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Abstract—This paper proposes a regressor-free adaptive
feedback-linearization control technique that does not require
a model approximation or a regressor matrix. Adaptation in the
proposed feedback process is acquired through an update law
involving adjustment of less control parameters as compared to
existing controllers. Under the given constraints, the closed-loop
asymptotic stability of the proposed control law is verified using
Lyapunov techniques. The proposed controller is compared with
existing adaptive controllers on a two degree-of-freedom robot
manipulator. Based on the new adaptive technique, the model
parameters of the robotic arm are identified using adequate
excitation trajectories. The proposed adaptive technique was
validated through simulations and experiments.

I. INTRODUCTION

In a dynamic environment, robots are required to perform at

high-speed. Mass production in industry is one such applica-

tion. Manufacturing of product requires precise synchroniza-

tion of robot’s motion along different axis. To achieve high

performance for a model-based control method, knowledge

about manipulator dynamics is inevitable. Tracking a desired

trajectory by the robot’s end-effector at high-speed is an

important challenge [1], [2].

Computed torque [3], [4] is the most extensively used

method to design controllers for robotic arms. One advantage

of this method is that it results in a feedback linearization

of the non-linear system. However, disturbances, un-modeled

dynamics and parameter uncertainties limit the applicability of

computed torque methods. The dynamics of a robot depend on

its inertia, friction and its geometry. The behavior of friction

also plays a significant role in the tracking process [5], [6]. The

parameters of a robot are roughly known from its design but

direct measurement of the coefficients of physical parameters

contain uncertainties due to the complexity of the manipulator.

To overcome these problems, different controllers have been

proposed such as robust control [7], [8], adaptive control [9]–

[11], neural network-based force control [12], [13], model

predictive control [14] and disturbance observer control [15].

Most of the adaptive controllers are regressor-based methods

[4], [16], which approximate the system dynamics using a

regressor matrix that is linear in the unknown parameters.

This technique, however, requires estimation of the inertia

matrix and output acceleration. To overcome these problems

Slotine and Li [16] proposed a regressor based adaptive control

law that does not rely on these two requirements. Finding

the regressor matrix, especially for high degree-of-freedom

(DOF) robotic arms, is a sophisticated and complex task.

The function approximation technique (FAT) based adaptive

controller [9]–[11] replaces the regressor matrix with a linear

approximated function that can be represented in terms of

orthogonal basis functions. By increasing the order of the

basis, the approximation of the system parameters improves.

To achieve high performance in terms of tracking errors using

computed torque methods, the regressor matrix or FAT-based

approximation of system dynamics should perfectly match the

original model. However, all of the above adaptive control

methods use Lyapunov theory to find the control parameters.

For the existing adaptive controllers, it will be shown in later

sections that this Lyapunov equation only guarantees stability

but it does not assure approximation of the system dynamics.

The contribution of this article is twofold. First, the pa-

per derives a new adaptive control method that assures the

convergence of the estimated model towards the original sys-

tem dynamics using few tuning parameters. Using computed

torque, this yields a perfect feedback linearization due to the

accurate estimation of system coefficients. Once the mismatch

between original and approximated model is resolved, a PD

controller can be implemented to achieve high-performance.

The second contribution of the paper is to identify system

parameters using the proposed adaptive control. The dynami-

cal model of a robot manipulator is usually formulated using

the Euler-Lagrange formulation. Thus a mathematical model

of the system is known and the uncertainties lie only in the

constant coefficients. A lot of research effort focused on the

identification of these system parameters [17], [18]. As it will

be shown in the stability proof, the estimated system dynamics

approaches the real dynamics. Using this fact, the unknown

manipulator parameters can be approximated using least-

square-approximation (LS). A 2-DOF robotic manipulator is

used to demonstrate the proposed technique.

II. CONTROL TECHNIQUES

A. Feedback Linearization

The dynamics of an n-link robotic manipulator can be

represented using Euler-Lagrange equations as [4]:

M(q)q̈ +C(q, q̇)q̇ +G(q) + F q̇ = τ , (1)

where M(q) ∈ R
n×n is a symmetric positive definite inertia

matrix, C(q, q̇)q̇ ∈ R
n×1 is a vector of centrifugal and Cori-

olis terms, G ∈ R
n×1 contains the gravitational terms acting
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on the robot, F ∈ R
n×n is a diagonal matrix representing

viscous friction, q ∈ R
n×1 is a vector representing the joint

angles and τ ∈ R
n×1 is a vector of input torques applied on

each joint.

