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Abstract

In systems biology, scientific hypotheses can rarely be tested by directly measuring the

quantities of interest, e.g. certain protein concentrations in living cells. Instead, quanti-

ties which can be measured directly, e.g. certain biomarkers, are exploited to calibrate

the parameters of complex mathematical models. Mathematical models are formalized

simplifications of reality and comparing their output with experimental data can support

falsifications of scientific hypotheses. For example, this procedure often allows to derive la-

tent variables of the biological system and facilitates predictions of untested experimental

conditions.

However, the process of calibrating the parameters of a mathematical model given exper-

imental data, called parameter estimation, is in general a challenging task. The perfor-

mance of algorithms suited for this task is known to be highly problem dependent and the

sparsity of biological data causes challenges as well.

Sampling algorithms such as Markov chain Monte Carlo methods are commonly employed

for parameter estimation. In comparison to optimization algorithms, Markov chain Monte

Carlo methods allow to train models and to assess uncertainty of the result at the same

time. Uncertainty analysis is often required in order to estimate how reliable conclusions

drawn from model-based data analysis are.

The optimal choice of a particular Markov chain Monte Carlo algorithm and its tuning

parameters is unknown for a given problem while these choices vastly impact the compu-

tation time the parameter estimation requires. This is problematic as dynamical models

in computational biology are often expensive in computation time per evaluation while

Markov chain Monte Carlo algorithms require a large amount of model evaluations. Un-

fortunately, Markov chain Monte Carlo performance has never been quantified thoroughly

between multiple algorithms and within multiple realistic use-cases for parameter estima-

tion arising in biological sciences.

In this thesis, a comprehensive benchmark study about Markov chain Monte Carlo is

implemented and presented based on a novel, fair analysis framework. The lessons learned

during this evaluation are then used to construct a novel Markov chain Monte Carlo

method. The novel algorithm combines the strengths of multiple existing algorithms

including parallel tempering and adaptive Metropolis while dividing the parameter space

into regions with simple probability density structure. The novel method is shown to be

capable of outperforming state-of-the-art methods while maintaining strong self-tuning

capabilities. This effort enables an straightforward, efficient and robust application of

state-of-the-art Markov chain Monte Carlo across many biological applications.
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Overall, these contributions aid the future usage and development of Markov chain Monte

Carlo in systems biology, a scientific discipline which often requires strict assessment of

uncertainty. The benchmark study closes an important gap in the literature as Markov

chain Monte Carlo methods are typically selected uninformed for a given application.

Multi-purpose self-tuning algorithms as presented in this thesis can help to increase overall

Markov chain Monte Carlo performances across the computational biology community,

creating a higher perception of the overall Markov chain Monte Carlo usability in practice.
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Chapter 1

Introduction

1.1 Motivation & research overview

In the field of computational systems biology, mechanistic models are developed to explain

experimental data, to gain a quantitative understanding of processes and to predict the

process dynamics under new experimental conditions (Gábor and Banga, 2015; Klipp

et al., 2005b; Kitano, 2002). The parameters of these mechanistic models are typically

unknown and need to be estimated from available experimental data. The parameter

estimation may provide novel insights of the biological processes and facilitates flexible

data integration.

Introducing example: The utility of parameter estimation can be demonstrated using a

simple example of estimating the gravity acceleration on earth, g, from the observation of

a falling apple (see Figure 1.1a). In basic Newtonian mechanic, the trajectory of a non-

relativistic apple with mass m and position x(t) at time t is modeled by the Newtonian

law,

ẍ(t) = g, (1.1)

where gravity acceleration g is pretended to be unknown for the purpose of this example

and must be estimated from experimental data. The trajectory of the apple is given by the

analytical solution of 1.1 which reads

x(t) = gt2 + v0t+ x0, (1.2)

with the initial velocity v0 = 0 and the initial position x0 = 40 for an apple just starting

to fall at t = 0 from a tree of 40 meters height. In this example, one can not measure g

directly. Instead, one obtains the apple position with time stamps and exploits Equation

1.2 as a mathematical model in order to estimate g. Let the (noisy) data be given by

x1 = x(t1 = 0.1) = 40, x2 = x(t2 = 1/
√

2) = 35, x3 = x(t3 =
√

2) = 20 and x4 =

x(t4 = 3.9) = 0. From Equation 1.2, one derives the distance, the apple has traveled,
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Figure 1.1: Caption: A simple example of parameter estimation. a) Observations
of a falling apple. The time stamps possess measurement errors. b) Parameter estimation
of the gravity acceleration g using Markov chain Monte Carlo.

∆xi(g) = xi − x0 = gt2i . Formulating an optimization problem

argmingπ(g|x1, x2, x3, x4) (1.3)

with an objective function

π(g|x1, x2, x3, x4) =
(
∆x1(g)2 + (∆x2(g)− 5)2 + (∆x3(g)− 20)2 + (∆x4(g)− 40)2

)
(1.4)

yields an optimal solution g = 10.8 which is an estimate for the true but unknown gtrue ≈
10. If one is interested in an estimate for the confidence of the previously obtained point

estimate of g, one could sample from π(g|x1, x2, x3, x4) as shown in Figure 1.1b. Assuming

a measurement error of ±10 meters, the obtained sample yields an estimated standard

deviation of σ = 1.7, thus, one obtains g = 10.8±1.7. While this example is fairly simple,

it demonstrates the basic concepts of parameter estimation and its utility of revealing latent

variables, as g, which can not be measured directly. In addition to revealing latent variables,

a trained model (Equation 1.2 with the estimated g) could be used to predict untested

scenarios, e.g. how long the apple would fall if the tree was 60 meters tall instead.

The usage of mathematical modeling in cell biology goes back to 1950 (Monod, 1950;

Turing, 1952; Hodgkin and Huxley, 1952). Nowadays, a variety of mechanistic model

approaches are used, e.g. ordinary differential equations (ODEs), partial differential equa-

tion, and stochastic differential equations. However, there exist great interest in phe-

nomenological and statistical models, e.g. based on neural networks, which focus more on

the prediction of untested scenarios than on explaining the experimental data mechanis-

tically. For the inverse problem of parameter estimation, the type of model is important,
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because for some types of model, e.g. stochastic differential equations, the evaluation of

the objective function may not be feasible or computationally demanding.

The parameters of biological processes are usually estimated using frequentist or Bayesian

approaches (Raue et al., 2013a; Hug et al., 2013). Frequentist approaches tend to exploit

optimization methods to determine the maximum likelihood estimate and its uncertainty,

e.g., using bootstrapping or profile likelihoods (Joshi et al., 2006; Fröhlich et al., 2014b;

Raue et al., 2011). Bayesian approaches often rely on the sampling of the parameter

posterior distribution using Monte Carlo algorithms (Wilkinson, 2007; Xu et al., 2010;

Krauss et al., 2013). Both, optimization and sampling, are challenging for a wide range of

applications encountered in computational systems biology (Hug et al., 2013; Raue et al.,

2013b).

Likelihood functions and posterior densities are frequently multi-modal and possess pro-

nounced tails (see, e.g., (Raue et al., 2013a; Hug et al., 2013)), and many application

problems possess structural and practical non-identifiabilities (see, e.g., (Raue et al., 2009;

Balsa-Canto et al., 2010; Chis et al., 2011; Weber et al., 2011) and references therein). This

is, amongst others, due to scarce and noise-corrupted experimental data. Furthermore,

features of the underlying dynamical systems, such as bistability (Gardner et al., 2000;

Ozbudak et al., 2004), oscillation (Tyson, 1991; Kholodenko, 2000; Calderhead, 2007) and

chaos (Kosuta et al., 2008; Ngonghala et al., 2016; Braxenthaler et al., 1997) are expected

to impact the structure of the likelihoods and posteriors. It is for instance well-known

that the posterior distribution for systems exhibiting oscillations often possesses a large

number of modes (Casey, 2004). To pinpoint limitations of optimization algorithms in

the presence of such difficulties, large collections of parameter estimation problems which

facilitate diverse model properties (see e.g. (Villaverde et al., 2015)) were established.

Unfortunately, for sampling methods, (i) comprehensive benchmark collections and (ii) a

rigorous comparison of their performance is missing. As a consequence, it is not clear how

well state-of-the-art methods are suited for a given problem and the development of novel

methods can not be supported by comprehensive benchmarks against existing methods.

In practice, this shortage does often render the selection of methods in the presence of a

given problem complicated.

Markov chain Monte Carlo (MCMC) methods provide samples from the posterior dis-

tribution of the parameters given the experimental data and prior knowledge (Andrieu

et al., 2003). In contrast to point estimates provided by optimization algorithms, poste-

rior samples facilitate the assessment of parameter- and prediction uncertainties (Vanlier

et al., 2012). While uncertainty analysis is beneficial across research fields, in biology
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these methods are especially important because experimental data is often sparse or noise

corrupted and parameters are therefore often non-identifiable (Chis et al., 2011; Fröhlich

et al., 2014b; Raue et al., 2013a; Eisenberg and Hayashi, 2013). Unraveling parameter un-

certainties is essential to avoid incorrect conclusions and to facilitate reliable predictions.

For that reason sampling methods as MCMC are widely used in systems and computa-

tional biology to parameterize computational models (Wilkinson, 2007). However, in order

to exploit the benefits of sampling methods, in particular MCMC, one must ensure that

the sample is representative. While for most MCMC algorithms convergence has been

proven, for finite samples one has to apply statistical tests and heuristics to assess rep-

resentativity. However, these tests tend to overestimate sample quality and often include

subjective decision making. In the worst case, non-representative samples generate a false

picture of the posterior and lead to an underestimation of uncertainties (Woodard, 2007;

Brooks and Gelman, 1998; Raue et al., 2013a; Kreutz et al., 2013; Bayarri and Berger,

2004).

Bayesian methods have been successfully applied in problems focused on linear-, mixed-,

hierarchical- (Albert, 1988; Carlin et al., 1992; Bennett et al., 1996), graphical- (Geman

and Geman, 1984), and dynamical models (Wilkinson, 2006) as well as neural networks

(Andrieu et al., 2003; Freitas et al., 2000; Marwala, 2007), diffusion and stochastic models

(Roberts and Stramer, 2001; Roberts et al., 2004) and hidden trees (Larget and Simon,

1999; Huelsenbeck and Ronquist, 2001). Each of the mentioned model types is applied

in a variety of biological applications, e.g. dynamical models were used for modeling bio-

chemical reaction networks (Xu et al., 2010; Hug et al., 2013), spatio-temporal processes

(Jagiella et al., 2017), single-cell data (Zechner et al., 2014) and more. Thus, Bayesian

methods are widely applied and still under development. MCMC is no exception for this

rule as it is one of the most generally applicable Bayesian methods and methodological and

theoretical aspects are still an active field of research (Green et al., 2015). Lately, there has

been a trend towards GPU usage and parallelization (Lee et al., 2010; Jacob et al., 2011;

Strid, 2010; Suchard et al., 2010; Scott et al., 2016; Calderhead, 2014; Green et al., 2015;

Jacob et al., 2017) and approximate approaches to cope with the increasing complexity of

data and models (Green, 1995). However, the improvement of non-approximative MCMC

methods continues as well (see e.g., (Lacki and Miasojedow, 2015; Hoffman and Gelman,

2014)). Overall, there is a distinctive desire for more efficient and reliable MCMC meth-

ods in order to cope with large-scale models (Fröhlich, 2018) and data across a variety of

different parameter estimation problems, e.g. for the frequently occurring problem of pa-

rameter inference for ODE based models. Furthermore, as parameter estimation problems

in practice are often treated as black-boxes, auto-tuning capabilities and improved con-

vergence rates of the methods, e.g. by employing quasi-Monte Carlo (Owen and Tribble,
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2005; Beentjes and Baker, 2019; Buchholz and Chopin, 2019), are of particular interest.

1.2 Contribution of the thesis

Parameter estimation is a difficult task in general. Employing MCMC as a tool for param-

eter estimation provides great benefits, e.g. the assessment of uncertainty of the estimated

parameters and model predictions. However, the application and quality assessment of

MCMC is not straightforward and practical applicability often remains unclear. The fol-

lowing key issues were outlined in the background in Section 1.1 and motivated this thesis:

(i) MCMC is a powerful tool, which requires very few assumptions regarding the numeric

properties of the problem of interest. As long as one can evaluate an objective

function or posterior density point-wise, MCMC can be employed to generate a

sample from such a target. This generality and the existence of a great number of

different MCMC algorithms in the literature renders a quantitative comparison of

MCMC algorithms valuable and challenging. However, it is not clear how to make

MCMC results comparable because established measures such as effective sample

size tend to overestimate sample quality especially for poorly performing methods

(Chapter 3). In particular, it is not clear how one can evaluate MCMC in the

presence of challenging posteriors (e.g. multiple modes) automatically and without

visual inspections of the chains while being fair and robust across different problems

and MCMC algorithms.

(ii) Due to the general bias towards positive results in peer reviewed literature (Ma-

honey, 1977; Lee et al., 2013; Smith, 2006), novel MCMC algorithms are likely to

get presented in favorable or well suited problems. Unfortunately, there are few

independent, comprehensive and quantitative comparison studies of MCMC meth-

ods across different benchmark problems. This leaves MCMC algorithms in an odd

position regarding its application to actual problems.

(iii) In computational biology, mechanistic models are often defined by ODEs. The pa-

rameters of these models may provide valuable information about the underlying

biological mechanism. For mechanistic models, the application of MCMC is ben-

eficial because it allows to estimate uncertainty for these parameters supporting a

correct biological interpretation of the parameter point-estimates. However, ODE

models are very diverse in their behavior and properties of the model are expected to

impact the posterior distribution which impacts the performance of parameter esti-



20 CHAPTER 1. INTRODUCTION

mation via MCMC. This connection was rarely evaluated quantitatively. Examples,

e.g. covering the connection between oscillations of an ODE solution and MCMC

performance (Calderhead and Girolami, 2011), are few.

(iv) Due to the lack of standardized evaluations of the performance of MCMC algorithms

(i), the lack of comprehensive benchmarks (ii), the unclear connections of model

properties and algorithmic performances (iii), and the tuning intensive nature of

MCMC methods, the beneficial employment of MCMC can be rather challenging in

practice. Employing a poorly tuned MCMC algorithm will generate results which

are likely to be non-representative of the posterior and misleading in their inter-

pretation without any sign of warning (due to the lack of ground truth regarding

the posterior shape). If one could close the gaps in (i-iii), the gathered insights

would be beneficial for the construction of a novel MCMC method which improves

state-of-the-art MCMC performance while performing well across diverse problems

in computational biology.

The overall goal of the thesis is to address these open problems (i-iii) and possibility (iv)

in order to assess and improve MCMC sampling based parameter estimation for problems

frequently arising in computational biology applications. While the presented approaches

and methods feature a fairly general usage across a variety of other disciplines, this thesis

focuses on parameter estimation for biologically motivated ODE models. These models

represent a particularly important sub-class of problems in computational biology. The

overall novelty provided in the scope of this thesis can be summarized as:

• As a basis, in this thesis a robust sampling result analysis pipeline for the

assessment of sample quality is introduced. In comparison to established as-

sessments, the presented analysis pipeline aims towards increasing objectivity of the

analysis and reducing the probability to overestimate sample quality in the presence

of challenging posterior landscapes. The analysis pipeline is suited for quantitative

benchmarks and the classification of novel MCMC methods as it does not rely on

additional information about the given problem.

• Given a problem independent evaluation framework as the introduced analysis pipeline,

it is possible to test and compare MCMC algorithms for a large number of problems.

This is essential as posterior distributions arising in ODE constraint parameter es-

timation problems are diverse. In order to provide a broad evaluation of MCMC

algorithms, a benchmark collection of ODE constrained parameter esti-

mation problems is introduced. The collection of ODE constraint problems
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includes a variety of ODE properties such as bifurcations, multi-stability and oscil-

lations to study the connection between model properties and sampling performance

quantitatively. In this thesis, for the first time a comprehensive benchmarking

of state-of-the-art sampling algorithms is performed. In total, over 300.000

hours of CPU were executed and the results were analyzed using the analysis pipeline.

This closes an important gap between optimization and sampling literature support-

ing future development of MCMC methods and informs a more selective choice of

algorithms or tunings to apply efficiently for a given parameter estimation problem

in computational biology and beyond.

• The comprehensive benchmark of state-of-the-art MCMC methods revealed major

differences in sampling performance. Beside that, some valuable insights about

MCMC behavior in ODE-constraint parameter estimation problems were gathered.

These insights got employed for developing a novel, well performing MCMC

method, RAmPART, which combines the benefits of multiple existing methods.

A benchmark reveals, that RAmPART has the potential to outperform its ancestor

methods significantly by up to a factor of 10 − 100. It does not require derivatives

and features strong auto-tuning capabilities enabling its application to be beneficial

in a variety of problems.

Overall, the thesis provides insights and algorithms for practical parameter estimation

problems arising in computational biology and beyond. In particular, the thesis provides

a framework for quantitative comparison of sampling results, a comprehensive benchmark

of state-of-the-art MCMC methods and tunings, and a novel, well performing MCMC

method.

1.3 Outline of the thesis

As a basis for comparisons, development and application of MCMC methods in ODE con-

straint parameter estimation problems, Chapter 2 starts with an introduction to Bayesian

parameter estimation. The general concept of MCMC algorithms based on the correspond-

ing Markov chain theory is motivated. The introduction of Bayesian parameter estimation

is complemented by an introduction of general concepts of mathematical modeling, data

integration, predictions and uncertainty analysis in particular regarding ODE constraint

problems.

In Chapter 3, the basis for quantitative comparisons of sampling performance is set. A
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pipeline for quantitative and unbiased benchmarking of MCMC methods and the assess-

ment of sampling convergence for finite chains is discussed. Furthermore, potential pitfalls

of general sampling quality assessment which the pipeline resolves are disentangled. The

developed framework is provided with an example.

In Chapter 4, the pipeline developed in Chapter 3 is employed to quantitatively analyze

MCMC samples obtained using multiple state-of-the-art algorithms and tunings in several

benchmark problems. The results are used to draw conclusions about the performance

of MCMC algorithms, e.g. about the selection of methods, optimal tunings or chain

initialization using optimization in practice.

In Chapter 5, the insights gathered in Chapter 4 are used to develop a novel MCMC

method fixing some of the identified problems while facilitating strong self-tuning capabil-

ities. The novel method is quantitatively compared to similar methods using the pipeline

from Chapter 3 once more. Furthermore, theoretical aspects of the methods are presented.



Chapter 2

Background

In this chapter, the mathematical and biological background required to follow the thesis is

introduced. In particular, this Chapter gives an overview about quantitative mathematical

modeling by employing parameter estimation methods. In order to formally introduce all

required aspects of Markov chain Monte Carlo algorithms – a class of algorithms suited for

comprehensive parameter estimations – a short introduction to the general field of Monte

Carlo sampling methods is provided. The discussions about the theoretical aspects of

MCMC are complemented by the introduction of a common, ODE-constraint parameter

estimation problem, several MCMC algorithms and an important application of MCMC,

uncertainty analysis.

2.1 Bayesian parameter estimation methods

The following sections introduce Bayesian parameter estimation (Section 2.1.1) and mo-

tivate sampling as a powerful tool to solve these problems stochastically (Section 2.1.2

and 2.1.3). First, sampling techniques which have evolved during the last century get

introduced (Section 2.1.4) followed by more recently developed sampling methods such as

MCMC (Section 2.1.5) and others (Section 2.1.6).

2.1.1 Bayesian statistics

“There are two major classes of numerical problem that arrise in statistical inference,

optimization [...] and integration problems” (Robert and Casella, 2013, Chapter 3). Opti-

mization problems are often related to frequentist approaches while integration problems

are typically associated with Bayesian methods (Robert and Casella, 2013). However,

these connections are not strictly true (Robert and Casella, 2013) and Bayesian param-

eter estimation may be employed to solve both problems. A central idea of Bayesian

parameter estimation is to merge currently available knowledge about the probability dis-

tribution of parameter θ ∈ Rnθ with novel information encoded in the data D (Kramer

and Radde, 2010; Krauss et al., 2012). This merging of prior knowledge and evidence is
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formalized as a posterior probability density π(θ|D) within the Theorem of Bayes,

π(θ|D) =
π(D|θ)π(θ)

π(D)
, (2.1)

in which π(θ) denotes the prior, π(D|θ) denotes the likelihood and p(D) denotes the

marginal probability (being a normalization constant). In practice, the likelihood function

π(D|θ) depends on the model, e.g. of the considered dynamical system, and the model of

the measurement process. Please note, priors may also be used for regularization purpose,

e.g. Gaussian priors for an l2– and Laplace priors for an l1–regularization (Chaari et al.,

2014).

2.1.2 Assessment of high dimensional probability distributions

“Only few problems allow for explicit computation of the likelihood, and even fewer for

an explicit formula of [...] π(θ|D)” (Hasenauer, 2013, Section 2.3.1) – e.g., due to the

typically high dimensional integral which is the marginal,

π(D) =

∫
Rm

π(D|θ)π(θ)dθ. (2.2)

Fortunately, it is possible to learn about the statistical quantities of π(θ|D) numerically

while only using π(θ|D) up to a constant. Depending on the level of desired information

about π(θ|D) one can apply different approaches, e.g. optimization to obtain maximum-

a-posteriori estimates,

θ∗ = arg max
θ∈Rnθ

(
π(θ|D)

)
, (2.3)

or profile calculation to obtain profiles of π(θ|D)1 for each parameter dimension θ(i), i =

1, . . . , nθ,

PL(θ(i)) = max
θ(j 6=i)∈Rnθ−1

π(θ(1), . . . , θ(i), . . . , θ(nθ)|D) (2.4)

(Raue et al., 2010; Kreutz et al., 2013; Boiger et al., 2016; Fröhlich, 2018). If one desires

more information about parameters θ and their distribution π(θ|D) one may use Monte

Carlo methods.

1 See Section 2.5 for more information about uncertainty analysis.
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2.1.3 Monte Carlo principle

Monte Carlo methods ‘simulate’ or ‘sample’ from π(θ|D). Those samples may be used to

assess the underlying probability distribution. The assessment gets generally more precise

with an increasing number of simulations.

One particular important case and common problem where a sample of π(θ|D) is needed

is the evaluation of expectation values of a function g : Rnθ → R as it typically requires

the evaluation of an integral,

Eπ(g) =

∫
Rnθ

g(θ)dΠ(θ|D) =

∫
Rnθ

g(θ)π(θ|D)dθ, (2.5)

where π is a probability density function and Π is the corresponding cumulative probability

distribution. This problem can be solved using Monte Carlo integration. Therefore, ran-

dom samples θ1, . . . θn ∼ π are generated to approximate Equation 2.5 with the empirical

average (Robert and Casella, 2004),

ḡn =
1

n

n∑
i=1

g(θi). (2.6)

Hereby, ḡn will almost certainly converge towards Eπ(g) by the strong law of numbers

(Robert and Casella, 2004, Section 3.2). Furthermore, for functions g, whose expectation

of g2 is finite, the variance

Varπ(g) =

∫
Rnθ

(g(θ)− Eπ(g))2 π(θ|D)dθ (2.7)

exists and can be estimated using the sample variance

v̄n =
1

n

n∑
i=1

(g(θi)− ḡn))2. (2.8)

Thus, for n→∞,

ḡn − E(g(X))

v̄n
→ N (0, 1) (2.9)

which provides a distribution for the error made for those methods regardless of the

distribution of π and the non-linearity of g. Equation 2.9 is often part of central limit

theorems (Andrieu et al., 2003). One direct application of integrals of the form in Equation

2.5 are Ito-integrals found in the evaluation of stochastic differential equations (Robert

and Casella, 2004, Section 3.7.2) or – in the special case g(θ) = yt(θ) with yt(θ) being the
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output of a biological model as introduced in Section 2.2 – one can estimate the expectation

curve of ODE solutions using a propagated sample of the posterior. This concept can be

generalized to prediction uncertainty (see Section 2.5). Hereby, if the sample θ1, θ2, . . . is

propagated through a model g, g(θ1), g(θ2), . . ., one can estimate other statistical moments

beside the expectation value as well, e.g. the quantiles. Additionally, the distribution of θ

and correlation structures within θ hold valuable information, in particular for parameters

of mechanistic models.

2.1.4 Classic Monte Carlo methods

Monte Carlo methods yield samples θ1, . . . , θN of a target density, e.g. the posterior

π(θ|D). One basic Monte Carlo method is rejection sampling (Andrieu et al., 2003).

It uses a proposal density q(θ) such that there exists an M ∈ R, M < ∞ such that

π(θ|D) ≤ Mq(θ) to propose points θ∗ ∼ q. The points θ∗ are either accepted or rejected

by chance based on how likely π(θ|D) is compared to Mq(θ) (see Figure 2.1 for the cor-

responding pseudo-code). The generated sample θ1, . . . , θN follows the probability π(θ|D)

(Andrieu et al., 2003). The main idea behind rejection sampling is to choose q such that

it can be sampled easily (by standard pseudo-number generators), e.g. being normal or

uniform. The performance of rejection sampling scheme gets better, if the proposal den-

sity q has a similar location and shape as the target density π which will be often true for

low dimensional problems. However, with increasing dimension one will almost certainly

propose points along the tails of π(θ|D), which are unlikely to get accepted (Andrieu et al.,

2003). This is especially true for uniform proposal densities or scenarios where large M

are required to bound π/q across the whole parameter space (Andrieu et al., 2003).

Another well known Monte Carlo method is importance sampling. Importance sampling

is directly connected to the concept of Monte Carlo integration, Equation 2.6. Here,

Equation 2.5 is rewritten as

Eπ(g) =

∫
Rnθ

g(θ)w(θ)q(θ)dθ (2.10)

with w(θ) = π(θ|D)/q(θ) being an importance weight and q(θ) being a proposal density

similar to the one for rejection sampling, which should be easy to sample from (Andrieu

et al., 2003). Instead of using Equation 2.6, one uses

ĝn =
1

n

n∑
i=1

g(θi)w(θi) (2.11)

which will almost certainly converge towards Eπ(g). One samples from q(θ) and calculates
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Algorithm: Rejection Sampling

input : N ,M <∞, target density π(θ|D), proposal density q(θ)
output: Sample θ1, . . . , θN−1

i = 0
while i < N − 1 do

Sample θ∗ ∼ q(θ) and u ∼ U[0,1]

if u < π(θ∗|D)
Mq(θ∗)

then

// Accept θ∗
θi ← θ∗
i← i+ 1

else
// Reject θ∗

Figure 2.1: The pseudocode of rejection sampling (Andrieu et al., 2003).

the weights afterwards. If q is chosen similar to π so that it encourages points with large

weights, importance sampling gets most efficient, as the variance between estimate ĝn and

the true expectation value Eπ(g) decreases (Andrieu et al., 2003).

One main difference between rejection and importance sampling is the ensemble of what

is kept guaranteed: For rejection sampling, one gets a guaranteed number of independent

samples, but the time spent finding those is variable. For importance sampling, one

controls the number of necessary evaluations of π(θ|D) but the precision of the result may

be low in cases where most weights w were small. Both methods are classic Monte Carlo

methods and need an appropriate q to function properly. This inherent weakness led to

the invention of more advanced adaptive variants and Markov chain Monte Carlo methods.

