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Abstract

In this thesis, robust structural dynamic simulation methods for large
scale prestressed structures, steady state partitioned fluid-structure
interaction (FSI) analysis, CAD-based sensitivity filtering and CAD-
integrated optimization methods with applications to Multidisci-
plinary Design Optimization (MDO) are investigated. The robust
dynamic analysis methods for structures are of high importance since
the accurate computation of the post-processing values, namely the
stresses and strains, in time dependent problems are computation-
ally costly. In order to reduce the computational effort, an updated
linear dynamic analysis approach is introduced. Another presented
achievement is the establishment of robust simulation methods for
MDO in FSI. This incorporates several challenges starting from cou-
pled simulations of the involved disciplines, sensitivity analysis for
the design improvement, sensitivity filtering for achieving feasible
designs while keeping the numerical models suitable for the repeti-
tive computations of the FSI state and finally generating a manufac-
turable design. This thesis addresses the computational performance
issues related to the solution of the steady state partitioned FSI prob-
lems by utilizing a mixture of analytical derivatives and least-squares
based methods for the construction of an approximate Jacobian and
employing an implicit coupling method. In addition, the necessary
sensitivity filtering operations for the infeasible design eliminations
in optimization problems are discussed in combination with the Mor-
tar method. The sensitivity filtering is achieved by tying the discrete
numerical models to their underlying CAD descriptions through the
CAD-based Mortar Mapping method with embedded geometrical
constraints that intrinsically satisfy the equality constraints. In par-
ticular, this method proves to be beneficial when MDO incorporates
partitioned solution procedures for the surface coupled problems,
such as FSI, by transferring the shared and the individual discipline
relevant design handles to the CAD parameters, namely the control
points. Finally, the advancements are integrated into the MDO work-
flow that is based on the Multidisciplinary Feasible (MDF) architec-
ture, and CAD-integrated multidisciplinary optimization in FSI is
achieved. The developed methods and their properties are demon-
strated and elaborated on a set of problems with varying complexity.
The demonstration cases are chosen in such a way that the level
of complexity starts from comprehensive but small scale cases and
reaches industrially relevant problems.
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Zusammenfassung

In dieser Dissertation werden robuste strukturdynamische Simula-
tionsmethoden fiir grof3e, vorbelastete Strukturen, die Analyse der
stationdren, partitionierten Fluid-Struktur-Interaktion (FSI), CAD-
basierte Sensitivitétsfilterung und CAD-integrierte Optimierungsme-
thoden mit Anwendungen fiir die multidisziplindre Designoptimie-
rung (MDO) untersucht. Die robuste dynamische Analyse von Struk-
turen ist in der Berechnung sehr essentiell da die prézise Analyse der
Postprozessvariablen, beispielsweise der Spannungen und Dehnun-
gen, in zeitabhingigen Problemen rechenintensiv sein konnen. Um
den Rechenaufwand zu reduzieren, wird ein lineares, dynamisches
Analyseverfahren mit Zustandsaktualisierung eingefiihrt. Ein weite-
res Ergebnis dieser Arbeit ist die Entwicklung und systematische Un-
tersuchung robuster Simulationsmethoden fiir die MDO mit FSI. Dies
beinhaltet mehrere Herausforderungen; angefangen von der nume-
rischen Kopplung der verwendeten Methoden, iiber die Sensitivitats-
analyse zur Designoptimierung, inklusive der Sensitivitétsfilterung
zum Erzielen realisierbarer Designs, wobei die numerischen Modelle
fiir die sich wiederholenden Berechnungen des FSI-Zustands erhal-
ten bleiben, bis hin zur Anwendung dieser Ansdtze zum Erzeugen
eines herstellbaren Entwurfs. Es werden die Effizienzprobleme im
Zusammenhang mit der partitionierten Lésung von stationédren FSI-
Problemen unter Verwendung einer Kombination aus analytischen
Ableitungen und einem Ansatz basierend auf den kleinsten Fehler-
quadraten fiir die Erstellung einer angenéherten Jacobi-Projektion
und der Verwendung einer impliziten Kopplungsmethode erldutert.
In Verbindung mit der Mortar-Methode wird die notwendige Sensiti-
vitétsfilterung fiir die Beseitigung von unzulédssigen Entwiirfen bei
Optimierungsproblemen entwickelt und diskutiert. Die Sensitivitéts-
filterung wird erreicht, indem die diskreten numerischen Modelle
durch das CAD-basierte Mortar-Mapping-Verfahren mit eingebet-
teten geometrischen Randbedingungen an die zugrundeliegenden
CAD-Beschreibungen angebunden werden. Diese Methode erweist
sich als vorteilhaft, wenn die MDO partitionierte Losungsverfahren
fiir oberflaichengekoppelte Probleme wie FSI verwendet, indem die
gemeinsam genutzten und die fiir die einzelnen Methoden relevanten
Entwurfsdesigns auf die CAD-Geometrieparameter, d.h. die Kontroll-
punkte der NURBS-Fldchen, {ibertragen werden. Die methodischen
Entwicklungen werden in einen MDO workflow integriert, der auf der
sogenannten Multidisciplinary Feasible (MDF) Architektur basiert



und dadurch CAD-integrierte multidisziplindre Optimierung mit FSI
ermoglicht. Die vorgestellten Entwicklungen und Forschungsergeb-
nisse werden anhand von Beispielen unterschiedlicher Komplexitét
demonstriert und diskutiert. Die Bandbreite reicht von analytischen
Testfédllen bis hin zu industriell motivierten Fragestellungen.
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Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the world.

Albert Einstein

Chapter 1

Introduction

Multidisciplinary Design Optimization (MDO) has gained considerable
attention in the last decades as a tool for bringing the interacting disci-
plines together and searching for the optimal design of the combined
systems while collaboratively improving the participating disciplines’ per-
formances. The need for better designs in highly complex engineering
systems gave birth to its research field with a variety of aspects from math-
ematical modeling to cost-effectiveness [2].

The performance of the design often relates to its physical response to
the operating conditions, with which it is interacting. Thus, the accurate
determination of the physical states of the designs in multidisciplinary con-
texts is essential, which is in today’s circumstances achieved by means of
computer simulations. The evaluation of the system responses in coupled
settings comes with a price in many aspects including accurate mathe-
matical modeling, efficient computerization and automation. Accurate
mathematical modeling of physical systems has been well-established for
many disciplines including fluid and structural mechanics. Even though
efficient numerical analysis methods have been researched for individual
disciplines, the efficient numerical analysis of their interactive responses is
still an active research field due to intricacies in the employed methods for



1 Introduction

their simulation methods. Multidisciplinary Analysis (MDA), as a research
field, concerns with the collaborative behavior of coupled systems. Thus, it
constitutes one of the main tools of the MDO process. One of the frequent
occurrences in MDA is the Fluid-Structure Interaction (FSI) analysis, in
particular, emerging in the engineering fields of wind energy, aerospace,
biomedical industry etc. Even if the coupled responses of the constituting
disciplines are left aside, the isolated behaviors of these are typically non-
linear, which involve a certain level of mathematical and computational
challenge themselves. Furthermore, the interactive nature of the coupled
problems adds another layer of complexity. There has been a considerable
amount of research regarding this issue, and a variety of methods have
been developed in order to tackle this challenge, which can be roughly
grouped under monolithic, partitioned and field elimination approaches
[3]- The monolithic approaches employ a simultaneous solution proce-
dure for both of the disciplines, which brings the difficulty of describing
the state variables of the subdisciplines from each others’ perspectives.
Furthermore, such monolithic structures are often designed to incorporate
specific applications in mind, and as a result, lack the flexibility of includ-
ing additional physical effects. Moreover, the preferred method employed
for the numerical analysis of the coupled solution might not be suitable for
at least one of the disciplines. On the other hand, researchers also adopt
partitioned strategies for the simulation of coupled systems. The parti-
tioned methods make use of the existing state of the art techniques for
the coupled disciplines and utilize various iterative methods to retrieve
the coupled physical state. The complexity in such coupling methods is
the necessary computational effort and the stability issues related to the
chosen coupling scheme. The field elimination requires the elimination of
one of the differential equations by describing the primary variables from
the other differential equation’s point of view. Moreover, in the context
of MDO, the coupled simulations are performed successively for each de-
sign evolution. Thus, regardless of the monolithic, the partitioned or field
elimination approach to the coupled simulations, robustness is a crucial
criterion.

The exploration of the design space in optimization problems is necessary
in order to find a suitable design that satisfies the restrictions and con-
forms with the desired performance. For this purpose, a wide diversity of
optimization algorithms have been developed, which suit different pur-
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poses for the considered optimization problems. In particular, a substan-
tial amount of MDO structures exist depending on the choice of analysis
tools [4]. These optimization structures constitute many components, and
the core optimization algorithm can be based on different optimization
algorithms such as zero or higher order methods. The choice for the opti-
mization algorithm depends on the definition of the performance criterion
and the design handles that define the properties of the design. The design
handles can be the shape as well as the parameters that define the physical
behavior of the considered disciplines. In the context of shape optimiza-
tion, the design can either be controlled by relatively few handles that are
used to construct the shape from basic parameters or a free-form approach
can be adopted where the shape itself, which is typically discretized for
numerical analysis, can be the design handle itself. In the context of free-
form shape optimization, it is reported that the gradient-based methods
give more satisfying results [5]. The gradient-based methods require the
computation of the objective function derivatives with respect to the de-
sign variables, which refers to the sensitivity analysis. There exists a wide
variety of sensitivity analysis methods in the literature [6]. In the case of
free-form surface-driven shape optimization, where the discrete shape is
the design handle itself, adjoint methods are favored, since the complexity
of the sensitivity analysis only scales with the number of performance
criteria and adjoint methods result in efficient algorithms [7].

Furthermore, the shape optimization of the discrete problems often suffers
from infeasible design updates of the numerical model, which do not allow
the further disciplinary analysis and determination of the physical state,
due to reasons stemming from the disciplinary analysis or the employed
sensitivity analysis method [8]. Even if this is not the case, all of the design
space might not be useful or desirable. Under these circumstances, sensi-
tivity filtering methods are adopted for both ensuring the quality of the
discrete numerical models and discarding the undesired designs [8]. The
sensitivity analysis methods can roughly be grouped under implicit and
explicit methods. The implicit filtering methods are part of the sensitivity
analysis and have to be considered simultaneously by enforcing the sensi-
tivity fields to satisfy an equation, for instance see [9] in the field of topology
optimization. Typically, the explicit filtering methods benefit from their
decoupled application from the sensitivity analysis phase. Thus, the ex-
plicit filtering methods are not bond to the sensitivity analysis stage, which
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makes them applicable in combination with various sensitivity analysis
tools.

The goal of the optimization is to achieve a better design which can re-
place the previous version. The engineering structures in this sense have
to be produced, tested and finally put to operation. The definition of the
product to be manufactured is often achieved utilizing Computer Aided
Design (CAD) tools. Thus, the regeneration of the CAD models at the end
of the optimization process is crucial, and the optimization processes that
incorporate the CAD information highly benefit from this. There exist op-
timization methods that define the basic parameters of the CAD models
as design handles [10]. Even though this type of optimization methods
deliver a CAD model as a product, the basic parameters highly restrict
the design space compared to the parameter-free or namely the node
based optimization approaches [8]. On the other hand, there are methods
which reconstruct a representative CAD model from the resulting discrete
numerical models [11],[12]. These methods require algorithms for the iden-
tification of certain features that are necessary for building the Boundary
Representation (BREP) of the CAD model, such as vertex and edge detec-
tion methods etc. , which are either not suitable for the regeneration of
very complex discrete models or result in nonintuitive shape definitions.
Furthermore, the initial CAD models are readily available, since the design
of engineering structure often start with CAD models and the correspond-
ing numerical analysis models stem from them. Thus, these models can
be employed without impairing the desired free-form shape optimiza-
tion tasks. In order to adopt the initial CAD model’s parametrization as
design variables, one needs to tie the discrete numerical model and the
original CAD model. There are various proposed methods for this purpose,
such as finite differencing, morphing boxes [13], Free-Form Deformation
(FFD) [14], algorithmic differentiation [15] etc. , and they all come with
their benefits and shortcomings.

CHAPTER 2 addresses the robust disciplinary simulation methods. It lays
the foundations for the disciplinary analyses for the following FSI analysis.
The employed methods for structural and fluid mechanics are laid out.
Furthermore, the efficient coupling methods for the strongly coupled,
partitioned FSI applications are extended using a combination of analytic
expressions and least-squares approaches for the computation of the fluid
interface Jacobian. The proposed method considers the FSI problem purely
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from the structural point of view by utilizing the current state information
and the iteration history for the approximation of the required tangent
stiffness term for the acceleration of the iterative solution procedure. Just
as importantly, this section also discusses robust and accurate dynamic
analysis methods that are suitable for large scale structures. The proposed
methods are then demonstrated on numerical examples in an increasing
level of complexity.

CHAPTER 3 focuses on the required components for establishing the MDO
process. The structural sensitivity analysis using the semianalytic, discrete
adjoint method and the fluid sensitivity analysis utilizing continuous ad-
joint methodology are briefly presented with respective reasonings for their
adoption. A free-form CAD-based parametrization method is proposed,
which stems from the underlying NURBS or B-Spline description. The con-
nection between the discrete numerical models and their underlying CAD
descriptions is accomplished utilizing the principles of Isogeometric Analy-
sis (IGA) and a Mortar-based formulation. Moreover, it is shown that such a
procedure acts as a sensitivity filter that is relatable to the Vertex Morphing
method and can be used in combination with it too, see also [16], [17]. The
proposed method brings the typically nonconforming shape sensitivity
fields related to the subdisciplines to a common platform and is a core
component of the applied MDO process. The integration of the CAD into
the MDO workflow is achieved through a software module that is based
on OpenCASCADE Community Edition (OCE) and pythonOCC [18], [19],
[20]. Last but not least, an MDO workflow based on the Multidisciplinary
Feasible (MDF) architecture that can incorporate commercial scale CAD
models is established and demonstrated on a wind energy application.

CHAPTER 4 rounds up the discussions and summarizes the outcomes of this
work while giving an outlook and suggestions for possible future research
ideas.






Chapter 2

High Fidelity Simulation Methods

This chapter introduces the governing equations and necessary nota-
tions for the structural analysis, fluid dynamics and the forthcoming fluid-
structure interaction analysis as well as the improvements and the exten-
sions to the existing methods. Firstly, the structural governing equations
for both the dynamic and the steady state analysis are presented in cor-
relation with the utilized software environment and the Finite Element
Method (FEM). The extensions and the assumptions for the updated linear
transient as well as the updated modal analyses are laid out in Sec. 2.1.6-
2.1.7. Secondly, the steady state Reynold Averaged Navier-Stokes (RANS)
equations in rotationg frames are introduced which use the Finite Volume
Method (FVM) for the solution of the mentioned governing equations. Fi-
nally, the steady state interaction of the structures with fluids as well as
the improvements for the Jacobian approximations in order to increase
the convergence characteristics for the iterative solution procedures are
proposed in Sec. 2.3.



2 High Fidelity Simulation Methods

2.1 Structural Analysis

This section introduces the notations and the solution methods for the
structural governing equations using the FEM. The demonstration of the
governing equations starts with a general point of view for a geometrically
nonlinear transient analysis case mainly following the definitions in [21].
The specializations, the simplifications as well as the extensions to the
existing structural analysis methods are discussed. In the scope of this
work, the in-house structural analysis tool Carat++ [22] is utilized for both
the transient structural analysis and the steady state solution of the FSI
problems that are related to the MDO workflow, whereas Lagrange is em-
ployed for the solution of the pure FSI problems in steady state. Lagrange
[23] is a software that is developed by Airbus Defence and Space (ADS)
and was delivered to the Chair of Structural Analysis of TUM within the
research project AeroStruct [24].

2.1.1 Governing Equations

The strong form of a general structural Initial Boundary Value Problem
(IBVP) can be expressed as:

pd+cd—V-(o+0y)—b=0,in2xT, (2.1a)
d=d,,inRfortr=T1, (2.1b)
d=v,,in2fort=T1,, (2.1c)
d=0,onlyCcI'xT, (2.1d)
t=t,onl,cI'xT, (2.1e)

where d, o, o, b, t denote the primal variables -displacements-, the defor-
mation induced stresses, the prestresses, the body forces and the boundary
tractions respectively. In addition,  and @ refer to the first and the second
time derivatives. In an FSI setting, in addition to the applied body forces
and the prescribed boundary tractions, the structure is subject to the fluid
tractions tf on its wet surface I'yg; C I,. This can be expressed as a state
dependent Neumann boundary condition in the following way:

t=t+t'(d), on g I, xT. 2.2)

The relation between the stresses and the displacements are given through
the material law. In the scope of this thesis the kinematic modeling of the

8



2.1 Structural Analysis

structures are not restricted to a certain type. Thus, the relations are given
in a global Cartesian coordinate system and specializations are presented
or referenced where necessary for certain kinematic assumptions. The
linear and the nonlinear Green-Lagrange strains can be written in the
global Cartesian coordinate system in tensor form as:

: 1
e = 5 (Vd+(vd)"), (2.32)
1
£ = > (Vd+(vd)" +Vvd-vd) . (2.3b)
In the scope of this thesis, the work conjugate second Piola-Kirchhoff

stresses and the Green-Lagrange strains are related through the St.Venant-
Kirchhoff law as:

o=C:e¢, (2.4)

where C denotes the material tensor. Clearly, when linear Green-Lagrange
strains are adopted, this law coincides with the Hooke’s law [25].

2.1.2 Weak Form

Having the strong form of the problem, one can define the weak form of
the structural governing equation, which corresponds to the virtual work
by:

517:/6d-[p&+cd—v-(a+ao)—b] dn=0. 2.5)
n

Applying integration by parts and splitting the boundary integrals into the
Dirichlet and the Neumann boundaries one obtains the following:

5H=/p5d-fld!2+/c5d-dd!2+/5£:(0'+0'0) dn
n n n
—/5d-bd!2— 5d-tdF—/ 5d-(i+tf) dr=o0. (2.6)
n Iy I,

In the above equation, 0d and 0 ¢ denote the virtual displacements and
the virtual strains. Alternatively, one can define a form a, a functional /

9



2 High Fidelity Simulation Methods

and make use of the inner product of the L? space to shorten the virtual
work expression:

a(5d,d):=/5e:(0 +0,) de2, (2.7a)
0

1(6d):=(5d,b)q+(5d, ), +(6d T+t) (2.7b)

0,l,

and the inner product of the L? space on a domain D is defined as:

<¢,¢>OYD=/D¢-¢ dD, V,peL?(D). 2.8)

By doing so, one can define the structural IBVP as: Find d for all the admis-
sible variations 6d such that:

(6d,pd) ,+(6d,cd), ,+a(6d,d)=1(5d). 2.9)

Above equation defines the weak form for the equilibrium of the linear
momentum for a time dependent problem and has to be satisfied at any
pointin time ¢ € T for every 0d. The details on the equivalence of the weak
and strong forms can be found in [26].

