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Abstract

Although a large number of astronomical and cosmological observations have corroborated the
case for the existence of dark matter, its particle nature and properties remain unknown. In
particular, the origin of the extremely long lifetime of the dark matter particle is not fully
understood. This thesis studies the phenomenological implications of a non-minimal coupling
to gravity in various dark matter scenarios. Through this interaction, dark matter is shown
to decay into visible sector particles via Planck-mass suppressed operators, connecting its small
decay width with the weakness of gravitational interactions. For a scalar singlet, a scalar doublet
and a fermionic singlet dark matter candidate, data from gamma-ray, cosmic-ray and neutrino
experiments as well as observations of the cosmic microwave background are used to constrain
the size of this gravity portal. Further limits are derived through an analysis of dark matter
production via coannihilations in the early Universe. Finally, a possible connection between
dark matter decay and cosmic inflation is explored.

Zusammenfassung

Obgleich eine Vielzahl astronomischer und kosmologischer Beobachtungen Hinweise für die Ex-
istenz dunkler Materie geliefert haben, sind deren Teilchennatur und -eigenschaften nach wie vor
unbekannt. Speziell der Ursprung der äußerst langen Lebensdauer des Dunkelmaterieteilchens ist
nicht vollständig verstanden. Diese Dissertation untersucht die phänomenologischen Auswirkun-
gen einer nichtminimalen Kopplung an Gravitation in mehreren theoretischen Szenarien dunkler
Materie. Es wird gezeigt, wie dunkle Materie durch diese Wechselwirkung in Teilchen sichtbarer
Materie zerfallen kann. Dass die hierfür relevanten Operatoren durch Potenzen der Planck-
Masse unterdrückt sind, lässt eine Verbindung der kleinen Zerfallsbreite mit der Schwachheit
gravitativer Wechselwirkungen zu. Für ein skalares Singulett, ein skalares Dublett sowie ein
fermionisches Singulett erlauben es Messungen der kosmischen Gamma- und Teilchenstrahlung,
des Neutrinoflusses sowie des kosmischen Mikrowellenhintergrunds, die maximale Stärke dieser
Kopplung zu beschränken. Weitere Einschränkungen ergeben sich aus einer Berechnung der Pro-
duktion dunkler Materie durch Koannihilationsprozesse im frühen Universum. Zuletzt wird ein
möglicher Zusammenhang zwischen dem Zerfall dunkler Materie und kosmologischer Inflation
untersucht.
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Chapter 1

Introduction

At the present day, we have a very advanced understanding of fundamental physics. On micro-
scopic scales, the standard model of particle physics [1] unifies the description of electromag-
netism and the weak and strong nuclear forces. Since its finalization in the 1970s, its predictions
have been verified experimentally time and time again, the latest example being the detection
of the Higgs boson at the Large Hadron Collider (LHC) [2, 3]. Meanwhile, the Lambda-Cold
Dark Matter (ΛCDM) model of concordance cosmology [4] has been tremendously successful at
describing the dynamics of our Universe at the largest observable scales, on the basis of general
relativity. Among other astronomical and cosmological observables, it can explain the shape
of the anisotropy spectrum of the cosmic microwave background (CMB) to astonishing preci-
sion [5]. However, despite the individual success of these two theories, a description of nature
through a combination of the standard model and ΛCDM cosmology leaves certain questions
unanswered, e.g. related to the origin of neutrino masses, the strongly hierarchical mass spec-
trum of the known particles or the nature of dark matter. These gaps in our understanding
undeniably prove the existence of new physics beyond these respective standard models, and a
tremendous amount of effort, both experimental and theoretical, is being put into closing them.

With respect to the last of the examples given above, over the past decades, a large number
of astronomical and cosmological observations have corroborated the case for some form of
non-luminous, or “dark” matter [6]. On galactic length scales, a large discrepancy is observed
between the motion of stars in spiral galaxies and the predictions of Newtonian gravity based
on the attraction of the visible galactic matter [7, 8]. Arguably the most likely explanation
for this phenomenon is the presence of a dark matter halo that extends far beyond the visible
matter distribution. Depending on the size and luminosity of the galaxy, it is thought to be
responsible for a dominant, or at least significant, fraction of the total mass [9]. Alternatively,
one would have to conclude that the known laws of gravity do not apply at these scales and
have to be modified [10]. At larger scales, the behavior of a number of galaxy clusters exhibits
a similar mismatch between their visible and total matter. Concretely, their center of mass,
as determined from gravitational lensing observations, is spatially offset from the center of
their visible matter distribution, identified through its x-ray emission [11, 12]. Finally, more and
more precise measurements of the cosmic microwave background by the COBE [13], WMAP [14]
and Planck [5] missions have enabled us to pinpoint the parameters of the ΛCDM model. In
this framework, cosmological observations can be explained with a minimal set of parameters,
under very general assumptions — one of which, however, is the presence of a cold dark matter
component in the cosmic fluid that dominates over the visible matter energy density by roughly
a factor of five.

The list of proposed candidates for dark matter is extensive, ranging in mass from ultra-

5



Chapter 1. Introduction

light scalar fields [15, 16] to more “traditional” examples of particle dark matter inspired by
supersymmetry or other “new physics” scenarios [17, 6], all the way up to macroscopic objects
such as primordial black holes [18, 19]. This diversity follows from the fact that so far, the
presence of dark matter has only been established through its gravitational effects on visible
matter, as described above. Determining whether there are other, non-gravitational interactions
between dark and visible matter is one of the most pressing tasks of astroparticle physics today,
in the hope that these interactions, if present, will allow us to learn more about the nature and
origin of dark matter.

For a long time, one of the most popular candidates has been the weakly interacting massive
particle (WIMP), i.e. an electrically neutral particle with a mass around the electroweak scale
and couplings comparable to those of the weak nuclear force. The theoretical motivation for
this type of dark matter candidate is strong, since it appears in many extensions of the standard
model, e.g. as the neutralino in supersymmetric models [17]. Moreover, its weak-scale mass and
coupling mean that a population of these particles was in thermal equilibrium with the visible
sector in the early Universe, giving rise to the “correct” present-day dark matter abundance,
under some simplifying assumptions [6]. Most intriguingly, however, such a dark matter particle
could be accessible to the Large Hadron Collider at CERN [20, 21], leave a trace in one of the
direct detection experiments operating all over the world [22, 23, 24, 25, 26], or lead to exotic
signals in gamma-ray [27], cosmic-ray [28] or neutrino experiments [29] through annihilations
or decays. In the absence of a conclusive signal in either of these three detection strategies,
however, it seems prudent to remain open to dark matter theories beyond the WIMP paradigm,
e.g. those with different thermal histories [30, 31] or additional hidden sector dynamics [32, 33],
as well as to the full range of possible masses.

Among the properties to be addressed by any such theory should be the exceptional longevity
of the dark matter particle [34]. In the visible sector, only very few particles share its stability
on cosmological timescales: the electron and the lightest neutrino, for example, are both ab-
solutely stable, protected by electric charge conservation and Lorentz symmetry, respectively.
The stability of the proton, on the other hand, seems to be an “accidental” consequence of the
matter content of the standard model and its combination of gauge charges [35, 36]. In a sim-
ilar way, there are multiple possible explanations for dark matter stability. Often, an agnostic
standpoint is taken by postulating the existence of a global symmetry by hand that forbids dark
matter decay. This is not strictly necessary, however: if the dark matter particle is very light
and weakly coupled to the visible sector [37, 38], its total width might be suppressed sufficiently
by small couplings and phase-space factors. Alternatively, the dark matter field could be part
of a high-dimensional gauge multiplet [39] or Lorentz representation [40], which would severely
restrict renormalizable interactions with the standard model. As another option, a dark gauge
symmetry might exist, making the lightest charged “dark” particle absolutely stable analogously
to the electron [41, 42]. If the first approach is pursued and a global symmetry is assumed to be
in place, it is usually taken to be exact. However, similarly to the case of the proton, a priori
there is no reason why the global symmetry should be conserved at higher energy scales. In par-
ticular, on very general grounds, gravity is not expected to conserve global symmetries [43, 44].
Therefore, the possibility that dark matter stability is spoiled by gravitational effects has to be
taken seriously in this scenario [45, 46, 47, 48].

This thesis deals with the phenomenological implications of a certain type of non-minimal
coupling between the dark matter quantum field and gravity, specifically with its impact on dark
matter stability. In chapter 2, a brief review of our current knowledge about the dark and visible
sector particles and their interactions will be given. This will set the stage for the introduction
of non-minimally coupled dark matter scenarios in chapter 3. First, the general form of the
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effective operators induced through non-minimal coupling will be discussed, followed by an out-
line of how dark matter decay proceeds through them. Two remarks address the modification of
the electroweak vacuum as well as the value of the cosmological constant. Chapter 4 details the
interaction Lagrangian induced by non-minimal coupling for a scalar singlet, a scalar SU(2)L

doublet and a fermionic singlet. Chapter 5 deals with the decay phenomenology of each of these
candidates in turn, deriving constraints on the strength of the non-minimal coupling in each
case. Some implications of a non-minimally coupled scalar field for cosmology will be discussed
in chapter 6, in particular its impact on the cosmic microwave background and prospects for
dark matter production in the early Universe. Chapter 7 explores a possible connection between
dark matter decay and inflation in non-minimally coupled scenarios. Conclusions will be pre-
sented in chapter 8. A set of appendices provides details on the interaction vertices of the dark
matter candidates discussed in this thesis (A), on the software packages utilized in the numerical
computations (B, C), as well as on the calculation of high-multiplicity phase-space integrals (D)
and cascade decay spectra (E).

This dissertation builds on the previous studies of

[49] Sebastian Ingenhütt. Dark matter decays from non-minimal coupling to gravity. Master’s
thesis, Technical University of Munich, 11 2015.

Parts of the results, as well as some of the figures, have been published in

[50] Oscar Catà, Alejandro Ibarra, and Sebastian Ingenhütt. Dark matter decays from non-
minimal coupling to gravity. Phys. Rev. Lett., 117(2):021302, 2016. arXiv:1603.03696,
doi:10.1103/PhysRevLett.117.021302,

[51] Oscar Catà, Alejandro Ibarra, and Sebastian Ingenhütt. Dark matter decay through gravity
portals. Phys. Rev., D95(3):035011, 2017. arXiv:1611.00725, doi:10.1103/PhysRevD.
95.035011,

[52] Oscar Catà, Alejandro Ibarra, and Sebastian Ingenhütt. Sharp spectral features from light
dark matter decay via gravity portals. JCAP, 1711(11):044, 2017. arXiv:1707.08480,
doi:10.1088/1475-7516/2017/11/044.
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Chapter 2

The dark and the visible sector

2.1 The dark matter puzzle

The question about the nature of dark matter has been with us for many decades now, sparked by
astronomical observations on multiple distance scales. As early as the 1920s, there was evidence
for the existence of some unseen matter in our galaxy [53], based on the comparison of the
observed rotational velocities of stars within the Milky Way with the predictions of Newtonian
gravity. Follow-up studies in the 1930s corroborated this picture [54]. On larger scales, the
dynamics of clusters of galaxies showed a similar behavior. Specifically for the Coma cluster it
was found that most of its mass had to be “dark” in order to explain the large dispersion in the
velocity distribution of its constituents [55, 56].

By the 1970s, technological advances had made it possible to determine galactic rotation
curves with much greater accuracy. A detailed study of 21 spiral galaxies confirmed that these
rotation curves did indeed not fall at large radii, but kept rising instead [7]. Complementary
observations by radio telescopes supported this picture [57], further strengthening the case for
dark matter in galaxies. On the scale of galaxy clusters, by the end of the 1990s it had become
possible to perform complementary determinations of their mass by measuring gravitational
lensing effects [58]. More recently still, spatial separation between the dark and luminous matter
distributions has been shown to exist in some systems [11, 12], which are thought to be a result of
the particular histories of these clusters. Finally, a last line of evidence for dark matter emerged
with the detailed measurement of the acoustic peaks in the cosmic microwave background [14, 5].
These tightly constrain the parameters of the ΛCDM model, among them the physical density
parameter

ΩDM h2 ' 0.12 [5], (2.1)

quantifying the total amount of dark matter in the Universe.

By now, a rough picture of the properties and distribution of dark matter has emerged, from
cosmological down to galactic scales:

• The total amount of dark matter in the Universe is roughly five times that of baryonic
matter [5].

• Dark matter was non-relativistic already in the early Universe, enabling it to form over-
and underdensities in the primordial plasma. These density fluctuations provided the seeds
for structure formation, leading to the large-scale structures we observe today [4].
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Chapter 2. The dark and the visible sector

• Galaxies typically host a dark matter halo of appreciable size, which extends to radii
exceeding those of the outermost visible objects. This halo usually accounts for the bulk
of the total galactic mass [7, 8], although exceptions to this rule might exist [59, 60, 61, 62].

• Dark matter interacts very weakly with ordinary matter; specifically, it does not emit
sizable amounts of electromagnetic radiation. It is also stable on cosmological timescales.

Several questions remain open, however:

• What is dark matter made of? What are its fundamental constituents, and what are their
properties?

• Does dark matter interact non-gravitationally with baryonic matter? What shape do these
interactions take?

• Does dark matter self-interact? Does it decay?

• How was dark matter produced in the early Universe?

Today, a rich experimental program aims to find answers to these questions. In particular, based
on the assumption that dark matter is made up of elementary particles like ordinary matter,
three main strategies are being pursued at present: direct detection, indirect detection and
collider searches. In the direct detection approach, one tries to observe scattering events between
dark matter particles and atomic nuclei. Various experiments use different target materials and
different read-out techniques: for dark matter masses around 10–1000 GeV, liquid noble gas
detectors currently provide the strongest bounds [25, 23, 24]. Today, their sensitivity is mostly
limited by target volume [63, 64]. For lower dark matter masses, the main challenge is to remain
sensitive to lower recoil energies. Solid state detectors perform best in this regime [26, 22]. In the
future, reaching and pushing beyond the so-called “neutrino floor” caused by coherent scattering
of neutrinos off target nuclei will be vital, and techniques to obtain directional information are
being studied [65, 66, 67, 68]. If the dark matter particle is not too heavy, one could also hope
to produce it in the high-energy proton-proton collisions conducted at CERN’s Large Hadron
Collider. Generally speaking, events with large amounts of missing transverse energy would
be a likely signature at the ATLAS [69] or CMS [70] experiments, as the dark matter particle
is expected to pass through these detectors without interacting. Of course, depending on the
dark matter model, other signatures, such as invisible Higgs decays or displaced vertices, are
possible [71] and are actively being searched for in the data [72, 73].

2.2 Indirect detection

Finally, as dark matter is thought to be abundant throughout the Universe, one can attempt
to detect it indirectly, by observing the final-state particles of dark matter scattering or decay
events. This requires a precise measurement of the photon [74], neutrino [75] or cosmic ray
fluxes [76, 77] at Earth. The main difficulty here is to accurately quantify the astrophysical
background fluxes and associated uncertainties [78]. For gamma rays specifically, sensitivity can
be improved significantly by choosing appropriate observation targets that are expected to have
a high concentration of dark matter [79] and, ideally, low astrophysical background fluxes [27].
Any model of decaying or annihilating dark matter producing additional photons can then be
constrained by the non-observation of exotic signals in the data. Focussing on the scenario of
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2.2. Indirect detection

decaying dark matter, there are two contributions to the total isotropic photon flux at Earth,

dΦ

dEγ
=

dΦEG

dEγ
+
dΦMW

dEγ
, (2.2)

corresponding to extragalactic photons and those produced within the Milky Way, respectively.
The first, cosmological, component is given by integrating the differential decay rate over

redshift z, taking into account the expansion of the Universe parametrized by the Hubble pa-
rameter H(z) [80],

dΦEG

dEγ
=

1

4π

ΩDM ρc,0

mDM

∫ ∞
0

dz

H(z)
e−τ(Eγ(z),z)

∑
f

(
ΓDM→f

dN (f)

dEγ

(
(1 + z)Eγ

))
. (2.3)

Here, ρc,0 = 4.9 × 10−6 GeV cm−3 [4] is the present-day value of the critical density of the
Universe, mDM is the dark matter mass, and

H(z) = H0

√
Ωm (1 + z)3 + ΩΛ (2.4)

is the Hubble function. ΩDM = 0.26, Ωm = 0.31 and ΩΛ = 0.69 [5] are the energy densities
of dark matter, matter and vacuum energy in units of the critical density ρc,0, respectively,
and H0 = 68 km s−1 Mpc−1 [5] is the present-day Hubble parameter. At sub-GeV energies,
the attenuation factor e−τ quantifying the Universe’s opacity to photons is very close to unity,
while above photon energies of Eγ & 0.1–1 TeV, it introduces significant suppression [78]. The
sum runs over all final states f producing photons, multiplying each partial width ΓDM→f with
the corresponding energy spectrum dN (f)/dEγ , evaluated at the redshifted energy (1 + z)Eγ .
For practical purposes, the integration region can be limited to redshifts 0 < z < 100, as the
high-energy photons most relevant for detection come from lower redshifts.

The second contribution to the photon flux at Earth, due to decays in the Milky Way halo,
is [80]

dΦMW

dEγ dΩ
(ψ) =

1

4π

∑
f

(
ΓDM→f
mDM

dN (f)

dEγ

)
J (ψ) . (2.5)

This flux is anisotropic; its magnitude depends on the viewing angle ψ relative to the Galactic
Center and the galactic plane. The astrophysical J-factor in the direction ψ for decays is given
by

J (ψ) =

∫ ∞
0

ds ρMW(r(s, ψ)) . (2.6)

The dark matter density distribution of the Milky Way, ρMW(r), is integrated along the line
of sight s, taking into account the position of the solar system r� = 8.33 kpc away from the
Galactic Center. A popular choice for the dark matter density distribution is the NFW profile [9],

ρMW(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (2.7)

with scale radius rs = 24.42 kpc, and normalized such that the local dark matter density is
ρMW(r�) = 0.3 GeV cm−3. Compared to the case of annihilating dark matter, where the
appropriate integrand is proportional to the density distribution squared, the dependence of
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Chapter 2. The dark and the visible sector

the expected flux on the choice of halo profile ρMW is significantly weaker for a decay scenario.
To obtain the observed photon flux, one finally needs to integrate the differential flux over
the solid angle under observation ∆Ω. A compilation of integrated J-factors can be found in
the literature [78]. For the calculation of the expected photon flux from dark matter decay in

section 5.2, an integrated J-factor of (4π)× J (ave)
MW = 1.69× 1022 GeV cm−2 was used.

Whether one hopes to detect dark matter through its decay products in particle fluxes at
Earth or through its signatures in direct detection or collider experiments, what is common to
all three approaches is their reliance on there being some form of interaction between dark and
visible matter, other than their effect on spacetime curvature. So far, there has not been a
conclusive dark matter signal in any of the mentioned experiments. Nevertheless, the data allow
one to constrain the strength of interactions between the dark and visible sector from above.

2.3 Dark matter production in the early Universe

If dark matter is indeed abundant in the Universe today, it must have been produced by some
mechanism in the early Universe. If the dark matter particle couples to the visible sector, it is
possible to calculate its expected abundance from thermodynamical considerations [4]. A scalar
singlet dark matter candidate φ [81, 82], for example, can interact with the standard model in
a Lorentz and gauge invariant way already at the renormalizable level via the so-called Higgs
portal λHφ Φ†Φφ2/2, where Φ is the standard model Higgs doublet. For appropriate values of
the coupling constant λHφ, this allows for dark matter pair production in the early Universe
through intermediate Higgs bosons and can lead to the traditional freeze-out scenario [4, 83].

Here, the dark matter abundance YDM initially traces its equilibrium value, as interactions
with the thermal bath happen frequently enough (cf. figure 2.1). As the temperature drops and
the dark matter particles become non-relativistic, their equilibrium abundance experiences ex-
ponential suppression. If their coupling to the thermal bath was strong enough, this suppression
would continue until the dark matter abundance was virtually zero. However, as the Universe
expands as it cools, interactions with the visible sector become rarer and rarer, until they cannot
maintain equilibrium any longer: at some point Hubble expansion suppresses number-changing
processes sufficiently for the dark matter abundance to freeze out and remain constant. The
weaker dark matter couples to the thermal bath, the earlier it drops out of equilibrium, leading
to a higher present-day number density. Consistency with the observed dark matter density
parameter ΩDM h2 = 0.12 [5] translates into a lower limit on the strength of the interaction
responsible for freeze-out. In the context of traditional WIMP scenarios, a curious numerical
coincidence occurs: if dark matter particles are predominantly pair-produced through 2-to-2
scattering processes, their present-day abundance is approximately given by

ΩDM h2 ' 3× 10−27 cm3 s−1

〈σ v〉
[6], (2.8)

with 〈σ v〉 the thermally averaged scattering cross section. This value hints at a dark matter
particle with weak-scale interactions, which would put it in experimental range of direct detection
and collider experiments. In fact, for many models, the latest generation of these experiments
has already cut deep into arguably the most interesting parts of parameter space. In particular,
the Higgs portal coupling of the scalar singlet is under tension with data from dark matter direct
detection experiments across a wide mass range. A scalar singlet WIMP with mφ ' 60 GeV and
λHφ ' 10−3 remains a possibility, however [84, 85]. The freeze-out scenario itself, meanwhile, is
applicable to many other dark matter scenarios, as are variants of it [86].
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2.3. Dark matter production in the early Universe

Figure 2.1: Dark matter freeze-out production. The dark matter abundance YDM traces its
equilibrium value (dotted black line) until dark matter particles become so diluted that they cannot
scatter efficiently anymore. This happens at a freeze-out temperature that depends on the strength
of the coupling between the dark matter particle and the thermal bath. The continuous lines show
the actual dark matter abundance for weaker, moderate and stronger coupling (orange, red and
brown lines, respectively).

An alternative scenario for dark matter production is the freeze-in mechanism [31], which
is especially applicable to dark matter candidates with couplings much smaller than those of a
WIMP. For such a feebly interacting massive particle (FIMP), interactions between the particle
in question and the standard model thermal bath are assumed to be so weak that the two
never reach thermal equilibrium. Instead, one assumes a vanishing initial number density, as
illustrated in figure 2.2. The particle abundance is then built up gradually as the Universe cools
and expands, until Hubble expansion suppresses interactions and the particle abundance freezes
in and remains constant. In this case, in contrast to the freeze-out scenario, the present-day relic
abundance is proportional to the interaction cross section rather than inversely proportional to
it: the larger the coupling to the thermal bath, the longer dark matter can be produced before
interactions become inefficient. For a scalar singlet dark matter candidate, the correct relic
abundance can be achieved through a Higgs portal of order λHφ ' 10−11 [87].

Generally speaking, whether a dark matter abundance is created via freeze-out or freeze-in
depends primarily on the strength of its coupling to the standard model thermal bath. Starting
in the freeze-in regime, i.e. with a vanishing initial population, for a fixed dark matter mass, the
expected present-day abundance first grows with increasing coupling strength and eventually
reaches the observed value ΩDM h2 ' 0.12. Further increasing the coupling leads to an overpro-
duction of dark matter and the model is in conflict with observations. However, as the coupling
strength approaches that of a WIMP, interactions are strong enough to bring dark matter into
thermal equilibrium with the standard model. Therefore, the freeze-out scenario applies and
the present-day dark matter abundance decreases again with increasing coupling. Eventually,
the observed value is reproduced a second time. For even larger couplings, dark matter is un-
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Chapter 2. The dark and the visible sector

Figure 2.2: Dark matter freeze-in production. Starting from a vanishing initial dark matter
abundance, a relic density is built up gradually until interactions with the thermal bath cannot
keep up with the Hubble expansion anymore. Up to this point, the dark matter abundance lies
far below its equilibrium value (dotted black line). The continuous lines show the actual dark
matter abundance for weaker, moderate and stronger coupling (orange, red and brown lines,
respectively).

derproduced and can only make up a part of the density parameter ΩDM h2 [31]. Of course,
this simplified overview cannot replace a detailed calculation of the present-day abundance in
a given dark matter model, based on the appropriate Boltzmann equations [4]. For example,
coannihilation processes can change this abundance drastically [30], as can dark matter self-
interactions [32]. In section 6.2, dark matter production through a non-minimal coupling to
gravity will be discussed in detail.

2.4 Dark matter stability

One of the most intriguing properties of dark matter is its longevity [34]. According to our
current understanding of cosmology, structure formation at early cosmic times is highly sensitive
to the presence of a cold dark matter component in the cosmic fluid [5]. At present times, we
observe the effects of dark matter on the dynamics of galaxies [8] as well as galaxy clusters [11].
Therefore, if dark matter is mostly made up of one kind of particle, it needs to have a lifetime
at least as long as the age of the universe,

τDM & τUni ' 4× 1017 s . (2.9)

From a theory perspective, such a large value hints at some symmetry being in place to protect
dark matter against decay [34]. There are examples for this in the visible sector, where only very
few particles are comparably stable: the electron is protected against decay by the conservation
of electric charge, while the lightest neutrino species owes its stability to Lorentz symmetry.
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2.5. Dark and visible matter in curved spacetime

In the dark sector, in contrast, one usually introduces an appropriate symmetry by hand. A
popular choice is a global Z2, under which some (or all) of the dark sector particles are odd,
while the visible-sector fields are even,

Z2 : Xd → −Xd , Xvis → Xvis , (2.10)

in analogy to R-parity in supersymmetry. The lightest Z2-odd particle ϕ is then the dark
matter candidate. Its stability follows from the fact that any vertex linear in ϕ only leads
to decays containing heavier particles in the final state. They are therefore forbidden at zero
temperature and the dark matter particle is absolutely stable. (In the special case of a minimal
dark sector, where the only Z2-odd field is the dark matter candidate itself, no such vertices
arise in the first place.) Alternatively, a dark gauge symmetry may be responsible for stabilizing
dark matter against decay [41, 42], especially if the dark matter candidate is embedded in an
extended hidden sector. In this case, its stability follows analogously to that of the electron. A
third possibility exists for very light dark matter candidates, such as the axion [88, 37, 89, 38].
Its low mass, together with its small couplings to visible sector, means that it is stable on
cosmological timescales, even without a protecting symmetry in place. As a last option, dark
matter might be “accidentally” stable, similarly to the case of the proton within the standard
model. If the dark matter field is part of a high-dimensional gauge multiplet [39, 90, 91], standard
model gauge symmetries forbid renormalizable interactions leading to dark matter decay. In
this case, the particle content and symmetries of the visible sector are indirectly responsible
for the long lifetime of the dark matter particle. Analogously, if dark matter resides within
a high-dimensional Lorentz representation, there are very limited options for renormalizable
interactions with the standard model, leading to a naturally stable dark matter particle [40].

From a phenomenological perspective, a dark matter candidate that is not absolutely stable
has a distinct advantage: the fact that it decays opens up new ways of detecting it experimentally,
at least in principle [92, 93, 80, 94]. Given the fact that in the standard model, baryon and
lepton number are accidental symmetries that might well be broken at higher energies [35, 36], it
seems plausible that a global Z2 symmetry stabilizing dark matter against decay might likewise
be broken by some ultraviolet dynamics. At low energies, this would manifest itself in the
presence of Z2-breaking effective operators in the Lagrangian. A priori, the scale ΛZ2 at which
these interactions become strong is not known. A case can me made, however, for identifying
ΛZ2 with the Planck scale: firstly, even if dark matter does not partake in any gauge or Yukawa
interactions with the visible sector at all, we know that it interacts gravitationally. Therefore, if
new dynamics are to spoil the Z2, ΛZ2 ' M̄P is the most conservative choice. Secondly, quantum
gravity is not expected to conserve global symmetries anyway, on very general grounds [43, 44].
Therefore, also conceptually the appearance of Z2-breaking operators at the Planck scale is
anticipated [46, 45, 47, 48].