2.1.5 The need for Markov chain Monte Carlo

Classic Monte Carlo methods generate an independent sample from a probability distri-

bution, e.g. π(θ|D). Once the proposal density q is chosen similar to the target density

π(θ|D), classic Monte Carlo methods work efficiently. Unfortunately, with increasing di-

mension and complexity of π(θ|D), it is almost impossible to choose q satisfactory without

knowing additional properties of π(θ|D) before sampling. MCMC methods are a special

class of Monte Carlo methods, which aims to address this problem. MCMC methods

generate an irreducible Markov chain, whose equilibrium distribution is the probability

distribution of interest. While the classic approaches are often not efficient in multivariate

problems as required in most applications (Geyer, 1992), MCMC facilitates the generation
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of samples in high dimensions but introduces autocorrelation to the sample as a trade-off

(Geyer, 1992).

As MCMC algorithms are of particular interest for the thesis, they will be discussed

in detail during Section 2.4. All considered MCMC algorithms (see Section 2.4.3 for

examples) target π(θ|D) as stationary probability density (see Section 2.4.1 for theoretical

aspects of MCMC methods).

2.1.6 Other Monte Carlo methods

MCMC methods are well suited in cases of deterministic dependency between model dy-

namics and observables (formally introduced in Section 2.2) or – more general – when

evaluating π(θ|D) up to a constant is straightforward. This setting is given, i.e. in the

case of parameter estimation problems of ODE-constraint models (see Section 2.2). How-

ever, there exist cases where alternative Monte Carlo approaches have to be used.

In cases, when there is an additional layer of stochasticity between model states and observ-

ables the corresponding parameter estimation problem is often called a filtering problem

(Doucet et al., 2000). Examples are parameter estimation in hidden Markov models or

GPS tracking. For filtering problems sequential Monte Carlo (SMC)2 methods are more

suitable than MCMC as they work recursively (Doucet et al., 2001). The general idea of

SMC is to approximate sequential probabilities p(xk|y1, . . . , yk−1) where xk is the kth state

of the model given all preceding observations. In contrast, other Monte Carlo methods as

MCMC or importance sampling would employ the full probability p(x1, . . . , xk|y1, . . . , yk)

instead.

Another interesting case are problems where the evaluation of π(θ|D) is not straightforward

or extraordinarily expensive in computation, e.g. for parameter estimation of stochastic

differential equations. In those cases, Approximate Bayesian Computing (ABC) is often

employed to approximate π(θ|D) instead of evaluating it directly (Lillacci and Khammash,

2013; Jagiella et al., 2016; Stram et al., 2015; Toni et al., 2009). ABC methods generally

construct a posterior approximation by accepting parameter points θ for which a certain

distance measure ρ(D, D̂(θ)) between data D and simulated data D̂(θ) is smaller than

ε > 0. From this, one can derive the probability p(θ|ρ(D, D̂(θ)) ≤ ε) as an approximation

for the true posterior π(θ|D). The concept of ABC can be combined with several other

Monte Carlo methods, e.g. rejection sampling, MCMC (Wegmann et al., 2009) or SMC

(Toni et al., 2009).

2 SMC methods are also known as particle filters, sampling importance resampling or sequential importance
sampling.
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2.2 Parameter estimation in ordinary differential equations

Before continuing the discussion about MCMC and the theory behind it in Section 2.3, an

important application for Bayesian inference in systems biology, in particular for MCMC

sampling, is presented. Specifically, the sampling of posterior distributions π(θ|D) arising

for parameters θ of an ODEs-constraint model given data D is introduced. While the

general concepts of Bayesian inference were introduced in Section 2.1, here a concrete

estimation problem and the construction of the likelihood, π(D|θ), will be discussed.

ODE models are used for the mechanistic description of biological processes, e.g. gene

regulation (Polynikis et al., 2009), signal transduction and metabolism (Covert et al.,

2008), and pharmacokinetics (Klipp et al., 2005a; Krauss et al., 2013). Mathematically,

ODE models can be defined as

ẋ = f(x, t, η), x(t0) = x0(η), (2.12)

with time t ∈ [t0, tmax], state vector x(t) ∈ Rnx and a parameter vector η ∈ Rnη . The vector

field f(x, t, η), f : Rnx ×R×Rnη → Rnx , and the initial conditions x0(η), x0 : Rnη → Rnx ,

define the temporal evolution of the state variables as functions of η. Existence and

uniqueness of the solution (Coddington and Levinson, 1955) is usually ensured by the

structure of the right hand side, f . Hereby, continuity is sufficient for the existence of

a local solutions using the Theorem of Peano (Peano, 1890) while Lipschitz continuity

of f is sufficient for an unique local solution of Equation 2.12 using the Theorem of

Picard-Lindelöf (Lindelöf, 1894). Fortunately, for biological applications often Lipschitz

continuity can be assumed for f as will be done in the following.

For biological processes, experimental limitations usually prevent the direct measurement

of the state vector x(t). Instead, measurements provide information about the observable

vector y. The observables y depend on the state of the process, y = h(x, t, η), in which h

denotes the output map h : Rnx × R × Rnη → Rny . Examples for f(x, t, η) and h(x, t, η)

can be found in Section 4.3. Please note, in cases where the observables h are stochastic,

one would face a filtering problem (Doucet et al., 2000). However, for the problems treated

during this thesis, h will always be deterministic.

The measurement of the observables y yields noise corrupted experimental data D =

{(tk, ỹk)}ntk=1, where nt is the number of time resolved data points. Please note, one could

define observables independent of the time as well, e.g. an area under curve is common
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when estimating parameters of physiologically based pharmacokinetic models. In the

following, independent, additive normally distributed measurement noise

ỹik = yi(tk) + εik, εik ∼ N (0, σ2
i ) (2.13)

is assumed in which σ denotes the standard deviation of the measurement noise and

i = 1, . . . , ny accounts for different observables. While this error model is most common,

other error models may be used instead, e.g. one assuming Laplace distributed noise

(Maier et al., 2017).

The standard deviations σi are usually unknown and part of the parameter vector, i.e.,

θ = (η, σ). The likelihood of observing the data D given the parameters θ is

π(D|θ) =

ny∏
i=1

nt∏
k=1

1

σi
√

2π
exp

(
−(ỹik − yi(tk))2

2σ2
i

)
, (2.14)

in which y(tk) depends implicitly on η. Throughout this thesis, if not stated otherwise,

this particular form of likelihood will be used (Section 2.1).

The solution x = x(t, θ) of the ODE directly impacts the structure of the likelihood

π(D|θ). Chapter 4 covers a range of different ODE-constraint problems which possess

mathematical properties as multiple attractor sets known as multiple-stability, periodical

orbits and bifurcations of the flow topology. These give rise to a diverse set of posteriors

featuring rims, multiple modes and pronounced correlation structures in parameter space.

As for most ODEs the analytical solution is unknown, one typically applies numerical

methods to obtain x = x(t, θ). When choosing a solver, a variety of different things must

be considered and inventing scalable and robust solvers is still topic of ongoing research

(Fröhlich, 2018). For ODEs in computational biology, implicit solvers (Butcher, 1964;

Alexander, 1977; Rosenbrock, 1963) are suited because they can handle stiffness (Resat

et al., 2009; Jia et al., 2011) fairly well (Gonnet et al., 2012). Sometimes, biologically mo-

tived ODEs possess very different time scales. In these cases, one may apply techniques

relying on discrete events (Le˜Novère, 2015; McAdams and Shapiro, 1995). Depending

on whether one requires derivatives ∂x/∂θi, i = 1, . . . , nθ, techniques as forward sensi-

tivity analysis or adjoint sensitivity analysis are applied (Fröhlich, 2018). In literature,

there exist several solvers, e.g. the CVODE solver (Serban and Hindmarsh, 2005) and

enhancements of it (Fröhlich et al., 2017c).
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2.3 Biochemical reaction networks

During the last Section, 2.2, parameter estimation in ordinary differential equations was

formally introduced. Before continuing with methods as MCMC suited for executing

parameter estimation in practice, in this Section a particular class of ODE models derived

from biochemical reaction networks (BRNs) will get introduced. Models of BRNs play

an important role in computational biology as they allow the formulation of complex

hypotheses on molecular level.

Generally, the state of a chemical reaction network can be represented by a vector of

molecule numbers n (Van Kampen, 2007). The probability P : R×RNs×RNr of a certain

state ns for species s at time t is then determined by the Chemical Master Equation

(CME) (Gillespie, 1992),

Ṗ (t, ns, θ) = Ω

Nr∑
r=1

(v̂r(ns − νr, θ)P (t, ns − νr, θ)− v̂r(ns, θ)P (t, ns, θ)) , (2.15)

where v̂r(ns, θ) denotes the microscopic propensity function, i.e., the probability per unit

time for reaction r to occur in an infinitesimal volume, and a macroscopic volume Ω

(Fröhlich, 2018). The analytical solution of the CME and its simulation via the Stochas-

tic Simulation Algorithm (Gillespie, 1977) is typically intractable due to the large number

of attainable system states (Fröhlich, 2018). However, there exist approximative ap-

proaches (Munsky and Khammash, 2006; Gillespie, 2000; Risken, 1996), and often only

the statistical moments of the concentration,

µs = E(ns/Ω), (2.16)

are estimated. The most commonly applied method to obtain estimates, cs, for µs are

Reaction Rate Equations (RREs). Under the assumption of mass action kinetics, the RRE

for the rth non-reversible reaction can be defined by the reaction flux vr,s : RNs×RNθ → R,

vr,s(c, θ) = kr(θ)

Ns∏
s=1

cνsrs , (2.17)

where cs is a mean concentration and kr is a kinetic rate constant. The stoichiometric

matrix S is given by

S = (νsr)s=1,...,Ns;r=1,...,Nr . (2.18)
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The reaction flux v and the stoichiometric matrix S define the RRE,

ċ = S · v(c, θ), (2.19)

whose solution is an approximation for the concentration c at time t. The approxima-

tion tends to become more precise with larger volumes Ω and molecule numbers and will

eventually converge towards the exact average solution of 2.15 for lim
Ω→∞

(Engblom, 2006;

Grima, 2012; Van Kampen, 2007). Due to this asymptotic property, the RRE is often seen

as macroscopic description of the system. Please note, there exist higher order moment

approximations of the CME, e.g., System Size Expansion and Moment-Closure Approx-

imation and more (Fröhlich, 2018; Hespanha, 2008; Singh and Hespanha, 2007; Gandhi

et al., 2000), which all make certain assumptions about P , which are hard to verify a priori

(Fröhlich, 2018; Grima, 2012).

From a mathematical point of view, RREs are a particular special case of ODEs which are

known to facilitate complex behavior as multi-stability, oscillations, chaos and more. In

fact, BRNs described by ODEs make no exception from this. E.g., ”Feedback [loops in the

network] can result in bistable behavior with discrete steady-state activities, well-defined

input thresholds for transition between states and prolonged signal output, and signal

modulation in response to transient stimuli. These properties of signaling networks raise

the possibility that information for ’learned behavior’ of biological systems may be stored

within intracellular biochemical reactions that comprise signaling pathways.“ (Bhalla and

Iyengar, 1999). In fact, one can define precise conditions under which a BRN can or will

behave in a certain topological way (Feinberg and Horn, 1977; Klamt and Gilles, 2004;

Clarke, 1980). Nowadays, there exist several tools to treat, exchange and analyze BRNs,

e.g. the systems biology markup language (SBML) (Hucka et al., 2003), the CellDesigner

toolbox (Funahashi et al., 2008), or the COPASI toolbox (Hoops et al., 2006) to name a

few.

2.4 Markov chain Monte Carlo

MCMC methods are a class of Monte Carlo methods suited for sampling from complicated,

unknown and high-dimensional probability distributions, e.g. the posterior found in ODE

based parameter estimation problems described in Section 2.2 and Section 2.3. In this

context, sampling proceeds by running a Markov chain, whose stationary distribution is

π(θ|D) while the sample gets more representative as its size grows.
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This thesis focuses on application, comparison and improvement of MCMC methods.

Therefore, the mathematical background and notation of MCMC Methods is introduced

in detail (Section 2.4.1) followed by examples of state-of-the-art algorithms (Section 2.4.3).

2.4.1 Theory of Markov chains in MCMC

MCMC algorithms are designed to sample from a target distribution π by employing

Markov chains which possess the target distribution π as an (unique) stationary distribu-

tion. This subsection will formally introduce several important definitions and theorems

about Markov chains in the context of MCMC in order to summarize what is necessary

for such a stationary distribution to exist and the Markov chain to converge towards it.

If not stated otherwise, definitions and statements provided in this chapter are based on

(Meyn and Tweedie, 2012; Robert and Casella, 2013; Geyer, 1992) and (Olsen, 2015),

which provide excellent introductions to Markov chain theory as well.

In order to define a Markov chain, the definition of a transition kernel is required. Let

(Ω,A) be a probability space with a state space, Ω ⊆ Rk, a σ-Algebra A defined by the

power set of Ω with measurable elements A ∈ A.

Definition 2.1 (Transition kernel). A (transition) kernel P (·, ·) is a function defined on

(Ω,A) such that

(i) P (x, ·) is a probability measure on A for all x ∈ Ω and

(ii) P (·, A) is a non-negative measurable function on Ω for all A ∈ A.

Furthermore, an n-step (transition) kernel is defined as

Pn(x,A) =

∫
Ω
Pn−1(y,A)P (x, dy). (2.20)

A Markov chain is defined in terms of its transition kernel.

Definition 2.2 (Markov chain). A time discrete, time invariant stochastic process {Xi}i=1...n

on (Ω,A) is called Markov chain, if it is defined by an initial distribution, X1, and tran-

sition probabilities

P ((xi ∼ Xi) ∈ A|Xi−1 = xi−1, . . . , X1 = x1) = P ((xi ∼ Xi) ∈ A|Xi−1 = xi−1)

=

∫
A
P (xi−1, dy) (2.21)

for i = 2, . . . n, realizations xi ∼ Xi and a measurable set A ∈ A.
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Equation 2.21 generates a stochastic process {Xi}i=1...n whose next realization only de-

pends on the current state of the chain. Note, that a transition kernel as defined in 2.1

will often be expressed in terms of its corresponding transition density p(x, y) so that

P (x,A) =

∫
A
p(x, y)µ(dy) (2.22)

where µ denotes a positive σ-finite measure on (Ω,A). The existence of p is ensured by the

Radon-Nikodym Theorem (Resnick, 2013) and will be often used throughout the notation

of this thesis. Markov chains on continuous times, are called Markovian processes (Robert

and Casella, 2013) and are not treated during this thesis.

Example 2.3 (Metropolis-Hastings Transition Kernel). The most common type of tran-

sition kernel in MCMC literature is the kernel introduced by Metropolis et al. (1953) and

Hastings (1970). It founds the basis for a variety of modern algorithms (see Section 2.4.3).

Let π be a target measure on (Ω,A), e.g. as defined for a parameter estimation problem as

in Section 2.2. Here, the transition density p is defined in terms of an algorithm-specific

proposal density q and the Metropolis-Hastings acceptance criteria pacc,

p(x, y) = pacc(x, y)q(y|x)(1− δx(y)) +

(
1−

∫
Ω
q(z|x)pacc(x, z)dz

)
δx(y). (2.23)

The Metropolis-Hastings acceptance criteria is defined as

pacc(x, y) = min

(
1,
π(y)q(x|y)

π(x)q(y|x)

)
. (2.24)

Note, that Equation 2.23 describes the transition of the chain starting from point x either

towards a novel point y or the old position x once more. Hereby, the first term in Equation

2.23 covers novel accepted points y and the second term covers rejections (see Sections 2.4.3

or 5.2.2 for additional details of the Metropolis-Hastings algorithm).

Markov chains defined by MCMC algorithms share certain properties which guarantee

proper behavior. In the following, these properties are introduced and finally connected

to the important concepts of ergodicity and central limit theorems which guarantee chain

convergence in distribution within controlled terms.

The first definition is ϕ-irreducibility, which basically states, that a Markov chain is able

to move from any x to any A, as long as A has a non-vanishing measure regarding ϕ.

Definition 2.4 (ϕ-irreducibility). A Markov chain {Xi}i=1,...,n with kernel P (·, ·) is called

ϕ-irreducible for a measure ϕ on A if for every A ∈ A with ϕ(A) > 0 there exists an b ∈ N
so that P b(x,A) > 0 for all x ∈ Ω.
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Building on ϕ-irreducibility, (Meyn and Tweedie, 2012) introduced ψ-irreducibility, which

follows Definition 2.4 while guarantying that negligible sets B ∈ A with ϕ(B) = 0 are

avoided with probability one from most starting points. While ψ-irreducibility is inter-

esting for theoretical purpose, the existence of measure ψ conveniently follows from ϕ-

irreducibility and there is a way of constructing it (Meyn and Tweedie, 2012, Proposition

4.2.2).

While irreducibility is important for the chain to be able to visit all places of the state

space Ω the next important property, aperiodicity, is important to ensure that there is no

repeating structure in the way it moves.

Definition 2.5 (Aperiodicity). A ψ-irreducible Markov chain {Xi}i=1,...,n with kernel

P (·, ·) possesses d disjoined sets D1, . . . , Dd ∈ A such that

P (x,Di+1) = 1 for x ∈ Di, i = 1, . . . , d− 1 (2.25)

and

P (x,D1) = 1 for x ∈ Dd (2.26)

while ψ
(
(∪· di=1Di)

c
)

= 0. If d = 1, the chain {Xi}i=1,...,n is aperiodic (Meyn and Tweedie,

2012, Theorem 5.4.4).

Aperiodicity (and therefore irreducibility) is one of the necessary ingredients for Harris

ergodicity introduced below. Another ingredient for Harris ergodicity is recurrence. Re-

currence of a Markov chain makes a statement about how often a chain would visit a

certain set A ∈ A if the chain was run infinitely long.

In order to define recurrence, one needs the indicator function

1A(x) =

1, x ∈ A

0, x /∈ A
(2.27)

and the number of passages of xi trough A ∈ A,

ηA = lim
n→∞

n∑
i=1

1A(xi). (2.28)

Furthermore, the notations for the conditioned probability Px(·) = P (·|X1 = x) and

expectation Ex(·) = E(·|X1 = x) given a certain initial state of the chain will be used in

the following.
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Definition 2.6 (Recurrence). A ψ-irreducible Markov chain is recurrent if for every A ∈
A with non-zero measure, ψ(A) > 0, the expected number of passages through A, Ex(ηA) =

∞, is infinite.

Recurrence implies that a chain is expected to visit non-zero measure sets A infinitely

often. There is an even stronger property called Harris recurrence, from which recurrence

follows.

Definition 2.7 (Harris recurrence). A ψ-irreducible Markov chain is Harris recurrent if

for every A ∈ A with ψ(A) > 0 is Px(ηA =∞) = 1 for all x ∈ A.

While recurrence indicates an infinite expectation of the number of visits, Harris recurrence

indicates that each chain almost surely visits a non-zero measure set A infinitely often

(Meyn and Tweedie, 2012) – which is a stronger condition.

Before irreducibility, aperiodicity and recurrence will be used to introduce chain con-

vergence, first the concept behind convergence is formalized. MCMC methods have the

purpose to sample from a probability distribution π. The first step is to define π as an

invariant measure of the Kernel P .

Definition 2.8 (Invariant measure). Let π be a probability measure for which

π(A) =

∫
Ω
P (x,A)π(dx), ∀A ∈ A (2.29)

holds. Then π is invariant for P (·, ·) and the corresponding Markov chain. The corre-

sponding Markov chain is called positive if such an invariant measure exists. Otherwise

it is called null. If the marginal of the Markov chain, X1 = π, is invariant, the chain is

stationary.

Note, that π being invariant for P does not guarantee the convergence of the Markov chain

towards π. A Markov chain possessing an invariant transition kernel is not the same as

being stationary. The former is determined just by the kernel of the chain, while the latter

is determined by the kernel and the initial distribution X1 (Geyer, 1992). In practice, this

difference may causes burn-in which is discussed in Section 3.2.1. A useful connection

is the following theorem as it shows that the existence of an invariant measure is quite

powerful.

Theorem 2.9 (Uniqueness of invariant measure). ψ-irreducible positive chains are Harris

recurrent (Meyn and Tweedie, 2012, Proposition 10.1.1) and the corresponding invariant

measure π is unique up to a constant (Meyn and Tweedie, 2012, Theorem 10.4.4).
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Thus, for irreducible chains, if an invariant measure exists, it is unique as well. Because

positiveness implies Harris recurrence, these terms are often used together. However, the

existence of an invariant measure π is questionable in general. One common approach to

prove existence of an invariant measure π is to apply the detailed balance criteria. While

it is easy to apply, it is a rather restricting sufficient condition for the existence of an

invariant π.

Definition 2.10. A Markov chain {Xi}i=1,...,n and a kernel density p satisfy detailed

balance if there exists an function f such that

p(y, x)f(y) = p(x, y)f(x) (2.30)

for all x, y ∈ Ω.

Another implication of detailed balance is reversibility, a property which is commonly

discussed in MCMC literature.

Definition 2.11. A Markov chain {Xi}i=1,...,n is reversible if the conditional distribution

P (Xi = x|Xi+1) = P (Xi = x|Xi−1) for all i ≥ 2.

The following theorem connects detailed balance with the existence of an invariant set and

reversibility.

Theorem 2.12. A Markov chain {Xi}i=1,...,n with a kernel P fulfilling detailed balance

regarding a probability measure, π,

(i) has π as an invariant density and

(ii) is reversible.

Thus, detailed balance is one particular way of showing the existence of an invariant

measure π for the transition kernel. The existence of an invariant measure is, however, a

prerequisite for chain converge which will be introduced next by the definitions of total

variance distance and Harris ergodicity3. Please note, reversibility is not crucial to prove

Harris ergodicity and thus the overall convergence of a chain. However, reversibility may

be used beneficially in order to treat convergence rates as discussed below (Kontoyiannis

and Meyn, 2009; Jones et al., 2004).

Harris ergodicity guarantees convergence of the kernel towards an equilibrium density π.

3 Sometimes just called ergodicity.
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Definition 2.13 (Harris ergodicity). An aperiodic and positive Harris recurrent (and

thus ψ-irreducible by the prerequisites of thee) Markov chain {Xi}i=1,...,n is called Harris

ergodic.

In order to talk about the two major benefits of Harris ergodic chains, first the total

variance distance has to be introduced.

Definition 2.14 (Total variance distance). Denote µ1 and µ2 as two measures on (Ω,A).

The total variance distance is defined as

||µ1(·)− µ2(·)||TV = sup
A∈A
|µ1(A)− µ2(A)|. (2.31)

The definition of total variance distance gives rise to the following theorem.

Theorem 2.15 (Theorem 13.3.3, (Meyn and Tweedie, 2012)). For a Harris ergodic chain

with kernel P and a stationary distribution π(·),

lim
n→∞

||Pn(x, ·)− π(·)||TV = 0 (2.32)

holds for every x ∼ X1 and any initial distribution X1.

Therefore, a Harris ergodic chain converges in total variance distance towards its stationary

distribution regardless of the initial distribution which is a strong result. Another equally

strong result is the following theorem.

Theorem 2.16 (Law of large numbers, Theorem 17.0.1, (Meyn and Tweedie, 2012)). For

a Harris ergodic chain {xi}i=1,...,n with target density π and a measurable function g, such

that Eπ(|g|) = lim
n→∞

n−1
∑n

i=1 |g(xi)| <∞, the law of large numbers,

lim
n→∞

n−1
n∑
i=1

g(xi) = Eπ(g), (2.33)

holds almost surely for any initial value x1 ∼ X1 and every initial distribution X1.

Thus, for a Harris ergodic chain the average function values do almost surely converge

towards the desired expectation value. This is important in practice, as it allows for

precise propagation of parameter samples trough a non-linear model in order to obtain

model prediction uncertainty (see Section 2.2 and 2.5).
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There are multiple stronger versions of ergodicity. The most common ones are geometric

and uniform ergodicity (Meyn and Tweedie, 2012). In addition to the convergence in

variation and law of large number guaranteed by Harris ergodicity, they further allow to

appraise upper bounds of convergence rates.

Definition 2.17 (Geometric and uniform ergodicity). A Harris ergodic chain is geomet-

rical ergodic if for some function M : Ω → R+ and any x ∈ Ω there exists a constant

r ∈]0, 1[, such that

||Pn(x, ·)− π(·)||TV ≤M(x)rn, (2.34)

for any positive integer n. A special case and even stronger version of geometric ergodicity

is if M(x) is bounded. This case is called uniform ergodicity.

The upper definition states, that the difference between an n-step kernel Pn and the target

density π does decrease in each step by at least a factor r which is thus an upper bound

for convergence of the chain. While Harris ergodicity is common for MCMC algorithms,

geometric ergodicity is less frequent and more difficult to show (Olsen, 2015). Geometric

ergodicity can be proven using so called minorization and drift conditions (Meyn and

Tweedie, 2012) or small-sets (Meyn and Tweedie, 2012).

Note, reversibility impacts calculus in spectral gap theory (Kontoyiannis and Meyn, 2009),

which can be used for the determination of convergence rates r of geometrically ergodic

chains (Rosenthal, 1995; Meyn et al., 1994). In particular, it determines whether Hilbert

spaces, L2, or L∞ spaces have to be used in order to obtain spectral theory results (Kon-

toyiannis and Meyn, 2009). In the latter, the kernel P does not possess the properties

of a linear, self-adjoint operator, making the calculus arguably harder (Kontoyiannis and

Meyn, 2009).

In addition to the law of large numbers, central limit theorems (CLTs) are of practical

interest, as they quantify the asymptotic variance of the difference between estimate and

true functional of π (Jones et al., 2004). They basically determine how precise a functional

estimate gn = n−1
∑n

i=1 g(Xi) can get, by guaranteeing

√
n(gn − Eπ(g))→ N (0, σ2

g), (2.35)

almost certainly for n → ∞ with a variance σ2
g which often has to be estimated (Olsen,

2015). There exist several criteria for CLTs to hold, e.g. (Jones et al., 2004, Theorem

9). Interestingly, reversibility does impact the calculus of central limit theorems as it is

shown, that if the detailed balance (and thus reversibility) holds, a central limit theorem
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can be proven for geometric ergodic chains for which Eπ(g2) < ∞ holds. In contrast,

without the assumption of reversibility, higher moments must be assumed to be finite,

e.g. Eπ(|g|δ+2) < ∞ for some δ > 0 in order to prove a CLT. Furthermore, the type of

ergodicity, e.g. geometric or polynomial (Jones et al., 2004), do determine the behavior

of σ2
g (Jones et al., 2004). As Markov chains are auto-correlated, σ2

g 6= V arπ(g) would be

a poor estimate. However, low auto-correlation of the chain implies smaller σ2
g and thus,

by Equation 2.35, higher precision of the MCMC approximation towards Eπ(g).

In this section, the theoretical results for time homogeneous Markov chains in the context

of MCMC were summarized. However, there exists several adaptive algorithms (see Sec-

tion 2.4.3) which are not time homogeneous anymore. Fortunately, the theory can often

be extended towards those cases (Roberts and Rosenthal, 2007; Rosenthal and Yang, 2017;

Craiu et al., 2015). Some of these results will be used during Chapter 5 in order to prove

ergodicity for a novel adaptive method.

