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Vertical-Cavity Surface-Emitting Lasers:
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Abstract—The FM response of vertical-cavity surface-emitting
lasers (VCSELs), i.e., the dynamic wavelength tuning behavior, is
scrutinized. The FM amplitude and phase shift are measured up
to 80 MHz for GaAs-, InP-, and GaSb-based VCSELs from 763 to
2300 nm. From measurements, it is found that the FM response
consists of three components: intrinsic thermal tuning (dominat-
ing to several megahertz) with characteristic 1/

√
if behavior, the

plasma effect (dominating from several megahertz), and a small
effect (10–100 Hz) caused by the interaction of laser chip and sub-
mount. All effects are modeled and the measurement data are fitted
to obtain effective thermal diffusivities, strength of the plasma ef-
fect, and time constant of the laser chip submount interaction.
Comparing thermal models with different asymptotic behaviors,
an approximation of the heat source in the laser with a nonzero
thickness turned out to be necessary. Due to the plasma effect, with
influence starting at 100 kHz, VCSELs cannot be considered a min-
imum phase system, which makes separate amplitude and phase
measurements essential for device characterization. The “N time
constants model” is the proper choice for empirical description of
the intrinsic thermal tuning component. The best fit coefficients
to a rational frequency response are given for use in time-domain
simulation programs.

Index Terms—FM phase shift, FM response, Hilbert transform,
plasma effect, thermal time constant, thermal tuning, vertical-
cavity surface-emitting laser (VCSEL).

KNOWLEDGE of the dynamics of the laser tuning co-
efficient is important in all applications where tunable

lasers are employed. In tunable diode laser spectroscopy, the
laser is tuned to record absorption spectra and knowledge of the
wavelength response at specific current modulation of the used
tunable lasers is very important. Since the wavelength tuning is
predominantly a thermal effect and heat conduction is a “slow”
process, the wavelength response does not instantaneously fol-
low the modulation current. The small signal dynamics are fully
described by the FM response or the frequency-dependent cur-
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rent tuning coefficient. There the amplitude and phase of the
wavelength response to sinusoidal current modulation is speci-
fied versus frequency (for mathematical definition see Appendix
A). The wavelength response to arbitrary current modulation
waveforms can then be computed with a Fourier transform.

In the majority of the literature, the intrinsic thermal behav-
ior of lasers has been modeled as first-order low-pass [1]–[5].
This is, however, not in agreement with experimental data both
for vertical-cavity surface-emitting lasers (VCSELs) and DFB
lasers [6], [7]. Analytical and physical models suited for the
specific geometry of DFB lasers are given in [8, Sec. 4.7] [9].
Other work treats this issue by simply fitting a model with two
or more time constants to the experimental data [10], [11]; how-
ever, the determined parameters cannot be related to physical
quantities.

In contrast to DFB lasers, VCSELs have advantages such
as low-power consumption, on wafer testability, and low-cost
potential. Hence, these are very attractive light sources for dif-
ferent applications. In the literature, few work relates to the
dynamic tuning behavior of VCSELs. The theory in [12] is ex-
pected to be inexact at high frequencies due to the assumption
of an infinitely thin heat source and light mode. Therefore, in
this paper this model is extended to fit the FM response of dif-
ferent VCSELs in a broader frequency range. It is based on two
universal approaches and its aim is modeling for understanding
of the device behavior and computer simulation. The relevant
measurement data presented here were partly published before
in [13] and [14].

I. MEASURED FM RESPONSE AND ITS

CHARACTERISTIC COMPONENTS

In Fig. 1, measurement data for a 2.3-μm VCSEL [15], [16]
are shown. At frequencies of several megahertz, a constant tun-
ing coefficient is observed and a phase shift of −180◦ is ap-
proached. Between the cutoff starting at ∼10 kHz and this con-
stant region, a behavior 1/fn with n around 0.5 is observed in
the magnitude response (visible as slope −1/2 in the double log-
arithmic scale). At low frequencies (see the insets in Fig. 1), a
small but characteristic dip in the phase shift and a small step in
the tuning coefficient response are found. It is a small effect but
was found to be present in all examined VCSELs in this study. A
model for the FM response for VCSELs that accounts for these
three effects (summarized in Table I) is developed in the next
section.

