable systems, easy incorporation of constraints or the applicability of mature NLP
solver implementations. It also poses some challenges, where the most important ones
for practical application have however been overcome in this work. The first is re-
lated to uncertainty quantification when post-processing parameter estimation results.
No system identification project can be complete without a measure for the uncer-
tainty involved, but the standard methods are not able to incorporate constraints in
the determination of covariances. However, in full discretization the complete system
dynamics are purely enforced via integration defects that are implemented as equality
constraints. To solve this issue, a novel uncertainty quantification scheme for parame-
ter estimation using full discretization has been developed (section 3.5). It is based on
general considerations of parameter bounds and prior work on constrained parameter
estimation, which is then applied to fully discretized parameter estimation problems
(section 3.4). It is further shown, that this novel scheme actually contains the standard
textbook approach for specific problem formulations on the one hand. On the other
hand it may be applied to unstable systems without further modifications, which is
not the case for standard methods. Only this new framework allows for a meaningful
application of the methods presented, since now a complete discussion of the results
involving parameter values and their uncertainty is possible.

Next, a novel approach to improve upon initial model parameter guesses is shown,
which is closely related to the idea of full discretization. This helps to make the overall
process more robust: the improved initial model parameter guesses were often found
to lie close enough to the final result to enable smooth convergence, even if the original
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initial guesses were set to zero (section 3.8). The idea may again be used for standard
single shooting as well as fully discretized problem formulations. It greatly facilitates
practical parameter estimation, since the need for initial model parameters that are
already located close to the final result is alleviated significantly.

In chapter 4 four different possibilities were discussed on how to formulate a state
and parameter estimation problem in an optimal control framework. They may be
arranged in the following pattern

System
deterministic stochastic

Transcription
Method

single shooting case I case III
full discretization case II case IV

The cases in the first row “single shooting” describe the well-established standard ap-
proaches, whereas those in the second row “full discretization” have been developed
throughout this thesis. For all formulations, the main characteristics, governing ideas
and the applicability of the approaches of chapter 3 are collected in order to fully define
the respective problem. This completes the discussion of parameter estimation tasks
in an optimal control context.

For a complete discussion of the topic of system identification for aerial vehicles us-
ing optimal control methods, a brief overview over the actual process is given in chap-
ter 5. It lists the most important aspects of experiment design, flight testing, data ac-
quisition, flight path reconstruction, modeling, parameter estimation, and model vali-
dation. All of those topics are discussed with Remotely Piloted Aerial System (RPAS)
applications in mind.

Everything that had been discussed in this work was implemented in an add-on
to the optimal control toolbox FALCON.m [RBG+2018]. It was realized that although
the optimal control based methods offer many advantages, they are not necessarily the
best choice in all possible applications. Thus the focus of this add-on was on modu-
larity in order to be able to quickly change between solution methodologies. The user
is then able to solve the same parameter estimation problem with different transcrip-
tion methods, NLP solvers, different settings, and different data sets by altering few
lines of code. Additionally, most of the novel features (residual covariance estimation,
interpolation, initial guess improvement, ...) may easily be de-/activated.

Eventually, three sets of application examples show the applicability of the novel
ideas in chapter 6, where parameter estimates together with the respective uncertainty
quantification have been computed in different settings. The first two cases show the
superior results to be obtained if the system under consideration is unstable. The next
set illustrates the methods when treating stochastic systems. The last two examples
treat the most complex case: a 6-DOF simulation model of the SKYMULE is constructed,
purely based on low-cost sensor data. Most of the novel ideas of chapter 3 come into
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play in order to eventually determine good model parameter values. In both SKYMULE

cases, the model is formulated as being stochastic: during the actual parameter esti-
mation, wind components are considered as random inputs; in the inverse simulation
example, the additional control effort necessary to perfectly track the recorded data is
modeled as random walk. Although in both cases the process noise vector is made as
small as possible in order to reduce the problem size, the resulting optimization vec-
tors still have around 1×105 elements. Nevertheless, this did not pose a problem: the
implemented parameter estimation add-on, together with the base implementation of
FALCON.m [RBG+2018] found meaningful results.

Overall, this thesis showed the successful application of optimal control meth-
ods to aircraft system identification problems. The biggest advantages of this are
the increased robustness of full discretization, together with the availability of many
mathematical and numerical tools for the solution of large scale problems, such as
FALCON.m [RBG+2018]. Further, when including constraints both in the estimation
and uncertainty quantification many new possibilities arise, such as explicitly enforc-
ing energy dissipation or keeping attitude quaternions at unit length. This is bought
with somewhat longer computational times compared to the standard single shooting
algorithms. However, often it can already be seen during early iterations, if the current
problem formulation is likely to yield good results, or if the optimization should be
aborted and the model reformulated. Thus the longer computational times only re-
ally matter when having to wait for convergence of the NLP solver in generating final
estimation results.

The classic textbook approaches on the other hand, have been successfully applied
for several decades now. The computation times in these cases tend to be shorter, but
the algorithms rely heavily on good initial model parameters. In the implemented add-
on, developed during the work on this thesis, these two approaches are combined in
order to obtain the best of both worlds.

7.2 Outlook

Although the fundamental challenges that arise when applying optimal control meth-
ods to parameter estimation problems have been solved in this thesis, some aspects
for future research remain. Further, new possibilities are opened up by combining the
two fields. Possible topics for future work may be separated in two classes: perfor-
mance improvement in the solution of the resulting NLP problem on the one hand,
and broadening the spectrum of possible applications on the other hand.

Some performance issues that have been identified are

◦ Although very good approximations to the cost function Hessian are available,
they are currently only used in the implementation of the single shooting method
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and in the uncertainty quantification step. Memory limitations have so far pro-
hibited its use when transcribing the problem using full-discretization, although
the sparsity of all influencing factors had been exploited. Future work could try
to find ways to incorporate this knowledge, either exact or by providing mean-
ingful limited memory approximations.

◦ Although the methods developed in this thesis allow to properly incorporate
constraints in a parameter estimation problem, the potential of this aspect is defi-
nitely not exhausted yet. Here the focus was on incorporating integration defects,
but other applications may be imagined: for example, constraints may be used
to force the state and/or output trajectory to lie close to the measured values.
This may improve robustness especially in the early stages of the optimization
process, when model parameters are still far from their optimum and integration
defect equations are not yet fully satisfied. Together with the proposed improve-
ment step (section 3.8), this may even render meaningful initial model parame-
ters completely unnecessary.

◦ The actual solution of the resulting NLP problem often followed the same three-
stage pattern: at first the solver tried to make the trajectory feasible, which usu-
ally deteriorated the output fit. Then model parameters and states were adjusted
in order to fit the outputs as good as possible, where the output plots showed
very good agreement after about 50 % to 60 % of the overall optimization time.
During the last stage, the solver only took small steps, which resulted in no visi-
ble change of the outputs, before finally declaring the problem solved.

Intuitively, the two aspects to be improved here would be the initial phase, dur-
ing which the original good output fit should be conserved as far as possible.
Maybe the previously discussed additional constraints could help here. The sec-
ond aspect would be the rather long time in the end, when no visual changes take
place anymore. This behavior may be improved through advantageous scaling
of the resulting NLP problem to arrive at the final solution more quickly.

◦ The last aspect of performance improvement would be a thorough investigation
into the quantities that influence the number of necessary iterations. Sometimes
seemingly small changes in the problem definition (e.g. adding prior informa-
tion of the state initial guesses) resulted in hugely different computation times.
Fully understanding these dependencies may help to streamline the process in
the future, by giving proper guidelines on how to set up a parameter estimation
problem to enable an efficient solution.

To enable more diverse applications, the following methodological aspects may be
investigated further

◦ Although the assumption of normally distributed residuals is most widely spread,
and very attractive due to its close relationship to least squares estimation, it may
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be interesting to investigate other shapes of the governing probability density
function (pdf). This may be considered for parts of the residuals only, e.g. us-
ing a different pdf for different signal sources such as Global Navigation Satellite
System (GNSS) versus Inertial Measurement Unit (IMU) data.

◦ The second aspect to be re-evaluated is the basic assumption that residuals are
white. Different courses of action may be envisioned

. An additional term could be introduced in the cost function, which punishes
non-white residuals, i.e. which compares a sample autocorrelation function
of the residuals with its desired, white version Cov[rj, rk] = B ·δjk enforcing
small covariances between sampling instants.

. The idea of “adaptive filtering” [CJ2012, Ch. 5.7] [Jaz1970, Ch. 8.11] may be
incorporated to tune the process noise covariance matrix to eventually ob-
tain white residuals. This would also solve the problem of finding a mean-
ingful Q in the first place.

. Residual coloring may be explicitly included in the estimation process by
not only estimating the residual covariance matrix, but an approximation
to its complete autocorrelation. Although this significantly complicates the
cost function formulation and derivative computation, it would be closer to
reality, since usually modeling errors manifest themselves as low-frequency
residual content.

◦ the novel uncertainty determination scheme presented here yields additional in-
formation that is not used yet, mainly by providing covariances for all elements
of the optimization vector. Currently, the main focus lies on the main diagonal
elements of sub-matrices, and possibly cross variances between parameter esti-
mates. It has to be investigated if meaningful interpretations for the off-diagonal
elements may be devised and used in the model validation step.
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Appendix A

Mathematical Background

A.1 Calculus

A.1.1 Layout Convention

Neither a consistent numerator nor denominator layout convention for matrix and vec-
tor derivatives is strictly kept throughout this thesis. Moreover, derivatives are always
applied along the “last” dimension, with rows being the first, columns being the sec-
ond and possibly higher dimensions. This results in the following form for the deriva-
tives, with x, y ∈ R, x ∈ Rnx×1, y ∈ Rny×1, X ∈ Rnx1×nx2 and Y ∈ Rny1×ny2

scalar by scalar

∂x

∂y
∈ R (A.1)

scalar by vector often called the gradient, the derivatives appear as rows in the coloumn
vector

∂x

∂y
=


∂x

∂[y](1)
...

∂x
∂[y](

ny

)

 ∈ Rny×1 (A.2)

vector by scalar the derivatives appear in the same order as in the original vector

∂x

∂y
=


∂[x](1)

∂y
...

∂[x](nx)
∂y

 ∈ Rnx×1 (A.3)

∂xᵀ

∂y
=
[

∂[x](1)
∂y

· · · ∂[x](nx)
∂y

]
∈ R1×nx (A.4)

III



A.1 Calculus

vector by vector the rows contain the elements of x, and the columns the derivatives
with respect to the elements in y

∂x

∂y
=



∂[x](1)
∂[y](1)

· · · ∂[x](1)
∂[y](

ny

)
... . . . ...

∂[x](nx)
∂[y](1)

· · · ∂[x](nx)
∂[y](

ny

)

 ∈ Rnx×ny (A.5)

This introduces a slight inconsistency, if the vector x degrades to a scalar, since the
resulting Jacobian would be a row vector. However, as in [CJ2012, ] it is considered
unproblematic, since the dimensionality will be apparent from the context.

The matrix of second derivatives of a scalar function, i.e. the Hessian, is constructed
in the same way

∂

∂y

∂x

∂y
= ∂2x

∂y2 =



∂2x
∂[y](1)

2 · · · ∂
∂[y](

ny

) ∂x
∂[y](1)

... . . . ...
∂

∂[y](1)

∂x
∂[y](

ny

) · · · ∂2x
∂[y](

ny

)2

 ∈ Rny×ny (A.6)

matrix by scalar the layout is the same as the original matrix X

∂X
∂y

=


∂[X](1,1)

∂y
· · · ∂[X](1,nx2)

∂y
... . . . ...

∂[X](nx1,1)
∂y

· · · ∂[X](nx1,nx2)
∂y

 ∈ Rnx1×nx2 (A.7)

scalar by matrix the layout is the same as the original matrix Y

∂x

∂Y
=



∂x
∂[Y](1,1)

· · · ∂x
∂[Y](

1,ny2
)

... . . . ...
∂x

∂[Y](
ny1,1

) · ∂x
∂[Y](

ny1,ny2
)

 ∈ Rny1×ny2 (A.8)

A.1.2 Matrix Derivatives

The following rules are taken from [BS2012] and adapted to fit the layout conventions
used here. A similar set of derivative rules can be found in [CJ2012, App. A.5]. The
derivative of the trace of a matrix inverse is

∂tr
[
X−1A

]
∂X

= −X−1AX−1 (A.9)

The derivative of the logarithm of the determinant of a matrix is

∂ ln|aX|
∂X

= X−1 (A.10)
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The derivative of the trace of a linear matrix expression is

∂tr[XA]
∂X

= Aᵀ (A.11)

∂tr[AXᵀ]
∂X

= A (A.12)

The derivative of the trace of a quadratic matrix expression is

∂tr[XAXᵀ]
∂X

=

 2XA if A = Aᵀ

XAᵀ + XA otherwise
(A.13)

A.1.3 Inverse Function Theorem

The inverse Function Theorem in higher dimensions states that for a function y = f(x)
with f : Rnx −→ Rny , f ∈ C1, if

∣∣∣∂f(x0)
∂x

∣∣∣ 6= 0 then f is invertible near x0, i.e. the system
of equations

y = f(x) (A.14)

has a unique solution x = f−1(y).
Finally, the theorem states further, that f−1 ∈ C1 and the Jacobians of the function

and its inverse follow the relation

∂f−1(y)
∂y

=
(
∂f(x)
∂x

)−1

(A.15)

Consequently, their determinants are [MV2003, Ch. 5]∣∣∣∣∣∂f−1

∂y

∣∣∣∣∣ = 1∣∣∣∂f
∂x

∣∣∣ (A.16)

A.2 Linear Algebra

A.2.1 Singular Value Decomposition

For general rectangular matrices A ∈ Rnm×nn the following is called a singular value
decomposition

A =


U
[

Σ 0
]

Vᵀ if m < n

U

 Σ
0

Vᵀ if m > n
(A.17)

if the left, and right singular matrices U ∈ Rnm×nm and V ∈ Rnn×nn are ortho-normal

UUᵀ = Im (A.18)

VVᵀ = In (A.19)
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and the matrix of singular values Σ ∈ Rnm×nn has only non-negative values on the
main diagonal.

The Singular Value Decomposition (SVD) is related to the eigendecomposition via
(only the case m < n is considered, analogous facts hold for m > n)

AAᵀ = TDTᵀ = UΣ2Uᵀ (A.20)

AᵀA = T̃D̃T̃ᵀ = V

 Σ2 0
0 0

Vᵀ (A.21)

Thus the left singular matrix U is made up of the eigenvectors of AAᵀ, whereas V is
made up of the eigenvectors of AᵀA. The matrix of singular values Σ then contains
the square roots of the eigenvalues of AAᵀ, which are non-negative since AAᵀ is sym-
metric.

Also, a null-space basis of A may be determined based on the SVD. If there are
zero-submatrices in the decomposition (either because some singular vales are zero, or
because m < n), the SVD may be partitioned into

A =
[

U1 U2

] Σ 0
0 0

 Vᵀ
1

Zᵀ

 (A.22)

Any vector that is located within the range of Z, i.e. that may be expressed as Zv is
mapped onto zero

A · Zv =
[

U1 U2

] Σ 0
0 0

 Vᵀ
1Zv

ZᵀZv

 =
[

U1 U2

] Σ 0
0 0

 0
v

 = 0 (A.23)

the multiplication V1Z = 0, since the right singular matrix is ortho-normal. Further,
ZᵀZ · v = v for the same reason. Thus, Z constitutes a null-space basis of A.