2.1.3 Spatial Semidiscretization

The discretization and the numerical solution of the structural problem is
achieved using the FEM. The FEM requires the division of the domain {2
into subsets of the domain of interest and approximation of the unknowns
with appropriate basis functions within each subdomain. In the context
of FEM, these functions are often linear, bilinear or trilinear basis func-
tions. For instance, the primary variable of the structural problem -the
displacement field d- is approximated as:
u ~
d(X,6)=D ¢, (X)dy (1), (2.10)
i=1
where ¢(i] denotes the basis functions calculated at the coordinate X,

which are related to the degrees of freedom (DOFs) d} ;) and m is the num-
ber of DOFs. The full set of DOFs are collected in a vector of variables:

d=[dy - d}mJ]T . 2.11)

10



2.1 Structural Analysis

Applying the appropriate discretization scheme, one can cast the Eqn. (2.6)
to adiscrete equation system. In addition, one needs to satisfy Eqn. (2.6) for
every discrete set of 5d yielding the discrete residual form of the dynamic
equilibrium:

aomn _ . NN
5H= —A5d(l’)=R8)5d(i)=O y (212)
dd;

where the dynamic residual R? defined as:
RY(d)= Md+ Cd+ R(d)— Fyy =0. 2.13)

Herein, M, C, R and den denote the mass matrix, the damping matrix,
the steady state residual vector and the dynamic loading respectively. The
entries of the mass matrix M are calculated through the following equation:

M. jy =<¢(,-)»p¢(j)>m , (2.14)

while the entries of the steady state residual vector R are defined as:

N Je

Riy= o 2d, o +ay) dn
~(90rb), (P00 8a), . (908, - (2.15)

It should be noted that above equation contains only the static part of the
prescribed boundary tractions. Eqn. (2.15) is going to be revisited in the
following sections in order to introduce the assumptions related to the
individual solution procedures. The dynamic consistent nodal force vector
is computed accordingly from;

Fayn=(9 Tayn)y 1. - (2.16)

The computation of the damping matrix C is rather cumbersome. The
correct definition of the damping parameters requires rigorous material
testing [27]. As a simpler approach one can adopt the Rayleigh damping
[28] and compute the damping matrix as a linear combination of the mass
and stiffness matrices:

C=ayM+ K, 2.17)

11



2 High Fidelity Simulation Methods

where ap and By denote the Rayleigh damping parameters. Following
from the literature [29], for given two angular eigenfrequencies @, ©, and
related logarithmic decrements ', {,, these parameters can be estimated:

20,0, o
= (0281 —@185) (2.18a)
2 1
20,0
R= (—é é) (2.18b)
D5—DT\ @y @

2.1.4 Time Discretization

In the scope of this thesis, the time integration is achieved via Newmark
scheme [30] if not indicated otherwise. According to Newmark, the update
rules at a discrete time step ¢ = ¢, are given as:

N N 2 1 % x
d, =d, ,+Atd, ,+Ar* (5 —ﬁN)dtx_l +(At)Y Byd,,, (2.19a)

&rs =&r571 +At(1_7’N)éts71 +Atméts, (2.19b)

where 7y and By are the Newmark parameters which can be adjusted
to maintain certain characteristics of the dynamic problem, such as ac-
curacy, high frequency damping etc., [30]. Employing the update rules
of Eqn. (2.19) in Eqgn. (2.13) one obtains the space and time discretized
dynamic residual:

R (d) (ﬂN(lAt)2M+ﬂzz]itc)a“-’_ﬁ(&*)_ﬁdy“

YN -
C dl‘-—
By (At) ﬁNAt ) !

ﬁN YN
(ﬂNAt Bn )dt B

1-2fy 2BN—TN )%
M-—A 1.
2PN "oy 2PN € )i

(2.20)

12



2.1 Structural Analysis

2.1.5 Solution Procedure

The residual in Egn. (2.20) defines a nonlinear system. Consequtively, an
iterative solution procedure based on Newton-Raphson (NR) method is
adopted. Thus, the linearization of Eqn. (2.20) at each time instance is
necessary. Firstly, the derivative of the steady state residual vector R is
obtained:

adj

_ S _ pint load
= Kiijy = Koy T Keisjy - 2.21)

where the entries of the so called internal and load tangent stiffnesses
K(ll“]t] and K(ll";‘fl respectively- are defined as:

int Je Jdo 02%¢
K(i,j) = — i ———dN+ —_—: (0' + 0'0) dn, (2.22a)
2dd; 9d 2 dd0dg;)
ot ot
load _
K@y ——<¢(,-), P > _<¢(”’ad. > : (2.22b)
() (UI ) 0,

In Eqn. (2.22b), the second right hand side (RHS) term is of high interest.
In the scope of this work, this term is going to be either approximated or
neglected which results in a Quasi-Newton scheme. See Sec. 2.3 for further
details.

Secondly, following from Eqn. (2.20) and having the steady state tangent
stiffness defined, one can obtain the tangent stiffness matrix for the solu-
tion of the nonlinear dynamic problem:

o) — K, =K% +K° (2.23)
o, en=Kin*Kin: :

where the contribution of the dynamic problem K¢ to the tangent stiffness
matrix is obtained from:

1 YN
Ke= M Cl. 2.24
(ﬂN(At)Z Bt ) @24

Finally, NR solution procedure at time step ¢, and iteration » is defined
as:

K(d, ,)ad, ,=-R!(d, ). (2.25)
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2 High Fidelity Simulation Methods

The discrete DOF vector at time step ¢, is then updated accordingly:

d; p=d, ,+Ad, ,. (2.26)

2.1.6 Updated Linear Transient Analysis

In practice, it is possible that a structure is subject to a combination of
static and dynamic loads as well as prestresses where the nonlinearity
at the static loading phase is much prominent than that of the dynamic
phase. Herein, the deformation inducing external consistent nodal forces

F.. are decomposed into a constant and a time varying part:

f:ext = f:const + f:t ) (2.27)
where;

f:const = lA:sta + < den>v]r ) (2.28a)

IA:t = 1A::dyn - < den >T . (2.28b)

In the above equations, (-)t is understood as the mean value of a series
in the time domain. It can be shown that as long as damping is present
in the dynamic system, the vibrations related to the constant part of the
loading F,n converge to a steady state solution. In addition, any arbi-
trary periodic loading can be expressed by a Fourier-series, to which the
structure responds with the same frequency content, see also [31]. This
allows the assumption that the structure essentially oscillates around the
equilibrium point which is defined by the loading Fops;.

Herein, the complexity in the nonlinear dynamic analysis is that the above
statements are valid for linear dynamics. However, if the static and the
dynamic phases are distinguished by assuming a nonlinear behaviour in
the initial static phase and a linear behaviour in the forthcoming dynamic
phase, one can still introduce the same notions. For this purpose, the
constant loading defined in Eqn. (2.28a) is assumed to give a pseudo equi-
librium point around which the structure oscillates. By doing so, the static
analysis can be performed with the nonlinear strain measures and the so-
lution procedure defined in Sec. 2.1.5 under loading defined by F,,. This
stage of the analysis can also consider the applied prestresses if necessary.

Furthermore, it is assumed that the time varying part of the loading F,
does not cause further nonlinearities and the structural oscillations can be

14



2.1 Structural Analysis

linearized around the pseudo equilibrium point. This assumption enables
the use of the tangent stiffness matrix at this point and performing the
dynamic analysis in a linear fashion. However, the initial conditions for
the dynamic phase are still computed by the load case defined by F,
giving d,,,, since otherwise the initial conditions for the structural IBVP
as well as the dynamic loading are applied incorrectly. The solution steps
of the procedure defined in Sec. 2.1.5 and Eqns. (2.20)-(2.26) have to be
modified:

xd . 1 Y A A A .
d)_ N d s d
R, ()= (ﬁN Mt oA C)dts + K*(deg)d? — Fayy

1 YN ~d
— M + C|d
(ﬁN(At)Z BnAt ) sl

(1 Bn—Tn d
(ﬂNAfM Bn C)dtsl

(1 2Py AtzﬂN—_”C)ﬁd . (2.29)

2fn 2fn ‘
In the above equation, the terms related to the static phase are ommitted
since they are assumed to be in equilibrium and have no effect in the
residual expression. aeq denotes the pseudo static equilibrium point at
which the structure is in equilibrium with the external loading defined in
Eqgn. (2.28a). In addition, dd denotes the dynamic part of the displacement
solution. This implies that the static phase and the dynamic phase of the
problem are separated and the actual displacements at time step ¢, are
given as:

d, =dy,+df . (2.30)

Moreover, the effective stiffness matrix of the dynamic problem is modified
accordingly:

K=K%+K(d,,) .- (2.31)

This can also be referred as a model updating technique where the stiffness
variations due to the nonlinearities caused by the static deformations and
the prestresses are incorporated in the dynamic phase through the tangent
stiffness matrix Ks(aeq). See also [32] for the inclusion of the stress stiffening
for the dynamic response of the structures.
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2 High Fidelity Simulation Methods

2.1.7 Updated Modal Analysis

Modal analysis makes use of the mass and stiffness properties of a struc-
ture and computes the so-called eigenfrequencies at which a structure
resonates with the corresponding deformation modes; eigenmodes. In the
context of FEM, the mass and stiffness properties are given by the respec-
tive matrices and it is assumed that the time dependent displacements
can be described as the superposition of chosen n eigenmodes @(,-) that
are related to the modal degrees of freedom:

n
d=" dsin(o1) . (2.32)
i=1

The conventional modal analysis with FEM assumes linear strain measures
for the computation of the stiffness matrix, which essentially implies that
the structural oscillations occur around the equilibrium point d = 0. This
results in the exclusion of the stress stiffening and the prestressing effects
that are present. This is in particular not accurate for large scale struc-
tures where the structural stiffness properties are affected by the constant
loading. As an alternative, one can employ the static equilibrium point
d,.,. In that case, the assumption implies that the structural oscillations
take place around the static equilibrium point, which is not necessarily
the case since the level of the dynamic loading is neglected. On the other
hand, it is proposed in Sec. 2.1.6 that the structural oscillations occur in
the vicinity of the state &eq and correspondingly the linearization can be
achieved around this equilibrium point. Thus, an updated modal analysis
approach is employed by incorporating the nonlinear strain measures
and computing the tangent stiffness at the equilibrium state defined by
the loading Feonst- Introducing Eqn. (2.32) in Eqn. (2.13), neglecting the
damping matrix and dropping the external forces, since the interest is on
the free vibrations, Eqn. (2.13) takes the following form:

2 . N s
_(w?i)) M¢(i)+Ks(deq)¢(i):0- (2.33)

Above equation defines an eigenvalue problem to be solved for the updated
angular eigenfrequencies w(;) and the updated eigenmodes ﬁzkl.). The related
updated eigenfrequencies f;, can be computed using a simple relation:

fr= “ly
(9) 2
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2.1 Structural Analysis

Herein, a distinction should be made. Updated modal analysis methods
already exist and reference the stress stiffening effect as well as its influence
on the eigenfrequencies of the structure, but this effect is often included
by making use of the actual static equilibrium point d,.,. However, when
forced vibrations of a structure are to be computed by transient modal
analysis, the equilibrium point, around which the structure vibrates, does
not necessarily coincide with the static equilibrium point. The presented
method includes the loading level of the dynamic phase into account by
the second RHS term in Eqn. (2.28a). Thus, it is expected to give more
accurate results.
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2 High Fidelity Simulation Methods

2.2 Fluid Dynamics

This section presents the governing equations for the fluid dynamics prob-
lems that are considered within the scope of this thesis. The existing im-
plementations within the software framework OpenFOAM® as well as the
extensions of the HELYX® are extensively used. Herein, only the solved
equations are presented for clarity. The detailed information on the theory
and the implementation aspects can be found in [33], [34], [35], [36].

In the scope of this thesis, the interactions of the structures with incom-
pressible Newtonian fluids are considered. The steady state RANS equa-
tions are suitable for this purpose. However, even though the time deriva-
tives vanish due to the steady state assumption, the Arbitrary Lagrangian-
Eulerian (ALE) version of the Navier-Stokes equations are still necessary
when arotating frame is employed. Thus, the solution of the fluid Boundary
Value Problem (BVP) is achieved using the steady state incompressible ALE
Navier-Stokes equations with the domain velocity defined by the constant
angular rotation. The governing equations with its boundary conditions
can be written as follows:

(v—vg)-Vv—V-&'~b=0,in 2, (2.34a)
V-v=0, in2, (2.34b)

v=v,only, (2.34¢)

t=t,onl,, (2.34d)

with the density averaged fluid Cauchy stress tensor &' the density aver-
aged pressure p and the domain velocity v, defined as:

' =—pL+7(Vv+(Vv)'), (2.352)
~_P

p=X, (2.35b)
Jo,

Vo=@ XTI. (2.35¢)

Herein, p refers to the actual pressure while 7 refers to the turbulent kine-
matic viscosity in turbulent cases or the constant kinematic viscosity in
laminar cases. In the frame of this work, the turbulent kinematic viscosity
is determined using the steady state version of the Spalart-Allmaras tur-
bulence model where necessary [37]. In the scope of this work, the body
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2.2 Fluid Dynamics

forces b in Eqn. (2.34a) contain the Coriolis forces when a rotating frame is
of interest. The momentum and the continuity equations in Eqns. (2.34a)-
(2.34b) are clearly density averaged and do not differ from the original
equation system since the flow field is assumed to be incompressible and
has constant density. In an FSI setting, the domain deformation should
also be taken into account too. The deformations related to the bound-

ary perturbations are computed using an appropriate technique within
OpenFOAM®.
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2.3 Steady State FSI Analysis

In this section, the employed solution strategies and the performance com-
parisons of the adopted methods for the solution of the fluid-structure
interactions are presented. In the frame of this work, the goal of the FSI
analysis is to obtain the equilibrium condition, which is then used for
the shape optimization. The FSI analysis phase is restricted to the steady
state case due to the complexities in both the transient sensitivity analy-
sis methods and the computational effort necessary for advancing the
opitimization iterations.

The typical boundary conditions for a Dirichlet-Neumann coupling be-
tween the structural and the fluid BVPs at their common interface I'zg; can
be written as follows:

d*—d'=0, on I}, (2.36a)
v=d®=0, on I}, (2.36b)
t+t'=0, on I} . (2.36¢)

The above conditions enforce the material continuity as well as the linear
momentum equilibrium across the common interface. In practice, par-
titioned FSI techniques are in high interest since they allow coupling of
different software with their advantageous sides. For instance, in the scope
of this work, the structural BVP is solved via FEM while the fluid BVP is dealt
with using FVM. One can see the FSI problem from the structural point of
view and treat the fluid BVP as a function that returns boundary tractions
acting on the structural wet surface for a given boundary deformation
pattern. This point of view facilitates the use of the equations defined in
Sec. 2.1 for the solution of the FSI problem. Herein, the complexity of the
FSI problem stems from the correct linearization of the highly nonlinear
fluid BVP and the interested post-processing value, namely the fluid trac-
tions tf, with respect to the boundary perturbations. Given the definition
for the fluid tractions as:

t=n-of, (2.37)
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2.3 Steady State FSI Analysis

the second RHS term in Eqn. (2.22b), which contains the derivative of t,
can also be written as follows:

det on dof
<¢(i)rg> =<¢m,adA -0'f> +<¢U),n'ddA > .
0 0,1Fs1 0 0,IFst W 0,551

(2.38)

In the above equation, the first RHS term is straightforward to compute
since it contains only the derivative of the surface normal vector. On the
other hand, it is important to note that the second RHS term in Eqn. (2.38)
can not be computed with partial derivatives but should be computed via
total derivatives, since the constituting variables v and p of &' can only
be determined through the solution of the fluid BVP for a given boundary
displacement field.

In order to establish a clear ground for the discussions in this section,
the residual form and the linearization of the structural BVP considering
only the fluid tractions as external loading are briefly presented here. The
residual form of the structural BVP in this case reads:

}A?ESI:/ de
@ .Qad(i)

Moreover, in the extent of this thesis, the linear Green-Lagrange strain
measure is adopted for FSI problems without the loss of generality as in
Eqn. (2.3a), since the proposed methods in the following sections essen-
tially concentrate on the approximation of the load tangent. Then, the
tangent stiffness matrix for the above Eqn. (2.39) can be computed from:

adj

(o +0,) d2—(gt) . (2.39)

0,Iks

_ S _ pint f
= Ky = Kiijy T Keijp» (2.409)

int _ de : Jo
(00 Qad(i) Bdm

dtf
f
K(i,j)—_<¢(i)’—dd_ >
() 0,Tvst

on dof
=—<¢m’adg '”f> —<¢(i)’n‘ddg > . (2.40¢)
() 0.Tvgt D/ o1
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2 High Fidelity Simulation Methods

It is important to note that even though the linear strain measures are
adopted for the computation of the internal forces, which results in a linear
relation between the internal forces and the displacements, the depen-
dence of the load stiffness on the structural displacements as well as the
state dependency in the residual expression remain. Thus, an appropriate
iterative solution procedure for the equation system is necessary, making
the NR solution procedure in Sec. 2.1.5 favourable.

Finally, the software framework for the solution of the FSI problem exploits
the capabilities of the in-house open-source software EMPIRE [38]. The
considered algorithms in this work follow a partitioned solution procedure
and utilize EMPIRE which makes use of the MPI communication for the
data transfer between the disciplinary solvers. The algorithms mentioned
in the following sections are variants of the Gaufs-Seidel (GS) method.
Thus, the respective flow of the realized communication patterns can be
explained as depicted in Fig. 2.1. In addition to this, the implementations
of the various mapping operators in EMPIRE enable the load and motion
transfer -namely the coupling variables as in Eqn. (2.36)- at the coupling
interface, see also [39], [40].

(no data)

2:
[} EE Fluid 3:y
Dynamics
3:
@ [4: Iy Structural
Mechanics

Figure 2.1: The Extended Design Structure Matrix (XDSM) [41]
of the GS workflow.
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2.3 Steady State FSI Analysis

2.3.1 GaulR-Seidel Method (GS)

Having the tangent stiffness matrices for the NR method defined in Sec. 2.3,
one can apply simplifications on the solution procedure to obtain the GS
method. For instance, in practice it is common to treat the individual
solvers for the solutions of the structural and the fluid BVPs as black-box
solvers. In such a case, one can not compute the contributions related to
the linearization of the fluid tractions. Only the input and the output values
of the individual software would be available. In a typical context, the
Dirichlet-Neumann decomposition using the relations in Eqn. (2.36) are
adopted. In addition to that, a relaxation factor for the applied boundary
conditions can also be employed. For instance, when relaxation is applied
on the Dirichlet conditions, the solution procedure reads:

Ry = /Q aad{n (0+00) 42— (9, (d,)), - @412)
aff(” -k =K +§% (2.41b)

Fl ) (i) (9 1,j)
A4, =(R) R, (2.41¢)
d,.,=d,+Ad,, (2.41d)
aFFSI,nJrl = aFFSI,n + aGSAaFFSI,n . (2.41e)

From this point of view, the GS solution procedure for the coupling of
fluid-structure interaction is a Quasi-Newton method, where part of the
Jacobian, namely the fluid contributions in this particular system, is ne-
glected. Thus, the convergence rate is expected to be linear [42]. From
the engineering experience, in the case of steady state FSI the relaxation
parameter is not expected to improve the convergence rate when chosen
ags < 1 but only increases the stability of the fluid solution step. Addition-
ally, one can adopt the Aitken relaxation method to estimate a relaxation
factor in order to accelerate the solution procedure [43]. The GS fixed point
iteration method is suitable when black-box solvers are the only available
option for the solution of the FSI problem since this method does not
necessitate the computation of second RHS term in Eqn. (2.22b), namely
the coupling term, and only the results of the individual solvers are needed.
This also facilitates the use of various efficient solution techniques for each
BVP to be coupled, such as iterative or direct solution techniques.
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2.3.2 Follower Load Extension to Gaul3-Seidel Method (GS-FL)

In Sec. 2.3.1, the analogy of the GS method to Quasi-Newton methods is
presented. In certain practical software environments, the tangent stiffness
matrix of the structural problem related to its internal forces, namely the
K™ is available to the user. In such a scenario, the contributions from
the load stiffness can be added to the internal tangent stiffness matrix
and the accuracy of the effective tangent stiffness of the FSI problem can
be increased. The least complicated term that can be considered is the
first RHS term of Eqn. (2.40c) since it contains only the derivative of a
geometric quantity, i.e. the current surface normal n. This term can also
be considered as the follower load contribution to the left hand side (LHS)
of the system in case a constant pressure load would have been applied.
The information necessary for the computation of the derivative of the
surface normal with respect to the nodal displacements is always available
since the discretized wet surface as well as the shape functions used for
the discretization are known to the user.

The surface normal fi and the normalized surface normal n at a given
surface coordinate in the current configuration reads:

n=g; xg, (2.42a)

=g, , (2.42b)
1

n=—n, (2.42¢)
n

The g, denote the base vectors on the surface material coordinates at
a deformed state x = X 4+ d. Then the first RHS term in Eqn. (2.22b) is
straightforward to compute using the following relations:

on 1 0n 1 dn

— = —— . (2.43)
ddyy nody Nt ody

where,
on on
IR . (2.44a)
adj adj
on 0 17
P :ixg2+glxi. (2.44b)
ddy 9d %)
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2.3 Steady State FSI Analysis

Using the above inclusion, one can write the extended inexact Jacobian of
the GS procedure in Eqn. (2.41b) as follows:

D
=

(i) _ s _ print =f
7 K=Kt Key» (2.45)
()

D

with,

~ on
Kip==00 57 ) —(Pup : (2.46)
ad dd;)
0, Ik 0,5

The resulting inexact Jacobian is more accurate compared to the one of the
GS method but still not expected to increase the convergence behaviour
significantly. The significance of the terms in Eqn. (2.40c) can vary de-
pending on the state since both the direction and the magnitude of the
tractions acting on the structure depend on both terms. An advantage
of the method is that the sparsity pattern of the tangent stiffness matrix
remains unchanged, which maintains the necessary memory usage for
the matrix storage. On the other hand, a disadvantage is the necessity of a
linear solver that is capable of dealing with nonsymmetric matrices, which
is a common occurrence when follower loads are to be considered and
the resulting system Jacobian is nonsymmetric. In the extent of this thesis,
this method is going to be abbreviated as GS-FL.