If the matrices mentioned above are accurately known, a

PD controller with feedback linearization can be implemented

to get a simple second-order linear differential equation. By

adjusting the velocity and proportional gains of the PD con-

troller, the robot can be manipulated according to the desired

response. Let the acceleration error be:

ë = q̈ − q̈d, (2)

where q̈d is the desired acceleration. Inserting (2) in (1) yields:

τ =M(q̈d + ë) +N + F q̇, (3)

where N = C(q, q̇)q̇ + G(q). The above equation allows

feedback linearization of the overall system. If the system

dynamics are known and let ë = −Kvė−Kpe, (1) becomes:

ë+Kvė+Kpe = 0. (4)

For a non oscillatory response, the PD parametersKv ∈ R
n×n

and Kp ∈ R
n×n, are set to yield an over-damped or critically

damped system. Taking ë from (4), the required torque is:

τ =M(q̈d −Kvė−Kpe) +N + F q̇,

In a current controlled robotic manipulator, the equation for

feedback linearization is:

nrktia =M(q̈d −Kvė−Kpe) +N + F q̇, (5)

where kt is the torque constant, ia is the armature current and

nr represents the gear ratio.

B. Lyapunov based Adaptive Control

For the ideal scenario, where the system dynamics are

exactly known, the dynamical equations of a robot manipulator

reduce to (4), and a simple PD controller can be used to

achieve high performance. However, as discussed in section

I, available system parameters in general are not precise, so:

τ = M̂(q̈d −Kvė−Kpe) + N̂ + F̂ q̇, (6)

where M̂ , N̂ and F̂ are estimates for M , N and F , respec-

tively. Using the estimated torque (6), the error dynamics in

(4) is:

ë+Kvė+Kpe = −M̂−1(M̃q̈ + Ñ + F̃ q̇), (7)

where M̃ = M̂ −M , Ñ = N̂ − N and F̃ = F̂ − F .

The structure of a robot manipulator is precisely known from

Euler-Lagrange formulation and the uncertainties appear only

in the constant coefficients of the dynamical model.

Following the regressor-based adaptive approach [19], the

system dynamics are described by:

Y (q, q̇, q̈)p =M(q)q̈ +N(q, q̇) + F q̇, (8)

where Y (q, q̇, q̈) is a non-linear, known regression matrix

with proper dimension and p is the unknown, constant param-

eter vector. Using the regressor-based approach, (7) becomes:

ë+Kvė+Kpe = −M̂
−1
Y (q, q̇, q̈)p̃, (9)

where p̃ = p̂− p and p̂ is the estimated value of p. In order

to track the desired behaviour in (4), we need an update law,

which drives p̂ towards p. Let x = [eT ėT ]T be the state

error vector, then (9) can be written as:

ẋ = Ax−BM−1Y (q, q̇, q̈)p̃, (10)

where

A =

[
0 In

−Kp −Kv

]
∈ R

2n×2n,B =

[
0

In

]
∈ R

2n×n

and In is the identity matrix. Consider the following Lyapunov

function:

V (x, p̃) =
1

2
xTP 1x+

1

2
p̃TP 2p̃, (11)

where P 1 and P 2 are symmetric, positive definite matrices.

Taking the derivative of (11) along (10) yields:

V̇ = −
1

2
xTQx− p̃T [(M̂

−1
Y )TBTP 1x+ P 2

˙̂p]. (12)

Since A is a Hurwitz matrix [14], there exists a positive

definite matrix Q = QT satisfying ATP 1 +P 1A = −Q. In

order to cancel some terms, the update law for p̂ is selected

as:
˙̂p = −P−1

2 (M̂
−1
Y )TBTP 1x. (13)

Substituting ˙̂p in (12), the Lyapunov function derivative

becomes V̇ = −
1
2x

TQx 6 0, which ensures asymptotic

tracking of the reference trajectory.