A.2.2 Generalized Matrix Inverse

A generalized inverse is defined in terms of the PENROSE equations [BIG2003, Ch. 1].
For every real, finite matrix A there is a unique, real matrix X satisfying

AXA = A (A.24)

XAX = X (A.25)

(AX)ᵀ = AX (A.26)

(XA)ᵀ = XA (A.27)

in this work, this unique generalized inverse, which is often called the MOORE-PENROSE

inverse, is denoted as X = A†.
For square, non-singular matrices, above simplifies to the conventional inverse

A† = A−1. For matrices with full column rank the pseudo inverse can be expressed
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via

A† =(AᵀA)−1 Aᵀ (A.28)

whereas for matrices with full row rank the pseudo inverse becomes

A† = Aᵀ(AAᵀ)−1 (A.29)

For general, rank deficient, real, rectangular matrices A ∈ Rm×n with m < n, the
pseudo inverse can be computed, using the SVD (see Appendix A.2.1) [BIG2003, Ch. 6]

A = UΣVᵀ =
[

U1 U2

] Σ1 0 0
0 0 0




Vᵀ
1

Vᵀ
2

Vᵀ
3

 (A.30)

The pseudo inverse A† is then [BIG2003, Ch. 6]

A† = VΣ†Uᵀ = V1Σ†
1U

ᵀ
1 (A.31)

Σ† =



1
σ1

. . . 0
1

σp

0 0
0 0


=


Σ†

1 0
0 0
0 0

 (A.32)

which can be verified by plugging this into the PENROSE equations (A.24) - (A.27).

A.3 Spline Interpolation

The following presentation of basic properties of B-Splines is taken from [Boo1991].
Using a non-decreasing vector of time instants tj as knot sequence

t ={tj : j = 0, . . . , Nknots − 1} (A.33)

the B-Spline basis functions of order 1 are

tB
1
j(t) =

 1 if tj ≤ t < tj+1

0 otherwise
(A.34)

Higher order basis functions are then constructed by the recursion

tB
n
j (t) = τj,n(t) tB

n−1
j (t) +(1 − τj+1,n(t)) tB

n−1
j+1 (t) (A.35)

τj,n(t) =


t−tj

tj+n−1−tj
if tj 6= tj+n−1

0 otherwise
(A.36)
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One of the advantages of B-splines is their local support, i.e. they are only non-zero
locally

tB
n
j (t) = 0 for t /∈ [tj, tj+n] (A.37)

Non-distinct knots tj lead to cases, where the B-Spline looses smoothness, i.e. full
continuous differentiability is not given anymore, it can only be obtained up to “n −
# non-distinct tj”. For interior knots, this is in our cases physically impossible, how-
ever this fact is used at the beginning and the end of a time-series: by setting t0 =
t1 = t2 = . . . and · · · = tNknots−2 = tNknots−1 = tNknots

, i.e. using the first and last value
with a multiplicity of n in the knot series, a jump at the beginning and the end of the
time-series is possible. Values outside of the considered time vector are then assumed
to be zero, and no derivatives have to be specified at its boundaries. Also, unwanted
oscillations can be avoided this way.

Furthermore, the tB
n
j (t) are completely determined by the knot sequence t. A

spline of n-th order is then a linear combination of the B-splines tB
n
j (t)

tS
n(t) =

∑
j

αj tB
n
j (t) αj ∈ R (A.38)

A.4 Statistical Basics

A.4.1 Random Variables

Most of the following presentations can be found in any textbook on probability the-
ory, e.g. [CS2011, CB2001, Sha2003, HH2015]. The selected topics regarding random
variables follow those presented in [Jaz1970], since many of the basic ideas regarding
estimation theory are based on this source.

The basis for probability theory is the probability space, or basic sample space Ω, with
elements (samples, experimental outcomes) ω. Combinations of the ω make up events,
and the probability function Pr{ω} assigns a probability to the event ω. The nature
of Pr{ω} is defined via KOLMOGOROV’s axioms [Jaz1970, p. 11]. For more details
on these definitions, any statistics textbook can be consulted, e.g. [Jaz1970, CS2011].
The latter underline the “relative frequency” interpretation of probabilities, i.e. if the
assigned probability of event ω1 is larger than that of ω2, the event ω1 will, in average,
occur more often when conducting the underlying experiment.

Let the function x(ω) be real, and defined on the basic sample space Ω. Then it is
called a random variable, if, for every real number x the inequality

x(ω) ≤ x (A.39)

defines an ω set, whose probability is defined [Jaz1970, p. 13]. Intuitively, the random
variable maps any random event to the real number line. Notation-wise x denotes a
random variable, and x is its realizations.
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The probability, which is assigned to above relation is the cumulative distribution
function of the random variable x

Fx(x) = Pr{x ≤ x} (A.40)

where x in the notation of the cumulative distribution serves to identify the relevant
random variable [Jaz1970]. Wherever it is clear from the context, the dependency on
the respective random variable will not be noted explicitly. Here, random variables are
always considered to be defined on the whole of R: −∞ < x < ∞, i.e. no complicated
set geometries are considered.

The cumulative distribution function completely describes the properties of a ran-
dom variable. Some properties are

lim
x→∞

Fx(x) = 1 (A.41)

lim
x→−∞

Fx(x) = 0 (A.42)

Pr{x1 < x(ω) ≤ x2} = Fx(x2) − Fx(x1) (A.43)

Pr{x1 < x(ω)} = 1 − Fx(x1) (A.44)

Pr{x = x(ω)} = lim
ε→0

Pr{x− ε < x(ω) ≤ x}

= Fx(x) − lim
ε→0

Fx(x− ε) = Fx(x) − Fx
(
x−
) (A.45)

If the random variable x can only assume a countable number of values, it is called dis-
crete. It can then equivalently be characterized by its probability mass function mx(x),
which, in the light of the foregoing equations, has the following properties [Jaz1970]

mx(x) = Pr{x(ω) = x} = Fx(x) − Fx
(
x−
)

(A.46)

0 ≤ mx(x) ≤ 1 (A.47)

Fx(x) =
∑
ξ≤x

mx(ξ) (A.48)

∑
ξ

mx(ξ) = 1 (A.49)

Thus, for discrete random variables, the cumulative distribution function has discon-
tinuous jumps at a countable number of values.

If there exists a probability density function px(x), s.t.

Fx(x) =
∫ x

−∞
px(ξ) dξ −∞ ≤ x ≤ ∞ (A.50)

the random variable is called continuous. If the distribution function is absolutely
continuous, the inverse holds, too [Jaz1970]

px(x) = d

dx
Fx(x) (A.51)
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For continuous random variables, the following hold [Jaz1970]

Pr{x1 < x(ω) ≤ x2} = Fx(x2) − Fx(x1) =
∫ x2

−∞
px(ξ) dξ −

∫ x1

−∞
px(ξ) dξ

=
∫ x2

x1
px(ξ) dξ

(A.52)

Pr{x(ω) = x} = lim
ε→0

∫ x

x−ε
px(ξ) dξ = 0 (A.53)

⇒ Pr{x1 ≤ x(ω) ≤ x2} = Pr{x1 < x(ω) ≤ x2} (A.54)

0 ≤ px(x) � 1 (A.55)

Fx(∞) =
∫ ∞

−∞
px(ξ) dξ = 1 (A.56)

A function, satisfying the last two equations is a density function, since it defines a
valid cumulative distribution function and thus a valid random variable [Jaz1970, p.
17]. It is tempting to extend this to the Dirac delta function

δ(t) =

 ∞ t = 0
0 t 6= 0

(A.57)

∫ ∞

−∞
δ(τ) dτ = 1 (A.58)

which fulfills the requirements. Furthermore, it can formally be used to translate a
discrete probability mass function mx(x) into a quasi-continuous probability density
function. Using the sifting property of the Dirac function, the equivalence of the two
distribution functions may be shown

px(x) =
∑

ξ

δ(x− ξ)mx(ξ) (A.59)

Fx(x) =
∫ x

−∞

∑
ξ

δ(x− ξ)mx(ξ) dξ =
∑

ξ

∫ x

−∞
δ(x− ξ)mx(ξ) dξ =

∑
ξ

mx(ξ) (A.60)

This, however, is an overly simplified illustration. The rigorous treatment of this aspect
necessitates advanced mathematical tools (measure theory, generalized functions,. . . ),
which are not to be covered here. Nevertheless, this aspect allows for some interest-
ing formal illustrations: e.g. it also allows for the definition of a probability density
function for constants c [Jaz1970]

pc(x) = δ(x− c) (A.61)

which translates into the following probability mass function

mc(x) =

1 x = c

0 x 6= c
(A.62)
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A.4.2 Moments

The following illustrations regarding moments are mainly based on [Jaz1970]. The first
moment (mean, average) of a continuous random variable is defined as

E[x] =
∫ ∞

−∞
x · px(x) dx (A.63)

whereas the discrete counterpart is

E[x] =
∑

x

x ·mx(x) (A.64)

It defines the mean of the distribution, and can also be interpreted as its center of grav-
ity. The expectation operator is linear, and the mean of a constant is the constant itself

E[ax + by] = aE[x] + bE[y] (A.65)

The n-th moment of a random variable is defined as

E[xn] =
∫ ∞

−∞
xn · px(x) dx

=
∑

x

xn ·mx(x)
(continuous case)

(discrete case)
(A.66)

From the last equation, it is obvious, that it does not matter if the random variable is
discrete or continuous, when using the proper definition of the expected value. Thus,
the distinction between the two will not be carried further. The second moment n = 2
is called the mean square value.

Some central moments (i.e. moments that are shifted by the mean) play an important
role; their general definition is

E[(x − E[x])n] (A.67)

The most important higher, central moment to be considered here is the variance n = 2,
together with its square root, the standard deviation

Var[x] = E
[
(x − E[x])2

]
= E[(x − E[x])(x − E[x])] = E

[
x2 − 2xE[x] + E[x]2

]
= E

[
x2
]

− 2E[x] E[x] + E[x]2

= E
[
x2
]

− E[x]2
(A.68)

σ[x] =
√

Var[x] (A.69)

The variance is computed from the squared deviation of x from its mean, i.e. it can be
used as an indicator of how dispersed the random variable is. The standard deviation
contains the same information, however it has the advantage, that it has the same units
as the original random variable, and is thus easier interpreted.
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A.4.3 Multivariate Case

If several random variables x1 . . . xnx are defined on the same probability space Ω, they
may be treated together. They can be characterized by their joint distribution function
[Jaz1970]

Fx1,...xnx (x1, . . . xnx) = Pr{x1(ω) ≤ x1 . . . xnx(ω) ≤ xnx} (A.70)

Fx(x) = Pr{x(ω) ≤ x} (A.71)

where the second equation uses a shorthand vector notation

x =
[
x1 · · · xnx

]ᵀ
(A.72)

x =
[

x1 · · · xnx

]ᵀ
(A.73)

and the inequalities are to be read element-wise. For a continuous random variable,
the joint density function is then

Fx(x) =
∫ x1

−∞
· · ·

∫ xnx

−∞
px(ξ1 . . . ξnx) dξ1 . . . dξnx (A.74)

px(x) = ∂nx

∂x1 . . . ∂xnx

Fx(x) (A.75)

If one is only interested in some of the random variables, the marginal distribution and
density function are of interest. They can be obtained by “integrating out”, e.g. the k-th
random variable

Fx1...xk−1,xk+1...xnx (x1 . . . xk−1, xk+1 . . . xnx) = Fx(x1 . . . xk−1,∞, xk+1 . . . xnx) (A.76)

px1...xk−1,xk+1...xnx (x1 . . . xk−1, xk+1 . . . xnx) =
∫ ∞

−∞
px(x) dxk (A.77)

The approach can be applied repeatedly to obtain other “marginal” distributions.

A.4.3.1 Moments

The extension to multi-dimensional moments is straightforward. For the mean of a
continuous, multi-dimensional random variable one gets [Jaz1970]

E[x] =


E[x1]

...
E[xnx ]


with E[xi] =

∫ ∞

−∞
· · ·

∫ ∞

−∞
xipx(x) dx1 . . . dxnx =

∫ ∞

−∞
xipx(x) dx

(A.78)

The last equality shows a shorthand notation of how the integral is performed over the
entire sample space. Extension to the variance is

Var[xi] = E
[
(xi − E[xi])2

]
(A.79)
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where also mixed terms become possible. The joint, second, central moment the so-
called cross- or co-variances, play again an important role

Cov[xi, xj] = E[(xi − E[xi])(xj − E[xj])] (A.80)

Cov[xi, xi] = Var[xi] = Cov[xi] (A.81)

The second equation shows the relation of the covariance and variance. Since they
are closely related, from here on only the name covariance will be used. Whenever
only one input argument is listed, this implies the variance of the considered random
variable.

Arranging all covariances in a matrix yields the covariance matrix of the vector of
random variables

Cov[x] =


Cov[x1, x1] · · · Cov[x1, xnx ]

... . . . ...
Cov[xnx , x1] · · · Cov[xnx , xnx ]


= E[(x − E[x])(x − E[x])ᵀ]
= E[xxᵀ] − E[x] E[x]ᵀ

(A.82)

The covariance Cov[x] is symmetric and positive definite by construction. The vari-
ances of the elements of x can be found on the main diagonal; standard deviations are
computed as the respective square roots

Var[xi] =[Cov[x]](i,i) i = 1 . . . nx (A.83)

σ[xi] =
√

[Cov[x]](i,i) (A.84)

Normalizing the covariance with the two respective standard deviations yields the
correlation coefficient

ρ[xi, xj] = Cov[xi, xj]
σ[xi]σ[xj]

(A.85)

which is in the range −1 to 1 per construction. It can indicate linear dependence be-
tween variables, when its absolute value is close to 1; independence when it is close
to 0. For this definition to be valid, the two random variables must be non-degenerate,
i.e. their variances must not be 0.

Analogously to the covariance, the correlation coefficients can be arranged in a cor-
relation matrix

Corr[x] =


ρ[x1, x1] · · · ρ[x1, xnx ]

... . . . ...
ρ[xnx , x1] · · · ρ[xnx , xnx ]



=


1

σ[x1] 0
. . .

0 1
σ[xnx ]

Cov[x]


1

σ[x1] 0
. . .

0 1
σ[xnx ]


(A.86)
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It has 1’s on the main diagonal per construction.
For two random vectors, the covariance matrix Cov[x,y] is

Cov[x,y] = E[(x − E[x])(y − E[y])ᵀ]
Cov[x,y] ∈ Rnx×ny

(A.87)

which is neither necessarily symmetric, nor quadratic.
For computations involving covariance matrices, the following rules can be applied

[HH2015, Ch. 4.2, p 125], with constants A,B, and b, c and the random vectors x,y, z;
all of appropriate Dimension

Cov[Ax + b] = ACov[x] Aᵀ (A.88)

Cov[Ax + b,By + c] = ACov[x,y] Bᵀ (A.89)

Cov[x,y + z] = Cov[x,y] + Cov[x, z] (A.90)

Cov[x + y] = Cov[x] + Cov[y,x] + Cov[x,y] + Cov[y] (A.91)

Cov
[

N∑
i=1

xi

]
=

N∑
i=1

N∑
j=1

Cov[xi,xj]

=
N∑

i=1
Cov[xi] +

N∑
i=1

N∑
j=1
i 6=j

Cov[xi,xj]
(A.92)

A.4.3.2 Transformations

Consider the transformation y = f(x) of a random variable, with x,y ∈ Rnx , where
px(x) is given. Suppose, f−1 exists, and both f and f−1 are continuously differentiable.
Then the transformed probability density py(y) is [Jaz1970, Theorem 2.7]

py(y) = px
(
f−1(y)

)∣∣∣∣∣∣
∣∣∣∣∣∂f−1(y)

∂y

∣∣∣∣∣
∣∣∣∣∣∣ (A.93)

where
∣∣∣∣ ∣∣∣∂f−1(y)

∂y

∣∣∣ ∣∣∣∣ indicates the absolute value of the determinant of the Jacobian of the

inverse transformation.

A.4.4 Independence

Two random variables are said to be independent, if any of the two following conditions
hold [Jaz1970]

Fxi,xj(xi, xj) = Fxi(xi) · Fxj(xj) (A.94)

pxi,xj(xi, xj) = pxi(xi) · pxj(xj) (A.95)

which extends to the concept of mututal independence, if all xi, xj are independent for
i 6= j

px(x) =
∏

i

pxi(xi) (A.96)
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and “joint independence”, if all xi, yj are independent

px,y(x,y) = px(x) · py(y) (A.97)

Two random variables xi, xj are said to be “uncorrelated” if

Cov[xi, xj] = 0 (A.98)

otherwise they are correlated. For uncorrelated random variables, their correlation
coefficient is also 0. Furthermore, it holds

E[xyᵀ] = E[x] E[y]ᵀ (A.99)

Cov[x + y] = Cov[x] + Cov[y] (A.100)

If two random variables are independent, they are also uncorrelated. However,
the inverse is in general not true [Jaz1970]. One important special case, where cor-
relation does however imply dependence, is for Gaussian random variables, see sec-
tion A.4.6 Gaussian Random Variables.