2.3.3 IBQNLS Extension to Gaul$-Seidel Method (GS-IBQNLS)

The last term in the residual equation of the FSI problem in Eqn. (2.39),
when formulated from the structural point of view, essentially contains the
consistent nodal forces ff. Thus, the residual equation can be reformulated
as follows:

f\’F.SI:/ oe
@ .Qad(i)

Then the contribution K to the tangent stiffness matrix of the FSI problem
defined in Eqn. (2.47) contains the derivatives of the consistent nodal
forces ff with respect to the nodal displacements or equivalently the nodal

(o +a,) d2—f]. (2.47)
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positions:

Ff N Ff Ff
f, o df(i) dX(k) _ df{,') 5(k = df(i)
G dg dd,  diw 7 dEg)

(2.48)

Since the exact computation of the term in Eqn. (2.48) is computationally
inefficient, one can approximate it via an appropriate method. [44] com-
pares a wide variety of approximation methods. Herein, a least-squares
approximation is favoured following the methodology in [45], which is
named as IBQNLS in [46], hence the name IBQNLS extension. The least-
squares approximation requires inputs and outputs; X and ff respectively.
For this purpose, one can adopt the series of fields X,, and i’fn that occur
during each solution iteration n. Then the input and output modes can
be defined as A%, =%, —%X,_; and Afﬁl = f'fl — f'fl_l. The input and output
modes are then grouped in the following matrices:

V, =[A%), A%y, -, A%, ], (2.49a)
w, = | AT, AE, -, AT, | . (2.49b)

Having the above matrices defined, the approximated load and the effec-
tive tangent stiffnesses can be calculated from:

K =—w,(VIv,) VT, (2.50a)
K =K™+K' . (2.50b)

The rest of the solution procedure follows from Eqn. (2.25). The advantage
of the presented method is the improving accuracy of the approximated
quantities as the solution iterations advance. Accordingly, the convergence
behaviour is expected to improve as more input and output modes are
available. On the other hand, the resulting system Jacobian K is a non-
symmetric matrix and the contributions related to K’ are assembled to
the interface DOFs. Thus, the resulting Jacobian matrix for the structural
models with large number of interface DOFs are densely populated too.
Moreover, it is important to note that even if the exact Jacobian contri-
bution would have been available, it would have similarly populated the
matrix, since a perturbation on a part of the FSI interface would cause
a flow perturbation on the whole fluid domain. In case of least-squares
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approximation methods, it can be favourable to employ methods that ap-
proximate the inverse of the Jacobian for the fixed point iterations, such as
IQNILS [46]. Within the scope of this work, this method is included for the
demonstrations on the convergence behaviour of the coupling algorithms
due to the similarity to the proposed method presented in Sec. 2.3.4. In
the rest of this work, this method is going to be abbreviated as GS-IBQNLS
where necessary.

2.3.4 Follower Load and IBQNLS Extensions to GaulR-Seidel
Method (GS-FL-IBQNLS)

In Sec. 2.3.2, the follower load extension to the inexact Jacobian of the
GS method is presented and the possibility of employing a least-squares
approach for the approximation of the whole load stiffness term is dis-
cussed in Sec. 2.3.3. In addition to the follower load term, the relatively
more complicated part related to the derivative of the fluid stresses with
respect to the nodal displacements, second RHS term in Eqn. (2.40c), can
be approximated via the least-squares approach similar to Sec. 2.3.3.

The inputs and outputs for the approximation of the second RHS term
in Eqn. (2.40c) are defined as d and ¢ while the input-output modes
are defined as A%, = &, —%,_, and Ao’ = of —o' | respectively. It is
important to note that the stress tensors are computed at the respective
Gaul} points, which are at coupling surface element centroids of the fluid
FVM discretization. Herein, two important modifications are made in
order to reduce the computational effort and the storage requirements.
Firstly, the outputs a'fn are stored using a Voigt notation since the fluid
stress tensors are symmetric by definition, see Eqn. (2.35a). Secondly, the
output modes Atrf1 are premultiplied with the current surface normals
n and preintegrated for the generation of the matrix W, yielding vector
fields defined at nodes similar to the Af'fl of Sec. 2.3.3. The entry k of the
modified output modes W at iteration n is computed in the following way:

_ At
W, =(¢n Aan>0’rm : 2.51)

The above definition of the matrix for the output modes eases the assembly
and reduces the memory usage during the computations necessary for
the approximated Jacobian. The matrix V,, that contains the input modes
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remains unchanged. Having the matrices defined, the inexact Jacobian of
the system, or namely the tangent stiffness, with the approximated load
stiffness can be computed from:

~ on _

Rt =_<¢, on -a'f> W, (VI @.52)
od  [ony

KS =K™+K' . (2.52b)

The approximation procedure defined in this section is expected to contain
properties of the both methods presented in Sec. 2.3.2 and Sec. 2.3.3. The
accuracy of the approximated tangent is higher since more terms are com-
puted exactly. While keeping the exact geometric contributions from the
load stiffness, the solution procedure is expected to have an improving con-
vergence behaviour due to the improving accuracy in the approximated
part of the system Jacobian. As expected, the assembled system Jacobian is
similarly populated on the interface DOFs and constitutes a nonsymmetric
matrix as in Sec. 2.3.3. In the extent of this work, this method is going to
be referred as GS-FL-IBQNLS.
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2.4 Results and Discussion on the Dynamic Analysis

This section consists of the demonstrations for the developed dynamic
analysis methods in an order of increasing complexity. Foremost, the re-
sults of the updated linear transient and the updated modal analyses are
presented. For a simpler but a comprehensive example, the dynamic analy-
sis of a SDOF nonlinear spring-mass system is considered. In addition,
the performance of the methods are also investigated on a beam model.
Furthermore, the developed methods are applied to a real-life scenario
which also contains the results regarding the project Mistralwind [47] in
combination with experimental results that facilitated the validation of
the implemented methods.

2.4.1 Nonlinear Spring - Mass System

For clarity, the method is presented on a nonlinear spring-mass system
with the spring stiffness containing a constant and a state dependent part:

k(d)=keonse +d* . (2.53)

Accordingly the internal force of the spring and the steady state residual
are:

Ent(d)z k(d)d = kconstd+d3 ’ (2.54)
R(d):Pi'nt(d)_Féta . (2.55)

Moreover, the static tangent stiffness can be calculated from:

aR )
— =k = . 2.
74 k*(d) = keonst +3d (2.56)

Following from Eqn. (2.53), Eqn. (2.54) and Eqn. (2.56), the state dependent
spring stiffness, internal force and the tangent stiffnesses of the nonlinear
spring are plotted in Fig. 2.2. Having the steady state residual and the
tangent stiffness defined, the dynamic residual and the stiffness of the
dynamic problem for a Backward Difference scheme (BDF) [48] can be
computed from:

Rg =md+cd+R(d)— Fyy , (2.57)

oRd m c
— =K, =——+—+k%(d, ), 2.58
aa K=t a tE) (2:59)
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Figure 2.2: The internal force-displacement curve for the
nonlinear spring with k¢, = 0.5 kg/s? and applied pseudo
equilibrium load F,q =0.404 N.

where m and ¢ denote the mass and the damping parameter of the prob-
lem. In addition, the dynamic residual and the effective stiffness for an
initially nonlinear but linear in transient regime analysis with the assumed
structural stiffness at the pseudo equilibrium point is obtained as:

Rg =md+cd+k*(d,q)d— Fyyn , (2.59)

ORY m ¢

od " Arz At (dea) (2.60)
Finally, the simplest case of assuming statically nonlinear but linear in
transient regime gives the following residual and effective stiffness expres-

sions:

Ri =md+cd+k*(dsa)d — Fayn , 2.61)
JR4 m c
— =K, =+ = +k : 2.62
aa = K= ap* ay tF (da) (2.62)

The transient simulations with an initial static loading for the chosen case
parameters; time step size At =1e—3 s, mass m = 1.0 kg, damping ¢ = 0.0
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kg/s, constant stiffness kgyn = 0.5 kg/s? and static loading F,, = 0.4 N,
are performed and the comparisons are presented in Fig. 2.3. The fully
nonlinear case can be considered as the numerical reference while the
remaining are the approximations of the case.
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Figure 2.3: The displacement-time series of the nonlinear
spring-mass system with the chosen parameters for varying
dynamic loading conditions.

The figure Fig. 2.3 reveals how the method performs under several dy-
namic load cases with increasing ratio with respect to the static loading. As
the dynamic load becomes less prominent, the displacement solutions of
the updated linear transient method converge to the nonlinear transient
solution, since the stiffness approximation becomes more accurate. In
case of employing the tangent stiffness of the static equilibrium point, the
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lack of accuracies in both the maximum displacement and the period of
the vibrations are clearly evident. On the other hand, when the tangent
stiffness of the pseudo equilibrium point is adopted, the period of the
vibrations is kept close to the nonlinear case while the maximum displace-
ment slightly differs from the reference case. The reason lies clearly in the
employed assumption for the constant static tangent stiffness matrix, see
Fig. 2.4. The tangent stiffness of the static equilibrium point is only valid at
the beginning of the transient phase, which neglects the varying stiffness
properties. As a result both the maximum ocurring displacements and the
vibration period is estimated incorrectly. On the other hand, adopting the
tangent stiffness matrix of the pseudo equilibrium point implies an "aver-
aged" value of the stiffness throughout the simulation resulting in a more
accurate estimation of the vibration period. However, due to the higher
tangent stiffness of the pseudo equilibrium point, the resulting displace-
ments for a corresponding loading is less than that of the fully nonlinear
case. In a general case, the latter can either overestimate or underesti-
mate the maximum or minimum displacements, since the stiffening or
softening behaviour depends on the design of the structure. In Fig. 2.4(b)
and Fig. 2.4(d), one can clearly observe that the displacements follow the
chosen tangent stiffness direction after the initial nonlinear static analysis.
In addition, the performance of the updated modal analysis method can
be discussed. The reference equilibrium point d,; can be chosen either as
the static equilibrium d,,, or the pseudo equilibrium aeq which is defined
by the load case in Eqn. (2.28a). As a reference, one can apply Discrete
Fourier Transformation (DFT) to the displacement series of the nonlinear
transient analysis. The displacement solution is generated by computing
the transient response of the system using the nonlinear BDF scheme. The
comparisons of the modal and the DFT analyses for various load cases are
presented in Table 2.1.

The resultsin Table 2.1 reveal that the measured eigenfrequencies of forced
vibrations differ depending on the load case in the transient regime and
assuming that the vibrations occur around the static equilibrium point is
not enough while the transient loading might become more prominent
compared to the static loading. The proposed method allows the adjust-
ment of the stiffness properties depending on the transient load case. This
facilitates the accurate computation of the frequencies under forced vi-
brations. This is in particular important in the design phase of structures
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Figure 2.4: The internal force-displacement curves of the
nonlinear spring-mass system for varying dynamic loading
conditions. The curves are restricted to the maximum
displacements that occur during each respective simulation.
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Impulse | Fyyn=1e—2xFyy | Fgyn=1e—1x Fy,
DFT NIn BDF 0.1821 0.1827 0.1887
fiin 0.1125 0.1125 0.1125
Jupd(dsta) 0.1821 0.1821 0.1821
fupd(deq) 0.1821 0.1827 0.1885

Table 2.1: The comparison of the computed eigenfrequencies.

which operate under known loading conditions. In case a structure is de-
signed to operate in tight limit conditions, its frequency response under
the operational loads is crucial. Moreover, if the measurements on the
real-world structures are to be used as a reference to validate the quality of
the built FEM models, the proposed method facilitates ensuring the higher
accuracy of the numerical computations compared to the conventional
modal analysis.

2.4.2 Steel Rod

In order to verify the assumptions and the eigenfrequency computation
methods introduced in Sec. 2.1.6 and Sec. 2.1.7, a simple beam model with
a circular cross section is chosen. A numerical reference case is prepared
using a Newmark time integration scheme for geometrically nonlinear
structures. The results of the transient analysis for geometrically linear
structures, effects of the initial nonlinearity on the almost linear deforma-
tions in the transient regime as well as conventional and updated eigen-
frequency analyses are compared against the numerical reference case.
The accuracy comparison of the transient simulations are achieved by
tracking the tip displacements of the beam. The tip displacements are
then analysed for their eigenfrequency content using DFT. The computed
eigenfrequencies from the applied DFT on the results of the nonlinear
Newmark time integration scheme also form the reference values for the
comparisons to be made.

The beam model considered in this section is a steel rod with a circular
cross section. The length of the rod is 1 m and the diameter is chosen to be
10 cm. The FE-Modeling of the structure is achieved by 10 beam elements
based on the Timoschenko beam theory that follows the implementation
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2.4 Results and Discussion on the Dynamic Analysis

with respect to [22], [49], [50]. The material and element properties of the
modeling are listed in Table 2.2. The shear correction factor is computed
following the literature [51]. The static loading on the structure of inter-

Parameter Value [Units]
E 2e+11  [N/m?]
v 0.26 [-]
P 7800.0 [kg/m?]

A | 7.853981634e—3 [m?]

Iy, I, | 4.908738521e—6  [m?]

Ky, Kz 1.11  [-]

Table 2.2: The material and element parameters for the
FE-Modeling.

est is an axial compressive loading of 1 MN at the tip. The conventional
and the updated eigenfrequency analyses of the structure under the men-
tioned load case yield the presented eigenfrequencies in Table 2.3. The
eigenmodes and the differences of regular and updated eigenmodes of the
structure are presented in Fig. 2.5 and Fig. 2.6 respectively.

Ei d Eigenf . Updated
igenmode igenfrequencies, f Eigenfrequencies, f*
1% Bending 7.045266€ + 1 5.505889¢ + 1

27d Bending 4.277413e+2 4.242713e+2

3rd Bending 1.142314e+3 1.201759e+3

Table 2.3: The computed eigenfrequencies.

The free vibrations under the given prestressing condition can be inves-
tigated by applying an impulse load on the structure and performing a
transient analysis. In order to capture the pronounced eigenfrequencies in
the transient analysis, one can choose the time step such that the period of
the highest interested eigenfrequency is sufficiently resolved. In this case,
the time step size is chosen such that first three bending modes are repre-
sented correctly. The chosen time step size for the transient simulations is
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Figure 2.5: Computed eigenmodes. Each eigenmode is
normalized by its norm.

At =1e—5 s and the simulation is run for 1 second. The displacement plots
can be observed in Fig. 2.7(a). The effect of the constant axial loading on
the structure is evident. The axial compressive loading causes a softening
of the structure and reduces the first eigenfrequency and extends the corre-
sponding period. In addition to this, it can be observed that the maximum
displacements are also increased. This effect would be particularly critical
in case of a fatigue analysis of the structure, since both the resulting maxi-
mum and minimum stresses and the number of stressing cycles in a given
interval are modified. In this distinct load case, the impulse loading does
not cause geometrically nonlinear deformations of the structure. Thus,
the nonlinear Newmark and linear Newmark schemes yield coincident
results. On the other hand, when the initial nonlinearity of the structure is
neglected, the error in the displacements grow over time. See Fig. 2.7(b).

The numerical verification of the updated eigenfrequency analysis can be
achieved through the DFT application on the tip displacements of different
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Figure 2.6: Differences in computed eigenmodes.

analyses. It can well be observed that the eigenfrequency content of the
initially geometrically nonlinear but geometrically linear in the transient
analysis matches exactly with the one of the nonlinear Newmark scheme.
Moreover, it is also verified that the updated eigenfrequency analysis com-
plies with these results in all of the considered eigenfrequencies. Con-
versely, while the eigenfrequencies of the linear Newmark scheme follows
the conventional eigenfrequency analysis, the discrepancy and the shift
with respect to the updated one are clearly visible in all of the investigated
eigenfrequencies.

In addition to the free vibrations, the forced vibrations of the model are in-
vestigated. Unlike the impulse load in the free vibration study, a horizontal
load with a magnitude of 100000\ starting from ¢ = 0.00002s is applied at
the tip and kept constant until the end of the simulation. Three different
transient simulations with the same procedures as the free vibration case
are run for 1 second real time. Time step size is chosen according to the
eigenfrequency analysis as At = 1e—5s. The occurring displacements and
the errors in displacements with respect to the nonlinear Newmark scheme
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are plotted in Fig. 2.9(a) and Fig. 2.9(b) respectively. The first glance on
the displacement plots reveals the importance of the initial geometrically
nonlinear simulation. Even if the nonlinearity in the transient regime is
neglected, the simulation yields complying results with a fully nonlinear
transient simulation. This is mainly due to the prominence of the static
loading’s effects on the structural stiffness. The linearity assumption in-
troduced in the transient regime does not impair the quality of the results
compared to a fully nonlinear transient analysis even though the maxi-
mum horizontal displacements reach approximately 11.5% of the beam
length. In contrast, fully linear analysis yield maximum horizontal dis-
placements of approximately 6.5% of the beam length and is much lower
than that of the reference analysis case. In addition to that, the frequency
content of the response to a forced vibration are also investigated. It can
well be observed that the DFT analysis of the occurring displacements
yield the same eigenfrequencies as the free vibration case and the adopted
eigenfrequency analysis method, see also Fig. 2.8 and Fig. 2.10.

The accuracy in the displacements-time series and the matching frequency
content of the forced vibrations pave the way for the use of the updated
eigenmodes in other analysis methods; such as modal transient analysis
and fatigue hot-spot detection.
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Figure 2.7: The comparison of the computed beam tip
displacements for impulse loading.
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2.4.3 Hybrid (Steel-Concrete) Wind Turbine Tower (Project
Mistralwind)

The supporting structures of the wind turbines are designed and built
for an intended lifetime of 20 years. In the near future, a vast number of
the firstly built wind turbine towers are going to come to the end of their
designed lifespan but the actual remaining lifetime is ambiguous since
the assumptions stemming from the design considerations might not be
accurate for each particular wind turbine supporting structure. The design
assumptions can either overestimate or underestimate the real conditions
that occur within the service life of the supporting structures. The project
Mistralwind [47] concerns with the estimation of the current state and
the remaining lifetime of the load bearing structures. In this context, the
supporting structure refers to the tower structure that is a steel-concrete
hybrid construction. Within the consortium of the project, the tasks related
to the Chair of Structural Analysis (Statik-TUM) can be summarized as the
development of a suitable FEM model of the load bearing structure, the
development and the implementation of robust simulation methods that
can be applied to large scale structures and the fatigue hot-spot detection.
In this section, the CAD and the FEM modeling of the provided hybrid
tower is firstly presented. Then the validation of the FEM model by means
of the measurement data is accomplished. The constructed model is later
on utilized for the simulation methods described previously in Sec. 2.1.

