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Zusammenfassung

Diese Dissertation befasst sich mit entropischen Ungleichungen fiir bosonische Kanéle in der
Quanteninformationstheorie. Derartige Ungleichungen finden Anwendung in grundlegenden
Fragen der Quantenkommunikation und der Konvergenz von quantendynamischen Semigrup-
pen. Wir beweisen unter anderem eine Ungleichung fiir die Ausgangsentropie eines Quan-
tenkanals, der klassisches Rauschen modelliert, und verwenden diese Ungleichung, um Schranken
an die klassische Kapazitéit einer allgemeinen Familie von nichtgauflschen Quantenkanélen zu
finden.

Abstract

This dissertation deals with entropic inequalities for bosonic channels in quantum information
theory. Such inequalities have applications in foundational questions of quantum communi-
cation and can be used to make statements about the convergence of quantum dynamical
semigroups. We prove, among other results, an inequality for the output entropy of a quantum
channel which models additive classical noise and apply this inequality to derive bounds on the
classical capacity of a general family of non-Gaussian quantum channels.






Mathematics is an art of human understanding.

— William Thurston
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1 Introduction

Quantum information theory has been a very active field of research in the past decades. At
its core lies the question how information theory (i.e., the study of information-processing
tasks and their limitations) changes when we assume that quantum mechanics, as opposed
to classical mechanics, governs the information carriers. There are multiple approaches as to
which information carriers shall be used for quantum computing. One popular approach is the
use of qubits, i.e., two-level systems. Another one, and the main focus of this thesis, is the
deployment of continuous-variable carriers, which live in an infinite-dimensional Hilbert space,
such as the Hilbert space for a fixed number of quantum harmonic oscillators. The primary
concern of this thesis is bosonic quantum systems and noise acting on them: We are concerned
with output entropies of noisy quantum channels and the information-carrying capacities of
these channels. An understanding of noise and how to deal with it is essential on the way to a
large-scale quantum computer, and this work develops tools in this direction.

This thesis deals with multiple approaches to continuous-variable information theory: One
major part of the work presented here is an effort to investigate well-established information-
theoretic inequalities from classical information theory and translate them to the quantum
setting. The main mathematical tools we use for this are from functional analysis. This
provides tools for a variety of tasks, such as bounding the classical capacity of quantum channels
or bounding the convergence rate of certain semigroups. In this way, this thesis is concerned
with both the development of new tools for quantum information theory and the application
of these tools.

We start with a short presentation of the contributed articles and their scope. This is fol-
lowed by an introduction of some basic notions which are ubiquitous in quantum mechanics
and quantum information in Chapter 2. Chapter 3 then introduces the task of communicat-
ing classical information via quantum channels. We derive the classical capacity of quantum
channels, one of the key quantities in quantum information theory. An introduction to the
main concepts of continuous-variable quantum information, which is our main concern, is then
given in Chapter 4. After this, we give a more detailed account of the state of the art of one
specific topic in continuous-variable quantum information: entropic inequalities for bosonic
channels, presented in Chapter 5. This topic is of central importance to the work presented
in the contributed articles. We then change the topic to some applications of the presented
functional inequalities. In this last part of our review of the current state of the art, we discuss
the application of entropic inequalities to capacities of bosonic channels.

After this overview, we briefly present the contributed articles. Every embedded article in
the Appendix is preceded by a more detailed and more technical summary of the main results
and a description of the individual contribution of the author of this thesis. In cases where the
article has already been published elsewhere, we include the permission to use it in this thesis.

1.1 Summary and Discussion of Results

The contributed articles take different approaches to the field of continuous-variable quantum
information: First, articles I and III develop functional inequalities for bosonic channels which



generalize a variety of established results from classical information theory to the quantum
case. These inequalities are interesting from a purely mathematical point of view, and are not
necessarily motivated by a concrete physical problem yet. Article II then applies these entropic
inequalities to obtain bounds on the information-carrying capacity of a range of noisy bosonic
channels. Lastly, articles IV and V do not focus directly on bosonic channels, but nonetheless
cover continuous variables (Article IV) and concepts from information theory which we gen-
eralize to the quantum case, and which are intimately connected to the general information-
theoretic questions we are interested in in this thesis (Article V). These two articles are not
the primary contribution to this thesis, but are included for completeness. We note that the
author of this thesis does not claim to be the principal author of these two articles.

Core articles as principal author

o Article I [1]: Geometric inequalities from phase space translations

In classical information theory, there are important inequalities which can be viewed as
analogs of inequalities from geometric analysis. One example of this connection is that
the entropy power inequality is formally equivalent to the Brunn-Minkowski inequality
when the entropy power plays the role of volume and the sum of random variables, which
is defined in terms of the convolution of their respective probability densities, plays the
role of the Minkowski sum. There is a wide range of information-theoretic inequalities
which make statements about entropic quantities involving sums of random variables. In
addition to the entropy power inequality, notable examples are the Fisher information
inequality, the isoperimetric inequality for entropies, the Fisher information isoperimetric
inequality, and the concavity of the entropy power under action of the heat diffusion
semigroup.

In Article I we study a convolution operation between a probability density function on
phase space and a quantum state which was originally introduced by Werner [6], and
connect it to a quantum diffusion semigroup which plays a role which is analogous to the
heat semigroup. We prove a number of new inequalities involving quantum entropy and
quantum Fisher information. These are quantum analogs of the information-theoretic
inequalities mentioned above. As a main result, we prove a new entropy power inequality
for classical noise channels. As an application, we derive a Log-Sobolev inequality for the
quantum Ornstein-Uhlenbeck semigroup and apply it to obtain bounds on the entropy
production rate of this semigroup. As an interesting side result, we show that Gaussian
thermal states minimize the entropy production rate for the one-mode attenuator semi-
group among all states with bounded mean photon number. The mathematical tools used
in proving our results include the establishment and application of a data processing in-
equality for the convolution between a probability density function and a quantum state,
as well as bounds on the entropy production rate of semigroups. For the latter, we employ
recent majorization-type results for bosonic quantum channels. The connection between
the quantum diffusion semigroup and the geometric inequalities relies on the fact that
the Fisher information is equal to the entropy production rate under the diffusion, a fact
referred to as the de Bruijn identity. In both the quantum and classical settings, the de
Bruijn identity plays an important role in the proof of information-theoretic inequalities.

In this article, we also conjectured that the quantum Ornstein-Uhlenbeck semigroup con-
verges in relative entropy to its fixed point at a certain exponential rate. This conjecture
has subsequently been proven by Carlen and Maas [7] using methods of gradient flow.



More recently we have provided a proof in Article III using the entropy power inequality
directly.

This work inspired follow-up work in two different directions: Application to capacities
(Article II) and generalizations of these inequalities to a setting with side information
(Article III).

I was significantly involved in finding the ideas and carrying out the work of all parts of
this article, and I was in charge of writing the article, with the exception of Section V A
and Lemma 8.

Article II [2]: Coherent state coding approaches the capacity of non-Gaussian bosonic
channels

A central question in quantum communication is whether entangled quantum states can
be used to provide an advantage over classically correlated quantum states for commu-
nication of classical information over a given quantum channel. The maximal achievable
communication rate using unentangled or entangled states is called the one-shot classical
capacity and the full classical capacity, respectively. The question whether these two ca-
pacities are equal is commonly referred to as the addivity problem — if the answer to the
above question is no, then the full classical capacity is said to be additive. In the setting
of bosonic channels, it has been shown that entanglement does not provide an advantage
for communication over a certain class of Gaussian channels [8]. Despite this landmark
achievement, only little is known about non-Gaussian channels. The general additivity
question for bosonic channels remains open.

Article II investigates the consequences of recently proven entropy power inequalities and
conjectured Entropy Photon-Number Inequalities on the classical capacity of a general
class of bosonic channels, which includes non-Gaussian channels. These channels are
beamsplitters with a generic, potentially non-Gaussian environment state, and classical
noise channels with probabilistic noise that need not be Gaussian. We prove upper and
lower bounds on the classical capacity of these channels. These are the first available
bounds on the classical capacity of non-Gaussian bosonic channels. We show that for these
channels, additivity violations for the classical capacity, if at all existent, are rather minor.
In fact, we upper bound the maximal additivity violation by a constant independent of
the input energy. This requires giving upper bounds on the full capacity and lower bounds
on the one-shot capacity. The lower bounds are achievable by using classical modulation
of coherent states for the encoding. Furthermore, we show similar results assuming the
validity of the conjectured Entropy Photon-Number Inequality. In the case of classical
noise channels, we conjecture a new Entropy Photon-Number-type Inequality for this
purpose. Our results show that the Entropy Photon-Number Inequality only provides a
small improvement on the upper bound on the full classical capacity for these channels.
In addition to various forms of entropy power inequalities / Entropy Photon-Number
Inequalities, the main tool used in the proofs is the fact that Gaussian states maximize
the quantum entropy for a given energy. Furthermore, we can make use of recent results on
the output entropy of one-mode phase-covariant Gaussian channels. For some particular
cases, these are slightly better than those derived from the entropy power inequality.

In spirit, this work translates results on classical additive noise channels which were
originally obtained by Shannon [9,10] to the setting of non-Gaussian bosonic quantum
channels. It is inspired by earlier work by Konig and Smith [11] which proved upper



bounds on the classical capacity of thermal noise channels, but additionally gives lower
bounds.

This work was motivated by discussions with Robert Konig on possible applications of
our previously published article [1]. I proved all the results of the paper, and I wrote all
sections with the exception of the Introduction and the first half of Section 2.

Article III [3]: The conditional entropy power inequality for quantum additive noise chan-
nels

In classical information theory, many applications of the entropy power inequality use a
formulation of the inequality which makes a statement about conditional entropies. This
conditional entropy power inequality is a simple corollary to the entropy power inequal-
ity. This is due to the fact that the conditional entropy is simply an expectation value
of entropy of conditional distributions, where the expectation is taken over the random
variable we condition on. For quantum entropy, this is no longer the case if the system
on which we condition is not classical. Therefore, a conditional entropy power inequality
does not follow immediately from the entropy power inequality.

For the beamsplitter, a conditional entropy power inequality was first formulated and
proven for Gaussian states in [12]. A full proof for general states was given in [13].
Therefore it is natural to ask whether a conditional version of the entropy power inequality
for classical noise channels from Article I holds. In Article III we generalize the quantum
entropy power inequality for classical noise channels (one of the central results of Article I)
to the setting with side information: We consider a bipartite quantum system one part of
which is affected by noise. The proof of this inequality makes use of an integral form of the
Fisher information. As a consequence, it does not exhibit certain regularity issues present
in previous proofs of the quantum entropy power inequality without side information. As
such, it can be seen as a generalization of Article I to the conditional setting, which also
implies the main results of Article I without regularity issues. We show the remarkable
fact that the conditional version of the quantum entropy power inequality is optimal in
the following sense: For every fixed pair of values of the conditional entropies at the input,
there exists a sequence of Gaussian input states such that the conditional entropy power
inequality is saturated in the limit. In contrast to this, the version of the entropy power
inequality for classical noise channels without side information is not tight. Furthermore,
we prove a variety of information-theoretic inequalities, the classical analogs of which
were established a long time ago. This includes the conditional Stam inequality, the
conditional Fisher information inequality, and the isoperimetric inequality for conditional
quantum entropies. As an application, we prove an upper bound on the entanglement-
assisted classical capacity of a non-Gaussian bosonic channel, namely a classical noise
channel where the probability density function of the noise is not Gaussian. We also
show how the quantum entropy power inequality implies fast convergence of the quantum
Ornstein-Uhlenbeck semigroup in relative entropy, a conjecture first stated in Article I and
proven by different methods in [7]. In fact, we prove a more general statement regarding
the convergence in relative entropy of a bipartite system one part of which undergoes a
quantum Ornstein-Uhlenbeck evolution.

This work was motivated by discussions with Giacomo De Palma during a visit he made to
Munich. A sketch of the proof of the main result was worked out during discussions, after
which I completed all the proofs and wrote the article, with the exception of Lemma 3 and
Theorem 9, the proofs of which came from Giacomo De Palma. I was significantly involved
in the scientific work of all parts of the article, with the aforementioned exceptions.



Further articles

o Article IV [4]: Uncertainty relations: An operational approach to the error-disturbance
tradeoff
The Heisenberg uncertainty relation is perhaps one of the most famous aspects of quantum
mechanics. The original formulation by Heisenberg in 1927 was somewhat vague, and only
much later there have been proofs of formal statements. In recent years, an active field
of research has opened up discussing uncertainty relations in different settings.

In Article IV we focus on two aspects of uncertainty. In spirit, these already appear in
Heisenberg’s article: Joint measurability and the error-disturbance tradeoff. The former
deals with the question to which precision two observables can be simultaneously mea-
sured, and the latter states that the more precise a measurement of one observable is,
the larger is the disturbance to another non-commuting observable. In this context, it is
not clear how the notions of “error” and “disturbance” are to be defined. There are a
number of different approaches.

In this article we take an operational approach: we seek uncertainty relations which make
statements about measurement devices, and not about the physical quantities themselves:
We define error and disturbance in terms of the distinguishing probability, i.e., the proba-
bility that the actual behavior of a measurement apparatus can be distinguished from the
ideal behavior in any single experiment. This approach has the benefit that the notion
of distinguishability does not depend on concepts of quantum mechanics. It therefore
avoids some conceptual difficulties. Our notions of error and disturbance are related to
the completely bounded norm, which is a well-known norm in operator theory. We use
this approach to derive Heisenberg-type uncertainty relations for both joint measurability
and error-disturbance tradeoff for arbitrary finite-dimensional observables, as well as for
position and momentum. A key tool in our proofs is the continuity of the Stinespring dila-
tion, a remarkable mathematical result by Kretschmann, Schlingemann, and Werner [14].
The latter relates the distance between quantum channels with respect to the completely
bounded norm to the distance of their respective Stinespring dilations with respect to
the operator norm. We apply our error-disturbance relation to an information process-
ing setting: We prove that quantum channels which can faithfully transmit information
regarding one observable do not leak any information about conjugate observables to
the environment. Moreover, we discuss a connection to wave-particle duality relations.
These quantify a tradeoff between the observation of interference patterns and the gain
of information about the path of the particle in a Mach-Zehnder interferometer.

This project started while I was working on my Master’s thesis project at ETH Zurich
together with Joseph Renes and Volkher Scholz. This was a project about uncertainty
relations in the same setting as the one discussed in this article. After my graduation,
we continued to work on this topic, proving stronger statements about the position-
momentum uncertainty relations, extending the results, and significantly changing the
proof method employed. These extended results were then combined with earlier re-
sults found by Joseph Renes and Volkher Scholz [15] in the finite-dimensional case and
published together in this article.

o Article V [5]: Jointly constrained semidefinite bilinear programming with an application
to Dobrushin curves
We consider a problem we call jointly constrained semidefinite bilinear programmsing. This



asks to minimize a bilinear function over a set of self-adjoint operators specified by joint
semidefinite programming (SDP) constraints. It is given by

(Xrgfi)nestr (XeY)Q)+tr(AX)+tr(BY) , (1.1)

where S is a set of pairs of self-adjoint operators (X,Y’) defined by a family of SDP
constraints and @Q, A, B are given self-adjoint operators. Such programs appear in a
number of contexts in quantum information theory: As an example, the entanglement
fidelity can be cast as such a program. The latter plays an important role in quantum
communication and in entanglement distribution. The jointly constrained semidefinite
bilinear program also appears in the context of quantum games and Bell inequalities.
In addition, we show that the computation of Dobrushin curves, which give bounds on
classical coding with energy constraints, can also be cast as a program of this form. In the
quantum information theory literature, the so-called seesaw algorithm has been applied
in various contexts. It tackles the jointly constrained semidefinite bilinear program by
alternately fixing a value of X and Y and solving the resulting affine-linear problem for
the other variable, has been applied in various contexts. The downside of the seesaw
algorithm is that it is heuristic — in general, it will not produce an optimum of the
problem.

The goal of our work is to give a new algorithm for jointly constrained semidefinite bilinear
programming from the quantum information point of view. In this article, we give a
branch-and-bound algorithm for the jointly constrained semidefinite bilinear program,
which produces a sequence of feasible points which converge to the global optimum. The
algorithm is a generalization of the branch-and-bound algorithm given by Al-Khayyal
and Falk [16] for a jointly constrained bilinear program. Moreover, the algorithm gives
upper and lower bounds on the value of the program at each step as well as values of
X and Y at which the upper bound on the value (1.1) is attained. As an application,
we use our algorithm to numerically compute Dobrushin curves for quantum channels.
As mentioned, these give upper bounds on optimal codes for classical information in a
scenario where the noise acts repeatedly.

It should be noted that this project works in an exclusively finite-dimensional setting.
However, the concept of Dobrushin curves is intimately related to the type of quantum
communication questions we are interested in in this thesis. The concept of Dobrushin
curves has not been studied for bosonic channels yet. The main idea and a sketch of the
algorithm was worked out by Robert Kénig and Marco Tomamichel. I was responsible
for the applications and for writing the article and the documentation of the code, with
the exception of the Introduction and Section 4.4.2. The code itself was written by Marco
Tomamichel and Robert Konig.



2 Basic structure of Quantum Mechanics

We give a short introduction to the basic mathematical concepts and the formalism underlying
quantum mechanics and quantum information theory. All the results presented in this chapter
are covered in several fairly standard textbooks about quantum mechanics and quantum in-
formation theory, such as [17-20]. The approach presented here generally follows the excellent
books by Holevo [18,19], though the presentation of quantum states and the way we map them
to density operators is inspired by [21] and [17].

Let us first fix some notation. In the following, H will always denote a separable Hilbert
space with scalar product (-, -) which is antilinear in the first argument and linear in the second
argument, and norm || -|| induced by this scalar product. We are going to make extensive use of
the bra-ket notation, which denotes vectors ¢ € H via a ket! |¢), and their corresponding dual
vectors via the bra (¢| € H*. The latter stands for the continuous linear form (¢| : H — C,
Y = () := (p,v). For ¢, ¢ € H we use the notation [¢)(¢| for the operator H — H which
maps x > |¥) (B|x) = (o, x)¥-

We will denote by B(H) the set of bounded linear operators H — H, and by Bi(H) the set
of trace-class operators

Bi(H) :={AeBH) | |All :=tr|A] = (VA Aey, e) < o0},
k=1
where {ej}ren is any countable orthonormal basis of H# and AT € B(H) is the adjoint of A,
defined by
(¢, AY) = (ATg, ) forall g9 € H .

The set of self-adjoint bounded operators is denoted by Bg(H) = {A € B(H) | AT = A}
For an operator A1y € Bi(Hi1 ® Hs), we denote its partial trace over the first system as
tri(Aj2) € Bi(Hz), which is the unique operator B € B1(H2) such that

tr (A12(1®Y)) = tr(BY) for all Y € B(H2) .

Given a linear map 7 : B(H) — B(H) and n € N, we define the map 7% : B(H®") — B(H®")
via

TO"A @ @A) =T(A)® - @ T(A) for Ay e B(H), 1<k<n,

and linearly extended.

2.1 Quantum states and measurements

Quantum mechanics, like any physical theory, aims to predict the outcomes of statistical ex-
periments. A statistical experiment is divided into two parts, preparation and measurement.
On the one hand, if we specify the preparation of a quantum system (which we will later call

Tt can be useful to view a ket |¢) as a linear map C — H, o — a¢. We will not distinguish between the two
notions.



its state), we fix the outcome probabilities of all possible measurements. On the other hand,
specifying a measurement fixes the outcome distribution of the statistical experiment for all
states. Our basic assumptions on the structure of a statistical theory are the following [19]:

(i) Let there be given a set S, whose elements are called states, and a set M, whose ele-
ments are called observables. For arbitrary S € & and X € M there is a probability
distribution ¥ on the o-algebra B(O) of Borel subsets of a set of outcomes O, called the
probability distribution of the observable X in the state S.

(ii) For arbitrary Sp,S2 € S, and an arbitrary number p with 0 < p < 1, there exists S € S
such that u3 = pufq(l +(1- p),ug(2 for all X € M. The state S is said to be a mizture of
the states Sy and Sy in the proportion p : (1 — p).

(iii) For arbitrary X; € M and an arbitrary Borel function f: O — O there exists Xy € M
such that Xy = fo Xy, i.e., ,ug(Z(B) = ,ué(l(ffl(B)) for all Borel sets B € B(O). We say
that the observable X5 is functionally subordinate to the observable Xj.

A pair of non-empty sets {S, M} which satisfies assumptions (i)-(iii) is called a statistical model.
If, in addition, we have that

Mg{:,ug/‘; for all M € M,

implies that S7 = So, and

,ug/[l = ,ug/h forall S e S,
implies that M; = M, we call the statistical model separable. Separable models have the
property that the mixture of states from assumption (ii) and the functional subordination of
assumption (iii) are uniquely defined. This means that for separable models, the state set S
has a convex structure, and the set of observables M has a partial order.

The function M% predicts the measurement statistics of a statistical experiment, i.e., ,ug (B)
gives the probability that the measurement outcome of an experiment which measures the
observable M in the state S lies in B. We note that the set of outcomes might be finite,
countable, or even uncountably infinite. We will always assume (O, B(O)) to be a standard
Borel space, i.e., O is a complete separable metric space and B(O) is its Borel o-algebra. Since
standard Borel spaces of the same cardinality are isomorphic, B(O) will always be equivalent
to either a finite set, N, or the Borel subsets of the real line, B(R).

We now specify some more assumptions for the framework in which we want to formulate
quantum theory [21].

(i) Observables are elements of a C*-algebra.

(ii) The potential measurement outcomes lie in the spectrum of the elements of the C*-
algebra.

(iii) States are positive linear functionals which are normalized to 1.

These assumptions are sufficient to give a fairly concrete visualization of the structure. The
Gelfand-Naimark theorem [21,22] guarantees that we can always work with bounded linear
operators on a Hilbert space.

Theorem 2.1.1 (Gelfand-Naimark). For every C*-algebra A there exists a Hilbert space H
and an isometric x—homomorphism Z: A — B(H). If A is separable, then so is H.



The Gelfand-Naimark theorem allows us to consider a suitable Hilbert space H instead of an
abstract C*-algebra to realize the algebra of observables. Then the C*-algebra of observables
is identified with B(H), and observables are Hermitian elements in B(H).

Before we give the definition of a quantum state, let us define some notation. Let {Ag}ren
be a family of norm-bounded increasing operators with smallest upper bound A € B(H) in the
sense that A > Aj for all k and if B > Aj, for all kK then B > A. The relation A > B for
self-adjoint operators here means that A — B is a positive operator. Then we write A 1 A.
This notation comes from the fact that if Ax 1 A, then Aj converges to A weakly, ultraweakly,
and strongly [17, Chapter 1.6].

Definition 2.1.2 (Quantum state). A quantum state is a linear functional w : B(H) — C
which is positive, normalized, and normal:

(i) (positivity) w(A) > 0 if A is a positive operator.
(ii) (normalization) w(ly) = 1.
(i1i) (normality) If Ay T A, then limg_, oo w(Ax) = w(A).
Here 14 is the identity map on H.

The normality assumption is not always used in literature. However, it leads to a useful
description of quantum states in terms of so-called density operators:

Lemma 2.1.3 (States and density operators [17, Lemma 6.1]). A positive linear functional
w : Bso(H) — R is normal if and only if there exists a positive p € By (H) N Bsa(H) such that

w(A) = tr(Ap) for all A € Bea(H) .
If w is normalized, then tr(p) = 1.

Positive operators of trace one are called density operators. Applying Lemma 2.1.3 to the

restriction w! B of a quantum state w to the set of self-adjoint operators gives us a den-

H
sity operator p Wilich describes the quantum state w. The functional tr(-p) can easily be
extended back to B(#) by linearity. The duality between states and density operators given by
Lemma 2.1.3 is central to quantum mechanics. The definition of states given in Definition 2.1.2
describes states in the so-called Heisenberg picture. The description in terms of density opera-
tors is referred to as the Schréodinger picture. If we had dropped the assumption of normality,
there would exist states in the Heisenberg picture which do not correspond to density operators
in the case of an infinite-dimensional Hilbert space H [17, Lemma 6.1]. In the following, we
will use the terms quantum state and density operator interchangeably, and we will denote the
set of density operators on H by S(H).

A special set of states are the so-called pure states. These correspond to vectors in H up to
a phase. For any ¢ € H with [[¢)|| = 1, the projection |¢))})| onto Ci) is a density operator
describing a quantum state w,, via

wy(A) = tr([YXv] A) = (¥, Ap) . (2.1)

States which can be written in the form (2.1) for ¢ € H are called pure. Note that all elements
of the so-called unit ray

[¥] == {e"*y | a € [0, 27]}
define the same quantum state.

Every quantum state can be written as a convex combination of pure states. This can easily
be seen by considering the spectral decomposition of a general density operator:



Theorem 2.1.4 (Convex combination of projections [21]). Every state w can be written as
a convex linear combination of pure states, i.e., there exists a complete orthonormal system
{13521 C H and nonnegative numbers p1 > p2 > ... such that 3772, p; = 1 and such that

j=1
o0

W= pjwy, -
j=1

Conversely, every convez linear combination of pure states wig |, {¢;}jen CH, defines a quan-
tum state.

Let us next define the mathematical objects which we will refer to as quantum-mechanical
measurements.

Definition 2.1.5 (Measurement). A measurement is a positive operator-valued measure (POVM)
M : B(O) = B(H), i.e., a function B(O) — B(H) with the following properties:

1. M(B) is a positive operator in H for any B € B(O).

2. If {Bj;}; is a finite or countable partition of O into pairwise disjoint measurable sets, then
> M(Bj) =14 ,
J

where the series converges strongly.

If M(B)? = M(B) for all B € B(O), then M is a projective measurement, also called a
projection-valued measure (PVM).

In the case of finitely many outcomes O = {1,...,n}, POVMs have a simpler description:
They are simply collections of positive operators {M; }?:1 C B(H) such that

M; =1.
1

n
]:

Furthermore, it is easy to see that every self-adjoint observable induces a projective measure-
ment via the spectral theorem. The latter assigns to every self-adjoint operator X its spectral

measure Ex : B(R) — B(#) such that

X = /RwEX(da:) .

The spectral measure Ex is then a PVM. The probability distribution ,uf : B(R) — R associ-
ated with the outcome statistics of an observable X in a state p is then given by

,uff(B) =tr(pEx(B)) for all B € B(R) .

Not every general POVM corresponds to a self-adjoint element of B(?). However, the two
concepts are very closely related, because any POVM can be seen as a projective measurement
on a possibly larger Hilbert space. Physically, this makes sense because the laboratory might
only have access to a subsystem of a larger quantum system. This is, in essence, the content
of Naimark’s dilation theorem.
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Theorem 2.1.6 (Naimark dilation [19]). Every POVM M : B(O) — B(H) can be extended to
a projection-valued measure, i.e., there exists a Hilbert space H' containing H and a projection-
valued measure E on H', E : B(O) — B(H') such that

M(B) = PHE(B)|H for all B € B(O) ,
where Py is the projection from H' onto H.

From Naimark’s theorem, it follows that for an arbitrary POVM M in H, there exists a
Hilbert space Hy, a density operator pg in S(Hp) and a projector-valued measure E in H ® Ho
such that

' (B) = tr ((p ® po)E(B)) for all B € B(O),p € S(H) .

In this sense, using POVMs, which are more general than projective measurements, is a sensible
way of mapping the physical concept of measurements to mathematical objects.

2.2 Quantum operations

We have introduced mathematical objects which correspond to states and measurements. As a
next step, we seek a mathematical description of allowed quantum operations. Since quantum
operations should map quantum systems to quantum systems, we want a quantum operation
from a quantum system A to a quantum system B to map states on H 4 (i.e., elements of S(H 4))
to states on Hp. Since quantum mechanics is linear, the operation itself should also preserve
this structure and be linear. It is easy to see that in order to map states to states, a linear
map & : Bi(Ha) — Bi(Hp) necessarily needs to be positive (i.e., E(p) > 0 whenever p > 0)
and trace-preserving (i.e., tr (E(p)) = tr(p) for all p € B1(Ha)). However, since it is possible
that the system we consider is a subsystem of a larger system, a stronger notion than the
preservation of positivity is necessary for a map to be a quantum operation. This notion is
that of complete positivity.

Definition 2.2.1 (Complete positivity). A linear map € : Bi(Ha) — Bi(Hp) is called com-
pletely positive if the map

€ ® Ly(cay : Bi(Ha) ® B(C?) — Bi(Hp) ® B(CY)
is positive for all d € N.
The notion of complete positivity is different from the notion of positivity: For example, the
transposition map © : B(C?) — B(CY), ©(X) := X7, where we identify C?*? with B(C?), is a
linear map which is positive but not completely positive.

We call linear maps with the property that they map quantum states to quantum states
quantum channels.

Definition 2.2.2 (Quantum channel). A linear map € : B1(Ha) — Bi(Hp) is called a quantum
channel if it is completely positive and trace-preserving (CPTP).

This notion is in the Schrédinger picture, where quantum channels act on states. One can
also define quantum channels in the Heisenberg picture, in which they act on observables.

11



Note that in general, the dual space of the trace-class operators B1(#) on a Hilbert space H
is isomorphic to the bounded linear operators? B(#), with the duality given by

(T,A) =trTA for T € Bi(H),Ae B(H) .

Then the translation to the Heisenberg picture works simply by introducing the dual map to
a Schrodinger-picture quantum channel, £* : B(Hp) — B(Ha):

tr (p€*(A)) = tr (E(p)A) for all p € Bi(H), A e B(H) ,

which makes sure that expectation values are left unchanged. In this formulation, quantum
channels £* are then not CPTP, but completely positive and unital (CPU), where unital-
ity means that £*(1y,) = 13,. Dual maps of CPTP maps are also normal, which means
that £*(Ag) T £€*(A) if Ay 1 A. For infinite-dimensional Hilbert spaces, a general CPU
map B(Hp) — B(H ) does not have a dual CPTP map unless it is normal.

Completely positive maps have some very useful properties. A powerful description of com-
pletely positive maps is given by the Stinespring dilation.

Theorem 2.2.3 (Stinespring dilation [17, Chapter 9]). A linear map € : B1(Ha) — Bi(Hp)
is completely positive if and only if there exists a Hilbert space Hi and a bounded linear oper-
ator V : Ha — Hp @ Hg such that

E(p) = trg(VpVT) for all p € Bi(Ha) -
Furthermore, £ is trace-preserving if and only if VIV = 1.

Physically, the Stinespring dilation theorem tells us that any quantum channel can be re-
alized as an isometry on a larger system. The Hilbert space Hg is therefore often called
the environment system. If we interchange the role of the system A and the environment F
in the Stinespring dilation, we obtain the so-called complementary channel of £, which we
call E# : By (Ha) — Bi(HE):

E#(p) = tra (VpVT) for p € By(Ha) .

Another equivalent way to describe completely positive maps is by their so-called Kraus
representation, which we formulate in the Heisenberg picture.

Theorem 2.2.4 (Kraus representation [17, Chapter 9]). A normal positive linear map & :
B(H) — B(H) (where H is separable) is completely positive if and only if there exists a countable
family of bounded operators {Mj,}3°, on H such that
EX) =Y "MXM,  foralX €B(H).
k=1

If € is unital, then Y 22, Mng =1.

We have discussed the most basic concepts of quantum mechanics from the viewpoint of
quantum information theory. We continue by asking a more information-theoretic, but funda-
mental question: Given a quantum channel £, what is the maximal amount of information we
can transmit via such a channel? In the next chapter, we present some tools which enable us
to deal with this fundamental question and also define what we mean by the term “amount of
information”.

2Note that in the case of an infinite-dimensional Hilbert space, the converse is not true: trace-class operators
are the dual of compact operators, not the full set of bounded linear operators. This gives rise to a number
of subtleties which we are able to ignore here because we have assumed that quantum states are normal.
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3 Classical communication over quantum
channels

On a fundamental level, information is encoded in a physical system. Since quantum mechanics
is the description of the physical world on this fundamental level, one can ask what limits
quantum mechanics imposes on communication. This question lies at the heart of the field of
quantum communication. We will implicitly assume some concepts from classical information
theory, a detailed exposition of which can be found in [23]. We focus on the problem of
communicating classical information via quantum systems here. First, let us briefly present the
communication problem from classical information theory. Throughout this chapter, when we
write log we mean the logarithm to base 2, as this makes some operational motivations clearer.
In subsequent chapters, we are going to use the natural logarithm purely for convenience.

3.1 Communication via classical channels

The presentation of this section largely follows [24, Chapter 7.2]. Consider two parties which we
call Alice and Bob. Alice has a set of messages {1, ... oM }, M € N, and wants to communicate
one of them to Bob via a classical channel T" with input alphabet A and output alphabet B.
The sets A and B are for now assumed to be finite and called the input alphabet and the output
alphabet. Such a channel T is given by a conditional probability 7'(b|a) of obtaining the output
symbol b if the input symbol was a, for each a € A and b € B.

As M might be very large, we want to allow Alice to use the channel L € N times. The L-
times use of the channel T then induces a channel T with input alphabet AL and output
alphabet B, given by

TE ((by,...,bp) (a1, ... ar)) = T(bi]ar) - - T(brlar) -

This channel is referred to as the discrete memoryless channel without feedback, i.e., the different
uses of T act independently on their respective inputs, and the different inputs do not depend
on the outputs.

A (2M L) code consists of an encoding function ency, : {1,...,2M} — AL and a decoding
function decy, : B — {1,2,... ,2M}. The encoding associates a codeword to a message, and
the decoding maps every channel output to a message. Write

Am = > 7" ((by, ..., bp)lencr(m))
(b1,...br)¢decy ' ({m})

for the probability that 1 < m < 2™ was sent over the channel but m was not received. Then

the average probability of error Pe(L) of the code is given by

oM

1
(L) .—
PP =0 A
m=1

13



The rate of a (2™ L) code is defined as R = M/L. Given a channel T, a given rate R is
achievable if there exists a sequence of ([257], L) codes such that the average probability of
error tends to 0 as L — oo. The capacity of the channel is the supremum of all achievable rates.

Let us define an information-theoretic quantity which seems, at first glance, unrelated to this
problem, and link it to the capacity. Given two random variables A and B which take values
in A and B, respectively, we define the mutual information between A and B as

I(A: B) = H(A) + H(B) — H(AB) , (3.1)

where H(A) = — > . 4 Palog p, is the Shannon entropy of the random variable A and {pa }ac.a
is the probability distribution of A, p, = Pr(A = a). The quantities H(B) and H(AB)
are defined analogously, using the probability distributions {ps}yep of B and the joint distri-
bution {p,y = Pr(A = a and B = b)}scapep. Given a channel T', we define the Shannon
capacity C of the channel as the supremum of all mutual informations I(A : B) between the
input A and the output B of the channel, over all probability distributions {p,}.c4 on the
input alphabet A:

C= sup I(A:B). (3.2)

{Pataca

A central result of classical information theory is Shannon’s noisy channel coding theorem [9],
which states that the Shannon capacity of a channel is equal to its capacity.

Theorem 3.1.1 (Channel coding theorem [24, Theorem 7.2]). If R < C then there exists

a sequence of ([2M1], L) codes such that the average probability of error Pe(L) tends to 0 for
L — oco. Conversely, if a sequence of ([211], L) codes has average probability of error tending
to 0, then R < C.

The channel coding theorem underlines that the mutual information I(A : B) is a good
measure for the amount of information transmitted over a channel. The proof proceeds by
averaging the error probability over random codes, and arguing that if an average random
code has small error probability, then there exists one particular code which has small error
probability. This random coding argument is a powerful one which is encountered often in
information theory.

3.1.1 The channel coding theorem for continuous alphabets

The channel coding theorem 3.1.1 remains valid for a channel T in the case of continuous
alphabets A and B, with some modifications. Such a continuous-variable channel transforms
probability densities on A to probability densities on B. Assume that 4 C R™. The differential
entropy [9,10] of an A-valued random variable X with probability density function fx : R — R
is defined as

H(X) = - /A fx(@)log fx(z)d"e |

where we have used the convention that! 0log0 = 0. The differential entropy depends only
on the probability density of the random variable X, and hence we will often write H(fx)
instead of H(X). The mutual information I(A : B) is defined analogously to Eq. (3.1), by
replacing the Shannon entropy by the differential entropy. The Shannon capacity C defined
in the same way as in Eq. (3.2) of a classical channel T is not finite in general. In order to

! As an alternative to this convention, we could have defined the entropy by integrating only over the support
of X.
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make a meaningful statement about the capacity of a continuous-variable channel, a constraint
needs to be introduced on the input. The most common such constraint is a power constraint,
which demands that any codeword (x1,...,x1) € fL ({1, o 2M}) in the image of the encoding
function of a code satisfies

L
1

for some P > 0. The (Shannon) power-constrained capacity of a continuous-variable chan-
nel is defined by taking the supremum of the mutual information over all input probability
densities f4: A — R satisfying E[4?%] < P,

Cp= sup I(A:B).
fA:.AA)R
E[A2]<P

An analog of the channel coding theorem 3.1.1 holds when replacing the capacity C' with the
power-constrained capacity Cp. That is, the maximal achievable rate with codes satisfying the
power constraint (3.3) for P > 0 is equal to Cp. In the next section, we move from classical
information theory to quantum information theory and start with the problem of transmitting
classical information via the preparation and measurement of quantum states.

3.2 A communication problem in quantum mechanics

We formulate a general communication problem in the quantum setting. Alice wants to send
classical information to Bob using a quantum system @ (described by a Hilbert space H). As-
sume that Alice picks a finite alphabet A and chooses corresponding quantum states {pg }aea C
S(#H). The map

A—S(H),
a > pq

is called a classical-quantum (cq) channel.

Suppose Alice prepares p, according to the outcome of some A-valued random variable A
with probability distribution {p,}ec.4. Bob then wants to find the value of A by performing a
measurement (which is described by a POVM {Ej}c5) on the states p,, obtaining a classical
output random variable B. The probability of obtaining the output b if the input was a is
equal to T'(bla) = tr(p,Ep), corresponding to a classical channel T with input alphabet A and
output alphabet B. If Alice chooses mutually orthogonal states, then Bob can distinguish them
perfectly, by choosing B = A and F, to be the projection onto the support of p,.

But since quantum states are in general non-orthogonal, Bob will in general not be able to
distinguish perfectly between them. This setting is depicted in Fig. 3.1a. We can ask how
much information he can obtain about the random variable A. One measure of information
is the so-called accessible information. This is the maximum value of the classical mutual
information (3.1) between the two random variables A and B over all possible measurements
which Bob can perform:

Iacc({pmpa}aeA) = Ssup I(A : B) = sup Z ZpaT(b‘G) log (T(b|a)) )

Ey}oen {Ev}veB ge A beB > keaPaT (bla)
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a——oA  Pay

a—-1  pa ﬁ< Ly az——  Pay /7< —b

{Eb}bGB
{EI)}IJGB
Qp Pay,

(a) Single use of a cq channel: Alice pre- (b) Multiple uses of a cq channel: Alice
pares a state p, according to the out- prepares a state pg; ® -+ ® pg,, ac-
come a of a random variable A, and cording to the outcomes of multiple
Bob measures the state, obtaining the iid drawings of the random variable
outcome of a random variable b. A, and Bob collectively measures the

state, obtaining the outcome of a ran-
dom variable B.

Figure 3.1: The definition of our first communication problem in quantum mechanics for one-time use
and multiple uses of the cq channel.

The motivation of using the accessible information as our measure of information is that for
every choice of states {ps}aca and Bob’s POVM, our setting is described by the classical
channel T introduced above. By the channel coding theorem, the capacity of each of these
channels is given by the supremum of the mutual information I(A : B) over all choices of
probability distributions p,. Therefore, if we maximize the accessible information with respect
to all choices of ensembles {pg, pq}aca, We expect to obtain a meaningful quantity in the
context of communication of classical information via quantum systems, accounting for Alice’s
and Bob’s freedom in choosing the cq channel and POVM. In what sense this is the case is the
content of the next sections.

3.2.1 The Holevo bound

The calculation of the accessible information involves a maximization over all possible POVMs
and is generally a nontrivial optimization problem. However, a theorem by Holevo gives a
useful upper bound on this quantity.

Theorem 3.2.1 (Holevo [25-27]). Let {pa, patac.a be a finite ensemble of states p, with prob-
ability distribution p,. Then the accessible information is bounded by

Iacc({paa pa}aeA) < X({pavpa}aE.A) = S(ﬁ) - Zpas(pa) )
acA

where S(p) = —tr(plogp) is the von Neumann entropy of the state p and p = ) c 4 PaPa
is the average signal state. The quantity X({pa, pataca) is called the Holevo quantity of the

ensemble {Pa, PatacA-
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Proof (following [28]). Suppose Alice records her state in a classical register A (which we repre-
sent by a Hilbert space CH| with orthonormal basis vectors {|a)}ac.4). Then the joint classical-
quantum state on Alice’s classical register and the quantum system () is given by

paQ =Y paladal ® pa -
acA

Bob’s measurement, described by the POVM {Ej }4cp, can be described by a quantum channel
which maps @ to @B (where B is Bob’s classical register with basis vectors {|b) }»cg) as

pa = Y MypaM} @ YD
beB

where Mg My, = E}. The full state on AQB after Bob’s measurement is then

Paop= . pala)al ® MypaM] @ [D)D] .
acA,beB

We introduce the quantum mutual information I(X 1Y), = S(px)—S(pxy)+S(py), which
is a quantity analogous to the classical mutual information, but replaces the entropy of random
variables with the von Neumann entropy of quantum states. We then have

I(A:B), <I(A:QB), <I(A:Q),, (3.4)

where we have used strong subadditivity (i.e., I(A : B) < I(A : BC) for A, B,C classi-
cal registers or quantum systems [29, Chapter 11.4]) and monotonicity under CPTP maps
(ie., I(A: B)gp < I(A: B), for a CPTP map & [29, Theorem 11.15]), in this case applied
for € being the channel describing Bob’s measurement. Since the left-hand side of Eq. (3.4) is
equal to the classical mutual information (3.1), it remains to show that we have

I(A : Q)p = X({pa,pa}aEA) .

We calculate

S(AQ) = —tr ((Z Pa |a)a| ® pa> log (Z ‘a/xa/} 2 ,%/))

acA a’'eA

= - Z tr (papa (Inga + log pa))
acA

= Z Pa log pq tr pa — Z Pa tr (pa log pa)
acA acA

= H(A) + Zpas(pa) ,
acA

giving S(Q|A) = H(AQ) — H(A) = Y ,c4PaS(pa). By definition of the quantum mutual
information,

I(A:Q)p = S(pq) — S(pga) + 5(pa)
= S(pq) = H(A) = Y paS(pa) + H(A)
acA
=S (Z papa> =Y paS(pa) -
acA acA
The claim now follows with Eq. (3.4). O
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The von Neumann entropy S(p) in this theorem is a central quantity of interest in quantum
information theory. It corresponds to the well-established Shannon entropy from classical
information theory. It plays a central role throughout this thesis.

Theorem 3.2.1 has a striking consequence, namely that the maximal amount of information
which can be retrieved from n qubits (where the Hilbert space is given by H = (C2)®n,
and S(p) < log(2") = n for any p € S(H)) is merely n classical bits. In this sense, qubits
cannot store more information than classical bits can.

3.2.2 The converse to the Holevo bound

It is natural to ask whether the bound given by the Holevo quantity on the accessible infor-
mation can be achieved by a suitable choice of Bob’s measurement. Before we address this
question, let us introduce some terminology. Fix an ensemble {p,, po}taca. For L € N, we

define the ensemble {PéL), pflL)}ae ¢ according to
Pa:pal"‘paL and pa:pa1®"‘®PaL€S(H®L)

for all @ = (a1,...ar) € AL, Suppose Alice prepares the state p, with probability P, and
Bob performs a measurement described by a POVM {E}yep C B(H®L). This protocol can
be described by a classical channel T with input alphabet A, output alphabet B, and

conditional probabilities T(X) (b|a) = tr (ng)Eb). The mutual information between Alice’s
input and Bob’s output is given by

(L)

T
bla
IDA:B)=>" > P,T" (bla)log —'(L) : (3.5)
bEB ac AL ke AL PaTb|k

This setting is depicted in Fig. 3.1b. By allowing Alice to use such “extended” ensembles
for arbitrarily large L and Bob to collectively measure the output, the upper bound from
Theorem 3.2.1 is in fact asymptotically achievable: By picking a sufficiently large L and choos-
ing a suitable measurement POVM, we can come close to the Holevo bound for the ensem-
ble {pa, pa}aca. This is the content of the Holevo-Schumacher-Westmoreland (HSW) theorem.

Theorem 3.2.2 (Holevo, Schumacher, Westmoreland [30,31]; [24, Theorem 7.8]). Suppose we
have an ensemble {pq, pataca of states pg, € S(H) with a priori probabilities py, and fiz § > 0.
Then, there is L € N and a POVM {Ey}yep C B(H®L) for some finite alphabet B such that the

mutual information from Eq. (3.5) satisfies

IL(A:B
(L) > X ({pa’pa}aGA) —0.

3.3 The classical capacity of noisy quantum channels

So far we have assumed that there is no noise affecting the system which Alice and Bob use for
communication. Let us generalize our setup to the setting where Alice and Bob want to use a
memoryless quantum channel for communication.

Alice wants to send classical information to Bob. As before, she has a set of messages
{1,...,2MY M € N, and wants to communicate one of them to Bob, this time via n uses
of a quantum channel € : S(H4) — S(Hp) which maps Alice’s quantum system A to Bob’s
quantum system B. Multiple uses of the quantum channel £ are modeled by the quantum
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channel €27 : S(HY") — S(HE"). This quantum channel models the n-times use of the
channel € in a memoryless way.
A (2™ n) quantum code consists of an encoding and a decoding. An encoding is a col-

lection of codeword states {pm}%”:l cS (’H%n). A decoding is a set of positive decoding

operators {Eb}gfl C B(H®™) which satisfy zgfl Ey < 1yen. The interpretation of this
quantum code is that Alice can prepare her system (described by a Hilbert space H4) in a

codeword state p,, € S (HfM ) which depends on her choice of message m € {1,...,2M}.

Bob receives the output £9"(p,,) and can perform a decoding measurement to decide which
message was sent to him. The measurement which Bob performs on his system is described
by the POVM {Eb}zfo C B(HE"), with By = 1 — Zifl Ey. If Bob obtains the output m
for 1 < m < 2M_ he decides that the message m was transmitted, whereas in the case of the
output 0, the decoding fails. The average error probability of this code is given by

2]V[

1
P = oxp D (1= (€% (pm) Em)
m=1

and the rate of this code is R = % As before, a rate R is achievable if there exists a sequence

of ([2"7],n) quantum codes such that the average probability of error P tends to 0 as n — oo.
The classical capacity of the quantum channel £ is then defined as the maximal achievable rate.

Definition 3.3.1 (Classical capacity of a quantum channel). The (full) classical capacity C(E)
of the quantum channel € : S(Ha) — S(Hp) is the supremum of all achievable rates.

In comparison with the previous section, Alice’s task here becomes finding input states p,
such that Bob can still reliably distinguish the output states £(p,). We allow Alice to choose
her input states in order to maximize the information which Bob can receive on the other end of
the channel. Suppose Alice only uses product states as inputs, i.e., pm = pa,(m) @ *** @ P4, (m)>
with pg, (m) € S(Ha) for 1 <k < nforall 1 <m < 2M. In this case, Bob will also receive
product states, since memoryless channels have the property that they map product states to
product states. This motivates the definition of the so-called product state capacity, the setting
of which is depicted in Fig. 3.2a.

Definition 3.3.2 (Product state capacity). The product state capacity C1(E) of a quantum
channel € : S(Ha) — S(Hp) is the mazimal achievable rate if we only consider quantum codes
whose codeword states are product states.

With a slight modification of the proof of Theorem 3.2.2, it can be shown that the Holevo
quantity of the ensemble {p,, £(pa)}aca can be achieved in rate by a suitable decoding scheme
for sufficiently large codeword lengths, providing us with a formula for the product-state ca-
pacity.

Lemma 3.3.3 (Product state capacity [31]). The product state capacity of a quantum chan-
nel £ : S(Ha) — S(Hp) is given by

Ci&) =x(E) = s Xx({pa:E(pa)}) = sup  S(EP)) = Y PaS(E(pa)) -

{Pa,pataca {Paspataca acA

The product state capacity is sometimes also called one-shot capacity of the channel. It
can be shown that the product state capacity is also equal to the maximal achievable rate
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(a) The product-state capacity: Alice is only allowed (b) The full classical capacity: Alice can use generic

to use product states as codeword states, and codeword states p.,, € 8(?-[?2"), and Bob collec-
Bob collectively measures the output of the chan- tively measures the output of the channel £%™.
nel £87.

Figure 3.2: The operational settings of the capacities C1(£) and C(E).

using separable codeword states, i.e., convex combinations of product states [2,31]. However, a
general state in S (H%n) is not separable, but entangled?. Hence if we want to find the ultimate
limit on the transmission of information, we need to allow Alice to use general codeword states,
as we did in Definition 3.3.1. This setting is depicted in Fig. 3.2b.

We can find a formula for the full capacity by considering the product state capacity of the
channel 7 = €% : S(HY") — S(HY") for some n € N. As mentioned before, this channel
models n parallel uses of the channel £ (in a memoryless way). In this setting, Alice can prepare
any input states in S(H4") for the channel 7. The maximal achievable rate for this channel
according to the HSW theorem is given by x(7), and the maximal achievable rate per use of
the channel € is given by x(7T)/n. This is the capacity of the channel £ if Alice is allowed to
use the channel in entangled blocks of length n. Since product states are a special case of this,
it is clear that

%X((f@n) > x(€) for any L € N . (3.6)

The full classical capacity of the channel £, in which quantum codes without restrictions on
the codeword states or on n are considered, is then obtained by taking the limit n — oco. This
is the ultimate limit on the transmission of classical information via the quantum channel £.

Corollary 3.3.4 (Classical capacity [31]). The full classical capacity C(E) of a quantum chan-
nel £: S(Ha) — S(Hp) is given by the limit

C(E) = lim ~Cy(€5) .
n—oo n

In literature, sometimes Lemma 3.3.3 and Corollary 3.3.4 are referred to as the HSW theorem,
since they were conclusions originally stated in the same article as Theorem 3.2.2.

There are other capacities one can associate with a quantum channel. One of them is the
entanglement-assisted classical capacity [32-34], in which Alice and Bob are allowed to share
unlimited amounts of prior entanglement. Another important capacity is the quantum capac-
ity [35,36], which measures the amount of quantum information which can be transmitted over

2A state is called entangled if it is not separable.
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a quantum channel. While some of the results presented in this thesis have applications to the
entanglement-assisted classical capacity, the classical capacity plays a central role in this thesis.
Therefore we do not present details about other capacities here.

3.4 The additivity problem

The question whether the inequality in (3.6) is strict is referred to as the additivity problem. It
comes from the terminology that if we have

X(E®™) = nx(€) foralln e N |

then the quantity x is said to be additive and we immediately obtain equality in (3.6). In this
case, the use of entangled signal states gives no operational advantage over using only product
states in the code. In a landmark result [37], Hastings proved that the Holevo quantity for
finite-dimensional channels is in general non-additive, i.e., for sufficiently large d there exists a
channel 7 : B(C?%) — B(C?) for which

X(T2) > 2x(T) .

This leaves room for the classical capacity to be non-additive for some channels in the sense
that
C(€) > Cy(€E) .

Understanding for which channels the capacity may or may not be additive is a central problem
in quantum information theory.