1077-260X/$26.00 © 2011 IEEE
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Fig. 1. (a) Amplitude and (b) phase of the tuning coefficient for a 2.3-μm
VCSEL (circles). The individual additive contributions from the intrinsic ther-
mal tuning Hth (black), interaction between laser chip and submount Hch ip
(blue), and plasma effect Hpl (green) inside the laser are shown as solid lines.
(a) Tuning coefficient amplitude. (b) Tuning phase shift.

TABLE I
OVERVIEW OF THE CHARACTERISTIC COMPONENTS OBSERVED

IN VCSEL FM RESPONSES (SEE FIG. 1)

II. ANALYSIS AND MODEL OF THE FM RESPONSE

From the measurement, it can be concluded that the
frequency-dependent tuning coefficient k(f) is a superposition
of three contributions

k(f) = kthHth(f) + kplHpl(f) + kchipHchip(f) (1)

with coefficients kth , kpl , and kchip modeling contributions from
the intrinsic thermal tuning, the plasma effect, and the inter-
action between laser chip and the submount. The normalized
functions Hth(0) = Hpl(0) = Hchip(0) = 1 model the respec-
tive frequency dependence. For all examined VCSELs, typical
values are in the range kth ≈ k(0), kpl ≈ −0.02 . . . − 0.1k(0),
and kchip ≈ 0.03k(0). The 3-dB frequencies for Hth are in the
several kilohertz to 100 kHz range, for Hpl. in the 1–20 GHz
range, and for Hchip around 5–100 Hz.

A. Intrinsic Thermal Tuning

The current tuning behavior is dominantly a thermal effect
at low frequencies. It is caused by the temperature dependence
of the effective optical length (geometric length times’ effective
refractive index) of the cavity resulting in an increasing wave-
length with temperature. The dominant contribution comes from
the refractive index increase with temperature. The thermal ex-
pansion of the cavity only contributes approximately 10% of the
overall thermal wavelength tuning [17, Sec. 3.2.3].

The first-order low-pass model is unsuited for the intrin-
sic thermal model because it does not reproduce the slope of
n ≈ 0.5 above the thermal cutoff. The analytic VCSEL FM re-
sponse model [12] is better suited because it reaches an asymp-
totic slope of −1/2 (1/

√
if , “square root behavior”). Its phase

shift reaches only −45◦ that does not allow for the combined
model (thermal and plasma effect) to reach the high phase shift
that is practically observed. The model [12] is based on the as-
sumption of an infinitely thin heat source and mode distribution.
In Appendix C, it is explained that if a plane or line heat source
has a nonzero thickness h, a transition from square root behavior
(1/

√
if ) to 1/(if) behavior will occur at a frequency given by

approximately κ/(πh2) with κ being the thermal diffusivity. It
is clear that in a real device the heat source has some thickness
even if it is expected to be very thin in VCSELs. Then the mod-
eled FM response can both reproduce the slope of −1/2 after
the cutoff and an asymptotic slope of −1 with a −90◦ phase
shift. The “transition frequency” from slope −1/2 to slope −1
is adjusted by the thickness of the heat source and light mode.
The refined model is based on the following approximations.

1) The material inside the laser is homogeneous but non-
isotropic, i.e., has different thermal conductivities in r
and z directions.

2) The heat is generated in the active region with radius RQ

and is radially Gaussian distributed. Its thickness is ZQ

with Gaussian distribution also in longitudinal direction.
The heat source distribution Q(x, y, z) is given by

Q(x, y, z) =
1

(2π)3/2R2
QZQ

e
− x 2

2 R 2
Q

− y 2

2 R 2
Q

− z 2

2 Z 2
Q . (2)

3) The wavelength is determined by the average temperature
in the laser (average with respect to mode distribution).
The light mode M(x, y, z) is laterally and longitudinally
Gaussian distributed with radius RM and thickness ZM :

M(x, y, z) =
1

(2π)3/2R2
M ZM

e
− x 2

2 R 2
M

− y 2

2 R 2
M

− z 2

2 Z 2
M

.
(3)

4) The substrate, located at distance D below the active re-
gion, is kept at constant temperature

T (x, y,−D) = 0. (4)

The laser model including the approximations is illustrated
in Fig. 2. The model in [12] is then contained as a special case
with ZM = ZQ → 0. In Appendix B, it is shown that for the
solution only the combined radii or thicknesses of heat source
and light mode are relevant. The impulse response of the intrinsic
thermal tuning behavior hth(t) is proportional to the evolution
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Fig. 2. Schematic of the laser model (left) and the heat source Q and mode
distribution M inside the laser (right). Both Q and M are assumed to be
Gaussian but with different radii (RQ , RM ) and thicknesses (ZQ , ZM ). The
distance of the active region (at the coordinate origin) to the substrate (assumed
to be an ideal heatsink) is D.