A.4.5 Conditional Probabilities

The definition of a conditional probability is [Jaz1970]

Pr{ω1|ω2} = Pr{ω1, ω2}
Pr{ω2}

(A.101)

Intuitively, this can be read as the (modified) probability of ω1, given that an occurrence
of ω2 has been observed. For this to be meaningful, there has to be a possibility that
ω2 occurs, which translates to Pr{ω2} 6= 0, thus the division above does not pose a
problem for meaningful tasks.

Employing a limiting argument, JAZWINSKI then arrives at a definition for the con-
ditional, continuous probability density using the marginal distribution py(y) [Jaz1970,
p. 38]

px|y (x|y) = px,y(x, y)
py(y) (A.102)

py(y) =
∫ ∞

−∞
px,y(x, y) dx (A.103)

and a conditional cumulative function

Fx|y (x|y) =
∫ x

−∞ px,y(ξ, y) dξ
py(y) (A.104)

For independent x and y it holds

px|y (x|y) = px,y(x, y)
py(y) = px(x) py(y)

py(y) = px(x) (A.105)
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The extension to the vector case is straight forward

px|y (x|y) = px,y(x,y)
py(y)

px1...xnx
∣∣y1...yny

(
x1 . . . xnx

∣∣∣y1 . . . yny

)
=
px1...xnx ,y1...yny

(
x1 . . . xnx , y1 . . . yny

)
py1...yny

(
y1 . . . yny

) (A.106)

py(y) =
∫ ∞

−∞
px,y(x,y) dx

py1...yny

(
y1 . . . yny

)
=
∫ ∞

−∞
· · ·

∫ ∞

−∞
px,y(ξ1 . . . ξnx ,y) dξ1dξnx

(A.107)

Combining above definitions for px|y (x|y) and py|x (y|x) and substituting px,y(x,y)
eventually yields Baye’s Theorem

px|y (x|y) = py|x (y|x) · px(x)
py(y) (A.108)

for continuous random vectors.
Since it holds [Jaz1970]

px|y (x|y) ≥ 0 (A.109)∫ ∞

−∞
px|y (x|y) dx = 1 (A.110)

conditional probability densities are themselves valid density functions. However,
since they depend on the realizations of y, they are at the same time random variables.

The mean of a continuous conditional probability px|y (x|y) is the marginal distribu-
tion px(x)

E
[
px|y (x|y)

]
=
∫ ∞

−∞
px|y (x|y) · py(y) dy =

∫ ∞

−∞
px,y(x, y) dy = px(x) (A.111)

A.4.5.1 Moments

Statistical moments can also be defined based on conditional probabilities [Jaz1970]

E[x|y] =
∫ ∞

−∞
xpx|y (x|y) dx (A.112)

Since px|y (x|y) depends on the realizations of y, the conditional mean E[x|y] is a func-
tion of y, and thus a random vector.

Let x, y, and z be jointly distributed random variables, and A, B, and c be fixed
constants of appropriate size. Then the following equalities hold for conditional means
[Jaz1970, Theorem 2.9]

E[x|y] = E[x] if px,y(x,y) = px(x) py(y) (A.113)

E[E[x|y]] = E[x] (A.114)

E[c|y] = c (A.115)

E[g(y)|y] = g(y) (A.116)

E[Ax + Bz|y] = AE[x|y] + BE[z|y] (A.117)
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µ1 − σ1 µ1
µ1 + σ1

µ2 − σ2

µ2

µ2 + σ2

x1

x2

p x
(x

)

Figure A.1: Example of a two-dimensional Normal probability density function

Analogously, conditional covariances can be defined, which are again a random vari-
able dependent on y

Cov[x|y] = E[(x − E[x|y])(x − E[x|y])ᵀ|y] (A.118)

Using the computational rules of the conditional mean and the definition of the con-
ditional covariance, the following “rule of total variances” can be derived [Jaz1970, p.
41]

Cov[x] = E[Cov[x|y]] + Cov[E[x|y]] (A.119)

Thus, the covariance of the random variable x can be split in two parts using the in-
formation that might be contained in a realization of y: One part pertains to the mean
of the conditional variance, and the second part is the covariance of the conditional
mean.

A.4.6 Gaussian Random Variables

The probability density function of a “normally” or “Gaussian” distributed random
vector x is

px(x) = 1√
(2π)nx|Σ|

exp
(

−1
2(x − µ)ᵀ Σ−1(x − µ)

)
(A.120)

where|Σ| is the determinant of Σ. Figure A.1 shows an example for a two dimensional
Gaussian probability density function. The Gaussian distribution is characterized by
two parameters only, namely its mean µ and covariance matrix Σ.

E[x] = µ (A.121)

Cov[x] = Σ (A.122)
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Sometimes a normally distributed random vector will be indicated as

x ∼ N (µ,Σ) (A.123)

Separating the parts of x in two, yields the following partitioning of the mean and
covariance

x =
 x1

x2

 (A.124)

µ =
 µ1

µ2

 =
 E[x1]

E[x2]

 (A.125)

Σ =
 Σ11 Σ12

Σ21 Σ22

 =
 Cov[x1] Cov[x1,x2]

Cov[x1,x2]ᵀ Cov[x2]

 (A.126)

Based on this partitioning, some very appealing properties of the Normal distribution
can be shown:

Independence of Gaussian Random Variables If the two parts are uncorrelated, i.e.
Cov[x1,x2] = 0, after some algebraic reformulations, the joint distribution function can
be expressed as

px(x) = px1(x1) · px2(x2) (A.127)

That is, for Gaussian random variables, no correlation implies independence [Jaz1970,
Theorem 2.10].

Linear Operations on Gaussian Random Variables Consider the linear transforma-
tion y = Cx + b. Then applying the rule about transforming random variables (A.93)
yields

py(y) = 1√
(2π)nx|Σ|

exp
(

−1
2(x − b − Cµ)ᵀ(CΣCᵀ)−1(x − b − Cµ)

)
· 1
|C|

(A.128)

⇒ y ∼ N (b + Cµ,CΣCᵀ) (A.129)

Thus, linear transformations of Gaussian random variables yield again Gaussian ran-
dom variables, where the mean and covariance can easily be computed.

Conditional Gaussian Densities Using above partitioning, and the results w.r.t. in-
dependence and linear operations on Gaussian variables, it can be shown that the con-
ditional pdf px1|x2 (x1|x2) is again Gaussian with

E[x1|x2] = µ1 + Σ12Σ−1
22 (x2 − µ2) (A.130)

Cov[x1|x2] = Σ11 − Σ12Σ−1
22 Σ21 (A.131)

⇒ x1|x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2) ,Σ11 − Σ12Σ−1
22 Σ21

)
(A.132)
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The derivation is lengthy and can e.g. be found in [Jaz1970, Ch. 2.6].
These characteristics make the Gaussian distribution especially appealing, since

computations simplify greatly. Furthermore, its application is often well justified, due
to the “Central Limit Theorem”, see A.4.9.2.

A.4.7 Optimal Linear Combination of Unbiased and Uncorrelated
Estimates

Assume that two uncorrelated, unbiased estimates θ̂1 and θ̂2 (together with their re-
spective covariances) of a parameter θ are available

E
[
θ̂1
]

= θ (A.133)

E
[
θ̂2
]

= θ (A.134)

Cov
[
θ̂1, θ̂2

]
= 0 (A.135)

CRASSIDIS and JUNKINS use similar arguments as the ones to follow, in order to arrive
at an optimal combination of a forward and a backward filter for fixed interval smooth-
ing [CJ2012, Ch. 6.1]. Their results can be generalized for any estimate, not necessarily
originating in a state estimation problem.

Consider a linear combination of θ̂1 and θ̂2 as an estimator for θ

θ̂c = M1θ̂1 + M2θ̂2 (A.136)

In order for this estimate to be unbiased, the following has to hold

E
[
θ̂c

]
= E

[
M1θ̂1 + M2θ̂2

]
= M1E

[
θ̂1
]

+ M2E
[
θ̂2
]

=(M1 + M2) θ
!= θ (A.137)

⇒ Inθ
= M1 + M2 (A.138)

Now an optimal estimate can be obtained by minimizing the trace of the covariance
matrix Cov

[
θ̂c

]
, i.e. by minimizing the sum of the parameter variances. Since the esti-

mates are assumed to be uncorrelated, this becomes

Cov
[
θ̂c

]
= M1Cov

[
θ̂1
]

Mᵀ
1 +(Inθ

− M1) Cov
[
θ̂2
]
(Inθ

− M1)ᵀ (A.139)

∂tr
[
Cov

[
θ̂c

]]
∂M1

= 2M1Cov
[
θ̂1
]

− 2(Inθ
− M1) Cov

[
θ̂2
] != 0 (A.140)

⇒ M1 = Cov
[
θ̂2
](

Cov
[
θ̂1
]

+ Cov
[
θ̂2
])−1

(A.141)

M2 = Cov
[
θ̂1
](

Cov
[
θ̂1
]

+ Cov
[
θ̂2
])−1

(A.142)

Using the following identity(
Cov

[
θ̂1
]

+ Cov
[
θ̂2
])−1

= Cov
[
θ̂1
]−1

(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂2
]−1

= Cov
[
θ̂2
]−1

(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂1
]−1

(A.143)
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the weighting matrices become

M1 =
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂1
]−1

(A.144)

M2 =
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂2
]−1

(A.145)

The covariance of the optimal combination is

Cov
[
θ̂c

]
= M1Cov

[
θ̂1
]

Mᵀ
1 + M2Cov

[
θ̂2
]

Mᵀ
2

=
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂1
]−1

Cov
[
θ̂1
]

Cov
[
θ̂1
]−1

(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1

+
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
Cov

[
θ̂2
]−1

Cov
[
θ̂2
]

Cov
[
θ̂2
]−1

(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1

=
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)(
Cov

[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1

=
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1
(A.146)

The optimal estimate is then

θ̂c =
(

Cov
[
θ̂1
]−1

+ Cov
[
θ̂2
]−1

)−1(
Cov

[
θ̂1
]−1

θ̂1 + Cov
[
θ̂2
]−1

θ̂2

)
= Cov

[
θ̂c

](
Cov

[
θ̂1
]−1

θ̂1 + Cov
[
θ̂2
]−1

θ̂2

) (A.147)

I.e. the optimal, linear combination of two uncorrelated, unbiased estimates of the
same quantity is a weighted sum, where the weights are proportional to the inverse
covariance matrices of the two estimates. MORELLI and KLEIN show similar results
for including prior knowledge in linear least-squares estimation [MK2016, Ch. 5.5], i.e.
for combining the least-squares solution with an uncorrelated, unbiased prior estimate.

This can be extended to m uncorrelated, unbiased estimates

Cov
[
θ̂m

c

]
=
(

m∑
i=1

Cov
[
θ̂i

]−1
)−1

(A.148)

θ̂m
c = Cov

[
θ̂m

c

]
·

m∑
i=1

Cov
[
θ̂i

]−1
θ̂i (A.149)

The proof can be based on the optimal combination of the first m estimates θ̂m
c , with

the m+ 1 estimate θ̂m+1 and using the induction step for the covariance

Cov
[
θ̂m+1

c

]
=
(

Cov
[
θ̂m

c

]−1
+ Cov

[
θ̂m+1

]−1
)−1

=
(

m∑
i=1

Cov
[
θ̂i

]−1
+ Cov

[
θ̂m+1

]−1
)−1

=
(

m+1∑
i=1

Cov
[
θ̂i

]−1
)−1

(A.150)

XX



Chapter A: Mathematical Background

and the parameter estimate

θ̂c = Cov
[
θ̂m+1

c

]
·
(

Cov
[
θ̂m

c

]−1
θ̂m

c + Cov
[
θ̂m+1

]−1
θ̂m+1

)
= Cov

[
θ̂m+1

c

]
·
(

Cov
[
θ̂m

c

]−1
Cov

[
θ̂m

c

]
·

m∑
i=1

Cov
[
θ̂i

]−1
θ̂i + Cov

[
θ̂m+1

]−1
θ̂m+1

)

= Cov
[
θ̂m+1

c

]
·

m+1∑
i=1

Cov
[
θ̂i

]−1
θ̂i (A.151)

A.4.8 Stochastic Convergence

Convergence for random variables is not as straightforward as in the deterministic
case, since even close to the limit, there may remain a certain probability, that the dif-
ference between a random variable and its limiting value is suddenly large. This is the
reason, why different types of convergences (some stronger, some weaker) are avail-
able for random variables: this “chance of departing from the limiting value” may be
incorporated differently into the analysis. All types of convergence describe the be-
havior of the sequence of random variables x1, x2, . . .

A.4.8.1 Almost Sure Convergence

Almost sure convergence (alternatively “convergence with probability 1”) of xN to-
wards x is defined as [CS2011, Definition 1.26]

Pr
{

lim
N→∞

xN = x
}

= 1 (A.152)

i.e. those events, for which the sequence xN does not have the limit x have to have
probability 0 [Sor1980, App C.5]. Intuitively one could say that “There is a point in the
series xN after which the two distributions are practically equal” [HGH+2017, Ch. 4,
slide on “Stochastic Convergence”]. Almost sure convergence is abbreviated as

xN
a.s.−−−→

N→∞
x (A.153)

A.4.8.2 Convergence in Probability

For convergence in probability it has to hold that for every ε > 0 [CS2011, Definition
1.26]

Pr{|xN − x| > ε} −−−→
N→∞

0 (A.154)

An intuitive interpretation is: “As the sequence progresses, the probability of an un-
usual outcome becomes smaller and smaller” [HGH+2017, Ch. 4, slide on “Stochastic
Convergence”]. It is abbreviated as

xN
P r−−−→

N→∞
x (A.155)
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A.4.8.3 Convergence in Distribution

Convergence in distribution is based on the distribution functions of the series and its
limit [Sor1980, App C.5]: If at every point of continuity of Fx(x), it holds that

lim
N→∞

FxN(xN) = Fx(x) (A.156)

Convergence in distribution is given. This can be interpreted as: “if an experiment
with outcome xN is only executed often enough, the results will eventually be dis-
tributed as x” [HGH+2017, Ch. 4, slide on “Stochastic Convergence”]. Convergence in
distribution is abbreviated as

xN
D−−−→

N→∞
x (A.157)

A.4.8.4 Connections between the Convergence types

The three foregoing types of convergence were presented in ascending order when it
comes to their strength: almost sure convergence can be considered to be the strongest
type, since no outliers are tolerated, whereas for convergence in distribution, no state-
ment about the realizations can be made. Also, almost sure convergence implies con-
vergence in probability, which in turn implies convergence in distribution.

A.4.9 Statistical Theorems

Two statistical theorems of significant importance are listed next. Using them, conver-
gence statements about the sample average and sample mean are possible.