2.5 Dark and visible matter in curved spacetime

Under the assumption that the multitude of observations connected to the dark matter puzzle
cannot be explained by unknown dynamics of baryonic matter only, some extension of the
standard model of particle physics by a so-called “dark”, or “hidden”, sector will ultimately
be necessary. In the spirit of effective field theory (EFT), at any given energy scale, the total
action describing gravity, dark and ordinary matter, and their interactions in curved spacetime
specified by the metric gµν , will contain a sum of effective Lagrangians

S =

∫
d4x
√
−g
(
Lgrav + Lvis + Ld

)
, (2.11)
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where g = det(gµν). Our best description of the gravitational sector is the theory of general
relativity [95]. Its field equations follow from the Einstein-Hilbert Lagrangian

Lgrav = LEH ≡ − R

2κ2
, (2.12)

with R the Ricci scalar and κ = M̄−1
P =

√
8πG '

(
2.435× 1018 GeV

)−1
the inverse reduced

Planck mass. As a contraction of the Riemann tensor, the Ricci scalar can be constructed from
the Christoffel symbols,

R = gµν Rµν = gµν gσρR
ρ
µσν (2.13)

= gµν gσρ

(
∂σΓρµν + Γρλσ Γλµν − {σ ↔ ν}

)
, (2.14)

which, in turn, can be computed from the metric,

Γρµν =
1

2
gρσ

(
∂µgσν + ∂νgµσ − ∂σgµν

)
. (2.15)

The Lagrangian (2.12) leads to Einstein’s field equations relating spacetime curvature in 1+3
dimensions to its matter content [96],

Rµν −
1

2
Rgµν = κ2 Tµν , (2.16)

where the energy-momentum tensor Tµν receives contributions from both the dark and the
visible sector. Classical general relativity has passed a variety of experimental tests with flying
colors [97]. In the ΛCDM framework, there seems to be no need to extend this theory with
additional fields or interactions, i.e. add more terms to (2.12). (In an alternative approach,
there are attempts to dispense with dark matter altogether, trying to accomodate the various
observations attributed to it by modifying the gravitational Lagrangian instead [10, 98, 99].)

Concerning the other three known fundamental interactions, at energies around the elec-
troweak scale ΛEW ' v = 246 GeV, the visible sector is accurately described by the standard
model of particle physics [1],

L(EW)
vis = LSM ≡ TF + Tf + TH − VH + LY , (2.17)

where LY contains the Yukawa interactions, VH is the Higgs potential, and Ti are the kinetic
terms of gauge bosons, fermions and scalars,

TF =
∑
F

(
−1

4
gµν gρσ F aµρ F

a
νσ

)
, (2.18)

Tf =
∑
f

(
i

2
f̄
←→
/∇ f
)
, (2.19)

TH = gµν (DµΦ)† (DνΦ) . (2.20)

(The gauge-fixing terms and ghost Lagrangian have been omitted here for clarity, see e.g. [100].)
In the first line above, the sum runs over the squares of the standard model field-strength tensors
F aµν = Gaµν ,W

a
µν , Bµν , corresponding to the gauge group SU(3)c × SU(2)L × U(1)Y , which are

defined in terms of the gauge fields F aµ as

Gaµν = ∂µG
a
ν − ∂νGaµ + gs f

abcGbµG
c
ν , (2.21)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW b
µW

c
ν , (2.22)

Bµν = ∂µB
a
ν − ∂νBa

µ . (2.23)
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2.5. Dark and visible matter in curved spacetime

Here, fabc and εabc are the SU(3)c and SU(2)L group structure constants, respectively, and
gs, g the gauge couplings. In (2.19), the sum is performed over all standard model fermion
species f — lefthanded quark and lepton doublets QL and `L, and righthanded up- and down-
type quarks uR, dR and leptons eR. Summation over all three particle generations is implied.
The antisymmetrized derivative is

A
←→
∇B = A (∇B)− (∇A)B , (2.24)

and the slashed derivative operator is defined as

/∇ = γa eµa ∇µ , (2.25)

with γa a Dirac gamma matrix, eµa a vierbein and ∇µf =
(
Dµ − i

4 e
b
ν (∂µe

νc)σbc
)
f . Here, Dµ is

the gauge-covariant derivative and σbc = i
2 [γb, γc] are the generators of Lorentz transformations

in the spinor representation. The gauge covariant derivative for a lefthanded Quark doublet
reads

DµQL =

(
∂µ − i gsG

a
µ T

a − i gW i
µ

σi

2
− i g′ Y Bµ

)
QL , (2.26)

with T a, (σi/2) and Y the group generators of SU(3)c, SU(2)L and U(1)Y , respectively, and g′

the U(1)Y gauge coupling. Gauge covariant derivatives of the other fermion fields contain the
terms corresponding to their gauge charges, which are given in table 2.1. The scalar kinetic

SU(3)c SU(2)L U(1)Y

QL 3 2 1/6

`L 1 2 −1/2

uR 3 1 2/3

dR 3 1 −1/3

eR 1 1 −1

Φ 1 2 1/2

Table 2.1: Standard model matter content with corresponding gauge charges.

term (2.20) contains the standard model “Higgs” SU(2)L doublet

Φ =

(
ϕ3 + i ϕ4

ϕ1 + i ϕ2

)
(2.27)

with four real degrees of freedom. Its gauge covariant derivative contains minimal coupling with
the SU(2)L and U(1)Y gauge bosons, according to table 2.1. The scalar potential is

VH = − µ2 Φ†Φ + λ
(

Φ†Φ
)2
, (2.28)

with µ2 > 0. The electroweak gauge group is broken to the electromagnetic U(1)em, and three
of the four gauge bosons acquire mass [101, 102, 103]. In the unitary gauge, the Higgs doublet
is

Φ =
1√
2

(
0

v +H

)
, (2.29)
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with v = µ/
√
λ = 246 GeV its vacuum expectation value and H the physical Higgs field.

The massive charged W bosons are W±µ = (W 1
µ ∓ iW 2

µ)/
√

2, and the mass eigenstates of the
electrically neutral components of the SU(2)L and U(1)Y gauge bosons are given by the linear
combination (

Zµ
Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
(2.30)

with θW the Weinberg angle. The Yukawa term LY, finally, couples the standard model fermions
to the Higgs doublet,

LY = − Y (e)
ij

¯̀
L,i Φ eR,j − Y (d)

ij Q̄′L,i Φ d′R,j − Y
(u)
ij Q̄′L,i Φ̃u′R,j + h.c. , (2.31)

where i, j run over the three standard model fermion generations, while SU(2)L indices are sup-
pressed in this notation. Y (f) are the Yukawa matrices, `L (eR) the lefthanded (righthanded)
lepton SU(2)L doublets (singlets). The lefthanded (righthanded) quark fields Q′L (d′R, u

′
R) are

given in the interaction basis. They are related to the mass eigenstates by unitary transforma-
tions

q′R,i = U
(q)
R,ij qR,j . (2.32)

In the coupling to up-type quarks u′R, the Higgs field appears in the combination

Φ̃ = i σ2 Φ∗ , (2.33)

with σ2 the second Pauli spin matrix. In the unitary gauge, the Yukawa Lagrangian is simply

LY = −
(
ūiM

(u)
ij uj + d̄iM

(d)
ij dj + ēiM

(e)
ij ej

)(
1 +

H

v

)
, (2.34)

with diagonal mass matrices

M (u) = diag(mu,mc,mt) , M (d) = diag(md,ms,mb) , M (e) = diag(me,mµ,mτ ) . (2.35)

A consistent set of Feynman rules for the standard model can be found, for example, in [100].
At lower energies, heavy particles such as the heavier fermions and electroweak gauge bosons

can be integrated out. For the purpose of this thesis, below energies of around 700 MeV, the
visible sector is well described by an effective Lagrangian containing light leptons, photons,
neutrinos, and pions, the lightest degrees of freedom of the hadronic spectrum. Kaons cannot
be pair-produced at these energies; therefore, SU(2) chiral perturbation theory is sufficient for the
purpose of describing dark matter decay in this regime. The visible-sector effective Lagrangian
is

L(IR)
vis = Lπ + TF + Tf + Lmf . (2.36)

Here, TF and Tf are defined analogously to the standard model case. However, the gauge kinetic
term now only contains the photon field, since the weak gauge bosons have been integrated out
and the strong interaction is in its confinement regime, while the sum over fermion species
includes only neutrinos, electrons and muons. The pion Lagrangian is given by the leading
terms of chiral perturbation theory [104],

Lπ =
f2
π

4
gµν Tr

[
(DµU)† (DνU)

]
+
f2
πm

2
π

2
Tr
[
U † + U

]
, (2.37)
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2.5. Dark and visible matter in curved spacetime

where fπ = 93 MeV is the pion decay constant. The matrix U is constructed from the pion
fields πa,

U = exp(i σa πa/fπ) , (2.38)

with a = 1, 2, 3, and σa the Pauli spin matrices. Its covariant derivative is

DµU = ∂µU + i eAµ [Q,U ] , (2.39)

where Q = diag(2/3,−1/3,−1/3) and Aµ is the photon field. Likewise, the gauge covariant
derivative in the fermion kinetic term

Tf =
∑

f=e,µ,{νj}

(
i

2
f̄
←→
/∇ f
)

(2.40)

now only involves the electromagnetic coupling. The fermion mass term

Lmf = −
∑
f=e,µ

mf f̄ f , (2.41)

finally, is a remnant of the standard model Higgs mechanism at low energies.
In analogy to the visible matter, the dark sector is expected to be described by some effective

Lagrangian Ld that can in principle contain multiple new fields and interactions, as well as
couplings to the visible sector. A special case of this general framework is the minimal scenario,
where the dark matter particle is the only additional degree of freedom with regards to the
standard model. Another is the “next-to-minimal” case introducing a dark matter candidate as
well as a mediator linking the dark and the hidden sector via interactions. Scenarios of the latter
kind are commonly referred to as simplified models [105]. These kind of models were originally
designed in the context of collider searches for new physics [106]. Their analysis provides a middle
ground between comprehensive, yet highly model-dependent studies of specific ultraviolet (UV)-
complete models [107], and more universal investigations of effective theories [108] (that may,
however, be limited in their applicability to high-energy collider experiments [109]). In such
simplified models, the mediator can be charged under the standard model gauge group, since
on general grounds, non-gravitational interactions between the two sectors cannot be ruled out.
Indeed, in the popular WIMP scenario, such a coupling is explicitly needed to bring the dark
matter into thermal contact with the visible sector bath in the early Universe (cf. section 2.3),
and a multitude of direct detection, indirect detection and collider experiments around the world
are actively trying to find evidence for it [6], as outlined in section 2.1. The precise form of this
coupling, however, is highly model-dependent, and in a worst-case scenario for astroparticle
physics, the dark matter candidate could be decoupled from the visible sector except through
gravity. Regardless of the specific makeup of an extended dark sector, however, one can typically
still identify one particle which accounts for most (or all) of the measured present-day dark
matter abundance, with additional degrees of freedom being subdominant. (This expectation
somewhat mirrors the situation in the visible sector: baryonic matter is mostly hydrogen [4].)
Analyses of models with multi-component dark matter [110, 111] can be found in the literature,
but are not subject of this work.
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Chapter 3

Theories with non-minimal coupling
to gravity

In the conventional, minimal coupling scenario, the leading gravitational interactions take the
form of graviton exchange between particles. These can be described in the linearized gravity
approach gµν = ḡµν + 2κhµν , where the metric tensor is expanded around a classical back-
ground [96]. The leading interaction between the graviton field hµν and any type of matter
takes the form [112]

L(1)
int,h = − κhµν Tµνm , (3.1)

i.e. the graviton couples to matter through its energy-momentum tensor Tµνm . This type of
coupling does not spoil dark matter stability: since the energy-momentum tensor is derived
from the matter Lagrangian Ld + Lvis, any stabilizing symmetry present in non-gravitational
interactions remains intact.

The aim of this thesis is to discuss instead the effect of non-minimal gravitational interactions
on dark matter stability, based on the investigations published as [50, 51, 52], extending the
discussion in [49]. As discussed in section 2.4, astronomical observations require the dark matter
particle to be very long-lived, but not necessarily absolutely stable. If dark matter decay is
induced by some unknown dynamics at very large energies, one expects to be able to encode
these dynamics through effective operators at low energies. As the dark matter lifetime seems to
be very large, the suppression scale of these effective operators should be correspondingly high.
In fact, it might lie at the Planck scale, hinting at a gravitational origin of dark matter decay [45,
46, 47, 48, 113, 114, 115]. In other words, the exceptional longevity, but not absolute stability, of
the dark matter particle could be due to the minute, yet non-vanishing, strength of gravitational
interactions. This requires the global symmetry that is responsible for dark matter stability in
the absence of gravity to be explicitly broken by non-minimal gravitational interactions. For
the remainder of this thesis, this symmetry is assumed to be a Z2 for concreteness. In the
Lagrangian formalism, the first three terms of

S =

∫
d4x
√
−g
(
Lgrav + Lvis + Ld + Lξ

)
(3.2)

conserve this global Z2 symmetry stabilizing dark matter, while the last term Lξ explicitly
breaks it. Concerning the origin of this symmetry breaking, this thesis will take an agnostic
position. In the spirit of effective field theory, given a set of fields and symmetries, together
with a cutoff scale for the theory, the leading effects of the unknown short-distance physics
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can be encapsulated in effective operators. Therefore, even without a UV-complete theory of
quantum gravity, one can examine its impact on dark matter stability under the assumption
that it violates the stabilizing global symmetry.

Dark matter decay through Planck mass-suppressed effective operators has been discussed in
the literature [45, 47, 48, 113, 114, 115, 116]. For a scalar dark matter candidate S, Z2-breaking
effective interactions with visible-sector particles can be found already at mass dimension five,
e.g.

S

M̄P
Fµν Fµν ,

S

M̄P

¯̀
L Φ eR ,

S

M̄P

(
Φ†Φ

)2
. (3.3)

Generally speaking, any gauge invariant dimension-four operator O(4)
vis can be coupled to the

dark matter field in this way, if S is a gauge singlet itself. The Wilson coefficients of these
operators, however, are in principle uncorrelated, and can only be constrained independently
from each other. In the present work, in contrast, dark matter decay is assumed to arise from a
non-minimal coupling between the dark matter field and gravity itself. As will be shown below,
this still leads to effective operators like the ones above, inducing decay into standard model
particles. However, as they all arise from a single operator in the Jordan frame formulation of
the theory, their Wilson coefficients are correlated. This way, the number of free parameters is
greatly reduced, and the framework gains in predictivity.

3.1 Non-minimal coupling to gravity

Concretely, the subject under discussion are operators of the form

Lξ = − ξ Rµν fµν({Xd}, {Xvis}) , (3.4)

coupling the Ricci curvature tensor Rµν to a tensorial, Z2-breaking, function fµν of dark and
visible sector fields Xd, Xvis with coupling strength ξ. In general, many such gauge- and Lorentz-
invariant effective operators exist. (Of course, also Z2-conserving non-minimal gravitational
interactions may appear; these are, however, irrelevant for dark matter decay.) As for all effective
theories, the dominant effects are encoded in the lowest-dimensional of these operators. Thus,
for a given combination of dark matter and mediator fields, dark matter stability will in general
be controlled by only one or two terms in the Lagrangian. The precise form of these leading
operators depends on the spin and gauge charges of the fields involved. From a systematic
standpoint, the following general statements can be made:

• On dimensional grounds, renormalizable non-minimal interactions are only possible for
scalar fields Sk, in the form of couplings to the trace of the Ricci tensor,

L(d=4)
ξ = −R

∑
i,j

(
ξS,iMS Si + ξS,ij Si Sj

)
, (3.5)

with MS a mass scale and ξS,i and ξS,ij dimensionless couplings. Due to symmetry, the
combination (Si Sj) has to be a CP -even, Z2-odd gauge singlet. The first (ξS,i-) type of
scalar operator is allowed if the scalar field Si is a CP -even, Z2-odd singlet itself and will
be discussed in section 4.1. In other words, a dimension-four non-minimal coupling to the
Ricci tensor is only possible for a gauge singlet scalar, or if there exist at least two scalar
fields with identical gauge quantum numbers.
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3.1. Non-minimal coupling to gravity

• Since the standard model contains only one scalar field, the only renormalizable non-
minimal operator connecting the dark and visible sector directly is the cross-coupling
between the Higgs field and a second SU(2)L doublet,

−ξΦη R
(

Φ†η + η†Φ
)
, (3.6)

where, analogously to the Higgs field,

η =

(
η+

1√
2

(
η0 + i A0

)) . (3.7)

In the presence of an additional global Z2 symmetry that precludes Yukawa interactions
of this second doublet, this scenario is a straightforward extension of the “inert” doublet
model, and is the subject of section 4.2. (For details on its non-gravitational phenomenol-
ogy see e.g. [117, 118].)

• Fermions cannot be coupled to the Ricci curvature at dimension four or less. The leading
non-renormalizable non-minimal effective operator

− R

Mf
ξf,ij

(
f̄i fj + f̄j fi

)
(3.8)

can, however, be generated through a scalar mediator S of mass mS with a dimension-
three non-minimal coupling to gravity (ξSMS S R) and a Yukawa interaction

(
yij S f̄i fj

)
with the fermions. In the limit where the scalar is much heavier than the fermions, the
couplings and mass scales are related via ξf,ij/Mf ' (−yij ξSMS)/m2

S .

• At dimension six, one additionally finds

− R

M2
f

ξSf,ij
(
f̄i S fj + f̄j S

∗ fi
)
, (3.9)

with S a scalar field. As the dimension-five operator (3.8), this term can be generated
through an additional intermediate scalar field. Details on this scenario will be presented
in section 4.3.

• Gauge bosons can only appear in the Lagrangian through their field-strength tensors or
in gauge covariant derivatives of other particles. Schematically, the lowest-dimensional
operators involving the field-strength tensors are

−Rξ(1)
V,ij Vi

µν Vjµν , −Rµν ξ(2)
V,ij Vi

µ
ρ Vj

ρν , −Rρσµν ξ(3)
V,ij Viρ

σ Vj
µν , (3.10)

which, at first sight, only differ in their Lorentz structure. The standard model contains
one abelian gauge field Bµ. Therefore, the minimal setup of adding only one field to the
standard model corresponds to i = 1, 2, with V µν

1 the dark matter candidate field-strength
tensor and V µν

2 = Bµν [119]. While interesting from a phenomenological perspective, these
types of interactions cannot be generated via renormalizable scalar interactions at higher
energies, in contrast to the fermion scenario. They are thus less motivated in the sense of a
possible ultraviolet completion of the effective theory. In the simplest scenarios, attempting
to generate the first, kinetic mixing-type coupling via intermediate scalars or fermions
introduces an identical interaction in flat spacetime, i.e., without the coupling to the
Ricci scalar. Decays mediated by this flat-spacetime kinetic mixing operator εij Vi

µν Vjµν
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will always dominate over the Planck-mass suppressed ones from non-minimal coupling to
gravity. Moreover, the second and third operator involve the Ricci and Riemann tensors,
respectively. These Lorentz structures cannot be generated via intermediate scalar fields,
since up to dimension four, these can only couple to the Ricci scalar.

• In the presence of an additional fermion f charged under the dark gauge symmetry, one
also finds non-minimal operators of the form

−Rξ(1)
V,i f̄

←→
/Dif , −Rµν ξ(2)

V,i f̄
(
γµ
←→
Dν
i + γν

←→
Dµ
i

)
f , (3.11)

where Dµ
i f = (∇µ + i gi V

µ
i ) f . These operators are of mass dimension six. In contrast to

the ones in (3.10), however, they require the presence of the additional fermion field f in
the hidden sector. In this case, and as long as mVi > 2mf , also non-gravitational decays
of the vector Vi are possible through the f kinetic term. In that case, due to their inherent
Planck-mass suppression, decays arising from the non-minimal terms of (3.11) are of less
phenomenological significance.

Classically, the Ricci tensor is a measure of spacetime curvature. Therefore, naively one would
expect a non-minimal coupling proportional to this quantity to describe an interaction that is
sensitive to the amount of curvature at the interaction region, and vanishes in the flat-space
limit. In reality, the situation is more subtle. In the linearized gravity expansion, the Riemann
tensor and its contractions take the form of infinite sums over effective operators containing
increasing powers of the graviton field, with two derivatives each, e.g.

R = κ
(
2 ∂µ∂νhµν − 2 ∂2h

)
+O

(
κ2 ∂2h2

)
. (3.12)

Therefore, operators of the form (3.4) seem to introduce a number of vertices connecting a specific
combination of matter quantum fields with gravitons. This would constitute a breakdown of the
weak equivalence principle, as the matter fields in question would couple differently to gravity
than fields that couple only minimally. This can easiest be seen for the simplest scenario of a
single scalar singlet field φ with a linear coupling to the Ricci scalar,

−ξ RM φ . (3.13)

Inserting (3.12) into (3.13), it is evident that the lowest-dimensional operator induced by this
term is actually a dimension-four kinetic mixing term between the scalar singlet and the graviton
field. Thus, to diagonalize the quadratic Lagrangian and to ensure the validity of the weak
equivalence principle, a field transformation has to be performed on both the matter fields and
the metric tensor, resulting in a theory with particle interactions that are independent of classical
spacetime curvature.

3.2 Weyl transformation

Widely studied in the literature on extended theories of gravity and non-minimally coupled
matter fields [99], such a field redefinition of the metric tensor goes by the name of Weyl trans-
formation. If the non-minimal operator (3.4) is proportional to the Ricci scalar, i.e., if the
coupling function fµν is proportional to the metric tensor gµν , this transformation can be per-
formed simultaneously to all orders in ξ. For illustration, consider a theory with a non-minimally
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coupled dark matter candidate ϕ in the so-called Jordan frame formulation with metric gµν ,

S =

∫
d4x
√
−g
(
− R

2κ2
− ξ R f(ϕ) + Lϕ(gµν) + Lvis(gµν)

)
(3.14)

=

∫
d4x
√
−g
(
− R

2κ2
Ω2(ϕ) + Lϕ(gµν) + Lvis(gµν)

)
, (3.15)

where any dependence of f on other dark or visible sector fields has been suppressed in the
notation. In the last line, the Einstein-Hilbert action and the non-minimal coupling have been
combined into the Weyl factor

Ω2(ϕ) = 1 + 2κ2 ξ f(ϕ) . (3.16)

If one now performs a Weyl transformation gµν → ĝµν , where

ĝµν = Ω2(ϕ) gµν , (3.17)

the geometric quantities
√
−g and R transform as√

−ĝ = Ω4√−g , R̂ = Ω−2R− 6 Ω−3 ĝµν ∇̂µ∇̂νΩ , (3.18)

and yield the Einstein frame action

S =

∫
d4x

√
−ĝ

(
− R̂

2κ2
+

3

κ2
ĝµν
∇̂µΩ ∇̂νΩ

Ω2
+ Ω−4 Lϕ

(
Ω−2 ĝµν

)
+ Ω−4 Lvis

(
Ω−2 ĝµν

))
(3.19)

=

∫
d4x

√
−ĝ

(
− R̂

2κ2
+

3

κ2
ĝµν
∇̂µΩ ∇̂νΩ

Ω2
+ L̂ϕ(ĝµν) + L̂vis(ĝµν)

)
. (3.20)

The non-minimal coupling to gravity vanishes when formulating the theory in the Einstein
frame: the Einstein-Hilbert term appears in isolation again, and the Einstein-frame graviton
field ĥµν , defined as the quantum excitation of the metric ĝµν , couples minimally to all particle
species, in accordance with the equivalence principle. On the other hand, there are two changes
to the matter Lagrangian: for the fields contained in f , the second term in (3.19) may modify
their kinetic terms and introduce derivative couplings between them. Additionally, the matter
Lagrangian now has to be expressed in terms of the Einstein frame metric tensor, which explicitly
depends on the dark matter field ϕ through the Weyl factor Ω2(ϕ). If the visible sector is
described by the standard model Lagrangian (2.17), for example, then

L̂(EW)
vis = T̂F +

1

Ω3
T̂f +

1

Ω2
T̂H +

1

Ω4
(LY − VH) , (3.21)

where the different powers of the prefactor arise due to the different Lorentz structures of the
individual terms. The Yukawa interactions and Higgs potential do not depend on the metric
tensor at all, so L̂Y = LY and V̂H = VH . The dark sector Lagrangian transforms correspondingly,
as would a different visible sector Lagrangian, e.g. an effective Lagrangian for lower energies,
such as (2.36). Expanding, as the final step, the Weyl factor Ω around unity,

Ωn ' 1 + nκ2 ξ f(ϕ) +O
(
κ4 ξ2 f2(ϕ)

)
, (3.22)
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Chapter 3. Theories with non-minimal coupling to gravity

i.e. treating the contribution from the non-minimal coupling as a small perturbation, one can
explicitly read off point interactions between the dark matter field and the standard model
degrees of freedom,

L̂(1)
int,ξ = − 2κ2 ξ

∂f

∂ϕ

∣∣∣∣
ϕ=0

ϕ

(
3

2
T̂f + T̂H + 2 (LY − VH)

)
. (3.23)

As evident already in (3.21), a tree-level coupling to the kinetic term of gauge bosons is absent,
due to its Lorentz structure.

On the other hand, if the non-minimal coupling is only proportional to the Ricci tensor
rather than scalar, as for the ξ(2)-coupling of a vector field in (3.10), the Weyl transformation
can only be performed order-by-order in ξ. In this case, the Jordan-frame action reads

S =

∫
d4x
√
−g
(
− R

2κ2
− ξ Rµν fµν(ϕ) + Lϕ(gµν) + Lvis(gµν)

)
. (3.24)

To “transform away” the non-minimal coupling to the Ricci tensor, what is needed is a trans-
formation of the (inverse) metric tensor gµν → ĝµν that can be expressed as a power series in
the parameter ξ,

ĝµν = gµν + ξ δgµν +O
(
ξ2
)
. (3.25)

Under this change of metric, the action transforms as S → S + δS, where

δS =

∫
d4x

(
− 1

2κ2
ξ
δ(
√
−g R)

δgµν
− ξ2 δ(

√
−g Rρσ fρσ(ϕ))

δgµν
+ ξ

δ(
√
−g (Lϕ + Lvis))

δgµν

)
δgµν .

(3.26)

The second term is of order ξ2 and can be omitted, while the first, gravitational, term reads

δSgrav =

∫
d4x
√
−g
(
− 1

2κ2

)
ξ

(
Rµν −

1

2
Rgµν

)
δgµν +O

(
ξ2
)
. (3.27)

By definition, in the Einstein frame the gravitational sector is minimal and takes the Einstein-
Hilbert form. Therefore, the change in the gravitational action has to cancel the non-minimal
operator,

δSgrav
!

=

∫
d4x
√
−g ξ Rµν fµν(ϕ) , (3.28)

which yields a tensor equation for δgµν ,(
Rµν −

1

2
Rgµν

)
δgµν = − 2κ2Rµν f

µν(ϕ) . (3.29)

With the ansatz δgµν = c1 (fρσ gρσ) gµν + c2 f
µν , one finds c2 = −2κ2, c1 = κ2 as a solution, so

to first order in ξ, the infinitesimal Weyl transformation into the Einstein frame is given by

δgµν = κ2
(

(gρσ f
ρσ(ϕ)) gµν − 2 fµν(ϕ)

)
. (3.30)

Carrying out the transformation of the matter part of the action, one can directly read off the
interaction vertices to order ξ,√

−ĝ L̂(1)
int,ξ = ξ

δ(
√
−g (Lϕ + Lvis))

δgµν
δgµν . (3.31)
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It is worth noting that

−2√
−g

δ(
√
−gLvis)

δgµν
= T (vis)

µν , (3.32)

so

L̂(1)
int,ξ = − 1

2
ξ T (vis)

µν

(
κ2 (gρσ f

ρσ(ϕ)) gµν − 2κ2fµν(ϕ)
)
, (3.33)

i.e. the dark matter candidate couples to the energy-momentum tensor of the visible sector
fields, just like the graviton. Of course, for a non-minimal coupling proportional to the Ricci
scalar, fµν(ϕ) = gµν f(ϕ), the expression (3.33) reduces to the previous result (3.23). Here,
δgµν = 2κ2 f(ϕ) gµν , and the dark matter couples to the trace of the visible sector energy-
momentum tensor.

Finally, for non-minimal operators proportional to the Riemann tensor, such as the ξ(3)-
coupling in the vector scenario (3.10), one cannot perform a Weyl transformation into the
Einstein frame at all. Under a change of metric, the gravitational action always transforms
as (3.27). Therefore, one cannot cancel a non-minimal coupling proportional to the (uncon-
tracted) Riemann tensor through a Weyl transformation as in (3.28).