The discussion so far has been a fairly general treatment of the classical capacity of quan-
tum channels. We want to focus on one particular model of quantum communication, which
uses bosonic quantum systems. Bosonic quantum systems are a model for continuous-variable
quantum systems, such as the quantum harmonic oscillator, the degrees of freedom of the
electromagnetic field, and more. In the next chapter, we introduce the formalism of bosonic
quantum information.
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4 Bosonic quantum systems

In this chapter, we review the main concepts and the formalism of continuous-variable quantum
information theory. For a more detailed exposition we refer to some of the many review papers
on this topic [38-40]. A ubiquitous model for continuous-variable quantum systems is given by
the bosonic harmonic oscillator of n modes, for n € N. We start by presenting the case for one
mode, n = 1, which is instructive for the multimode case. For a one-mode bosonic system, we
have two quadrature operators, referred to as the “position” and “momentum” operators (Q, P),
which satisfy the canonical commutation relations

(@, P] =4l . (4.1)

Equivalently, we can describe the system in terms of the ladder operators, which are a pair of
bosonic field operators a,a’ which satisfy the bosonic commutation relations

[a,al] =1 . (4.2)

The Hilbert space of a one-mode bosonic system Hgc is the separable Hilbert space spanned
by an orthonormal system {|j)}jen,. The ladder operators act on the basis vectors in the
following way:

al0) =0,
aljy=+jli-1  forj>1,
a'lj) =G +1]j+1) for j € Ny .

This clarifies the origin of the terminology ladder operators. The connection between the
quadrature operators and the ladder operators is given by

_i i aT:i —
0= 5 @+iP) | QP (4.3)

and it can easily be checked that this relation is consistent with the commutation relations (4.1)

and (4.2).
We are ready to treat the case of n modes, for n € N. Corresponding to each mode
k€ {1,...,n}, there is a set of quadrature operators (Qy, Px) which satisfy the canonical

commutation relations:
(Qj, Pr] = 16,1 for j,k=1,...,n.

It is common to define a vector of quadrature operators R = (Q1, Pi,- -+ ,Qn, P,) and write
the canonical commutation relations in the following form:

[Rj, Rk] = iAjJﬂl for j, k= 17 cey 2n y (4.4)

0 1

where A = (_1 0

on
> is the matrix of a symplectic form on R?".
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Equivalently, associated to each mode k € {1,...,n}, there is a pair of bosonic ladder
operators ay, az, and these operators satisfy the bosonic commutation relations

[aj,aL]: ikl for j,k=1,...,n.

The Hilbert space H®" = HZ" is the n-fold tensor power of the Hilbert space of a quantum
harmonic oscillator of one mode. We obtain a basis of A from the one-mode basis vectors
as {[j1, - Jn) = 1) @ [j2) ® -~ ®[jn) }(jy,....jn)eny - The action of the ladder operators is then
simply given by the action of the one-mode ladder operators after writing

0, =1® - R1®Raex1®---1 .

k—1 times n—k times

The connection between the quadrature operators and the ladder operators of each mode is
given by Eq. (4.3).

4.1 Phase space description

The canonical commutation relations (4.4) imply that the mode operators Ry need to be un-
bounded. A common realization of operators satisfying these commutation relations is the
Schrodinger representation, where the Hilbert space of one mode is given by the square-
integrable functions on the real line, L?(R,dx), and the quadrature operators act as

Q) (x) = zy(x) ,
d

(Py)(z) = _i@¢(m) forallz e R .

These are defined on a dense subset of L?(R,dz).

2

The vacuum state |0) then corresponds to the wavefunction ¢y (x) := ﬂ_%e_%, and the other
basis vectors can be obtained by applying the ladder operators using Eq. (4.3). Unfortunately,
the Schrodinger representation allows for subtle ambiguities regarding the domains of the in-
volved operators, a phenomenon which is illustrated by a counterexample from [41]. By moving
to a description in terms of certain exponentials of the field operators, which are bounded, this
problem can be overcome.

We introduce the so-called phase space, which is the vector space of R?" equipped with the
symplectic form (z,y) — 27 A~ly. The Weyl displacement operators are defined by

D(¢) == exp (i€ (A™'R)) for £ € R*™ .

They satisfy commutation relations on their own, namely

DOD() = exp (567 (A7) Dl +1)
D(§)D(n) = exp (—i€" (A™'n)) D(n)D(€) ~ for &,n € R*™ . (4.5)

These commutation relations are called the Weyl relations. The reason why the Weyl operators
are called “displacements” becomes apparent when investigating their action on the quadrature
operators, which is

DE)'R;D(&) =R;j + &1 forall ¢ €R™ j=1,...,2n.
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It is possible to regard the Weyl relations (as opposed to the canonical commutation relations)
as a starting point. The generators Ry of a family of unitary operators which satisfy the Weyl
relations themselves satisfy the canonical commutation relations! [41]. For this description, we
introduce some terminology. A map D : R?® — B(H) which satisfies the Weyl relations (4.5)
and for which D(€) are unitary for all ¢ € R?" we call a Weyl system. A Weyl system is called
strongly continuous if for all ¢ € H, we have limg_g |[¢) — D(£)9|| = 0. It is called irreducible
if the only subspaces of H which are invariant under all D(&) are {0} and #.

There is an advantage in using the Weyl description: For a finite-dimensional phase space,
any two strongly continuous irreducible Weyl systems are unitarily equivalent. This is the
content of the Stone-von Neumann theorem.

Theorem 4.1.1 (Stone-von Neumann [20,41,42]). Let DU : R?*" — B(H) and D® : R?" —
B(H) be two strongly continuous irreducible Weyl systems over a finite-dimensional phase space.
Then there exists a unitary operator U such that DM (&) = UTD@ (&)U for all € € R?".

Hence if we only consider strongly continuous and irreducible Weyl systems, all these systems
are equivalent to the Schrodinger representation and there is no ambiguity left. From here on,
we write D for any strongly continuous and irreducible Weyl system and Rj for the associated
generators.

4.1.1 The characteristic function and the Wigner function

The Weyl operators implement a form of a non-commutative Fourier transform, which gives
us a duality between operators and complex functions on phase space. An n-mode quantum
state p can be represented by its characteristic function x, € L?*(R*",d*"¢), defined by

xp(&) = tr(D(§)p) for ¢ € R*" .

The characteristic function is well-defined for trace-class operators p. However, the map p — x,
can be extended to the Hilbert-Schmidt class by continuity. Extended this way, it becomes an
isometry between the Hilbert-Schmidt class and L?*(R?", d?"¢), due to the Parseval relation [43]

tr(pla) = 2m)" [ (9 ae
Given a characteristic function, the state can be reconstructed by taking the so-called Weyl

transform of the characteristic function x,,

_ 1 t 32n
P g |, WAODET

The characteristic function, being a function in L?(R?", d?"¢), can of course itself be viewed as
the classical Fourier transform of a function instead of a non-commutative Fourier transform.
This gives rise to the Wigner function: The characteristic function Y, is the Fourier transform
of the Wigner function W,

1

Wp (5) = (27T)2n

/ eigT(A_ln)xp(n) d?ny for all £ € R?" .
R2n

!The converse is not true: there exist operators R; which satisfy the canonical commutation relations, but
whose exponentials do not satisfy the Weyl relations [20, Example 14.5].
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The Wigner function of a state is normalized, but not positive in general, hence it is a quasiprob-
ability distribution.

Important quantities which give information about the characteristic function of a quantum
state are its first and second moments. The vector of first moments of the quantum state p is
called the displacement vector, which we denote by d(p). Its entries are given by

di(p) == tr[Ryp] fork=1,...,2n.
The second moments make up the entries of the so-called covariance matrix I'(p),

Tri(p) :=tr[{Rx — di(p)1, Ry — d;i(p)1}p] k,l=1,...,2n,

where {X,Y} := XY + Y X is the anticommutator. The covariance matrix is a 2n x 2n real
symmetric matrix which satisfies the uncertainty principle [44]

I'(p)+iA>0.

It turns out there is a particular class of quantum states for which the first and second
moments capture all information about the state. These states are the so-called Gaussian
states.

4.2 Gaussian states

Gaussian states are n-mode quantum states which have the property that their characteristic
function is Gaussian. Since the first and second moments capture all information about these
states, we will write pg(d,T") for the Gaussian state with displacement vector d € R*® and
covariance matrix I' € R?"*27_ This state has the characteristic function

Xpaar (€) = exp _i(Ailf)Tr(Aflg) + if(Ald)} for all £ € R*" .

A prime example of Gaussian states are the so-called thermal states whose covariance matrix
is proportional to the identity. In the one-mode case, a thermal state is characterized by its
average number of photons N = tr(afap) (also called the average energy or the mean photon
number) and has the form

1 &/ N\
PN = N1 > <N+ 1) kXK .

k=0

It has displacement vector d = 0 and covariance matrix I' = (2N + 1) 15. The von Neumann
entropy of a one-mode thermal state is given by

S(pthn) = 9g(N) :=(N+1)log(N+1) — NlogN . (4.6)

Another example of one-mode Gaussian states is given by the so-called coherent states pc (€, 12)
for ¢ € R?": These states are pure and can be written as |£)(¢], with

[€) :== D(£)[0) -
It is easy to see that these states satisfy

_ &1+

alg) NG

9
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hence the coherent states are eigenstates of the annihilation operator a. Coherent states form
a so-called overcomplete basis, and it is sometimes useful to describe states in terms of their
coherent state expansion. For instance, the thermal state pg, v can be written as

_lgl?
iy = g €5 leel die

The following theorem is useful in the analysis of Gaussian states.

Theorem 4.2.1 (Williamson [45]). Let A be a symmetric and positive 2n x 2n matriz. Then A
can be diagonalized by a symplectic transformation S (i.e., a 2n x 2n matriz satisfying the
equation ST A S = A) such that

SAST = él/j]lg s

where v; > 0. The values v; are called the symplectic eigenvalues of A and are equal to the
absolute values of the eigenvalues of iA~TA.

Applying Williamson’s theorem to an arbitrary covariance matrix I' € R?", we see that there
exists a symplectic matrix S such that

n
STFS = @ I/k]lg 5
k=1

with v, > 0 for £k = 1,...n (in fact, due to the uncertainty relation, we have v, > 1). The
symplectic transformation S induces a unitary Ug which realizes the action of S via conjugation:

2n
ULRUs = SiiR; . (4.7)
j=1

We call such transformations Ug Gaussian unitaries (see Section 4.3). The unitary Ug trans-
forms a state pg(0, ") with zero displacement vector into a product of one-mode thermal states:

Uspc(0,T)U ®pth uoL

A general Gaussian state pg(d,I') with nonzero displacement vector then has the decomposition

pa(d,T) = D(d)U}, (® [ 1) UsD(d) .

k=1

This is called the thermal decomposition of the Gaussian state pg(d,T"). Since the von Neumann
entropy is invariant under conjugation with unitaries, the entropy of a Gaussian state pg(d,T")

is given by
- v —1
S(m(d,F)):Zg( = > .
k=1

The numbers

ke L are sometimes also referred to as the numbers of thermal photons, since
they are equal to the mean photon numbers of the thermal states in the thermal decomposition

of pa(d,T).
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4.2.1 Maximum entropy principle

Among all quantum states with given fixed covariance matrix and displacement vector, the
Gaussian state maximizes the entropy [18,46]. This is a useful fact in the context of bosonic
information theory, and can be seen from the following Lemma.

Lemma 4.2.2 (Maximum entropy principle [18, Lemma 12.25]). The Gaussian state pg(d,T")
has the largest entropy among all states with given first moments d € R?*™ and covariance matriz
I' € R?"*2" That is, for any n-mode quantum state p on a bosonic system with first and second
moments given by d and I', we have

S(p) < S(pa(d,T)) -

The proof proceeds by showing that for any n-mode quantum state p whose first and second
moments are given by d and I', we have

S(pc(d, 1)) = S(p) + D(pllpc(d,T)) , (4.8)

where D(p|lo) = tr(p(logp —logo)) is the relative entropy between the two states p and o.
Because the relative entropy is nonnegative [18, Proposition 7.3, D(p||o) > 0 for all states p, o,
it follows immediately from Eq. (4.8) that the Gaussian state maximizes the entropy among all
states with given first and second moments.

4.3 Gaussian channels

Gaussian channels are quantum channels which map Gaussian states to Gaussian states, that
is, a channel £ : S(H®") — S(H®™) is called Gaussian if £(p) is Gaussian whenever p is.
The action of a Gaussian channel can be described by a triple (X,Y,n), where n € R?*™ is
an arbitrary vector, and X € R?"*?™ Y ¢ R?™X2™ are real matrices which satisfy Y7 =Y
and Y + i(Agy, — XT A9, X) > 0. Here, the index in Ay, is used to indicate the size of the
matrix A, which we will suppress from here on. On a Gaussian state pg(d,I'), the Gaussian
channel then acts as

E(pa(d, 1) = pa(Xd+n, X' TX +Y) .

On a general state p, the action of £ can be described on the level of characteristic functions:
XE(p) (&) = Xp(Xﬁ)e_i(Aflg)TY(Ailf)HfAfl" for all £ € R?" |

A first example for a Gaussian channel for n > m is the partial trace over the last n — m
modes, for which Y = 0,7 =0, and

X:< Tom ) .
O(2n—2m)><2m

On the level of characteristic functions, this amounts to evaluating the characteristic function
while setting the phase space coordinates of the last n — m modes to zero.

In the case where n = m, ¥ = 0, and X = S is symplectic, in light of Eq. (4.7) we
have E(p) = USpUg and the channel is described by a Gaussian unitary Ug.
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4.3.1 The beamsplitter and squeezing

Let us consider a system of 2n modes, which we want to consider as the composition of two n-
mode systems A and B. The quadratures are labelled by

R = (RAaRB) = (Ql,AaP].,A7 . '7Qn,A7Pn,A7Q1,Ba-Pl,Ba e 7QH,B7PH,B) .

We define a Gaussian unitary Uy = Ug, via a symplectic transformation Sy, for A > 0, given
by
( VAo, VI= A,

for0<A<1,
—V1 =22, VA, ) -

Sy = (4.9)
VM VA= 12 for A > 1
\% A— 1Z2n \/X:H-QTL ’
1 0\™"
where Zs, = (0 _1) . The unitary U, implements the beamsplitter of transmissivity A

for 0 < A < 1 and the (two-mode) squeezing for A\ > 1. The quantum channel p — UApUi
implements a Gaussian channel acting on a 2n-mode system, with X =5, Y =0, n=0.

For a quantum state 0 € S(Hp) (the environment state) and X\ > 0, we define the quantum
channel

Erxo(p) =trp |:U)\(,0® O’)U;[] for all p e S(Ha) . (4.10)

The channel &) , is a Gaussian channel if the environment o is a Gaussian state. This follows
immediately from the fact that the channels given by p — UypU )T\ and the partial trace are
Gaussian. As an example, if n =1, 0 < XA < 1, and 0 = py v is a thermal state with mean
photon number N, then £, p,,  is a Gaussian channel with X = VAL, Y = (1—\)(2N 4 1)1,
and n = 0. This channel is commonly referred to as the thermal noise channel. For N = 0
this channel is often called the attenuation channel. As another example, if n = 1,A > 1,
and o = |0)0] is the vacuum state, then &) |go| implements a Gaussian channel with X = VA,
Y = (A — 1)1y, and n = 0. This channel is also called the amplification channel.

4.3.2 The classical noise channel

The examples of channels we have seen so far coupled the system to an environment which was
described by a quantum state. We can also consider noise which has a classical description
acting on the system. For a probability density function f : R?® — R on phase space and t > 0,
we define

Fiplp)i= | FDV2rte)pD(V2rtg)T d**¢  for all p € S(HE") . (4.11)

R2n
This channel is called the classical noise channel because it can be understood to add classical
noise to the system: The quantum state is displaced across phase space according to a clas-
sical probability distribution f (the parameter ¢ is introduced purely for convenience). If f is
Gaussian, then the channel F; f is a Gaussian channel.
If the classical “noise function” f is Gaussian, then the corresponding classical noise function
is Gaussian. In the case when f(&) = fz(£) = (2m0?) e IEI3/(29%) is equal to a centered

Gaussian whose covariance matrix is proportional to the identity, 7; ; implements a Gaussian
channel with X = 1,,,Y = 47nto?1s,, n = 0.
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The channels defined by the beamsplitter and squeezing unitaries as well as the classical noise
channel are general models for bosonic quantum channels which cover many applications. In
fact, in the one-mode case, they are among the main building blocks for any Gaussian quantum
channel [47].

4.3.3 Non-Gaussian bosonic channels

It is easy to see that if the environment state o of the channel £, is not Gaussian, then
the channel is not a Gaussian channel. Similarly, if the function f is not Gaussian, then the
channel F; ; is not a Gaussian channel. However, these channels still have more structure
than a generic channel: Their Stinespring dilations (see Theorem 2.2.3) are given by Gaussian
unitaries. Such channels are called Gaussian-dilatable [48]. Using this fact makes it possible to
understand some of their properties and to use techniques from Gaussian information theory to
prove statemens about these non-Gaussian channels. On the other hand, the study of generic
bosonic channels, which do not have a Gaussian dilation, is out of the scope of this work.

We have introduced some basic concepts of continuous quantum information theory and
quantum communication, and we can start with a discussion of particular topics which are
central to the work presented in this thesis.
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5 Entropic inequalities for bosonic quantum
systems

Entropy is a key quantity of interest in all of information theory. Hence it is a central task of
information theory to understand how entropy behaves when the system is subjected to noise.
Entropic inequalities give bounds on the entropy production of channels and therefore make up
important tools in the understanding of noise. In this chapter we give an overview of entropic
inequalities for bosonic quantum systems. We start with one of the most fundamental exam-
ples of entropic inequalities, namely the data processing inequalities of classical and quantum
information theory. Next we give a short introduction to additional entropic inequalities in
classical information theory, which have inspired similar inequalities in the quantum setting.
We then give an overview of a number of key results regarding entropic inequalities for bosonic
systems, and show where the work of the present thesis fits in.

5.1 Data processing

Let us recall the definitions of the Shannon entropy and the corresponding mutual information
from Eq. (3.1). A fundamental inequality governing these quantities is the data processing
inequality, which deals with the behavior of information under certain operations.

Theorem 5.1.1 (Data processing inequality [23, Theorem 2.8.1 and Corollary]). Let X,Y, Z
be A-valued random variables for a finite alphabet A which form a Markov chain, that is X —
Y — Z. Then,

I(X:Y)>1(X:2).
In particular, if f: A — A and Z = f(Y) is a function of Y, we have
I(X:Y)>I(X: f(Y)) .

A common interpretation of the data processing inequality is that no manipulation of data
whatsoever can improve the inferences which can be made from the data [23].

Similarly, the quantum data processing inequality states that the application of CPTP maps
to each part of a bipartite quantum system cannot increase the mutual information between
the two parts of the system.

Theorem 5.1.2 (Quantum data processing inequality [49, Theorem 11.9.4]). Suppose that
paB € S(Ha ® Hp) is a quantum state, where dim(H 4),dim(Hp) < oo. Then, for all CPTP
maps N : B1(Ha) — Bi(Ha) and M : Bi(Hp) — Bi(Hp), we have

I(A: B) >I1(A": B

/
PAB Pargr

where p'y g = (N @ M) (paB)-
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There are many different formulations of data processing inequalities in a number of different
settings, the common theme being that some measure of information cannot be increased by
the processing of information. Such inequalities are among the most fundamental entropic
inequalities in information theory. Let us now focus on the particular entropic inequalities
which are important for the work presented in this thesis.

5.2 Entropic inequalities in classical information theory

For two R™-valued random variables X and Y, the sum X +Y is defined as the random variable
with probability density given by the convolution of the probability densities of X and Y, i.e.,

fxayv(z) = . fx(@)fy(z —x)d"x for z e R" .

For t > 0, the rescaled random variable /X is defined as the random variable with probability
density given by f ;y(7) = 772 fx (%) for z € R™.
In his seminal 1948 paper [9,10], Shannon identified a central entropic inequality which gives

a lower bound on the entropy of the sum of two random variables in terms of the individual
entropies of the two random variables. It is the entropy power inequality (EPI).

Theorem 5.2.1 (Entropy power inequality [10,50-52]). Let X and Y be two independent R"™ -
valued random variables with finite second moments. Then we have

2HXAY)/n > 2H(X)/n | 2H(Y)/n (5.1)

with equality if and only if X and Y are Gaussian random variables with proportional covariance
matrices, that is, E[(X — E[X])(X — E[X])T] x E[(Y — E[Y])(Y —E[Y])T].

Remark 5.2.2. Sometimes the entropy power inequality is stated in the form

2H(VAX+VI=XY) /n > Ae2HX)/m (1— )\)€2H(Y)/n

9

for X € (0,1), where the random variable VAX 4+ V1= \Y has probability density

1 _
f\/XXJ'_mY(Z):M/Ran (%)fy(%) d"z fOT’ZERn.

The quantity e (X)/n a5 a function of the random variable X is called the entropy power
of X. The choice of name can be explained by noticing that a probability density func-
tion fz : R" — R, fz(z) = —L—e1212/(2*) which is the product distribution of n i.i.d.

~ (2mo?)n/2
Gaussians with variance o2, has entropy H(Z) = 5 log 2mec?. The entropy power of Z is then
(up to a prefactor) given by the variance o2, which is also referred to as the average energy or
power of Z. The entropy power of a generic random variable X is thus equal to the power of the
Gaussian random variable which has the same entropy as X. It is remarkable that the entropy
power inequality (5.1) holds for all random variables which satisfy certain regularity assump-
tions (specifically, it is enough to assume that the random variables have finite variance [52]),
but are otherwise arbitrary. It is a very powerful inequality in classical information theory:
Shannon [10] has used it to calculate the capacity of the additive Gaussian noise channel and
to bound the capacity of an arbitrary additive noise channel. Later works have applied it in
a variety of different settings, for instance, in [52] the EPI was used to obtain bounds on the
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convergence rate in the central limit theorem, and applications to multi-terminal information
theory can be found in [53].

There is a wide array of important information-theoretic inequalities which concern entropic
quantities. We want to highlight a particular one and refer to [54] for an extensive review of
other information-theoretic inequalities. This is the isoperimetric inequality for entropies.

Theorem 5.2.3 (Isoperimetric inequality for entropies [54]). Let X be an R™-valued random
variable with finite second moments and let

d™x

_ _ T
J(X)=J(fx) = - Vix(@) Vfx(z) (@) (5.2)
be the Fisher information of X, where V f(zx) = (a%lf(x), ey %f(a:))T is the gradient of f.
Then we have )
—J(X)eX)/m > 1 (5.3)

n

The isoperimetric inequality for entropies is a direct consequence of the entropy power in-
equality via the de Bruijn identity [50,51], which is also a crucial ingredient in the proof of the
EPI:

Theorem 5.2.4 (De Bruijn’s identity [23,50,52]). Let X be an R™-valued random variable with
finite second moments. Then we have, for any € > 0

d 1
d—H(X +VeZ) = 5J(X ++VeZ) ,
€
where Z has the probability density function fz(z) = (27?)*”/26*”4'%/2. In particular, if the
limits limer g | LH(X +/eZ) and lim o J(X + \/€Z) exist, we have

e=¢’ de

d

= H(X ++eZ) = %J(X) : (5.4)
€ e=0

The isoperimetric inequality for entropies is closely related to Gross’s Log-Sobolev inequal-
ity [55], which has applications in quantum field theory.

There is a striking connection between the aforementioned entropic inequalities and geometric
analysis: The EPI and the related isoperimetric inequality are formally similar to the Brunn-
Minkowski inequality from geometric analysis [56]: For two compact subsets A, B C R", we
have

p(A+ B)Y" > (A" + (B

where (1 is the Lebesgue volume and A+ B is the Minkowski sum A+ B := {a+b ‘ a€ Abe B}.
The Brunn-Minkowski inequality implies the isoperimetric inequality. The latter states that
for a subset A C R™, we have

nw!/"p(A) /" < area(A)

where area(A) = limj M is the surface area of A if the limit exists [57-59], B, is
an e-ball in R", and w, = p(Bi) is the volume of the unit ball By C R™. Comparing with
Eq. (5.3), the entropy power plays the role of volume and the Fisher information plays the role
of inverse surface area. One can also view the isoperimetric inequality for entropies using this
connection: Gaussian states have the smallest entropy power for a fixed Fisher information. In
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this sense, Gaussian states play the role of balls, which have maximal volume for a fixed area
by the isoperimetric inequality. This connection between geometric analysis and information
theory has been shown to be very fruitful. In fact, there is a proof of the entropy power
inequality based on the Brunn-Minkowski inequality [60].

While Shannon did not provide a rigorous proof of the entropy power inequality (5.1), a series
of subsequent work has put the inequality on a rigorous foundation [50-52]. We give a sketch
of a proof of the classical entropy power inequality here because it is of central importance for
the quantum setting. The idea for this proof is due to Blachman and Stam [50,51] and makes
extensive use of the so-called heat semigroup. An alternative proof which is based on the sharp
Young inequality for convolutions and Rényi entropies has been given by Lieb in [61]. The
first proof can be translated to the quantum setting, which is why it is more important for our
discussion here.

Our proof sketch shows how to prove a linear version of the EPI, which reads

H(VAX +V1=XY) > H(X)+ (1 - NH(Y), (5.5)

for any two independent R™-valued random variables X,Y and 0 < A < 1. The derivation of
the EPI is similar, but slightly more involved. However, this linear version can be shown to
imply the classical EPI, and vice versa [61,62]. The simplified version of this proof sketch was
presented in [63].

Proof sketch of Eq. (5.5). The first key ingredient in the proof is given by the Fisher informa-
tion inequality, which states that

A(X) + (1= NJ(Y) —J (\&X +VI— AY) >0, (5.6)

for any two independent R™-valued random variables X,Y and 0 < A < 1. The second key
ingredient is the already stated De Bruijn identity (5.4). Now we consider the following map
on random variables, which we call the classical heat semigroup, for t > 0:

Na()(X) =X, =X +VtZ ,

where X + v/tZ has the probability density function as in Theorem 5.2.4. This map acts
as a one-parameter semigroup on random variables, i.e., Nu(t1 + t2) = Na(t1) o No(t2) for
all t1,ty > 0. For fy € C?(R"), the family of probability density functions f; = YAOIES
satisfies the heat equation

0 = 02
5 ft=2F A—;ag;g

with initial condition fo(z) = fx(z) for all z € R, that is, f; = e'*(fy). The probability
distribution functions f; have the explicit form

fi(x) = 1 / e_”yug/(%)féy) (z) d"y for x € R™.

(2nt)/? Jr
For consistency with later notation, we have introduced the translation of a function, denoted
by f@(x) := f(z —y), for y € R™. It is a crucial fact that evolution under the heat semi-
group makes the function f; approach a Gaussian for ¢ — oo. Furthermore, the asymptotic

scaling of its entropy is a function of ¢ only, independently of the initial distribution fy, i.e.,
limy_,o0 H(Xy) — g(t) = 0 for some function g which does not depend on fx.
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Moreover, the heat semigroup is compatible with convolution: We have, for any 0 < A <1
and any t > 0,
AX;+(1=M)Y) =(AX+(1-NY), .

As a last crucial ingredient, we note that translations of probability distribution functions are
also compatible with convolution: Denote by X (@ the random variable which has probability
distribution function f )(f ), for 8 € R™. Then

0
(ﬁX + \/ﬁy)( ' ax e VIZ Ay VIe)

This means that adding random variables and then translating them is the same as adding
appropriately translated versions of X and Y.

We can now move to the proof sketch of the EPI itself. Consider the given random variables X
and Y and apply the heat semigroup to them, obtaining random variables X; and Y;. Define

the quantity
5(t) ;== H(VAX; + V1= XY;) — AH(X;) — (1 = N H(Y;) .

If we can prove 6(0) > 0, we have proven the linear entropy power inequality. In the limit ¢ — oo,
we have

lim 6(t) =0 , (5.7)

t—o00

as the three entropy quantities have the same scaling as a function of ¢ (and because of com-
patibility of convolution with the heat semigroup). By de Bruijn’s identity, we can calculate
the derivative of § in terms of the Fisher information, and obtain

§(0) = % (J(ﬁX FVToAY) = A(X) — (1 — )\)J(Y)) <o,

because of the Fisher information inequality (5.6). By the semigroup property of the heat
semigroup, this implies that

5(t) <0 forallt >0,
hence the function ¢ is nonincreasing. Combining this with Eq. (5.7), we obtain 6(0) > 0,

concluding the proof sketch. O

An alternative proof of the entropy power inequality which also uses Fisher information but
does not involve the scaling of the entropy for ¢ — oo can be found in [54].

5.3 Quantum channels as convolutions

As we have seen, the sum of random variables is modeled by convolution of their probability
densities. One can ask if there is an analogous operation for quantum states, or for classical
noise acting on a quantum system. Considering the action of the channels from Sections 4.3.1
and 4.3.2 on the level of Wigner functions, the channels described by beamsplitter and squeezing
unitaries and the classical noise channel are convolutions. In particular, for 0 < A < 1 and
t= i, we have for ¢ € R?"

! 1 . £=n 1\ 120
Wero0)(8) = @)% Jon NI — Ay P <ﬁ> Wo <m> s

and
1

Wfﬁf(p)(f) = @02 Joon W,(n)f (€ —n)d*n , (5.8)
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for quantum states p, o and a classical probability density f : R?® — R. Therefore the chan-
nels £, , and F; ; are candidates for quantum analogs to the sum of random variables. The
next sections will deal with entropic inequalities for these “quantum-quantum” and “classical-
quantum” convolution operations.

5.4 The quantum entropy power inequality

The concepts of Section 5.2 can be translated to the quantum information setting. The role
of random variables is played by quantum states, the role of the differential entropy is played
by the von Neumann entropy, and the role of addition is played by the beamsplitter /squeezing
interaction Uy, which is defined in Eq. (4.9).

Theorem 5.4.1 (Quantum entropy power inequality [13,63,64]). Let px, py be two n-mode
bosonic states with finite second moments. Then we have

exp‘w > )\exps(?/;x)—i-(l—)\)exps(zﬂ ; (5.9)

for A € [0,1] and the channel &) ,, defined in Eq. (4.10).

The quantum entropy power inequality was first proven in the case A = % by Konig and
Smith [63]. Subsequent work by De Palma et al. [64] lifted this restriction on A, and the
sufficiency of finite second moments follows from the work carried out in [13].

The entropy power inequality stated above is not the only conceivable way to translate the
entropy power inequality to the quantum setting: Instead of taking the formal definition of
entropy power and replacing the differential entropy by the von Neumann entropy, there is
another way to generalize the notion of entropy power to the quantum setting. This is by
translating the notion that the entropy power of a random variable X is the power of the
Gaussian random variable Z which has the same entropy as X: For a generic n-mode state p,
one then considers the average energy per mode of a Gaussian thermal state which has the
same entropy as p [65]. This quantity is called the mean number of thermal photons of p and
is given by ¢g=(S(p)/n), where g is the function from Eq (4.6). This leads to the so-called
Entropy Photon-Number Inequality (EPNI) [65,66].

Conjecture 5.4.2 (Entropy Photon Number Inequality [65,66]). Let px, py be n-mode bosonic
states with finite second moments. Then we have

it (B s gy (S20) oy (S0

n n n

for A €[0,1].

The EPNI is an arguably more natural way to translate the entropy power inequality to the
quantum setting than Eq. (5.9). For instance, if the EPNI holds true, it is saturated by thermal
states, while the quantum EPI is not saturated by Gaussian states with proportional covariance
matrices unless they have the same entropy [66]. However, despite considerable research efforts,
the EPNI remains an unproven conjecture. The EPNI has only been shown to hold true in very
few special cases: It is known to be true in the one-mode case when one of the input states is
thermal [67,68] and when the two inputs are Gaussian states [69].
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5.5 The entropy power inequality for classical noise channels

Motivated by the study of the EPI in the classical and quantum setting, one can wonder whether
there are more ways to formulate an entropy power inequality. In light of Eq. (5.8), we define
a convolution operation between a classical probability density function f : R?® — R and an
n-mode quantum state p as in Eq. (4.11) via

(Fop) = frepi=Fralo)= | F(&)D(V2rte) pDT (V2rt) d* ¢ . (5.10)
The parameter ¢ > 0 is introduced as a “tuning parameter” purely for convenience. Sometimes
we will omit it and simply write f x p in the case t = 1. The factor of /27 in the argument
of the Weyl displacement operators is also chosen purely for convenience'. This convolution
operation (for t = 1) was introduced by Werner in his seminal paper on quantum harmonic
analysis on phase space [6], which established a form of Young’s inequality for this convolution.

The EPI for this convolution operation reads

Theorem 5.5.1 (Quantum entropy power inequality for classical noise channels [1,3]). Let p
be an n-mode bosonic state and f : R*™ — R a probability density function, each with finite
second moments. Then we have, for anyt > 0,

exps(fn*tp) >expS7(2p)+tepoT(Lf> .

(5.11)

A proof outline of this inequality is one of the main contributions of Core Article I [1]. The
assumptions on p and f used here were proven sufficient in Core Article IIT [3]. It enables us
to study the output entropy of classical noise channels, which add classical noise to a quantum
system, in the case of general, possibly non-Gaussian, noise. This was a key step to establish
the capacity bounds on additive classical noise channels which are presented in Chapter 6.

Similarly to the classical EPI, the study of the inequality (5.10) has produced numerous
other interesting information-theoretic inequalities. One notable example is the isoperimetric
inequality for quantum entropies, which was derived in Core Article I [1] and which can be
stated as

1
%J(p)es(p)/n > 27e . (5.12)
where J(p) is the quantum Fisher information defined as the trace of the Fisher information
matrix
Sl ()" 513
90;00 | g—0 H k=1

where D(-||) is the relative entropy defined in Lemma 4.2.2 and we denote the translation of
an n-mode state p by a parameter § € R?" by p(?) = D(0)pD(#)!. The quantum Fisher infor-
mation is connected to the entropy production under a quantum version of the heat semigroup
in a way closely resembling the classical de Bruijn identity. This gives additional motivation for
the study of the convolution operation (5.10): While an isoperimetric inequality for quantum
entropies can easily be stated, it is not implied by the quantum entropy power inequality (5.9)
in the way the classical isoperimetric inequality is implied by the classical EPI. This is because
the covariance matrices of quantum states have to satisfy the Heisenberg uncertainty relation
and there is no meaningful analog of taking the limit of vanishing variance. However, the

"We note that in Article III, we have omitted this factor of v/27 in the Weyl displacement operators and have
rescaled the classical differential entropy instead.
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inequality (5.11) can be applied to Gaussian distributions fz, and then we can take the limit
of vanishing variance to obtain Eq. (5.12). For more information-theoretic inequalities in this
spirit, we refer to Core Article I [1].

5.6 Conditional information-theoretic inequalities

Many applications of the classical EPI consider a setting with side information and use a
different version of the inequality, which involves the conditional entropy. Let X, Y be R"-
valued random variables. The joint probability density fxy : R® x R — R of X and Y is
defined via

Pr(X € AY € B) = / / Fry (@, y)d"yd"a |
AJB

for measurable A, B C R"™. The conditional probability density of X conditioned on Y taking
the value y € R™ is defined when fy(y) # 0 as

Fry(aly) = w for z € R” .

The conditional entropy of X given Y is then defined as the expectation value over Y of the
entropy of X given the value of Y,

H(X]Y) = - H(XY =y)fy(y)d"y, (5.14)

where H(X|Y = y) is the entropy of the conditional probability density fxy(-|y) for fixed
y € R™

Given three R™-valued random variables X, Y, and M, we say that X and Y are conditionally
independent given M if the joint probability density is of the form

fxyu(z,y,m) = far(m) fx i (@lm) fy e (ylm) (5.15)

for all z,y,m € R™. This condition is equivalent to the condition that the conditional mutual
information of X and Y given M vanishes [70], which is

I(X:Y|M):=H(X|M)+H(Y|M) - HXY|M)=0. (5.16)

Given a joint probability density fxyas such that X and Y are conditionally independent
given M, we can define the notion of the sum Z = X + Y via

fziv=m(2) = / Ixyiv=m(z, 2z — z)d"z, for all z € R™ .
R’ﬂ

The conditional entropy power inequality is then an immediate consequence of the EPT (5.1).

Corollary 5.6.1 (Conditional entropy power inequality). Let X,Y, M be R™-valued random
variables with finite second moments such that X andY are conditionally independent given M .

We then have
2H(ZIM)/n s, 2H(XIM)/n | 2H(Y|M)/n
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Proof (following [13, Appendiz A]). From the classical entropy power inequality (5.1), we have
for any fixed m € R" that

2H(A|IM =m) +exp 2H(B|M = m)) ' (5.17)

n (
Z\M = > —lo
H(ZIM = m) > 1og (ex0 )

Note that the function ¢ : R x R — R, defined by
2a 2b
(a,b) — glog <exp — +exp )

is convex. Hence we have from the definition of the conditional entropy and Eq. (5.17)

H(Z|M) > /n glog <exp 2H(AIM =m) +exp 2H(B|M:m)) Fu(m)d™m

n n

> glog (exp % /]R" H(AIM = m) fayr(m)d"m + exp% H(B|M = m)fM(m)d"m>

Rn

)

n < 2H(A|M) 2H(B|M))
=—log|exp——— +exp ———
2 n n

where we have used Jensen’s inequality [71,72] in the second step. O

In light of the conditional EPI following immediately from the EPI, it is natural to ask
whether a conditional version of the quantum EPI (5.9) also holds. The quantum conditional
entropy of a quantum system A given a quantum system M is defined as

S(A[M) == S(pam) — S(pm) -

The quantum conditional mutual information is defined accordingly, by replacing the classical
conditional entropy with the quantum conditional entropy I(A : B|M) in Eq. (5.16). If the n-
mode bosonic systems A, B, and M are in a state papyr, we say that A and B are conditionally
independent given M if the quantum conditional mutual information I(A : B|M) vanishes.
Regarding Eq. (5.15), we may ask how such states look like. Indeed, if H 4, Hp, Has are finite-
dimensional, if we decompose Hjs into a direct sum of tensor products of the form

= @HmL @ Hpr (5.18)
- J J

then states of the form
panm = D G ams @ Ppmr
J

with states p Amlb O Ha@H,, L and PBmE OL Hp @ H,, n for a probability distribution {g¢;}
are such that A and B are cond1t10nally independent glven M. In fact, any conditionally
independent state is of this form for some decomposition (5.18) [70]. However, in the infinite-
dimensional case, this condition is sufficient, but it is not known whether it is necessary for
conditional independence.

The quantum conditional entropy power inequality can be proven for states papys for which
the n-mode bosonic systems A and B are conditionally independent given the quantum sys-
tem M.
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Theorem 5.6.2 (Conditional quantum entropy power inequality [13]). Let A, B be n-mode
bosonic systems and let M be a quantum system. Let papy € S(Ha @ Hp @ Har) be such that

n
trap [(Z CZLACLIC,A + aLyBak,B) pAB] < 00, S(pm) < o0,
p}

and let I(A : B|M) = 0. Then we have for any A >0

PABM
exp S(C’M>ﬂC]\4 > )\exp S(A’M)PAIVI 4 (1 _ /\) exp S(B‘M)PBJVI )
n n

The state pcas is obtained from papy by

pom = (Ex @ 1n)(pasm) ,

where Ey is defined as
Ex(pa @ pB) == Expp(pa)

and linearly extended.

Unlike in the classical setting, the quantum conditional EPI is not an immediate consequence
of the quantum EPI because the quantum conditional entropy cannot be written as an expecta-
tion value in the spirit of Eq. (5.14). A linear version of the quantum conditional EPI was first
proven for Gaussian states in [12], and the full inequality was proven in [13]. The conditional
EPI has implications on the entanglement-assisted classical capacity of bosonic channels, as
was first discussed in [12].

One can also formulate a conditional version of the EPI for classical noise channels (5.11).
The proof of this inequality was the main contribution of Core Article III [3]. For details, we
refer to the presentation of the results from that article. We have given an overview of entropic
inequalities for bosonic systems and the state of research in this field, with focus on entropy
power inequalities. We are going to discuss applications of these entropic inequalities in the
next chapter.
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6 The classical capacity of bosonic quantum
channels

We have introduced the classical capacity of quantum channels in a general setting in Chap-
ter 3. When treating continuous-variable systems, some subtleties arise. We want to consider
one-mode bosonic channels and use a continuous alphabet A = R2, which leads to ensem-
bles {p(f)d%,pg}geRz, where d?¢ is the Lebesgue measure on R? and p : R? — R is a prob-
ability density function. The classical capacity from Corollary 3.3.4 is not well-defined for a
bosonic channel. To obtain a meaningful quantity, we need to introduce a constraint on the
signal states {p¢}eere and their distribution p, which is similar to the power constraint (3.3)
commonly used in classical information theory. Such a constraint typically reads

tr (a%@) <N,

and physically means that Alice can, on average, only use a finite amount of energy N. Here
the average signal state is given by

- 2
p—A;MQ%dé-

Theorem 6.0.1 (Energy-constrained classical capacity). The energy-constrained classical ca-
pacity of a bosonic quantum channel € : B(H) — B(H) is given by

1
Cn(E) = lim —xuN (5’@”) ,
n—oo n
where XN (E€™) is the Holevo quantity with average energy constraint N > 0 per mode of the
channel E2™ : B(H®") — B (H®™). This Holevo quantity is defined as

W (E) = sp SEE) - [ pOSET ) e (61
{P(€)42€ e}z R2n

where the optimization is to be carried out over all ensembles {p(&)dQng,pf}geRQn of states
on H®" with average signal state p = [pon P(E)pe d?"¢ which satisfy the average energy con-

straint tr (Z?Zl a;r-ajﬁ> <nN.

As in the discussion in Chapter 3, a trivial lower bound! on the classical capacity of a
quantum channel can be found by restricting to unentangled signal states, giving the so-called
one-shot capacity or product state capacity. This capacity is equal to the Holevo quantity and
we have

Cn(E) = xn(€) .

1We note that it is not at all trivial to calculate xn (&) for a given channel £, it is merely trivial to see that the
quantity is a lower bound on the full capacity Cn ().
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Naturally, the question whether the Holevo quantity is additive, i.e. whether x,n(E®") =
nxn(E) for all n € N, is a central question of quantum information processing. We have
discussed that the Holevo quantity is in general not additive for finite-dimensional systems,
but there is no counterexample for its additivity known in the bosonic setting.

The classical capacity of a special subclass of bosonic quantum channels, the so called single-
mode phase-insensitive Gaussian channels, has been found by Giovannetti et al. in [8,73] -
in these cases, the classical capacity is additive, i.e. Cpy (E®") = nCy (€) for all n € N. In
this chapter, we give an overview of this remarkable result and how entropic inequalities in the
spirit of the ones presented in Chapter 5 are related to capacity questions.

6.1 The classical capacity of one-mode phase-insensitive Gaussian
channels

A phase-insensitive one-mode bosonic channel is a quantum channel ® : S(Hose) = S(Hosc)
which is either phase-covariant or phase-contravariant under phase shift operations ewaTa, that
is, for all p € S(Hosc) and any ¢ € R, we have
o <ei‘p“T“pe_i‘p“T“> _ {eisoéfa:l)(p)e%soa:a (phase — covariance)
eI AP (p)e'P* *  (phase — contravariance) .

Many channels of practical importance are phase-insensitive. For instance, the beamsplitter
channel &), defined in Eq. (4.10) for Gaussian environment state o is a phase-insensitive
Gaussian channel. The classical noise channel F; ; from Eq. (4.11) is also a phase-insensitive
Gaussian channel if the probability density function f is Gaussian. Phase-insensitive Gaussian
channels have been the subject of extensive research for decades [11,38,65,67,68,74-87], and
one of the landmark results in this context is the proof of additivity of the classical capacity for

one-mode phase-insensitive bosonic Gaussian channels [8]. For the most important particular
cases, this result is stated in the following theorem.

Theorem 6.1.1 (Classical capacity of fundamental phase-insensitive Gaussian channels [8]).
The classical capacity of the one-mode beamsplitter channel £y , with an environment state o
equal to a thermal state pyn Ny, 5 given by

Cn(Ex )=g(AN + (1= A)Ng) —g((1 = A)Ng) .

7pth,NE

The classical capacity of the one-mode classical noise channel F; y with noise probability
density [ equal to a unit-variance centered Gaussian fz(§) = (27T)_16_H§”2/2 is given by

CN (Fi5,) = 9 (N + 27t) — g(27t) .

These capacities are achieved with Gaussian encodings, in this case via the ensemble

(p(€)A%€, peteere = {(2mN) " Le M6/ M A% (€N} e

of coherent states with Gaussian probability density. The average signal state of such an
ensemble is the thermal state py, . This corresponds to codewords which are tensor products
of coherent states.

The proof of Theorem 6.1.1 works by proving the so-called minimum output entropy conjec-
ture for these channels.
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Theorem 6.1.2 (Minimum output entropy of fundamental phase-insensitive Gaussian chan-
nels [84,88)). For any n € N, the vacuum state |0)*" € HE™ minimizes the output entropy for
the n-mode channels g%ZtI,,NE and ]:SJPZ, i.e., for any n-mode quantum state p, Ng > 0, t > 0,
and 0 < X <1, we have

s(egn,, (0) =S (e | (10001*™)) = nS (Expux, (10X0D)
S (F21) = 8 (FEL (0001 (0) ) = nS (Fyp, (0X0)) -

In general, lower bounds on the output entropy of quantum channels can be used to estimate
the second term appearing in the definition of the Holevo quantity (6.1). This is commonly used
to establish upper bounds on the classical capacity. The upper bounds on the capacity obtained
from Theorem 6.1.2 in the case of the channels &, p,, Ng and F; r, are, in turn, achievable by
the aforementioned Gaussian modulation of coherent states. For these channels, we then have a
lower and an upper bound on the capacity which coincide, which settles the question of classical
capacity.

This general procedure of obtaining lower bounds on the output entropy to establish upper
bounds on the capacity had already been used before Theorem 6.1.2 was proven. If the minimum
output entropy result is unavailable, one can use an Entropy Power Inequality to find lower
bounds on the output entropy. This strategy has been applied to the channel £, p,, Ng in [11,79],
and led to the best upper bounds known on the capacity of these channels before the landmark
result from [8]. In these cases, due to the fact that quantum EPIs are typically not tight, there
is still a gap between the lower bound on the capacity achievable by Gaussian modulation
of coherent states and the upper bound. In the case of the channel &, N this gap is
independent of the input energy and hence EPIs can be used to establish an absolute bound
on the additivity violation of the capacity of this channel. This means that if an additivity
violation exists at all, it is small, and Gaussian modulation of coherent states is a practically
useful encoding strategy. Ultimately, Theorem 6.1.1 rules out an additivity violation for the
channels considered in [11,79] and supersedes the results therein.

6.2 Consequences of the EPlI & EPNI on the classical capacity of
non-Gaussian channels

When it comes to non-Gaussian channels, little is known about their classical capacity. Sup-
pose @ : S(Hose) = S(Hosc) is a general one-mode bosonic channel, which is not necessarily
Gaussian. Lower bounds can be obtained by employing a Gaussian encoding like in the pre-
vious section, while for upper bounds we need to upper bound the Holevo quantity of the
n-mode channels ®®", for any n € N. Such bounds can be established if we have both upper
and lower bounds on the output entropy of the channels ®®”. This is a very difficult problem
in general, but in the case of the non-Gaussian channels introduced in Section 4.3.3, which
are Gaussian-dilatable, Entropy Power Inequalities come to the rescue. The work from Core
Article IT [2] employs the Entropy Power Inequalities from Core Article I [1] and [63], together
with the maximum entropy principle 4.2.2 to establish upper and lower bounds on the classical
capacity of the channels £, , and F; y for general, non-Gaussian o and f. The gap between
the upper and lower bound is bounded by a constant independent of the input energy. Hence,
for these non-Gaussian channels, we have established a bound on the magnitude of additivity
violations, if such additivity violations exist.
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Theorem 6.2.1 (Capacity bounds for non-Gaussian channels [2, Lemmas 1A and 1B]). The
classical capacity of the single-mode beamsplitter channel &€, 5, for a general environment
state op € S(Hosc) with finite first and second moments satisfies

g(AN + (1 = ONF) < Cn (Enor) < g(AN + (1 = \)Ng) — log (A +(1- )\)es("E)> ,

where Ng = tr(aTacg) is the average energy of the environment state, and Ni¥ = g1 (S(op))
s the average number of thermal photons in the environment. The lower bound is achievable
with a coherent state ensemble. The difference between the upper and lower bound is bounded
by 29 (1 = A\)Ng)—g (1 = A)NF) —log (A + (1 — )\)ES(UE)), independently of the input energy
constraint N. For the classical capacity of the single-mode classical noise channel F; s for a
general probability density function f : R%? — R with finite first and second moments satisfies

log (9™ 4 1M1} — g (—E(f)) < Cy (Fip) < g (N + 7tE(f)) —log (1 + teD)

where E(f) = 23:1 Jge E2£(€)d%¢ is the energy of f. The lower bound is achievable with a
coherent state ensemble, and the difference between this upper and lower bound is bounded
by 2g (wtE(f)) — log (1 + teH(f)), independently of the input energy constraint N.

To our knowledge, this is the first result on the capacity of non-Gaussian bosonic channels.
We have given an overview of crucial results in the fields of entropic inequalities for bosonic
channels and classical capacities of bosonic channels, and how some of the results from the Core
Articles presented in this thesis contribute to the literature in these fields. Many questions
remain, such as the question of validity of the Entropy Photon-Number Inequality [65] or
the question of validity of the constrained minimum output entropy conjecture for multiple
modes [69], both of which are intimately related to Entropy Power Inequalities. We conclude
with the presentation of the contributed articles of this thesis.
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Geometric inequalities from phase space translations

Stefan Huber, Robert Konig, and Anna Vershynina

We establish a quantum version of the classical isoperimetric inequality relating the Fisher
information and the entropy power of a quantum state. The key tool is a Fisher information
inequality for a state which results from a certain convolution operation: the latter maps a
classical probability distribution on phase space and a quantum state to a quantum state. We
show that this inequality also gives rise to several related inequalities whose counterparts are
well-known in the classical setting: in particular, it implies an entropy power inequality for
the mentioned convolution operation as well as the isoperimetric inequality, and establishes
concavity of the entropy power along trajectories of the quantum heat diffusion semigroup.
As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck
semigroup, and argue that it implies fast convergence towards the fixed point for a large class
of initial states.

A.1.1 Main Results

In the following, denote by f,g : R?” — R probability density functions with finite sec-
ond moments and by p,o quantum states of an n-mode bosonic system with finite ener-

gies tr (ZZ:1 azakp> ,tr (2221 azaka) < 0.

Lemma A.1.1 (Data processing inequality for convolution). Let f, g : R?*™ — R be probability
density functions with full support. Then

D(f *¢ pllg*t o) < D(fllg) + D(p|lo) -

Theorem A.1.2 (Quantum Stam inequality). Let wy,w. € R, and t > 0. Then the Fisher
information from Egs. (5.13) and (5.2) satisfies

W (f %t p) <wid(p) + w2 I(f)
where w = wy + Vitwe. In particular,

J(frep)™ = J(p)™ = tJ(f)H 20.

Let fz : R?*™ — R be the probability density of a centered Gaussian with variance 1,
e, f2(€) = (2m) e eI/,

Lemma A.1.3 (Quantum Fisher information isoperimetric inequality). The following inequal-
ity holds, where t > 0:
d

, -1
T [Zn!](fz *t P)] > 1.

t=0

Let N(p) := €%®)/" be the entropy power of an n-mode state p and let Ngy(f) := eZF)/" be
the entropy power of a probability density function f : R?® — R. A trajectory of the diffusion
semigroup is given by the map ¢ — fz %, p for a fixed initial state p.

o4



Theorem A.1.4 (Concavity of the quantum entropy power). The entropy power along trajec-
tories of the diffusion semigroup t — fz % p is concave, i.e.,

d2

Sl N(zxp) <0,
de? |,

Theorem A.1.5 (Entropy Power Inequality). Fort > 0, the following inequality holds:

N(f *t p) =2 N(p) +tNa(f) -

In particular, choosing f = fz as the distribution of a unit-variance centered Gaussian, we
have
N (fz*t p) > N(p) + t27e .