Modeling

The tower structure that is provided within the frame of the project was
designed and built by the project partner Max Bogl Wind AG. The struc-
ture consists of two tubular shafts which are made of high-performance
concrete and steel sections. A special adapter connection is used between
the concrete and the steel shafts. This part is also used as an anchor for
the external prestressing cables that are spanned between the fundament
and the adapter. The prestressing cables ensure that the concrete shaft
remains under compressive loading. The technical drawings as well as
the material properties of the tower are delivered by the owner party Max
Bogl Wind AG [52] under the non-disclosure agreement of the respective
project partners. Thus, the modeling of the tower is presented without
giving details on the dimensioning and the material properties.
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Firstly, a CAD model based on the technical drawings of the provided tower
structure is constructed. Due to the relatively thin wall thickness of the
hollow structure, shell elements based on the Reissner-Mindlin kinemat-
ics are preferred for the FEM modeling and a corresponding mid-surface
modeling for the CAD model. The CAD and FEM modelings of the reg-
ular sections of the tower are straight-forward. However, a rather more
detailed approach is necessary for the adapter piece since it both acts as a
connection part between the concrete and the steel shafts and an anchor
for the external prestressing cables. The FEM modeling of this piece us-
ing the volume elements requires a vast amount of elements, i.e. several
times the number of elements necessary for the rest of the tower struc-
ture, due to the detailed features. In order to reduce the computational
effort, a shell modeling of this piece is also favoured. Thus, the adapter
piece is modelled in such a way that the loads are transferred correctly
between the concrete and the steel shafts and the mass properties are
correctly represented. In addition, the connection between the various
components at this location are achieved by utilizing rigid body elements
(RBE). The modeling of the prestressing cables is another challenge. The
form of the cables depends on the prestressing force, the self weight and
the tower structure as they touch the concrete shaft’s inner walls. This
requires a form-finding step for the cables and a contact based modeling
which brings high nonlinearity and complexity in the solution procedures.
Instead, a simplification is made by applying the given final force acting
on the prestressing cables as a distributed load around the adapter piece.
Next, the rotor mass is attached at the tip of the tower using RBEs with the
provided mass properties. Unfortunately, the rotational inertia properties
of the turbine blades are not available and are not modelled. Finally, as
the ground material properties are not given, a fixed support is applied
at the tower root. In case the actual ground material is not as stiff as as-
sumed, this causes an increase in the computed eigenfrequencies and
errors in the computed transient response. On the other hand, on-site
observations indicated that the ground material is stiff enough to assume
a fixed support for the fundament-tower connection, refer also to [53] for
the ground material type eigenfrequency relations. Finally, the material
modeling of the concrete segments that are comprised in the concrete
shaft is achieved by the orthotropic material law due to the various volume
fractions of reinforcing steel in radial, circumferential and the tower axial
directions. Another point to be mentioned is that each concrete segment
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of the tower is split into 8 additional subsections in the circumferential
direction for further localized analysis. The CAD modeling of the tower
after the introduced assumptions is depicted in Fig. 2.11(a). Further details
in the modeling considerations can be found in the final project report of
Mistralwind-Workpackage 5 [54].

Furthermore, within the frame of the project, the structure is instrumented
with a variety of sensors that capture the dynamic characteristics. The
instrumentation of the tower and the post-processing of the collected data
are carried out by the Chair of Non-destrucrive Testing (ZfP-TUM). The
collected data is then used for the validation of the generated FEM model.
The corresponding sensor placements are depicted in Fig. 2.11(b).

3D Acceleration
Strain Gauge

3D Acceleration

3D Acceleration
Strain Gauge

(1] 3D Acceleration

X3 X3 X3 d:‘ 3D Acceleration

T Strain Gauge
- X; X, J X1

(a) The CAD modeling of the tower with the struc- (b) The sensor placement.
tural details.

Figure 2.11: The CAD modeling of the tower with the structural
details.
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Validation

First of all, the validation of the constructed FEM model is to be accom-
plished by means of the collected sensor data. The sensor data gives accu-
rate estimation of the dynamic characteristics such as eigenfrequencies.
In addition, the measurement data indicates that the dynamic part of the
displacements under the operational loads remain less than 0.025% of
the tower height, which enables the assumption that the dynamic part of
the loading does not cause significant geometric nonlinearities and the
proposed method in Sec. 2.1.7 is appropriate for the modal analysis. Thus,
a modal analysis is carried out using both the conventional linear modal
analysis and the proposed updated modal analysis methods. The results
of the considered methods and the comparison to the measurement data
listed in Table 2.4 reveal that the updated modal analysis method greatly
increases the accuracy in the eigenfrequency computation compared to
the conventional modal analysis method. The conventional modal analysis
yields eigenfrequencies with approximately 9% error in the first bending
frequency, whereas the updated modal analysis method yields eigenfre-
quencies with less than 1% error. The transient simulations of fairly long
time periods require a robust simulation method that enables accurate es-

Operational Conventional Updated
Modal Analysis [55] Modal Analysis Modal Analysis

Eigenmode | f [Hz] | Modeshape | f [Hz] | Modeshape | f* [Hz]

Fore-Aft 1 0.274 Door || 1 0.299 Door || 1 0.276

Side-Side 1 0.277 Door L1 0.299 Door L1 0.277

Fore-Aft 2a 1.063

Fore-Aft 2b 1.184 Door || 2 1.201 Door || 2 1.148
Side-Side 2 1.100 Door L2 1.207 Door 1L 2 1.154
Fore-Aft 3 3.410 Door || 3 3.565 Door || 3 3.524
Side-Side 3 3.333 Door 1L 3 3.580 Door L 3 3.540

Table 2.4: The comparison of the measured and the computed
eigenfrequencies. The directions of the bending modes are
denoted by || parallel to the door and L perpendicular to the door
direction respectively.
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timations of the stressing states. In this particular case, where the structure
consists of a vast amount of DOFs, the nonlinear transient simulations
are not favourable due to the necessary computational effort. Instead,
a modified linear transient analysis method as described in Sec. 2.1.6 is
sought.

Fatigue Hot-Spot Detection

Another task in the frame of Mistralwind is the hot-spot detection for the
following fatigue analysis that is performed by the Chair of Materials Sci-
ence and Testing (CBM-TUM). The established FEM model consists of
vast amount of elements which generate a high amount of data as a result
of the transient simulations that should be fed into the fatigue analysis.
The fatigue analysis of every individual element is in this sense both com-
putationally inefficient and requires high data storage capacity. Instead,
the critical regions for the fatigue analysis should be detected and the
corresponding elements should be analysed for the applied load cases.
Firstly, it should be noted that the transient simulations are carried out
making use of the updated linear transient analysis method described
in Sec. 2.1.6. Furthermore, since the static and the dynamic phases are
split and even though the static phase is computed by means of nonlinear
strain measures, the stress states of these can also be considered as a linear
combination of the static stresses and the additional dynamic stresses:

o(d,)=0(dy)+o(al). (2.63)
In addition, the assumption for the linear transient phase enables the
decomposition of the stresses as a linear combination of the eigenmodes.

Introducing Eqn. (2.32) in Eqn. (2.63) one arrives at the following equation
for the transient stress states:

ai. = Z a(i),tﬁ’m ) (2.64a)

o (El,s) -0 (&sm)+2a(i),t§a (8) . (2.64b)

The last term in Eqn. (2.64b) allows the investigation of the modal stress
states for the detection of the hot-spots. In addition, the prominence and
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the accuracy of the modal analysis method proposed in Sec. 2.1.7 are previ-
ously revealed. Furthermore, it is clear that the corresponding eigenmodes
are also differing from the eigenmodes related to the conventional modal
analysis. This observation is also made in Sec. 2.4.2 and in Fig. 2.6. Thus,
the modal analysis is carried out by making use of the updated modal
analysis method. In order to investigate the modal stress states, the eigen-
modes are applied as a non-zero Dirichlet condition on the FEM model
and the von Mises stresses are studied. The respective stress states of the
first, the third and the fifth bending modes are illustrated in Fig. 2.12. The
second, the forth and the sixth are excluded in the plots for brevity since
they are related to similar deformations but in a perpendicular direction.
The study of the stress states related to the prominent eigenmodes reveal

i

(a) Door]||1 (b) Door || 2 (c) Door|| 3

Figure 2.12: von Mises stresses of the concrete shaft bending
modes and the corresponding tower eigenmodes. The identified
tower sections for the fatigue analysis are indicated with the red

boxes.

the highest stress exposure positions. Thus, the concrete segments that are
related to the highest exposures are identified as fatigue hot-spots. Some
of the fatigue hot-spots and their von-Mises equivalent stress distributions
are plotted in Fig. 2.12.
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2.5 Results and Discussion on Steady State FSI Analysis

In this section, the investigations on the considered coupling methods for
FSI analysis are presented. The demonstration cases are selected in such a
way that an increasing complexity is achieved. Foremost, an analytical FSI
problem is presented where the numerical solution using the higher order
solution schemes can be applied. Subsequently, a structural problem is
considered where the loading condition resembles the fluid stresses acting
on the structural wet surface. In addition to the comprehensive examples,
a practical case is presented where the FSI of a 90° pipe is thoroughly
investigated in a comparative manner using the developed and the existing
methods. Last but not least, the FSI analysis of the CX-100 wind turbine
blade is performed.

2.5.1 Couette Flow - Spring Attached Rigid Plate in FSI

Horizontally Driven
Infinite Plate

\ e

- cen » V)

init

1 /%Ef % vee Ulboltom =0

X
) 7%
X, Sliding

Infinite Plate —

Figure 2.13: Couette flow — Spring Attached Rigid Plate FSI
problem setting for the analytical derivation.

In order to demonstrate the mentioned methods in Sec. 2.3, an analytical
FSIproblem is generated. Fig. 2.13 depicts the problem setup. The problem
consists of a horizontally sliding infinite plate with a prescribed velocity
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on top and another infinite plate at the bottom that is attached to a spring
which is constrained by a horizontally sliding support at its lower end and
a 45° inclined support at its upper end. Between the two mentioned plates
lies a Newtonian fluid at rest. The fluid flow is induced by the prescribed
velocity of the upper plate and applies a shear stress on the lower plate.

Analytical Solution

Even though analytical solutions for the interaction of Taylor-Couette
flow and shell structures exist [56], an analytical solution for the presented
FSI case is not found in the literature. Thus, the analytical solution for
the interaction of the Couette flow and the spring attached rigid plate is
derived. In the literature it is also stated that the pressure gradient vanishes
for Couette flow too, see [57]. The governing steady state Navier Stokes
equations reduce to a diffusion problem in 1D:

7/62 Do , in £2, (2.65a)
oX?

v (Binie—d) =07, (2.65b)

1, (0)=0. (2.65¢)

The solution of the above ordinary differential equation (ODE) results in a
linear velocity profile given by the following equation:

top
v X
h’init —d

In the above equations the index of the displacement variable d, is dropped
since the solution does not depend on the horizontal displacements. A
further simplification is introduced by setting the kinematic viscosity 7= 1.
The resultant tractions then can be expressed in terms of the velocity
gradient in the vertical direction:

v (X,)= (2.66)

top

P 2.67)
Pinic—d

It is assumed that the springs are implemented continuously along the
lower plate. The structural tractions that result from the distributed spring
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system is given by:
t’=—k%d. (2.68)

The posed problem is in equilibrium only if the tractions acting on the
interface are in equilibrium. The residual equation of the given system can
be written as follows:

R=t5+1! (2.69a)
Utop
=—kd+—1—=0. (2.69b)
hinit_d

Another assumption that is introduced at this point is no-overlapping and
no-penetration condition of the lower and upper plates. Assuming that the
vertical displacement of the lower plate complies with this assumption, i.e.
d < By, the problem can be rearranged to form the following polynomial:

kSd® — Kk hipyed + v,°° = 0. (2.70)

Thus, the roots of the problem are;

kS By % 4/ (k)22 — 4ks v,

d,,=
2 2ks

(2.71)
It is clear that the problem would only have a unique solution when the
following holds (k*)?h2, — 4k®v,°” = 0 with multiple roots. Furthermore,
the following is a necessary condition for sensible solutions to exist at all:
(kSYh2, > 4k vlmp. Even in this simplified problem it is easy to observe
that the FSI problems do not necessarily have unique solutions, since even
though the solved subdisciplines are linear, the post processing variables
that are coupled at the interface can depend on each other. For this partic-
ular case, the fluid problem is linear on its primary variable but the post
processing variable traction is not linearly dependent on the interface
displacement. In a general setting, the converged result would depend
on the imposed initial guess for the variable d and on the employed nu-
merical solution procedure. In this specific case, when two of the problem
parameters are fixed the third parameter can be chosen as given below
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such that a unique solution exists:

top

4v
kK =—, (2.72a)
h2,
init
kSh2,
v P =t (2.72b)
4
top
4
hinie =2 IlcS . (2.72¢)

Numerical Solution Using Newton-Raphson Method

Given the residual equation in Eqn. (2.69a), one can derive the necessary
terms for the NR solution procedure. The linearization of the residual
around a given solution d,, reads:

JR
R(d,+Ad,)=R,+ —— Ad, +HOT, (2.73)
ad d=d,
where;
top
Ry=t5+1t' =—k’d, + —1 (2.74a)
"o ne " hinit_dn ' S
OR op
Sl =k S (2.74b)
d=d, (hinit - dn)

and the computation of the state update is achieved through;

dR, -
Ad, =— R,. 2.75)
d=d,

ad
Numerical Solution Using Gaul3-Seidel Method

As explained in Sec. 2.3.1 GS fixed point iterations can also be used for
the solution of the given nonlinear problem. In this case, the solutions of
the structural and the fluid problems should be performed in a sequential
manner. As there are not any external loads other than fluid tractions
acting on the spring system, the solution procedure should start with the
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computation of the fluid loads. Thus, the following solution sequence is
adopted:

o=t (2.76a)
S
dpy =22 (2.76b)
top
U
At — (2.76¢)

i hinit - dn+1
Furthermore, one can formulate the fixed point iterations in a residual way
such that the solution procedure resembles the NR method. Following
from Eqn. (2.74);

top
S Ul
— & +V42, @2.77)
d=d, init — dn)

and the state update;

R,
ad

-1

R,
ad

Ad,=— R,. (2.78)

d=d,

Numerical Solution Using GS-IBQNLS

In order to demonstrate the performance of the least-squares family meth-
ods GS-IBQNLS is chosen. Moreover, due to the rigid lower plate assump-
tion, the geometric derivatives are exactly zero and the GS-FL-IBQNLS
method is not expected to perform better in this particular case. Following
from Sec. 2.3.3 and Eqn. (2.74), the solution procedure can be expressed
by the approximated fluid interface Jacobian replacing the exact one as
the following:

oR ot
3 d" =—k+ 3 ; , (2.79)
d=d,
and the state update;
-1
JR
Ad, =— 5 d” R, . (2.80)
d=d,
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Performance Comparisons

The investigations on the accuracy and performance comparisons of the
presented algorithms in this section are performed on two sets of problem
parameters. Keeping the conditions defined in Eqn. (2.72) in mind, one set
of chosen parameters result in a unique solution case and the other set of
case parameters pose a nonunique solution. The chosen case parameters,
the corresponding analytical solutions and the residual evolutions with
respect to the interface displacement are presented in Table 2.5, Table 2.6
and Fig. 2.14 respectively.

top
ks Rinit Uy

Unique Solution 1.0 1.0 0.25

Nonunique Solution | 1.0 1.0 0.05

Table 2.5: The unique and nonunique solution problem

parameters.
d, dy
Unique Solution 0.5 0.5
Nonunique Solution | 0.0527864045 | 0.9472135955

Table 2.6: The unique and nonunique analytical solutions.

The evolutions of the relative interface residuals as well as the relative
displacement errors for both cases are plotted in Fig. 2.15-2.16. For the
case of unique solution, it should be noted that the quadratic polynomial
exhibits one root with multiplicity of 2. Thus, the convergence rate of the
conventional NR method remains linear, see also [58]. Another aspect that
can be observed in this case is the remaining error for the GS method. This
points out the necessity for a full or an approximated Jacobian in order to
achieve firstly a convergence and secondly an accurate result at all in this
specific case.

In case of the nonunique solution parameters, it can be noted that a
quadratic convergence for the NR method can be achieved since the mul-
tiplicity of the roots are 1 and the initial guess is in the vicinity of a root. In
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Figure 2.14: Residuals vs. displacements for the unique and
nonunique solution problem parameters.

case the full Jacobian from a fluid analysis is not present, one can approxi-
mate it via GS-IBQNLS method and obtain a much better convergence rate
than the fixed-point methods in general. GS-IBQNLS uses multiple layers
of iteration history in order to compute an approximate Jacobian. On the
other hand, since there is only one DOF for the solution of the system,
use of many layers of history easily results in a singular matrix for V' V,,,
which is one of the drawbacks of the least-squares methods in general.
In this case, the iteration history is limited to the last iteration. For larger
practical cases the properties of the input modes can be analysed and the
modes that cause a singularity in the system can be eliminated, e.g. using

QR-decomposition [46].
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Figure 2.15:  Solution steps of the analytical FSI problem with
the unique solution parameters.
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2.5.2 Ring with State Dependent Loads

Router = 0.5
Rinner = 0.45

Figure 2.17: Ring case with state dependent pressure loads.

The model case depicted in Fig. 2.17 considers a state dependent loading
where not only the local loading direction depends on the surface orien-
tation but also its magnitude. Thus, the problem behaves nonlinear. The
structure is modelled by linear hexahedral elements while the boundary
conditions are applied by a simple support and a sliding support at the
respective positions as depicted in Fig. 2.17. The material is assumed to
be linear elastic isotropic, which has the parameters listed in Table 2.7.

E | 10 [MPa]

vy | 03 [-]

Table 2.7: The structural material parameters.

Finally, the discrete state dependent traction vectors at respective surface
Gaul points are defined as:

t=n-o*onrl,, (2.81)
where the state dependent stress tensor * defined as:

o*=c(d-fi)I. (2.82)
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c 1.0 [MPa]
d | [1,0,0]"

Table 2.8: The load case parameters.

Here c, d, and I denote a constant scaling factor, a constant predefined
direction and the identity tensor respectively. The parameters regarding
the loading condition are listed in Table 2.8. In Sec. 2.3.3-2.3.4 the fluid
loading acting on the wet surface of the structure is considered as an
unknown function which depends on the state. There itis assumed that this
function is either not accessible or it is too costly to compute its derivatives
with respect to the state variables. By making use of such a definition as in
Eqn. (2.82), the stress tensor varies depending on the state, of which both
the exact and the approximated LHS contributions can be computed. Thus,
it allows a performance comparison of the solution procedures ranging
from higher order methods such as NR to lower order methods such as GS.
Furthermore, the effect of the neglected and approximated terms can also
be investigated. Fig. 2.18(a) and Fig. 2.18(b) depict the discretization of
the structural model as well as the Neumann boundary, namely the wet
surface in an FSI setting.

Incorporating Eqn. (2.82) into Eqn. (2.40c), the contribution of the load
stiffness to the tangent stiffness matrix at each NR iteration reads:

on Jo*
load *
SN = ¢',—A'0' + ¢.,n- = ) (2.83)
(l,]) (i) ad( ) (i) ad( )
J 0,5t D1 0,1

and both terms can be computed exactly.

The convergence behaviours of the compared algorithms are illustrated
in Fig. 2.19. As expected, the NR solution outperforms the other possible
methods and exhibits quadratic convergence towards the solution. On
the other side of the spectrum lies the GS method which shows linear
convergence reducing the relative residual a level of magnitude at each
solution iteration. This case can be considered as the worst possible con-
vergence scenario if the solution converges at all since the driving part
of the problem Jacobian is neglected. Another interesting result to point
out is the effect of term exclusions from the exact LHS contributions from
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Figure 2.18: The perspective view of the ring case with state
dependent loads.

the tangent stiffness matrix or in other words inclusion of terms to the GS
method that can well be computed in an FSI scenario. In this particular
case, the structural stiffness matrix as well as the geometric definition of
the discrete model are accessible. Thus, the derivatives related to the geo-
metric quantities, e.g. the derivatives of the surface normals, with respect
to the state variables are straightforward to compute. The plot cited as
GS-FL in Fig. 2.19 shows the improvement of the convergence behaviour
compared to GS when the follower load stiffness is included in the tan-
gent stiffness matrix. The inclusion of this term improves the convergence
behaviour by an order of magnitude in the relative residual by the 3™ itera-
tion and this improvement remains approximately constant in the further
iterations. Furthermore, the comparison of the plots cited as GS-IBQNLS
and GS-FL-IBQNLS is worth mentioning. Since GS-FL-IBQNLS relates the
contribution to the current state and the stiffness contribution is partially
already available from the firstiteration on, the convergence of this method
exhibits already a better behaviour from the first iteration. As the iterations
advance, the improvement evolves to be even more visible. Even though
both methods satisfy the convergence criterion at the same iteration, it
can well be observed that GS-FL-IBQNLS results in a lower residual. Out
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of the Jacobian approximation techniques, GS-FL-IBQNLS is as expected
the best performing method among all but as a price to be paid, all the
iteration history of o* is stored for the Jacobian approximation.

G -0 GS-FL-IBQNLS < - GS-IBQNLS @--0 GS-FL
V¥ -V GS-FL-IBQNLS-Reuse > B GS-IBQNLS-Reuse #--% GS-do
AA GS 51 NR

IRl /| ol

Iterations

Figure 2.19: Relative residual convergence behaviours of the
compared algorithms.