The sample average of a sample x1, . . . ,xN of the random variable x is

x̄N = 1
N

N∑
k=1

xk (A.158)

The sample variance is, if µ = E[x]

s2
x,N = 1

N

N∑
k=1

(xk − µ)(xk − µ)ᵀ (A.159)

if the mean is unknown, an unbiased estimate of the sample variance is

s2
x,N = 1

N − 1

N∑
k=1

(xk − x̄N)(xk − x̄N)ᵀ (A.160)

A.4.9.1 The Law of Large Numbers

Two versions of the law of large numbers are presented, with different requirements
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Weak Law of Large Numbers Let x1, x2, . . . be pair-wise uncorrelated with common
mean E[xk] = E[x] (“all RV’s have the same mean”) and Var[xk] ≤ M ≤ ∞ for all i ≥ 1
and someM ∈ R (“all RV’s have finite variance”), then the sample average of the series
converges in probability towards the expected value [CS2011, Satz 1.29]

x̄N = 1
N

N∑
k=1

xk
P r−−−→

N→∞
E[x] (A.161)

Strong Law of Large Numbers Stronger requirements, namely that the xk be inde-
pendent and identically distributed (i.i.d.) and have finite mean E[xi] = E[x] < ∞, lead
to almost sure convergence of the sample mean towards the expected value [CS2011,
Satz 1.30]

x̄N = 1
N

N∑
k=1

xk
a.s.−−−→

N→∞
E[x] (A.162)

A.4.9.2 The Central Limit Theorem

Let x = [x1, . . . , xnx ]ᵀ be a nx-dimensional, random vector with mean E[x] and covari-
ance matrix Cov[x], where all elements of the covariance matrix are finite. Further,
let x1 . . .xN be a series of i.i.d. samples of x. Then the scaled distance of the sam-
ple average from the mean converges in distribution towards a multivariate normal
distribution with zero mean and covariance Cov[x] [CS2011, Satz 1.33]

√
N(x̄N − E[x]) D−−−→

N→∞
N (0,Cov[x]) (A.163)

A.5 Stochastic Processes

A family of random variables, which is indexed by a parameter set T , i.e. {xt, t ∈ T}
is called stochastic process. In the applications here, T will always refer to time. Both,
the random variable and the index set can either be discrete or continuous, resulting in
four possible scenarios. Due to the sampling process involved when measuring physi-
cal processes, the main focus will be on discrete time, continuous state space processes.
Additionally, they can be analyzed using the tools developed so far. Especially for con-
tinuous time stochastic processes, the necessary mathematical tools are quite advanced
and will be omitted here. A complete, and rigorous treatment of the topic, can e.g. be
found in [Jaz1970]. Here only the main results and definitions are listed.

A complete stochastic characterization of the process is possible, if the joint density
function for the time instants tk k = 0, . . . , N − 1 was known [Jaz1970, MIM1985]

pX(X)
X =

[
x0 · · · xN−1

]
=
[

xt0 · · · xtN−1

] (A.164)
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A.5 Stochastic Processes

A.5.1 Moments

In analogy to the previous sections, moments can be defined for stochastic processes.
The first moment is known as the mean value vector, whereas the second, central mo-
ment is termed the auto-correlation matrix [Jaz1970, MIM1985]

mx
k = E[xk] (A.165)

Rx
k,i = E[(xk − mx

k)(xi − mx
i )ᵀ] (A.166)

The latter is an indicator for the correlation between states at different points in time.
An important special case is the covariance function, which arises for k = i

Px
k = Rx

k,k (A.167)

Often, it is easier to come by the mean value vector and covariance matrix, compared
to formulating the full probability law of the process [Jaz1970]. This is also the reason,
why often stochastic processes are only discussed in terms of their first two moments,
since a full treatment becomes too complicated [MIM1985].

A.5.2 Stationary Processes

A stochastic process is called strictly stationary, if it holds that [Jaz1970, MIM1985]

pxt0 ...xtN−1

(
xt0 . . .xtN−1

)
= pxt0+τ...xtN−1+τ

(
xt0+τ . . .xtN−1+τ

)
(A.168)

i.e. if the probability law of the process is not affected by a shift in time τ . This implies,
that the probability law of a strictly stationary process must not be a function of time.

A weaker form of stationarity is weak stationarity, or wide sense stationarity, where
independence of a time-shift is only required for the first two moments (which have to
exist). Thus for weak stationary processes it holds [Jaz1970, MIM1985]

mx
k+τ = mx

k = const (A.169)

Rx
k+τ,k = Rx

τ (A.170)

i.e. its mean value function needs to be constant, whereas its autocorrelation function
only depends on the time shift.

A.5.3 Gaussian Processes

If additionally, the probability law (A.164) is Gaussian, the process is called normal,
and thus completely characterized by its mean value and auto-correlation function.
Furthermore, for Gaussian processes, wide sense stationarity implies strict stationarity
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[Jaz1970, MIM1985]. Using the property of Gaussian distributions, that linear opera-
tions on them result again in Gaussian distributions (A.128), gives rise to a very im-
portant class of stochastic processes, namely those, who can be described by a linear
difference equation of the form

xk+1 = Φkxk + Fkwk (A.171)

Then, if the wk are independent Gaussian variables, the complete stochastic process is
Gaussian.

A.5.4 Markov Process

A process is said to be Markov if it shows the following “Markov Property” [Jaz1970,
MIM1985]

pxk+1|xk...x0 (xk+1|xk . . .x0) = pxk+1|xk (xk+1|xk) (A.172)

Intuitively, this means that the probability of the next state xk+1 is only dependent on
the current state xk, not on past states, i.e. it is only important, where the process is at
time k, not how it arrived there. Thus, if a process is Markov, recursively applying the
definition of conditional probabilities (A.106) yields [MIM1985]

pXN−1(XN−1) = pxN−1|XN−2 (xN−1|XN−2) pXN−2(XN−2) = . . .

= px0(x0) ·
N−2∏
k=0

pxk+1|xk (xk+1|xk)
(A.173)

where the transition probabilities pxk+1|xk (xk+1|xk) may still depend on time, but not on
past state values. This property can even hold for non-linear difference equations with
additive, independent process noise terms wk

xk+1 = dfd[xk,uk] + Fkwk (A.174)

The extension to non-additive process noise can be found in [Jaz1970]. Thus future
states only depend on the current state, current realization of the process noise, and
possibly time. If the probability density of the process noise term Fkwk can be stated,
the (time dependent) transition probability becomes [Jaz1970]

pxk+1|xk (xk+1|xk) = pFkwk

(
xk+1 − dfd[xk,uk]

)
(A.175)

If the process in addition is stationary, all transition probabilities are equal, thus
defining them, and the probability of the initial condition fully characterizes the pro-
cess. Eventually, a Gauss-Markov process is a stochastic process, which, in addition to
the Markov property, also has Gaussian transition probabilities.
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A.5.5 White Processes

Another important special case arises, if the transition probabilities do not even de-
pend on the current state anymore

pxk+1|xk (xk+1|xk) = pxk+1(xk+1) (A.176)

Thus, no statement about the evolution of the states, based on current observations are
possible. The states at all points in time are stochastically independent of each other,
and thus totally unpredictable. These sequences are commonly called white.

The first two moments of a white, stochastic process are [Jaz1970, MIM1985]

mx
k = E[xk] (A.177)

Rx
k,i = δkiPx

k (A.178)

i.e. the autocorrelation function only has non-zero values for i = j. If a white, Gaussian
process is considered, the process is fully characterized by above two equations. In
many technical applications, white, Gaussian stochastic processes are used as a model
for noise processes in the system.

The adjective white stems from an analogy with white light, which contains light of
all frequencies. For continuous time white noise, it can be shown, that it has a constant
power spectral density function, i.e. it also contains all frequencies. However, this
would necessitate infinite power, which is why white noise processes are not physi-
cally realizable. Nevertheless, they have proven to be a valid mathematical model in
many applications [Jaz1970]. Its application can also be justified, by assuming that the
correlation times of the noise process are short, compared to the characteristic times of
the process of interest [BF1963].
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Appendix B

Derivation of Descent Direction
Condition

If it holds that (proof taken from [Ger2017, Ch. 3.5])

∂J

∂θ

∣∣∣∣∣
ᵀ

θ=θi

di < 0 (B.1)

the following definition of the directional derivative of J in the direction di is also
smaller than zero

∂J

∂θ

∣∣∣∣∣
ᵀ

θ=θi

di = lim
α→0+

J(θi + αdi) − J(θi)
α

< 0 (B.2)

Then there exists an ᾱ such that

J(θi + αdi) − J(θi) < 0
J(θi + αdi) < J(θi) ∀0 < α < ᾱ (B.3)

i.e. a step of at max ᾱ reduces the cost function, thus di is a descent direction.
Furthermore, a geometric interpretation of this is that the gradient and search direc-

tion enclose an angle between 90◦ and 270◦, which can be derived from the following
property of scalar products [Ger2017, Ch. 3.5.]

cos∠(a, b) = aᵀb

‖a‖2‖b‖2
(B.4)
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Appendix C

Statistical Proofs

The following relations are used in several of the proofs of this Appendix, for further
details see [MK2016, Appendix B]. Let p(Z|θ) be the probability density describing the
probability of obtaining the measurements Z given the parameters θ. Assuming suffi-
cient smoothness of ln p(Z|θ), its gradient with respect to θ is called the Score s(Z,θ)

s(Z,θ) := ∂ ln p(Z|θ)
∂θ

(C.1)

executing the differentiation using the chain rule, it can be expressed as

s(Z,θ) = 1
p(Z|θ) · ∂p(Z|θ)

∂θ
(C.2)

Rearranging above equation yields

∂p(Z|θ)
∂θ

= p(Z|θ) ∂ ln p(Z|θ)
∂θ

= p(Z|θ) s(Z,θ) (C.3)

Furthermore, p(Z|θ) has to obey the basic statistical properties illustrated in section
A.4 ∫

p(Z|θ) dZ = 1 (C.4)

Differentiating equation (C.4) with respect to θ, using equation (C.3) and assuming
sufficient smoothness such that integration and differentiation can be exchanged yields∫ ∂p(Z|θ)

∂θ
dZ =

∫ ∂ ln p(Z|θ)
∂θ

· p(Z|θ) dZ = 0 (C.5)

Together with the definition of the expected value (A.78) this yields

E[s(Z,θ)] = E
[
∂ ln p(Z|θ)

∂θ

]
= 0 (C.6)

which holds for any sample size N , especially also for N = 1

E[s(zk,θ)] = 0 (C.7)
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C.1 Alternate Form of the Fisher Information Matrix

Since the score has zero-mean, its covariance is the Fisher information matrix as de-
fined in equation (2.76) and (2.83)

Cov[s(Z,θ)] = E[(s(Z,θ) − 0)(s(Z,θ) − 0)ᵀ]

= E
[(
∂ ln p(Z|θ)

∂θ

)(
∂ ln p(Z|θ)

∂θ

)ᵀ]
= F(θ)

(C.8)

It is noticeable that, since the expectation involves an integration over all possible Z,
F(θ) is no function of Z, in contrast to s(Z,θ).

If the Markov Criterion (2.86) holds, i.e. if the conditional expectation can be ex-
pressed as p(Z|θ) = ∏N−1

k=0 p(zk|θ), the following expressions for one sample arise

s(Z,θ) = ∂ ln p(Z|θ)
∂θ

=
N−1∑
k=0

∂ ln p(zk|θ)
∂θ

=
N−1∑
k=0

s(zk,θ) = N s̄N(θ) (C.9)

with the score per sample s(zk,θ) and the average score for N samples s̄N . The
corresponding Fisher information matrix is based on the alternate expression in Ap-
pendix C.1

E
[
∂2 ln p(z1|θ)

∂θ2

]
= E

[
∂2 ln p(z2|θ)

∂θ2

]
= · · · = Fk(θ) (C.10)

F(θ) = −
N−1∑
k=0

E
[
∂2 ln p(zk|θ)

∂θ2

]
= NFk(θ) (C.11)

with the Fisher information matrix per sample Fk(θ) [HH2015, Remark 6.1].

C.1 Alternate Form of the Fisher Information Matrix

Differentiating equation (C.5) a second time with respect to θ yields∫ ∂2 ln p(Z|θ)
∂θ2 · p(Z|θ) dZ +

∫ ∂ ln p(Z|θ)
∂θ

·
(
∂p(Z|θ)
∂θ

)ᵀ

dZ = 0 (C.12)

which can be modified using equation (C.3)∫ (∂2 ln p(Z|θ)
∂θ2 + ∂ ln p(Z|θ)

∂θ

(
∂ ln p(Z|θ)

∂θ

)ᵀ)
· p(Z|θ) dZ =

= E
[
∂2 ln p(Z|θ)

∂θ2 + ∂ ln p(Z|θ)
∂θ

(
∂ ln p(Z|θ)

∂θ

)ᵀ]
= 0

(C.13)

With the linearity of the expectation operator, and the definition of the likelihood func-
tion (2.83) this eventually results in the alternative formulation of the Fisher informa-
tion matrix

F(θ) = E
[(
∂ ln p(Z|θ)

∂θ

)(
∂ ln p(Z|θ)

∂θ

)ᵀ]
= −E

[
∂2 ln p(Z|θ)

∂θ2

]
(C.14)

which is again also valid for only one sample

Fk(θ) = E
[(
∂ ln p(zk|θ)

∂θ

)(
∂ ln p(zk|θ)

∂θ

)ᵀ]
= −E

[
∂2 ln p(zk|θ)

∂θ2

]
(C.15)
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Chapter C: Statistical Proofs

C.2 Cramér-Rao Inequality

The following proof is a slightly altered formulation of the proof in [MIM1985], further
details can be found in [MK2016] and [HGH+2017], and one of the original publica-
tions [Cra1946, Ch. 33]. The basic idea for the proof is to first derive an expression for
the cross-covariance matrix Cov

[
θ̂(Z) , s(θ)

]
. Then an advantageously chosen covari-

ance matrix is considered. The property of positive definiteness of the latter, together
with the derived expression for Cov

[
θ̂(Z) , s(θ)

]
can then be used to conclude the proof

of the Cramér-Rao bounds. An alternative proof, based on the Schwarz inequality can
be found in [Sor1980, Ch. 3], and [CJ2012, Ch. 2].

Assuming a biased estimator according to equation (2.73) the following is true,
when using the linearity of the expectation operator

E
[
θ̂(Z) − θ − b(θ)

]
=
∫ (

θ̂(Z) − θ − b(θ)
)

· p(Z|θ) dZ = 0 (C.16)

Now, assuming sufficient smoothness in p(Z|θ) such that differentiation and integra-
tion can be interchanged, the derivative with respect to θ can be taken

∫ (
−Inθ

− ∂b(θ)
∂θ

)
︸ ︷︷ ︸

6=f(Z)

·p(Z|θ) dZ +
∫ (

θ̂(Z) − θ − b(θ)
)

·
(
∂p(Z|θ)
∂θ

)ᵀ

dZ = 0 (C.17)

Using equation (C.3) for the second part of above equation it can be further modified
to read(

Inθ
+ ∂b(θ)

∂θ

)∫
p(Z|θ) dZ︸ ︷︷ ︸

=1

=
∫ (

θ̂(Z) − θ − b(θ)
)

· s(θ)ᵀ · p(Z|θ) dZ (C.18)

Together with equations (2.73) and (C.6) it can be realized, that the right hand side of
above equation equals the covariance between the parameter estimate and the score

∫ θ̂(Z) −(θ + b(θ))︸ ︷︷ ︸
=E
[
θ̂(Z)

]

s(θ) − 0︸︷︷︸

=E[s]


ᵀ

· p(Z|θ) dZ = Cov
[
θ̂(Z) , s(θ)

]
(

Inθ
+ ∂b(θ)

∂θ

)
= Cov

[
θ̂(Z) , s(θ)

]
(C.19)

Now, consider the covariance matrix of two random vectors X and Y together with
a non-random matrix C of appropriate size, which is positive definite per definition.