of the average temperature over time in response to a temporal
heat pulse of unit strength (see Appendix B):

hth(t)∝ 1√
t + 1

2πfZ

(
t+ 1

2πfR

)
(

1−exp

(
−1/(2πfD )

t + 1
2πfz

))

(5)
with characteristic frequencies that directly relate to distances
in the laser

fR =
ηRκbulk

π(R2
Q+R2

M )
, fZ =

ηZ κbulk

π(Z2
Q+ Z2

M )
, fD =

ηD κbulk

2πD2

(6)

were ηRκbulk , ηZ κbulk , and ηD κbulk are the relevant thermal
diffusivities of the active region material in lateral direction,
longitudinal direction, and the “effective” diffusivity of the ma-
terial between active region and heat sink, respectively. Since
an average diffusivity is difficult, if not impossible, to obtain
a priori, the η values are used as fit parameters. The bulk diffu-
sivity κbulk depends on the laser material system and is given
by 0.31 cm2 /s for GaAs, 0.372 cm2 /s for InP, and 0.23 cm2 /s for
GaSb. The η values are typically much smaller than 1 because
of several effects.

1) For the ternary or quaternary material the laser contains,
the thermal conductivity (and so the diffusivity) can drop
by one to two orders of magnitude compared to the bulk
value (binary material).

2) In layered structures such as a distributed Bragg reflector
(DBR), the multitude of interfaces can cause the diffusivity
in growth direction to drop to about 30% of the bulk
value [18].

3) Uncertainties in the width or thickness of the light mode
or heat source distribution.

The FM response is given as the Fourier transform of (5):

Hth(f) ∝
∫ ∞

0

1 − exp
(
− 1/(2πfD )

t+ 1
2 π f z

)
√

t + 1
2πfZ

(
t + 1

2πfR

)e−2πif tdt. (7)

Note that the proportionality constant is chosen in such a way
that Hth(0) = 1. Note that a closed-form expression for (7) only
exists in the case fZ → ∞ (ZQ = ZM → 0) [12, eq. (8) with
f0 = fR and d =

√
fR/fD ]. Efficient numerical evaluation of

(7), where the desired frequency points are distributed over

several orders of magnitude, can be carried out in the manner
explained in Appendix D.

B. Plasma Effect

The plasma effect is the dominant effect that causes a de-
pendence of the refractive index on the carrier density in lasers
[8, Sec. 4.5]. Since the carrier density in the active region is very
high, even a small relative modulation of the carrier density will
also cause a laser wavelength modulation. Compared to thermal
tuning, the tuning by the plasma effect is broadband with cutoff
frequencies in the gigahertz range and acts inversely to thermal
tuning (phase −180◦). More precisely, the tuning coefficient
contribution caused by the plasma effect is described by the
laser rate equations. The linearized rate equations can be solved
if a spatially homogeneous laser model is assumed. According
to [5, Sec. 5.2], we get

kpl =
αH

4πe

∂G

∂S
Hpl(f) =

1 + if/fg

1 + if/fd − f 2/f 2
r

(8)

with αH the linewidth enhancement factor [19] and ∂G/∂S
the dependence of the normalized gain on photon number S.
It models the gain dependence on light intensity, which can
be caused by several physical effects [20]. The characteristic
frequencies fr (relaxation frequency), fd (damping frequency),
fg typically lie in the gigahertz range [5]. For frequencies, f <
100 MHz Hpl is essentially flat so in this paper Hpl ≡ 1 is
assumed (see Fig. 1, green curve). Note that spatial effects like
spatial hole burning in VCSELs may cause a low-frequency
roll-off that is not described by (8) [21].

C. Laser Chip-Submount Interaction

The additional small contribution at low frequencies is due to
interaction of the laser chip and the submount. This is presented
and modeled in this paper for the first time. All investigated
lasers were packaged in a commercial TO5 housing including a
thermo-electric cooler (TEC). In this setup, the laser chip was
placed on an insulating Al2O3 submount which is the reason for
the observed effect.