Another aspect to discuss is the solution procedure of the linear system
of equations. All the methods compared in this section but the GS exhibit
some form of non-symmetry in the resulting tangent stiffness matrix due
to the nonsymmetric and non-conservative nature of the state dependent
load definition. Thus, they are not appropriate in the case of a sole avail-
ability of a linear solver that is suitable for sparse symmetric matrices. If a
direct solver is to be used, then the sparseness of the matrix is a favourable
feature. In Fig. 2.20 the sparsity patterns of the compared methods are
shown. At a first glance, the sparseness of the GS, GS-FL, GS-do and NR
can clearly be observed and they exhibit the most favourable structure
while the sparseness of the three latter methods only slightly differ from the
symmetric structure of the GS method. disGS-IBQNLS and GS-FL-IBQNLS
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methods can be distinguished from the other methods by their nearly fully
populated matrix structures. They cause a coupling between all the inter-
face DOFs. While these methods can be considered expensive in the sense
of solution time for the linear equation system due to their nonsymmetric
and populated structures, they demonstrate the highest improvement in
the convergence behaviour as presented in Fig. 2.19. In case of a parti-
tioned FSI setting, the computation of the fluid solution with orders of
magnitude higher number of DOFs can overshadow the computational
time necessary for a structural simulation. Thus, the increased solution
time of approximated Jacobian techniques should not be considered as
an obstructing aspect.
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(a) GS. (b) GS-FL.

(c) GS-do. (d) GS-IBQNLS.

(e) GS-FL-IBQNLS. ) NR.

Figure 2.20: Sparsity patterns for the compared methods with
improving convergence behaviour.
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2.5.3 90° Bent Pipe in FSI

In order to investigate the properties of the chosen methods, a more practi-
cal FSI case is designed. The case geometry and the parameters are chosen
such that a strongly coupled FSI problem occurs where the changes in
fluid forces due to the changing displacement states significantly affect
the convergence behaviour.

The designed case consists of a highly viscous honey-like fluid flowing
through a 90° bent pipe and the inlet conditions are chosen such that
laminar flow assumptions can be introduced, see Fig. 2.22. The bend is
chosen to be the interaction surface and it is designed as a flexible rubber-
like material which can be considered as a shell. The straight pipes are
assumed to be rigid. The case geometry and the dimensions are depicted
in Fig. 2.21 and the material properties for the fluid and the structure are
given in Table 2.9.

2m

X
.

Figure 2.21: Dimensions of the 90° bent pipe FSI case.

Fluid p=1400 [kg/m®] | u=10 [Pa-s]

Structure | v=0.0 -] E=25 [MPa]

Table 2.9: The fluid and the structural material parameters.
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Boundary Velocity Pressure
Inlet Developed laminar flow | (n-V)p=0
Outlet n-V)v=0 p=0
Wall v=0 | m-V)p=0

Table 2.10: The fluid boundary conditions.
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Figure 2.22: The prescribed velocity profile at the inlet.
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(a) The axial discretization. (b) The inlet discretization. (c) The structural domain dis-
cretization.

Figure 2.23: The CFD as well as CSM discretizations.

The boundary conditions for the fluid case are listed in Table 2.10. The
discretizations of the fluid and the structural domains are presented in
Fig. 2.23. The structural solution is carried out by FEM. In order to avoid
the possible numerical errors that can occur due to the mapping between
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Figure 2.24: Relative residual convergence behaviour of the
compared algorithms.

dissimilar grids, matching discretizations are employed at the coupling
interface. Quadrilateral shell elements based on Reissner-Mindlin kine-
matics are used for the discretization of the geometrically linear system
as seen in Fig. 2.23(c). A clamped boundary condition is applied by con-
straining the displacement and the rotational degrees of freedom at the
free-edges of the structural model. The designed case is run with a con-
vergence criterion on the relative force residual and the convergence is
reached when the defined residual reduces below 1e—3.

Fig. 2.24 presents the convergence behaviours of the methods to be in-
vestigated. As expected the GS method performs worst and exhibits poor
convergence behaviour. An interesting outcome of this comparison is the
performance of the GS method when the Aitken relaxation is adopted. It
is commonly expected that GS performs better when Aitken relaxation is
utilized. The poor performance can be related to the design of the Aitken
relaxation method since it was originally developed for the acceleration
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of a series for single variable [59]. On the contrary, in the existence of a
multi-variable interface field, the method utilizes rather their norms and
the norms of the changes in the interface values instead of the change in a
single variable. Thus, the information on the interface reduces to a single
variable which does not represent the behaviour of the system. Moreover,
the method utilizes only the interface fields of the last two and the current
iterations, restricting the use of the historical information. The improve-
ment of the method denoted by GS-FL in comparison to the GS is again
worth mentioning, in particular at the early stages of the analysis. The
effect of the follower load related load stiffness inclusion in the tangent
stiffness matrix already improves the convergence behaviour from the
first iteration and in this particular case acts similar to the GS-FL-IBQNLS
method. Since the GS-FL-IBQNLS method includes this contribution, it
can well be noted that the inclusion of the geometry related load stiffness
is highly important at the first iterations if not more than the contribution
related to the variation of the flow variables as mentioned in Sec. 2.3.4. This
can well be observed when the GS-IBQNLS and GS-FL-IBQNLS methods
are compared. As presented in Eqn. (2.50a) and Eqn. (2.52a), the approxi-
mation of the load stiffness term in GS-FL-IBQNLS is more accurate than
GS-IBQNLS, which incorporates exactly the additional term of GS-FL. Due
to the higher accuracy of the load stiffness contribution approximation
for the tangent stiffness matrix, the GS-FL-IBQNLS method exhibits better
convergence behaviour than the GS-IBQNLS method. Even though the
set residual criterion is reached at the same number of iterations for both
methods, the performance gain in the first iterations remain almost un-
changed. In addition, IQNILS and MVQN methods are also included in the
comparisons. Since the convergence criterion is defined on the force resid-
ual, these algorithms are also employed by defining the interface residual
as the output variable. It can be observed that IQNILS behaves very similar
to GS-IBQNLS, since the approximated quantities are essentially the same.
Finally, it can be concluded that the comparison of all the least-squares
based methods exhibit similar convergence characteristics once a suitable
Jacobian is built.

Another outcome of the previous comparison is the combination possibil-
ity of the existing methods. For instance, the GS-FL method exhibits similar
convergence behaviour with GS-FL-IBQNLS at the first stages of the analy-
sis. This indicates that until a suitable approximation for the derivative of
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Figure 2.25: Relative residual convergence behaviour of the
compared algorithms.

the fluid stress tensor is built, the accuracy of the load stiffness is domi-
nated by the derivative of the geometric quantities. Moreover, as discussed
in Sec. 2.3.2, the sparsity pattern of the GS-FL is advantageous compared
to the GS-IBQNLS family of methods which significantly reduces the so-
lution time of the linear equation system and the memory usage for the
system matrix. In order to exploit this, the analysis is started with the GS-FL
method and the GS-IBQNLS family of methods are switched on after a
certain number of iterations. The iteration history is stored in the same
fashion as mentioned in Sec. 2.3.4. The performances of the methods are
presented in Fig. 2.25. It can be said that regardless of when the methods
are switched on, they tend to behave similar to as if they were initiated
from the very first iteration. This implies that the method, which exhibits
the best performance, should be preferred for such a procedure.
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Figure 2.26: Relative residual convergence behaviour of the
compared algorithms.

The goal of the FSI analysis in the scope of this work is to find the equilib-
rium condition for the consequent optimization task. The advantage of the
least-squares family of methods are already revealed in the previous show-
cases and comparisons. This gives the motivation to reuse the information
from previous FSI analyses in the consequent optimization iterations and
build a reduced order model that can improve the convergence behaviour
of the FSI analyses in each optimization iteration. In order to facilitate
the iteration histories in the coming optimization iterations, a suitable
storage scheme should be used. The relativity information would be lost,
when only difference of the states are stored. Instead, the values at the
given states should be stored to keep the relativity information available.
For instance, instead of the nodal displacements, the nodal coordinates
at each FSI and optimization iteration are stored. Correspondingly, the
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forces for the GS-IBQNLS and the stress tensor components for the GS-FL-
IBQNLS are also stored at the respective states. As a demonstration case,
an optimization problem is considered where the radius of the flexible
bend is chosen as the design variable. Two shape update cases are chosen
as -1 mm and -5 mm for this purpose. The performed FSI analyses are
presented in Fig. 2.26. It can be observed that the convergence charac-
teristics of the problem are similar before and after the shape updates
are performed, if the iteration history is not utilized. On the other hand,
when the historical information is reused in the new FSI analysis of the
updated design, a substantial improvement in the convergence behaviour
can be observed. By introducing a shape update and modifying the prob-
lem, the possible displacement states are also modified due to the altered
stiffness properties and initial guesses. Thus, the performance of the al-
gorithms deteriorates as the shape updates become larger in magnitude.
Even though the possible states to occur in the new problems are different,
the improvement in the convergence behaviour can be observed, since
the previously occurred states are still reasonable and can be related to
the updated problem.
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2.5.4 CX-100 Wind Turbine Blade in FSI

In this section, the steady state FSI analysis of the CX-100 horizontal axis
wind turbine (HAWT) blade is presented. The goal of this case setup is
essentially to accomplish the shape optimization of the blade structure at
the equilibrium state between the interacting fluid and structure domains.
Thus, an initial steady state FSI analysis is performed such that the con-
secutive optimization routines can be applied. In the following sections,
the modeling, the discretization of the fluid and the structural domains as
well as the accomplished FSI analysis are discussed.

Modeling

As a start, the CAD model of the blade wet surface is available in the supple-
mentary files of the meshing software Pointwise®’s webinar'. The defined
interaction surface of the original CAD model is illustrated in Fig. 2.27. The
generated hybrid mesh by following the webinar consists of 7.5 million
hexahedral and tetrahedral cells. In addition to the discretization of the
fluid domain, the defined rotating zone and the applied boundary condi-
tions are depicted in Fig. 2.28, whereas Fig. 2.29 depicts the discretization
of the fluid interaction surface, see also Table 2.11 for the applied boundary
conditions at the respective boundaries.

Boundary Velocity Pressure
Blade Noslip | (n-V)p=0
Inlet rn=10m/s | (n-V)p=0
Outlet (n-V)v=0 p=0
Farfield n-V)v=0 | (n-V)p=0
Sides Cyclic Cyclic

Table 2.11: The boundary conditions of the fluid domain.

! Hybrid Meshing for a Horizontal Axis Wind Turbine http: //www.pointwise.com/
webcasts/2011-12/Hybrid-Meshing-Horizontal-Axis-Wind-Turbine.html
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i e SN

(a) HP side.

(b) LP side.

Figure 2.27: The original CAD model of the CX-100 blade wet
surface.

Farfield Outlet

: \ Sides 15R ‘
R=9m /
) 5.5R 7 @=15rad/s
(a) The fluid domain. (b) The CX-100 blade and the rotating zone.

Figure 2.28: The fluid domain dimensions and the placement of
the CX-100 blade.

(a) HP side.

(b) LP side.

Figure 2.29: The FVM boundary discretization of the CX-100
fluid FSI interface.
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However, since the provided CAD model is meant to represent the fluid do-
main boundary, this model consists of the blade skin and the hub only. In
addition to the blade skin, the structural stiffness of the blade is increased
by a spar that runs along its length. Thus, a spar geometry is added to the
existing CAD model which forms also the master model for the optimiza-
tion tasks in Sec. 3.4.3, see Fig. 2.30 for the implemented spar position. It
should be noted that even though there exists a number of literature on
the design and the production of the CX-100 blade, the exact dimensions
are either not available or the retrieved CAD model does not match the
provided dimensions, see also [60], [61], [62]. Thus, the constructed model
can be regarded as an approximate model which serves the demonstra-
tion purposes within this work. In addition to the implemented spar, the
material zones for the definition of the composite material layers are nec-
essary. In order to achieve this, the CAD model is split into a number of
zones -namely patches. The structural discretization is achieved by approx-
imately 11200 bilinear quadrilateral and linear triangular finite elements.
Due to the thin structure of the blade and the utilized bilinear and linear
discretizations of the structural domain, the shell elements based on the
Reissner-Mindlin kinematics are utilized for the FEM modeling. The mate-
rial behaviour is modeled by making use of the orthotropic material law
which also incorporates multiple layers. The used material properties and
the laminate stacking of the respective zones are listed in Table 2.12 and
Table 2.13 respectively. The defined material zones and the correspond-
ing structural FEM discretization are depicted in Fig. 2.31 and Fig. 2.32
respectively. Finally, the Dirichlet constraints are applied at the DOFs that
lie at the free edge of the blade root.
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(a) HP side.

—
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(b) LPside.

Figure 2.30: The master CAD model of the CX-100 blade with
the implemented spar (red).

(a) HP side.

-“,—;%

(b) LP side.

Figure 2.31: The modified CAD model of the CX-100 blade for

the structural modeling. The root (green), the spar cap (orange),

the HP/LP (grey) and the root-blade transition (blue) are colored
for distinction.

(a) HP side.

(b) LP side.

Figure 2.32: The FEM discretization of the CX-100 structural FSI
interface.
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# | Materials E, [GPa] | E;[GPa] | Gy [GPa] v
1 Gel Coat 3.44 3.44 1.38 0.3
2 | Random Mat 7.58 7.58 4 0.3
3 | End-grain balsa 0.12 0.12 0.02 0.3
4 DBM 1708 (+ 45° fiberglass) 9.58 9.58 6.89 0.39
5 | DBM 1208 (+ 45° fiberglass) 9.58 9.58 6.89 | 0.39
6 | C520 (0 °fiberglass) 37.3 7.6 6.89 | 0.31
7 | Carbon-fiberglass triaxial fabric 84.1 8.76 4.38 | 0.21
Table 2.12: The used materials and their properties for the
material stacking of laminates [60].
7 Material Thickness 7 Material | Thickness
one Stacking [mm] one Stacking [mm]
3 6.35 1 0.13
HP skin 1 0.13 2 0.38
LP skin
Root-Blade 2 0.38 Spar cap 4 0.89
Tip 4 0.89 5 0.56
5 0.56 7 0.63
7 Material Thickness 7 Material | Thickness
one Stacking [mm] one Stacking [mm]
6 1.32
4 0.89
6 0.66
1 0.13
Root Spar 7 50
2 0.38
4 0.89
4 0.89
5 0.56

Table 2.13: The laminate material stackings of the defined
material zones. Refer to table Table 2.12 for the material
numberings. The stackings are ordered from bottom to top under

the guidance of [61], [62].




2.5 Results and Discussion on Steady State FSI Analysis

Simulation

The FE simulation of the structural domain is achieved making use of the
in-house FE software Carat++, whereas the fluid governing equations are
solved using the OpenFOAM® framework. An MRF zone is defined in a
subdomain of the fluid domain as illustrated in Fig. 2.28(b). This allows the
simulation of the rotating wind turbine blade without actually rotating the
domain itself through the defined constant angular velocity in the subdo-
main and incorporating the respective body forces in the fluid governing
equations. Furhermore, the Spalart-Allmaras turbulence model is utilized.
The load and the motion transfer between the dissimilar discretizations
are achieved by making use of the Mortar Mapping implementation in
the EMPIRE framework. The EMPIRE framework also facilitates the in-
terface variable transfer between the disciplinary solvers. The extensions
mentioned in Sec. 2.3 to the GS procedure are not possible to apply in this
case since the available matrix classes for the geometrically linear static
analysis within the software Carat++ are strictly symmetric. Thus, the
nonsymmetric nature of the load tangents are not suitable for application
in this demonstration case. Thus, as a coupling method the GS procedure
with the Aitken relaxation is employed where the initial relaxation factor is
set as; Qi = 0.5. The relaxation in this case essentially helps maintaining
the discretization quality in the fluid domain and the stability of the fluid
simulations rather than improving the convergence behaviour of the cou-
pling iterations. The FSI iterations are carried out for 4 iterations until a
relative residual on the interface displacements are reduced below 2.5e—3.
The relative residual at the iteration n is computed as follows:

(2.84)

The displacement contour plots and the comparison of the initial configu-
ration against the deformed state are illustrated in Fig. 2.33 and Fig. 2.34
respectively.

75



2 High Fidelity Simulation Methods

Displacements [m]

0.15897
0.1413

_ 0.12364
-0.10598

-0.088314
14 0.070651

- 0.052988
0.035326
0.017663
0.0

Figure 2.33: The displacement contours on HP (top) and LP
(bottom) sides.

Xo —_——

X3

Figure 2.34: The initial (grey) and the deformed (red) states.
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Chapter 3

High Fidelity Optimization
Methods

This chapter consists of the required components for establishing a CAD-
integrated optimization workflow for shape optimization tasks of struc-
tures in FSI environment. The disciplinary analysis methods are discussed
in Chp. 2. Firstly, the employed disciplinary sensitivity analysis methods
are briefly presented with the reasoning on specific choices. Secondly, the
sensitivity filtering methods are discussed which is one of the main contri-
butions of this work and this chapter. A sensitivity filtering method based
on the Mortar Mapping method is introduced and its relation to the Vertex
Morphing method is revealed in Sec. 3.2.2. The proposed sensitivity filter-
ing method is then used for the integration of the CAD geometries into the
surface driven shape optimization workflows, which makes the method
favourable without impairing the quality of the optimization results, see
Sec. 3.2.3-3.2.4 for details. Finally, the results with the combination of the
existing, the implemented and the developed methods are presented with
the provided discussions on particular aspects.
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3 High Fidelity Optimization Methods

3.1 Sensitivity Analysis

In this section, the utilized sensitivity analysis methods for the optimiza-
tion applications in the extent of this work are briefly presented. The opti-
mization tasks in this thesis consist of a high number of design variables
whereas the number of objective functions are relatively low. This makes
the adjoint methods fit for the sensitivity analysis phase of the optimization
procedures. The adjoint methods can be roughly categorized as discrete
and continuous adjoint sensitivity analyses which can be applied to various
disciplines, [63], [64]. Each category possesses advantages and disadvan-
tages regarding their solution methods and discretization aspects. In this
work, the semianalytic discrete sensitivity analysis for the structural objec-
tive functions and the continuous sensitivity analysis for the fluid objective
functions are favoured, see also [5], [7], [65], [66] for further reading. The
reasoning and the governing equations are presented in each respective
section. In addition, it is worth mentioning that the coupled sensitivity
analysis for FSI applications are excluded since this work concentrates on
the setup of the optimization workflow and the CAD integration rather
than the development of coupled sensitivity analysis methods. For further
reading regarding the coupled sensitivity analysis in FSI, one can refer to
[67].

3.1.1 Semianalytic Discrete Adjoint Sensitivity Analysis for
Structures

In this work, the structural governing equations, which are necessary for the
optimization tasks, are solved using the FEM by utilizing the in-house struc-
tural analysis tool Carat++. Moreover, due to the linear Green-Lagrange
strains assumption, the structural discrete equation system is linear. Since
the governing equations are solved using FEM, the use of the discrete ad-
joint sensitivity analysis is favourable due to the availability of the stiffness
matrix of the FEM model already at the analysis phase. In addition, typ-
ically the problems considered within this work form symmetric, linear
equation systems which results in the equivalence of the primal and the
adjoint equation systems. The existing implementations in Carat++ of-
fers the possibility for the computation of the sensitivity fields for certain
objective functions using the discrete adjoint method, see also [7].
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3.1 Sensitivity Analysis

The discrete adjoint sensitivity analysis acts on the discrete equation sys-
tems rather than the continuous forms of the governing equations. The
governing equations can be introduced as a constraint to the optimization
problem and the objective function J can be augmented with this con-
straint using the Lagrange multipliers -namely the adjoint variables. The
Lagrangian of the optimization problem reads:

L=T+A R, 3.1)

where the 4, and the R denote the Lagrange multipliers and the discrete
residuals of the structural governing equations as in Eqn. (2.15), which
depend on both the structural discrete state variables d and the design vari-
ables 8. The sensitivity analysis requires the derivative of the Lagrangian
with respect to the design variables:

JR OJRdd

dc _2j 2jdd j7[9R  oRdd
a8  od ds

ac _oJ  ojdd —0. 3.2
s~ 2s Taaa (3.2)

The derivatives of the state variables with respect to design variables are
costly to compute. Thus, the above equation Eqn. (3.2) can be rearranged
which gives the adjoint methodology:

dc d8J .roR [2J ,roR]|dd
= +A —+| == +A — =0. 3.3
ds 0§ s 08§ od ° od|ds 5-3)
N— ——
Adjoint Equation
System

Enforcing the Lagrange multipliers to satisfy the adjoint equation system,
which is indicated in Eqn. (3.3), leaves the computation of the sensitivi-
ties with simple partial derivatives. The adjoint equation system and the
remaining sensitivity equation are as follows:

oR", oyT
= AS=——{ , (3.4a)
ad ad

d£_3]+AT3IA{
ds os "t a8

(3.4b)

In addition, the residual term in Eqn. (3.4b) as well as its partial derivative
for the geometrically linear structural problems can be written explicitly

79



3 High Fidelity Optimization Methods

as:
R=Kd-F, (3.5)
oR 0K, OF 5.6
28 0% s ‘

In some cases, the last term related to the partial derivatives of the forces
in Eqn. (3.6) could be neglected or it effectively vanishes. It is worth men-
tioning that the methods described in Sec. 2.3.3-2.3.4 can be used to ap-
proximate this term, too. By plugging Eqn. (3.5) in Eqn. (3.4a), one obtains
the following for the adjoint equation system:

s aJ’
K'2=—>+ . 3.7)
*ad

For the case of linear structural problems, the following holds for the stiff-
ness matrix K7 = K. Thus, the use of the FEM in combination with dis-
crete adjoint sensitivity analysis is advantageous for such problems due to
the availability of the exact stiffness matrix already at the primal solution
phase.