Cov[X − CY ] ≥ 0 (C.20)

Cov[X − CY ] = Cov[X] + C · Cov[Y ] · Cᵀ

− Cov[X,Y ] · Cᵀ − C · Cov[X,Y ]ᵀ ≥ 0
(C.21)

Cov[X] ≥ Cov[X,Y ] · Cᵀ + C · Cov[X,Y ]ᵀ − C · Cov[Y ] · Cᵀ (C.22)
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C.3 Properties of Maximum Likelihood Estimates

Above relation holds for any random vectors X and Y and deterministic C. Now
consider

C := Cov[X,Y ] Cov[Y ]−1 (C.23)

⇒ Cov[X] ≥ Cov[X,Y ] Cov[Y ]−1 Cov[X,Y ]ᵀ (C.24)

Substituting X = θ̂(Z) and Y = s(θ) in above equation yields

Cov
[
θ̂(Z)

]
≥ Cov

[
θ̂(Z) , s(θ)

]
Cov[s(θ)]−1 Cov

[
θ̂(Z) , s(θ)

]ᵀ
(C.25)

Then, together with equations (C.8) and (C.19) the Cramér-Rao bounds for a biased
estimator result

Cov
[
θ̂(Z)

]
≥
(

Inθ
+ ∂b(θ)

∂θ

)
F(θ)−1

(
Inθ

+ ∂b(θ)
∂θ

)ᵀ

(C.26)

C.3 Properties of Maximum Likelihood Estimates

The derivations for the properties of the maximum likelihood Estimates, which are
to follow in the next three subsections, are mainly based on [Jat2006, App. D] and
[GP1977, Ch. 3]. Additional Details can be found in [Sor1980, Ch. 5]

C.3.1 Asymptotic Consistency

In order to prove asymptotic consistency, first an expression similar to the score, eval-
uated at the maximum likelihood estimates θ̂ML, is expressed in a Taylor series around
the true parameter value θ

∂ ln p
(
Z
∣∣∣θ̂ML

)
∂θ

= ∂ ln p(Z|θ)
∂θ

+
∂2 ln p

(
Z
∣∣∣θ̃)

∂θ2

(
θ̂ML − θ

)
(C.27)

θ̃ = θ̂ML + λ
(
θ − θ̂ML

)
0 ≤ λ ≤ 1 (C.28)

which is no approximation since the explicit LAGRANGE form of the remainder is used.
For a maximum likelihood estimate, the first order necessary condition (2.6) has to
hold, i.e. above equation has to be equal to zero. Again, if the Markov Criterion (2.86)
holds, a similar reasoning as in (C.9) and (C.11) can be applied, together with some
rearranging one can arrive at

N−1∑
k=0

∂ ln p(zk|θ)
∂θ

= −
N−1∑
k=0

∂2 ln p
(
zk

∣∣∣θ̃)
∂θ2

(
θ̂ML − θ

)
(C.29)

Dividing both sides by N and applying the strong law of large numbers (A.162) yields
for the left hand side

1
N

N−1∑
k=0

∂ ln p(zk|θ)
∂θ

N→∞−−−→
a.s.

E
[
∂ ln p(zk|θ)

∂θ

]
= E[s̄N(θ)] = 0 (C.30)

XXXII



Chapter C: Statistical Proofs

and for the right hand side

− 1
N

N−1∑
k=0

∂2 ln p
(
zk

∣∣∣θ̃)
∂θ2

(
θ̂ML − θ

)
N→∞−−−→

a.s.
E

−
∂2 ln p

(
zk

∣∣∣θ̃)
∂θ2

(θ̂ML − θ
)

(C.31)

According to JATEGAONKAR it can be shown, that the likelihood function is concave

in θ and thus it can be appropriately assumed that E
[
−∂2 ln p

(
zk

∣∣θ̃)
∂θ2

]
is positive defi-

nite [Jat2006, App. D-I]. Since the left hand side of equation (C.29) converges to zero,
whereas the matrix on its right converges to a positive definite value, the only way
how the equation can hold is if

θ̂ML
N→∞−−−→

a.s.
θ (C.32)

Thus the maximum likelihood estimate θ̂ML is consistent.

C.3.2 Asymptotic Normality

Again, starting from a TAYLOR series expansion

∂ ln p
(
Z
∣∣∣θ̂ML

)
∂θ

= ∂ ln p(Z|θ)
∂θ

+ ∂2 ln p(Z|θ)
∂θ2

(
θ̂ML − θ

)
+ O

((
θ̂ML − θ

)2
)

(C.33)

the higher order terms are neglected, since it has already been shown, that the maxi-
mum likelihood estimates θ̂ML are consistent. Again using the fact that the left hand
side of above equation has to equal zero for maximum likelihood estimates one can
arrive at

− 1
N

∂2 ln p(Z|θ)
∂θ2

(
θ̂ML − θ

)
= 1
N

∂ ln p(Z|θ)
∂θ

(C.34)

− 1
N

N−1∑
k=0

∂2 ln p(zk|θ)
∂θ2

(
θ̂ML − θ

)
= 1
N

N−1∑
k=0

∂ ln p(zk|θ)
∂θ

(C.35)

The difference between this expression and the Taylor series of the last section lies in
the evaluation of the Hessian. Here, it is evaluated at the true parameter vector θ,
whereas before some θ̃ between θ and θ̂ML was used for the explicit LAGRANGE form
of the residual.

Both sides of above equation are now considered separately. On the left, using the
strong Law of Large Numbers (A.162), the expression involving the Hessian converges
to

− 1
N

N−1∑
k=0

∂2 ln p(zk|θ)
∂θ2

(
θ̂ML − θ

)
N→∞−−−→

a.s.
E
[
−∂2 ln p(zk|θ)

∂θ2

](
θ̂ML − θ

)
=

=Fk(θ)
(
θ̂ML − θ

) (C.36)

For the right hand side of equation (C.35), equations (C.6), (C.8) and (C.11) provide
values for the mean and covariance of ∂ ln p(zk|θ)

∂θ
, namely zero and Fk(θ). With this in-

formation, and the Central Limit Theorem (A.163) one can see that the sample average
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C.4 Constrained Fisher information matrix

1
N

∑N
k=1

∂ ln p(zk|θ)
∂θ

converges in distribution to a random variable with zero mean and
covariance Fk(θ)

√
N

1
N

N−1∑
k=0

∂ ln p(zk|θ)
∂θ

N→∞−−−→
D

r2 ∼ N (0,Fk(θ)) (C.37)

Replacing the left hand side expression by the result obtained in (C.36) and (C.35) and
using (C.11) yields

√
NFk(θ)

(
θ̂ML − θ

)
N→∞−−−→

D
r2 ∼ N (0,Fk(θ)) (C.38)(

θ̂ML − θ
)

N→∞−−−→
D

r1 ∼ N
(
0,F(θ)−1

)
(C.39)

Since F(θ) tends to grow with larger sample sizes N , i.e. the parameter covariance
tends to shrink, this again underlines the asymptotic consistency of the maximum like-
lihood estimator [Sor1980].

C.3.3 Asymptotic Efficiency

In the foregoing sections, it has been shown that the maximum likelihood estimates
θ̂ML are asymptotically consistent and normally distributed with covariance matrix
Cov

[
θ̂ML

]
= F(θ)−1, which already proves that they attain the Cramér-Rao bound and

are thus asymptotically efficient.

C.4 Constrained Fisher information matrix

Much of the following section will be based on the theory of generalized inverses, see
Appendix A.2.2. The overall goal of this section is to proof the following equality for
the Fisher information matrix under equality constraints

Pc̃ = Inθ
− ∂c̃

∂θ

∣∣∣∣∣
ᵀ

θ̂

(
∂c̃

∂θ

∣∣∣∣∣
θ̂

∂c̃

∂θ

∣∣∣∣∣
ᵀ

θ̂

)†
∂c̃

∂θ

∣∣∣∣∣
θ̂

(C.40)

F−1
constr. = Pc̃(Pᵀ

c̃FPc̃)† Pᵀ
c̃ = Z(ZᵀFZ)−1 Zᵀ (C.41)

where Z is a basis for the null-space of ∂c̃
∂θ

∣∣∣
θ̂
.

The proof will take four steps

1. first show that it holds

F−1
constr. = Pc̃(Pᵀ

c̃FPc̃)† Pᵀ
c̃ =(Pᵀ

c̃FPc̃)† (C.42)

2. show that the projection matrix can be expressed in terms of an orthonormal null
space as

Pc̃ = Z̃Z̃ᵀ (C.43)
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3. then show the equality

F−1
constr. =(Pᵀ

c̃FPc̃)† = Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀ (C.44)

for the special case of an orthonormal null-space basis Z̃ with Z̃ᵀZ̃ = I

4. lastly extend the result to arbitrary null-space bases

F−1
constr. = Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ = Z(ZᵀFZ)−1 Zᵀ (C.45)

The basic idea behind the first step is to show that Pc̃(Pᵀ
c̃FPc̃)† Pᵀ

c̃ is a valid pseudo
inverse for Pᵀ

c̃FPc̃. This can be achieved by verifying the four PENROSE equations, to-
gether with the characteristics of idempotence and symmetry of orthogonal projectors.
Since the proof itself is merely cumbersome but straight forward, it is left out here;
also, the actual proof is very similar to what will be done in step three.

The second step makes use of the SVD of the constraint Jacobian

∂c̃

∂θ

∣∣∣∣∣
θ̂

= UΣVᵀ =
[

U1 U2

] Σ1 0
0 0

 Vᵀ
1

Z̃ᵀ

 (C.46)

The orthogonal projector is then

Pc̃ = Inθ
− ∂c̃

∂θ

∣∣∣∣∣
ᵀ

θ̂

(
∂c̃

∂θ

∣∣∣∣∣
θ̂

∂c̃

∂θ

∣∣∣∣∣
ᵀ

θ̂

)†
∂c̃

∂θ

∣∣∣∣∣
θ̂

= Inθ
− VΣᵀUᵀ(UΣVᵀVΣᵀUᵀ)† UΣVᵀ

= Inθ
− VΣᵀUᵀ · U(ΣΣᵀ)† Uᵀ · UΣVᵀ

= Inθ
− VΣᵀ(ΣΣᵀ)† ΣVᵀ

=
[

V1 Z̃
] Vᵀ

1

Z̃ᵀ

−
[

V1 Z̃
] Ip 0

0 0

 Vᵀ
1

Z̃ᵀ


= Z̃Z̃ᵀ

(C.47)

where equation (A.31) has been used in the third and equation (A.32) in the fifth equal-
ity.

To proof the third step, the four PENROSE equations are verified in order to show
that Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ is a valid pseudo-inverse for Pᵀ

c̃FPc̃

Penrose I (A.24): “AXA = A”

Pᵀ
c̃FPc̃ · Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ · Pᵀ

c̃FPc̃ = Pᵀ
c̃FPc̃ · Z̃

=I︷ ︸︸ ︷(
Z̃ᵀFZ̃

)−1
Z̃ᵀ · Z̃︸ ︷︷ ︸

=I

Z̃ᵀFZ̃ Z̃ᵀ

= Pᵀ
c̃FPc̃Z̃Z̃ᵀ = Pᵀ

c̃FPc̃Pc̃

= Pᵀ
c̃FPc̃

(C.48)
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C.4 Constrained Fisher information matrix

Penrose II (A.25): “XAX = X”

Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀPᵀ

c̃FPc̃Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀ = Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀZ̃

=I︷ ︸︸ ︷
Z̃ᵀFZ̃ Z̃ᵀZ̃︸ ︷︷ ︸

=I

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ

= Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀ (C.49)

Penrose III (A.26): “(AX)ᵀ = AX”(
Pᵀ

c̃FPc̃ · Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀ
)ᵀ

= Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀPᵀ

c̃FPc̃

= Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀZ̃Z̃ᵀFZ̃Z̃ᵀ

= Z̃
(
Z̃ᵀFZ̃

)−1(
Z̃ᵀFZ̃

)
Z̃ᵀ

= Z̃
(
Z̃ᵀFZ̃

)
Z̃ᵀZ̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ

= Pᵀ
c̃FPᵀ

c̃ · Z̃
(
Z̃ᵀFZ̃

)−1
Z̃ᵀ

(C.50)

Penrose IV (A.27): “(XA)ᵀ = XA” uses exactly the same means as those above for
Penrose III, so the details are omitted. This proves the third step

(Pᵀ
c̃FPc̃)† = Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ = F−1

constr. (C.51)

The last step then consists of showing, that the null-space basis does not necessarily
have to be orthonormal. Every real null-space basis Z with full column-rank can be
made orthonormal by using the Cholesky decomposition of ZᵀZ to transform its input
space

SSᵀ = ZᵀZ (C.52)

Z̃ = ZS−ᵀ (C.53)

where S is a lower triangular matrix with positive diagonal elements. The resulting
matrix Z̃ is orthonormal

Z̃ᵀZ̃ = S−1ZᵀZS−ᵀ = S−1SSᵀS−ᵀ = I (C.54)

Then the final expression for the constrained inverse Fisher information matrix is

F−1
constr. = Z̃

(
Z̃ᵀFZ̃

)−1
Z̃ᵀ = ZS−ᵀ

(
S−1ZᵀFZS−ᵀ

)−1
S−1Zᵀ

= Z
(
SS−1ZᵀFZS−ᵀSᵀ

)−1
Zᵀ

= Z(ZᵀFZ)−1 Zᵀ

(C.55)
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Appendix D

Additional Kalman Filter Derivations

D.1 Discrete Time Approximation to Continuous Time
Stochastic System

A linear, continuous time system, which is excited by a white process noise term may
be described by [Sim2006, Ch. 4.2]

.
x(t) = A(t) x(t) + B(t) u(t) + cF(t) cw(t) (D.1)

E[cw(t)] = 0 (D.2)

Cov[cw(t) , cw(t+ τ)] = cQ(t) δ(τ) (D.3)

with the continuous time, white noise process w(t) with covariance cQ(t).
For a rigorous treatment of stochastic differential equations advanced mathematical

tools would be necessary: actually this system model “has no mathematical meaning”
[Jaz1970, p. 94], since the continuous time process noise term is delta correlated and
thus not mean square Riemann integrable. Advanced integral definitions as e.g. in
the ITÔ or STRATONOVICH sense are necessary to cope with this [Jaz1970], which is
beyond the scope of this work.

The naive solution of above system via a variation of constants approach lacks a
sound mathematical basis. Nevertheless, it still provides some useful insight, and an
easy way of approximating a continuous with a discrete time systems, which is why it
is found very often in the respective literature [Sim2006, Jat2006]. That said, the ideas
behind that approximation are illustrated next.

If the time step ∆tk = tk+1 − tk is sufficiently small, changes in A(t), B(t), cF(t),
cQ(t) and u(t) may be neglected, and the respective quantities considered constant
during this time step (“zero order hold” assumption for all time-varying quantities).
Then the state value at the next time step k + 1 can be obtained based on the state
value at the current time step k by applying the solution due to variation of constants,
see [Sim2006, Ch. 1][CJ2012, Ch. 3.1]. Replacing the argument(tk) by the subscript �k
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D.1 Discrete Time Approximation to Continuous Time Stochastic System

yields

xk+1 = exp(Ak(tk+1 − tk)) xk +
∫ tk+1

tk

exp(Ak(tk+1 − τ)) dτBkuk+1

+
∫ tk+1

tk

exp(Ak(tk+1 − τ)) cFk
cw(τ) dτ

(D.4)

The three parts of above equation can then be related to a standard, discrete time sys-
tem description, as e.g. (2.180). The first part is [CJ2012, Ch. 3.5] [Jat2015, Ch. 3]

Φk = exp(Ak(tk+1 − tk)) =
∞∑

j=0

(Ak∆tk)j

j! (D.5)

The second part yields, after substitution of α = tk+1 − τ [CJ2012, Ch. 3.5] [Jat2015,
Ch. 3]

Γk =
∫ tk+1

tk

exp(Ak(tk+1 − τ)) dτBk = −
∫ 0

∆tk

exp(Akα) dαBk

=
∫ ∆tk

0

∞∑
j=0

(Akα)j

j! dαBk =
 ∞∑

j=0

Aj
kα

j+1

(j + 1)!