From measured data, it is evident that a small process is
present that accounts to 2–4% of the overall thermal tuning
and has cutoff frequencies in the 10–100 Hz range (also see
Fig. 5, blue line). This explains the additional weak step in the
tuning coefficient amplitude in Fig. 1(a) and the small peak
in the tuning phase shift in Fig. 1(b) (at f < 200 Hz). With
finite element method computer simulations that include the
laser chip and the submount, it was possible to reproduce this
effect. Simulations without the submount, where the laser chip
is placed on a constant temperature body, did not show this
effect. It can be explained as follows: when the laser current is
modulated, also the dissipated electric power is modulated. The
heat is essentially removed through the submount and so also
small temperature variations on the heatsink of the laser chip are
created. This additional thermal resistance together with the heat
capacity of the submount and the laser chip then cause this effect
to have a cutoff frequency in the 10–100 Hz range. Although the
exact physical description of this process would include many
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parameters it is a weak effect and high accuracy modeling is
not required. Therefore it is modeled by a simple first-order
low-pass with a single time constant (or cutoff frequency fchip ),
i.e.,

Hchip(f) =
1

1 + if/fchip
. (9)

III. IMPOSSIBILITY OF RECONSTRUCTION OF THE FM PHASE

FROM FM AMPLITUDE

It is well known that real and imaginary parts of the frequency
response of a causal filter are the Hilbert transform of each other.
Practically, all physical systems are, thus, fully described by
the imaginary or real part of the frequency response only and a
measurement of either will be sufficient for full characterization.
However, one may also ask if a similar relationship holds for
the amplitude and phase shift of the frequency response. This
is possible if the system fulfills additionally to causality the
minimum phase condition. Then, the Kramers–Kronig relations
hold for amplitude and phase. According to systems theory of
time discrete systems, the system

log H(f) = log A(f) + iφ(f) (10)

is causal if and only if H(f) = A(f)eiφ(f ) is a causal and
minimum phase system [22]. Thus, the log amplitude response
log A(f) and φ(f) are a Hilbert transform pair

φ(f) = − 1
π

∫ ∞

−∞

log A(ν)
f − ν

dν. (11)

For proper convergence, it is essential to use the Cauchy prin-
ciple value integral and to integrate also over the negative part
of the spectrum. Since log A(f) is symmetric for real-valued
systems, (11) is equivalent to the Kramers–Kronig relation

φ(f) = −2f

π

∫ ∞

0

log A(ν)
f 2 − ν2 dν. (12)

From (11), it follows that a minimum phase system with asymp-
totic slopes of 0, −1/2, and −1 in a double logarithmic plot of
A(f) has asymptotic phase shifts of 0◦, −45◦, −90◦, respec-
tively. A slope of −n corresponds to A(f) → 1/fn behavior
for f → ∞.

The minimum phase reconstruction for the measurement of
the 2.3 μm VCSEL was computed using the method described
in Appendix D and is shown in Fig. 3. An excellent agree-
ment between measured phase and reconstructed phase at low
frequencies is observed, which indicates that the thermal tun-
ing component alone (which is dominating at low frequencies)
is a minimum phase system. Deviations start at f > 100 kHz
and show that the presence of the plasma effect (which domi-
nates at high frequencies) causes the laser tuning behavior to be
a nonminimum phase system. In a minimum phase system, the
observed constant tuning coefficient at several megahertz should
cause an associated 0◦ phase shift, which is different from the
observed −180◦ phase shift. This can also be seen in Fig. 1(b)
where the phase shift of the intrinsic thermal component Hth
starts to deviate at around 100 kHz from the measurement. Re-
markably, the influence of the plasma effect is stronger in the FM

Fig. 3. Measured tuning coefficient amplitude (circles, top) and tuning phase
shift (circles, bottom) for an InP-based 2.3-μm VCSEL as well as the min-
imum phase reconstruction from amplitude using the Hilbert transform (11)
(solid line, bottom). The agreement for low frequencies is excellent, proving the
consistency between amplitude and phase measurement. At higher frequencies
(f > 100 kHz) deviations are observed due to the stronger influence of the
plasma effect, which essentially destroys the minimum phase property of the
tuning behavior.