The remaining term to be computed in Eqn. (3.4b) is the partial derivative
of the stiffness matrix. This can well be achieved using a finite differencing
scheme. The possible drawbacks and corrections for the errors in the finite
differencing method are addressed in [68]. The existing implementation
in Carat++ covers this gap. It should be noted that throughout this work a
forward differencing step is used for the computation of this term in order
to reduce the computational effort necessary for the sensitivity analysis.

3.1.2 Continuous Adjoint Sensitivity Analysis for Fluids

The fluid governing equations are solved using the FVM. Unlike the FEM
method, commonly the governing equations are solved using iterative so-
lution procedures which employ partitioned solution schemes for the fluid
state variables v and p, namely the velocities and the pressures, when the
FVM is adopted. This results in the unavailability of the system Jacobian
for the governing equations. In this case, the continuous adjoint sensitiv-
ity analysis is favourable. In the scope of this work, the adjoint equation
systems are solved using OpenFOAM® and the extensions of HELYX®.
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3.1 Sensitivity Analysis

The continuous adjoint sensitivity analysis methodology stems from en-
forcing the governing equations as a constraint to the optimization prob-
lem in a continuous sense. Thus, unlike the discrete adjoint methodology,
the constraint is enforced in an integral sense. The Lagrangian of the prob-
lem reads:

c=1+/zf-7zfdrz. (3.8)
n

In Eqn. (3.8), 4; denotes the vector of Lagrange multipliers related both
to the adjoint velocities and the adjoint pressures while R collects the
momentum and continuity equations in residual form in a vector. In a gen-
eral case where the flow is in turbulent regime, the Lagrangian should be
extended with the residual form of employed turbulence model equations
too. In the scope of this work, the variation of the turbulent viscosity with
respect to the design variables is neglected, which results in the common
frozen turbulence assumption [69].

The continuous adjoint methodology follows from applying the stationary
condition for the Lagrangian and setting its variation with respect to design
variables to zero:

dc 8] 8]dv+3]dp
ovds 0Jp ds

ds
R d oRFd
/zf ——de /zf ——pd(z

+ / Af-Rfd(dm ) 3.9)
n

ds

The last term in Eqn. (3.9) is essentially related to the variation of the vol-
ume of interest with respect to to the design variables. In an ideal case
where the primal equation systems are solved to satisfy R = 0, this term
effectively vanishes. Nevertheless, when a numerical solution procedure
is adopted, this is not always the case. The problems related to the compu-
tation of this term are indicated in [70]. The existing implementation that
is utilized in this work neglects this term since it is the common practice,
[71], [72].

The rest of the derivation follows from transferring the partial derivatives
of the governing equations onto the adjoint variables by making use of
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integration by parts and setting the terms that multiply the total derivatives
of the state variables with respect to the design variables to zero, namely
the %’ and (é—’z. Enforcing this condition results in the adjoint equation
systems for the steady state incompressible Navier-Stokes equations with
the frozen turbulence assumption. In addition, the boundary conditions
of the primal problem are applied on the resulting boundary integrals,
giving the adjoint boundary conditions for a specific set of primal boundary
conditions. The derivation of the adjoint systems are omitted here and
only the resulting equation systems are presented, see [73], [35] for the
derivations. The adjoint equation systems read:

1%
—Vlv-v—(v—vg)-Vlv—V-O'“—mxlv-i-a—‘],=0, (3.10a)
17
VA, = —] , (3.10b)
op
where the so-called adjoint stress tensor defined as:
0% =—2,1+%(Va,+VA]) (3.11)

The consequences of the continuous adjoint methodology is twofold:

1. Regardless of the discretization scheme used for the primal problem,
the adjoint equation system can be discretized using various dis-
cretization schemes, which either sustain the accuracy or increase
stability of the solution process. This is in particular beneficial when
the adjoint system is rather unstable as reported in [66].

2. The choice of the discretization scheme and/or solution procedure
for the adjoint system affects the retrieved sensitivities. In case a
suitable method is not chosen, the adjoint equation system does not
necessarily correspond to the primal problem, which might result in
slightly inaccurate sensitivity fields or not identical sensitivity fields
compared to the discrete approach, see also [5] and [64].
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3.2 Sensitivity Filtering

This section concerns with the utilization of the Mortar Mapping method as
a sensitivity filtering operator and its properties as well as its relation to the
Vertex Morphing method. In addition to that, it is going to be shown that
both methods have their advantages and they can be combined to bring
the benefits of both. The developed method facilitates the CAD integration
into the optimization workflows whose instruments are mentioned later on
in Sec. 3.3. In the scope of this thesis, the Vertex Morphing implementation
following [8], [74] are used whereas the Mortar Mapping implementations
in EMPIRE are utilized [38], [39], [40].

3.2.1 Vertex Morphing Method

For clarity and a definition of a unified notation with the Mortar Map-
ping, the Vertex Morphing method is briefly presented here following the
definitions in [8]. The shape optimization problem can be stated as follows;

msin J(0,z,u) (3.12)

s.L. R;(0,z,u)=0; i=1,...,k
gi@,zu)<0; j=1,....m

where J, R;, 8 ; are the objective function the, state equations in residual
form and the constraint functions respectively. The variables 0, z, s, u de-
note the surface coordinates, the geometry, the design control field and the
state variables. Additionally, the material coordinates @, that are attached
to the surface, are introduced. The state variables are a function of surface
coordinates, the geometry and the design control fields; u(@, z(®, s)). The
surface coordinate @(@) is defined to be a function of the material coordi-
nates. The variables z(@(0)) and s(@(8)) are also functions of the material
coordinates through the relation with the surface coordinates.

The Vertex Morphing Method defines the relation between the surface
geometry z and the design control field s in the following form:

2(0,) =/ F(0,0,,r)s(@) dr. (3.13)
L

F denotes the (forward) filter function with a center of its support at @,
and influencing the portion of the domain I3, with radius r. The choices
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of the filter function and the filter radius control the generated surface
geometry via controlling the curvature. The filter function should satisfy
the following property:

/ F(0,0y,r)dr=1. (3.14)
Lym

It should be noted that this condition rises the need for the modification
of filter functions so that the sensitivity field is not scaled or the unit in-
tegration property is ensured close to the domain edges [8]. Additionally,
the backward filter function is related to the forward filter function as:

A(0,0,r)=F(0,0,,1). (3.15)

In case the following condition holds, the filter function is said to be sym-
metric or self-adjoint:

F(0,0,,1)=F(0,,0,r)=A(0,0,7) . (3.16)

In context of the shape optimization, the increments of the shape updates
are also necessary to be defined. Similar to the Eqn. (3.13), the shape vari-
able updates are related through the filter function:

AZZ/ FAsdrl. (3.17)
Lim

In addition, making use of Eqn. (3.13), the derivative of the shape with
respect to the control field can be defined:

dz(0,)

=F|0y,0,,r1). 3.18
dS(@l) ( 0 1 r) ( )

Since the optimization is driven on the control space, the derivative of the
objective function with respect to the control field should be computed.
Using the relations defined in Eqn. (3.15) and Eqn. (3.18):

dj _ dj dz(e,)
ds T dz(@l) ds

ds dJ
= F|(@,0,r)dl = AlO,0,,r)|————dI". (3.19
/r\,M (o) ©r07) /rw, ©.017) e 4 B9
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In order to carry out numerical analysis on the defined fields, the dis-
cretizations of the defined relations are necessary. The design control field
can be discretized with the shape functions related to the design handles.
Incorporating the shape functions for discretization in Eqn. (3.13) yields:

2= /F RNy dI' = / HyNj) dI's)
VM

Ly

=B, (3.20)

where the defined transformation operator B; ;) can also be related to the
derivative of the shape with respect to the control field in combination
with Eqn. (3.18):

a5y Jn, TN dr= B, . 3.21)

)l Lym

Incorporating Eqn. (3.21) in Eqn. (3.22), it is possible to relate the deriva-
tives of the objective function with respect to design control parameters
and the derivatives of the objective function with respect to shape:

ﬁ =/ d—{g dr= ]V(j)F('i)dT] dF:B(j,i)df] . (3.22)
dsy Sy dz dg;) Ting dz; dz;
One can easily observe from Eqn. (3.22) that the parameter updates on
the control field § are mapped forward using the B operator onto the
shape field z and the sensitivity derivatives of the objective function with
respect to the control field are mapped backward using the operator B™.
The operator B is symmetric only when specific requirements are met for
the choice of the filter function [8]. Moreover, it is worth mentioning that
when the filter function is defined as a Dirac delta function, the filtering
property is cancelled and the operator B falls back to the identity matrix
I. This property is exploited for the selective use of the Vertex Morphing
Method in Sec. 3.2.4.

Shape Update Rules and the Optimality Condition

The investigation of the shape update rules and the optimality condition
follows from the Taylor series expansion of the objective function:

- 1
J=T+VsJ As+ EAsTvngé
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1
=]+VZ]TBA§+§A§TBTV§]BA§. (3.23)

Introducing the Hessian H, the derived transformation rules in Eqn. (3.23)
and the stationary condition one can derive the shape update rules:

Vs/=B'V,J+BTH,BA§=0,
Az=—BH;'B'V,J . (3.24)

In addition, introducing the step length factor @ and M = H;' yields:
Az=—aBMB'V,J . (3.25)

In the above equation, one can replace M with the identity matrix and
result in the steepest descent method, [8]. Obviously, the sensitivity field
is effected by the mapping to the control field and back with the transfor-
mation matrix B.

Moreover, following from Eqns. (3.20)-(3.22) and making use of the trans-
formations between the fields § and z:

Az=-B(B'H,'B")B"V,J
=—H;'V,J . (3.26)

The Eqn. (3.26) reveals that as long as the chosen filter function results in
an invertible B operator, the transformation of the optimization problem
to a control space does not modify the local or global optima of the original
problem.

3.2.2 The Mortar Mapping Method and Filtering Properties

In this section, the relation between the Vertex Morphing filter operator
and the mapping operator of the Mortar Mapping method is discussed.
Mortar methods can be used to enforce equality constraints or equality
of the fields on dissimilar discretizations of the same geometric entities
in a weak sense. In such a case, a transformation of a field y defined on
a surface with discretization Z can be written in terms of discretization p
using Mortar methods [39], [75].

Consider an optimization problem similar to Eqn. (3.12) and introduce an
equality constraint for the sensitivity and shape update fields defined on
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the different discretizations of Z and p:
min J(@,z,u) 3.27)
P
s.t. R;(0,z,u)=0; i=1,...,k

g (0,z,p,u)=0
gj(@)zyu)so) j:1,...,m

where the introduced constraint g is:
Xp—%,=0 on I (3.28)

In the above equation y field can be the sensitivity field as well as the
shape update field. Making use of the Lagrange multipliers approach for
this constraint, one can extend the Lagrangian with Eqn. (3.28):

Z=E+/F7v'(lp—lz) dar. (3.29)

In the above equation £ consists of the objective function, state equations
R; as constraints and the other constraints g; imposed with an appro-
priate method of choice. Enforcing the equality constraint in Eqn. (3.29)
requires the solution of the Lagrange multipliers and increases the number
of variables to solve for. Instead, the Mortar method can be employed in
order to avoid the solution of the Lagrange multipliers field. The Mortar
method stems from the shape function choice for the Lagrange multiplier
field’s discretization to coincide with one of the fields to enforce the equal-
ity condition. The chosen discretization is then called "the master field",
whereas the remainder is referred as "the slave field" [76]. For instance, if
the master field is chosen as o Eqn. (3.29) in discrete form reads:

E:£+/FXT(NENPQP—NENZ;ZZ) dar, (3.30)

where the N, and N, refer to the shape function matrices related to the
discretizations of the fields defined on z and p. Having Eqn. (3.30) and
making use of the fact that the variation of the integral term should vanish
for any discrete set of A, the discrete field Zp can be obtained as follows:
7,=CCp?, (3.31a)
=B,.7,. (3.31b)
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where the defined matrices Cpp Cp, and B, are;

_ T
cpp_/FNpr ar, (3.32a)
Cp. = FN}{NZ dr, (3.32b)
B,.=C,,Cp,. (3.320)

By doing so, one defines the transformation operator B, from 7, to 7 ,. In
the context of Mortar Mapping, mentioned operator is also called a consis-
tent mapping operator which preserves a constant field when transformed
between different discretizations and computes a weak equivalent of a
discrete field on a dissimilar discretization. Moreover, the reverse mapping
operator from 7, to 7, can be defined by choosing the discretization of
the Lagrange multipliers field to coincide with the discretization of 7, and
following the procedure in Eqns. (3.30)-(3.32), which yields the following:

7.=Bu, (3.33)

The explicit computation of the transformation matrix is a computationally
costly operation since n”°* linear equation solutions for the computation
of By, and nPOF linear equation solutions for the computation of B,
would be necessary. Instead, the so called mass matrices C,, or C,, are
factorized only once and the RHS is obtained through a relatively cheap
matrix vector multiplication every time a field is to be mapped.

Relation to the Vertex Morphing method

Having the Mortar transformation operators defined for the sensitivity
and the shape update fields, one can investigate the effect of introducing
the shape control field p as a separate discretization of the design field .
One has;

dJ dJ

Y _g L, 3.34
=P a (3.34a)
A2=B,Ap. (3.34b)
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Similar to Eqn. (3.23), one can investigate the optimality condition by using
Taylor series expansion for the objective function with respect to field p:

4 T Aa 1 A T2 N
1
=J+V.J "B, Ap+ EAf)Tvg JAp. (3.35)

Making use of the stationary condition and introducing the following
equality; M = (Hf,)_l, one has:

A2=—B,,MB,,V,J . (3.36)

The similarity between the Eqn. (3.36) and the Eqn. (3.25) is obvious. In
addition, in order to employ the steepest descent algorithm for the opti-
mization, one can adopt M = I and introduce the step length factor a:

Az=—aB,,B,,V,J . (3.37)

One can adopt the Mortar Mapping method to transfer the design vari-
ables from the design space to the design control space by mapping the
computed sensitivity field on the discrete design space Z with the mapping
operator B, perform an optimization step on the control space and map
the design update back onto the design space using the B, itself. The
mapping operations cause a change in the search direction similar to the
Vertex Morphing method. In principle, the design updates are forced to
follow a pattern that can be expressed by the discretization of the field p
and adopts the properties of this field, e.g. smoothness, curvature, etc.

The necessity and the use of this method are prominent when the design
surface is discretized dissimilarly and the discrete sensitivity fields are
computed on non-matching grids, e.g. in case of surface coupled MDO
problems where the design surface is shared by the constituting subdisci-
plines. Moreover, as discussed in the next section, this type of mapping
operations can be exploited in order to regenerate CAD models as a by-
product of optimization routines.
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3.2.3 CAD-Based Mortar Mapping Method and Embedded
Constraint Handling

The underlying parametrization of the CAD model can be utilized as a basis
for the variable transformation and as a shape control field. In this study,
the NURBS shape functions of the CAD model are favoured for their wide
applicability in CAD programs as well as in numerical computational fields
such as isogeometric analysis [77]. Moreover, unlike the finite element dis-
cretizations, where the nodal degrees of freedom can be coupled strongly,
multi-patch NURBS geometries often have non-matching discretizations
along their coupling interfaces. In practice, it is observed that this aspect
causes discontinuous control field deformations and their derivatives -
namely the rotations- across the patch interfaces since the DOF of each
individual patch would have been decoupled in the coupling matrices. The
continuity across the patch interfaces can well be enforced by introducing
them as constraints to the optimization problem in addition to the Mortar
constraint as follows:

min 71 (0,z,u) (3.38)

s.t. R;(0,z,u)=0; i=1,....m

& (0,2p,u)=0
g;'/qr(gyz;p)u)zo; j=l,...,n
8r(0,z,u)<0; k=1,...,1
The introduced constraint g},‘” enforces the continuity condition across

the interface y between the patches g and r of the CAD design control
space:

2 — 2l =0. (3.39)

This constraint can as well be enforced by making use of the Lagrange
multipliers similar to Eqn. (3.29):

L*=Z+/ Mgr (25— 277) dr . (3.40)
Y

qr

In order to incorporate the newly introduced constraints into the opti-
mization problem and simultaneously achieve transformation of the op-
timization problem to the control space one can again make use of the
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Mortar method for the DOFs related to the patch boundary deformations.
Unlike the methodology used previously by constructing the RHS by a
matrix-vector multiplication and performing only one solution step, one

would need to construct the transformation matrix by performing n? ¥

q
DOF ; :
and n.”%" solves respectively at each patch interface level, rearrange C,

and assemble the corresponding coupling contributions, see also [78] for
the assembly procedures. In order to avoid the costly operations, one can
approximate the Lagrange multipliers field as in [79]:

Nyr = a;"" (zb=27), (3.41)

which results in a quadratic penalty formulation for the patch coupling
constraints:

.«
e=te e [ (a2 ) or a2
Here only the continuity of the fields on the shape control space are con-
sidered for brevity. Similarly, one can also enforce the C! continuity across
the patch interfaces as done in [80]. Moreover, in order to avoid a mixed
formulation with both Lagrange multipliers and penalty methods, one can
similarly approximate the Lagrange multipliers field for the constraint g
It can be shown that as long as the penalty parameter is chosen accord-
ingly, i.e. ar # 0, such an approximation for the condition gOF leads to the
same formulation as in the Mortar method since it can well be consid-
ered as a norm minimization of the L?(I") space, see also [81] for the norm
minimization point of view.

Finally, the Lagrangian of the optimization problem reads;

cere @ [ (g.) (gy2.) ar

g | (o) (o —ay) o 549
y

Since a staggered solution of the optimization problem is adopted, the
variation of the integral terms can be set to zero separate from the variation
of the Lagrangian £. Herein, a staggered solution is understood as the
sensitivity analysis with respect to the discrete design z, the consecutive
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sensitivity filtering operation and finally the shape update computation.
Setting the variation of the integral terms to zero yields;

al"/r(glp_512)'(xp_lz) dr+

ayqr/ (51?{’—51;)-(13“—1;') dy=0. (3.44)

Yar

Introducing the shape function matrices for the respective discretizations
of the fields and making use of the fact that the equations should hold for
all the admissible variations, two discrete equation systems are found:

[arCpp+ay, Cl |7, =rCpat, (3.45a)
arCuf,=0arCypj, - (3.45b)

By doing so, one can express the relation between the fields 7, and z ,:

2o=Bpn,, (3.46a)
2.=Byk,- (3.46b)

From Eqn. (3.45a) it is clear that the value of the penalty parameter a can
be treated as a scaling factor for the equations and can be set to 1. The
transformation matrices can be defined as follows;

—1
BPZ:[CPPJFO%C;%’] Cpz (3.47a)
_ -1
B,;p=C, Csp- (3.47b)

It can be concluded that the quadratic penalty formulation for the domain
leads to the minimization of the norm defined on L2 ('), since the penalty
parameter o can eventually be eliminated from the system. Eqn. (3.47a)
enhances the coupling matrix with the additional constraints defined for
the patch interfaces. The advantage of such a formulation is the ease in the
application of the patch coupling constraints. Even though the quadratic
penalty formulation for optimization problems leads to a violation of the
constraints by definition [68], the CAD geometries are in practice rarely
water tight along coupled patch boundaries and with the correct selec-
tion of the penalty factors, the constraint violation does not exceed the
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desired tolerance. Moreover, a linear penalty approach results the con-
straint violation related contribution to appear on the RHS of Eqn. (3.45a).
This necessitates an iterative solution procedure which is not desirable. In
addition, [81] defines a method for an automatic selection of the penalty
parameters for both the field itself and its derivative, which is also the
existing implementation in EMPIRE.