To summarize, in the Jordan frame formulation, the non-minimal coupling to gravity is
explicit. If one identified the metric fluctuations hµν with physical gravitons, this construction
would introduce a violation of the weak equivalence principle. Furthermore, hµν does not have
a canonical kinetic term for a massless spin-2 particle. In contrast, this thesis is concerned with
the Weyl-transformed theory that identifies the Einstein frame metric excitation ĥµν with the
physical graviton field. In the Einstein frame, gravity couples minimally to all particle species
and the graviton kinetic term has its canonical form. The non-minimal coupling instead leads
to universal interactions between the non-minimally coupled fields and the remaining matter
content of the theory. At the Lagrangian level, these interactions proceed through the energy-
momentum tensor of the fields in question. This framework can be seen as a special case of a
more general effective theory for dark matter interactions: since all couplings between the dark
and visible sector arise from a single term in the Jordan frame action, the Wilson coefficients of
vertices involving different visible sector particles are all correlated. The dark matter candidate
couples with universal strength to all forms of matter via their energy-momentum tensor, and
it does so independently of classical spacetime curvature.

3.3 Modification of the electroweak vacuum

Apart from its implications for dark matter stability, the presence of a non-minimal coupling
to gravity in the Lagrangian has a number of other phenomenological consequences. Perhaps
the most obvious change compared to a minimally coupled theory is a modification of the
scalar potential, best visible after performing the Weyl transformation into the Einstein frame.
Considering as an example a scalar singlet dark matter candidate φ together with the standard
model (the scenario discussed in section 4.1), one starts with the Jordan-frame potential

V(φ,Φ) = VH(Φ) + Vφ(φ) (3.34)

= − µ2 Φ†Φ + λ
(

Φ†Φ
)2

+
µ2
φ

2
φ2 +

λφ
4
φ4 +

λHφ
2

φ2 Φ†Φ . (3.35)

Parametrizing the Higgs field as

Φ =
1√
2

(
0
ϕ

)
, (3.36)
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one obtains

V(φ, ϕ) = − µ2

2
ϕ2 +

λ

4
ϕ4 +

µ2
φ

2
φ2 +

λφ
4
φ4 +

λHφ
4

φ2 ϕ2 , (3.37)

in terms of the physical Higgs and dark matter fields ϕ and φ in the Jordan frame. After the
Weyl transformation, the Einstein frame potential reads

V̂(φ, ϕ) = Ω−4(φ)V(φ, ϕ) . (3.38)

Thus, in principle there can be a shift away from the standard model ground state. Indeed,
minimizing this potential yields

〈ϕ〉 = v − (ξ M κ)2 (κ v)2 λλHφ
v4(

2µ2
φ + λHφ v2

)2 v +O
(

(ξ M κ)3
)
, (3.39)

〈φ〉 = − (ξ M κ) (κ v)λ
2 v2

2µ2
φ + λHφ v2

v +O
(

(ξ M κ)3
)
, (3.40)

with v = µ/
√
λ, as usual. The standard model Higgs vacuum expectation value receives a

correction of order ξ2, while the dark matter scalar obtains a vacuum expectation value O(ξ).
Due to the additional suppression by powers of (κ v) ' 10−16, these contributions are negligible
unless (ξ M κ) & 1016. For the sake of a discussion of O(ξ) processes, these corrections can be
neglected, as due to the form of the non-minimal coupling term (4.4), any occurence of the dark
matter field φ introduces an additional power of ξ. Thus, for the remainder of this thesis, the
approximation

〈ϕ〉 ' v , (3.41)

〈φ〉 ' 0 (3.42)

suffices. This is even more true for the other dark matter scenarios under discussion: in the
scalar doublet case (4.24), for example, the mass scale M is effectively replaced by the Higgs
vacuum expectation value v, so the suppression is even larger.

3.4 A note on the cosmological constant

To observe the effect of the non-minimal coupling on the cosmological constant, one starts with
the Jordan-frame action

S =

∫
d4x
√
−g
(
− R

2κ2
Ω2 + Λ + Lm

)
, (3.43)

where Ω2(ϕ) = 1 + 2κ2 ξ f(ϕ), and Lm describes the matter sector of the theory. A transforma-
tion into the Einstein frame yields

S =

∫
d4x

√
−ĝ

− R̂

2κ2
+

3

κ2

(
∇̂µΩ

)2

Ω2
+

Λ

Ω4
+ L̂m

 , (3.44)
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and for the specific case of a scalar singlet, Ω2(ϕ = φ) = 1 + 2κ2 ξ M φ. Expanding all terms

involving the scalar singlet up to quadratic order, one obtains L̂φ = L̂(2)
φ +O

(
φ3
)
, where

L̂(2)
φ =

1

2
(∂µφ)2 (1 + 6 ξ2 κ2M2

)
−

(
m2
φ

2
− 12κ4 ξ2M2 Λ

)
φ2 − 4κ2 ξ M Λφ+ Λ . (3.45)

Now, the first step is to normalize the kinetic term via φ̃ =
√

1 + 6 ξ2M2 κ2 φ, as in (4.8).
This rescaling of the scalar field introduces modifications to the other terms in the Lagrangian,
proportional to the non-minimal coupling parameter. As a second step, one can remove the
term linear in the scalar field by a constant shift. Then, the scalar field Lagrangian reads

L̂(2)
φ =

1

2

(
∂µφ̂

)2
−
m2
φ̂

2
φ̂2 + Λ̂ , (3.46)

where the Einstein frame scalar field, its mass and the cosmological constant are given by

φ̂ = φ̃+ 4 (ξ M κ)

√
1 + 6 ξ2M2 κ2 κΛ

m2
φ − 24 (ξ M κ)2 (κ2 Λ)

, (3.47)

m2
φ̂

=
m2
φ − 24 (ξ M κ)2 (κ2 Λ

)
1 + 6 ξ2M2 κ2

, (3.48)

Λ̂ = Λ + 8 (ξ M κ)2 κ2 Λ2

m2
φ − 24 (ξ M κ)2 (κ2Λ)

. (3.49)

In light of the extremely small value of the cosmological constant Λ '
(
2.474× 10−12 GeV

)4
determined by experiment [5], these modifications can be neglected. The Einstein-frame scalar
field is taken to be φ̂ = φ̃.
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Chapter 4

Dark matter decays from
non-minimal coupling to gravity

The remainder of this thesis is concerned with the phenomenological consequences of the in-
teractions of (3.33), as they lead to dark matter decay and annihilation processes that can, in
principle, be relevant for dark matter production in the early Universe, leave observable imprints
on the cosmic microwave background, and cause measurable fluxes of highly energetic standard
model particles at Earth. As will be demonstrated momentarily, the non-minimal coupling to
gravity can induce dark matter decay in one of two ways, as sketched in figure 4.1: either the
dark matter candidate ϕ decays directly via n-point interactions, or one of the final-state parti-
cles in a Z2-conserving process undergoes subsequent decay through the non-minimal coupling
to gravity.

/Z2
ϕ

...

X2

X1

/Z2

ϕ

...

X3

X2

...

X1

Figure 4.1: Dark matter decay through non-minimal coupling to gravity, after the Weyl trans-
formation. The Z2-breaking vertex is labelled in each case.

For illustration, consider the case of the standard model extended by a hidden sector com-
posed of a fermionic gauge singlet χ and a Higgs-like scalar SU(2)L doublet η, both odd under
a global Z2 transformation. The Lagrangian including the lowest-dimensional non-minimal op-
erators linear in χ and η, respectively, reads

L = LSM + χ̄

(
i

2

←→
/∂ −mχ

)
χ+ (Dµη)† (Dµη)− V(η,Φ)− y

(
¯̀
L η̃ χ+ χ̄ η̃† `L

)
+ LEH −R

(
ξ1

(
η†Φ + Φ†η

)
+

ξ2

M2

(
¯̀
L Φ̃χ+ χ̄ Φ̃† `L

)
+

ξ3

M2

(
¯̀
L η̃ χ+ χ̄ η̃† `L

))
. (4.1)

Here, the Yukawa-type interactions again contain the SU(2)L-contractions
(
η̃, Φ̃

)
= i σ2 (η∗,Φ∗).

As the second line shows, while the scalar doublet can be linked to the Ricci scalar via a
dimension-four operator, linear coupling of the fermion singlet only occurs at dimension six,
through an effective operator with a cutoff scale M . The ξ1- and ξ2-terms break the Z2 symmetry
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Chapter 4. Dark matter decays from non-minimal coupling to gravity

explicitly, while the ξ3-operator is Z2-conserving. Being subdominant to the flat-spacetime
Yukawa interaction in the first line, however, the latter plays no role in the decay phenomenology.
Now, if mη < mχ, only one of the neutral components of the scalar doublet

(
η0, A0

)
can be the

dark matter, because the fermion singlet χ decays through the Z2-conserving Yukawa interaction
into η0 νL or η+ e−L . If η0 is the dark matter, the ξ1-operator leads to dark matter decay through
Planck-mass suppressed point interactions after the Weyl transformation, as sketched in the
first diagram of figure 4.1. Due to the Z2-breaking ξ2-term and the Yukawa interaction, η0 can
also decay via a virtual χ (corresponding to the second diagram), but this amplitude carries a
relative suppression by (ξ2 y)/(ξ1M

2). If instead A0 is the dark matter, it can convert into a
η0 under emission of a Z boson through the η kinetic term, and the η0 can subsequently decay
through ξ1. (A direct decay of A0 is not possible due to its CP -odd nature.)

The situation is different if mχ < mη and the fermion is the dark matter candidate. Now,
ξ2 leads to direct decays into standard model final states. In addition, the dark matter particle
may decay via a virtual η0, through a combination of the Yukawa- and ξ1-operators. These
do not carry any M2 suppression, so they can dominate over ξ2-induced decays. Indeed, for
mχ � mη, the ξ1-amplitude gives a contribution identical to that of the ξ2-operator, with the
replacement ξ2/M

2 → (−ξ1 y)/m2
η, while in the near-degenerate scenario mχ . mη, the ξ1-

amplitude is further enhanced because of the presence of the scalar propagator. In summary,
at energies below the effective theory cutoff M , in both scenarios (mη ≷ mχ), dark matter
decay proceeds predominantly through the renormalizable ξ1-operator. The CP -even scalar
dark matter candidate decays through point interactions introduced by its direct coupling to
the Ricci scalar, while the dominant effective fermionic operator can be understood as arising
from the interactions of an intermediate scalar in the decoupling limit. The following sections
provide a more detailed analysis of some specific dark matter scenarios, among them the two
cases sketched above.

4.1 Scalar singlet dark matter

From a theoretical perspective, a scalar gauge singlet dark matter candidate [81, 82, 84] is
probably the simplest possible ansatz to explain the dark matter puzzle. The classical action
takes the form (3.2), with

Lgrav = − R

2κ2
, (4.2)

Ld =
1

2
gµν (∂µφ) (∂νφ)− V(φ,Φ) , (4.3)

Lξ = − ξ M Rφ , (4.4)

and Lvis given by (2.17) at energies above a few GeV, and by (2.36) below around 700 MeV.
The potential

V(φ,Φ) =
1

2
µ2
φ φ

2 +
1

4
λφ φ

4 +
1

2
λHφ φ

2 Φ†Φ (4.5)

contains all gauge and Lorentz invariant terms up to mass dimension four. After electroweak

symmetry breaking, the tree-level mass of the scalar singlet is m
(0)
φ =

√
µ2
φ + λHφ v2/2. As

a stereotypical WIMP scenario, this model faces stringent constraints from direct detection,
indirect detection and collider experiments as well as from relic abundance calculations. In
fact, today most of the WIMP mass range is ruled out, leaving only a small window in the

Higgs resonance region 57 GeV . m
(0)
φ . 62 GeV, with couplings of order λHφ ' 10−3 [84, 85].
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4.1. Scalar singlet dark matter

However, masses above the TeV scale remain a possibility, as does a FIMP-like scalar singlet
with λHφ ' 10−11 for masses between the GeV and TeV scales [87].

The scalar potential (4.5) conserves a global Z2 symmetry under which the scalar singlet is
odd, φ → −φ, while all standard model fields, including the Higgs doublet Φ, are even. That
way, only the non-minimal coupling Lξ leads to dark matter decay. The resulting Weyl factor
and leading interaction Lagrangian are given by (3.16) and (3.33), respectively, with ϕ = φ and
fµν(φ) = gµνM φ.

In the scalar singlet case, one additional subtlety arises due to the fact that the non-minimal
coupling Rφ is of mass dimension three. In the Einstein frame action (3.19), there is an extra
term resulting from expressing the Ricci scalar in terms of the new metric ĝµν . Upon Taylor
expanding the Weyl factor, this term introduces a correction to the kinetic term,

3

κ2
ĝµν
∇̂µΩ ∇̂νΩ

Ω2
=

3

κ2
ĝµν

(∂φΩ)2

Ω2
(∂µφ) (∂νφ) (4.6)

=
1

2
ĝµν (∂µφ) (∂νφ)

(
6 ξ2M2 κ2 +O

(
ξ3M3 κ4 φ

))
. (4.7)

Therefore, a canonically normalized scalar field can be defined as

φ̂ =
√

1 + 6 ξ2M2 κ2 φ . (4.8)

With this redefinition taken into account, it is assumed to receive a physical mass mφ through
its potential. Its interactions with the visible sector are given by

L̂(1)
int,ξ = − κ2 ξ M φ̂√

1 + 6 ξ2M2 κ2
ĝµν T (vis)

µν , (4.9)

with T
(vis)
µν the visible sector energy-momentum tensor defined in (3.32). For dark matter masses

above the GeV scale, the latter follows from the standard model Lagrangian (2.17) and reads,
in the unitary gauge,

T (SM)
µν =

∑
F

(
−F aµρ F aνρ +

1

4
gµν F

aρσ F aρσ

)
+
∑
f

(
i

4
f̄
(
γµ
←→
Dν + γν

←→
Dµ

)
f − i

2
gµν f̄

←→
/D f

)

+ gµν
∑
f

mf f̄ f

(
1 +

H

v

)
+ (∂µH) (∂νH)− 1

2
gµν (∂ρH) (∂ρH) + gµν V(H)

+
(
m2
W

(
W+
µ W−ν +W+

ν W−µ
)

+m2
Z Zµ Zν

)(
1 +

H

v

)2

− gµν
(
m2
W W+ρW−ρ +

m2
Z

2
Zρ Zρ

)(
1 +

H

v

)2

. (4.10)

The Feynman rules can be extracted either manually or in an automated fashion [120, 121]. The
results, and details on the FeynRules implementation, can be found in appendices A.1 and B,
respectively. The resulting decay rates can be computed using the standard formulae given in
appendix D, or with the help of existing software packages [122], as demonstrated in appendix C.
A somewhat unusual feature of (4.9) is the non-trivial dependence of the decay vertices on the
non-minimal coupling parameter ξ, introduced by the field redefinition (4.8). While for small
values of (ξ M κ), the dependence is approximately linear, for (ξ M κ)� 1, the coupling between
the scalar singlet and the energy-momentum tensor approaches the constant value 1/(

√
6 M̄P).

This peculiar feature will be further addressed below.
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As will be evident from the analysis in section 5.1, for the scalar singlet dark matter candi-
date, an extension to lower energies (i.e. lower dark matter masses) is of interest. At these ener-
gies, the strong coupling constant becomes non-perturbative, so the description of the strongly
interacting sector via perturbative quantum chromodynamics (QCD) breaks down. Instead,
chiral perturbation theory describes the dynamics of hadronic degrees of freedom, leading to the
Lagrangian (2.36) for energies below 700 MeV. The individual parts of this Lagrangian trans-
form straightforwardly under the Weyl transformation, according to their Lorentz structure.
However, as presented in [52], additional modifications to this low-energy theory arise due to
the heavy off-shell particles that have been integrated out (heavy fermions, the massive weak
gauge bosons, as well as the Higgs boson). These can be encoded in the Wilson coefficients of
four-fermion operators and the vacuum polarization of the photon field. Due to phase space
suppression of the resulting decay rates, the former do not have a noticable impact on the dark
matter lifetime and will be omitted from the discussion. The latter effect modifies the photon
wavefunction renormalization constant Z3 in the gauge kinetic Lagrangian

TF = − 1

4
Z−1

3 gµν gρσ AµρAνσ . (4.11)

All electrically charged particles that are heavier than the cutoff scale of 700 MeV contribute to
this quantity, in the form of

Z−1
3 (E) ' 1− e2

8π2

 ∑
i=t,b,c,τ,W

b̃i(E)

 , b̃i(E) = bi log
E

mi
, (4.12)

with b̃t(mt) = b̃c(mc) = −16/9, b̃b(mb) = −4/9, b̃τ (mτ ) = −4/3, b̃W (mW ) = 7 at the en-
ergy scale E equal to the particle mass in question, and e the electron charge. If there exist
other charged particles at energies currently inaccessible to experiments, these will modify Z3

analogously. However, for the purpose of this work, no assumptions about additional electromag-
netically charged matter will be made and such contributions will be neglected. An additional
shift in Z3 arises due to light hadronic degrees of freedom other than the pions. Due to the
non-perturbativity of the strong interaction at these energies, this hadronic contribution is dif-
ficult to calculate. However, it is not expected to dominate over the effect of all other degrees of
freedom combined. It will therefore be omitted in the following discussion as well, introducing a
theoretical uncertainty of O(1) on the precise value of Z3. In light of the constraints to be placed
later on the non-minimal coupling of a dark matter candidate to gravity, this is an acceptable
compromise between theoretical accuracy and computational complexity.

With these considerations in mind, one can perform the Weyl transformation into the Ein-
stein frame. In contrast to the situation at higher energies, there is now a local coupling of
the dark matter candidate to the electromagnetic field-strength tensor in the Einstein frame.
This coupling is the low-energy manifestation of one-loop diagrams involving the integrated-out
particles, as required by the matching procedure between the low-energy effective theory and
the standard model description at the electroweak scale. Specifically, it arises because of the
dependence of the photon wavefunction renormalization constant Z3 on the particle masses mi.
Through the Weyl transformation, the kinetic and mass terms of these particles pick up a de-
pendence on the Weyl factor Ω. For the W boson, for example,

L̂W = − 1

4
ĝµν ĝρσWµρWνσ +

1

2

m2
W

Ω2
ĝµνWµWν . (4.13)

Since at low energies, the W mass is much larger than the momentum of the dark matter
field, φ is effectively constant, leading to a φ-dependent mass mW /Ω(φ), as was argued in [123]
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4.2. Scalar (inert) doublet dark matter

in the context of Higgs boson decays into diphotons. In fact, this is quite intuitive: a Weyl
transformation rescales the infinitesimal length element

ds2 = gµν dx
µ dxν → Ω2 gµν dx

µ dxν = Ω2 ds2 (4.14)

and all dimensionful quantities, such as particle masses, with it. The heavy fermion masses
pick up an identical rescaling factor. Since the photon wavefunction renormalization constant
depends on the masses of the heavy particles through their coefficients b̃i(E), all these factors
appear in the Lagrangian,

Ẑ−1
3 (E,mi) = Z−1

3

(
E,

mi

Ω

)
' 1− e2

8π2

 ∑
i=t,b,c,τ,W

bi log
E Ω

mi

 . (4.15)

Therefore, Taylor expanding Ω(φ) leads to an effective vertex between the dark matter field
and the squared photon field-strength tensor. Explicitly, the full interaction Lagrangian for the
canonically normalized scalar singlet φ̂ reads

L̂(1)
int,ξ = − 2κ2 ξ M φ̂√

1 + 6 ξ2M2 κ2

( ∑
f=e,µ,{νj}

(
3i

2
f̄ /∂f − 2mf f̄ f

)
−
∑
f=e,µ

(
3 e

2
f̄ /A f

)

+
1

2
(∂µπ

a) (∂µπa)− m2
π

2
πa πa + cγγ Aµν A

µν

)
, (4.16)

where

cγγ = − e2

8π2

 ∑
i=t,b,c,τ,W

bi

 =
5 e2

24π2
. (4.17)

The corresponding Feynman rules can be found in appendix A.2.

4.2 Scalar (inert) doublet dark matter

Another simple dark matter scenario consists in extending the standard model Lvis = LSM by
a scalar SU(2)L doublet η that has the same quantum numbers as the Higgs field [124, 117]. In
addition, a global Z2 symmetry is postulated under which η is odd, while all standard model
fields are even. The presence of this symmetry precludes Yukawa couplings of the second doublet
to fermions, as well as η taking on a non-vanishing vacuum expectation value. It is therefore
rendered “inert” in the sense that it only couples to the standard model via the scalar potential

Vη(Φ, η) = µ2
2 |η|

2 + λ2 |η|4 + λ3 |Φ|2 |η|2 + λ4

∣∣∣Φ†η∣∣∣2 +
1

2

(
λ5

(
Φ†η

)(
Φ†η

)
+ h.c.

)
, (4.18)

with Φ the standard model Higgs doublet. The full hidden sector lagrangian is given by

Ld = gµν (Dµη)† (Dνη)− Vη(Φ, η) . (4.19)

In the unitary gauge,

Φ =

(
0

1√
2

(v +H)

)
, η =

(
η+

1√
2

(
η0 + i A0

)) , (4.20)
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Chapter 4. Dark matter decays from non-minimal coupling to gravity

where after electroweak symmetry breaking, the masses of the additional scalars are [117]

m2
η+ = µ2

2 + λ3 v
2/2 , (4.21)

m2
η0 = µ2

2 + (λ3 + λ4 + λ5) v2/2 , (4.22)

m2
A0 = µ2

2 + (λ3 + λ4 − λ5) v2/2 . (4.23)

While η± are charged, either η0 or A0 is a viable dark matter candidate, depending on which of
the two is lighter. This in turn depends on the values of the quartic couplings in the potential.
Being an archetypical WIMP model, the correct dark matter abundance can be created via ther-
mal freeze-out in the early Universe. A combination of direct and indirect detection constraints
allows two mass regimes for the inert doublet model: either the dark matter particle is lighter
than the W boson, or it falls into the high-mass regime where mDM & 535 GeV [117, 125].
In the latter case, obtaining the correct relic density with perturbative couplings requires that
mDM . 20 TeV [125].

The gravitational action in this scenario is, as before, given by (2.12). As anticipated above,
the lowest-dimensional linear coupling to the Ricci tensor takes the form

Lξ = − ξ R
(
η†Φ + Φ† η

)
(4.24)

= − ξ R (v +H) η0 . (4.25)

It is worth noting that only the CP -even component η0 obtains a direct coupling to the Ricci
scalar. After a Weyl transformation with the factor

Ω2 = 1 + 2κ2 ξ (v +H) η0 , (4.26)

there are additional contributions to the H and η0 kinetic terms, arising through terms analogous
to (4.6). Specifically, they read

3

κ2
ĝµν
∇̂µΩ ∇̂νΩ

Ω2

=
3

κ2
ĝµν

((
∂η0Ω

)2
Ω2

(
∂µη

0
) (
∂νη

0
)

+
2
(
∂η0Ω

)
(∂HΩ)

Ω2

(
∂µη

0
)

(∂νH) +
(∂HΩ)2

Ω2
(∂µH) (∂νH)

)
.

(4.27)

In contrast to the scalar singlet case, however, the derivatives of the Weyl factor ∂η0Ω, ∂HΩ
always introduce a factor of (ξ v κ). Thus, any such contribution to the kinetic terms is negligible
for non-minimal couplings smaller than ξ ' M̄P/v ' 1016. (Indeed, any non-minimal operator
present in the Jordan-frame action appears in the Weyl factor Ω2 and potentially modifies the
scalar kinetic Lagrangian. In the scalar singlet scenario, for example, adding the term −ξ′RΦ†Φ
to (4.4), with Φ the standard model Higgs doublet, results in such a modification. Under the
assumption ξ M � ξ′ v, however, it is negligible.) Limiting oneself to smaller values of ξ,
the Jordan- and Einstein-frame fields are practically identical, η̂0 ' η0, Ĥ ' H. The leading
interactions between the CP -even scalar and the visible sector can then be read off from the
interaction Lagrangian

L̂(1)
int,ξ = − κ2 ξ (v +H) η0 ĝµν T (SM)

µν , (4.28)

with T
(SM)
µν given by (4.10), and are listed in appendix A.3. Decays of the CP -even component

η0 proceed directly through these vertices.
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4.3. Fermionic dark matter

In contrast, if A0 is the dark matter candidate, decay originates from the three-point inter-
action

L̂(1)
int,η =

g

2 cW
Zµ
(
η0 ∂µA

0 −A0 ∂µη
0
)

(4.29)

arising from the kinetic term in the Lagrangian Ld. Here, cW is the cosine of the Weinberg angle
and g the SU(2)L gauge coupling. In the absence of gravity, this vertex does not lead to dark
matter decay, since mA0 < mη0 . Through the Z2-breaking non-minimal coupling to gravity,
however, a virtual η0 can subsequently decay via (4.28), and dark matter becomes unstable.
The amplitudes for A0 decay are identical to those for η0 multiplied by the appropriate vertex
and propagator factors and can be found in appendix A.3.

Compared to the scalar singlet case, the mass scale M is replaced by the standard model
Higgs field (v + H) for a scalar doublet dark matter candidate. This leads to a rescaling of
the decay rates by v/M as well as to the presence of additional decay channels with Higgs
bosons in the final state. The most striking difference, however, is the trivial dependence of the
dark matter lifetime on the non-minimal coupling parameter ξ, as long as ξ . 1016. Since the
components of the scalar doublet are already very nearly canonically normalized in the Einstein
frame, no field redefinition analogous to (4.8) needs to be made. As a result, the vertices are
linear in ξ. The resulting decay phenomenology will be discussed in chapter 5.3.

4.3 Fermionic dark matter

In the spirit of keeping the dark sector minimal, one can also choose to extend the standard
model by a single gauge-singlet Dirac fermion χ [126]. As before, the visible sector Lvis is
assumed to be described by the Lagrangian (2.17) at energies above a few GeV, while for the
dark sector,

Ld = χ̄

(
i

2

←→
/∇ −mχ

)
χ− Vχ(χ, {Xvis}) , (4.30)

where the covariant derivative is defined as in (2.17). Vχ may contain interactions between the
dark matter candidate and the standard model as long as they conserve a global Z2 symmetry
under which χ → −χ and the visible sector fields are invariant. This ensures the stability
of the fermion against decay as far as its non-gravitational interactions are concerned. The
minimal standard model does not contain gauge singlet fermion fields. Albeit an extension with
righthanded neutrinos is straightforward, in the spirit of minimality, the dark matter candidate χ
is assumed to be the only additional fermion. In this case, no gauge invariant dimension-
five fermion operator (3.8) can be constructed. Instead, the lowest-dimensional non-minimal
operator coupling χ to the Ricci tensor is

Lξ = − ξj
M2

R
(

¯̀
L,j Φ̃χ+ χ̄ Φ̃† `L,j

)
, (4.31)

with j = 1, 2, 3 a generation index. In the unitary gauge, the corresponding Weyl factor reads

Ω2 = 1 +
√

2κ2 ξj
M2

(v +H) (ν̄L,j χ+ χ̄ νL,j) , (4.32)

and in the Einstein frame, the leading interaction Lagrangian is of mass dimension six:

L̂(1)
int,ξ = − κ2 ξj√

2M2
(v +H) (ν̄L,j χ+ χ̄ νL,j) ĝ

µν T (SM)
µν , (4.33)
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Chapter 4. Dark matter decays from non-minimal coupling to gravity

where T (SM), as before, is the trace of the standard model energy-momentum tensor (4.10). The
coupling is very similar to the scalar doublet scenario, the main difference being the presence
of the lefthanded neutrino field. Accordingly, the decay amplitudes can be obtained straightfor-
wardly by attaching a factor of

1

2
√

2M2
ū(pν) (1− γ5)u(pχ) (4.34)

to those of the scalar doublet (cf. appendix A.4). In contrast to the scalar case, however,
the non-minimal coupling is non-renormalizable. A simple way to generate the dimension-six
operator (4.31) via renormalizable interactions is to introduce one additional scalar SU(2)L

doublet η with a non-minimal coupling to gravity

Lξ,η = − ξη R
(
η†Φ + Φ†η

)
(4.35)

and Yukawa interactions linking the dark- and visible-sector fermion fields

LY,η = − yj
(

¯̀
L,j η̃ χ+ χ̄ η̃† `L,j

)
. (4.36)

In a way, this setup of a fermionic dark matter candidate coupled to a scalar mediator is
reminiscent of the visible sector, and has been extenstively studied in the literature [127]. It is
also precisely the hidden sector composition introduced as a first example in the beginning of
chapter 4. Depending on the mass difference between the dark matter particle and the mediator,
the observed relic abundance can be obtained through thermal freeze-out for masses between
40 GeV . mχ . 10 TeV, in line with constraints mainly from indirect detection [127].