TABLE II
INVESTIGATED VCSELS AND THEIR CHARACTERISTIC PARAMETERS

phase shift because there deviations are more pronounced than
in the amplitude response. The fact that the laser tuning behav-
ior is no minimum phase system shows that both tuning phase
shift and amplitude measurements are required for proper de-
vice characterization and correct prediction of the wavelength
response for arbitrary current modulation waveforms. For the
other investigated VCSELs, a very similar behavior is obtained:
the plasma-effect influences the FM phase shift also starting at
around 100 kHz.

IV. MEASUREMENT AND FIT RESULTS

All measured devices are single-mode and continuous-wave
laser devices, which were placed on a ceramic submount on
top of a TEC for temperature stabilization. Operation tempera-
ture was slightly above room temperature. An overview of the
devices and their characteristic parameters is given in Table II.
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Fig. 4. (a) Absolute value and (b) phase of the tuning coefficient k(f ) versus frequency for measurement (markers) and fit to theoretical model (1) with (7) (solid
lines).

Fig. 5. Zoom of Fig. 4 at low frequencies, showing: (a) absolute value and (b) phase of the tuning coefficient k(f ) versus frequency for measurement (markers)
and fit to theoretical model (solid lines). The difference between model behavior without Hch ip (dashed lines) and measurement indicates the effect of the laser
submount interaction.

TABLE III
FITTED MODEL PARAMETERS FOR THE BEST FIT TO MEASUREMENT AS SHOWN IN FIGS. 4 AND 5

Except the data for the GaSb-based laser, the measurements
were published before [13], [14]. The measurements including
the least-squares curve fit to the model (1) is shown in Fig. 4
with a zoom for low frequencies shown in Fig. 5.At the lower
end of the frequency scale (see Fig. 5), the effect due to the inter-
action between submount and laser chip is clearly visible. This
effect is present in all investigated VCSELs but with different
cutoff frequencies in the range of 5 Hz (GaSb-based VCSEL) to
100 Hz (GaAs-based VCSEL) and different relative strength to
the overall tuning coefficient, which is attributed to the differ-

ent sizes and thicknesses of the VCSEL chips mounted on the
submount.

The determined model parameters are summarized in
Table III. The η values give the normalized “effective” thermal
diffusivity in the laser to reproduce the measurements together
with the parameters given in Table II. Low ηR values are caused
by a low thermal diffusivity in radial direction in the active re-
gion or a larger heat source or mode diameter than assumed. Low
ηZ values are caused by a low thermal diffusivity in longitudinal
direction in the active region or a larger lateral heat source or
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mode extension than assumed (as listed in Table II). Finally,
low ηD values indicate a low thermal diffusivity between the
active region and the heatsink or a larger effective distance to
the heatsink than assumed. Note that in the latter case this is
not influenced by the chip mounting technology, because the
η-parameters only describe the intrinsic thermal tuning. A high
thermal resistance due to mounting would be described by the
kchip parameter. For the examined VCSEL, the mounting only
contributes 2–4% to the overall thermal resistance.

For time domain computer simulation programs, a zero/pole
form of the frequency response is required, whereas the zeros
and poles cannot be related directly to physical parameters. In
Appendix E, it is shown that the poles must lie on the negative
real line and the zeros that best fit the measurement also lie on
the negative real line. This proves that the “N time constants”
model, which is frequently used in the literature for empirical
description of the FM response, is also suited for simulation of
VCSELs. Additionally, in Appendix E the zeros and poles for
the best fit to the presented measurement data are given.

V. CONCLUSION

In this paper, measurements of the FM response (amplitude
and phase) for different VCSELs are shown and found to consist
of three components (intrinsic thermal tuning, plasma effect, and
thermal tuning by laser chip-submount interaction). A physical
model for the FM response is developed, which shows good
agreement with measurement.

The plasma effect has a significant impact on the FM re-
sponse (especially the phase shift) starting at frequencies as low
as 100 kHz. A consequence is that the laser FM tuning behav-
ior cannot be modeled as a minimum phase system, i.e., the
FM phase response or time step response cannot be computed
via Hilbert transform/Kramers–Kroning methods from only the
FM amplitude response. An exception from this is if only the
response at frequencies 
 100 kHz is of interest. For proper
prediction of the wavelength response over a broader frequency
range, characterizations of both the amplitude and phase shift
are essential.

The third result is that the high-resolution FM phase shift
measurements reveal an unexpected peaking of the FM phase
shift at low frequencies. This is explained with interaction be-
tween the submount and the laser chip. This creates an additional
low-intensity tuning effect at low frequencies that contributes
another 2%–4% of the overall tuning coefficient.