Having the definitions in this section, one can extend the formulation for
the application of the geometric equality constraints. In addition to the
patch coupling constraints, one can define equality constraints for both a
portion of the domain boundary y, and a portion of the domain I';. The
Lagrangian in this case reads:

£=]+%/F(ZP_ZZ)'(ZP_ZZ) dr

g /r (25 =2y ) (2’ =) ar
.

Yq Y, Y, Fq T, I,
+ — x q.x qd‘}f-}— / Z q-qu dl . (3.48)
Yq 117

Applying the same procedure as in Eqns. (3.44)-(3.47), one obtains the
following transformation matrices:

Yar v r, T
B}, =[Cpp+aty,, Cly +a5 Cli+as, Cib| - Cp, (3.492)
_ -1
B,,=C.'C,. (3.49b)

Eqn. (3.49a) defines an enhanced transformation matrix BY, fromg,t0 %,
which not only acts as a sensitivity filter but also embeds the equality con-
straints of the optimization problem to the filtering operator. The shape
update rules and the optimality condition which are discussed for the
Mortar Mapping method in Sec. 3.2.2 still hold since the methodology for
the shape update computation does not differ from the one of the general
Mortar Mapping method. It is important to note that neither patch cou-
pling conditions nor the equality constraints of the optimization problem
need to be applied on the design field, since they are already considered
in the control field. Thus, the shape updates follow the constrained shape
control field.
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Definition of the filtering operator in such a manner paves the way for two
possible uses:

1. One can apply the mapping operators individually by firstly mapping
the design field sensitivities onto the shape control field sensitivities
and have the possibility to drive the optimization process directly
on the CAD model. Then, the forward mapping operator is used
for updating the discrete numerical analysis model. This ensures
the conformity of the CAD model and the discrete numerical model
by the instantaneous updates of the CAD surface throughout the
optimization process.

2. Alternatively, the mapping operators can be used consecutively to
retrieve the filtered sensitivity field and the optimization can be
driven on the discrete numerical model.

3.2.4 Combined Use of Vertex Morphing and Mortar Mapping
Methods

Generating the CAD model of the optimized shape is of high interest in
engineering applications. In order to achieve this, one needs to generate
the connection between the desired shape updates and the underlying
CAD description of the model. This need can be satisfied by making use of
the defined Mortar operators. On the other hand, driving the optimization
on an a priori defined CAD description restricts the design space since
the design handles allow only certain type of deformations and causes a
filtering effect as mentioned in Sec. 3.2.3 which might not be desirable
for exploring the design space. In order to overcome this problem and
simultaneously generate the CAD model, one can adopt both filtering
techniques for node based optimization and the methods for tying the
discrete model to the CAD model.

The Vertex Morphing method and the Mortar Mapping method with the
embedded constraint handling operators are previously defined. One can
fuse the advantages of both methods into a combined operator by a cor-
responding choice of a filter function for the Vertex Morphing method,
appropriate discretization for the CAD model and mentioned penalty pa-
rameters for the Mortar Mapping method. Since the NURBS shape func-
tions are assumed for the discretization of the surface, one can introduce
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an adjustable or in this context adequately fine discretization of the CAD
model such that it can represent the occurring shape updates.

Following from Eqn. (3.25) that defines the shape update rule for the Ver-
tex Morphing method, one can introduce a selection of choices for the
operator M. For instance, introducing M = B~} BZPB;ZB one obtains the
following:

Az=—aBMB'V,J
_ -1 T
=-aBB™'B,,B},BB'V,J
T
=-aB,,B} BB'V,J. (3.50)

Above equation performs the backward and forward filtering of the sen-
sitivity field with the Vertex Morphing method and computes an initial
design update. The computed design update is mapped onto the CAD
description of the underlying geometry and updates the CAD model. If
any equality constraints are defined, they can be enforced through the
mapping operation onto the CAD geometry. In order to ensure the updates
of the CAD model and the simulation model, the CAD shape updates are
mapped back onto the discrete numerical model.

This type of formulation has the advantage of selectively applying the node
based sensitivity filtering and updating the CAD model simultaneously. If
the filter function for the Vertex Morphing method is chosen as Dirac delta
function, the operator B results in an identity matrix I as mentioned in
Sec. 3.2.1 and the filtering property cancels out. Nevertheless, the filtering
effect of the underlying CAD model remains. In case the penalty parameter
for the Mortar method is chosen as o =0, then the updating of the CAD
model as well as its filtering properties cancel out. The same holds for
the geometric equality constraints of the optimization problem. When
the penalty parameter for the Mortar method is chosen as ¢y =1 and the
penalty parameters for the constraints are chosen af,, =0, then the Vertex
Morphing filtering and the CAD updates are held while the application
of the geometric constraints are cancelled out. See Table 3.1 for different
variants and the resulting shape update rule.
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Vertex CAD Geometrical Shape Update
Morphing Update Constraint Rule

F#6 ar=0 a;qzo A2=—aBB'V,]

F=6 ar=1 a5 #0 Az=—aB,, B} V,]

F#6 ar=1 @ =0 Az=—aB,,B,,BBTV;]

F#6 ar=1 a;ﬂéo A2=—aBZpB;ZBBTVi]

Table 3.1: Variants for using Vertex Morphing and CAD update
in a combined manner.

3.3 MDO Framework and CAD integration

The shape optimization of the structures in interaction with fluids is a
complicated task that brings many tools for simulation and optimization
together. Chp. 2 summarized the developed methods for the FSI analysis
that is necessary prior to the optimization tasks in order to obtain the equi-
librium condition. Sec. 3.1 collects the sensitivity analysis methods that
is used in the scope of this work and their advantages. Sec. 3.2 explores
explicit sensitivity filtering methods and the possibility of combined use
when the regeneration of the CAD surfaces as a by-product of the opti-
mization task is necessary. This section finally brings the explored and
developed methods together to form a MDO framework, which performs
the shape optimization of structures that are coupled in an FSI environ-
ment.

3.3.1 MDO Framework

In order to construct a framework for the optimization tasks in this work,
one needs to meet certain decisions depending on many criteria. One
of the many is the software that establishes the connection between the
various components. The in-house open-source software EMPIRE offers
a great possibility for setting up the communication patterns as well as
achieving the coupling between the disciplinary solvers. Moreover, both
the classical FEM-FEM as well as FEM-IGA Mortar Mapping implementa-
tions are available within EMPIRE which are made available as a library
during the code compilation.
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Secondly, another choice to be made is the software for the computation
of the disciplinary states. In order to achieve an FSI analysis, one needs
to couple the software that perform the structural analysis and the fluid
dynamics simulations. In the scope of this thesis, the shape optimization
tasks, which require both the computation of the state variables and the
shape sensitivities, are performed making use of Carat++. The existing im-
plementations in Carat++ contains the advantageous features mentioned
in Sec. 3.1.1. Furthermore, as mentioned in Sec. 3.1.2, the computation
of the state variables as well as the shape sensitivities that are related to
the fluid dynamics are achieved making use of the OpenFOAM® with the
developments from HELYX®. It should be once more mentioned that the
scope of this work is not the development of the coupled sensitivity analysis
but the set-up of a workflow that is flexibly bringing the available software
together and finally tying the CAD and the numerical models. Thus, the
coupled sensitivity analysis is not considered in the developments.

Having the simulation software defined, one needs to find a suitable work-
flow for the MDO tasks that bring the valuable contributions of the selected
software together in a flexible way, such that the components can be re-
placed without a significant effort. [4] discusses many architectures and
communication patterns for MDO tasks. The workflow to be established
needs to satisfy the requirements to perform an FSI analysis -or in more
general sense MDA-, sensitivity analysis on individual disciplines, apply
sensitivity filtering with the Vertex Morphing and/or Mortar Mapping
method and generate the respective CAD representation of the optimized
shapes. For this purpose Multi-Disciplinary Feasible (MDF) architecture
offers a good starting point. However, the variants of the MDF defined in
[4] do not fully satisfy the needs of the optimization task defined in the
scope of this work. Thus, a new architecture is established. The designed
architecture computes the strongly coupled response of the individual
disciplines. The significance of the design stems from the combination
of the shape sensitivities of individual disciplines. Typically, the design
of structures in FSI environment contain portions on both the coupling
interface and other structural features such as stiffeners, spars etc. Thus,
the design variables are distributed among all the portions of the struc-
tural domain. While the design of the coupling interface is affected by both
structural and fluid sensitivities, the rest of the design is only affected by
the structural sensitivity fields. In order to fuse them together, the under-
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lying CAD parametrization is chosen as a basis for the optimization. The
shape sensitivities are computed for each individual discipline giving de-
sign updates, then they are mapped onto the control points of the NURBS
description of the CAD geometry. This enables updating the design of
both disciplines and driving the optimization on the CAD parameters. As
an outcome of the considerations and choices made in this section, the
resulting optimization workflow is presented in Fig. 3.1.

0, 7—1:
Optimization

/2:170/ /3:770,.7:1/ /5:10,11/

2:
Primal = 5
[vi ] 14:m Flud [ 3 V1 Jom 5 : 1, Jomn] 6 : s
Dynamics
3:

- Primal Z o o .,

49 Structural R o
Analysis
5:
Adjoint
Analysis i

6:

7: f,df/dx Functions

Figure 3.1: The Extended Design Structure Matrix (XDSM) [41]
of the implemented MDO workflow.

3.3.2 Integration of the CAD into the MDO Framework

Integration of CAD into the optimization workflows is a crucial issue when
a product at the end of an optimization analysis is sought. Moreover, even
if sensitivity filtering and/or appropriate mesh deformation techniques
are used, the resulting numerical model might suffer from inappropri-
ate or insufficient discretizations for the simulations to be performed. In
that case a regeneration of the discrete numerical model would be nec-
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essary. Moreover, the optimized numerical models should be converted
into appropriate CAD formats to make them applicable in the production
processes. This rises the need for an updated CAD model of the resulting
discrete model. In practice, one needs to work with commercial CAD for-
mats, such as IGES, STEP, etc. , which can be exported from or imported
into CAD programs. Such commercial formats use a variety of complexity
in the shape definitions, such as circle, sphere, NURBS, B-splines, etc. , in
order to both accurately describe the designed shapes and reduce the data
size to be exported. One might need to either increase the flexibility of the
design by modifying the description of the primitive shapes to a higher
complexity so that the resulting optimized shape has a more sophisticated
shape than the original or reduce the flexibility of the resulting shape by re-
stricting the type of deformations it undergoes throughout the simulation
since it might be necessary to maintain some design features. In addition
to this, even if the given CAD data supports the necessary requirements,
it would still be necessary to introduce it to the optimization workflow
such that the connection between the discrete numerical model and the
underlying CAD data is established. In this section, the integration of the
CAD data into the optimization workflow is presented.

Processing commercial CAD formats and generating computational mod-
els require a robust CAD Kernel. OpenCASCADE offers a great opportunity
for this purpose and its community edition OCE is an open-source soft-
ware library that supports commercial CAD formats. In addition to this,
pythonOCC offers the possibility to incorporate OpenCASCADE into other
software environments in a flexible way thanks to its python interface.
It makes code handling and visualization straightforward. Thanks to the
interactive user interface of pythonOCC, this combination allows working
with commercial formats, preprocessing generic CAD geometries for opti-
mization tasks e.g. defining constraints, and visualizing the results as well
as exporting optimized CAD models.

The implemented module utilizes the capabilities of OpenCASCADE to
convert arbitrary definitions of the CAD models to trimmed multi-patch
NURBS or B-Spline descriptions since it is the followed choice of implemen-
tation for the CAD-based Mortar method that is used for the generation of
the transformation operators. After the models are converted to NURBS
or B-Spline based descriptions, they are ready to be fed into the desired
workflow. At this stage the implementation offers two possibilites:
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1. The CAD model can be fed into the EMPIRE workflow which man-
ages the connections between the different clients and also estab-
lishes the mapping operators internally.

2. The mapping operators can be generated within the layer that uti-
lizes the pythonOCC functionalities thanks to the external mapping
library which is generated during the compilation of EMPIRE.

This allows a flexible usage of the implemented software client and facili-
tates the incorporation of the CAD models into the optimization workflow
by both a graphical user interface (GUI) and a software interface that auto-
matically connects to the workflow. As a result, generation of CAD models
as a by-product of the optimization process is enabled.

3.3.3 CAD Module

The GUI is implemented in such a way that a variety of CAD formats can be
handled. The functionalities of the implemented GUI named CAD Module
are listed below:

e Import/Export: The import and export features facilitate the use of
commercial CAD formats. The current state of the implementation
supports the import and the export operations of IGES and STEP for-
mats which are widely supported by the CAD programs. In addition,
the geometries given in the newly emerging JSON format can also
be imported using this feature, see [82] for further reading on the
JSON format.

* Shape Operations:

- Sew: The input file can consist of separate shapes that are to
be put together. This command brings separate shapes into a
compound while making it possible to find out the connections
between each shape.

- Convert Shapes to NURBS: The CAD makes use of various
shape definitions. The implementation, which is available in
EMPIRE for the generation of the mapping operators, is based
on the B-Spline and NURBS definitions. Thus, the shapes are
converted to NURBS descriptions using this command.
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— Detect Free Edges: In various shape optimization tasks, parts of
the geometry’s edges are constrained due to different reasons,
e.g. production or assembly considerations. This command
creates a topology map of the sawn geometry and finds out the
free edges of the geometry.

— Detect Shared Edges: As mentioned earlier in Sec. 3.2.3, the
mapping operations for the generation of the CAD models do
not necessarily produce matching deformation fields at the
patch boundaries. In order to establish the patch continuity
conditions, the shared edges are detected using this command
making use of a topology map of the sawn geometry.

— Refinement: In some cases, the underlying CAD descriptions
consist of shapes that restrict the free form shape changes. In
such a scenario, a refinement step can be applied by modify-
ing the polynomial degrees or the knot vectors of the NURBS
geometries.

— Apply Results: The finalized optimization results can be ap-
plied to the underlying CAD description and visualized within
the implemented GUI.

e EMPIRE: The commands under this sublisting consist of the func-
tionalities that are necessary for the integration of the CAD into the
optimization workflow.

— Connect: The connection to the prepared EMPIRE workflow is
established.

— Send Shapes: The preprocessed shapes are sent over the MPI
communication functionalities of EMPIRE and consecutively
the respective data structure is constructed.

— Add Dirichlet Conditions: The applied Dirichlet conditions
are prepared by finding out the parent patches and made ready
to be sent to the EMPIRE data structure.

— Add Continuity Conditions: The applied patch continuity con-
ditions are prepared by finding out the parent patch couples
and made ready to be sent to the EMPIRE data structure.

— Send Dirichlet Conditions: The prepared list of Dirichlet con-
ditions are communicated to EMPIRE.
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102

Send Continuity Conditions: The prepared list of patch conti-

nuity conditions are communicated to EMPIRE.

— Disconnect: After the data structure within EMPIRE is set, the

client can be disconnected from EMPIRE if the further commu-

nication is unnecessary.

* Mapping: As an alternative to adding the client to the optimization
workflow and simultaneously generating CAD models, one can gen-
erate the mapping operators between the IGA and FE discretizations
of the surfaces in order to regenerate the CAD models of the opti-
mized discrete numerical models. This is achieved by the prepared
external mapping library that is generated during the compile time
of EMPIRE.

Set FE-Discretization: Imports an FE discretization of a surface
in a GiD format and generates a mesh within the data structure
of the mapping library.

Set IGA-Discretization: After the preprocessing steps are com-
pleted, the resulting NURBS shape is made ready for use within
the mapping library.

Define Dirichlet Conditions: The applied Dirichlet conditions
of the optimization problem are set using this command.

Define Coupling Conditions: The applied coupling conditions
are set in the mapping library data structure.

Generate FEM-FEM Mapper: The Mortar Mapping operators
between two previously defined FE discretizations are gener-
ated.

Generate IGA-FEM Mapper: The Mortar Mapping operators
between an IGA and an FEM discretizations of the same surface
is generated using this command.

Consistent Mapping: After the mapping operators are created,
the transfer of the fields between dissimilar discretizations can
be achieved.

Conservative Mapping: In addition to the consistent mapping

technique, the conservative mapping method can also be used
for the fields that are essentially of integrated types, e.g. force.
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3.4 Results and Discussion

This section brings the discussed simulation and optimization methods
throughout this thesis. The demonstration cases are ordered in an increas-
ing level of complexity for the comprehensive presentation of the applied
methods. Firstly, the application of the sensitivity filtering using the Mortar
Mapping method is presented. Sec. 3.4.1 demonstrates this method in a
very simple manner using a FEM-FEM Mortar Mapping method. Another
demonstration case using the Mortar Mapping method but this time with
the CAD-integrated optimization workflow is accomplished on a strain en-
ergy minimization of a 90° bent pipe structure. This example also discusses
the use of the combined Vertex Morphing and Mortar Mapping operators.
Finally, the shape optimization of the CX-100 wind turbine blade in FSI
with the implemented CAD-integrated optimization workflow is presented.
This example brings the discussed methodologies together while highlight-
ing the importance of the CAD integration into the optimization workflow.

3.4.1 Sensitivity Filtering on a Planar Domain

For a simple demonstration of the Mortar based filtering method, a planar
domain can be adopted following the example in [16]. A single artificial
sensitivity vector [0.1,0.1,0.0]” in the middle of the planar domain is used
for the presentation of the method when a steepest descent algorithm is
employed. The discretization of the design field is achieved with linear
triangular elements whereas the control field is discretized with bilinear
quadrilaterals. The coarse quadrilaterals enable the filtering property. The
discretizations of the fields and the sensitivity field are shown in Fig. 3.2(a)
and Fig. 3.2(b).

Since the shape functions that discretize the control field extend over a
number of design elements, the computed design update field on the con-
trol field affects a wide range of design elements. As a result, sensitivity
and design filtering are achieved by increasing the continuities of these
fields across the design element edges to the control field’s shape func-
tions’ continuities. In other words, the sensitivity or the design update
field defined on the C* continuous design space is projected onto the C*
continuous control space. Eventually, possible distortions of the design
mesh are also avoided.
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(b) The corresponding sensitivity field on the
control field.

(@) A hypothetical sensitivity field defined on
the design field.

Xz

‘_Xl

(c) The design update on the control field.

(d) The filtered design update on the design
field.

Figure 3.2: The sensitivity filtering operations with Mortar
Mapping method and the resulting design update field on a planar
domain. Adapted by permission from Springer Nature Customer

Service Centre GmbH: Springer Notes on Numerical Fluid
Mechanics and Multidisciplinary Design [16], (2018).
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3.4.2 CAD-Integrated Optimization of a 90° Bent Pipe

t=0.002 m A

Figure 3.3: Dimensions of the 90° bent pipe optimization case.

Investigations on the filtering properties of the proposed methods and the
combination of mentioned filtering methods in Sec. 3.2 are presented on
amodel optimization problem. The optimization case is the strain energy
minimization of a tip loaded 90° bent pipe structure. The dimensions of
the case are presented in Fig. 3.3. The initial geometry is modelled with
12 untrimmed patches using bi-quadratic B-Spline shape functions and
an element per parametric direction, see Fig. 3.4(a). The finite element
discretization is achieved using bi-linear quadrilateral shell elements that
are based on the Reissner-Mindlin kinematics. The structure is simply
supported at one of its free edges and loaded on the other as depicted
in Fig. 3.3. The loading is distributed equally at the 80 discrete nodes of
the free edge as 1 N. The shape sensitivities are computed using Carat++
and the optimization is achieved making use of the well-known steepest
descent method with a step size factor defined as follows:

a=a|v,J||.. with a=o0.0L (3.51)

The CAD modeling as well as the finite element discretization of the con-
sidered structure are depicted in Fig. 3.4.

Firstly, the filter radius’ effect for the Vertex Morphing method is inves-
tigated. The filter function is chosen to be a hat function and the opti-
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~

(a) CAD geometry. (b) FEM discretization.