Theorem A.1.6 (Isoperimetric inequality for entropies). We have

LI(pIN(p) > dre

A.1.2 Application: The quantum Ornstein-Uhlenbeck semigroup

Consider a one-mode bosonic quantum system A and the quantum Ornstein-Uhlenbeck semi-
group {PHN(t) = etfur};5o defined by the Liouvillian generator.

L= Lo+ NL, for 1>\ >0, (A1)

where

Lo(p)=alpa— faal,p)  and  Lo(p)=apa’ — {alap)

This semigroup has the thermal state o, » = p with mean photon number #2%2)\2 as fixed

2
h A
t 7!’/2*/\2

point. We conjecture that in relative entropy, the quantum Ornstein-Uhlenbeck semigroup
converges exponentially fast to its fixed point, for any input state.

Conjecture A.1.7 (Fast convergence of the quantum Ornstein-Uhlenbeck semigroup in rela-
tive entropy). We have for any one-mode quantum state p and for all t > 0

D (PN 0)(p)on) < ¥ 1D (pon) -

Using the isoperimetric inequality for quantum entropies, we give evidence for this conjecture
by establishing a bound on the entropy production rate of the quantum Ornstein-Uhlenbeck
semigroup for states with entropy larger than a certain threshold value, and for states with
mean photon number smaller than a certain threshold value. Furthermore, we show that the
statement holds for Gaussian states and that the exponent p? — A2 is optimal for Gaussian
states. This conjecture has been subsequently proven in [7] using gradient flow methods, and
in Core Article III using the entropy power inequality.

A.1.3 Individual Contribution

I was significantly involved in finding the ideas and carrying out the scientific work of all parts
of this article, and I was in charge of writing the article, with the exception of Section V A and
Lemma 8.
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We establish a quantum version of the classical isoperimetric inequality relating the
Fisher information and the entropy power of a quantum state. The key tool is a Fisher
information inequality for a state which results from a certain convolution operation:
the latter maps a classical probability distribution on phase space and a quantum
state to a quantum state. We show that this inequality also gives rise to several related
inequalities whose counterparts are well-known in the classical setting: in particular,
it implies an entropy power inequality for the mentioned convolution operation as
well as the isoperimetric inequality and establishes concavity of the entropy power
along trajectories of the quantum heat diffusion semigroup. As an application, we
derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup and
argue that it implies fast convergence towards the fixed point for a large class of initial
states. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974224]

. INTRODUCTION

The convolution operation (X, Y) — X + Y between two real- (respectively vector-) valued
independent random variables X and Y plays a central role in classical information theory. The
operation is defined in terms of the action on probability density functions as

Fxofr) = frays  where  fxay(2) = / Fx(z = ) fy(x)dx. (1)

The convolution models a general class of additive noise channels, and thus provides a natural
framework for the study of information processing and associated capacities. The operation (1)
also is a central element in many functional analytic inequalities, most notably Young’s inequality,'
the Brascamp-Lieb inequalities,” de Bruijn’s identity,’ the Fisher information inequality,® and the
entropy power inequality.*> Such inequalities have wide use in information theory, yielding bounds
on communication capacities, as observed by Shannon.* They can also provide, for example,
bounds on the convergence rate in the central limit theorem.® Beyond these applications, these
results are appealing from a conceptual, geometric viewpoint: many inequalities can be regarded
as information-theoretic counterparts of related statements about convex bodies. For example, iden-
tifying entropy power with volumes reveals a formal similarity between the Brunn-Minkowski
inequality and the entropy power inequality.” Indeed, there is even a proof of the latter guided by
this intuition.® We refer to Refs. 9 and 10 for detailed accounts of this wealth of inequalities and
their interrelationships.

Our work is guided by the question of whether a similar array of inequalities exists in a quan-
tum setting. A key first step in this direction—one which is directly relevant to our work—was taken
by Werner.!! He introduced the convolution operation

(f.p) > faup,  where  faip= / FEOWNIEpW(ViE) dé. @)

which involves a probability density function f on phase space as well as a state p (of a bosonic
system). The operation results in the average state f x; p when displacing p according to f using
the (Weyl) displacement operators W(¢). Here we introduce the parameter ¢ > 0 for convenience,

0022-2488/2017/58(1)/012206/28/$30.00 58, 012206-1 Published by AIP Publishing.
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the case t = 1 was considered in Ref. 11. Treating the convolutions (1) and (2) on the same algebraic
footing, Werner established (among other results characterizing (2)) a form of Young’s inequality. It
is worth mentioning that Carlen and Lieb have recently established generalizations of the latter in a
fermionic context.'?

More recent work'? has centered around a convolution operation of the form

(px:py) = pxa,y = th(Uapx ® py)UY), 3)

where U, is a (d-mode) beamsplitter of transmissivity A € [0, 1]. It is worth pointing out that the
action of this operation is formally similar to (1) when expressed in terms of the Wigner functions
describing the quantum states px and py. The map (3) describes a process where two states interact.
It captures, in particular, the situation where one of the states is transmitted through an additive
(bosonic) noise channel. In Ref. 13, the authors established an entropy power inequality of the form

eSloxBapy)/d > AeSex)id a1- A)eS(PY)/d’ 4)

for the convolution (3) and for A = 1/2, where S(px) = —tr(px log px) denotes the von Neumann
entropy. Subsequent work'* managed to lift the restriction on A, and generalized this result to
more general (Gaussian) unitaries in place of U,. A related inequality of the form S(px®B,py) >
AS(px) + (1 = )S(py) for A € [0,1] was also shown in Ref. 13, generalizing classical results'
(see also Ref. 16 for a discussion of the relationship between the two). A generalization to condi-
tional entropies was proposed in Ref. 17, and an application to channel capacities was discussed in
Ref. 18.

A key tool in establishing these results is the quantum Fisher information J(p), defined for a
state p as the divergence-based Fisher information of the family { p(g)}g obtained by displacing p
along a phase space direction (see Section III for a precise definition). It was shown in Ref. 13
for 2 = 1/2 and in Ref. 14 for general A € [0, 1] that this quantity satisfies the Fisher information
inequality’

J(px B,y py)" > AJ(py)™" + (1= DJ(px)™".

This identity is a consequence of the strong subadditivity (data processing) inequality for relative
entropy and lies at the heart of the proof of (4).

Following the theme of entropy power inequalities for quantum systems, Audenaert, Datta, and
Ozols'” have obtained strong majorization-type results for the finite-dimensional case. These center
around an operation of the form (3), but with px and py being the states on a finite-dimensional
Hilbert space, and a family U, = ¢'*# of unitaries generated by a Hamiltonian H realizing the
SWAP-operation of the two systems. As argued by Audenaert et al., these results imply several
entropy-power-type inequalities. Very recently, Carlen, Lieb, and Loss*’ have provided an elegant
short proof of these statements. Guha, Shapiro, and Garcia-Patrén have discussed alternative defini-
tions of the quantum entropy power and corresponding entropy power inequalities.?!

Il. OUR CONTRIBUTION
A. New geometric inequalities for bosonic systems

Here we focus on the convolution operation (2). We find that this operation satisfies similar
properties as the convolutions (1) and (3). In particular, we establish a Stam inequality for the Fisher
information of the form

J(fxep) V= J(p)  + 1), forallz > 0. (5)

This classical-quantum version of Stam’s inequality has several immediate consequences, all of
which follow the reasoning used in establishing classical results.” For example, we use (5) to
establish an entropy power inequality of the form

exp (S(f *; p)/d) = exp (S(p)/d) + texp (H(f)/d). (6)

"
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Taking f = fz to be a unit-variance centered Gaussian, we find a quantum isoperimetric inequality
of the form
d
dt

1 -1
—J(fz* > 1.

t=0(2d (fz *: P))

Note that f7 %, p is the result of applying a classical noise channel to p, where the variance of the
displacement goes to O in the limit # — 0. This family of maps constitutes a semigroup, which we
call the heat diffusion semigroup: it is generated by a Liouvillian Lpeqt such that

fz K p = e Lheat( p), for an initial state p and ¢t > 0.

We find that the entropy power along trajectories generated by this Liouvillian is concave, i.e.,

d? 1

e (3S<e“heat<p>>) <o. ™
Eq. (7) generalizes a celebrated result?>?3 concerning the classical heat equation. The entropy power
inequality (6) for Gaussian f implies the lower bound exp (4 S(e’ “reat(p))) > exp (£ S(p)) + (2me)t
and establishes the isoperimetric inequality for the Fisher information

J(p)exp (%S(p)) > 4dred, (8)

for states p of d bosonic modes. We find that for d = 1, this statement is tight: Gaussian thermal
states achieve equality in (8) in the limit of large mean photon numbers.

B. Application to the Ornstein-Uhlenbeck semigroup

We apply our results, in particular Eq. (8), to the quantum Ornstein-Uhlenbeck (qOU) semi-
group for a one-mode bosonic system. This is a one-parameter group of CPTP maps {e’£r-1},5,
generated by a linear combination of Liouvillians of a quantum amplifier and an attenuator channel,
respectively,

Lya= WL o+ A°L,, for0 < A < u, where 9)
N 1 . L 1.
Lip)=a'pa—{ad’,p}  and L (p)=apa'-3{a'ap},

where a' and a are the creation and annihilation operators (i.e., [a,a’] = id). The qOU semi-
group (9) is a natural counterpart of the classical semigroup generated by the Fokker-Planck
equation (see Appendix A). The unique fixed point of the semigroup {e’ %1}, is the state

oua=(1-v) Z v n)(n| with v =A%/,
n=0

i.e., it is diagonal in the number state basis {|n)},cy, With a geometric distribution, hence a
Gaussian thermal state.

We conjecture that for an arbitrary initial state p, this semigroup converges to the fixed point at
an exponential rate given by the exponent u> — A2, that is,

D(etL#’A(p)”O-‘u,/l) < e_(”z_/lz)tD(p”O'#’/]), forallt > O, (10)

where D(pl||lo) = tr(plog p — plog o) is the relative entropy. In Appendix D, we show that (10)
holds for all Gaussian states p, and the exponent > — A% is optimal. In other words, our conjec-
ture amounts to the statement that certain Gaussian thermal states converge “most slowly” to
the fixed point, and the Log-Sobolev-1-constant, defined as the largest constant | > 0 such that
D(e'£(p)llo) < e 1! D(pl|or) for any state p and all # > 0, is given by a; = 3(u* — 1%).

The quantum isoperimetric inequality (8) provides evidence for this conjecture: Taking as a
specific example the case where A =1 and u = V2 (and thus u®— A% = 1), we can show (see

"
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Example 2 in Section VI) that

d z ) .
p ;:oD(et V21i(p)lloyz.) < —D(plloyz ), for all states p with tr(pa'a) < 0.67. (11)

We also show (see Example 1 in Section VI) that recent work by De Palma, Trevisan, and Giovan-

netti>* similarly implies exponential convergence of the form (10) for initial states p having large

entropy: the isoperimetric inequality of Ref. 24 (which we discuss in more detail below) implies that
d

7 IZOD(etL\E’I(P)”U'\@l) < =D(plloy3,)s for all states p with S(p) = 2.4. (12)

While this does not establish the scaling (10) for all states p, it illustrates the use of the quantum
isoperimetric inequality in a concrete context. We clarify the relationship between our case and the
one in the classical setting (see Section II C), where the Log-Sobolev-1 constant can be obtained
from the isoperimetric inequality for the classical Fisher information, following work by Carlen.?
In fact, this is the main motivation for our conjecture: Gaussian distributions give the optimal
convergence rate in the classical problem.

Whether conjecture (10) holds is a challenging open question. We remark that it would signif-
icantly strengthen the known results about the qOU semigroup. Specifically, Carbone et al.? es-
tablished that the qOU semigroup is hypercontractive. In Ref. 26, Proposition 4.2, the following
inequality was shown for the Log-Sobolev-2 constant*® a; of £, 1:

o < oyt < M5 =loa(1=v)
p(1l=v)
In this expression, a¢ is the Log-Sobolev-2 constant of the associated classical birth-and-death
process (which is unknown), but for which the bounds

+ (3log3)ag, for  v= 2%

log v! P 255 (1 +1og2)(1 — v) +log v~!
— < (Y < —
SVl —yp2 ~ €7 4 12(1 = v)?

were shown (see Ref. 26, Proposition 4.1 where a¢ is denoted ay). Following Refs. 27-29, this
implies that for all states p, we have D(e’LMJ(p)IIO'#, 1) < €722 D(pl|o . ) (respectively, we have
D(e' L#»ﬂ(p)HO'ﬂ, 1) < e 2 D(plloy, 1)), if the semigroup can be shown to be strongly (respectively
weakly) L ,-regular.

The derivation of our fast convergence results from the isoperimetric inequality (8) follows, to
some extent, a well-known line of reasoning considered in the classical context. Indeed, Carlen®
has shown that the isoperimetric inequality gives rise to a Log-Sobolev inequality, which in turn
provides bounds on the convergence of the classical Ornstein-Uhlenbeck (cOU) semigroup to the
fixed point (see Appendix A). However, in our case we find that, while a Log-Sobolev inequality
again easily follows from (8), the quantities appearing in it are not easily estimated. This concerns,
in particular, the entropy rate of the attenuator

— i tL_
J-(p)=2—1], ;S (p)),

given an arbitrary initial state p (the factor 2 is chosen for convenience only). This is in sharp
contrast to the classical case: here the trivial identity H(e’X) = H(X) + ¢, for a scalar ¢ > 0, satisfied
by the differential entropy H(X) of a random variable X, is sufficient for the purpose of establishing
fast convergence of the cOU semigroup to the fixed point (see Appendix A).

De Palma e al.?* showed that the infimum inf,.s(,)=s J-(p) over all states p with a given
entropy is achieved by a Gaussian thermal state. This statement, combined with a lower bound on
the corresponding quantity J,(p) for the amplifier from Ref. 30, valid for all states p, immediately
yields inequality (12).

To establish (11), we prove another lower bound on J_(p): more precisely, we show that the
infimum

inf  J_(p)

p:tr(pata)<n
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over all states p with mean photon number bounded by n is achieved by a Gaussian thermal state.
The proof proceeds by reduction to the classical case using recent majorization-type results.!-*> The
latter can be treated using the results from Ref. 24. This, then, provides the required lower bound
and yields statement (11). It is not, however, tight enough to establish Conjecture (10).

Understanding the relationship between entropy production rates along trajectories of the qOU
semigroup, i.e., different quantities of the form J, 1(p) = 2%|t:0S(e’£#»ﬂ(p)) for (u, ) # (1,0),
remains an open problem. We believe that progress in this direction could help provide further
evidence for (or indeed lead to a proof of) the validity of conjecture (10).

C. Prior work in the classical setting

Our work in the quantum setting follows a long sequence of well-known existing arguments
applicable to classical probability distributions. All geometric inequalities established here have
classical counterparts, and their proofs are inspired by (and directly generalize) corresponding
classical proofs. This raises the question of whether other analogues of classical results exist: for
example, one may conjecture that there is a quantum counterpart of Young’s inequality for the
convolution operation (3).

It is not our intention to provide a complete review of this assortment of classical results: it
is hardly possible to do justice to the many important developments in this area. We refer to the
article Ref. 9 for a survey of many known connections. Instead, we briefly review some of the basic
definitions and seminal results which are directly relevant to our work.

In the classical setting, we assume to have R¢-valued random variables with absolutely contin-
uous density functions. For such a random variable X with density function f (which we often
assume to be non-vanishing everywhere for simplicity), a fundamental information measure of
interest is the Shannon (differential) entropy

H(P)=- [ | fes)tog foyd,

also denoted as H(X). The entropy power is given by

N(f)=exp(2H(f)/d),

and also written as N(X). Up to a factor, this quantity coincides with the variance of a Gaussian
distribution having the same entropy. The divergence, or relative entropy, of two density functions
f,g is defined as

(x)
D(flg)= [, fexrtog L . (13
Rd g(x)
The Fisher information of a random variable X with density function f is defined as the following
quantity:*
1
fx)

which is associated with the family of translated probability density functions

J(f) = / (VI) - (V@) - ——dx, (14)

fO) = f(x-6), fordcR (15)

The quantity J(f) is also often denoted as J(X), to emphasize that it is the Fisher information of a
random variable X which has density function f.

For two densities f and g describing random variables X and Y, the convolution operation of
interest is given by (1) and describes the addition of the two random variables. Of particular interest
is the case where one of the random variables is a centered normal distribution with unit variance.
Such a random variable is denoted as Z below. Key results in this setting are as follows:

"
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1. The classical de Bruijn identity

0 1
EH(X+\/;Z) = 5](X+\/;Z). (16)
This result was established by de Bruijn and gives an important relation between the Fisher
information and the entropy when a random variable X is perturbed under an additive Gaussian
noise channel. It is a key ingredient in proofs of many information-theoretic inequalities. A
simple proof can be found in Ref. 7.

2. The Fisher information inequality
J(VAX + VI =2Y) < 2J(X) + (1 - )J(Y), for 1 € [0,1], (17)
as well as the related inequality
JX+Y) ' —Jx)' —J) Tt >0

Proofs of these inequalities are given in Refs. 5, 7, and 33. Zamir*® gives a particularly useful
proof which relies on the information-processing inequality. This inequality states that the
application of a channel cannot increase the Fisher information. Zamir’s proof of the Fisher
information inequality can be generalized to the quantum case.

3. The Fisher information isoperimetric inequality
d

1 -1
< [EJ(X+\/EZ)] > 1.

e=0

This inequality implies that for Gaussian states, the inverse of the Fisher information has
minimal sensitivity to additive Gaussian noise.**

4. The concavity of the entropy power
d2
—| NX++Vez)<o.
de? le=0

This celebrated result establishes that the entropy power is a concave function along trajectories
of the heat flow semigroup. A proof is given in Ref. 22, and some shorter ones are presented in
Refs. 23 and 34.

5. The entropy power inequality

NX+Y)>=NX)+ NY).

Stam? gave a proof of the entropy power inequality which relies on the de Bruijn identity and
the Fisher information inequality. The proof was later simplified by Blachman® and others.®’

6. The isoperimetric inequality for entropies

éJ(X)N(X) > 2re,

as given in Ref. 7. The isoperimetric inequality for entropies implies that Gaussians have
minimal entropy power among random variables with fixed Fisher information and can be used
to derive Log-Sobolev inequalities for the Ornstein-Uhlenbeck semigroup,? as we review in
Appendix A.
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lll. PRELIMINARIES
A. States and information measures of interest

We consider a d-mode bosonic system with “position” and “momentum” operators (Qy, Px) of
the kth mode satisfying the canonical commutation relations [Q}, Px] = id; /. Denoting the vector
of position- and momentum-operators by R = (Qy, Py,. . .,Q4, P;), the Weyl displacement operators
are defined as

W(E) = e VmE@R)  gorg e R, (18)

0 1\% . . . . .
Here o = (_] 0) is the matrix defining the symplectic inner product. The factor V27 in the
definition (18) is for convenience only. From the commutation relations of position and momentum
operators and the Campbell-Baker-Hausdorff formula, it is straightforward to check that the Weyl
operators satisfy

WEW@) = e ™MW (g +q),  foré,neR™ (19)

Consider a state p on d modes. Quantities of interest are the von Neumann entropy S(p) =
—tr(plog p), as well as the relative entropy D(p||o) = tr (plog p — plog o). The latter expression
is defined for positive operators p,o, and we will assume without further comments that the
states p, o have full rank.

For a multi-parameter family {0®},zp of states depending smoothly on the parameters 6,
the divergence-based quantum Fisher information is defined as the trace of the Fisher information

matrix
D

(6) il
J({P };0)|0:00: 00,00y

b (4]47))

0=0, J k=1

This definition quantifies the dependence of the states on the parameter 6 in the neighborhood
of @ = 00.

In the following, we will apply this definition to the family {p®}, z2q of states obtained by
translating a given d-mode state p: Analogously to (15), where we translated a given probability
density function f, we define the translated states

P09 =w@)pw(®O), forfeR>. (20)

Here translation by the parameter 6 on phase space is achieved by means of the Weyl operators. The
corresponding quantity

J(p) =tr (I ({p1:0)],_,) - 1)

will simply be called the Fisher information of p. Note that this definition matches that of the
classical Fisher information (cf. Equation in Ref. 44). We emphasize that the concept of quantum
Fisher information is non-unique (see Ref. 35), but the use of (21) is sufficient for our purposes.

B. The quantum diffusion semigroup and the de Brujin identity

Consider the Liouvillian defined on d modes as

2d
Lhealp) = =1 )[Ry, [R;.p]]. (22)
j=1

(The factor r differs from the convention used in Ref. 13 but turns out to be convenient in the proof
of Theorem 3, as explained later.) The one-parameter semigroup {e’£heat}, . of completely positive
trace-preserving maps (CPTPMs) generated by Lheqt Will be called the quantum (heat) diffusion
semigroup. It has various nice properties: for example, as shown in Ref. 13, a quantum version of
the de Bruijn identity (16) reads

d

. 1
ZloS (e Lheat(p)) = 57(p). (23)

"
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We remark that the proof of (23), which has subsequently been applied, e.g., in Ref. 21 and gener-
alized in Ref. 14, involves certain formal manipulations whose rigorous justification remains an
interesting mathematical problem: as a quantum counterpart of partial integration, for example,
arguments under the trace need to be cyclically permuted. It is clear that such manipulations should
be valid for sufficiently regular families of states (and indeed, are established for Gaussian states),
but corresponding conditions are currently unknown. We believe that the recent introduction of
Schwartz operators in Ref. 36 provides an appropriate framework to shed light on this aspect. In
the following, we will assume that our states under consideration satisfy the required regularity
assumptions. We hope that this issue will eventually be resolved in a similar manner as in the
classical setting, where initial work by Shannon* was followed by a long sequence of papers with
increasing rigor. In the case of the classical de Bruijn identity (16), Barron,’ based on Stam’s work,?
has shown validity for all random variables X with finite variance.
The map e’ £heat can be explicitly written as (see Refs. 13 and 37)
et-ﬁheat( ,0) —

T / e VEFRW (Vig) p W(ViE) de. (24)

We may interpret this as the result of applying a certain convolution operation to a Gaussian distri-
bution and a quantum state. More precisely, for ¢ > 0, we define a convolution operation x,; between
a probability density function f : R?? — R and a d-mode state p by

(f.p) > [ p i / FEOWNIE) pWVTE) dE. 25)

In this terminology, Eq. (24) becomes

fZ *; p= etLheat(p)’

where f is a unit-variance centered Gaussian distribution, that is,

f2(&) = @my eTIEr2, (26)

To close this section, we list two elementary properties of the convolution (25) which can be
checked by straightforward calculation. If f = fx is the probability density function of a random
variable X and ¢ > 0, then

Ix*ep= fyx*ip, 27
where the probability density function of the rescaled random variable VX is given by fyix(€) =
FEND/ \/?Zd. Addition of random variables corresponds to convolution in the following sense:

Ixyx1(fxy *1p) = fxpx, %1 P, (28)

where fx,.x,1s defined as in (1).

IV. QUANTUM GEOMETRIC INEQUALITIES

In this section, we present several statements about the convolution operation (25) and the
quantum Fisher information (21). The key idea in establishing these results is the fact that the
convolution operation (25) constitutes data processing, and hence provides an inequality because
of the monotonicity of relative entropy. This is expressed in the following lemma. In the clas-
sical setting, the analogous argument for obtaining the Fisher information inequality (17) was first
emphasized by Zamir.>

Lemma 1. (Data processing inequality for convolution) Let f,g : R*? — R be probability den-
sity functions with full support. Then

D(f*:pllg*:0) < D(fllg)+D(pllo), (29)

for any states p,o.

"
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Proof. The quantum relative entropy satisfies the following scaling property for scalars A, u
> 0:

D (Apll uor) = AD (pll ) = atr (p) log & (30)

Defining h(£) = %, we obtain (using the translated states defined in Eq. (20))

D(f* pllg*io)=D(fx pll(f-h)* o)
=D ( / F(E)pV df” / FEhE)T df)
< [ 1@D (0| nerr ) cg

_ / £&) (D (97| ) —tr (7)) 1og () d

=D(p||cr)—/f(§)10g%

=D(pllo)+D(fllg).

Here the inequality we used is the joint convexity of the relative entropy (see Ref. 38, Theorem 1).
For the third equality we used property (30), and for the fourth equality we used unitary invariance
of the relative entropy and the trace as well as the fact that f is a probability distribution. The last
equality follows from the definition (13) of the divergence. O

To convert Lemma 1 into a statement about Fisher information, we need the following covari-
ance property of the convolution operation (25): it breaks down translations of the state f %, p into
translations of the function f and the state p, respectively.

Lemma 2. Let wg,w. > 0andt > 0. Then
(f *; p) P = f@e s, plwa®: forall§ € R, 31)
where w = wy + Viw,.

Proof. According to Definitions (25) and (19) we have
(%0 = [ FEW@OW (i)W (Nig) W(wo) dg
= [ He W@ +ig)pW(wo + Vig) de. 32)

On the other hand, we similarly have

Fe®) g, pleoa®) = / (€ — w0 O WTEW (@, 8)pW (w,0) W(VTE) dé
- / (& = 0 B)W (@, + Vi) pW(w 0 + Vi) dE. (33)

Through a simple change of variables and recalling that w = w, + Vtw,, the claim (31) follows
from (32) and (33). O

Combining the data processing inequality of Lemma 1 with Lemma 2, we prove an inequality
which may be seen as a classical-quantum version of the Stam inequality. It relates the Fisher
information of the state f %, p to the Fisher informations of f and p, respectively.

Theorem 1. (Quantum Stam inequality) Let w,,w. € R, and t > 0. Then

W J(f % p) < wJ(p) + wiJ(f), (34)
where w = wy + Viwe. In particular,
J(f % p) ™ = J(p)" = 1J(f) 2 0. (35)

RIGHTES LI
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Proof. Let@y = (6", .. ,0(()2”1)) € R* For j = 1,...2d and 6; € R, introduce the vector
i 1 -1 41 2d
0 =06, = (6",....097",0,,60"",... 65D

Define the functions
£(8)) = D (f<o| fe) + D (plea)|| ploa®)
and
9(0)) = D (e x, p@a®|| pecl s, plwa).

From the definition of the relative entropy and the data processing inequality (29), for every 6;, we
have

0<9g(9)) < f(9)),
0= ) = g(6y.

The second derivative of g can be written as the limit

& g0y + &) =296 + g6 - €
— g(0;) = lim 5 ,
dg X ) e—0 €
J Hj:(-)o
and, therefore, it is bounded
d? d?
0< 0 g(0;) < 7 f(85).
J Qj:H(gi) J HjZH((ji)
Since
2d d2
tr (SO 0]y g,) +tr (TP 0og,) = ) ae| O
j=t “jlg;=e
0
and
2d d2
tr (S OOy ,) = D 2 96,
7=t jlo;=6

we conclude that

tr (S %, p 1 0)] ) < 10 (JALO 0] g) + 1 (JUP T 0] g,) - (36)

We remark that above inequality can also be derived as a matrix inequality without tracing both
sides. However, this is not required for our purposes and our definition of the Fisher information.
Using Lemma 2, the left-hand side of this equation for 8y = 0 can be written as

tr (J{F D %, p@9}:0)|,o) = tr (JAS % )P} 0)py) = 0T (F X p).  BT)

The right-hand side of Eq. (36) can be simplified by noticing that both the classical and quantum
Fisher information matrices satisfy reparametrization formulas (see Ref. 13, Lemma IV.1)

J{S“DY:0)lo-0, = w2 J{fP};0)  and  J({p“1}:0) = 02 I{p}: 0).

Therefore, taking 8 = 0 leads to

tr (J{S D)1 0)ly) +tr (J{1}10)],y) = 02T() + 03 (p). (38)

With (36)—(38), we arrive at the desired result (34). Finally, setting w, = J(p)fffr’—i;l(f)_l and w,. =
-1 .

#%, we obtain (35). m

In the next lemma, we show how the quantum Stam inequality implies an isoperimetric
inequality for the quantum Fisher information.

"
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Lemma 3. (Quantum Fisher information isoperimetric inequality) The following inequality
holds:

d

1 . -1
il L5g e reaton] = 1. (39)

Proof. Recall that we have e’ Lheat(p) = f, %, p for a Gaussian random variable Z (26). In the
quantum Stam inequality (35), take f = fz, then

1 _ _ _ _
7 (I(fzxep)™ = J(p)") 2 I(f2)" = 2a)™".
Taking the limit + — 0, we arrive at the desired inequality. O

The isoperimetric inequality is tight for one mode (d = 1) and saturated by the Gaussian
thermal state

1 - n \/
- )l 40
o n+1;0(n+1)|1><1| (40)
with mean-photon number n: As shown in Appendix B, we have
d 1 tL -1 _ 1 5 1
dr z=o[§J(6 heat(w"))]  nn+ 1)10g Ieg]= b asn—oee

As in classical information theory, the isoperimetric inequality for the quantum Fisher infor-
mation implies concavity of the entropy power under diffusion as an immediate consequence. We
define the entropy power as

N(p) = exp(S(p)/d). (41)

Theorem 2. (Concavity of the quantum entropy power) The entropy power along trajectories
of the diffusion semigroup (22) is concave, i.e.,
d2

dt?

N(e*heal(p)) < 0.
0

t=

Proof. Two applications of de Bruijn identity (23) yield

d2
Z | N(e'Lheat =N J __' J(e! Lheat i
|, Ve resi(p)) <p>([ (0] + 57| _ I (o)
The quantum Fisher information isoperimetric inequality (39) is equivalent to
S0P+ | e teno) <.
This completes the proof. O

To proceed, we establish bounds on the asymptotic scaling of the entropy power for large times.
The following lemma follows directly from Refs. 5 and 13, Corollary II1.4 (see also Ref. 39).

Lemma 4 (Asymptotic scaling of the entropy power under the heat flow). Let

C. 42
=3 Z = 52 (42)
be the generator of the classical heat diffusion semigroup on R>?. In the limit t — oo, we have

exp (H(e'%(f))/d) = (2re)t + O(1),
exp (S(¢" Lrea(p))/d) = (2re)t + O(1),

independent of the probability density function f on R>? and the d-mode state p, respectively.

"
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Having the same scaling for classical and quantum heat flows motivated the choice of constants
in (18) and (22).

Note that if X is a random variable with probability density function f, then e’ “( f) is the prob-
ability density function of the random variable X + V¢Z obtained by adding a centered Gaussian
random variable with unit variance, see Eq. (26).

Lemma 5. We have

e‘f-cheat(f *t p) = eVCc(f) *t e“ Lheat(p)’

whenever & = u + tv.

Proof. Observe that writing x for x|, we get

e“Lhea(fy x; p) = fz %e (fyix * P)
= fyez *x (fyix * p)
= fygzivix * P
On the other hand,
€ (f) K e theat(p) = Fxayvz, *t (et “heat(p))

= Fyicxvozy * (Fymz* p)

= f«/;xﬂﬁzm/ﬁzz * P

= fyix+yaFmz * P

= fyix+yEz * P

We have used properties (27) and (28). In the penultimate step, we have used that for independent

unit-variance centered Gaussian random variables Z; and Z,, we have aZ; + bZ, = Va? + b*Z.
Hence the two expressions are equal and the statement follows. O

The next theorem presents the entropy power inequality for both the convolution operation (25)
and the heat diffusion semigroup (22).

Theorem 3. (Entropy power inequality) For t > 0, the following inequality holds:

N(f *:p) = N(p) +tN(f).

In particular, choosing f = fz as the distribution of a unit-variance centered Gaussian defined in
Eq. (26), we have

N(e'theat(p)) > N(p) + 1 2me. (43)

Proof. The proof is inspired by the proof of the entropy power inequality in Ref. 13, which
itself is inspired by the proof for classical random variables by Blachman.’ Here we provide all
necessary details modified to the present situation. For u,v,& > 0, define functions

pt = Ea(p) = exp (S(e" “heat(p))/d)
v — Ep(v) = exp (H(e" theacl(£))/d),
& > Ec(é) = exp (S(e““hea(f %, p)))/d),

where C, is the generator of the classical heat semigroup as defined in Eq. (42).
The initial value problems

fi(s) = Ea(u(s)), u(0) =0,
v(s) = Ep(v(s)), v(0) =0, (44)

"
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have solutions u(-), v(-). Fix a pair of such solutions (u(-),v(-)) and ¢ > 0. Define

&(s) = puls) + 1v(s). (45)
These functions diverge, i.e.,
lim a(s) = lim v(s) = lim £(s) = oo, (46)
because of (44) and E4 p > 1.
Consider the function
5(s) o EAGHO) +1ER((5)
Ec(£(s))

With the initial conditions (44), it follows that the claim of the theorem is equivalent to
0(0) < 1.
This inequality follows from two facts: first, the fact that
lim 5) = 1

as follows from the asymptotic scaling shown in Lemma 4, the divergence (46), and the choice (45)
of £(s); second, the fact that

8(s) > 0, forall s > 0. 47)
It remains to show identity (47). Computing the derivative of ¢ leads to the following equality:

Ex(u(s))fi(s) + tEp(v(s))v(s)  Ea(p) +tEp(v) .

o(s) = Ec(E(s) Ec@)? Ec(£(5))&(s). (48)

Define the Fisher informations
Ja(p) = J(etFrea(p)),
Ip(v) = J(" (1)),
Jc(€) = J(e*Hrea(f *, p)),

for u,v,¢ > 0. From the quantum de Bruijn identity (23) and the classical de Bruijn identity (16) we
obtain

. 1
Ev({) = ﬁEv(f)Jv(g), where V € {A,B,C}.
With these identities and Eq. (44), Eq. (48) is equivalent to

EjJa+1Eg  (Ex+1Ep)

2do(s) = Ee E2

EcJc, (49)

where we have used the shorthand notation E4 = Ex(u(s)), Eg = Eg(v(s)), and Ec = Ec(£(s)), and
similarly for Ja p,c.
Recall that by Lemma 5, e £neat(f %, p) = ”S(f) %, e#Lheat(p), and by the quantum Stam
inequality (35), we have the bound
c < ﬂ

tJa+ Jp
Inserting this upper bound into (49), we obtain

JaJg _ 1(EaJa— EpJp)’
ZJA-I-JB_ tJa+ Jg
This proves (47). O

> 0.

2dSEc > E3Ja +tEgJp — (Ea +tEp)®

As the last statement in this section, we derive an isoperimetric inequality for entropies from
the entropy power inequality.

"
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Theorem 4. (Isoperimetric inequality for entropies) We have

é](p)N(p) > 4re. (50)

Proof. Applying the de Bruijn identity (23) to the definition (41) of the entropy power N(p), we
obtain

d ? Lheat — i
Zil_ N(e (o)) = 55T (0N (p).

On the other hand, for ¢ > 0, the entropy power inequality (43) reduces to

1
;[N (e' freat(p)) — N(p)] > 2re.
Therefore, taking the limit # — 0, we obtain the desired bound. |

To conclude this section, we remark that the isoperimetric inequality for entropies (50) is tight
in the one-mode case, d = 1: For a Gaussian thermal state w, (40) with mean photon number n we
obtain

+1

n+l n+l
J(wn)N(wp) = 4n(n ) log ( ) — 4re, forn — oo.
n

Detailed calculations are provided in Appendix C.

V. GAUSSIAN OPTIMALITY FOR ENERGY-CONSTRAINED ENTROPY RATES

In this section, we show that Gaussian thermal states minimize the entropy rate for the one-
mode attenuator semigroup among states with bounded mean photon number. The semigroup is
defined by its generator

1
L(p) = apa’ - 3{a'a,p}. (51)
We prove the following theorem:

Theorem 5. For any n > 0, the infimum inf ;415 p)<n dt| S(e’L (p)) over states p with mean
photon number n is achieved by the Gaussian thermal state wy deﬁned in (40). In particular,

1
d r —nlog(l+;) ifn >0,
inf . S - =
Pitrgllp)ﬁn dt|t:0 (e (p)

0 ifn=0.

The proof proceeds by reduction to a recent result by De Palma, Trevisan, and Giovannetti,?*
where it is shown that Gaussian thermal states minimize the entropy rate of the quantum attenuator
among all states with a given input entropy.*> Our argument additionally uses the recently intro-
duced concept of Fock majorization and associated results by Jabbour, Garcia-Patron, and Cerf,?! as
well as the (classical) Gaussian maximum entropy principle.

In more detail, we first show that the problem of minimizing the entropy rate reduces to the
study of properties of a classical semigroup describing a pure-death process. This connection was
used previously in Ref. 26 (see Section II B) and is also an essential first step in Ref. 24. More
explicitly, in Section V A (Theorem 6) we prove the identity

S ()= inf L HE ().

inf
pir(ip)<n dt =0 p:Ep[N]<n dt = 0

Here the infimum is over all probability distributions p on Ny with expectation value E,[N]
bounded by n, the quantity H(p) is the Shannon entropy of the distribution p, and C_ is the gener-
ator of a semigroup describing a classical pure-death process (see (52) for a precise definition).

"



RIGHTES

012206-15 Huber, Kénig, and Vershynina J. Math. Phys. 58, 012206 (2017)

Using the results of Ref. 24, we then show that the entropy rate for the classical process is
optimized by a geometric distribution: In Section V B (Theorem 6) we prove that forn > 0

inf —
pEp[Nl<n dt11=0

H(e'“(p)) = —nlog (1 + i) )

Finally, in Section V C, we calculate the entropy rate for the Gaussian thermal state w, with mean
photon number at most n and find that

d

1
tL_ _ _ -
_dt|t=0S(e (wn)) = —nlog (1 + n) .

A. Connection to a classical pure-death process

For an initial state p = Y, pa|n){n|, which is diagonal in the number state basis {|n) =
()"
N
3. Pa()|n)(n|. Thus the attenuator semigroup {e’<-},s( gives rise to a semigroup {e’“-},5¢ on

classical probability distributions by p(t) = e’“~(p). Its generator C_ describes the dynamics of a
classical pure-death process. It can be obtained from (51) by inserting a number state |n): it is
straightforward to check that

|0)}n ey, (Where 72]0) = 0), the time-evolved state has the same form, i.e., p(t) = €’ L-(p) =

M -1 - f 0
£ (nyapy < |70~ D= 1= lmal) - forn >

forn = 0.

In particular, the coefficients {p,(f) },en, satisfy the system of differential equations
Pn(t) = —npp(t) + (n + 1)pnsa(t),  foralln € N, (52)

with initial condition p,(0) = p, for n € Ny. The expression on the right-hand side of (52) defines
the generator C_, that is, we have

(C_(p),, = —npp+ (n+ 1)p,y1, foralln e N,. (53)

The following theorem reduces the problem of minimizing the entropy rate for the quantum
attenuator semigroup to the classical problem of minimizing the entropy rate for this pure-death
process.

Theorem 6 (Correspondence to classical problem). We have the identity

d

d
. f S tL_ - . f “ H tC_
p:trzl?p)ﬁl‘l dtt=0 (e"=(p)) P m (e (p)),

Ep[N]<n dt 't=0
where Ep[N] = X" onpn and H(p) = = 3.7° pn 10g p,, are the expectation value and entropy of the

distribution p, respectively.

The proof of Theorem 6 relies on results obtained in Refs. 32 and 31. Here we review the
necessary definitions and results and specialize them to our situation.

Definition 1 (Majorization). Let p and q be the decreasing summable sequences of positive
numbers. Then p weakly sub-majorizes q, q <y, p, if and only if

n

i gi < Zp,-, foralln € N,
i=0

i=0
Definition 2. Let P and Q be the positive trace-class operators with eigenvalues {p, }nen and
{qn}tnen arranged in decreasing order. Then P weakly majorizes Q, i.e., Q <, P, if and only if

q <w p. Also, P majorizes Q, i.e., Q < P, if the traces of P and Q are identical and Q <,, P.

"
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Definition 3 (Fock rearrangement). Let X be a positive trace-class operator with eigenvalues
{Xn}nen, in decreasing order. The Fock rearrangement (or passive rearrangement) is defined as

[ee]

xti= an In) (n] .

n=0

Our restriction on the mean photon number forces us to consider an additional majorization
relation. In contrast, in Ref. 24, where the authors restrict the input entropy instead, Fock majoriza-
tion does not need to be considered.

Definition 4 (Fock majorization). The Fock majorization relation, denoted <p, was introduced
in Ref. 31 as follows:

O <pp =3 tr(IT,,07) < tr(I1,,0), foralln € Ny, (54)
where
M= > i)l (55)
j=0

Theorem 7. (Ref. 32) For any state p and allt > 0 we have
e'“(p) < ' £ (Y. (56)
This implies that

S (" (p)) = S (e (pY).

Proof. The first statement is shown in Ref. 32, Eq. (VI.10), and the second statement then
follows from Ref. 32, Theorem I11.3. |

Lemma 6 (Ref. 32, Lemma IV.9). Suppose X,Y, Z are positive trace-class operators with
Y<,Z and Z'=1Z
Then

tr(XY) < tr(X'Z).

We begin proving Theorem 6 by investigating the change of the mean photon number under the
Fock rearrangement procedure.

Lemma 7. For any state p, the Fock rearrangement does not increase the mean photon number
tr(ip') < tr(ip),
where it = a'a.

Proof. Let n € Ny be arbitrary, and set X = I1,, with IT,, defined in (55). Then clearly X! = X =
I1,. SettingY = p, Z = p', wehave Z! = Z,and Y < Z, according to (56) fort = 0, i.e.,

p<ph.

Thus, Lemma 6 leads to tr(I1, p) < tr(IT,p'). According to Definition (54), this is equivalent to

p<rp'.
It was shown in Ref. 31, Eq. (5) that
P<p0 = tr(io) < tr(iip).
The claim follows by taking o = p' in the last statement. O

"
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Proof of Theorem 6. Since S(p') = S(p), Theorem 7 implies

d d
EL:OS (e’L‘(p)) > EL:OS (etl_(pl)) )

With Lemma 7, we therefore obtain

2| s(e(p) =

1Ly |
p:tr%f?/f)Sn dt 1t=0 S (6 (p )) .

in —
p=plitr(iph<n dt =0
Since p! is a passive, Fock-rearranged state, the right-hand side is a classical problem related to the
pure-death process (52), and, therefore, can be replaced with the infimum of the entropy rate of a
probability distribution evolving under a pure-death process. Thus the claim follows.

B. Geometric distributions optimize entropy rates of the classical death process under
energy constraint

For a probability distribution p on Ny, let

d tC-
J(p) = 2| HE(p))

denote the entropy rate when p evolves under the classical death-process C- (cf. (53)). We are
interested in distributions p with a fixed expectation value E,[N] = >, ;np,. The main result we
use here is Ref. 24, Theorem 24: it states that for any probability distribution p on Ny, the quantity
J_(p) is bounded by
inf J.(p)>=2 inf H 57

p:H(p)<H ») p:H(p)<g(m) JHPp) 67
where f(H) = —g~'(H)g'(g~'(H)) and where g(n) = (n + 1)log(n + 1) — nlogn is the entropy of a
geometric distribution with expectation value n (or equivalently the entropy of a Gaussian state with
mean photon number n). We use this to show the following:

Theorem 8. The infimum inf,.gn)<n J(p) is achieved by the geometric distribution pieo’n =

(1 = r)rk withr = 2= In particular, forn > 0,

1
inf J_(p)=-2nlog|l+—].
p:]El[lgl]sn (P) n Og( " n)

Proof. We show that

'[nf J_(p) = J(p**™) = —2nlog (1 + %) . (58)

p:E[N]=n

Since the right-hand side is monotonically decreasing with n, Eq. (58) implies the claim of the
theorem.

The geometric distribution p&>" = (1 —r)r* with r = -7 has expectation value Epecon[ N] =
n and entropy H(p5°>") = g(n). By the maximum entropy principle (Ref. 40, Chapter 12), we know
that geometric distributions are the distributions with maximal entropy among all distributions with
a fixed expectation value E,[N]. Therefore we have

E,[N]=n =  H(p)<g).
Combining this with (57) we obtain

inf  J_(p) > inf J_(p) =2 inf H(p)),
P:Ep[N]=n ) p:H(p)<g(n) ) p:H(p)Sg(n)f( )

Since f is decreasing by Ref. 24, Lemma 5, it follows that

1
inf J_ >2 — _onl e “
p:]El[Ill\]]:n (p) = f(g(n)) n Og( + n) ( )
However, since Epeeo.n[ N] = nand J_(p£°™") = —2nlog (1 + 3 ), we have equality in (59). mi
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C. Gaussian optimality of entropy rates for the quantum attenuator semigroup

Proof of Theorem 5. From Theorems 6 and 8 we have
d 1
inf . S 1L =-nl 1 i
p:trgzlp)sll dt|’:0 (e"(p)) nlog ( + n)

Let wy be the Gaussian thermal state with mean photon number n as defined in (40). We have
S(wn) = g(n) = (n + 1)log(n + 1) — nlogn for n > 0. Under the map e’ £-, the state w, evolves into
the thermal state wy, according to

'L (wp) = wn,, where n, =e 'n.
In particular,
d N 1
ELZOS(e’L‘(wn)) =g (n)nt’tzo = —nlog (1 + E) .
Therefore the considered infimum is achieved by the Gaussian thermal state wy,. O

VI. APPLICATION TO FAST CONVERGENCE
OF THE ORNSTEIN-UHLENBECK SEMIGROUP

In this section, we consider a one-parameter group of CPTP maps {eX#1},-( generated by the
linear combination

L= L+ 2L,  foru>2A>0.

where £_ is defined by (51), and L, is defined by

.
Lip) = a'pa - {ad",p}.

In the following, we use the entropy production rates

. i et[ji
J(p):= 2 5(e""(p).

The factor 2 here is for convenience to match de Bruijn identity (23) for J(p). These quantities are
related to the Fisher information J(p) by

J(p) =2r(J-(p) + J+(p)), (60)
because of de Bruijn’s identity and the fact that Lyeat = 20L_ + 2L ,.

Lemma 8. Let u > A > 0. Then
d
E t=0

,le /12
D r (o) = T p) + 5 1p) + £S(p)

+ A%log v + ¢ log(1 — v), (61)

—¢D(plloy.a) =

2 . .
for any state p, where v = ;’7 ¢ == A% and o, is the fixed point of L, .

Proof. As mentioned in Section II B, the unique fixed point of the semigroup {e’ %1}, is the
state

T = (1=v) ) V" In)nl = (1 =)™,
n=0

where v = A%/ 2. In particular, this implies that for any state p,

D(plloyu,2) = =S(p) —tr(plog oy, 2) = =S(p) — (log v)tr(pn) — log(1 — v). (62)

"
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Straightforward calculations show that the mean photon number of p converges to the mean photon
number of the fixed point o, ; with an exponential rate

,.
n, = tr(e"“u(p)i) = tr(pe’ (i) = e (pi) + (1 - I,

where n., = tr(o,, 1) = ’uz’l_z/ﬂ = 15 - Therefore
ot £ (o)) = = = ) tr(pi) ~ )

Combining the last equality with (62), we find that

2 /12
D(e"“14(p)lloy,2) = %J-(p) + T Ju(p) = (logv)(* = A)r(p) + Alog . (63)

dt |t:0
With (62) and (63), and setting £ = u> — A%, we obtain the desired equality. O

The choice of ¢ = u?> — A% in the lemma is motivated by Gaussian states: in Appendix D we
show that for any Gaussian state p, the following inequality holds:

d .
= IZOD(e’L#J(p)Ho-#,,,) < ={D(plloy,2) with == 2°>0.
Furthermore, for any € > 0O there exists a Gaussian state p such that

&) Do) 2 ~(C + D (Pl

dt =0 P u,) = P u,).

Let us now consider a specific example of a quantum Ornstein-Uhlenbeck process.

Example 1. Consider 1> = 2, 2> = 1. Then

d

= zZOD(@’Lﬁ,I(p)HO"E’I) < =D(plloys, )

for any state p with S(p) 2 2.06. In comparison, the entropy of the fixed point is S(o 5 ) =
2log(2) ~ 1.39.

In Lemma 8 we can bound J,(p) > 2 because of Ref. 30, Eq. (43), and the linear combination
of J_(p) and S(p) can be bounded by the result of De Palma et al.** That is, for any state p with
S(p) = So,

2
%J_(p) +8(p) > Silzlgo (12 (S) +£S).,

where £(S) = —g7'(S)g’(g7'(S)) and g(n) = (n+ 1)log(n + 1) — nlog(n). Substituting S = g(n)
gives
2

EJ(p)+¢S(p)= inf (ong () + o) = F(5o).

n>g~—(Sp

That is, for any state with S(p) > Sy, we have

d
~¢D(P||lo ) = | D(e"Fn(p)|o ) = F(Sp) + A%+ A2log v + ¢ log(1 - v).

dt |t:0

With the choice p? =2, A% = 1, the function F(S) is monotonically increasing for S > 0.5. For
So = 2.06, the right-hand side of the last inequality is non-negative. O
The isoperimetric inequality for entropies (50) for one mode (d = 1) can be written as

_S(p) < log (ﬁﬂp)) .

"
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Forany A > 0, using log x < x — 1, we get

AJ (P))

log(ﬁJ(p)) - log( 4reA

= log(4ﬂ€A) + log(AJ(p))
< AJ(p) —2 —log(4rA).

Therefore

=S(p) < AJ(p) — (2 + log(4rA)) for A > 0. (64)
Lemma 9 (Log-Sobolev inequality for the qOU semigroup). Let y > A > 0and { > 0. Then

LDl )~ ], P PNl ) 2 @ () + (o) + i) + 6, (69)
for all states p, where
a_= /2 - 2rAL,
a,= 1%/2 - 2rAL,

y=(logv) (£ — (1 - 1)),
6= ¢ (log(l — v) + 2 + log(4mA)) + A2log v,

forany A > 0. Here v = ﬁ—z and o, 5 is the fixed point of L, ». In particular, choosing { = W= A2

and A = we have

N
47r(/12—/12)’

d
~¢D(pllop, ) — D(e'tmA(p)llory, 1) > —¢mlog(1l + 1/m) + 6, (66)

E‘t=0
where n = tr(ph).

Proof. Combining (60) and (64) leads to

S(p) = 2nAJ_(p) —2nAJ(p) + 2 + log(4m A).

Using this inequality in Lemma 8, we obtain the result (65).
For the second part of the statement, Theorem 5 shows that

J(p) = J_(wn) = —2nlog(1 + 1/n), (67)

where wy, is the Gaussian thermal state with mean photon number n. Eq. (66) then follows directly

from the first part of the statement with the choice A = inequality (67), and the choice of

/12
dn(u?-22)°
= u? - 2% O

Considering the same specific qOU process as in Example 1, we obtain the same rate of conver-

gence to its fixed point, but now only for states with low mean photon number instead of large initial
entropy as in Example 1.

Example 2. Consider u> = 2 and A* = 1. Then
d

EL‘:O
for any state p with tr(pi) < 0.67. In comparison, the mean photon number of the fixed point is

tr(o g5 A) = 1.

D(e' 2 1(p)loyz ) < —D(plloys ),

Choosing y*> = 2 and A% = 1 in Lemma 9, we obtain

d
~{D(plloua) = DT (p)llory,2) = —nlog(1 + 1/m) +2 —2log(2).
The right-hand side is monotonically decreasing and for n < 0.67, it is non-negative. O

"
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VIl. DISCUSSION

We have established new information-theoretic inequalities for bosonic quantum systems. Our
inequalities are motivated by and directly generalize well-known existing results concerning the
sum of two real-valued random variables. They also complement recent results concerning the
“addition” of two bosonic quantum states by means of a beamsplitter: we consider a hybrid opera-
tion which amounts to a certain way of combining a classical probability distribution on phase space
with a quantum state. Mathematically, our work thus makes progress towards a unified view of three
types of convolution operations: the convolution of two classical probability density functions, of
two quantum Wigner functions, and of a pair consisting of a classical probability density function
and a quantum Wigner function. Operationally, our results extend entropic characterizations of clas-
sical additive noise and quantum additive noise to the so-called classical noise in bosonic systems.
Indeed, the proofs of our main inequalities, which include hybrid versions of the Fisher information
and entropy power inequalities, are formally very similar to existing proofs in the fully classical as
well as fully quantum settings.