Inverse of the inertia matrix often may not be possible be-

cause of singularity issue. Also the joint acceleration required

in the regressor-based method contains noise. To avoid the use

of M̂
−1

and q̈, Slotine et al. [16] reconfigured the system

dynamics by considering s = ė +△e, where △ ∈ R
n×n is

a diagonal matrix with positive eigenvalues. Using this new

formulation, (1) takes the following form:

Mṡ+N + Fs+Mv̇ + Fv = τ , (14)

v = q̇d−△e. Taking the torque τ as τ = M̂v̇+ F̂ v+ N̂ −

KDs = Y (q, q̇, v, v̇)p̂,, where KD is a positive definite

matrix, (14) takes the form:

Mṡ+ Fs+KDs = −Y (q, q̇,v, v̇)p̃. (15)

Following the same steps as before, we obtain the following

formulation for the update law of p̂:

˙̂p = −P−1
2 Y T (q, q̇, v, v̇)s. (16)

Huang et al. [11] proposed a FAT-based adaptive controller

that does not require the regressor matrix to acquire the control

parameters. The matrices M , N and F are approximated by

weighted sums of some orthogonal linear functions:

M =W T
MZM , F =W T

FZF , N =W T
NZN ,



where W (.) is a weighting matrix and Z(.) is a matrix of

basis functions. In the above equation, approximation errors

are ignored. Based on the Lyapunov function:

V =
1

2
sTMs+

1

2
tr(W̃

T

MQMW̃M + W̃
T

FQFW̃ F

+W̃
T

NQNW̃N ),

the update laws are derived as [11]:

˙̂
WM = −Q−1

M ZM v̇s
T

˙̂
W F = −Q−1

F ZFvs
T

˙̂
WN = −Q−1

N ZNs
T . (17)

To further improve the control law, Kai et al. [9] replaced

M−1Y (q, q̇, q̈)p by ψ, where ψ = W TZ. Following the

same procedure for finding the control law by analyzing the

Lyapunov function, we obtain”:

˙̂
W = −Q−1ZxTPB, (18)

where P ∈ R
2n×2nis a positive definite matrix. The FAT-

based approach requires large computational cost because of

large number of a orthogonal basis functions.

III. PROPOSED ADAPTIVE TECHNIQUE

In all of the above techniques, Lyapunov theory is used

to derive the update laws. However these adaptive techniques

only confirm the error to approach zero but they do not

guarantee how fast p̂ would approach p, if it converges at all.

As can be seen from V̇ = −1/2xTQx, only x is decreasing

with time but there is no information about p̃ decreasing with

time. To force p̂→ p, we propose a simple adaptive approach

that require less tuning parameters compared to Lyapunov-

based adaptive techniques. Moreover, the proposed technique

also guarantee the convergence of modeling errors to zero,

which is then used to identify the system parameters.

Let φ = M(q)q̈ + N(q, q̇) + F q̇ − q̈ + τa, where τa
represents disturbances and unmodeled parameters. Then the

input torque is selected as [9]:

τ = φ+ q̈d −Kvė−Kpe. (19)

Using (19), equation (4) becomes:

ë+Kvė+Kpe = φ̂− φ, (20)

where φ̂ is the estimate of φ. To make φ̂ converge to φ and

thus e→ 0, we introduce the following differential equation:

m∑

i=0

ai
diφ̃

dti
= f(e, ė), (21)

where the system mismatch φ̃ is φ̂−φ, am = 1 and f(e, ė)
is a function of the errors that will be evaluated in the stability

subsection. If we consider f(e, ė) to be zero, then depending

on the values of ai in equation (21), φ̃ will eventually tends

towards zero. The only purpose of f(e, ė) is to keep the

system stable as proved in the next subsection. To avoid the

q̈d

q̈d
q̇d
qd

Controller

φ̂ = c(e, ė, ë)
φ̂ τ = φ̂+ q̈d−

Kvė−Kpe

τ

Filter

Mq̈ +N + F q̇
q̈
q̇
q−

+

Manipulator

Fig. 1: Adaptive Feedback linearization of robot manipulator.

c(e, ė, ë) can be derived from the control law given in (22).

overall effect of poles of equation (21), the coefficients ai
are selected to get a small time constant compared to the PD

controller (19). In general, the poles of (21) should be at least

five times faster than the closed-loop poles in (4) to make sure

that φ̂ approaches φ without effecting the performance of the

PD controller. Fig. 1 shows the block diagram of the proposed

adaptive control technique.