2.4.2 Finite MCMC samples

For MCMC algorithms, Harris ergodicity (as discussed in Section 2.4.1) provides a theo-

retical statement of MCMC convergence for infinite long chains. However, in practice the

generated Markov chains are finite and Harris ergodicity becomes a necessary but not a

sufficient condition for the generation of a representative sample of the target distribution

π. Hereby, the term representative belongs to chains for which the number of iterations is

sufficiently large in order for the CLT, Equation 2.35, to hold. This implies that MCMC

estimates are typically biased if n is too small (Jacob et al., 2017). Unfortunately, for a

given problem it is typically not clear how many samples are required for the theorems in

Section 2.4.1 to apply. This unknown number of required samples, n, does depend on the

specific problem, the performing algorithm, its tuning parameters, the position where the

chain is initialized and even the random seed used in a certain run as will be discussed

and exemplified in Chapter 4. In literature, there exists a variety of statistical tests and

convergence diagnostics, e.g. (Cowles and Carlin, 1996b). However, there are several rea-

sons which can cause a finite MCMC sample to become non-representative (see Chapter

3) which are difficult to address with just one of these approaches. Generally, existing con-

vergence diagnostics tend to systematically overestimate sampling quality. The reasons for

non-representativity will be discussed in detail within the Problem Statement of Chapter

3 to motivate the development of an analysis pipeline during Chapter 3. The pipeline is

meant to identify non-representative MCMC samples and suited for the analysis of di-

verse MCMC results for an arbitrary posterior density. It combines several convergence

diagnostic approaches to decrease the the likelihood of overestimating sampling quality.
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Table 2.1: An incomplete list of MCMC methods.

Algorithm Signature Mechanism Source

MH Classic MCMC with fixed proposal 1953; 1970
AM Adapts proposal density over time 2008

DRAM Repeated proposals after rejection 2006
MALA Uses derivative information about the objective to propose 2011
HMC Hamiltonian movement through objective landscape 2011
PT Samples and exchanges multiple tempered objectives 2013; 2016; 2013

PHS Employs and exchanges multiple chains 2012
Gibbs Samples from full conditional distribution 1992; 1984; 2003
MiG Metropolis techniques within Gibbs 2017

RJ MCMC Reversible-jump MCMC extents to spaces of varying dimensions 1995; 2011
SS Slice Sampling of the objective landscape 2003

Copula MCMC Disentangling of marginals and dependency of parameters 2013
Wormhole MCMC Special HMC adding shortcuts to the parameter space 2014

No-U-turn Special HMC with forced directions 2014

While the pipeline employs multiple MCMC runs in order to decrease the likelihood of

underestimating the convergence time, other novel approaches employ multiple chains as

well in parallel in order to directly obtain unbiased Monte Carlo estimates (Jacob et al.,

2017).

2.4.3 MCMC methods

The following section is based on (Ballnus et al., 2017).

A well-known MCMC algorithm is the Metropolis-Hastings (MH) algorithm (Metropolis

et al., 1953; Hastings, 1970). The MH algorithm samples from the posterior via a weighted

random walk. Parameter candidates are drawn from a proposal distribution and accepted

or rejected based on the ratio of the posterior at the parameter candidate and the current

parameter. The choice of the proposal distribution is a design parameter. In practice the

distribution is frequently chosen to be symmetric, e.g., a normal distribution, and centered

at the current point.

While being the theoretical foundation of modern MCMC algorithms, in practice the MH

algorithm has several shortcomings, including the need for manual tuning of the proposal

covariance and high autocorrelation (Andrieu et al., 2003). Accordingly, a large number

of extensions has been developed. In the following two subsections, multiple extensions

and alternatives for MH MCMC sampling (see Table 2.1) are shortly presented.

In Chapter 4 of this thesis some of these extensions are benchmarked. Figure 2.2 highlights

the differences between the sampling methods employed in this thesis using a pseudo-code
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representation. In the following, the three single-chain and the two multi-chain methods

employed in Chapter 4 are introduced.

Adaptive Metropolis (AM): The AM algorithm is an extension of the standard MH

algorithm. Instead of using a fixed proposal distribution which is tuned manually, the

distribution is updated based on the already available samples. In particular, for posteriors

with high correlation, this improves sampling efficiency by aligning the proposal with the

posterior distribution (Andrieu and Thoms, 2008). In addition to the correlation structure,

the scale of the proposal is also adapted. A commonly applied scaling scheme is based on

the dimension of the problem (Haario et al., 2001, 2006) while other possible schemes are

based on the chain acceptance rate (Miasojedow et al., 2013). These scaling schemes are

in the following (in particular Chapter 4) indicated by ‘dim’ and ‘acc’, respectively.

Delayed Rejection Adaptive Metropolis (DRAM): To further decrease the in-

chain auto-correlation, the AM algorithm has been combined with a delayed rejection

method, yielding the DRAM algorithm (Haario et al., 2006). When a candidate parameter

is rejected, the algorithm tries to find a new point using the information about the rejected

point. This is repeated multiple times until a certain number of tries is reached or a point

is accepted. During Chapter 4, the implementation provided in (Haario et al., 2006) is

employed and is exclusively based on the previously mentioned ‘dim’ adaption scheme.

Metropolis-adjusted Langevin Algorithm (MALA): Both, AM and DRAM, work

best if the proposal density suits the local shape of the posterior. Otherwise, the perfor-

mance of the algorithm suffers, i.e. the in-chain auto-correlation increases. To circumvent

this problem, the MALA makes use of the gradient, ∇θp(θ|D), and Fisher Information

Matrix (Girolami and Calderhead, 2011) of the estimation problem at the current point

in parameter space. This information is used to construct a proposal which is adapted to

the local posterior shape (Calderhead, 2011; Girolami and Calderhead, 2011). Gradient

and Fisher Information Matrix can be computed using forward sensitivity equations (Raue

et al., 2009).

Parallel Tempering (PT): All of the algorithms, AM, DRAM and MALA, discussed so

far are single-chain algorithms which exploit local posterior properties to tune their global

movement. This can make transitions between different posterior modes unlikely if they

are separated by areas of low probability density. To address the issue, PT algorithms
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Figure 2.2: Pseudo-code for the AM, DRAM, PT, PHS and MALA routines as
employed during Chapter 4. The pseudo-code highlights differences between MCMC
methods using comments indicated by “//” and the color-coded name of the relevant
algorithm either AM, DRAM, PT, PHS or MALA.
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have been introduced. These algorithm sample from multiple tempered versions of the

posterior p(D|θ)
1
βl p(θ), βl ≥ 1, l = 1, . . . , L, at the same time (Miasojedow et al., 2013;

Sambridge, 2013; Vousden et al., 2016). The tempered posteriors are flattened out in

comparison to the posterior, rendering transitions between posterior modes more likely.

Allowing the tempered chains to exchange their position by chance enables the untempered

chain, which samples from the posterior, to ‘jump’. During Chapter 4, the PT algorithm is

implemented as formulated by Lacki and Miasojedow (2015) using AM with ‘acc’ adaption

scheme or MALA for each tempered chain.

Different initial numbers L0 of tempered chains, adaptive L ≤ L0 or fixed numbers L = L0

and two different swapping strategies (Lacki and Miasojedow, 2015) were considered:

• Swaps between all adjacent chains (aa)

• Swaps of chains with equal energy (ee)

are employed. A more detailed discussion is provided along the motivation of the novel

method presented in Chapter 5, as PT provides one of its core mechanics.

Parallel Hierarchical Sampling (PHS): An alternative to PT is PHS, which employs

several chains sampling from the posterior (Rigat and Mira, 2012). Similar to PT, the idea

is to start multiple auxiliary chains at different points in parameter space and to swap the

main chain with a randomly picked one in each iteration. The main differences between

PT and PHS are that all chains of PHS sample from the same distribution and that a swap

between main and auxiliary chains is always accepted in PHS. The use of multiple chains

can improve the mixing as different chains can employ different proposal distributions (Hug

et al., 2013). During Chapter 4, for each of the auxiliary chains AM(‘acc’) is applied.

Further methods The aforementioned methods were selected with the rationale to

cover the most widely employed archetypes of MCMC. For example the MALA was cho-

sen to cover gradient based MCMC algorithms. However, beside the aforementioned algo-

rithms there exists large set of other MCMC methods which are not quantitatively assessed

in this thesis. Some of thee are described in the following.

Hamilton or hybrid Monte Carlo (HMC) methods (Neal, 2011) are MCMC algorithms

which exploit gradient information to propose parameter candidates without the arguably

slower mixing of the diffusion like proposal strategies other methods as the AM employ

(Neal, 2011). HMC is motivated by Hamiltonian mechanics calculus from physics, where
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a body possesses a certain position q, momentum p, kinetic energy K and potential energy

U and where its movements are treated similar to a marble toss through a landscape via

the Hamilton equations

dq

dt
=

∂H

∂p

dp

dt
= −∂H

∂q

(2.36)

where

H(q, p) = U(q) +K(p) (2.37)

is the Hamiltonian. The potential U(q) is defined by the target density, i.e. it is the

negative logarithm of the posterior density,

U(q) = − log
(
π(q|D)

)
. (2.38)

The kinetic energy K(p) is a function of the momentum p, typically

K(p) = pTM−1p/2, (2.39)

where M is some design matrix often chosen diagonally. It was suggested to choose M

so that the acceptance of the chain is ∈ [0.6, 0.9] (Beskos et al., 2013). For the purpose

of HMC, the initial position, q0 = θi−1, is defined by the last point of the chain, θi−1.

The initial momentum, p0, is treated as a random variable, e.g. p0 ∼ N where N is the

multivariate standard normal distribution in nθ dimensions. Given the initial conditions,

the solution of the Equations 2.36 can be approximated, e.g. by Euler, modified Euler or

leapfrog solvers (Neal, 2011) by evaluating the posterior multiple times depending on the

discretization and step sizes used. For the usual default choice, leapfrog, the optimal step

sizes were investigated (Beskos et al., 2013; Betancourt et al., 2014). In order to accept a

proposed point, in HMC one must evaluate the acceptance probability,

pacc = min{1, exp(H(qi−1, pi−1)−H(q∗, p∗))}, (2.40)

given the old positions and momentum qi−1, pi−1 and the candidates q∗, p∗. The advantage

of HMC is that it may significantly speed up the performance of MCMC in problems where

there is a strong dependency structure in the parameters, e.g. a banana shaped mode.

However, the required choice of the distribution of the momentum and the design matrix

M , and the need for multiple evaluations of the posterior density π(θ|D) and its required
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derivative ∂π(θ|D)/∂θ are drawbacks of the method. HMC algorithms are getting actively

developed and novel methods, e.g. the no-U-turn sampler (Hoffman and Gelman, 2014)

or wormhole HMC (Lan et al., 2014), improve the overall performance or by adding self-

tuning components and novel mechanics as the prevention of u-turns or shortcuts between

posterior modes to the method.

Gibbs sampling (Casella and George, 1992; Geman and Geman, 1984; Andrieu et al.,

2003) is a sampling algorithm designed for obtaining samples from multivariate probability

distributions by sampling from the full conditional marginals in order to improve efficiency.

Gibbs sampling employs a MH algorithm with a particular structured proposal density,

q(θ∗j |θi−1) = π(θ∗j |D; θi−1
1 , . . . , θi−1

j−1, θ
i−1
j+1, . . . , θ

i−1
nθ

) ∀j = 1, . . . , nθ. (2.41)

Thus, in order to employ Gibbs sampling the full conditional target density has to be evalu-

able. The corresponding acceptance probability, pacc, can be shown to be pacc = 1 (An-

drieu et al., 2003) which makes Gibbs sampling efficient if applicable. In cases where the

full conditional probability, π(θ∗j |D; θi−1
1 , . . . , θi−1

j−1, θ
i−1
j+1, . . . , θ

i−1
nθ

), is unknown, Algorithm-

within-Gibbs methods can be applied instead. These methods employ sequential parame-

ter updates as Gibbs sampling but use other proposal densities than the full conditional

probability of a parameter, e.g. in case of Metropolis-within-Gibbs,

q(θ∗j |θi−1) = N (θ∗j |θi−1
j , σ2) ∀j = 1, . . . , nθ, (2.42)

with σ being the fixed standard deviation of the proposal density. There exists a variety

of more sophisticated hybrids, e.g. HMC-within-Gibbs (Dang et al., 2017). Note, for

algorithm-within-Gibbs methods, the acceptance probability, pacc, does no longer neces-

sarily equal one as for the Gibbs sampler. In general, Gibbs sampling based algorithms

have problems of sampling strongly correlated or anti-correlated parameters and can get

inefficient if there is a single area of high probability in parameter space. There exist

several extensions of Gibbs sampling, e.g. block-wise Gibbs sampling (Djuric and Chun,

2002) or particle Gibbs (Chopin et al., 2015) to overcome problems the original algorithm

possesses.

Reversible-jump MCMC methods extends MCMC so that spaces of varying dimension

can be sampled (Green, 1995; Brooks et al., 2011). This is particularly useful in problems

where the true number of parameters is unknown, e.g. in model selection problems (Green,

1995).

Slice sampling (Neal, 2003) is a class of MCMC algorithms similar to the class of Gibbs-
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and Metropolis samplers. The proposal density of MH and Gibbs are replaced by slicing

the target density π(θ|D) in order to obtain a Markov chain which samples from the

posterior. Given a θ, the idea of slice sampling is to

(i) sample y uniformly between [0, π(θ|D)]

(ii) use y to obtain all θ so that π(θ|D) ≥ y, namely the set π−1([y,∞))

(iii) to uniformly draw another θ from the set π−1([y,∞)).

Hereby, the problem of finding a good proposal density for drawing candidate points, as

in MH, is replaced by obtaining slice intervals. Thus, the method naturally adapts to the

shape of π(θ|D). However, in high dimensions, finding slices is not straightforward. A

collection of approaches, e.g. using reflective slice sampling were discussed (Neal, 2003).

Sequential Monte Carlo methods can be used to construct proposal densities in high di-

mensions (Andrieu et al., 2010). The corresponding MCMC method is called particle

MCMC (Andrieu et al., 2010). There exist tempered versions of sequential Monte Carlo

(Latz et al., 2018). Another approach to construct problem specific proposal densities is

copula MCMC (Schmidl et al., 2013). This approach uses a D-vine copula decomposition

(Hofmann and Czado, 2010) of a pre-run sample to construct a joint density function of

the form

q1(θ|γ, η) = c(G1(θ1|γ), . . . , Gnθ(θnθ |γ)|η)

nθ∏
i=1

gi(θi|γ), (2.43)

where c denotes the D-vine copula density, G and g are the marginal cumulative distribu-

tion functions and densities and γ, η denote the parametrization of the copula represen-

tation found by the pre-sample. q1 is combined with fixed MH proposals, q2 and q3, for

improved robustness of the method (Schmidl et al., 2013).

2.5 Uncertainty quantification

Maximum-a-posteriori estimates (as in Equation 2.3) are point estimates θ∗ for the true

parameter value, namely, the most likely realization of the parameter, θtrue, given data

and prior knowledge. Unfortunately, in general θtrue may be non-unique in which case the

parameter is called non-identifiable (Raue et al., 2010). In these cases, the estimated value

θ∗ is unreliable and conclusions based on the estimate have little meaning (Hasenauer,

2013). In particular, the value of θ∗ may differ from estimate to estimate and each different
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value leads to a different prediction which establishes wrong expectations (Hasenauer,

2013).

Non-identifiabilities can be driven by the structure of the underlying model (Chis et al.,

2011; Raue et al., 2009). For example, for ODE-constrained parameter estimation (see

Section 2.2 for an introduction), if the fraction of parameters θ1/θ2 appears exclusively

throughout the ODE while θ1 and θ2 do not appear in other constellations, then θ1 and θ2

are structurally non-identifiable as a larger value of θ1 could be compensated by a smaller

value of θ2 and vice versa in order to obtain the same output of the model. Structural

identifiability analysis provides information about the topology of the model regarding its

output and is independent of specific data sets (Fröhlich, 2018). Complementary, practical

non-identifiability (Raue et al., 2009) arises given data. This type of non-identifiability is

driven by structural properties of the model and redundancies or noise in the data.

Generally, in order to account for non-identifiabilities, an uncertainty analysis needs to

be carried out. Uncertainty analysis incorporates global information about the posterior

π(θ|D) beyond what point estimates, θ∗, can provide. One approach are profile calculations

(Raue et al., 2010, 2013a; Stapor et al., 2017) as in Equation 2.4. Flat profiles are necessary

but not sufficient for a non-identifiability to exist (Hug, 2015). Alternatively, a more

comprehensive and expensive approach is sampling as it provides parameter dependencies

as well (see below) and guarantees a sufficient detection of non-identifiability. In general,

one is interested in either obtaining confidence regions in case of a frequentist view or

credible regions in case of Bayesian statistics. Both are regions R ∈ Rnθ in the posterior

landscape which provide a quantified measure of parameter uncertainty given a confidence

level 1− α so that, e.g., in the case of a posterior credible region,∫
R
π(θ|D)dθ = 1− α. (2.44)

Both views on the region R differ in their philosophy. Confidence regions assume the

(unknown) parameter value θtrue to be fixed and the bounds of the confidence region

to be random variables. In contrast, credible regions treat the parameter, θ, as random

variable and the parametrization of R as fixed. As can be seen from 2.44, confidence and

credible intervals are not unique.

There exist a variety of different methods to calculate confidence or credible regions in

practice (Lu et al., 2012; Raue et al., 2010; Chen and Shao, 1999; DiCiccio and Efron,

1996; Joshi et al., 2006). Some of the methods are more precise or make fewer assump-

tions, e.g. by not assuming symmetric marginals (Chen and Shao, 1999). An MCMC

sample can naturally be employed for obtaining credible intervals by sorting the samples
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θ1, . . . , θn regarding their posterior values π(θ1|D), . . . , π(θn|D) and taking only the first

1 − α percentile into account for a region estimate, e.g. via kernel smoothing density

estimate.

On top of parameter uncertainties, one is often interested in prediction uncertainties in

order to quantify the predictive power of the model. This can be accomplished by prop-

agating the sample through the model, y, e.g. as defined in Section 2.2, and calculating

credible intervals for each time point (Hasenauer, 2013) separately.

Parameter uncertainties often include dependencies between different parameters. In this

case, some directions can be determined precisely while others carry large uncertainties.

This is known as sloppiness. The simplest example is a linear dependency between two

parameters as strong positive or negative correlations often imply that individual param-

eters get very uncertain. This often happens with sums or products of parameters, e.g. as

in the example θ1/θ2. However, there often exist non-linear dependencies or dependencies

between more than two parameters as well, which can also be seen as non-identifiabilities.

For example, in Chapter 5 a 20-dimensional Gaussian ring example will be introduced,

where two parameters possess a non-linear dependency and non-identifiability. There ex-

ists a variety of different approaches to reveal parameter dependencies, e.g. via principal

component analysis (Jolliffe, 2002), Correlation analysis (Rodgers and Nicewander, 1988),

maximum information coefficients (Reshef et al., 2011). In some cases, the knowledge

about parameter dependencies can be used to identify uncertain directions and sloppiness

in parameter space (Apgar et al., 2010) or for model reduction (Balsa-Canto et al., 2010).

Throughout this background chapter, the required introduction and notation for the fol-

lowing main chapters was introduced. In particular, Bayesian parameter estimation with

application to ODE-constraint problems was formalized and Monte Carlo methods, in

particular MCMC were discussed in detail. Chapter 3 will focus on the analysis and qual-

ity assessment of samples generated by Monte Carlo methods. Chapter 4 will critically

evaluate a variety of standard MCMC methods in diverse ODE-constraint parameter esti-

mation problems and Chapter 5 will introduce a novel MCMC method to improve practical

inference for a broad range of problems.
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Chapter 3

Quantification of sampling quality

This chapter is based on (Ballnus et al., 2017).

In Chapter 2.4.2, it was first mentioned that finite sample sizes may result in non-

representative MCMC samples. While this problem is common across different appli-

cations, there is no standard procedure for the assessment of sample quality. Additionally,

it is still common practice to judge sample quality by a visual (and thus subjective) in-

spection of the distribution marginals only. The development of reliable quality measures

is naturally harder for sampling results than it is for optimization results as optimization

yields point estimators of the posterior while a sample has to cover many other statistical

moments (e.g. variance) of the posterior as well.

In this Chapter, the possible finite-time sampling behaviors are outlined and used to

develop a semi-automated analysis pipeline suited for quality assessment of MCMC sam-

ples. The pipeline increases robustness and lowers subjectivity compared to established

approaches. In particular, it allows for quantitative assessment of sampling performance

across different methods with different properties. The pipeline will be used as basis for

the results presented in Chapter 4 and Chapter 5.
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3.1 Introduction and problem statement

MCMC algorithms are designed to be ergodic in order to converge independently of ini-

tialization towards a certain stationary probability distribution (see (Meyn and Tweedie,

2012) and Chapter 2). As ergodicity is an asymptotic property, for finite sample sizes there

is no guarantee that the chain has already become representative for the posterior density.

This, however, is crucial for real world applications. While it is true, that an MCMC chain

will be representative at some point, it is questionable whether a finite chain has already

become representative towards the underlying probability distribution. There are multiple

reasons which may cause an MCMC chain to be not representative, yet. In practice, only

few or none of the reasons are analyzed quantitatively often making quality judgment of

results prone to errors and method selection for a given problem a matter of empirical

experience.

For fully assessable posterior distributions, one could directly check, if a chain is represen-

tative, e.g. by comparing the empirical density estimate of the sample with the posterior

density by using statistical tests as Kolmogorov–Smirnov (or multivariate extensions). Un-

fortunately, in most applications, the full posterior distribution is not known. Thus, one

often has to purely rely on the information gained during the sampling process and judge

the quality of an MCMC sample without knowing the ground truth. In literature there ex-

ist a variety of so-called convergence tests (Brooks and Roberts, 1998; Cowles and Carlin,

1996a; Mengersen et al., 1999). These rejection tests do typically assess one of the empir-

ical properties of the chain to judge whether a chain is significantly non-representative.

All of them have in common, that they can only suggest a chain is representative by not

finding a significant result for the opposite. Obviously, even if such a convergence test is

passed, it is not ensured that a chain is representative. Indeed, there is a high chance

of systematic false negatives driven by a combination of common problems observed in

MCMC samples (as discussed below) which are hard to capture by a single test at a time.

In this chapter, the lack of methods for a thorough comparison and robust, quantified

assessment of MCMC results is addressed.

3.2 Symptoms of MCMC failure

In order to develop comprehensive analysis tools to assess MCMC sampling quality quanti-

tatively, first the potential problems which may arise in applications have to be identified.
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Figure 3.1: Representative and non-representative MCMC samples of a bi-
modal one-dimensional posterior density. The figure is inspired by (Andrieu
et al., 2003). (A) A representative sample of the posterior. (B) Non-representative
sample due to burn-in bias. (C) Non-representative sample due to high auto-correlation
caused by small movements. (D) Non-representative sample due to high auto-correlation
caused by a low acceptance rate. (E) Non-representative sample due to insufficient explo-
ration.

While some of the discussed problems are covered in MCMC literature, they are typically

not addressed as a whole. This is problematic because they interact, e.g. a chain which

suffers from burn-in bias, will very likely possess a very low effective sample size. In the

following, these terms will be introduced in detail and discussed.

3.2.1 Burn-in

A common reason for finite chains to become non-representative of the posterior distri-

bution is a distortion in the sample due to initialization called burn-in. Hereby, the first

part of a Markov chain is influenced by the starting point and, for adaptive methods,

by the initial choice of the adaptation parameters (Calderhead, 2011). Please note, for

finite chains burn-in may exist regardless of ergodicity and might substantially impact the

results.

Informally spoken, if the chain is initialized far from the modes of the posterior density,

the chain usually requires some iterations before it reaches the more likely areas of the

parameter space. Depending on the given problem, algorithm and initialization, burn-

in may take substantially many iterations causing a distortion of the empirical sample
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regarding the true posterior as unlikely areas of the posterior are overrepresented (Figure

3.1B). In the worst case, for the given amount of MCMC iterations a chain may not be

able to reach the relevant areas in the parameter space at all.

Example: Let a posterior density π be given by a 1-dimensional standard normal density

π(θ) = N(θ|0, 1).

For a point to be realized between θ = −0.5 and θ = 0.5, the probability is P (θ ∈
[−0.5, 0.5]) = 0.38 while points far away from the origin have the chance P (θ ≤ −10) =

7.6·10−24. If the chain is initialized at −10, it would almost certainly move quickly towards

a region around 0. However, −10 would still be part of the chain. In contrast, if the chain

has been started in 0, it would probably need about 1024 iterations to draw one single

point beyond −10. This said, from a theoretical perspective −10 is a legitimate point of

the chain. Yet, for finite samples of length noticeably smaller than 1024 such a point adds

a statistically distortion to the result.

In addition to the positional initialization of the chain, initialization of adaptive parameters

may cause burn-in effects, e.g., the Adaptive Metropolis algorithm learns and scales the

parameters of its proposal density on the fly (Haario et al., 2006) causing qualitative

changes in the chain behavior over iterations.

To identify whether a chain possesses burn-in bias, either visual inspections or a statistical

tests, as the Geweke test (Geweke, 1992) and others (Brooks and Roberts, 1998; Cowles

and Carlin, 1996a; Mengersen et al., 1999) are applied. Also, burn-in related samples are

often discarded (Brooks and Roberts, 1998).

3.2.2 High auto-correlation

In addition to the tests mentioned at the end of the previous section, the estimators for

the Effective Sample Size (ESS) are frequently employed to assess sampling quality quan-

titatively. An ESS estimate is defined as the number of MCMC iterations remaining after

removing iterations which are subject to the estimated auto-correlation of the chain. As

each MCMC chain is generated by a stochastic process with the Markovian property, it

naturally possesses a certain degree of auto-correlation. A lower auto-correlation and thus

a larger ESS is desirable because it allows for shorter lengths for a chain to be represen-

tative. Please note, that thinning a chain to its effective sample is often not desirable,

e.g. because it would increase the variance of the maximum a posteriori estimate (Geyer,

1992). Thus, in practice ESS should get exclusively employed for quality assessments.
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For an MCMC chain there are two main sources of auto-correlation. Given, that the chain

has overcome its burn-in, the first potential source lays in small step sizes (Figure 3.1C)

and the second one in small acceptance rates of the chain (Figure 3.1D). Small step sizes

in the Markov process makes it likely to generate chain points close to each other thus

increasing auto-correlation. In contrast, due to how MCMC algorithms are designed, high

rejection rates result in the same parameter points getting drawn multiple times in a row

causing high auto-correlation as well. Interestingly, the concept of large step sizes and

high acceptance rates often rival against each other (Link and Eaton, 2012). If the steps

are large, it is typically more likely to propose unlikely points resulting in higher rejection

rates.

Formally, for discrete, M dimensional stationary processes θ, for each dimension (without

writing the dimension index) the autocorrelation can be defined as expectation value

Rτ =
1

N

N−τ∑
i=1

(θi − µ) (θi+τ − µ)

σ2
(3.1)

with the posterior distribution average estimate, µ = 1/N
∑N

i=1 θi, variance estimate σ2 =

R0, and lag τ ∈ {0, ..., N/4} (Box et al., 2015). The expression in Equation 3.1 could be

evaluated for a given MCMC result resulting in a computational complexity of O(N2).

In order to reduce the computational effort one notes that – for continuous times N →∞
– the right-hand-side of Equation 3.1 becomes a convolution integral. Therefore, it is

possible to apply the Wiener-Khinchin theorem (Chatfield, 2016, Chapter 6) and the

right-hand-side of Equation 3.1 can be expressed using the spectral density S of θ (Box

et al., 2015, Chapter 2). This yields

Rτ = F−1[Sf ]τ (3.2)

where F−1 denotes the inverse Fourier transformation. Sf has to be estimated from

the chain θ. There exists a variety of estimators, either parametric, non-parametric or

subspace methods. Examples are the periodogram- (Brockwell and Davis, 2016), Sacchi-

(Sacchi et al., 1998b), Sokal’s truncated periodogram- (Sokal, 1997), Welch- (Welch, 1967),

multitaper- (Percival and Walden, 1993; Thomson, 1982) and Yule-Walker- (Friedlander

and Sharman, 1985) estimator differing in computational effort and statistical precision.