The consideration of the hybrid classical-quantum convolution operation (2) brings additional
advantages, however, it allows for the study of infinitesimal Gaussian perturbations to a given quan-
tum state. In contrast, existing fully quantum entropy power inequalities are not directly amenable
to such arguments (at least not in an obvious way) since basic uncertainty relations prevent us from
making sense of, e.g., a Gaussian state with infinitesimal variance. Mirroring the derivation of the
isoperimetric inequality from the Brunn-Minkowski inequality (where a given set is perturbed by
adding an infinitesimally small ball), we obtain a quantum isoperimetric inequality relating Fisher
information and entropy power. A striking simple consequence of the latter is the statement that the
entropy power is a concave function of time for the quantum heat diffusion semigroup: again, this
provides a quantum generalization of a fundamental result about the classical heat equation.

Let us conclude by mentioning a few potential directions for future work, as well as some open
problems. For concreteness and simplicity, we have considered the simplest non-trivial definition of
a hybrid convolution operation defined on multiple modes, as studied in Ref. 11. One may gener-
alize our convolution (2) and the associated results by considering additional (linear) operations
along the lines of Ref. 14. From the point of view of information theory, it is also interesting to
examine the implications of our results for the capacity of the classical noise channels similarly to
Ref. 18.

On a more speculative side, one may wonder whether alternative quantum generalizations of
the results considered here exist, especially related to the conjectured photon number inequality
by Guha, Erkmen, and Shapiro.*! These authors (and subsequent work such as Ref. 21) suggest
replacing the quantum entropy power ¢5®) by the arguably more natural expression g~'(S(p)). This
is the mean photon number of a Gaussian state with identical entropy as p. It appears that at least
for our isoperimetric inequality, such a generalization would require more than a naive substitution
as there is no meaningful lower bound on the product g~!(S(p))J(p) even for Gaussian states.
While this may be considered as additional mathematical justification for our formulation of these
inequalities, we believe that progress in this direction could be helpful in resolving, e.g., our conjec-
ture concerning the convergence rate to the fixed point of the quantum Ornstein-Uhlenbeck (qOU)
semigroup. For the latter problem, apart from proving our conjecture, it would also be interesting to
obtain multi-mode generalizations. This concerns, in particular, the entropy production rates for the
qOU semigroup. Here, a resolution of the conjecture of Ref. 24 for the multi-mode attenuator would
likely provide important insights.

Finally, we mention some challenging mathematical problems resulting from our work. For
example, while our isoperimetric inequality is tight for Gaussian states, necessary and sufficient
conditions for equality in most of our statements are currently unknown. Finally, a rigorous discus-
sion of the family of states for which the de Bruijn identity (23) holds, possibly using the framework
of Schwartz operators,*® would be an interesting task for future work.

"
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VIll. REMARK

After posting our paper to the arxiv, we were made aware of concurrent related work by Rouze,
Datta, and Pautrat. Their paper has now been made available.*?
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APPENDIX A: A LOG-SOBOLEV INEQUALITY AND THE CLASSICAL
ORNSTEIN-UHLENBECK PROCESS

In this appendix, we discuss known classical results for the reader’s convenience: we briefly
review the relationship between the isoperimetric inequality for classical Fisher information, the
Log-Sobolev inequality, and the rate of convergence to the fixed point for the classical Ornstein-
Uhlenbeck semigroup. These arguments were given by Carlen® for a particular element of the
two-parameter family of Ornstein-Uhlenbeck processes. Here we specialize to real-valued random
variables, but allow arbitrary parameters in order to illustrate the parallels to the qOU semigroup.
We also explicitly discuss the convergence to the fixed point, which is only implicit in Ref. 25 but
appears to be folklore.

Let fo be a probability density on R of a real-valued random variable X. The classical
Ornstein-Uhlenbeck (cOU) process for 8 > 0 and o= > 0 is given by the Fokker-Planck equation

of 0 0?9 f

ER Qa [xf]+ Ewr Ag,2(f)-

(Carlen considers the case where 6 = 1 and o> = 1/x.) The solution to this equation can be written
(in terms of random variables) as

X, = e "Xo+ —N1—e 2017, (Al)
V260
where Z ~ N(0,1) is an independent centered Gaussian random variable with unit variance. The
stationary solution f., therefore is a centered Gaussian distribution with variance o-2/(26). In partic-
ular, (A1) implies that the second moments satisfy
2

E[X2] = e 2'B[X2] + (1 - e-zm)g—e. (A2)
We use that the relative entropy between a random variable X and a centered normal variable Z _» ~
N(0,0?) is given by D(X||Z,2) = —H(X) + %log 2no? + #E[X 2] as can be verified easily. In
particular, the relative entropy between the solution at time 7 and the fixed point Z 2,4 is given by

1 0
D(X[|Zy2)09) = —H(X;) + 5 log no?/0 + ;E[XE]. (A3)
Furthermore, we have the following de Bruijn-type identity:

Lemma 10. Let {X,;};5 be of the form (Al), i.e., a solution to the cOU process. Let J(X) =

Of(x) 2
| ]‘?& )l dx denote the Fisher information of a random variable X with distribution function f.
Then
d o?
Tl HOX) = Z-0(X0) - 6. (Ad)

"
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Observe that the second summand essentially stems from the fact that entropies transform very
simply under rescaling of random variables, namely

H(e X)) = H(X) - 6r. (A5)

Eq. (AS5) significantly simplifies the analysis. Such a property does not hold in the quantum case: as
a consequence, we do not have a simple expression in terms of J(Xy) only.

Proof. The derivative of the entropy along a semigroup with generator A is given by the
expression <% H(e“q(f)) = — [ A(f)(x)log f(x)dx. Using this fact gives

dt |y
d *f ( )

EL:OH(Xf): _9/( [Xf(X)])logf(x)dx— —/
Denoting f’(x) = 2 f(x), we obtain

[aryiogsac== [wnrisas=- [xrar= [ gac=1.

where we have used partial integration and the fact that boundary terms vanish twice. Similarly, we
have

log f(x)dx.

[ rrioesax=- [rpisa
by partial integration. Combining these statements gives the claim. O

Following Ref. 25, we can write the isoperimetric inequality 1/N(X) < J(X) as

-H(X) < %log (@)

2me
Lo (J00) 1
= — O —_— _ -,
2%\ | T2

In particular, using log x < x — 1, we get

lo (M)—lo (J(X).A)
g 2re | g 2meA

= log + log(AJ (X))
2neA

< AJ(X) -2 -log2nA, (A6)
for any A > 0. Using inequality (A6), it is straightforward to show the following.

Theorem 9 (Fast convergence of the cOU semigroup®). Let {X,},s¢ be of the form (Al), i.e.,
a solution to the cOU process with parameters 0 > 0,0 > 0. Then

- |t:0D(X,||Z(,z 100) < —20D(X0l1Z,2)29)-

Note that because we are considering a semigroup, this result immediately implies that
DX/l Zy2/00) < €' D(Xol| Zy2)29),  forallz > 0.

Also, this result is tight: if X, ~ N(0, o-io) is a centered Gaussian random variable with vari-
ance 0'3(0, then (A1) implies X; ~ N (0,0-?) where the variance of X, is

2 20t 2

2
or=e oy, + ;—_6(1 — e,

Inserting into (A3), using H(X,) = %(l +log(2no?)) yields

0
D(X|Zy2/00) = — (1 +log(2na?) + = log 10?0+ — 0.
O’

"
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In particular, we obtain

, d

2
()'X0—>00

Proof. According to Egs. (A2), (A3), and (A4), we have

o2 262 2
=l P X Zy2)0) = == T(Xo) = —5EIX?] +26. (A7)
Combining (A6) with (A3) yields
AJ(X 1 1
D(Xol|Zy2/29)) < % -1+ 5 log 27 A) + 5 log na?/0 + 0/ E[XZ]. (A8)
Combining (A8) with (A7) yields
d 2

=20D(Xol| Z2/(20) — =2

ag
PO Zy3 > (04 + ) 000

+26

1 1
(1 + 510g27rA -3 logﬂo'z/e) - 1] .

The claim then follows by choosing A = (2’—92. O

APPENDIX B: TIGHTNESS OF THE QUANTUM FISHER INFORMATION
ISOPERIMETRIC INEQUALITY

Consider a one-mode Gaussian thermal state w, with mean photon number n > 0. Its entropy is
S(wy) = gm) =(m+ 1)log(n + 1) —nlogn. (B1)
Under the diffusion semigroup, the state wy evolves as
e' theat(ey) = wy,, where n, = n+ 2nt.

In particular, by the de Bruijn identity

d
Twn) =2 55 Freaon)| =29/,
dt =0

n+1
0™ 4 log( o ) (B2)

Also,

* Lheat =4rlog |1 .
J(e'=heat(y)) s og( +n+2m

Calculating the right-hand side of the quantum Fisher information isoperimetric inequality (39), we
obtain
d
dt

1 - 1
‘ [—J(ellhea‘(wn))] = log™2 (l + —) - 1, asn — oo,
r=0"2 n

nn+ 1)

APPENDIX C: TIGHTNESS OF THE ISOPERIMETRIC INEQUALITY

Consider a one-mode Gaussian thermal state w, with mean photon number n. From (B2) we
know that

1
J(wn) = 47 log (2) ,
n
and that the entropy power of wy, is given by (cf. (B1))

(Il + 1)n+1

nn

N(wn) = exp(S(wn)/1) =

"
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Combining these two expressions, we see that the left-hand side of (50) is

+1\" +1\™!
J(wn)N(wp) = 4ﬂ(nn ) log (HT) — 4re, forn — oo,

APPENDIX D: ON THE CONVERGENCE RATE FOR GAUSSIAN INITIAL STATES
In this section, we show that for a one-mode Gaussian state p the following inequality holds:

d .
Zl Pl A pllo ) < =LD(plloy.a)  with = = 2 > 0. (D1)

Furthermore, this statement is optimal: for any € > 0 there exists a Gaussian state p such that
d
= DT (p)lloy,2) = ~(¢ + €)D(pllory, 2.

First, we note that the entropy of a Gaussian state does not depend on its first moments. Hence
it follows that for a Gaussian state the right-hand side of (61) does not depend on its first moments,
and it is suffices to consider centered Gaussian states.

Calculating the right-hand side of (61), we focus on calculating J.(p). Recall that the covari-
ance matrix M of a centered state p is defined as M = tr(p{R;, Ri}).

Lemma 11. Let p be a one-mode centered Gaussian state with mean-photon number n and
covariance matrix given by M = kSTS, where k =2n+ 1 and S = O, ((Z) 1(/)2) 02T with O; € Sp(2)
N O(2) and z > 1. Denote

_ i tLs
Ji(p) =2 dtS(e ()

=0
Then we have

J(p) = (% (/22 + %) + K) (log (KTH) —log (K; 1)) ) (D2)

Proof. The covariance matrix of the time-evolved state ¢’ £+(p) is
M.(t) = c;(t)M(0) + c5(2)id,

where

ci()y=e’ and o;M)y=1-¢", (D3)

cf)y=¢é' and c;(t)=e —1. (D4)
Therefore writing S[M] for the entropy of a Gaussian state with covariance matrix M, we have

S[M(1)] = S[cf(t)kSTS + c;(1)id] = S [cf(1)k03 KT O] 01K 0, + ¢5(1)05 0]
= S[ci(t)kKT O] 01K + c5(1)id]

| fei@r? + e5() 0
_S[( 0 CT(I)K/ZZ+C§(t))}' (DS)

The symplectic eigenvalue of the matrix argument in (D5) is the square root of its determinant:

ki(t) = \/(cli(t)K + czi(t)zz) (Cli(l’)K + cé—'(t)/zz). (D6)
The entropy of the time evolved state is

S(e"(p)) = g(m(x:(1))),
where g(x) = (x + 1)log(x + 1) — xlog x and n(x) = %(K — 1). By the chain rule, we have that

L5 (¢ 4(p) = 59 (ka(0) K210,

"
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Since g'(x) = log(x + 1) — log x, we only need to find x.'(z).
Combining (D6) and (D3), we obtain

k_(t)= \/(e"K +(1—-eNz®)(etk+(1—e)/7?)
— K+l(%(Z2+1/Z2)—K) +0(1).

Therefore x_'(f)|,—o = 1 (1/2> + z%) — « and finally

k+1

J(p) = (% (1/2*+ %) - K) log —

Similarly, using (D6) together with (D4), we obtain

kit = (e + (e = D ) (el + (e = 1) /)
_ KH(%(ZM 1/z2)+K) L0 ().
Thus «,/(t)],—o = 2 (1/2% + z%) + k and

T.(p) = (l (1/22+2°) + K) log £ 1.

2 k—1

From Lemma 8 it is clear that we are interested in minimizing J.(p). Both expressions in (D2)
have a minimum at z = 1. Therefore, with = p> — 1?>and n = ’(T‘l, from Lemma 8 we obtain

d
~LD(pllry.) = —|,_ Pl (plory,2) 2 i log(m + 1) = 1*logn + 27 log 4*

— i log (i + (i — A7) log(u” — 2%)
=: hy, a(n).
For fixed p? > A2, the function h,, , satisfies limp_0 A, 1(n) = limp_e A, () = o0. Since A, ,

is differentiable (in fact smooth) for n > 0, we can find the global minimum by finding the zeros of
the derivative

d > A2
—h = -—=0.
dn wa(m) n+l n
The only solution isn = ,12%2’ and since
d’ 11
— hym)= (W= |=-=|>0,
dn2 n:HZ{Z/lZ ﬂ,/l( ) (lu ) (/12 Mz)

2

it is the minimum. The value of the minimum is £, , (%) = 0, hence it follows that &, 1(n) > 0
] I‘l _/1 )

for all n > 0 and we have

S D ()l < ~¢Dipllory0).

t=0

. . . . 2
Moreover, the last inequality becomes equality for p = 0, 1 = wp,,, Withn,, = #2/1 -

"
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It remains to show that £ = u? — A% is optimal. Let € > 0 and ¢’ = ¢ + €. Then for the Gaussian
thermal state wy, we have

d
~'D(@llo ) - =|  D(e Lo (wpllory 1) = by a(m) + €(n + 1) log(n + 1) - enlogn

dtlt=0 2 22
+ enlog (—2) + elog (1 - —2)
H H

2
n+1\" +€e(n+1) - 212 €en
=log||—— nt e =
g( n ) (/ﬂ)

+c(u,A) — —o0 forn — oo,

where c(u, 1) = log ((;12)"‘2‘6(/12)’12(;12 - /12)'“2"12”). Therefore, for any € > 0, there exists n such
that
d tL 2
= Z—OD(e # M wn)lloy,a) > =({ + €)D(walloy, 2)-

This shows that the constant £ = u? — A2 is optimal in the inequality (D1).
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The additivity problem asks if the use of entanglement can boost the information-carrying
capacity of a given channel beyond what is achievable by coding with simple product states
only. This has recently been shown not to be the case for phase-insensitive one-mode Gaussian
channels, but remains unresolved in general. Here we consider two general classes of bosonic
noise channels, which include phase-insensitive Gaussian channels as special cases: these are
beamsplitters with general, potentially non-Gaussian environment states and classical noise
channels with general probabilistic noise. We show that additivity violations, if existent, are
rather minor for all these channels: the maximal gain in classical capacity is bounded by a
constant independent of the input energy. Our proof shows that coding by simple classical
modulation of coherent states is close to optimal.

A.2.1 Main Results

We consider the family of channels defined by beamsplitters of transmissivity A € [0, 1], defined
in Egs. (4.9) and (4.10). Let us denote the channel defined by interaction of a one-mode system
with an environment in a fixed state o via a beamsplitter of transmissivity A by

S)MO'E(IO) =trg (UA(p & JE)U;[) )

Furthermore, we consider general classical noise channels as defined in Eq. (4.11) and denote
this family by

Fuslp) = / F(6)D(Varte)pD(V2rie) 2 |

for a probability density function f : R? — R of the noise. We then have the following main
theorem:

Theorem A.2.1 (Main Theorem). The mazimal degree of non-additivity of the classical ca-
pacity of Ex o, and Fy 5 is bounded as

CN(Enr) = X (Exoy) < 29 (1= N)Ng) = g (1= )NEP) = log (A+ (1= \)eSw)) |

Cn(Frf) — xn(Frf) < 2g(mtE(f)) — log <1 + teH(f)) 7

independently of the input energy N, where Ngp = tr(aTaaE) is the mean photon number of og,
NgP = g7 (S(og)) is the mean photon number of a thermal state with the same entropy as o,
and E(f) = Z?Zl [ &2 £(£)d?¢ is the energy of f. The function g(N) := (N + 1) log(N + 1) —
Nlog(N) is the entropy of the thermal state with mean photon number N. For both channels,
coherent states modulated with a Gaussian distribution achieve a rate which differs from the
capacity by at most the rhs of these bounds.

This theorem gives an upper bound on the maximal additivity violation of the classical
capacity of these channels. This upper bound is independent of the input energy N and hence
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additivity violations are at most constant, whereas the classical capacity goes to infinity as IV
increases. It is important to note that the families of channels defined by &) ,, and F; ;
include a wide variety of non-Gaussian channels (in the cases where the environment state og
respectively the noise function f is not Gaussian). Non-Gaussian channels are rarely considered
in literature and our result is the first statement about additivity violations of non-Gaussian
bosonic channels.

The proof of Theorem A.2.1 relies on the entropy power inequalities from Theorems .5.4.1
and 5.5.1. The results can be slightly improved by assuming that the Entropy Photon-Number
Inequality conjecture (Conjecture 5.4.2) is true, leading to the following theorem.

Theorem A.2.2. Assuming the EPNI conjecture 5.4.2 holds, we have

Cx(Enm) — x(En) < 2] (1= NNe) g (1= VNT)]

t
ON(Fip) = xn(Frp) <2 {g(ﬂtE(f)) —9 (eeH(f)> ] :
Furthermore, coherent state modulation with a Gaussian distribution achieves a rate which
differs from the capacity by at most the rhs of these bounds.

It is important to note that the statement of Theorem A.2.2; while making the bounds aes-
thetically more pleasing, is not very different from the statement of Theorem A.2.1: In both
cases, the corresponding upper and lower bounds on the capacity are separated by a constant
independent of the input energy. However, assuming the EPNI, in the case where op is a
thermal state or where f is a unit-variance centered normal distribution, the additivity viola-
tion disappears and we recover the landmark result on classical capacities of phase-insensitive
Gaussian bosonic channels [8].

Theorem A.2.1 is directly implied by the following Lemmas, which give explicit upper and
lower bounds on the classical capacity of our families of channels.

Lemma A.2.3. The classical capacity of the single-mode attenuation channel £y, satisfies
On(Ero) > 9 (AN + (1= )NP) — g (1 - NNp) (A:2)
CN(Exoy) € g (AN + (1= A)Ng) — log (A+ (1 = X)eS®))

The lower bound (A.2) is achievable with a coherent state ensemble. The difference between
this upper and lower bound is bounded by

AErog) <29 (1= NNg) = g ((1 = VNEP) —log (A+ (1= A)eS7)) |
independently of the input photon number N.

Lemma A.2.4. For the classical capacity of the single-mode classical noise channel F; ¢, we
have the bounds

CON(Fig) = log (7™ 4 1™} — g (mtB(f)) (A.3)
Cn(Fi5) < g (N +7tE(f)) —log (1 + teH(f)> .

The lower bound (A.3) is achievable with a coherent state ensemble. The difference between
this upper and lower bound is bounded by

A(Fi,p) < 29 (RE())) — log (1+ te D)

independently of the input photon number N.
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Going through the proofs of above Lemmas and replacing the applications of the EPI by the
conjectured EPNI, it is easy to formulate analogous statements assuming the validity of the
Entropy Photon-Number Inequality. This implies Theorem A.2.2.

A.2.2 Individual Contribution

I am the principal author of this article. The idea for this work came into being after the
publication of Article III, during a discussion about possible related projects with Robert
Konig. This project was inspired by previous work by Konig and Smith which applied the
entropy power inequality to the classical capacity of thermal noise channels [11,79]. I proved
all the results of the paper, and with the exception of the Introduction and the first half of
Section 2, I wrote all sections.
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Abstract
The additivity problem asks if the use of entanglement can boost the
information-carrying capacity of a given channel beyond what is achievable
by coding with simple product states only. This has recently been shown not
to be the case for phase-insensitive one-mode Gaussian channels, but remains
unresolved in general. Here we consider two general classes of bosonic noise
channels, which include phase-insensitive Gaussian channels as special cases:
these are attenuators with general, potentially non-Gaussian environment
states and classical noise channels with general probabilistic noise. We show
that additivity violations, if existent, are rather minor for all these channels:
the maximal gain in classical capacity is bounded by a constant independent of
the input energy. Our proof shows that coding by simple classical modulation
of coherent states is close to optimal.

Keywords: quantum channels, classical capacity, quantum information
theory, quantum optics, non-Gaussian channels, entropy power inequality

(Some figures may appear in colour only in the online journal)

1. Introduction

Communication—be it over time (as storage in a memory) or over space (as transmission
from a sender to a receiver)—is one of the central primitives studied in information theory. A
channel represents a general model for communication. With respect to communication, its
arguably most fundamental characteristic is its classical capacity: the maximal number of bits
or—more precisely—the maximal rate at which bits may be transmitted through the channel
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asymptotically in the limit of many uses. This quantity is ubiquitous in information theory
since it has both practical meaning and is interesting from a purely mathematical point of view.

The classical capacity of quantum channels has been studied for decades [1-3], but is not
understood in general. Not only is it very hard to find the optimal encoding for one use of the
quantum channel, one also has to take into account the possibility of input states which are
entangled across several channel uses. The use of such entangled states can potentially boost
the capacity when the channel is used multiple times in parallel as opposed to the use of sim-
ple product or separable states. The question of whether such an increase in capacity occurs
is commonly referred to as the additivity question. If the use of entanglement can increase the
capacity in comparison to product states, we speak of an additivity violation. If, however, such
an increase cannot occur, the classical capacity is said to be additive. In a recent breakthrough,
the classical capacity for the so-called phase-insensitive bosonic Gaussian channels has been
found, and it was shown that the capacity for these channels is achieved by using products
of coherent states for the encoding [4]. Furthermore, for more general Gaussian channels
which are phase-sensitive, the capacity has been found above a certain energy threshold [4].
This was achieved by proving the optimality of Gaussian inputs above the energy threshold,
while the capacity restricted to Gaussian inputs above the energy threshold had been calcu-
lated in earlier work [5, 6]. Despite these landmark results, the classical capacity of a general
Gaussian channel is not known for all energies, and very little is known about the capacity
of non-Gaussian bosonic channels, which are rarely considered in literature. However, recent
developments in the area of entropy power inequalities [7-9] and the minimum output entro-
pies of bosonic channels [10-13] make it possible to give bounds on the output entropy of
non-Gaussian bosonic channels. These inequalities promise to help at least partially resolve
the question of classical capacity for these channels. Here we apply entropy power inequali-
ties to give upper and lower bounds on the classical capacity of a wide class of bosonic noise
channels, which includes non-Gaussian channels.

The channels we consider are attenuator channels with general environment states which
are possibly non-Gaussian and classical noise channels with general additive noise. While we
cannot show that the classical capacity of these channels is additive, we can show that additivity
violations, if existent, are minor. By this we mean that the maximal difference between the full
capacity and the one-shot capacity is a constant independent of the input energy. Furthermore,
the lower bounds we obtain are achievable by simple coherent state coding. As mentioned, this
coding achieves the capacity for phase-insensitive Gaussian channels. It is, however, known not
to be optimal in general even for Gaussian channels [14]. Nonetheless, as our results show, it
still is a suitable choice of encoding for the large class of bosonic channels we consider (which
includes the Gaussian channels for which the capacity is known as special cases).

Our paper is structured as follows: in section 2, we review the notion of capacity and
related formulas and give a technical introduction to the problem we consider. In section 3, we
state the relevant entropy power and photon number inequalities and give an overview of the
techniques we apply. In the following section 4, we state our bounds on the classical capacity
of the channels. We present the proofs in section 5. We close with a discussion of our work and
related problems as well as directions for future research.

2. Capacity of channels

In the classical setting, where a channel is simply a conditional distribution Py describing
the channel’s probabilistic output ¥ on a given input X, the classical capacity has been studied
by Shannon in his landmark paper [15]. It is remarkable that although the definition of the
capacity involves an arbitrarily large number of channel uses, in the classical setting it can be
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expressed in terms of an optimization problem defined in terms of a single channel use only.
It is given by

C (Pylx) = s;l)(p[(X :Y), (1)

where I(X : Y) = H(X) + H(Y) — H(XY) is the mutual information between the input and
output of the channel, defined in terms of the Shannon entropy H(X) = — >~ Px(x) log Px(x).
In the continuous-variable case of interest here, X and Y are random variables on R, and an
energy constraint needs to be imposed on the distributions Py in (1): the capacity with input
‘energy’ E is then defined as in (1), but with a constraint E[X?] < E on the second moment.
This constraint amounts to the demand that in the operational coding problem defining the
capacity, only codewords, i.e. sequences m, = (my,...,m,) € R" of elements having a mean
energy % >-%_, m? bounded by E are allowed. We will denote the corresponding capacity by
Ce(Py|x)-

In the quantum setting, a quantum channel is a completely positive trace-preserving
(CPTP) map & : B(H) — B(H) on the set B(H) of bounded operators on H. For the bosonic
systems considered here, # =2 L*(R) is an infinite-dimensional separable Hilbert space. We
are concerned with the energy-constrained classical capacity of such channels: it is operation-
ally defined as the maximal achievable rate R at which classical bits can be sent by (i) encod-
ing a message x € {0, 1}"®linto a state o, on H®", and (ii) decoding the received state & (o,)
using a suitable POVM {F,} ¢ {0,1} Lrj ON H®", in such a way that the average decoding error
probability vanishes in the limit n — oo. In this operational problem, the energy constraint
amounts to imposing the physical restriction that the mean photon number %tr(zj'f:l ajTaj@)
of the average input state p is bounded by some constant N. Here al, a; are the creation and
annihiliation operators of the j-th mode of a system of n harmonic oscillators, satisfying the
canonical commutation relations [a, a|] = 61, [a, a] = 0.

An expression for the classical capacity of a quantum channel similar to (1) is known: the
Holevo—Schumacher—Westmoreland theorem (HSW theorem) [1, 2] states that the classical
capacity of a quantum channel £ subject to the energy constraint N can be obtained by evalu-
ating the limit

g ,
Cn(€) = nlggo XN &em. 2

In this expression, x,v(E®") is the Holevo quantity evaluated for the channel
E® . B(H®") — B(H®") with average energy constraint N. The latter is defined as

(€)= sup S(EV'(@) - Xxjpxs(£®"(gx)), 3)
where S(p) = —trplog ¢ denotes the von Neumann entropy, and where the optimization is

over all ensembles { p,, 0, }, of states on H®" with average signal state g = > Px0x satisfy-

j
continuous ensembles of the form { p(x)dx, o}, where dx is e.g. the Lebesgue measure on

ing the average energy constraint tr (Z’,‘:l a}aj@) < nN. In general, one may also consider

R", and p is a probability density function. In this case, sums need to be replaced by integrals.

Expression (2) for the classical capacity generalizes formula (1) to quantum channels.
Unfortunately, though, it is generally intractable both numerically and analytically: it requires
optimization over an arbitrarily large number n of copies of the channel. The regularization
(i.e. the process of taking the limit n — oo in (2)) is necessary to allow for input (code) states
which are entangled across several channel uses: such states may potentially improve upon
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the capacity compared to product states. It is worth noting that the use of separable states as
input states, which are neither entangled nor product states, does not improve the capacity in
comparison to the use of product states only. This follows from the fact that it is enough to
consider pure input states [1] and the fact that pure separable states are product states. The
capacity when one restricts to codes using only unentangled signal states, that is, the one-shot
capacity, is given by xn/(&). It gives the lower bound

Cn(E) = xn(€) ©)

on the classical capacity.

The additivity problem consists in the question of whether or not the inequality (4) is strict
(in which case we speak of an additivity violation), or simply an equality. Its name derives
from the fact that if one has

v (E®") = nxy(E)  foralln € N, )

then one immediately obtains equality in (4), implying that entangled signal states offer no
operational advantage.

While it is still unknown whether or not equality holds in (4) in general in the continuous-
variable case, the simpler additivity property (5) for the Holevo quantity has been shown not to
hold in general by Hastings [16]. He showed that there exists a channel 7 : B(C?) — B(C9)
for which

X(T#%) > 2x(T) .

(There is no energy constraint here because only finite-dimensional Hilbert spaces are
involved.) In principle, this leaves room for an improvement upon the classical capacity via
the use of entangled signal states, i.e. the inequality (4) may still be strict for certain chan-
nels. Understanding when this may or may not be the case is one of the central challenges
of quantum information theory, and fits into the larger theme of investigating the impact of
quantum effects such as entanglement on the power of information-processing primitives.

2.1. Bosonic noise channels

Here we explore the potential of additivity violations in channels associated with bosonic
systems. The quantum channels discussed here are attenuation channels (i.e. beamsplitters
coupling the system to an environment in a general state) as well as channels mixing the sys-
tem with a classical random variable. These are natural generalizations of the corresponding
Gaussian channels: the thermal noise channel and the classical noise channel. These Gaussian
channels have been the subject of various earlier analyses [4, 17-20], and, as discussed below,
have been shown not to violate additivity in a recent breakthrough development. In contrast,
our emphasis here is on general, potentially non-Gaussian bosonic channels, for which no
additivity statements have been known previously.

In more detail, we consider an input system of d bosonic modes (with Hilbert space H®?
where H =2 L*(R)) with the vector of mode operators R = (Qy, Pi, . . ., Qu, P4). The action of
a beamsplitter with transmissivity 0 < A < 1 which couples the system with an environment

of d bosonic modes with mode operators (QgE),PEE) ey QC(ZE),P;E)) is given by a Gaussian
unitary Uy on H®? ® H®?, Its action on the 2d modes is defined (in the Heisenberg picture)
by the symplectic matrix

5\ — VN CYRERVS DN P9
VI=ALy  —VAly

4
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with respect to the ordering (Qi, Py, . ..,Qd,Pd,QgE),PEE), . ,inE),PEIE)) of modes, i.e.

U;R_i Uy = >, (S\)j«Ri. If we assume that the environment is in some state og (decoupled
from the system), and consider only the action of this unitary on the system, we obtain the
quantum channel

Enos(0) 1= trg (UA(Q & UE)U;) . (6)

We are interested in the classical capacity of channels £, . of the form (6), which we call
attenuation channels. Note that this set of channels includes Gaussian channels (for Gaussian
states og) such as the thermal noise channels (when o = e P (L g +F) /Z is a thermal
state, i.e. the Gibbs state of a certain quadratic Hamiltonian) or the pure loss channel (when
og is the vacuum state). It also includes non-Gaussian channels (for og a non-Gaussian state):
typical examples include, e.g. the case where og slightly deviates from a thermal state, or is,
e.g. some finite superposition of number states.

A second class of channels we consider here are channels which act by displacing the
system according to some probability density function f : R>? — R on phase space. We call
these (general) classical noise channels. They act as

Fip(o) == /f(E)W(Wﬁ)QW(%E)*d“E, 7)

where W(§) = elV2mE-(oR) for ¢ € R* are the Weyl displacement operators with the symplec-
0

tic form ¢ = ( | (1)> ®d and the mode operators R = (Qy, Py, ..,Qu, Py). Here 1 > 0 is

some parameter analogous to the transmissivity. Again, this channel may be non-Gaussian (if
f1is not a Gaussian distribution). Channels of this type have been considered by Werner [21],
who described them as a convolution operation between a probability distribution and a state.
They satisfy a number of convenient properties with respect to displacements in phase space
as well as a data processing inequality. For more background we refer to [9, 21, 22].

For a specific kind of quantum channels, the so-called single-mode phase-insensitive?
Gaussian channels, the classical capacity has recently been found by Giovannetti et al [4, 25].

The channels (6) and (7) fall into this class if the environment state o is a thermal state
or if the probability density function f'is a Gaussian distribution whose covariance matrix is
proportional to the identity (this special case has commonly been referred to as the classical
noise channel, see [17, 26]). In particular, if o is a single-mode Gaussian thermal state, the
capacity of the single-mode (d = 1) channel &) ,,, is given by

Cn(Erop) = 8(AN + (1 — A)Ng) — g((1 — A)Ng), 8)

with the mean photon number Ng = tr(a’aog) of the environment. Furthermore, if fis a cen-
tered Gaussian distribution of unit variance, then the single-mode channel F; s has capacity [4]

Cn(Fif) = g(N + 2mt) — g(2mt) . )

In both cases, the quantities on the rhs of equations (8) and (9) have been shown to be equal to
the single-shot Holevo information (xn(Ex 0, ) and xn(Fs), respectively). In particular, there
is no violation of additivity in these channels and thus no operational gain in using entangled

2 A phase-insensitive channel is a channel ® which has one of the following properties under phase shift operations
elva’a 23 24]: @(ei‘p‘ﬂ"ge’i“"“u) = ei“’“r"@(g)e’i“’“i" for all p for gauge-covariant channels and with reversed
order of operators on the rhs for gauge-contravariant channels.

5
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signal states. Similar capacity formulas have been found for single-mode phase-sensitive
Gaussian channels, where the environment is in a Gaussian state og which might be squeezed
(and respectively, if the function f'is a Gaussian whose covariance matrix is not proportional
to the identity). In this case the capacity is only known if the energy constraint allows for input
energies larger than a certain threshold value [4-6].

This fundamental result is striking, but leaves open the question of whether additivity vio-
lation is possible in more general channels. This is one motivation for considering the more
general families {€) ., } and {F; s} of single-mode channels, which also include non-Gauss-
ian examples.

We find that additivity violations, if at all existent, must be limited: the difference
Cn(®) — xn(P) between the two sides of (4) is upper bounded by a constant independent of
the input photon number N, for any channel ® in the class of attenuators and classical noise
channels. In other words, we show that the maximal potential gain achievable by entangled
coding strategies is limited. This means that for these channels, the use of entanglement can-
not improve the classical capacity achieved by classical modulation of coherent states by
much: with growing input energies, the maximal gain by coding strategies using entanglement
becomes negligible compared to the value of the capacity.

Our work follows similar reasoning as that of Konig and Smith [18], who addressed the
question whether entangled coding strategies can substantially increase the classical capac-
ity of thermal noise channels: we also employ entropy power inequalities to obtain upper
bounds on the capacity. However, in contrast to [18], we also need to establish new achiev-
ability (lower) bounds on the capacity: here we again use entropy power inequalities, as well
as Gaussian extremality—this reasoning follows pioneering work by Shannon [15]. While
the results of [18] for the thermal noise channel have by now been superseded by the explicit
capacity formulas of [4], it appears unlikely that similar explicit formulas can be established
with present-day analytical methods for the non-Gaussian channels discussed here.

3. Analytical tools for bosonic systems

Evaluating the classical capacity amounts to solving a highly non-trivial optimization prob-
lem. Even for the one-shot capacity, which does not involve an infinite limit over parallel uses
of the channel, explicit capacity formulas are generally not known. In special cases, e.g. when
the channel exhibits certain symmetries (in particular, gauge-covariance or contravariance in
the bosonic context), this difficulty can be overcome [4, 27, 28]. However, the focus of our
work is on more general, possibly non-Gaussian channels. In this context, only few analyti-
cal tools are known: these include entropy power inequalities (EPI), the Gaussian maximum
entropy principle, as well as certain more recent Gaussian optimizer results. In this section, we
briefly review these results, and also discuss related conjectures. In section 4, we then discuss
the implications of these statements to classical capacities: we will see that they imply various
bounds on the possible degree of non-additivity.

3.1. Gaussian extremality

A key tool in dealing with non-Gaussian distributions, states and optimization are Gaussian
extremality results. The main result we use here is Gaussian extremality for the von Neumann
entropy (but see [29] for more general statements and applications): this states that among all
states with fixed first and second moments, the Gaussian state has maximal entropy. Succinctly,
this can be expressed by the inequality
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S(o) < S([o]). (10)

where [g] is the Gaussian state with the same first and second moments as o. As a corol-
lary, among all one-mode states ¢ with mean photon number tr(afap) smaller or equal to

N
N+1

g(N):= (N+1)log(N + 1) — Nlog(N). A simple proof of this corollary can be found, for
instance, in [30, lemma 9], while the entropy of Gaussian states has been calculated in [31].

Gaussian states also turn out to be optimal for various entropy or entropy-related quanti-
ties defined in terms of Gaussian operations. For example, Gaussian states have recently been
shown to be the optimizers of the defining problem of || ®||,_,,-norms for a Gaussian channel
®, see [32, 33]. In a similar context, in a series of recent works by De Palma, Trevisan, and
Giovannetti [10-13], it was shown that the output entropy of any gauge-covariant one-mode
Gaussian channel for a fixed input entropy is minimized by taking as input state the thermal
state of this fixed input entropy. For the beamsplitter with environment in the thermal state
OmnN, this can be stated as [13, theorem 4]

S(Enen(@)) = g(Ag'[S()] + (1 = MN) . (11)

As explained below, equation (11) is a special case of the currently unproven entropy photon
number inequality (EPNI) conjecture, which is of relevance to this work.

N, the Gaussian thermal state pmy = ﬁZ;:iO( >”|n) (n| has maximal entropy

3.2. Entropy power inequalities

In classical information theory, the Shannon entropy of an R”-valued random variable X with
probability density f : R" — R is given by H(X) = — [ f(x) logf(x)d"x. In order to estimate
the capacity of additive noise channels, Shannon [34] proposed the entropy power inequality
(EPI)

eZH(X+Y)/n > eZH(X)/n _|_62H(Y)/n’ (12)

where the lhs is the entropy power of the sum of two independent random variables X and Y.
A rigorous proof of (12) was established by Stam [35, 36] under the assumption that X and
Y are of finite variance. Blachman in [36] gave a detailed account of Stam’s proof, and Lieb
in [37] subsequently found a different proof of the entropy power inequality using Young’s
inequality for convolutions.

In the context of quantum information theory, Shannon’s entropy power inequality has
been generalized. In [7], the inequality

eS(Exee(@)/n 5 NS/ o (] _ y)eStow)/n (13)

was shown for A = 1/2. This was then generalized by De Palma ef al [8] to all A € [0, 1].
The Ihs involves the von Neumann entropy of the output £ ,, (0) under a beamsplitter of
transmissivity A, defined in (6), and can be considered as a quantum convolution operation of
two n-mode states ¢ and o, analogous to the convolution X + Y of two independent random
variables X and Y. More recently, a conditional version of the entropy power inequality has
been proven by De Palma and Trevisan [30], generalizing a statement previously established
for Gaussian states only [38]. This result can be stated as
S(CIE) g S(A[E)

) B|E),,.
exp —— 5 > Aexp . 2E 1 (1 — \)exp w (14)
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for the input system A, the environment system B, and the output system C of the beamsplit-
ter. This concerns a tripartite state gapg consisting of two n-mode systems A and B which are
conditionally independent given E, as well as the result ocp = trg ((U A ®Ig)oape(Uy ® IE)T)
of applying a transmissivity- A beamsplitter U) to AB. Remarkably, the proof presented in [30]
circumvents all regularity assumptions required in earlier proofs: it is valid for any state gagy
with finite mean photon number (second moments) in AB and satisfying S(og) < oco. This
also implies the validity of (13) for all states ¢ and og with finite mean photon number. The
conditional entropy power inequality (14) has application to establishing upper bounds on the
entanglement-assisted classical capacity of bosonic quantum channels, as proposed in [38].
Another generalization of (12) has been established in [9] and can be stated as

S(F(@)/n 5 oS@)/n | e/, (15)

for a probability density function f : R** — R and an n-mode state o. The lhs of this inequal-
ity involves the entropy power of the output F; s(g) of the classical noise channel, defined in
(7). As before, the expression F;s(p) can be considered as a convolution operation, in this
case between a probability density function f and a quantum state . The proof presented in
[9] follows earlier heat-flow arguments and requires certain regularity assumptions. It appears
straightforward, however, to adapt the proof of [30] to this setting—this would show that (15)
holds for all probability density functions f with finite second moments and all states o with
finite mean photon number.

3.3. Conjectured entropy photon number inequalities

In [39] and [40], an alternative to the entropy power inequality (13) has been proposed, replac-
ing the entropy power of o by the mean photon number of a Gaussian thermal state with the
same entropy. This inequality is called the Entropy Photon-Number Inequality (EPNI) and can

be stated as
g (5(5“(9))) > g™ (SE?) + (1= Mg (Sm)> ’ (16)

n n

where the channel £, ,, is used in parallel on n modes. This statement can be seen as a gener-
alization of (11) to multiple modes and the case when the environment is not a thermal state.
Despite progress in certain special cases [41], and the special case of (11), the EPNI remains
unproven. However, its implications on capacities have been studied in a number of works
[39, 40, 42].

It is natural to ask whether an EPNI also holds in the case of the channel F; ;. We conjecture
that this is the case and that the ‘classical-quantum’ EPNI reads

- (SU”A@))) S g (S(Q)) 4l (17)

n n e

A weaker statement which would still be useful for establishing lower bounds on the classical
capacity is the specialization of this EPNI to the case of one mode and a thermal input state:

g [S(Fir(omn))] =N+ éeH(f), s

where og v is the Gaussian thermal state with mean photon number N as introduced above.
This inequality can be seen as a classical noise channel analog of equation (11) for the attenu-
ator. A proof of equation (18) might be easier than the full proof of equation (17) and still have
desirable implications: we show that assuming the validity of equations (18) and (17) leads

8
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to better bounds than using the entropy power inequality, again without altering the spirit of
the theorems.

Having reviewed the key tools required for the discussion, we continue with the statement
of our results in the next section.

4, Limited non-additivity for non-Gaussian bosonic channels

Here we show that the recent generalizations of the EPI as well as the related results discussed
in section 3 have direct implications for the classical capacities of non-Gaussian bosonic chan-
nels. In particular, they imply that the degree of potential non-additivity is limited for attenu-
ators and classical noise channels. A similar analysis has been carried out in [18] for special
cases of the channels considered here, namely Gaussian thermal noise channels. In contrast
to that work, we show that the degree of non-additivity can also be bounded for non-Gaussian
channels. This extends our understanding of classical capacities to previously untreatable
cases.

One of the key observation is that EPIs can be used to obtain not only upper (converse)
bounds on the classical capacity of non-Gaussian channels, but also achievability bounds.
Remarkably, these achievability bounds concern simple product state codes consisting of
coherent states. This coding strategy has recently been shown to be optimal for phase-
insensitive Gaussian channels. It is known to not be optimal [4—6] for certain phase-sensi-
tive Gaussian channels, where coding with squeezed coherent states achieves a higher rate.
Nonetheless, coherent state coding gives a good lower bound also in these cases, as we will
see below.

Our work implies that the same strategy of using coherent states is also essentially optimal
for the more general non-Gaussian channels considered here. Thus although this coding strat-
egy is in general not optimal even for Gaussian channels, we show that it is a suitable choice
of coding strategy for non-Gaussian channels.

In spirit, our results can be seen as quantum generalizations of Shannon’s work, in which
he applied the entropy power inequality to the capacity of the additive noise channel [34]: He
found that the capacity Cp of a classical additivity channel ¥ = X + Z, where Z is noise inde-
pendent of the input X (but otherwise arbitrary), is bounded by

P+ N P+ N

1
M CN

log

I
o
7

; (19)

where P is the average transmitter power, N is the average noise power, and N; = ¢2#(%) /(2me)
is the entropy power of the noise Z. In the special case where Z is distributed according to a
standard normal distribution, the upper and lower bounds in equation (19) coincide and reduce
to Shannon’s capacity formula for the additive white Gaussian noise channel.

Our main result concerns the single-mode attenuation channel £y ,, introduced in (6), and
the classical noise channel J; introduced in (7). We shall denote the mean photon number
tr(a}];aEaE) of og by Ng, and its von Neumann entropy by S(og). Similarly, we write

2
B() =Y [ e
i=1
for the energy (i.e. the sum of second moments) of the distribution f and

H(f) = - / F(€) log(€)d2
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for the Shannon entropy of the associated random variable. Throughout, we will assume that
these quantities are finite. We then have the following main result:

Theorem 1.  The maximal degree of non-additivity of the classical capacity of Ex o, and F ¢
is bounded as

Cr(Enme) = X (Exere) < 28((1 = AN) = g((1 = WNET) —log (A+ (1 = NS )

Cn(Fif) — xn(Fiy) < 28(mtE(f)) — log (1 + teH(f)) ’

independently of the input energy N, where N& = g~ ' [S(og)] is the mean photon number of
a thermal state with the same entropy as og. For both channels, coherent states modulated
with a Gaussian distribution achieve a rate which differs from the capacity by at most the rhs
of these bounds.

The fact that the rhs of these bounds is independent of the input energy N implies that
the degree of violation is at most constant. In particular, the potential violation is negligible
compared to the actual value of the capacity for large N. In other words, there is no significant
advantage in using entangled states for coding. This result is indeed not surprising: For very
large values of N, the associated quantum channels are ‘almost classical’ and therefore it is
natural to expect quantum effects such as non-additivity to become small in this regime.

The maximal degree of violation depends on the structure of the environment (the state og
respectively the distribution f) and is not simply a universal constant as in [18]. This is not
surprising because [18] only considered attenuation channels with Gaussian thermal states in
the environment (also called thermal noise channels).

Unlike Shannon’s result (19), the bounds in theorem 1 do not specialize to the known
capacity results for Gaussian channels in the case where o is a thermal state or fis a unit-
variance centered normal distribution. We show that stronger bounds with this property can be
derived assuming the validity of the EPNI conjecture:

Theorem 2. Assuming the EPNI conjecture (16) holds, we have
CrlEnm) = xv(Er) < 2[((1 = Ae) — (1 - VN
Similarly, assuming that the EPNI conjecture (17) holds, we have

Cn(Frp) — xn(Frp) < Z{g(m‘E(f)) —g (éeH(f))} )

Furthermore, coherent state modulation with a Gaussian distribution achieves a rate which
differs from the capacity by at most the rhs of these bounds.

We stress that these bounds hold independently of whether or not o or f (and thus the chan-
nels) are Gaussian. In the special case where o is a thermal state, we have NP = Ng: here
theorem 2 implies that there is no additivity violation, and we recover the Gaussian capacity
result for the thermal noise channel (8) (see below). Similarly, if fis a unit-variance centered
normal distribution, theorem 2 reduces to the capacity result (9) for the Gaussian classical
noise channel. In this respect, theorem 2 behaves similarly as Shannon’s bounds (19) and is
compatible with the capacity formulas of [4].

10
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Furthermore, if o is a squeezed thermal state, coherent state coding is known not to be
optimal [5]. The classical capacity for input energies higher than a certain threshold value in
this case is achieved by input states which are squeezed coherent states. In this case the rhs
in theorem 2 becomes a bound on the difference in rate between squeezed coherent state cod-
ing and coherent state coding. The same holds true in the case when fis a Gaussian whose
covariance matrix is not proportional to the identity [6]. In these particular cases (above the
threshold energy), the gap between the lower and upper bounds we obtain is not due to non-
additivity, but simply due to the fact that coherent state coding is not optimal in the one-shot
case for these channels. We stress that this does not weaken the statement of our theorems in
the case of non-Gaussian channels, which are our main focus and for which our bounds are
new.

We point out, however, that theorem 1 (which does not require the EPNI conjectures)
essentially gives the same qualitative conclusions for non-Gaussian channels, and theorem 2
does not provide additional information. Indeed, consider for example the case of the attenua-
tion channel, with og = |Ng) (Ng| equal to one of the number states |[Ng). Then both theorems
1 and 2 specialize to

Cn(Exvey vel) — XN (Exnvey (ve)) < 2¢((1 — A)Ng)

Observe also that for Ng = 0, the rhs vanishes, showing that the so-called pure loss channel
(with og = |0)(0] equal to the vacuum state) does not violate additivity. In particular, this pro-
vides a new rederivation of the capacity result of [43] based on the EPI only.

We present the derivation of these results in section 5.

5. Derivation of non-additivity bounds

In this section, we present the proof of theorems 1 and 2. Let us first sketch the basic idea: The
Holevo quantity (3) consists of a difference between two entropic quantities. The maximum
entropy principle (10) allows us to restrict to Gaussian states when we require upper bounds
on entropies (subject to fixed second moments), whereas the entropy power inequalities (13)
and (15) (respectively the entropy photon-number inequalities (16) and (17)), as well as equa-
tion (11) are suitable to obtain lower bounds on entropies. The bounds on the capacity are then
expressions which depend on output entropies restricted to Gaussian input states and Gaussian
environments. These quantities can then be bounded with elementary calculations. The deriva-
tion of upper bounds on the capacity thus proceeds similarly as in [18]; in addition, we obtain
lower bounds on the capacity in a similar fashion.

5.1. Derivation of capacity bounds from EPIs

We first consider the attenuation channel £ ,, introduced in equation (6). The corresponding
inequality in theorem 1 follows immediately from the following lemma. The corresponding
statement for the classical noise channel F; is shown in lemma 1B below.

5.2. Derivation of bounds from EPIs

Lemma 1A. The classical capacity of the single-mode attenuation channel £ ., satisfies
Cn(Exce) 2 g(AN + (1= NNEP) = g((1 = A)N), (20)

1
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Figure 1. Bounds on the capacity Cy(Ex ;) With A = % for any environment state og
with mean photon number Ng = 2 and entropy S(og) ~ 0.91 nats < g(Ng) ~ 1.91 nats.

Cr(Exor) < (N + (1= NNg) — log (A + (1 = 2)e5) . 21

The lower bound (20) is achievable with a coherent state ensemble. The difference between
this upper and lower bound is bounded by

A(Eroe) < 28((1 = X)Ng) — g((1 = MNE) —log (A +(1- )\)eS(UE))
(22)
independently of the input photon number N.
The corresponding upper and lower bounds on the capacity are visualized in figure 1.

Proof of lemma 1A. The upper bound. We prove the upper bound (21) in a similar fashion
as [18]. By bounding the Holevo quantity in the Holevo—Schumacher—Westmoreland formula
(3) for the classical capacity we have

1 .
Cn(Enos) < SV (Enoy) — lim —S™™(EFM ), (23)

n—o0o N A0E

where

Sﬁax(g)\ﬁ}s) = sup S(SA,UE(Q))

tr(atag)<N

and S™i(€) = inf, S(£(p)) is the minimum output entropy. For any n-mode state g,, by the
entropy power inequality we have that

12
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®n

g (gen S(on)/n S(ag")/n
e (EX" (0n)) = log ()\e e/m 4 (1 — A)eS(oE") )

A0E

> log ()\ +(1- )\)es("ﬁ)) (24)

by the entropy power inequality (13) since S(g) > 0 for any state p. This is a useful bound on
the second term in equation (23). In order to find a bound on the first term, let us consider the
mean photon number of the output state £y », (¢), where the input ¢ has mean photon number
bounded by N. It can be bounded as

tr (aTaé’,\)gE(g)) = Atr (aTag) + (1= Mtr (a};aEaE)
<AN A+ (1= A)Ng . (25)

Thus the output entropy is bounded as
SV (Exce(0)) < g(AN + (1 — M)Ng) (26)

by the maximum entropy principle. Combining equations (23), (24) and (26), the upper bound
(21) follows.