To evaluate the value of φ̂ at every time instance, which

is then used to determine the torque vector in (19), φ is

approximated by a polynomial of order m − 1 using Taylor

series. Using (20) and (21), the update law becomes:

dmφ̂

dtm
= −

m−1∑

i=0

ai
diX

dti
+ f(e, ė), (22)

where X = ë+Kvė+Kpe. Note that the update law does

not require a regression matrix or FAT evaluation. It can very

easily be implemented with low computational cost. To make

a better Taylor approximation of φ, it is desired to select a

high value of m.

A. Stability

In this section, not only the asymptotic stability of the

system is proved but also the convergence of φ̂ to φ using

(22).

Theorem 1 (Stability): Let Kx = f(e, ė), then the pro-

posed adaptive controller satisfy the asymptotic stability of

the system if K = −P 2
−1B

T
P 1.

Proof: To prove the stability of the proposed technique,

Lyapunov theory is used. Note that the techniques discussed

in section II-B used Lyapunov theory to design the adaptive

controller. While in the proposed technique, Lyapunov is only

used to proof the stability of the adaptive technique of section

III. The differential equation (21) can be written in matrix

form as:

ż =Hz +Kx,

where z = [φ̃ ˙̃
φ ...

˙̃
φm−1]T ∈ R

mn×1 and H ∈

R
mn×mn is the Jordan canonical form of the left hand side of

(21). Similarly (20) can be expressed in the state space form

as:

ẋ = Ax+Bz,

where A and x are the same as in (10) and:

B =

[
0 0 ... 0
In 0 ... 0

]
∈ R

2n×mn



Fig. 2: Two-DOF serial robot used in experiments.

Let V (x, z) = 1
2x

TP 1x+ 1
2z

TP 2z, where P 1 and P 2 are

symmetric, positive definite matrices. The derivative of this

Lyapunov function is:

V̇ = −xTQ1x− zTQ2z + 2zT (BTP 1 + P 2K)x.

As A and H are stable matrices, ATP 1 + P 1A = −Q1

and HTP 2 + P 2H = −Q2 with positive definite matrices

Q1 and Q2. The matrix K with appropriate dimensions can

easily be evaluated from the above equation as:

K = −P 2
−1B

T
P 1. (23)

Model identification is only possible if z → 0 as explained in

the next section. From the stability analysis above, it is proved

that both x and z approach zero because V̇ = −xTQ1x −

zTQ2z 6 0. The speed of convergence of φ̃ depends on the

values of ai. But higher gain of (21) require higher values of

torques, which in practice cannot be achieved if the torque is

higher than the power limits of the motors. So, ai is selected

such that the mismatch φ̃ tends to zero much faster than e
without violating the power limits of the motors.

IV. MODEL IDENTIFICATION

The structure of robot manipulators can be evaluated using

the Euler-Lagrange equation and the uncertainties lie only in

the constant coefficients of the system parameters. Using the

proposed controller, z → 0, we eventually get:

ë+Kvė+Kpe = 0.

To find the unknown parameters, take the values of φ̂ when-

ever the above equation is true at each time step (since

φ = φ̂ at that sample). Once φ is known, least square

technique can be used to determine the system parameters. The

essential requirement for identifying the system model using

LS is having a proper excitation trajectory. To identify model

parameters experimentally, it is necessary to have position,

velocity and acceleration at each joint to get a rich regressor

matrix. Note that this regressor matrix is not related to the

adaptive control. The excitation trajectory can be chosen as a

finite sum of harmonic functions to avoid noise [18]:

qi(t) =

N∑

l=1

[ail sin(ωf lt) + bil cos(ωf lt)], (24)

where ail and bil are the magnitudes of lth harmonic of the

ith joint angle. Once a large number of data points for φ̂

l1

x1

y1

q1

q1

x0

y0

x2
y2

l2

mass m1, m2

Fig. 3: Coordinate frames of a 2-DOF planar robot.