For example, the periodogram estimate for the spectral density S is given by

Sf = |F [θτ ]f |2 (3.3)
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where F [θτ ]f denotes the discrete Fourier transformation of the time dependent chain

samples θτ (Brockwell and Davis, 2016). Using overall two Fast Fourier Transforma-

tions (FFTs) to obtain the quantities in Equation 3.2 and 3.3 reduces the computational

complexity to O(N log(N)) in comparison to the complexity for directly obtaining the

right-hand-side of Equation 3.1.

3.2.3 Insufficient exploration

A chain which possesses high ESS estimate and/or passes every applied burn-in test may

still be not representative due to insufficient exploration of the posterior (see Figure 3.1E).

The reason typically is an underrepresented part of the posterior (Andrieu et al., 2003).

In literature this is often seen as special case of burn-in (Calderhead, 2007) because an

underrepresented part of the parameter space does naturally cause an overrepresented

part as well. Other sources call this effect pseudo-converged (Brooks et al., 2011, Chap-

ter 1). However, in contrast to burn-in, here the driving phenomenon is that the chain

misses a certain part of the posterior entirely (Figure 3.1E). This makes the detection

of insufficient exploration particularly challenging – especially if only one sample is ana-

lyzed – because there often is no sign of an underrepresented part. In most cases, this

renders conventional convergence tests and ESS estimates unreliable if applied to only

one MCMC sample. The problem of insufficient exploration does often occur in cases

where the posterior density possesses multiple modes, pronounced tails or complicated

dependency structures between the parameters. Insufficient exploration is particularly

dangerous for quantified comparisons of MCMC algorithms because the ESS estimates of

MCMC results are often particularly good for insufficiently exploring chains (which may

have passed certain convergence tests as well) because the captured structure is simpler

than the full structure captured in a representative sample. For example, the chain in

Figure 3.1A may have a lower ESS than the chain in Figure 3.1E.

3.3 Identification of MCMC failure

As the main result of this chapter, a semi-automated sampling analysis pipeline is intro-

duced, which is employed as the basis for the analysis in Chapter 4 and 5. The pipeline

deploys a combination of burn-in time calculation, exploration assessment, effective sample

size estimation and computation time evaluation. Its main advantages are a high robust-

ness against overestimation of sampling quality and the reduction of subjective judgment

by the testing scientist. For that, the pipeline uses more than one MCMC sample from the

same posterior distribution in order to deal with the particularly hard to detect insufficient
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exploration.

The analysis pipeline is illustrated in Figure 3.2. The individual parts of the pipeline are

based on a combination of heuristics and statistical tests which are applied sequentially

in a filter-like structure. The overall idea is to only let proper samples contribute to the

final ESS statistics. Thus, the final statistic could be called “conditional effective sample

size”. Details of pipeline filtering process are covered in the following.

3.3.1 Calculation of burn-in

The first pipeline step addresses the elimination of the burn-in. In particular, one is

interested in the last chain iteration identified as being part of the transient phase before

leaving the burn-in phase denoted as NBI . Once this number was identified, only the

shortened chains with iteration numbers NBI + 1 to total iterations N are considered for

further analysis steps (Figure 3.2c).

In order to identify NBI , the Geweke test (Geweke, 1992), which is described below and

illustrated in Figure 3.3a, is employed multiple times on different parts of the same chain.

The presented approach for burn-in calculation is automated using a sequence of Geweke

tests taking Bonferroni-Holm adaptation (Holm, 1979) into account.

The Geweke test was originally introduced to test for convergence of the Gibbs Sampler

(Geweke, 1992). However, it is suited to be applied for samples generated with other

algorithms as well. The test compares the sub-sample means µ̄0%−10% and µ̄50%−100% of

the first 10% and the last 50% of a chain (Geweke, 1992) while accounting for the respective

spectral variance approximations σ̂2
0−10% and σ̂2

50−100% of the interval sample means. The

spectral variance approximations are based on a periodogram estimate (see Section 3.2.2)

using a Daniell window (Geweke, 1992). The spectral approach is employed, as it corrects

the empirical variance estimate for auto-correlation between samples (Geweke, 1992). The

very essence of the Geweke test is the z-score:

z =
µ̄0%−10% − µ̄50%−100%√
σ̂2

0%−10% + σ̂2
50%−100%

. (3.4)

Asymptotically, the score goes z → N(0, 1) for N → ∞. In practice, this condition is

reached faster if the sample has no burn-in. Thus, for sufficiently large iteration numbers

N , one can derive interval probabilities, e.g. P (z ∈ [−2, 2]) = 95.4%. For the null

hypothesis that the sample means µ̄0%−10% and µ̄50%−100% are equal, those probabilities

can be used to define test-thresholds for a given significance level. Indeed, the threshold

z0 = 2 with z ∈ [−z0, z0] for a significance level of α = 4.6% is a common choice in
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Figure 3.2: Analysis pipeline for the quantitative comparison of sampling meth-
ods featuring one of the problems from Chapter 4 as an example. (a) Multiple
MCMC runs per unique problem are selected. (b) Diversity of raw results as trace plots
of all parameters. (c) Automated removal of burn-in. (d) Similarity grouping of runs.
Each frame color belongs to a group of similar chains. (e) Identification of groups with
good exploration by group-wise comparison.
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Figure 3.3: Visual representation of statistical chain diagnosis. (a) Geweke test.
(b) Gelman-Rubin-Brooks test.

literature. Thus, empirically found values for z beyond the interval [−2, 2] are statistically

significant and the null hypothesis gets rejected meaning that the MCMC chain probably

is subject to burn-in.

For automatic detection of the burn-in length, the raw chain is split into 40 equally sized

intervals. Then, a Geweke test is performed on subsets of these intervals. Initially, the

Geweke test is performed on the chain composed of all segments 1, ..., 40. If the resulting

z-score is significant, the chain composed of the second to the last segment 2, ..., 40 is

tested. If the z-score is still significant, the third to the last segment 3, ..., 40 is tested and

so on until all sub-chains were tested or the z-score falls below the threshold.

To account for multiple testing, the significance threshold z0 is adjusted for each sub-

sequent test with the Bonferroni-Holm correction (Holm, 1979). For that, the obtained

z-scores are sorted in descending order (as they are anti-proportionally related to the

p-values, which should be sorted ascendingly) and the corresponding z0 of the test are

normalized as z̃0 = z0/k where k is the sorted index k ∈ {1, ..., 40} of the test.

Once z is insignificant regarding the level z̃0, all iterations with i ≤ NBI are chosen to
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be discarded. As MCMC chains are typically multidimensional with Nθ > 1 while the

Geweke test is a univariate test, all parameter dimensions are tested individually and then

the worst case is used, i.e. the highest burn-in iteration found for all dimensions is taken.

3.3.2 Assessment of exploration quality

Following the discussion in Section 3.2.3, the second pipeline step for the analysis of sam-

pling results is the assessment of chain exploration. Due to a typically unknown posterior,

the exploration of a chain has to be verified indirectly by using chain properties only while

having no access to the ground-truth. Unfortunately, insufficient exploration can be rarely

detected by tools which are solely based on the chain properties, e.g. by ESS calculations

or burn-in tests. However, there is a possible solution for the assessment of chain ex-

ploration inspired by a multi-start local optimization (Raue, 2013). A Multi-start local

optimization yields point estimates of the posterior which are easy to compare. A com-

parison of multiple differently initialized MCMC runs may reveal insufficient exploration

of individual chains. However, comparing samples is more difficult than comparing point

estimates and will be discussed in detail below. The presented approach shifts the analysis

from the level of an individual run to the level of a run statistic in the overall problem.

Thus, this pipeline step demands multiple runs which may be a problem if computational

resources are limited. The fraction of runs which pass this pipeline step is denoted as

Exploration Quality (EQ).

In order to obtain the EQ, individual MCMC run results are classified into groups based

on certain similarity measures discussed below (see Figure 3.2d). Groups which are smaller

than 5% of all runs are neglected from further analysis in order to simplify the next steps.

For each of the remaining groups, it is assessed whether the posterior is explored by the

group members by comparing the groups with each other. In particular, for each group

it is evaluated if (i) all regions of high posterior probability and (ii) tails, found in the

other groups, have been covered. In this way, one can tell if a group has missed relevant

parameter regimes found by others. This facilitates the selection of the group(s) with

the best exploration properties and the inspection of groups replaces the inspection of

individual chains, resulting in improved efficiency and decrease of subjective judgment

regarding chain convergence.

The grouping is based on a pairwise distance measure between chains using a combination

of multivariate Gelman-Rubin-Brooks and Geweke diagnostics (Brooks and Gelman, 1998;

Geweke, 1992). If both tests are passed, the corresponding runs are assumed to be similar.

Each time two runs are identified as similar, they form a group. If one of the members
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of a group is classified as similar to a run not yet included in the group the latter run is

assigned to the entire group as well. As this is a rather greedy approach, this procedure is

not independent of the amount of runs getting analyzed. Here, careful adjustment of the

distance measure thresholds may help. In general, one should aim to tune the threshold

so that there is a tendency towards more and smaller groups.

While the Geweke test considers differences in the means of two signals (see Section 3.2.1

for a formal introduction), the Gelman-Rubin-Brooks diagnostic focuses on within-chain

and between-chain variance comparison (see Figure 3.3b for a visual representation). The

convergence diagnostics consider selected summary statistics, mostly the sample means,

and might miss differences in the samples which are easy to spot visually (see, e.g. the

accepted cases in Figure 3.3 (right panel)). Therefore, here a combination of such methods

is applied to increase the conservativeness of the pipeline step. In order to further enhance

the robustness of the similarity grouping, additional tests could be employed (with ade-

quate accounting of multiple testing cumulation). Other than in Section 3.2.1, here the

Geweke test is only applied once between two different chains. Furthermore, in order to

compare unbiased the chains are getting preprocessed by shortening them regarding their

burn-in and thinning them to the size of the shorter one if necessary (see Figure 3.2c-d).

The Gelman-Rubin-Brooks (GRB) test compares the variance-covariance matrix W of θ

within a set of chains with the variance-covariance B of θ between the set of chains (Brooks

and Gelman, 1998). Here θ
(jt)
i is the ith element of the parameter vector in chain j at

iteration t. The variance-covariance matrix within the chains is defined as

W =
1

(n− 1)m

m∑
j=1

n∑
t=1

(θ(jt) − θ̄(j))(θ(jt) − θ̄(j))T (3.5)

and the variance-covariance matrix between the chains as

B/n =
1

m− 1

m∑
j=1

(θ̄j − θ̄)(θ̄j − θ̄)T . (3.6)

with means

θ̄(j) =
1

n

n∑
t=1

θ(jt) and θ̄ =
1

nm

m∑
j=1

n∑
t=1

θ(jt). (3.7)

In this formula, n is the number of iterations and m the number of chains being compared

(here always n = 2). Any rotationally invariant distance measure between W and B/n

can be used to determine if the chains are sufficiently similar or not (Brooks and Gelman,
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1998). Brooks and Gelman proposed

R =
n− 1

n
+
m+ 1

m
λ, (3.8)

as distance measure where λ is the largest eigenvalue of W−1B/n. As W and B are

assumed to converge towards the same matrix for large n, the expression in 3.8 goes to 1

asymptotically. This multivariate measure is an upper bound for its univariate counterpart

(see (Brooks and Gelman, 1998)).

The conservativeness of both diagnostics can be controlled by modifying the testing thresh-

olds R0 and z0. The tests are passed, if R < R0 and |z| < z0. Empirically, R0 = 1.05 and

z0 = 0.05 were found to be fairly conservative thus making it more likely to overestimate

the number of groups than to underestimate it.

While computational resources are often limited, a large statistic of runs is beneficial for

this analysis pipeline step, as it increases the certainty regarding the quality of passing

groups of chains. For example, in Chapter 4 100 runs per combination of algorithm and

benchmark problem were evaluated, 2300 runs per benchmark problem in total. This size

was found to be sufficiently large for robust assessments.

3.3.3 Conditional effective sample size

For the groups of well exploring members the ESS is computed (Calderhead, 2011; Giro-

lami and Calderhead, 2011; Schmidl et al., 2013). The ESS accounts for the in-chain

autocorrelation, which was introduced in Section 3.2.2, and is an important measure for

the quality of the posterior approximation of individual chains. The ESS is often overes-

timated if chains miss individual modes of the posterior density. Thus, here only chains

assigned to groups which explore the posterior well are considered (see Figure 3.2e). For

these chains, autocorrelation for individual parameters θi is determined using Sokal’s adap-

tive truncated periodogram estimator (Haario et al., 2006; Sacchi et al., 1998a) which is

implemented in the DRAM toolbox (Haario et al., 2006). As this is a univariate mea-

sure, the maximum of the autocorrelation across all θi is taken into account in order to

determine the ESS via

ESS = max
i=1,...,Nθ

(
N

τi

)
(3.9)
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while the auto-correlation lag τ is chosen for each of the parameter dimensions i = 1, ..., Nθ

via

minτ

{
τ ∈ N : −1

3
+

τ∑
t=1

(
Rt
R0
− 1

6

)
< 0

}
. (3.10)

Hereby the auto-correlation Rt is estimated as described in Section 3.2.2.

3.3.4 Computation time

Different sampling methods demand different computational efforts. For example, MALA

requires gradient information while multi-chain methods require multiple evaluations of the

(tempered) posterior probability in each MCMC iteration. To account for these differences,

the conditional ESS is evaluated per central processing unit (CPU) second, which provides

a comparable measure of computational efficiency. Furthermore, the efficiency reduction

caused by runs which lack proper exploration is taken into account as well. Therefore, the

ESS/s value of each run is multiplied with the EQ fraction of all run. This normalization is

chosen because bad runs are sometimes much faster in execution than well behaving runs,

e.g. a run only proposing parameter values outside the parameter bounds is extremely

swift since neither cost function nor gradients are calculated.

3.4 Example analysis: Multiple posterior modes

In general, the analysis of MCMC samples is not straight-forward. In the preceding

sections, an MCMC analysis pipeline was motivated and introduced with the aim to facil-

itate an automated and robust analysis of samples. To showcase the differences between

state-of-the-art approaches and the pipeline, 15 MCMC chains with 106 iterations were

generated in a certain posterior. As the qualitative properties of the posterior are sufficient

for this example, it gets formally introduced later in Section 5.3.1. The posterior possesses

two mass equal modes in the first two of twenty parameters θ1 and θ2. In Chapter 4, it

will be shown that such a structure is challenging for state-of-the-art MCMC algorithms.

Thus, it is expected, that some of the results are non-representative and it is interesting

to see, how standard approaches and the pipeline do handle this. At this point it does

not (yet) matter which algorithms were used to generate the chains, however, the results

were selected so that their representativity differs in a visual inspection (Figure 3.4, first

two rows).
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Figure 3.4: Comparison of standard MCMC quality assessments and pipeline framework using sampling results
from a bimodal posterior. The samples are presented as one-dimensional parameter traces and bivariate density plots. Only
some of them cover both posterior modes, indicated by jumps in the trace and two bright spots in the bivariate density plot.
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In order to account for sampling quality assessments found in the literature, an ESS

estimation, Geweke test and Gelman-Rubin-Brooks test were applied to the raw chain

(Figure 3.4, rows 3–5). Due to the existence of burn-in in the samples, the ESS values

estimated on raw results are all fairly low and do not correspond to a visual inspection.

The reason for that observation is that non-representative samples in the beginning of the

chain (burn-in) may impact the whole auto-correlation estimate significantly. At the same

time – as can be seen visually – some of the chains do only sample from one of the two

modes while the overall ESS is as high as for the chains sampling from both modes. Thus,

in those cases the ESS gets overestimated.

The two convergence tests applied to the raw chains, do not necessarily agree with each

other. The GRB test appears to be slightly more conservative. Here, the tests were applied

with z0 = 2 and R0 = 1.05. Both tests struggle to identify cases where only one mode is

sampled reliably. This was expected, because a run only sampling one of the two modes

can not be identified by using within-chain properties only (see Section 3.2.3). On the

other hand, runs, which yield an almost perfect weight balance between the two modes

would be rejected in all cases. The most likely reason for those test results is the distortion

in sample moments caused by the burn-in (see Section 3.2.1).

In order to apply the analysis pipeline, the first step is to estimate the burn-in phase.

Across the presented runs, the pipeline method selects ranges between 5% and 55% of the

chains as being subject to burn-in (Figure 3.4, row 6). For some of the runs, this selection

is fairly intuitive compared to visual assessments, for others – in particular cases, where

both modes were captured – the selection is less intuitive and often rather conservative.

Employing the according shortened samples, one can inspect the adjusted weight relation

between both modes captured in the remaining sample by plotting a histogram of thee

(Figure 3.4, row 7). Knowing that both modes should have equal mass by construction,

only some of the histograms show reasonably representative samples.

The shortened chains are also employed to perform similarity clustering. In total, the

pipeline identified 6 different groups of similar chains. A visual inspection reveals, that

group 4 has members with most equal mode weights. It has 5 members. The second

best group is group 3 whose members do sample from both modes, but miss the correct

weighting. The other groups are smaller and consist of chains sampling from only one

of the two modes. In an application (and thus without knowing the true weighting of

the modes is perfectly even) one would choose either group 3 and 4 or just group 4 as

all other groups do miss at least one of the two modes. However, taking into account

additional information as posterior values and local covariance structures of the posterior
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Table 3.1: Confusion matrix of Geweke, GRB and pipeline decisions regarding the ground
truth based on human decisions in the bi-modal posterior example. Please note, mediocre
results were counted as positives.

Geweke Positive Negative GRB Positive Negative
True 4 1 True 4 5
False 5 5 False 1 5

Pipeline Positive Negative
True 5 6
False 0 4

modes would probably be sufficient to justify the exclusive selection of group 4 in this

problem.

Depending on the previous steps, the ESS estimate is calculated. Now that the burn-

in and obviously non-representative groups were removed, the ESS gets estimated more

accurately compared to the naive ESS calculation. For example, the three most-right

selected runs have a significantly lower ESS estimate than the first two selected runs due

to differences in the jumping frequency between both modes. However, the results are still

not perfect. For example, the second selected run yields the highest ESS while its mode

weights are a bit off.

In conclusion, the pipeline related analysis draws an overall correct picture and yields more

accurate estimates than the direct assessments (Table 3.1) as these basically fail to capture

any correct quality conclusions. However, as the sample sizes are rather small and just

one posterior example was presented general conclusions can not be drawn. Additional

testing has been performed with the applications outlined in Chapter 4. In particular, the

analysis pipeline was successfully applied while observing that its decisions are congruent

to human expectations for 16100 different MCMC runs.

3.5 Summary and discussion

The result of this chapter is an analysis pipeline facilitating robust assessment of sampling

quality in the presence of burn-in, insufficient exploration quality and diverse ESS ranges.

The pipeline founds the basis for the analysis carried out in Chapter 4 and 5.

In the beginning of this Chapter, the common problems of MCMC samples, burn-in, high

auto-correlation and insufficient exploration were introduced. These discussions were used

as a basis to motivate a sampling pipeline suited to assess each of the potential problems
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in one framework. The benefits of the pipeline were demonstrated in an example at

the end of the Chapter by comparing its analysis results to standard approaches in a

simple structured bimodal posterior. Indeed, the proof of concept highlights the need for

a combination of multiple sampling quality assessments and the benefits of taking into

account more than one sample in order to obtain reliable quality estimates.

The pipeline can be technically employed regardless of the employed algorithm or the

application problem, in particular, when the full posterior distribution is unknown (as

typically being the case in applications). The pipeline does also limit the subjective

influence of the performing scientist, as the inspection of individual chains is replaced

with the inspection of topologies of groups of chains. Overall, this makes the pipeline a

good tool for benchmarking.

There is still room for improvement regarding automation, e.g. by fully eliminating the

need for a visual inspection of the groups. As the pipeline consists of multiple sequential

procedures, it is currently not possible to address certainty about the overall analysis

result obtained by the pipeline, e.g. by providing a p-value. However, the certainty

does increase with the number of chains taken into account making it possible to exploit

parallelized MCMC runs for increasingly reliable conclusions. Each of the pipeline steps

can be further improved by taking into account additional or more fine tuned statistical

tests and automatically tuned significance levels, e.g. by making the thresholds for the

similarity grouping depend on the overall number of analyzed chains.
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Chapter 4

Benchmarking of MCMC in ODE-

constraint models

This chapter is based on (Ballnus et al., 2017).

In quantitative biology, mathematical models are employed to describe and analyze bio-

logical processes. The parameters of these models are usually unknown and need to be

estimated from experimental data using statistical methods (see Section 2.2). For this,

MCMC methods have become increasingly popular. A broad spectrum of MCMC al-

gorithms have been proposed (summary in Section 2.4). However, selecting and tuning

sampling algorithms suited for a given problem remains challenging and a comprehensive

comparison of different methods is so far not available.

In this chapter, the results of a thorough benchmarking of state-of-the-art single- and

multi-chain sampling methods are presented, including Adaptive Metropolis, Delayed Re-

jection Adaptive Metropolis, Metropolis adjusted Langevin algorithm, Parallel Tempering

and Parallel Hierarchical Sampling. Different initialization and adaptation schemes are

considered. To ensure a comprehensive and fair comparison, ODE-constraint problems

with a range of features such as bifurcations, periodical orbits, multistability of steady-

state solutions and chaotic regimes were considered. These problem properties give rise to

various posterior distributions including uni- and multi-modal densities and non-normally

distributed mode tails. For an objective comparison, the analysis pipeline introduced in

Chapter 3 is employed. Some of the insights gained in this chapter are accumulated in

Chapter 5 to develop a novel MCMC method, RAmPART.
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4.1 Introduction and problem statement

For the evaluation of optimization methods, large collections of benchmarking problems

were established to facilitate a fair comparison of methods (see, e.g. (Villaverde et al.,

2015)). Furthermore, optimization toolboxes are available and provide access to a large

number of different optimization schemes (Kronfeld et al., 2010; Egea et al., 2014). The

availability of both, benchmark problems and toolboxes, is more problematic for sampling

methods. Apparently, there is no similar effort for establishing a collection of benchmark-

ing problems for sampling methods in particular featuring dynamical systems.

In this chapter, state-of-the-art MCMC algorithms are evaluated by comprehensive means

in multiple ODE-constraint problems in order to inform future MCMC quality assessments,

method development and selection of methods for a given problem. The aforementioned

needs are addressed by (i) providing generic implementations for several MCMC algorithms

and (ii) compiling a collection of benchmark problems. For a discussion of the MCMC

methods, in particular AM, DRAM, PT, PHS and MALA, and a the pseudo-code employed

in this Chapter, please refer to Section 2.4.

It is expected, that chain initialization is crucial for the overall performance of a MCMC

method (see Chapter 3.2.1). Thus, it is evaluated how the additional effort of a preced-

ing multi-start local optimization (Raue et al., 2013b) based initialization does impact

the overall performance of the methods in comparison to a prior-based initialization. A

detailed discussion is covered in Section 4.2.

The sampling methods are evaluated in a collection of ODE-constraint benchmark prob-

lems featuring dynamical systems with different properties such as periodic attractors,

bistability, saddle-node, Hopf and period-doubling bifurcations as well as chaotic pa-

rameter regimes and non-identifiabilities. This implies posterior densities with uni- and

multi-modal, pronounced tails and non-linear dependency structures of parameters. This

collection of features which are commonly encountered in systems biology facilitates the

evaluation of the sampling methods under realistic, challenging conditions. To ensure re-

alism of the evaluations, knowledge about the posterior distribution, which is not available

in practice, is not employed for selection, adaptation or tuning of methods. The problems

will be introduced in Section 4.3.

To ensure a rigorous and efficient evaluation of sampling methods in multiple bench-

mark problems, the semi-automatic analysis pipeline developed in Chapter 3 is employed.

This enabled the evaluation of > 16, 000 MCMC runs covering a wide spectrum of sam-
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Figure 4.1: Graphical representation of initialization schemes. (a) Drawn from
the prior distribution. (b) Drawn from the best results of a multi-start local optimization.

pling methods and benchmarks. Overall, this comprehensive assessment required roughly

300, 000 CPU hours. The benchmark is organized into several scenarios. Each scenario

consists of a unique combination of one algorithm with a particular tuning performing in

a specific benchmark problem possessing 100 MCMC runs in total.

4.2 Initialization

The performance of sampling methods may be sensitive to their initialization (Andrieu

et al., 2003). Here, two alternative initialization schemes are compared: Initialization using

samples from the prior distribution; and initialization using multi-start local optimization

results. The two methods are illustrated in Figure 4.1.

As the initialization schemes slightly differ between single- and multi-chain algorithms, an

illustration of the different initialization schemes (Figure 4.2) visualizes the differences.
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Figure 4.2: Sampling and initialization work flowchart. (A) Flowchart for sampling.
(B) Flowchart for initialization of sampler, distinguishing single- and multi-chain methods
as well as random and optimization-based initialization. (C) Flowchart for the selection
of starting points for optimization-based initialization.

The schemes are discussed in detail in the following.

Sampling From Prior Distribution (RND): In many applications, sampling is ini-

tialized with parameters drawn from the prior distribution (Figure 4.2B, left column). As

the prior distributions are often available in closed-form, this is usually straightforward

and computationally inexpensive. Here, 100 parameter points, H0, are drawn from the

uniform priors. For single-chain algorithms, these points are distributed to the 100 runs

per scenario. For multi-chain algorithms, different (but overlapping) sequences of L points

from the 100 available points were taken into account and distributed onto the L chains

of each run. Each scenario has a different random seed.

Multi-start Local Optimization (MS): Sampling from the prior distribution π(θ)

frequently yields starting points with low posterior probability. Sampling methods started

at these points may require a large number of iterations to reach a parameter regime with

high posterior probabilities (effectively causing a long burn-in as discussed in Chapter

3). To address this problem, initialization using multi-start local optimization has been

proposed (Hug et al., 2013). The results of multi-start local optimization HMS provide a

map of the local optima of the posterior density where the frequency of occurrences of a

local optimum is connected to the size of its basin of attraction.

To initialize the multi-start local optimization, for each run 1000 parameters vectors are

drawn from the prior distribution (as presented in (Raue et al., 2013a)). For each starting



4.3. BENCHMARK COLLECTION 73

point, the local optimization is performed using the MATLAB build-in routine fmincon

with ‘interior-point’. In the following, the results HMS of such an multi-start local op-

timization are used to inform the initialization of an MCMC run (Figure 4.2B, right

column).

Single-chain methods are initialized at the local optimum with the highest posterior prob-

ability corresponding to the maximum a posteriori (MAP) estimate. For multi-chain

methods, the scheme is more complicated than for single-chain methods (Figure 4.2C),

as by means of experience each sub-chain should be initialized differently to decrease the

redundancy across sub-chains. To prevent initialization at points with low posterior prob-

ability, the optimization results are getting filtered based on the difference to the best

optimization result. Then, initial points for each of the individual sub-chains are sampled

from the remaining results. In particular, only the best u ≤ 1000 optimization results

{θ(j), j = 1, ..., u} are taken into account for the MCMC initialization. To determine a

reasonable number u, the sorted results are used to obtain the fraction

Ri = 2 log

(
π(θ(1)|D)

π(θ(i)|D)

)
, (4.1)

i = 1, . . . , 1000, such that

π(θ(1)|D) ≥ π(θ(2)|D) ≥ · · · ≥ π(θ(1000)|D) (4.2)

holds. From this sequence u is obtained such that for all i = 1, . . . , u, Ri is larger than

the inverse χ2 distribution with one-degree of freedom with an α-level of 0.001. This is

motivated by the likelihood ratio test (Hross, 2016). After u was obtained, weights

wj = 1− π(θ(1)|D)− π(θ(j)|D)

π(θ(1)|D)− π(θ(u)|D)
∈ [0, 1] (4.3)

canonically define a discrete distribution wj/
∑u

i=1wi, j = 1, ..., u. From this distribution,

the initial values for each of the sub-chain of the multi-chain MCMC run are drawn.