The lower bound. To show (20), recall that taking the one-shot expression of the Holevo

quantity and plugging in a specific ensemble of signal states { py, o, }» gives a lower bound on

2
the capacity. We pick a Gaussian ensemble of coherent states, {ﬁe’%d% ,1€) (€| }e. Note
that the ensemble average 0 = 51 [ e 3 |€)(£]d?¢ is the Gaussian thermal state oy, y With

mean photon number N. Therefore S(g) = g(N). A lower bound on the classical capacity is
thus given by

CN(g)\,aE) 2 XN(S)\,D'E)

> S(Exnos(00n)) —

1 el 2
v [ s @
‘We can lower bound the first term as follows: we have

S(é‘)\»UE(th,N)) = S(gl—A,Qm,N (UE)) = g(AN + (1 - /\)Nép) . (28)

The first equality follows because for general states g, o, we have £y, (0) = E1-x,(0), as
can be seen by considering the characteristic function of the output state under a beamsplitter

[7]: it satisfies XgME(Q)(g) = Xg(ﬁg) “Xoe (V1 = XE) = Xe,_.0(0p) (§) forall § € R2. The
inequality in equation (28) follows from the lower bound (11) on the output entropy of the
phase-covariant Gaussian channel &, _ ,,, for fixed input entropy S(og).

To bound the second term in (27), observe that by the maximum entropy principle, we have

S(Exos (1€)(ED) < S([Enoe (1E)(EN])
S(Eoe (1€)4€D)

)
S(Exjoe (10)(0)))
sup  S(Enme(10)(0]) =: A(\N) .

o Gaussian

N

w(afap o) <Ng

13
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The first identity holds because both expressions [€x o, (|€) (§])] and E) [, (|€) (§]) define the
same Gaussian state, as can be verified by computing the associated covariance matrices. The
second identity is a consequence of the compatibility of the beamsplitter with displacements
[7, lemma VI.1] and invariance of the von Neumann entropy under unitaries.

It remains to find an upper bound on A(A, Ng). In order to find such an upper bound, we
consider the mean photon number at the output and apply equation (25), obtaining

tr (a'a&x 0 (10)(0])) < (1 — A)Ng .

Hence by the maximum entropy principle, we have that

AN\ Ne) < g((1—X)Ng) . (29)

Combining equations (27)—(29), the lower bound (20) follows.

The difference between the upper and lower bound. The difference between the upper and
lower bound is given by

A(Exap)(N) = 3(N) +g((1 — A)N) — log ()\ +(1- A)eS(UE)) (30)
where

S(N) == g(AN + (1 = A)Ng) — g(AN + (1 — N)NY)

collects the terms depending on N. Since g'(N) = log(N + 1) — log(N) is strictly decreasing,
Ng? < Ng by the maximum entropy principle, and the monotonicity of g, we have

§'(N) = Al g' (AN + (1 — \Ng) — ¢/ (AN + (1 = ANP) | <0

and ¢ is decreasing as well. Therefore, we have

5(N) < 3(0) = g((1 = MNe) — g((1 = ANZ) .

Inserting this into (30), we finally obtain the bound (22), as claimed. O

We now turn to the classical noise channel JF; introduced in equation (7). The following
lemma immediately implies the second inequality in theorem 1. The bounds given in this
lemma are illustrated in figure 2.

Lemma 1B. For the classical capacity of the single-mode classical noise channel F, g, we
have the bounds

Cn(Fiy) > log () + 1)) — g(miE(/)), (1)
Cn(Fry) < g(N + mtE(f)) — log (1 + teH(f)) . (32)

The lower bound (31) is achievable with a coherent state ensemble. The difference between
this upper and lower bound is bounded by

14
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Figure 2. Bounds on the capacity Cy(F;y) with ¢ = 1 for any distribution f satisfying

E(f) =2and e#) ~ 15.1 < 27e.

A(Fiy) < 2g(mE(f)) — log (1 + teH(f)> :

independently of the input photon number N.

Proof of lemma 1B. The upper bound. To obtain the upper bound (32), we again bound

the Holevo quantity by

1
Cv(Fig) < SE™(Fig) — lim ~S"(FS)

n—o0o N

By the entropy power inequality (15) we have
1

—SR(FE") > log (1 +zeH<f>> .
This is because e5(e)/7 > 1 for all n-mode states o, and because

F(0,) /f"> W(VI€) 0aW (ViE) e

for the probability density function

FOE) = T f (Eaimrs E20) = T2 f (qis i)

on R?", which has Shannon entropy H(f") = nH(f).
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To bound the first term in (33), we again use the maximum entropy principle to obtain

Sy (Fip) = sup  S(Fir(o)

tr(atap)<N

< sup S([Fir(o)])
tr(atap) <N

= s S(F ()

tr(atap) <N

= (N + mE(f)),

giving the claimed upper bound. The last step follows because for Gaussian f'and g, it is easy
to directly evaluate the behavior of the mean photon number under the channel and conclude

that we can replace SUPtr(atag)<N S([‘/—.}J(Q)]) with SUPtr(at ag) KN+miE(f) S([Q])

The lower bound. For the lower bound (31) we use a Gaussian ensemble {g(&)d>¢,

§)(El}e

2
(where g(&) = me_%) of displaced coherent states with mean photon number (of the en-
l€]

semble) N. Then the ensemble average is ony = 5o [ €~ 2 [£)(£|d€ and we obtain

Cn(Fip) = xn(Fry) = S(Fip(omn)) — /8(€)S(~7:t,f(|§><§|))dzf
> log (&) 410 — $(F(10)(0])

> log (eg(zv) + teH(f)) _ g(mE(f)),

where we have used the entropy power inequality (15) and invariance of the von Neumann
entropy of a state under unitary conjugation, as well as compatibility of the classical noise
channel with displacements [9, lemma 2] in the first step and the fact that gy, v is a Gaussian
thermal state with mean photon number N in the second step.

The difference between the upper and lower bounds. We again write the difference between
the upper and lower bound as

A(F)(N) = 6(N) — 1og (141D ) + g(wE(f),

where
§(N) = g(N + mE(f)) — log (eg(N) + teH(f)> :
We have
log () 4 167() = log {egm (14 ret-59) ]
= g(N) +log (1 + D=6 > g(w),
and thus

8(N) < g(N + 7E(f)) — g(N) .

16
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Now an adaptation of the argument given in the proof of lemma 1A proves the claimed state-
ment: the rhs is monotonically decreasing in N, and thus maximal for N = 0: this yields

§(N) < g(wE(f)), which implies the claim. O

5.3. Derivation of strengthened capacity bounds from conjectured EPNIs

We now sketch how to obtain theorem 2, focusing only on the differences in the derivation
between theorems 1 and 2. Again, we first treat the case of the attenuation channel £, ,,. The
classical noise channel F;y is then discussed in lemma 2B below.

Lemma 2A. Assuming the EPNI conjecture (16) holds, the classical capacity of Ex oy
satisfies

CulErme) < 8N + (1= MN) — 5((1 = MN)
The difference between this upper bound and the lower bound (20) is bounded by

A(Exnoe) <2|2((1 = NNg) = g((1 = NNF) |,

independently of the input photon number N.

We note that the EPNI does not improve upon the lower bound on the classical capacity of
Ex.op given in lemma 1A. This is because the lower bound only requires a bound on the mini-
mal output entropy of &) ,, for thermal input states, a case where the statement of the EPNI is
already covered by the established equation (11).

Proof. Lemma 2A follows when we use the EPNI (16) instead of the EPI (12) in the proof.
In particular, we obtain from the EPNI that

s(68,(00) = ¢ (e [Ste)/n] + (1= Ve [s(o£") ) )
> (1= V),

since S(p) > 0 for any state p. This expression replaces the second term in the upper bound
of lemma 1A. The bound on the difference between the upper and the lower bound in lemma
2A follows analogously to before. O

Employing the EPNI (17) instead of the EPI (15) in a similar fashion shows the second part
of theorem 2 for the classical noise channel F;

Lemma 2B. Assuming equation (18) holds, the classical capacity of F,y satisfies
t
Cu(Fiy) > g (N + 2e0)) = g(wiB(f)) .
Assuming in addition that the EPNI conjecture (17) holds, we further have

Cy(Fiy) < g(N +7E(f)) — g (EeHm) .

e

The difference between this upper and lower bound is bounded by

17
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AFg) <2 slmE(r) - (S0 |

e
independently of the input photon number N.

Proof. Here we obtain

IR t
WS 2 8 (G0).

replacing the second term in the upper bound of lemma 1B. The first term in the lower bound
is replaced by

S(Fir(e) > g (N + éeH(f)) ’

replacing the first term in the lower bound of the lemma. The maximal difference between the
upper and the lower bound follows again analogously to the reasoning from before. O

6. Discussion

We have derived bounds on the classical capacity of a general class of bosonic channels which
includes both Gaussian as well as non-Gaussian examples. We have shown that for these
channels, the rates achievable by modulation of coherent states are not too far away from
the maximal achievable rate (using arbitrary, possibly entangled code states). The maximal
gain resulting from the use of general coding strategies is bounded by a channel-dependent
constant independently of the average energy of the signal states. In particular, this means that
these channels can only exhibit a limited amount of additivity violation: the product-state and
general classical capacities essentially coincide.

There are a few paths one could follow for future work: First, a proof of equation (18)
would be desirable as a first step towards a proof of the classical-quantum EPNI (17), imply-
ing better bounds on the classical capacity of the channels considered here. One may also
wonder about similar statements for the multi-mode versions of the considered channels.
The two main ingredients of our proofs, the maximum entropy principle and the entropy
power inequality, both hold in the multi-mode case. Furthermore, minimal output entropy
results analogous to (11) have been shown in the multi-mode setting [24], essentially provid-
ing us with all tools required in the proof of our bounds. Therefore, similar bounds should
hold. Another interesting question concerns the implications of the EPI and EPNI to other
capacities than the classical capacity, such as the entanglement-assisted classical capacity.
The recently proven conditional version of the EPI has been shown to imply an upper bound
on the entanglement-assisted capacity [30, 38], but a corresponding lower bound for general
non-Gaussian channels is missing so far.
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The conditional entropy power inequality
for quantum additive noise channels

Giacomo De Palma and Stefan Huber

We prove the quantum conditional entropy power inequality for quantum additive noise chan-
nels. This inequality lower bounds the quantum conditional entropy of the output of an additive
noise channel in terms of the quantum conditional entropies of the input state and the noise
when they are conditionally independent given the side information. We also show that this
conditional entropy power inequality is optimal in the sense that we can achieve equality asymp-
totically by choosing a suitable sequence of Gaussian input states. We apply the conditional
entropy power inequality to find an array of information-theoretic inequalities for conditional
entropies which are the analogues of inequalities which have already been established in the
setting without side information. Furthermore, we give a simple proof of the convergence rate
of the quantum Ornstein-Uhlenbeck semigroup based on entropy power inequalities.

A.3.1 Main Results

We consider the “classical-quantum” convolution operation from Eq. (4.11) as a model for
quantum additive noise channels. Our main result is the following conditional entropy power
inequality for this class of channels:

Theorem A.3.1 (Conditional entropy power inequality for the convolution (4.11)). Let A
be an n-mode quantum system, R a classical system and M a generic quantum system. Let
pARM be a quantum state on ARM such that its marginal on R has a probability density
function pr : R*™ — R. Let pagnr further satisfy

tr (Z aLapA> < 00, E(pr) < o0, S(pm) < oo .
k=1

Let us suppose that A and R are conditionally independent given M, i.e.,

I(A: R’M)PARJ\/I =0,
and let )
d="¢
(2m)m
Then, for any 0 < XA <1 the linear conditional entropy power inequality holds:

S(Cn‘m > /\S(ﬂM) +a _A)S(}i'M) ~ AMog A — (1= A)log(1—A) .

pem = (€ @ 1) (parm) = /R% D(&)panir=¢D(&) pr(&)

In particular, we obtain the conditional entropy power inequality for the convolution (4.11):

S(C|M) S(A|M) S(R|M)
exp ———— > exp ——— + exp
n n

If the classical system R is uncorrelated with the system M, we have the inequality

SIOM) o o SAM) - Ser)

exp ——— > ex exp —= .
n n
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Remarkably, this conditional entropy power inequality is optimal in the following sense:

Theorem A.3.2 (Optimality of the conditional entropy power inequality). For any a,b € R
there exists a sequence of states {p%)\/[}k N and a probability density function f : R? — R such
€

that the classical system R is uncorrelated with M and

lim S(A|M) =a, S(RIM)f =10,
k—ro0

(k)
PAM
as well as

lim exp S(C|M) ) =expa-+expb.
k—o0 Pom

where p(t), = (£ @ Lar) (pans) with Ex(pa) = f % pa.

A.3.2 Applications

In this section, let again A be an n-mode quantum system, M a generic quantum system and
let paps be such that tr (ZZ:1 aLapA> < oo and S(par) < 0.

Lemma A.3.3 (Quantum conditional Fisher information isoperimetric inequality).

>1

— )

n t=0

d 1 B
I [J(A!M)(N(t)mM)(pAM)]

where N (t)(pa) = fz *t pa is the diffusion semigroup.
Theorem A.3.4 (Isoperimetric inequality for quantum conditional entropies).

S(AIM)pan

n

>e

1
EJ(A|M)pAM exp

Theorem A.3.5 (Concavity of the quantum conditional entropy power along the heat flow).

d? exp SUM)wwetmean| ¢
dt? n 0

Versions of these inequalities in the setting without side information were previously obtained
in Core Article I [1]. The proofs therein exhibited some regularity issues regarding the definition
of the Fisher information. These issues are lifted by the proofs in this article, and choosing M
to be trivial, we recover these inequalities for the setting of no side information.

A.3.2.1 Upper bound on the entanglement-assisted capacity of classical noise channels

Let A and C be n-mode bosonic quantum systems, f : R?*” — R be a (possibly non-Gaussian)
probability density function with finite second moments, and consider again the classical noise
channel

Er: S(Ha) = S(He) ,
pa = Ep(pa) = f*pa .
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Write Ey = %TJ:),SO = # for the average energy and entropy per mode of f. Then the
energy-constrained entanglement-assisted classical capacity of the channel & is defined as [32—-

34]

Cea(Ef) = sup {I(C’ : M)($f®]1M)(pAM) D pAM pure, tr <Z aLakpA> < nE} ,

k=1

where the energy constraint tr (Ezzl aLakp A) < nFE physically means that the sender can
only use states of a finite average energy E per mode. Then we prove that

Cea(€) < ng(E + Ep) — nlog (e_g(E) + eSO> )

A.3.2.2 Fast convergence of the quantum Ornstein-Uhlenbeck semigroup

Consider a one-mode bosonic quantum system A and the quantum Ornstein-Uhlenbeck semi-
group {PWA(t) = etnr}yso defined in (A.1). Conjecture A.1.7 was proven shortly after the
publication of Core Article I [1] in the work [7], using as tools newly developed methods in gra-
dient flow. We give a short proof of the generalization of Conjecture A.1.7 to the setting with
side information using the entropy power inequality, which directly implies Conjecture A.1.7
and provides an arguably simpler proof for it than the one which was previously known.

Theorem A.3.6. We have for any quantum state paps

D <(77””\(t) @ 1) (pann) oy, sz ® PM) < e (D <pAM||Pth 2 @ PM> :
) 7”‘ —A

A2
el
where pyr = tra (panr) is the marginal state of pay on the system M.

A.3.3 Individual Contribution

I am the principal author of this article. The start of this project happened during a visit of
Giacomo De Palma in Munich during a discussion of possible new entropic inequalities similar
in spirit with recent results [13]. We worked out a sketch of proof of Theorem A.3.1 and the
rough structure of auxiliary Lemmas together during this visit. I was then responsible for
writing all sections of the article and completing the proofs. As an exception to this, Giacomo
De Palma was responsible for proving Lemma 3, and the main idea for Theorem 9 is also due
to him.
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We prove the quantum conditional entropy power inequality for quantum additive
noise channels. This inequality lower bounds the quantum conditional entropy of the
output of an additive noise channel in terms of the quantum conditional entropies
of the input state and the noise when they are conditionally independent given the
memory. We also show that this conditional entropy power inequality is optimal in
the sense that we can achieve equality asymptotically by choosing a suitable sequence
of Gaussian input states. We apply the conditional entropy power inequality to find
an array of information-theoretic inequalities for conditional entropies which are the
analogs of inequalities which have already been established in the unconditioned
setting. Furthermore, we give a simple proof of the convergence rate of the quantum
Ornstein-Uhlenbeck semigroup based on entropy power inequalities. Published by
AIP Publishing. https://doi.org/10.1063/1.5027495

. INTRODUCTION

Additive noise channels are central objects of interest in information theory. A general class
of such channels can be modeled by the well-known convolution operation: If X and Y are two
independent random variables with values in R*, the convolution operation (X, Y) — X + Y combines
X and Y into a new random variable X + Y, the probability density function of which is given by

fxer (@)= /kax(z — X)fy(x) d*x. (D

The convolution is a well-studied operation, and it plays a role in many inequalities from functional
analysis, such as Young’s inequality and its sharp version'-? as well as the entropy power inequality.>©
These inequalities have important applications in classical information theory, as they can be used
to bound communication capacities, which was originally carried out by Shannon.> An extensive
overview of the many related inequalities in this area is given in Ref. 6.

Central to the work presented here is the entropy power inequality. It deals with the entropy of
a linear combination of two independent random variables X and Y with values in R¥,

Z=VaX++1-2Y, 120
The statement of the entropy power inequality®~© is

28(Z 28X 28(Y
exp%>ﬂexp%+|l—ﬂ|exp%, 2)

where S(X) is the Shannon differential entropy of the random variable X. A conditional version of
(2) can easily be derived: If X and Y are conditionally independent given the random variable M
(sometimes interpreted as a memory), then
28(Z|M) > dexp 25(X|M) #11 = AJexp ZS(YIM)‘

k k

In quantum information theory, an analogous operation to the convolution (1) is given by the
action of a beam splitter U, with transmissivity 0 < A4 < 1 on a quantum state (i.e., a linear positive

exp

0022-2488/2018/59(12)/122201/20/$30.00 59, 122201-1 Published by AIP Publishing.

@ CrossMark
s ;



122201-2 G. De Palma and S. Huber J. Math. Phys. 59, 122201 (2018)

operator with a unit trace) psp which is bipartite on two n-mode Gaussian quantum systems A, B.
This action has the form

PABF pC =tr2(U/IPABU,T1), (3)

where C is again an n-mode quantum system and tr, denotes the partial trace over the second system.
The mathematical motivation of the study of this operation is that in the special case of a product
state, that is, pap = pa ® pa, it is formally similar to the convolution described in (1) on the level
of Wigner functions. For the beam splitter (3), several important inequalities in the same spirit as
in classical information theory have been established.””'! For instance, the quantum entropy power
inequality reads

S(C) S(A) S(B)
n

exp >dexp——+(1 - A)exp - @)

with S(A) = S(pa) = —tr[pa log p4] being the von Neumann entropy of a quantum state. Unlike in the
classical setting, a conditional entropy power inequality for the operation (3) does not trivially follow
from the unconditioned inequality (4). However, it was recently established in Ref. 11 that such an
inequality holds nonetheless: For a joint quantum state papp such that A and B are conditionally
independent given the memory system M, we have

M AlM B|M
Xpwzﬂexp¥+(l—ﬂ)exps(’l ),

where S(XIM) = S(XM) — S(M) is the quantum conditional entropy. The conditional independence
of A and B given M is expressed with the condition that the quantum conditional mutual information
equals zero,

I(A:BIM):=S(AIM) + S(BIM) — S(AB|M) =0.
Our work concerns yet another convolution operation, which mixes a probability density function
f:R** - R on phase space with an n-mode quantum state p,
d2ng
2m)r

(f.p)=f*p,  where  fxp= / _J@ED©pDE) 5)
R n

where D(¢) are the Weyl displacement operators in phase space. This operation was first introduced

by Werner.!> Werner established a number of results regarding (5), most notably a Young-type

inequality. In Ref. 13, more inequalities involving this operation were shown, most prominently the

entropy power inequality

[

S(f x S S
Xp > p) > exp ) + exp (p). (6)
n n n
In the context of mixing times of semigroups, the authors of Ref. 14 have used this convolution
extensively and proved various properties which are related to the discussion of the entropy power
inequality.

A. Our contribution

Similar to the work carried out in Ref. 11 for the beam splitter, we prove the conditional
version of the entropy power inequality for the convolution given by (5). Let us consider an n-
mode Gaussian quantum system A, a generic quantum system M, and a classical system R which
“stores” a classical probability density function pg:R*' —R. Let us further consider the map
E:AR— C, (ps ® pr) — PR * pa, linearly extended to generic states pag as

d2n§
Qmym

We show in Theorem 5 that the conditional entropy of the output of £® 1y, : ARM — CM is lower
bounded as

pc=E(par) = /RZn D(€) pajr=se D) pr(£)

S(CIM) S(AIM) S(RIM)
Xp —— > exp +exp ,
n n n
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if I(A: RIM) =0, i.e., the systems A and R are conditionally independent given the system M. As a
special case, this inequality implies useful inequalities about the convolution (5) in the case when R
1s uncorrelated with M,

S(CIM SAIM S
exp i > exp @l )+exp ('DR).
n n n

In the particular case when R is a Gaussian random variable with probability density function

Jz1=exp (— % ) /t", the inequality becomes

exp S(CIM) > exp SAIM) +et.
n n

The special cases mentioned above are important in various applications, as we will show later.

This conditional entropy power inequality is tight in the sense that it is saturated for any couple
of values of S(AIM) and S(RIM) by an appropriate sequence of Gaussian input states, which we
show in Theorem 6. This behavior is similar to the case of the beam splitter. On the way to this
inequality, several intermediate results are proven which make up a set of information-theoretic
inequalities regarding conditional Fisher information and conditional entropies. To complete the
picture of information-theoretic inequalities involving quantum conditional entropies, we apply our
results to prove a number of additional inequalities in a spirit similar to the classical case. Among
them, there are the concavity of the quantum conditional entropy along the heat flow (Theorem 8)
and an isoperimetric inequality for quantum conditional entropies (Lemma 7). Furthermore, we show
in Sec. VIII C how, similar to the case of the beam splitter, the conditional entropy power inequality
implies a converse bound on the entanglement-assisted classical capacity of a non-Gaussian quantum
channel, the classical noise channel defined in (5).

Another part of our work regards the quantum Ornstein-Uhlenbeck (qOU) semigroup.
It is the one-parameter semigroup of completely positive and trace-preserving (CPTP) maps
{77(”’/1)(0 = e'Fu }t> o on the one-mode Gaussian quantum system A generated by the Liouvillian

Loa=2L_+ 2L, for u>1>0,
where

1 1
Lip=a'pa-faa’,p)  and  L.(p)=apa’ - 3la'a p),
where a is the ladder operator of A. This quantum dynamical semigroup has a unique fixed point

given by

(59

2_ 2 212 k
o= B Z(F) kK,

H 30

where {|k)};cy 1s the Fock basis of A. It has been shown in Ref. 15 using methods of gradient flow
that the quantum Ornstein-Uhlenbeck semigroup converges in relative entropy to the fixed point at
an exponential rate given by the exponent u> — A2,

D(P*(e)(p)lwtV) < e D(pllw® ) forall 10, @

where D(p||o) =tr[ p(log p — log o)] is the quantum relative entropy. !

We show that a simple application of the linear version of the entropy power inequality (4) for
the beam splitter is sufficient to prove this convergence rate. We also show a simple derivation of
an analogous result for the case of a bipartite quantum system AM, where the system A undergoes a
qOU evolution, using the linear conditional entropy power inequality for the beam splitter recently
proven in Ref. 11. Specifically, we are going to show in Theorem 9 that

(P @ L pallwf @ pu) <D (pallwf © pur). ®

which directly implies the statement (7). Finite-dimensional versions of the statement (8) for gen-
eral semigroups have recently been studied by Bardet.!” Our argument shows that entropy power
inequalities are a useful tool to study the convergence rate of semigroups.

The proof of the unconditioned entropy power inequality (6) given in Ref. 13 exhibits certain
regularity issues regarding the Fisher information: the Fisher information was defined as the Hessian
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of a relative entropy, without a proof of well definedness. Various proofs of the entropy power
inequality for the beam splitter had similar issues.” They were settled in Ref. 11 by the adoption of
a proof technique which starts with an integral version of the quantum Fisher information. We adopt
a similar approach here. Since the conditional entropy power inequality reduces to the unconditioned
inequality in the case where the system M is trivial, this also gives a more rigorous proof of the
unconditioned entropy power inequality. As such, our work can be seen as both a completion of the
work carried out in Ref. 13 and a generalization thereof.

We now sketch the basic structure of the proof of our main result. The main ingredients in
proving entropy power inequalities™’>!1:13 are similar in all proofs, which all use the evolution
under the heat semigroup. These ingredients are the Fisher information, de Bruijn’s identity, the
Stam inequality, and a result on the asymptotic scaling of the entropy under the heat flow. First we
define a “classical-quantum” integral conditional Fisher information, by which we mean a Fisher
information of a classical system which is conditioned on a quantum system. We show in Theorem
1 that this quantity satisfies a de Bruijn identity, which links it to the change of the conditional
entropy under the heat flow. We show the regularity of the integral conditional Fisher information in
Theorem 2 and then prove the conditional Stam inequality in Theorem 3. In the next part, we show
in Theorem 4 that the quantum conditional entropy of a classical system undergoing the classical
heat flow evolution conditioned on a quantum system satisfies the same universal scaling which was
shown for the quantum conditional entropy of a quantum system undergoing the quantum heat flow
evolution conditioned on a quantum system. It is crucial for the proof of our conditional entropy
power inequality that these two scalings are not only both universal but also the same. This scaling
then implies that asymptotically, the inequality we want to prove becomes an equality. Then it is left
to show that it is enough to consider the inequality in the asymptotic limit, i.e., the difference of the
two sides of the inequality behaves under the heat flow in a way which only makes the inequality
“worse.”

The paper is structured as follows: In Sec. 11, we present bosonic quantum systems and the relevant
quantities required for our discussion. In Sec. III, the integral version of the quantum conditional
Fisher information is adapted to the convolution (5). Sections IV and V are dedicated to the proof
of various inequalities that are central to the proof of entropy power inequalities, such as the Stam
inequality and an asymptotic scaling of the conditional entropy. Section VI then proves the conditional
entropy power inequality for the convolution (5) as our main result. Optimality of the conditional
entropy power inequality is shown in Sec. VII. This is followed by the derivation of various related
information-theoretic inequalities involving the quantum conditional entropy in Sec. VIII. Before
concluding, we apply the conditional entropy power inequality to bound the convergence rate of
bipartite systems where one system undergoes a quantum Ornstein-Uhlenbeck semigroup evolution
in Sec. IX.

Il. PRELIMINARIES

Let us consider an n-mode bosonic system'®!® with “position” and “momentum” operators
(Qk, Pi), k=1, ..., n, for each mode which satisfy the canonical commutation relations [Q;, Py] =
i0; 1. If we denote the vector of position and momentum operators by R = (Q1, Py, ..., Qn, P,), the
canonical commutation relations become

[R;, Ry] = iN*1, ij=1,...,2n,

on
where A=| ~ | 0) is the symplectic form.

The Weyl displacement operators are defined by
D(¢)=exp(ié - (A7'R)), for ¢ e R?".

The displacement operators satisfy the commutation relations

D)D) = eXP(—%f - <A—‘n>)D<§ +n). foréneR”,
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and the “displacement property” on the mode operators
D@'RD&)=R; +&]1.
Given an n-mode quantum state p, we define its first moments as
di(p) =tr[Ry pl, fork=1,...,2n,

and its covariance matrix (for finite first moments) as
1
Tu(p) = Etr[{Rk —di(p),R; — di(p)}p], k,I=1,...,2n,

with the anticommutator {X, Y} := XY - Y X.

The aforementioned concepts of displacements and first and second moments are the quantum
analogs of the classical concepts. For a probability distribution function f : R** — R, we define its
displacement by a vector € R*" as

FE =f(E - ).

Furthermore, we denote the energy of the function f by the sum of its second moments,
2n 2,

d=*¢

E(f)= / G @) 5.

; re Ty

The quantities pg = fpon Exf (€ )((1227’[)5,1 are called the first moments of f, and

2n

27y

Y = /Rhf(é“)(fk = (& — pr)

is called the covariance matrix of f. We remark that we have rescaled the Lebesgue measure on R
in these definitions, which we have done purely for convenience.

Definition 1 (Quantum heat semigroup). The quantum heat semigroup is the following time
evolution for any quantum state p:

€12 d>ne
— -5 &)
t = 2 —_— fort >0,
N(®)(p) /R W€ P Gy or
MO) =1,
where p'¢) = D(&)pD(é)Y is a displacement of the state p by & € R*".
The quantum heat semigroup has a semigroup structure, that is, for any s, t > 0, we have

N(s) o N(t) = N(s + ).

2
We note that if fz,(£) = exp(—%)/t" is the probability distribution of a Gaussian random
variable with covariance matrix ¢15,,, then we have
Nt)(p)=fz.1 * p.
The quantum heat semigroup is the quantum analog of the classical heat semigroup, which we
will repeat here. It can be written in an analogous way to the quantum heat semigroup:
Definition 2 (Classical heat semigroup). The classical heat semigroup is the following time

evolution defined on a function f : R*" — R:

£12 d*"
NaOON) = /]R e S

Qntyn’
Na(0):=1.
We also have that for any s, t > 0,

Nai(s) o Na(t) = Na(s + ).
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We note again that we have
NaO(F) =fz. * f,
where
d2n f
@xnm= [ e@rm-e
R2" 2y
is the well-known classical convolution of the two functions g and f [with a factor of (27)" in the
Lebesgue measure on R?" which we introduce purely for convenience].
The convolution (5) is compatible with displacements and with the heat semigroup evolution in
a convenient way, which is stated in the following two lemmas:

Lemma I [Compatibility with displacements of the convolution (5)]. (Ref. 13, Lemma 2) Let
f:R* - R be a probability distribution and p be an n-mode quantum state. Then we have for any

1,6 €RY,
(f * p)(§1+§2) :f(fl) * p(_fz)’

where p® = D(¢)pD(£)T.

Remark 1. Lemma 2 in Ref. 13 only states the compatibility for the case where & 1, £ are parallel.
Nonetheless, the proof given there also works to prove the statement above.

Lemma 2 [Compatibility with the heat semigroup of the convolution (5)]. (Ref. 13, Lemma 5)
Assume the same prerequisites as in Lemma 1, and let t;, t; > 0. Then we have

M1+ 0)(f x p) = Na(t)([f) * N12)(p)-
Definition 3 (Shannon differential entropy). For a classical R*"-valued random variable X with
a probability density function f : R** — R, we define the Shannon differential entropy as
dZné:
Qo

500=5()== | 1@ loes(®

We continue with a short review of Gaussian quantum states. An n-mode quantum state pg is
called Gaussian if it has the following form:!

exp[—% Zif}:l(Rk = di)h(R; — dz)]
pG - 1 2n ]
trexp[—§ 2ir=1 (R = di)ha(R; — dl)]

where £ is a positive definite real 2n x 2n matrix and d € R?" is the vector of first moments of the
state. The entropy of such a Gaussian state is given by

n
1
S(pa)=) g(vk - 5),
k=1
where g(N) .= (N + 1) log(N + 1) — NlogN and vy, ..., v, are the symplectic eigenvalues of the
-1
covariance matrix I' = %(tan % , 1.e., the absolute values of the eigenvalues of ATIT.
A Gaussian state is called thermal if its first moments are zero, and the matrix 4 is proportional

to the identity. Such thermal states have the special form
. h=p1 0
wg=——, = , >
B tre—BH ﬁ 2n B

for the Hamiltonian of n harmonic oscillators H = % ,%’i i R,% — 5 1. Gaussian states fulfill a special
extremality property. Among all states p with a given average energy tr[H p|, thermal states maximize
the von Neumann entropy. Furthermore, among all states with a fixed covariance matrix, the Gaussian
state is the one with maximal entropy.'2°

In our proofs, we are going to require the notion of quantum conditional Fisher information of
quantum systems which was introduced in Ref. 11. We repeat the main properties of this quantity
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here. For a thorough definition and proofs, we refer to Ref. 11. Before giving this definition, we clarify
the notion of “classical-quantum” states on a system RM if the classical system R is continuous. A
state prys on RM is a probability measure on R which takes values in the trace class operators, i.e., a
measurable collection of trace class operators on M {pyr(£)} £eR with the normalization condition

2n
Qry

This state “stores” a classical probability distribution pg in the classical system R if its marginal on
R has pg as probability distribution. The marginals of pyg are

/ tryr[omr(6)]
RZIZ

d2n
oM = / pMR(f)—f, PR(E) = ttpm [ pmr(E)],
o Qn)"
and the conditional states on M given the value of ¢ are
Ort ot = Pur(E)
T @

We do not consider the case where the probability measure pg is not absolutely continuous with
respect to the Lebesgue measure since in this case, its Shannon differential entropy is not defined.
For a more detailed discussion, we refer to Ref. 21, Sec. III.A.3, and the references therein (Refs. 22
and 23, Chaps. 4.6-4.7).

We can also define displacements of such a classical-quantum state: We write pgﬁ) to denote a
state where the classical system R has been displaced by x € R*" and the quantum system M has been
displaced by y € R*".

Definition 4 (Quantum integral conditional Fisher information). (Ref. 11, Definition 6) Let A be
an n-mode bosonic quantum system, and M be a generic quantum system. Let pay be a quantum
state on AM. For any t > 0, the integral Fisher information of A conditioned on M is given by

Aaim(pam)(t) =1(A: ZIM) g pppp0) 2 0, t>0,
Aam(pam)(0) =0,

where Z is a classical Gaussian random variable with values in R*" and probability density function

212

e 2
t

2
, zeR™,

fz4(2)=

and o apmz(1) is the quantum state on AMZ such that its marginal on Z is f 7, and for any z € R,

T aM1z=(t) = Da(2) pamDa(2)".

Definition 5 (Quantum conditional Fisher information). (Ref. 11, Definition 7, Proposition 1)
Let pay be a quantum state on AM such that the marginal pa has finite energy and the marginal pyy
has finite entropy. Then we define the quantum conditional Fisher information of A conditioned on

M as A (pan)(®  d

AM (Pam )t
—————— = =SAIM) N, et pa)| -
t dr =0

As shown in Ref. 11, this limit always exists.

J(AIM)p,; = 1lim
t—

Finally, we are going to require a notion of conditional entropy of a classical system which is
conditioned on a quantum system. If the system on which we condition is classical, the conditional
entropy is simply

S(AIM)=/ S(AIM = m)dpy (m),
M
where py, is the probability distribution of M. This definition is independent of whether the system

A is classical or quantum. We now define the conditional entropy of a classical system which is
conditioned on a quantum system in a way such that the chain rule for entropies is preserved.
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Definition 6 (Quantum conditional entropy of classical-quantum systems). Let R be a classical
system and M be a quantum system. We define the conditional entropy of R given M as

SRIM) =S(MIR) + S(R) — S(M),

whenever the three quantities appearing on the right-hand side are finite.

The case where S(MIR), S(R), and S(M) are not finite will not be part of our consideration.

lll. QUANTUM INTEGRAL CONDITIONAL FISHER INFORMATION

In this section, we consider a generic quantum system M and a classical system R. We are going
to define the quantum integral conditional Fisher information of R conditioned on M and prove a de
Bruijn identity as well as a number of useful properties.

Definition 7 (Quantum integral conditional Fisher information). For a quantum state pgy on
RM whose marginal on R is pg:R* =R and t > 0, define the integral Fisher information of R
conditioned on M as

AR|M(PRM)(Z) = I(R . Z|M)O'RZM(Z)’
Arim(prm)(0) =0,
where Z is a classical Gaussian random variable with the probability density function equal to

1£2

e

f24(é) = . EeR™M,

and o gzm(t) is the quantum state on RZM such that its marginal on Z is equal to fz;, and for any
z€R?" we have

2t
tn

2,0
TrMIZ=(D) = P .

The marginal of opzu(t) on RM is equal to

oru () = (Na(®) ® Ta)(oru)-
The marginal on R has probability density function Noi()(pR).

Theorem 1 (Integral conditional de Bruijn identity).
AR (PrRm (1) = S(RIM)(W ()@ 130) (o) — SRIM) gy -

Proof. We use the definition of the conditional mutual information as well as the definition of
the conditional quantum entropy when the system on which we condition is classical. We calculate

I(R:ZIM) gy, =SRIM) orpri; — S(RIMZ) 04

dZnZ
=S(R|M)O'RM - / S(R|M)O'RM\Z=ZfZ,I(Z) A
RZn (271')
=Sy — [ | SRtz d:
= ORM R .DRMfZ,t < (271_)”

=SRIM) gy, — S(RIM) gy, -

The second to last step follows because the entropy is invariant under displacements of the classical
system. O

We now show that the integral conditional Fisher information defined as above, as a function of
t, is continuous, increasing, and concave. The proof strategy is similar to the proof of regularity for
the quantum integral conditional Fisher information given in Ref. 11.

Lemma 3 (Continuity of the integral conditional Fisher information). Let pgys be a state such
that the function R*" 3 & — PM|R=¢ IS continuous with respect to the trace norm and the marginal pg
has finite average energy. Then, the function t — Ag(pry )(t) is continuous for any t > 0.
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Proof. From the de Bruijn identity, Theorem 1, it is sufficient to prove that
im S(RIM)(pru (1)) = S(RIM)(pra),
where we have defined for any ¢ > 0,

Pru (D) = (Na () ® Tar)(Prum)-

From the data processing inequality, for any 7 > 0,

SRIM)(prm(1)) = S(RIM)(prM)-

It is then sufficient to prove that

lim sup S(RIM)(prm (1)) < S(RIM)(pry)-

t—0

‘We have from the chain rule

SRIM)((Na(®) ® Ta)(pru)) = SMIR) (prur (1)) + S(pr(1)) — S(par)-

From Ref. 24, Remark 9.3.8, and Refs. 25-27, the Shannon differential entropy is upper semicontin-
uous on the set of probability measures on R*" absolutely continuous with respect to the Lebesgue
measure and with finite average energy, and

lim sup S(pr(1) < S(pr).

t—0
On the other hand, we have
d¢
Qo
Since the function ¢ = ppr=£(t) is continuous with respect to the trace norm, we have for any
£eR,

S(pm) = SMIR)(prm (1)) = /R . Dlpmir=£ Dl om) prIIE) ®)

}i_% lorrir=£ (1) = pmir=£1l1 = 0.

Because the relative entropy is positive, we get from Fatou’s lemma

[ it Dou-e Ol o) 5
o d2ng
<lim inf /R ,, Dlonia=0llpw) pr)©) - (10)
Since the relative entropy is lower semicontinuous, we have for any & € R>",
D(pmr=¢llpm) < lir,rl)ionf D(pmr=c Il pm)- (11)
Combining (10), (11), and (9), we get
lir?_)s(;lp S(MIR)(prm (1)) < S(IMIR)(prM)-
m]
Lemma 4. Foranys, t> 0,
Arim(Nai(s) @ Ta)(rm))(®) = IR : ZIM )Ny (5)0 112 (0 rnsz (1)) -
Proof. Follows from the semigroup structure of N¢;. m|

Lemma 5. Forany s, t > 0,

Arint (Na(s) @ Tan)(prm) (1) < Aripa(prM (D).

Proof. Follows from the data processing inequality for the quantum mutual information. ml
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Lemma 6. Forany s, t > 0,

Arim(prm)(s + 1) = Agip (PrRM)(S) + Arjpr (Naa(s) @ Tar)(pru) (1)
> Agim(prM)(S).

Proof. Follows from Theorem 1. O

Theorem 2 (Regularity of the integral conditional Fisher information). For any quantum state
PrM on RM such that the conditions of Lemma 3 are fulfilled, the integral conditional Fisher
information Agiy(pry )(t) is a continuous, increasing, and concave function of t.

Proof. Continuity was shown in Lemma 3 and the fact that the conditional Fisher information
is increasing follows from Lemma 6.
For concavity, by continuity, it is enough to prove that for 0 < s < ¢, we have

S AR (PrRM)(S) + AR (PrM)(E)
> 5 .

S+t)

AR|M(/0RM)( >

This can be written as

S+t
AR|M(,0RM)(T

) — A (oR)(5)

s+
= Arim (PrM () — ARIM(,DRM)(T)~
By Lemma 6, this can be restated as

t—s

ARlM(PRM(S))(t_TS) > AR|M((Ncl(T) ® 1]M)(lf?RM(S)))(t—Ts),

for prar(s) = (Na(s) ® 13)(ora). But this holds because of Lemma 5. |

IV. QUANTUM CONDITIONAL FISHER INFORMATION

Definition 8. For a quantum state pgy on RM such that the conditions of Lemma 3 are fulfilled,
we define the Fisher information of R conditioned on M as

ARim(prM)(2)

J(RIM =1l
(RIM ) =l =

This limit always exists because the function ¢ — Agy(pgar)(?) is continuous and concave by
Theorem 2.

Proposition 1 (Quantum conditional de Bruijn). Assume the hypotheses of Theorem 2. Then we
have

d
TRIM)ppy = 7 SRIM)N @1or)| -
t=0
Proof. Follows from the integral conditional de Bruijn identity given in Theorem 1. m|

A. Stam inequality

Theorem 3. Let A be an n-mode quantum system, R be a classical system, and M be a generic
quantum system. Let pary be a quantum state on ARM such that its marginal on R has a probability
density function pg :R* — R. Let pary further fulfill

tr[H pa] < oo, E(pR) < oo, S(pom) <o0.
Let us suppose that A and R are conditionally independent given M,

I(A:RIM),,,, =0.
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Then the linear conditional Stam inequality holds,
J(CIM)pey, < /lzJ(AIM)pAM +( - /l)ZJ(R|M)pRM’ va€]0,1],

where
dZné‘;
Qmyn

pcm = (E® Ty)(parm) = /Rzn D(€) pamir=¢ D(&)" pr(&)

Choosing A = %, we obtain the conditional Stam inequality

1 1 1

> + . (12)
J(ClM)PCM ‘](A |M),0AM J(RlM)PRM

Proof. We prove the following:

Acm(pem)®) < A (pan)(A*1) + A (pran)(1 = )%0).

Because A is increasing and concave, the Stam inequality follows taking the derivative at t = 0.
By definition, we have for any ¢ > 0 that

Acim(pem)®) =1(C : ZIM) oy 1)
for an R?*"-valued Gaussian random variable Z with probability density function

o ||z2||2
1
2
fZ,t(Z) = Pt zeR™",

and o cpz(t) has fz ; as marginal on Z, and for any z € R?" it fulfills

o cmiz=(t) =Dc(@)pemDe(2) '
We now define the state o-sgpz(¢) as the state with marginal on Z equal to f7 ;, and for any z € R2”,

Az,(1-2
OARM|Z=z = pE‘RZAE, )Z),
i.e., the system A is displaced by Az and the system R is displaced by (1 — 1)z. By compatibility of
the convolution (5) with displacements, we have

ocmz(t) =(E @ Tyz) (o armz(1)).

We notice that

dZnZ
I(A:RIMZ) 61017 = /Rzn I(A :RlM)O'ARM\Z:ngJ(Z) W
dZnZ

= /Rzn I(A : RlM)pARMfZ,l‘(Z) (271_)" =0.

Now we obtain by data processing

1(C: Z\M)(1) < I(AR: ZIM)(1)
=I(A: ZIM)(t) + I(R: ZIM)(t) + I(A : RIMZ)(t) — I(A : RIM)(?)
<IA:ZIM)(t) + I(R: ZIM)(?).

The last inequality follows because I(A: RIM)(¢) > 0. In analogy to Ref. 11, Egs. (79)—(81), we can
show that

(A : ZIM)ap00 = A (pan) (A7),
IR : ZIM) iy = Arin (i) (1 = 2)%1).

This follows from the definition of o 4gaz and the integral conditional de Bruijn identities. The claim
follows. O



122201-12 G. De Palma and S. Huber J. Math. Phys. 59, 122201 (2018)

V. UNIVERSAL SCALING

Theorem 4. Let R be a classical system and M be a quantum system. Let pgry be a quantum
state on RM such that its marginals have finite entropies. Then we have

Lim (SRIM) W o11)pr) — 1110gt = 1) =0.

Proof. Upper bound. We have

SRIM)Wue1m)prm) < SERINL(1)or)-

We know from the analysis of the classical heat flow” that the right-hand side scales as n log? + n.
Lower bound. By concavity, we can restrict to pure pgys. The pure states of the classical-quantum
system RM are the tensor product of a Dirac delta on R with a pure state on M; hence, R and M are
independent and
SRIM)Na@1)rm) =S RING@or)-

Finally, the scaling of the classical entropy S(R)A; () px) 18 known to be equal to nlog? + n from
Ref. 5, which concludes the proof. O

VI. ENTROPY POWER INEQUALITY

Theorem 5 [Conditional entropy power inequality for the convolution (5)]. Let A be an n-mode
quantum system, R be a classical system, and M be a generic quantum system. Let pary be a quantum
state on ARM such that its marginal on R has a probability density function pg : R*" — R. Let paru
Sfurther fulfill

tr[H pa] < oo, E(pR) < oo, S(pom) <oo.
Let us suppose that A and R are conditionally independent given M,

I(A:RIM)p0, =0,

and let
t d>¢
pcm = (E® Ty)(parm) = D(&) pamr=& D(&)" pr(€) .
R Qryn
Then, for any 0 < \ < 1, the linear conditional entropy power inequality holds,
S(CIM SAAIM S(RIM
(«l )2/1 @Al )+(1—/1)g—/llog/l—(l—/l)log(l—/l).
n n n

L . S(AIM)/n . ..
Optimizing over A and choosing A = W’ we obtain the conditional entropy power

inequality for the convolution (5),

M AM R|M
exp@ZexpS(i )+expS(| ). (13)

In particular, if the classical system R is uncorrelated with the system M, we have the inequality

M AlM
exp w = exp SAIM) + exp S(pR).
n n n

Remark 2. An important case for applications is the case when R has the Gaussian probability

2
density function fz7; = exp(—%) [t". In this special case, the inequality reads

exp S(CIM) > exp SAIM) + et.
n n

Proof. We define the evolution
parm(t) = N ® Na((1 = D)t) ® 1) (parm).
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Then, by compatibility with the heat semigroup, this amounts to an evolution of the C system given
by
pem () =N1) @ Tu)(pem)-

This evolution preserves the condition /(A : RIM) = 0 because of the data-processing inequality. We
also define

¢(1) =S(CIM)pey 1y = ASAIM)pp 0y = (1 = DSRIM) oy 1)
Then we have, because of the de Bruijn identity and compatibility with the heat semigroup as well
as the Stam inequality,

&' () = J(CIM)pepyty — AT AIM) 000 = (1 = DT (RIM) iy < O

Since ¢ is a linear combination of continuous concave functions, we have for ¢ > 0,

t
o) - 600)= [ #'ds <o
0
Using the universal scaling, we obtain
9(0) = lim ¢(1)
= 1im (S(CIM)p() = ASAM gy 9~ (1 = DSRIM)y0)
=n(-Alogd - (1 — ) log(1 — 1)).

The theorem follows. m|

VIl. OPTIMALITY OF THE QUANTUM CONDITIONAL ENTROPY POWER INEQUALITY

This section is dedicated to the study of the optimality of the quantum conditional entropy power
inequality stated in Theorem 5. We show the following theorem:

Theorem 6 (Optimality of the conditional entropy power inequality). For any a,b € R, there
LN and a probability density function f :R*> — R such that the
classical system R is uncorrelated with M and

kh_)ngo S(AIM)p% =a, S(RIM); =b,

exists a sequence of states { pfﬁ,[}

and
lim expS(C|M) @« =expa+expb,
k—o0 Peu

where py, = (& ® i) (pam) with E(pa) =f * pa.

Proof. Let o) be the Gaussian state with the covariance matrix

AM
K? 0 k-1 0
o 0 k* 0 -k - %
k-1 0 k? 0
0 — k-1 0 k*

Applying the heat semigroup on the quantum system A, we obtain the state (MV(r) ® ﬂM)(O'Xj‘)/I) which

has the covariance matrix

K+t 0 k-1 0
w© . |0 K +1 0 —Jkt -1
L=

k-1 0 k? 0
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The symplectic eigenvalues of this covariance matrix are

1
v () = E\/4k2t £ 2VAK2 + 2+ 1422 4+ 1=kVE+ O(1) (k- o).

Hence we have

1 1
SAMnwetuay) =8 (V+ ) 5) +g(v‘ } 5)

1
=log k? +logt+2+(’)(ﬁ),

1 1
2 2
S(M)(N'(t)@ﬂ X m)_g(k 2)—logk +1+(’)(k4).

It follows that

Jim SCAIM) iy g1,0 %)) = 1 + 10812

AM
We now choose p'f;, = (Me®!) ® 1y)(o'),), which fulfills

Jm S0 =4
We further choose the classical system R to be uncorrelated with M and have probability density

function
_le?
e 2¢b—1

f=fze1=
e oh-1
of a Gaussian with covariance matrix e®~'1,. Then we have for the entropy

S(RIM); =log(ee’™") =b.

The state p(ckz,l has the covariance matrix

K+ e+ et 0 k-1 0

o _|© k4 et 4 e 0 —Jk =%
M| Jre -1 0 K2 0
0 —\ k-1 0 k*

Analogous to the calculation above, we obtain now
. _ a—1 b—-1\ _ a b
lim S(CIM) 0 =1+ log(e*! + 1) =log(e" + )

and finally
lim exp S(CIM) @ =e® +é”.
k— o0 Pem

Viil. APPLICATIONS

The quantum conditional entropy power inequality (13) has various applications in the derivation
of information-theoretic inequalities. We are going to show a variety of results regarding quantum
conditional entropies. Many of these results have direct analogs in the case of unconditioned quantum
entropies as well as in classical information theory.

A. Isoperimetric inequality for conditional entropies

Lemma 7 (Quantum conditional Fisher information isoperimetric inequality).

dfl1 -1
I ;J(AIMWt)@uM)(pAM)] ' > 1. (14)
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Proof. We note that (M(1) ® Ta)(pam) = (&, ® Ty)(pam), where again Er(ps) =f * pa and
fz.(6)= exp(—%) /t". Applying the conditional Stam inequality (12), we obtain

-1 -1 -1 _ t
(T o1, )~ TAIMY,) 2 JRIM,, =~
This implies that

S|

1 -1 -1
7 (J(AlM)(N(z)®ﬂM)(pAM) N J(AlM)PAM) 2

Taking the limit # — O implies the result. O

Theorem 7 (Isoperimetric inequality for quantum conditional entropies).

SAIM)

1
;J(AIM),,AM exp

Proof. We apply the conditional de Bruijn identity!' [Eq. (63)] and see that

d S(AIM 1 SA|M
d_ exp (Al )(/\/(I)MM)(PAM) _ _J(AlM)pAM exp (Al )PAM .
t n =0 N n

Recalling once again that (N(£) ® Ty7)(papm) = (&, ® Ty)(pam) and inserting this into the conditional
entropy power inequality (13) yields

SAIM) N &1 Pan) S(AIM) S(RIM) _
exp —exp 2eXp — =et
n n n

Dividing this equation by ¢ and taking the limit # — 0 concludes the proof of the theorem. O

B. Concavity of the quantum conditional entropy power along the heat flow

Theorem 8 (Concavity of the quantum conditional entropy power along the heat flow).

d? exp SAIM)N @11 oan)

- <0.
ds? X n <0

t=0

SAIM)Y N1 ) eAn)
n

Proof. We write here P(t) =exp
twice to obtain

and apply the de Bruijn identity!' [Eq. (63)]

2 2

d
—P(t
a2 ()

= P(O)([lJ(AlM)
t=0 n

d
+-——JAIM ‘ .
-3 At em) z:O)
The quantum conditional Fisher information isoperimetric inequality stated in (14) can be restated
as

1 , 1d
3/ (AIM)" + ;aJ(AlM)(Mn@nM)(pAM)L:o <0.