Performing a Weyl transformation on this “UV completion” results in the interaction ver-
tices (4.28) between the CP -even neutral scalar η0 and the visible sector presented in section 4.2.
The dark matter candidate χ can decay through an intermediate η0, with the amplitude

iMχ = ū(pν)
1− γ5

2
u(pχ)× yj√

2

1

p2
η0
−m2

η0
× iMη0 . (4.37)

In the limit where the scalar decouples, mη0 � mχ, the internal scalar line shrinks to a point
interaction and one obtains the effective operator (4.33) by identifying

ξj
M2

= − ξη yj
m2
η0
. (4.38)

In contrast, in the degenerate limit mη0 . mχ, the presence of the scalar propagator in (4.37)
leads to an enhanced decay rate when the η0 is nearly on-shell.

4.4 Dark matter decay in simplified models

The previous sections mostly dealt with hidden sectors that each are minimal, in the sense that
only a single new field was added to the standard model. (An exception was the extension of the
fermion scenario with a scalar doublet as a way to generate the non-renormalizable interaction
with the Ricci scalar.) In general, however, the dark sector may contain additional fields. As the
next step in terms of complexity, so-called dark matter simplified models [106, 105] extend the
standard model by a dark matter candidate as well as a mediator. They allow one to “resolve” the
effective interaction between the dark and visible sector by explicitly including the intermediate
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4.4. Dark matter decay in simplified models

particle in their description, and therefore remain valid at center-of-mass energies approaching
the mass of the mediator, where the EFT description starts to break down [109]. However,
even in the presence of a mediator, dark matter typically still does not decay through non-
gravitational interactions, as it is the lightest Z2-odd particle in the hidden sector. The precise
way a non-minimal coupling to gravity can spoil this stability depends on the composition of
the dark sector in question, although some general statements can be made:

• As stressed already in section 3.1, only scalar fields can couple to the Ricci tensor at
dimension four or lower. Thus, if one wishes to limit oneself to these operators up to
mass dimension four, the fundamental Z2-breaking non-minimal coupling to gravity can
only occur through a scalar field. Note, however, that dark matter decay ultimately still
proceeds through non-renormalizable terms in the Einstein frame Lagrangian.

• Of course, the presence of the Ricci scalar in the Einstein-Hilbert action as well as in
the non-minimal operator will always introduce non-renormalizable interactions to the
theory once gravity is “turned on.” Due to the non-renormalizable nature of gravity itself,
these are unavoidable. However, one can at least understand the presence of additional
mass scales, apart from the Planck mass, in the lowest-dimensional effective operators, as
discussed for the fermion singlet scenario in section 4.3.

• If the dark matter field is a scalar S, there are two options. Either S is a gauge singlet,
in which case it becomes unstable as described in section 4.1. Then, the presence of
additional hidden sector fields has a negligible effect on the dark matter lifetime. If S
instead carries non-zero charge under a gauge group, it remains stable against decay at
the renormalizable level unless there exists a second scalar field with identical quantum
numbers. In that case, a cross-coupling to the Ricci scalar is allowed by symmetry, as
discussed in section 4.2 for the inert doublet model. If the dark matter field is charged
under a dark gauge group instead of the standard model one, a second hidden sector scalar
is needed to enable the cross-coupling. However, if both scalars are Z2-odd, the resulting
operator conserves the global symmetry and decay is likely to occur more rapidly through
non-gravitational interactions.

• For a dark matter fermion, the situation is slightly more complex. In order to construct
the dimension-five interaction term (3.8), one requires two fermion fields with identical or
vanishing gauge charges. In that case, a third new field is needed to act as a mediator
to the visible sector, e.g. the scalar that generates the non-minimal coupling at higher
energies, cf. the discussion below (3.8). This points towards an extended hidden sector,
going beyond the simplified-model approach. In contrast, the dimension-six operator (3.9)
can be constructed using only a single dark sector fermion and standard model fields.
An additional scalar mediator can connect the two sectors and generate the non-minimal
operator, as shown in section 4.3. If instead two of the fields in (3.9) are Z2-odd, the
operator itself is Z2-even and one does not need to invoke gravitational breaking of the
symmetry to induce decay. Consequently, the decay rate is not expected to be Planck-mass
suppressed.

• In the case of vector dark matter, decay through a non-minimal coupling to gravity can be
described in an EFT framework, but the origin of the additional mass scales in the theory
remains unspecified. In particular, as pointed out in section 3.1 already, the non-minimal
operators for a vector field cannot be generated through dimension-four interactions alone.
The presence of additional hidden sector fields does not change this picture.
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Chapter 4. Dark matter decays from non-minimal coupling to gravity

In summary, with respect to the impact of non-minimal couplings to gravity on the dark matter
lifetime, the scenarios presented in the previous sections exhaust the most interesting hidden-
sector configurations.
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Chapter 5

Decay phenomenology

As outlined in the previous section, a dark matter candidate that is stabilized against decay by
a global symmetry may become unstable through non-minimal gravitational interactions. The
dark matter lifetime τDM mainly depends on the strength of the “gravity portal” coupling ξ and
on the dark matter mass mDM. From the experimental side, however, τDM is not a free parameter
— a variety of astronomical and cosmological bounds apply. The most trivial constraint results
from the fact that in ΛCDM cosmology, dark matter is required to seed structure formation in
the early Universe [5]. Since observations of galaxy and cluster dynamics [8, 11] show that dark
matter is still abundant today, only a small fraction of the total abundance may have decayed
over the history of the Universe. Therefore, if the various phenomena collectively called the dark
matter puzzle are to be explained by a population of elementary particles, the lifetime of this
particle has to exceed the age of the Universe,

τDM & τUni ' 4× 1017 s . (5.1)

However, thanks to tremendous experimental efforts over the last decades, depending on the
dominant decay channels of the dark matter particle, additional constraints may apply that are
many orders of magnitude stronger. More specifically, by measuring the differential particle
fluxes of photons, neutrinos and antimatter arriving at Earth one can set limits on the presence
of exotic components in these fluxes. To do that, one can in principle calculate the expected
fluxes from astrophysical processes to obtain an estimate for the background, and then look
for signals from dark matter decay in the measured flux. A more robust approach consists in
refraining from making any assumptions about astrophysical backgrounds and simply requiring
that, for a given dark matter scenario, the expected flux from dark matter decay or annihilation
does not exceed the total measured flux. This second approach typically results in weaker limits
on the parameters of the model, but does not introduce significant astrophysical uncertainties
into the results. In either case, given the absence of conclusive signals for exotic components in
the measured fluxes so far, one can set constraints on the dark matter lifetime.

For very heavy dark matter, the strongest limits on its lifetime come from observations of
neutrino telescopes. For a dark matter particle with mDM ' 103–1015 GeV that decays into
νν̄ or e+e−ν, observations of Super-Kamiokande [128], IceCube [129, 130, 75], AMANDA [131],
Auger [132] and ANITA [133] require its lifetime to satisfy [134, 135]

τ
(ν)
DM & 1025 s . (5.2)

At intermediate masses, measurements of gamma rays and antimatter fluxes yield complemen-
tary constraints. Agreement with data taken by the Large Area Telescope aboard the Fermi
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satellite (Fermi-LAT) requires that a dark matter particle with mDM ' 0.1–30 TeV has a lifetime
of around [93]

τ
(γ)
DM & 1026–1027 s , (5.3)

for two-body decays into e+e−, µ+µ−, τ+τ−, bb̄, W+W− or tt̄ final states. Meanwhile, the
Alpha Magnetic Spectrometer (AMS) on the International Space Station has measured the
positron [76] and antiproton [77] fluxes at Earth, enabling one to constrain the dark matter
lifetime to [136, 28]

τ
(CR)
DM & 1025–1028 s (5.4)

for masses mDM ' 10–104 GeV, depending on the particular two-body final state and cho-
sen propagation model. For even lower dark matter masses down to around mDM & 1 MeV,
measurements of the isotropic diffuse x-ray and gamma-ray spectra by INTEGRAL [137] and
COMPTEL [138], EGRET [139] and Fermi-LAT [74], respectively, can be used to constrain the
lifetime of a scalar dark matter candidate decaying through a gravity portal to

τ
(γ)
DM & 1024–1026 s , (5.5)

as will be shown explicitly below.

5.1 Scalar singlet dark matter above the GeV scale

The observations of cosmic-ray and gamma-ray experiments have strong implications for the
scalar singlet dark matter scenario introduced in section 4.1. Focussing at first on dark matter
masses above the GeV scale, it is evident from the interaction Lagrangian (4.9) that, already
at tree level, two-, three-, and four-body decays can occur, if kinematically allowed. Due to
the structure of these effective operators apparent from (3.23), the two-body decays arise from
the standard model kinetic and mass terms, to which an external dark matter leg is attached
multiplicatively. Three- and four-body decays, in contrast, arise from standard model interaction
terms. A list of all tree-level decay channels can be found in table 5.1. The right column shows

Decay mode Asymptotic scaling

φ→ HH, WW, ZZ m3
φ

φ→ ff̄ mφm
2
f

φ→ HHH mφ v
2

φ→WWH, ZZH m5
φ/v

2

φ→ ff̄H m3
φm

2
f/v

2

φ→ f ′f̄W, f f̄Z m5
φ/v

2

φ→ ff̄γ, qq̄G m3
φ

φ→ HHHH m3
φ

φ→WWHH, ZZHH m7
φ/v

4

Table 5.1: Tree-level decay modes of the scalar singlet dark matter candidate. Where applicable,
mf is the mass of the final-state fermion, while v = 246 GeV is the Higgs vacuum expectation
value.
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5.1. Scalar singlet dark matter above the GeV scale

the asymptotic dependence of the corresponding partial width on the dark matter mass, in the
limit of massless final-state particles. Throughout this section, φ ≡ φ̂ refers to the canonically
normalized, Einstein-frame scalar field. The hat has been dropped for conciseness. A universal
prefactor

(ξ M κ)2

1 + 6 (ξ M κ)2

1

M̄2
P

≡ ξ̄2

M̄2
P

(5.6)

arising from the non-minimal coupling to gravity has been omitted in table 5.1, as have appro-
priate phase-space factors. As evident from the right column, decays into massive W and Z
bosons have a strong dependence on the dark matter mass. More precisely, it is the longitudi-
nal polarization states of these particles that carry an m2

φ/v
2 enhancement over the transversal

modes. This also explains the different scaling of the ff̄γ and qq̄G partial rates compared to
the f ′f̄W and ff̄Z ones. The dependence of the ff̄ and ff̄H channels on the fermion mass
has two reasons. The φff̄ vertex is proportional to the equation of motion of the fermion field.
Therefore, for on-shell fermions, it scales linearly with mf . The φff̄H vertex, on the other
hand, is proportional to the standard model Yukawa terms, which are proportional to mf/v.
In general, decays with higher final-state particle multiplicity have a stronger dependence on
the dark matter mass, which results from the higher dimensionality of the phase-space integral.
(Details on the computation can be found in appendix D.)

The two-body decay rates can be calculated analytically:

Γφ→HH =
ξ̄2

32π

m3
φ

M̄2
P

(1 + 2xH)2 (1− 4xH)1/2 , (5.7)

Γφ→WW =
ξ̄2

16π

m3
φ

M̄2
P

(
1− 4xW + 12x2

W

)
(1− 4xW )1/2 , (5.8)

Γφ→ZZ =
ξ̄2

32π

m3
φ

M̄2
P

(
1− 4xZ + 12x2

Z

)
(1− 4xZ)1/2 , (5.9)

Γφ→ff̄ =
ξ̄2

8π
N (f)

c

m3
φ

M̄2
P

xf (1− 4xf )3/2 , (5.10)

where xi = m2
i /m

2
φ, N

(f)
c is the color factor for fermion f , and f = e, µ, τ, u, d, s, c, b, t. In

general, the phase-space integral for three or more massive final-state particles can only be
evaluated numerically, e.g. through the procedure described in appendix D. However, in the
limit where the scalar singlet is much heavier than any of the final-state particles, the following
expressions give excellent approximations to the decay rates into three or four particles:

Γφ→qq̄G '
ξ̄2

4π2
αs

m3
φ

M̄2
P

, (5.11)

Γφ→fif̄jW ' 3 ξ̄2

4
√

2 (4π)3 N
(fi)
c |Uij |2

m5
φGF

M̄2
P

, (5.12)

Γφ→ff̄Z '
3 ξ̄2

2
√

2 (4π)3 N
(f)
c

(
g2
f,V + g2

f,A

) m5
φGF

M̄2
P

, (5.13)

Γφ→WWHH '
ξ̄2

15 (8π)5

m7
φ

M̄2
P v

4
, (5.14)

Γφ→ZZHH '
ξ̄2

30 (8π)5

m7
φ

M̄2
P v

4
. (5.15)
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Here, αs = g2
s /(4π)2 is the “fine-structure constant” of the strong interaction, GF = 1/(

√
2 v2) is

Fermi’s weak interaction constant, the vector and pseudovector couplings of the weak interaction

are gf,V = t
(f)
3 /2 − Qf sin2 θW and gf,A = t

(f)
3 /2, respectively, and for quarks (leptons), Uij

is the Cabibbo-Kobayashi-Maskawa (Pontecorvo-Maki-Nakagawa-Sakata) matrix relating the
weak to the mass eigenstates. The rate Γφ→fif̄jW is the combination of the partial widths for

φ → fif̄jW
+ and its complex conjugate φ → fj f̄iW

−. The remaining channels from table 5.1
have branching fractions below 5 % and are not given explicitly here. All partial widths for the
scalar singlet scenario have been determined both semi-analytically (following appendix D) and
in an automated fashion (appendices B and C) [51] and are shown in figure 5.1. For this figure,

Figure 5.1: Branching ratios in the scalar singlet scenario as a function of the dark matter
mass, at a fixed value of (ξ M κ). Decay channels with branching fractions below 5 % are not
shown.

an arbitrary fixed value of (ξ M κ) was chosen, since all partial rates carry the same dependence
on the non-minimal coupling parameter. Below the electroweak scale, only two- and three-body
decays with fermion-antifermion pairs in the final state are kinematically allowed. Compared
to decays into a quark-antiquark pair and a gluon qq̄G, the ff̄γ partial widths are suppressed
by the ratio of the couplings α/αs as well as a smaller color factor. The ff̄ decays without
a gauge boson in the final state, on the other hand, feature a factor m2

f/m
2
φ in their partial

widths (5.10) and are thus only important close to threshold (figure 5.1 shows this behavior at
mφ ' 2mc, 2mb, 2mt). Above dark matter masses equal to twice the W boson mass, decays into
(longitudinal) electroweak gauge bosons start to dominate the total rate. Due to phase-space
suppression, the three-body f ′f̄W and ff̄Z decays take over at around 1 TeV, while the four-
body channels WWHH and ZZHH dominate at masses above mφ & 105 GeV. Generically,
at energies significantly above the electroweak scale, additional exclusive final states open up
kinematically, modifying the branching fractions and total rate [140, 141, 142, 143]. In this mass
region, the first-order results given in this chapter are therefore subject to corrections. This
applies equally to the scalar doublet and fermion scenarios discussed in sections 5.3 and 5.4,
respectively.

44



5.1. Scalar singlet dark matter above the GeV scale

Of course, the unstable standard model particles produced in decays of the scalar singlet
subsequently decay further. In principle, starting from the set of branching fractions for a scalar
singlet dark matter candidate of a given mass, one could then follow the complete decay chain
and compute the energy spectra of the produced electrons, photons, neutrinos and protons.
Under certain astrophysical assumptions, these energy spectra could be translated into particle
fluxes expected at Earth and directly compared with experimental data, as outlined at the
beginning of chapter 5. The non-observation of excesses over astrophysical backgrounds in these
fluxes of photons, neutrinos and cosmic rays could then be translated into bounds on the dark

matter lifetime τ
(γ,ν,CR)
DM , the relative strength of which would depend strongly on the dark

matter mass. In a computationally simpler approach, one could compare the partial widths of
the scalar singlet into different tree-level final states with published bounds individually, and
then derive a limit on the total rate by weighing these bounds according to their branching
ratios. However, for obvious reasons, the bounds that can be found in the literature mostly
apply to two- or three-body final states [135, 134, 93, 136, 28] and do not include somewhat
exotic channels like φ→ WWHH. Therefore, in order to obtain a rough, but robust, estimate
of the constraints set on the non-minimally coupled scalar singlet scenario through gamma-ray,
neutrino and cosmic-ray observations, in [50, 51] the following approach was pursued: given the
typical strength of observational lower limits on the dark matter lifetime of around 1025–1028 s
for masses mDM ' 1–1015 GeV (cf. the beginning of chapter 5), one can reasonably work with
a mass-independent limit of τDM & 1024 s across this entire mass range.

At any given value for the dark matter mass, the total width of the scalar singlet φ is
determined by a small number of partial widths. An approximate lower estimate of the total
rate reads

Γφ &
ξ̄2

8π

m3
φ

M̄2
P

×



2nq
αs
π , mφ ' 1–200 GeV ,

1 + 2nq
αs
π , mφ ' 0.2–1 TeV ,

3
(2π)2

m2
φ

v2
, mφ ' 1–100 TeV ,

1
10 (8π)4

m4
φ

v4
, mφ & 100 TeV ,

(5.16)

with nq the number of quark flavors that are kinematically accessible. In contrast to the rate
given in [50, 51], the full dependence on the non-minimal coupling (ξ M κ) has been reintroduced.
In figure 5.2, this expression for the total rate is compared to the lower bound on the dark
matter lifetime from the age of the universe, τDM & 4 × 1017 s, as well as the constraint from
gamma-ray, neutrino and cosmic-ray experiments discussed above. Figure 5.3, in turn, shows the
upper bound on the non-minimal coupling from demanding that the dark matter lifetime exceed
1024 s. Figure 5.2 shows the non-trivial scaling of the total rate (5.16) with the non-minimal
coupling parameter introduced by the field redefinition (4.8). For low values, (ξ M κ) � 1,
the lifetime τφ = Γ−1

φ scales as (ξ M κ)−2, while for (ξ M κ) = 1, the corresponding prefactor
in (5.16) evaluates to 1/7, and in the limit (ξ M κ) → ∞, it approaches 1/6, independently
of the exact value of the non-minimal coupling. In this limit, the mixing between the Jordan-
frame metric and the scalar is maximal. Phenomenologically, the dark matter lifetime cannot be
shortened significantly by assuming a non-minimal coupling larger than unity. A scalar singlet
non-minimally coupled to gravity with a mass mφ ' 1 GeV requires a non-minimal coupling
smaller than (ξ M κ) . 0.017 for its lifetime to exceed the age of the Universe. To satisfy
τφ & 1024 s, the upper bound on the coupling from figure 5.3 is (ξ M κ) . 1.1× 10−5. At larger
dark matter masses, the bounds become even stronger. For example, fixing the dark matter
mass to mφ = 1 TeV means that only a coupling smaller than (ξ M κ) . 1.9 × 10−10 will not
result in observable contributions to gamma-ray, neutrino or cosmic-ray fluxes. These kind of
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Chapter 5. Decay phenomenology

Figure 5.2: The total lifetime of the scalar singlet dark matter candidate, for different values
of the non-minimal coupling (ξ M κ). Also shown are the observational constraints from the
age of the Universe and the non-observation of exotic contributions to gamma-ray, neutrino or
cosmic-ray fluxes at Earth, respectively.

numbers hint at some mechanism suppressing the non-minimal coupling to gravity. Either the
mass scale M lies significantly below the Planck scale κ−1, or the dimensionless coupling ξ needs
to be much smaller than unity. One way to achieve this is to postulate that φ is charged under
a gauge symmetry. In this case, any non-minimal operator linear in the dark matter field will
contain additional fields to form a gauge singlet. This will be the case in section 5.3 discussing
the inert doublet scenario.

5.2 Low-mass scalar singlet dark matter

Figures 5.2 and 5.3 show that for a scalar singlet dark matter candidate, experimental bounds on
the non-minimal coupling parameter remain strong even in the low-mass region around a GeV.
Therefore, it makes sense to extend the discussion of the previous section to even lower masses.
The main difference at these energy scales is the visible sector matter content, described now by
the Lagrangian (2.36). As demonstrated in section 4.1, this leads to the interaction terms (4.16).
Mirroring the analysis of the previous section, one can explicitly compute the partial widths of a
low-mass scalar singlet dark matter candidate. Among hadronic final states, the discussion will
be limited to the π+π− and π0π0 channels. Decays into more than two pions do occur, and their
partial widths can be determined by expanding (2.37) to higher orders. However, the energy
spectra of final-state particles in multibody decays are typically softer, and thus the strongest
observational constraints can usually be derived on the basis of two-body decays. Explicitly, the
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5.2. Low-mass scalar singlet dark matter

Figure 5.3: Experimental upper bound on the non-minimal coupling parameter resulting from
the requirement that the dark matter lifetime exceed 1024 s, for the scalar singlet candidate (red)
as well as the scalar doublet (blue) and fermion singlet (orange) discussed in sections 5.3 and 5.4,
respectively. Regions above the curves are excluded. For the scalar doublet, the continuous
line corresponds to the CP -even component, while the dashed (dotted) line refers to the CP -
odd component with mη0 = mA0 (5mA0). For the fermion singlet, the dashed (dotted) line
corresponds to mη0 = mχ (5mχ).

rates for a scalar singlet decaying into pairs of pions read

Γφ→π+π− =
ξ̄2

16π

m3
φ

M̄2
P

(1 + 2xπ+)2 (1− 4xπ+)1/2 , (5.17)

Γφ→π0π0 =
ξ̄2

32π

m3
φ

M̄2
P

(1 + 2xπ0)2 (1− 4xπ0)1/2 , (5.18)

analogously to the decay into a pair of Higgs bosons (5.7) at higher energies, while the rates
for φ → e+e−, φ → µ+µ− take the form (5.10). As in the previous section, the hat is dropped
on the canonically normalized scalar field in the Einstein frame, φ ≡ φ̂, the modified non-
minimal coupling ξ̄ is given by (5.6), and xi = m2

i /m
2
φ. The three-body decays φ→ e+e−γ and

φ→ µ+µ−γ with hard photons emitted directly from the vertex occur with the rate

Γφ→ff̄γ =
ξ̄2

16π2
α
m3
φ

M̄2
P

g(xf ) , (5.19)

where

g(x) =
(
1 + 2x+ 24x2

)√
1− 4x− 12x2 (3− 4x) log

(
1− 2x+

√
1− 4x

2x

)
. (5.20)

Far from threshold, as x → 0, g(x) approaches unity. Finally, the scalar singlet can also decay
into a pair of photons. At order α, this process receives contributions both from the effective
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vertex in (4.16) and from loop diagrams involving charged particles. The full expression reads

Γφ→γγ =
ξ̄2

16π

m3
φ

M̄2
P

∣∣∣∣∣F`
(
m2
φ

4m2
e

)
+ F`

(
m2
φ

4m2
µ

)
+ Fπ + cγγ

∣∣∣∣∣
2

, (5.21)

where the leptonic loop factor is given by

F`(x) =
e2

8π2
x−2 (x+ (x− 1) f(x)) , (5.22)

with

f(x) =

arcsin2√x , x ≤ 1 ,

−1
4

(
log 1+

√
1−x−1

1−
√

1−x−1
− i π

)2
, x > 1 .

(5.23)

The pion loop Fπ will be neglected, as will the contributions of heavy hadrons within cγγ , as
justified in section 4.1. In principle, decays into pairs of neutrinos also occur. As they are propo-
tional to the neutrino mass squared, however, they are strongly suppressed at energies above
the neutrino mass scale. Decays into a higher number of neutrinos, e.g. via intermediate vector
bosons, φ → Z∗Z∗ → νν̄νν̄, do not carry this chiral suppression, but it was found numerically
that they still cannot compete with the partial rates listed here explicitly. Figure 5.4 shows
the partial widths of the relevant channels the for mφ ' 0.4–700 MeV. At higher energies, the

Figure 5.4: Partial widths of the scalar singlet at low dark matter masses, as well as the
constraint on the total dark matter width derived from the age of the Universe.

description of pion physics through the chiral Lagrangian (2.37) breaks down and the formalism
introduced here can no longer be used. The scaling of all partial rates with the non-minimal cou-
pling is the same as in the high-mass scenario; notably, the rates cannot be arbitrarily enhanced
by taking (ξ M κ)� 1. Similar to the situation at higher dark matter masses, two-body decays
tend to dominate the total rate close to their respective kinematic thresholds. Between the
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5.2. Low-mass scalar singlet dark matter

electron and muon resonances, the three-body decay e+e−γ is important. (The corresponding
channel involving muons, µ+µ−γ, is dwarfed by the partial rates for decay into pion pairs and
does not appear on the figure.) Decays into pairs of photons are only relevant below the electron
threshold. As figure 5.4 shows, for a non-minimal coupling of order unity, dark matter masses
above twice the pion mass are excluded on the basis that a significant fraction of the primordial
dark matter abundance would have decayed by now. At lower masses, the dark matter lifetime
exceeds the age of the Universe. However, as in the previous section, stronger constraints can
be derived from the absence of decay signals in the high-energy particle fluxes arriving at Earth.

Specifically, as demonstrated in [52], one can confront the expected differential photon flux
from a decaying scalar singlet with observations of the isotropic diffuse gamma-ray and x-ray
background. Decays into γγ, ff̄γ and π0π0 final states result in especially relevant contributions
to the prompt photon flux. The differential energy spectra for these channels read

dN
(γγ)
γ

dyγ
= 2 δ

(
yγ −

1

2

)
, (5.24)

dN
(ff̄γ)
γ

dyγ
=

24

g(xf )
(1 + 2xf − 2 yγ) yγ

√
1−

4xf
1− 2 yγ

, (5.25)

dN
(π0π0)
γ

dyγ
=

8√
1− 4xπ0

Θ(yγ − y−) Θ(y+ − yγ) , (5.26)

where yγ = Eγ/mφ, y± = (1±
√

1− 4xπ0) /4, g(x) was given in 5.20, and Θ(x) is the Heaviside
step function. The first channel, relevant for dark matter masses below the electron threshold,
produces monochromatic photons. These would be especially easy to differentiate from astro-
physical backgrounds, which typically show a very smooth spectrum that can be well described
by an inverse power law [93]. Dark matter decays into π0π0, on the other hand, result in a
“gamma-ray box” [144] in the spectrum, since neutral pions decay into a pair of photons with a
branching fraction of BR

(
π0 → γγ

)
' 0.988 [1]. This box will dominate the photon energy spec-

trum for dark matter masses above the pion threshold, mφ ' 270–700 MeV. (At these masses,
the only other relevant decay mode, into charged pions, mainly produces electrons and neutri-
nos [1].) Finally, between the electron and pion thresholds, decays into e+e−γ also produce hard
photons. A detailed calculation of the resulting photon flux expected at Earth along the lines
of [80, 78, 93] can be performed as described in section 2.2. Figure 5.5 shows this differential
flux for three different dark matter masses, mφ = 5, 50, 500 MeV, together with the isotropic
diffuse x-ray and gamma-ray background measured by INTEGRAL [137] and COMPTEL [138],
EGRET [139] and Fermi-LAT [74], respectively.

For this figure, a non-minimal coupling of (ξ M κ) = 1 was assumed. For the photon flux, the
contributions from γγ, e+e−γ and π0π0 were summed over, and the fluxes from the Milky Way
halo, approximated by a Navarro-Frenk-White profile [9], and from cosmological dark matter
were added (details can be found in section 2.2.) As a crude surrogate for detector response,
a flat 10 % energy resolution was assumed across the entire energy range. As evident from
the figure, above dark matter masses of a few MeV, the expected flux from dark matter decay
alone would exceed the total measured isotropic diffuse photon spectrum, for a non-minimal
coupling of order unity. Furthermore, the spectrum always features a sharp falloff close to the
dark matter mass which would be easily detectable on top of smooth astrophysical backgrounds.
Put another way, the absence of such spectral features in the measured fluxes implies stringent
bounds on the value of the non-minimal coupling. Figure 5.6 shows the experimental upper limit
on (ξ M κ) from demanding that, in each individual energy bin of the data plotted in figure 5.5,
the expected photon flux from dark matter decay alone does not exceed the total measured
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Chapter 5. Decay phenomenology

Figure 5.5: Differential photon flux times energy squared from dark matter decay as a func-
tion of energy. Also shown are measurements of the isotropic diffuse x-ray and gamma-ray
backgrounds. For this figure, the non-minimal coupling was set to unity, (ξ M κ) = 1.

flux by more than twice the size of the experimental error, roughly corresponding to a two-
sigma excess. Shaded areas are excluded. For this figure, the reported energy resolution of each
experiment [145, 146, 147] was taken into account. As was the case for larger dark matter masses,
the dark matter lifetime scales non-trivially with the non-minimal coupling (5.6). Therefore,
in the limit (ξ M κ) → ∞, the rates are only larger by a factor 7/6 compared to the case
(ξ M κ) = 1. If this maximal value for the decay rate is allowed by the data, the experimental
bounds lose all sensitivity to the non-minimal coupling, as can be seen around mφ ' 2 MeV in
figure 5.6. Below the electron threshold, the expected spectral feature from dark matter decay
into a pair of photons would be most striking. However, due to the loop suppression of this
channel, the resulting photon flux is too low to be detectable in INTEGRAL data. Also shown
in the figure is the CMB bound discussed in section 6.1.