∆tk

0

Bk

=
∞∑

j=0

Aj
k∆tj+1

k

(j + 1)! Bk

(D.6)

Since the contribution of the terms in above sums shrink with O
(
∆tjk

)
, it is usually

enough to consider the first few [CJ2012, Ch. 3.5]. Also, above expression for Γk is
computationally more stable, compared to the direct solution of

Γk =
∫ ∆tk

0
exp(Akα) dαBk =

[
A−1

k exp(Akα)
]∆tk

0
Bk

= A−1
k (exp(Ak∆tk) − Inx) Bk

(D.7)

Since this formulation shows problems for rank-deficient Ak.
The treatment of the third term of equation (D.4), which describes the influence

of process noise on the system’s evolution is not as straightforward anymore. One
approach is to define a new random variable

Fkwk =
∫ tk+1

tk

exp(Ak(tk+1 − τ)) cFk
cw(τ) dτ (D.8)

and investigate its moments further. It has zero mean [Sim2006, Ch. 4.2]

E[Fkwk] = E
[∫ tk+1

tk

exp(Ak(tk+1 − τ)) cFk
cw(τ) dτ

]
=
∫ tk+1

tk

exp(Ak(tk+1 − τ)) cFk E[cw(τ)]︸ ︷︷ ︸
=0

dτ = 0
(D.9)
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Chapter D: Additional Kalman Filter Derivations

and its covariance can be computed as follows (using the sifting property of the Dirac
function) [Sim2006, Ch. 4.2] [CJ2012, Ch. 5.4]

FkCov[wk,wl] Fᵀ
l =

= E
[(∫ tk+1

tk

exp(Ak(tk+1 − α)) cFk
cw(α) dα

)(∫ tl+1

tl

exp(Al(tl+1 − β)) cFl
cw(β) dβ

)ᵀ]
=
∫ tk+1

tk

∫ tl+1

tl

exp(Ak(tk+1 − α)) cFkE[cw(α) cw(β)ᵀ] cFᵀ
l exp(Al(tl+1 − β))ᵀ dβdα

=
∫ tk+1

tk

∫ tl+1

tl

exp(Ak(tk+1 − α)) cFk
cQ(α) δ(β − α) cFᵀ

l exp(Al(tl+1 − β))ᵀ dβdα

= δk−l

∫ tk+1

tk

exp(Ak(tk+1 − α)) cFk
cQ(α) cFᵀ

k exp(A(tk+1 − α))ᵀ dα (D.10)

SIMON states, that above integral is difficult to solve in general, but proposes the fol-
lowing approximation for sufficiently small ∆tk [Sim2006, Ch. 4.2] [CJ2012, Ch. 5.4]

exp(Ak(tk+1 − α)) ≈ Inx ∀α ∈ [tk, tk+1] (D.11)

The covariance then becomes

FkCov[wk,wl] Fᵀ
l = δk−l

∫ tk+1

tk

cFk
cQ(α) cFᵀ

kdα ≈ δk−l
cFk

cQ(tk) cFᵀ
k∆tk (D.12)

where the approximation is based on the assumption that the integrand is constant
during the small time period ∆tk. From this the two following may be identified

⇒Fk = cFk

⇒Cov[wk,wl] ≈ δk−l
cQ(tk) ∆tk

(D.13)

Thus the zero-mean, continuous time white noise process can be approximated up to
the second moments by a zero-mean, discrete time white noise process, whose covari-
ance is scaled by the sampling time cQ(tk) ∆tk.

Some authors prefer to scale the process noise distribution matrix, and use the same
values for the covariance matrices in discrete and continuous time

⇒Fk = cFk

√
∆tk

⇒Cov[wk,wl] ≈ δk−l
cQ(tk)

(D.14)

Here, the first approach will be used.
Above approximation becomes true, for a pure random walk process with A = 0,

i.e. in the case of a random walk model, and constant system matrices. Then the effect
(up to second order) of a discrete white noise process with

Cov[wk,wk+l] = δl∆tk cQ(tk) (D.15)

is the same as the influence of a continuous white noise process with

Cov[cw(t) , cw(t+ τ)] = cQδ(τ) (D.16)
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D.2 Kalman Filter Residuals

D.2 Kalman Filter Residuals

The following section is based on [Sim2006]. In order to keep the equations more read-
able, and indexing more straight forward, the correction step is considered at time k
as opposed to k + 1 as in the main text. Then, propagated quantities read �k|k−1 and
corrected quantities become �k|k .

According to equation (2.219), the Kalman filter innovations can be expressed as

rk|k−1 = zk − ŷk|k−1 = Ckxk + Gkvk + Dkuk − Ckx̂k|k−1 − Dkuk

= −Ckx̃k|k−1 + Gkvk

(D.17)

Both the measurement noise vk and the a priori estimation error x̃k|k−1 are zero mean,
thus the residuals rk|k−1 also are zero-mean.

The autocovariance of the residuals is

Cov
[
rk|k−1 , rj|j−1

]
= CkCov

[
x̃k|k−1 , x̃j|j−1

]
Cᵀ

j − CkCov
[
x̃k|k−1 ,vj

]
Gᵀ

j

− GkCov
[
vk, x̃j|j−1

]
Cᵀ

j + GkCov[vk,vj] Gᵀ
j

(D.18)

The two separate cases to be treated consider the covariance at zero-lag (k = l) and the
covariance between sampling instants (k 6= l).

For k = j the cross terms vanish Cov
[
x̃k|k−1 ,vk

]
= Cov

[
vk, x̃k|k−1

]ᵀ
= 0, since the

measurements at time k were not yet processed and the white measurement noise vk

cannot yet be part of the estimation error x̃k|k−1 if k = l. Thus the covariance is

Cov
[
rk|k−1 , rk|k−1

]
= CkPx̃

k|k−1 Cᵀ
k + GkRkGᵀ

k (D.19)

For k 6= j, without loss of generality it can be assumed that k > j. Then, due
to the whiteness of vk and the fact that x̃j|j−1 is independent of vk for k > j, the
autocovariance is

Cov
[
rk|k−1 , rj|j−1

]
= CkCov

[
x̃k|k−1 , x̃j|j−1

]
Cᵀ

j − CkCov
[
x̃k|k−1 ,vj

]
Gᵀ

j

− GkCov
[
vk, x̃j|j−1

]
Cᵀ

j︸ ︷︷ ︸
=0 if k>j

+ GkCov[vk,vj] Gᵀ
j︸ ︷︷ ︸

=0 if k>j

= CkCov
[
x̃k|k−1 , x̃

ᵀ
j|j−1

]
Cᵀ

j − CkCov
[
x̃k|k−1 ,vj

]
Gᵀ

j

(D.20)

In order to determine the covariances in above equation, first a propagation equation
for the a priori estimate has to be obtained and solved. From equation (2.214) the
propagation for the a priori estimation error can be obtained and slightly modified

x̃k|k−1 = Φk−1(Inx − Kk−1Ck−1) x̃k−1|k−2 − Fk−1wk−1 + Φk−1Kk−1Gk−1vk−1

= Φ′
k−1x̃k−1|k−2 + v′

k−1
(D.21)

Φ′
k−1 = Φk−1(Inx − Kk−1Ck−1) (D.22)

v′
k−1 = Φk−1Kk−1Gk−1vk−1 − Fk−1wk−1 (D.23)
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Chapter D: Additional Kalman Filter Derivations

The solution from an initial condition x̃j|j−1 is

Φ′
k,j =

 Φ′
k−1 · Φ′

k−2 · · · · · Φ′
j k > j

Inx k = j
(D.24)

x̃k|k−1 = Φ′
k,jx̃j|j−1 +

k−1∑
l=j

Φ′
k,l+1v

′
l (D.25)

Now the first desired covariance for the solution of (D.20) can be determined

Cov
[
x̃k|k−1 , x̃j|j−1

]
= E

Φ′
k,jx̃j|j−1 +

k−1∑
l=j

Φ′
k,l+1v

′
l

 x̃ᵀ
j|j−1


= E

[
Φ′

k,jx̃j|j−1 x̃ᵀ
j|j−1

]
+ E

k−1∑
l=j

Φ′
k,l+1v

′
l

 x̃ᵀ
j|j−1

 (D.26)

Multiplying out the second part of above equation yields terms of the form v′
lx̃

ᵀ
j|j−1 ,

which are zero-mean E
[
v′

lx̃
ᵀ
j|j−1

]
= 0 l ≥ j because the noise with l ≥ j cannot yet

have influenced the estimation error x̃j|j−1 , see (D.21).

Cov
[
x̃k|k−1 , x̃j|j−1

]
= E

[
Φ′

k,jx̃j|j−1 x̃ᵀ
j|j−1

]
= Φ′

k,jPx̃
j|j−1 (D.27)

The second covariance for the solution of (D.20) is

Cov
[
x̃k|k−1 ,vj

]
= E

Φ′
k,jx̃j|j−1 +

k−1∑
l=j

Φ′
k,l+1v

′
l

vᵀ
j

 (D.28)

Using similar arguments as before, the only remaining, non-zero-mean term results for
l = j

Cov
[
x̃k|k−1 ,vj

]
= E

[
Φ′

k,j+1v
′
jv

ᵀ
j

] (D.23)= E
[
Φ′

k,j+1(ΦjKjGjvj − Fjwj) vᵀ
j

]
= Φ′

k,j+1ΦjKjGjRj

(D.29)

Then the result can be combined to obtain an expression for the residual’s autocovari-
ance in equation (D.20)

Cov
[
rk|k−1 , rj|j−1

]
= CkΦ′

k,jPx̃
j|j−1 Cᵀ

j − CkΦ′
k,j+1ΦjKj GjRjGᵀ

j︸ ︷︷ ︸
=R̃j

= CkΦ′
k,j+1

(
Φ′

jPx̃
j|j−1 Cᵀ

j − ΦjKjR̃j

)
= CkΦ′

k,j+1

(
Φj(Inx − KjCj)︸ ︷︷ ︸

(D.22)= Φ′
j

Px̃
j|j−1 Cᵀ

j − ΦjKjR̃j

)

= CkΦ′
k,j+1

(
ΦjPx̃

j|j−1 Cᵀ
j − ΦjKj

(
CjPx̃

j|j−1 Cᵀ
j + R̃j

))
(D.30)

The last step is to use the Kalman filter gain equation (2.212) to arrive at

Kj = Px̃
j|j−1 Cᵀ

j

(
CjPx̃

j|j−1 Cᵀ
j + R̃j

)−1
(D.31)

Cov
[
rk|k−1 , rj|j−1

]
= CkΦ′

k,j+1

(
ΦjPx̃

j|j−1 Cᵀ
j − ΦjPx̃

j|j−1 Cᵀ
j

)
= 0 (D.32)

XLI



D.3 Relating Continuous and Discrete Non-Linear System Descriptions

Thus it is shown that the residuals rk|k−1 are white and, zero-mean

E
[
rk|k−1

]
= 0 (D.33)

Cov
[
rk|k−1 , rj|j−1

]
= δkj

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)
(D.34)

D.3 Relating Continuous and Discrete Non-Linear Sys-
tem Descriptions

In many applications of the extended Kalman filter to system identification problems,
the system description is in the form of a system of continuous time differential equa-
tions

.
x(t) = f(x(t) ,u(t)) (D.35)

This can be transformed into a non-linear, discrete difference equation via an explicit
s-stage Runge-Kutta integration scheme [Ger2018, Ch. 5]

kj(xk; ∆tk) = f

xk + ∆tk
j−1∑
l=1

ajlkl(xk; ∆tk) ,u(tk + cj∆tk)
 (D.36)

xk+1 = xk + ∆tk
s∑

j=1
bj · kj(xk; ∆tk) (D.37)

The input term may be approximated to simplify computations

zero-order hold: u(tk + cj∆tk) ≈ uk (D.38)

linear interpolation: u(tk + cj∆tk) ≈ uk(1 − cj) + uk+1cj (D.39)

The coefficients ajl, bj , and cl determine the characteristics of the integration scheme.
They are usually chosen by comparing Taylor series expansions of the true solution
with Taylor series expansions of the numerical solution and matching the coefficients
of terms up to a certain order of the derivatives. The coefficients can be arranged

Table D.1: Examples for different Butcher-Tableaux

c1 0
... a21 0
...

... . . . . . .

cs as1 · · · as,s−1 0
b1 · · · · · · bs

(a) a generic Butcher Tableau for
an explicit s-stage integration

0 0
1

(b) the Butcher Tableau for Euler
Forward integration

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

(c) the Butcher Tableau fourth or-
der Runge-Kutta integration
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in so-called Butcher Tableaux, see table D.1. Next to the generic layout for explicit
schemes D.1a, two widely used integration schemes are shown as examples: simple
Euler forward integration in D.1b and a fourth order Runge-Kutta integration in D.1c.

For explicit integration schemes, the upper right triangular part of the ajl coefficients
has to be equal to zero, otherwise above equation would be implicit in kj and iterative
solvers would be necessary. In the state estimation cases treated here, only explicit
integration schemes are used, allowing for the following approximation of the solution
of a continuous time, non-linear system of differential equations

xk+1 = xk + ∆tk
s∑

j=1
bj · kj(xk; ∆tk) = dfk[xk,uk,wk] (D.40)

D.4 Equality of Maximum Likelihood and Minimum
Variance Filtering

Again, the correction step is considered to be taken at k to keep indexing more straight-
forward, as was done in appendix D.2.

The update step based on maximum likelihood considerations is

x̂k|k =
((

Px̃
k|k−1

)−1
+ Cᵀ

kR̃−1
k Ck

)−1((
Px̃

k|k−1

)−1
x̂k|k−1 + Cᵀ

kR̃−1
k (zk − Dkuk)

)
(D.41)

Using the following matrix identity [Jaz1970, Appendix 7B] [Ho1963]

(
P−1 + CᵀR−1C

)−1
= P − PCᵀ(CPCᵀ + R)−1 CP (D.42)

the update becomes

x̂k|k =
(

Px̃
k|k−1 − Px̃

k|k−1 Cᵀ
k

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
CkPx̃

k|k−1

)
((

Px̃
k|k−1

)−1
x̂k|k−1 + Cᵀ

kR̃−1
k (zk − Dkuk)

) (D.43)

Now, the second factor in braces is multiplied out

x̂k|k =
(

Px̃
k|k−1 − Px̃

k|k−1 Cᵀ
k

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
CkPx̃

k|k−1

)(
Px̃

k|k−1

)−1
x̂k|k−1

+
(

Px̃
k|k−1 − Px̃

k|k−1 Cᵀ
k

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
CkPx̃

k|k−1

)
Cᵀ

kR̃−1
k (zk − Dkuk)

=
(

Inx − Px̃
k|k−1 Cᵀ

k

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1

︸ ︷︷ ︸
=Kk

Ck

)
x̂k|k−1 (D.44)

+ Px̃
k|k−1 Cᵀ

k

(
Iny −

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
CkPx̃

k|k−1 Cᵀ
k

)
R̃−1

k (zk − Dkuk)
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D.5 Smoothed State Error Covariance Estimate

Adding an advantageously chosen zero term in the second part allows to simplify
further

x̂k|k =(Inx − KkCk) x̂k|k−1 + Px̃
k|k−1 Cᵀ

k

(
Iny −

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
CkPx̃

k|k−1 Cᵀ
k

−
(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
R̃k +

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
R̃k︸ ︷︷ ︸

=0

)
R̃−1

k (zk − Dkuk)

=(Inx − KkCk) x̂k|k−1 + Px̃
k|k−1 Cᵀ

k

(
Iny +

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1
R̃k

−
(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)
︸ ︷︷ ︸

=Iny

)
R̃−1

k (zk − Dkuk) (D.45)

=(Inx − KkCk) x̂k|k−1 + Px̃
k|k−1 Cᵀ

k

(
CkPx̃

k|k−1 Cᵀ
k + R̃k

)−1

︸ ︷︷ ︸
=Kk

(zk − Dkuk)

= x̂k|k−1 + Kk

(
zk − Dkuk − Ckx̂k|k−1

)
= x̂k|k−1 + Kk

(
zk − ŷk|k−1

)
This last step shows the equality to the update step (2.207) using a gain obtained via a
minimum trace approach (2.212).