is available, which in our experiments are nearly 5000 data

points, LS can be applied to estimate the model parameters

[20]:

Yp̂ = B,

p̂ = (YT
Y)−1Y

TB, (25)

where, Y = [Y T
1 Y

T
2 ... Y T

N ]T , B = [φ̂
T

1 φ̂
T

2 ... φ̂
T

N ]T , and

N is the total number of sampled data points. The columns

of the matrix Y should be linearly independent for LS to

accurately approximate the parameters. The estimation process

can still be improved using total least square approximation,

which also considers uncertainties in the regressor matrix.

V. RESULTS AND ANALYSIS

The proposed adaptive technique and all of the previous

techniques mentioned in section II-B are implemented on

a 2-DOF robot manipulator as shown in Fig. 2 and 3. A

circular desired trajectory with a radius of 0.15 m and a center

at 0.24x̂+ 0.24ŷ m is considered, where x̂ and ŷ are unit

vectors in the x and y directions respectively. The matrices

M(q),N(q, q̇) and F for the 2-DOF manipulator are:

M =

[
m11 +m

′

11 cos q2 m12 +m
′

12cos q2
m21 +m

′

21 cos q2 m22

]
,

N =

[
−n11 sin q2q̇

2
2 − n12 sin q2q̇1q̇2

n21 sin q2q̇
2
1

]
,F =

[
f11 0
0 f22

]

, where the unknown constant coefficients in the above matri-

ces depend on the physical parameters of the robot manipulator

as shown in Table. I. The planar robot lies in the horizontal

plan, thus gravity terms are zero.

A. Simulation results

Simulation results are shown in Fig. 4-8. For a regressor-

based method shown in Fig. 4, inverse of the inertial matrix

limits the overall performance of the controller. The matrices

in (13) are chosen as P 2 = I and:

P 1 =




6.05 0 0.008 0
0 2.13 0 0.0025

0.008 0 0.01 0
0 0.0025 0 0.01


 .

Fig. 4-a and 4-c represent Y (q, q̇, q̈)p (real) and Y (q, q̇, q̈)p̂
(estimated) taken from (8) and (9) while their difference is

shown in Fig. 8. An upper bound on the joint torques should



be applied to avoid singularity problems. Although Fig. 4-b

and 4-d show that the joint angles and its derivatives tries to

follow the desired trajectory to satisfy the Lyapunov criteria,

there is no guarantee on Y (q, q̇, q̈)p̃ to approach zero (see

Fig. 8).

The approach by Slotine et al. in Fig. 5 shows improved

performance as compared to the simple regression because the

inverse of the inertial matrix is not required. However there

are various design parameters in (14) and (16), which require

trial and error to adjust the controller. From (16), P 2 = I

and:

△ =

[
10 0
0 10

]
, KD =

[
200 0
0 150

]

The FAT-based controller in Fig. 6 has the advantage of using

linear approximated models of the system. However, this tech-

nique uses large matrices for the approximation thus increasing

the complexity of the controller. Also some information is lost

because of linearization. The design parameters of the FAT-

based approach are taken from [9].

As shown in Fig. 8, Y (q, q̇, q̈)p̃, Y (q, q̇, v, v̇)p̃ and

W T
(.)Z(.) for regressor-based, Slotine and FAT-based ap-

proaches respectively never converge to zero. For this reason,

these approaches cannot be used to identify the system coef-

ficients. In the proposed adaptive method (Fig. 7), if one can

ignore values at higher derivatives of the original model φ, the

error φ̃ converges to zero as proved in section III-A and also

evident from Fig. 8. Considering a critically damped system,

ai and f(e, ė) can be easily evaluated using (22) and (23).

P 1 and P 2 are taken as identity matrices.