The overall heuristic described above takes into account both, the height and area of the

modes of the posterior density. The area is encoded in the frequency which a certain local

optima is recovered (Figure 4.1b).
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Figure 4.3: Visual summary of benchmark problems. (Left) ODE model and its
properties, e.g. bifurcations. (Right) Illustration of system dynamics using posterior cuts
and orbits.
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4.3 Benchmark collection

For the evaluation of the sampling algorithms, six benchmark problems for ODE con-

strained parameter estimation were established. Each benchmark problem is related to

behaviors found in biologically motivated ODE models. The considered problems are

low dimensional. This ensures a low computational cost per evaluation and facilitates

a short evaluation time to allow the large number of long MCMC runs necessary for a

comprehensive comparison. Yet, the ODE models possess properties such as structural

non-identifiabilities, bifurcations, limit-cycle oscillations and chaotic behavior. This yields

posterior densities with pronounced tails, multi-modalities and rims which makes them

difficult to sample. These are common scenarios for many application problems in sys-

tems biology (Raue et al., 2013a; Hug et al., 2013; Raue et al., 2009; Balsa-Canto et al.,

2010; Chis et al., 2011; Weber et al., 2011; Gardner et al., 2000; Ozbudak et al., 2004;

Tyson, 1991; Kholodenko, 2000; Calderhead, 2007; Kosuta et al., 2008; Ngonghala et al.,

2016; Braxenthaler et al., 1997) which are difficult to identify prior to the parameter es-

timation. In the following, the properties of the benchmark problems are described. A

visual summary is provided in Figure 4.3.

4.3.1 (M1) mRNA transfection

The first model describes the transfection of cells with GFP mRNA, its translation and

degradation (Leonhardt et al., 2014). The observable is the protein concentration. The

posterior of the estimation problem is bimodal as the exchange of the degradation rates

of mRNA and protein results in the same dynamics for G(t). This ODE model is studied

for experimental data (M1a) and for artificial data (M1b).

4.3.2 (M2) bistable switch

This model describes a bistable switch (Wilhelm, 2009), a frequent motif in gene regulation

(Chaves et al., 2008), neuronal science (Guevara, 2003) and population dynamics (Sgro

et al., 2015). The parameter vector includes parameters influencing the vector field of the

ODE (dynamical parameters), as well as the unknown initial conditions. Depending on

the dynamical parameters, the system holds one or more stable equilibria and undergoes a

saddle-node bifurcation. Given that the topology holds multiple equilibria – depending on

the initial condition – the state orbit converges to one of two steady states. This leads to

a steep rim in the posterior if altering the initial condition parameters. As (M2) possesses

a saddle-node bifurcation, some choices for the dynamic parameters result in the absence

of multiple stable equilibria. In those cases, the steep rim vanishes.
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4.3.3 (M3) saturated growth

This model describes the growth of a population in an environment with limited resources.

It is widely used to model population dynamics, i.e. immigration-death processes (Zimmer

et al., 2015), and a variety of extensions are available. Already for the simplest model, the

parameters are strongly correlated and the posterior density possesses ‘banana’ shaped

tails if the measurement is stopped before the steady state is reached (Solonen et al.,

2012). This effect can be enhanced by decreasing the maximum measurement time tmax

when creating synthetic data.

4.3.4 (M4) biochemical system with Hopf bifurcation

This model describes a simple biochemical reaction network (Kirk et al., 2008) with a su-

percritical Hopf bifurcation (Crawford, 1991; Kuznetsov, 2013; Dercole and Rinaldi, 2011)

as found in many biological applications (Sgro et al., 2015; Heldt et al., 2002; Feinberg

and Horn, 1977). Depending on the parameter values, the orbits of the system approach

a stable limit cycle or a stable fixed point. The posterior density for this problem is

multi-modal but most of the probability mass is contained in the main mode.

4.3.5 (M5) driven Van Der Pol Oscillator

This model is an extension of the Van der Pol oscillator with an oscillating input (Tsat-

sos, 2006; Mettin et al., 1993; Parlitz and Lauterborn, 1987; Leonov et al., 2011). The

input causes deterministic chaos by creating a strange attractor. Chaotic behavior can be

observed in biological applications e.g. in cardiovascular models with driving pacemaker

compartment (Glass et al., 1983; Heldt et al., 2002). The posterior density possesses a

large number of modes of different sizes and masses. This effect can be increased by cre-

ating synthetic data with larger tmax. For chaotic systems sampling is known to be very

challenging (Du and Smith, 2017).

4.3.6 (M6) Lorenz Attractor

The Lorenz attractor provides an idealized description of a hydrodynamic process and can

be interpreted as chemical reaction network (Poland, 1993). Similar to (M5), this system is

chaotic and thus possesses a multi-modal posterior density. However, its topology strongly

differs from the one of (M5) and the chaotic behavior does not arise from a driving term.
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4.3.7 Data and priors

In this Chapter, benchmark settings with measured data (M1a) or synthetic data (M1b-

M6) are considered. The simulated data is obtained by simulating the models for the

parameters θtrue (Table 4.1) and adding normally distributed measurement noise. If not

stated otherwise, each system state x corresponds to one canonical observable y (see

Section 2.2). The prior densities are uniform1 in the interval θ ∈ [θmin, θmax] equidistantly

spaced points in time. Information about observables is provided in Figure 4.3.

4.4 Implementation

The implementation of the benchmark problems is available as supplementary material

in (Ballnus et al., 2017). The sampling algorithms are implemented in the Parameter

EStimation TOolbox (PESTO) (Stapor et al., 2017). PESTO comes with a detailed

documentation of all functionalities and the respective methods. For numerical simulation

and sensitivity calculation the Advanced MATLAB Interface for CVODES and IDAS

(AMICI) (Fröhlich et al., 2014b, 2017a) was employed. Both toolboxes are developed

and available via GitHub (https://github.com/ICB-DCM/PESTO and https://github.

com/ICB-DCM/AMICI). The entire code basis could be transfered to other programming

languages similar to MATLAB, such as Python, Octave or Julia, without major changes.

A re-implementation of the tool in R would also be conceptually possible and allow for

the comparison with other packages, e.g. (Vihola, 2012).

4.5 Performance of MCMC algorithms

In this section, five state-of-the-art sampling approaches for multiple settings of tuning

parameters are benchmarked in the afore-described benchmark problems. In the follow-

ing, 23 scenarios (combination of algorithms and benchmark problem) are considered. To

obtain reliable results and to analyze them employing the pipeline from Chapter 3, there

were obtained 100 runs per scenario, thus performing 2300 runs per benchmark prob-

lem. Each run comprises 106 iterations of a single- or multiple chains depending on the

performing algorithm. In the following, different aspects of the analysis are presented.

1 In principle, one could employ other prior densities as well.

https://github.com/ICB-DCM/PESTO
https://github.com/ICB-DCM/AMICI
https://github.com/ICB-DCM/AMICI
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Table 4.1: Parameters, parameter bounds and true parameter values for the
benchmark problems.

θ θmin θmax θtrue

(M1a) log10(t0) −2 1 -
log10(kTLm0) −5 5 -

log10(β) −5 5 -
nt = 150 log10(δ) −5 5 -
t ∈ [2, 27] log10(σ) −2 2 -

(M1b) log10(t0) −2 1 log10(2)
log10(kTLm0) −5 5 log10(5)

log10(β) −5 5 log10(0.8)
nt = 51 log10(δ) −5 5 log10(0.2)
t ∈ [0, 10] log10(σ) −2 2 −1

(M2) k1 2 20 8
k2 0 5 1
k3 0 5 1

nt = 101 k4 0 5 1
t ∈ [0, 200] x0,1 −3 3 2

x0,2 −3 3 0.25
σ0

1 10−3 1 0.3
σ0

2 10−3 1 0.3

(M3)
b1 0 5 1
b2 0 5 0.2

nt = 101 σ1 10−3 102 0.03
t ∈ [0, 2.5]

(M4) κ 1 5 3.8
k2 0.8 1.2 1
k3 0.8 1.2 1

nt = 101 k4 0.8 1.2 1
t ∈ [0, 200] k5 0.8 1.2 1

x0,1 0 2 1
x0,2 0 2 1
x0,3 0 2 1
σ1 10−2 2 0.75
σ2 10−2 2 0.32
σ3 10−2 2 0.46

(M5) a 2 8 5
d 2 8 5
ω 2 8 2.464

nt = 101 x0,1 −1 3 0
t ∈ [0, 200] x0,2 −1 3 0

x0,3 −1 3 1
σ1 10−2 2 0.2
σ2 10−2 2 0.8
σ3 10−2 2 0.2

(M6) α 0 20 10
β 0 10 8

3
ρ 10 30 28

nt = 101 x0,1 0 35 26.61
t ∈ [0, 200] x0,2 −10 10 −2.74

x0,3 −5 5 0.95
σ1 10−4 102 1
σ2 10−4 102 1
σ3 10−4 102 1
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4.5.1 Revealing challenges in small sized application problem

To illustrate the behavior and the properties of the different sampling methods, the process

of mRNA transcription ((M1), Figure 4.4a) is considered. This process has been mod-

eled and experimentally assessed by (Leonhardt et al., 2014). The ODE model possesses

two state variables and five parameters. Structural analysis using the MATLAB toolbox

GenSSI (Chis et al., 2011) indicated one structural non-identifiability but did not reveal

its nature. (Leonhardt et al., 2014) derived the analytical solution of the ODE model

and showed that the parameters β and δ can be interchanged without altering the output

y. This implied that the parameters are locally but not globally structurally identifiable,

giving rise to a bimodal posterior density (Figure 4.4b,c). As the analytical solution is in

general not available, here, the information about the interchangeability of β and δ for

the initial assessment was disregarded as well.

The posterior distribution was sampled using several single- and multi-chain methods as

well as settings and initialization schemes. The analysis of the sampling results revealed

that many methods fail to sample from both modes of the posterior within 106 iterations

(see Figure 4.4d,e). Accordingly, the exploration quality (see Chapter 3 for definitions) of

many methods is low (Figure 4.4f). The single-chain methods, AM, DRAM and MALA,

were expected to always sample close to the starting point, which was indeed the case.

Interestingly, it was found that PHS often succeeded in moving its chain between both

modes but failed to explore the mode tails properly. Merely PT, either MS or RND

initialized, captured both modes in most runs (Figure 4.4f). Thus, in (M1a) the conditional

ESS – the ESS for the chains sampling both modes and the tails – was > 0 only for PT.

This application example highlights challenges arising from missing information about

parameter identifiability and limitations of available sampling methods. Some of these

limitations were not encountered in the manuscripts introducing the methods (e.g. (Lacki

and Miasojedow, 2015) or (Rigat and Mira, 2012)) as the study focused on different aspects

or only considered problems for which the proposed algorithms were well-suited. The

analysis of (M1a) demonstrates that even simple linear ODE models can give rise to

posterior landscapes that are difficult to sample. This motivates the analysis of other

(small-scale) benchmark problems.

4.5.2 Boosting sampling efficiency by resolving non-identifiabilities

For most ODE constrained parameter estimation problems, information about the iden-

tifiability properties of parameters will not be available prior to the sampling. This is

unfortunate as the sampling performance of all methods could be improved by exploiting
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Figure 4.4: Results from benchmark problem (M1a). (a) Sketch of the trans-
lation process. (b) A bivariate scatter plot of a chain which explored both modes. (c)
The corresponding trajectories of the sampled parameter points of both modes. (d) A
representative chain which was not able to cover both modes. (e) The corresponding
trajectories of the sample of one mode. (f) Effective sample sizes of chains which explored
both modes. For several methods, no chain explored both modes, implying an effective
sample size of zero.
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Sorted Sample

Sample

Figure 4.5: Sampling performance comparison for (M1a). Upper Panel: Explo-
ration Quality. Lower Panel: Distribution of Effective Sample Size per second regarding
runs which contribute to Exploration Quality. Results for the original sample and the
post-processed (= sorted) sample are shown.

such additional information. Models with parameter interchangeabilities such as (M1)

are well studied in the context of mixture models. Tailored methods for such problems

include post-processing methods or a random permutation sampler (Jasra et al., 2005;

Papastamoulis and Iliopoulos, 2013).

As mentioned in Section 4.5.1, the parameters β and δ are interchangeable. Here, the

benefits of applying a post-processing strategy was evaluated. Instead of applying the

analysis pipeline to the raw chains, the chains were first processed by switching β and

δ so that β > δ holds. The resulting increase in EQ and ESS per second are shown in

Figure 4.5. The sampling performance improves significantly for almost all algorithms.

The single-chain algorithms benefit the most. This highlights the importance of usage of

additional information for sampling problems – if available.

4.5.3 Influence of posterior properties on sampling performance

The former analysis of (M1a) revealed, that small sized problems can be challenging for

modern MCMC algorithms. This motivates further investigation of other small sized

models (M1b)–(M6) which potentially hold interesting ODE properties, e.g. oscillating
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orbits, as well. Please note, that the data used for these models is synthetic (see Section

4.3).

It was investigated how EQ depends on the benchmark problem and its properties. The

size of the groups of runs identified by the analysis pipeline (Figure 4.6a) and the overall

EQ (Figure 4.6b) do strongly vary between the benchmark problems. For problems with

uni-modal (M2-3) and weakly2 multi-modal (M4) posteriors, the average EQ of the sam-

pling methods was estimated higher than 50%. For the problems with bimodal posteriors

(M1a,b), 79% of the runs sampled from one of the modes and failed to explore the poste-

rior, while 21% of the chains sampled from both modes and achieved a good exploration.

For posteriors with strong multi-modalities (M5-6), all chains behaved differently and no

large groups could be identified (Figure 4a).

In terms of the dynamical properties of the underlying dynamical system, the results

for the benchmark problems indicate that state-of-the-art sampling methods work well

with multiple steady states and saddle-node bifurcations, as well as Hopf bifurcations and

(limit cycle) oscillations resulting in weak multi-modalities of the posterior. However,

these methods fail in case of chaotic behavior and local non-identifiability resulting in

strong multi-modalities of the posterior.

The analysis on the level of sampling methods revealed that for (M2-4) most algorithms

worked appropriately (Figure 4.6b) while for (M5-6) all algorithms failed. For (M1),

a benefit if using PT and PHS was observed. As the EQ directly impacts the ESS,

these observations hold true for the ESS per CPU second (Figure 4.4f). Indeed, a strong

correlation of exploration quality and sampling efficiency was found and identified as the

major limiting performance factor for (M1a,b) and (M5-6) because a majority of the runs

were filtered by the pipeline (Figure 4.6b).

4.5.4 Comparison of single- and multi-chain methods

Following the analysis of the differences between benchmark problems, the single- and

multi-chain methods were directly compared. The average performance characteristics

for single- and multi-chain methods were computed by averaging over sampling methods,

initialization schemes and tuning parameter choices (Figure 4.7). It was found that for all

considered benchmark problems, multi-chain methods achieved better EQs than single-

chain methods (Figure 4.7a). Indeed, for several problems, multi-chain methods provided

representative samples from the posterior distributions while single-chain methods sam-

pled only individual modes. Interestingly, the improved mixing of multi-chain methods

2 Meaning that there is one global mode and several small side modes.
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Figure 4.6: Overview of observed exploration qualities. (a) Distribution of group
sizes regarding chain similarity. All groups with the same groups sizes are colored identi-
cally. The coloring scheme is indicated below the individual plots. (b) Exploration quality
by benchmark problem (row) and algorithm (column). Each colored square is based on
the fraction of 100 runs which were able to explore well.
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Figure 4.7: Benchmark problem wise comparison of single- and multi-chain
based sampling methods. (a) EQ and (b) ESS per second computed by averaging
across scenarios using single- or multi-chain sampling methods.

outweighed the higher computational complexity even for benchmark problems with one

mode. As a result, multi-chain methods produced higher effective samples sizes and were

overall computationally more efficient (Figure 4.7b).

4.5.5 Comparison of initialization strategies

In addition to characteristics of methods, the importance of initialization schemes was

addressed. The average performance characteristics for RND and MS initialization were

computed by averaging over sampling methods and tuning parameter choices (Figure 4.8).

This revealed that multi-start local optimization substantially improved the EQ (Figure

4.8a). The difference in the sampling efficiency (conditioned ESS per CPU second) was

less pronounced than for the EQ as multi-start local optimization required additional

computation time (Figure 4.8b).

A detailed analysis revealed that some methods were more sensitive to the initialization

than others. The performance of PT appeared to be almost independent of the initializa-

tion scheme (Figure 4.6b), making it a robust choice if no optimization is available. PHS
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Figure 4.8: Benchmark problem wise comparison of initialization using samples
from the prior (RND) and multi-start local optimization results (MS). (a)
EQ and (b) ESS per second computed by averaging across scenarios using RND or MS
initialization.

required initialization using multi-start optimization results to achieve good EQ (Fig-

ure 4.6b). Indeed, PHS initialized using samples from the prior performed poorly while

PHS initialized using multi-start optimization outperformed the other methods in some

cases.

4.5.6 Selection of tuning parameters and algorithmic settings

To provide guidelines regarding tuning parameters and adaptation mechanisms, a fine-

grained analysis of sampling methods and subclasses of them was carried out. The as-

sessment of single-chain samplers revealed that the adaptive Metropolis methods with ac-

ceptance rate dependent proposal scaling (AM(acc), see Section 2.4.3 for details on ’acc’

and ’dim’) outperformed methods with dimension-dependent proposal scaling (AM(dim)

and DRAM(dim)) as shown in Figure 4.4f. Delayed rejection implemented in DRAM

could not compensate for the improved proposal scaling implemented in AM(acc). Fur-

thermore, for the benchmark problems considered here, AM(acc) outperformed MALA.

While AM(acc) worked for the benchmark problems with mono-modal posterior densi-
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ties, AM(dim), DRAM and MALA mostly failed to explore the posterior densities (see

Figure 4.4f and 4.6b).

The PT algorithms employed in this study used temperature and proposal density adapta-

tion. In particular, different strategies for swapping sub-chains and selecting the number

of temperatures were analyzed. The best performance characteristics were achieved with

a large, fixed number of temperatures (see Figure 4.4f). If too few temperatures or an

adaptive reduction of the number of temperatures are used, the methods are more likely

to fail to explore, e.g. by sampling only from one mode. This indicates that the avail-

able methods for the reduction of the number of temperatures (Lacki and Miasojedow,

2015) — which worked for a series of simple examples — is not sufficiently robust, yet.

In contrast, the parallel tempering algorithms appeared to be robust with respect to the

swapping strategy, with equi-energy (ee) swaps (see Section 2.4.3 for details) yielding

superior performance.

4.6 Summary and discussion

The quantitative and qualitative properties of biological models depend on the values

of their parameters. These parameters values are usually inferred using optimization or

sampling methods. For optimization schemes comprehensive benchmarking results are

available (Moles et al., 2003; Raue et al., 2013b; Villaverde et al., 2015; Hross and Hase-

nauer, 2016). In this work these results were complemented and a selection of sampling

methods was benchmarked.

For this purpose, a collection of small-sized benchmark problems for ODE constrained

parameter estimation with oscillating, bifurcating and chaotic solutions as well as multi-

stable steady states and non-identifiabilities was studied. These model properties lead to

pronounced tails, multiple modes and rims in the posterior densities. It was found, that

some of these challenges can be addressed by employing additional information about

the model and tools like structural identifiability analysis (see Section 4.5.1). However,

in applications, it is typically not be possible to avoid non-identifiabilities and tools as

GenSSI (Ligon et al., 2017) do not scale well with raising parameter dimensions or reveal

the exact nature of the non-identifiability.

As a by-product of the presented benchmarking study the effect of properties of the ODE

model, such as Hopf bifurcation and multi-stability, onto the performance of sampling

algorithms was considered. As most models of biological systems are nonlinear, high-
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dimensional and possess multiple positive and negative feedback loops (Alon, 2006), a

single model can usually exhibit different properties in different parameter regimes. As

the biologically relevant regimes in parameter spaces are typically unknown prior to the

parameter estimation, knowledge about the dynamic properties cannot be employed and

the use of robust sampling methods is beneficial. We expected bifurcations to strongly

impact the sampling efficiency. This, however, was not found here. Instead, it was observed

that chaotic regimes have a strong influence on the sampling efficiency and might even

render it intractable. This is consistent with previous findings and expected as “chaotic

likelihood functions, while ultimately smooth, have such complicated small scale structure”

(Du and Smith, 2017).

To derive guidelines for sampling method selection, a range of single- and multi-chain

samplers were assessed. This revealed that most state-of-the-art sampling methods re-

quire a large number of iterations to provide a representative sample from multi-modal

posterior densities even in low-dimensional parameter spaces. Multi-chain methods clearly

outperformed single-chain methods, as reported earlier for individual examples (see, e.g.,

(Calderhead, 2007; Hug et al., 2013) and references therein). The presented, comprehen-

sive evaluation confirms that the intuition was correct. Surprisingly, this was also the case

for unimodal posterior densities. In addition, it was shown for the first time that reli-

ability and performance of all sampling methods except PT was substantially improved

when initialized using optimization results instead of samples from the prior. Interest-

ingly, for the benchmarks considered in this chapter, PT performed better without novel

adaptation schemes for the number of temperatures (Lacki and Miasojedow, 2015). This

is in contrast to results for posterior distributions in the original publication (Lacki and

Miasojedow, 2015) – for which the employed implementation achieved the same results –,

suggesting that additional research is required. Furthermore, this emphasizes the impor-

tance of realistic test problems. The comparison of dimension-dependent proposal scaling

(Haario et al., 2006) and acceptance-rate-dependent proposal scaling (Miasojedow et al.,

2013), which was to the best of the authors knowledge not published before, revealed the

superiority of the latter. From this insight a range of single- and multi-chain methods can

benefit. Overall, PHS with optimization-based initialization performed best for uni-modal

posterior landscapes while PT performed most robustly regarding all posterior types.

While multi-chain samplers were found to be superior, the overall low ESSs of methods

even for methods with good EQ suggest, that there is potential for improvement for these

methods as well. In particular, adaptation strategies acc or dim with a simple normal

distributed proposal density may behave poorly if the local posterior landscape strongly

differs between different regions in parameter space. This finding will be discussed in
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more detail in Chapter 5 and a novel method, RAmPART, is proposed to overcome these

shortcomings, further improving the performance of multi-chain samplers.

Both, the single-chain MALA and the PT-MALA almost always failed to generate rep-

resentative samples. It is expected that this is due to often proposing new chain points

outside the box constraints θmin and θmax as the current implementation calculates gra-

dients based on the most recent parameter point exclusively and does not know about

parameter constraints while doing so. It is expected, that this effect gets worse with

larger system dimension due to the curse of dimensionality. It would be interesting to

consider a MALA like algorithm with a regularization of the proposal density.

Beyond the evaluation of algorithms, the results demonstrate the importance of performing

multiple independent runs of sampling methods starting from different points in parameter

space (Hug et al., 2013). Most algorithms merely provide a representative sample in

a fraction of the runs. In addition to standard sampling diagnostics (e.g. convergence

tests like Gelman-Rubin-Brooks (Geweke, 1992)), the extended analysis pipeline takes

into account the EQ while minimizing the need for subjective visual inspection. The

results confirm the need to evaluate sampling methods by not only taking into account

the ESS of the generated runs but the overall EQ as important measure for algorithmic

robustness. Thus, only a combination of ESS and EQ should be used to decide whether a

sample is representative of the given posterior.

The benchmark problems considered in this chapter are low-dimensional yet they resemble

some essential features of parameter estimation problems in systems biology. The precise

quantitative results depend on the selection of the benchmark problems and there is no gen-

eral theory regarding the qualitative findings, yet. Thus, the presented effort is explicitly

meant as a starting point for additional research including a broader range of application

problems. Furthermore, while several classes of sampling methods have been considered,

the study of additional methods would be beneficial as well. In particular, the assessment

of Hamiltonian Monte Carlo (HMC) based algorithms such as NUTS or Wormhole Monte

Carlo (Hoffman and Gelman, 2014; Lan et al., 2014), region-based methods (Craiu et al.,

2009), Metropolis-in-Gibbs methods (Bédard, 2017), Transitional MCMC (Betz et al.,

2016), sequential Monte Carlo methods (Yanagita and Iba, 2009) or additional proposal

adaptation strategies (Vihola, 2012) would be valuable. Using a copula decomposition for

the proposal densities is certainly an interesting approach in order to obtain well suited

proposal densities (Schmidl et al., 2013). For ODE models for which conditional distri-

butions of the parameters can be derived, also Gibbs samplers might be used (Casella

and George, 1992). Furthermore, a comparison with non-sampling-based approximation
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methods, e.g. variational methods (MacKay, 2005) or approximation methods (Fröhlich

et al., 2014a) could be interesting.

In this thesis, box constraint parameter estimation problems are considered exclusively, as

they are the most commonly used in computational biology. However, there exist problems

with more complex parameter constraints as dependencies and non-linearities. It is known,

that sampling gets significantly more challenging in those problem classes (Chen et al.,

2017). It would be interesting to investigate the performance of state-of-the-art MCMC

in such settings as well and to construct better performing algorithms if necessary.

In summary, the presented, comprehensive evaluation revealed that even state-of-the-

art MCMC algorithms have problems to sample efficiently from many posterior distri-

butions arising in systems biology. Problems arose in particular in the presence of non-

identifiabilities and chaotic regimes. The examples provided in manuscripts presenting

new algorithms are often not representative and a more thorough assessment on bench-

mark collections should be required (as is common practice in other fields). Chapter

4 provides a basis for future developments of such benchmark collections allowing for

a rigorous assessment of novel sampling algorithms. Here, six benchmark problems with

common challenges to provide practical guidelines for the selection of sampling algorithms,

adaptation and initialization schemes were employed already as a start. Furthermore, the

presented results highlight the need to address chain exploration quality by taking into

account multiple MCMC runs which can be compared with each other before calculat-

ing effective sample sizes. The availability of the code will simplify the extension of the

methods and the extension of the benchmark collection.
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Chapter 5

Region-based adaptive parallel tem-

pering

This chapter is based on (Ballnus et al., 2018).

Biochemical reaction networks (BRNs, see Section 2.3) have become a standard tool for

the investigation of cellular processes and the unraveling of signal processing mechanisms.

The parameters of these models are usually derived from the available data using opti-

mization and sampling methods. However, the efficiency of these methods is limited by

the properties of the mathematical model (see Chapter 4). Parameter probability densities

of BRNs are known to possess, e.g., multi-modal posterior densities with long valleys or

pronounced tails which make optimization and sampling challenging. Thus, the develop-

ment or improvement of optimization and sampling methods in particular suited for the

application in challenging model classes as BRNs is subject to ongoing research. However,

when evaluating critically (see Section 4) it is revealed, that state-of-the-art sampling al-

gorithms under-perform even for small models with mathematical properties commonly

found in BRNs.