D.5 Smoothed State Error Covariance Estimate

The backward smoothing recursion is

x̂k
∣∣N̄ =x̂k|k + Mk

(
x̂k+1

∣∣N̄ − x̂k+1|k

)
(D.46)

In order to compute the covariance of the smoothing state estimate, the true state vector
xk is subtracted from both sides of the backwards recursion equation, and the terms
are re-arranged [RTS1965]

x̃k
∣∣N̄ − Mkx̂k+1

∣∣N̄ = x̃k|k − Mkx̂k+1|k (D.47)

Now, as presented in [Jaz1970, Ch 7], both sides are squared and the expectation is
taken

E
[
x̃k
∣∣N̄ x̃ᵀ

k
∣∣N̄
]

+ MkE
[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

Mᵀ
k

−E
[
x̃k
∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

Mᵀ
k − MkE

[
x̂k+1

∣∣N̄ x̃ᵀ

k
∣∣N̄
]

=

=E
[
x̃k|k x̃ᵀ

k|k

]
+ MkE

[
x̂k+1|k x̂ᵀ

k+1|k

]
Mᵀ

k

−E
[
x̃k|k

(
Φkx̂k|k + Γkuk

)ᵀ]
Mᵀ

k − E
[(

Φkx̂k|k + Γkuk

)
x̃ᵀ

k|k

]
Mk

(D.48)

On the right hand side of above equation, the propagation equation (2.202) was used to
replace x̂k+1|k in the cross terms. This can be simplified by using the following equal-
ities from [Jaz1970, Ch. 7 eq. (7.89)] or [RTS1965] respectively, which give a statement
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Chapter D: Additional Kalman Filter Derivations

about the orthogonality of the estimate and accompanying estimation errors

E
[
x̃k
∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

= 0 (D.49)

E
[
x̃k|k x̂ᵀ

k|k

]
= 0 (D.50)

Furthermore, assuming that the conditions for an unbiased state estimate are met, it
holds

E
[
x̃k
∣∣N̄ ] = 0 ⇒ E

[
x̂k
∣∣N̄ ] = E[xk] (D.51)

E
[
x̃k|k

]
= 0 ⇒ E

[
x̂k|k

]
= E[xk] (D.52)

Then all cross terms are equal to 0 and above equation simplifies to

E
[
x̃k
∣∣N̄ x̃ᵀ

k
∣∣N̄
]

+ MkE
[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

Mᵀ
k =

=E
[
x̃k|k x̃ᵀ

k|k

]
+ MkE

[
x̂k+1|k x̂ᵀ

k+1|k

]
Mᵀ

k

(D.53)

Here, the corrected and smoothed state error covariance matrices may be identified

Px̃
k
∣∣N̄ + MkE

[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

Mᵀ
k =

=Px̃
k|k + MkE

[
x̂k+1|k x̂ᵀ

k+1|k

]
Mᵀ

k

(D.54)

Solving for Px̃
k
∣∣N̄ yields

Px̃
k
∣∣N̄ = Px̃

k|k + Mk

(
E
[
x̂k+1|k x̂ᵀ

k+1|k

]
− E

[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
])

Mᵀ
k (D.55)

= Px̃
k|k + Mk

(
E
[(

Φkx̂k|k + Γkuk

)(
Φkx̂k|k + Γkuk

)ᵀ]
− E

[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
])

Mᵀ
k

The last step is to identify and cancel the common parts of the terms in brackets on
the right. Using equations (D.49) and (D.50), as well as the model equation (2.180), the
remaining expectations can be expressed as

E[xkxᵀ
k] = E

[(
x̂k|k + x̃k|k

)(
x̂k|k + x̃k|k

)ᵀ]
= E

[
x̂k|k x̂ᵀ

k|k

]
+ E

[
x̃k|k x̃ᵀ

k|k

]
+ E

[
x̂k|k x̃ᵀ

k|k

]
+ E

[
x̃k|k x̂ᵀ

k|k

]
= E

[
x̂k|k x̂ᵀ

k|k

]
+ Px̃

k|k

(D.56)

E
[
xk+1x

ᵀ
k+1

]
= E

[(
x̂k+1

∣∣N̄ + x̃k+1
∣∣N̄ )(x̂k+1

∣∣N̄ + x̃k+1
∣∣N̄ )ᵀ]

= E
[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

+ E
[
x̃k+1

∣∣N̄ x̃ᵀ

k+1
∣∣N̄
]

+ E
[
x̂k+1

∣∣N̄ x̃ᵀ

k+1
∣∣N̄
]

+ E
[
x̃k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

= E
[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

+ Px̃
k+1
∣∣N̄

(D.57)

E
[
xk+1x

ᵀ
k+1

]
= E[(Φkxk + Γkuk + Fkwk)(Φkxk + Γkuk + Fkwk)ᵀ]

= ΦkE[xkxᵀ
k] Φᵀ

k + Γkukuᵀ
kΓᵀ

k + FkQkFᵀ
k

+ ΦkE[xk] uᵀ
kΓᵀ

k + ΓkukE[xᵀ
k] Φᵀ

k

(D.58)
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D.5 Smoothed State Error Covariance Estimate

Collecting all this together, the final expression for the error covariance of the smooth
state estimate is

Px̃
k
∣∣N̄ =Px̃

k|k + Mk

(
E
[(

Φkx̂k|k + Γkuk

)(
Φkx̂k|k + Γkuk

)ᵀ]
− E

[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
])

Mᵀ
k

=Px̃
k|k + Mk

(
ΦkE

[
x̂k|k x̂ᵀ

k|k

]
Φᵀ

k + Γkukuᵀ
kΓᵀ

k + ΦkE
[
x̂k|k

]
uᵀ

kΓᵀ
k

+ ΓkukE
[
x̂ᵀ

k|k

]
Φᵀ

k − E
[
x̂k+1

∣∣N̄ x̂ᵀ

k+1
∣∣N̄
])

Mᵀ
k

=Px̃
k|k + Mk

(
Φk

(
E[xkxᵀ

k] − Px̃
k|k

)
︸ ︷︷ ︸

(D.56)= E
[

x̂k|k x̂ᵀ
k|k

] Φᵀ
k + Γkukuᵀ

kΓᵀ
k + ΦkE[xk] uᵀ

kΓᵀ
k

+ ΓkukE[xᵀ
k] Φᵀ

k −
(

E
[
xk+1x

ᵀ
k+1

]
− Px̃

k+1
∣∣N̄
)

︸ ︷︷ ︸
(D.57)= E

[
x̂

k+1
∣∣N̄ x̂ᵀ

k+1
∣∣N̄
]

)
Mᵀ

k

(D.58)= Px̃
k|k + Mk

(
Px̃

k+1
∣∣N̄ − ΦkPx̃

k|k Φᵀ
k − FkQkFᵀ

k

)
Mᵀ

k

⇒ Px̃
k
∣∣N̄ =Px̃

k|k + Mk

(
Px̃

k+1
∣∣N̄ − Px̃

k+1|k

)
Mᵀ

k (D.59)
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Appendix E

Cost Function Derivatives

All of the following derivatives have been double-checked using imaginary step finite
differences.

E.1 Gradient of Modified Maximum Likelihood
Cost Function

A slightly modified version of the following derivation has already been published in
[GGBH2016]. The basis for the computation of the gradient of Ĵ is a result from matrix
calculus [BS2012]

∂ ln|X|
∂a

= tr
[
X−1∂X

∂a

]
(E.1)

Then, the derivative of Ĵ w.r.t. the j-th element of the k-th sample of the model output
vector is

∂Ĵ

∂[yk](j)
= ∂

∂[yk](j)

(
N

2 ln
∣∣∣B̂∣∣∣) = N

2 tr

B̂−1 ∂B̂
∂[yk](j)

 (E.2)

With the definition of B̂ in equation (3.6) and keeping in mind that the residuals are
defined as rk = zk − yk above partial derivative can be expressed as

∂B̂
∂[yk](j)

= − 1
N

(
(zk − yk) eᵀ

j + ej(zk − yk)ᵀ
)

(E.3)

This can then be plugged back into the expression for ∂Ĵ
∂[yk](j)

, which yields, after factor-
ing out and using the trace’s linearity

∂Ĵ

∂[yk](j)
= − 1

N

N

2
(
tr
[
B̂−1(zk − yk) eᵀ

j

]
+ tr

[
B̂−1ej(zk − yk)ᵀ

])
(E.4)
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E.2 Gradient of Modified Maximum Likelihood Cost Function for Scaled Residual
Covariance

Using the fact that tr[A] = tr[Aᵀ], the cyclic property of the trace, and the symmetry of
B̂, it can be shown, that above two trace terms are equal

tr
[
B̂−1(zk − yk) eᵀ

j

]
= tr

[
ej(zk − yk)ᵀ B̂−1

]
= tr

[
B̂−1ej(zk − yk)ᵀ

]
(E.5)

∂Ĵ

∂[yk](j)
= −tr

[
B̂−1ej(zk − yk)ᵀ

]
(E.6)

If B̂−1 is partitioned according to

B̂−1 =


bᵀ

1
...

bᵀ
ny

 =
[

b1 · · · bny

]
bj ∈ Rny (E.7)

above expression can be simplified (again, using the cyclic property of the trace and its
invariance w.r.t. transposing the argument)

∂Ĵ

∂[yk](j)
= −tr

[
B̂−1ej(zk − yk)ᵀ

]
= −tr[bj(zk − yk)ᵀ] =

= −tr
[
bᵀ

j (zk − yk)
]

= −bᵀ
j (zk − yk)

(E.8)

Finally, all derivatives w.r.t. the j output vector elements can be stacked vertically, to
obtain

∂Ĵ

∂yk

=
∂
∣∣∣B̂∣∣∣
∂yk

= −B̂−1(zk − yk) (E.9)

The same results was obtained in [GP1977, Ch. 5.4].

E.2 Gradient of Modified Maximum Likelihood Cost
Function for Scaled Residual Covariance

In the case of a scaled residual covariance matrix, the derivatives have to be adapted,
too

∂ scaledJ

∂yk

= ∂

∂yk

(
1
2

N−1∑
k=0

rᵀ
kW−ᵀB̂−1W−1rk + N

2 ln
∣∣∣B̂∣∣∣+N ln|W|

)

= 1
2
∂

∂yk

(
N−1∑
k=0

rᵀ
kW−ᵀB̂−1W−1rk

)
+ ∂

∂yk

N

2 ln
∣∣∣B̂∣∣∣ (E.10)

The second term can be identified as the derivative of Ĵ w.r.t. the model outputs

∂

∂yk

N

2 ln
∣∣∣B̂∣∣∣ = ∂Ĵ

∂yk

= −B̂−1(zk − yk) (E.11)
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Chapter E: Cost Function Derivatives

For the first, a similar approach as above is used. Some identities from matrix calculus
are important here, namely the derivative of a quadratic form, the chain rule [BS2012],
and the derivative of the trace of an inverse

∂xᵀBx

∂x
=(B + Bᵀ) x (E.12)

∂g(U(X))
∂[X](i,j)

= tr

(∂g(U(X))
∂U

)ᵀ
∂U

∂[X](i,j)

 (E.13)

∂tr
[
AX−1B

]
∂X

= −X−ᵀAᵀBᵀX−ᵀ (E.14)

Then, applying the product rule, an expression for the derivative w.r.t. the j-th element
of the k-th sample of the model output vector can be determined

1
2

∂

∂[yk](j)

(
N−1∑
k=0

rᵀ
kW−ᵀB̂−1W−1rk

)

(E.13)=
(E.14)

− eᵀ
j W−ᵀB̂−1W−1rk + 1

2 tr

( ∂

∂B̂
tr
[

N−1∑
k=0

rᵀ
kW−ᵀB̂−1W−1rk

])ᵀ
∂B̂

∂[yk](j)


(E.14)= − eᵀ

j W−ᵀB̂−1W−1rk − 1
2 tr

(N−1∑
k=0

B̂−ᵀW−1rkrᵀ
kW−ᵀB̂−ᵀ

)ᵀ
∂B̂

∂[yk](j)


= − eᵀ

j W−ᵀB̂−1W−1rk − 1
2 tr

B̂−1W−1N
1
N

(
N−1∑
k=0

rkrᵀ
k

)
W−ᵀB̂−1 ∂B̂

∂[yk](j)


(3.6)= − eᵀ

j W−ᵀB̂−1W−1rk − N

2 tr

B̂−1W−1B̂W−ᵀB̂−1 ∂B̂
∂[yk](j)



(E.15)

The second part has now the same structure as equation (E.2), i.e. the same strategy can
be applied: insert the expression for ∂B̂

∂[yk](j)
, combine the two parts of the resulting trace,

partition the matrix B̂−1W−1B̂W−ᵀB̂−1 and finally stack the derivatives vertically to
arrive at

1
2
∂

∂yk

(
N−1∑
k=0

rᵀ
kW−ᵀB̂−1W−1rk

)
=
(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1

)
rk (E.16)

The complete cost function derivative then becomes

∂ scaledJ

∂yk

=
(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1 − B̂−1

)
rk (E.17)

E.3 Hessian of Maximum Likelihood Cost Function

In order to derive the second order derivatives of the cost function with covariance
estimation, at first derivatives with respect to the j-th component of the output vector
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E.4 Hessian of Maximum Likelihood Cost Function for Scaled Residual Covariance

at time instant l is considered

∂

∂[yl](j)

∂J

∂yk

= ∂

∂[yl](j)

(
−B̂−1(zk − yk)

)

= − ∂B̂−1

∂[yl](j)
(zk − yk) + B̂−1ejδkl

(E.7)= − ∂B̂−1

∂[yl](j)
rk + bjδkl

(E.18)

In order to find an expression for the first term, another result from matrix algebra is
used [BS2012]

∂X−1

∂a
= −X−1∂X

∂a
X−1 (E.19)

Applied to the problem at hand, this yields firstly

− ∂B̂−1

∂[yl](j)
rk =B̂−1 ∂B̂

∂[yl](j)
B̂−1rk

(E.3)= − B̂−1 1
N

(
rle

ᵀ
j + ejr

ᵀ
l

)
B̂−1rk

= − 1
N

(
B̂−1rl eᵀ

j B̂−1rk︸ ︷︷ ︸
=rᵀ

k
B̂−1ej ∈R

+B̂−1ejr
ᵀ
l B̂−1rk

)

= − 1
N

(
B̂−1rlr

ᵀ
kB̂−1ej + B̂−1ejr

ᵀ
l B̂−1rk

)
(E.7)= − 1

N

(
B̂−1rlr

ᵀ
kbj + bjr

ᵀ
l B̂−1rk

)

(E.20)

Now, the complete matrix of second derivatives can be assembled, by writing the ele-
ments next to each other

∂

∂yl

∂J

∂yk

=
[

∂
∂[yl](1)

∂J
∂yk

· · · ∂
∂[yl](

ny

) ∂J
∂yk

]
= − 1

N

(
B̂−1rlr

ᵀ
kB̂−1 + B̂−1rᵀ

l B̂−1rk

)
+ B̂−1δkj

(E.21)

With large N the second term dominates, thus the following approximation is valid in
practice

∂

∂yl

∂J

∂yk

≈ B̂−1δkj (E.22)

E.4 Hessian of Maximum Likelihood Cost Function for
Scaled Residual Covariance

In the case of a scaled residual covariance matrix, the Hessian has to be adapted in a
similar manner as the gradient before, it then reads

∂

∂yl

∂ scaledJ

∂yk

= ∂

∂yl

(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1 − B̂−1

)
rk (E.23)
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Chapter E: Cost Function Derivatives

A similar approach as before is used, i.e. first the derivative with respect to the j-th el-
ement at time instant l is computed, before the results are stacked to obtain the deriva-
tive ∂2

scaledJ

∂yk∂yᵀ
l

. In order to do so, two auxiliary functions f 1 and f 2 are defined as follows

A =
[

a1 · · · any

]
A ∈ Rnny ×nny (E.24)

Cᵀ =
[

c1 · · · cny

]
C ∈ Rnny ×nny (E.25)

[f 1](j)(A,C) = A · ∂B̂
∂[yl](j)

· Crk

(E.3)= − 1
N

A
(
rle

ᵀ
j + ejr

ᵀ
l

)
Crk

= − 1
N

(
Arl eᵀ

j Crk︸ ︷︷ ︸
=rᵀ

k
Cᵀej ∈R

+Aejr
ᵀ
l Crk

)

= − 1
N

(Arlr
ᵀ
kCᵀej + Aejr

ᵀ
l Crk)

= − 1
N

(Arlr
ᵀ
kcj + ajr

ᵀ
l Crk)

(E.26)

f 1(A,C) =
[

[f 1](1) · · · [f 1](ny)

]
= − 1

N
(Arlr

ᵀ
kCᵀ + Arᵀ

l Crk)
(E.27)

[f 2](j)(A,C) = A · ∂B̂−1

∂[yl](j)
· Crk

(E.19)= −AB̂−1 · ∂B̂
∂[yl](j)

· B̂−1Crk

=[f 1](j)

(
−AB̂−1, B̂−1C

)
(E.28)

f 2(A,C) =
[

[f 2](1) · · · [f 2](ny)

]
= 1
N

(
AB̂−1rlr

ᵀ
kCᵀB̂−1 + AB̂−1rᵀ

l B̂−1Crk

) (E.29)

Now, computing the partial derivative with respect to[yl](j) of the scaled gradient using
the product rule yields

∂2
scaledJ

∂yk∂[yl]ᵀ(j)
= ∂

∂[yl](j)