5.3 Scalar (inert) doublet dark matter

The decay phenomenology of the CP -even component of the scalar doublet is very similar to
that of the scalar singlet discussed in the previous section. Comparing the interaction La-
grangian (4.28) with that of the singlet (4.9), the mass scale M is identified with the standard
model Higgs field plus its vacuum expectation value. Due to the presence of the Higgs field in
the non-minimal operator, additional decay modes exist for the scalar doublet, with up to five
particles in the final state. Table 5.2 lists all tree-level decay channels and their asymptotic
scaling with the dark matter mass mη0 . A common factor of ξ2 v2/M̄4

P has been omitted from
the table. If the CP -odd component A0 is the dark matter candidate, mη0 has to be replaced
by mA0 in the right column, and an additional factor (mA0/mZ)2 appears in each channel, cor-
responding to the additional longitudinal Z boson in each final state. (For dark matter masses
below mZ , the Z is virtual.) Furthermore, strictly speaking, the resulting scaling with the dark
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5.3. Scalar (inert) doublet dark matter

Figure 5.6: Experimental constraints on the non-minimal coupling parameter in the low-mass
scalar singlet scenario, from the absence of exotic excesses in the isotropic diffuse gamma-ray
background and from CMB data.

matter mass mA0 applies only in the degenerate limit where both components of the doublet
have similar mass, mη0 ' mA0 . In the decoupling limit, mη0 � mA0 , an additional suppression
factor of (mA0/mη0)4 arises, as the propagator of the intermediate η0 effectively shrinks to a
point. Just as for the scalar singlet, decays into longitudinal vector bosons are expected to
dominate the total rate once they are kinematically accessible.

The two-body partial widths of η0 can be obtained by rescaling the corresponding rates for φ,
(5.7) to (5.10), by a factor of v2/M̄2

P ' 10−32. The same is true for the η0 → qq̄G, f f̄γ, f ′f̄W and
φ→ ff̄Z channels [51]. The decay modes η0 →WWHH,ZZHH never contribute significantly
to the total rate. Instead, the following channels are relevant:

Γη0→fif̄jWH '
3
√

2 ξ2

160 (4π)5 N
(fi)
c |Uij |2

m7
η0 GF

M̄4
P

, (5.27)

Γη0→ff̄ZH '
3
√

2 ξ2

80 (4π)5 N
(f)
c

(
g2
f,V + g2

f,A

) m7
η0 GF

M̄4
P

, (5.28)

Γη0→WWHHH '
2 ξ2

75 (8π)7

m9
η0

M̄4
P v

4
, (5.29)

Γη0→ZZHHH '
ξ2

75 (8π)7

m9
η0

M̄4
P v

4
, (5.30)

in the limit of large dark matter masses compared to the electroweak scale. In terms of notation,
the same conventions apply as in the scalar singlet case. Explicit computation of all partial
widths of the CP -even scalar doublet result in the branching ratios shown in figure 5.7, which
are again independent of the value of the non-minimal coupling ξ. The picture is very similar
to that of figure 5.1, the only difference being the behavior at dark matter masses above around
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Decay mode Asymptotic scaling

η0 → HH, WW, ZZ m3
η0

η0 → ff̄ mη0 m
2
f

η0 → HHH mη0 v
2

η0 →WWH, ZZH m5
η0/v

2

η0 → ff̄H m3
η0 m

2
f/v

2

η0 → f ′f̄W, f f̄Z m5
η0/v

2

η0 → ff̄γ, qq̄G m3
η0

η0 → HHHH m3
η0

η0 →WWHH, ZZHH m7
η0/v

4

η0 → ff̄HH m5
η0 m

2
f/v

4

η0 → f ′f̄WH, ff̄ZH m7
η0/v

4

η0 → ff̄γH, qq̄GH m5
η0/v

2

η0 → HHHHH m5
η0/v

2

η0 →WWHHH, ZZHHH m9
η0/v

6

Table 5.2: Tree-level decay modes of the CP -even scalar doublet dark matter candidate. Where
applicable, mf is the mass of the final-state fermion, while v = 246 GeV is the Higgs vacuum
expectation value. If the CP -odd component A0 is the dark matter candidate, mη0 → mA0

and an additional factor m2
A0/m

2
Z arises for all partial widths, together with an additional Z

boson in the final state. In the decoupling limit mA0 � mη0, the rates are further multiplied by
(mA0/mη0)4.

104 GeV. Even though the WWHH and ZZHH channels have the same m7
η0-dependence on

the dark matter mass as the f ′f̄WH and ff̄ZH ones (cf. table 5.2), the much larger number
of fermionic degrees of freedom results in an enhancement of the latter. At even larger dark
matter masses, mη0 & 105 GeV, the five-body decays η0 →WWHHH,ZZHHH take over due
to their enhanced phase-space factor.

As argued during the discussion of the scalar singlet scenario in section 5.1, a full analysis
of the decay phenomenology of the scalar doublet at any given dark matter mass would require
computing the total expected flux of photons, neutrinos, electrons and protons from dark matter
decay. These fluxes could then be compared to the measured fluxes of these particles at Earth.
As before, a rough estimate of the experimental bounds on the scalar doublet scenario set in
this way can be obtained by summing over all partial widths and comparing the total lifetime
of η0 to the age of the Universe as well as a typical mass-independent limit τDM & 1024 s. The
total decay rate of the CP -even scalar doublet is approximately given by [51]
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2
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×
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1
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m6
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(5.31)
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5.3. Scalar (inert) doublet dark matter

Figure 5.7: Branching ratios in the scalar doublet scenario as a function of the dark matter
mass, at a fixed value of ξ. Decay channels with branching fractions below 5 % are not shown.

in analogy to the scalar singlet. The relative v2/M̄2
P suppression of the rate means that for

similar values of the non-minimal coupling parameter ξ, the scalar doublet is much more long-
lived than the scalar singlet. This can be seen on figure 5.8, which shows the lifetime of the
CP -even scalar doublet for different values of the non-minimal coupling, together with the age
of the Universe and the bound τDM & 1024 s. The resulting constraints on the non-minimal
coupling ξ can be found in figure 5.3. For a non-minimal coupling of order unity and a dark
matter mass above 700 TeV, the dark matter lifetime is shorter than the age of the Universe.
Moreover, the scalar doublet decays too quickly to be in agreement with observations for dark
matter masses mη0 & 100 TeV. Compared to the scalar singlet, the scalar doublet is protected
against decay via non-minimal coupling to gravity to some extent through its non-vanishing
gauge charge, as it restricts the explicit form of the non-minimal operator (4.24) to include the
Higgs doublet.

If the CP -odd component of the scalar doublet A0 is the dark matter candidate, its decay
phenomenology can be derived completely analogously. The modification of the decay ampli-
tudes for A0 was already discussed in section 4.2 and is given explicitly in appendix A.3. The
resulting changes to table 5.2 are summarized in its caption. If the dark matter mass mA0 lies
either significantly below or significantly above the Z pole, the modification of the partial rates
is universal and the branching ratios do not change notably from the CP -even case. The total
lifetime of the CP -odd scalar doublet A0 is compared to the age of the Universe and the flat
estimate for an experimental bound, τDM & 1024 s, in figure 5.9, for two different values of the
mediator mass mη0 . Figure 5.3 shows the resulting limit on the non-minimal coupling parameter
ξ. For dark matter masses above mZ , the presence of an additional longitudinal Z boson in the
final state means that the total decay rate for the CP -odd component is slightly larger than in
the CP -even case. This translates into somewhat stronger limits on the non-minimal coupling
parameter. A coupling of order unity, for example, requires the dark matter mass to lie below
50 TeV in order to be consistent with observations, cf. figure 5.9.
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Figure 5.8: The total lifetime of the CP -even scalar doublet dark matter candidate, for different
values of the non-minimal coupling ξ. Also shown are the observational constraints from the
age of the Universe and the non-observation of exotic contributions to gamma-ray, neutrino or
cosmic-ray fluxes at Earth, respectively.

However, this statement only holds with respect to the exclusive final states considered.
With the aim of capturing the effects of all new point interaction vertices introduced through
the non-minimal coupling, the analysis for the CP -even component considers up to five-body
decays, while for the CP -odd one, also six-body final states have to be taken into account. Of
course, in either scenario, additional final-state radiation of standard model particles can occur,
if allowed kinematically, opening up decay modes with much higher particle multiplicity. At
energies above the TeV scale, copious amounts of final-state radiation are expected to lead to
logarithmic corrections to the decay rates [140, 141, 142, 143] and alter the resulting particle
spectra [148]. A detailed study of the difference in total width of the CP -even and CP -odd
components for this mass regime, however, is outside the scope of this thesis. Below the Z
threshold, the situation is somewhat clearer. The vertex (4.29) is proportional to the weak
gauge coupling; if there is no compensation by the phase-space factor, this leads to an overall
suppression in all partial widths. Therefore, the bounds on the CP -even scenario are stronger
in this mass region. In figure 5.3, however, this regime falls into a region where the data
cannot constrain the non-minimal coupling to be less than unity, and is therefore not shown.
Figure 5.9 also shows the dependence of the total lifetime on the ratio between the masses of
the two components of the scalar doublet. A heavy mediator η0 leads to a suppression of all
partial rates by (mA0/mη0)4 and weakens the limit on the non-minimal coupling accordingly,
cf. figure 5.3.

5.4 Fermionic dark matter

As outlined in section 4.3, a fermion singlet is another popular dark matter candidate. The
interaction Lagrangian (4.33) leads to the same decay channels as for the scalar doublet, with
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Figure 5.9: The total lifetime of the CP -odd scalar doublet dark matter candidate, for different
values of the non-minimal coupling ξ. Dashed and dotted lines correspond to a mediator mass of
mη0 = mA0 , 5mA0, respectively. Also shown are the observational constraints from the age of the
Universe and the non-observation of exotic contributions to gamma-ray, neutrino or cosmic-ray
fluxes at Earth.

an additional neutrino in each final state. Table 5.3 lists all tree-level decay modes. The right
column shows the asymptotic dependence of the individual partial widths on the dark matter
mass mχ. A common prefactor ξ2 v2M−4 M̄−4

P as well as phase-space factors have been omitted.
The partial rates for three-body decays can be given analytically:

Γχ→HHν '
ξ2

15 (16π)3

m7
χ v

2

M4 M̄4
P

g1(xH) , (5.32)

Γχ→WWν '
2 ξ2

15 (16π)3

m7
χ v

2

M4 M̄4
P

g2(xW ) , (5.33)

Γχ→ZZν '
ξ2

15 (16π)3

m7
χ v

2

M4 M̄4
P

g2(xZ) , (5.34)

Γχ→ff̄ν '
2 ξ2

3 (16π)3 N
(f)
c

m7
χ v

2

M4 M̄4
P

xf g3(xf ) , (5.35)

where the same notation conventions as in the scalar singlet case apply [51]. The rates for all
three neutrino flavors have been added, and ξ2 ≡

∑
j ξ

2
j . The phase-space functions g1,2,3 are
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Decay mode Asymptotic scaling

χ→ HHν, WWν, ZZν m7
χ

χ→ ff̄ν m5
χm

2
f

χ→ HHHν m5
χ v

2

χ→WWHν, ZZHν m9
χ/v

2

χ→ ff̄Hν m7
χm

2
f/v

2

χ→ f ′f̄Wν, f f̄Zν m9
χ/v

2

χ→ ff̄γν, qq̄Gν m7
χ

χ→ HHHHν m7
χ

χ→WWHHν, ZZHHν m11
χ /v

4

χ→ ff̄HHν m9
χm

2
f/v

4

χ→ f ′f̄WHν, f f̄ZHν m11
χ /v

4

χ→ ff̄γHν, qq̄GHν m9
χ/v

2

χ→ HHHHHν m9
χ/v

2

χ→WWHHHν, ZZHHHν m13
χ /v

6

Table 5.3: Tree-level decay modes of the fermion singlet dark matter candidate. Where ap-
plicable, mf is the mass of the final-state fermion, while v = 246 GeV is the Higgs vacuum
expectation value.

given by

g1(x) =
(
1 + 7x− 44x2 + 810x3 − 1260x4

)
(1− 4x)1/2 − 120x3

(
5− 17x+ 21x2

)
logf(x) ,

(5.36)

g2(x) =
(
1− 13x+ 156x2 + 450x3 − 540x4

)
(1− 4x)1/2 − 120x3

(
5− 9x+ 9x2

)
logf(x) ,

(5.37)

g3(x) =
(
1− 22x− 42x2 + 36x3

)
(1− 4x)1/2 + 24x2

(
3− 4x+ 3x2

)
logf(x) , (5.38)

where

f(x) =
1− 2x+ (1− 4x)1/2

2x
. (5.39)

Partial widths for decay modes with more than three particles in the final state can only be
computed numerically. If the dark matter mass lies above the electroweak scale, the relevant

56



5.4. Fermionic dark matter

ones can be approximated by [51]

Γχ→qq̄Gν '
ξ2

25 (4π)4 αs

m7
χ v

2

M4 M̄4
P

, (5.40)

Γχ→fif̄jWν '
ξ2

20 (8π)5 N
(fi)
c |Uij |2

m9
χ

M4 M̄4
P

, (5.41)

Γχ→ff̄Zν '
ξ2

10 (8π)5 N
(f)
c

(
g2
f,V + g2

f,A

) m9
χ

M4 M̄4
P

, (5.42)

Γχ→fif̄jWHν '
√

2 ξ2

175 (8π)7 N
(fi)
c |Uij |2

m11
χ GF

M4 M̄4
P

, (5.43)

Γχ→ff̄ZHν '
2
√

2 ξ2

175 (8π)7 N
(f)
c

(
g2
f,V + g2

f,A

) m11
χ GF

M4 M̄4
P

, (5.44)

Γχ→WWHHHν '
ξ2

6300 (8π)9

m13
χ

v4M4 M̄4
P

, (5.45)

Γχ→ZZHHHν '
ξ2

12600 (8π)9

m13
χ

v4M4 M̄4
P

, (5.46)

while the remaining modes listed in table 5.3 have branching ratios below 5 % throughout the
entire mass range under discussion. Figure 5.10 shows the branching fractions of the fermion
singlet dark matter candidate for a fixed value of ξ2/M4. They are very similar to those of the

Figure 5.10: Branching ratios in the fermion singlet scenario as a function of the dark matter
mass, at a fixed value of ξ2/M4. Decay channels with branching fractions below 5 % are not
shown.

scalar doublet (cf. section 5.3), the biggest difference being the extra neutrino emitted in every
dark matter decay. As before, at any given dark matter mass, only a handful of decay modes
are responsible for most dark matter decays. Therefore, the total width of the fermion singlet
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can be approximated as [51]

Γχ &
4 ξ2

15 (16π)3

m7
χ v

2

M4 M̄4
P

×



12
5 nq

αs
π , mχ ' 1–200 GeV ,

1 + 12
5 nq

αs
π , mχ ' 0.2–1 TeV ,

3
8π2

m2
χ

v2
, mχ ' 1–10 TeV ,

6
35 (4π)4

m4
χ

v4
, mχ ' 10–100 TeV ,

1
140 (8π)6

m6
χ

v6
, mχ & 100 TeV ,

(5.47)

in analogy to expressions (5.16) and (5.31) for the scalar dark matter candidates. What is
immediately evident is the additional M−4 suppression compared to the scalar doublet scenario.
This results from the fact that the lowest-dimensional effective operator for a fermion singlet
allowed by symmetry (4.31) is of mass dimension six. As the effective theory is only valid
at energies below M , a non-minimally coupled fermion is generically longer-lived by a factor
M4/m4

DM compared to a scalar dark matter candidate of the same mass. As the dark matter
mass approaches the cutoff scale of the effective theory, one needs to specify an ultraviolet
completion. In the model introduced in section 4.3, a heavy scalar doublet η is responsible for
generating (4.31) through renormalizable interactions, and the cutoff scale M is related to the
scalar mass via (4.38). The partial widths of the fermion singlet in this extended theory can be
computed straightforwardly according to (4.37).

The total decay rate of the fermion singlet is compared with observational bounds in fig-
ure 5.11, both in the degenerate limit where mη0 ' mχ and for mη0 = 5mχ, where the effective
theory description applies. For the plot, the Yukawa couplings of the scalar doublet η to the
three neutrino species is set to unity, y1,2,3 = 1. Figure 5.3, in turn, shows the upper bound
on the value of the non-minimal coupling parameter ξ resulting from the requirement that the
lifetime is τχ & 1024 s. In the degenerate limit mη0 ' mχ, a non-minimal coupling of order
unity is in agreement with observations for dark matter masses below 200 TeV. In contrast, for
a very heavy dark matter candidate of mass 109 GeV, the dimensionless non-minimal coupling
needs to be significantly smaller, ξ . 10−16. Increasing the mass of the scalar mediator weakens
the bounds on ξ, as the dark matter lifetime scales roughly as m4

η0/m
4
χ away from threshold.

Similar to the case of the scalar doublet dark matter candidate, the experimental bounds on the
non-minimal coupling of the fermion singlet are significantly weaker than those on the scalar
singlet scenario. The decay rates are suppressed by several powers of both the Planck mass and
the cutoff scale of the effective operator. This suppression is only overcome for very heavy dark
matter candidates.

5.5 Higher-order corrections

A few remarks have to be made concerning the role of higher-order corrections to the decay
rates computed in this chapter. Through the non-minimal coupling to gravity, a number of new
interaction vertices are introduced that contain up to seven fields, depending on the spin of the
dark matter particle. Computing two-body decays at lowest order in perturbation theory is
straightforward. However, already for the three-body decays of the scalar singlet dark matter
candidate, there is some non-trivial interference with its two-body channels. Fundamentally,
this behavior is due to the multiplicative structure of the non-minimal coupling, which induces
decay vertices that are proportional to the product of the gravity portal coupling and standard
model parameters.
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Figure 5.11: The total lifetime of the fermion singlet dark matter candidate, for different
values of the non-minimal coupling ξ. The dashed (dotted) line corresponds to a mediator mass
of mη0 = mχ (5mχ). Also shown are the observational constraints from the age of the Universe
and the non-observation of exotic contributions to gamma-ray, neutrino or cosmic-ray fluxes at
Earth, respectively.

As an example, consider the decay φ → ff̄γ. As illustrated in figure 5.12, at order ξ̄2 α,
this decay proceeds through both the point-interaction vertex directly and through the three-
particle vertex ff̄φ with final-state photons emitted from the external legs. Moreover, for photon∣∣∣∣∣ + +

∣∣∣∣∣
2

+

∣∣∣∣∣ + + +

∣∣∣∣∣
2

Figure 5.12: Decay of the scalar singlet dark matter candidate at order ξ̄2 α.

energies below the detector threshold, the three-body final state cannot be distinguished from
the two-body decay into fermions only. Therefore, there is further interference from the one-loop
diagrams for the process φ → ff̄ . In practice, however, the bremsstrahlung diagrams, as well
as the one-loop corrections to the two-body decay can be neglected: as all these diagrams are
proportional to the ff̄φ vertex, they carry a suppression by the fermion mass compared to the
four-point vertex. Numerical checks show that while their contribution is comparable at energies
around the kinematic threshold, for higher energies the decay rate is dominated by the point-
interaction term. (This is also to be expected from figure 5.4, where the rates for φ → ff̄ and
φ→ ff̄γ are computed from the four-point vertices only.) Moreover, from a phenomenological
perspective, the astrophysical gamma-ray flux decreases roughly with the photon energy squared,
cf. figure 5.5. Thus, one is primarily interested in hard photons, which again mostly originate
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from the point-interaction term. The bremsstrahlung diagrams are responsible for the soft
photon spectrum instead, as illustrated in figure 5.13, since in this kinematic region, the fermion
propagator is nearly on shell. A similar behavior is found for the decay modes with massive

Figure 5.13: Photon spectrum for the decay φ → bb̄γ. The solid (dashed) red line shows the
spectrum of the point-interaction vertex (the bremsstrahlung diagrams) only, the black line shows
the total spectrum including diagram interference.

gauge bosons in the final state: also here, the rate is dominated by the single point-interaction
diagram soon above threshold, and the remaining diagrams can be omitted to speed up the
numerical computations.

A somewhat different picture emerges for the decay into three Higgs bosons. Here, the con-
tribution of diagrams with final-state Higgs radiation outweighs the single four-point vertex.
This is due to the E2-scaling of the HHφ vertex compared to the HHHφ interaction (cf. ap-
pendix (A.1)), leading to a partial width that scales like Γφ→HHH ∝ m3

φ when including all
diagrams, in contrast to the entry in table 5.1. The final-state Higgs radiation, however, can
also be interpreted as a correction to the lowest-order φ → HH rate, which already shows the
m3
φ scaling. The impact of diagram interference is again minimal, due to the different mass

scaling of the two types of diagrams. Finally, multi-body decays into final states with two gauge
bosons also receive contributions from a large number of diagrams, e.g. two-body decays into
off-shell Higgs bosons or vector bosons and three-body decays with final-state radiation. Nu-
merical checks show that including all diagrams in the computation of the partial width leads
to relative changes in the rate of at most order unity. The scaling of the partial rate with the
dark matter mass remains the same as the one reported in table 5.1, however, and the increase
in accuracy comes at the cost of significantly increased computational effort. In keeping with
the exploratory nature of the calculations of chapter 5, the accuracy achieved by considering
the single point-interaction vertex only for each partial rate is deemed sufficient, for each of the
dark matter scenarios discussed.

60



Chapter 6

Constraints from cosmology

Chapter 5 discussed potential signals in present-day particle fluxes at Earth of a non-minimally
coupled dark matter candidate. Complementary information can be gained by studying the
impact of such a dark matter particle on other observables throughout cosmic history. The next
sections will discuss its effect on the cosmic microwave background as well as the possibility of
producing dark matter in the early Universe through a non-minimal coupling to gravity.

6.1 Constraints from the cosmic microwave background

The cosmic microwave background presents a unique observational window into the early Uni-
verse. Emitted around redshift z ' 1100, when protons and electrons in the primordial plasma
had finally cooled down enough to form neutral hydrogen atoms, it provides a detailed snapshot
of the cosmic matter distribution at a time when the Universe was only a few hundred thousand
years old [4]. As a powerful probe of the thermal history of our Universe, it tests the ΛCDM
cosmological model and any modifications or extensions of it. More specifically, any exotic
source of energy injection during the cosmic dark ages (between recombination and reionization
of the cosmic fluid) would modify both the CMB blackbody spectrum and its anisotropy spec-
trum [149, 150, 151, 152]. Dark matter annihilations or decays during this period, for example,
would produce highly energetic particles that could subsequently decay into stable standard
model degrees of freedom. These, in turn, would heat, excite and ionize the neutral hydrogen
gas, altering the thermal history of our Universe and the CMB data with it. In the literature, the
impact of injecting high-energy photons, electrons and positrons into the cosmic fluid has been
studied extensively [153, 154], and also the smaller effect of protons and antiprotons has been
quantified [155]. More recently, a set of interpolation tables has been provided that describe in
detail the impact of photons, electrons and positrons created at arbitrary redshift, taking into
account delayed absorption as well as redshift-dependent absorption efficiency of the intergalac-
tic medium [156]. These tables allow one to robustly estimate the effect of any conventional
model of annihilating or decaying dark matter on the cosmic microwave background. As there
is currently no evidence for any additional energy injection during the cosmic dark ages, the
precise measurements by the Planck satellite [5] allow one to place stringent bounds on dark
matter annihilation or decay.

Interestingly, the distortion of the CMB anisotropy spectrum typically has the same shape
for different dark matter models [157, 158]. Therefore, to good approximation, the impact of a
generic model can be encoded by a single number measuring the overall normalization of this
distortion. Once this normalization factor has been computed for a fixed reference model and
the corresponding experimental bound on the dark matter lifetime or scattering cross section
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has been found, one can robustly estimate the constraint on any other model by computing a
“detectability parameter” geff that rescales the bound appropriately, as demonstrated in [157,
158] based on principal component analysis. Comparing the results of this approximation with
exact bounds derived via a Markov Chain Monte Carlo (MCMC) procedure for a variety of
benchmark points, it was found that the deviation lies within 10 % [157].

The detectability parameter geff , in turn, is determined in the following way: first, both
the reference model and the dark matter model under discussion are decomposed into weighted
sums of basis injection models. These injection models are characterized by a fixed particle
species (photons or electron-positron pairs), injected with a fixed energy E, at a fixed redshift
z. Then, the overall effect of each of the two models on the cosmic microwave background can
be determined by reweighing the coefficients of these sums by an efficiency function fi(τDM, E),
where i = γ, e, that describes the impact of the injected particles, depending on the lifetime of
the decaying dark matter particle τDM and the injection energy E. The detectability parameter
geff of the dark matter model under discussion, finally, is simply the ratio of the two overall
normalization constants.

In practice, as the first step, one has to compute the energy spectrum of electrons, positrons
and photons produced through dark matter decay or annihilations. This corresponds to taking
the continuum limit in the decomposition of the dark matter model into basis injection models.
As discussed in section 5.2, for a sub-GeV scalar singlet dark matter candidate with a non-
minimal coupling to gravity, the relevant tree-level decay modes are those into γγ, e+e−, e+e−γ,
µ+µ−, µ+µ−γ, π0π0 and π+π−. To obtain the electron and photon energy spectra for the latter
four channels, subsequent decays of the muons and pions produced in the initial process have
to be taken into account, e.g. through the procedure discussed in appendix E. Then, for a fixed
dark matter mass mφ, the total energy spectrum of particle i = γ, e (where e corresponds to
either an electron or a positron) is given by the sum over all relevant final states f , weighted by
their branching ratios,

dNi

dE
(mφ, E) =

∑
f

(
BR(φ→ f)

∣∣∣
mφ
×
(
dNi

dE

)
f

(mφ, E)

)
. (6.1)

Next, the relative impact of electron-positron pairs and photons at different energies on the
cosmic microwave background is taken into account by convolving the spectra with the effective-
detectability functions fi(τDM, E) supplied together with [156],

gi(mφ) =

∫ mφ/2

mi

dE
E

mφ

dNi

dE
(mφ, E) fi

(
1025 s, E

)
. (6.2)

If the lifetime of the dark matter candidate exceeds the age of the Universe, the dependence of
the detectability functions fi on τDM is only minor. Therefore, a constant value of 1025 s can be
plugged into the above expression, in light of the bounds on τDM derived below. In [157], the
precise effect of injecting electron-positron pairs or photons at several fixed benchmark values
for their kinetic energy was determined based on the MCMC approach. Planck 2015 data [5] was
then used to place the corresponding lower bounds on the dark matter lifetime. For example, for
a decaying dark matter particle injecting electron-positron pairs of 100 MeV kinetic energy each,
τDM & 2.31× 1025 s, while for dark matter decaying into pairs of photons, τDM & 0.35× 1025 s,
at 95 % confidence level [157]. An estimate of the bound on the non-minimally coupled scalar
singlet scenario can be found by rescaling these limits appropriately,

τφ(mφ) & 1025 s×

(
2.31×

ge(mφ)

g
(ref)
e

+ 0.35×
gγ(mφ)

g
(ref)
γ

)
, (6.3)
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where the detection efficiency parameters of the reference models are

g(ref)
e = ge(201 MeV)

∣∣∣
φ→e+e−

, g(ref)
γ = gγ(200 MeV)

∣∣∣
φ→γγ

, (6.4)

corresponding to injection of monoenergetic electron-positron or photon pairs, respectively.
Given the expressions for the partial widths of the scalar singlet listed in section 5.2, one can
translate this experimental limit on the dark matter lifetime into a constraint on the non-minimal
coupling parameter. Figure 5.6 shows this constraint together with the limits derived from the
non-observation of exotic signals in the gamma-ray flux at Earth. For most dark matter masses,
the CMB constraint is marginally weaker than those derived from present-day gamma-ray data,
the only exception being the narrow mass window around mφ ' 2–3 MeV. Therefore, the CMB
data do not preclude an upcoming experiment like e-ASTROGAM [159] observing a spectral
feature from dark matter decay in the photon flux at Earth.