In this chapter, a Region-based Adaptive PARallel Tempering algorithm (RAmPART)

which adapts to the problem-specific posterior densities, i.e. modes and valleys, is sug-

gested. The algorithm combines several established algorithms to overcome their indi-

vidual shortcomings and to improve sampling efficiency. Its properties were assessed for

established benchmark problems and two ordinary differential equation models of biochem-

ical reaction networks. The proposed algorithm outperformed state-of-the-art methods in

terms of calculation efficiency and mixing. Since the algorithm does not rely on a specific

problem structure, but adapts to the posterior density, it is suitable for a variety of model

classes.
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5.1 Introduction and problem statement

One natural way to maximize the efficiency of sampling algorithms is to reduce the auto-

correlation of the generated chains (Andrieu et al., 2003) (see Chapter 3). Decreasing

the auto-correlation lowers the necessary chain length required for a representative sample

from the posterior distribution. The auto-correlation achieved using an MCMC algorithm

can be reduced by employing a tailored proposal density. In the literature, three prominent

concepts for the tailoring of the proposal density, which are independent of the underlying

model, are present (see also Section 2.4.3):

• (i) Adaptive Metropolis (AM) samplers improve the global proposal density based

on the already available chain (Haario et al., 2001; Roberts and Rosenthal, 2009;

Andrieu and Thoms, 2008).

• (ii) Hamiltonian Monte Carlo, Riemannian Monte Carlo and related sampling ap-

proaches exploit the local geometry of the posterior, such as 1st and 2nd order deriva-

tives, to construct an appropriate local proposal density (Girolami and Calderhead,

2011; Hoffman and Gelman, 2014; Lan et al., 2014; Graham and Storkey, 2017).

• (iii) Region-based methods split the parameter domain in different regions and assign

appropriate proposal densities for each of the individual regions (Craiu et al., 2009;

Bai et al., 2010). Some of these methods have also been combined, e.g., region-based

adaptive Metropolis (RB-AM) samplers (Bai et al., 2010).

Complementary, small-world sampling (Yang et al., 2016; Guan and Krone, 2007) and

delayed rejection adaptive metropolis (Haario et al., 2006) has been introduced. These

methods employ multi-component and multi-try proposals, respectively, and can be com-

bined with the aforementioned approaches. All of these different concepts boosted the

sampling performance of MCMC methods, but the auto-correlation for posteriors with

multiple modes usually remains high (Chapter 4). To address this, multi-chain algorithms

such as Parallel Tempering (PT) (Lacki and Miasojedow, 2015; Sambridge, 2013; Miasoje-

dow et al., 2013; Vousden et al., 2016) and Parallel Hierarchical Sampling (Rigat and Mira,

2012; Hug et al., 2013) have been introduced. These algorithms aim to improve mixing

by increasing the frequency of jumps between modes and the exploration of tails. From

a visual inspection of the individual results of Chapter 4 one can see that for multi-chain

methods the local exploration may become slow and limits the mixing.

Analogue to the definition in Equation 2.1 in Chapter 2, here the problem of sampling

from the posterior density π(θ|D) of the model parameter θ ∈ Ω ⊂ Rn given the data D is
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considered. Depending on the model and dataset, posterior densities may possess different

properties, including multiple modes, pronounced tails and differences between local and

global structure (Chapter 3 and 4, Section 4.3 for ODE examples) – properties often found

in biological problems with non-identifiabilites (Chis et al., 2011; Fröhlich et al., 2014b;

Raue et al., 2013a; Eisenberg and Hayashi, 2013).

In this chapter, a sampling algorithm which addresses differences between local- and global

posterior properties to improve the mixing and to decrease the autocorrelation is proposed.

The algorithm combines PT with region-based adaptation. This allows efficient transitions

between modes and a good local exploration at the same time. To facilitate the application

of the algorithm, all steps are automatized, including the construction of the regions

and the adaptation of the proposal density. The proposed algorithm is systematically

assessed and evaluated using established benchmarks as well as application problems, and

compared it to state-of-the-art RB-AM and PT methods. It is shown by applying the

analysis pipeline developed in Chapter 3, that the presented method has the potential to

improve sampling efficiency and robustness for posteriors densities with multiple modes

or pronounced tails substantially. As these properties are usually unknown prior to the

sampling, here the problem of developing a robust multi-purpose method is considered.

5.2 Region-based adaptive parallel tempering

Here, a sampling algorithm which combines region-based adaptive Metropolis and paral-

lel tempering is proposed. In this section, Region-based Adaptive PARallel Tempering

(RAmPART) is motivated, proposed, its implementation is presented and its convergence

properties are discussed.

5.2.1 Motivation

The proposed method is based on two existing algorithms, which are briefly summarized

in the following. Additional details about MCMC algorithms can be found in Chapter 2.4

as well.

Region-based adaptive Metropolis (RB-AM) algorithms construct a Markov chain for the

parameters θ ∈ Ω with target density π(D|θ). To account for the potentially complex

geometry of the posterior density, the parameter domain Ω is split into regions Ωr, r =

1, . . . , R (Craiu et al., 2009). Each region Ωr possesses an individual proposal density

q
[i]
r (θ′|θ[i]), in which i is the index of the iteration. The union of all regions corresponds
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to Ω. The regions and region-specific proposal densities are constructed adaptively for

instance using Gaussian Mixture Models (GMMs). In comparison to classic AM algorithms

which use a single, global proposal density, RB-AM adds a high degree of freedom to the

way new sample points are proposed across different parts of the posterior.

Parallel tempering (PT) algorithms construct a Markov chain on a product space ΩL :=

{θ = (θ1, . . . , θL)|θ` ∈ Ω, ` = 1, . . . , L} where L is the number of temperature levels (Lacki

and Miasojedow, 2015; Vousden et al., 2016). The target density on the product space is

defined as the product of tempered posterior densities,

π(θ|D) ∝
L∏
`=1

π1/τ`(θ`|D), (5.1)

with temperatures τ`, ` = 1, . . . , L, such that 1 = τ1 < τ2 < . . . < τL. The sequence

of points θ
[i]
` for a temperature `, is referred to as the `th chain. The Markov chain on

the product space performs random walk steps for each chain and random swaps between

chains. As chains with high temperatures travel more easily between different areas in the

parameter space, e.g., different modes and tails, chains generated using PT often possess

a lower auto-correlation than single-chain algorithms (see Chapter 4).

RB-AM and PT are applicable to a wide range of problems, yet, their sampling perfor-

mance is often unsatisfactory. In Section 5.3 it is illustrated, that RB-AM has difficulties

to travel between different parameter regions with high probability mass and PT suffers

from differences between local and global correlation structure. To address these short-

comings, the RAmPART algorithm is proposed. RAmPART constructs a Markov chain

on a product space ΩL by interweaving random walk steps and random swaps, as in PT.

For each of the tempered sub-chains, a region-based proposal density, constructed and

adapted over time as in RB-AM algorithms, is employed while the regions are chosen to

be identical for all temperatures. In the following, the mathematical details are discussed.

5.2.2 Method

The proposed method has two phases: warm-up and sampling phase. In the warm-up

phase, parameter regions Ωr, r = 1, . . . , R, are constructed which are suited for efficient

sampling with Gaussian proposal densities. In principle, different approaches could be em-

ployed to determine such regions, including the use of information obtained in a preceding

multi-start local optimization. Here, it was chosen to employ a PT algorithm (Lacki and

Miasojedow, 2015; Vousden et al., 2016; Ballnus et al., 2017), which uses an adaptive

Gaussian proposal for the random walk steps (Figure 5.1a), an adjacent proposal for ran-
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Figure 5.1: Visualization of the 2-phase sampling process employed by RAm-
PART. a) In the warm-up phase, the posterior distribution is sampled with a parallel
tempering algorithm which adapts to the global covariance structure of the correspond-
ing posterior density. b) The posterior samples (which might not be representative) are
used to define regions in the posterior which can be approximated using a Gaussian mix-
ture model. The Gaussian mixture model defines three regions and each of the sample
points is associated with one them represented by the yellow, green or blue color. c) In
the sampling phase, the regions are used to adapt region-specific proposal densities. The
adaptation of the covariance matrices in the warm-up and sampling phase is performed
for each temperature separately.
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dom swaps and temperature adaptation following (Vousden et al., 2016). This choice is

motivated by the versatility of PT found as a result in Chapter 4. A short run of this PT

algorithm yields a sample which is supposed to capture the high-probability regions of the

posterior. This sample is usually not representative for the posterior distribution, but is

sufficient for the warm-up phase. Using the sample, a Gaussian Mixture Model (GMM) is

trained with an expectation-maximization (EM) algorithm (Murphy, 2012) (Figure 5.1b),

yielding

GMM(θ) =

R∑
r=1

wrN (θ|mr, Cr), (5.2)

with weights ωr > 0,
∑R

r=1 ωr = 1, means mr and covariance matrices Cr, r = 1, . . . , R. A

reasonable number of mixture components R is determined using 5-fold cross-validation

(Kohavi et al., 1995) with the BIC (Claeskens et al., 2008) as selection criterion. As the

GMM approximates the posterior density, it is assumed that in the parameter region

Ωr = {θ ∈ Ω|∀r′ ∈ {1, . . . , R} \ r, wrN (θ|mr, Cr) ≥ wr′N (θ|mr′ , Cr′)}, (5.3)

in which the rth mixture component dominates, a Gaussian proposal density (see below

for definition) with covariance matrix Cr can achieve a good sampling performance. Ac-

cordingly, in the following, the parameter regions Ωr, r = 1, . . . , R, are used in random

walk steps (for all temperatures).

Remark: Information about the posterior density, e.g. number of modes, known non-

identifiabilities, most relevant parameter dimensions or correlation structures, can be ex-

ploited to provide user-defined regions Ωr or to restrict the GMMs to a subset of the

parameters. This does potentially improve robustness and computational efficiency, or

allows to skip the warm-up phase entirely.

In the sampling phase the afore-derived parameter regions Ωr, r = 1, . . . , R, are used to

construct random walk proposals which are tailored to the shape of the tempered posterior

densities. The random walks for the different temperatures are performed independently

and use a Gaussian mixture as proposal density, also known as small world proposal density

(Figure 5.1c). For a parameter vector θ
[i]
` in the rth region, θ

[i]
` ∈ Ωr, the region-based

proposal density is

q
[i]
`,r(θ

′
`|θ

[i]
` ) = (1− pg)N (θ′`|θ

[i]
` , e

2η
[i]
`,rC

[i]
`,r) + pgN (θ′`|θ

[i]
` , e

2η
[i]
` C

[i]
` ). (5.4)

The two mixture components capture the correlation structures of the tempered posterior

π1/τ`(θ`|D) in Ωr and Ω, respectively. C
[i]
`,r and C

[i]
` denote estimates of regional- and
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global covariance matrices while η
[i]
`,r and η

[i]
` denote the corresponding scaling factors.

The fraction of steps using the global proposal density is denoted by pg. The proposed

points θ′ ∼ q[i]
`,r(θ

′
`|θ

[i]
` ) are accepted with probability

pacc(θ`, θ
′
`, 1/τ`) = min

1,

(
π(θ′`|D)

π(θ
[i]
` |D)

)1/τ` q
[i]
`,r′(θ

[i]
` |θ
′
`)

q
[i]
`,r(θ

′
`|θ

[i]
` )

 , (5.5)

for region index r′ such that θ′ ∈ Ωr′ . If accepted, θ
[i+1]
` = θ′`, otherwise θ

[i+1]
` = θ

[i]
` .

Estimates for regional and global covariance are adapted during the sampling phase. For

θ
[i]
` ∈ Ωr updates of local mean and covariance are given by

m
[i]
`,r = (1− γ[i])m

[i−1]
`,r + γ[i]θ

[i]
`,r, (5.6)

C
[i]
`,r = (1− γ[i])C

[i−1]
`,r + γ[i](θ

[i]
` −m

[i]
`,r)(θ

[i]
` −m

[i]
`,r)

T , (5.7)

with adaptation strength γ[i] = i−α, with α ∈ (0.5, 1), and initial value obtained computed

in the warm-up phase, C
[0]
`,r = Cr (Lacki and Miasojedow, 2015). The scaling factors for

regional and global covariance are adapted to achieve an acceptance rate of 23.4% (Lacki

and Miasojedow, 2015; Haario et al., 2001),

η
[i]
`,r = η

[i−1]
` exp

(
γ[i](p− 0.234)

)
, (5.8)

with η
[0]
`,r = 1. These adaptation strategies are similar to the acc strategy employed in

Chapter 4, which was found to perform well in ODE based parameter estimation problems.

The region-based random walk proposal is incorporated in a PT algorithm with an adjacent

swap proposal and temperature adaptation. For the temperature adaptation the method

by (Vousden et al., 2016) is employed and a maximum temperature τmax is selected. Please

note, that this swapping and temperature adaptation strategy is slightly different from

the ones used in Chapter 4. This is motivated by empirical studies, while in principle

other strategies could be used as well. The temperatures of the sub-chains, 1 = τ1 < τ2 <

. . . < τL = τmax, are adapted such that the swap acceptance for adjacent sub-chains gets

balanced:

τ
[i]
` =

∑̀
m=2

(
τ [i−1]
m − τ [i−1]

m−1

)
exp

{
−κ[i]

(
A[i]
m −A

[i]
m−1

)}
,

with κ[i] =
ντ

ητ (i+ 1 + ντ )

(5.9)

for ` = 1, . . . , L (Vousden et al., 2016). The adaptation parameters are set ντ = 103

and ητ = 10 according to personal experience. A
[i]
` indicates whether the proposed swap
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between chain ` and (`+ 1) has been accepted. Please note that the temperatures τ1 = 1

and τL = τmax are constant. The optimal choice for the maximum temperature τmax is

problem specific yet known to be crucial for the success for any PT like algorithm. In

Section 5.4, a automated selection for this important tuning parameter is presented and

evaluated.

The resulting algorithm, RAmPART, is flexible as it possesses the RB-AM and the adap-

tive PT as special cases. A RB-AM is obtained for L = 1 and an adaptive PT for R = 1,

respectively.

5.2.3 Implementation

In this section, the corresponding pseudocode (Figures 5.2 and 5.3), default values (Table

5.1) and tuning aspects for RAmPART are discussed. Warm-up and sampling phase are

presented individually. In the warm-up phase, an adaptive parallel tempering algorithm is

used to gather a sample to estimate the parameters of a Gaussian Mixture Model (GMM)

(Figure 5.2). In the sampling phase, the Gaussian mixture model is used to initialize a

region-based parallel tempering algorithm which adapts the regional proposal covariances

(Figure 5.3). In the pseudocode, the number sample iterations N , the chain initialization

point θ[0], the initial proposal covariance matrix C, the initial inverse temperature latter β

(with β1 = 1 and βL = 1/τmax), the number of parallel tempered chains L, the maximum

number of regions Rmax, the number of cross validations when training the GMM Nrep,

the adaptation parameters α, ντ and ητ and the fraction of global proposals compared

to local proposals pg are denoted. Note, a heuristic for initializing β is used, which is

based on the discussion in (Vyshemirsky and Girolami, 2008) and personal experience. An

overview of all input parameters is shown in Table 5.1. The algorithm returns the posterior

parameter chain θ
[0]
1 , . . . θ

[N−1]
1 as well as the corresponding posterior values p[0], . . . p

[N−1]
1 .

An overview of all output parameters is provided in Table 5.2.

As part of RAmPART’s implementation, parameters of a GMM are estimated using an

EM algorithm (Murphy, 2012). The convergence and robustness of the EM is directly

influenced by the properties of the posterior. As the EM algorithm is a local (sometimes

called “greedy”) optimization routine, a single run often only finds a local optimum (e.g.

(Zhang et al., 2008)). To account for this problem, the EM algorithm is initialized at

multiple parameter points (5 different points for the examples discussed in the Section

5.3) and the best result regarding BIC is taken for running the sampling phase.

In practice, an important aspect for RAmPART is the generation of a sufficiently rep-

resentative sample during the warm-up phase, which is supposed to capture the rough
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Algorithm 1: Warm-up Phase

input : N ,θ[0],C,β,L,Rmax,Nrep,α,ντ ,ητ
output: R,θ[N−1],w,µ,Σ,β,m,C

// Initialize

for `← 1 to L do

η` ← 1,m` ← θ[0]

p` = π(θ[0]|D)

for i← 0 to N − 1 do
// Random walk step

for `← 1 to L do

Propose parameter θ′ ∼ N
(
θ

[i]
` |m`, η

2
`C`

)

Evaluate posterior p′ ← π(θ′|D)

Acceptance chance p← (p′/p`)
β`

Draw uniformly v ∼ U([0, 1])
if v < p then

θ
[i]
` ← θ′

p` = p′

// Random walk proposal density adaptation

for `← 1 to L do

γ[i] = 1/(1 + i)α

m` ← (1− γ[i])m` + γ[i]θ
[i]
`

C` ← (1− γ[i])C` + γ[i](θ
[i]
` −m`)(θ

[i]
` −m`)

T

η` ← η` exp
(
γ[i](p− 0.234)

)

// Chain swapping

for `← L to 2 do
∆β`−1 ← β`−1 − β`
Swap probability pswap,`−1 ← (p`/p`−1)∆β`−1

Draw uniformly w ∼ U([0, 1])
A`−1 ← (w < pswap)
if A`−1 then

θ` ↔ θ`−1

p` ↔ p`−1

// Temperature adaptation

κ[i] ← ντ/ (ητ (i+ 1 + ντ ))
for `← 1 to L− 2 do

∆S` ← κ[i](A` −A`+1)
∆τ` ← 1/β`+1 − 1/β`

for `← 2 to L− 1 do

β` ← 1/
∑`
m=2 ∆τm−1 exp(∆Sm−1)

// Train GMM

for k ← 1 to Nreplicates do
for n← 1 to Rmax do

Fit GMM wn,k,µn,k,Σn;k ← EM-Algorithm(θ
[0]
1 , . . . , θ

[N ]
1 ;n, random seed k)

BICn,k ← −2 log
(∑N

m=0 GMM
(
θ

[m]
` |wn,k,µn,k,Σn;k

))
+

n log (N) ((n− 1)/n+ 2 dimθ +(dimθ −1) dimθ /2)

Select best GMM (R,K)← argmin
n,k

(BICn,k)

Define regions w,µ,Σ← wR,K ,µR,K ,ΣR,K

Figure 5.2: Pseudocode for warm-up phase of RAmPART.
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Algorithm 2: Sampling Phase

input : N ,NwarmUp,θ
[0],C,β,L,Rmax,Nrep,α,ντ ,ητ ,pg

output: non-tempered parameter chain θ
[0]
1 , . . .θ

[N−1]
1 ,

non-tempered posterior values p[0], . . . p
[N−1]
1

// Run warm-up phase(
R,θ[0],w,µ,Σ,β,m,C

)
←WarmUpPhase

(
NwarmUp,θ

[0],C[0],β[0], L,Rmax, Nrep, α, ντ , ητ
)

// Initialize

for `← 1 to L do

New region label rprop,` ← argmax
r

(
N
(
θ

[0]
` |µr, wrΣr

))

p` = π(θ[0]|D)
for r ← 1 to R do

Local proposal parameters η`,r ← 1,m`,r ←m,C`,r ← C
Adaptation times j`,r ← 0

for i← 0 to N − 1 do
// Random Walk Step

for `← 1 to L do
Set old region label r` ← rprop,`
Adaptation fading j`,r` + +
Draw uniformly u ∼ U([0, 1])
if u < 0.5 then

θ′ ∼ N
(
θ

[i]
` |m`,r` , η

2
`,r`
C`,r`

)

else

θ′ ∼ N
(
θ

[i]
` |m`, η

2
`C`

)

Get new region label rprop,` ← argmax
r

(N (θ′|µr, wrΣr))

Evaluate posterior p′ ← π(θ′|D)
Forward probability Tfor ← (1− pg)N (θ′|θ`,C`,r`) + pgN (θ′|θ`,C`)
Backward probability Tback ← (1− pg)N

(
θ`|θ′,C`,rprop,`

)
+ pgN (θ`|θ′,C`)

Acceptance chance p← (p′/p`)
β` (Tback/Tfor)

Draw uniformly v ∼ U([0, 1])
if v < p then

θ
[i]
` ← θ′

p` = p′

// Random walk proposal density adaptation

for `← 1 to L do
γ = 1/jα`,r`
m`,r` ← (1− γ)m`,r` + γθ

[i]
`

C`,r` ← (1− γ)C`,r` + γ(θ
[i]
` −m`,r`)(θ

[i]
` −m`,r`)T

η`,r` ← η`,r` exp (γ(p− 0.234))

// Chain swapping

for `← L to 2 do
∆β`−1 ← β`−1 − β`
Swap probability pswap,`−1 ← (p`/p`−1)∆β`−1

Draw uniformly w ∼ U([0, 1])
A`−1 ← (w < pswap)
if A`−1 then

θ` ↔ θ`−1

p` ↔ p`−1

rprop,` ↔ rprop,`−1

// Temperature adaptation

κ[i] ← ντ/ (ητ (i+ 1 + ντ ))
for `← 1 to L− 2 do

∆S` ← κ[i](A` −A`+1)
∆τ` ← 1/β`+1 − 1/β`

for `← 2 to L− 1 do

β` ← 1/
∑`
m=2 ∆τm−1 exp(∆Sm−1)

Figure 5.3: Pseudocode for sampling phase of RAmPART.
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Table 5.1: Input parameters used in RAmPART and their default values.

Description Symbol Default Value

Number of sampling iterations N 106

Number of warm-up iterations NwarmUp 105

Initial chain positions θ
[0]
` Initial chain

positions
Initial covariance matrix C 106 · I, I Identity
Number of tempered chains L 20
Maximum temperature τmax 2000

Initial inverse temperatures β
(
L−1−i
L−1 + i

L−1 · τ
(1/1000)
max

)−1000

for i = 0, ..., L− 1
Maximum number of regions allowed Rmax 10
Number of EM runs on the training sample Nrep 5
Covariance adaptation velocity factor α 0.51
Temperature adaptation velocity factor 1 ντ 103

Temperature adaptation velocity factor 2 ητ 10
Global proposal density contribution factor pg 0.5

structure of the posterior, including multiple modes or pronounced tails. In the worst

case, the sample generated during the warm-up phase is not representative. In this case,

the GMM does not capture the structure of the underlying posterior and the regional

adaptation during the sampling phase may not be beneficial. Fortunately, in this case

RAmPART would simply perform as good/bad as a standard PT with minimal compu-

tational overhead. This overhead is negligible for problems in which the evaluation of the

objective function requires a substantial amount of computation time.

RAmPART is implemented in the MATLAB toolbox PESTO (Stapor et al., 2017), which

Table 5.2: Output parameters used in RAmPART.

Phase Description Symbol

Warm-up Selected number of GMM modes R

Warm-up Last chain position in warm-up phase θ[N−1]

Warm-up Selected GMM mode weigths w
Warm-up Selected GMM mode centers µ
Warm-up Selected GMM mode covariances Σ
Warm-up Training sample mean m
Warm-up Training sample covariance C

Sampling Non-tempered parameter chain θ
[0]
1 , ..., θ

[N−1]
1

Sampling Non-tempered posterior values p
[0]
1 , ..., p

[N−1]
1
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is available on GitHub https://github.com/ICB-DCM/PESTO/. For the numerical simu-

lation the SUNDIALS toolbox CVODES (Serban and Hindmarsh, 2005) via the MATLAB

interface AMICI (Fröhlich et al., 2017b) has been employed.

5.2.4 Ergodicity

Beside the performance of RAmPART in practice, which will be considered in the following

sections, the convergence of RAmPART has to be proven. As the warm-up phase is finite

and the samples are disregarded, only the sampling phase has to be studied.

The argument is initialized with a couple of definitions. Let (Ω,A) be a Borel-space

with σ-Algebra A defined by the power set A = P(Ω) and a compact set Ω ⊆ Rk, so

that the posterior density π(x|D) is continuous for x ∈ Ω, positive on the interior of Ω

and zero outside of Ω. Please note, the compactness directly follows from the parameter

box constraints in the considered problems (e.g. as used in Chapter 4), while positivity

and continuity of π(x|D) directly follow from the fact, that the posterior is based on a

continuous ODE with positive squared residuals towards the data due to measurement

noise. These definitions can be used to construct a product space ΩL = Ω× . . .× Ω︸ ︷︷ ︸
L times

with the corresponding σ-Algebras AL = A× . . .×A︸ ︷︷ ︸
L times

defining the space in which the

RAmPART sub-chains move. Furthermore, {P(γ,β)(x,A) : x ∈ ΩL, A ⊆ AL, γ ∈ Γ ⊆ N}
denotes the set of one-step Markov kernels used in RAmPART, where Γ is an index set

matching the corresponding adaptation steps from Equation 5.6–5.7 and β be defined by

Equation 5.9 with τ = 1/β. The Markov kernel is defined as

P(γ,β)(x,A) =
L∏
`=1

P(γ,β(`))(x
(`), A`) (5.10)

with the Markov kernel for the sub-chains

P(γ,β(`))(x
(`), A`) =

∫
A`

pacc(x
(`), y, β(`))q

(γ)
` (y|x(`))µLeb(dy) (5.11)

which depends on the acceptance ratio pacc and the proposal density

q
(γ)
` (y|x(`)) =

R∑
r=1

1Ωr(x
(`))q

(γ)
`,r (y|x(`)) (5.12)

https://github.com/ICB-DCM/PESTO/
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which is constructed by employing a mixture of regional and global proposal densities

q
(γ)
`,r (y|x(`)) = (1− pg)N (y|x(`),Σ(γ)

r ) + pgN (y|x(`),Σ(γ)) (5.13)

and a carrier

1Ωr(x
(`)) =

1, x(`) ∈ Ωr,

0, otherwise,
(5.14)

where P(γ,β(`)) is a Markov kernel for one of the sub-chains targeting the `th tempered

posterior density πβ
(`)

(·|D) and Ωr, pacc and q
(γ)
`,r are being defined in Equations 5.3–5.5

respectively while µLeb denotes a Lebesgue measure. µLeb does exists, because π(·|D) and

thus the integrand is positive and continuous. Please note, the Markov kernel P(γ,β(`)) has

no index of a specific region r, as 5.12–5.14 include the possibility of all region kernels.

The theorems in (Miasojedow et al., 2013) prove ergodicity for a PT with an adaptive

normal distributed proposal density in each of the sub-chains. As suggested in Section 2 of

(Miasojedow et al., 2013), this proof can be extended towards more sophisticated proposal

densities. Consequently, the kernel definitions in the Equations (5-7) of (Miasojedow

et al., 2013) are replaced with Equation (5.10–5.14). To ensure that a PT algorithm is

still ergodic after altering the sub-chain proposal densities – as is the case for RAmPART

–, the assumptions made in (Miasojedow et al., 2013) have to be checked. The first

assumption, (A1) in (Miasojedow et al., 2013), is based on properties of π(x|D) and thus

independent of changes in the algorithm. The second and third assumptions (A2-3) refer

to the adaptation velocities κ. However, these were chosen identically for RAmPART as

defined in Equation 5.9. In addition to (A1-3), (Miasojedow et al., 2013) explicitly uses an

adaptive normal distribution for the sub-chains in its theorems. Fortunately, the proofs in

(Miasojedow et al., 2013) are not tied to the usage of a simple normal distribution and may

be generalized. Following the statement in (Miasojedow et al., 2013, 5.1), it is only required

that individual one-step kernels P(γ,β(`))(·, A) satisfy ergodicity towards π(β`)(A|D) for all

` while the proof components regarding chain swapping hold independently. Thus, in the

following, ergodicity of individual kernels P(γ,β(`))(·, A) is proven.