B. Experimental results

The experimental results for all of the controllers are shown

in Fig. 9. As explained in section III, to avoid noise, equation

(21) is taken as a first order differential equation, which is

m = 1. A low-pass filter is also used to remove noise in

the joint acceleration. Apart from the PD gains, the proposed

technique requires only one variable a to adjust the adaptive

controller. However, a large value of a gives higher torques,

which introduces high frequency oscillation. In experiments

a = 80, thus ensuring that the performance of PD controller

is not disturbed by the pole of equation (21). The values for

the PD gain are:

Kv =

[
10 0
0 10

]
, Kp =

[
100 0
0 100

]

The poles for the PD gain are at −10, while a is selected eight

times faster than the poles of PD controller. Because of the

reason that the mismatch tends to zero in the proposed adaptive

controller, the end-effector follows the trajectory satisfying

equation (4) as clear from Fig. 9. Note that the proposed adap-

tive control technique also deals with disturbances because τ a

is also considered in equation (19).

TABLE I: Calculated, simulation and experimental estimation

of parameters for 2-DOF manipulator.

Var. Equivalent Cal. Sim. Exp.

m11
1

3
m1l

2

1
+

1

3
m2l

2

2
+m2l

2

1
0.442 0.442 0.590

m
′

11
m2l1l2 0.028 0.027 0.027

m12
1

3
m2l

2

2
0.009 0.008 0.006

m
′

12

1

2
m2l1l2 0.014 0.015 0.010

n11
1

2
m2l1l2 0.014 0.014 0.216

n12 m2l1l2 0.030 0.028 0.041
f11 − 0.001 0.004 0.001

m21
1

3
m2l

2

2
0.009 0.009 0.005

m
′

21

1

2
m2l1l2 0.014 0.015 0.009

m22
1

3
m2l

2

2
0.222 0.222 0.282

n21
1

2
m2l1l2 0.014 0.013 0.282

f22 − 0.001 0.006 0.001
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Fig. 8: Error (φ̃) comparison of all the four controllers for the

first joint angle of 2-DOF robot. As shown, the error for the

FAT, regressor and Slotine/Li’s controllers are not zero.
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Fig. 9: Experimental results: position of end effectors starting

from 0.5x̂+ 0ŷ m

C. Model identification

The Second part of the analysis consists of identifying

the system parameters. Using the least square approximation

(25) with an adequate excitation trajectory (24) along with

the circular trajectory, the unknown parameters in the above

matrices are estimated as shown in Table I. Both in simulations

and experiments, τ a is ignored for the identification process.

The simulation results for parameter estimations produce

very good results as shown in Table I. However, because

in experiments, the real model is not known, we can only

assume that the experimentally identified parameters must be
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Fig. 4: Results of regressor-based adaptive control for ω = 4 rad/s. This technique requires inverse of inertia matrix (M̂ ).

Tracking of the desired trajectory is very sensitive to any change in control parameters.
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(c) Second joint: Y2 is the 2nd row of regressor matrix
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Fig. 5: Results of Slotine and Li’s adaptive control for ω = 4 rad/s. As clear from Fig. (a) and (c), the estimated model

dynamics do not follow the original model. Reason is that Lyapunov function only shows the tracking error to be a decreasing

function.
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(c) Second joint angle
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(d) Derivative of error in joint angles for the first rotation.

Fig. 6: Results of FAT-based adaptive control for ω = 4 rad/s. Approximation of system parameters by a linear combination

of some orthogonal bases has high computational cost.
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(c) Second joint angle
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Fig. 7: Results of proposed adaptive control for ω = 4 rad/s. Taking a very low time constant for the update law will confirm

the modeling error to approach zero. This technique requires only one parameter for the adaptation of system dynamics.

close to the calculated values. The identification process can

be improved by adding torque boundedness and unmodeled

parameters in terms of disturbances.

VI. CONCLUSIONS

The proposed adaptive control technique guarantees con-

vergence of any mismatch in the system by adjusting a

single control parameter. Once the mismatch is eliminated,

there is an accurate feedback linearization and a simple PD

controller will achieve the desired performance. Using the

adaptive control law, the model parameters are approximated

applying least square approximation. After the identification

of system parameters, the adaptive controller can be replaced

by a simple PD controller. Compared to existing algorithms

involving regressor-based approaches of FAT, the presented al-

gorithm requires less computational cost. Furthermore, design

prarmeters are less and more easily tuned in the proposed

algorithm. Both simulation and experimental results show

better and more precise tracking performance as compared to

existing adaptive methods.
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