Since P(0) > 0, the concavity of the quantum conditional entropy power follows. O

C. Converse bound on the entanglement-assisted classical capacity
for a non-Gaussian classical noise channel

The fact that conditional entropy power inequalities imply upper bounds on the entanglement-
assisted classical capacity has been known since the first quantum conditional entropy power
inequality has been proposed.'®!" In this section, we use the conditional entropy power
inequality (13) to prove such an upper bound for a classical noise channel which is not
necessarily Gaussian.
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We consider the classical noise channel with a given (possibly non-Gaussian) noise probability
density function f : R*” — R. This channel is given by &:A—C,

Er(pa)=f * pa.

16,28,29

The entanglement-assisted classical capacity is then

Cealr) = SUp{I(C : M)(g; 01,)0)  PAM PUTE, ttalHaps] <nE}.

The energy constraint tra[H4p04] < nE amounts to the assumption that the sender can only use
states of a finite average energy E per mode. This assumption is required to make the entanglement-
assisted capacity finite. Indeed, the assumption that a sender can use an unlimited amount of energy
is unphysical. Let

B g SO

Ey:= , :
0 2n 0 n

be the average energy and entropy per mode of f. We can now bound the maximum output entropy as

d
sup  S(& (o) =  sup  S(& ™)
trf[lHppal<nE tr[Hapal<nE

= sup S

(
(
(

= sup S 5f(pA,o))
tr[Hppal<nE

= sup S Ef(pA)),
tr[Hapal<nE
d(pa)=0

where we have written p4 0 =D(—d(p4)) paD(=d(p4))" for the state p4 which has been displaced by
its first moments such that it is centered, i.e., the first moments of p4 ¢ are zero. The first equality
follows by this definition. In the second equality, we have used compatibility of the convolution
(5) with displacements, and in the third equality, we have used the fact that the von Neumann
entropy is invariant under conjugation with unitaries. In the fourth equality, we have used the
fact that

tr[Hapa o] =tr

|
g
B

N =

R,% - —ﬂA)PAo

| =

D(~d(pa)) R;D(=d(pa)) - —ﬂA)

N =

x~ x~ ~ =~
T i T

=tr

) 1
=tr|{ —
2

1
=tr[Hapal - EHd(PA)”z <tr[Hppal <nE.

(R — di(pa))* - EﬂA)pA

2 n
~ 21
k ) A)pA

2n 2n
1
= D dpatriRipal + 5 D dilpa)?
k=1 2 k=1

Therefore in order to upper bound the output entropy, we can restrict our consideration to centered
states, i.e., states which have zero first moments. The average energy per mode at the output & (p4)
is then bounded as



122201-17 G. De Palma and S. Huber J. Math. Phys. 59, 122201 (2018)

1 1 2n
ZtrC[HCSf(pA)] =tr (ﬂ ; 5)(f * pA)

' 1 &, 1 ,d2
G ERY = E)D@)pAD(f)' fl

n (211 £ Q)

=t

=

2n

1 1\  d¥¢
E;(Rk &) ——)pA (ZF)”]
Zné'_-

Z / 8o

= Z / &R palS

=t

)

=t

H
—_
S

M
2,
|
\I/
E

Q)

1
=—tr[Hppal + Eo < E + Ey.
n

In the last line, we have used that tr[R; p4] = 0 by assumption. Hence by the fact that thermal states
maximize the von Neumann entropy among all states with a given average energy, we have that the
maximum output entropy is bounded by

S(&(pa)) < ng(E + Eyp).
From the conditional entropy power inequality (13), we obtain
S(CIM) S(AIM)
Xp > exp
n

+exp So

=exp —5@A) +exp So

>exp (—g(E)) + exp So.
This implies for the mutual information
I(C: M) =S(&(pa)) = S(CIM)&; 1,)pa)
<ng(E+Ey) —n log(e_g(E) + eS‘)).
Therefore, for the entanglement-assisted classical capacity, we have the upper bound

Cea(&r) <ng(E+Ep)—n log(e_g(E) + eS").

IX. A SIMPLE PROOF OF CONVERGENCE RATE OF THE QUANTUM
ORNSTEIN-UHLENBECK SEMIGROUP

We consider the quantum Ornstein-Uhlenbeck semigroup which is a one-parameter semigroup
of CPTP maps (PHA (1) = etlnr }r>0 on the one-mode Gaussian quantum system A generated by the
Liouvillian

Loa=12L_+ 2L, for u>1>0,
where

| |
Lip)=d'pa=lad’,p}  and  Lo(p)=apa’ - {a'a,p},

where a is the ladder operator of A.
The map P*(t) is equivalent to a beam splitter with transmissivity 1 = e’ =4} and environ-

y /1
2

k
ment state 0V = > =0 ( ) |k){k|. This is a Gaussian thermal state with the covariance matrix

equal to TWY = %ﬁ e >15. The state w4 is also the unique fixed point of the quantum Ornstein-

Uhlenbeck semigroup with parameters u and A. It is known that the qOU semigroup converges in
relative entropy to the fixed point at an exponential rate given by the exponent u”> — 12,

D (73(#,4)(0( ol w(,u,/l)) < W=y D( pr(p,/l)) forall t > 0.
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This is a conjecture stated in Ref. 13, which was proven in Ref. 15 using methods of gradient flow.
Here we want to study a slightly different, more general scenario: We consider a bipartite quan-

tum system AM, where the system A undergoes a qOU evolution. We are going to show a similar

convergence statement in this situation, namely, that the system converges in relative entropy to the

product state wX"’l) ® tra(pap) at an exponential rate.

Theorem 9. We have for any quantum state pap,
p 22 A
D((P“V(1) & L) (pam)llwf™ ® pu) <™ 'D(paullw™ ® pu),

where pyr = tra(pam) is the marginal state of pay on the system M. In particular, Eq. (7) holds.

Proof. Write pay(t) = (P,a(t) ® Ty)(pam), we then have

D(pan®llw* @ par) = =SAIM)p,y,00) — tr(pa() log 04
<-nSAIM)p,, — (1 = PS@LY)
—ntr(pA log wg””l)) -(1- n)tr(wg””l) log wi““l))
= e_(ﬂz_/lz)tD(PAM||w§f’/l) ® PM)-

O

This implies exponential convergence to the fixed point both on bipartite systems and the
result (7).

X. CONCLUSION

We have established a conditional entropy power inequality for classical noise channels in bosonic
quantum systems, modeled by the convolution (5). This inequality implies the unconditioned entropy
power inequality for this convolution and lifts regularity problems in previous proofs in this area.
In the conditioned case, this inequality is optimal, while the optimal inequality in the unconditioned
case remains unsolved. This situation is analogous to the situation for the beam splitter,>* where
the optimal unconditioned inequality is conjectured to be the entropy photon-number inequality,!
which states that couples of thermal Gaussian input states minimize the output entropy of the beam
splitter among all the couples of independent input states, each with a given entropy. The entropy
photon-number inequality has been recently proven for the one-mode beam splitter in the particular
case where one of the two inputs is a thermal Gaussian state’>=’ and in some very special cases
for the multi-mode beam splitter,>®3° and it otherwise remains an open challenging conjecture (see
Ref. 40 for areview). Similarly, an analogous optimal inequality has been conjectured for the quantum
additive noise channel.® While the validity of this inequality remains an open problem (besides the
special case covered in Ref. 37), the conditional entropy power inequality proven in this paper is
optimal and settles the problem in the presence of quantum memory.

We have used our new conditional entropy power inequality to provide upper bounds on the
entanglement-assisted classical capacity of quantum non-Gaussian additive noise channels and to
prove conditional quantum versions of various celebrated results from geometric analysis. Moreover,
we have shown how conditional entropy power inequalities can be used to study the convergence rate
of quantum dynamical semigroups, giving a simple and short proof of the exponential convergence
of the quantum Ornstein-Uhlenbeck semigroup in relative entropy.
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tradeoft

Joseph M. Renes, Volkher B. Scholz, and Stefan Huber

The notions of error and disturbance appearing in quantum uncertainty relations are often
quantified by the discrepancy of a physical quantity from its ideal value. However, these real
and ideal values are not the outcomes of simultaneous measurements, and comparing the val-
ues of unmeasured observables is not necessarily meaningful according to quantum theory. To
overcome these conceptual difficulties, we take a different approach and define error and distur-
bance in an operational manner. In particular, we formulate both in terms of the probability
that one can successfully distinguish the actual measurement device from the relevant hypo-
thetical ideal by any experimental test whatsoever. This definition itself does not rely on the
formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions.
We then derive new Heisenberg-type uncertainty relations for both joint measurability and the
error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for
the case of position and momentum. Our relations may be directly applied in information
processing settings, for example to infer that devices which can faithfully transmit information
regarding one observable do not leak any information about conjugate observables to the en-
vironment. We also show that Englert’s wave-particle duality relation [PRL 77, 2154 (1996)]
can be viewed as an error-disturbance uncertainty relation.

B.1.1 Definitions of error and disturbance

There is no canonical consensus regarding the definition of error and disturbance of a mea-
surement apparatus. The definitions we make here are particular choices, which have some
conceptual advantages compared to other approaches, and for which we can prove uncertainty
relations, as we show later.

We want to define the error ex an apparatus £ makes relative to an ideal measurement Qx
of an observable X. For this, we use the distinguishability of the two channels, taking only the
classical output of the apparatus. We want to allow for classical postprocessing. Let us describe
the ideal measurement and the apparatus by the Heisenberg-picture channels Qx : L (X) —
B(Ha) and € : B(Hp) ® L>®(Y) — B(Ha). Let us further allow for an arbitrary classical
postprocessing operation R : L>®(X) — L*°(Y). Writing Tp : L*°(X) — B(Hp) ® L*(X) for
the partial trace map, Tp(f) = 15 ® f, we define

ex(€) = i%f(S(QX, ERTB) .

Here the distinguishability § is defined via the completely bounded norm (cb norm), given
by 6(1.£2) = § €1 — Exllp, Where [Tl = supyery [ 1w © T

In order to define the disturbance an apparatus £ : B(Hp) ® L>°(X) — B(H4) causes to an
observable Z, let Qy : L*°(Z) — B(H4) be the ideal Z measurement and let R : B(H4) —
B(Hp) ® L*>°(X) be a recovery map which acts on the output of £ conditioned on the value of
the classical output X. We then define the measurement disturbance as the measurement error
after using the best recovery map,

vz(€) = i%fé(QZ,gRRQZ) .
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Finally, we want to define preparation disturbance. Consider a channel Pz : B(H ) — L*°(Z)
whose dual in the Schrédinger picture prepares the eigenstates of Z, and consider recovery
operations R : B(H4) — B(Hp) ® L*>°(X). Then we define the preparation disturbance as

nz(€) = inf 6(Pz, PzERTY) .

This disturbance measure is related to the distinguishability of the ideal preparation device Pz
and Pz followed by the apparatus £ and the best possible recovery operation R.

In the case of finite-dimensional state preparation where H = C?, we also define a figure
of “demerit” which compares the functionality of our apparatus with the worst-case behavior,
instead of the best-case behavior. This is defined as

. d—1 .

nZ(g) = T B C: cgrllgtanté(67ng) ’
where the optimization is carried out over all constant maps C : B(Hp) ® L>®(X) — L*°(Z). In
this measure, the disturbance is small if it is easy to distinguish the action of Pz& from having
a constant output.

B.1.2 Uncertainty relations in finite dimensions

We define the following measures of complementarity which appear in our uncertainty relations:
em(X, Z) :=vz(Qx), cp(X,Z) :=nz(Qx), and ¢p(X, Z) := nz(Qx). We have the following
closed-form lower bounds on these measures of complementarity, where we write {|¢pz)}rex
and {]0,)}.ez for the eigenvectors of the nondegenerate observables X and Z:

(X >1—meax|¢x|0

cep(X,2) >1— dzx:mZaXI@IWZH

d—1 1

x

1 )

Then we have the following uncertainty relations:
Theorem B.1.1. For any two observables X and Z and any quantum instrument &,

V2ex(E)+rvz(€) > en(X, Z) and

ex(€) + 21/2(5) en(Z,X) .

B.1.3 Uncertainty relations for position and momentum

In this setup, we want to consider instruments which measure position or momentum with a
finite precision. For a bounded function a € L?(Q) (where Q corresponds to the outcome set
R of the position measurement), we define the finite-precision position measurement instru-

ment &, : L*°(Q) @ B(H) — B(H) by
0 = [ def@A}04z0

where A4.0¥(¢") = a(q—q' ) (¢) for all v € L*(Q) and ¢’ € Q. In this model, setting the width
of the function « sets the precision limit of the instrument. We want to focus on Gaussian
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limits on precision, where « is given by the square root of a normalized Gaussian of variance o2.

In this picture, the Stinespring dilation of an ideal o-limited measurement device is a Gaussian
unitary. The definitions of measurement error and disturbance are the same as in the previous
section, except that the factor d%dl in this setting is replaced by 1. We will also not focus on
the figure of “demerit” 7 in this setting, since any non-constant channel can be distinguished
from a constant one by putting in states of arbitrarily high momentum. We have the following

uncertainty relations for position and momentum:

Theorem B.1.2. For any two observables X and Z and any quantum instrument &,
V2ex(E)+nz(€) > cp(X, Z) and
\/ 26)((5) + ﬁz((‘:) > ép(X, Z) .

Theorem B.1.3. Set c = 20qgop for any precision values op,oq > 0. Then for any quantum
instrument £,

V2eq(€) +vp(€) } - 1—c?

eQ(E) +1/200(€) | = (14 /3 4 A/3)3/2

2)1/2
2e0(E) +1p(E) > (1+c) 7
((1 + ¢2?) +02/3(1 +c2)2/3 +c4/3(1 +02)1/3)

and

B.1.4 Applications

Given an ideal measurement @z, we define the map Qh = W37z with Wz : a — W}aWZ,
where Wy is the Stinespring isometry of Q. This map can be seen as performing a Z mea-
surement and immediately forgetting the result. We can then apply our uncertainty relation to
make an information-disturbance statement: If acting with a channel N does not substantially
affect the possibility of performing an X measurement, then Z-basis inputs to the complemen-
tary channel N'# result in an essentially constant output. This is formalized in the following
corollary.

Corollary B.1.4. Given a channel N' and complementary channel N#, suppose that there
exists a measurement Ax such that 6(Qx,NAx) < e. Then there exists a constant channel C
such that

S(QLN.C) < V2e + ‘%1 —ép(X, 7).

For mazximally complementary X and Z, i.e., if
1
|<¢I‘9z>|2:g forallz e X,z € 7,

we have 6(QIJZ./\/'#,C) < V/2e.
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The notions of error and disturbance appearing in quantum uncertainty relations are often quantified
by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not
the outcomes of simultaneous measurements, and comparing the values of unmeasured observables is not
necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take
a different approach and define error and disturbance in an operational manner. In particular, we formu-
late both in terms of the probability that one can successfully distinguish the actual measurement device
from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely
on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We
then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance
tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and mo-
mentum. Our relations may be directly applied in information processing settings, for example to infer that
devices which can faithfully transmit information regarding one observable do not leak any information
about conjugate observables to the environment. We also show that Englert’s wave-particle duality relation
[Phys. Rev. Lett. 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.

1 Introduction

It is no overstatement to say that the uncertainty principle is a cornerstone of our understanding of quan-
tum mechanics, clearly marking the departure of quantum physics from the world of classical physics. Heisen-
berg’s original formulation in 1927 mentions two facets to the principle. The first restricts the joint measur-
ability of observables, stating that noncommuting observables such as position and momentum can only be
simultaneously determined with a characteristic amount of indeterminacy [1, p. 172] (see [2, p. 62] for an
English translation). The second describes an error-disturbance tradeoff, noting that the more precise a mea-
surement of one observable is made, the greater the disturbance to noncommuting observables [1, p. 175]
([2, p. 64]). The two are of course closely related, and Heisenberg argues for the former on the basis of the
latter. Neither version can be taken merely as a limitation on measurement of otherwise well-defined values
of position and momentum, but rather as questioning the sense in which values of two noncommuting ob-
servables can even be said to simultaneously exist. Unlike classical mechanics, in the framework of quantum
mechanics we cannot necessarily regard unmeasured quantities as physically meaningful.

More formal statements were constructed only much later, due to the lack of a precise mathematical
description of the measurement process in quantum mechanics. Here we must be careful to draw a distinction
between statements addressing Heisenberg’s original notions of uncertainty from those, like the standard
Kennard-Robertson uncertainty relation [3, 4], which address the impossibility of finding a quantum state
with well-defined values for noncommuting observables. Entropic uncertainty relations [5, 6] are also an
example of this class; see [7] for a review. Joint measurability has a longer history, going back at least to
the seminal work of Arthurs and Kelly [8] and continuing in [9-27]. Quantitative error-disturbance relations
have only been formulated relatively recently, going back at least to Braginsky and Khalili [28, Chap. 5] and
continuing in [20, 29-35].

Beyond technical difficulties in formulating uncertainty relations, there is a perhaps more difficult con-
ceptual hurdle in that the intended consequences of the uncertainty principle seem to preclude their own
straightforward formalization. To find a relation between, say, the error of a position measurement and its
disturbance to momentum in a given experimental setup like the gamma ray microscope would seem to re-
quire comparing the actual values of position and momentum with their supposed ideal values. However,
according to the uncertainty principle itself, we should be wary of simultaneously ascribing well-defined val-
ues to the actual and ideal position and momentum since they do not correspond to commuting observables.
Thus, it is not immediately clear how to formulate either meaningful measures of error and disturbance, for
instance as mean-square deviations between real and ideal values, or a meaningful relation between them.!
This question is the subject of much ongoing debate [25, 30, 36-39].

LUncertainty relations like the Kennard-Robertson bound or entropic relations do not face this issue as they do not attempt to compare
actual and ideal values of the observables.



Without drawing any conclusions as to the ultimate success or failure of this program, in this paper we pro-
pose a completely different approach which we hope sheds new light on these conceptual difficulties. Here,
we define error and disturbance in an operational manner and ask for uncertainty relations that are state-
ments about the properties of measurement devices, not of fixed experimental setups or of physical quantities
themselves. More specifically, we define error and disturbance in terms of the distinguishing probability, the
probability that the actual behavior of the measurement apparatus can be distinguished from the relevant ideal
behavior in any single experiment whatsoever. To characterize measurement error, for example, we imagine
a black box containing either the actual device or the ideal device. By controlling the input and observing the
output we can make an informed guess as to which is the case. We then attribute a large measurement error
to the measurement apparatus if it is easy to tell the difference, so that there is a high probability of correctly
guessing, and a low error if not; of course we pick the optimal input states and output measurements for this
purpose. In this way we do not need to attribute a particular ideal value of the observable to be measured,
we do not need to compare actual and ideal values themselves (nor do we necessarily even care what the
possible values are), and instead we focus squarely on the properties of the device itself. Intuitively, we might
expect that calibration provides the strictest test, i.e. inputting states with a known value of the observable
in question. But in fact this is not the case, as entanglement at the input can increase the distinguishability
of two measurements. The merit of this approach is that the notion of distinguishability itself does not rely
on any concepts or formalism of quantum theory, which helps avoid conceptual difficulties in formalizing the
uncertainty principle.

Defining the disturbance an apparatus causes to an observable is more delicate, as an observable itself
does not have a directly operational meaning (as opposed to the measurement of an observable). But we
can consider the disturbance made either to an ideal measurement of the observable or to ideal preparation
of states with well-defined values of the observable. In all cases, the error and disturbance measures we
consider are directly linked to a well-studied norm on quantum channels known as the completely bounded
norm or diamond norm. We can then ask for bounds on the error and disturbance quantities for two given
observables that every measurement apparatus must satisfy. In particular, we are interested in bounds de-
pending only on the chosen observables and not the particular device. Any such relation is a statement about
measurement devices themselves and is not specific to the particular experimental setup in which they are
used. Nor are such relations statements about the values or behavior of physical quantities themselves. In
this sense, we seek statements of the uncertainty principle akin to Kelvin’s form of the second law of thermo-
dynamics as a constraint on thermal machines, and not like Clausius’s or Planck’s form involving the behavior
of physical quantities (heat and entropy, respectively). By appealing to a fundamental constraint on quan-
tum dynamics, the continuity (in the completely bounded norm) of the Stinespring dilation [40, 41], we
find error-disturbance uncertainty relations for arbitrary observables in finite dimensions, as well as for po-
sition and momentum. Furthermore, we show how the relation for measurement error and measurement
disturbance can be transformed into a joint-measurability uncertainty relation. Interestingly, we also find
that Englert’s wave-particle duality relation [42] can be viewed as an error-disturbance relation.

The case of position and momentum illustrates the stark difference between the kind of uncertainty state-
ments we can make in our approach with one based on the notion of comparing real and ideal values. Take
the notion of joint measurability, where we would like to formalize the notion that no device can accurately
measure both position and momentum. In the latter approach one would first try to quantify the amount
of position or momentum error made by a device as the discrepancy to the true value, and then show that
they cannot both be small. The errors would be in units of position or momentum, respectively, and the
hoped-for uncertainty relation would pertain to these values. Here, in contrast, we focus on the performance
of the actual device relative to fixed ideal devices, in this case idealized separate measurements of position or
momentum. Importantly, we need not think of the ideal measurement as having infinite precision. Instead,
we can pick any desired precision and ask if the behavior of the actual device is essentially the same as this
precision-limited ideal. Now the position and momentum errors do not have units of these quantities (they
are unitless and always lie between zero and one), but instead depend on the desired precision. Our uncer-
tainty relation then implies that both errors cannot be small if we demand high precision in both position
and momentum. In particular, when the product of the scales of the two precisions is small compared to
Planck’s constant, then the errors will be bounded away from zero (see Theorem 3 for a precise statement).
It is certainly easier to have a small error in this sense when the demanded precision is low, and this accords
nicely with the fact that sufficiently-inaccurate joint measurement is possible. Indeed, we find no bound on
the errors for low precision.

An advantage and indeed a separate motivation of an operational approach is that bounds involving
operational quantities are often useful in analyzing information processing protocols. For example, entropic
uncertainty relations, which like the Robertson relation characterize quantum states, have proven very useful



in establishing simple proofs of the security of quantum key distribution [6, 7, 43-45]. Here we show that the
error-disturbance relation implies that quantum channels which can faithfully transmit information regarding
one observable do not leak any information whatsoever about conjugate observables to the environment.
This statement cannot be derived from entropic relations, as it holds for all channel inputs. It can be used to
construct leakage-resilient classical computers from fault-tolerant quantum computers [46], for instance.

The remainder of the paper is structured as follows. In the next section we give the mathematical back-
ground necessary to state our results, and describe how the general notion of distinguishability is related to
the completely bounded norm (cb norm) in this setting. In Section 3 we define our error and disturbance
measures precisely. Section 4 presents the error-disturbance tradeoff relations for finite dimensions, and de-
tails how joint measurability relations can be obtained from them. Section 5 considers the error-disturbance
tradeoff relations for position and momentum. Two applications of the tradeoffs are given in Section 6: a for-
mal statement of the information disturbance tradeoff for information about noncommuting observables and
the connection between error-disturbance tradeoffs and Englert’s wave-particle duality relations. In Section 7
we compare our results to previous approaches in more detail, and finally we finish with open questions in
Section 8.

2 Mathematical setup
2.1 Distinguishability

The notion of the distinguishing probability is independent of the mathematical framework needed to describe
quantum systems, so we give it first. Consider an apparatus £ which in some way transforms an input A into
an output B. To describe how different £ is from another such apparatus £, we can imagine the following
scenario. Suppose that we randomly place either £ or £ into a black box such that we no longer have any
access to the inner workings of the device, only its inputs and outputs. Now our task is to guess which device
is actually in the box by performing a single experiment, feeding in any desired input and observing the output
in any manner of our choosing. In particular, the inputs and measurements can and should depend on £ and
&’. The probability of making a correct guess, call it py;(€, E’), ranges from % to 1, since we can always just
make a random guess without doing any experiment on the box at all. Therefore it is more convenient to
work with the distinguishability measure

6(&,&):=2ps.(E,E)—1, €))

which ranges from zero (completely indistinguishable) to one (completely distinguishable). Later on we will
show this quantity takes a specific mathematical form in quantum mechanics. But note that the definition
implies that the distinguishability is monotonic under concatenation with a channel F to both £ and &’, since
this just restricts the possible tests. That is, both 6(EF,&'F) < 6(&,£) and 5(F&,FE') < 6(&,£’) hold for
all channels F whose inputs and outputs are such that the channel concatenation is sensible. Here and in
the remainder of the paper, we denote concatenation of channels by juxtaposition, while juxtaposition of
operators denotes multiplication as usual.

2.2 Systems, algebras, channels, and measurements

In the finite-dimensional case we will be interested in two arbitrary nondegenerate observables denoted X
and Z. Only the eigenvectors of the observables will be relevant, call them |p,.) and |6,), respectively. In
infinite dimensions we will confine our analysis to position Q and momentum P, taking i = 1. The analog of
Q and P in finite dimensions are canonically conjugate observables X and Z for which |p,) = id >, w?16,),
where d is the dimension and w is a primitive dth root of unity.

It will be more convenient for our purposes to adopt the algebraic framework and use the Heisenberg
picture, though we shall occasionally employ the Schrodinger picture. In the Heisenberg picture we describe
systems chiefly by the algebra of observables on them and describe transformations of systems by quantum
channels, completely positive and unital maps from the algebra of observables of the output to the observables
of the input [10, 47-50]. This allows us to treat classical and quantum systems on an equal footing within
the same framework. When the input or output system is quantum mechanical, the observables are the
bounded operators B(#) from the Hilbert space H associated with the system to itself. Classical systems,
such as the results of measurement or inputs to a state preparation device, take values in a set, call it Y.
The relevant algebra of observables here is L°°(Y), the (bounded, measureable) functions on Y. Hybrid
systems are described by tensor products, so an apparatus £ which measures a quantum system has an output
algebra described by L°°(Y)® B(#). To describe just the measurement result, we keep only L°°(Y). We shall
occasionally denote the input and output spaces explicitly as &£,_,y5 when useful.



For arbitrary input and output algebras A, and Az, quantum channels are precisely those maps £ which
are unital, £(1) = 1,, and completely positive, meaning that not only does £ map positive elements of A
to positive elements of A,, it also maps positive elements of Az ® B(C") to positive elements of A, ® B(C")
for all integer n. This requirement is necessary to ensure that channels act properly on entangled systems.

A NS> N> B

<< M

Figure 1: A general quantum apparatus £. The apparatus measures a quantum system A giving the
output Y. In so doing, £ also transforms the input A into the output system B. Here the wavy lines
denote quantum systems, the dashed lines classical systems. Formally, the apparatus is described by
a quantum instrument.

A general measurement apparatus has both classical and quantum outputs, corresponding to the mea-
surement result and the post-measurement quantum system. Channels describing such devices are called
quantum instruments; we will call the channel describing just the measurement outcome a measurement. In
finite dimensions any measurement can be seen as part of a quantum instrument, but not so for idealized
position or momentum measurements, as shown in Theorem 3.3 of [10] (see page 57). Technically, we may
anticipate the result since the post-measurement state of such a device would presumably be a delta function
located at the value of the measurement, which is not an element of L?(Q). This need not bother us, though,
since it is not operationally meaningful to consider a position measurement instrument of infinite precision.
And indeed there is no mathematical obstacle to describing finite-precision position measurement by quan-
tum instruments, as shown in Theorem 6.1 (page 67 of [10]). For any bounded function a € L%(Q) we can
define the instrument &, : L*°(Q) ® B(H) — B(#) by

&(f ®a)= quf (DAL, aAq s )

where A,.,4(q") = alqg —q')(q’) for all ¢y € L*(Q). The classical output of the instrument is essentially
the ideal value convolved with the function a. Thus, setting the width of a sets the precision limit of the
instrument.

2.3 Distinguishability as a channel norm

The distinguishability measure is actually a norm on quantum channels, equal (apart from a factor of one
half) to the so-called norm of complete boundedness, the cb norm [51-53]. The cb norm is defined as an
extension of the operator norm, similar to the extension of positivity above, as

”Tch = Sup”]]-n®T”oo: (3)
neN

where ||T|| o, is the operator norm. Then
0(&1,8)= %Hgl_gzucb- @

In the Schrédinger picture we instead extend the trace norm ||-||;, and the result is usually called the diamond
norm [51, 53]. In either case, the extension serves to account for entangled inputs in the experiment to test
whether &, or &, is the actual channel. In fact, entanglement is helpful even when the channels describe
projective measurements, as shown by an example given in Appendix A. This expression for the cb or diamond
norm is not closed-form, as it requires an optimization. However, in finite dimensions the cb norm can be cast
as a convex optimization, specifically as a semidefinite program [54, 55], which makes numerical computation
tractable. Further details are given in Appendix B.

2.4 The Stinespring representation and its continuity

According to the Stinespring representation theorem [52, 56], any channel £ mapping an algebra A to B(H)
can be expressed in terms of an isometry V : % — K to some Hilbert space K and a representation 7 of A in
B(K) such that, for all a € A,

E(a)=V*n(a)V. (5)



The isometry in the Stinespring representation is usually called the dilation of the channel, and K the dilation
space. In finite-dimensional settings, calling the input A and the output B, one usually considers maps taking
A = B(Hjg) to B(H,). Then one can choose K = Hz ®Hy, where H, is a suitably large Hilbert space associated
to the “environment” of the transformation (#; can always be chosen to have dimension dim(#,) dim(#3)).
The representation 7 is just w(a) = a® 1. Using the isometry V, we can also construct a channel from B(H)
to B(H,) in the same manner; this is known as the complement £ of £.

The advantage of the general form of the Stinespring representation is that we can easily describe mea-
surements, possibly continuous-valued, as well. For the case of finite outcomes, consider the ideal projective
measurement Qy of the observable X. Choosing a basis {|b, )} of L2(X) and defining 7(5,) = |b, )(b,| for &,
the function taking the value 1 at x and zero elsewhere, the canonical dilation isometry Wy : H — L2(X) ®
is given by

Wy =" [b) @ ).l ©)

Note that this isometry defines a quantum instrument, since it can describe both the measurement outcome
and the post-measurement quantum system. If we want to describe just the measurement result, we could
simply use Wy = ZX |b,) (¢, | with the same 7. More generally, a POVM with elements A, has the isometry
Wy =2, |b,) ® V/A,.

For finite-precision measurements of position or momentum, the form of the quantum instrument in (2)
immediately gives a Stinespring dilation W, : # — K with £ = L?(Q) ® % whose action is defined by

(Woy)(q,q9") = alg—q)y(q’), 7

and where 7 is just pointwise multiplication on the L°°(Q) factor, i.e. for f € L°°(Q), and a € B(#H), [n(f ®
a)(& ®Y)1(g,9) = f(q)&(q) - (ap)(q’) for all £ € L*(Q) and 1) € H.

A slight change to the isometry in (6) gives the dilation of the device which prepares the state |¢,)
for classical input x. Formally the device is described by the map P : B(#) — L2(X) for which P(A) =
Do b (bl (ol Alpy). Now consider Wy, : L2(X) — H ® L*(X) given by

Wy =D 1¢.) @by ) (bl ®)

Choosing m(A) = A® 1y, we have P(A) = Wy n(A)Wy.

The Stinespring representation is not unique [41]. Given two representations (7, V, K1) and (7, V5, K5)
of the same channel &, there exists a partial isometry U : K; — K, such that UV; = V,, U*V, = V;, and
Umq(a) = my(a)U for all a € A. For the representations 7 as usually employed for the finite-dimensional
case, this last condition implies that U is a partial isometry from one environment to the other, for U(a® 1) =
(a ® 1)U can only hold for all a if U acts trivially on B. For channels describing measurements, finite or
continuous, the last condition implies that any such U is a conditional partial isometry, dependent on the
outcome of the measurement result. Thus, for any set of isometries U, : Hg — Hg, 2., |b,) ® U, lw, ) (¢, |U*
is a valid dilation of Qy, just as is Wy in (6). Similarly, (Wj)(q,q") = a(q —q)[Us¥1(q") is a valid dilation
of £, in (2).

The main technical ingredient required for our results is the continuity of the Stinespring representation
in the cb norm [40, 41]. That is, channels which are nearly indistinguishable have Stinespring dilations which
are close and vice versa. For completely positive and unital maps &; and &,, [40, 41] show that

%||51_52||cb Sgn‘ﬁllVl—Vzlloo < V& =&l C)]
where the infimum is taken over all Stinespring representations (7;, V;, K;) of &;.

2.5 Sequential and joint measurements

Using the Stinespring representation we can easily show that, in principle, any joint measurement can always
be decomposed into sequential measurement.

Lemma 1. Suppose that £ : L°°(X) ® L°°(Z) — B(H) is a channel describing a joint measurement. Then
there exists an apparatus A : L°°(X) ® B(H') — B(#) and a conditional measurement M : [*°(X) ®
L*°(Z) — L= (X) ® B(#H') such that £ = AM.



Proof. Define M’ : L°°(X) — B(#) to be just the X output of &, i.e. M'(f) = £(f ® 1). Now suppose that
V:H— L2(X)® L%(Z)®H" is a Stinespring representation of £ and Vi, : H — L2(X) ® %’ is a representation
of M’, both with the standard representation 7 of L°° into L2. By construction, V is also a dilation of M’,
and therefore there exists a partial isometry Uy such that V = Uy Vy. More specifically, conditional on the
value X = x, each U, sends #’ to L*(Z) ® H”. Thus, setting A(f ® a) = Vi (n(f) ® a)Vx and M, (f) =
Ui (n(f)®1)U,, we have £ = AM. O

3 Definitions of error and disturbance
3.1 Measurement error

To characterize the error €5 an apparatus £ makes relative to an ideal measurement Qy of an observable X,
we can simply use the distinguishability of the two channels, taking only the classical output of £. Suppose
that the apparatus is described by the channel £ : B(Hz) ® L*°(X) — B(H,) and the ideal measurement
by the channel Qy : L*°(X) — B(#H,). To ignore the output system B, we make use of the partial trace
map Tp : L=°(X) — B(Hp) ® L°°(X) given by 7T3(f) = 15 ® f. Then a sensible notion of error is given by
ex(E) = 6(Qy,ETy). If it is easy to tell the ideal measurement apart from the actual device, then the error is
large; if it is difficult, then the error is small.

As a general definition, though, this quantity is deficient to two respects. First, we could imagine an
apparatus which performs an ideal Qy measurement, but simply mislabels the outputs. This leads to ex(€) =
1, even though the ideal measurement is actually performed. Second, we might wish to consider the case that
the classical output set of the apparatus is not equal to X itself. For instance, perhaps £ delivers much more
output than is expected from Qy. In this case we also formally have ¢ (&) = 1, since we can just examine the
output to distinguish the two devices.

We can remedy both of these issues by describing the apparatus by the channel £ : B(Hp) ® L*°(Y) —
B(H,) and just including a further classical postprocessing operation R : L°°(X) — L°°(Y) in the distin-
guishability step. Since we are free to choose the best such map, we define

ex (&) := i%f 5(Qx,ERTg). (10$)

The setup of the definition is depicted in Figure 2.
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Figure 2: Measurement error. The error made by the apparatus £ in measuring X is defined by how
distinguishable the actual device is from the ideal measurement Qy in any experiment whatsoever,
after suitably processing the classical output Y of £ with the map R. To enable a fair comparison, we
ignore the quantum output of the apparatus, indicated in the diagram by graying out B. If the actual
and ideal devices are difficult to tell apart, the error is small.

3.2 Measurement disturbance

Defining the disturbance an apparatus £ causes to an observable, say Z, is more delicate, as an observable itself
does not have a directly operational meaning. But there are two straightforward ways to proceed: we can
either associate the observable with measurement or with state preparation. In the former, we compare how
well we can mimic the ideal measurement Q, of the observable after employing the apparatus £, quantifying
this using measurement error as before. Additionally, we should allow the use of recovery operations in
which we attempt to “restore” the input state as well as possible, possibly conditional on the output of the
measurement. Formally, let Q, : L°°(Z) — B(#H,) be the ideal Z measurement and R be a recovery
map R : B(H,) — B(Hp) ® L°°(X) which acts on the output of £ conditional on the value of the classical
output X (which it then promptly forgets). As depicted in Figure 3, the measurement disturbance is then the
measurement error after using the best recovery map:

'VZ((E') = i%fé(gz,gRI]—Ygz). (11)
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Figure 3: Measurement disturbance. To define the disturbance imparted by an apparatus £ to the
measurement of an observable Z, consider performing the ideal Q, measurement on the output B
of £. First, however, it may be advantageous to “correct” or “recover” the original input A by some
operation R. In general, R may depend on the output X of £. The distinguishability between the
resulting combined operation and just performing Q, on the original input defines the measurement
disturbance.

3.3 Preparation disturbance

For state preparation, consider a device with classical input and quantum output that prepares the eigenstates
of Z. We can model this by a channel P,, which in the Schrédinger picture produces |6,) upon receiving the
input z. Now we compare the action of P, to the action of P, followed by £, again employing a recovery
operation. Formally, let P, : B(H,) — L°°(Z) be the ideal Z preparation device and consider recovery
operations R of the form R : B(H,) — B(Hg) ® L°°(X). Then the preparation disturbance is defined as

17(&) :=i7r%f5(PZ,PZ€’R7}). (12)

Z---»P; N\ & N> RN\/>A Nz Z---»P; N\ >A

Figure 4: Preparation disturbance. The ideal preparation device P, takes a classical input Z and
creates the corresponding Z eigenstate. As with measurement disturbance, the preparation distur-
bance is related to the distinguishability of the ideal preparation device P, and P, followed by the
apparatus £ in question and the best possible recovery operation R.

All of the measures defined so far are “figures of merit”, in the sense that we compare the actual device to
the ideal, perfect functionality. In the case of state preparation we can also define a disturbance measure as a
“figure of demerit”, by comparing the actual functionality not to the best-case behavior but to the worst. To
this end, consider a state preparation device C which just ignores the classical input and always prepares the
same fixed output state. These are constant (output) channels, and clearly £ disturbs the state preparation P,
considerably if P, has effectively a constant output. Based on this intuition, we can then make the following
formal definition:

n7(8) =L — inf 5(C,P,E). (13)
C:const.

The disturbance is small according to this measure if it is easy to distinguish the action of P,& from having

a constant output, and large otherwise. To see that 7, is positive, use the Schrodinger picture and let the

output of C* be the state o for all inputs. Then note that inf, §(C, P;£) = min, max, 6(o, £*(6,)), where the

latter 6 is the trace distance. Choosing o = %ZZ £*(6,) and using joint convexity of the trace distance, we

have inf; 6(C,P,&) < dd;l.

We remark that while this disturbance measure leads to finite bounds in the case of finite dimensions, it
is less well behaved in the case of position and momentum measurements: Without any bound on the energy
of the test states, two channels tend to be as distinguishable as possible, unless they are already constant
channels. To be more precise, any non-constant channel which only changes the energy by a fixed amount
can be differentiated from a constant channel by inputing states of very high energy. Roughly speaking, even
an arbitrarily strongly disturbing operation can be used to gain some information about the input and hence a
constant channel is not a good “worst case” scenario. This is in sharp contrast to the finite-dimensional case,
and supports the view that the disturbance measures v,(£) and n,(€) are physically more sensible.
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Figure 5: Figure of “demerit” version of preparation disturbance. Another approach to defining
preparation disturbance is to consider distinguishability to a non-ideal device instead of an ideal
device. The apparatus £ imparts a large disturbance to the preparation P, if the output of the com-
bination P,£ is essentially independent of the input. Thus we consider the distinguishability of P,&
and a constant preparation C which outputs a fixed state regardless of the input Z.

For finite-dimensional systems, all the measures of error and disturbance can be expressed as semidefinite
programs, as detailed in Appendix B. As an example, we compute these measures for the simple case of a non-
ideal X measurement on a qubit; we will meet this example later in assessing the tightness of the uncertainty
relations and their connection to wave-particle duality relations in the Mach-Zehnder interferometer. Consider
the ideal measurement isometry (6), and suppose that the basis states |b,.) are replaced by two pure states |y,.)
which have an overlap (y,|y;) = sin 8. Without loss of generality, we can take |y,.) = cos % |b,)+ sin% |bysr)-
The optimal measurement Q for distinguishing these two states is just projective measurement in the |b,)
basis, so let us consider the channel &y; = WQ. Then, as detailed in Appendix B, for Z canonically conjugate
to X we find

ex(Eyz) = %(1 —cos0) and (14)
vz (Enz) = 12(8) = 02(8) = 5(1—sin6). (15)

In all of the figures of merit, the optimal recovery map R is to do nothing, while in %), the optimal channel C
outputs the average of the two outputs of P,&.

4 Uncertainty relations in finite dimensions
4.1 Complementarity measures

Before turning to the uncertainty relations, we first present several measures of complementarity that will
appear therein. Indeed, we can use the above notions of disturbance to define several measures of comple-
mentarity that will later appear in our uncertainty relations. For instance, we can measure the complemen-
tarity of two observables just by using the measurement disturbance v. Specifically, treating Oy as the actual
measurement and Q, as the ideal measurement, we define ¢, (X, Z) := v;(Qy). This quantity is equivalent
to £,(Qy) since any recovery map Ry_,z in &, can be used to define R{_,, in v, by R’ = RP;. Similarly, we
could treat one observable as defining the ideal state preparation device and the other as the measurement
apparatus, which leads to ¢p(X,Z) := 1,(Qx). Here we could also use the “figure of demerit” and define
(X, Z) :=17(Qx).

Though the three complementarity measures are conceptually straightforward, it is also desireable to have
closed-form expressions, particularly for the bounds in the uncertainty relations. To this end, we derive lower
bounds as follows. First, consider c), and choose as inputs Z basis states. This gives, for random choice of
input,

cuX,Z2) = i%f 6(P;95,P;9xR) (16a)
> 1-max g > [{¢:l0,) PR, (16b)
> 1—max > max|(p.l0.)7 D [ Res (160
=1- > max|{p[6.), (16)

where the maximization is over stochastic matrices R, and we use the fact that ), R,, = 1 for all x. For ¢, we
can proceed similarly. Again replacing the recovery map Ry_,, followed by Q, with a classical postprocessing



map Rx_,z, we have

cp(X,Z)ZRinf 6(P;9;,P;9OxRQOz) (17a)

X—A
= lnf 5(P2Q2,Pzng) (17b)

Rx-z
> 1—§Zmzax|(gox|92)|2. (17¢)

For ¢p(X, Z) we have

&(X,2) = — inf 5(C,P;Qx) (18)
= dd;l—n}piangXS(P, 05(6,)) (18b)
> 4 —maxg 15— (e.l0.)21, (180)

where the bound comes from choosing P to be the uniform distribution. We could also choose P(x) =
[{¢,16,/)|* for some 2’ to obtain the bound ¢p(X,Z) > dd;l — min, max, 3 >, }Tr[cpx(Gz — 92,)]{. However,
from numerical investigation of random bases, it appears that this bound is rarely better than the previous
one.

Let us comment on the properties of the complementarity measures and their bounds in (16d), (17c),
and (18c). Both expressions in the bounds are, properly, functions only of the two orthonormal bases in-
volved, depending only on the set of overlaps. In particular, both are invariant under relabelling the bases.
Uncertainty relations formulated in terms of conditional entropy typically only involve the largest overlap
or largest two overlaps [7, 57], but the bounds derived here are yet more sensitive to the structure of the
overlaps. Interestingly, the quantity in (16d) appears in the information exclusion relation of [57], where
the sum of mutual informations different systems can have about the observables X and Z is bounded by
1082 d Zx max;, |<¢x|92> |2'

The complementarity measures themselves all take the same value in two extreme cases: zero in the trivial
case of identical bases, (d —1)/d in the case that the two bases are conjugate, meaning |{¢,|6,)|*> = 1/d for
all x,z. In between, however, the separation between the two can be quite large. Consider two observables
that share two eigenvectors while the remainder are conjugate. The bounds (16d) and (17c) imply that cy,
and cp are both greater than (d—3)/d. The bound on ¢, from (18c) is zero, though a better choice of constant
channel can easily be found in this case. In dimensions d = 3k + 2, fix the constant channel to output the
distribution P with probability 1/3 of being either of the last two outputs, 1/3k for any k of the remainder,
and zero otherwise. Then we have ¢, > % —max, 5(P, Q;P,(2)). It is easy to show the optimal value is 2/3
so that é, > (d —3)/3d. Hence, in the limit of large d, the gap between the two measures can be at least 2/3.
This example also shows that the gap between the complementary measures and the bounds can be large,
though we will not investigate this further here.

4.2 Results

We finally have all the pieces necessary to formally state our uncertainty relations. The first relates measure-
ment error and measurement disturbance, where we have

Theorem 1. For any two observables X and Z and any quantum instrument &,

V2ex(E)+v;(E) = cy(X,Z) and (19)
ex(E)+ 1/ 2v,(E) = cy(Z,X). (20)

Due to Lemma 1, any joint measurement of two observables can be decomposed into a sequential measure-
ment, which implies that these bounds hold for joint measurement devices as well. Indeed, we will make
use of that lemma to derive (20) from (19) in the proof below. Of course we can replace the c;; quantities
with closed-form expressions using the bound in (16d). Figure 6 shows the bound for the case of conjugate
observables of a qubit, for which ¢ (X, Z) = ¢, (Z,X) = % It also shows the particular relation between error
and measurement disturbance achieved by the apparatus £);; mentioned at the end of §3, from which we can
conclude the that bound is tight in the region of vanishing error or vanishing disturbance.
For measurement error and preparation disturbance we find the following relations
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Figure 6: Error versus disturbance bounds for conjugate qubit observables. Theorem 1 restricts the
possible combinations of measurement error ey and measurement disturbance v, to the dark gray
region bounded by the solid line. Theorem 2 additionally includes the light gray region. Also shown
are the error and disturbance values achieved by &, from §3.

Theorem 2. For any two observables X and Z and any quantum instrument &,

V2ex(E)+mz(E) = cp(X,Z) and 2n
V2ex(E)+17() = Cp(X, Z). (22)

Returning to Figure 6 but replacing the vertical axis with 1, or 1), we now have only the upper branch of the
bound, which continues to the horizontal axis as the dotted line. Here we can only conclude that the bounds
are tight in the region of vanishing error.

4.3 Proofs

The proofs of all three uncertainty relations are just judicious applications of the triangle inequality, and
the particular bound comes from the setting in which P, meets Oy. We shall make use of the fact that an
instrument which has a small error in measuring Qy is close to one which actually employs the instrument
associated with Qy. This is encapsulated in the following

Lemma 2. For any apparatus &, ,yp there exists a channel Fx,_,yp such that §(&€, Q,F) < +/2ex(E),
where Q) is a quantum instrument associated with the measurement Qx. Furthermore, if Qy is a projective

measurement, then there exists a state preparation Px_,yg such that 6(€, QxP) < 4/ 2ex(E).

Proof. LetV : M, — Hp ® Hp ® L2(X) and Wy : H, — L?(X) ® H, be respective dilations of € and Qy. Using
the dilation Wy we can define the instrument Q;( as
Q) : L% (X) ® B(Hy) = B(H,) 23)
g®A— Wi(n(g) ®A)Wy .

Suppose Ry_,x is the optimal map in the definition of £x(£), and let R{,_ ., be the extension of R which

keeps the input Y; it has a dilation V' : L2(Y) — L2(Y)®L2(X). By Stinespring continuity, in finite dimensions
there exists a conditional isometry Uy : L2(X) ® H, — L%(X) ® L2(Y) ® Hp ® My such that
V'V — Uy Wy |, < v/26x(O). (24)
Now consider the map
E L (Y)® B(Hp) — B(Hy)

25
fOA-W UL (Ix ® (f)®A® 15)UxWy . (25)
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By the other bound in Stinespring continuity we thus have §(&, &) < 4/2ex(€). Furthermore, as described
in §2.4, Uy is a conditional isometry, i.e. a collection of isometries U, : H, — L2(Y) ® Hp ® Hj for each
measurement outcome x. Note that we may regard elements of L°°(X) ® B(#) as sequences (A, ),cx With
A, € B(#) for all x € X such that ess sup,, [|A,|loc < 00. Therefore we may define

F:L(Y)® B(Hg) = L= (X) ® B(H,)

f @A (U(n(f) ®A® LUy )ox, (26)

so that &' = Q) F. This completes the proof of the first statement.

If Oy is a projective measurement, then the output B of Q) can just as well be prepared from the X
output. Describing this with the map P;_ .., which prepares states in A given the value of X and retains X at
the output, we have Q) = QyP’. Setting P = P’'F completes the proof of the second statement. O

Now, to prove (19), start with the triangle inequality and monotonicity. Suppose Px_,yp is the state
preparation map from Lemma 2. Then, for any Ryg_.4,

0(Qz, QxPRQz) < 6(Q7,ERQy) + 6(ERQz, QxPRQy) (27a)
<6(Qz,ERQ;) +6(E,QxP) (27b)
=5(Q;,ERQ,) + 1/264(£). (27¢)
Observe that PRQ is just a map Ry _,,. Taking the infimum over R we then have
V2ex(E) + v,(€) = inf 5(Q;, OxPRQ,) (282)
> inf 5(Qz, OxR). (28b)

To show (20), let Ryp_,4 and R{,_,, be the optimal maps in v,(£) and ex(£), respectively. Now apply
Lemma 1 to M = ER'RQ; and suppose that £, ., is the resulting instrument and Mzp_,x is the conditional

measurement. By the above argument, +/2¢,(E’) + vx(€) = infr 6(Qx, QzR). But £;(£) < 6(Qz,E Tp) =
v,(&) and vy () < 6(Qyx, E' M) = &4 (&), where in the latter we use the fact that we could always reprepare
an X eigenstate and then let Qy measure it. Therefore the desired bound holds.

To establish (21), we proceed just as above to obtain

0(Pz,PzQxPR) < 6(Pz,PzER) + 4/ 2ex(E). (29)

Now Px_,vsRvg_a is @ preparation map Px_,,, and taking the infimum over R gives

V2ex(€) +15(€) > inf 6(P7, P, Qx PR) (30a)
> inf 6(Pz, P, QxP). (30b)

Finally, (22). Since the ), disturbance measure is defined “backwards”, we start the triangle inequality
with the distinguishability quantity related to disturbance, rather than the eventual constant of the bound.
For any channel C7_x and Py_,yp from Lemma 2, just as before we have

O0(CP,P,E) < 6(CP,P,QxP)+6(P;QxP,PzE) (31a)
< 5(C,P;0x) + V264 (E). (31b)
Now we take the infimum over constant channels C;_,x. Note that
Cir:i o(C,P;E) < Clzrifx o(CP,PLE). (32)
Therefore, we have
V26x() +1,(6) = 47t —inf5(C, P, Q). (33)

This last proof also applies to a more general definition of disturbance which does not use P, at the input,
but rather diagonalizes or “pinches” any input quantum system in the Z basis. Such a transformation can
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be thought of as the result of performing an ideal Z measurement, but forgetting the result. More formally,
letting QHZ =W;Tz with Wy : a - W;aW,, we can define

7(6) = ‘7t —inf5(C, Q). (34)

Though perhaps less conceptually appealing, this is a more general notion of disturbance, since now we can
potentially use entanglement at the input to increase distinguishability of QHZS from any constant channel.
However, due to the form of an, entanglement will not help. Applied to any bipartite state, the map QHZ
produces a state of the form Y, p,|6,)(6,| ® o, for some probability distribution p, and set of normalized
states 0 ,, and therefore the input to £ itself is again an output of P,. Since classical correlation with ancillary
systems is already covered in 1,(£), it follows that 7, (€) = 7, (E).