To prove ergodicity of individual kernels, the proof and notation in (Craiu et al., 2009) is

adapted. Please note, without loss of generality uniform ergodicity has to be shown for one

of the sub-chains with ` ∈ {1, . . . , L} being arbitrary but fixed. To improve readability,

in the following ` will be left out of the notation. It is sufficient (Roberts and Rosenthal,
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2007) to prove diminishing adaptation,

lim
n→∞

sup
x∈Ω

sup
A⊆A
|Pγn+1(x,A)− Pγn(x,A)| = 0, (5.15)

using the sub-chain kernel defined in Equation 5.11 for fixed β meaning that the adaptation

is vanishing over time, and simultaneous uniform ergodicity for ρ < 1,

|Pnγ (x,A)− π(A)| ≤ ρn, n ∈ N, γ ∈ Γ, x ∈ Ω, A ∈ A. (5.16)

meaning that ergodicity holds for an arbitrary but fixed state of adaptation γ. Please note,

for Equation 5.15, the total variance distance as defined in Section 2.4.1, Equation 2.14,

was employed. In the following, Equation 5.15 and 5.16 are proven analogue to (Craiu

et al., 2009).

To prove that Equation 5.16 holds, one defines

ε = min(1− pg, pg) min
r∈{1,...,R}

(
inf
x,y∈Ω

(N (y|x,Σ(γ)
r )), inf

x,y∈Ω
(N (y|x,Σ(γ)))

)
. (5.17)

Due to compactness (and thus bounding) of Ω and Σ(γ) as defined in Equation 5.4, it

holds that ε > 0. Using Equation 5.17 and the Definition 5.12, it follows that

q(γ)(y|x) ≥ ε (5.18)

for all x, y ∈ Ω. Note, that Equation 5.18 holds for any γ ∈ Γ as the matrices Σ(γ),Σ
(γ)
r

are positive definite (Craiu et al., 2009, proof of Theorem 2) and (Haario et al., 2001,

Theorem 1). Furthermore, there exists

d = sup
x∈Ω

(π(x|D)) <∞. (5.19)

By splitting any B ⊆ A into a set Rγ(x,B) = {y ∈ B :
(
π(y|D)
π(x|D)

)1/τ
q(γ)(y|x)

q(γ)(x|y)
< 1} and

Aγ(x,B) = B \ Rγ(x,B) with x ∈ Ω one can show for a one-step kernel as defined in

Equation 5.11,

P(γ)(x,B) =

∫
Rγ

q(γ)(y|x) min

{
1,

(
π(y|D)

π(x|D)

)1/τ q(γ)(x|y)

q(γ)(y|x)

}
µLeb(dy)

+

∫
Aγ

q(γ)(y|x) min

{
1,

(
π(y|D)

π(x|D)

)1/τ q(γ)(x|y)

q(γ)(y|x)

}
µLeb(dy)
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=

∫
Rγ

q(γ)(x|y)

(
π(y|D)

π(x|D)

)1/τ

µLeb(dy) +

∫
Aγ

q(γ)(y|x)µLeb(dy)

≥ ε

d(1/τ)

∫
Rγ

π(y|D)(1/τ)µLeb(dy) +
ε

d(1/τ)

∫
Aγ

π(y|D)(1/τ)µLeb(dy)

=
ε

d(1/τ)
π(B|D)(1/τ). (5.20)

By (Meyn and Tweedie, 2012, Definition 5.14) and Equation 5.20, B = Ω is v-small with

P(γ)(x,Ω) ≥ ε
d(1/τ)

. From this it follows that the chain is uniformly ergodic (Meyn and

Tweedie, 2012, Theorem 16.0.2). Thus, Equation 5.16 holds. It remains to be proven,

that Equation 5.15 holds as well.

To prove Equation 5.15, let M = maxr∈{1,...,R}{supx,y∈Ω q
(γ)
r (y|x) : r = 1, . . . R} where

q
(γ)
r (y|x) is defined by Equation 5.13. M is finite. Without loss of generality, let x ∈ Ω1

and A ⊆ A. As Ω = ∪· Rr=1Ωr by construction, one can write

P(γi)(x,A) =
R∑
r=1

∫
A∩Ωr

q(γi)
r (y|x) ·

min

{
1,

(
π(y|D)

π(x|D)

)1/τ q
(γi)
r (x|y)

q
(γi)
1 (y|x)

}
µLeb(dy). (5.21)

Consistent to earlier definitions, let

p(γi)
acc,r(x, y) = min

{
1,

(
π(y|D)

π(x|D)

)1/τ q
(γi)
r (x|y)

q
(γi)
1 (y|x)

}
. (5.22)

Thus, to calculate |P(γi+1)(x,A)− P(γi)(x,A)| one observes terms as

Ir =

∣∣∣∣∫
A∩Ωr

(
q

(γi+1)
r (y|x)p

(γi+1)
acc,r (x, y)− q(γi)

r (y|x)p(γi)
acc,r(x, y)

)
µLeb(dy)

∣∣∣∣ (5.23)

for all r = 1, . . . , R. One may appraise,

Ir ≤
∫
A∩Ωr

∣∣∣(q(γi+1)
r (y|x)p

(γi+1)
acc,r (x, y)− q(γi)

r (y|x)p(γi)
acc,r(x, y)

)∣∣∣µLeb(dy)

=

∫
A∩Ωr

∣∣∣q(γi+1)
r (y|x)p

(γi+1)
acc,r (x, y) + q

(γi+1)
r (y|x)p(γi)

acc,r(x, y)

−q(γi+1)
r (y|x)p(γi)

acc,r(x, y)− q(γi)
r (y|x)p(γi)

acc,r(x, y)
∣∣∣µLeb(dy)

≤
∫
A∩Ωr

q
(γi+1)
r (y|x)

∣∣∣p(γi+1)
acc,r (x, y)− p(γi)

acc,r(x, y)
∣∣∣µLeb(dy)

+

∫
A∩Ωr

p(γi)
acc,r(x, y)

∣∣∣q(γi+1)
r (y|x)− q(γi)

r (y|x)
∣∣∣µLeb(dy)
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≤ M

∫
A∩Ωr

∣∣∣p(γi+1)
acc,r (x, y)− p(γi)

acc,r(x, y)
∣∣∣µLeb(dy)

+

∫
A∩Ωr

∣∣∣q(γi+1)
r (y|x)− q(γi)

r (y|x)
∣∣∣µLeb(dy) (5.24)

and the first term can be further appraised to

M

∫
A∩Ωr

∣∣∣p(γi+1)
acc,r (x, y)− p(γi)

acc,r(x, y)
∣∣∣µLeb(dy)

= M

∫
A∩Ωr

(
π(y|D)

π(x|D)

)1/τ
∣∣∣∣∣q(γi+1)
r (x|y)

q
(γi+1)
1 (y|x)

− q
(γi)
r (x|y)

q
(γi)
1 (y|x)

∣∣∣∣∣µLeb(dy)

≤ Md1/τ

π(x|D)1/τ

∫
A∩Ωr

∣∣∣∣∣q(γi+1)
r (x|y)

q
(γi+1)
1 (y|x)

− q
(γi)
r (x|y)

q
(γi)
1 (y|x)

∣∣∣∣∣µLeb(dy). (5.25)

Other than in the setting of (Craiu et al., 2009), RAmPART uses a fixed ratio pg over

all iterations. Thus, overall it remains to be proven, that
∣∣∣q(γi+1)
r (y|x)− q(γi)

r (y|x)
∣∣∣ and∣∣∣∣ q(γi+1)

r (x|y)

q
(γi+1)

1 (y|x)
− q

(γi)
r (x|y)

q
(γi)
1 (y|x)

∣∣∣∣ do vanish with increasing i. This, however, follows from Corollary 3

(Haario et al., 2001) for the proof for the AM algorithm by Haario et al., since lim
i→∞

Σ
(γi)
r ∝

Cov(Ωr) and lim
i→∞

Σ(γi) ∝ Cov(Ω). Therefore, Ir → 0 follows for all r and simultaneous

uniform ergodicity 5.16 is proven.

In summary this shows, that samples generated by RAmPART will converge regardless

of the chain-initial point and tuning parameters. However, as discussed in Chapter 2 and

3, this finding provides a necessary but not a sufficient criterion for the generation of

representative samples in practice. Therefore, in the following the practical performance

of RAmPART will be quantified to provide the full picture.

5.3 Performance benchmark

To assess the performance and robustness of RAmPART, two simulation examples and two

biological problems are studied. As a reference, own implementations of state-of-the-art

RB-AM and adaptive PT algorithms are considered.

To ensure that the results are representative, 100 runs with 106 iterations per algorithm

and problem were performed. Overall, the assessment is based on all these runs, which in

total correspond to 18.000 CPU hours. RAmPART is compared to different state-of-the-

art algorithms. To ensure an unbiased comparison, a semi-automated analysis pipeline
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described in Chapter 3 is employed.

5.3.1 Artificial problems

To illustrate the properties of RAmPART, two established artificial problems were consid-

ered: Gaussian mixture density (Lacki and Miasojedow, 2015) and blurred ring (Kramer,

2016).

• The 20-dimensional Gaussian mixture density is given by

πgm(θ|D) ∝

(
2∑
i=1

N

((
θ1

θ2

)
|

(
µi,1

µi,2

)
,Σ

))
20∏
j=3

N (θj |25, σ2), (5.26)

with µ1 = (−50,−50)t, µ2 = (50, 50)t, Σ = s · 250

(
1 −1

−1 1

)
+ 1

2

(
1 1

1 1

)
and

s, σ = 1. The box constraints are summarized in Table 5.3. This defines a mixture

of two separated Gaussian modes in two dimensions, whose largest eigenvectors are

orthogonal to the connection line between the mode centers. The 18 other dimensions

of this problem possess simple uncorrelated Gaussian modes (Figure 5.4a). Here, s

does control the separation of the mixture-modes, while σ denotes the width of the

simple Gaussian modes.

• The 20-dimensional blurred ring density is defined by

πring(θ|D) ∝ N
(
r(θ)|r0, σ

2
r

) 20∏
j=3

N (θj |0, σ2) (5.27)

with r(θ) =
√
θ2

1 + θ2
2, σ = 1, r0 = 50 and σr = 5. The box constraints are

summarized in Table 5.4. This defines a ring-like correlation structure in the first

two parameters, while r0 controls the radius and σr the width of the blurred ring.

The other 18 parameters are again distributed by uncorrelated normal densities with

standard deviation σ (Figure 5.4b).

Table 5.3: The parameter constraints for the 20-dimensional Gaussian mixture density.

Parameter Name θmin θmax

θi, i = 1, . . . , 20 -100 100

The benchmark problems were sampled with RB-AM, PT and RAmPART. For PT and

RAmPART, 40 temperature levels with τmax = 2000 were employed. RAmPART has
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a) b)

c) d)

e) f)

Gauss Mixture Blurred Ring

 

Gaussian Mixture Blurred Ring

20-dimensional Gaussian 
mixture distribution

20-dimensional blurred ring 
distribution

Candidates 
1,...,10

Candidates 
1,...,20

∅ ∅ ∅∅

Figure 5.4: RAmPART outperforms established methods for simulation exam-
ples: 20-dimensional Gaussian mixture and the 20-dimensional blurred ring.
a-b) Bivariate scatter plot matrix and histograms for a representative chain generated
using RAmPART. Parameters θ1 − θ4 are illustrated. The parameters θ5 − θ20 possess
the same density as θ3 and θ4. c) Variability of the selected GMM complexity between
RAmPART runs. d) The remaining ESS for different selected GMM complexities after
application of the analysis pipeline. e-f) Quantitative assessment of the effective sample
size and the effective sample size per second computation time for different algorithms.
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Table 5.4: The parameter constraints for the 20-dimensional blurred ring density.

Parameter Name θmin θmax

θi, i = 1, 2 -200 200
θi, i = 3, . . . , 20 -20 20

Table 5.5: Summarized run times (in seconds) per iteration. This includes runs which
were not able to converge as well.

Gaussian Mixture Blurred Ring

RB-AM 1.4 · 10−1 1.2 · 10−1

PT 1.4 2.1
RAmPART 3.0 3.7

been initialized with the last 50% of a PT run with 105 samples. For this sample size, PT

explored a large fraction of the parameter space but samples were not representative for

the posterior distribution. However, the inference of GMMs using EM already provided

reasonable definitions of regions (Figure 5.4a-d).

The number of regions and their location differed between runs. Thus, it is interesting

to observe whether the sampling performance during the sampling phase depends on the

number of regions and if the automatically chosen number of regions varies. For the 20-

dimensional Gaussian mixture example, it was found that the cross-validations always

yielded 2 regions (Figure 5.4c, left panel). For the 20-dimensional blurred ring, on average

8 regions were selected for the considered sample size (Figure 5.4c, right panel). Here, the

covariance matrices of regions differed substantially, which allowed for a good approxima-

tion of the density. For both examples, the sampling efficiencies were independent of the

number of regions and their locations (Figure 5.4d).

The evaluation of the sampling results revealed that RB-AM and PT suffer from conver-

gence problems for the considered sample size (Figure 5.4e,f). The RB-AM did neither

provide representative samples for the Gaussian mixture nor for the blurred ring as it

failed to explore the posterior. In most runs, PT provided a representative sample from

the Gaussian mixture, but not for the blurred ring. RAmPART converged in 95 of 100

runs for the Gaussian mixture and in 25 of 100 runs for the blurred ring. The compu-

tation time per iteration was highest for RAmPART (Table 5.5). Yet, due the decreased

auto-correlation, the effective sample size was highest for RAmPART, both in absolute

terms and relative to the computation time (Figure 5.4e,f).

The comparison of PT and RAmPART revealed that the use of region-based random walk
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Figure 5.5: Bivariate scatter plots of AM samples in the 20-dimensional blurred
ring and 20-dimensional Gaussian mixture. Upper panel: 20-dimensional blurred
ring. Lower panel: 20-dimensional Gaussian mixture.

proposals (pg = 0.5) improved convergence and computational efficiency. Accordingly, it

was not clear whether a pure region-based random walk proposal would perform even bet-

ter (pg = 1). Interestingly, this was not the case for the considered benchmark problems.

This indicates, that the small-world proposal used by RAmPART for pg = 0.5 exploits

benefits of local and global proposals and improves the overall robustness in particular

across different regions.

Driven by the experience gathered in Chapter 4, it was expected that the standard

Metropolis Hastings (MH) method and even its adaptive variates will not perform well for

the considered problems. To confirm this hypothesis, 5 runs using an adaptive Metropolis

(AM) algorithm for the 20-dimensional blurred ring and 20-dimensional Gaussian mixture

examples were performed (Figure 5.5).

In comparison to the results in Figure 5.4, one can see, that the generated samples are not

representative for the underlying posterior structure as either parts of the ringed mode

were missed or only one of the two Gaussian modes were captured. These runs would have

been filtered by the employed analysis pipeline and thus would have not contributed to

the overall ESS of the method.
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5.3.2 Application problems

To evaluate RAmPART in practice, the processes of mRNA transfection and Epo-induced

JAK2/STAT5 signaling were considered:

• mRNA transfection is a promising treatment option, among others, in immunother-

apy (Kuhn et al., 2011). In mRNA transfection, mRNA is encapsulated in lipoplexes,

transported across the cell membrane, released into the cytosol and being translated

(Figure 5.6a). Single cell time-lapse data for this process have been collected and

modeled by (Leonhardt et al., 2014) (Figure 5.6b). In this study, the model intro-

duced by (Leonhardt et al., 2014) is considered, inferring its five parameters from a

representative single-cell trace. The model was already employed as a benchmarking

problem in Chapter 4 and found to give rise to challenging posterior landscapes. For

readability, some redundant details are covered in the following. The ODE of the

model reads

˙[GFP] = kTL[mRNA]− β[GFP], [GFP(t ≤ 0)] = 0, (5.28)

˙[mRNA] = −δ[mRNA], [mRNA(t)] =

0, t < 0

m0, t = t0
(5.29)

in which [GFP] denotes the concentration of green fluorescent protein and [mRNA]

denotes the concentration of mRNA of green fluorescent protein. The mRNA is re-

leased into the cell at t0 and the initial concentration is m0. The mRNA is translated

with rate kTL. Degradation rates for mRNA and protein are δ and β, respectively.

The analytical solution for the ODE model is given by

[mRNA(t)] =

0, t < t0,

m0e
−δ(t−t0), otherwise,

(5.30)

and

[GFP(t)] =


0, t < t0

kTLm0

(
e−β(t−t0) − e−δ(t−t0)

)
/ (δ − β) , t ≥ t0 ∧ δ 6= β

kTLm0(t− t0)e−δ(t−t0), t ≥ t0 ∧ δ = β

(5.31)

The experimental data was collected for [GFP(t)] at 150 time points in the time

interval t ∈ [2, 27] hours (Leonhardt et al., 2014). For such data, the parameters kTL

and m0 are structurally non-identifiable, as [GFP(t)] merely depends on the product
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κ = kTLm0. This problem is addressed by estimating merely κ. In addition, β and

δ are only locally structural identifiable. The values of the two parameters can be

interchanged without altering the observable [GFP(t)]. In previous studies, it was

assumed that the mRNA half-life is smaller than the protein half-life, implying β < δ.

As this is not necessarily correct, this constraint is not applied here. Simulation and

data are compared using an error model assuming the measurement noise is normally

distributed with standard deviation σ. As σ is unknown, it is taken into account as

an additional parameter for parameter estimation. The parameter constraints are

reported in Table 5.6.

• Epo-induced JAK2/STAT5 signaling is essential for survival, proliferation and

differentiation in hematopoesis (Bachmann et al., 2011). Epo binds to the complex

of the Epo receptor (EpoR) and JAK2. The complex induces phosphorylation of

STAT5, which subsequently dimerises and translocates to the nucleus to regulate

gene expression (Figure 5.6c). An initial model of this process has been developed

by (Swameye et al., 2003). Here, the implementation of the model by (Maier et al.,

2017) with 17 parameters and fit it to quantitative immunoblotting data is considered

(Figure 5.6d).

For JAK2/STAT5 signaling the ODE model introduced by (Maier et al., 2017) is

considered, which is based on the original publication by (Swameye et al., 2003).

The ODE model is defined by

d

dt
[STAT] = (Ωnuc · p4 · [nSTAT5]− Ωcyt · [STAT] · p1 · u(t)) /Ωcyt

d

dt
[pSTAT] = [STAT] · p1 · u(t)− 2p2 · [pSTAT]2

d

dt
[pSTAT2] = p2 · [pSTAT]2 − p3 · [pSTAT2]

d

dt
[npSTAT2] = −(Ωnuc · p4 · [npSTATmpSTAT]− Ωcyt · p3[pSTAT2])/Ωnuc

d

dt
[nSTAT1] = −p4([nSTAT1]− 2[npSTAT2])

d

dt
[nSTAT2] = p4([nSTAT1]− [nSTAT2])

d

dt
[nSTAT3] = p4([nSTAT2]− [nSTAT3])

d

dt
[nSTAT4] = p4([nSTAT3]− [nSTAT4])

d

dt
[nSTAT5] = p4([nSTAT4]− [nSTAT5]) (5.32)

in which u is the time dependent level of phosphorylated Epo receptor and the initial
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conditions are defined by x(0) = 0 for all states except for [STAT](0) = [STAT]tot.

The phosphorylated Epo receptor initiates JAK2/STAT5 signalling and it is modeled

using a cubic spline function. This function has the values u(0) = sp1, u(5) = sp2,

u(10) = sp3, u(20) = sp4, u(60) = sp5. For the process, measurement data for

the amount of phosphorylated STAT and total STAT in the cytosol is taken into

account,

y[pSTAT] = O[pSTAT] + s[pSTAT]/[STAT]tot([pSTAT] + 2[pSTAT2]) (5.33)

y[tSTAT] = O[tSTAT] + s[tSTAT]/[STAT]tot([STAT] + [pSTAT] + 2[pSTAT2]) (5.34)

using offset parameters O and scaling parameters s and the concentration of phos-

phorylated Epo receptor

y[pEpoR] = u(t). (5.35)

The unknown parameters of the models are θ = (p1, p2, p3, p4, [STAT]tot, sp1, sp2,

sp3, sp4, sp5, O[tSTAT], O[pSTAT], s[tSTAT], s[pSTAT], σ[pSTAT], σ[tSTAT], σ[pEpoR])
T , the

volumes of cytosol and nucleus (Ωcyt and Ωnuc) are known. The box constraints are

defined in Table 5.7.

For both applications, log10-transformed parameters were employed and uniform prior

densities were used.

The posterior distributions of the models were sampled using RB-AM, PT and RAmPART

with the same settings as for the simulation examples (Figure 5.4) but with L = 60,

τmax = 4000 for the JAK2/STAT5 problem and L = 30, τmax = 2000 for the mRNA

transfection problem. RAmPART provided the most runs with a representative sample of

the posterior distribution, while especially RB-AM suffered from convergence problems.

The trajectories contained in the representative samples by PT and RAmPART provide

a good description of the experimental data (Figure 5.6b,d).

Table 5.6: The parameter constraints for the model of mRNA transfection.

Parameter Name θmin θmax

log10(t0) -2 1
log10(kTLm0) -5 5
log10(β) -5 5
log10(δ) -5 5
log10(σ) -2 2



114 CHAPTER 5. RAMPART
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Figure 5.6: RAmPART adapts to the posterior landscape and outperforms es-
tablished methods for models of mRNA transfection and JAK2/STAT5 signal-
ing. a) Biochemical reaction network for model of mRNA transfection. b) Measurement
data and propagated model trajectories of the observable G(t) derived from the parameter
sample points. c) Biochemical reaction network for model of JAK2/STAT5 signaling. d)
Measurement data and propagated model trajectories of the observables tSTAT, pSTAT
and pEpoR derived from the parameter sample points. e,f) Bivariate scatter plot of one
RAmPART MCMC chain. The colors indicate the different regions. g,h) Comparison of
the effective sample size and the effective sample size per second computation time for the
sampling algorithms.
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Table 5.7: The parameter constraints for the JAK2/STAT5 signaling application.

Parameter Name θmin θmax

log10(p1) -5 5
log10(p2) -3 6
log10(p3) -5 5
log10(p4) -3 6
log10([STAT]tot) -5 5
log10(sp1) -5 5
log10(sp2) -5 5
log10(sp3) -5 5
log10(sp4) -5 5
log10(sp5) -6 5
log10(O[tSTAT]) -5 5

log10(O[pSTAT]) -5 5

log10(s[tSTAT]) -5 5

log10(s[pSTAT]) -5 5

log10(σ[pSTAT]) -5 5

log10(σ[tSTAT]) -5 5

log10(σ[pEpoR]) -5 5

The sampling results for the model of mRNA transfection revealed a bimodal posterior

(Figure 5.6e). Accordingly, in all runs RAmPART selected at least 2 regions, on average

4.8. In all runs, the two modes were separated into different regions, allowing RAmPART

to account for the different local correlation structure. Furthermore, each mode was often

split into several regions to cover the tails (see Figure 5.6e). RAmPART identified the

symmetry between the degradation rates, β and γ, on the level of the sample and the

level of the regions. This symmetry is associated to structural identifiability problems.

However, it can not be identified by established tools for structural identifiability analysis,

such as GenSSI 2.0 (Ligon et al., 2017). Thus, the automatic identification of symmetries

offered by RAmPART is important.

The sample for the model of JAK2/STAT5 signaling, did not reveal multi-modality as

for the mRNA transfection but practical non-identifiabilities (Figure 5.6f). Practical non-

identifiabilities manifested as tails in the posterior densities and were visible, among others,

for OtSTAT and stSTAT. If these parameter dimensions are considered for the training of

the GMM, RAmPART selects 4 - 5 regions. These regions partition the densities and

possess different correlations structure, facilitating the construction of a tailored proposal

density.

The overall run times (Table 5.8) and the number of runs which provide a representative



116 CHAPTER 5. RAMPART

Table 5.8: Summarized run times (in seconds) per iteration. This includes runs which
were not able to generate representative samples.

mRNA Transfection JAK2/STAT5 Signaling

RB-AM 7.5 · 10−2 2.6 · 10−1

PT 1.1 2.7 · 101

RAmPART 1.6 2.5 · 101

Table 5.9: Summarized the number of converged runs in each of the examples. Any chain
which has a non-vanishing ESS counts as converged. In total, 100 runs were started.

mRNA Transfection JAK2/STAT5 Signaling

RB-AM 0 0
PT 100 86
RAmPART 100 99

sample (Table 5.9) were assessed. In comparison to PT, RAmPART requires additional

computational effort. Please note, in Chapter 3 and 4 the fraction of runs which provide a

representative sample was called exploration quality (EQ) of the algorithm. For the mRNA

transfection model, PT and RAmPART both showed a full EQ while RB-AM, as expected,

did not generate a representative sample at all (Table 5.9). For the JAK2/STAT5 model,

the additional computational effort is small compared to the objective function evaluation

and leads to slightly higher EQ. This is probably the most realistic scenario for parameter

estimation problems in systems biology.

Overall, the evaluation of the sampling performance and robustness revealed that RAm-

PART is more efficient than the established methods for both application problems (Figure

5.6g,h). For mRNA transfection, RAmPART achieves a 6.6-fold higher ESS/t than PT

(Figure 5.6g). The key reason probably was the improved alignment of the regional pro-

posal densities of RAmPART compared to the coverage of the two modes by the global

proposal density of PT. For JAK2/STAT5 signaling, it was found that RAmPART dou-

bled the ESS/t in presence of an apparently rather simple posterior structure (Figure

5.6h). Apparently, even though the posterior structure is uni-modal, a Gaussian mixture

model provides a substantially better approximation than a single Gaussian due to the

pronounced tails of the posterior which allows RAmPART to slightly outperform PT.
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5.4 Aimed temperature selection

Applying tailored algorithms for estimating parameter distributions in application prob-

lems can increase the performance significantly. This typically demands the selection of

problem specific tuning parameters, which often make or break the given method. Un-

fortunately, in practical parameter estimation problems one typically faces an unknown

posterior and it is not clear how to choose proper tuning parameters. By applying multiple

adaptation schemes and an automated region learning, RAmPART limits the number of

problem specific tuning parameters. However, critical tuning parameters exist for RAm-

PART as well. The most crucial one of them appears to be the maximum temperature

τmax. Too low values will limit the transition between different modes of the posterior

distribution, while too high values render multiple tempered sub-chains redundant and

lower the efficiency of the algorithm (Vousden et al., 2016; Lacki and Miasojedow, 2015).

In this section, an approach for the selection of τmax is proposed and evaluated.

5.4.1 Motivation

In each of the L sub-chains, a candidate θ′ proposed from θ is accepted with an acceptance

ratio defined by Equation 5.5 which is proportional to (π(θ′|D)/π(θ|D))(1/τ) where τ ≥ 1

is the temperature. Proposed candidates θ′ with π(θ′|D) � π(θ|D) are unlikely to get

accepted for τ = 1. However, depending on the structure of the posterior, one may want

a chain whose tempered sub-chains (τ > 1) are able to move through unlikely sets in the

parameter space

ωM = {θ ∈ Ω : π(θ|D)� π(θopt|D), θopt ∈M}, (5.36)

where M denotes the set of local optima of the posterior, aka. modes of the posterior,

M = {θ ∈ Ω : ∃δ > 0, s.t.∀ θ̃ ∈ Sδ(θ) ⊆ Ω is π(θ̃|D) ≤ π(θ|D)}, (5.37)

in order to explore the posterior representatively (see Chapter 3 and 4). Here, Sδ(θ) ⊆ Ω

denotes a k-dimensional sphere with radius δ centered around θ. In particular, for a

posterior with multiple modes, it is important, that at least the hottest sub-chain (τ =

τmax) is able to move between the modes. Thus, finding a sufficiently high τmax such that

(π(θ′|D)/π(θ|D))(1/τmax) ≈ 1 with π(θ′|D)� π(θ|D) holds for all θ′ ∈ ωM, θ ∈ Ω is crucial.