Figure 3.4: The design and the discretization of the 90° bent
pipe problem.

J/ s

0 20 10 60 80 100
Iterations

Figure 3.5: The filter radius study for the Vertex Morphing
method.

mization problem is run for three different filter radii; r = 0.25, r = 0.5,
r = 1.0. The objective evolutions throughout the optimization iterations
are plotted in Fig. 3.5. It can be observed that the filter radius choice effects
the found local minimum, since the search direction is modified by the
filtering operation as discussed in [8]. As a result, more detailed shape
features can be obtained by reducing the filter radius as can be observed
in Fig. 3.6-3.8.
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Figure 3.6: Optimized shapes using Vertex Morphing method in
XY-plane view for varying filter radii after 100 optimization steps.
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Figure 3.8: Optimized shapes using Vertex Morphing method in

perspective view for varying filter radii after 100 optimization
steps.
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(a) The p-refinement study. (b) The h-refinement study.

Figure 3.9: The refinement study for the CAD-based Mortar
Method.

As a second comparison case, the sensitivity filtering is achieved making
use of the CAD-based Mortar Mapping technique. An interesting aspect
of the CAD-based Mortar Mapping technique is the polynomial order
choice for the NURBS basis functions as well as the element sizes that
are related to the knot spans. In order to reveal the effects of different
choices, p-refinement and h-refinement studies are performed. For the
elimination of the effects related to shape function spans due to the knotlo-
cations and multiplicities and since the shape functions propagate across
p+1 knots, one element per patch parametric space is chosen during the
p-refinement study. During the p-refinement study, uniform degree el-
evations in both parametric directions are applied on each patch. Patch
coupling constraints are applied for all the cases with penalty factors for dis-
placement a = le4 and for rotation a;" = le8. By doing so, the Mortar
transformatlon matrices are enhanced with the patch coupling contri-
butions through the penalty formulation. The objective evolution of the
optimization problem for the p-refinement and the h-refinement studies
are presented in Fig. 3.9. The resulting shapes of the p-refinement and
h-refinement studies are presented in Fig. 3.12-3.14 and Fig. 3.15-3.17 re-
spectively. It can well be observed that more local features can be obtained
as the NURBS geometry is refined. This effect can be related to the filter
function as well as filter radius choice of the Vertex Morphing method. In
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3.4 Results and Discussion

contrast to the distinct control over the filter function and radius choice of
the Vertex Morphing method, the behaviour of the p- and h-refinements
for the generation of the CAD-based Mortar operators are rather vague
and a direct relation can not be established. However, it can be noted that
the span of the NURBS basis functions can be controlled via their polyno-
mial degrees as well as knot vectors. The knot multiplicities can be chosen
such that the span of the basis functions are restricted to certain lengths.
In the h-refinement studyj, it is favoured that the shape function spans
are not strictly constrained and at least C! is maintained across the knot
parametric locations. In addition, it should be noted that the CP~" as well
as GP7" continuity are maintained across the knot parametric positions,
where p and m denote the polynomial degree and the knot multiplicity
respectively. The continuities across the patch interfaces are restricted to
the imposed condition, which in the current implementation correspond
to the displacement (G°) and/or the rotation (G') continuity.

I I I
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‘| ¥-¥ p29g2-u4v4a-dispRotConst |
A--A  p2g2-udv4-rotConst
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Figure 3.10: The relative objective evolutions for the
constrained optimization.

Furthermore, the effect of the embedded constraint handling for the case
of CAD-based Mortar Mapping method is investigated. As described in
Sec. 3.2.3, the geometric equality constraints such as displacement or rota-
tional restrictions on defined portions of the geometry can be embedded
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into the filtering operator. This allows the simultaneous handling of the
constraints while transferring the optimization problem to a control field
based on the control points of the NURBS geometry and filtering the design
updates. The constraints on displacements, rotations and both displace-
ments and rotations are applied on the same optimization problem with
same NURBS discretizations for the CAD-based Mortar Mapping method
and the objective evolutions are presented in Fig. 3.10. In addition, the
resulting shapes are presented in Fig. 3.18-3.20. The application of the
constraints do not only affect the generated features at the constrained
edges but also propagate into the rest of the domain as far as the influenced
basis functions extend.

A glance at the figures of the optimization results reveals two important
aspects of the method. The advantageous aspect of the method is the
generated smooth CAD geometries, see Fig. 3.14, Fig. 3.17 and Fig. 3.20.
Through the choice of the refinement level for the NURBS surface descrip-
tion one can control the resulting curvature as well as the locality of the
generated features and the resulting shape effectively represents a CAD
model. On the other hand, it can be observed that the mesh quality is
not necessarily maintained during the optimization iterations since the
implemented mapping operators do not restrict the shape updates to be
in surface normal directions. Despite the fact that the method offers the
possibility to regenerate the numerical model by remeshing, since the up-
dated CAD model is available at any point of the optimization procedure,
it is still favourable to maintain a certain mesh quality in order to avoid
remeshing which would necessitate a check on the mesh quality and the
reconstruction of the mapping operators.

As discussed in Sec. 3.2.3, one can adopt the advantageous sides of both
Vertex Morphing and the CAD-based Mortar Mapping methods. While the
Vertex Morphing method has few parameters to adjust, such as the filter
function and its effective radius, and is able to maintain a decent mesh
quality as observed in Fig. 3.6-3.8, CAD-based Mortar Mapping method
generates the CAD models at any given point of the optimization procedure.
Asrevealed in Table 3.1 the use of both methods apply a combined filtering
effect when the filtering requirements are met for each of the methods:
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1. The filter radius for the Vertex Morphing method should be large
enough such that a reasonable portion of the domain is included in
the integral of Eqn. (3.13).

2. The employed shape functions for the discretization of the Mortar
Mapping method’s master surface should span across several ele-
ments such that the contributions from those portions of the domain
are collected in the integral of Eqn. (3.29).

From above conditions, one can conclude that the sensitivity filtering can
be achieved by the Vertex Morphing method by choosing a suitable filter
function and radius while the Mortar method’s filtering effect can be can-
celled out by choosing a relatively fine discretization for the master surface
definition and, in this particular case where NURBS shape functions are
employed, the optimization problem can still be driven on the CAD-based
parameters, i.e. the control points. The advantages of this approach are
threefold:

1. The CAD representation of the discrete numerical model is always
available and can be facilitated for remeshing purposes if needed.

2. The discrete numerical model is a product of the CAD model at any
optimization iteration since the forward mapping of the shape up-
dates from the CAD model to the discrete numerical model ensures
the equality of the shape update fields.

3. Compared to the a posteriori CAD reconstruction techniques addi-
tional refinement of the CAD description is not necessary.

In order to present the combined usage of both methods, the optimiza-
tion of the presented problem is achieved for two different cases where
the Vertex Morphing method, using a hat filter function with filter radius
r =0.25 and r = 0.5 for the respective cases, and the CAD-based Mortar
Mapping method, utilizing a bi-quintic base functions and 32 elements
in each respective parametric direction, are combined. The objective evo-
lution is presented in Fig. 3.11 while the generated shapes are depicted
in Fig. 3.21-3.23. It can clearly be observed that the objective evolutions
and the generated shapes of the combined usage follows the results of the
pure Vertex Morphing method. This verifies the introduced method and
the conditions that are defined in this section for the combined usage.
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Figure 3.11: The comparison of objective evolutions for pure
Vertex Morphing method and the combination of Vertex
Morphing and CAD-based Mortar Mapping methods.
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Figure 3.12: Optimized shapes using CAD-based Mortar
Mapping method in XY-plane view for the p-refinement study.

(@ p=2,g=2,u=1,v=1. b) p=3,g=3,u=1,v=1 (© p=4,qg=4u=1v=1

Figure 3.13: Optimized shapes using CAD-based Mortar
Mapping method in perspective view for the p-refinement study.
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Figure 3.14: Optimized CAD geometries using CAD-based
Mortar Mapping method in perspective view for the p-refinement

study. 113
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(@ p=2,g=2,u=1,v=1 b) p=2,g=2,u=2,v=2. © p=2,g=2,u=4,v=4.

Figure 3.15: Optimized shapes using CAD-based Mortar
Mapping method in XY-plane view for the h-refinement study.

(@ p=2,g=2,u=1,v=1 (b) p=2,g=2,u=2,v=2. (©) p=2,9g=2,u=4,v=4.

Figure 3.16: Optimized shapes using CAD-based Mortar
Mapping method in perspective view for the h-refinement study.
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Figure 3.17: Optimized CAD geometries using CAD-based
Mortar Mapping method in perspective view for the h-refinement

114 study.
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(a) Displacement constrained. (b) Rotation constrained. (c) Displacement and rotation
constrained.

Figure 3.18: Optimized shapes using CAD-based Mortar
Mapping method in XY-plane view with geometric constraints at
free edges.

(a) Displacement constrained. (b) Rotation constrained. (c) Displacement and rotation
constrained.

Figure 3.19: Optimized shapes using CAD-based Mortar
Mapping method with geometric constraints at free edges.

@ p=2qg=2,u=4v=4, b) p=2,g=2,u=4,v=4, © p=2,g=2,u=4v=4,

displacement contstrained. rotation contstrained. displacement and rotation con-
strained.
Figure 3.20: Optimized CAD geometries using CAD-based 115

Mortar Mapping method with geometric constraints at free edges.
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(a) r=0.5. (b) r=0.25.

Figure 3.21: Optimized shapes using the combination of the
Vertex Morphing and the CAD-based Mortar Mapping methods in
XY-plane view.

(a) r=0.5. (b) r=0.25.

Figure 3.22: Optimized shapes using the combination of the
Vertex Morphing and the CAD-based Mortar Mapping methods.

(@ r=05,p=54g=5 u=32, (b) r=0.25p=54g=5u=
v=32. 32, v=32.

Figure 3.23: Optimized CAD geometries using the combination
of the Vertex Morphing and the CAD-based Mortar Mapping
116 methods.



3.4 Results and Discussion

3.4.3 CAD-Integrated MDO of CX-100 Wind Turbine Blade

The FSI analysis of the CX-100 wind turbine blade and the employed meth-
ods are presented in Sec. 2.5.4. In this section, the components of the
methods related to the optimization that are presented in this thesis are
brought together in an industrial scale optimization case.

The optimization problem considered in this section is the minimization
of the strain energy Jsz and maximization of the torque J; acting on the
rotor. The constructed objective function is a weighted sum of mentioned
objectives. The objective function can be expressed as follows:

J=asgJsg—arir. (3.52)

It should be noted that the torque maximization and the strain energy min-
imization objectives are contradicting goals since increasing torque alone
results in increasing displacements and increases the strain energy. Thus,
a careful selection of the weighting parameters are necessary to achieve
improvements in both of the objectives. Herein, out of a series of simu-
lations, the results for the following weighting parameters are presented;
asg=0.99, ar=0.01.

The disciplinary sensitivity analysis is carried out at the FSI equilibrium
state with the mentioned methods in Sec. 3.1. Consequently, the sensitiv-
ity filtering is achieved making use of the Vertex Morphing method using
a Gaussian filter function with a radius of 0.12 m on the respective dis-
cretizations of the sub-disciplines. It is noteworthy to mention that the
optimization variables are not common for the sub-disciplines and the
objective functions. The structural design variables consist of the blade
wet surface and the internal spar, whereas the fluid design variables con-
tain only the blade wet surface. Moreover, even though the blade wet skin
is defined as an optimization surface for both of the sub-disciplines and
the objective functions, their discretizations for the underlying numerical
schemes are dissimilar. In such an optimization scenario, the necessity of
utilizing the CAD model is prominent, since it acts as a superset of all the
optimization variables. The CAD model behaves as a master surface that
drives the full set of optimization variables. The maximum step size for the
shape updates is chosen as 1 mm by scaling the shape updates with the
infinity norm of the shape update vector field. Finally, the optimization
workflow is achieved as illustrated in Fig. 3.1. The optimization problem
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is run for 11 iterations until the fluid domain mesh deformation does not
allow accurate results.

The objective evolutions of the combined and the individual objectives are
presented in Fig. 3.24. It could be observed that with the correct selection
of the weighting parameters, both of the objectives can be improved. In
addition, to that Fig. 3.26 depicts the changes in the blade profiles at the
selected locations, see also Fig. 3.25 for the selected locations. The torque
is increased by both adjusting the angle of attack at the sections B, Cand D,
and by increasing the area at the section E, while the strain energy is mainly
minimized by stiffening the blade root around section A. A consequence
of employing the underlying CAD model parameters as the optimization
variables can be observed in this case. The spars are modelled by making
use of linear NURBS basis functions in the blade thickness direction. This
allows only shape updates that keep the spar straight or in other words
filters out the curved spar designs. By doing so, the blade skin can evolve
freely throughout the optimization iterations but the spar is kept straight
as a design decision and a design feature to be maintained as mentioned
in Sec. 3.3.2.
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Figure 3.24: The relative objective evolutions.
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Figure 3.25: The section (red) positions for the comparison of
the initial and the optimized shapes at optimization iteration 11.

(a) SectionA.

L

(b) Section B. (c) Section C.
(d) SectionD. (e) SectionE.

Figure 3.26: The comparison of the optimized geometry
sections (red) against the initial (black) configuration.
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4.1 Conclusions

In this thesis, high fidelity simulation methods for structural and fluid
mechanics are discussed, and consecutively, a CAD-integrated MDO work-
flow for FSI problems is realized. Regarding the high fidelity structural
analysis methods, two updated dynamic analysis methods are introduced.
Foremost, the geometrical nonlinearities and the stress stiffening effects
on the dynamic behaviour of the large scale structures due to the constant
loading are investigated. It is shown on a varying complexity of demonstra-
tion cases that these effects can be included in the dynamic phase even ifa
linear transient analysis method is adopted. The applicability of the intro-
duced dynamic analysis methods to large scale cases is verified by means
of measurement data that is collected from a hybrid (steel-concrete) wind
turbine tower. Furthermore, robust coupling methods for steady state FSI
analyses are discussed, which is a prerequisite of MDO problems that in-
corporate FSI as MDA. An implicit coupling method based on a mixture of
analytic derivatives and least-squares approximations is proposed. The
performance of the method is compared against the conventional methods
such as Gaul3-Seidel and also other popular least-squares based interface
quasi Newton methods such as IBQNLS, IQNILS and MVQN. Given that
the structural solver is available to the user, it can be concluded that the
introduced method improves the convergence properties when compared
to the considered methods within this work. The improved performance
stems from the analytical derivative inclusion in the tangent stiffness of
the FSI problem, when the problem is seen from the structural point of
view. The applicability of the method for the optimization iterations is
also investigated on a practical example. In addition, the sensitivity filter-
ing properties of the Mortar method are revealed. The use of the Mortar
method is extended to the IGA field and a sensitivity filtering method is
established, which relies on the underlying CAD model of the numerical
models. It is shown that the introduced sensitivity filtering method can
be extended to encompass the geometric equality constraints of the opti-
mization problem. The sensitivity filtering properties are demonstrated
for various discretization techniques. Last but not least, a CAD-integrated
MDO workflow is established. The realized workflow is applied on the
MDO of the CX-100 wind turbine blade. It can be once more emphasized
that the application of the Mortar operator in combination with IGA brings
benefits in MDO workflows by acting as a master surface for transferring
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the design variables to the NURBS or B-Spline control points of the CAD
model. In particular, when a partitioned scheme is employed for the solu-
tion of the FSI problem, the nonconforming nature of the shared design
surface discretizations and the discrete sensitivity fields can be overcome
by the introduced method. In addition, it is also shown on an industrial
scale showcase that by making use of the properties of the CAD model,
one can perform free-form shape optimization on part of the design sur-
face, while the remaining can be forced to follow a predefined pattern as a
design decision.
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4.2 Outlook

Regarding the robust dynamic analysis methods, one can additionally
adopt modal transient analysis and accordingly the directional derivatives
of the system matrices with respect to the chosen prominent eigenmodes
for a more accurate determination of the transient response. A similar
approach is adopted in [83]. This type of approach can also be utilized for
the construction of reduced-order models (ROM) by reducing the system
to the modal DOFs paving the way for the digital twin concept.

In addition, in the context of FSI, one can also employ adjoint method-
ologies for the computation of the exact tangent contributions that are
related to the loading conditions. For instance, [84] employs a similar ap-
proach and suggests adopting an optimization approach for the solution
of the FSI problem by defining an appropriate objective function that re-
duces the interface residual. Moreover, [85], [86] point out that the adjoint
methods can be employed for the computation of the Hessian. Given that
the function to be differentiated is of a potential type, the Hessian gives
essentially the stiffness matrix related to the defined potential. In [85], [86],
the excessive necessary computational effort is also mentioned. Still, this
method can be employed and used as a reference case for performance
comparisons for newly developed coupling algorithms when dealing with
practical FSI cases. In the frame of this work, the input and output modes
for the computation of the approximate Jacobians are computed on match-
ing discretizations or by mapping the input and output modes onto the
structural discretization. The effect of the mapping operation can also
be investigated and a general mapping rule for the matrices should be
defined. This is addressed subsequently in this section.

Moreover, the properties of the least-squares methods can be employed
in a further extent in MDO. There exist several MDO architectures which
incorporate reduced-order models [4]. It is already shown within this work
that use of iteration history can improve the accuracy of the approximated
Jacobians and reduce the computational effort. Thus, as the optimization
iterations advance, the accuracy of the approximations improve. As already
stated in [46], one can employ further methods such as QR-decomposition
or singular value decomposition for the procedures necessary for the ap-
proximation of system Jacobians. These methods should be investigated
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for their computational efficiency, accuracy and potential use not only in
FSI but also in the MDO architectures.

The incorporation of the coupled sensitivity analysis in this frame is of high
importance since the variation of the state variables are co-dependent.
Thus, the employed MDO methodology can be extended to integrate the
coupled sensitivity analysis, too.

Furthermore, the sensitivity filtering properties of the Mortar method
should be investigated for optimal discretization of the master surface or
the CAD description in this particular case. In addition, the Mortar method
can be employed for reconstructing the optimized shape’s discrete nu-
merical models. The optimal discretization necessary for describing the
discrete models should also be pointed out. For instance, one can adopt
the hierarchical methods for this purpose as in [87], [88]. Moreover, in the
context of a posteriori CAD reconstruction techniques, the collocation
methods can also be beneficial due to the simplicity in the implementa-
tion aspects. In the frame of this work, the NURBS and the B-Spline shape
functions are considered for the description of the CAD geometries. In
practice one might prefer keeping the primitive shapes such as circle, arc,
etc. since these could be the part of the design choice. Then the trans-
formation operators should be constructed in such a way that the design
handles still remain as the defining variables of these primitive shapes.

Remarks On the Computation of the Fluid Load Tangents On
Dissimilar Discretizations

In practice, when partitioned solution procedures are employed, the struc-
tural and the fluid discretizations of the FSI interface typically do not match
due to the efficiency reasons, different requirements on the mesh quality
etc. This results in a need for a transformation operation between the
dissimilar discretizations. The transformations can either be applied on
the coupling variables and the fluid load tangent can be computed using
the mapped quantities or the computed tangent stiffness matrices can
be mapped using the transformation rules for the coupling variables. In
case the transformation should be applied on the fluid load tangent that
is computed on the fluid discretization of the interface, the mentioned
operation can be performed using various methods as discussed in [39],
[76] and many others. For instance the Mortar Mapping method can be
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employed for the construction of the transformation operators, see also
Sec. 3.2.2. Given a constant transformation operator T for the motion
transfer between the dissimilar discretizations of the same interaction
surface, one can write the following:

d.=Td,, (4.1a)
Ad;,=TAd,, (4.1b)
6d;,=Téd;. . (4.1c)

Moreover, stemming from the virtual work expression in Eqn. (2.6):
AT R _ AT mT if
5deFFf —(SdFST F., 4.2)

and the derivative of the residual contribution of the above equation gives;

T’ PiAa :TTdFE TAd (4.3a)
daf = " ar '
Kfr = TTKfFfT . (4.3b)

Above equation defines a mapping operation for the computed interface
Jacobian between dissimilar discretizations. This can be in particular ben-
eficial when the mapping operator is defined not only for displacement
type of fields but which also incorporate the rotations and cordal errors
into account. In addition, the multiplication of the stiffness contribution
with the transpose of the mapping operator from the left complies with
the conservative mapping for force type of fields as described in [76].
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