Fourth, the intrinsic thermal tuning is modeled by a physical
laser model with Gaussian-shaped mode and heat source dis-
tribution. It reproduces both the slope of −1/2 in the transition
region between cutoff and the start of the plasma effect in the tun-
ing coefficient amplitude as well as the high phase shift of −90◦

for the thermal component. This is achieved by assuming the
heat source and mode distribution with a certain thickness. This
revealed necessary because investigations showed that models
with infinitely thin heat source and mode distribution always
create a square root law response with −45◦ phase shift. This
improved model allows for a good fit of measured spectra with
a low number of parameters.

APPENDIX A

DEFINITION OF FM AMPLITUDE AND FM PHASE RESPONSE

For VCSELs, the static current to wavelength tuning behavior
can be well described with a quadratic function [27]. For small
signal current variations, the tuning behavior can then be consid-
ered linear. So for small-signal current excitations, the tunable
laser can be considered as a linear time invariant system with
respect to its tuning behavior. It is time invariant since the laser
has no “memory,” i.e., the wavelength response does not depend
on the absolute value of time, just the time difference relative
to application of the excitation current is relevant. According to
systems theory, the response of such systems for a sinusoidal
excitation is always sinusoidal with the same frequency

I(t) = I0 + iacos (2πft) (13)

ν(t) = ν0 − νacos (2πft + φ) . (14)

The amplitude of the optical frequency variation νa = νa(f) and
corresponding phase shift φ = φ(f) are modulation frequency
dependent and form the complex frequency-dependent tuning
coefficient

k(f) =
νa(f)

ia
eiφ(f ) . (15)

The negative sign in (14) is added for convenience to obtain a
positive value of k(f) at f = 0 (or φ(0) = 0). Its absolute value
specifies the amplitude of the optical frequency variation under
specific current modulation, and the argument of k(f) gives the
delay or phase shift between current excitation and wavelength
response. If the laser is regarded as a filter with current as input
signal and wavelength as output signal, then this complex tuning
coefficient k(f) is just the frequency response of the filter. So for
a computer simulation knowledge of k(f) is then necessary. The
dc tuning coefficient k(0) is real and positive (i.e., φ(0) = 0)
and given by the derivative of the steady-state current to optical
frequency relationship ν0(I0) with respect to current

k(0) = −∂ν0

∂I0
. (16)

The FM response H(f) is the normalized tuning coefficient

H(f) =
k(f)
k(0)

(17)

and consists of the FM amplitude response A(f) and FM phase
response φ(f)

H(f) = A(f)eiφ(f ) . (18)

If the FM response and the dc tuning coefficient is known for
all frequencies, then the wavelength response for arbitrary (es-
pecially nonsinusoidal) current excitations can be computed.

The FM impulse response and FM step response are equiva-
lent descriptions of the lasers behavior and given by the inverse
Fourier transform of the FM response and time integration of
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the FM impulse response, respectively. The FM step response
can also be measured as the normalized wavelength response
when applying a current step. The FM impulse response plays
almost no role in experimental characterization, but is very use-
ful in theoretical investigations both for describing and thermal
modeling of the laser.

APPENDIX B

GENERAL METHOD FOR COMPUTATION OF THE THERMAL

PART OF THE FM RESPONSE

To compute the FM impulse response, the heat equation has to
be solved with appropriate boundary conditions and a temporal
impulse excitation, i.e.,

cρ
dT

dt
−∇ · (K∇T ) = Qδ(t) (19)

where cρ is the specific heat capacity times density (unit
J/(m3K)), K the thermal conductivity (unit W/(m K)) matrix
and Q = Q(x, y, z) the spatial heat source term (unit J/m3).
Equation (19) is in general form where all parameters may de-
pend on space variables x, y, z. Here, a constant but nonisotropic
thermal conductivity is assumed to account for the nonhomoge-
neous conductivity of the layered semiconductor material

K =

⎛
⎝

KR 0 0
0 KR 0
0 0 KZ

⎞
⎠ . (20)

Boundary conditions of constant temperature like T (x, y,
−D) = 0 can be enforced by using the method of images.
There the equation without boundary condition is solved with
the source term Q(x, y, z) − Q(x, y, z − 2D) instead of Q
alone [28].