(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1 − B̂−1

)
rk

=
−W−ᵀ ∂B̂−1

∂[yl](j)
W−1 + ∂B̂−1

∂[yl](j)
W−1B̂W−ᵀB̂−1

+B̂−1W−1 ∂B̂
∂[yl](j)

W−ᵀB̂−1 + B̂−1W−1B̂W−ᵀ ∂B̂−1

∂[yl](j)
− ∂B̂−1

∂[yl](j)

 rk

+
(
−W−ᵀB̂−1W−1 + B̂−1W−1B̂W−ᵀB̂−1 − B̂−1

)
(−ej) δkl

(E.30)
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E.4 Hessian of Maximum Likelihood Cost Function for Scaled Residual Covariance

This can now be expressed using above auxiliary function definitions

∂2
scaledJ

∂yk∂[yl]ᵀ(j)
=[f 2](j)

(
−W−ᵀ,W−1

)
+[f 2](j)

(
Iny ,W−1B̂W−ᵀB̂−1

)
+[f 1](j)

(
B̂−1W−1,W−ᵀB̂−1

)
+[f 2](j)

(
B̂−1W−1B̂W−ᵀ, Iny

)
+[f 2](j)

(
−Iny , Iny

)
+
(
W−ᵀB̂−1W−1 − B̂−1W−1B̂W−ᵀB̂−1 + B̂−1

)
ejδkl

(E.31)

Sorting all j = 1, . . . , ny elements next to each other, yields eventually

∂2
scaledJ

∂yk∂yᵀ
l

= − 1
N

(
W−ᵀB̂−1rlr

ᵀ
kW−ᵀB̂−1 + W−ᵀB̂−1rᵀ

l B̂−1W−1rk

)
+ 1
N

(
B̂−1rlr

ᵀ
kB̂−1W−1B̂W−ᵀB̂−1 + B̂−1rᵀ

l B̂−1W−1B̂W−ᵀB̂−1rk

)
− 1
N

(
B̂−1W−1rlr

ᵀ
kB̂−1W−1 + B̂−1W−1rᵀ

l W−ᵀB̂−1rk

)
+ 1
N

(
B̂−1W−1B̂W−ᵀB̂−1rlr

ᵀ
kB̂−1 + B̂−1W−1B̂W−ᵀB̂−1rᵀ

l B̂−1rk

)
− 1
N

(
B̂−1rlr

ᵀ
kB̂−1 + B̂−1rᵀ

l B̂−1rk

)
+
(
W−ᵀB̂−1W−1 − B̂−1W−1B̂W−ᵀB̂−1 + B̂−1

)
δkl

(E.32)

Using the same argument as in the last section, this can be approximated as

∂2
scaledJ

∂yk∂yᵀ
l

≈
(
W−ᵀB̂−1W−1 − B̂−1W−1B̂W−ᵀB̂−1 + B̂−1

)
δkl (E.33)
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Appendix F

Flight Mechanics Nomenclature

F.1 Reference Frames and Transformations

Reference frames and the transformations between them are done using standard ap-
proaches in flight mechanics. To familiarize the reader with the nomenclature in use,
they are briefly summed up next, further details can be found in [Hol2018b, Hol2018a].

The reference frames in use are all right-handed with mutually orthogonal axes,
where the World Geodetic System 1984 (WGS84) 84 coordinates are the only exception.

◦ Earth-Centered-Earth-Fixed [ECEF] - index E
Cartesian frame for determining positions; fixed at the earth’s center with z-axis
towards the north pole, x-axis in the equatorial plane towards the Greenwich
Meridian, and y-axis to complement the right hand system; For system identi-
fication purposes, this is considered to be the “inertial” frame, its movement is
thus neglected in formulating equations of motion

◦ North-East-Down [NED] - index O
Cartesian frame for determining the aircraft’s attitude; fixed at the aircraft refer-
ence point, with z-axis pointing down, perpendicular to the local geoid surface,
x-axis pointing north and y-axis pointing east, both parallel to the local geoid
surface;

◦ Navigation Frame - index N
Local, Cartesian navigation frame, fixed at an arbitrary point; axis follow North-
East-Down (NED) convention at the origin

◦ Body-Fixed - index B
Fixed at the aircraft reference point R, used to denote locations of subsystems
relative to the aircraft; x-axis points toward the nose, z-axis points downward in
the aircraft’s plane of symmetry, and y-axis completes the right hand system by
pointing toward the starboard wing.

◦ Aerodynamic - index A
System do denote aerodynamic quantities; x axis is aligned with the aerodynamic
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F.2 Nomenclature for Flight Mechanic Quantities

velocity vector, z-axis points downward in the plane of symmetry of the aircraft,
y-axis points to the right and completes the right hand system

◦ World Geodetic System 1984 [WGS]
Coordinate system to represent a position on the WGS84 reference ellipsoid using
latitude µ, longitude λ and altitude h over the reference ellipsoids’ surface.

Transformations between the reference frames are achieved by using orthonormal
rotation matrices MAB, which indicate a rotation fromB-frame to theA-frame. Most of
the rotation matrices can be parameterized using angles, and the following elementary
rotation matrices about the three coordinate axis

Mx(α) =


1 0 0
0 cosα sinα
0 − sinα cosα

 (F.1)

My(α) =


cosα 0 − sinα

0 1 0
sinα 0 cosα

 (F.2)

Mz(α) =


cosα sinα 0

− sinα cosα 0
0 0 1

 (F.3)

The orthonormal transformation matrices between the systems can then be defined via
a (non-commuting!) rotation sequence.

F.2 Nomenclature for Flight Mechanic Quantities

The general form for denoting flight mechanic quantities at the institute of flight sys-
tem dynamics follows the following convention(

QuantityReference
Type

)Derivative Frame

Notation Frame
(F.4)

Three dimensional, Cartesian vectors are noted as ~v as opposed to general vectors x.
The derivative and notation frames use the indices as illustrated in the last section,
whereas the reference can be one of the following special points:

◦ G center of gravity
◦ R aircraft reference point
◦ A aerodynamic reference point
◦ P propulsion reference point

The “Type” of a force or moment quantity can be described, using those same indices
(G gravity, A aerodynamic, ...), whereas for movement quantities the three possible
types are

◦ K kinematic, i.e. with respect to the earth’s surface
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Chapter F: Flight Mechanics Nomenclature

◦ A aerodynamic, i.e. with respect to the surrounding air

◦ W wind, i.e. the movement of the surrounding air with respect to the earth’s
surface

The same principles apply to the components of vector quantities. These compo-
nents are

◦ ~r =
[
x, y, z

]ᵀ
for positions

◦ ~v =
[
u, u, w

]ᵀ
for velocities

◦ ~a =
[
ax, ay, az

]ᵀ
for accelerations

◦ ~ω =
[
ωx, ωy, ωz

]ᵀ
for rotational rates

◦ ~ωOB =
[
pOB, qOB, rOB

]ᵀ
for the special case of the rotational rate w.r.t. the earth’s

surface

◦
.
~ω =

[ .
ωx,

.
ωy,

.
ωz

]ᵀ
for rotational rates

F.2.1 Translational Examples

For positions, the reference can either be single, implying a position vector from the ori-
gin of the coordinate system, or double, implying a position vector between two points:(
~rR
)

E
is the absolute position of the aircraft reference point, noted in Earth-Centered-

Earth-Fixed (ECEF) coordinates;
(
~rRG

)
B

is the position of the center of gravity (c.g.)
relative to the aircraft reference point, noted in body-fixed coordinates.

Velocities, as time derivative of positions, need to indicate, in which coordinate

frame the time derivative is taken, and what type of velocity is meant:
(
~vR

K

)E

B
is the

kinematic velocity of the aircraft reference point with respect to the ECEF frame, noted

in body fixed coordinates;
(
~vA

A

)E

A
is the aerodynamic velocity at the aerodynamic refer-

ence point with respect to the ECEF frame, noted in the aerodynamic frame;

The same reasoning applies to accelerations:
(
~aR

K

)EE

B
is the kinematic acceleration at

the aircraft reference point, differentiated twice with respect to the ECEF frame, noted
in body fixed coordinates;

F.2.2 Rotational Examples

Angles usually describe the relation between two reference frames, i.e. some different
rules apply: αA

A indicates the aerodynamic angle of attack (angle between aerodynamic
and body-fixed frame) at the aerodynamic reference point; φBO is the bank angle of the
aircraft (which is independent of the reference point for a rigid body), i.e. one of the
angles between the NED (O) and body-fixed frame (B).

Rotational rates describe the rotation between two reference frames, and need to
indicate their type and the notation frame:

(
~ωEB

K

)
B

is the kinematic rotational rate of
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F.2 Nomenclature for Flight Mechanic Quantities

the body-fixed frame versus the ECEF frame, noted in body-fixed coordinates;
(
~ωOA

A

)
O

is the aerodynamic rotational rate of the aerodynamic frame, noted in components of
the NED frame, which may be used to describe turbulence.

Rotational accelerations need to additionally indicate the derivative frame:
(
~ωEB

K

)B

B

are the kinematic rotational accelerations, where differentiation took place with respect
to the body-fixed frame, and it is expressed in body-fixed coordinates. The frame, in
which the derivative is taken is only of secondary importance here, since it is any of
the two frames involved in the rotation, the result is the same(

d

dt

)A(
~ωAB

)
B

=
( .
~ω

AB
)A

B
=
( .
~ω

AB
)B

B
+
(
~ωAB

)
B

×
(
~ωAB

)
B︸ ︷︷ ︸

=~0

=
( .
~ω

AB
)B

B
=
(
d

dt

)B(
~ωAB

)
B

(F.5)
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Appendix G

Additional Data Skymule

G.1 Complementary Filter for Attitude Estimation

The basic idea behind the complementary filter for attitude estimation is the following
equality in the Euler angles Θ in the Laplace domain

ΘBO = Ts+ 1
Ts+ 1ΘBO = T

Ts+ 1
.

Θ
BO + 1

Ts+ 1ΘBO (G.1)

Now the left hand side can be considered as the filtered combination fΘBO of the two
signal sources on the right

.
Θ

BO
, ΘBO. Solving for s fΘBO = f .

ΘBO yields

f .
ΘBO = 1

T

(
ΘBO − fΘBO

)
+

.
Θ

BO
(G.2)

which is a simple first order ordinary differential equation (ODE) with state vector
fΘBO. The remaining quantities on the right are an attitude estimate from inertial and
magnetometer measurements

ΘBO =


φBO

θBO

ψBO

 =


atan2

(
−
(
fR

y

)II

B
,−
(
fR

z

)II

B

)
atan2

((
fR

x

)II

B
,

√(
fR

y

)II

B

2
+(fR

z )II
B

2
)

ψBO
mag

 (G.3)

The magnetic course measurement ψBO
mag arises from

Mx

(
φBO

)
My

(
θBO

)
Mz

(
ψBO

)(
~b

R
)

O
=
(
~b

R
)

B
−
(

∆~b
R
)

B
(G.4)

Mz

(
ψBO

)(
~b

R
)

O
= My

(
θBO

)ᵀ
Mx

(
φBO

)ᵀ((~bR
)

B
−
(

∆~b
R
)

B

)
= ~̃bR (G.5)

where
(

∆~b
R
)

B
is a bias estimate to be illustrated further down, and ~̃bR is the measure-

ment, transformed to a horizontal plane. The first two elements of above equation may
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G.2 Additional Figures Skymule

be re-arranged to finally obtain ψBO
mag cosψBO sinψBO

− sinψBO cosψBO

 (bR
x

)
O(

bR
y

)
O

 =
 (bR

x

)
O

(
bR

y

)
O(

bR
y

)
O

−
(
bR

x

)
O

 cosψBO

sinψBO

 =
 b̃R

x

b̃R
y


⇔

 cosψBO

sinψBO

 =
 (bR

x

)
O

(
bR

y

)
O(

bR
y

)
O

−
(
bR

x

)
O

−1 b̃R
x

b̃R
y

 (G.6)

⇒ ψBO
mag = atan2

(
sinψBO, cosψBO

)
(G.7)

The magnetometer bias estimate
(

∆~b
R
)

B
is simply the low-pass filtered difference be-

tween measured and estimated magnetic field vector(
∆
.
~b

R
)

B

= − 1
Tb

(
∆~b

R
)

B
+ 1
Tb

((
~b

R
)

B
− MBO

(
fΘBO

)(
~b

R
)

O

)
(G.8)

with a comparably large time-constant Tb. This augments the overall state vector to
include this bias estimate.

The time derivative of the Euler angles in above filter equation (G.1) are obtained
via the attitude propagation using rotational rate measurements

.
Θ

BO =


1 sinφBO tan θBO cosφBO tan θBO

0 cosφBO − sinφBO

0 sin φBO

cos θBO
cos φBO

cos θBO

(~ωOB
K

)
B

(G.9)

The only remaining part is to determine the time constant T : since the attitude esti-
mates from the accelerometer are in general not very reliable, and are further distorted
by centripetal, and Coriolis effects during turning flight, their “weight” should not be
too large. This is why the time constant was chosen to be scaled based upon the norm
of the measured acceleration vector

n~f = n~f

((
~f

R
)II

B

)
=


(∥∥∥∥(~f

R
)II

B

∥∥∥∥−g

)2

g2 (nmax − nmin) + nmin if
∥∥∥∥∥
(
~f

R
)II

B

∥∥∥∥∥ < 2g

nmax otherwise

(G.10)

T = 10n~f (G.11)

Above increases the exponent n~f quadratically, the further away the measured acceler-
ation is from its nominal value g, i.e. then the filter relies more heavily on the integrated

rotational rates. In contrast, whenever
∥∥∥∥∥
(
~f

R
)II

B

∥∥∥∥∥ is close to g, the exponent, and thus the

time constant is decreased and more weight is put on the attitude estimates stemming
from accelerometer measurements.

G.2 Additional Figures Skymule

Figures G.1 and G.2 show the off-axis responses, i.e. lateral motion for longitudinal
maneuvers and vice versa
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Figure G.1: Lateral motion stemming from maneuvers in the longitudinal plane; measure-
ments z ( ), model outputs y ( ), outputs not considered in the estimation ( ), and
control inputs u ( )
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Figure G.2: Longitudinal motion stemming from maneuvers in the lateral plane; measure-
ments z ( ), model outputs y ( ), outputs not considered in the estimation ( ), and
control inputs u ( )
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Figure G.3: Inverse simulation results for lateral plane; measurements z ( ), estimated model
outputs y (considered / unconsidered ), and control inputs u ( ); Corresponding
inverse simulation results ( ) are shown on top
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Figure G.4: Inverse simulation results for longitudinal plane; measurements z ( ), estimated
model outputs y (considered / unconsidered ), and control inputs u ( ); Corre-
sponding inverse simulation results ( ) are shown on top

LXII



Publications

GÖTTLICHER, Christoph; HOLZAPFEL, Florian: Flight Path Reconstruction for an Un-
manned Aerial Vehicle Using Low-Cost Sensors. In: ICAS 30th International Congress
of the International Council of the Aeronautical Sciences, 2016

GÖTTLICHER, Christoph; GNOTH, Marcus; BITTNER, Matthias; HOLZAPFEL, Florian:
Aircraft Parameter Estimation Using Optimal Control Methods. In: AIAA Atmospheric
Flight Mechanics Conference, 2016

HOSSEINI, Seyedbarzin; GÖTTLICHER, Christoph; HOLZAPFEL, Florian: Optimal in-
put design for flight vehicle system identification via dynamic programming and the
direct method for optimal control. In: AIAA Scitech 2019 Forum, 2019

KRAUSE, Christoph; GÖTTLICHER, Christoph; HOLZAPFEL, Florian: Development
of a generic Flight Test Maneuver Injection Module. In: ICAS 31st Congress of the
International Council of the Aeronautical Science, 2018

FANG, Xiang; GÖTTLICHER, Christoph; HOLZAPFEL, Florian: Attitude Estimation
of Skis in Ski Jumping Using Low-Cost Inertial Measurement Units. In: 12th ISEA
Conference on the Engineering of Sport, 2018

DIEPOLDER, Johannes; GÖTTLICHER, Christoph; GRÜTER, Benedikt; AKMAN, Tuğba;
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