6.2 Constraints from dark matter production

As demonstrated in section 3.2, the presence of a non-minimal coupling of dark matter to
gravity results, after a transformation into the Einstein frame, in a coupling to the matter
energy-momentum tensor. Thus, a large number of effective operators connecting the visible
and the dark sector are introduced simultaneously, with correlated Wilson coefficients whose
size is determined by the gravity portal coupling ξ. In the early Universe, these can serve to
populate the dark sector from the visible sector thermal bath. Whether the present-day dark
matter abundance is indeed set by these non-minimal gravitational interactions or not, however,
depends on whether there are other types of relevant couplings. For any kind of dark matter
produced in the early Universe, its present-day relic abundance is typically set by whatever type
of interaction is strongest at early cosmic times. Thus, in order for gravitational interactions to
be relevant, other couplings between the dark and visible sector have to be heavily suppressed,
e.g. due to some symmetry that is only broken by gravity. If this is indeed the case and
dark matter interacts only gravitationally with the visible sector, then a WIMP-like freeze-out
production in the early Universe is not possible, due to the minute strength of gravitational
interactions. If the dark matter particles ever were in thermal equilibrium with the standard
model, gravitationally suppressed freeze-out would occur very early and the present-day number
density would be unacceptably high [4]. Instead, a relic abundance could have been created via
the freeze-in mechanism [31] sketched in section 2.3.

In [160, 161, 162], thermal gravitational dark matter production in the early Universe was
studied in detail, in a minimal coupling scenario. Depending on the value of the reheating
temperature, the dark matter mass and, to a lesser extent, the spin of the dark matter parti-
cle, a relic abundance in accordance with observations can be produced via tree-level graviton
exchange, arising from minimal gravitational coupling between the dark and visible sector.

Additionally allowing for a non-minimal coupling of a dark matter field ϕ to gravity intro-
duces new effective operators, the lowest-dimensional of which have the form (3.4), where the
tensor structure of the coupling depends on the specific dark matter scenario. After a transfor-
mation into the Einstein frame, these lead to an infinite tower of operators with an increasing
number of external dark matter legs, multiplicatively coupled to standard model operators,

∞∑
k=1

(
ξ κ2 f(ϕ, {Xvis})

)k ×OSM , (6.5)
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and suppressed by increasing powers of the Planck mass as well as the non-minimal coupling
parameter. (In the expression above, Lorentz indices have been omitted for clarity.) Interest-
ingly, the Planck-mass suppression of the leading effective operators induced this way is M̄−2

P ,
the same as for the lowest-order graviton mediated processes from minimal coupling. Therefore,
the relative strength of interactions induced by the non-minimal operators of (3.4) compared to
graviton scattering entirely depends on the value of the gravity portal coupling ξ.

An exception arises only in the scalar singlet scenario. Here, the leading non-minimal oper-
ators conserving Lorentz and gauge symmetry are

Lξ = − ξ(1)M Rφ− ξ(2)Rφ2 . (6.6)

The linear ξ(1)-term, allowed only for scalar, uncharged dark matter, results in amplitudes
suppressed by a factor M/M̄2

P. Therefore, if the scalar mass scale is large enough (e.g. M ' M̄P),
the Planck mass suppression is partially lifted. In this case, these interactions will dominate
over processes induced by minimal gravitational coupling as well as over the quadratic ξ(2)-
term in the expression above. Only when the ξ(1)-operator inducing dark matter decay at
present times is also responsible for dark matter production in the early Universe can one
directly connect the relic abundance with the decay phenomenology. Otherwise, dark matter
production and decay will generally be controlled by different model parameters. With these
caveats in mind, the present-day dark matter abundance from freeze-in production in the early
Universe due to a Z2-breaking non-minimal coupling to gravity can be computed for the scalar
singlet scenario introduced in section 4.1. Here, number-changing three-, four-, and five-point
interactions can occur, some of which are sketched in figure 6.1. Every external φ leg carries with( )

( )

Figure 6.1: Dark matter production via three- and four-point interactions. Dashed lines indi-
cate dark matter legs, full lines correspond to standard model particles. Subdominant channels
in brackets.

it one power of Planck mass suppression and one power of the non-minimal coupling parameter
(ξ M κ). Therefore, on dimensional grounds, the dominant contribution to the total dark matter
production is expected to arise from vertices involving only one dark matter particle, i.e. the
first and second diagram in the first row, and the first, second and third in the second row.
For each of these types of interaction, the resulting present-day dark matter abundance can be
computed explicitly.

6.2.1 Relic abundance from coannihilations

Consider first the co-annihilation-type processes described by the first diagram in the second
row of figure 6.1. These involve one dark matter leg and three particles from the visible sector
thermal bath. Shortly after reheating, the temperature of the thermal bath lies above that
of electroweak symmetry breaking. Therefore, the electroweak vacuum is symmetric and all
standard model particles are massless, with the possible exception of the four Higgs degrees of
freedom themselves, whose mass is determined by the Higgs potential. In the Feynman (Rξ=1)
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gauge, the Higgs field can be decomposed as

Φ =

(
ϕ+
H

1√
2

(
H + i ϕ0

H

)) , (6.7)

where ϕ±H , ϕ
0
H are the Goldstone degrees of freedom. The Feynman rules and resulting scattering

cross sections in this scenario can be derived using standard techniques. (This process can be
automated as sketched in appendices B and C). Some general features can already be anticipated
at this stage, however. Due to the absence of any explicit mass scales in the theory, the vertices
can only depend on the dimensionless standard model couplings and on particle momenta.
The dependence on the non-minimal coupling and Planck-mass suppression follow from the
form of the non-minimal coupling to gravity. Therefore, on dimensional grounds, the resulting
interaction cross sections times relative velocity will have the form

σ |v| ∝ (ξ M κ)2

1 + 6 (ξ M κ)2

1

M̄2
P

=
ξ̄2

M̄2
P

, (6.8)

modulo phase space factors, times standard model couplings, as summarized in table 6.1. Here,

Vertex SM coupling

φ f ′f̄ (G,W,Z, γ) g2
s , g

2, g2, e2

φ f ′f̄ ϕH yf yf ′

φ 2ϕH (W,Z, γ) g2, g2, e2

φ 2ϕH 2(W,Z, γ) g4, g4, e4

φ 4ϕH λ2

Table 6.1: Standard model couplings relevant for dark matter production in the early Universe.

ϕH stands for any of the four components of the Higgs doublet, ϕH = H,ϕ0
H , ϕ

±
H . To determine

which of these channels dominate dark matter production, both the running of the coupling
constants to energies available in the early Universe and the precise multiplicity of each of the
processes have to be taken into account. Compared to the first three, the last two entries
are suppressed by additional powers of the coupling constants and can therefore be neglected.
Assuming all particles but the dark matter to be massless, the total cross sections for the first
three types of processes, for collisions at a center-of-mass energy squared E2

CM = sCM, and for
a given configuration of spins/polarizations, are

σφV→f (′)f̄ |v| =
ξ̄2

M̄2
P

sCM

2Eφ 2EV

3N
(f)
c

8π

(
|gV |2 + |gA|2

)
, (6.9)

σφH→tt̄ |v| =
ξ̄2

M̄2
P

sCM

2Eφ 2EH

N
(f)
c

2π
y2
t , (6.10)

σφV→ϕHϕH |v| =
ξ̄2

M̄2
P

sCM

2Eφ 2EV

1

6π
|gV S |2 . (6.11)

Since the top quark has by far the largest Yukawa coupling yt among the standard model
fermions, scattering with a top-antitop pair is the only relevant channel from the second category
in table 6.1. The gauge boson couplings are listed in table 6.2, while table 6.3 shows the vector-
scalar couplings for processes involving two Higgs degrees of freedom and a vector boson. With
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Gauge boson gV gA

G gs 0

W g

2
√

2
VCKM

g

2
√

2
VCKM

Z g
2 cos θW

(
t3 − 2Q sin2 θW

) g
2 cos θW

t3

γ Qe 0

Table 6.2: Standard model gauge boson-fermion couplings.

Vertex gV S

φγ ϕ+
H ϕ

−
H e

φW± ϕ∓H
(
ϕ0
H , H

) g
2

φZ ϕ+
H ϕ

−
H

g
2 cos θW

(
cos2 θW − sin2 θW

)
φZ ϕ0

H H
g

2 cos θW

Table 6.3: Vector-scalar couplings.

these expressions for the scattering cross sections in terms of the center-of-mass energy, the
evolution of the dark matter abundance in the early Universe can be computed following [86].
The Boltzmann equation describing the evolution of the number density nφ of a dark matter
particle φ of mass mφ due to the process φA↔ BC reads [4]

ṅφ + 3H nφ = −
∫
dΠφ dΠA dΠB dΠC (2π)4 δ(4)(pφ + pA − pB − pC) |M|2 (fφ fA − fB fC) ,

(6.12)

where H is the time-dependent Hubble parameter, fi is the phase space density of particle
species i and

dΠi =
gi

(2π)3

d3pi
2Ei

, (6.13)

with gi the number of internal degrees of freedom. Being standard model particles, B and C
are in thermal equilibrium, so

fB,C = f
(EQ)
B,C ' e−EB,C/T . (6.14)

Due to conservation of energy, f
(EQ)
B f

(EQ)
C = f

(EQ)
φ f

(EQ)
A , and the right-hand side of the above

expression simplifies to

RHS = −
∫
dΠφ dΠA dΠB dΠC (2π)4 δ(4)({pi}) |M|2

(
fφ fA − f

(EQ)
φ f

(EQ)
A

)
(6.15)

= − gB gC
∫
dΠφ dΠA

(
fφ fA − f

(EQ)
φ f

(EQ)
A

)
(2Eφ 2EA σφA→BC |v|) . (6.16)

In the above expression, the last factor inside the integral is the scattering cross section for the
process φA→ BC, modulo the normalization prefactors related to the particle flux in collision
experiments. In the case of freeze-in production, for as long as interactions are still efficient, the

actual dark matter particle abundance lies far below its equilibrium value, fφ � f
(EQ)
φ , while A
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remains in equilibrium with the thermal bath throughout, fA = f
(EQ)
A . Therefore, the first term

in the above sum can be dropped, yielding

ṅφ + 3H nφ ' gB gC

∫
dΠφ dΠA f

(EQ)
φ f

(EQ)
A (2Eφ 2EA σφA→BC |v|) (6.17)

≡ gφ gA gB gC 〈σv〉n
(EQ)
A n

(EQ)
φ , (6.18)

where n
(EQ)
i is the equilibrium number density of particle species i, and 〈σv〉 is the thermally

averaged cross section. To perform this averaging explicitly along the lines of [86], one has to
evaluate

ṅφ + 3H nφ =
gφ gA gB gC

4 (2π)4 T

∫ ∞
m2
φ

dsCM

sCM −m2
φ√

sCM
K1

(√
sCM

T

)
(2Eφ 2EA σφA→BC(sCM) |v|) ,

(6.19)

with K1(x) the modified Bessel function of the second kind of order 1. For cross sections of the
form

σ(sCM) |v| =
cg
M̄2

P

sCM

2Eφ 2EA
, (6.20)

with constant cg, as in the scenario under discussion, the integral over sCM gives

ṅφ + 3H nφ =
gφ gA gB gC

4 (2π)4

cg
M̄2

P

[
16T 6G3,0

1,3

(
m2
φ

4T 2

∣∣∣∣∣ 1

0, 2, 3

)
− 2m4

φ T
2K2

(mφ

T

)]
. (6.21)

Here, K2(x) is the modified Bessel function of the second kind of order 2, and Gm,np,q (x) is the
Meijer G-function. Introducing the dimensionless variables Y = nφ/s and x = mφ/T , where s
is the entropy density per comoving volume, one can absorb the change in number density due
to the evolution of the scale factor, since

ṅφ + 3H nφ = Ẏ s . (6.22)

During radiation domination, the entropy density and Hubble parameter at temperature T are
given by [4]

s(T ) =
2π2

45
g∗s T

3 , H(T ) = 1.67
√
g∗

T 2

MP
= 0.333

√
g∗

T 2

M̄P
, (6.23)

with g∗, g∗s counting the number of massless degrees of freedom. (Note that the Planck mass
MP =

√
8π M̄P ' 1.22× 1019 GeV.) Using the fact that t ∝ T−2 and H ∝ T 2 during radiation

domination, so that Ṫ ' −HT [31, 4], the differential equation for the dark matter yield Y as
a function of x reads

dY

dx
=

x4

H(mφ) s(mφ)
× RHS = λ′ g(x) , (6.24)

with

λ′ =
gφ gA gB gC

2 (2π)4

cg
M̄2

P

m6
φ

H(mφ) s(mφ)
, (6.25)

g(x) = 8x−2G3,0
1,3

(
x2

4

∣∣∣∣ 1

0, 2, 3

)
− x2K2(x) . (6.26)
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The entropy density and Hubble parameter are evaluated at a temperature equal to the dark
matter mass T = mφ. The differential equation for the dark matter abundance can be integrated
directly. The amount of dark matter created via interactions since reheating at xrh = mφ/Trh is

YAφ↔BC(x) = λ′
∫ x

xrh

dx′ g
(
x′
)
. (6.27)

For small x, the integrand can be expanded as g(x) ' 16/x2 − 2 +O
(
x2
)
. This is an excellent

approximation: in a freeze-in scenario, interactions are only efficient long before the temperature
reaches values close to the particle mass, provided that the reheating temperature is high enough,
xrh < xfreeze−in < 1. As g(x) ∝ x−2, the number density is built up predominantly immediately
after reheating and reaches its asymptotic value quickly. To very good approximation, the
present-day dark matter abundance is given by

YAφ↔BC(∞) =
16λ′

xrh
. (6.28)

It is sensitive to the value of the reheating temperature, YAφ↔BC(∞) ∝ Trh/M̄P, but independent
of the dark matter mass mφ, since λ′ ∝ mφ. Assuming a flat Friedmann-Robertson-Walker
geometry, the corresponding fraction of the total energy density of the Universe today is

Ωφ h
2 = h2 ρφ

ρc,0
, (6.29)

with the critical density ρc,0 = 1.055×10−5 h2 GeV cm−3 [4]. The energy density in dark matter
particles is

ρφ = mφ nφ = mφ Y (∞) s0 , (6.30)

with the present-day entropy density s0 = 2970 cm−3. Putting everything together,

0.12 & ΩAφ↔BC h
2 = 4.062× 10−3 ×

gφ gA gB gC cg√
g∗ g∗s

( mφ

GeV

)( Trh

109 GeV

)
. (6.31)

In the scalar singlet scenario in question, gφ = 1, and if the dark matter abundance freezes in
before the temperature drops below the electroweak scale, g∗ = g∗s ' 106.75, which leads to

0.12 & ΩAφ↔BC h
2 = 3.683× 10−6 × (gA gB gC cg)

( mφ

GeV

)( Trh

109 GeV

)
. (6.32)

The last step is to determine the value of (gA gB gC cg) for each coannihilation channel of (6.9)
to (6.11) individually and to sum over all channels to obtain the total abundance created through
two-to-two co-scattering.

For dark matter-gluon scattering into a pair of quarks, φG → q q̄, the gluon can be in one
of two helicity states, which fixes the spins of the fermions, gB = gC = 1. An additional color
factor Nc = 4, so gA = 2 × 4. Permuting the external legs of the amplitude, one finds the
processes φ q → Gq and φ q̄ → G q̄ arising from the same vertex. Here, the spin of the initial
(anti-)quark is free, gA = 2, while gB = Nc = 3 and gC = 1. Finally, the vertex φGq q̄ arises
for an overall number of Nq = 6 quark flavors, and is proportional to the non-minimal coupling
ξ̄ and the strong gauge coupling gs. Thus, for this kind of vertex,

φGq q̄ :
∑
q

(gA gB gC cg) = (2× 4 + 2× 3 + 2× 3)× 6× 3

8π
g2

s ξ̄
2 =

45

π
g2

s ξ̄
2 . (6.33)
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Adding processes with electroweak gauge bosons and assuming, for simplicity, that all three
standard model gauge couplings gs, g, g

′ are approximately given by αSM = g2
SM/(4π) ' 1/43

at energies around the scale of a hypothesized Grand Unified Theory (GUT) [163], dark matter
scattering processes involving fermions and gauge bosons V = G,W,Z, γ sum up to

φV f ′ f̄ :
∑
f,V

(gA gB gC cg) ' 6.41× ξ̄2 , (6.34)

with gluon scattering being responsible for roughly two thirds of the abundance generated
through the processes of (6.9).

In the second type of interaction (6.10), involving the top Yukawa coupling, the multiplicative
factor evaluates to

φH t t̄ : (gA gB gC cg) ' 2.80× ξ̄2 . (6.35)

Here, it is assumed that yt does not change significantly running up in energy from the elec-
troweak to the GUT scale, yt ' 1 [163].

Dark matter-vector boson scattering with two scalars (6.11), finally, contributes less than a
percent to the total abundance,

φV ϕH ϕH :
∑
ϕH ,V

(gA gB gC cg) ' 0.018× ξ̄2 , (6.36)

due to the much lower number of degrees of freedom. The other processes listed in table 6.1
are further suppressed by higher powers of the coupling constants. Therefore, to percent-level
accuracy, the total abundance of scalar singlet dark matter created via two-to-two scattering
processes in the early Universe is given by summing over the contributions from φV f ′ f̄ and
φH t t̄, giving

0.12 & ΩAφ↔BC h
2 ' 3.392× 10−5 × ξ̄2

( mφ

GeV

)( Trh

109 GeV

)
. (6.37)

6.2.2 Relic abundance from (inverse) decays

Another contribution to the dark matter abundance is caused by “inverse decay”-type processes,
described by diagrams such as the first in the first row, or the second in the second row of
figure 6.1. The corresponding Boltzmann equation for the evolution of the dark matter number
density reads [31]

ṅφ + 3H nφ = −
∫
dΠφ dΠA dΠB . . . dΠZ (2π)4 δ(4)({pi}) |M|2 (fφ − fA fB . . . fZ) , (6.38)

for the process AB . . . Z ↔ φ with an arbitrary number of initial-state particles. As before, the
delta distribution enforces momentum conservation. The right-hand side simplifies significantly.
While interactions are still efficient (i.e. before the dark matter abundance freezes in), fφ ' 0,

while the remaining particles are in contact with the thermal bath, fi 6=φ = f
(EQ)
i ' e−Ei/T .

Furthermore, due to energy conservation, f
(EQ)
A f

(EQ)
B . . . f

(EQ)
Z = f

(EQ)
φ as for the two-to-two

annihilations, so

RHS =

∫
dΠφ f

(EQ)
φ

∫
dΠA dΠB . . . dΠZ (2π)4 δ(4)({pi}) |M|2 (6.39)

=

∫
dΠφ f

(EQ)
φ 2mφ Γφ→AB...Z , (6.40)
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where Γφ→AB...Z ≡ Γφ is the partial decay rate of φ into the final state AB . . . Z in the rest frame
of the decaying particle. (For this production channel to exist, the decay must be kinematically
allowed.) Since Γφ is independent of Eφ, the remaining phase space integral can be performed
straightforwardly, and the Boltzmann equation reads

ṅφ + 3H nφ = gφ
m2
φ Γφ

2π2
T K1(mφ/T ) . (6.41)

As before, the dimensionless yield Y = nφ/s can be defined, and the Boltzmann equation
dY/dx can be solved by direct integration. In contrast to the coannihilation case, as long as the
reheating temperature is larger than a few times the dark matter mass (such that dark matter
can be produced at all), the present-day dark matter abundance is independent of its precise
value Trh,

Yφ↔AB...Z(∞) '
135 gφ

8π3 (0.333)
√
g∗ g∗s

M̄P Γφ
m2
φ

. (6.42)

Dark matter can also be produced via the conventional decay of bath particles, A↔ φB C . . . Z.
In this case, an analogous calculation [31] yields

YA↔φBC...Z(∞) ' 135 gA
8π3 (0.333)

√
g∗ g∗s

M̄P ΓA
m2
A

. (6.43)

For these processes, for kinematical reasons, mA > mφ +mB + · · ·+mZ is required. For inverse
and regular decays, the corresponding present-day dark matter fraction of the total energy
density is, respectively [31],

Ωφ↔AB...Z h
2 ' 1.12× 1027

√
g∗ g∗s

gφ
Γφ
mφ

, (6.44)

ΩA↔φBC...Z h
2 ' 1.12× 1027

√
g∗ g∗s

gA
mφ ΓA
m2
A

. (6.45)

As was shown in section 5.1, at energies above the electroweak scale, the dependence of the decay
rate of a scalar singlet on its mass is at least as Γφ ' ξ̄2m3

φ/M̄
2
P. Considering for comparison

the decay rate of a visible sector particle A with a dark matter particle in the final state, one
finds

ΓA ' ΓA,SM × ξ̄2 ×
m2
A

32π2 M̄2
P

, (6.46)

where ΓA,SM is its pure standard-model decay width without a dark matter particle in the final
state. As evident from (6.5), the non-minimal coupling to gravity introduces a Planck-mass
suppression factor which is compensated by a factor m2

A from the phase space integral (the
decay process into dark matter has an additional particle in the final state). Unstable standard
model particles such as the top quark or the electroweak gauge bosons have decay widths no
larger than ΓA,SM . O(GeV) [1], so

Ωφ↔AB...Z h
2 & 1.02× 1024 × ξ̄2

m2
φ

M̄2
P

, (6.47)

ΩA↔φBC...Z h
2 . 1.02× 1024 × ξ̄2

m2
φ

M̄2
P

× gA
32π2

×
(

GeV

mφ

)
. (6.48)
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The dark matter yield from standard model particle decay will only dominate over inverse decays
for dark matter masses below mφ . gA/(32π2) GeV. Above that mass,

ΩA↔φBC...Z h
2 � Ωφ↔AB...Z h

2 , (6.49)

where

Ωφ↔AB...Z h
2 & 1.71× 10−13 × ξ̄2

( mφ

GeV

)2
. (6.50)

As the scaling of the total width of the scalar singlet with its mass increases according to table 5.1
as soon as new decay channels open up, the true relic abundance created via inverse decays will
be somewhat larger. For figure 6.2, the full dependence Γφ(mφ) was used, taking into account
all partial widths.

6.2.3 Total relic abundance

To obtain the total dark matter abundance, the yields from decays, inverse decays and scat-
tering processes have to be added. Which contribution dominates depends on the dark matter
mass and the reheating temperature. In either case, the final abundance of dark matter parti-
cles from freeze-in production is proportional to the interaction strength (rather than inversely
proportional to it, as in the case of freeze-out). Thus, requiring consistency with the observed
dark matter relic density fraction translates into an upper bound on the non-minimal coupling
parameter whose precise value may depend on the reheating temperature. Figure 6.2 shows
the resulting bounds on the non-minimal coupling (ξ M κ) as a function of the scalar singlet
mass mφ. While in principle it is possible to produce the observed present-day dark matter
abundance through scattering via the non-minimal coupling to gravity, the required value of the
non-minimal coupling parameter for a given dark matter mass is excluded by the non-observation
of decay signals in gamma-ray or cosmic ray observations or by CMB data. Therefore, a scalar
singlet dark matter particle would need to have been produced through a different mechanism,
e.g. a Higgs portal coupling, unrelated to its decay phenomenology.

As argued in the beginning of this section, for any other dark matter candidate, dark mat-
ter production through a non-minimal operator (3.4) faces stronger Planck-mass suppression.
Unless the non-minimal coupling ξ takes on very large values, the abundance created through
the regular, minimal coupling to gravity will be of comparable size. Furthermore, any non-
gravitational interaction of the dark matter particle will in turn dominate over gravitational
production.
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Figure 6.2: Bounds from dark matter production. The dotted (continuous) blue line shows
the non-minimal coupling required to produce the observed dark matter relic density via two-
to-two scattering (inverse decays). The contribution from regular decays is negligible. Black,
red and green lines show the constraints from CMB, gamma-ray and cosmic ray observations,
as discussed in sections 6.1, 5.2 and 5.1. Shaded areas are excluded. For the dark matter
abundance produced via two-to-two scattering given by (6.37), a high reheating temperature of
Trh = 1016 GeV is assumed.
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Chapter 7

Inflation in non-minimally coupled
scenarios

Theoretical considerations of the early Universe have identified a range of puzzling features
about the cosmos in the context of the ΛCDM model. Most notably, the near-perfect flatness
of spacetime, the isotropy of the cosmic microwave background across causally disconnected
patches of space and the absence of various kinds of relics that arise in certain extensions of the
standard model are hard to explain [4]. Inflation offers an attractive way out: by postulating
a period of exponential expansion shortly after the big bang, spacetime is flattened, a given
causally connected patch is stretched to sizes comparable to the observable universe today, and
unwanted relics are diluted sufficiently to be unobservable at present times [164, 165, 166].

7.1 Scalar field dynamics

The basic picture can be illustrated using a simple single-field model that adds a single scalar ϕ
to the standard model, appropriately labelled the inflaton. Typically, it couples very weakly
to the standard model degrees of freedom and has a very shallow region in its potential V(ϕ),
enabling a period of “slow-roll” inflation. Starting from the Lagrangian

L =
1

2
(∂µϕ) (∂µϕ)− V(ϕ) , (7.1)

and under the assumption of a spatially homogenous field, ∂iϕ = 0, the classical equation of
motion reads

ϕ̈+ 3H ϕ̇+
dV
dϕ

= 0 , (7.2)

with H the Hubble rate and dots representing derivatives with respect to cosmic time t. The
classical inflaton field behaves as a harmonic oscillator with a frequency determined by its
potential and a damping term related to the expansion of spacetime (often referred to as “Hubble
friction”). The assumption of spatial homogeneity of the scalar field is a rather mild one, as
any pre-existing spatial gradients would be quickly suppressed by the exponential expansion of
spacetime [4]. In the slow-roll regime, ϕ̈� 3H ϕ̇ and ϕ̈� dV/dϕ, so the scalar field smoothly
drifts down its (shallow) potential, ϕ̇ = −V ′(ϕ) /(3H). The energy density attributed to ϕ
is almost constant during this period, leading to the advertised behavior of the scale factor,
a(t) ∝ eH t [4].

In order to allow for this slow-roll phase, there are certain requirements on the shape of
the scalar potential V. The precise measurements of the CMB temperature and polarization
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fluctuations performed by the Planck collaboration pinpoints the spectral index of curvature
perturbations, ns = 0.968 ± 0.006 (68 % confidence level), and constrains the tensor-to-scalar
ratio to values r < 0.11 (95 % confidence) [167]. In single-field models of inflation, they can be
calculated in terms of the slow-roll parameters,

ε =
M2

P

2

(dV/dϕ)2

V2
, (7.3)

η = M2
P

d2V/dϕ2

V
, (7.4)

and are approximately given by [168]

ns ' 1 + 2 η − 6 ε , (7.5)

r ' 16 ε . (7.6)

Moreover, the number of e-folds during inflation needs to be at least N & 50–60 [167], and can
be calculated as [168]

N =
1

M2
P

∫ ϕi

ϕf

dϕV
(
dV
dϕ

)−1

. (7.7)

Here, ϕi,f refer to the field values at the start and at the end of inflation.
The Planck constraints rule out a number of inflationary models. As an example, one of the

simplest inflaton models imaginable, quadratic inflation, has the potential

V(ϕ) =
m2
ϕ

2
ϕ2 , (7.8)

specified by a single parameter, m2
ϕ. The field value at the end of inflation can be calculated

through the relation ε(ϕf) = 1. Fixing the number of e-folds N determines the initial field value
ϕi through (7.7). Finally, to reproduce the observed amplitude of the curvature power spectrum
As = (2.14± 0.06)× 10−9 [5], the scalar potential needs to satisfy

V(ϕi)

ε(ϕi)
= (0.027MP)4 , (7.9)

which determines the value of the inflaton mass, mϕ = 6 (7) × 10−6MP for N = 60 (50) [168].
The resulting values for the spectral index ns and tensor-to-scalar ratio r are disfavored by
Planck data. This should not be too surprising, given the simplicity of this toy model.