5 Position & momentum
5.1 Gaussian precision-limited measurement and preparation

Now we turn to the infinite-dimensional case of position and momentum measurements. Let us focus on
Gaussian limits on precision, where the convolution function a described in §2.2 is the square root of a
normalized Gaussian of width o, and for convenience define

2

X
e 202, (35)

1
8s(x) Toro
One advantage of the Gaussian choice is that the Stinespring dilation of the ideal o-limited measurement
device is just a canonical transformation. Thus, measurement of position Q just amounts to adding this value
to an ancillary system which is prepared in a zero-mean Gaussian state with position standard deviation o,
and similarly for momentum. The same interpretation is available for precision-limited state preparation.
To prepare a momentum state of width op, we begin with a system in a zero-mean Gaussian state with
momentum standard deviation o, and simply shift the momentum by the desired amount.

Given the ideal devices, the definitions of error and disturbance are those of §3, as in the finite-dimensional
case, with the slight change that the first term of 7 is now 1. To reduce clutter, we do not indicate o, and op
specifically in the error and disturbance functions themselves.

Since our error and disturbance measures are based on possible state preparations and measurements
in order to best distinguish the two devices, in principle one ought to consider precision limits in the distin-
guishability quantity 6. However, we will not follow this approach here, and instead we allow test of arbitrary
precision in order to preserve the link between distinguishability and the cb norm. This leads to bounds that
are perhaps overly pessimistic, but nevertheless limit the possible performance of any device.

5.2 Results

As discussed previously, the disturbance measure of demerit 77 cannot be expected to lead to uncertainty
relations for position and momentum observables, as any non-constant channel can be perfectly differentiated
from a constant one by inputting states of arbitrarily high momentum. We thus focus on the disturbance
measures of merit.

Theorem 3. Set ¢ = 20,0 for any precision values 0, 0p > 0. Then for any quantum instrument &,

V@4 m(®) | 1-c

> d 36

£0(E) + /270(E) (14 c2/3 4 c4/3)3/2 o (36)
(1+c2)2

V26 ¥ 12 (E) 2 (o oA 4 22 1 (1 5 )Y 37)

Before proceeding to the proofs, let us comment on the properties of the two bounds. As can be seen in
Figure 7, the bounds take essentially the same values for o4y0p < %, and indeed both evaluate to unity at
0q0p = 0. This is the region of combined position and momentum precision far smaller than the natural
scale set by f, and the limit of infinite precision accords with the finite-dimensional bounds for conjugate
observables in the limit d — o0o. Otherwise, though, the bounds differ remarkably. The measurement distur-
bance bound in (36) is positive only when oy0p < %, which is the Heisenberg precision limit. In contrast,

the preparation disturbance bound in (37) is always positive, though it decays roughly as (o40p)>.
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The distinction between these two cases is a result of allowing arbitrarily precise measurements in the dis-
tinguishability measure. It can be understood by the following heuristic argument. Consider an experiment
in which a momentum state of width O'gl is subjected to a position measurement of resolution o, and then a
momentum measurement of resolution o'p*". From the uncertainty principle, we expect the position measure-
ment to change the momentum by an amount ~ 1/0,. Thus, to reliably detect the change in momentum,
o' must fulfill the condition 03" < o' + 1/04. The Heisenberg limit in the measurement disturbance
scenario is 03" = 2/0,, meaning this condition cannot be met no matter how small we choose ag‘. This is
consistent with no nontrivial bound in (36) in this region. On the other hand, for preparation disturbance the
Heisenberg limit is O'gl = 2/0, so detecting the change in momentum simply requires 09" < 1/0,. A more
satisfying approach would be to include the precision limitation in the distinguishability measure to restore
the symmetry of the two scenarios, but this requires significant changes to the proof and is left for future

work.

11

—— measurement
- - - preparation

lower bound

O-QO-P

Figure 7: Uncertainty bounds appearing in Theorem 3 in terms of the combined precision 040 5.
The solid line corresponds to the bound involving measurement disturbance, (36), the dashed line to
the bound involving preparation disturbance, (37).

5.3 Proofs

The proof of Theorem 3 is broadly similar to the finite-dimensional case. We would again like to begin with
Fqa—vp from Lemma 2 such that §(&, Q:z]: ) < 4/2€4(€). However, the argument does not quite go through,
as in infinite dimensions we cannot immediately ensure that the infimum in Stinespring continuity is attained.
Nonetheless, we can consider a sequence of maps (F,, ),y such that the desired distinguishability bound holds
in the limit n — oo.

To show (36), we follow the steps in (27). Now, though, consider the map 7, which just appends Q to the
output of F,, and define N/ = Qé]—'nRQp, where Q’Q is the instrument associated with position measurement
Qq- Then we have

5(Qp, NTQ) < 6(2p, ERQp) + 6(ERQp, N'TQ) (38a)
< 6(Qp,ERQp) +8(E, QpFp) - (38b)

Taking the limit n — co and the infimum over recovery maps R produces 4/2£,(£) + vp(€) on the righthand
side. We can bound the lefthand side by testing with pure unentangled inputs:

5(Qp, N'TQ) = sup (W, (Qp(f)—INTQIf)) ) (39)

Now we want to show that, since Qp is covariant with respect to phase space translations, without loss
of generality we can take N to be covariant as well. Consider the translated version of both Qp and N'7q,
obtained by shifting their inputs and outputs correspondingly by some amount z = (g, p). For the states
) this shift is implemented by the Weyl-Heisenberg operators V,, while for tests f only the value of p is
relevant. Any such shift does not change the distinguishability, because we can always shift i) and f as
well to recover the original quantity. Averaging over the translated versions therefore also leads to the same
distinguishability, and since Qp is itself covariant, the averaging results in a covariant N'7q. The details of
the averaging require some care in this noncompact setting, but are standard by now, and we refer the reader
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to the work of Werner [22] for furter details. Since 7q just ignores the Q output of the measurement A/, we
may thus proceed by assuming that N is a covariant measurement.
Any covariant A/ has the form

N(f)zf E fevmy, 40)
]RZ

for some positive operator m such that Tr[m] = 1. Due to the definition of A/, the position measurement
result is precisely that obtained from Q. By the covariant form of N, this implies that the position width of
m is just o, (or rather that of the parity version of m, see [22]). Suppose the momentum distribution has
standard deviation Gp; then 040 p > 1/2 follows from the Kennard uncertainty relation [3].

Now we can evaluate the lower bound term by term. Let us choose a Gaussian state in the momentum

1
representation and test function: ¥ = g2 ” and f = V2nosg, x Then the first term is a straightforward
Gaussian integral, since the precision-limited measurement just amounts to the ideal measurement convolved
with g,

(W, Qp(f 1Y) = f dp'dp g,,(p)8o,(p" —P)f (P) (41a)
R Uf

2 52 1 52
oi+opt+oy

The second term is the same, just with &, instead of op, so we have

Of _ Of
2 2 2 2 =2 2
Jortoptol \Jor+ah+ol

(42)

0(Qp,NTQ) =

The tightest possible bound comes from the smallest &'p, which is 1/20,, and the bound is clearly trivial if
0q0p = 1/2. If this is not the case, we can optimize our choice of o;. To simplify the calculation, assume
that o, is small compared to o (so that we are testing with a very narrow momentum state). Then, with
¢ =20,0p, the optimal o is given by

0.2

2 _ P
05 = 2/3(1 + c2/3)’ (43)

Using this in (42) gives (36).
For preparation disturbance, proceed as before to obtain
8(Pp, PpQuFyRTQ) < 6(Pp, PoER) + 8(PpER, PpQp FRTQ) (44a)
< 5(Pp, PpER) +8(E, Q4 Fy) (44b)

Now the limit n — oo and the infimum over recovery maps R produces 1/2£,(€) + 1p(€) on the righthand
side. A lower bound on the quantity on the lefthand side can be obtained by using P, to prepare a o p-limited
input state and making a o ,-limited momentum measurement Q, measurement on the output, so that, for
N as before,

5(Pp, PrQLFiRTQ) = sup  (¥,(Qp(f)—INTQI(N)) ). (45)

vy :Gaussian; f

The only difference to (39) is that the supremum is restricted to Gaussian states of width op. The covariance
argument nonetheless goes through as before, and we can proceed to evaluate the lower bound as above.
This yields

9r i

2 2 2 2, 1 2
\/O'f-f—O'm-f-O'P \/o'f+40‘22-{—o'1D

(46)

8(Pp, PpQuFRTQ) =

We may as well consider o,,, — 0 so as to increase the first term. The optimal o is then given by the optimizer
above, replacing ¢ with ¢/+/1 + ¢2. Making the same replacement in (36) yields (37).
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6 Applications
6.1 No information about Z without disturbance to X

A useful tool in the construction of quantum information processing protocols is the link between reliable
transmission of X eigenstates through a channel A" and Z eigenstates through its complement A, particularly
when the observables X and Z are maximally complementary, i.e. |{¢,|9,)|*> = % for all x,z. Due to the
uncertainty principle, we expect that a channel cannot reliably transmit the bases to different outputs, since
this would provide a means to simultaneously measure X and Z. This link has been used by Shor and Preskill
to prove the security of quantum key distribution [58] and by Devetak to determine the quantum channel
capacity [59]. Entropic state-preparation uncertainty relations from [6, 44] can be used to understand both
results, as shown in [60, 61].

However, the above approach has the serious drawback that it can only be used in cases where the specific
X-basis transmission over A" and Z-basis transmission over N'* are in some sense compatible and not coun-
terfactual; because the argument relies on a state-dependent uncertainty principle, both scenarios must be
compatible with the same quantum state. Fortunately, this can be done for both QKD security and quantum
capacity, because at issue is whether X-basis (Z-basis) transmission is reliable (unreliable) on average when
the states are selected uniformly at random. Choosing among either basis states at random is compatible with
a random measurement in either basis of half of a maximally entangled state, and so both X and Z basis sce-
narios are indeed compatible. The same restriction to choosing input states uniformly appears in the recent
result of [33], as it also ultimately relies on a state-preparation uncertainty relation.

Using Theorem 2 we can extend the method above to counterfactual uses of arbitrary channels A/, in
the following sense: If acting with the channel N does not substantially affect the possibility of performing
an X measurement, then Z-basis inputs to A/ result in an essentially constant output. More concretely, we
have

Corollary 1. Given a channel N and complementary channel N'*, suppose that there exists a measurement
Ay such that 6(Qyx, N Ax) < e. Then there exists a constant channel C such that

5(QLN,C) < vV2e + 4 — 5, (%, 2). 47)
For maximally complementary X and Z, §(QLN*,C) < v/2e.

Proof. Let V be the Stinespring dilation of A" such that A’* is the complementary channel and define £ =

VyAx. For C the optimal choice in the definition of 1;(£), (22), (34), and 7, = 7, imply 5(QNZ€,C) <

V2e + % —Tp(X,Z). Since N is obtained from £ by ignoring the Ay measurement result, 5(9“2/\/' o) <
i

6(Q,¢€,0). O

This formulation is important because in more general cryptographic and communication scenarios we are
interested in the worst-case behavior of the protocol, not the average case under some particular probability
distribution. For instance, in [46] the goal is to construct a classical computer resilient to leakage of Z-
basis information by establishing that reliable X basis measurement is possible despite the interference of the
eavesdropper. However, such an X measurement is entirely counterfactual and cannot be reconciled with the
actual Z-basis usage, as the Z-basis states will be chosen deterministically in the classical computer.

It is important to point out that, unfortunately, calibration testing is in general completely insufficient
to establish a small value of §(Qy, N Ay). More specifically, the following example shows that there is no
dimension-independent bound connecting inf, 6(Qy, N Ax) to the worst case probability of incorrectly iden-
tifying an X eigenstate input to N, for arbitrary A. Let the quantities p,, be given by p,, = 2/d for
y=0,...,d/2-1,p,; =2/d for y =d/2,...,d —1, and p,, = 1/d otherwise, where we assume d is
even, and then define the isometry V : H, — Hz ® H ® H, as the map taking |z), to Zy VPyz 1Y) 12)c 1Y)p-
Finally, let N : B(Hp)® B(H ) — B(#,) be the channel obtained by ignoring D, i.e. in the Schrédinger picture
N*(p) = Trp[VpV*]. Now consider inputs in the X basis, with X canonically conjugate to Z. As shown in
Appendix C, the probability of correctly determining any particular X input is the same for all values, and

2
is equal to g >}, (ZZ / py’z) = (d + v2—2)?/d?. The worst case X error probability therefore tends to

zero like 1/d as d — co. On the other hand, Z-basis inputs 0 and 1 to the complementary channel £ result
in completely disjoint output states due to the form of p,,. Thus, if we consider a test which inputs one

of these randomly and checks for agreement at the output, we find inf, & (QHZ./\/' o) > % Using the bound
above, this implies inf, &6(Qy,NAx) = %. This is not 1, but the point is it is bounded away from zero and
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independent of d: There must be a factor of d when converting between the worst case error probability and
the distinguishability.

We can appreciate the failure of calibration in this example from a different point of view, by appealing
to the information-disturbance tradeoff of [40]. Since A transmits Z eigenstates perfectly to BC and X
eigenstates almost perfectly, we might be tempted to conclude that the channel is close to the identity channel.
However, the information-disturbance tradeoff implies that complements of channels close to the identity
are close to constant channels. Clearly this is not the case here, since A*(|0)(0]) is distinguishable from
N*(]1)(1]). This point is discussed further by one of us in [62]. The counterexample constructed above it
not symmetric for Z inputs, and it is an open question if calibration is sufficient in the symmetric case. For
channels that are covariant with respect to the Weyl-Heisenberg group (also known as the generalized Pauli
group), it is not hard to show that calibration is in fact sufficient.

6.2 Connection to wave-particle duality relations

In [42] Englert presents a wave-particle complementarity relation in a Mach-Zehnder interferometer, quan-
tifying the extent to which “the observations of an interference pattern and the acquisition of which-way
information are mutually exclusive”. The particle-like “which-way” information is obtained by additional
detectors in the arms of the interferometer, while fringe visibility is measured by the population difference
between the two output ports of the interferometer. The detectors can be thought of as producing different
states in an ancilla system, depending on the path taken by the light. Englert shows the following tradeoff
between the visibility V and distinguishability D of the which-way detector states:

VZ4+D?<1. 48)

We may regard the entire interferometer plus which-way detector as an apparatus &y; with quantum and
classical output. It turns out that &y, is precisely the nonideal qubit X measurement considered in §3 and
that path distinguishability is related error of X and visibility to disturbance (all of which are equal in this
case by (15)) of a conjugate observable Z. More specifically, as shown in Appendix D,

ex(Emz) = %(1 —D) and vz(&vz) =nz(Emz) = Nz(Enz) = %(1 —V). (49)

Therefore, (48) is also an error-preparation disturbance relation. By the same token, the uncertainty relations
in Theorems 1 and 2 imply wave-particle duality relations.

Let us comment on other connections between uncertainty and duality relations. Recently, [63] showed a
relation between wave-particle duality relations and entropic uncertainty relations. As discussed above, the
latter are state-dependent state-preparation relations, and so the interpretation of the wave-particle duality
relation is somewhat different. Here we have shown that Englert’s relation can actually be understood as a
state-independent relation.

Each of the disturbance measures are related to visibility in Englert’s setup. It is an interesting question to
consider a multipath interferometer to settle the question of which disturbance measure should be associated
to visibility in general. From the discussion of [64], it would appear that visibility ought to be related to
measurement disturbance v,, but we leave a complete analysis to future work.

7 Comparison to previous work

Broadly speaking, there are two main kinds of uncertainty relations: those which are constraints on fixed
experiments, including the details of the input quantum state, and those that are constraints on quantum
devices themselves, independent of the particular input. All of our relations are of the latter type, in contrast
to entropic relations, which are typically of the former type. At a formal level, this distinction appears in
whether or not the quantities involved in the precise relation depend on the input state or not.?> Each type of
relation certainly has its use, though when considering error-disturbance uncertainty relations, we argued in
the introduction that the conceptual underpinnings of state-dependent relations describing fixed experiments
are unclear. Indeed, it is precisely because of the uncertainty principle that trouble arises in defining error and
disturbance in this case. Worse still, there can be no nontrivial bound relating error and disturbance which
applies universally, i.e. to all states [65].

Independent of the previous question, another major contrast between different kinds of uncertainty re-
lations is whether they depend on the values taken by the observables, or only the configuration of their
eigenstates. Again, our relations are all of the latter type, but now we share this property with entropic rela-
tions. That is not to say that the observable values are completely irrelevant in our setting, merely that they

2This is separate from the issue of whether the bound depends on the state, as for instance in the Robertson relation [4].
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are not necessarily relevant. In distinguishing the outputs of an ideal position measurement of given precision
from the outputs of the actual device, one may indeed make use of the difference in measurement values.
But this need not be the only kind of comparison.

In the recent work of Busch, Lahti, and Werner [25], the authors used the Wasserstein metric of order
two, corresponding to the mean squared error, as the underlying distance D(.,.) to measure the closeness
of probability distributions. If M2, M? are the marginals of some joint measurement of position Q and
momentum P, and X, denotes the distribution coming from applying the measurement X to the state o, their
relation reads

supD(MS,Qg)'supD(Mg,Pg) >c, (50)
0 0

for some universal constant c. In [27], the authors generalize their results to arbitrary Wasserstein metrics. As
in our case, the two distinguishability quantities in (50) are separately maximized over all states, and hence
the resulting expression characterizes the goodness of the approximate measurement.

One could instead ask for a “coupled optimization”, a relation of the form

sup[ D(MZ, Qu)D(ME, Py)] = ¢/, (51)
e

for some other constant ¢’.> This approach is taken in [66] for the question of joint measurability. While
this statement certainly tells us that no device can accurately measure both position and momentum for all
input states, the bound ¢’ only holds (and can only hold) for the worst possible input state. In contrast, our
bounds, as well as in (50) are state-independent in the sense that the bound holds for all states. Indeed, the
two approaches are more distinct than the similarities between (50) and (51) would suggest. By optimizing
over input states separately, our results and those of [22, 25, 27] are statements about the properties of
measurement devices themselves, independent of any particular experimental setup. State-dependent settings
capture the behavior of measurement devices in specific experimental setups and must therefore account for
the details of the input state.

The same set of authors also studied the case of finite-dimensional systems, in particular qubit systems,
again using the Wasserstein metric of order two [26]. Their results for this case are similar, with the product in
(50) replaced by a sum. Perhaps most closely related to our results is the recent work by Ipsen [34], who uses
the variational distance as the underlying distinguishability measure to derive similar additive uncertainty
relations. We note, however, that both [26] and [34] only consider joint measurability and do not consider
the change to the state after the approximate measurement is performed, as it is done in our error-disturbance
relation. Furthermore, both base their distinguishability measures on the measurement statistics of the devices
alone. But this does not necessarily tell us how distinguishable two devices ultimately are, as we could employ
input states entangled with ancilla systems to test them. These two measures can be different [51], even for
entanglement-breaking channels [67]. In Appendix A we give an example which shows that this is also true
of quantum measurements, a specific kind of entanglement-breaking channel.

Entropic quantities are another means of comparing two probability distributions, an approach taken
recently by Buscemi et al. [33] and Coles and Furrer [35] (see also Martens and de Muynck [29]). Both
contributions formalize error and disturbance in terms of relative or conditional entropies, and derive their
results from entropic uncertainty relations for state preparation which incorporate the effects of quantum
entanglement [6, 44]. They differ in the choice of the entropic measure and the choice of the state on which
the entropic terms are evaluated. Buscemi et al. find state-independent error-disturbance relations involving
the von Neumann entropy, evaluated for input states which describe observable eigenstates chosen uniformly
at random. As described in Sec. 6, the restriction to uniformly-random inputs is significant, and leads to
a characterization of the average-case behavior of the device (averaged over the choice of input state), not
the worst-case behavior as presented here. Meanwhile, Coles and Furrer make use of general Rényi-type
entropies, hence also capturing the worst-case behavior. However, they are after a state-dependent error-
disturbance relation which relates the amount of information a measurement device can extract from a state
about the results of a future measurement of one observable to the amount of disturbance caused to other
observable.

An important distinction between both these results and those presented here is the quantity appearing in
the uncertainty bound, i.e. the quantification of complementarity of two observables. As both the aforemen-
tioned results are based on entropic state-preparation uncertainty relations, they each quantify complemen-
tarity by the largest overlap of the eigenstates of the two observables. This bound is trivial should the two

3Such an approach has been advocated by David Reeb (private communication).
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observables share an eigenstate. However, a perfect joint measurement is clearly impossible even if the ob-
servables share all but two eigenvectors (if they share all but one, they necessarily share all eigenvectors). All
three complementarity measures used here are nontrivial whenever not all eigenvectors are shared between
the observables.

8 Conclusions

We have formulated simple, operational definitions of error and disturbance based on the probability of
distinguishing the actual measurement apparatus from the relevant ideal apparatus by any testing proce-
dure whatsoever. The resulting quantities are conceptually straightfoward properties of the measurement
apparatus, not any particular fixed experimental setup. We presented uncertainty relations for both joint
measurability and the error-disturbance tradeoff, for both arbitrary finite-dimensional systems and for po-
sition and momentum. In the former case the bounds involve simple measures of the complementarity of
two observables, while the latter involve the ratio of the desired position and momentum precisions o, and
op to Planck’s constant . We further showed that this operational approach has applications to quantum
information processing and to wave-particle duality relations. Finally, we presented a detailed comparison of
the relation of our results to previous work on uncertainty relations.

Several interesting questions remain open. One may inquire about the tightness of the bounds. The
qubit example for conjugate observables discussed at the end of §3 shows that the finite-dimensional bounds
of Theorem 2 are tight for small error &y, though no conclusion can be drawn from this example for small
preparation disturbance. It would be interesting to check the tightness of the position and momentum bounds
by computing the error and disturbance measures for a device described by a covariant measurement. For
reasons of simplicity, we have not attempted to incorporate precision limits into the definitions of error and
distinguishability of position and momentum. Doing so would lead to more conceptually satisfying bounds
and perhaps remedy the fact that the measurement error-preparation disturbance bound is nontrivial even
outside the Heisenberg limit. Bounds for other observables in infinite dimensions would also be quite in-
teresting, for instance the mixed discrete/continuous case of energy and position of a harmonic oscillator.
Restricting to covariant measurements, in finite or infinite dimensions, it would also be interesting to deter-
mine if entangled inputs improve the distinguishability measures, or whether calibration testing is sufficient.
From the application in Corollary 1, it would appear that calibration is sufficient, but we have not settled the
matter conclusively.
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A Entanglement improves the distinguishability of measurements

Here we give an example of two measurements whose distinguishability is improved by entanglement.
Let £, be a measurement in an arbitrary chosen basis |b,), |b;), and |b,), and define £, be measurement in the
basis given by [6y) = 5(2|bo)+2|b1)—[by)), [61) = 5(—1|bg)+2b;)+2 b)) and |6,) = 5(2]bg)—|b1)+2|by)).
Using Ty = |by){bi| — |6x) (6], the largest distinguishability to be had without entanglement is given by

2
5/(51,62)=m§x%Z|Tr[ng]| (52a)
k=0 )
= max {srkrfﬁ} % kZ:(:)Tr[sk Tvo] (52b)
2
- o |37 20

Checking the eight combinations of s, one easily finds that the maximimum value is +/5/3.
Meanwhile, if we use the state

2 1
o=2[-1 2 -1 (53)
6\_1 -1 2

to define ¥ = (1 ® /p)2(1 ® ,/p) for 2 the projector onto |2) = >, |b;) ® |b;), then

2

5(61.&) 2 3 > | l(T ® D], (54)
k=0

Direct calculation shows that §(&;, £,) > +/3/2. Thus, there exist projective measurements for which §(&;,&,) >
5/(51 H] 52)

B Computing error and disturbance by convex optimization

Here we detail how to compute the error and disturbance quantities via semidefinite programming and
calculate these for the nonideal qubit X measurement example. Given a Hilbert space H with basis {|k)}g=1,
define, just as above, |2) = ZZ:I |k) ® |k) € H ® H. Then, for any channel &£, let C denote the Choi mapping
of £* to an unnormalized bipartite state,

C(&) =& @ T(12)(2]) € B(Hz ® H,). (55)

The action of the channel can be compactly expressed in terms of the Choi operator as &,_,5(Ag) = Trg[AgC(E)pal
or in the Schrédinger picture as €5 ,(0,) = Tra[C(€)pa0, ], where the transpose is taken in the basis defining
C (see, e.g. [49]). The cb norm can then be expressed in primal and dual form as [54]

% ||5A—>B||Cb = ma)%{il‘élum TI'[C(E)BAKBA] (56)

subjectto  Kpa—1p® 0, <0, Tr[p,] <1,
04, Kpa 2 0,

= minimum A (57)
T

SubjeCt tO TBA 2 C(S)BA’ A']]‘A_ TA 2 0,
Ty A >0.

Note that in the dual formulation the objective function is just the operator norm ||T||o,. For infinite-
dimensional systems the Choi operator does not have such a nice form, though it might be possible to formu-
late the cb norm of Gaussian channels as a tractable optimization.

The additional optimizations involving R in the measures of error and disturbance are immediately com-
patible with the dual formulation in (57), and so these quantities can be cast as semidefinite programs. To
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start, consider the error in measuring X. With Qx, = C(Qyx) and Eyps = C(€4_v5), We have
ex(Esyg) = minimum A 58
x(EavB) im (58)

Subject to TXA + Try[nyEYA] > QXA’ )’]]'A —_ TA > 0, RY = ]lY’
A, Tyus Ry = 0.

Without loss of generality, we may restrict the operator Tx, to be a hybrid classical-quantum operator, classical
on X, and of course Ryy is classical on both systems. This is also the reason it is unnecessary to transpose Y
in Try[Rxy Eva]. Further symmetries of Qx4 and Ex, can be quite helpful in simplifying the program, but we
will not pursue this further here. The associated primal form is as follows.

ex(Easyp) = mal)((inium Tr[QxaKxa] —Tr[Ly] (59)
0,

subjectto  Kyy—1x® 04 <0, Tr[p4] <1, Tro[EyaKxal —Ly ® 1x <0,
04 Kxa = 0, Ly = L%,

In writing an equality we have assumed that the duality gap is zero. But this is easy enough to show using the
Slater condition, namely by ensuring that the value of the minimization is finite and that there exists a strictly
feasible set of maximization variables. The former holds because ¢y is the infinimum of the distinguishability,
and hence €5 (&) = 0. Meanwhile, a strictly feasible set of variables in (59) is given by K = %k]l, o =k1, and
L = kEy for k < 1/dim(A).

To formulate the measurement disturbance v,(€,_,y5) we are interested in C(ERTyQ), which can be
expressed as a linear map on R,y :

C(ERTY Q) = Trays[QzaR s EG ] (60a)
= TrA'YB [RA'YBQZIEi};gA] . (60b)

In the second step we have transposed the A’ system in the first. Then we have

v;(Easyp) = mir}iﬂum A (61)
subject to  Tz4 + Trayp [RAIYBQ;Z/E\T(BBA] 2Qza, ALy =Ty 20, Ryp = 1y,
A, Tza,Rayp = 0,
= ma;(dnium Tr[QzaKz4] —Tr[Lyg] (62)
0,

subjectto Kz, — 1,80, <0, Trles] <1, Trza[Qza EypaKzal — 14 ®Lyg <0,
©a» KZA = 0’ LYB = L?B .
Here we have absorbed the transposes over A’ and B into 1, and the definition of Ly, since this does not

affect Hermiticity or the value of the objective function. Strong duality is essentially the same as before:
The minimization is finite and we can choose K = %k]l and p = k1. Then in the third constraint we have

Trza[Qza EvpaKza] = %k]l « ® Evp since Q is unital. Setting L = kEyp gives a strictly feasible set.
Finally, we come to the two preparation disturbance measures. The first is simply

Nz(Easyp) = mir%i)rtrllzum A (63)

subject to  Tyz + Trypa[RaysEysy Pyl = Paz, A1z — Tz >0, Ryp = Lyg,
A,, TXA’ RAYB >0 5

= rnal)éirnLum Tr[PyyKs7]—Tr[Lyg] (64)
0,

subjectto K,z —1,® p7 <0, Tr[pz] <1, TrA,Z[EYBA/PAT,’;KAZ] —1,®Lyz <0,
07,Kaz =2 0,Lypg = Lyjp.

Here we have absorbed the transpose on B into the definition of Lyg since this doesn’t affect Hermiticity or
the value of the objective function. Strong duality holds as before, and also for the demerit measure which
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reads

L 5,(Enmys) = minimum A (65)

Subject to TYBZ + O'YB®]].Z > TrA[EYBAPATé]a 7(,]].2 — TZ > 0, Tr[O'YB] = 1,

7(,, TYBZ: Ovp = 09

= ma;{dmum TT[EYBAPATQKYBz]_H (66)
0.l

subjectto  Kypgz —Lyp® 0z <0, Tr[pz] <1, Kyg—ulys <0,
0z,Kypz 2 0,u €R.

Now let us consider the particular example described in the main text, a suboptimal X measurement.
Suppose we use |p,) from the ideal X measurement to define the Choi operator. After a bit of calculation,
one finds that the Choi operator Eyp, of Eyp|s is given by

Eypa = |bo){boly ® [#){(¥|ps +|b1){b1ly ® (0, ® 0,)|¥)(¥|pa(0, ® T,), (67)

where |¥) = cos % [©o)®|pg)+sin % l¢1)®|p;). Tracing out B gives the Choi operator of just the measurement
result Y, Eyy = >, |b)(b.ly ® A, with A, = %]1 + %(—1)* cosf o,.

To compute the measurement error €x(£), suppose that no recovery operation is applied, i.e. the outcome
Y is treated as X. Then we can work with Ey, and dispense with R so that the third constraint in (58) is
satisfied. To satisfy the first constraint, choose Ty, to be the positive part of Qx, — Ex,. This gives Ty, =
%(1 —c0s0) > b ) (bl ® ¢, ){p,l; consequently, T, = %(1 —cos0)1, and therefore 4 (&) < %(1 —cos9).
On the other hand, Ky, = %QXA and g4 = %]lA satsify the first two constraints in (59). The last constraint
involves the quantity Tr,[EysKxa] = %ny |by)(by |y ® [by)({by|x(1+ (=1)*"Y cos 0) and can therefore be
satisfied by choosing Ly = %(1 + cos 0)1y. Evaluating the objective function gives ex(&) > %(1 —cos9).

Note that the choice of Kx, corresponds to the unentangled test of randomly inputting |¢,) and checking
that the result is x. We could have anticipated that unentangled tests would be sufficient in this case, since the
optimal and actual measurements are both diagonal in the o, basis: Any input state can be freely dephased
in this basis, thus removing any entanglement.

Next, consider the measurement disturbance v,(&). Proceeding as with measurement error, suppose that
no recovery operation is applied, so that the output B is just regarded as A’ ~ A and the third constraint in
(61) is trivially satisfied. For the first constraint we need only the operator TrYA,[QZA/E\T(’I‘L;, A], and after some
calculation we find that it equals > |b,)(b,| ® I}, with I, = %(]l + (—1)*sinf0,). Thus, the optimization
is just like that of &4 (&), but with cos 8 replaced by sin 8. Hence v,(&) < %(1 —sin@). To show the other
inequality from the maximization form (62) also proceeds as before, starting with Kz, = %QZA and o, = %IL A
For the third constraint a bit of calculation shows

TrzalQzaBypaKzal = 3 D15, {bly ® b, ) {bely ® (070 [y} ploT o)y, (68)

with |¢) = iz(«/l +sin 0 |6,) + V1 —sin 0 |6,). Choosing

Lyg =% D 1b)(bly ® (1 +5in0)1+(~1)" cos 6 0,)p (69)

satisfies the constraints, and the objective function becomes %(1 —sin 6). As with &5(&), entangled inputs do
not increase the distinguishability in this particular case.
A trivial recovery map also optimizes 1,(€). To see this, set K,z = %PAZ and p7; = %]lz. Then in the

third constraint of (64) we have Tr, [Eyp A,PAT,*QKAZ], which is precisely the same as (68) with A’ replaced by A.

Hence, if we choose Ly as in (69), we obtain the lower bound 7,(¢) > %(1 —sin 8). To establish optimality,
Ty
/Z J
which is the same as TrYA,[QZA,E\T(’X, 4] from v;(E). Proceeding as there, we find the matching upper bound.
Finally, consider 7;(£). Here there are two possible outputs of P,&, call them &, and &;. It is not
difficult to show that for arbitrary &, the distinguishability is precisely 7, (€) = %(1 —06(&p,&1))- On the one
hand, we can simply pick the output of C to be & = %(50 + &,). Then, with T in (65) the positive part of

> 12)(zlz ® (€, — &), the objective function becomes %5(50, &1). On the other hand, in (66) we can choose

suppose R does nothing but discard the Y system. In the minimization (63) we then have Try[Ey P
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Kypz = %IO) 0]z ® Ayg + %Il) (1]z ® (1 — A)yp, for A the projector onto the nonnegative part of £, —&;. Then
u= % and p = %]l are feasible and lead again to the same objective function. In this particular case the two
states are &1 = 0,00, and &, = £ > |b,)(b,ly ® o, |y) (4|0, which yields 6(£,,&;) = sin® and hence
n,(&)= %(1 —sin0).

C Counterexample channel

Here we present the calculations involved in §6.1 Let |€,)5, = Zy v/Pyz |¥)1¥)p. Then the isometry is
just

V=Z|€z>|Z>C<Z|A' (70)
Observe that the action on |X) states leads to symmetric output in BC:
V)= %Zw"zvlz) (71a)
= %1 waz 1€2)5p 12)c (71b)
%
=Z5 = 18 g l2)c - (71¢)

Therefore, the probability of incorrectly identifying any particular input state is the same as any other, and
we can consider the case that the input x value is chosen uniformly at random. We can further simplify the
BC output by defining p, = >, p,, and

)= > +/pye/py I8, (72)

which is a normalized state on # for each y. Then we have
VIR =23 /By 11,)c 1Y) 13)p- (73)
y

Ignoring the D system will produce a classical-quantum state, with system B recording the classical value
¥, which occurs with probability p,, and C the quantum state Z* [n,). The optimal measurement therefore
has elements A, of the form A, = Zy ly){¥|z ® (I, ;)¢ for some set of POVMs {I ,},. In every sector of
fixed y value, the measurement has to distinguish between a set of pure states occurring with equal proba-
bilities. Therefore, by a result going back to Belavkin, the optimal measurement is the so-called “pretty good
measurement” [68, 69]. This has measurement elements I', , which project onto the orthonormal states
) =SY2Z%|n,), where S = > Z*|n,)(n,|Z7*. It is easy to work out that S = Y. (p,./p,)lz)(zl, and
thus |u, ,) = |X) for all y. Hence, we can in fact dispense with the B system altogether, since the particular
value of y does not alter the optimal measurement. The average guessing probability is thus

Pauess = 3 Dby | (%125 In,) [} (74a)
X,y
=>p,|@ln,) |’ (74b)
y

-5 (S ) (74¢)
y z

as intended.

D Englert’s complementarity relation

Here we describe Englert’s setup in our formalism and establish (49). He considers a Mach-Zehnder
interferometer with a relative phase shift between the two arms and additional which-way detectors in each
arm. To the two possible paths inside the interferometer we may associate the (orthogonal) eigenstates |¥,) of
an observable Z, with z € {0, 1}. For simplicity, we assume Z has eigenvalues (—1)*. The action of a relative
¢ phase shift is described by the unitary Upg = Z;zo e*?|9,)(9,|. It will prove convenient to choose ¢ = 0
below, but we leave it arbitrary for now. Meanwhile, the which-way detectors can be described as producing
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different states of an ancilla system, depending on which path the photon takes. For pure ancilla states |y, ),
the detector corresponds to the isometry Uyy = Zizo |9,)(P,lq ® |7.) 4, where A denotes the ancilla and Q
the system itself, which Englert terms a “quanton”.

Ignoring the phase shifts associated with reflection, the output modes of a symmetric (50/50) beamsplitter
are related to the input modes by the unitary Ugg = Z;zo |9,) {¢,], with |p,) = % > (—1)*]d,) for x €
{0,1}. We may associate these states with the observable X, also taking eigenvalues (—1)*. Observe that all
three complementarity measures are % The entire Mach-Zehnder device can be described by the isometry

Umz = UpsUpsUwwUss (75a)
1
= 7™ 19,) (0,10,) (g @ 1) (75b)
x,2=0
1 .
= e o @ulg @ Ira)a- (750)
x=0

When the ancilla is subsequently measured so as to extract information about the path, we may regard the
whole operation as an apparatus &; with one quantum and one classical output.

The available “which-way” information, associated with particle-like behavior of Q, is characterized by
the distinguishability D := 6(y,,y1). Given the particular form of U in (75), we may set sin 6 = (y,|y;) for
0 € R without loss of generality; D is then cos 0. This amounts to defining |y;) = cos % |k) + sin% |k + 1),
where the states {Ik)}i=0 form an orthonormal basis and arithmetic inside the ket is modulo two. Thus, &
with ¢ = 0 is precisely the nonideal qubit X measurement £ considered in §3. We shall see momentarily that
¢ = 0 can be chosen without loss of generality. Using (14) we have ex(Eyz) = %(1 — D) as claimed.

Meanwhile, the fringe visibility V is defined as the difference in probability (or population) in the two
output modes of the interferometer, maximized over the choice of input state. Since Z = %) (%] — [0 ) (4],
this is just

V= max |Tr[(ZQ ® 1)Uy 0 Uﬂk/[z]| . (76)

A straightforward calculation yields Uy, (Z, ® 14)Uy; = sin0(cos p Z +isinp XZ). It can be verified that
(cos ¢ Z +isinp X Z) has eigenvalues £1, and therefore V = sin. Thus, V2 + D? = 1 in this case (cf. [42,
Eqg. 11]). Note that ¢ does not appear in the visiblity itself, justifying our choice of ¢ = 0 above. By (15),

vz(Emz) = N7(Emz) = Nz(Emz) = %(1 =V).
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Jointly constrained semidefinite bilinear programming with an
application to Dobrushin curves

Stefan Huber, Robert Konig, and Marco Tomamichel

We propose a branch-and-bound algorithm for minimizing a bilinear functional of the form
fX)Y)=tr((X ®Y)Q) + tr(AX) + tr(BY),

of pairs of Hermitian matrices (X,Y") restricted by joint semidefinite programming constraints.
The functional is parametrized by self-adjoint matrices (), A and B. This problem generalizes
that of a bilinear program, where X and Y belong to polyhedra. The algorithm converges to a
global optimum and yields upper and lower bounds on its value in every step. Various problems
in quantum information theory can be expressed in this form. As an example application, we
compute Dobrushin curves of quantum channels, giving upper bounds on classical coding with
energy constraints.

B.2.1 Setting

Consider the following optimization problem, which we call the jointly constrained semidefinite
bilinear program. It is given by the minimization

(XI,le/l)neS tr(X®Y)Q)+tr(AX)+tr (BY) =: (XI’Iilfl)neSF(X, Y), (B.1)
specified by a subset S C Bs, (CP) x Bs, (C?) which is defined by a family of SDP constraints and
self-adjoint operators @ € Bsy(CP @ C?), A € Bsy(CP) and B € Bg,(C?). Optimization problems
of the form (B.1) commonly appear in quantum information theory in various contexts.

A popular heuristic approach to optimization problems of the form (B.1) is the so-called
seesaw algorithm, which first fixes a value of X = Xy and then uses an SDP to minimize the
affine-linear function Fx,(Y) := tr((Xo ® Y)Q) + tr(AXo) + tr(BY’) over the set Sx, :={Y €
B(C?)|(Xo,Y) € S}. Then, the roles of X and Y are interchanged and the procedure is iterated.
This algorithm can be shown to converge to a Kuhn-Tucker point of the objective function. It
is in general not the case that this point will be a local (let alone global) optimum of the mini-
mization problem. Contrary to other optimization problems such as the bilinear program for a
pair of vectors (z,y) for which a wide variety of algorithms have been proposed [16,89-94], the
seesaw algorithm appears to be the only procedure for (B.1) which has been used in the con-
text of quantum information. Our work aims to provide a new approach to jointly constrained
semidefinite bilinear programming in the quantum information context, which, contrary to the
seesaw algorithm, provides upper and lower bounds on the optimal value of (B.1).

B.2.2 Main Results

A new branch-and-bound algorithm. Our main contribution is a branch-and-bound algo-
rithm for the problem (B.1). The algorithm takes as input a set S C Bsa(CP) x Bsa(C?) defined
by SDP constraints, operators @ € Be,(CP ® C9), A € Bs,(CP), B € Bsa(C?) and a desired
precision € > 0. It returns a value @ and an element (X*,Y™*) € S such that

a=FX*"Y" < inf F(X,Y . B.2
a=Fee ) < (nt FOGY)) e (B.2)
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The algorithm is an adaptation of a branch-and-bound algorithm given by Al-Khayyal and
Falk [16] for a biconvex problem. The main difference between the latter and our algorithm is
that we use SDPs to compute lower bounds on the objective function, whereas the algorithm
by Al-Khayyal and Falk uses convex solvers. It can be shown that our algorithm always
outputs a tuple (X*, Y*) which satisfies the termination condition (B.2). In fact, the algorithm
produces a sequence of feasible points (X;,Y;) € S such that F(X;,Y;) converges to the global
optimum (B.1). Furthermore, at each stage i, it provides a bound on the deviation of F'(X;,Y;)
from the optimal value.

B.2.3 An application: Dobrushin curves of quantum channels

Let ® be a channel and consider a setting where a message W is sent through a cascade of n
copies of this channel, with a relay &; applied before the j-th application of ®. We are interested
in the amount of information the output

YV,=®0&,0-- 0 0Do& (W)

provides about the input W for an optimal coding strategy. Dobrushin curves in the classical
setting have been introduced in [95] to study this problem in the setting where a power con-
straint is imposed on each of the outputs of the relays £;. The Dobrushin curve of a classical
channel Py|x with continuous variable input X (i.e., a random variable on R™) is defined as

Fg(0) = sup | Py|x © Px, — Py|x © Px,|l1 for 6 € [0,2] ,
Px,,Px,€9E
lPxq—Px;[1<6

where G is the set of distributions Py on R™ which satisfy the power constraint E[|| X;|3] < E
for all j € {1,...m} for some constant E > 0. The Dobrushin curve then gives an upper bound
on the distance between outputs for different inputs of the channel:

| Py, jw=0 — Py, jw=1l1 < Fg"(2) ,

where Fg" = Fgo---o Fg is the n-fold composition of F. This holds independently of the
choice of encoding maps &;.

In the quantum scenario, consider a quantum channel ® : B(X) — B()). A power constraint
is introduced by fixing a Hamiltonian H on X and requiring that the expected energy is smaller
than a constant EF € R. The set of states satisfying this energy constraint is then given by

Gr ={p e BX) ’pZO, trp=1 and tr(pH) < E},
and the Dobrushin curve for the quantum channel ® can be defined as

Fp6)=  swp  [[9(po) — ®(p)li  forde[0,2] .
p0,p1EGE
loo—p1ll1<6

In analogy to the classical setting, the Dobrushin curve then gives upper bounds on the distin-
guishability at the output of the channel for different inputs:

[Fn(po) = Fulpr)lln < FE'(2)

where Fp, = ® o0&, 0---0& o ® o & for any choice of relays {€;}; with the property that
the output of any state belongs to the energy-constrained set Gg. The function Fg(J) can
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be cast into an optimization problem of the form (B.1). Hence our algorithm gives us a
tool to calculate Dobrushin curves of quantum channels. As an example, we numerically
calculate the Dobrushin curves of dephasing channels as well as some more generic qubit
channels. We numerically compute Dobrushin curves for dephasing channels of the form
d (aof—i— Zzzl akak) = apl + a(a101 + ago2) + agos. We note that for this channel, an
analytical expression for the Dobrushin curve can be found with heuristic arguments. Our al-
gorithm shows that this curve obtained by heuristic arguments is indeed the Dobrushin curve.
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Abstract

We propose a branch-and-bound algorithm for minimizing a bilinear functional of the form
fX)Y)=tr((X @ Y)Q) + tr(AX) + tr(BY),

of pairs of Hermitian matrices (X,Y) restricted by joint semidefinite programming constraints. The
functional is parametrized by self-adjoint matrices ), A and B. This problem generalizes that of a
bilinear program, where X and Y belong to polyhedra. The algorithm converges to a global optimum
and yields upper and lower bounds on its value in every step. Various problems in quantum information
theory can be expressed in this form. As an example application, we compute Dobrushin curves of
quantum channels, giving upper bounds on classical coding with energy constraints.

1 Introduction
The bilinear program of the form

: T T T

(mvyl)lél)l(lxyx Qy+v z+wy, (1)
where X C RP and Y C R? are polyhedra and v € RP, w € R?, Q € RP*?, is among the most well-studied
optimization problems. One of its first appearances is in the formulation of certain two nonzero-sum
games studied by Nash [15]. The optimization problem (1) has various applications in operations research
and information theory, including network flow problems, dynamic Markovian assignment problems, and
dynamic production problems—see [11] and [7] for a discussion of a number of these. Several natural
generalizations of the problem (1) exist. In particular, a biconver problem is of the form min, ,)cs f(,y)
where § and f are biconvex, i.e., S, = {y € R? | (z9,y) € S} and f(xo,-) are convex for every zoy € RP,
and similarly for yo € RY. We refer to [8] for a review of biconvex problems (see also [1]).

Here we consider a different generalization of (1) which pertains to problems in quantum information
theory. We refer to it as jointly constrained semidefinite bilinear programming. In this generalization,
the vectors z € RP and y € R? are replaced by self-adjoint operators X € Bg,(CP) and Y € Bg,(C9)
satisfying certain semidefinite programming (SDP) constraints. The bilinear form of the objective function
is retained, leading to

(erg)rlestr((x ®Y)Q) + tr(AX) + tr(BY) . (2)

The problem (2) is thus fully specified by a subset S C B, (CP) x Bs, (C?) of pairs (X, Y') defined by a family
of SDP constraints, as well as self-adjoint operators @ € Bs,(CP ® C7), A € Bsa(CP) and B € Bs, (CY).



The problem (2) appears in various forms throughout quantum information theory L. For example,
in entanglement distribution and quantum communication, one seeks to generate entanglement between
a reference system R and a system S transmitted through a noisy channel modeled by a completely
positive trace-preserving (CPTP) map N : B(H4) — B(Hg). A key figure of merit in this context is the
entanglement fidelity [20]

{gg(‘lf!((l?of\/oﬁ®idR)(|‘1’><‘1’|))I‘1’> (3)

where the optimization is over all encoding CPTP maps € : B(Hs) — B(H.4) and decoding CPTP maps D :
B(Hp) — B(Hs), and where |¥) € Hs @ Hp is a fixed (maximally entangled) state of the joint system SR.
Eq. (3) can be cast in the form (2): The set of CPTP maps £ : B(Hg) — B(#Ha) can be described by SDP
constraints via the Choi-Jamiolkowski isomorphism (and analogously for D), and the objective function is
bilinear in (&, D).

Another context in which the problem (2) appears naturally is the setting of Bell inequalities and
quantum games. Consider for example the bipartite case, where a state |¥) € Hy ® Hp is given. A
Bell inequality can be expressed as a lower bound on the expectation value (¥|B|¥) of a Bell operator
B = B({E;}j,{Fr}k) € Bsa(Ha ® Hp) which depends on observables {E;}; on H 4 (corresponding to A’s
measurement settings) and observables {F)}; on Hp (corresponding to B’s measurement settings). The
Bell operator usually depends bilinearly on ({E};};, {Fi}r): for example, the Bell-CHSH operator involves
two measurement settings each and is given by B(FEy, E1, Fo, F1) = Eo® (Fy+ F1)+ E1 ® (Fo — F1). Since
an observable A is a self-adjoint operator satisfying —I < A < I, the problem of finding the optimal value

e, IBUE S i) 1) W

optimized over all observables can directly be cast in the form (2).

We note that the form of (2) is somewhat more general than what is required in most applications
to quantum information theory such as problems (3) and (4). Indeed, in the latter two problems, there
are no joint constraints (i.e., the set S = S x Sy is a product of two sets, each of which is defined by
SDP constraints), and the objective function has no linear terms. In Section 4, we discuss a problem from
quantum information theory whose reformulation in terms of (2) involves linear terms.

A useful alternative but equivalent form of the optimization problem is given by

(Xrg/l)nes tr(XE(Y)) + tr(AX) + tr(BY)

where £ is a Hermiticity-preserving operation. The one-to-one correspondence of £ and () is a consequence
of the Choi-Jamiolkowski isomorphism.
Finally we note that joint constraints allow to consider quadratic optimization problems of the form

)n{aeigtr((X ® X)Q) +tr(AX) , (5)

where S is a set defined by SDP constraints, simply by imposing that X = Y. A basic example is a
situation where one is interested in the maximal (or minimal) uncertainty when measuring a state |¥),
using an observable X € S belonging to a set S specified by SDP constraints. If uncertainty is quantified
by the variance Varg(X) := (¥|X?|¥) — (¥|X|¥)2, then the problem minx¢s Varg(X) can be recast in
the form (5).

!This problem is not to be confused with the recently introduced quantum bilinear programs [3].



The seesaw algorithm in quantum information

Given the ubiquity of optimization problems of the form (2) in quantum information theory, it is natural to
seek algorithms computing its value as well as optimal solutions (X,Y"). A widely used and often successful
heuristic is referred to as the seesaw or mountain climbing algorithm. It is based on the observation that for
every X (associated with a feasible point (Xo, Yp) € S), the function fx,(Y) = tr((Xo®Y)Q)+tr(AXo)+
tr(BY') is linear up to the additive constant tr(AXy). Furthermore, the set Sx, = {Y € B(C?) | (Xo,Y) €
S} can be described by SDP constraints (indeed, we can augment those specifying S by the constraint
X = Xp). Thus, Yy := arg miny s, fx, (Y) can be found by solving an SDP. The role of X and Y is
then interchanged: in a next step, X := arg miny . Sy, fvy (X) is computed (where Sy, and fy; are defined
analogously). Iterating this produces a sequence of pairs (X, Y;). It can be shown that in a finite number
of iterations, this sequence converges to a Kuhn-Tucker point ()_( , 5_’) of the objective function

fX)Y)=tr(X@Y)Q) +tr(VX) + tr(WY) ,

see [12, Prop. 2.3] for an analysis of the analogous algorithm for bilinear programs, and [14, Theorem 5] as
well as [10] for conditions guaranteeing that this point is a local optimimum. Thus, while it is not generally
the case that (X,Y) is a local (let alone global) optimum, this algorithm may — for a suitable choice of
initial points (Xo, Yp) indeed result in a global solution. It should be emphasized, however, that even in
that case, global optimality needs to be established by other means.

Despite these limitations, the seesaw algorithm has been quite popular and has been successfully applied
in quantum information theory. Its use in the context of Bell inequalities was first discussed in [25, Section
5.1]. In the context of error correction, the maximization of fidelity optimized over encoder and decoder
has been investigated numerically using the seesaw algorithm, see [19] and [13]. More recently, a variant
of the seesaw algorithm (involving a trilinear function) was used in [24] to optimize the value of a Bell
inequality over PPT-states, yielding a counterexample to Peres’ conjecture [17] that non-distillable states
are local.

To date, the seesaw algorithm appears to be the only procedure for optimization problems of the
form (2) which has been used in the context of quantum information. This is in sharp contrast to the
bilinear program (1), for which a variety of algorithms have been proposed. This includes cutting plane
algorithms [12, 23, 21|, branch-and-bound algorithms [6, 2], extreme point ranking procedures [4] and
methods based on polyhedral annexation [22] (see [7] for a review).

Our contribution

Our main contribution is a branch-and-bound algorithm for the jointly constrained semidefinite bilinear
program (2). It is a generalization of the branch-and-bound algorithm by Al-Khayyal and Falk [2] which
we review in Section 2.1. Roughly, our algorithm proceeds by iteratively solving semidefinite programs
providing upper and lower bounds on the value of (2). Following standard arguments (see e.g., [2]), it can
be shown to produce a sequence of feasible points (X;,Y;) € S such that f(X;,Y;) converges to the global
optimum (2). More importantly, it provides— at each stage i —a bound on the deviation of f(X;,Y;) from
the optimum (2).