The solution of (19) with (20) for spatially constant cρ and
spatial impulse heat source Q(x, y, z) = δ(x)δ(y)δ(z) is given
by [28, Sec. 10.2]

Tp(x, y, z, t) =
1
ρc

G√
2κR t(x)G√

2κR t(y)G√
2κZ t(z) t ≥ 0

(21)
with the Gaussian function

Gσ (x) =
1√
2πσ

exp

(
− x2

2σ2

)
(22)

and κ = K/ρc the thermal diffusivity (unit: m2 /s). The general
solution of (19) for arbitrary heat source Q is then given by the
spatial convolution1 of Tp with Q, i.e.,

T (x, y, z, t) = (Tp(·, t) ∗ Q)(x, y, z). (23)

The model for the lasers FM response, thus, requires knowledge
on the spatial heat source distribution Q(x, y, z) and the light
mode profile M(x, y, z). The average temperature with respect

1Defined as (Tp (·, t) ∗ Q)(x, y, z) =
∫∫∫

Tp (x − x′, y − y ′, z − z ′, t)
Q(x′, y ′, z ′)dx′dy ′dz ′.

to the light mode profile T g (t) determines the wavelength of the
laser, so that the FM impulse response is up to a constant factor
compactly written as

T g (t) = (T ∗ M̃)(0, 0, 0) (24)

with M̃(x, y, z) = M(−x,−y,−z) the mirrored mode profile.
Summarizing, the FM impulse response is given in the general
case by the convolution expression

T g (t) = (Tp(·, t) ∗ Q ∗ M̃)(0, 0, 0). (25)

Equation (25) leads to an important observation. Since the con-
volution is an associative and commutative operation, the FM
response stays the same when the convolution of the mirrored
mode profile M̃ and heat source Q is invariant. This is for
example the case when both are Gaussian functions and the
mean square of the standard deviations is kept constant (i.e.,
M̃ ∗ Q = const(x, y, z)). Or more generally speaking since the
convolution operation tends to broaden functions, the device
behavior is the same if the light mode is very concentrated but
the heat generation very distributed or vice versa. It is the com-
bined width/height (in a mean square sense) of the heat source
and light mode distribution that determines the dynamic thermal
tuning behavior.

APPENDIX C

SQUARE ROOT OR PROPORTIONAL BEHAVIOR?

Most interestingly, two analytic models in the literature for
the intrinsic thermal behavior for VCSELs and DFBs [9], [12]
predict a square root law behavior for high frequencies, i.e.,
Hth(f) → 1/

√
if for f → ∞.

Here reasoning is given that the heat equation gives a square
root law behavior if the heat source and mode distribution have
one dimension less as the mathematical space in which the heat
equation is solved. This is for example the case if the heat
source and mode have a plane shape in a 3-D space or have
a line shape in a 2-D space. From Appendix B, it is known
that always the combined thickness of heat source and light
mode is relevant. So, a plane heat source and light mode in 3-D
space or a line source in 2-D space give a square root behavior.
If either the plane heat source or light mode distribution has
a nonzero thickness a transition from square root behavior to
1/(if) behavior will occur at a certain frequency. This second
transition frequency is approximately κ/(πh2) with (combined)
thickness h and thermal diffusivity κ. The Fourier transform of
1/
√

t, t ≥ 0 is given by 1/
√

2if , i.e., it has a square root be-
havior. If, however, 1/

√
t + τ , t ≥ 0 with τ > 0 is transformed

e2πif τ erfc
(√

2πifτ
)
/
√

2if is obtained that now has a 1/(if)
behavior for high frequencies. Since the behavior at high fre-
quencies of the Fourier transform is determined by the function
behavior around t = 0, the singularity at t = 0 of 1/

√
t seems to

be essential for causing the square root behavior. Further inves-
tigations of solutions of heat equations of different dimensions
showed that this 1/

√
t term only exists if the heat source and

light mode have a lower dimension as the space in which the
heat equation is solved.
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TABLE IV
FITTED POLES AND ZEROS FOR EMPIRICAL MODEL (26)

APPENDIX D

COMPUTATION OF (7) AND (11)

Efficient numerical evaluation of (7), where the desired fre-
quency points are distributed over several orders of magnitude,
can be carried out in the following manner: the integral is of the
form