7.2 Inflation with non-minimal coupling to gravity

As was shown in [168], extending the basic model (7.1) with a non-minimal coupling to gravity
of the form

−1

2
ξ′ ϕ2R (7.10)

can significantly alter the shape of the potential, depending on the size of the non-minimal
coupling. Specifically, for ξ′ = O

(
10−3

)
, the expected values for ns and r are in agreement with

observations [168]. The reason is that the Weyl transformation (3.17) again modifies the kinetic
term of the scalar field ϕ, analogously to (4.6). Performing a field redefinition to bring the
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kinetic term into canonical form changes the shape of the potential; specifically, higher-order
terms in the scalar field are introduced with coefficients proportional to m2

ϕ/M
2
P [168]. These

serve to flatten the Einstein-frame potential and make the model viable again.

A similar effect can be expected by extending (7.1) not with a quadratic non-minimal oper-
ator, but with the linear term

Lξ = − ξ M ϕR , (7.11)

in the spirit of identifying the inflaton field with the scalar singlet dark matter candidate dis-
cussed in sections 4.1 and 5.1. This would constitute an intriguing link between the dynamics
of the very early Universe and the various phenomena connected to the dark matter puzzle. In
this case, the Einstein frame potential is given by

V̂(ϕ̂) =
m2
ϕ ϕ

2(ϕ̂)

2 (1 + 2κ2 ξ M ϕ(ϕ̂))2 , (7.12)

where the relation between the Jordan- and Einstein-frame scalar fields is [52]

ϕ̂ =

√
6

κ

(
y − y0 +

1

2
log

(1− y) (1 + y0)

(1 + y) (1− y0)

)
, (7.13)

to all orders in ξ, where

y =

√
1 +

1 + 2κ2 ξ M ϕ

6 ξ2M2 κ2
, y0 = y

∣∣
ϕ→0

. (7.14)

Expression (7.12) explicitly shows the flattening of the potential introduced by the Weyl trans-
formation. While V̂ is approximately quadratic at small field values, it approaches the constant
value

V̂(ϕ̂)→
m2
ϕ M̄

4
P

8 ξ2M2
(7.15)

for κϕ � 1. Numerically, one finds that it is possible to satisfy the Planck bounds on the
spectral index ns and tensor-to-scalar ratio r within the quadratic inflation model with a linear
non-minimal coupling to gravity. For N = 50 (60), this requires a non-minimal coupling of either
ξ ' 0.61 (7.4), resulting in a very low tensor-to-scalar ratio r ' 0.011 (0.0030), or a smaller value
of ξ ' 0.15 (0.0053), with r ' 0.031 (0.11). In either of these cases, however, the modification
of the scalar potential (7.12) is rather minor, and the value for the scalar mass parameter
mϕ required to satisfy (7.9) differs only mildly from that of the minimally coupled scenario.
A mass of mϕ ' 10−5 M̄P ' 1013 GeV, as needed, would correspond to a very heavy dark
matter candidate. Indeed, as shown in section 5.1, the non-observation of exotic contributions
in gamma-ray and cosmic-ray experiments constrains the non-minimal coupling to be of order
ξ . 10−40 in this regime. Therefore, barring an unreasonable amount of running of ξ between the
electroweak and Planck scales, it is not possible to describe dark matter and inflation within this
setup. Rather, one would need to introduce additional terms in the Lagrangian. A trivial choice
would be to include both the linear non-minimal coupling (7.11) and the quadratic one (7.10)
discussed in [168], using the latter to bring the scenario in agreement with Planck data and
fixing the former to a small enough value to be in line with the constraints from section 5.1.
The viability of this scenario was explored in [169].
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More generally, non-minimally coupled inflaton fields have found widespread interest, a no-
table example being the Higgs inflation scenario. Postulating that the standard model Higgs
boson plays the role of the inflaton arguably poses the most efficient way of achieving infla-
tion in the early Universe [170]. However, as elegant as this scenario appears at first glance,
some of its aspects require further work. In Higgs inflation, the slow-roll regime corresponds
to trans-Planckian field values of the canonically normalized scalar field, as it often happens in
models of inflation. Lacking a quantum theory of gravity, the question about the applicability
of the EFT approach in this regime arises [171, 172]. Moreover, the successful implementation
of inflation in this framework crucially relies on the ratio between the flat-space potential VH
and the square of the non-minimal coupling operator to the Ricci scalar approaching a constant
value. This requires a substantial amount of fine-tuning in the coefficients of additional effective
operators arising around MP/ξ (i.e. below the Planck scale), in the sense that these operators
need to be absent to not spoil the asymptotic behavior of the Einstein frame potential [171]. In
other words, an asymptotic shift symmetry in this potential is strictly required [173], the origin
of which, however, is unknown.
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Conclusions

As outlined in section 2.4, one of the characterising traits of a dark matter particle is its longevity:
the absence of exotic contributions in the cosmic-ray, gamma-ray and neutrino fluxes measured at
Earth, as well as precise measurements of the cosmic microwave background, allow one to restrict
the dark matter lifetime to values τDM & 1024 s over a large range of masses (cf. chapter 5).
Unless the dark matter particle is very light, such that its decays are heavily phase space
suppressed, this means that there should be an approximate symmetry in place at low energies,
e.g. a global Z2, that ensures dark matter stability. If this symmetry is broken at high energies,
dark matter can still decay, albeit with a very long lifetime. In the EFT framework, this
translates to effective operators with a high suppression scale. Indeed, if it turns out that there
is no new physics between the electroweak and the Planck scale [174, 70, 69], it is possible that
symmetry breaking only occurs gravitationally, at energies around M̄P ' 2.4× 1018 GeV.

This thesis provides an account of the main phenomenological implications of a dark matter
candidate that has a Z2-breaking, non-minimal coupling to gravity. Section 3.1 described the
general form of the relevant effective operators. After identifying the Lorentz structure and the
level of suppression of these operators for various dark matter scenarios, section 3.2 and chapter 4
demonstrated how to derive the interaction Lagrangian between the dark matter candidate
and the visible sector, and how dark matter decay proceeds through this Lagrangian. The
following sections studied, in turn, a scalar singlet, a scalar doublet and a fermionic singlet dark
matter candidate in more detail, highlighting similarities and differences between the individual
scenarios.

Chapter 5 focused on the derivation of experimental constraints on the size of the non-
minimal coupling parameter ξ for the three scenarios under discussion. To this end, a conser-
vative estimate for the total width of the dark matter particle was computed over a large range
of dark matter masses and confronted with data from cosmic-ray and gamma-ray experiments.
For the singlet scalar candidate, the resulting limits are especially strong. A non-minimal cou-
pling (ξ M κ) of order unity leads to a dark matter lifetime shorter than the age of the Universe
τUni ' 4 × 1017 s down to dark matter masses of mφ ' 270 MeV, the pion pair production
threshold. Requiring agreement with data from x-ray and gamma-ray experiments such as
COMPTEL, EGRET and Fermi-LAT, as well as measurements of the cosmic microwave back-
ground by the Planck satellite allow one to strengthen this constraint to (ξ M κ) . 5× 10−5 for
this value of the dark matter mass, and extending the limits down to mφ ' 2 MeV. A dark
matter candidate at the TeV scale would require a heavily suppressed non-minimal coupling of
(ξ M κ) . 1.9×10−10, hinting at the presence of a mechanism forbidding this type of interaction
altogether, such as a dark gauge symmetry.

For a dark matter candidate with non-zero standard model gauge charges or higher spin,
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the experimental bounds are significantly weaker, as discussed in sections 5.3 and 5.4. The
SU(2)L × U(1)Y charge of the scalar doublet determines the form of the effective operator

inducing dark matter decay, leading to a severe suppression of order
(
v/M̄P

)2
of the partial

widths. Consequently, constraining the non-minimal coupling to values below unity requires
dark matter masses above mDM & 105 GeV, for both the CP -even and the CP -odd component
of the scalar doublet. In the fermion singlet case, the leading effective operator is of even higher
mass dimension, leading to additional suppression. In a simple UV extension of the scenario,
depending on the mass of the scalar mediator, the experimental bounds are only significant
above mχ & 106 GeV.

For the scalar singlet, complementary limits can be derived from cosmology. In this scenario,
chapter 6 demonstrated the impact of dark matter decays in the early Universe on the cosmic
microwave background. Furthermore, the non-minimal gravitational interactions can result in
efficient dark matter production via the freeze-in mechanism. Taking into account coannihilation
as well as decay processes, it was demonstrated that while in principle, dark matter production
can occur in this way, the expected relic abundance from non-minimal gravitational interactions
lies well below the measured value of Ωφ h

2 ' 0.12 [5]. Finally, the possibility of a connection
between inflation and dark matter decay was examined. Similarly to the case of Higgs infla-
tion [170], a Z2-breaking non-minimal coupling of the inflaton field to gravity can modify the
scalar potential. This leads to a shift in the slow-roll parameters, with consequences for the
remaining model parameters. The toy scenario of a scalar singlet inflaton with only a linear
non-minimal coupling discussed in section 7.2 is excluded by observations. However, extended
models with additional non-minimal couplings and more complex potentials are still viable.

Although the standard model of particle physics and the cosmological ΛCDM framework
have met remarkable success in their respective regimes of applicability, many questions about
the fundamental workings of nature remain open. Concerning the dark matter puzzle, ongoing
advances in detector technologies for direct and indirect detection as well as complementarity
with LHC searches give cause for hope: new generations of experiments are setting ever stronger
constraints on the dark matter parameter space, allowing us to rule out large numbers of models
even in the absence of conclusive signals. On the theory side, dark matter scenarios beyond the
traditional WIMP paradigm are seeing more and more attention, further broadening the scope
of experiments and opening up new possibilities for detection. Lastly, even if non-gravitational
interactions of dark matter fail to manifest themselves experimentally in the near future, it
is reassuring to know that even a closer look at its connection to gravity can yield intriguing
phenomenological consequences.
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Appendix A

Feynman rules for non-minimally
coupled dark sectors

Masses, couplings and other parameters are defined in the main text. All particle momenta
(in brackets) are assumed to be outgoing from the vertex and standard model charge flow is
indicated by arrows. Time runs from left to right.

A.1 Scalar singlet above 1 GeV

Given the Lagrangian (4.9), the interactions of the non-minimally coupled scalar singlet can be
read off straightforwardly. The hat on the scalar singlet is dropped for ease of notation, φ ≡ φ̂,
and a modified non-minimal coupling is defined as

ξ̄ ≡ ξ M κ√
1 + 6 (ξ M κ)2

, (A.1)

as before. With these conventions, the Feynman rules read

φ

H(p1)

H(p2)

2 i ξ̄ κ
(
2m2

H + p1 · p2

)
,

φ

H

H

H

12 i ξ̄ κ
m2
H

v
,

φ

H

H

H

H

12 i ξ̄ κ
m2
H

v2
,
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φ

f̄(p2)

f(p1)

i ξ̄ κ

(
4mf −

3

2
/p1

+
3

2
/p2

)
,

φ

H

f̄

f

4 i ξ̄ κ
mf

v
,

φ

Vν = Zν ,W
−
ν

Vµ = Zµ,W
+
µ

−2 i ξ̄ κm2
V η

µν ,

φ

Vν = Zν ,W
−
ν

H

Vµ = Zµ,W
+
µ

−4 i ξ̄ κ
m2
V

v
ηµν ,

φ

Vν = Zν ,W
−
ν

H

H

Vµ = Zµ,W
+
µ

−4 i ξ̄ κ
m2
V

v2
ηµν ,

φ

W−µ

f̄j

fi

−3 i ξ̄ κUij
g√
2
γµ

1

2
(1− γ5) ,

φ

Zµ

f̄

f

−3 i ξ̄ κ
g

2 cW
γµ
(
t
(f)
3 − 2Qf s

2
W − t

(f)
3 γ5

)
,
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φ

Aµ

f̄

f

−3 i ξ̄ κQf e γ
µ ,

φ

Gaµ

q̄

q

−3 i ξ̄ κ gs γ
µ Ta .

A.2 Low-mass scalar singlet

Below the GeV scale, the visible sector is described by the effective Lagrangian (2.36). For
a non-minimally coupled scalar singlet, this leads to the interaction Lagrangian (4.16). The
Feynman rules for the φ f f̄ - and φ f f̄ A-vertices are identical to the ones at higher energies.
Additional vertices with pions and photons take the form

φ

π0, π+(p2)

π0, π−(p1)

2 i ξ̄ κ
(

2m2
π0,π± + p1 · p2

)
,

φ

Aµ(k2)

Aν(k1)

i ξ̄ κ cγγ (kµ1 k
ν
2 − k1 · k2 η

µν) .

A.3 Scalar doublet

In the inert doublet model, either of the two neutral components of the second Higgs doublet can
be the dark matter candidate, but only the CP -even component η0 appears in the non-minimal
operator. The Feynman rules derived from (4.28) are similar to the scalar singlet case and read

η0

H(p2)

H(p1)

2 i ξ κ2 v
(
2m2

H + p1 · p2

)
,
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η0

H(p3)

H(p2)

H(p1)

2 i ξ κ2
(
12m2

H + p1 · p2 + p1 · p3 + p2 · p3

)
,

η0

H

H

H

H

60 i ξ κ2 m
2
H

v
,

η0

H

H

H

H

H

60 i ξ κ2 m
2
H

v2
,

η0

f̄(p2)

f(p1)

i ξ κ2 v

(
4mf −

3

2
/p1

+
3

2
/p2

)
,

η0

H

f̄(p2)

f(p1)

i ξ κ2

(
8mf −

3

2
/p1

+
3

2
/p2

)
,

η0

H

H

f̄

f

8 i ξ κ2 mf

v
,

η0

Vν = Zν ,W
−
ν

Vµ = Zµ,W
+
µ

−2 i ξ κ2 vm2
V η

µν ,
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η0

Vν = Zν ,W
−
ν

H

Vµ = Zµ,W
+
µ

−6 i ξ κ2m2
V η

µν ,

η0

Vν = Zν ,W
−
ν

H

H

Vµ = Zµ,W
+
µ

−12 i ξ κ2 m
2
V

v
ηµν ,

η0

Vν = Zν ,W
−
ν

H

H

H

Vµ = Zµ,W
+
µ

−12 i ξ κ2 m
2
V

v2
ηµν ,

η0

W−µ

f̄j

fi

−3 i ξ κ2 v Uij
g√
2
γµ

1

2
(1− γ5) ,

η0

W−µ

H

f̄j

fi

−3 i ξ κ2 Uij
g√
2
γµ

1

2
(1− γ5) ,

η0

Zµ

f̄

f

−3 i ξ κ2 v
g

2 cW
γµ
(
t
(f)
3 − 2Qf s

2
W − t

(f)
3 γ5

)
,

η0

Zµ

H

f̄

f

−3 i ξ κ2 g

2 cW
γµ
(
t
(f)
3 − 2Qf s

2
W − t

(f)
3 γ5

)
,
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η0

Aµ

f̄

f

−3 i ξ κ2 v Qf e γ
µ ,

η0

Aµ

H

f̄

f

−3 i ξ κ2Qf e γ
µ ,

η0

Gaµ

q̄

q

−3 i ξ κ2 v gs γ
µ Ta ,

η0

Gaµ

H

q̄

q

−3 i ξ κ2 gs γ
µ Ta .

If the CP -odd component A0 is lighter than η0, decays proceed through the three-point vertex

Zµ

A0(p2)

η0(p1)

g

2 cW
(pµ2 − p

µ
1 ) ,

where the virtual η0 subsequently decays through the non-minimal operator. The tree-level
amplitudes for the decay A0 → Z X are identical to the ones for η0 → X, multiplied by the
factor

εµ(pZ)
g

2 cW

(
2 pµ

A0 − pµZ
) i

(pA0 − pZ)2 −m2
η0

,

where the momenta of A0 and Z are assumed to be incoming and outgoing, respectively.
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A.4 Fermion singlet

In the fermion singlet scenario, the lowest-dimensional non-minimal operator results in the
interaction term (4.33). As justified in the main text, the tree-level χ decay amplitudes in
this EFT formulation are fully analogous to the ones for the CP -even component of the scalar
doublet η0, multiplied by a fermionic current,

iMχ =
1

2
√

2M2
ū(pν) (1− γ5)u(pχ)× iMη0 , (A.2)

where ξ is to be reinterpreted as the non-minimal coupling of the fermion. These effective
operators can be understood to arise from a UV completion of the theory. In section 4.3, the
example of a scalar mediator was discussed. In that case, the decay amplitudes are modified
according to (4.37),

iMχ =
yj

2
√

2

1

(pχ − pν)2 −m2
η0

ū(pν) (1− γ5)u(pχ)× iMη0 . (A.3)
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Appendix B

Generating Feynman rules with the
FeynRules package for Mathematica

When studying phenomenological implications of concrete extensions of the standard model, it
is often necessary to determine their impact on scattering cross sections or decay rates. As a
first step towards that goal, one typically needs to extract the Feynman rules of the theory from
its Lagrangian. As this extraction follows a universal procedure, it can be greatly accelerated
through automation. The FeynRules package [120] for Mathematica is one such implementation.
In this appendix, the procedure of obtaining the Feynman rules for a non-minimally coupled
dark matter candidate wll be sketched.

As an input to FeynRules, the user needs to specify the model under discussion. For exten-
sions of the standard model, it is advisable to start with its pre-installed implementation and
add to it the new physics one is interested in. Concretely, one needs to define all new fields,
all couplings and other parameters (such as particle masses), as well as new gauge groups, if
applicable. Adding a Dirac fermion singlet to the standard model, for example, is accomplished
by including

F[5] == {

ClassName -> ChiDM,

SelfConjugate -> False,

ParticleName -> "chidm",

Mass -> {mchi, Internal},

Width -> {wchi, Internal},

FullName -> "ChiDM"

}

after the list of standard model fermions. In the first line, the new field is identified as a fermion
and uniquely numbered. The mass and width given in lines five and six need to be specified as
external parameters later in the model file, via

mchi == {

ParameterType -> External,

Description -> "DM mass"

},

wchi == {

ParameterType -> External,

Description -> "DM width"

}
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Additional new parameters include the non-minimal coupling constant ξ, the mass scale M as
well as the inverse reduced Planck mass κ. These are implemented analogously, by adding

xiDM == {

ParameterType -> External,

Value -> 1,

TeX -> \[Xi],

InteractionOrder -> {nmDM,1},

Description -> "Non-minimal coupling parameter"

},

MDM == {

ParameterType -> External,

Value -> 1,

TeX -> M,

Description -> "DM coupling mass scale"

},

kappaDM == {

ParameterType -> External,

Value -> 1,

TeX -> \[Kappa],

Description -> "Inverse reduced Planck mass"

}

to the model file. The numerical values given above are defaults and can be modified later.
Lastly, the interactions of the fermion singlet have to be specified through its Lagrangian. The
free dark matter Lagrangian is

LDM := Block[{mu4},

I*( anti[ChiDM].Ga[mu4].del[ChiDM,mu4]

- del[anti[ChiDM],mu4].Ga[mu4].ChiDM )/2]

- mchi anti[ChiDM].ChiDM;

while the interaction Lagrangian (4.33) in the fermion singlet scenario is entered as

Lint := ME[i1,i2] kappaDM^2 /Sqrt[2] xiDM /MDM^2 *

(vev + H) (anti[ChiDM].ve + anti[ve].ChiDM) * TSM[i1,i2];

where built-in functions can be used for hermitian conjugation or metric tensors. The standard
model energy-momentum tensor needs to be specified appropriately. The modified model file
can then be imported to an interactive Mathematica session. After starting FeynRules and
importing the model, a list of Feynman rules can be generated through the

FeynmanRules[LSM + LDM + Lint]

command. To use the model in Monte Carlo event generators like MadGraph, a Universal
FeynRules Output folder [121] can be created automatically by entering

WriteUFO[LSM + LDM + Lint]

into the notebook session.
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Appendix C

Computing decay rates and
scattering cross sections with
MadGraph

The Universal FeynRules Output format provides an interface between the analytical tools
contained in the FeynRules package [120] and numerical Monte Carlo generators like Mad-
Graph [122]. For a given set of model parameters, these can be used to explicitly determine
scattering cross sections or partial widths. In the case of the fermion singlet discussed in sec-
tion 4.3, for example, one can straightforwardly determine all tree-level partial widths for a fixed
dark matter mass in this way. The folder generated by FeynRules can be directly imported into
MadGraph. Next, one needs to enter the process of interest, fix the values of free parameters,
and can then generate events. This is accomplished with the commands

import model smfs_xi

generate chidm > w+ w- h h h ve nmDM=1

output ~/Desktop/chiWW3Hnu

launch ~/Desktop/chiWW3Hnu

0

set param_card default

set mchi 1.e6

set kappadm 1.0

set xidm 1.0

set mdm 1.0

set nevents 10000

0

After rescaling the result with the proper prefactor ξ2M−4 M̄−4
P , this allows one to determine

the partial width of the process χ→WWHHHν at a dark matter mass of mχ = 106 GeV. To
obtain multiple benchmark points at different masses, MadGraph can be operated in scripted
mode. Among its output files is an .html document listing the results of different runs for a
given process, which allows for convenient exporting to plotting or analysis software.
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Appendix D

High-multiplicity phase-space
integrals

Although the FeynRules-MadGraph pipeline allows for convenient and efficient computation of
decay rates or scattering cross sections, it can be instructive (and useful for debugging purposes)
to perform these calculations manually. The general formula for the decay of a particle ϕ into
n final-state particles is [175]

dΓϕ→n =
N

2m0
|M|2 dΦn , (D.1)

with m0 the mass of the initial particle, |M|2 the unpolarized matrix element squared, N a
symmetry factor connected with final-state particle multiplicity, and dΦn the differential n-body
phase space volume

dΦn = (2π)2 δ(4)

pϕ − n∑
j=1

pj

 n∏
i=1

d3pi

(2π)3 2Ei
. (D.2)

While the general two-body phase space integral can be calculated analytically, the presence
of three or more massive particles in the final state makes the calculation significantly more
complex. Nevertheless, these phase-space integrals can be evaluated numerically, following a
systematic approach. For the multi-body decay processes under discussion in this thesis, it
is advantageous to split the evaluation into a chain of sequential two-body decays of virtual
intermediate states. The phase-space element dΦn is a Lorentz invariant quantity. As a matter
of fact, this also holds for all of the intermediate two-body phase-space integrals dΦ2 individually.
Therefore, each of these two-body decays can be computed in its respective center-of-mass
frame and afterwards boosted into the dark matter rest frame. This simplifies the calculation
significantly. In an n-body decay, one introduces (n− 2) intermediate virtual states. This way,
the (3n− 4) integrals that need to be performed in dΦn (three integrals per final-state particle,
minus four due to net momentum conservation) are transformed into (2n− 2) angular integrals
over polar and azimuthal angles {θ}, {φ}, defined in their respective center-of-mass frames, and
(n− 2) integrals over the squared intermediate virtual state energies {s}.

For illustration, consider the decay of ϕ with initial momentum p0 into a three-body final
state with final-state momenta p1, p2 and p3. One can now split this process into p0 → p12 p3,
p12 → p1 p2, with p12 the momentum of a virtual intermediate particle. The full three-body
phase space can then be written as

dΦ3 =
ds12

2π
dΦ2

(
m2

0,
√
s12,m3

)
dΦ2(s12,m1,m2) , (D.3)

91



Appendix D. High-multiplicity phase-space integrals

where the integration limits of the Mandelstam variable s12 = p2
12 = (p1 + p2)2 are

(m1 +m2)2 ≤ s12 ≤ (m0 −m3)2 . (D.4)

The two-body phase space at center-of-mass energy
√
s for final-state masses m1 and m2 is

dΦ2(s,m1,m2) =
1

32π2
λ(s,m1,m2) dΩ12 . (D.5)

where

λ(s,m1,m2) =

√
1− 2

m2
1 +m2

2

s
+

(
m2

1 −m2
2

)2
s2

(D.6)

and dΩ12 = dφ12 d(cos θ12), with the polar and azimuthal angles measured in the center-of-mass
frame of particles 1 and 2. Scalar products between four-vectors, pi · pj , can introduce angular
dependence to the matrix element M. To express these inner products in terms of the angles
defined in the decomposition (D.3), one can proceed iteratively. In the center-of-mass system of
particles 1 and 2, their four-momenta are

pµ1,(12) =


√
|p1|2 +m2

1

|p1| sin θ12 cosφ12

|p1| sin θ12 sinφ12

|p1| cos θ12

 , pµ2,(12) =


√
|p1|2 +m2

2

− |p1| sin θ12 cosφ12

− |p1| sin θ12 sinφ12

− |p1| cos θ12

 , (D.7)

where the magnitude of the three-momentum is

|p1| =

√
s12

2
λ(s12,m1,m2) (D.8)

(and p2 = −p1 due to momentum conservation). They can be transformed into the center-of-
mass frame of the decaying particle ϕ through an appropriate Lorentz transformation,

pµi,(CM) = Λµν
(
m2

0,
√
s12,m3, θ123, φ123

)
pνi,(12) , (D.9)

where m2
0 specifies the center-of-mass energy squared in the target frame,

√
s12 =

√
p2

12 is the
mass of the virtual intermediate state and m3 that of the remaining particle. The Lorentz
transformation is composed of a boost from the rest frame of the virtual intermediate state into
that of ϕ and a rotation by the angles θ123, φ123, defined in the center-of-mass frame of ϕ. For
arbitrary center-of-mass energies s, particle masses m1 and m2 and angles θ, φ, it reads

Λµν(s,m1,m2, θ, φ) =


γ −γ β̄1 −γ β̄2 −γ β̄3

−γ β̄1
(γ−1) β̄2

1

β̄2 + 1 (γ−1) β̄1 β̄2
β̄2

(γ−1) β̄1 β̄3
β̄2

−γ β̄2
(γ−1) β̄2 β̄1

β̄2

(γ−1) β̄2
2

β̄2 + 1 (γ−1) β̄2 β̄3
β̄2

−γ β̄3
(γ−1) β̄3 β̄1

β̄2

(γ−1) β̄3 β̄2
β̄2

(γ−1) β̄2
3

β̄2 + 1

 , (D.10)

where

β̄−2 = 1 +
4m2

1

s
λ(s,m1,m2)−2 , γ =

1√
1− β̄2

=

√
s

2m1

√
λ(s,m1,m2)2 +

4m2
1

s
, (D.11)
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and

β̄ =

β̄1

β̄2

β̄3

 =

cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

 0
0
−β̄

 =

− sin θ cosφ β̄
− sin θ sinφ β̄
− cos θ β̄

 . (D.12)

In the case at hand (D.9), the angles θ123 and φ123 determine the direction of the p12-p3 decay
axis, measured in the ϕ rest frame, while θ12 and φ12 specify the direction of p1 and p2, in
the center-of-mass frame of the intermediate state. Once the matrix element squared and the
phase space volume are expressed purely in terms of s12, the angles θ12, θ123, φ12 and φ123, as
well as the particle masses m0,m1,m2,m3, the total decay rate can be obtained by numerical
integration.

This procedure can be generalized straightforwardly to the case of general n-body decays.
With the definition Σij...k = mi +mj + . . .+mk, one can split up the four-, five- and six-body
phase-space integrals appearing in chapter 5 as

dΦ4 =
ds12

2π

ds34

2π
dΦ2

(
m2

0,
√
s12,
√
s34

)
dΦ2(s12,m1,m2) dΦ2(s34,m3,m4) , (D.13)

where

Σ2
12 ≤ s12 ≤ (m0 − Σ34)2 , (D.14)

Σ2
34 ≤ s34 ≤ (m0 −

√
s12)2 , (D.15)

dΦ5 =
ds12

2π

ds345

2π

ds45

2π
dΦ2

(
m2

0,
√
s12,
√
s345

)
dΦ2(s12,m1,m2)

dΦ2(s345,m3,
√
s45) dΦ2(s45,m4,m5) , (D.16)

with

Σ2
12 ≤ s12 ≤ (m0 − Σ345)2 , (D.17)

Σ2
345 ≤ s345 ≤ (m0 −

√
s12)2 , (D.18)

Σ2
45 ≤ s45 ≤ (

√
s345 −m3)2 , (D.19)

and

dΦ6 =
ds12

2π

ds3456

2π

ds456

2π

ds56

2π
dΦ2

(
m2

0,
√
s12,
√
s3456

)
dΦ2(s12,m1,m2)

dΦ2(s3456,m3,
√
s456) dΦ2(s456,m4,

√
s56) dΦ2(s56,m5,m6) , (D.20)

with the integration region given by

Σ2
12 ≤ s12 ≤ (m0 − Σ3456)2 , (D.21)

Σ2
3456 ≤ s3456 ≤ (m0 −

√
s12)2 , (D.22)

Σ2
456 ≤ s456 ≤ (

√
s3456 −m3)2 , (D.23)

Σ2
56 ≤ s56 ≤ (

√
s456 −m4)2 . (D.24)

The transformation of the four-momenta in these decays is a straightforward generalization
of (D.9). The four-momentum p4,(CM) in a five-body decay, for example, is

pµ4,(CM) = Λµν
(
m2

0,
√
s12,
√
s345, θ12345, φ12345

)
Λνρ(s345,m3,

√
s45, θ345, φ345) pρ4,(45) , (D.25)
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where pρ4,(45) is the four-momentum in the center-of-mass frame of particles 4 and 5, in analogy

to (D.7). The expressions for the other four-momenta can be obtained in the same way through
successive Lorentz transformations.