To illustrate the practical use of our algorithm, we apply it to a problem in quantum information theory:
we compute so-called Dobrushin curves for quantum channels. These give upper bounds on optimal codes
for classical information in a scenario where the noise acts repeatedly.

Outline of the paper

In Section 2, we briefly review branch-and-bound algorithms and discuss the algorithm by Al-Khayyal and
Falk [2] for solving jointly constrained biconvex programs. In Section 3, we give our algorithm for jointly



constrained semidefinite bilinear programs. Finally, in Section 4, we discuss the application to Dobrushin
curves.

2 Branch-and-bound algorithms

In this section, we review the branch-and-bound algorithm of Al-Khayyal and Falk [2] to solve jointly
constrained biconvex programs. We introduce the jointly constrained biconvex programming problem, and
then give a description of the algorithm of [2].

2.1 Jointly constrained biconvex programming

To define jointly constrained biconvex programs, let S C R™ x R™ be a non-empty, closed and convex set.
For later convenience, also let D = Q(¢,L,m,M) C R" x R™ be the (product of) hyperrectangle(s)
defined in terms of the vectors ¢, L, m, M € R™ as

Q,L,m,M)={(z,y) ER" xR"| {; <a; < Ly, m; <y; < M; foralli=1,...,n} . (6)

Furthermore, let f,g: D — R be such that their restrictions to S N D are convex. The jointly constrained
biconvex program is the problem
min _ F(z,y) where F(z,y) == f(z) + 2Ty +g(y) . (7)
(z,y)eSND

The set S permits to include joint constraints on the vectors x and y. We note that although the restrictions
F(-,y) and F(z,-) are convex for each (z,y) € SND—a property referred to as biconvexity — the problem
Eq. (7) itself is non-convex.

Eq. (7) is a generalization of the bilinear program (1) discussed in the introduction. Indeed, Eq. (1)
can be transformed into a problem of the form (7) by replacing 7 (Qy) by 27z and adding the linear
constraint z = Qy to the defining constraints of S.

2.1.1 Obtaining lower bounds on the biconvex program

Being non-convex, Eq. (7) cannot directly be addressed with convex solvers. However, one can construct
a convex problem whose solution gives a lower bound on the value of Eq. (7). This relies on the concept
of the convex envelope VexpF : D — R of a function F : D — R, where D C R™ x R". It is defined as the
pointwise supremum of all convex functions underestimating F' over D, i.e.,

(VexpF)(z,y) := sup G(z,y) for all (z,y) € D,
G:D—R convex
G(v,w)<F(v,w) for all (v,w)eD
see [5] for more details.
To compute the convex envelope VexsnpF of the objective function in Eq. (7), where D = Q is a hyper-

rectangle, one uses the fact that the convex envelope of the function (x,%) + 2y over a hyperrectangle
(cf. (6)) is (see [2, Corollary to Theorems 2 and 3])

Vexq(z'y) = ZVeXQi (x3yi) for all (z,y) € Q,
i=1

where

QZ:{(x,y)GRXREzgngz,mlgySMz}:[&,Lz]x[mlxMz]CRxR



is the projection of the hyperrectangle €2 onto the i-th pair of coordinates for ¢ = 1,...,n. The convex
envelope of the function (x,y) — zy over ; C R x R is (see [2, Theorem 2])

VeXQi (l"y) = max{mix —+ gzy - Eimi, Ml.’L‘ + Lzyz — LzMz} .

Hence the convex envelope of F' in Eq. (7) over a hyperrectangle 2 has a simple expression, i.e.

(VexaF)(z,y) = f(x) + ) _ Vexq,(ziy:) + 9(y) - (8)
i=1

In addition to being a convex underestimator for F', the function VexqF' has the important property that
it agrees with F' on the boundary

8929\{(x,y)€R”xR”|€i<xi<Li,mi<yi<Mi foralli=1,...,n}

of Q. Indeed, this follows from the analogous property Vexq(zy) = 2Ty for all (z,y) € 09 for the function
(z,y) — 2Ty, see [2, Theorem 3].

Note that, given (8), the problem min , ,)csna(VexqF') (7, y) can be treated using a convex solver, giving
a value . In particular, since VexqF' underestimates F' over Q (and hence over S N Q), the value o()
provides a (global) lower bound on the problem (7). Trivially, any point (z*,y*) € S N Q (including one
that achieves the minimum of VexqF') also provides an upper bound a(Q2) = F(z*,y*) on (7). Thus, we
obtain

Q) < in  F(z,y) <aQ) .
af )_(x’glelgm (r,y) <@(2)

We note that the reasoning here applies to any hyperrectangle 2.

2.1.2 The branch-and-bound algorithm for the biconvex program

We can now sketch the algorithm of [2] which solves problem (7). The algorithm takes as input the
functions f and g, the set S C R™ x R™ and the vectors ¢, L,m, M € R™ specifying the hyperrectangle
Q = Q¢ L,m,M). In addition, it accepts a desired precision € > 0. The algorithm returns a value @ and
a point (z*,y*) € SN such that

a=F(z*,y") < i F(x, .
a=F(@"y") < ((x,zglelgﬁﬂ (z y)) +e
Given the technique for finding lower bounds on min, ,yesnp F'(z,y) discussed in Section 2.1.1, the
main idea underlying the algorithm is to apply this strategy to increasingly smaller hyperrectangle ()
(which together form a partition of D). The respective upper and lower bounds for each hyperrectangle
give (global) upper and lower bounds on the biconvex problem (7).
More precisely, the algorithm keeps track of a finite list P of hyperrectangles which form a partition
of D. In addition, for each 2 € P, the values (a(2),@(2)) are computed and kept track of such that
a() < min F(z,y) <a(Q) .
a(@) < min Flay) <a(©
Finally, 2(Q) = (z,y) € SN Q will be an element such that F(z) = a@(Q).
As a consequence, the quantities

a(P) = Qmeigg(Q) and @(P)= Qmeiga(Q)
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Figure 1: The creation of hyperrectangles QM Q@ QG QW from Q. This shows the projection onto the
coordinates (xy,ys) of these hyperrectangles.

constitute global upper and lower bounds on the problem Eq. (7), that is,

< in F <a(P).
a(P) < i (z,y) <@(P)

As soon as @(P) — a(P) < e, the algorithm returns @(P) and (z*,y*) = 2('), where ' € P is such that
F(z(Q)) =a(P).

Recall that D itself is a hyperrectangle by definition of the problem. Consequently, we begin with the
(trivial) partition P = {D}. Since an algorithm for computing bounds (a/(2), @(€2)) and points z(2) € SN
for any hyperrectangle € is already constructed, it remains to specify how P is successively refined.

Assume that the algorithm has not returned a solution yet, i.e., that

a(P)—a(P) 2 €. (9)

The idea here is to try to improve the worst lower bound. That is, pick a hyperrectangle {2 € P such
that o(P) = a(Q). We then subdivide © in 4 new hyperrectangles Q) ..., Q®. To do so, observe that
Eq. (9) implies that @(Q) — a(£2) > e. Hence, by definition of @(£2) and a(f2), there must exist at least
one i € {1,...,n} such that Vexq(x;y;) < z;y;. We pick the index I which leads to the largest difference
between the two sides of this inequality and split up the rectangle ) into four subrectangles, arriving
at the new hyperrectangles {Q(j)}gl-:l. For each j € {1,...,4}, the hyperrectangle Q) is defined by its
projections

Q(j): Q; if’iE{l,...,n}\{I}
’ AW) fori=1I.

onto pairs of coordinates. Here {A(j)}?:1 is a certain partition of 2; C R x R into four subrectangles, as
shown in Fig. 1. The latter is defined by the pair of I-th coordinates (x,yr) of the point z(2) = (z,y), as
shown in Fig. 1. Hence we have constructed a partition {Q(j)}§:1 of  into smaller hyperrectangles.

These steps are iterated until Eq. (9) is no longer satisfied. This procedure can be shown to converge
to a globally optimal value of the problem (7), as done in [2].



3 Jointly constrained semidefinite bilinear programming

Suppose self-adjoint operators Q) € Bs,(CP @ C?), A € Bs,(C?), B € Bs,(CP) are given. Here Bsy(H) denotes
the real vector space of self-adjoint operators on a Hilbert space H with respect to the Hilbert-Schmidt
inner product (A, B) = tr(AB). Define a function F' : Bs;(CP) x Bs;(C?) — R by

FX,)Y)=tr(X®Y)Q)+tr(AX) + tr(BY) . (10)

We consider the problem
inf F(X,Y 11
(XV)es XY), (11)

where & C B, (CP) x Bgy(CY) is defined by a family of semidefinite constraints, which may involve both
X and Y (in particular, S is convex). We note that the function F' is again biconvex but not convex. We
refer to Eq. (11) as a jointly constrained semidefinite bilinear program.

A first step to construct an algorithm for (11) is to rephrase it in a form similar to (7). To do so, let

{n; }?2:1 C Bsa(CP) and {gk}f:l C Bs,(C?) be orthonormal operator bases of the real vector spaces Bs, (CP)
and B, (CY), respectively. It will be convenient to express operators in terms of coefficients in bases that

2 2
are rotated with respect to {n; ?:1 and {&,}]_,, with a rotation depending on the objective function.
Consider the p? x ¢?-matrix Ujj = tr(Q(n; ® &)) and let

U=SAT where A € RP°¥¢" (12)

be its singular value decomposition, i.e., S € RP*XP? and T € R 4" are orthogonal, and A has the singular
values {o; }5;1 on the diagonal (here K < min{p?,¢?}). Define the map

T : Bea(CP) x By (C9) — RP* x RY’
(X,Y) = I(X,Y) = (2(X),y(Y)) ,

where

2 2

p q
2 (X) = Sk tr(Xm) and  ye(Y) =) Thstr(YE) -
k=1 =1

Let (a,b) = (z(A),y(B)) € R”’ x R”. Define the function f: R”” x R? — R by

K »? 7
fz,y) = Z ojTiY; + Z a;x; + Z bry - (13)
j=1 j=1 k=1

Using this construction we can now reduce the matrix problem to an equivalent vector problem:

Lemma 3.1. T is one-to-one and F(X,Y) = f(x(X),y(Y)) for all (X,Y) € S. In particular,

inf F(X,Y)= inf .
o (X,Y) <x,y1fér(5)f(x’y)



Proof. Observe that for (X,Y’), we have

P ¢ P’ 'S
FX,Y) =33 ainUse + > g+ Y ibr
j=1k=1 j=1 k=1

where &; = tr(Xn;), a; = tr(An;) for j = 1,...,p%, and similarly g, = tr(Y&), by = tr(BE,) for
k=1,...,¢% Using the variable substitutions

z = ST¢ a = STa

y = Ty b = Tb,
the claim follows. OJ

Given Lemma 3.1, our algorithm proceeds by first finding a hyperrectangle D C RP* x R? that contains

the set I'(S) (see Section 3.1). We then argue that lower bounds on the objective function restricted to
hyperrectangles can be computed by solving SDPs (see Section 3.2). A branch-and-bound procedure for
the problem (11) follows.

For later reference, we give pseudocode of two routines COMPUTEVECTORREP and COMPUTEOPERA-
TOR, which compute the functions I respectively I'"* appearing in Lemma 3.1, see Fig. 8 in Appendix A.

3.1 Finding a bounding hyperrectangle
For ¢/, L € RP* and m, M € RqQ, define the hyperrectangle

Q¢ Lym, M) = {(z,y) ER” x RT| ¢; <w; < Lj forall j =1,...,p?
and my < yp < My forall k=1,...,¢%*} .

We show the following:

Lemma 3.2. We can efficiently find {,L € RP* and m,M € R? such that Q(,L,m, M) has minimal
volume among all hyperrectangles Q containing the set T'(S), where T is defined as in Lemma 3.1. More
precisely, we can find such vectors by solving 2(p* + ¢*) SDPs in (X,Y) € S.

Proof. Clearly, we need to compute

¢ = infxyjeszj(X) and L3 = sup(x,y)es Zj(Y)  for j=1,...,p
as well as
my = infxyjesyr(X) and M = sup(xy)esYe(Y) for  k=1,...,q

Here we write I'(X,Y) = (x(X), y(Y)) as in Lemma 3.1. It is easy to see that each of these optimization
problems is an SDP. For example, for each j € {1,...,p?}, we have

p2

0= inf Sk.jtr(X
T x, Y)es £ Z kg (XK
and similar reasoning applies to the values L;‘f, m;, and M. ]

Pseudocode for the associated procedure is given in Fig. 10 in Appendix A.



3.2 Obtaining lower bounds on the semidefinite bilinear program

As in Section 2.1.1, we next discuss how to find lower and upper bounds «(f2), @(2) on the objective
function F(X,Y) restricted to the preimage I'™*(Q) of a hyperrectangle 0 C RP* x R, That is, in terms
of the function f : RP* x R? — R defined in Lemma 3.1, these values satisfy

O) <  inf <alQ) .
o )_(W)g(smf(x,y)_a( )

For the lower bound, recalling the definition of the convex envelope introduced in Section 2.1.2, it suffices
to compute

a() = (W)eir;f Sm(VeXQf)(x,y) : (14)

On the other hand, any element (z*,y*) € I'(S) N 2 provides an upper bound @(2) = f(z*,y*).
To compute Eq. (14), we proceed in two steps. First, we give an explicit expression for Vexq f.

Lemma 3.3. Let Q = Q(¢,L,m,M) C R’ x R? be a hyperrectangle and f : RP’ x R” — R as in
Lemma 8.1. Then the convexr envelope of f over Q) is given by

K P’ ¢
(Vexf)(z,y) = > max{hd(z;,y;), hj(zj,y;)} + D ajz; + > bry

j=1 j=1 k=1
where
hg(:):j, yj) = oj(mjz;+ Liy; —im;) and (15)
hi(xj,y;) = o (Mjz; + Ljy; — LjM;) .

forj=1,.... K.

Proof. By definition of f (see Lemma 3.1) and calculations analogous to those discussed in Section 2.1.1,
we have

K p? q
(Vexq f)(x,y) = Y Vexq, (0525y5) + Y ajz; + Y by
=1 i=1 k=1

K p? 72
= Zmax{aj . (mjxj —i—ﬁjyj — Ejmj),aj . (Mj.%‘j + Ljyj — Lij)} + Zaja:j + Zbkyk
7j=1 k=1

j=1
K p? e
= Z max{hg-(xj, i), h}(ij i)} + Z a;r; + Z Dry
= j=1 k=1
as claimed. -

In the following Lemma, we show that inf(, ,)cr(s)na(Vexaf)(z,y) can be expressed as an SDP. This
provides an efficient way of computing the lower bound (14).

Lemma 3.4. Let Q C RP’ x RY be a hyperrectangle and I'(S) be a set of vectors obtained from a set S
of semidefinite constraints as described in Lemma 3.1. Furthermore, let T'(S) N Q be nonempty. Then the
problem

i ! 16
(mvy)érll(S)ﬂQ( exaf)(z,y) (16)

is a semidefinite program in (X,Y,r), where (X,Y) € Bsy(CP) x Bsy(C) and r € RE.



Proof. Introduce the notation

forj=1,...,p%,

¢ 0’ =1L,
M. fork=1,...,¢%,

m , m

2

m

IO . O
Il
Y N
Il

for the lower- and upper bounds determining the hyperrectangle Q = Q(¢, L,m, M). Then the functions
hg), h]1 introduced in Eq. (15) can be expressed as
h?(xj,yj) =0j- (mg’x] + é?yj ngg) for be{0,1} .

We have by Lemma 3.3

2 2
inf V Y b
(x,y)élll(s)rm( exaf)(z,y) = (, y)eF(S)mQ Z max{ (:L’], y]) (xjv Yj )+ le a;ri + Z LYk
= inf inf b 17
(z,y)éIFl(S)ﬂQ rl,..l.,r;Ke]R Z it Z ajTj+ Z kYk - (17)

1
(aj)<r; I

for j=1,...,K, be{0,1}
Here we have replaced each maximum by a semidefinite program in a scalar, that is, we have used the
identity

max{h®,h'} = inf r for all %, A € R .
rcR

hO<r
hi<r

Let us first argue that in Eq. (17), we are optimizing over a set of tuples (x,y,r1,...,rx) that can
be described by SDP constraints. Since (x,y) € I'(S), I is linear, and S is given by a set of semidefinite
constraints on (X,Y), it suffices to verify that the additional constraints imposed by (z,y) € Q and
the constraints associated with the inner infimum in Eq. (17) can be expressed in semidefinite form.
Indeed, with (z,y) = ['(X,Y) for (X,Y) € T7}(Q) NS, the constraints take the following form. Since
each function hg(', -) is affine-linear in both arguments, the expression hg(q:j,yj) is affine-linear in the
operators X and Y. Explicitly, we have

p2 q2
Wb (aj,y;) = o [t | Xiib > " Spme | +tr [ YO T8 | — ol
k=1 (=1
and the constraint
b
hj(@j,y5) <7
takes the form
b b b
tr(XGY) + te(YH?) —rj < s, (18)
where
p? a2
Gj = oy} Y Sugi H} =007y Tjeke s = o;l5m;
k=1 /=1

10



for each j = 1,..., K. In addition, the constraints

l;<xz; <Lj for j=1,....p° and
mp < yp < My, for k=1,...,¢*
become
p2
l; < tl"(XZSk,ﬂ]k) <L for j=1,...,p and
k=1
q2
mg < tr(YZTk,ESZ) < M, for k=1,..., q2 . (19)
{=1

In summary, we are optimizing the objective function

K p? 7
Doty aiwi+ Y by
=1 j=1 k=1

over tuples (X, Y, r) satisfying the constraints given by Eqgs. (18) and (19). Since this objective function is
linear in X, Y, and r, respectively, the problem (16) is indeed a semidefinite program in (X,Y,r). O

We again give pseudocode giving an algorithmic realization of Lemma 3.4, see subroutine COMPUTE-
BouNDSSDP in Fig. 11 of Appendix A.

A branch-and-bound algorithm for jointly constrained semidefinite bilinear programs

We are now ready to state our branch-and-bound algorithm which solves problem (11). The algorithm
closely follows the algorithm of Al-Khayyal and Falk and only the subroutines need to be adapted.

Our algorithm takes as input a set S C Bsy(CP) X Bsy(C?) defined by SDP constraints, operators
Q € Ba(CP @ CY), A € Bsa(CP), B € Bsy(C?) and a desired precision € > 0. It returns a value @ and an
element (X*,Y™) € S such that (for the function F' defined in Eq. (10))

a=FX"Y") < < inf F(X,Y)) +e€. (20)
(X,)Y)es

The algorithm is given in Figs 812 of Appendix A. It follows exactly the same pattern as the branch-
and-bound algorithm discussed in Section 2.1.2, with the only modification that lower bounds on the
objective function are computed by solving SDPs (instead of general convex programs). In particular, with
an identical analysis as that of a general branch-and-bound algorithm (see [2]), it follows that the iterative
procedure described in the algorithm from Fig. 12 converges to a global solution of the problem (11). In
other words, the terminating condition (20) will always be reached. We note, however, that (as is typical
for branch-and-bound algorithms), guarantees for the rate of convergence are typically not available.

4 Application: Dobrushin curves of quantum channels

In this section, we apply our algorithm to a problem in quantum information theory. We first explain this
problem in Sections 4.1 and 4.2, where we discuss the Dobrushin coefficient and the Dobrushin curve of
a channel, respectively. In Section 4.3, we show that the problem of computing the Dobrushin curve is a
semidefinite bilinear program. Finally, in Section 4.4, we present numerical results obtained by use of our
algorithm.

11



4.1 Converse to unconstrained coding over cascades

Let @ be a channel. Consider a setting where a message W is sent through a cascade consisting of n copies
of this channel, with a relay &£; applied before the j-th application of ®. We are interested in the amount
of information the output

Y,=®0&,0---0E0Po& (W)

of this cascade provides about the input W for an optimal coding strategy (defined by the choice of relay
channels {Sj}?zl). Denoting the output after applying the relay &£ by X, and the output of the j-th
channel @ by Y}, we have the Markov property

W-X1—-YV1—-Xo—-Y— - = X,>Y,. (21)

For the case where ® = Py |x is a classical channel from a set X to a set VW and the message W is a binary
random variable with uniform distribution on {0,1}, a natural information measure is the variational
distance || Py, jiw—o — Py, w=1l/1 between the output distributions for different inputs. Accordingly, a key
quantity is the Dobrushin coefficient

||PY|X o Px, _PY|XOPX1”1
U(PY|X) = sup P P )
Px,Px, 1Pxo — Pxy 11

(22)

where the optimization is over pairs (Px,, Px, ) of distributions on A and where Py|xoPx is the distribution
on Y given by the push-forward of Px. Using the fact that || - ||; is non-increasing under application of
channels, one can eliminate the choice of relays and conclude that

| Py, jw=0 — Py, jw=1ll1 < n(Pyx)"

independently of the coding strategy given by {&; = Px, |y, }-

Similar reasoning applies to quantum channels ® : B(X) — B()) and relays & : B(Y) — B(Y) (i.e.,
completely positive trace-preserving maps) when a classical bit W € {0, 1} is conveyed by encoding it into
two states po, p1. The so-called Dobrushin coefficient

D(po) — ®(p1)1
n(@) = sup [®(po) (p1)ll
pomeB)  llpo — pilla

provides the upper bound
| Fn(po) — Frlp)llh < n(@)", where Fn=®0&,0---0E&o0do&

on the trace distance (defined by ||Al|; = trv/AA) between the output states. We refer to [9] for a detailed
discussion of the Dobrushin and other information measure based contraction coefficients for quantum
channels.

One may ask how the maximum output distinguishability ||®(pg) — ®(p1)|l1 behaves as a function of
the distinguishability ||po — p1||1 of the input states. The following lemma shows that this quantity is linear
in ||po — p1/|1, and thus not particularly exciting.

Lemma 4.1. Let 6 € [0,2]. Then we have

sup ([ (o) = Plpa)1 = (6/2)- (@)
llpo—p1ll<s

12



Proof. Consider the function f : [0,2] — [0, 2] defined by

f(6):= sup [ ®(po) — ®(p1)]1 -
llpo—p1ll1=5

We first show that f is monotonically increasing. Indeed, suppose that § < ¢’, and let pg, p1 be states such
that ||po — p1ll1 = 0 and f(9) = || P(po) — P(p1)|l1- Let po — p1 = A4 — A_ be the decomposition of the
difference into positive and negative parts (i.e., Ay > 0and A_ > 0). Then we have tr(A;) = tr(A_) =4/2.
Accordingly, let us define the states o4 = %Ai. Note that o4 and o_ are orthogonal by definition. Choose

an arbitrary state o and define
& &
,06:20'++<1—2)O'

! !
p/1—6a_+<1—6>0.

Then it is easy to check (using the orthogonality of o4 and o_) that
oo — Pillh =4d" .
Furthermore we have
5/
12 (p0) = ®(p1)lh = 19 (p0) — S(p1)]x
> [ B(p0) — Dp1)lls = F(6)  for & =6,

This shows that f(0") > f(d), as claimed. In particular, we also obtain f(2) = n(®).
More generally, the above proof shows that

f0") _ f(9) ,
> -2 >
52 s forall 8" > 6,
and thus with §' = 2
f(0) < g -n(®) for all § € [0,2] . (23)

Now suppose that po, p1 are states such that ||pg — p1/l1 = 2 and n(®) = ||®(po) — ®(p1)||1. Then po and
p1 are orthogonal, implying that (again for an arbitrary state o) the states

) )
p6:2po+<1—2>a

satisfy ||pf — pill1 = 9. Since we also have
4]
12 (p0) = ®(p1)ll1 = 5118 (p0) — @ (p1)[x

)
= —n(P
51(P)
we conclude that

f(6) = (6/2) - n(®) .
With Eq. (23) and the monotonicity of f, the claim follows. O
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4.2 Converse to power-constrained coding over cascades

Consider a modified cascade coding problem, where a power constraint is introduced for each of the inputs
X, to the channel ® in (21), for j = 1,...,n. In other words, each relay &; is required to have power-
constrained outputs. In the case where ® = Py|x is a classical channel with continuous variable input X
(i.e., a random variable on R™), a natural power constraint is of the form

E[IX;|3] <E forall  je{l,...,n}, (24)

where E > 0 is some constant (determining the available power) and [|z|3 = >"}L; 27 for z € R™. Let
G be the set of distributions Px on R™ satisfying (24). To analyze this scenario, Polyanskiy and Wu [18]
defined the function

FE((S) = sup ||PY|X o PXO — PY|X @) PX1 H1 for o€ [0,2} 5 (25)
Px,.Px,€09E
|Pxq—Pxy [1<6

which they call the Dobrushin curve of Py |x. Remarkably, Polyanskiy and Wu were able to compute (25)
for the additive white Gaussian noise (AWGN) channel using a coupling argument. They then use this
function to establish bounds on the distance || Py, jjy—o — Py, jw=1l1: inductively applying Definition (25),
one obtains

| Py, jw=0 — Py, jw=1ll1 < F°"(2) ,

where F°" = F o --- o F' is the n-fold composition of F' (see Fig. 2 for an illustration). It should be noted
that the Dobrushin coefficient (22) is not meaningful for the AWGN channel: it evaluates to 1 and does
not provide converse bounds.

Similar concepts are naturally defined for a quantum channel ® : B(X) — B()). In this case, a power
constraint on states on X can be defined by fixing a Hamiltonian H (i.e., a self-adjoint operator) on X
and requiring that the expected energy is less than a constant. For F € R, let

Ge={peBH)|p>0,trp=1and tr(pH) < E}

be the set of states satisfying this energy constraint. We can then define—in analogy with (25) —the
function

Fe®)=  swp [®(0) - ()i for  6€[0,2]. (26)
p0,P1EGE
llpo—p1ll1<6

Contrary to the unconstrained case discussed in Lemma 4.1, the function (26) is not linear in 4, and its
evaluation appears to be challenging in general.
4.3 The Dobrushin curve as a semidefinite bilinear program

In this section, we show that the energy-constrained Dobrushin curve for finite-dimensional quantum
channels can be cast as a semidefinite bilinear program of the form (11). This allows us to numerically
compute the curve by applying our algorithm.

Lemma 4.2. Consider a CPTPM ® : B(C%) — B(C%). Then we have

F = PO®(R — 2
p(0)=3 ,  max - ir(PO(R-S)) . (21)
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Figure 2: Using the Dobrushin curve to obtain upper bounds on the information loss of a cascade of
channels.

where T'(E, §) is the set of quadruples (P,Q, R, S) € B(C)** satisfying

Q>0,tr(Q)=1, and tr(HQ)<E, (28)
Q+2Rr-5)>0, (29)
(H@Q+ S(R-5) < E, (30)
0<R and tr(R) =1, (31)

0<S and tr(S)=1, (32)

0<P<I. (33)

To see more explicitly that the optimization problem (27) is a semidefinite bilinear program, define
the flip operator F = Z‘ij:l i) (ji|, where {|i)}¢_, is an orthonormal basis of C%. Using the identity

15



tr(F(A® B)) = tr(AB) for all A, B € B(C%), we have
tr(P®(R—9)) =tr(F(P® ®(R))) — tr(F(P ® ®(5)))
=tr (I @P")(F)(PR®R)) —tr (I @2")(F)(P®S)) , (34)
where ®* is the adjoint channel (with respect to the Hilbert-Schmidt inner product) i.e., it is defined by
tr(A®(B)) = tr(®*(A)B) for all A, B € B(#H). This matches the form of (11) with X = P, Y =R& S,

and Q=Q&®0—Q, 508 Q3 where Q, & Q3 = Q, and Q = (I ® &*)(F).
Proof. For convenience, let ©(FE, d) denote the set of pairs (po, p1) of states satisfying

tr(Hp;) < E for j=1,2 and oo —prlli < 6. (35)
Suppose (P,Q, R,S) € I'(E,§). Set

)
p=Q and P0=Q+§(R*S)'

Because of (28), p; is a state and satisfies the energy constraint, i.e., p; € Gg. Similarly, pg is a state since
it has unit trace because of (28), (31), and (32), and because it is non-negative by (29). By Eq. (30), it
also belongs to Gg. Now observe that

0
loo = palls = 3IR =S <3,

since both R and S are states (cf. Egs. (31) and (32)) and hence |[R — S|; < 2. This shows that
(po, p1) € O(E, ). Furthermore, we have

5021g§[tr(P(I>(R -9)) = “@ (g(R - S)) = ||®(po) — ®(p1)|1 - (36)

1

We conclude that Fg(d) > dmax(pg g s)er(g,s) tr(Pe(R — 5)).
To show the converse inequality, assume that (pg, p1) € ©(F,d). Then

po—p=As— A (37)

for two orthogonal nonnegative operators Ay, A_ satisfying

tr(Ay) =tr(4A-) = g .

Set Q =p1, R= %AJF, S = %A_ and
P = argmaxg<p< tr(P(®(po) — ®(p1))) -
Clearly, the quadruple (P, @, R, S) satisfies Egs. (28), (31), (32) and (33). It remains to check (29) and (30).
Observe that by definition, we have
o
Q+5(R-8)=p+Ar-A_=po.

This implies that (29) and (30) are also satisfied.

Since the identity (36) also holds by definition of (P, Q, R, S), we find

Fp(8) <6 tr(P®(R — S)) .

max
(P.Q,R,5)el(E,0)

This concludes the proof. O
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We note that the statement of Lemma 4.2 simplifies somewhat in the case where the map ® : B(C?) —
B(C?) is a qubit channel. This is because the operators Ay in Eq. (37) are orthogonal, and hence pro-
portional to rank-1-projections |p4){p4| which satisfy o) (4| + |@—){p—| = I. Here I is the identity
operator on C2. In particular, this means that we can eliminate S = I — R. Retracing the proof of
Lemma 4.2, we obtain the following.

Corollary 4.3. Consider a qubit channel ® : B(C?) — B(C?). Then

Fp(d) =46 tr(P®(2R — T
£(0) Pl L r(P®(2R - 1)),

where T'(E, §) is the set of triples (P,Q, R) € B(C?)*3 satisfying
tr(Q)=1,Q >0, and tr(HQ) < E ,
Q—i—g@R—I) >0,

tr(H(Q + g(2R _IN<E,

tr(R) =1,
0<R,
0<P<IT.

One can furthermore add the condition tr(P) = 1 as we know that the optimal P is rank 1 and satisfies
this condition. Again we may recast this in the form of (11) using the fact that (in analogy to (34))

tr(PB(2R — 1)) = 2tr (I ® ®*)(F)(P ® R)) — tr (PB(I)) .

In this case, we obtain both a bilinear term as well as a term which is linear in P.

4.4 Numerical computation of Dobrushin curves

According to Lemma 4.2 (respectively Corollary 4.3), we can use our biconvex programming algorithm to
calculate Dobrushin curves for quantum channels.
For concreteness, we consider qubit channels. Let {o; }?:1 be the Pauli matrices

(01 (0 =i /10
1=\10) 27\ o) 7 \o -1/

A state p (i.e. a non-negative operator with unit trace) can be represented as
1 3
p=3 (1 + ; wk0k> (38)

with w € R? satisfying ||w||2 < 1. The vector w is called the Bloch vector of the state p. We remark that
Eq. (38) provides an isometric identification of the set of states on C? with trace-norm, and the unit ball
(with respect to the Euclidean norm) in R3, see e.g., [16, Chapter 9].

Without loss of generality, we will assume that the Hamiltonian under consideration is

H=o03. (39)
In other words, we will be interested in states p having Bloch vectors w = (wq,ws,ws) satisfying an

inequality of the form ws < E.
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4.4.1 Example: the dephasing channel
As a first example consider a dephasing channel ® : B(C?) — B(C?). For a € [0,1], this acts as

3
d <aol + Z akak> = apl + a (101 + ag02) + 3o for all « € R% . (40)
k=1

The dephasing channel (40) has the invariance property
o (ew":‘pe*w‘m) = 73 (p)e 1003 for all € [0,27) and p € B(C?) . (41)
The Hamiltonian (39) is also invariant under rotations around the o3-axis, i.e., we have
H = e 03 fifos for all 6 € [0,27) . (42)

Eq. (42) implies that the set Gg of energy-constrained states is closed under the family of maps p —
€993 pe=993 By the invariance property (41) and the unitary invariance of the trace norm, we conclude
that applying the joint rotations

—i90’3’ ei90'3

(po, p1) — (7% poe pre=7%)  for any 6 € [0,2n)

to a pair (pg, p1) of states leaves their energies as well as the distances ||pg — p1]|1 and || ®(po) — P(p1)]1
invariant. Because p — ewpe’w amounts to the map

(w1, we, w3) — ((cos20)w; — (sin 20)ws, (sin 20)w; + (cos 20)ws, w3)

on the level of Bloch vectors w = (w1, ws,w3) € R3, we conclude the following: for any fixed energy FE,
there is a pair of states (po,p1) € O(FE, ) (see Eq. (35)) such that

Fr(d) = [|®(po) — 2(p1)l1 ,

(i.e., the states achieve the optimum in the definition of the Dobrushin curve), and such that the Bloch
vector w of p; lies in the (01, 03)-plane, i.e.,

we =0 . (43)

In the semidefinite bilinear program introduced in Corollary 4.3 (where @ corresponds to pi), this means
that we may add the constraint

tr(o2@) =0 (44)

without changing the value of the optimization problem.

In Figs. 3 and 4, we show numerically computed Dobrushin curves for dephasing channels. These are
applied by using the formulation as a semidefinite bilinear program (see Corollary 4.3), and imposing the
constraint (44).

In Fig. 5, we present numerical data illustrating the importance of exploiting continuous symmetries
by a constraint as in Eq. (44). It is well-known that branch-and-bound algorithms perform badly in the
context of such symmetries, hence it is important to include such constraints. Note that more generic
channels as discussed in Section 4.4.3 typically do not exhibit such continuous symmetries.
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(a) The Dobrushin curve for the dephasing channel

® for a = 0.3. The algorithm required an average of
88 elements (worst case: 178 elements) in the partition
‘P to reach the desired precision.

(b) The Dobrushin curve for the dephasing channel ® for a =
0.5. The algorithm required an average of 92 elements (worst
case: 142 elements) in the partition P to reach the desired
precision.

Figure 3: The Dobrushin curves of the dephasing channels ® for two different values of a, for £ = —0.5.
For 200 values of § € [0,2], the algorithm was run with a desired precision of e = 1073.

4.4.2 Discussion of the dephasing channel

We note that our algorithm also provides—in addition to the value Fg(d) of the Dobrushin curve —a pair
of states (po, p1) € O(E, ) satisfying Fr(d) = |[|[®(po) — ®(p1)||1. We call such a pair of states optimal for
the Dobrushin curve. In the special case of the dephasing channel defined in Eq. (40) for some a € [0, 1],
we can provide the following description of such pairs (valid for instance for Fig. 3b, i.e., for a = 0.5
and E = —0.5). We note that this description is based on a heuristic geometric analysis of the problem.
However, our numerical data shows that the following pairs of states are indeed optimal. We also note
that — while a full analytical proof of optimality may in principle be constructed for the dephasing channel,
such a brute-force calculation is unlikely to be achievable e.g., for generic qubit or qutrit channels, where
symmetry arguments are not applicable and positivity constraints are particularly difficult to deal with.

Recall from Eq. (43) that we can assume without loss of generality that one of the states (pg, p1) —say
po for concreteness— has Bloch vector lying in the plane orthogonal to (0,1,0). It turns out that p; can
also be chosen to lie in this plane. In Fig. 6, we show the projection of the Bloch sphere onto this plane,
and illustrate a choice of optimal code states (in terms of their Bloch vectors). More precisely, we identify
three regimes:

Regime I: for 6 € [0,1 — |E|], an optimal pair (pg, p1) = ©(E, ) is given by the pure state p; = |1)(1]
with Bloch vector ™ = (0,0,1) and a mixed state pg whose Bloch vector 7= (0,0,1 — §) also lies on
the es-axis.see Fig. 6b
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Figure 4: Using the Dobrushin curve to obtain upper bounds on the information loss of a cascade of
dephasing channels @, for £ = —0.5 and a = 0.5.

Regime II: for 1 — |E| < 1/2(1 — |E|), an optimal pair is given by p; = |1)(1| as in Regime II and po
having Bloch vector (z,0, —|E|), with « chosen such that ||pg — p1|l1 =, see Fig. 6c.

Regime III: for \/2(1 — |E|) < § < 24/1 — |E|?, we can choose the state py to have Bloch vector given
by the “eastern” point of intersection of the projection of the Bloch sphere onto the plane orthogonal
to (0,1,0), and the plane (z,y, —|E|). On the other hand, p; a pure state at distance J, see Fig. 6.

This completes the description, as there are no pairs of states at distance 6 > 2,/1 — |E|? which belong to
the energy-constrained subset Gg. We now analyze this “coding” strategy for the dephasing channel and
show the following:

Lemma 4.4. We have (po, p1) € ©(FE,0) in all three regimes. In particular, these pairs of states give the
following lower bound on the Dobrushin curve of the dephasing channel:

5 ifo<1-|E|
Fi(6) > 95(6) if1—|El <0 <2(1-|E|)
P2 hp (o) if V20— |E]) <6 < 2y/1— [E]2
2a/T—|EE  if 6 >2/1— |E]

(45)

20



a(P)

10°

9x 107!

Upper bound a(P)
Lower bound a(P)

109 ‘ 101
|7l

102

(a) Convergence of the algorithm with the symmetry

constraint (44)

Figure 5: Upper and lower bounds @(P), a(P) as a function of the size |P| of the partition. This provides
a measure for the speed of convergence of the algorithm. The figures are for £ = —0.5, a = 0.5, § = 2, and

e=1075.

(b) Convergence of the algorithm without the symmetry con-
straint (44)

2% 10°

a(P)

10°

Upper bound @(P)
rrrrrrrr Lower bound a(P)

—|E|

(a) The regime 0 <6 <1—|E|.

Figure 6: Bloch vectors 7y and 77 of a pair of optimal states for the Dobrushin curve of the dephasing

channel.

—|E|

(b) The regime

1- |B| <6 < \2(1 = [E).

21

102 103 10*
17l

(c) The regime

VAT —1E]) <8 < 2,/T=|EP.




where

9u(8) == v/a?(62 — (1 - [E])?) + (1 - |B|)?
hg(d) = [(|E\ + cos (2arccos(0/2) + arccos(|E|)))?

271/2
+ a? ( 1 — |EJ? 4 sin (2 arccos(6/2) + arccos(|E|))> }

The proof relies on elementary geometry. The curve given by the rhs. of Eq. (45) matches the numeri-
cally observed Dobrushin curve shown in Fig. 3b; this shows that the pairs of states considered above are
indeed optimal.

Proof. We consider each regime separately.

Regime I: Consider 0 € [0,1 — |E|]. In this case, the choice

7 = (0,0,—1+ |E|),
7 = (0,0, —1)

is optimal and leads to |7 — 74|l = ||F1 — 72||1 for the output Bloch vectors 7 and 7.
Regime II: Now consider ¢ € [1 — |E|, 1/2(1 — | E])] see Fig. 6. The initial Bloch vectors are
r= (JZ,O, _|E|) )
Ty = (0,0, _1) )

where 22 + (1 — |E|)? = 62, i.e.,, * = /62 — (1 — |E|)2. The Bloch vectors after application of the

channel are

ﬁ = (ax?07 _‘ED )
7:5 = (0707—1> )

such that

17 = 5l = Va2a? + (1~ | E))?
= /a?(d2 — (1 - |E)?) + (1 - |E])?

for § € [1 — |E|,\/(1 —|E|)?+1].

Regime III: Let us now look at § € [\/2(1 — |E|),2y/1 — |E|?]. Consider Fig. 6. Assume that p; has
Bloch vector given by

71 = (cosp, 0, —sinp) ,

where sin ¢ = |E|, and that ps has Bloch vector 7 specified by an angle 6 as in Fig. 6¢. The figure
shows that § = 2sinf and a = 20 4+ ¢ — 7/2. Thus, the Bloch vector 7% is

7y = (—sina, 0, — cos a)
= (—sin(20 + ¢ — 7/2),0, — cos(20 + ¢ — 7/2)) .

22



Upper bound Upper bound
1.0 — Lower bound ;]Z’/w L4y Lower bound
A
/ 1.2
0.8 Vs ~/ <
i 3
I g Il 1.0
3 yd @
n n
o Ve S
I I
o 06 Vi n 0.8
ol / il
© / y =
| / I y
I / 0.995 0.6 /S
Yo.4 / w A.37
= / = /
) /0990 & /
/ ©1.36
& o4 // 3
0.985 ,
0.2 / / 1.35
/ 0.980 0.2 / ‘
/ : A . / 1.34] v
/ - /
/ /
o / 0-97P33 134 135 1.36 1.37 1.38 1.39 o / 1337756 158 1.60 1.62 1.64
Qo0 025 050 075 1.00 125 1.50 175 2.00 Qo0 025 050 075 1.00 125 150 1.75  2.00
6 6
(a) The Dobrushin curve for the dephasing channel (b) The Dobrushin curve for the dephasing channel
&, /9 with rotated principal axes. The algorithm ®, /4 with rotated principal axes. The algorithm required an
required an average of 898 elements (worst case: 2056 average of 598 elements (worst case: 730 elements) in the par-

elements) in the partition P to reach the desired precision.

tition P to reach the desired precision.

Figure 7: The Dobrushin curves of the dephasing channels @9 and ®, /4 with rotated principal axes for
two different values of the rotation angle 6, for a = + and E = —0.5. For 200 values of § € [0,2], the

2

algorithm was run with a desired precision of ¢ = 1073,

These get mapped to

7:¥1:

7_'.l2:

such that

(acose,0,—singp) ,
(—asin(20 4+ ¢ — 71/2),0, —cos(20 + ¢ — 7/2)) ,

7 — 4l = (6 (cossp + sin(20 + o — 7/2))?
+ (sinp — cos(260 + ¢ — 77/2))2)1/2 ,

where § = arcsin(§/2) and ¢ = arcsin |E|.

Finally, for § > 2,/1 — | E|? the two inputs

7 =
,r._’

2 =

(2
(—2

1- |E‘270,71+ |E‘) ’
[ |EF.0,—1+|E))

are optimal and lead to ||/} — 7|1 = a - ||F1 — 72]1-
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4.4.3 Dobrushin-curves of generic qubit channels

In Fig. 7, we consider more general channels which no do not obey the symmetry condition (41).
Consider a dephasing channel whose principal axes are not the {01, 09, 03}-axes. To achieve this, we
rotate the Kraus operators of the channel around the o;-axis by an angle 61 € [0, 27]. This means that we

conjugate by the unitary ¢3171, obtaining the channel
Dy, (p) = e 2011 (eéel"lpe*%lal) o300 ,

where @ is the dephasing channel (see Eq. (40)). The Dobrushin curve of such a channel for a fixed 0; can
be calculated by our algorithm and results in the curve depicted in Fig. 7.

Program code

Python program code for the algorithm constructed here is available together with the TeX-source code
on the ArXiv.
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A Pseudocode for jointly constrained semidefinite bilinear programs

In this appendix we give pseudocode for the full algorithm.

. 2 2
function CoMPUTEVECTORREP(Q, X, Y, {n;}_;, {&}]=))

Input: Operators Q € Bs,(CP @ C?), X € Bs,(CP),Y € B, (CY)
orthonormal bases {773-}?2:1 of Bs,(CP) and {fk}%il of Bs,(C?)
Output: Vectors (z,y) € RP* x R? such that (z,y) = ['(X,Y)

Find Uj = tr((n; ® &)Q) for j=1,....p%k=1,...,¢*
Find singular value decomposition U = SAT
for each j=1,...,p%> do

Set x; = 0", Sk tr(X1)
for eachk=1,...,¢> do

Set yp, = ZZ; Tyxtr(YE)
return (z,y)

function COMPUTEOPERATOR(Q, z, y, {nj}§2:1, {¢; };1.2:1)

Input: Operators @ € B, (CP @ C9), (z,y) € RP® x R?
2 2
orthonormal bases {n;},_; of Bsa(CP) and {&x}{_, of Bsa(C9)
Output: Operators (X,Y) € B, (CP) x Bsy(CY9) such that (z,y) =T'(X,Y)

Find Uj; = tr((n; ® &)Q) for j=1,....p%k=1,...,¢*
Find singular value decomposition U = SAT

2 2
Set X = 381 Y2k Skjzwn;

2 2
Set Y =30 S Ty yeé
return (X,Y)

Figure 8: The algorithm COMPUTEVECTORREP computes the image I'(X,Y") of two operators (X,Y), cf.
Lemma 3.1. Conversely, the procedure COMPUTEOPERATOR computes I'"!(z,y), i.e, converts a pair of
vectors into a pair of operators. We note that the required singular value decomposition can be computed
once and stored. It can then be reused whenever the function is invoked.
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function BRANCHHYPERRECTANGLE(2, (v, w))

Input: Hyperrectangle Q = Q(¢, L, m, M) C RP® x ]qu, branching point (v, w) € RP® x R?
Output: Hyperrectangles Q1) Q2 Q6 Q®) RP* x R? such that U, Q=9

Pick index I € {1,...,K} which produces the largest difference between the two sides in the
inequality
max{mivi + liw; — €im;, Myv; + Liyw; — LZ‘Mi} < v;w;
fori+1,...,K do
if i # I then
for j < 1,2,3,4 do
(g(j) L(j),mgj),Mi(j)) — (6, Li, my, M;)
(E(l) L(l) (1),MI(1)) +— (Ur,vr,mp,wry)
( L(Q) (12)7MI(2)) < (v[,L[,m[,w[)
( (3) (3) §3) M(S)) — (vr, L1, wy, My)
(5(4 ( ) (4) M 4)) — (f[,’l)[,lU],M])
forz(—K+1,...,p2 do
for j + 1,2,3,4 do
(67, L) « (4, L)
for i+ K+1,...,¢°> do
for j + 1,2,3,4 do
(mi”, M7}« (mi, M)
return Q(¢W, LU m® Ay Q@) LA m@ M) Q@) L) mG) M) Q@ L® m® p@)

Figure 9: This algorithm splits a hyperrectangle €2 into four subrectangles, cf. Fig. 1. The choice of
coordinates (zr,yr) in the first step is restricted to I < K (where K is the number of non-zero singular
values of U as in Eq. (12)). The hyperrectangles do not need to be refined along the remaining coordinates
because the objective functlon is linear in these In particular, the dependence of the convex envelope Vexq F’
on the parameters {’UJ} _x41 and {wJ}
hyperrectangle €2 is con81dered

Jm K41 coincides with that of the function F irrespective of which
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function BOUNDINGRECTANGLE(Q, S, {n; }?2:1, {gk}g;)

Input: Operators @ € Be,(CP @ C9), set S C Bsa(CP) x Bsa(C?) defined by SDP constraints
2 2
orthonormal bases {n;};_, of Bsa(CP) and {{;}f_; of Bss(C9)
Output: ¢*, L* € RP* and m*, M* € R% such that I'(S) c Q*, L*,m*, M*) and Q is minimal as
discussed in Lemma 3.2

Find Uj = tr((n; ® &)Q) for j=1,....p%k=1,...,¢*
Find singular value decomposition U = SAT
for each j=1,...,p%> do
2
Use the SDP solver to compute £} = inf(x y)cs 22221 Sk.j tr(Xng)
Use the SDP solver to compute L} = sup(x y)es > j—1 Sk.j tr(Xnk)
for eachk=1,...,¢°> do
2
Use the SDP solver to compute mj, = inf(x yyes > j_; Tr i tr(Y &)
Use the SDP solver to compute M} = supx y)es Zgil Tortr(YE)

return (¢*, L*, m*, M*)

Figure 10: The procedure BOUNDINGRECTANGLE which finds a minimal hyperrectangle €2 containing the
vectors I'(S). It invokes an SDP solver. Again, the singular value decomposition of ) can be precomputed.
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function CoMPUTEBOUNDSSDP(f,Q,S, {n;};_ 1,{&}2;)

Input: a function f : RP* x R — R of the form (13)

hyperrectangle Q2 C RP* x R?” and

set S C Bsa(CP) x Bgy(C?) defined by SDP Constraints

orthonormal bases {1;}; v _, of Bsy(CP) and {gk} _, of Bs,(C?)
Output: (a(Q2),@()) 6 R? and 2(Q) = (z*,y*) € T'(S) N Q such that
Q(Q) < min(w,y)EF(S)ﬂQ f($7 y) < E(Q) = f(.%'*, y*>

Define @2 =/{; and lfjl =L for j = 1,...,p°
Define ) = my, and ), = My, for k=1,...,q
Define the operators and scalars

2

p2

q
b b E b b E b pb .~ b
k —

=1

forallbe {0,1} and j=1,..., K.
Define the function G : B(C?) x B(C?) x RX — R by

G(X,Y,r) ZTJ—FZGJZSk]trXﬁk)—i—Zng]tI‘(Yfg
Jj=1 k=1

Invoke the SDP solver to compute
(X", Y*,r*) = arg miny y,) G(X,Y,r)

subject to the constraints

(X, Y)es
p2
l; < tr(XZ Skjmk) < Lj for j=1,...,p° and
k=1

q2

mg Stf(szk,ﬁ&) < M, for k= 1,...,q2
=1
tr(XGg’-) + tr(YHJl-’) —r; < 32’- for all b€ {0,1} and j=1,....,K .

Set a(Q) = G(X*, Y™, r*)
Set @(Q2) = f(T(X*,Y™*))
return o(92), @(Q) and (x(X*),y(Y*))

Figure 11: The subroutine COMPUTEBOUNDSSDP takes as input a set {2 C RP* x RY and a function f:
2 — R as in Lemma 3.1. It further accepts a set S C B(CP) x B(C?) defined by SDP constraints. It
computes a pair (a($2),@(£2)) of lower and upper bounds on inf(, )cr(s)no f (@, y), where I is defined as
in Lemma 3.1.
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Algorithm 1 Jointly constrained semidefinite bilinear programming
Input: S C B, (CP) x Bg,(CY) specified by SDP constraints. @Q € B, (CP ® C9), A € Bs,(CP), B €
Bsa(CY) determining a function F': Bsa(CP) x Bsa(C?) — R as in Eq. (11)
desired precision ¢ > 0.
Output: (X*,Y*) € S and @ such that Eq. (20) holds

Fix bases {n; ?2:1 of Bs,(CP) and {fk}zil of Bs,(C?)
Set (€*,L*, m*, M*) = BOUNDINGRECTANGLE(Q, S, {n; ?2:1, {&}Z;)
Define D as the hyperrectangle D = Q(¢*, L*, m*, M*)
Set (a(D),&(D), 2(D)) = CompUTEBOUNDSSDP(f, D, 8. {n;}_. {&:}i=,)
Set P = {D}, a(P) = (D) and @(P) = a(D)
while @(P) —a(P) > e do
Find (any) hyperrectangle 2 € P such that a(P) = a(Q2)
Set (x,y) = 2(2)
QW 0 0B 0W) = BRANCHHYPERRECTANGLE(Q, (, y))
for j «+ 1,2,3,4 do
Set (a(QW)),@(RY), 2(Q1))) = ComPUTEBOUNDSSDP(f, S, (1))
Update P < (P\{2}) U {0 Q@ B o1
Compute o(P) = mingep o(2) and a(P) = mingep a(2)
Find (any) hyperrectangle 2 € P such that @(2) = @(P)
Terminate and return COMPUTEOPERATOR(z((2)), @(P)

Figure 12: The algorithm for jointly constrained biconvex programming. The key modification compared
to the biconvex programming algorithm from Section 2.1.2 is the use of the subroutine COMPUTEBOUND-
SSDP, which uses an SDP solver to establish bounds on the objective function.
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