∫ ∞
0 f(t)e−2πif tdt with f(t) an nonoscillatory and falling

function that is now assumed to be evaluated at N discrete points
t1 , . . . , tN . Then f(t) is approximated by the function that lin-
early interpolates the discrete points f(ti) and is zero for t > tN .
The Fourier transform of a piecewise linear function is easily ob-
tained analytically, which leaves the question how to chose the
samples ti to achieve a certain accuracy at the desired frequency
points. The behavior of the Fourier transform at high frequencies
is mainly determined by the functions behavior around t = 0,
while the behavior at dc (f ≈ 0) depends on all function val-
ues of f(t). If Hth(f) is to be computed at frequency points
over a wide range of magnitudes, sampling of f(t) over a wide
range and dense sampling around t = 0 is required. It turned
out that logarithmically spacing from t2 = 10−15 to tN = 102

with t1 = 0 and N = 500 points gives very good results with
low computational effort.

In a practical measurement, only discrete points A(fi) are
available for computation of the Hilbert transform (11). To com-
pute (11), it is necessary to place some assumptions on the be-
havior of the function between the points fi and outside the mea-
sured frequency interval [fmin , fmax]. In this study, log A(f) is
assumed to be linearly interpolating between two measurements
and to extend linearly to f → ∞ with a slope determined from
the last few points (linear extrapolation). The analytical value
of the integral (11) for a symmetric and piecewise linear func-
tion is easily obtained. This method is particularly suited for
irregularly spaced frequency points fi that span several orders
of magnitude.

APPENDIX E

EMPIRICAL FM RESPONSE MODEL

For a pure computer simulation of a system containing a tun-
able laser the FM response must be present in a rational form.2

A rational frequency response always corresponds to a system
that is described with ordinary differential equation in the time
domain. The first-order low-pass (one “time constant”) or the

2This means that the frequency response it is a quotient of two polynomials
with real coefficients in the variable s = 2πif.

“N time constants” model is of such a rational form. Time do-
main simulation programs like “SPICE” or “Simulink” require
models to be rational. In such a model, however, the obtained
parameters (zeros and poles) cannot be related to real physical
quantities inside the laser device. For pure mathematical de-
scription of measured data, e.g., for computer simulation of a
laser system, this approach can be powerful, since with a certain
number of time constants arbitrary FM responses can be fitted.
For modeling of the intrinsic thermal tuning, all poles pk have
to lie on the negative real line. They have to be real, because
a thermal defined system does not describe oscillations at an
impulse excitation. A negative real part is required for the sys-
tem to be stable. The zeros also must have negative real part
to describe a minimum phase system. Since the heat equation
only contains the first-order time derivative an asymptotic slope
between 0 and −1 or |Hth(f)| → 1/f for high frequencies is
expected. The only meaningful selection for the numerator de-
gree is, thus, one minus the denominator degree (asymptotic
1/(if) behavior). Thus, the following model is used:

Hth(f) =
∏N −1

k=1 (1 − 2πif/zk )∏N
k=1(1 + if/fk )

. (26)

The poles are pk = −2πfk and zk the (possibly complex) zeros.
If a zero is complex, then the conjugate complex zero must be a
zero as well, so that using complex zeros does not increase the
degree of freedom of the model (which is 2N − 1). Note that
also multiple zeros or poles can be present (i.e., zeros/poles of
higher order).

In the case of single poles and real zeros, the model (26) can
be simplified to the “N time constants” model [11], [29]

Hth(f) =
N∑

k=1

ak
1

1 + if/fk
(27)

with positive values ak and distinct characteristic frequencies
fk . For ak > 0, this even always describes a minimum phase
system with real zeros. For ak < 0, this is not necessarily the
case, but also complex zeros can be described. Note that this
is not a fully general model, since it cannot describe multiple
poles. This is even so if some fk are chosen to be equal. This
can be easily seen if the partial fraction decomposition of (26)
is computed: in the case of multiple poles also terms 1/(1 +
if/fk )rk with rk > 1 would have to be present in (27). For the
measurement data of the VCSELs studied in this paper, the best
fit to model (26) did not produce complex zeros or poles with
multiplicity greater than one. This empirically proves that for the
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specific measurement data the “N time constants” model (27)
is indeed suitable. The necessary order was between N = 3 or
N = 4. Interestingly, the necessary order can be estimated from
the fit itself. If N is chosen to be “too large” in the beginning,
then the fit will produce a zero and a pole that are lying very
close by. So their contribution in (26) will nearly cancel out,
which indicates that N can be chosen lower. The fitted zeros
and poles are shown in Table IV.
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