While it should be avoided to choose τmax too small, too large values are not beneficial

either. As the swap acceptance depends on the inverse temperature difference ∆β between

adjacent sub-chain, higher τmax typically demand larger L in order to maintain frequent
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swaps between each pair of adjacent sub-chains. This causes additional computational

effort. In addition, larger L may cause (indirect) swaps between the sub-chains of τ = 1

and τ = τmax to get less likely because all adjacent intermediate swaps have to be accepted

first. Thus, it is desirable to use the smallest τmax possible.

5.4.2 Method

In the following, a heuristic based on multi-start local optimization for selecting τmax is

proposed. LetM be the set of local optima of the posterior density as defined in Equation

5.37. If M is known, it can be used to define the global maximum of the posterior

πmax = max
θ∈M

({π(θ|D)}) (5.38)

and the minimum of the posterior across the straight connection lines between all local

optima

πmin = min
θ1 6=θ2∈M

({
min
b∈[0,1]

π(θ1 + (θ2 − θ1)b|D)

})
. (5.39)

This set of equations defines a maximum height difference between the global optimum

πmax and the smallest constrained local minimum πmin along the Euclidean connections

between all pairs of local optima (see Figure 5.7),

ε = log
(
π(1/τmax)

max

)
− log

(
π

(1/τmax)
min

)
. (5.40)

By construction ε is positive and a user defined upper bound of height differences in

log-posterior space between local optima and the lowest points connecting them.

AsM is the set of local optima of the posterior, its elements can be found using sufficiently

many multi-start local optimizations. However, M may have infinite many elements,

e.g. in the presence of non-identifiabilities, in which case finite many multi-start local

optimizations would yield a subset M′ ⊆ M which is expected to cause no problems if

M′ is sufficiently diverse. In cases where M has ≤ 1 elements, the equations are not

well defined. In this case, one could simply set τmax to a arbitrary constant without

using the discussion of this section with no expected loss of performance as the problem

is mono-modal.

Equation 5.40 can be used to inform a problem specific maximum temperature

τmax(ε) =
1

ε
log

(
πmax

πmin

)
. (5.41)
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Figure 5.7: A scheme for obtaining a problem specific τmax. The blue line repre-
sents the posterior density π(θ|D). Missing blue points, correspond to local optima missed
by the multi-start local optimization.

The chance for a Markov chain to move between modes located within Sδ(θ1) and Sδ(θ2)

is based on both, the gap between πmax and πmin, and the corresponding distance in

parameter space ||θ1 − θ2||2, θ1, θ2 ∈M. This motivates a heuristic for ε,

ε = max
θ1,θ2∈M

(||θ1 − θ2||2) , (5.42)

making τmax account for both.

In order to obtain the quantities required in Equation 5.41, one needs multiple local

optimizations of the posterior to accumulate a reasonable subset of M. However, for

most MCMC based parameter estimation applications, a preceding multi-start local op-

timization is advisable anyways (see Chapter 4). Performing additional 1-dimensional

optimizations as required for obtaining πmin from Equation 5.39 is typically cheap mak-

ing the overall approach for obtaining a problem specific τmax efficient. However, the

computational effort increases quadratically with |M|, which could be overcome by only

considering the highest nM local optima as a further simplification if necessary. Note,

while a good choice of τmax is expected to improve sampling performance, ergodicity is

independent of the choice of τmax. Additional research on heuristics similar to the one

presented here, is expected to further improve the estimation of τmax.
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Table 5.10: Selection of aimed τmax for each of the 3 20-dimensional Gaussian Mixture
Problems.

s = 10−1 s = 100 s = 101

log(πmax) −2.09 · 101 −2.68 · 102 −2.50 · 104

log(πmin) −2.50 · 104 −2.77 · 103 −2.53 · 104

Aimed τmax 1.77 · 102 1.77 · 101 1.76 · 100

5.4.3 Evaluation

To quantify the practical behavior of an aimed maximum temperature selection, an em-

pirical study was executed using the 20-dimensional Gaussian mixture problem from the

preceding sections. The problem was used in three versions, multiplying the covariances

of the Gaussians with s = 0.1, s = 1 (as in earlier sections) and s = 10. For s = 0.1

the transition between the modes is rather difficult while for s = 10 the disconnection

between the two modes is less pronounced. For each of the 3 problems, 10 runs with each

combination of L = 5, 10, 20 and 40 with τmax = 10−6, 10−5, ... , 1, 10, 102, ... , 106 were

obtained and compared to runs using τmax, aimed. Table 5.10 shows an overview of πmax,

πmin and τmax, aimed for each of the problems. For all three problems ε ≈ 141 was selected

based on Equation 5.42. The results are analyzed using the analysis pipeline presented in

Chapter 3.

While the results (visualized in Figure 5.8) are obtained in only three (artificial) problems

and are thus not comprehensive, they already suggest that the performance of RAmPART

does sensitively depend on the selection of L and τmax. This observation underpins the

point of gaining or loosing performance benefits due to proper or inproper tuning param-

eters. As expected, the number of sub-chains, L, directly impacts the ESS of the runs as

too low numbers let the runs fail entirely. Raising τmax from low to high values gives rise

to failure, good- (ESS > 104) and moderate (ESS > 103) sampling performance if L is

sufficiently high. Furthermore, for sufficiently large L there apparently exist optimal max-

imum temperatures. Interestingly, the optimal maximum temperature τmax changes fewer

than by a factor of 10 when the posterior density mode covariances are scaled with 0.1, 1

or 10 respectively. The heuristic for aimed tempering shows moderate to good results for

these three problems typically being a bit higher than the empirically optimal maximum

temperature τmax.

In summary, the aimed temperature selection presented in this section, is an attempt

to further automatize RAmPART regardless of the given problem. First results showed,

that a careful selection of critical tuning parameters as L or τmax are indeed crucial and
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Figure 5.8: Average ESS in three versions of the 20-dimensional Gaussian mix-
ture problem. Each square corresponds to the results of 10 runs possessing a certain set
of tuning parameters.

the presented heuristic for a problem specific determination of τmax performed reasonably

well. As only three similar problems were included in this study (in total 1680 runs with

106 iterations each) and a high performance impact of L and τmax was observed, further

investigation in scope of future research is required.

5.5 Summary and discussion

The most common approach for comprehensive assessment of parameter probability dis-

tributions is Markov chain Monte Carlo sampling. However, for computationally demand-

ing problems with posterior densities which possess multiple modes or pronounced tails,

standard methods (i.e. the Metropolis Hastings or AM), are known to require massive

computational resources in order to provide representative samples (Chapter 4).

Here, the region-based adaptive parallel tempering algorithm, RAmPART, which adapts

to the tempered posterior densities and constructs tailored proposal densities on the fly,

is proposed. Following the requirements formulated by (Craiu et al., 2009, pages 1464–

1465) to ensure ergodicity, this multi-level adaptation is designed to achieve good sampling

properties “within each region” and transition between “all regions”. In order to provide

a theoretical basis a formal proof of ergodicity of RAmPART generated chains has been

provided.

The performance of RAmPART was evaluated for benchmark and application problems.

The analysis revealed that RAmPART possesses a higher computation cost per iteration

than RB-AM and PT, but it also provides a higher effective sample size. The increased

computational cost is compensated by the improved mixing which resulted in a higher
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effective sample size per unit computation time. RAmPART outperformed the reference

implementations of RB-AM and PT for all considered problems, by providing an improved

ESS and a higher reliability of individual runs. Both aspects are highly relevant in practice

and will allow for a consideration of higher-dimenional models with more involved posterior

distributions. However, the results should be corroborated by analyzing a larger set of

application problems in the future. As stronger parameter dependency structures are

expected to enable RAmPART to provide greater benefits compared to state-of-the-art

methods, a study with focus on the co-dimension of such dependency manifolds would be

very interesting.

The robustness and degree of automation of RAmPART was further improved by the de-

velopment of aimed maximum temperature selection. This is a novel approach that solves

an open problem for tempering algorithms (Vousden et al., 2016; Lacki and Miasojedow,

2015) and initial evaluation results were very positive. However, there still is opportunity

for further improvement of RAmPART, e.g. by adapting the regions during the sam-

pling, instead of fixing them after the warm-up phase. Ideas by (Craiu et al., 2009) might

be employed, as implemented in the single-chain algorithm RAPTOR. Complementary,

more robust clustering approaches could be used (Levenstien et al., 2003; Gesteira Costa

Filho, 2008) to enhance the robustness of region learning implemented in RAmPART.

Alternatively, instead of using region-based proposal densities, Hamiltonian Monte Carlo

methods (Hoffman and Gelman, 2014; Graham and Storkey, 2017) might be employed for

the different temperatures.

In summary, RAmPART was introduced and a comprehensive evaluation was provided.

The proposed algorithm has substantial practical value and is publicly available in the

MATLAB toolbox PESTO. This will facilitate its reuse and application to a broad class

of problems in particular ODE-constraint parameter estimation arising in computational

biology.
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Conclusion

6.1 Summary and conclusions

Computational models are an important tool in systems biology. The available informa-

tion about model parameters, given experimental data, is encoded in the corresponding

posterior distribution. As complexity of data and mechanistic models in computational

biology steadily increases, the feasibility and competitiveness of methods which apply to

those models and data – in particular parameter estimation methods – are subjected to

constant development. While optimization algorithms have been actively developed and

compared, sampling methods as MCMC were neglected regarding broad quantitative eval-

uation. In this thesis, MCMC methods have been critically investigated, compared and

improved in order to make their application more compatible for modern science and to

support further development. For this purpose, the thesis employed tools from applied

statistics, Markov theory, non-linear optimization, ODE modeling and machine learning.

In principle, MCMC methods are capable to provide a representative sample from the

posterior distribution. This facilitates the assessment of uncertainties of parameters and

model predictions. In particular, the identification of non-identifiabilities and the search

of meaningful dependency structures between biological model parameter distributions

proved valuable (Raue et al., 2009, 2013b; Hug, 2015). However, often a finite MCMC

sample is not (yet) representative of the posterior and drawn conclusions may be wrong

or misleading. Unfortunately, while in theory MCMC convergence is guaranteed by terms

as ergodicity, law of large numbers and central limit theorems, for finite samples this is

no longer necessarily true. The assessment of sample quality, however, is not straight-

forward, as passing existing statistical tests and convergence criteria is just necessary but

not sufficient for an MCMC result in order to be representative.

To improve the robustness and reliability of MCMC convergence diagnostics, in Chap-

ter 3 an analysis pipeline for the assessment of sample representativity was introduced.

It includes multiple established tests for this purpose, e.g. Gelman-Rubin-Brooks, and

accounts for burn-in, auto-correlation and proper exploration of the Markov chains. In
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comparison to standard assessments, the advantage of the pipeline is a lower chance of

false positives meaning it is less prone for overestimating sample quality. Furthermore, its

semi-automated nature increases objectivity during the assessment as standard approaches

often rely on manual observations.

In computational biology, ODE models are among the most important types of mechanistic

models. Their development is often driven by prior knowledge or hypothesized biological

mechanisms, e.g. a certain signaling cascade of proteins in a cell.

As mechanistic models in biology nowadays tend to become more and more high di-

mensional and typically include feedback loops, this practice of model construction often

leads to mathematical properties such as multi-stability, oscillations, bifurcations or even

chaotic dynamics in the model. Analyzing these properties analytically is usually not

straightforward while they directly impact the shape of the posterior distribution and,

thus, influence the performance of parameter estimation methods as MCMC. However,

the connection between ODE model properties and sampling performance has never been

assessed thoroughly. In order to close this gap, in Chapter 4 a collection of ODE based

parameter problems is established covering a variety of different ODE properties to study.

Beside the quantitative assessment of the connection between ODE model and MCMC

method performance, there has never been a comprehensive evaluation of state-of-the-art

MCMC methods. This is in contrast to other classes of parameter estimation methods

as optimization where extensive benchmarks exist. In order to close this gap and to

derive an unbiased picture of the performance of state-of-the-art MCMC methods in ODE-

constraint parameter estimation problems, in Chapter 4 a stocktaking of multiple MCMC

methods has been provided. The corresponding analysis is based on the self developed

analysis pipeline from Chapter 3. In total, the study includes 100 MCMC runs of 23

algorithms, tuning or initialization schemes in 7 benchmark problems summing up to

more than 300.000 hours of CPU time. The results revealed that multi-modality and

sharp rims in the posterior driven by structural non-identifiabilities, oscillatory dynamics

and multi-stability led to insufficient performances. Chaotic regimes in the model led to

complete failure of all tested methods and suggest that standard MCMC is not suited

for this kind of problems. Correlation structures were only challenging for the algorithms

if very pronounced and non-linear, e.g. depending on how pronounced a banana shaped

posterior mode was chosen, the performance of the algorithms decreased. On absolute

scale, the benchmark revealed overall high auto-correlations in the MCMC samples which

in some cases could be significantly increased by using multi-chain samplers and multi-

start local optimization for chain initialization. Overall, these unique results suggest (i)



6.2. OUTLOOK 125

the importance of careful design of models and (ii) highlight the danger of generating non-

representative samples in even fairly low dimensional problems while mechanistic models

in computational biology tend to be much more high dimensional. Furthermore, (iii)

the results highlight the benefits of a robust analysis framework and the need for broad

quantitative benchmarking of MCMC methods.

Based on the results of the benchmark study in Chapter 4, in Chapter 5 a novel MCMC

method, RAmPART, was developed. RAmPART combines multiple advantages of exist-

ing methods into one tool while maintaining strong self-tuning capabilities to enable the

frictionless application to diverse parameter estimation problems. In Chapter 5 a proof

for ergodicity is provided. Furthermore, novel heuristics for auto-tuning, e.g. maximum

temperature selection which is a common problem for tempering algorithms are proposed.

RAmPART outperformed similar algorithms, which were used as ingredients in its design,

by a factor 2 to 100 and has little computational overhead compared to standard PT.

In conclusion, this thesis contributed to the analysis, comparison and improvement of

MCMC sampling for ODE constraint parameter estimation problems in computational

biology and beyond. The proposed analysis pipeline provides a framework for highly

robust sample quality assessment. The MCMC benchmark study of multiple state-of-

the-art methods in diverse ODE-based parameter estimation problems is the first of its

kind and will support future decision making in applications and development of novel

MCMC methods. The proposed MCMC method, RAmPART, resolves some of the issues

of standard methods while being able to adapt to a vast variety of parameter estimation

problems.

6.2 Outlook

In the following, potential research direction arising from the results in this thesis are

shortly discussed.

6.2.1 Further improvements of sample analysis

The presented sampling analysis pipeline exploits several statistical tests. Those tests

may get computationally expensive with increasing sample sizes or parameter dimensions.

Unfortunately, limiting the maximum number of parameters constraints the problems

which the pipeline could be applied to while limiting the sample sizes is typically done

by thinning the sample, which corresponds to an increase of the variance of a-posterior-
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estimates (Geyer, 1992) and is expected to lower the robustness of statistical tests. Both

bottlenecks could be resolved by proper parallelization within the statistical tests. All

elements of the pipeline admit parallelization, e.g. the calculation of eigenvalues λ in

the Gelman-Rubin-Brooks test or each interval calculation in the sequential Geweke test.

However, in comparison to such intra-test parallelization, inter-test parallelization would

be more straight-forward to implement. For example, the pair-wise similarity assessment

step of the pipeline could be easily distributed. Another potential improvement of the

analysis pipeline could be the integration of additional filter steps in order to further

increase the strictness of the pipeline. While this could decrease the rate of sampling

results classified as well performing, this would also require larger numbers of MCMC

results and thus would increase the overall computational demand in to run the pipeline.

Instead, improving existing tests (e.g. (Mengersen et al., 1999)), could make the pipeline

steps more sensible and could decrease the number of required MCMC results.

Currently, the pipeline reduces the subjective judgment by shifting the usual visual in-

spection of standard analysis methods from a single MCMC sample to a visual inspection

of similar groups of sampling results. It would be convenient to entirely eliminate the

need of visual inspection from the framework. One way of approaching could be the usage

of finite state machines (Middleton, 1996), which would make decisions based on certain

characteristic values. For example, one could construct a scheme where each mode in a

sample is mapped to a center position point and a weight representing its volume esti-

mate. While the ground truth is unknown, these characteristic values could be used for

comparisons between runs, as a human would judge similarity of modes, e.g. in a bivari-

ate parameter sample plot. The same could be done for each group of similar chains as

obtained by the pipeline. Hereby, a finite state machine could provide judgments based

on the value pairs for each group. For example, group A has two modes with certain

weights but group B sampled only one of these two modes. In this case, the finite state

machine should judge group B as certainly not converged as it misses important parts

of the posterior density. Adding more sophisticated characteristic values, e.g. curvature

of the mode tails via local derivatives or posterior values could make the decisions more

human like. However, in general this approach leads to an unsupervised machine learning

problem which is not straight-forward to tackle. In particular, deciding at which point

two characteristic values differ significantly so that the algorithm distinguishes two modes

is highly problem dependent in general.

A complimentary approach to improve the sampling analysis could be an improvement of

the similarity grouping of MCMC results, as the pipeline heavily relies on it. Currently,

the number of available MCMC results impacts the overall robustness of the framework.
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Larger numbers are expected to increase the overall robustness of the pipeline decision

but the chance of false positive testing results are expected to increase as well. Thus,

adding a careful multiple testing appraisal to the similarity pipeline elements, e.g. by

using Bonferroni-Holm adaptation (Holm, 1979), could be valuable. In order to quan-

tify the increase in robustness with increasing number of MCMC results and to further

support objectivity of the framework, one could derive p-values for the overall pipeline

decisions. This, however, is not straight-forward, as the pipeline consists of multiple tests

and heuristics, whose inputs depend on the previous pipeline steps.

The presented benchmark collection, while covering many common model properties, may

be used as a basis for future more vast collections of problems, e.g. for large benchmarks

similar to optimization, e.g. (Villaverde et al., 2015). Recently, first steps were taken

in this direction (Hass et al., 2018). In order to critically evaluate the performance of

MCMC methods under realistic conditions, one has to reevaluate existing methods similar

to Chapter 4 in a broader range of problems. Due to “no-free-lunch” limitations (Wolpert

and Macready, 1997) each class of problem may require a different class of algorithm to

be solved efficiently. However, prominent sampling algorithms such as HMC (Neal, 2011)

have not been tested in quantitative benchmarks, yet. Thus, it is not clear where they

provide peak performances or may under-perform in comparison to other sampling meth-

ods. Furthermore, novel methods claim to achieve a better performance than existing

algorithms are worth including in benchmark studies as well. In order to draw a com-

prehensive picture of the method landscape, benchmarks as the one presented in Chapter

4 have to become standard tools for MCMC, similar to optimization routines. For that,

it is important to provide implementations of methods and standard analysis frameworks

easily assessable and maintained by the scientific community.

6.2.2 Parameter estimation and mathematical modeling

The results in Chapter 4 revealed, that certain model properties will impact the per-

formance of MCMC methods. In particular, chaotic parameter regimes were found to be

highly challenging, as they typically imply a posterior landscape consisting of an extremely

high number of sharp peaks. Unfortunately, there are some problems in nature, where

model properties like chaos are required in order to describe a process mechanistically

(Braxenthaler et al., 1997; Oladyshkin et al., 2011; Glass et al., 1983). However, mod-

els often possess oscillatory or chaotic behavior without deliberately decided mechanistic

design choice, e.g. by introducing oscillatory behavior via feedback loops in a chemical

reaction network (Feinberg and Horn, 1977). In all these cases, approximate methods

as ABC (Toni and Stumpf, 2010; Buzbas and Rosenberg, 2013; Jennings and Madigan,
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2017) similar to the sampling in stochastic differential equation settings may be required.

Furthermore, ideas from multi resolution samplers (Latz et al., 2018) or early rejection

schemes (Solonen et al., 2012) could be beneficial for parameter estimation in ODE mod-

els with chaotic regimes, as they allow for a sequential evaluation of the ODE integration

while the difference of slightly differently parametrized chaotic orbits increases over time

(and is typically small for small integration times). Generally, depending on the Lypunov

exponents (Wolf et al., 1985) and simulation times, the posterior gets more “rough” pos-

sessing more local modes. Thus, in order to obtain a posterior with low “resolution”,

only chronologically first few data points and the corresponding ODE solution would be

compared within the likelihood while for the highest resolution all data points would be

used. Such a scheme could be complemented by the application of SMC type algorithms.

However, instead of applying a suited algorithm, either parameter constraints or modi-

fications of the model may help to prevent running into problematic parameter regimes.

Unfortunately, such model properties (e.g. a feedback causing oscillatory dynamics) are

not straight-forward to detect and may occur even in simple models possessing feedback

loops. However, in contrast to point estimates of the posterior generated by optimization

methods, posterior samples facilitate the identification of posterior landscapes which are

driven by chaotic behavior. A similar usage of posterior samples was already successfully

employed to identify non-identifiabilities (Hug et al., 2013).

Another important and interesting link between MCMC sampling and mathematical mod-

eling is model selection, in particular Bayesian model selection (Schmidl, 2012; Hug et al.,

2016b,a). There exists a variety of different approaches for model selections, e.g. via

information theoretical approaches (Chehreghani et al., 2012). However, these methods

do not consider the uncertainty of parameters as Bayes factors do (Gelman and Meng,

1998; Hug, 2015). For the calculation of Bayes factors, the marginals of two potentially

high dimensional models are required. This is a challenging problem in general because

the calculation of the marginals requires the evaluation of high-dimensional integrals. One

state-of-the-art sampling based approach is thermodynamic integration (Calderhead, 2007;

Gelman and Meng, 1998; Lartillot and Philippe, 2006; Friel and Pettitt, 2008) which is

closely connected to MCMC methods as presented in this thesis and has been frequently

used in computational biology problems (e.g. (Calderhead, 2007; Eydgahi et al., 2013)).

Providing an improvement regarding the calculation of Bayes factors would greatly sup-

port the model selection process. For example, it would be interesting to see if ideas of

novel methods as RAmPART could be used to improve efficiency of thermodynamical

integration by replacing standard sampling methods. Following this paradigm, executing

benchmark studies, similar to the one in this thesis, for the calculation of Bayes factors

would be very interesting.
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6.2.3 Further hybrid MCMC methods

In high dimensional problems, random walk type MCMC algorithms can be inefficient if

there is a pronounced non-linear correlation structure between parameters with medium

to high co-dimension. In these cases, derivative based methods as HMC are expected to

be valuable. However, the requirement of derivatives of the posterior density often make

them computationally demanding. Thus, it would be interesting to study how HMC and

RAmPART scale with increasing problem complexity (e.g. by using benchmark problems

possessing correlation structures of increasing dimensions, non-linearity and shaping) and

eventually combine them as another hybrid method. Such a hybrid method would use

HMC movements in a certain fraction of iterations in order to improve mixing in presence

of pronounced parameter correlations. This would be particularly useful for the warm-up

phase of RAmPART, as the training of regions depends on it. Once that proper regions

suiting the local correlation structures were found, RAmPART is expected to perform

well – even in high dimensions – without the need of derivatives. Another potentially

valuable approach could be the inclusion of early rejections (Solonen et al., 2012) or res-

olution samplers (Latz et al., 2018) into the RAmPART framework in order to deal with

computationally expensive model evaluations.

6.2.4 Model based data integration

The process of a model formulation enforces a precise and executable formulation of a bi-

ological hypotheses (Stelling, 2004) and allows to directly falsify them (Hug et al., 2016a;

Hross, 2016; Schilling et al., 2009; Toni et al., 2012). When combined with the flexibil-

ity of parameter estimation, mechanistic models allow to integrate data from multiple

sources (Cotten and Reed, 2013; Link et al., 2014; Yizhak et al., 2010; Kuepfer et al.,

2012). Multi-omic data integration allows to include relationships between geno-, pheno-

and environmental-types facilitating a full picture across complex biological systems. By

using multi-omic approaches one hopes to reveal novel insights, e.g. detecting relevant

biomarkers in a human population expressing a certain disease, with much smaller sample

sizes compared to non-multi-omic approaches.

Today, despite the decreasing costs of experiments (Palsson and Zengler, 2010) and the

high potential of comprehensive data sets, e.g. (1000Genomes Project Consortium and

others, 2010; Rozenblatt-Rosen et al., 2017), for human medicine technology the possi-

bility of model based multi-omic integration is still under-used for a couple of reasons.

One important reason is that mechanistic models often require large computational re-

sources. The more different data sources one wants to incorporate, the more complex the
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corresponding models typically get, e.g. by including different time scales or additional

biological hypotheses – resulting in slow models at the brink of feasibility. As the con-

nections between different omics can not be easily disentangled prior analysis, multi-omic

models require a comprehensive mapping of the whole biological system and thus tend to

become genome-scale models. In order to expand the computational feasibility of com-

prehensive biological models, one needs highly efficient, swift and scalable algorithms, e.g.

for numeric ODE solvers (Fröhlich, 2018) and parameter estimation methods as presented

in this thesis, complemented by proper analysis methods for genome-scale models, e.g.

(Terzer et al., 2009). For example, finding smart ways to parallelize model evaluations

and parameter estimation methods as RAmPART (Chapter 5) would likely push the usage

of model based multi-omic integration.

Another reason for under-usage of model based multi-omics integration is the challenge of

proper data preparation (Palsson and Zengler, 2010). Ensuring homogeneous assumptions

and normalizations across different sets of data is complicated. Often different labs use

slightly different techniques to obtain, store and process data, even for the same omic type.

Unfortunately, the details regarding these steps are often treated rather implicit. Even for

data which is accumulated in large public databases, the assumptions and normalizations

are often not revealed explicitly. This can eventually lead to inconsistencies in the data

and training models with such data may provide misleading implications or interpretations

when considering model parameter distributions or output predictions. Fortunately, by

investigating uncertainty and consistency across different sets of data, e.g. based on sam-

pling techniques as presented in this thesis, one can minimize the risk of false conclusions.

While there is a trend towards the usage of multi-omics data in computational biology,

an often neglected approach is to integrate homogeneous-omic data from multiple studies.

Mathematical modeling in combination with parameter estimation offers a powerful tool

to integrate data, even for different experimental conditions across multiple studies. In

particular, by employing Bayesian statistics and MCMC the posterior parameter distri-

butions of study A could be used as prior knowledge for study B, effectively integrating

the information from both studies. Unfortunately, studies often treat normalization or

experimental nuances differently, causing inhomogeneity of data a challenge. Therefore,

carefully selected data and robust sampling methods, as RAmPART, could be used for

a proof of concept in this direction enabling a new paradigm of learning from multiple

sources of data.
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J. O. Rädler. Single-cell mRNA transfection studies: Delivery, kinetics and statistics by

http://www.sciencedirect.com/science/article/pii/S0021999118302286
http://www.sciencedirect.com/science/article/pii/S0021999118302286


142 BIBLIOGRAPHY

numbers. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(4):679–688, May

2014. doi: 10.1016/j.nano.2013.11.008.

G. Leonov, N. Kuznetsov, and V. Vagaitsev. Localization of hidden Chua’s attractors.

Physics Letters A, 375(23):2230–2233, 2011.

N. Le˜Novère. Quantitative and logic modelling of molecular and gene networks. Nat.

Rev. Genet., 16(3):146–58, Mar 2015. doi: 10.1038/nrg3885.

M. A. Levenstien, Y. Yang, and J. Ott. Statistical significance for hierarchical clustering in

genetic association and microarray expression studies. BMC Bioinf., 4(62), Dec. 2003.
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