In principle, the splitting configurations listed above are chosen arbitrarily. However, depend-
ing on the form of the matrix element, choosing the right splitting (or, alternatively, choosing
the right momentum assignment for the final-state particles) can be highly advantageous com-
putationally. The above splitting is particularly well-suited for decays like ϕ → WW + nH
or ϕ → ff̄ + nH, as the only momentum product appearing in their matrix elements is
p1 · p2 =

(
s12 −m2

1 −m2
2

)
/2, without any angular dependence.
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Energy spectra of cascade decays

If a particle undergoes a decay cascade, i.e. if the final-state particles of the primary decay
are unstable themselves, one might be interested in the energy spectrum of the stable daughter
particles at the end of the cascade process. One example was given in section 6.1, where
the impact of injecting electron-positron pairs and photons into the cosmological fluid on the
cosmic microwave background was studied. Here, above a certain minimum mass, a dark matter
particle φ decays into muons and pions with significant branching ratios (cf. figure 5.4). The
muons subsequently decay almost exclusively into electrons and neutrino-antineutrino pairs [1],
while charged pions mostly decay into muons (with a branching fraction of 99.99 % [1]). Neutral
pions, in turn, decay into a pair of photons 98.82 % of the time [1]. Electron spectra for the
decay chain π → µ→ e have been known for a long time [176]. For arbitrary multi-step decays
(also including multi-body final states), a simple Monte Carlo-based approach can be used to
determine the final energy spectra, as will be sketched in the following.

Consider the decay chain P0 → P1 → P2. The energy spectrum (dN2/dE2)1 of particle P2

produced in a decay is typically given in the rest frame of particle P1. The energy E2 is not a
Lorentz invariant quantity, however, so if measured in the rest frame of P0, the energy spectrum
(dN2/dE2)0 will be different. More specifically, E2 is the 0-component of the four-momentum
of particle P2, so it transforms as

p0
2,(0) = Λ0

µ(γ1, θ1, φ1) pµ2,(1) . (E.1)

where Λνµ(γ1, θ1, φ1) is composed of two rotations and a boost, similar to (D.10), and relates
the P1 rest frame to that of P0. Explicitly,

E2,(0) = γ1E2,(1) + cos θ1

√
γ2

1 − 1
√
E2

2,(1) −m
2
2 , (E.2)

where γ1 = E1,(0)/m1 is the boost factor of particle P1 in the rest frame of P0. Given the energy
spectrum (dN1/dE1)0 of P1 in the rest frame of P0 and the spectrum (dN2/dE2)1 of P2 in the
rest frame of P1, the final spectrum (dN2/dE2)0 can be obtained by

• Randomly drawing a large number of energies E1,(0), distributed according to the spectrum
(dN1/dE1)0, and normalizing them by m1 to obtain a sample of boost factors γ1,

• Randomly drawing an equal number of energies E2,(1) distributed according to (dN2/dE2)1,

• Randomly drawing sets of polar and azimuthal angles, with flat distributions for cos θ1

and φ1,

• Transforming each energy E2,(1) in the sample according to (E.2),
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Appendix E. Energy spectra of cascade decays

• And binning, normalizing and interpolating the transformed energy spectra.

The accuracy of this approach can easily be adjusted through the number of “events” generated
(a practical choice is O

(
106
)
). Moreover, the procedure can be trivially extended to cascade

decays with additional intermediate steps by successively performing additional Lorentz trans-
formations in (E.1). This is necessary for the decay chain φ→ π+π−, π → µ→ e, for example.
Particle spectra generated in this way were cross-checked against existing literature, e.g. the
electron spectra from [176], and excellent agreement was found. For the determination of the
CMB limits discussed in section 6.1, the dark matter decay channels γγ, e+e−, e+e−γ, µ+µ−,
µ+µ−γ, π0π0 and π+π− were considered, together with µ+ → e+ν̄µνe, π

0 → γγ and π+ → µ+νµ
(and the processes with their antiparticles, were applicable). The resulting spectra (dNe/dE)f
and (dNγ/dE)f for each final state f are the ones entering (6.1).
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[120] Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr, and Benjamin Fuks.
FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Com-
mun., 185:2250–2300, 2014. arXiv:1310.1921, doi:10.1016/j.cpc.2014.04.012.

[121] Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid, Olivier Mattelaer, and
Thomas Reiter. UFO - The Universal FeynRules Output. Comput. Phys. Commun.,
183:1201–1214, 2012. arXiv:1108.2040, doi:10.1016/j.cpc.2012.01.022.

[122] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton shower simulations.
JHEP, 07:079, 2014. arXiv:1405.0301, doi:10.1007/JHEP07(2014)079.

[123] Mikhail A. Shifman, A. I. Vainshtein, M. B. Voloshin, and Valentin I. Zakharov. Low-
Energy Theorems for Higgs Boson Couplings to Photons. Sov. J. Nucl. Phys., 30:711–716,
1979. [Yad. Fiz.30,1368(1979)].

[124] Nilendra G. Deshpande and Ernest Ma. Pattern of Symmetry Breaking with Two Higgs
Doublets. Phys. Rev., D18:2574, 1978. doi:10.1103/PhysRevD.18.2574.

[125] Camilo Garcia-Cely, Michael Gustafsson, and Alejandro Ibarra. Probing the Inert Doublet
Dark Matter Model with Cherenkov Telescopes. JCAP, 1602(02):043, 2016. arXiv:1512.
02801, doi:10.1088/1475-7516/2016/02/043.

[126] Yeong Gyun Kim and Kang Young Lee. The Minimal model of fermionic dark mat-
ter. Phys. Rev., D75:115012, 2007. arXiv:hep-ph/0611069, doi:10.1103/PhysRevD.75.
115012.

107

http://arxiv.org/abs/0809.1653
http://dx.doi.org/10.1103/PhysRevLett.102.141301
http://arxiv.org/abs/0901.1915
http://arxiv.org/abs/1610.01016
http://dx.doi.org/10.1103/PhysRevD.95.044040
http://arxiv.org/abs/1604.04701
http://dx.doi.org/10.1016/j.physletb.2016.05.045
http://dx.doi.org/10.1016/j.physletb.2016.05.045
http://arxiv.org/abs/hep-ph/0612275
http://arxiv.org/abs/hep-ph/0612275
http://dx.doi.org/10.1088/1475-7516/2007/02/028
http://arxiv.org/abs/hep-ph/0603188
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1108.2040
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1103/PhysRevD.18.2574
http://arxiv.org/abs/1512.02801
http://arxiv.org/abs/1512.02801
http://dx.doi.org/10.1088/1475-7516/2016/02/043
http://arxiv.org/abs/hep-ph/0611069
http://dx.doi.org/10.1103/PhysRevD.75.115012
http://dx.doi.org/10.1103/PhysRevD.75.115012


Bibliography

[127] Mathias Garny, Alejandro Ibarra, and Stefan Vogl. Signatures of Majorana dark matter
with t-channel mediators. Int. J. Mod. Phys., D24(07):1530019, 2015. arXiv:1503.01500,
doi:10.1142/S0218271815300190.

[128] S. Desai et al. Search for dark matter WIMPs using upward through-going
muons in Super-Kamiokande. Phys. Rev., D70:083523, 2004. [Erratum: Phys.
Rev.D70,109901(2004)]. arXiv:hep-ex/0404025, doi:10.1103/PhysRevD.70.083523,

10.1103/PhysRevD.70.109901.

[129] R. Abbasi et al. Search for dark matter from the Galactic halo with the IceCube Neutrino
Telescope. Phys. Rev., D84:022004, 2011. arXiv:1101.3349, doi:10.1103/PhysRevD.

84.022004.

[130] R. Abbasi et al. A Search for UHE Tau Neutrinos with IceCube. Phys. Rev., D86:022005,
2012. arXiv:1202.4564, doi:10.1103/PhysRevD.86.022005.

[131] A. Achterberg et al. Multi-year search for a diffuse flux of muon neutrinos with AMANDA-
II. Phys. Rev., D76:042008, 2007. [Erratum: Phys. Rev.D77,089904(2008)]. arXiv:

0705.1315, doi:10.1103/PhysRevD.76.042008,10.1103/PhysRevD.77.089904.

[132] P. Abreu et al. A Search for Ultra-High Energy Neutrinos in Highly Inclined
Events at the Pierre Auger Observatory. Phys. Rev., D84:122005, 2011. [Erratum:
Phys. Rev.D84,029902(2011)]. arXiv:1202.1493, doi:10.1103/PhysRevD.85.029902,

10.1103/PhysRevD.84.122005.

[133] P. W. Gorham et al. Observational Constraints on the Ultra-high Energy Cosmic Neutrino
Flux from the Second Flight of the ANITA Experiment. Phys. Rev., D82:022004, 2010.
[Erratum: Phys. Rev.D85,049901(2012)]. arXiv:1003.2961, doi:10.1103/PhysRevD.82.
022004,10.1103/PhysRevD.85.049901.

[134] Arman Esmaili, Alejandro Ibarra, and Orlando L. G. Peres. Probing the stability of
superheavy dark matter particles with high-energy neutrinos. JCAP, 1211:034, 2012.
arXiv:1205.5281, doi:10.1088/1475-7516/2012/11/034.

[135] Laura Covi, Michael Grefe, Alejandro Ibarra, and David Tran. Neutrino Signals from
Dark Matter Decay. JCAP, 1004:017, 2010. arXiv:0912.3521, doi:10.1088/1475-7516/
2010/04/017.

[136] Alejandro Ibarra, Anna S. Lamperstorfer, and Joseph Silk. Dark matter annihilations
and decays after the AMS-02 positron measurements. Phys. Rev., D89(6):063539, 2014.
arXiv:1309.2570, doi:10.1103/PhysRevD.89.063539.

[137] E. Churazov et al. INTEGRAL observations of the cosmic X-ray background in the
5-100 keV range via occultation by the Earth. Astron. Astrophys., 2006. [Astron. Astro-
phys.467,529(2007)]. arXiv:astro-ph/0608250, doi:10.1051/0004-6361:20066230.

[138] G. Weidenspointner, M. Varendorff, S. C. Kappadath, K. Bennett, H. Bloemen, R. Diehl,
W. Hermsen, G. G. Lichti, J. Ryan, and V. Schönfelder. The cosmic diffuse gamma-
ray background measured with comptel. AIP Conference Proceedings, 510(1):467–470,
2000. URL: https://aip.scitation.org/doi/abs/10.1063/1.1307028, arXiv:https:
//aip.scitation.org/doi/pdf/10.1063/1.1307028, doi:10.1063/1.1307028.

108

http://arxiv.org/abs/1503.01500
http://dx.doi.org/10.1142/S0218271815300190
http://arxiv.org/abs/hep-ex/0404025
http://dx.doi.org/10.1103/PhysRevD.70.083523, 10.1103/PhysRevD.70.109901
http://dx.doi.org/10.1103/PhysRevD.70.083523, 10.1103/PhysRevD.70.109901
http://arxiv.org/abs/1101.3349
http://dx.doi.org/10.1103/PhysRevD.84.022004
http://dx.doi.org/10.1103/PhysRevD.84.022004
http://arxiv.org/abs/1202.4564
http://dx.doi.org/10.1103/PhysRevD.86.022005
http://arxiv.org/abs/0705.1315
http://arxiv.org/abs/0705.1315
http://dx.doi.org/10.1103/PhysRevD.76.042008, 10.1103/PhysRevD.77.089904
http://arxiv.org/abs/1202.1493
http://dx.doi.org/10.1103/PhysRevD.85.029902, 10.1103/PhysRevD.84.122005
http://dx.doi.org/10.1103/PhysRevD.85.029902, 10.1103/PhysRevD.84.122005
http://arxiv.org/abs/1003.2961
http://dx.doi.org/10.1103/PhysRevD.82.022004, 10.1103/PhysRevD.85.049901
http://dx.doi.org/10.1103/PhysRevD.82.022004, 10.1103/PhysRevD.85.049901
http://arxiv.org/abs/1205.5281
http://dx.doi.org/10.1088/1475-7516/2012/11/034
http://arxiv.org/abs/0912.3521
http://dx.doi.org/10.1088/1475-7516/2010/04/017
http://dx.doi.org/10.1088/1475-7516/2010/04/017
http://arxiv.org/abs/1309.2570
http://dx.doi.org/10.1103/PhysRevD.89.063539
http://arxiv.org/abs/astro-ph/0608250
http://dx.doi.org/10.1051/0004-6361:20066230
https://aip.scitation.org/doi/abs/10.1063/1.1307028
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1307028
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1307028
http://dx.doi.org/10.1063/1.1307028


Bibliography

[139] A. W. Strong, I. V. Moskalenko, and O. Reimer. A new determination of the extragalactic
diffuse gamma-ray background from egret data. Astrophys. J., 613:956–961, 2004. arXiv:
astro-ph/0405441, doi:10.1086/423196.

[140] Marcello Ciafaloni, Paolo Ciafaloni, and Denis Comelli. Bloch-Nordsieck violating elec-
troweak corrections to inclusive TeV scale hard processes. Phys. Rev. Lett., 84:4810–4813,
2000. arXiv:hep-ph/0001142, doi:10.1103/PhysRevLett.84.4810.

[141] Marcello Ciafaloni, Paolo Ciafaloni, and Denis Comelli. Electroweak Bloch-Nordsieck
violation at the TeV scale: ’Strong’ weak interactions? Nucl. Phys., B589:359–380, 2000.
arXiv:hep-ph/0004071, doi:10.1016/S0550-3213(00)00508-3.

[142] Paolo Ciafaloni and Denis Comelli. Electroweak evolution equations. JHEP, 11:022, 2005.
arXiv:hep-ph/0505047, doi:10.1088/1126-6708/2005/11/022.

[143] G. Bell, J. H. Kuhn, and J. Rittinger. Electroweak Sudakov Logarithms and Real Gauge-
Boson Radiation in the TeV Region. Eur. Phys. J., C70:659–671, 2010. arXiv:1004.4117,
doi:10.1140/epjc/s10052-010-1489-x.

[144] Alejandro Ibarra, Sergio Lopez Gehler, and Miguel Pato. Dark matter constraints from
box-shaped gamma-ray features. JCAP, 1207:043, 2012. arXiv:1205.0007, doi:10.1088/
1475-7516/2012/07/043.

[145] V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors,
A. Deerenberg, R. Diehl, A. von Dordrecht, J. W. den Herder, W. Hermsen, M. Kippen,
L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan,
G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B. N. Swanenburg, B. Taylor,
C. de Vries, and C. Winkler. Instrument description and performance of the Imaging
Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory. As-
trophysical Journal Supplement Series, 86:657–692, June 1993. doi:10.1086/191794.

[146] D. J. Thompson et al. Calibration of the Energetic Gamma-Ray Experiment Telescope
(EGRET) for the Compton Gamma-Ray Observatory. Astrophys. J. Suppl., 86:629–656,
1993. doi:10.1086/191793.

[147] R. Rando and for the Fermi LAT Collaboration. Post-launch performance of the Fermi
Large Area Telescope. ArXiv e-prints, July 2009. arXiv:0907.0626.

[148] Paolo Ciafaloni, Denis Comelli, Antonio Riotto, Filippo Sala, Alessandro Strumia, and
Alfredo Urbano. Weak Corrections are Relevant for Dark Matter Indirect Detection.
JCAP, 1103:019, 2011. arXiv:1009.0224, doi:10.1088/1475-7516/2011/03/019.

[149] Jennifer A. Adams, Subir Sarkar, and D. W. Sciama. CMB anisotropy in the decaying
neutrino cosmology. Mon. Not. Roy. Astron. Soc., 301:210–214, 1998. arXiv:astro-ph/

9805108, doi:10.1046/j.1365-8711.1998.02017.x.

[150] Xue-Lei Chen and Marc Kamionkowski. Particle decays during the cosmic dark ages. Phys.
Rev., D70:043502, 2004. arXiv:astro-ph/0310473, doi:10.1103/PhysRevD.70.043502.

[151] Nikhil Padmanabhan and Douglas P. Finkbeiner. Detecting dark matter annihilation with
CMB polarization: Signatures and experimental prospects. Phys. Rev., D72:023508, 2005.
arXiv:astro-ph/0503486, doi:10.1103/PhysRevD.72.023508.

109

http://arxiv.org/abs/astro-ph/0405441
http://arxiv.org/abs/astro-ph/0405441
http://dx.doi.org/10.1086/423196
http://arxiv.org/abs/hep-ph/0001142
http://dx.doi.org/10.1103/PhysRevLett.84.4810
http://arxiv.org/abs/hep-ph/0004071
http://dx.doi.org/10.1016/S0550-3213(00)00508-3
http://arxiv.org/abs/hep-ph/0505047
http://dx.doi.org/10.1088/1126-6708/2005/11/022
http://arxiv.org/abs/1004.4117
http://dx.doi.org/10.1140/epjc/s10052-010-1489-x
http://arxiv.org/abs/1205.0007
http://dx.doi.org/10.1088/1475-7516/2012/07/043
http://dx.doi.org/10.1088/1475-7516/2012/07/043
http://dx.doi.org/10.1086/191794
http://dx.doi.org/10.1086/191793
http://arxiv.org/abs/0907.0626
http://arxiv.org/abs/1009.0224
http://dx.doi.org/10.1088/1475-7516/2011/03/019
http://arxiv.org/abs/astro-ph/9805108
http://arxiv.org/abs/astro-ph/9805108
http://dx.doi.org/10.1046/j.1365-8711.1998.02017.x
http://arxiv.org/abs/astro-ph/0310473
http://dx.doi.org/10.1103/PhysRevD.70.043502
http://arxiv.org/abs/astro-ph/0503486
http://dx.doi.org/10.1103/PhysRevD.72.023508


Bibliography

[152] J. Chluba and R. A. Sunyaev. The evolution of CMB spectral distortions in the early
Universe. Mon. Not. Roy. Astron. Soc., 419:1294–1314, 2012. arXiv:1109.6552, doi:
10.1111/j.1365-2966.2011.19786.x.

[153] Tracy R. Slatyer, Nikhil Padmanabhan, and Douglas P. Finkbeiner. CMB Constraints on
WIMP Annihilation: Energy Absorption During the Recombination Epoch. Phys. Rev.,
D80:043526, 2009. arXiv:0906.1197, doi:10.1103/PhysRevD.80.043526.

[154] Silvia Galli, Tracy R. Slatyer, Marcos Valdes, and Fabio Iocco. Systematic Uncertainties In
Constraining Dark Matter Annihilation From The Cosmic Microwave Background. Phys.
Rev., D88:063502, 2013. arXiv:1306.0563, doi:10.1103/PhysRevD.88.063502.

[155] Christoph Weniger, Pasquale D. Serpico, Fabio Iocco, and Gianfranco Bertone. CMB
bounds on dark matter annihilation: Nucleon energy-losses after recombination. Phys.
Rev., D87(12):123008, 2013. arXiv:1303.0942, doi:10.1103/PhysRevD.87.123008.

[156] Tracy R. Slatyer. Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ion-
ization, Heating and Photon Production from Arbitrary Energy Injections. Phys. Rev.,
D93(2):023521, 2016. arXiv:1506.03812, doi:10.1103/PhysRevD.93.023521.

[157] Tracy R. Slatyer and Chih-Liang Wu. General Constraints on Dark Matter Decay from
the Cosmic Microwave Background. Phys. Rev., D95(2):023010, 2017. arXiv:1610.06933,
doi:10.1103/PhysRevD.95.023010.

[158] Tracy R. Slatyer. Indirect dark matter signatures in the cosmic dark ages. I. General-
izing the bound on s-wave dark matter annihilation from Planck results. Phys. Rev.,
D93(2):023527, 2016. arXiv:1506.03811, doi:10.1103/PhysRevD.93.023527.

[159] A. De Angelis et al. The e-ASTROGAM mission. Exper. Astron., 44(1):25–82, 2017.
arXiv:1611.02232, doi:10.1007/s10686-017-9533-6.

[160] Mathias Garny, McCullen Sandora, and Martin S. Sloth. Planckian Interacting Massive
Particles as Dark Matter. Phys. Rev. Lett., 116(10):101302, 2016. arXiv:1511.03278,
doi:10.1103/PhysRevLett.116.101302.

[161] Mathias Garny, Andrea Palessandro, McCullen Sandora, and Martin S. Sloth. Theory
and Phenomenology of Planckian Interacting Massive Particles as Dark Matter. JCAP,
1802(02):027, 2018. arXiv:1709.09688, doi:10.1088/1475-7516/2018/02/027.

[162] Yong Tang and Yue-Liang Wu. On Thermal Gravitational Contribution to Particle
Production and Dark Matter. Phys. Lett., B774:676–681, 2017. arXiv:1708.05138,
doi:10.1016/j.physletb.2017.10.034.

[163] H. Arason, D. J. Castano, B. Keszthelyi, S. Mikaelian, E. J. Piard, Pierre Ramond, and
B. D. Wright. Renormalization group study of the standard model and its extensions. 1.
The Standard model. Phys. Rev., D46:3945–3965, 1992. doi:10.1103/PhysRevD.46.3945.

[164] Alan H. Guth. The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems. Phys. Rev., D23:347–356, 1981. [Adv. Ser. Astrophys. Cosmol.3,139(1987)].
doi:10.1103/PhysRevD.23.347.

110

http://arxiv.org/abs/1109.6552
http://dx.doi.org/10.1111/j.1365-2966.2011.19786.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19786.x
http://arxiv.org/abs/0906.1197
http://dx.doi.org/10.1103/PhysRevD.80.043526
http://arxiv.org/abs/1306.0563
http://dx.doi.org/10.1103/PhysRevD.88.063502
http://arxiv.org/abs/1303.0942
http://dx.doi.org/10.1103/PhysRevD.87.123008
http://arxiv.org/abs/1506.03812
http://dx.doi.org/10.1103/PhysRevD.93.023521
http://arxiv.org/abs/1610.06933
http://dx.doi.org/10.1103/PhysRevD.95.023010
http://arxiv.org/abs/1506.03811
http://dx.doi.org/10.1103/PhysRevD.93.023527
http://arxiv.org/abs/1611.02232
http://dx.doi.org/10.1007/s10686-017-9533-6
http://arxiv.org/abs/1511.03278
http://dx.doi.org/10.1103/PhysRevLett.116.101302
http://arxiv.org/abs/1709.09688
http://dx.doi.org/10.1088/1475-7516/2018/02/027
http://arxiv.org/abs/1708.05138
http://dx.doi.org/10.1016/j.physletb.2017.10.034
http://dx.doi.org/10.1103/PhysRevD.46.3945
http://dx.doi.org/10.1103/PhysRevD.23.347


Bibliography

[165] Andrei D. Linde. A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys.
Lett., 108B:389–393, 1982. [Adv. Ser. Astrophys. Cosmol.3,149(1987)]. doi:10.1016/

0370-2693(82)91219-9.

[166] Andreas Albrecht and Paul J. Steinhardt. Cosmology for Grand Unified Theories with
Radiatively Induced Symmetry Breaking. Phys. Rev. Lett., 48:1220–1223, 1982. [Adv. Ser.
Astrophys. Cosmol.3,158(1987)]. doi:10.1103/PhysRevLett.48.1220.

[167] P. A. R. Ade et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys.,
594:A20, 2016. arXiv:1502.02114, doi:10.1051/0004-6361/201525898.

[168] Tommi Tenkanen. Resurrecting Quadratic Inflation with a non-minimal coupling to grav-
ity. JCAP, 1712(12):001, 2017. arXiv:1710.02758, doi:10.1088/1475-7516/2017/12/
001.

[169] Soo-Min Choi, Yoo-Jin Kang, Hyun Min Lee, and Kimiko Yamashita. Unitary inflaton as
decaying dark matter. 2019. arXiv:1902.03781.

[170] Fedor L. Bezrukov and Mikhail Shaposhnikov. The Standard Model Higgs boson as the
inflaton. Phys. Lett., B659:703–706, 2008. arXiv:0710.3755, doi:10.1016/j.physletb.
2007.11.072.

[171] J. L. F. Barbon and J. R. Espinosa. On the Naturalness of Higgs Inflation. Phys. Rev.,
D79:081302, 2009. arXiv:0903.0355, doi:10.1103/PhysRevD.79.081302.

[172] C. P. Burgess, Hyun Min Lee, and Michael Trott. Comment on Higgs Inflation and
Naturalness. JHEP, 07:007, 2010. arXiv:1002.2730, doi:10.1007/JHEP07(2010)007.

[173] F. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov. Higgs inflation: consistency
and generalisations. JHEP, 01:016, 2011. arXiv:1008.5157, doi:10.1007/JHEP01(2011)
016.

[174] A. M. Sirunyan et al. Search for new physics in final states with an energetic jet or
a hadronically decaying W or Z boson and transverse momentum imbalance at

√
s =

13 TeV. Phys. Rev., D97(9):092005, 2018. arXiv:1712.02345, doi:10.1103/PhysRevD.
97.092005.

[175] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field the-
ory. Addison-Wesley, Reading, USA, 1995. URL: http://www.slac.stanford.edu/

~mpeskin/QFT.html.

[176] J. H. Scanlon and S. N. Milford. Energy Spectra of Electrons from π-µ-e Decays in
Interstellar Space. Astrophysical Journal, 141:718, February 1965. doi:10.1086/148156.

111

http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://arxiv.org/abs/1502.02114
http://dx.doi.org/10.1051/0004-6361/201525898
http://arxiv.org/abs/1710.02758
http://dx.doi.org/10.1088/1475-7516/2017/12/001
http://dx.doi.org/10.1088/1475-7516/2017/12/001
http://arxiv.org/abs/1902.03781
http://arxiv.org/abs/0710.3755
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://arxiv.org/abs/0903.0355
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://arxiv.org/abs/1002.2730
http://dx.doi.org/10.1007/JHEP07(2010)007
http://arxiv.org/abs/1008.5157
http://dx.doi.org/10.1007/JHEP01(2011)016
http://dx.doi.org/10.1007/JHEP01(2011)016
http://arxiv.org/abs/1712.02345
http://dx.doi.org/10.1103/PhysRevD.97.092005
http://dx.doi.org/10.1103/PhysRevD.97.092005
http://www.slac.stanford.edu/~mpeskin/QFT.html
http://www.slac.stanford.edu/~mpeskin/QFT.html
http://dx.doi.org/10.1086/148156

	Introduction
	The dark and the visible sector
	The dark matter puzzle
	Indirect detection
	Dark matter production in the early Universe
	Dark matter stability
	Dark and visible matter in curved spacetime

	Theories with non-minimal coupling to gravity
	Non-minimal coupling to gravity
	Weyl transformation
	Modification of the electroweak vacuum
	A note on the cosmological constant

	Dark matter decays from non-minimal coupling to gravity
	Scalar singlet dark matter
	Scalar (inert) doublet dark matter
	Fermionic dark matter
	Dark matter decay in simplified models

	Decay phenomenology
	Scalar singlet dark matter above the GeV scale
	Low-mass scalar singlet dark matter
	Scalar (inert) doublet dark matter
	Fermionic dark matter
	Higher-order corrections

	Constraints from cosmology
	Constraints from the cosmic microwave background
	Constraints from dark matter production
	Relic abundance from coannihilations
	Relic abundance from (inverse) decays
	Total relic abundance


	Inflation in non-minimally coupled scenarios
	Scalar field dynamics
	Inflation with non-minimal coupling to gravity

	Conclusions
	Appendices
	Feynman Rules
	Scalar singlet above 1 GeV
	Low-mass scalar singlet
	Scalar doublet
	Fermion singlet

	Generating Feynman rules with FeynRules
	Computing decay rates with MadGraph
	High-multiplicity phase-space integrals
	Energy spectra of cascade decays
	Bibliography

